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Preface

The area of “Networked Control Systems” has emerged over the past decade as a
subdiscipline in control theory in which the flow of information in a system takes
place across a communication network. Unlike traditional control systems, where
computation and communications are usually ignored, the approaches that have
been developed for networked control systems explicitly take into account vari-
ous aspects of the communication channels that interconnect different parts of the
overall system and the nature of the distributed computation that follows from this
structure. This leads to a new set of tools and techniques for analysis and design
of networked control systems that builds on the rich frameworks of communication
theory, computer science and control theory.

This book is based on a series of courses that the authors have developed over
the past several years, starting with a joint course taught at Caltech in Spring
2006. These courses were typically taken by students who have a good grounding
in the basic techniques of control systems but may not have a strong background
in computer science or some aspects of communication theory. While the level of
mathematical detail in the book should allow it to be accessible to juniors or seniors
in engineering, the treatment is tuned for first and second year graduate students
in engineering or computer science. Some tutorial material on estimation theory is
included, as well as a brief review of key concepts in graph theory that are needed
primarily in the second half of the text.

The book is intended for researchers who are interested in the analysis and
design of sensing, estimation and control systems in a networked setting. We focus
primary on the effects of the network on the stability and performance of the system,
including the effects of packet loss, time delay† and distributed computation. We RMM: Check to make

sure this is correct in final
version

have attempted to provide a broad view of the field, in the hope that the text will
be useful to a wide crossection of researchers. Most of the results are presented in
the discrete time setting, with references to the literature for the continuous time
analogs. We have also attempted to include a review of the current literature at the
end of each chapter, with an emphasis on papers that are frequently referenced by
others, along with some directions for future research, when appropriate. To keep
the material focused, we have chosen to only touch on material on optimization-
based control (e.g., receding horizon control) or protocols for distributed systems,
although these are often an integral part of complex networked control systems.
References to the literature are given for readers interested in these important
topics. RMM: Currently written

as two parts. Extend to
three if we add back in the
application chapters.

The book is organized into two main parts: a set of background chapters and
the core material. Chapter 1 gives an introduction to the topic of networked con-
trol systems, including some driving application examples. Chapters 2–4 cover a
collection of topics that are used throughout the remainder of the text. We assume
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familiarity with standard topics in estimation and control theory, including random
processes, Kalman filtering and linear state space control theory, and provide only
a quick review of this material in Chapter 2 to define the notation we will use and
present some of the basic definitions and formulas. Chapters 3 and 4 complete the
background chapters by giving concise overviews of the relevant results in infor-
mation theory and Markovian jump linear systems, on which many of the later
results of the book are built. These background chapters can be reviewed quickly
for students and researchers already familiar with this material.

The core material on networked control systems is presented in Chapters 5
through 9. We begin by looking at the case of sensing, estimation and control of a
single process across a communication channel, beging with the effects of rate limits
in the channel in Chapter 5 and then the effects of packet loss in Chapter 6. Both
of these chapters considers the cases where the communication channel affects on
the measurements received from the sensor and where the channel affects both the
measurements and the actuation commands. In Chapter 7 we begin to look at the
problem of control over a graph, starting with an introduction to graph theory and
the problem of consensus. Chapters 8 and 9 then go on to consider the distributed
estimation and control problems, where one can have multiple processes, sensors,
actuators, estimators and controllers distributed over a communications network. In
each of these chapters on the core material we have attempted to present a unified
view of many of the most recent and relevant results in network control, with the
goal of establishing a foundation on which more specialized results of interest to
specific groups can be covered.

The topics in the text have been taught by the authors and our colleagues in
a variety of formats. In a semester-long, graduate course, it should be possible to
cover most of the material in the book, assuming the students have good working
knowledge of random processes, estimation theory and linear control systems. We
have also used the material in the text for week-long short courses for masters and
PhD students, where we cover the results in the background chapters in four 90
minute lectures, then spend 1–2 lectures on each of the remaining chapters. The
material is fairly modular, so that the order of teaching the material can be varied
according to the tastes of the instructor. The dependencies of the chapters are
shown in Figure 1.

The full text for this manuscript, along with additional supplemental material,
is available on a companion web site:

http://www.cds.caltech.edu/∼murray/amwiki/NCS

http://www.cds.caltech.edu/~murray/amwiki/NCS
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Notation

This is an internal chapter that is intended for use by the authors in fixing the
notation that is used throughout the text. In the first pass of the book we are
anticipating several conflicts in notation and the notes here may be useful to early
users of the text.

General mathematics

• Use ∗ for expressions that are not given explicity

• Matrix transpose: AT

System dynamics

We focus on linear discrete time systems

xk+1 = Axk +Buk + wk

yk = Cxk + vk.

The system is described by the state x ∈ Rn, inputs u ∈ Rp and outputs y ∈ Rm.
Disturbances are represented by the random process wk, which we typically take to
be zero mean, white Gaussian noise with covariance matrix ΣW ≥ 0. Measurement
noise is represented by the Gaussian random process vk with covariance matrix
ΣV > 0. For systems with multiple sensors, we use the notation yj to represent the
jth output and use corresponding superscripts for the other relevant quantities.

In the few instances that we use continuous time dyanmics, these are written as

dx

dt
= Ax+Bu+ w

y = Cx+ v

Note that for both the continuous and discrete dynamics we leave out the direct
term (Du). We should point out the first time these equations come up in a chapter
whether it is easy to include the direct term or whether not everything extends
directly.

We currently have a discrepency in the notation described above. Some co-authors RMM

use xk, others use x(k). Need to resolve at some point in the near future.
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Random variables and processes

• Expectation: E[X], EY [X] for the expectation of X over Y .

• Mean: µ, µX for a random variable/vector X

• Variance: σ2, σ2
X for a (scalar) random variable X; Σ, ΣX for a random vector

X; ΣXY for the cross-covariance

Additional mathematical notation

• Lists and sets: A index set is can be written inline as {Xi : i = min, . . . ,max}
or as a displayed equation:

{
Xi

}max

i=min
.

Observer dynamics

We need to discuss this notation and think through what will work the best forAll

what we want. The notation here might get cumbersome.

We write P > 0 for the covariance of the estimation error. The observer for a
discrete time linear system is written as a prediction step,RMM: Notation for the

contribution for the
disturbance covariance is

awkward. Since we usually
don’t include the time

dependence, should be OK

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1,

Pk|k−1 = APk−1|k−1A
T + ΣWk−1,

followed by a correction step,

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1),

Pk|k = Pk|k−1 − Pk|k−1C
T (CPk|k−1C

T +Rk)
−1CPk|k−1.

The gain matrix for the estimator is given by K (for Kalman). The gain matrix for
a state space controller can either by L or possibly F (?).†RMM: Discuss at next

telecon

Supplement

Macros

Several macros have been defined to help enforce the notation described above.
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Macro Symbol Comments
\reals R Real numbers
k\mns1 k−1 Compressed spacing
k\pls1 k+1 Compressed spacing

\Prob(A) P (A) Probability of an event
\ctrlgain L State space control gain
\obsvgain K Observer/Kalman gain
\dvar x[k] xk Discrete-time variable
\cvar x[t] x(t) Continuous-time variable

\pdf{}, \pdf[X] p, pX Probability density function
\expect{X}, \expect[Y]{X} E[X],EY [X] Expectation

\avg{X} 〈X〉 Average (not used)
\mean{}, \mean[X] µ, µX Mean

\stddev{}, \stddev[X] σ, σX Standard deviation
\varnce{}, \varnce[X] σ2, σ2

X Variance
\covar{}, \covar[X] Σ,ΣX Covariance matrix

Examples of how to use these expressions, especially in combination, can be found
in notation.tex.

Action items, notes and supplemental text

There are a macros available for marking up the authors version of the text (ncsauthor.tex):

• Action items† mark places in the text where changes need to be made. The RMM: like this

owner of the action item should be the person who is expected to make the
change.

• Notes† can be placed in the text to leave information about a change or Note: like this [RMM, 21
Dec 09]a decision that was made on what to include. The note should include the

author of the note and a date.

• Supplemental information (in green, like this entire section) can be mark ma-
terial that might be included at later points in time or that will be integrated
into other parts of the book.

All of these markups are turned off in the version of the book that will be distributed
to others (ncsbook.tex).

Action items. The following commands can be used to insert action items into the
text:

\action[vshift]{Owner}{Action} % action item with mark in text

\action*[vshift]{Owner}{Action} % generate action item with no mark

\actionpar[vshift]{Owner}{Action} % generate an action item paragraph

Notes. The following commands can be used to insert notes into the text:

\actnote[Title]{Owner}{Note} % generate a note in the text

\actnote*[Title]{Owner}{Note} % generate a note with no mark

\actnotepar[Title]{Owner}{Note} % generate a note paragraph

ncsauthor.tex
ncsbook.tex
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Supplemental information. Use the supplement environment to include supplemen-
tal information:

\begin{supplement}

Supplemental text...

\end{supplement}
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Chapter 1
Introduction

Networked control is an emerging area of control theory driven by the increasing
design, implementation and operation of control systems that makes use of com-
munication networks to send information between the sensors, actuators and com-
putational elements that make up a control system. In this chapter we provide an
introduction to networked control systems (NCS), including a description of what
is different about networked control versus traditional control design, some of the
applications that are driving networked control systems research and engineering,
and a list of some of the key subproblems in networked control that are the focus
on the material in this text.

1.1 Overview of Networked Control Systems

Exand the paragraph below to talk more about the “standard” control problem that RMM

is solved, perhaps including an equation like ẋ = f(x, u) to make things concrete.
Mention sensing, estimation and control, so that these can be revisited for networked
control systems.

Modern control theory is largely based on the abstraction that information (“sig-
nals”) are transmitted along perfect communication channels and that computation
is either instantaneous (continuous time) or periodic (discrete time). This abstrac-
tion has served the field well for 50 years and has led to many success stories in a
wide variety of applications.

Future applications of control will be much more information-rich than those of
the past and will involve networked communications, distributed computing, and
higher levels of logic and decision-making (see [Mur03] for a recent analysis of future
directions in this area). New theory, algorithms, and demonstrations must be de-
veloped in which the basic input/output signals are data packets that may arrive at
variable times, not necessarily in order, and sometimes not at all. Networks between
sensors, actuation, and computation must be taken into account, and algorithms
must address the tradeoff between accuracy and computation time. Progress will re-
quire significantly more interaction between information theory, computer science,
and control than ever before.

An emerging framework for networked control systems is shown in Figure 1.1.
This architecture separates the traditional elements of sensing, estimation, control,
and actuation for a given system across a network and also allows sharing of in-
formation between systems. As we will see in the examples below, careful decisions
need to be made on how the individual components in this architecture are imple-
mented and how the communications across the networked elements is managed.
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Estimation/

Sensor Fusion

Optimization-

Based Control

Process 1

Sensing

Estimation/

Sensor Fusion

Optimization-

Based Control

External Environment

Process 2

Sensing

Figure 1.1: Emerging framework for networked control systems. Signals between
control system modules for multiple processes are transmitted through a commu-
nication network.

This architecture can be used to model either a single system (using either half of
the diagram) or multiple systems that interact through the network.

Add material on “network effects”, including packets, synchronization and dis-RMM

tributed data. Talk also about emerging network protocols, such as time-triggered,
event-triggered and rate-constrained protocols, plus multi-hop (wireless) networks.
Probably a paragraph or two on each topic, with appropriate pictures and diagrams.

As a final paragraph or two, talk about some of the problems that we won’t convertRMM

in the book. This would include things like asynchronous execution, protocol-based
control systems (ala CCL) and higher-level decision making (learning, goal man-
agement, fault recovery).

1.2 Application Examples

Embedded Systems

One example of the use of this architecture is autonomous operations for sensor-
rich systems, such as unmanned, autonomous vehicles. As part of the 2004 and 2005
DARPA Grand Challenges, Caltech has developed two such vehicles (“Bob” and
“Alice”) that each make use of a networked control systems architecture. Alice, the
2005 vehicle, has six cameras, 4 LADAR units, an inertial meaurement unit (IMU), a
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GPS navigation system, and numerous internal temperature and vibration sensors.
The raw data rate for Alice is approximately 1–3 Gb/s, which must be processed
and acted upon at rates of up to 100 Hz in order to insure safe operation at high
driving speeds.

The control system for Alice makes use of the architecture depicted in Fig-
ure 1.1, with distributed data fusion to determine elevation maps (for the height
of the terrain in front of the vehicle), multiple optimization-based controllers to
plan possible routes for the vehicle, and online modeling, fault management, and
decision making to provide reliable and reconfigurable operation. Eight onboard
computers distribute the computational load, sharing information at mixed rates
across a 1 Gb/s switched network. System specifications call for reliable operation
in the presence of up to 1 computer failure and 2 sensor failures, requiring careful
coordination between computational elements.

A major challenge in Alice is determining how to send information between
nodes. Because of the high data rates and computational loads on the CPUs, packets
sent across the network are not always received and the system must be robust
to various networking effects. The choice of protocols and design of the overall
messaging system is currently informal and based on trial and error. As an example
of the issues that must be resolved, certain packets of data are very important, such
as packets containing raw sensor information from a portion of the terrain that is
scanned only once. Other data can be dropped if needed, such as commanded
trajectories (the old trajectory can be used for several sampling periods). Data
from the inertial measurement unit must be received with minimum latency, while
other data (a change in the temperature of the vehicle) is much less time critical.
Substantial effort has been put into trying to make sure that the computations and
network protocols complement each other and that loss of data and data latency
does not degrade the performance of the system.

The material below should be shortened substantially since it is not a major focus RMM

of the book. The main reason to include it would be to talk about some of the
“higher level” functions that set on top of an NCS architecture.

A more detailed architecture for a networked control system is shown in Fig-
ure 1.2. At the top of the figure, the standard elements for a control system are
present: actuation, system dynamics, sensing and environmental disturbances and
noise. For many networked control systems, the amount of sensory information
available is very large, requiring care in how this information is transmitted. Alice,
for example, had between 1 and 3 gigabits/second (Gb/s) raw data rate, depending
on the sensor suite taht was used. Another difference with traditional control sys-
tems is that the actuation subsystems are themselves embedded systems, capable
of some amount of computation and local memory storage.

The primary control loop in a networked control system consists of state es-
timation, trajectory generation, and trajectory tracking. These elements can all
represent relatively substantial computations (depending on the application) and
are linked to each other through a number of network ports. In Alice, for exam-
ple, the state estimation modules included a traditional inertial state estimator
(combining GPS data with gryos and accelerometer measurements) as well as four
computers that were estimating terrain information and computing a fused “speed
map” that described the maximum allowable velocity that could be used in a given
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Tracking
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Trajectory
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Mode/Traj
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Selection

Figure 1.2: A detailed architecture for a networked control system, based on the
control system for Alice [?].

area of the terrain in front of it (more details on the software for Alice is given in
Appendix ??).

The information from the state estimators is used by trajectory generation al-
gorithms that compute the desired state and inputs for the system to accomplish a
task or minimize a cost function. The trajectory generation algorithms are respon-
sible for taking into account actuator and state constraints on the sytem, as well
as the nonlinear nature of the underlying process dynamics. A typical approach for
these algorithms is to perform optimization-based control, in which one attempts to
minimize a cost function subject to satisfying the constraints and dynamics. With
the advances in computational power, it is often possible to run these optimization-
based planners quickly enough that they can recompute the path from the current
location in a “receding horizon” fashion, allowing feedback at the planner level.
This is particularly useful to manage uncertainty in the cost function, for example
when the cost is determined in real-time (as in the case of Alice, where the cost is
based no the terrain that is being traversed).

As in the case of state estimation, networked control systems often use more
than one trajectory generation algorithm running simultaneously. Since the physical
system can only track one trajectory, some level of mode management and trajec-
tory selection is required. This mode or trajectory selection logic is often under the
control of higher levels of decision making (supervisory control).

The last element of the primary control loop is the trajectory tracking module,
which is responsible for high frequency disturbance rejection and tracking. This
module is itself a feedback system, using the state estimate and the desired trajec-
tory to compute the actuation commands. In the context of a networked control
system, the primary difference with traditional trajectory tracking algorithms is the
need to run in a asynchronous execution environment, where reference trajectories
and sensory measurements may come in at varying rates, including short periods
where no inputs may arrive (due to network delays, computational delays or fault
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handling in one of the other modules).
In addition to the elements of the primary control loop, networked control sys-

tems can also contain a number of modules responsible for higher levels of decision
making. We loosely refer to these modules as “supervisory control”: they are re-
sponsible for implementing various control system functions that involve choosing
parameters used by the primary control loop (such as cost functions and commu-
nication rates), dealing with failures of hardware and software components, main-
taining an online model of the system dynamics, and adapting the performance
of the system based on observed behaviors and memory. While these elements are
critical for the operation of a networked control systems, in this text we focus on
the primary control loop, where the network effects are most directly relevant.

Sensor networks

Pull some of the material from the old sensor networks applications chapter here. LS

We should limit the material to 1–2 pages, including some pictures.

Process Control

This section will discuss some of the emerging applications of NCS in process control VG

and manufacturing. Kalle Johansson has some very nice examples that we can
probably use here. We should try to write something up during the EECI, perhaps
by taking notes on some of Vijay’s lectures.

Cooperative Control

Update the material here to talk about two case: decoupled dynamics (multi-vehicle RMM

systems) and coupled dynamics (power grid, Internet). Much of the material can
come from the previous application chapter on cooperative control. Can probably
get rid of the MVWT example per se, since the other examples are better.

Another example of a networked control system is illustrated by the Caltech
Multi-Vehicle Wireless Testbed (MVWT, shown in Figure 1.3), which consists of
a collection of 8-12 vehicles performing cooperative tasks. The MVWT represents
a slightly different instantiation of the architecture in Figure 1.1: each vehicle has
a single processor with full access to local sensing and actuation, but information
between vehicles must be sent across the network. The wireless commmuncation
channels can exhibit significant degredation when multiple vehicles are attempting
to communication and packet loss rates of 5-15% are not uncommon.

The issues in desiging a cooperative control policy for the MVWT vehicles faces
many of the same challenges as those seen in Alice. Information communicated
between vehicles can be dropped, reordered or sent with variable delay. Sensor
information required for overall situational awareness can be fused at multiple levels
and/or in a distributed fashion. Again, the currently available protocols for network
communications are not well tuned to operation in this type of environment. For
example, bit errors in packets can result in losing the entire data packet, rather than
passing the information to the applications layer where partial (lossy) information
could still be used effectively.
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Figure 1.3: The Caltech Multi-Vehicle Wireless Testbed. The left figure shows the
layout of the testbed area, including overhead cameras and fixed communication
nodes (crosses and hexagons). The right picture is the current laboratory, with two
vehicles shown.

1.3 NCS Subproblems

This section will try to talk about the different class of NCS problems that will beRMM

studied in the book. This includes:

• One- and two-block estimation and control

• Distributed sensing and estimation

• Distributed and cooperative control
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Chapter 2
State Estimation and Sensor Fusion

In this chapter, we provide an overview of Kalman filter and linear quadratic Gaus-
sian (LQG) control. We will first provide a quick summary of basic theories of
probability and stochastic process, which will be used to derive the Kalman filter
equations. Some properties of Kalman filter and its steady-state error covariance
matrix will also be provided. After that, we will introduce LQG control and derive
the optimal control law using a dynamic programming approach.

The material of this chapter will be the foundation of most subsequent chapters
including Chapters 4, 6 and 8. In particular, Chapter 6 considers the effect of
data packet drops on Kalman filtering and LQG control and Chapter 8 considers
distributed Kalman filtering.

Chapter 11 investigates how to improve state estimation using a Kalman filter in a Supplement

networked environment, and Chapter 12 considers Kalman filtering using a sensor
network subject to limited sensor communication bandwidth and energy.

2.1 Review of Probability and Random Process

We assume the readers have some exposure to the theory of probability and random
process. The material presented in this section only serves as a quick review of some
basic concepts and tools from probability and random process that will be helpful to
understand and derive some important results in subsequent sections and chapters.
Good introductory books on probability and random process are [GS01] and [LG93].

Random Variables

Consider an experiment with many (possibly infinite) outcomes. All these outcomes
form the sample space Ω. A subset A ⊂ Ω is called an event. Two events A1, A2 are
called mutually disjoint if A1∩A2 = ∅. The complement of an event A is defined as
Ā = Ω \ A. A probability measure P (·) is a mapping from Ω into the interval [0, 1]
such that the following axioms of probability are satisfied:

1. P (A) ≥ 0 for all A ⊂ Ω.

2. P (Ω) = 1.

3. If {Ai, i = 1, 2, . . .} is a collection of disjoint members of F , i.e., Ai ∩Aj = ∅
for all i, j, then P (∪Ai) =

∑
i P (Ai).

From the axioms of probability, it follows that

P (A) ≤ 1, P (∅) = 0, P (Ā) = 1 − P (A), P (∪Ai) ≤
∑

i

P (Ai).
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The joint probability of two events A and B is P (A∩B) which is often written as
P (AB) for simplicity. The conditional probability of A given B i.e., the probability
that A occurs if B occurs in an experiment is

P (A|B) =
P (AB)

P (B)
, assuming P (B) 6= 0.

A and B are mutually independent if

P (AB) = P (A)P (B).

If P (B) 6= 0, the conditional probability P (A|B) can be calculated from Bayes’
Rule as

P (A|B) =
P (B|A)P (A)

P (B)
.

If Ai, i = 1, 2, . . . are mutually disjoint and ∪Ai = Ω, then

P (B) =
∑

i

P (B|Ai)P (Ai)

and

P (Aj |B) =
P (B|Aj)P (Aj)∑
i P (B|Ai)P (Ai)

.

A random variable is a function X : Ω → R. The cumulative distribution func-
tion of a random variable X is a function FX : R→ [0, 1] given by

FX(x) = P (X ≤ x).

The cumulative distribution function F has the following properties

1. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

2. If x ≤ y, then FX(x) ≤ FX(y).

3. FX is right-continuous.

When FX is differentiable, we can define the associated probability density function
pX(x) as

pX(x) =
dFX(x)

dx
.

The joint cumulative distribution function of two random variables X and Y ,
denoted as FXY (x, y), is given by

FXY (x, y) = P (X ≤ x) ∩ P (Y ≤ y).

If its derivative exists, the associated joint probability density function is given by

pXY (x, y) =
∂2

∂x∂y
FXY (x, y).

Given FXY (x, y), the marginal distribution functions of X and Y can be calcu-
lated as

FX(x) = P (X ≤ x) = FXY (x,∞), FY (y) = P (Y ≤ y) = FXY (∞, y).
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It follows that the marginal density functions of X and Y are

pX(x) =

∫ ∞

−∞

FXY (x, y)dy, pY (y) =

∫ ∞

−∞

FXY (x, y)dx.

The conditional density function of X given Y is given by

pX|Y (x|y) =
pXY (x, y)

pY (y)
.

The density function of X can also be calculated as

pX(x) =

∫ ∞

−∞

pX|Y (x|y)pY (y)dy.

If X and Y are independent random variables, then the following statements holds
and are equivalent to each other:

1. FXY (x, y) = FX(x)FY (y).

2. pXY (x, y) = pX(x)pY (y).

3. pX|Y (x|y) = pX(x).

A random variable X is completely specified by its distribution function FX(x)
or density function pX(x). In many situations, FX(x) or pX(x) are difficult to
obtain. It turns out the mean µX and variance σ2

X may provide us enough (useful)
information about X. The mean and variance of a random variable X are defined
as follows:

µX = E[X] =

∫ ∞

−∞

xpX(x)dx,

σ2
X = E

[
(X − E[X])2

]
=

∫ ∞

−∞

(X − E[X])2pX(x)dx.

We denote E[·] as the expectation operator. Since E[·] is a linear operator, σ2
X can

also be calculated as
σ2
X = E[X2] −

(
E[X]

)2
.

If X is a zero-mean random variable, i.e., E[X] = 0, then σX = E[X2]. The kth
moment of X is mk = E[Xk] and the kth central moment is µk = E

[
(X −E[X])k

]
.

The covariance of two random variablesX and Y is defined as E
[
(X−E[X])(Y −

E[Y ])
]
. X and Y are uncorrelated if E[XY ] = E[X]E[Y ]. If X and Y are uncorre-

lated, it is easy to verify that the covariance of X and Y is equal to zero. Clearly if
X and Y are independent, then they are uncorrelated. However the converse does
not hold in general.

Introduce conditional distribution function first. LS

The conditional expectation of X given Y = y is

E[X|Y = y] =

∫ ∞

−∞

xpX|Y (x|y)dx
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which is a number that depends on the value of y. Similarly, the conditional expec-
tation of X given Y is

E[X|Y ] =

∫ ∞

−∞

xpX|Y (x|Y )dx

which is also a random variable that depends on Y , i.e., it is a function of the random
variable Y . The following property is very important and has great practical value
in evaluating E[X]:

E[X] = EY
[
EX [X|Y ]

]
,

i.e., we first find the conditional expectation of X (conditioned on Y ), and then re-
move the condition by taking the expectation with respect to Y . From this property,
one can easily verify that if X and Y are independent, then

E[X|Y ] = E[X].

Furthermore if X and Y are jointly independently of Z, then

E[XY |Z] = E[X|Z]E[Y |Z].

Random Processes

A random process X(t) is a generalization of a random variable. For a random
variable, each experiment leads to a number (or a vector), while for a random
process, each experiment leads to a function. For a fixed outcome ω ∈ Ω, one
obtains the function X(t, ω), which is also called the sample path or sample func-
tion of the process. For a fixed t, X(t, ω) is a random variable with the underly-
ing probability space Ω. The mean process of X(t) is the time function E[X(t)].
The autocorrelation of X(t) is E[X(t1)X(t2)

T ] and the autocovariance of X(t) is

E
[(
X(t1) −m(t1)

)(
X(t2) −m(t2)

)T ]
.

A random process X(t) is called a Gaussian random process if for any finite
set {t1, t2, . . . , tN}, the random variables {X(t1),X(t2), . . . ,X(tN )} have a joint
Gaussian distribution, i.e., their joint probability density function is given by

pX(x) =
1

(2π)N/2
√

det[CX ]
exp

[
−1

2
(x−mX)TC−1

X (x−mX)

]
(2.1)

wheremX = [mX(t1)mX(t2) . . . mX(tN )]T is the mean vector and CX =
[
cov
(
X(ti),X(tj)

)]

is the covariance matrix. Gaussian processes have the following properties.

Theorem 2.1. Let X(t) be a Gaussian process. Then X(t) is completely determined
by mX and CX .

Theorem 2.2. Let X and Y have a joint Gaussian distribution with mean and
covariance given by

µ =

[
x̄
ȳ

]
and Σ =

[
Σx Σxy
Σyx Σy

]
.

Then X conditioned on Y = y is Gaussian with mean and covariance given by

µX|Y=y = x̄+ ΣxyΣ
−1
y (y − ȳ) and ΣX|Y=yΣx − ΣxyΣ

−1
y Σyx.
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In other words,

E[X|Y = y] = x̄+ ΣxyΣ
−1
y (y − ȳ). (2.2)

The proof can be found in Anderson and Moore [AM90].

Stability of stochastic systems

This subsection should describe the different types of stability for a stochastic LS

system (mean square, almost surely, convergence in distribution). I have put this
in a separate file, stability.tex, just in case it gets large and needs to turn into
its own section. We should include the definition of the Ricatti operator here (if it
hasn’t come up already) and also make sure to include Jensen’s inequality.

Consider the following system dynamics:

xk+1 = f(xk, wk), (2.3)

where x0 and wk are random vectors. System (2.3) is said to be

1. second moment stable if

lim
k→∞

E[||xk||2] = 0,

2. almost sure stable if

P ( lim
k→∞

||xk|| = 0]) = 1,

where the expectation is taken with respect to x0 and wi, i = 0, . . . , k.

For a convex function f , x1, . . . , xn in its domain, and positive weights αi,
Jensen’s inequality can be stated as:

f

(∑
αixi∑
αi

)
≤
∑
αif(xi)∑
αi

. (2.4)

Jensen’s inequality can also be stated in probabilistic form. Let X be a random
variable and f be a convex function. Then

f (E[X]) ≤ E (f(X)) . (2.5)

The above two inequalities are reversed if f is concave.

Markov Chains

Write up this subsection, which should include the relevant results that we will VG

need in later chapters. I have create this as a separate file, markov.tex, in case we
want to move it around later.

stability.tex
markov.tex


optestim.tex, v1162 2010-01-12 05:44:44Z (murray)

2-6 CHAPTER 2. STATE ESTIMATION AND SENSOR FUSION

2.2 Optimal Estimation

Minimum mean square error estimator

Suppose we wish to know some quantity X, and we are not able to make a direct
and accurate measurement of X. However we can make some indirect measurement
Y that is related to X. Our task is to get an “optimal” estimate of X from Y .

One question that immediately arises before we attempt to solve the estimation
problem is: what is a good estimate and when an estimate is “optimal”?

Intuitively a “good” estimate should make the estimation error X̂ −X “small”
since we wish to reconstruct X as perfectly as possible. An “optimal” estimate
should make X̂−X the “smallest” among all other estimates. Many metrics can be
used to define the size of the error X̂ −X (hence we are able to say if it is “small”
or not). Since X̂ −X is typically a random variable, the metric that we shall use
throughout the book is the following mean squared error (MSE)

E[(X̂ −X)T (X̂ −X)].

Therefore given Y = y (i.e., the measurement that we take), our task is to construct
the optimal estimate X̂ that minimizes

E[(X̂ −X)T (X̂ −X)|Y = y].

It turns out that the optimal X̂ has a very simple form, given in the following
theorem.

Theorem 2.3. The optimal estimate X̂∗ that minimizes

E[(X̂ −X)T (X̂ −X)|Y = y]

is given by the following conditional expectation of X

X̂∗ = E[X|Y = y].

Proof. We can rewrite E[(X̂ −X)T (X̂ −X)|Y = y] as follows

E[(X̂ −X)T (X̂ −X)|Y = y]

= E[XTX|Y = y] − 2X̂TE[X|Y = y] + X̂T X̂

=
(
X̂ − E[X|Y = y]

)T (
X̂ − E[X|Y = y]

)
+ E

[
XTX − E[X]TE[XT ]|Y = y

]
.

Since E
[
XTX − E[X]TE[XT ]|Y = y

]
is independent of X̂, we conclude that

X̂∗ = E[X|Y = y].

X̂∗ = E[X|Y = y] is also called the minimum mean squared error (MMSE)
estimate of X.
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Example 2.1 Estimate a Gaussian random variable
Consider the following equation

Y = X +N (2.6)

where X and N are both scalar zero-mean Gaussian random variables with covari-
ances σx and σn respectively. Further assume X and N are uncorrelated. Suppose
we make a measurement of X and get y. The MMSE estimate of X is then given
by

X̂ = E[X|Y = y] =
σx

σx + σn
y.

∇

Sampling of a continuous-time system
Note: This text is now in a
separate file,
sampling.tex, so that we
can pull it out more easily
if we decide we don’t want
to include it. [RMM, 21
Dec 09]

A wide variety of physical systems are modeled in the continuous-time domain.
In this book, we focus on continuous-time systems with dynamics of the form

dx

dt
= Acx+Bcu+ w, y = Cc + v, (2.7)

where x(t) ∈ Rn is the state vector with unknown initial value x(0), u(t) ∈ Rp

is the input vector, y(t) ∈ Rm is the observation vector, and w(t) and v(t) are
process disturbance and measurement noise. We assume w(t) and v(t) are mutually
uncorrelated zero-mean Gaussian processes with autocovariances

E[w(s)w(t)T ] = δstΣwc, E[v(s)v(t)T ] = δstΣvc,

where δst = 1 if s = t and δst = 0 otherwise.
As more and more controllers are implemented digitally, we need a procedure to

convert the continuous-time system (2.7) into an equivalent discrete-time system.
This procedure is called sampling or discretization. A frequently seen approach to
implement the control law on a digital computer is to use a digital to analogue
converter that holds the analog signal until the next time step, called zero-order-
hold control.

Consider the following periodic sampling scheme: we sample the system (2.7) at
time instances t = kτ, k = 0, 1, . . ., where τ > 0 is the sampling period. It can be
shown (see Astrom-Wittenmark) that the equivalent discrete-time system of (2.7)
is given by

xk+1 = Axk +Buk + wk, yk = Cxk + vk, (2.8)

where xk and yk correspond to x(t) and y(t) at time t = kτ , and A,B and C are
given by

A = eAcτ , B =

∫ τ

0

eActdtBc, C = Cc. (2.9)

In the discrete-time setting, the process and measurement noises are also uncorre-
lated zero-mean Gaussian random processes with covariance

E[wswk] = δskΣw, E[vsv
T
k ] = δskΣv,

sampling.tex
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where

Σw =

∫ τ

0

eActΣwce
AT

c tdt, Σv = Σvc.

The following method from wikipedia for computing Σw needs to be verified.LS

Computing Σw directly from the above formula is sometimes difficult due to
the integral of matrix exponentials. An easier approach to compute it is given as
follows. Define M and N as

M =

[
−Ac Σwc

0 ATc

]
τ, N = eM .

Then can be shown that

N =

[
∗ X−1Σw
0 XT

]
.

Therefore Σw can be computed from

Σw = (XT )TX−1Σw,

i.e., Σw is obtained by multiplying the transpose of the lower-right submatrix of N
with the upper-right submatrix of N .

Most of the results developed in this book also extend to cases where the sensor
measurement yk involves a direct input term, i.e.,

yk = Cxk +Duk + vk. (2.10)

For simplicity, we shall use the system model as described by (2.8) for the remainder
of the book unless otherwise explicitly stated.

Kalman filtering

Consider the following system as described by equation(2.8):

xk+1 = Axk +Buk + wk, yk = Cxk + vk, (2.11)

where xk ∈ Rn is the state vector with unknown initial value x0, uk ∈ Rp is the
input vector, yk ∈ Rm is the observation vector, and wk and vk are process and
measurement noises (or disturbances).

Clearly nothing can be said on any estimator without defining a structure on
wk and vk. In this book, we are particularly interested in wk and vk that have the
following properties:

• wk and vk are zero-mean Gaussian random vectors;

• E[wkw
T
j ] = δkjΣw with Σw ≥ 0;

• E[vkv
T
j ] = δkjΣv with Σv > 0;

• E[wkv
T
j ] = 0 ∀j, k,
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where δkj = 0 if k 6= j and δkj = 1 otherwise. We also assume the initial value x0

of system (2.11) is a zero-mean Gaussian random vector that is uncorrelated with
wk and vk for all k ≥ 0. The covariance of x0 is given by Π0 ≥ 0. Furthermore we
assume (A,

√
Q) is stabilizable.

Let Yk = {y0, y1, . . . , yk} be the measurements available at time k and Uk =
{u0, u1, . . . , uk} be the input applied to the system up to time k. We are interested
in looking for the MMSE x̂k of xk at each time k ≥ 0 given Yk and Uk−1. From
Theorem 2.3, we know that x̂k is given by

x̂k = E[xk|Yk, Uk−1], (2.12)

and the corresponding error covariance Pk is given by

Pk = E[(xk − x̂k)(xk − x̂k)
T |Yk, Uk−1]. (2.13)

Calculating x̂k and Pk according to equation (2.12) and (2.13) is not trivial and is
computationally intensive as k increases. The celebrated Kalman filter provides a
simple and elegant way to compute x̂k and Pk recursively.

The Kalman filter [Kal60] is a well-established methodology for model-based
fusion of sensor data [GA93, Gus00, May79, KSH00, AM90] that has played a
central role in systems theory and has found wide applications in many fields such
as control, signal processing, and communications.

Assume that x̂k−1 and Pk−1 defined as in equation (2.12) and (2.13) are avail-
able. Consider the one-step state prediction x̂k|k−1 (also called the a priori state
estimate) given by

x̂k|k−1 = E[xk|Yk−1, Uk−1]

and the associated estimation error covariance (also called the a priori error co-
variance) Pk|k−1 given by

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T |Yk−1, Uk−1].

From (2.11), we have

x̂k|k−1 = E[xk|Yk−1, Uk−1]

= E[Axk−1 +Buk−1 + wk−1|Yk−1, Uk−1]

= Ax̂k−1 +Buk−1, (2.14)

where we use the fact that wk−1 is independent of any yt (t ≤ k − 1) and the
expectation operator is linear. Consequently,

Pk|k−1 = APk−1A
T + Σw. (2.15)

Now consider yk conditioned on Yk−1 and Uk−1 which has mean

E[yk|Yk−1, Uk−1] = E[Cxk + vk|Yk−1, Uk−1] = Cx̂k|k−1

and covariance

E
[(
yk − E[yk]

)(
yk − E[yk]

)T |Yk−1, Uk−1

]
= CPk|k−1C

T + Σv,
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where we have used the fact that vk is independent of Yk−1. The cross covariance
of xk and yk conditioned on Yk−1 and Uk−1 is given by

E
[(
xk − E[xk]

)(
yk − E[yk]

)T |Yk−1, Uk−1

]
= Pk|k−1C

T .

From the above analysis, we see that the random vector [x′k y′k]
′ conditioned on

Yk−1 and Uk−1 is Gaussian with mean and covariance
[

x̂k|k−1

Cx̂k|k−1

]
and

[
Pk|k−1 Pk|k−1C

T

CPk|k−1 CPk|k−1C
T + Σv

]
.

Therefore from Theorem 2.2, xk conditioned on yk (and on Yk−1 and Uk−1, i.e.,
conditioned on Yk and Uk−1) has mean

E[xk|Yk, Uk−1] = x̂k|k−1 +Kk(yk − Cx̂k|k−1)

and covariance
(I −KkC)Pk|k−1

where Kk = Pk|k−1C
T [CPk|k−1C

T + Σv]
−1 is the so-called Kalman gain.

Let us summarize what we have said so far. Given the system (2.11), the MMSE
estimate x̂k of xk is given by x̂k = E[xk|Yk, Uk−1], which can be computed recur-
sively as follows

1. time update:

x̂k|k−1 = Ax̂k−1 +Buk−1,

Pk|k−1 = APk−1A
T + Σw.

2. measurement update:

Kk = Pk|k−1C
T [CPk|k−1C

T + Σv]
−1,

x̂k = x̂k|k−1 +Kk(yk − Cx̂k|k−1),

Pk = (I −KkC)Pk|k−1.

The initial values of the recursion are set as x̂0 = 0 and P0 = Π0. The Kalman
filter essentially consists of the above two update steps.

Lemma 2.1. The Kalman gain Kk and the error covariance Pk satisfy

Kk = PkC
TΣ−1

v . (2.16)

Proof. Since Pk = (I −KkC)Pk|k−1, it suffices to show

(I −KkC)Pk|k−1C
TΣ−1

v = Kk

which is equivalent to

Pk|k−1C
TΣ−1

v = Kk(I + CPk|k−1C
TΣ−1

v )

⇐⇒ Pk|k−1C
TΣ−1

v = Pk|k−1C
T [CPk|k−1C

T + Σv]
−1(I + CPk|k−1C

TΣ−1
v )

⇐= Σv = (I + CPk|k−1C
TΣ−1

v )−1(CPk|k−1C
T + Σv)

⇐⇒ Σv = Σv(Σv + CPk|k−1C
T )−1(CPk|k−1C

T + Σv)

where the last equation holds trivially.
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Supplement

Alternate proof. Kk is defined as Note: Alternative version
of the proof (from my
OBC notes) [RMM, 21
Dec 09]

Kk = Pk|k−1C
T (ΣV + CPk|k−1C

T )−1.

Multiplying through by the inverse term on the right and expanding, we have

Kk(ΣV + CPk|k−1C
T ) = Pk|k−1C

T ,

KkΣV +KkCPk|k−1C
T = Pk|k−1C

T ,

and hence
KkΣV = Pk|k−1C

T −KkCPk|k−1C
T ,

= (I −KkC)Pk|k−1C
T = Pk|kC

T .

The desired results follows by multiplying on the right by ΣV
−1.

Let Sn+ be the set of n by n positive semi-definite matrices. To simplify the
analysis, define the function h : Sn+ → Sn+ as

h(X) , AXAT + Σw, (2.17)

and g̃ : Sn+ → Sn+ as

g̃(X) , X −XCT [CXCT + Σv]
−1CX. (2.18)

Further define g : Sn+ → Sn+ as

g(X) , h ◦ g̃ = AXAT + Σw −AXCT [CXCT + Σv]
−1CXA. (2.19)

For functions f, f1, f2 : Sn+ → Sn+, f1 ◦ f2 is defined as

f1 ◦ f2(X) , f1
(
f2(X)

)
, (2.20)

and f t is defined as
f t(X) , f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

t times

(X). (2.21)

With these definitions, it can be verified that in the Kalman filter time update
and measurement update equations, Pk+1|k and Pk+1 satisfy

Pk+1|k = h(Pk),

Pk+1|k = g(Pk|k−1),

Pk+1 = g̃(Pk+1|k),

Pk+1 = g̃ ◦ h(Pk).

The equation g(X) = X or

AXAT + Σw −AXCT [CXCT + Σv]
−1CXA = X (2.22)

is called the discrete-time algebraic Riccati equation (DARE). When (A,
√

Σw) is
stabilizable and (A,C) is detectable, Pk converges to a unique positive semi-definite
matrix P which satisfies P = g̃ ◦h(P ). P is called the steady-state error covariance,
and it reflects how well the estimate x̂k approximates xk in the steady state.
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Properties of the Kalman filter

We first introduce a few well-known lemmas without proofs.

Lemma 2.2 (Matrix Inversion Lemma). Let X > 0. If X = B−1 +CD−1C ′, then
the inverse of X can be written as

X−1 = B −BC(D + C ′BC)−1C ′B.

The second lemma is the Schur Complement lemma. It provides a set of equiv-
alent relationships for a positive definite matrix M .

Lemma 2.3 (Schur Complement). Let

M =

[
A B
C D

]
.

Then the following three conditions are equivalent to each other.

1. M > 0.

2. A > 0 and SA , D − CA−1B > 0.

3. D > 0 and SD , A−BD−1C > 0.

The last one is the Block Matrix Inversion lemma, which, as its name suggests,
inverts a block matrix using the Schur complement of the matrix.

Lemma 2.4 (Block Matrix Inversion). Let

M =

[
A B
C D

]
> 0.

Then M−1 can be computed as

M−1 =

[
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]
,

or it can be computed as

M−1 =

[
S−1
D −S−1

D BD−1

−D−1CS−1
D D−1 +D−1CS−1

D BD−1

]
.

Many useful properties of the functions h, g̃ and g are presented below.

Lemma 2.5. For any X,Y ∈ Sn+, and X ≤ Y ,

1. h(X) ≤ h(Y ).

2. g(X) ≤ g(Y ).

3. g̃(X) ≤ g̃(Y ).

4. g̃(X) ≤ X.
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5. g(X) ≤ h(X).

When the measurement matrix C is invertible, the function g exhibits a very
nice property. When we apply g to any X ≥ 0, we have a bounded value. The
following lemma gives this bound.

Lemma 2.6. Assume C−1 exists and let M = C−1RC−1′

. Then for any X ≥
0, g̃(X) ≤M .

Proof. For any t > 0, we have g̃(tM) = t
t+1M ≤M . For all X ≥ 0, since M > 0, it

is clear that there exists t1 > 0 such that t1M > X. Therefore g̃(X) ≤ g̃(t1M) ≤
M .

The steady-state error covariance P has the following property.

Lemma 2.7. P ≤ h(P ).

Proof. Let P ∗ satisfy P ∗ = g(P ∗). Then one can verify that P = g̃(P ∗). Since
g = h ◦ g̃, we have

P = g̃(P ∗) ≤ P ∗ = g(P ∗) = h ◦ g̃(P ∗) = h(P ).

Let 0 ≤ λ ≤ 1. Consider the following modified DARE.

gλ(X) , AXAT + Σw − λAXCT [CXCT + Σv]
−1CXA = X. (2.23)

The modified DARE will be studied in detail in Chapter 6 and the parameter λ will
represent data packet arrival rate. Some preliminary results on the modified DARE
are stated in the following lemmas. The proofs are omitted and can be found in the
appendix of [SSS+03].

Lemma 2.8. Let the operator

φ(K,X) = (1 − λ)(AXA′ + Σw) + λ(FXF ′ + V ) (2.24)

where F = A+KC, V = Σw +KΣvK
′. Assume X ∈ Sn+, Σv > 0, Σw ≥ 0, and

(A,Σ
1
2
w) is controllable. Then the following facts are true:

1. With KX = −AXC ′ (CXC ′ + Σv)
−1

, gλ(X) = φ(KX ,X)

2. gλ(X) = minK φ(K,X) ≤ φ(K,X), ∀K

3. If X ≤ Y , then gλ(X) ≤ gλ(Y )

4. If λ1 ≤ λ2 then gλ1
(X) ≥ gλ2

(X)

5. If α ∈ [0, 1], then
gλ(αX + (1 − α)Y ) ≥ αgλ(X) + (1 − α)gλ(Y )

6. gλ(X) ≥ (1 − λ)AXA′ + Σw

7. If X̄ ≥ gλ(X̄), then X̄ > 0
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8. If X is a random variable, then
(1 − λ)AE[X]A′ + Σw ≤ E[gλ(X)] ≤ gλ(E[X])

The next two Lemmas show that when the modified DARE has a solution P̂ , this
solution is also stable, i.e., every sequence based on the difference Riccati equation
Pt+1 = gλ(Pt) converges to P̂ for all initial positive semidefinite conditions P0 ≥ 0.

Lemma 2.9. Define the linear operator

L(Y ) = (1 − λ)(AY A′) + λ(FY F ′)

Suppose there exists Y > 0 such that Y > L(Y ).

1. For all W ≥ 0,
lim
k→∞

Lk(W ) = 0

2. Let U ≥ 0 and consider the linear system

Yk+1 = L(Yk) + U initialized at Y0.

Then, the sequence Yk is bounded.

Lemma 2.10. Consider the operator φ(K,X) defined in equation (6.28). Suppose
there exists a matrix K and a positive definite matrix Z such that

Z > 0 and Z > φ(K,Z).

Then, for any P0, the sequence Pt = gtλ(P0) is bounded, i.e., there exists MP0
≥ 0

dependent of P0 such that
Pt ≤M for all t.

2.3 Linear Quadratic Optimal Control

The optimal linear quadratic regulator problem is posed as follows. Consider the
process

xk+1 = Axk +Buk

with the initial condition x0, where xk ∈ Rn is the state and uk ∈ Rm is the control
input that needs to be designed to minimize the cost

JK =

K∑

k=0

(
xTkQxk + uTkRuk

)
+ xTk+1Pk+1xk+1,

with Q > 0 and R ≥ 0. If the parameter K is finite, the problem is termed the
finite horizon LQR problem. The case when K → ∞ is termed the infinite horizon
LQR problem. We shall assume that the par (A,B) is controllable. In general, the
results given below extend to the case when the matrices A, B, Q and R are time
varying.

The solution to the finite horizon problem can be obtained through standard
dynamic programming arguments. The following theorem summarizes the results.
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Theorem 2.4. Consider the finite horizon LQR problem posed above. The optimal
control law is a linear function of the state

uk = −
(
BTPk+1B +R

)−1
BTPk+1Axk,

where the matrix Pk evolves according to the backward Riccati recursion

Pk = ATPk+1A+Q−ATPk+1B
(
BTPk+1B +R

)−1
BTPk+1A

with the initial condition Pk+1. Moreover, the achieved cost is given by xT0 P0x0.

Proof. We begin by rewriting the cost function JK to identify terms in the cost
that depend on xk and uk:

JK =
K−1∑

k=1

(
xTkQxk + uTkRuk

)
+ Tk

Tk = xTkQxk + uTkRuk + xTk+1Pk+1xk+1.

The only term in the cost that can be affected by the choice of uk is Tk. To choose
uk, we minimize Tk by a completion of squares argument. We obtain

Tk = xTkQxk + uTkRuk + (Axk +Buk)
TPk+1(Axk +Buk)

= xTk Pkxk + (uk + S−1
k BTPk+1Axk)

TSk(uk + S−1
k BTPk+1Axk),

where

Sk = BTPk+1B +R

Pk = Q+ATPk+1A−ATPk+1BS
−1
k BTPk+1A.

Thus, the optimal choice of uk is

uk = −S−1
k BTPk+1xk.

With the optimal choice of uk the term Tk reduces to xTk Pkxk. Thus, the cost
function JK can be rewritten as

JK =

K−2∑

k=1

(
xTkQxk + uTkRuk

)
+ TK−1

TK−1 = xTK−1QxK−1 + uTK−1RuK−1 + xTk Pkxk.

Thus, the problem of choosing uK−1 is formally identical to the problem that we
solved above for choosing uk, and the same argument can be repeated at any time
step recursively. At a general time k, the control input uk given rk = i is given by

uk = −
(
BTPk+1B +R

)−1
BTPk+1Axk,

where the matrix Pk evolves according to the backward Riccati recursion

Pk = ATPk+1A+Q−ATPk+1B
(
BTPk+1B +R

)−1
BTPk+1A

with the final condition Pk+1. Moreover, the cost J0 obtained through this procedure
equals xT0 P0x0.
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For the infinite horizon case, we provide the solution without proof below.

Theorem 2.5. Consider the infinite horizon LQR problem posed above. The opti-
mal control law is a linear function of the state

uk = −
(
BTPB +R

)−1
BTPAxk,

where the matrix P is the unique positive semi-definite solution of the Riccati equa-
tion

P = ATPA+Q−ATPB
(
BTPB +R

)−1
BTPA.

Moreover, the achieved cost is given by xT0 Px0.

2.4 LQG Problem

The finite horizon Linear Quadratic Guassian optimal control problem is posed as
follows. Consider the process

xk+1 = Axk +Buk + wk

with the initial condition x0 as zero mean Gaussian, where xk ∈ Rn is the state,
uk ∈ Rm is the control input that needs to be designed, and wk is the process noise
modeled Gaussian and white with mean zero and covariance Σw > 0. The process
is observed using a sensor that generates measurements of the form

yk = Cxk + vk,

where the sensor noise vk is modeled Gaussian and white with mean zero and
covariance Σv > 0. The noise sequences {w(j)}, {v(j)} and the initial condition x0

are assumed to be independent. The cost function that needs to be minimized is

JK =
K∑

k=0

E[
(
xTkQxk + uTkRuk

)
] + E[xTk+1Pk+1xk+1],

with Q > 0 and R ≥ 0. The expectation is taken with respect to all the random
parameters in the system. The controller at time k is allowed access to the mea-
surements until time k and control inputs until time k − 1. If the parameter K is
finite, the problem is termed the finite horizon LQG problem. As K → ∞, the cost
would necessarily diverge. Thus, the infinite horizon LQG problem considers the
cost

J∞ = lim
K→∞

1

K
JK .

We shall assume that the par (A,B) is controllable and (A,C) is observable. In
general, the results given below extend to the case when the matrices A, B, C, Q
and R are time varying.

The solution to the finite horizon problem is provided by the separation prin-
ciple. The principle essentially states that the optimal control input is calculated
as the input in the LQR problem, but with the state xk replaced by the minimum
mean squared error (MMSE) estimate of the state xk based on the measurements
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until time k and control inputs until time k− 1. Note that the estimate can be cal-
culated recursively through the Kalman filter. The following theorem summarizes
the results.

Theorem 2.6. Consider the finite horizon LQG problem posed above. The optimal
control law is a linear function of the state

uk = −
(
BTPk+1B +R

)−1
BTPk+1Ax̂k,

where the matrix Pk evolves according to the backward Riccati recursion

Pk = ATPk+1A+Q−ATPk+1B
(
BTPk+1B +R

)−1
BTPk+1A

with the final condition Pk+1, and x̂k is the MMSE estimate of the state xk based
on the measurements until time k and control inputs until time k − 1, calculated,
e.g., using a Kalman filter.

Proof. The proof again follows dynamic programming arguments. We begin by
rewriting the cost function JK to identify terms in the cost that depend on xk and
uk:

JK = E[

K−1∑

k=1

(
xTkQxk + uTkRuk

)
] + Tk

Tk = E[xTkQxk + uTkRuk + xTk+1Pk+1xk+1].

The only term in the cost that can be affected by the choice of uk is Tk. To choose
uk, we minimize Tk by a completion of squares argument. We obtain

Tk = E[xTkQxk + uTkRuk + (Axk +Buk + wk)
TPk+1(Axk +Buk + wk)]

= E[xTk Pkxk + wTk Pk+1wk + (uk + S−1
k BTPk+1Axk)

TSk(uk + S−1
k BTPk+1Axk)],

where we have used the fact that the process noise is white (hence wk is independent
of both xk and uk) and zero mean, and have defined

Sk = BTPk+1B +R

Pk = Q+ATPk+1A−ATPk+1BS
−1
k BTPk+1A.

Note that the controller does not have access to xk and hence the quadratic term
cannot be minimized to zero. Instead, the controller estimates (based on the mea-
surements until time k and control inputs until time k−1) the term S−1

k BTPk+1Axk
in the MMSE sense. Thus, the optimal choice of uk is

uk = −S−1
k BTPk+1x̂k.

Denote by Λe,k the error covariance thus obtained. Since the controller utilizes all
control inputs until time K − 1 while calculating uk, Λe,k does not depend on the
choice of control inputs u0, · · · , uK−1. With the optimal choice of uk, the term Tk
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reduces to Tk = E[xTk Pkxk +wTk Pk+1wk + Λe,k]. Thus, the cost function JK can be
rewritten as

JK = E[

K−2∑

k=1

(
xTkQxk + uTkRuk

)
] + TK−1 + wTk Pk+1wk + Λe,k

TK−1 = E[xTK−1QxK−1 + uTK−1RuK−1 + xTk Pkxk].

Now note that the terms wTk Pk+1wk and Λe,k are not impacted by the choice of
u[K − 1] and hence may be dropped from the minimization problem. Thus, the
problem of choosing u[K − 1] is formally identical to the problem that we solved
above for choosing uk, and the same argument can be repeated at any time step
recursively. At a general time k, the control input uk given r[k] = i is given by

uk = −
(
BTPk+1B +R

)−1
BTPk+1Ax̂k,

where the matrix Pk evolves according to the backward Riccati recursion

Pk = ATPk+1A+Q−ATPk+1B
(
BTPk+1B +R

)−1
BTPk+1A

with the final condition Pk+1.

The separation principle also holds for the infinite horizon case. In particular,
under the assumptions above, both the backward Riccati recursion in the control
calculation and the forward Riccati recursion in the Kalman filter are replaced by
the corresponding Riccati equations.

2.5 Further Reading

Exercises
RMM: This doesn’t

appear to be showing up
in the exercises. Fix.

2.1 Show E[X|Y = y] = σx

σx+σn
y in Example 2.1.
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Chapter 4
Markovian Jump Linear Systems

In this chapter, we present a short overview of Markovian jump linear systems. A
more thorough and complete treatment is given in books such as [?]. As in other
chapters, our focus will be on the Linear Quadratic Gaussian (LQG) control of
such systems. As we shall see, even though such systems are non-linear, they can
be analyzed using tools that are similar to those used in linear system analysis.

4.1 Introduction to Markovian Jump Linear Systems

A useful category of system models are those in which the system operates in
multiple modes. Although each of the individual modes in linear, the switching
between these modes introduces non-linearity into the overall system description.
A general theory of such systems is developed in the hybrid systems community.
However, much tighter results can be developed if a further assumptions holds,
that the mode switches are governed by a stochastic process that is statistically
independent from the state values. In the case when the stochastic process can be
described by a Markov chain, the system is called a Markovian jump linear system.
Although the individual modes of such systems may be continuous or discrete, we
will concentrate on the latter case here.

More formally, consider a discrete time discrete state Markov process with state
r(k) ∈ {1, 2, · · · ,m} at time k. Denote the transition probability Prob(r(k + 1) =
j|r(k) = i) by qij , and the resultant transition probability matrix by Q. We will
assume that the Markov chain is irreducible and recurrent. Also denote

Prob(r(k) = j) = πj(k),

with πj(0) as given. The evolution of a Markovian jump linear system (MJLS),
denoted by S1 for future reference, can be described by the following equations

x(k + 1) = Ar(k)x(k) +Br(k)u(k) + Fr(k)w(k) (4.1)

y(k) = Cr(k)x(k) +Gr(k)v(k),

where w(k) is zero mean white Gaussian noise with covariance Rw, v(k) is zero
mean white Gaussian noise with covariance Rv and the notation Xr(k) implies that
the matrix X ∈ {X1,X2, · · · ,Xm} with the matrix Xi being chosen when r(k) = i.
The initial state x(0) is assumed to be a zero mean Gaussian random variable with
variance Π(0). For simplicity, we will consider Fr(k) = Gr(k) ≡ I for all values
of r(k) in the sequel. We also assume that x(0), {w(k)}, {v(k)} and {r(k)} are
mutually independent. The particular case when qij = qj ,∀i, j (i.e., the random
process governing the switching of the modes is a Bernoulli process) is sometimes
referred to as a Bernoulli jump linear system.
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Such systems have been studied for a long time in the fault isolation community,
and have received new impetus with the advent of networked control systems. We
now consider some examples of applicability of Markovian jump linear systems.

Example 4.1
Consider the following example of a failure prone production system, which is the
discrete time equivalent of the model presented in [AK86]. Consider a manufactur-
ing system producing a single commodity. There is a constant demand rate d for
the commodity, and the goal of the manufacturing system is to try to meet this
demand. The manufacturing system is, however, subject to occasional breakdowns
and so at any time k, the system can be in one of two states: a functional (r(k) = 1)
state and a breakdown (r(k) = 2) state. The transitions between these two states
are usually modeled to occur as a Markov chain with given mean time between fail-
ures and mean repair time. When the manufacturing system is in the breakdown
state it cannot produce the commodity, while if it is in the functional state it can
produce at any rate u up to a maximum production rate r > d > 0. Let x(k) be the
inventory of the commodity at time k, i.e., x(k) = (total production up to time k)
- (total demand up to time k). Then the system is a Markovian jump linear system
that evolves as

x(k + 1) =

{
x(k) + u(k) − d r(k) = 1

x(k) − d r(k) = 2,

where u(k) is the controlled production rate. A negative x(k) denotes backlog, and
u(k) satisfies a saturation constraint. ∇

Example 4.2
Consider a linear process evolving as

x(k + 1) = Ax(k) +Bu(k) + w(k),

and being observed by a sensor of the form

y(k) = Cx(k) + v(k).

The measurements from the sensor are transmitted to an estimator across an analog
erasure link. At any time k, the estimator receives measurement y(k) with proba-
bility 1 − p, and with a probability p no measurement is received. As discussed in
another chapter, this is a common model for a dynamic process being estimated
across an analog erasure channel. This is a Bernoulli jump linear system with two
modes r(k) ∈ {0, 1}. For both the modes, the system matrices A0 = A1 = A and
B0 = B1 = B. Mode 0 corresponds to no measurement being received and for this
case C0 = 0. Mode 1 corresponds to measurement being received, and for this case
C1 = C. ∇

4.2 Stability of Markovian jump linear systems

In this section, we discuss the stability of autonomous Markovian jump linear sys-
tems. We will see that the necessary and sufficient condition for stability can be
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presented an algebraic condition in terms of the spectral radius of a suitable matrix.
We will also present an equivalent condition in terms of a linear matrix inequality.

Since an Markovian jump linear systems is a stochastically varying system, nu-
merous notions of stability may be defined. We will primarily be interested in mean
square stability. Thus, define the state covariance C(k) = E[x(k)xT (k)], where the
expectation is taken with respect to the initial state, process and measurement
noise, and the discrete modes till time k. The system is stable if the steady state
covariance is bounded, i.e., if limk→∞ C(k) < C⋆, where C⋆ is a constant matrix,
and the inequality is understood in the positive definite sense.

The stability condition for Markovian jump linear systems is given by the fol-
lowing result.

Theorem 4.1. Consider the system S1 with the control input u(k) = 0. The system
is stable if and only if the condition

ρ
(
(QT ⊗ I)diag(Ai ⊗Ai)

)
< 1

holds, where ρ(M) is the spectral radius of matrix M , Q is the transition probability
matrix of the Markov chain governing the mode switches of the system, ⊗ denotes
the Kronecker product, I is the identity matrix of suitable dimensions, and diag(Ai⊗
Ai) denotes a block diagonal matrix formed by using the matrices Ai⊗Ai for various
mode values i.

Proof. Consider the term

Ci(k) = E[x(k)xT (k)|r(k) = i]πi(k),

so that the covariance is given by

C(k) =

m∑

i=1

Ci(k).

We will study the evolution of terms Ci(k). Conditioning on the state value at time
k − 1 yields

Ci(k) =

m∑

j=1

Prob(r(k − 1) = j|r(k) = i)πi(k)E[x(k)xT (k)|r(k) = i, r(k − 1) = j]

=

m∑

j=1

Prob(r(k) = i|r(k − 1) = j)πj(k − 1)E[x(k)xT (k)|r(k) = i, r(k − 1) = j]

=
m∑

j=1

qjiπj(k − 1)E[x(k)xT (k)|r(k − 1) = j],

where in the second line we have used the Bayes law, and in the third line we
have used the fact that given the Markov mode at time k− 1, x(k) is conditionally
independent of the Markov mode at time k. Now given the Markov mode at time
k− 1, the covariance of the state at time k can be related to the covariance at time
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k − 1. Thus, we obtain

Ci(k) =

m∑

j=1

qjiπj(k − 1)
(
AjE[x(k − 1)xT (k − 1)|r(k − 1) = j]ATj +Rw

)

=

m∑

j=1

qjiAjC
j(k − 1)ATj +

m∑

j=1

qjiπj(k − 1)Rw.

We can vectorize this equation and use the identity

vec(ABC) = (CT ⊗A)vec(B)

to obtain

vec(Ci(k)) =

m∑

j=1

qji(Aj ⊗Aj)vec(Cj(k − 1)) + πi(k)vec(Rw). (4.2)

For values of i = 1, · · · , m, these coupled linear equations define the stability of
C(k). We can stack the vectors vec(Ci(k)) for various values of i, and obtain that
the dynamical system recursion is governed by the matrix

(
(QT ⊗ I)diag(Ai ⊗Ai)

)
.

Thus, we need to consider the spectral radius of this matrix.

For a Bernoulli jump linear system, the condition reduces to the following simple
form.

Theorem 4.2. Consider the system S1 with the control input u(k) = 0 and the
additional assumption that the Markov transition probability matrix is such that for
all states i and j, qij = qi. The system is stable if and only if the condition

ρ (E[Ai ⊗Ai]) < 1

holds, where the expectation is taken over the probabilities {qi}.

Proof. In this case, we have qij = qj ,∀i. Moreover, r(k) and x(k) are independent,
so that Ci(k) = C(k)πi(k) = C(k)qi(k). Thus, (4.2) yields

vec(C(k)) =

m∑

j=1

(Aj ⊗Aj)vec(C(k − 1))qj(k) + vec(Rw)

= E[Ai ⊗Ai]vec(C(k − 1)) + vec(Rw),

which yields the desired stability condition.

Even though the above conditions are simple to write, the calculation of the
spectral value may grow computationally expensive as the number of Markov states
increases. We can present an alternate condition in terms of a linear matrix inequal-
ity as follows.

Theorem 4.3.

Proof.
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4.3 LQG control

We will develop the LQG controller of Markovian jump linear systems in three
steps. We will begin by considering the optimal linear quadratic regulator. We will
then consider the optimal estimation problem for Markovian jump linear systems
in the minimum mean squared error (MMSE). Finally, we will present a separation
principle that will allow us to solve the LQG problem as a combination of the above
filters.

Optimal Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) problem for the system S1 is posed by
assuming that the noises w(k) and v(k) are not present. Moreover, the matrix
Cr(k) ≡ I for all choices of the mode r(k). The problem aims at designing the
control input u(k) to minimize the finite horizon cost function

JLQR(K) =

K∑

k=1

(
E{r(j)}K

j=k+1

[
xT (k)Qx(k) + uT (k)Ru(k)

])

+ xT (K + 1)P (K + 1)x(K + 1),

where the expectation at time k is taken with respect to the future values of the
Markov state realization, and P (K + 1), Q and R are all assumed to be positive
definite. The controller at time k has access to control inputs {u(j)}k−1

j=0 , state values

{x(j)}kj=0 and the Markov state values {r(j)}kj=0. Finally, the system is said to be

stabilizable if the infinite horizon cost function J∞
def
= limK→∞

JLQR

K is finite.
The solution to this problem can readily be obtained through dynamic program-

ming arguments. The optimal control is given by the following result.

Theorem 4.4. Consider the LQR problem posed above for the system S1.

1. At time k, if r(k) = i, then the optimal control input is given by

u(k) = −
(
R+BTi Pi(k + 1)Bi

)−1
BTi Pi(k + 1)Aix(k),

where for j = 1, 2, · · · ,m,

Pj(k) =

m∑

t=1

qtj

(
Q+ATt Pt(k + 1)At

−ATt Pt(k + 1)Bt
(
R+BTt Pt(k + 1)Bt

)−1
BTt Pt(k + 1)At

)
, (4.3)

and Pj(K + 1) = P (K + 1),∀j = 1, 2, · · · ,m.
2. Assume that the Markov states reach a stationary probability distribution. A

necessary and sufficient condition for stabilizability of the system is that there
exist m positive definite matrices X1, X2, · · · , Xm and m2 matrices K1,1,
K1,2, · · · , K1,m, K2,1, · · · , Km,m such that for all j = 1, 2, · · · ,m,

Xj >
m∑

i=1

qij
(
(ATi +Ki,jB

T
i )Xi(A

T
i +Ki,jB

T
i )T +Q+KijRK

T
ij

)
.
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3. A necessary condition for stabilizability is that

qi,iρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics
of unstabilizable modes of the process in the i-th mode.

Proof. The proof follows by standard dynamic programming arguments. We begin
by rewriting the cost function JLQR to identify terms in the cost that depend on
x(K) and u(K):

JLQR(K) =

K−1∑

k=1

(
E{r(j)}K

j=k+1

[
xT (k)Qx(k) + uT (k)Ru(k)

])
+ T (K)

T (K) = Er(K)

[
xT (K)Qx(K) + uT (K)Ru(K)

]
+ xT (K + 1)P (K + 1)x(K + 1).

We rewrite T (K) by explicitly conditioning it on the value of r(K).

T (K) =

m∑

i=1

πi(K)
(
xT (K)Qx(K) + uT (K)Ru(K) + xT (K + 1)Pi(K + 1)x(K + 1)|r(K) = i

)
,

where Pi(K+1) = P (K+1),∀i. At the time of calculation of u(K), the mode r(K)
is known. To choose the control input for any value of the mode, we complete the
square of each of the terms in the summation. For the i-th term we obtain

(
xT (K)Qx(K) + uT (K)Ru(K) + xT (K + 1)Pi(K + 1)x(K + 1)|r(K) = i

)

= xT (K)Qx(K) + uT (K)Ru(K) + (Aix(K) +Biu(K))TPi(K + 1)(Aix(K) +Biu(K))

= xT (K)Mi(K)x(K) + (u(K) + S−1
i (K)BTi Pi(K + 1)Aix(K))TSi(K)(u(K) + S−1

i (K)BTi Pi(K + 1)Aix(K)),

where

Si(K) = R+BTi Pi(K + 1)Bi

Mi(K) = Q+ATi Pi(K + 1)Ai −ATi Pi(K + 1)BiS
−1
i (K)BTi Pi(K + 1)Ai.

Thus, the optimal choice of u(K) for the case r(K) = i is

u(K) = −S−1
i (K)BTi Pi(K + 1)x(K).

With the optimal choice of u(K) for all values of i = 1, · · · ,m, the term T (K)
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reduces to

T (K) =

m∑

i=1

πi(K)
(
xT (K)Mi(K)x(K)|r(K) = i

)

=
m∑

i=1

πi(K)
m∑

j=1

qji
(
xT (K)Mi(K)x(K)|r(K) = i, r(K − 1) = j

)

=

m∑

j=1

m∑

i=1

πi(K)qji
(
xT (K)Mi(K)x(K)|r(K − 1) = j

)

=

m∑

j=1

(
xT (K)(

m∑

i=1

πi(K)qjiMi(K))x(K)|r(K − 1) = j

)

=
m∑

j=1

(
xT (K)πj(K − 1)Pj(K)x(K)|r(K − 1) = j

)

= Er(K−1)

[
xT (K)Pj(K)x(K)

]
,

where

πj(K − 1)Pj(K) =
m∑

i=1

πi(K)qjiMi(K).

Thus, the cost function JLQR can be rewritten as

JLQR(K) =
K−2∑

k=1

(
E{r(j)}K−1

j=k+1

[
xT (k)Qx(k) + uT (k)Ru(k)

])
+ T (K − 1)

T (K − 1) = Er(K−1)

[
xT (K − 1)Qx(K − 1) + uT (K − 1)Ru(K − 1) + xT (K)Pi(K)x(K)

]
.

If we rewrite T (K) by explicitly conditioning it on the value of r(K − 1),

T (K − 1) =

m∑

i=1

πi(K − 1)
(
xT (K − 1)Qx(K − 1) + uT (K − 1)Ru(K − 1)

+ xT (K)Pi(K)x(K)|r(K − 1) = i
)
,

we see that the problem of choosing u(K − 1) is formally identical to the problem
that we solved above for choosing u(K). Thus, the same argument can be repeated
at any time step recursively. At a general time k, the control input u(k) given
r(k) = i is given by

u(k) = −S−1
i (k)BTi Pi(K + 1)x(K),

where

Si(k) = R+BTi Pi(k + 1)Bi

πj(K − 1)Pj(K) =
m∑

i=1

πi(K)qjiMi(K)

Mi(k) = Q+ATi Pi(k + 1)Ai −ATi Pi(k + 1)BiS
−1
i (k)BTi Pi(k + 1)Ai,
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with boundary value Pi(K + 1) = P (K + 1)∀i. This proves the first part of the
theorem.

To prove the second and third parts, we need to study the stability of the terms
Pi(0) as the horizon K → ∞.

The sufficient condition for stabilizability can also be cast in alternate forms as
linear matrix inequalities, that can be efficiently solved, as follows.

Theorem 4.5.

Proof.

The above conditions reduce to simpler form for Bernoulli jump linear systems.
For this case, the LQR and stabilizability problems can be solved to yield the
following result.

Theorem 4.6. Consider system S1 with the additional assumption that the Markov
transition probability matrix is such that for all states i and j, qij = qi (in other
words, the states are chosen independently and identically distributed from one time
step to the next). Consider the LQR problem posed above for the system S1.

1. At time k, if r(k) = i, then the optimal control input is given by

u(k) = −
(
R+BTi P (k + 1)Bi

)−1
BTi P (k + 1)Aix(k),

where

P (k) =

m∑

t=1

qt

(
Q+ATt P (k + 1)At

−ATt P (k + 1)Bt
(
R+BTt P (k + 1)Bt

)−1
BTt P (k + 1)At

)
.

2. Assume that the Markov states reach a stationary probability distribution.
A sufficient condition for stabilizability of the system is that there exists a
positive definite matrix X, and m matrices K1, K2, · · · , Km such that

X >

m∑

i=1

qi
(
(ATi +KiB

T
i )X(ATi +KiB

T
i )T +Q+KiRK

T
i

)
.

3. A necessary condition for stabilizability is that

qiρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics
of unstabilizable modes of the process in the i-th mode.

Proof. The result follows readily from the LQR solution of Markovian jump linear
systems. Specifically, if we substitute qtj = qj∀t in (4.3), we see that all matrices
Pj(k) are identical for j = 1, · · · , m. If we denote this value by P (k), we obtain
the desired form of the LQR control law. Similarly the stability conditions in the
theorem also follow from those for Markovian jump linear systems in Theorem 4.4.
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Optimal Minimum Mean Squared Error Estimator

The minimum mean squared error estimate problem for the system S1 is posed by
assuming that the control ur(k) is identically zero. The objective is to identify at
every time step k, an estimate x̂(k + 1) of the state x(k + 1) that minimizes the
mean squared error covariance

Π(k + 1) = E{w(j)},{v(j)},x(0)

[
(x(k + 1) − x̂(k + 1))(x(k + 1) − x̂(k + 1))T

]
,

where the expectation is taken with respect to the process and measurement noises,
and the initial state value (but not the Markov state realization). The estimator at
time k has access to observations {y(j)}kj=0 and the Markov state values {r(j)}kj=0.
Moreover, the error covariance is said to be stable if the expected steady state error
covariance limk→∞E{r(j)}k−1

j=0

[Π(k)] is bounded, where the expectation is taken with

respect to the Markov process.
Since the estimator has access to the Markov state values till time k, the optimal

estimate can be calculated through a time-varying Kalman filter. Thus, if at time
k, rk = i, the estimate evolves as

x̂(k + 1) = Aix̂(k) +K(k) (y(k) − Cix̂(k)) ,

where

K(k) = AiΠ(k)CTi
(
CiΠ(k)CTi +Rv

)−1

Π(k + 1) = AiΠ(k)ATi +Rw −AiΠ(k)CTi
(
CiΠ(k)CTi +Rv

)−1
CiΠ(k)ATi .

The error covariance Π(k) is available through the above calculations. However,
calculating E{r(j)}k−1

j=0

[Π(k)] seems to be intractable. Instead, the normal approach

is to consider an upper bound to this quantity1 that will also help in obtaining
sufficient conditions for the error covariance to be stable.

The intuition behind obtaining the upper bound is simple. The optimal estima-
tor presented above optimally utilizes the information about the Markov states till
time k. Consider an alternate estimator that at every time step k, averages over
the values of the Markov states r0, · · · , rk−1. Such an estimator is sub-optimal and
the error covariance for this estimator forms an upper bound for E{r(j)}k−1

j=0

[Π(k)].

A more formal derivation for the upper bound is presented below.

Theorem 4.7. The term E{r(j)}k−1

j=0

[Π(k)] obtained from the optimal estimator is

upper bounded by M(k) =
∑m
j=1Mj(k) where

Mj(k) =

m∑

t=1

qtj

(
Rw +AtMt(k − 1)ATt

−AtMt(k − 1)CTt
(
Rv + CtMt(k − 1)CTt

)−1
CtMt(k − 1)ATt

)
,

with Mj(0) = Π(0) ∀j = 1, 2, · · · ,m. Moreover, assume that the Markov states reach
a stationary probability distribution. A sufficient condition for stabilizability of the

1We say that A is upperbounded by B if B − A is positive semi-definite.
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system is that there exist m positive definite matrices X1, X2, · · · , Xm and m2

matrices K1,1, K1,2, · · · , K1,m, K2,1, · · · , Km,m such that for all j = 1, 2, · · · ,m,

Xj >

m∑

i=1

qij
(
(Ai +Ki,jCi)Xi(Ai +Ki,jCi)

T +Rw +KijRvK
T
ij

)
.

Finally, a necessary condition for stabilizability is that

qi,iρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics of
unobservable modes of the process in the i-th mode.

Proof. We begin by defining

Mj(k) = πj(k − 1)E [Π(k)|r(k − 1) = j] ,

so that

E [Π(k)] =
m∑

i=1

Mj(k).

Now we can bound each term Mj(k) as follows.

Mj(k + 1) = πj(k)
m∑

i=1

E [Π(k + 1)|r(k) = j, r(k − 1) = i] Prob(r(k − 1) = i|r(k) = j)

=

m∑

i=1

E
[
AjΠ(k)ATj +Rw −AjΠ(k)CTj (CjΠ(k)CTj +Rv)

−1CjΠ(k)ATj |r(k − 1) = i
]
qijπi(k − 1),

since given r(k− 1), Π(k) and r(k) are independent. Further, note that the Riccati
operator

fj(M) = AjMATj +Rw −AjMCTj (CjMCTj +Rv)
−1CjMATj

is both concave and increasing. Since it is concave, Jensen’s inequality yields

Mj(k+1) ≤
m∑

i=1

(
AjE[Π(k)|r(k − 1) = i]ATj +Rw −AjE[Π(k)|r(k − 1) = i]CTj (CjE[Π(k)|r(k − 1) = i]CTj +Rv)

Now from the definition ofMi(k−1) and the fact that fj(.) is an increasing operator,
we obtain the required bound.

For the stability proof,

The special case of a Bernoulli jump linear systems can be obtained from the
above result by substituting qij = qj∀i. We state the result below.

Theorem 4.8. Consider the estimation problem posed above for the system S1

with the additional assumption that the Markov transition probability matrix is
such that for all states i and j, qij = qi (in other words, the states are chosen
independently and identically distributed from one time step to the next). The term
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E{r(j)}k−1

j=0

[Π(k)] obtained from the optimal estimator is upper bounded by M(k)

where

M(k) =

m∑

t=1

qt

(
Rw +AtM(k − 1)ATt

−AtM(k − 1)CTt
(
Rv + CtM(k − 1)CTt

)−1
CtM(k − 1)ATt

)
,

with M(0) = Π(0). Further, a sufficient condition for stabilizability of the system
is that there exists a positive definite matrix X, and m matrices K1, K2, · · · , Km

such that

X >
m∑

i=1

qi
(
(Ai +KiCi)X(Ai +KiCi)

T +Rw +KiRvK
T
i

)
.

Finally, a necessary condition for stabilizability is that

qiρ(Ai)
2 < 1, ∀i = 1, 2, · · · ,m,

where ρ(Ai) is the spectral radius of the matrix Ai that governs the dynamics of
unobservable modes of the process in the i-th mode.

Linear Quadratic Gaussian Control

Given the optimal linear quadratic regulator and minimum mean squared error
estimator, the solution of the linear quadratic Gaussian control problem can be
solved by utilizing a separation principle. The Linear Quadratic Gaussian (LQG)
problem for the system S1 aims at designing the control input u(k) to minimize the
finite horizon cost function

JLQG = E

[
K∑

k=1

(
xT (k)Qx(k) + uT (k)Ru(k)

)
+ xT (K + 1)P (K + 1)x(K + 1)

]
,

where the expectation at time k is taken with respect to the future values of the
Markov state realization, the measurement and process noises, and the initial state.
Further, the matrices P (K+1), Q and R are all assumed to be positive definite. The
controller at time k has access to control inputs {u(j)}k−1

j=0 , measurements {y(j)}kj=0

and the Markov state values {r(j)}kj=0. The system is said to be stabilizable if the

infinite horizon cost function J∞
def
= limK→∞

JLQG

K is finite.
The solution to this problem is provided by Theorems 4.4 and 4.7 because of

the following separation principle.

Theorem 4.9. Consider the LQG problem for the system S1. At time k, if r(k) = i,
then the optimal control input is given by

u(k) = −
(
R+BTi Pi(k + 1)Bi

)−1
BTi Pi(k + 1)Aix̂(k),

where for Pi(k) is calculated as in Theorem 4.4 and x̂(k) is calculated using a
time-varying Kalman filter.
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Proof.

Given this separation principle, the stabilizability conditions provided in The-
orems 4.4 and 4.7 can then be combined to yield the stabilizability conditions for
the LQG case as well. Finally, we note that a similar separation principle also holds
for Bernoulli jump linear systems. Thus, the LQG problem can be solved for this
case as well.

4.4 H∞ Control

Include?

4.5 Further Resources
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Stabilization over time-varying fedback channels”, IEEE TAC, 54(2):243–255,
2008.
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chapter and this chapter. My suggestion is to cover it in the chapter that comes
later in the book. Also Nuno Martins claims that a similar result exists in one of
his papers. We should check that, and if true, cite both.

In this chapter, we consider the class of networked control systems in which
the communication channel can be described by a digital noiseless channel. Such
a channel imposes a limit on the number of bits that can be transmitted across it
as a function of time; however, the transmission is perfect. As we shall see, there
is a minimum bit rate required for the existence of encoders and decoders so that
the plant can be stabilized across such a channel. In that sense, this problem is an
analog of the source coding problem in information theory. However, the results
from information theory are not directly applicable to the control scenario because
of their reliance on large delays for the block codes to work. Nevertheless, concepts
and insights from information theory will be used in the following discussion.

The chapter is organized as follows. We begin by describing the channel model
in the next section.

5.1 Channel Model

By a digital noiseless channel, we will mean the following model. Consider a finite
alphabet S of cardinality M ≥ 1. At every time k, the channel accepts as input
one symbol s(k) ∈ S. With a delay of d time steps, the channel outputs the symbol
r(k+d) = s(k). We will nominally consider the delay to be 0; however, we mention
how the results can be extended to any finite value of the delay. Since the encoder for
such a channel maps a continuous variable (e.g., the state value or the measurement)
to a discrete variable (the input of the channel), it is often referred to as a quantizer.

An alternate viewpoint is to consider a channel that operates with a binary
alphabet; however, at every time step, it can support a data rate R = log2M bits
per sample. From this perspective, the channel model is that of a bit rate limited
channel. We can also distinguish between channels that support a rate R at every

time step, and those that support an average rate R = limN→∞
∑N
k=0

R(k)
N , where

R(k) refers to the instantaneous rate (or number of bits supported by the channel)
at time k.
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5.2 Single Block Design

Consider a process with state x(k) ∈ Rn that evolves as

x(k + 1) = Ax(k) +Bu(k) + w(k),

where w(k) is process noise modeled as white and in a bounded region W. The
initial state x(0) is also assumed to lie in a bounded region X . For simplicity, we
assume that the sensor can observe the state x(k). The sensor transmits data to a
controller across a digital noiseless channel with rate 2M bits at every time step.
The single block design problem refers to a situation in which the sensor quantizes
the state space using M bits and transmits them to the controller. The controller
aims to calculate a control input u(k) to minimize the quadratic cost

JT =

T∑

k=0

E[xT (k)Qx(k) + uT (k)Ru(k)] + xT (T + 1)P (T + 1)x(T + 1).

If the infinite horizon cost limT→∞
JT

T is bounded, we say that the process has been
stabilized. Notice that in the single block design paradigm for this channel implies
that the quantizer is given and the system designer specifies the decoder/controller.
However, the quantizer can be of many different types as long as it satisfies the rate
constraint. Some popular choices for quantizers are uniform or logarithmic with
given range and step sizes.

The presence of a digital noiseless channel significantly complicates the analysis
and design of control loops even for the LQG problem. For one, quantization is
inherently a non-linear process and thus converts the problem to a non-linear control
problem. Thus, there are only a limited number of results about optimal controller
design. Another reason is that the quantization error introduced at any time step
impacts the state value, and hence the quantization error, at all future time steps.
This relation can become very complicated for arbitrary quantizers, possibly even
leading to the control having a dual effect. For the cases when process noise is
present, the possibility of state value becoming large enough to fall outside the
quantizer range (termed quantizer overflow) is an additional complication.

The chief approach in single block design is to make a white noise approximation
for the quantization error. Under this approximation, the possibility of quantizer
overflow is ignored and each of the n elements in the state vector are assumed to
be quantized independently using a uniform quantizer with step size δ, where δ is
such that the total number of bits transmitted by the quantizer is M . Moreover, the
quantization error q(k) is assumed to be white and independent of x(k). Since the
quantization error for a uniform quantizer with step size δ has mean 0 and variance
δ2/12, the effect of the above assumptions is to replace the quantizer with a sensor
of the form

y(k) = x(k) + v(k),

where v(k) is sensor noise modeled as bounded and white with mean zero and vari-
ance δ2/12. The controller design problem thus reduces to the design of a stabilizing
controller for a linear system, which can be readily solved. Since the noises are not
Gaussian, the performance optimal controller is harder to design.

Some initial results when the assumption of quantization error being either
white or independent of the state value is not made are provided for uniform and
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logarithmic quantizers in [?]. The chief technical tool is the following high rate
approximation result from source coding theory [?].

Theorem 5.1. Given a scalar quantizer with mean squared error based distortion
measure d(x, y) = ‖x − y‖2, the expected distortion of the random variable X that
is being quantized can be bounded as

d̄ ≥ dL =
1

12N2
E[λ(X)−2],

where λ(X) is the asymptotic quantizer density normalized to unit integral, while
N refers to the number of quantization levels. Further, the lower bound becomes
tighter as the rate of the quantizer becomes high.

Thus, consider the quadratic cost JT for a scalar plant

x(k + 1) = ax(k) + u(k) + w(k),

where the noise w(k) and the initial state x(0) are both bounded. Assume that
there is no quantizer overflow, and that the control input is given by u(k) = fx̂(k),
where x̂(k) is the estimate of the state at the decoder. Then, for a midpoint based

uniform quantizer, dL = δ2

12 where δ is the quantizer step size. Moreover, as Marco
and Neuhoff [?] proved, for a high rate uniform quantizer,1 E[x(k)δ(k)] ≪ E[δ2(k)]
and can thus be approximated by zero. Thus, at high rates the cost JT evaluates
to

JT = (Q+Rf2)E[x2(0)]
T∑

k=0

(a+f)2k+Rf2(T+1)
δ2

12
+

Q+Rf2

1 − (a+ f)2

(
δ2f2

12
+ Σ2

w

) T∑

k=0

(
1 − (a+ f)2k

)
.

The optimal controller can now be evaluated numerically. On the other hand, if a
logarithmic quantizer with ratio g operating over the union of regions [−a, ǫ] and
[ǫ, a] is used, the distortion can be evaluated to be

dL =
(ln g)2

12
E[x2(k)].

Using the Cauchy-Schwarz inequality

−
√
E[δ2(k)]E[x2(k)] ≤ E[δ(k)x(k)] ≤

√
E[δ2(k)]E[x2(k)],

we can then obtain that

h1E[x2(0)]
1 − gT+1

1

1 − g1
+
h1σ

2(T − 1 + gT+1
1 )

1 − g1
≤ JT ≤ h2E[x2(0)]

1 − gT+1
2

1 − g2
+
h2σ

2(T − 1 + gT+1
2 )

1 − g2
,

where

g1 = (a+ f)2 + cf2 − 2 | f(a+ f) | √c
g2 = (a+ f)2 + cf2 + 2 | f(a+ f) | √c
h1 = Q+Rf2 +Rcf2 − 2Rf2

√
c

h2 = Q+Rf2 +Rcf2 + 2Rf2
√
c

1There are some additional technical conditions required, which hold in this case.
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and c = (ln g)2

12 .
For a quantizer with large enough rate, either of the above approaches yield

reasonably accurate results. However, analytically, the problem is largely unsolved
since the framework with the above approximations fail to capture some crucial
features of the solution. For one, the white noise approximation implies that the
system can be stabilized by a suitable control law with any non-zero rate supported
by the digital noiseless channel (provided that the pair (A,B) is stabilizable). How-
ever, as we shall see in the next section, the data rate theorem implies that there
is a minimum data rate that needs to be supported by the channel, otherwise the
system cannot be stabilized even in the two block design paradigm. Moreover, the
assumptions mentioned in this section fail to predict the chaotic nature of the state
space trajectory that was identified by Delchamps.

Expand on this point. If somebody else has read the paper and better understandsVijay

it, please fill in a few lines here.

5.3 Two Block Design

The two block design paradigm involves designing both an encoder at the input
of the channel and a decoder at the output of the channel. As we shall see, for
the digital noiseless channel, encoders and decoders that achieve stability with the
minimum possible bit rate have been identified for a variety of stability notions and
conditions on the encoder structure. However, designs that minimize a performance
cost are largely unknown.

We begin by considering the plant structure with state x(k) ∈ Rn that evolves
as

x(k + 1) = Ax(k) +Bu(k) + w(k), (5.1)

where u(k) ∈ Rm is the control input. The state is observed by a sensor that
generates measurements y(k) ∈ Rp of the form

y(k) = Cx(k) + v(k).

For different notions of stability, we will make different assumptions on the noises
w(k) and v(k), and the initial state x(0). We assume that the pair (A,B) is con-
trollable and the pair (A,C) is observable.

The encoder at the input of the channel transmits a symbol s(k) from the alpha-
bet S (equivalently, M bits) at every time step. The message that is transmitted is
a function of past transmissions and all measurements till time k, i.e.,

s(k) = γ(k, y(0), y(1), · · · , y(k), s(0), s(1), · · · , s(k − 1)).

The channel transmits the symbol s(k) without distortion, but with a constant
delay of d time steps. The decoder generates a control input of the form

u(k) = δ(k, s(0), s(1), · · · , s(k − d)).

We begin by considering stability in the sense of constraining the state value
to lie within a bounded set. To this end, assume that the noises w(k) and v(k) are
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deterministic but unknown sequences constrained to lie in bounded sets W and V
respectively. Moreover assume that the initial condition x(0) lies in the bounded
set X0. Then, we consider the system to be stable if the worst case cost

J = lim sup
k→∞

{‖x(k)‖ : x(0) ∈ X0, w(j) ∈ W, v(j) ∈ V, j = 0, 1, · · · }

is bounded.

Date Rate Theorem

The basic result in stability across digital noiseless channels is called the data rate
theorem and is stated in terms of the intrinsic entropy of a system. The intrinsic
entropy of a system is a measure of instability of a system and for the linear process
in equation (5.1) is defined by the relation H =

∑
i log2(max(|λi(A)|, 1)) where

λi(A) is the i-th eigenvalue of the matrix A. Since any mode of the process whose
evolution is governed by an eigenvalue with magnitude less than 1 is stable and
decays to zero even without any control input, for stabilization purpose, without
loss of generality we can consider A to have all eigenvalues with magnitude strictly
larger than 1.

Theorem 5.2 (Date Rate Theorem:). Consider the two block design formulation
with a causal encoder and decoder structure as defined above with the channel sup-
porting a rate R.

1. If R ≤ H and the process noise has non-zero support, then J → ∞ with any
encoder and decoder design.

2. If R > H then

J >
β−1/nλ(W)1/n

1 − 2−(R−H)/n
,

where β is the volume of an n-dimensional sphere with unit radius, and λ(W)
is the measure of W.

The proof of this theorem relies on considering the rate of increase in the volume
of the set that the norm of the state value x(k) can be in. The volume increases
at every step because of the unstable eigenvalues, and decreases because of the
information passed by the encoder. Note that the control value simply shifts this
set, and cannot alter the volume since all previous control values are known to the
controller. By balancing the rate of increase and decrease, the two conditions in
the data rate theorem are obtained. To focus on the basic idea of the proof, we
prove the data rate theorem for the special case when the process state is a scalar
(n = 1). For this special case, the result implies:

1. If R ≤ log2(A) and the process noise has non-zero support, then J → ∞ with
any encoder and decoder design.

2. If R > log2(A) then

J >
0.5λ(W)

1 − 2−(R−H)
,

for any encoder and decoder design, where λ(W) is the measure of W.
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Proof. Define by λ(x(t)) the length of the possibly disconnected region defined by
the set of values that the state value can achieve at time t for various values of
control inputs, x(0) and the noise till time t. Also for given values of the signals
transmitted by the encoder, define the region λ(x(t) : {s(j)}t−1

j=0 = {c(j)}t−1
j=0) simi-

larly. Finally define

m(t) = max
{c(j)}t−1

j=0
∈S
λ(x(t) : {s(j)}t−1

j=0 = {c(j)}t−1
j=0).

We wish to study the evolution of m(t). By definition,

m(t+ 1) = max
{c(j)}t

j=0
∈S
λ(x(t+ 1) : {s(j)}tj=0 = {c(j)}tj=0)

= max
{c(j)}t

j=0
∈S
λ(Ax(t) +Bδ(t, {c(j)}t−dj=0) + w(t) : {s(j)}tj=0 = {c(j)}tj=0).

Now for given symbols {c(j)}t−dj=0, the control value is a constant and hence cannot
affect the measure of the set. Moreover, the Brunn-Minkowski inequality implies
that λ1/n(a+ b) ≥ λ1/n(a)+λ1/n(b), for any sets a and b in n-dimensions. Utilizing
these two facts, we obtain

m(t+ 1) ≥ A max
{c(j)}t

j=0
∈S
λ(x(t) : {s(j)}tj=0 = {c(j)}tj=0) + λ(w(t)). (5.2)

Now, notice that

{x(t) : {s(j)}t−1
j=0 = {c(j)}t−1

j=0} =
⋃

all possible values of c(t)

{x(t) : {s(j)}tj=0 = {c(j)}tj=0}.

Thus, Brunn-Minkowski inequality yields

λ(x(t) : {s(j)}t−1
j=0 = {c(j)}t−1

j=0) ≤
∑

all possible values of c(t)

λ(x(t) : {s(j)}tj=0 = {c(j)}tj=0)

M max
c(t)∈S

λ(x(t) : {s(j)}tj=0 = {c(j)}tj=0),

where M is the number of symbols in the alphabet S. Using this in (5.2) yields

m(t+ 1) ≥ A max
{c(j)}t−1

j=0
∈S

1

M
λ(x(t) : {s(j)}t−1

j=0 = {c(j)}t−1
j=0) + λ(w(t))

=
A

M
m(t) + λ(w(t))

= 2−(R−H)m(t) + λ(w(t),

since A
M = 2H

2R . If R ≤ H, then as t → ∞, m(t) grows without bound and J → ∞.
If R > H, then we can solve for m(t) explicitly and achieve the bound stated in the
theorem as t→ ∞. This, the data rate theorem is proven for the scalar case.

The proof for the n-dimensional state space is along similar lines by considering
the evolution of the volume of |x(t)|. The technical changes required are:
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• to relate the volume of the set to sup |x(t)| by using the expression

λ(T ) ≤ β(sup |τ | : τ ∈ T )1/n,

for any set T , where β is the volume of the n-dimensional sphere with unit
radius.

• to define m(t) as the 1/n-th root of volume so that Brunn-Minkowski inequal-
ity is applicable.

• to use the relation λ(Ax) = det(A)λ(x).

The proof of the theorem can be easily modified to consider the case when the rate
R is time-varying. By considering the evolution of m(t) in terms of m(0), we see
that the data rate theorem holds if we define R to be the long term average data
rate.

Tightness of Bounds

There are two questions that one can consider regarding the tightness of the bounds:

1. Is it possible to achieve stability with a data rate R = H + ǫ for any non-zero
ǫ?

2. Is it possible to achieve the lower bound on the state value when R > H?

The first question can be answered in affirmative. We construct an encoder and
decoder for the scalar case that achieves stability with rate H + ǫ and indicate how
it can be extended to more general cases. Consider at time k, the state x(k) to be
in a region with support l(k). The encoder uniformly quantizes the region using
M bits and transmits the symbol related to the midpoint of the quantization cell
containing the state value. The decoder knows the region being quantized since
there is no stochasticity in the system. Thus, it knows exactly the midpoint of
the quantization cell as transmitted by the encoder. It applies the control that
translates the midpoint to the origin. Using this encoder decoder pair, the length
l(k) evolves as follows. It increases by a factor of A due to the state dynamics, and
decreases by a factor of 2M due to the quantizer. Thus,

l(k + 1) =
1

M
(Al(k) + lw(k)),

where lw(k) is the support of the noise w(k). Thus, the length is bounded as k → ∞
(in other words stability is achieved) if A

M < 1 or R = H + ǫ for any non-zero ǫ.
For a vector plant, a similar encoder-decoder pair can be used for each individual
mode as identified by a Jordan decomposition. By allotting bit rates suitably for
all unstable modes, stability can be achieved for any rate R > H.

Regarding the second question, we notice that the lower bound on the norm
of the state in case of R > H is independent of the delay d. Thus, it can be
expected that the bound is quite loose in general. While the presence of a finite
delay cannot affect the stability condition, it does affect the performance in terms
of the achievable norm of the state. One can modify the above proof by considering



ratelim.tex, v1072 2009-12-20 22:29:51Z (murray)

5-8 CHAPTER 5. RATE-LIMITED ESTIMATION AND CONTROL

the evolution of m(t) in terms of m(t− d) to more accurately capture the effects of
the delay. However, the effect of the rate R and the delay d do not separate out in
a simple manner.

Even if d = 0, in general the bound is not tight for vector plants. For scalar
plants, the encoder-decoder proposed above will achieve the bound with equality.

Other Notions of Stability

Now we briefly discuss how to consider alternate notions of stability. If the noises
w(k) and v(k) are random variables, then the state x(k) evolves stochastically. In
that case, we might be interested in boundedness of a particular moment of the
state. The most popular notion is that of mean square stability, i.e., we define the
system to be stable if E[x(k)xT (k)] is bounded as k → ∞. This stability notion can
be analyzed using very similar tools as employed in the data rate theorem. Instead
of volume of the set in which the state can lie, we consider the evolution of the
entropy power of the state. By using the entropy power inequality instead of the
Brunn-Minkowski inequality, we can follow the same proof as that of the data rate
theorem. Rather surprisingly, the condition on the minimum bit rate required for
stability turns out to be identical to the deterministic case considered earlier.

However, unlike the deterministic case, a finite memory encoder-decoder pair is
no longer sufficient to provide moment stability if the noise has infinite support.
This result is related to the area over which the quantizer needs to operate. If the
noise has a compact support, then given the region in which x(k) can lie, the region
that needs to be quantized for x(k + 1) is bounded. The encoder can thus vary its
range at every time step and achieve stability. However, if the noise has unbounded
support, then there is always a finite chance that the state at time k+1 falls outside
the range of the quantizer. Such quantizer overflow leads to controller saturation. If
the plant is unstable, the difference between where the state is, and the maximum
value that can be handled by the controller exacerbates and quantizer overflow
happens with increasing probability, ultimately leading to instability.

Stability with noises that have infinite support requires an encoder that adapts
its range to allow the control signal to catch up. Moreover, the adaptation parameter
can depend on the entire history of actions and have infinite set of values. A typical
example of such a quantizer is the zoom in / zoom out quantizer.

Introduce description of zoom in and out quantizervijay

.
If there is no noise in the system, one can also aim for asymptotic stability. The

first result in this direction is the insufficiency of a finite memory encoder / decoder
pair to achieve asymptotic stability. This is because given any finite memory encoder
/ decoder, and a finite data rate, at any time t, the controller can only distinguish
between finitely many state values. In other words, at any time t, there are a
countable number of values for the initial state x(0), that can be mapped to the
origin. For any other value of the initial state, let, if possible, the system achieve
asymptotic stability. This implies that if there exists a time T , such that for all
t > T , the state value starting from this initial state satisfies |x(t)| < ǫ, then there
must exist some time τ > T such that u(τ) is nonzero. This is simply because the
state value x(t) is non-zero and hence needs to be driven to the origin by a suitable
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control input. Now, of the (countably many) distinct possible values possible for
the control input at time τ , let m = min |u(τ)|. Moreover, choose ǫ = m

1+|a| , where

for simplicity we have choosen a scalar system with system parameter a. Then we
can obtain a contradiction by noting that

m ≤ |u(τ)| = |x(τ + 1) − ax(τ)| ≤ |x(τ + 1)| + |ax(τ)| ≤ (1 + |a|)ǫ < m.

Thus, for any finite memory of the encoder and decoder, there are uncountably
many initial values of the state such that the system trajectories starting from
them do not achieve asymptotic stability. There are two chief research directions
that have emerged in light of this negative result:

1. Loosening the constraint of asymptotic stability to practical stability: In prac-
tical stability, the system satisfies the constraint |x(t)| < ǫ for any given ǫ for
times in the range T1 < t < T2.

2. Considering encoders / decoders with infinite memory: The zoom in and out
quantizers discussed above can achieve asymptotic stability by varying the
region of state space that is quantized. As the state value moves closer to the
origin, the range of the quantizer decreases. The achievement of increasingly
finer quantization levels leads to asymptotic stability.

Should we discuss either of these directions in more detail? vijay

.

5.4 Extensions and Open Questions

The above discussion provides a sketch of the type of problems that have been
analyzed and the results that are available for estimation and control across a
digital noiseless channel. Since this is a research area that continues to see intense
activity, there are a number of aligned problems that have also been looked at. We
provide a discussion on some of these problems and outline a few open research
questions.

Performance. Most of the material presented this far focussed on various notions
of stability. Results on the design of control inputs to minimize a cost metric are
more limited. As an example, consider the case when the noises are stochastic and
Gaussian. One can consider the LQG problem for this case. The problem is difficult
because of the non-linearity introduced by the quantizer. However, it can be proven
that for the class of encoders that subtract the effect of previous control inputs
(thus transmitting an innovation-like quantity), the certainty equivalence principle
holds. Thus, for this class of encoders, the optimal control law is linear and its
form is obtained by assuming that the controller has access to state information.
However, instead of the state value, an estimate of the state value is used in the
law to obtain the control input value. Moreover, there is no loss of optimality by
restricting attention to this class of encoders.

However, a complete separation principle does not exist because of the non-
linearity introduced by the quantizer. In other words, the estimate at the controller
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needs to be calculated for a distortion metric that depends on the input matrix.
Thus, the estimator depends on the control value being calculated and is hard to
characterize analytically. In fact, the LQG problem, and identifying the optimal
controller for general cost functions, is still largely open. In fact, even the problems
of identifying the optimal encoder for a given controller and identifying the optimal
controller for a given encoder from a performance perspective do not yet have
general solutions.

Noisy Digital Channels. If the channel is not noiseless, the problem becomes much
harder. The easiest extension to consider is when the bits are erased by the channel
with a certain probability at every time step. Stability conditions for such channels
are obtained by extending the results from this chapter and that of analog erasure
channels. Consider the case when the sensor data for a scalar process with process
matrix A is transmitted to the controller over a channel such that the channel
supports a rate of R bits at every time step, and the data packet is erased with a
probability p in an independent and identically distributed manner at every time
step. Then, a necessary and sufficient condition for existence of causal encoders
and decoders that achieve second moment stability for the plant state is that pA2 +

(1 − p) A
2

22R < 1. Note that in the limit R → ∞, the condition reduces to pA2 < 1
that is the stability condition for two block design with analog erasure channels.
Similarly in the limit p = 0, we regain the condition for digital noiseless channel. The
extension of the condition for vector plants is obtained using Jordan decomposition
of the system matrix and considering each unstable mode separately.

If the noise in the channel can yield bit errors (rather than erasures), then a
binary symmetric channel is more accurate. However, only very limited results are
available even for stability over such channels.

Finite Lp Gain / Nonlinear systems.

Read paper and include discussionVijay

Distributed Control. Since performance optimal distributed controllers are not avail-
able for arbitrary connection topologies even for the case of no limitations in terms
of communication channels, it is not surprising that the problem is open if various
components transmit data over digital noiseless channels. However, the stability
problem has been looked at by many researchers and conditions are available in
many different but equivalent forms.

Include a condition? Requires a lot of new notation.vijay

5.5 Conclusions

In this chapter, we looked at control across a digital noiseless link. Stability condi-
tions were identified in the two block framework. Some extensions and open prob-
lems were also looked at.
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Chapter 6
Packet-Based Estimation and Control

Outline:

• Problem setup and useful lemmas

• Expected value of covariance

• Probabilistic bounds

• Markov models for packet loss (JLMS)

• Multi-channel and/or multi-sensor?

6.1 Introduction

This goal of this chapter is to analyze the problem of state estimation in the case
where observations have to travel through a network to reach the estimator and
may get lost in the process.

Consider the problem of navigating a vehicle based on the sensor web’s estimate
of its current position and velocity. The measurements underlying this estimate can
be lost or delayed due to the unreliability of the wireless links. The question is,
then, what is the amount of data loss that the control loop can tolerate to reli-
ably perform the navigation task? And, can communication protocols be designed
to satisfy this constraint? Answering these questions requires a generalization of
classical control techniques that explicitly take into account the stochastic nature
of the communication channel.

In this setting, the sensor network provides observed data that is used to esti-
mate the state of a controlled system, and this estimate is then in turn used for
control purposes. This chapter and the next one study the effect of data loss due
to the unreliability of the network links.

The current chapter generalizes the most ubiquitous recursive estimation tech-
nique in control—the discrete Kalman filter [?]—modeling the arrival of an observa-
tion as a random process whose parameters are related to the characteristics of the
communication channel, see Figure 6.8. In this setting the statistical convergence
of the expected estimation error covariance is characterized and analyzed.

The classical theory relies on several assumptions that guarantee convergence
of the Kalman filter. Consider the following discrete time linear dynamical system:

xt+1 = Axt + wt

yt = Cxt + vt, (6.1)
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Figure 6.1: Overview of the system. The goal is to study the statistical con-
vergence of the expected estimation error covariance of the discrete-time Kalman
filter, where the observation, travelling over an unreliable communication channel,
can be lost at each time step with probability 1 − γ̄.

where xt ∈ Rn is the state vector, yt ∈ Rm the output vector, wt ∈ Rp and vt ∈ Rm

are Gaussian random vectors with zero mean and covariance matrices Q ≥ 0 and
R > 0, respectively. wt is independent of ws for s < t. Assume that the initial
state, x0, is also a Gaussian vector of zero mean and covariance Σ0. Under the
hypothesis of stabilizability of the pair (A,Q) and detectability of the pair (A,C),
the estimation error covariance of the Kalman filter converges to a unique value
from any initial condition [?].

The assumptions of the Kalman Filter have been relaxed in various ways. Ex-
tended Kalman filtering [?] attempts to cope with nonlinearities in the model;
particle filtering [?] is also appropriate for nonlinear models and additionally does
not require the noise model to be Gaussian. Recently, more general observation
processes have been studied. In particular, in [?, ?] the case in which observations
are randomly spaced in time according to a Poisson process has been studied, where
the underlying dynamics evolve in continuous time. These authors showed the ex-
istence of a lower bound on the arrival rate of the observations below which it is
possible to maintain the estimation error covariance below a fixed value, with high
probability. However, the results were restricted to scalar SISO systems.

A similar approach is taken in this chapter. While the analysis falls within the
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framework of discrete time, it provides results for general n-dimensional MIMO
systems. In particular, it considers a discrete-time system in which the arrival of an
observation is a Bernoulli process with parameter 0 < ¯γ < 1, and, rather than asking
for the estimation error covariance to be bounded with high probability, the study
focuses on the asymptotic behavior (in time) of its average. The main contribution
is to show that, depending on the eigenvalues of the matrix A, and on the structure
of the matrix C, there exists a critical value γc, such that if the probability of arrival
of an observation at time t is γ̄ > γc, then the expectation of the estimation error
covariance is always finite (provided that the usual stabilizability and detectability
hypotheses are satisfied). If γ̄ ≤ γc, then the expectation of the estimation error
covariance is unbounded. The following analysis provides explicit upper and lower
bounds on γc, and shows that they are tight in some special cases.

Philosophically this result can be seen as another manifestation of the well
known uncertainty threshold principle [?, ?]. This principle states that optimum
long-range control of a dynamical system with uncertainty parameters is possible
if and only if the uncertainty does not exceed a given threshold. The uncertainty is
modeled as white noise scalar sequences acting on the system and control matrices.
In our case, the result is for optimal estimation, rather than optimal control, and the
uncertainty is due to the random arrival of the observation, with the randomness
arising from losses in the network.

6.2 Related Work

Studies on filtering with intermittent observations can be tracked back to Nahi [?]
and Hadidi [?]. More recently, this problem has been studied using Jump Linear
Systems (JLS) [?]. JLS are stochastic hybrid systems characterized by linear dy-
namics and discrete regime transitions modeled as Markov chains. In the work of
Costa et al. [?] and Nilsson et al. [?, ?] the Kalman filter with missing observations
is modeled as a JLS switching between two discrete regimes: an open loop con-
figuration and a closed loop configuration. Following this approach, these authors
obtain convergence criteria for the expected estimation error covariance. However,
they restrict their formulation to the steady state case, where the Kalman gain is
constant, and they do not assume to know the switching sequence. The resulting
process is wide sense stationary [?], and this makes the exact computation of the
transition probability and state error covariance possible. Other work on optimal,
constant gain filtering can be found in the work of Wang et al. [?], who included
the presence of system parameters uncertainty besides missing observations, and
Smith et al. [?], who considered the fusion of multiple filters. Instead, we consider
the general case of time varying Kalman gain. In the presence of missing observa-
tions, this filter has a smaller linear minimum mean square error (LMMSE) than
its static counterpart, as it is detailed in Section 6.3.

The general case of time-varying Kalman filter with intermittent observations
was also studied by Fortmann et al. [?], who derived stochastic equations for the
state covariance error. However, they do not statistically characterize its conver-
gence and provide only numerical evidence of the transition to instability, leaving a
formal characterization of this as an open problem, which is addressed in this chap-
ter. A somewhat different formulation was considered in [?], where the observations
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arrival have a bounded delay.

Finally, we point out that our analysis can also be viewed as an instance of
Expectation-Maximization (EM) theory. EM is a general framework for doing Max-
imum Likelihood estimation in missing-data models [?]. Lauritzen [?] shows how
EM can be used for general graphical models. In our case, however, the graph
structure is a function of the missing data, as there is one graph for each pattern
of missing data.

The chapter is organized as follows. In section 6.3 the problem of Kalman fil-
tering with intermittent observations is formally defined. In section 6.4 upper and
lower bounds on the expected estimation error covariance of the Kalman filter are
provided, along with conditions on the observation arrival probability γ̄ for which
the upper bound converges to a fixed point, and for which the lower bound diverges.
Section 6.5 describes some special cases and gives an intuitive understanding of the
results. Section 6.6 compares the current approach to previous ones [?] based on
jump linear systems.

6.3 Problem Formulation

Consider the canonical state estimation problem. The arrival of the observation
at time t is modeled as a binary random variable γt, with probability distribution
pγt

(1) = γ̄, and with γt independent of γs if t 6= s. The output noise vt is defined
in the following way:

p(vt|γt) =

{
N (0, R) : γt = 1

N (0, σ2I) : γt = 0,

for some σ2 . Therefore, the variance of the observation at time t is R if γt is 1,
and σ2I otherwise. In reality the absence of observation corresponds to the limiting
case of σ → ∞. Following this approach the Kalman filter equations are re-derived
using a “dummy” observation with a given variance when the real observation does
not arrive, and then take the limit as σ → ∞.

First define:

x̂t|t
∆
= E[xt|yt, γt] (6.2)

Pt|t
∆
= E[(xt − x̂t)(xt − x̂t)

′|yt, γt] (6.3)

x̂t+1|t
∆
= E[xt+1|yt, γt] (6.4)

Pt+1|t
∆
= E[(xt+1 − x̂t+1)(xt+1 − x̂t+1)

′|yt, γt] (6.5)

ŷt+1|t
∆
= E[yt+1|yt, γt], (6.6)

where the vectors yt and γt are defined as: yt
∆
= [y0, . . . , yt]

′ and γt
∆
= [γ0, . . . , γt]

′.
It is easy to see that:

E[(yt+1 − ŷt+1|t)(xt+1 − x̂t+1|t)
′|yt, γt+1] = CPt+1|t (6.7)

E[(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
′|yt, γt+1] = CPt+1|tC

′ + γt+1R+ (1 − γt+1)σ
2I,(6.8)
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and it follows that the random variables xt+1 and yt+1, conditioned on the output
yt and on the arrivals γt+1, are jointly gaussian with mean

E[xt+1, yt+1|yt, γt+1] =

(
x̂t+1|t

Cx̂t+1|t

)
,

and covariance

COV (xt+1, yt+1|yt, γt+1) =

=

(
Pt+1|t Pt+1|tC

′

CPt+1|t CPt+1|tC
′ + γt+1R+ (1 − γt+1)σ

2I

)
.

Hence, the Kalman filter equations are modified as follows:

x̂t+1|t = Ax̂t|t (6.9)

Pt+1|t = APt|tA
′ +Q (6.10)

x̂t+1|t+1 = x̂t+1|t + Pt+1|tC
′(CPt+1|tC

′ + γt+1R+ (1 − γt+1)σ
2I)−1(yt+1 − Cx̂t+1|t)(6.11)

Pt+1|t+1 = Pt+1|t − Pt+1|tC
′(CPt+1|tC

′ + γt+1R+ (1 − γt+1)σ
2I)−1CPt+1|t. (6.12)

Taking the limit as σ → ∞, the update equations (6.11) and (6.12) can be rewritten
as follows:

x̂t+1|t+1 = x̂t+1|t + γt+1Kt+1(yt+1 − Cx̂t+1|t) (6.13)

Pt+1|t+1 = Pt+1|t − γt+1Kt+1CPt+1|t, (6.14)

where Kt+1 = Pt+1|tC
′(CPt+1|tC

′ +R)−1 is the Kalman gain matrix for the stan-
dard ARE. Note that performing this limit corresponds exactly to propagating the
previous state when there is no observation update available at time t. It is impor-
tant to point out the main difference from the standard Kalman filter formulation:
both x̂t+1|t+1 and Pt+1|t+1 are now random variables, being a function of γt+1,
which is itself random.

Equations (6.13)-(6.66) give the minimum state error variance filter given the ob-
servations {yt} and their arrival sequence{γt}, i.e. x̂tmt = E[xt|yt, . . . , y1, γt, . . . , γ1].
As a consequence, the filter proposed in this paper is necessarily time-varying and
stochastic since it depends on the arrival sequence. The filters that have been pro-
posed so far using JLS theory [?, ?] give the minimum state error variance filters
assuming that only the observations {yt} and the knowledge on the last arrival γt
are available, i.e. x̂JLSt = E[xt|yt, . . . , y1, γt]. Therefore, the filter given by Equa-
tions (6.13)-(6.66) gives a better performance than its JLS counterparts, since it
exploits additional information regarding the arrival sequence.

Given the new formulation, we now study the Riccati equation of the state error
covariance matrix in the specific case when the arrival process of the observation is
time-independent, i.e. γ̄t = γ̄ for all time. This will allow us to provide deterministic
upper and lower bounds on its expectation. We then characterize the convergence
of these upper and lower bounds, as a function of the arrival probability γ̄ of the
observation.
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6.4 Convergence conditions and transition to instability

It is easy to verify that the modified Kalman filter formulation in Equations (6.10)
and (6.66) can be rewritten as follows:

Pt+1 = APtA
′ +Q− γtAPtC

′(CPtC
′ +R)−1CPtA

′, (6.15)

where we use the simplified notation Pt = Pt|t−1. Since the sequence {γt}∞0 is
random, the modified Kalman filter iteration is stochastic and cannot be determined
off-line. Therefore, only statistical properties can be deduced.

In this section we show the existence of a critical value γc for the arrival probabil-
ity of the observation update, such that for γ̄ > γc the mean state covariance E[Pt] is
bounded for all initial conditions, and for γ̄ ≤ γc the mean state covariance diverges
for some initial condition. We also find a lower bound γmin, and upper bound γmax,
for the critical probability γc, i.e., γmin ≤ γc ≤ γmax. The lower bound is expressed
in closed form; the upper bound is the solution of a linear matrix inequality (LMI).
In some special cases the two bounds coincide, giving a tight estimate. Finally, we
present numerical algorithms to compute a lower bound S̄, and upper bound V̄ , for
limt→∞ E[Pt], when it is bounded.

First, we define the modified algebraic Riccati equation (MARE) for the Kalman
filter with intermittent observations as follows,

gγ̄(X) = AXA′ +Q− γ̄ AXC ′(CXC ′ +R)−1CXA′. (6.16)

Our results derive from two principal facts: the first is that concavity of the modified
algebraic Riccati equation for our filter with intermittent observations allows use
of Jensen’s inequality to find an upper bound on the mean state covariance; the
second is that all the operators we use to estimate upper and lower bounds are
monotonically increasing, therefore if a fixed point exists, it is also stable.

We formally state all main results in form of theorems. Omitted proofs appear
in the Appendix. The first theorem expresses convergence properties of the MARE.

Theorem 6.1. Consider the operator
φ(K,X) = (1−γ̄)(AXA′+Q)+γ̄(FXF ′+V ), where F = A+KC, V = Q+KRK ′.
Suppose there exists a matrix K̃ and a positive definite matrix P̃ such that

P̃ > 0 and P̃ > φ(K̃, P̃ )

Then,

• for any initial condition P0 ≥ 0, the MARE converges, and the limit is inde-
pendent of the initial condition:

lim
t→∞

Pt = lim
t→∞

gtγ̄(P0) = P

• P is the unique positive semidefinite fixed point of the MARE.

The next theorem states the existence of a sharp transition.
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Theorem 6.2. If (A,Q
1
2 ) is controllable, (A,C) is detectable, and A is unstable,

then there exists a γc ∈ [0, 1) such that

lim
t→∞

E[Pt] = +∞ for 0 ≤ γ̄ ≤ γc and ∃P0 ≥ 0 (6.17)

E[Pt] ≤MP0
∀t for γc < γ̄ ≤ 1 and ∀P0 ≥ 0 (6.18)

where MP0
> 0 depends on the initial condition P0 ≥ 01.

The next theorem gives upper and lower bounds for the critical probability γc.

Theorem 6.3. Let

γmin = inf [γ̄ : ∃Ŝ | Ŝ = (1 − γ̄)AŜA′ +Q] = 1 − 1

α2
(6.19)

γmax = inf [γ̄ : ∃(K̂, X̂) | X̂ > φ(K̂, X̂)] (6.20)

where α = maxi |σi| and σi are the eigenvalues of A. Then

γmin ≤ γc ≤ γmax. (6.21)

Finally, the following theorem gives an estimate of the limit of the mean covari-
ance matrix E[Pt], when this is bounded.

Theorem 6.4. Assume that (A,Q
1
2 ) is controllable, (A,C) is detectable and γ̄ >

γmax, where γmax is defined in Theorem 6.3. Then

0 < St ≤ E[Pt] ≤ Vt ∀ E[P0] ≥ 0 (6.22)

where limt→∞ St = S̄ and limt→∞ Vt = V̄ , where S̄ and V̄ are solution of the
respective algebraic equations
S̄ = (1 − γ̄)AS̄A′ +Q and V̄ = gγ̄(V̄ ).

The previous theorems give lower and upper bounds for both the critical proba-
bility γc and for the mean error covariance E[Pt]. The lower bound γmin is expressed
in closed form. We now resort to numerical algorithms for the computation of the
remaining bounds γmax, S̄ and V̄ .

The computation of the upper bound γmax can be reformulated as the iteration
of an LMI feasibility problem. To establish this we need the following theorem:

Theorem 6.5. If (A,Q
1
2 ) is controllable and (A,C) is detectable, then the following

statements are equivalent:

• ∃X̄ such that X̄ > gγ̄(X̄)

• ∃K̄, X̄ > 0 such that X̄ > φ(K̄, X̄)

• ∃Z̄ and 0 < Ȳ ≤ I such that

1We use the notation limt→∞ At = +∞ when the sequence At ≥ 0 is not bounded; i.e., there

is no matrix M ≥ 0 such that At ≤ M, ∀t.
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Ψγ̄(Y,Z) =



Y
√
γ̄(Y A+ ZC)

√
1 − γ̄Y A√

γ̄(A′Y + C ′Z ′) Y 0√
1 − γ̄A′Y 0 Y


 > 0.

Proof. (a)=⇒(b) If X̄ > gγ̄(X̄) exists, then X̄ > 0 by Lemma 6.1(g). Let K̄ = KX̄ .
Then X̄ > gγ̄(X̄) = φ(K̄, X̄) which proves the statement.
(b)=⇒(a) Clearly X̄ > φ(K̄, X̄) ≥ gγ̄(X̄) which proves the statement.
(b)⇐⇒(c) Let F = A+KC, then:

X > (1 − γ̄)AXA′ + γ̄FXF ′ +Q+ γ̄KRK ′

is equivalent to [
X − (1 − γ̄)AXA′ √

γ̄F√
γ̄F ′ X−1

]
> 0,

where we used the Schur complement decomposition and the fact that X − (1 −
γ̄)AXA′ ≥ γ̄FXF ′ + Q + γ̄KRK ′ ≥ Q > 0. Using one more time the Schur
complement decomposition on the first element of the matrix we obtain

Θ =




X
√
γ̄F

√
1 − γ̄A√

γ̄F ′ X−1 0√
1 − γ̄A′ 0 X−1


 > 0.

This is equivalent to

γ̄ =



X−1 0 0

0 I 0
0 0 I


Θ



X−1 0 0

0 I 0
0 0 I


 > 0

=




X−1 √
γ̄X−1F

√
1 − γ̄X−1A√

γ̄F ′X−1 X−1 0√
1 − γ̄A′X−1 0 X−1


 > 0.

Let us consider the change of variable Y = X−1 > 0 and Z = X−1K, in which case
the previous LMI is equivalent to:

Ψ(Y,Z) =

=




Y
√
γ̄(Y A+ ZC)

√
1 − γ̄Y A√

γ̄(A′Y + C ′Z ′) Y 0√
1 − γ̄A′Y 0 Y


 > 0.

Since Ψ(αY, αK) = αΨ(Y,K), then Y can be restricted to Y ≤ I, which completes
the theorem.

Combining theorems 6.3 and 6.5 we immediately have the following corollary

Corollary 6.5.1. The upper bound γmax is given by the solution of the following
optimization problem,

γmax = argminγ̄Ψγ̄(Y,Z) > 0, 0 ≤ Y ≤ I.
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This is a quasi-convex optimization problem in the variables (γ̄, Y, Z) and the
solution can be obtained by iterating LMI feasibility problems and using bisection
for the variable γ̄, as shown in [?].

The lower bound S̄ for the mean covariance matrix can be easily obtained via
standard Lyapunov Equation solvers. The upper bound V̄ can be found by iterating
the MARE or by solving a semidefinite programming (SDP) problem as shown in
the following theorem.

Theorem 6.6. If γ̄ > γmax, then the matrix V̄ = gγ̄(V̄ ) is given by:

1. V̄ = limt→∞ Vt; Vt+1 = gγ̄(Vt) where V0 ≥ 0

2.

argmaxV Trace(V )

subject to

[
AV A′ − V +Q

√
γ̄AV C ′

√
γ̄CV A′ CV C ′ +R

]
≥ 0, V ≥ 0

Proof. (a) It follows directly from Theorem 6.1.
(b) It can be obtained by using the Schur complement decomposition on the

equation V ≤ gγ̄(V ). Clearly the solution V̄ = gγ̄(V̄ ) belongs to the feasible set
of the optimization problem. We now show that the solution of the optimization
problem is the fixed point of the MARE. Suppose it is not, i.e., V̂ solves the opti-
mization problem but V̂ 6= gγ̄(V̂ ). Since V̂ is a feasible point of the optimization

problem, then V̂ < gγ̄(V̂ ) =
ˆ̂
V . However, this implies that Trace(V̂ ) < Trace(

ˆ̂
V ),

which contradicts the hypothesis of optimality of matrix V̂ . Therefore V̂ = gγ̄(V̂ )
and this concludes the theorem.

6.5 Special Cases and Examples

In this section we present some special cases in which upper and lower bounds
on the critical value γc coincide, and give some examples. From Theorem 6.1, it
follows that if there exists a K̃ such that F is the zero matrix, then the convergence
condition of the MARE is for γ̄ > γc = 1 − 1/α2, where α = maxi |σi|, and σi are
the eigenvalues of A.

• C is invertible. In this case a choice of K = −AC−1 makes F = 0. Note that
the scalar case also falls under this category. Figure (2) shows a plot of the
steady state of the upper and lower bounds versus γ̄ in the scalar case. The
discrete time LTI system used in this simulation has A = −1.25, C = 1, with
vt and wt having zero mean and variance R = 2.5 and Q = 1, respectively. For
this system we have γc = 0.36. The transition clearly appears in the figure,
where we see that the steady state value of both upper and lower bound tends
to infinity as γ̄ approaches γc. The dashed line shows the lower bound, the
solid line the upper bound, and the dash-dot line shows the asymptote.

• A has a single unstable eigenvalue. In this case, regardless of the dimen-
sion of C (and as long as the pair (A,C) is detectable), we can use Kalman
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Figure 6.2: Example of transition to instability in the scalar case. The dashed line
shows the asymptotic value of the lower bound (S̄), the solid line the asymptotic
value of the upper bound (V̄ ), and the dash-dot line shows the asymptote (γc).

decomposition to bring to zero the unstable part of F and thereby obtain tight

bounds. Figure (3) shows a plot for the system A =




1.25 1 0
0 0.9 7
0 0 0.6


,

C =
(

1 0 2
)

with vt and wt having zero mean and variance R = 2.5 and Q = 20 · I3×3,
respectively. This time, the asymptotic value for trace of upper and lower
bound is plotted versus γ̄. Once again γc = 0.36.

In general F cannot always be made zero and we have shown that while a lower
bound on γc can be written in closed form, an upper bound on γc is the result of
a LMI. Figure (4) shows an example where upper and lower bounds have different

convergence conditions. The system used for this simulation is A =

(
1.25 0
1 1.1

)
,

C =
(

1 1
)

with vt and wt having zero mean and variance R = 2.5 and Q = 20 · I2×2, respec-
tively.



pbestim.tex, v1072 2009-12-20 22:29:51Z (murray)

6.6. STATIC VERSUS DYNAMIC KALMAN GAIN 6-11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6 Special case: one unstable eigenvalue

Tr(V)
Tr(S)

T
r(

S
),

 T
r(

V
)

λλ
c
 

Figure 6.3: Example of transition to instability with a single unstable eigenvalue
in the MIMO case. The dashed line shows the asymptotic value of the trace of
lower bound (S̄), the solid line the asymptotic value of trace of the upper bound
(V̄ ), and the dash-dot line shows the asymptote (γc).

Finally, in Figure (5) we report results of another experiment, plotting the state
estimation error for the scalar system used above at two similar values of γ̄, one
being below and one above the critical value. We note a dramatic change in the
error at γc ≈ 0.36. The figure on the left shows the estimation error with γ̄ = 0.3.
The figure on the right shows the estimation error for the same system evolution
with γ̄ = 0.4. In the first case the estimation error grows dramatically, making it
practically useless for control purposes. In the second case, a small increase in γ̄
reduces the estimation error by approximately three orders of magnitude.

6.6 Static versus dynamic Kalman gain

In this section we compare the performance of filtering with static and dynamic
gain for a scalar discrete system. For the static estimator we follow the jump linear
system approach of [?]. The scalar static estimator case has been also worked out
in [?].
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Figure 6.4: Transition to instability in the general case, with arbitrary A and C.
In this case lower and upper bounds do not have the same asymptote.

Consider the dynamic state estimator

x̂dt+1 = Ax̂dt + γtK
d
t (yt − ŷt)

Kd
t = APtC

′(CPtC
′ +R)−1

Pt+1 = APtA
′ +Q− γtK

d
t CPtA

′ (6.23)

where the Kalman gain Kd
t is time-varying. Also consider the static state estimator

x̂st+1 = Ax̂dt + γtKs(yt − ŷt) (6.24)

where the estimator gain Ks is constant. If no data arrives, i.e. γt = 0, both
estimators simply propagate the state estimate of the previous time-step.

The performance of the dynamic state estimator (6.23) has been analyzed in the
previous sections. The performance of static state estimator (6.24), instead, can be
readily obtained using jump linear system theory [?, ?]. To do so, let us consider

the estimator error est+1
∆
= xt+1 − x̂st+1. Substituting Equations (6.1) for xt+1 and

(6.24) for x̂st+1, we obtain the dynamics of the estimation error:

est+1 = (A− γtKsC)est + vt + γtKswt. (6.25)
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Figure 6.5: Estimation error for γ̄ below (left) and above (right) the critical value

Using the same notation of Chapter 6 in Nilsson [?], where he considers the general
system:

zk+1 = Φ(rk)zk + Γ(rk)ek,

the system (6.25) can be seen as jump linear system switching between two states
rk ∈ {1, 2} given by:

Φ(1) = A−KsC Γ(1) = [1 Ks]

Φ(2) = A Γ(2) = [1 0],

where the noise covariance E[eke
′
k] = Re, the transition probability matrix Qπ and

the steady state probability distribution π∞ are given by:

Re =

[
Q 0
0 R

]
, Qπ =

[
γ̄ 1 − γ̄
γ̄ 1 − γ̄

]
, π∞ =

[
γ̄ 1 − γ̄

]
.

Following the methodology proposed in Nilsson [?] is possible to show that the
system above is mean square stable, i.e. limt→∞ E[(est )

′est ] = 0 if and only if the
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transition probability is

γ̄ < γ̄s =
1

1 −
(
1 − KsC

A

)2
(

1 − 1

A2

)
. (6.26)

If the system is mean square stable, the steady state error covariance P s∞ =
limt→∞ E[est (e

s
t )

′] is given by:

P s∞ =
Q+K2

sR

1 − γ̄(A−KsC)2 − (1 − γ̄)A2
. (6.27)

Calculations to obtain Equations (6.26) and (6.27) are tedious but straightforward,
therefore they are omitted.

It is immediately evident that the critical transition probability γ̄s of the estima-
tor (6.24) using a static gain is always greater than the critical transition probability
γc of the estimator (6.23) which adopts a dynamic gain, in fact

γ̄s = γc
1

1 −
(
1 − KsC

A

)2

and the two probabilities are equal only when Ks = A
C .

A natural choice for the static estimator gain Ks is the steady state Kalman
gain KSS of the closed loop system (r = 1), which is always different from A

C .
For the scalar system considered in the previous section, where A = −1.5, C = 1,
Q = 1, R = 2.5, this is given by KSS = −0.70, while the gain for largest mean
square stability range is Ks = A

C = −1.25. In the special case when the arrival
probability is known, another natural choice for the estimator gain K is obtained
by substituting the error covariance solution of P̄ = gγ̄(P̄ ) into the equation for the
Kalman filter gain Kγ̄ = AP̄C ′(CP̄C ′+R)−1. For example, assuming γ̄ = 0.6, then
P̄ = 7.32 and Kγ̄ = −0.93. Figure 6.6 shows all of these cases, comparing them with
the upper bound on the state error covariance V̄ of the dynamic estimator (6.23)
that can be computed as indicated in Theorem 6. The steady state error covariance
of the static predictor for the three different gains is always greater then our upper
bound V̄ . This is not surprising, since the dynamic estimator is optimal over all
possible estimators as shown in Section II. Note that the static predictor with static
gain Kγ̄ (designed for γ̄ = 0.6) achieves the same state error covariance predicted
by our upper bound for the optimal dynamic filter when γ̄ = 0.6. However, the
empirical error state covariance is on average better than the static filter, as shown
in Figure 6.7. This is to be expected, since the solution of MARE gives only an upper
bound of the true expected state covariance of the time-varying filter. Moreover, it
is worth stressing that if the arrival probability is different from the one used to
design the static gain, the performance of the static filter will degrade considerably,
while the time-varying filter will still perform optimally since it does not require
knowledge of γ̄. From this example, it seems that the upper bound for the dynamic
estimator V̄ gives en estimate of the minimum steady state covariance that can be
achieved with a static estimator for any given arrival probability if the static gain
Ks is chosen optimally. Then the MARE could be used to find the minimum steady
state covariance and then the corresponding steady state modified Kalman gain,
thus providing a useful tool for optimal static estimator design. Future work will
explore this possibility.
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Figure 6.6: Error covariance bound V̄ for dynamic predictor obtained from our
theory and steady state error covariance for three natural static predictors obtained
from JLS theory.

6.7 Appendix A

In order to give complete proofs of our main theorems, we need to prove some
preliminary lemmas. The first one shows some useful properties of the MARE.

Lemma 6.1. Let the operator

φ(K,X) = (1 − γ̄)(AXA′ +Q) + γ̄(FXF ′ + V ) (6.28)

where F = A + KC, V = Q + KRK ′. Assume X ∈ S = {S ∈ Rn×n|S ≥ 0},
R > 0, Q ≥ 0, and (A,Q

1
2 ) is controllable. Then the following facts are true:

1. With KX = −AXC ′ (CXC ′ +R)
−1

, gγ̄(X) = φ(KX ,X)

2. gγ̄(X) = minK φ(K,X) ≤ φ(K,X), ∀K

3. If X ≤ Y , then gγ̄(X) ≤ gγ̄(Y )

4. If γ̄1 ≤ γ̄2 then gγ̄1(X) ≥ gγ̄2(X)
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Figure 6.7: Empirical state error covariance of our time-varying filter and the
linear minimum mean square error estimator (LMMSEE) [?] obtained by using the
optimal static kalman gain Kγ̄ . The curves are obtained by averaging 10000 Monte
Carlo simulations for t = 1, . . . , 300, with the values of the input noise (vt, wt) and
the arrival sequence γt generated randomly. Both filters were compared under the
same conditions.

5. If α ∈ [0, 1], then
gγ̄(αX + (1 − α)Y ) ≥ αgγ̄(X) + (1 − α)gγ̄(Y )

6. gγ̄(X) ≥ (1 − γ̄)AXA′ +Q

7. If X̄ ≥ gγ̄(X̄), then X̄ > 0

8. If X is a random variable, then
(1 − γ̄)AE[X]A′ +Q ≤ E[gγ̄(X)] ≤ gγ̄(E[X])

Proof. (a) Define FX = A+KXC, and observe that

FXXC
′ +KXR = (A+KXC)XC ′ +KXR

= AXC ′ +KX(CXC ′ +R)

= 0.
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Next, we have

gγ̄(X) = (1 − γ̄)(AXA′ +Q) + γ̄(AXA′ +Q−AXC ′ (CXC ′ +R)
−1
CXA′)

= (1 − γ̄)(AXA′ +Q) + γ̄(AXA′ +Q+KXCXA
′)

= (1 − γ̄)(AXA′ +Q) + γ̄(FXXA
′ +Q)

= (1 − γ̄)(AXA′ +Q) + γ̄(FXXA
′ +Q) + (FXXC

′ +KXR)K ′

= φ(KX ,X)

(b) Let ψ(K,X) = (A+KC)X(A+KC)′ +KRK ′ +Q. Note that

argminKφ(K,X) = argminKFXF
′ + V = argminKψ(X,K).

Since X,R ≥ 0, φ(K,X) is quadratic and convex in the variable K, therefore the

minimizer can be found by solving ∂ψ(K,X)
∂K = 0, which gives:

2(A+KC)XC ′ + 2KR = 0 =⇒ K = −AXC ′ (CXC ′ +R)
−1
.

Since the minimizer corresponds to KX defined above, the fact follows from fact
(1)

(c) Note that φ(K,X) is affine in X. Suppose X ≤ Y . Then

gγ̄(X) = φ(KX ,X) ≤ φ(KY ,X) ≤ φ(KY , Y ) = gγ̄(Y ).

This completes the proof.
(d) Note that AXC ′(CXC ′ +R)−1CXA ≥ 0. Then

gγ̄1(X) = AXA′ +Q− γ̄1AXC
′(CXC ′ +R)−1CXA

≥ AXA′ +Q− γ̄2AXC
′(CXC ′ +R)−1CXA

= gγ̄2(X)

(e) Let Z = αX + (1 − α)Y where α ∈ [0, 1]. Then we have

gγ̄(Z) = φ(KZ , Z)

= α(A+KZ C)X(A+KZ C)′ + (1 − α)(A+KZ C)Y (A+KZ C)′ +

+ (α+ 1 − α)(KZ R K ′
Z +Q)

= αφ(KZ ,X) + (1 − α)φ(KZ , Y )

≥ αφ(KX ,X) + (1 − α)φ(KY , Y )

= αgγ̄(X) + (1 − α)gγ̄(Y ).

(f) Note that FXXF
′
X ≥ 0 and KRK ′ ≥ 0 for all K and X. Then

gγ̄(X) = φ(KX ,X) =

= (1 − γ̄)(AXA′ +Q) + γ̄(FXXF
′
X +KXRK

′
X +Q)

≥ (1 − γ̄)(AXA′ +Q) + γ̄Q = (1 − γ̄)AXA′ +Q.

(g)First observe that X̄ ≥ gλ(X̄) ≥ 0. Thus, to prove that X̄ > 0, we only need
to establish that X̄ is nonsingular. Suppose 0 6= v ∈ N (X̄), i.e. X̄v = 0. Then

0 = v′X̄v ≥ v′gλ(X̄)v

= (1 − λ)v′(AX̄A′ +Q)v + λv′(FX̄F ′ +Q)v
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Positive semi-definiteness of X̄ and Q implies that all the terms in the sum must
be zero for the inequality to hold. Consequently we have

v′AX̄A′v = 0 =⇒ X̄A′v = 0 =⇒ A′v ∈ N (X̄)

and
v′Qv = 0 =⇒ Qv = 0

As a result, the null space N (X̄) is A′-invariant. Therefore, N (X̄) contains an
eigenvector of A′, i.e. there exists u 6= 0 such that X̄u = 0 and A′u = σu. As be-
fore, we conclude that Qu=0. This implies (using the Popov-Belevich-Hautus(PBH)
test) that the pair (A,Q1/2) is not controllable, contradicting the hypothesis. Thus,
N (X̄) is empty, proving that X̄ > 0.

(h) Using fact (f) and linearity of expectation we have

E[gγ̄(X)] ≥ E[(1 − γ̄)AXA′ +Q] = (1 − γ̄)AE[X]A′ +Q.

Fact (e) implies that the operator gγ̄() is concave, therefore by Jensen’s Inequality
we have:

E[gγ̄(X)] ≤ gγ̄(E[X]).

Lemma 6.2. Let Xt+1 = h(Xt) and Yt+1 = h(Yt). If h(X) is a monotonically
increasing function then:

X1 ≥ X0 ⇒ Xt+1 ≥ Xt, ∀t ≥ 0
X1 ≤ X0 ⇒ Xt+1 ≤ Xt, ∀t ≥ 0
X0 ≤ Y0 ⇒ Xt ≤ Yt, ∀t ≥ 0

Proof. This lemma can be readily proved by induction. It is true for t = 0, since
X1 ≥ X0 by definition. Now assume that Xt+1 ≥ Xt, then Xt+2 = h(Xt+1) ≥
h(Xt) = Xt+1 because of monotonicity of h(·). The proof for the other two cases is
analogous.

It is important to note that while in the scalar case X ∈ R either h(X) ≤ X
or h(X) ≥ X; in the matrix case X ∈ Rn×n, it is not generally true that either
h(X) ≥ X or h(X) ≤ X. This is the source of the major technical difficulty for the
proof of convergence of sequences in higher dimensions. In this case convergence of
a sequence {Xt}∞0 is obtained by finding two other sequences, {Yt}∞0 , {Zt}∞0 that
bound Xt, i.e., Yt ≤ Xt ≤ Zt,∀t, and then by showing that these two sequences
converge to the same point.

The next two Lemmas show that when the MARE has a solution P̄ , this solution
is also stable, i.e., every sequence based on the difference Riccati equation Pt+1 =
gγ̄(Pt) converges to P̄ for all initial positive semidefinite conditions P0 ≥ 0.

Lemma 6.3. Define the linear operator

L(Y ) = (1 − γ̄)(AY A′) + γ̄(FY F ′)

Suppose there exists Y > 0 such that Y > L(Y ).
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1. For all W ≥ 0,
lim
k→∞

Lk(W ) = 0

2. Let U ≥ 0 and consider the linear system

Yk+1 = L(Yk) + U initialized at Y0.

Then, the sequence Yk is bounded.

Proof. (a) First observe that 0 ≤ L(Y ) for all 0 ≤ Y . Also, X ≤ Y implies L(X) ≤
L(Y ). Choose 0 ≤ r < 1 such that L(Y ) < rY . Choose 0 ≤ m such that W ≤ mY .
Then,

0 ≤ Lk(W ) ≤ mLk(Y ) < mrkY .

The assertion follows when we take the limit r → ∞, on noticing that 0 ≤ r < 1.
(b) The solution of the linear iteration is

Yk = Lk(Y0) +

k−1∑

t=0

Lt(U)

≤
(
mY0

rk +

k−1∑

t=0

mUr
t

)
Y

≤
(
mY0

rk +
mU

1 − r

)
Y

≤
(
mY0

+
mU

1 − r

)
Y ,

proving the claim.

Lemma 6.4. Consider the operator φ(K,X) defined in Equation (6.28). Suppose
there exists a matrix K and a positive definite matrix P such that

P > 0 and P > φ(K,P ).

Then, for any P0, the sequence Pt = gtγ̄(P0) is bounded, i.e. there exists MP0
≥ 0

dependent of P0 such that
Pt ≤M for all t.

Proof. First define the matrices F = A+KC and consider the linear operator

L(Y ) = (1 − γ̄)(AY A′) + γ̄(FY F
′
)

Observe that
P > φ(K,P ) = L(P ) +Q+ γ̄KRK

′ ≥ L(P ).

Thus, L meets the condition of Lemma 6.3. Finally, using fact (b) in Lemma 6.1
we have

Pt+1 = gγ̄(Pt) ≤ φ(K,Pt) = LPt +Q+ γ̄KRK
′
= L(Pt) + U.

Since U = γ̄KRK
′
+Q ≥ 0, using Lemma 6.3, we conclude that the sequence Pt is

bounded.

We are now ready to give proofs for Theorems 1-4.
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Proof of Theorem 6.1

(a) We first show that the modified Riccati difference equation initialized at Q0 = 0
converges. Let Qk = gkγ̄(0). Note that 0 = Q0 ≤ Q1. It follows from Lemma 6.1(c)
that

Q1 = gγ̄(Q0) ≤ gγ̄(Q1) = Q2.

A simple inductive argument establishes that

0 = Q0 ≤ Q1 ≤ Q2 ≤ · · · ≤MQ0
.

Here, we have used Lemma 6.4 to bound the trajectory. We now have a monotone
non-decreasing sequence of matrices bounded above. It is a simple matter to show
that the sequence converges, i.e.

lim
k→∞

Qk = P .

Also, we see that P is a fixed point of the modified Riccati iteration:

P = gγ̄(P ),

which establishes that it is a positive semi-definite solution of the MARE.
Next, we show that the Riccati iteration initialized at R0 ≥ P also converges,

and to the same limit P . First define the matrices

K = −APC ′
(
CPC ′ +R

)−1
, F = A+KC

and consider the linear operator

L̂(Y ) = (1 − γ̄)(AY A′) + γ̄(FY F
′
).

Observe that
P = gγ̄(P ) = L(P ) +Q+KRK

′
> L̂(P ).

Thus, L̂ meets the condition of Lemma 6.3. Consequently, for all Y ≥ 0,

lim
k→∞

L̂k(Y ) = 0.

Now suppose R0 ≥ P . Then,

R1 = gγ̄(R0) ≥ gγ̄(P ) = P .

A simple inductive argument establishes that

Rk ≥ P for all k.

Observe that

0 ≤ (Rk+1 − P ) = gγ̄(Rk) − gγ̄(P )

= φ(KRk
, Rk) − φ(KP , P )

≤ φ(KP , Rk) − φ(KP , P )

= (1 − γ̄)A(Rk − P )A′ + γ̄FP (Rk − P )F ′
P

= L̂(Rk − P ).
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Then, 0 ≤ limk→∞(Rk+1 − P ) ≤ 0, proving the claim.
We now establish that the Riccati iteration converges to P for all initial condi-

tions P0 ≥ 0. Define Q0 = 0 and R0 = P0 + P . Consider three Riccati iterations,
initialized at Q0, P0, and R0. Note that

Q0 ≤ P0 ≤ R0.

It then follows from Lemma 6.2 that

Qk ≤ Pk ≤ Rk for all k.

We have already established that the Riccati equations Pk and Rk converge to P .
As a result, we have

P = lim
k→∞

Pk ≤ lim
k→∞

Qk ≤ lim
k→∞

Rk = P ,

proving the claim.
(b) Finally, we establish that the MARE has a unique positive semi-definite

solution. To this end, consider P̂ = gγ̄(P̂ ) and the Riccati iteration initialized at

P0 = P̂ . This yields the constant sequence

P̂ , P̂ , · · ·

However, we have shown that every Riccati iteration converges to P . Thus P = P̂ .

Proof of Theorem 6.2

First we note that the two cases expressed by the theorem are indeed possible.
If γ̄ = 1 the modified Riccati difference equation reduces to the standard Riccati
difference equation, which is known to converge to a fixed point, under the theorem’s
hypotheses. Hence, the covariance matrix is always bounded in this case, for any
initial condition P0 ≥ 0. If γ̄ = 0 then we reduce to open loop prediction, and if the
matrix A is unstable, then the covariance matrix diverges for some initial condition
P0 ≥ 0. Next, we show the existence of a single point of transition between the
two cases. Fix a 0 < γ̄1 ≤ 1 such that Eγ̄1 [Pt] is bounded for any initial condition
P0 ≥ 0. Then, for any γ̄2 ≥ γ̄1 Eγ̄2 [Pt] is also bounded for all P0 ≥ 0. In fact we
have

Eγ̄1 [Pt+1] = Eγ̄1 [APtA
′ +Q− γt+1APtC

′(CPtC
′ +R)−1CPtA]

= E[APtA
′ +Q− γ̄1APtC

′(CPtC
′ +R)−1CPtA]

= E[gγ̄1(Pt)]

≥ E[gγ̄2(Pt)]

= Eγ̄2 [Pt+1],

where we exploited fact (d) of Lemma 6.1 to write the above inequality . We can
now choose

γc = {inf γ̄∗ : γ̄ > γ̄∗ ⇒ Eγ̄ [Pt]is bounded, for all P0 ≥ 0},

completing the proof.
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Proof of Theorem 6.3

Define the Lyapunov operatorm(X) = ÃXÃ′+Q where Ã =
√

1 − γ̄A. If (A,Q
1
2 ) is

controllable, also (Ã,Q
1
2 ) is controllable. Therefore, it is well known that Ŝ = m(Ŝ)

has a unique strictly positive definite solution Ŝ > 0 if and only if maxi |σi(Ã)| < 1,
i.e.

√
1 − γ̄ maxi |σi(A)| < 1, from which follows γmin = 1− 1

α2 . If maxi |σi(Ã)| ≥ 1
it is also a well known fact that there is no positive semidefinite fixed point to the
Lyapunov equation Ŝ = m(Ŝ), since (Ã,Q

1
2 ) is controllable.

Let us consider the difference equation St+1 = m(St), S0 = 0. It is clear that
S0 = 0 ≤ Q = S1. Since the operator m() is monotonic increasing, by Lemma 6.2
it follows that the sequence {St}∞0 is monotonically increasing, i.e. St+1 ≥ St for
all t. If γ̄ < γmin this sequence does not converge to a finite matrix S̄, otherwise
by continuity of the operator m we would have S̄ = m(S̄), which is not possible.
Since it is easy to show that a monotonically increasing sequence St that does not
converge is also unbounded, then we have

lim
t→∞

St = ∞.

Let us consider now the mean covariance matrix E[Pt] initialized at E[P0] ≥ 0.
Clearly 0 = S0 ≤ E[P0]. Moreover it is also true that St ≤ E[Pt] implies:

St+1 = (1 − γ̄)AStA
′ +Q

≤ (1 − γ̄)AE[Pt]A
′ +Q

≤ E[gγ̄(Pt)]

= E[Pt+1],

where we used fact (h) from Lemma 6.1. By induction, it is easy to show that

St ≤ E[Pt] ∀t, ∀E[P0] ≥ 0 =⇒ lim
t→∞

E[Pt] ≥ lim
t→∞

St = ∞.

This implies that for any initial condition E[Pt] is unbounded for any γ̄ < γmin,
therefore γmin ≤ γc, which proves the first part of the Theorem.

Now consider the sequence Vt+1 = gγ̄(Vt), V0 = E[P0] ≥ 0. Clearly E[Pt] ≤ Vt
implies:

E[Pt+1] = E[gγ̄(Pt)]

≤ gγ̄(E[Pt])

≤ [gγ̄(Vt)]

= Vt+1,

where we used facts (c) and (h) from Lemma 6.1. Then a simple induction
argument shows that Vt ≥ E[Pt] for all t. Let us consider the case γ̄ > γmax,
therefore there exists X̂ such that X̂ ≥ gγ̄(X̂). By Lemma 6.1(g) X̄ > 0, therefore
all hypotheses of Lemma 6.3 are satisfied, which implies that

E[Pt] ≤ Vt ≤MV0
∀t.

This shows that γc ≤ γmax and concludes the proof of the Theorem.
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Proof of Theorem 6.4

Let us consider the sequences St+1 = (1 − γ̄)AStA
′ + Q, S0 = 0 and Vt+1 =

gγ̄(Vt), V0 = E[P0] ≥ 0. Using the same induction arguments in Theorem 6.3 it is
easy to show that

St ≤ E[Pt] ≤ Vt ∀t.
From Theorem 6.1 it also follows that limt→∞ Vt = V̄ , where V̄ = gγ̄(V ). As
shown before the sequence St is monotonically increasing. Also it is bounded since
St ≤ Vt ≤M . Therefore limt→∞ St = S̄, and by continuity S̄ = (1 − γ̄)AS̄A′ +Q,

which is a Lyapunov equation. Since
√

1 − γ̄A is stable and (A,Q
1
2 ) is controllable,

then the solution of the Lyapunov equation is strictly positive definite, i.e. S̄ > 0.
Adding all the results together we get

0 < S̄ = lim
t→∞

St ≤ lim
t→∞

E[Pt] ≤ lim
t→∞

Vt = V̄ ,

which concludes the proof.

The text below is from pbctrl.tex, which used to be in a separate chapter. Integrate Bruno

as appropriate

6.8 Packet-Based Control

Outline:

• Problem setup

• Communication protocols and information patterns

• TCP-Based Control

• UDP-Based Control

• Receding-Horizon networked control and actuation buffers

• Generalization to multi-channel

• Nonlinear estensions

6.9 Introduction

Today, an increasing number of applications demand remote control of plants over
unreliable networks. The recent development of sensor web technology [?] enables
the development of wireless sensor networks that can be immediately used for esti-
mation and control of dynamical systems. In these systems, issues of communication
delay, data loss, and time-synchronization play critical roles. Communication and
control become very tightly coupled and these two issues cannot be addressed in-
dependent of one another during the design and analysis stages of development.
Consider, for example, the problem of navigating a fleet of vehicles using observa-
tions from a sensor web. Wireless nodes collect their sensor measurements and send
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them to a computing unit. This unit, in turn, generates estimates of the state of
each vehicle and computes inputs that are then delivered, using the same wireless
channel, to the actuators onboard the vehicles. Due to the unreliability of the wire-
less channel, both observations underlying the estimate and control packets sent to
each vehicle can be lost or delayed while travelling across the network. It needs to
be determined exactly how much data loss a control loop can tolerate to reliably
perform the navigation task. What’s more, specific communication protocols need
to be designed to satisfy this constraint. The goal of this chapter is to provide the
first steps in meeting these requirements by examining the basic system-theoretic
implications of using unreliable networks for control. This requires a generaliza-
tion of classical control techniques that explicitly takes into account the stochastic
nature of the communication channel.

Packet networks communication channels typically use one of two kinds of pro-
tocols: Transmission Control (TCP) or User Datagram (UDP). In the first case
there is acknowledgement of received packets, while in the second case no confir-
mation feedback is provided on the communication link. In this chapter, we study
the effect of data losses due to the unreliability of the network links under these
two protocols. We generalize the Linear Quadratic Gaussian (LQG) optimal control
problem to these problems by modeling the arrival of both observations and control
packets as random processes whose parameters are related to the characteristics of
the communication channel. Accordingly, two independent Bernoulli processes are
considered, with parameters γ and ν, that govern packet losses between the sensors
and the estimation-control unit, and between the latter and the actuation points
(see Figure 6.8).

In our analysis, the distinction between the two classes of protocols resides ex-
clusively in the availability of packet acknowledgements. Adopting the framework
proposed by Imer et al. [?], we will refer therefore to TCP-like protocols if packet ac-
knowledgements are available and to UDP-like protocols otherwise. We summarize
our contributions as follows. For the TCP-like case the classic separation principle
holds, and consequently the controller and estimator can be designed independently.
Moreover, the optimal controller is a linear function of the state. In sharp contrast,
for the UDP-like case, a counter-example demonstrates that the optimal controller
is in general non-linear. In the special case when the state is fully observable and
the observation noise is zero, the optimal controller is indeed linear. We explicitly
note that a similar, but slightly less general special case was previously analyzed
in [?], where both observation and process noise are assumed to be zero and the
input coefficient matrix to be invertible.

Our final set of results relate to convergence in the infinite horizon. Here, our
previous results on estimation with missing observation packets [?] [?] are extended
to the control case. We show the existence of a critical domain of values for the
parameters of the Bernoulli arrival processes, ν and γ, outside which a transition
to instability occurs and the optimal controller fails to stabilize the system. In par-
ticular, we show that under TCP-like protocols the critical arrival probabilities for
the control and observation channel are independent of each other. This is another
consequence of the fact that the separation principle holds for these protocols. In
contrast, under UDP-like protocols the critical arrival probabilities for the control
and observation channels are coupled. Here, the stability domain and performance
of the optimal controller degrade considerably as compared with TCP-like protocols



pbestim.tex, v1072 2009-12-20 22:29:51Z (murray)

6.9. INTRODUCTION 6-25

Figure 6.8: Overview of the system. We study the statistical convergence
properties of the expected state covariance of the discrete time LQG control system,
where both the observation and the control signal, transmitted over an unreliable
communication channel, can be lost at each time step with probability 1 − γ̄ and
1 − ν̄ respectively.

as shown in Figure 6.9.

Finally, we wish to mention some closely related research. The study of the sta-
bility of dynamical systems where components are connected asynchronously via
communication channels has received considerable attention in the past few years
and our contribution can be put in the context of the previous literature. In [?] and
[?], the authors proposed to place an estimator, i.e. a Kalman filter, at the sensor
side of the link without assuming any statistical model for the data loss process.
In [?], Smith et al. considered a suboptimal but computationally efficient estimator
that can be applied when the arrival process is modeled as a Markov chain, which
is more general than a Bernoulli process. Other work includes Nilsson et al. [?][?]
who present the LQG optimal regulator with bounded delays between sensors and
controller, and between the controller and the actuator. In this work, bounds for
the critical probability values are not provided. Additionally, there is no analytical
solution for the optimal controller. The case where dropped measurements are re-
placed by zeros is considered by Hadjicostis and Touri [?], but only in the scalar
case. Other approaches include using the last received sample for control [?], or
designing a dropout compensator [?], which combines estimation and control in a
single process. However, the former approach does not consider optimal control and
the latter is limited to scalar systems. Yu et al. [?] studied the design of an optimal
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Figure 6.9: Region of stability for UDP-like and TCP-like optimal control rela-
tive to measurement packet arrival probability γ, and the control packet arrival
probability ν.

controller with a single control channel and deterministic dropout rates. Seiler et al.
[?] considered Bernoulli packet losses only between the plant and the controller, and
posed the controller design as anH∞ optimization problem. Other authors [?] [?] [?]
[?] model networked control systems with missing packets as Markovian jump lin-
ear systems (MJLSs), however this approach gives suboptimal controllers since the
estimators are stationary. Finally, Elia [?][?] proposed to model the plant and the
controller as deterministic time invariant discrete-time systems connected to zero-
mean stochastic structured uncertainty. The variance of the stochastic perturbation
is a function of the Bernoulli parameters, and the controller design is posed as an
optimization problem to maximize mean-square stability of the closed loop system.
This approach allows analysis of Multiple Input Multiple Output (MIMO) systems
with many different controller and receiver compensation schemes [?], however, it
does not include process and observation noise and the controller is restricted to
be time-invariant, hence suboptimal. There is also extensive literature, inspired by
Shannon’s results on the maximum bit-rate that an imperfect channel can reliably
carry. Here the goal is to determine the minimum bit-rate that is needed to stabilize
a system through feedback [?] [?] [?] [?] [?] [?] [?] [?] [?] [?]. This approach is some-
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what different from ours since in a packet-based communication network, such as
ATMs, Ethernet and Bluetooth, bits are grouped into packets and are considered
as a single entity. Nonetheless there are several similarities that are not yet fully
explored.

This work considers the alternative approach where the external compensator
feeding the controller is the optimal time varying Kalman gain. Moreover, this
approach considers the general Multiple Input Multiple Output (MIMO) case, and
gives some necessary and sufficient conditions for closed loop stability. The work
of [?] is most closely related to ours. However, we consider the more general case
when the matrix C is not the identity and there is noise in the observation and in
the process. In addition, we also give stronger necessary and sufficient conditions
for existence of solution for the infinite horizon LQG.

The remainder of this chapter is organized as follows. Section 2 provides a math-
ematical formulation of the problems we consider. Section 3 offers some preliminary
results. Section 4 illustrates the TCP-like case, while the UDP-like case is studied in
section 5. Finally, conclusions and directions for future work are offered in section
6.

6.10 Problem formulation

Consider the following linear stochastic system with intermittent observation and
control packets:

xk+1 = Axk +Buk + wk (6.29)

uak = νku
c
k (6.30)

yk = γkCxk + vk, (6.31)

where uak is the control input to the actuator, uck is the desired control input com-
puted by the controller, (x0, wk, vk) are Gaussian, uncorrelated, white, with mean
(x̄0, 0, 0) and covariance (P0, Q,R) respectively, and (γk, νk) are i.i.d. Bernoulli ran-
dom variables with P (γk = 1) = γ̄ and P (νk = 1) = ν̄. The stochastic variable νk
models the loss packets between the controller and the actuator: if the packet is
correctly delivered then uak = uck, otherwise if it is lost then the actuator does noth-
ing, i.e. uak = 0. This compensation scheme is summarized by Equation (6.30). This
modeling choice is not unique: for example if the control packet uck is lost, then the
actuator could use the previous control value, i.e. uak = uak−1. However, the latter
control compensation is slightly more involved to analyze and it is left as future
work. The stochastic variable γk models the packet loss between the sensor and the
controller: if the packet is delivered then yk = Cxk + vk, otherwise if it is lost then
the controller reads pure noise, i.e. yk = vk. This observation model is summarized
by Equation (6.31). A different observation formalism was proposed in [?], where
the missing observation was modeled as an observation for which the measurement
noise had infinite covariance. It is possible to show that both models are equivalent,
but the one considered here has the advantage to give rise to simpler analysis. This
arises from the fact that when no packet is delivered, then the optimal estimator
does not use the observation yk at all, therefore its value is irrelevant.
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Let us define the following information sets:

Ik =

{
Fk ∆

= {yk,γk,νk−1}, TCP-like

Gk ∆
= {yk,γk}, UDP-like

(6.32)

where yk = (yk, yk−1, . . . , y1), γ
k = (γk, γk−1, . . . , γ1), and ν

k = (νk, νk−1, . . . , ν1).
Consider also the following cost function:

JN (uN−1, x̄0, P0) = E

[
x′NWNxN +

N−1∑

k=0

(x′kWkxk + νku
′
kUkuk) | uN−1, x̄0, P0

]

(6.33)
where uN−1 = (uN−1, uN−2, . . . , u1). Note that we are weighting the input only if
it is successfully received at the plant. In fact, if it is not received, the plant applies
zero input and therefore there is no energy expenditure.

We now look for a control input sequence u∗N−1 as a function of the admissi-
ble information set Ik, i.e. uk = gk(Ik), that minimizes the functional defined in
Equation (6.33), i.e.

J∗
N (x̄0, P0)

∆
= min

uk=gk(Ik)
JN (uN−1, x̄0, P0), (6.34)

where Ik = {Fk,Gk} is one of the sets defined in Equation (6.32). The set F
corresponds to the information provided under an acknowledgement-based commu-
nication protocols (TCP-like) in which successful or unsuccessful packet delivery at
the receiver is acknowledged to the sender within the same sampling time period.
The set G corresponds to the information available at the controller under commu-
nication protocols in which the sender receives no feedback about the delivery of the
transmitted packet to the receiver (UDP-like). The UDP-like schemes are simpler
to implement than the TCP-like schemes from a communication standpoint. More-
over UDP-like protocols includes broadcasting which you cannot do with TCP-like.
However the price to pay is a less rich set of information. The goal of this chapter
is to design optimal LQG controllers and to estimate their performance for each of
these classes of protocols for a general discrete-time linear stochastic system.

6.11 Mathematical Preliminaries

Before proceeding, let us define the following variables:

x̂k|k
∆
= E[xk | Ik],

ek|k
∆
= xk − x̂k|k,

Pk|k
∆
= E[ek|ke

′
k|k | Ik].

(6.35)

Derivations below will make use of the following facts:

Lemma 6.5. The following facts are true [?]:

1. E [(xk − x̂k)x̂
′
k | Ik] = E

[
ek|kx̂

′
k | Ik

]
= 0
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2. E [x′kSxk | Ik] = x̂′kSx̂k + trace
(
SPk|k

)
∀S ≥ 0

3. E [E[ g(xk+1) |Ik+1] | Ik] = E [g(xk+1) | Ik] ,∀g(·).

Proof. (a) It follows directly from the definition. In fact:

E [(xk − x̂k)x̂
′
k | Ik] = E [xkx̂

′
k − x̂kx̂

′
k | Ik]

= E [xk | Ik] x̂′k − x̂kx̂
′
k

= 0

(b) Using standard algebraic operations and the previous fact we have:

E [x′kSxk |Ik] = E [(xk − x̂k + x̂k)
′S(xk − x̂k + x̂k) |Ik]

= x̂′kSx̂k + E [(xk − x̂k)
′S(xk − x̂k)] + 2E [x̂′kS(xk − x̂k) | Ik]

= x̂′kSx̂k + 2trace(SE[(xk − x̂k)x̂
′
k |Ik]) + trace(SE[(xk − x̂k)(xk − x̂k)

′ |Ik])
= x̂′kSx̂k + trace{SPk|k}

(c) Let g() any measurable function, (X,Y,Z) be any random vectors, and p
their probability distribution, then

EY,Z [g(X,Y,Z) | X] =

∫

Z

∫

Y

g(X,Y,Z)p(Y,Z|X)dY dZ

=

∫

Z

∫

Y

g(X,Y,Z)p(Y |Z,X)p(Z|X)dY dZ

=

∫

Z

[∫

Y

g(X,Y,Z)p(Y |Z,X)dY

]
p(Z|X)dZ

= EZ [ EY [g(X,Y,Z) | Z,X] | X]

where we used the Bayes’ Rule. Since by hypothesis Ik ⊆ Ik+1, then fact (c) follows
from the above equality by substituting Ik = X and Ik+1 = (X,Z).

We now make the following computations that will be useful when deriving the
equation for the optimal LQG controller.

E[x′k+1Sxk+1 | Ik] = E[(Axk + νkBuk + wk)
′S(Axk + νkBuk + wk) | Ik]

= E[x′kA
′SAxk+ν

2
ku

′
kB

′SBuk+w
′
kSwk+2νku

′
kB

′SAxk+2(Axk + νkBuk)wk|Ik]
= E[x′kA

′SAxk|Fk] + ν̄u′kB
′SBuk + 2ν̄u′kB

′SAE[xk|Ik] + trace(SE[wkw
′
k | Fk])

= E[x′kA
′SAxk | Ik] + ν̄u′kB

′SBuk + 2ν̄u′kB
′SA x̂k|k + trace(SQ) (6.36)

where both the independence of νk, wk, xk, and the zero-mean property of wk are
exploited. The previous expectation holds true for both the information sets, i.e.
Ik = Fk or Ik = Gk. Also

E[e′k|kTek|k | Ik] = trace(TE[ek|ke
′
k|k | Ik])

= trace(TPk|k), ∀T ≥ 0.



pbestim.tex, v1072 2009-12-20 22:29:51Z (murray)

6-30 CHAPTER 6. PACKET-BASED ESTIMATION AND CONTROL

6.12 LQG control for TCP-like protocols

First, equations for the optimal estimator are derived. They will be needed to solve
the LQG controller design problem, as it will be shown later.

Estimator Design

Equations for optimal estimator are derived using similar arguments used for the
standard Kalman filtering equations. The innovation step is given by:

x̂k+1|k
∆
= E[xk+1|νk,Fk] = E[Axk + νkBuk + wk|νk,Fk]
= AE[xk|Fk] + νkBuk = Ax̂k|k + νkBuk (6.37)

ek+1|k
∆
= xk+1 − x̂k+1|k

= Axk + νkBuk + wk − (Ax̂+ νkBuk)

= Aek|k + wk (6.38)

Pk+1|k
∆
= E[ek+1|ke

′
k+1|k |νk,Fk]

= E
[(
Aek|k + wk

) (
Aek|k + wk

)′ |νk,Fk
]

= AE[ek|ke
′
k|k|Fk]A′ + E[wkw

′
k]

= APk|kA
′ +Q, (6.39)

where the independence of wk and Fk, and the requirement that uk is a determin-
istic function of Fk, are used. Since yk+1, γk+1, wk and Fk are independent, the
correction step is given by:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k) (6.40)

ek+1|k+1
∆
= xk+1 − x̂k+1|k+1

= xk+1 −
(
x̂k+1|k + γk+1Kk+1(Cxk+1 + vk+1 − Cx̂k+1|k)

)

= (I − γk+1Kk+1C)ek+1|k − γk+1Kk+1vk+1 (6.41)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k

= Pk+1|k − γk+1Pk+1|kC
′(CPk+1|kC

′ +R)−1CPk+1|k (6.42)

Kk+1
∆
= Pk+1|kC

′(CPk+1|kC
′ +R)−1, (6.43)

where we simply applied the standard derivation for the time varying Kalman
filter using the following time varying system matrices: Ak = A, Ck = γkC, and
Cov(vk) = R.

Controller design

Derivation of the optimal feedback control law and the corresponding value for the
objective function will follow the dynamic programming approach based on the
cost-to-go iterative procedure.
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Define the optimal value function Vk(xk) as follows:

VN (xN )
∆
= E[x′NWNxN | FN ]

Vk(xk)
∆
= minuk

E[x′kWkxk + νku
′
kUkuk + Vk+1(xk+1)|Fk].

(6.44)

where k = N −1, . . . , 1. Using dynamic programming theory [?], one can show that
J∗
N = V0(x0). Under TCP-like protocols the following lemma holds true:

Lemma 6.6. The value function Vk(xk) defined in Equations (6.44) for the system
dynamics of Equations (6.29)-(6.29) under TCP-like protocols can be written as:

Vk(xk) = E[ x′kSkxk | Fk] + ck, k = N, . . . , 0 (6.45)

where the matrix Sk and the scalar ck can be computed recursively as follows:

Sk = A′Sk+1A+Wk − ν̄A′Sk+1B(B′Sk+1B + Uk)
−1B′Sk+1A (6.46)

ck = trace
(
(A′Sk+1A+Wk − Sk)Pk|k

)
+ trace(Sk+1Q) + E[ck+1 | Fk](6.47)

with initial values SN = WN and cN = 0. Moreover the optimal control input is
given by:

uk = −(B′Sk+1B + Uk)
−1B′Sk+1A x̂k|k = Lk x̂k|k. (6.48)

Proof. The proof follows an induction argument. The claim is certainly true for
k = N with the choice of parameters SN = WN and cN = 0. Suppose now that
the claim is true for k+ 1, i.e. Vk+1(xk+1) = E[ x′k+1Sk+1xk+1 | Fk+1] + ck+1. The
value function at time step k is the following:

Vk(xk) = min
uk

E[x′kWkxk + νku
′
kUkuk + Vk+1(xk+1) | Fk]

= min
uk

E[x′kWkxk + νku
′
kUkuk + E[x′k+1Sk+1xk+1 + ck+1 | Fk+1] |Fk]

= min
uk

E[x′kWkxk + νku
′
kUkuk + x′k+1Sk+1xk+1 + ck+1|Fk] (6.49)

= E[x′kWkxk + x′kA
′Sk+1Axk | Fk] + trace(Sk+1Q) + E[ck+1 | Fk] +

+ν̄ min
uk

(
u′k(Uk +B′Sk+1B)uk + 2u′kB

′Sk+1A x̂k|k

)

where we used Lemma 1(c) to get the third equality, and Equation (6.36) to obtain
the last equality. The value function is a quadratic function of the input, therefore
the minimizer can be simply obtained by solving ∂Vk

∂uk
= 0, which gives Equa-

tion (6.48). The optimal feedback is thus a simple linear function of the estimated
state. If we substitute the minimizer back into Equation (6.49) we get:

Vk(xk) = E[x′kWkxk + x′kA
′Sk+1Axk | Ik] + trace(Sk+1Q) + E[ck+1 | Ik] −

−ν̄x̂′k|kA′Sk+1B(Uk +B′Sk+1B)−1B′Sk+1Ax̂k|k (6.50)

= E[x′kWkxk + x′kA
′Sk+1Axk − ν̄x′kA

′Sk+1B(Uk +B′Sk+1B)−1B′Sk+1Axk | Ik] +

+trace(Sk+1Q) + E[ck+1 | Ik] + ν̄ trace(A′Sk+1B(Uk +B′Sk+1B)−1B′Sk+1 Pk|k)

where we used Lemma 1(b). Therefore, the claim given by Equation (6.45) is sat-
isfied also for time step k for all xk if and only if the Equations (6.46) and (6.47)
are satisfied.
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Since J∗
N (x̄0, P0) = V0(x0), from the lemma it follows that the cost function for

the optimal LQG using TCP-like protocols is given by:

J∗
N = x̄′0S0x̄0 + trace(S0P0) +

N−1∑

k=0

trace((A′Sk+1A+Wk − Sk)Eγ [Pk|k] + Sk+1Q),

(6.51)
where we used the fact E[x′0S0x0] = x̄′0S0x̄0 + trace(S0P0), and Eγ [·] explicitly in-
dicates that the expectation is calculated with respect to the arrival sequence {γk}.

It is important to remark that the error covariance matrices {Pk|k}Nk=0 are
stochastic since they depend on the sequence {γk}. Moreover, since the matrix
Pk+1|k+1 is a nonlinear function of the previous time step matrix covariance Pk|k,
as can be observed from Equations (6.39) and (6.43), the exact expected value of
these matrices, Eγ [Pk|k], cannot be computed analytically, as shown in [?]. How-
ever, they can be bounded by computable deterministic quantities, as shown in [?]
from which we can derive the following lemma:

Lemma 6.7 ([?]). The expected error covariance matrix Eγ [Pk|k] satisfies the fol-
lowing bounds:

P̃k|k ≤ Eγ [Pk|k] ≤ P̂k|k ∀k ≥ 0, (6.52)

where the matrices P̂k|k and P̃k|k can be computed as follows:

P̂k+1|k = AP̂k|k−1A
′ +Q− γ̄AP̂k|k−1C

′(CP̂k|k−1C
′ +R)−1CP̂k|k−1A

′(6.53)

P̂k|k = P̂k|k−1 − γ̄P̂k|k−1C
′(CP̂k|k−1C

′ +R)−1CP̂k|k−1 (6.54)

P̃k+1|k = (1 − γ̄)AP̃k|k−1A
′ +Q (6.55)

P̃k|k = (1 − γ̄)P̃k|k−1 (6.56)

where the initial conditions are P̂0|0 = P̃0|0 = P0.

Proof. The proof is based on the observation that the matrices Pk+1|k and Pk|k are
concave and monotonic functions of Pk|k−1. The proof is given in [?] and is thus
omitted.

From this lemma it follows that also the minimum achievable cost J∗
N , given by

Equation (6.51), cannot be computed analytically, but can bounded as follows:

JminN ≤ J∗
N ≤ JmaxN (6.57)

JmaxN = x̄′0S0x̄0+trace(S0P0)+
N−1∑

k=0

trace(Sk+1Q))+
N−1∑

k=0

trace
(
(A′Sk+1A+Wk − Sk)P̂k|k

)

(6.58)

JminN = x̄′0S0x̄0+trace(S0P0)+

N−1∑

k=0

trace(Sk+1Q)+

N−1∑

k=0

trace
(
(A′Sk+1A+Wk − Sk)P̃k|k

)

(6.59)
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Finite and Infinite Horizon LQG control

The results derived in the previous sections can be summarized in the following
theorem:

Theorem 6.7. Consider the system (6.29)-(6.31) and consider the problem of
minimizing the cost function (6.33) within the class of admissible policies uk =
f(Fk), where Fk is the information available under TCP-like schemes, given in
Equation (6.32). Then:

1. The separation principle still holds for TCP-like communication, since the
optimal estimator, given by Equations (6.37),(6.39),(6.40),(6.42) and (6.43),
is independent of the control input uk.

2. The optimal estimator gain Kk is time-varying and stochastic since it depends
on the past observation arrival sequence {γj}kj=1.

3. The optimal control input, given by Equations (6.48) and (6.46) with initial
condition SN = WN , is a linear function of the estimated state x̂k|k, i.e.
uk = Lkx̂k|k, and is independent of the process sequences {νk, γk}.

Proof. The proof follows from the results given in the previous sections.

The infinite horizon LQG can be obtained by taking the limit for N → +∞ of
the previous equations. However, as explained above, the matrices {Pk|k} depend
nonlinearly on the specific realization of the observation sequence {γk}, therefore
the expected error covariance matrices Eγ [Pk|k] and the minimal cost J∗

N cannot be
computed analytically and do not seem to have limit [?]. Differently from standard
LQG optimal regulator [?], the estimator gain does not converge to a steady state
value, but is strongly time-varying due to its dependence on the arrival process {γk}.
Moreover, while the standard LQG optimal regulator always stabilizes the original
system, in the case of observation and control packet losses, the stability can be lost
if the arrival probabilities ν̄, γ̄ are below a certain threshold. This observation come
from the study of existence of solution for a Modified Riccati Algebraic Equation
(MARE), S = Π(S,A,B,W,U, ν), which was introduced by [?] and studied in [?],
[?] and [?], where the nonlinear operator Π(·) is defined as follows:

Π(S,A,B,Q,R, ν)
∆
= A′SA+W − ν A′SB(B′SB + U)−1B′SA (6.60)

In particular, Equation (6.46), i.e. Sk+1 = Π(Sk, A,B,W,U, ν), is the dual of the
estimator equation presented in [?], i.e. Pk+1 = Π(Pk, A

′, C ′, Q,R, γ). The results
about the MARE are summarized in the following lemma

Lemma 6.8. Consider the modified Riccati equation defined in Equation (6.60).

Let A be unstable, (A,B) be controllable, and (A,W
1
2 ) be observable. Then:

1. The MARE has a unique strictly positive definite solution S∞ if and only if
ν > νc, where νc is the critical arrival probability defined as:

νc
∆
= inf

ν
{0 ≤ ν ≤ 1, S ≥ 0) |S = Π(S,A,B,W,U, ν)}.



pbestim.tex, v1072 2009-12-20 22:29:51Z (murray)

6-34 CHAPTER 6. PACKET-BASED ESTIMATION AND CONTROL

2. The critical probability νc satisfy the following analytical bounds:

pmin ≤ νc ≤ pmax

pmin
∆
= 1 − 1

maxi |λu
i
(A)|2

pmax
∆
= 1 − 1

Q

i |λ
u
i
(A)|2

where λui (A) are the unstable eigenvalues of A. Moreover, νc = pmin when B
is square and invertible, and νc = pmax when B is rank one.

3. The critical probability can be numerically computed via the solution of the
following quasi-convex LMIs optimization problem:

νc = argminν̄Ψν(Y,Z) > 0, 0 ≤ Y ≤ I.

Ψν(Y,Z) =




Y
√
ν(Y A′ + ZB′)

√
1 − νY A′

√
ν(AY +BZ ′) Y 0√

1 − νAY 0 Y




4. If ν > νc, then limk→+∞ Sk = S∞ for all initial conditions S0 ≥ 0, where

Sk+1 = Π(Sk, A,B,W,U, ν)

.

Proof. The proof of facts (a),(c), and (d) can be found in [?]. The proof νc = pmin
when B is square and invertible can be found in [?], and the proof νc = pmax when
B is rank one in [?].

In [?] statistical analysis of the optimal estimator was given, which we report
here for convenience:

Theorem 6.8 ([?]). Consider the system (6.29)-(6.31) and the optimal estima-
tor under TCP-like protocols, given by Equations (6.37),(6.39),(6.40),(6.42) and

(6.43). Assume that (A,Q
1
2 ) is controllable, (A,C) is observable, and A is unsta-

ble. Then there exists a critical observation arrival probability γc, such that the
expectation of estimator error covariance is bounded if and only if the observation
arrival probability is greater than the critical arrival probability, i.e.

Eγ [Pk|k] ≤M ∀k iff γ̄ > γc.

where M is a positive definite matrix possibly dependent on P0. Moreover, it is
possible to compute a lower and an upper bound for the critical observation arrival
probability γc, i.e.:

pmin ≤ γc ≤ γmax ≤ pmax

, where:

γmax
∆
= inf

γ
{0 ≤ γ ≤ 1, P ≥ 0) |P = Π(P,A′, C ′, Q,R, γ)},

where pmin and pmax are defined in Lemma 6.8.
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Proof. The proof can be found in [?] and is therefore omitted.

Using the previous theorem and the results from the previous section, we can
prove the following theorem for the infinite horizon optimal LQG under TCP-like
protocols:

Theorem 6.9. Consider the same system as defined in the previous theorem with
the following additional hypothesis: WN = Wk = W and Uk = U . Moreover, let
(A,B) and (A,Q

1
2 ) be controllable, and let (A,C) and (A,W

1
2 ) be observable.

Moreover, suppose that ν̄ > νc and γ̄ > γmax, where νc and γmax are defined
in Lemma 6.8 and in Theorem 6.8, respectively. Then we have:

1. The infinite horizon optimal controller gain is constant:

lim
k→∞

Lk = L∞ = −(B′S∞B + U)−1B′S∞A (6.61)

2. The infinite horizon optimal estimator gain Kk, given by Equation (6.43), is
stochastic and time-varying since it depends on the past observation arrival
sequence {γj}kj=1.

3. The expected minimum cost can be bounded by two deterministic sequences:

1

N
JminN ≤ 1

N
J∗
N ≤ 1

N
JmaxN (6.62)

where JminN , JmaxN converge to the following values:

Jmax∞
∆
= lim

N→+∞

1

N
JmaxN

= trace((A′S∞A+W − S∞)(P̂∞ − γ̄P̂∞C
′(CP̂∞C

′ +R)−1CP̂∞)) + trace(S∞Q)

Jmin∞
∆
= lim

N→+∞

1

N
JminN

= (1 − γ̄)trace
(
(A′S∞A+W − S∞)P̃∞

)
+ trace(S∞Q),

and the matrices S∞, P∞, P∞ are the positive definite solutions of the follow-
ing equations:

S∞ = A′S∞A+W − ν̄ A′S∞B(B′S∞B + U)−1B′S∞A

P∞ = AP∞A
′ +Q− γ̄ AP∞C

′(CP∞C
′ +R)−1CP∞A

′

P∞ = (1 − γ̄)AP∞A
′ +Q

Proof. (a) Since by hypothesis ν̄ > νc, from Lemma 6.8(d) follows that limk→+∞ Sk =
S∞. Therefore Equation (6.61) follows from Equation (6.48).

(b) This follows from the dependence on the arrival sequence {γk} of the optimal
state estimator given by Equations (6.37),(6.39),(6.40),(6.42) and (6.43). Since ν̄ >
νc

(c) Equation (6.53) can be written in terms of the MARE as:

P̂k+1|k = Π(P̂k|k−1, A
′, C ′, Q,R, γ)
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, therefore since γ̄ > γmax from Lemma 6.8(d) it follows that limk→+∞ P̂k|k−1 =

P∞, where P∞ is the solution of the MARE P∞ = Π(P∞, A
′, C ′, Q,R, γ). Also

limk→+∞ P̃k|k−1 = P∞, where P̃k|k−1 is defined in Equation (6.55) and P∞ is the

solution of the Lyapunov equation P̂∞ = ÃP̂∞Ã
′ + Q, where Ã =

√
1 − γ̄A. Such

solution clearly exists since
√

1 − γ̄ < 1
pmin

= 1
maxi |λu

i
(A)| and thus the matrix Ã

is strictly stable. From Equations (6.54) and (6.56) it follows that limk→+∞ P̂k|k =

P∞−γ̄P∞C
′(CP∞C

′+R)−1CP∞ and limk→+∞ P̃k|k = (1−γ̄)P∞. Also limk→+∞ Sk+1 =
limk→+∞ Sk = S∞. Finally from Equations (6.57) - (6.59) and the previous obser-
vations follow the claim.

6.13 LQG control for UDP-like protocols

In this section equations for the optimal estimator and controller design for the
case of communication protocols that do not provide any kind of acknowledgment
of successful packet delivery (UDP-like). This case corresponds to the information
set Gk, as defined in Equation (6.32). Some of the derivations are analogous to the
previous section and are therefore skipped.

Estimator Design

We derive the equations for the optimal estimator using similar arguments to the
standard Kalman filtering equations. The innovation step is given by:

x̂k+1|k
∆
= E[xk+1|Gk] = E[Axk + νkBuk + wk|Gk]
= AE[xk|Gk] + E[νk]Buk

= Ax̂k|k + ν̄Buk (6.63)

ek+1|k
∆
= xk+1 − x̂k+1|k

= Axk + νkBuk + wk − (Ax̂k|k + ν̄Buk)

= Aek|k + (νk − ν)Buk + wk (6.64)

Pk+1|k
∆
= E[ek+1|ke

′
k+1|k |Gk]

= AE[ek|ke
′
k|k|Gk]A′ + E[(νk − ν)2]Buku

′
kB

′ + E[wkw
′
k]

= APk|kA
′ + ν̄(1 − ν̄)Buku

′
kB

′ +Q, (6.65)

where we used the independence and zero-mean of wk, (νk − ν̄), and Gk, and the
fact that uk is a deterministic function of the information set Gk. Note how under
UDP-like communication, differently from TCP-like, the error covariance Pk+1|k

depends explicitly on the control input uk. This is the main difference with control
feedback systems under TCP-like protocols.

The correction step is the same as for the TCP case:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k, (6.66)

Kk+1
∆
= Pk+1|kC

′(CPk+1|kC
′ +R)−1, (6.67)
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where again we considered a time varying system with Ak = A and Ck = γkC as
we did for the optimal estimator under TCP-like protocols.

Controller design: General case

In this section, we show that the optimal LQG controller, under UDP-like commu-
nication protocols, is in general not a linear function of the state estimate, and that
the estimator and controller design cannot be separated anymore. To show this,
we construct a counter-example considering a simple scalar system and we proceed
using the dynamic programming approach. Let us consider the scalar system where
A = 1, B = 1, C = 1,WN = Wk = 1, Uk = 0, R = 1, Q = 0. Similarly to the TCP
case, we define the value function, Vk(xk), as in Equations (6.44) where we just
need to substitute the information set Fk with Gk. For k = N , the value function
is given by VN (xN ) = E[x′NWNxN | GN ] = E[x2

N | GN ]. For k = N − 1 we have:

VN−1(xN−1) = min
uN−1

E[x2
N−1 + VN (xN ) | GN−1]

= min
uN−1

E[x2
N−1 + x2

N | GN−1]

= min
uN−1

E[x2
N−1 + (xN−1 + νN−1uN−1)

2 | GN−1]

= min
uN−1

(E[2x2
N−1|GN−1] + E[ν2

N−1]u
2
N−1 + 2uN−1E[νN−1]E[xN−1|GN−1])

= min
uN−1

(E[2x2
N−1|GN−1] + ν̄u2

N−1 + 2ν̄uN−1x̂N−1|N−1),

where we used the independence of νN−1 and GN−1, and the fact that uN−1 is a
deterministic function of the information set GN−1. The cost is a quadratic func-
tion of the input uN−1, therefore the minimizer can be simply obtained by finding
∂VN−1

∂uN−1
= 0, which is given by u∗N−1 = −x̂N−1|N−1. If we substitute back u∗N−1 into

the value function we have:

VN−1(xN−1) = E[2x2
N−1|GN−1] − ν̄x̂2

N−1|N−1

= E[(2 − ν̄)x2
N−1|GN−1] + ν̄PN−1|N−1

where we used Lemma 6.5(b). Before proceeding note that:

PN−1|N−1 = PN−1|N−2 − γN−1

P 2
N−1|N−2

PN−1|N−2 + 1

= PN−1|N−2 − γN−1

(
PN−1|N−2 − 1 +

1

PN−1|N−2 + 1

)

= (1 − γN−1)
(
PN−2|N−2 + ν̄(1 − ν̄)u2

N−2

)
+ γN−1 +

+γN−1
1

PN−2|N−2 + ν̄(1 − ν̄)u2
N−2 + 1

E[PN−1|N−1|GN−2] = (1 − γ̄)
(
PN−2|N−2 + ν̄(1 − ν̄)u2

N−2

)
+ γ̄ + γ̄

1

PN−2|N−2 + ν̄(1 − ν̄)u2
N−2 + 1

E[x2
N−1|GN−2] = E[(xN−2 + νN−2uN−2)

2|GN−2]

= E[x2
N−2|GN−2] + 2E[νN−2]E[xN−2|GN−2]uN−2 + E[νN−2]u

2
N−2

= E[x2
N−2|GN−2] + 2ν̄x̂N−2|N−2uN−2 + ν̄u2

N−2,
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where we used Equations (6.65)-(6.67), and the fact that uN−2 and PN−2|N−2 are
a deterministic function of the information set GN−2. Using the previous equations
we proceed to compute the value function for k = N − 2:

VN−2(xN−2) = min
uN−2

E[x2
N−2 + VN−1(xN−1) | GN−2]

= min
uN−2

E[x2
N−2 + (2 − ν̄)x2

N−1 + ν̄PN−1|N−1 | GN−2]

= (3 − ν̄)E[x2
N−2|GN−2] + ν̄(1 − γ̄)PN−2|N−2 + ν̄γ̄ +

+ min
uN−1

(
2ν̄(2 − ν̄)x̂N−2|N−2uN−2 + ν̄(2 − ν̄)u2

N−2 +

+ ν̄2(1 − ν̄)(1 − γ̄)u2
N−2 + ν̄γ̄

1

PN−2|N−2 + ν̄(1 − ν̄)u2
N−2 + 1

)

The first three terms inside the round parenthesis are convex quadratic functions
of the control input uN−2, however the last term is not. Therefore, the minimizer
u∗N−2 is, in general, a non-linear function of the information set Gk. The nonlinearity
of the optimal controller arises from the fact that the correction error covariance
matrix Pk+1|k+1 is a non-linear function of the innovation error covariance Pk+1|k,
as it can be seen in Equations (6.66) and (6.67). The only case when Pk+1|k+1 is
linear in Pk+1|k is when measurement noise covariance R = 0 and the observation
matrix C is square and invertible, from which follows that the optimal control is
linear in the estimated states. However it is important to remark that the separation
principle still does not hold even for this special case, since the control input affects
the estimator error covariance.

We can summarize these results in the following theorem:

Theorem 6.10. Let us consider the stochastic system defined in Equations (6.29)
with horizon N ≥ 2. Then:

1. The separation principle does not hold since the estimator error covariance
depends on the control input, as shown in Equation (6.65).

2. The optimal control feedback uk = g∗k(Gk) that minimizes the cost functional
defined in Equation (6.33) under UDP-like protocols is, in general, a nonlinear
function of information set Gk.

3. The optimal control feedback uk = g∗k(Gk) is a linear function of the estimated
state x̂k|k if and only if the matrix C is invertible and there is no measurement
noise.

The next section will compute explicitly the optimal control for the special case
and will give necessary and sufficient conditions for stability and performance of
the infinite horizon scenario.

Special Case: R=0 and C invertible

Without loss of generality we can assume C = I, since the linear transformation
z = Cx would give an equivalent system where the matrix C is the identity. Let
us now consider the case when there is no measurement noise, i.e. R = 0. These



pbestim.tex, v1072 2009-12-20 22:29:51Z (murray)

6.13. LQG CONTROL FOR UDP-LIKE PROTOCOLS 6-39

assumption mean that it is possible to measure the state xk when a packet is
delivered. In this case the estimator Equations (6.65)-(6.67) simplify as follows:

Kk+1 = I (6.68)

Pk+1|k+1 = (1 − γk+1)Pk+1|k

= (1 − γk+1)(A
′Pk|kA+Q+ ν̄(1 − ν̄)Buku

′
kB

′) (6.69)

E[Pk+1|k+1|Gk] = (1 − γ̄)(A′Pk|kA+Q+ ν̄(1 − ν̄)Buku
′
kB

′) (6.70)

where in the last equation we used independence of γk+1 and Gk, and we used the
fact that Pk|k is a deterministic function of Gk.

Similarly to what done in the analysis of TCP-like optimal control, we claim
that the value function V ∗

k (xk) can be written as follows:

Vk(xk) = x̂′k|kSkx̂k|k + trace(TkPk|k) + trace(DkQ) (6.71)

for k = N, . . . , 0. This is clearly true for k = N , in fact we have:

VN (xN ) = E[x′NWNxN |GN ] = x̂′N |NWN x̂N |N + trace(WNPN |N )

where we used Lemma 6.5(b), therefore the statement is satisfied by SN = WN , TN =
WN ,DN = 0. Note that Equation (6.71) can be rewritten as follows:

Vk(xk) = E[x′kSkxk|Gk] + trace
(
(Tk − Sk)Pk|k

)
+ trace(DkQ)

where we used once again Lemma 6.5(b). Moreover, to simplify notation we define

Hk
∆
= (Tk − Sk). Let us suppose that Equation (6.71) is true for k + 1 and let us

show by induction it holds true for k:

Vk(xk) = min
uk

E[x′
kWkxk + νku

′
kUkuk + Vk+1(xk+1) | Gk]

= min
uk

`

E[x′
kWkxk + νku

′
kUkuk + x

′
k+1Sk+1xk+1 + trace(Hk+1Pk+1|k+1) + trace(Dk+1Q) | Gk]

´

= E[x′
k(Wk+A

′
Sk+1A)xk|Gk]+trace(Sk+1Q)+(1−γ̄)trace(Hk+1(A

′
Pk|kA+Q))+trace(Dk+1Q)+

+min
uk

“

ν̄u
′
kUkuk+ν̄u

′
kB

′
Sk+1Buk+2ν̄u

′
kB

′
Sk+1Ax̂k|k+ν̄(1−ν̄)(1−γ̄)trace(Hk+1Buku

′
kB

′)
”

= E[x′
k(Wk+A

′
Sk+1A)xk|Gk]+trace

`

(Dk+1+(1−γ̄)Hk+1)Q
´

+(1−γ̄)trace(AHk+1A
′
Pk|k) +

+trace(Sk+1Q)+ν̄ min
uk

“

u
′
k

`

Uk+B
′(Sk+1+(1−ν̄)(1−γ̄)Hk+1)B

´

uk+2u
′
kB

′
Sk+1Ax̂k|k

”

= x̂
′
k|k(Wk + A

′
Sk+1A)x̂k|k + trace

`

(Dk+1 + (1 − γ̄)Tk+1 + γ̄Sk+1)Q
´

+

+trace
“

(Wk + γ̄A
′
Sk+1A + (1 − γ̄)ATk+1A

′)Pk|k

´

+

+ν̄ min
uk

“

u
′
k

`

Uk + B
′((1 − ᾱ)Sk+1 + ᾱTk+1)B

´

uk + 2u
′
kB

′
Sk+1Ax̂k|k

”

,

where we defined ᾱ = (1 − ν̄)(1 − γ̄), we used Lemma 6.5(c) to get the second
equality, and Equations (6.36) and (6.70) to get the last equality. Since the quantity
inside the big round parenthesis a convex quadratic function, the minimizer is the
solution of ∂Vk

∂uk
= 0 which is given by:

u∗k =−
(
Uk +B′

(
(1 − ᾱ)Sk+1 + ᾱTk+1

)
B
)−1

B′Sk+1A x̂k|k (6.72)

= Lk x̂k|k (6.73)
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which is linear function of the estimated state x̂k|k. Substituting back into the value
function we get:

Vk(xk) = x̂′k|k(Wk +A′Sk+1A)x̂k|k + trace
(
(Dk+1 + (1 − γ̄)Tk+1 + γ̄Sk+1)Q

)
+

+trace
(
(Wk +A′Sk+1A+ (1 − γ̄)ATk+1A

′)Pk|k
)
− ν̄x̂′k|kA

′Sk+1BLkx̂k|k

= x̂′k|k(Wk + γ̄A′Sk+1A− ν̄x̂′k|kA
′Sk+1BLk)x̂k|k + trace

(
(Dk+1 + (1 − γ̄)Tk+1 + γ̄Sk+1)Q

)
+

+trace
(
(Wk +A′Sk+1A+ (1 − γ̄)ATk+1A

′)Pk|k
)
,

where we used Lemma 6.5(b) in the last equality. From the last equation we see that
the value function can be written as in Equation (6.71) if and only if the following
equations are satisfied:

Sk = A′Sk+1A+Wk − ν̄A′Sk+1B (Uk +B′ ((1 − ᾱ)Sk+1 + ᾱTk+1)B)
−1
B′Sk+1A

= ΦSγ,ν(Sk+1, Tk+1) (6.74)

Tk = (1 − γ̄)A′Tk+1A+ γ̄A′Sk+1A+Wk

= ΦTγ,ν(Sk+1, Tk+1) (6.75)

Dk = (1 − γ̄)Tk+1 + γ̄Sk+1 +Dk+1 (6.76)

The optimal minimal cost for the finite horizon, J∗
N = V0(x0) is then given by:

J∗
N = x′0S0x0 + trace(S0P0) +

N∑

k=1

trace
((

(1 − γ̄)Tk + γ̄Sk
)
Q
)

(6.77)

For the infinite horizon optimal controller, necessary and sufficient condition

for the average minimal cost J∞
∆
= limN→+∞

1
N J

∗
N to be finite is that the coupled

iterative Equations (6.74) and (6.75) should converge to a finite value S∞ and T∞
as N → +∞. In the work of Imer et al. [?] similar equations were derived for
the optimal LQG control under UDP for the same framework with the additional
conditions Q = 0 and B square and invertible. They find necessary and sufficient
conditions for those equations to converge. Unfortunately, these conditions do not
hold for the general case when B in not square. This is a very frequent situation in
control systems, where in general we simply have (A,B) controllable.

Theorem 6.11. Also, assume that the pair (A,W 1/2) is observable. Consider the
following operator:

Υ(S, T, L) = A′SA+W + 2ν̄A′SBL+ ν̄L′
(
U +B′

(
(1 − ᾱ)S + ᾱT

)
B
)
L (6.78)

Then the following claims are equivalent:

1. There exist a matrix L̃ and positive definite matrices S̃ and T̃ such that:

S̃ > 0, T̃ > 0, S̃ = Υ(S̃, T̃ , L̃), T̃ = ΦT (S̃, T̃ )

2. Consider the sequences:

Sk+1 = ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk)
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where the operators ΦS(·),ΦT (·) are defined in Equations (6.74) and (6.75).
For any initial condition S0, T0 ≥ 0 we have

lim
k→∞

Sk = S∞, lim
k→∞

Tk = T∞

and S∞, T∞ are the unique positive definite solution of the following equations

S∞ > 0, T∞ > 0, S∞ = ΦS(S∞, T∞), T∞ = ΦT (S∞, T∞)

The convergence of Equations (6.74) and (6.75) depend on the control and
observation arrival probabilities γ̄, ν̄. General analytical conditions for convergence
are not available, but some necessary and sufficient conditions can be found.

Lemma 6.9. Let us consider the fixed points of Equations (6.74) and (6.75), i.e.
S = ΦS(S, T ), T = ΦT (S, T ) where S, T ≥ 0. Let A be unstable. A necessary
condition for existence of solution is

|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − γ̄ν̄ (6.79)

where |A| ∆
= maxi |λi(A)| is the largest eigenvalue of the matrix A.

Lemma 6.10. Let us consider the fixed points of Equations (6.74) and (6.75),
i.e. S = ΦS(S, T ), T = ΦT (S, T ) where S, T ≥ 0. Let A be unstable, (A,W 1/2)
observable and B square and invertible. Then a sufficient condition for existence of
solution is

|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − γ̄ν̄ (6.80)

where |A| ∆
= maxi |λi(A)| is the largest eigenvalue of the matrix A.

A graphical representation of the stability bounds are shown in Figure 6.10,
where we considered a scalar system with parameters |A| = 1.1, which gives the
critical probability pmin = 1 − 1/|A|2 = 1.173 as defined in Theorem 6.8. The
critical arrival probabilities for TCP-like optimal control are γc = νc = pmin. The
boundary for the stability region of optimal control under UDP-like protocols given

in Lemma 6.10 can be written also as ν̄ > γ̄(A2−1)
γ̄(2A2−1)+1−A2 for γ̄ > pmin. It is

important to remark that the stability region of optimal control under UDP-like
protocols is larger than the stability region obtained using a dead-beat controller
proposed in [?], i.e. uk = −γkB−1Ayk = −γkB−1Axk, which is given by γ̄ν̄ >
1 − 1/|A|2 and graphically shown in Figure 6.10 . This is not surprising since
the dead-beat controller is rather aggressive and requires a large gain L, which
increases the estimator error covariance in Equation (6.70). Indeed, as shown in the
constructive proof of Lemma 6.10, controllers with similar structure but smaller
gains, i.e. uk = −ηγkB−1Ayk = −ηγkB−1Axk where η < 1, have a larger region of
stability.

We can summarize the results of this section in the following theorem

Theorem 6.12. Consider the system (6.29)-(6.31) and consider the problem of
minimizing the cost function (6.33) within the class of admissible policies uk =
f(Gk), where Gk is the information available under TCP-like schemes, given in
Equation (6.32). Assume also that R = 0 and C is square and invertible. Then:
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Figure 6.10: Region of convergence for UDP-like and TCP-like optimal control
in the scalar case. The bounds are tight in the scalar case. The thin solid line
corresponds to the boundary of the stability region for a dead-beat controller under
UDP-like protocols as given by [?], which is much more restrictive than what can
be achieved with optimal UDP controllers.

1. The optimal estimator gain is constant and in particular Kk = I if C = I.

2. The infinite horizon optimal control exists if and only if there exists posi-
tive definite matrices S∞, T∞ > 0 such that S∞ = ΦS(S∞, T∞) and T∞ =
ΦT (S∞, T∞), where ΦS and ΦS are defined in Equations (6.74) and (6.75).

3. The infinite horizon optimal controller gain is constant:

lim
k→∞

Lk = L∞ = −(B′(ᾱT∞ + (1 − ᾱ)S∞)B + U)−1B′S∞A (6.81)

4. A necessary condition for existence of S∞, T∞ > 0 is

|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − γ̄ν̄ (6.82)

where |A| ∆
= maxi |λi(A)| is the largest eigenvalue of the matrix A. This con-

dition is also sufficient if B is square and invertible.

5. The expected minimum cost converges:

J∗
∞ = lim

k→∞

1

N
J∗
N = trace

(
(1 − γ̄)T∞ + γ̄S∞)Q

)
(6.83)
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Figure 6.11: Exact infinite horizon cost using optimal LQG control under UDP-
like and upper bound under TCP-like communication protocols in the scalar case.

In the scenario considered in this section when R = 0 and C is invertible, it is
possible to directly compare the performance of optimal control under TCP-like and
UDP-like protocols in terms of the infinite horizon cost J∗

∞. Let us consider for ex-
ample the scalar system with the following parametersA = 1.1, B = C = Q = W = U = 1, R = 0.
For simplicity also consider symmetric communication channels for sensor reading
and control inputs, i.e. ν̄ = γ̄. Using results from Theorem 6.9 and Theorem 6.12
we can compute the infinite horizon cost using optimal controllers under UDP-like
and an upper bound on the cost under TCP-like communication protocols, which
are shown in Fig. 6.11. As expected optimal control performance under TCP-like is
better than UDP-like, however the two curves are comparable for moderate packet
loss. Although the TCP-like curve is only an upper bound of the true expected cost,
it has been observed to be rather close to the empirical cost [?]. The observation
that TCP-like and UDP-like optimal control performances seem remarkably close
is extremely valuable since UDP-like protocols are much simpler to implement than
TCP-like.

6.14 Appendix

Lemma 6.11. Let S, T ∈ M = {M ∈ Rn×n|M ≥ 0}. Consider the operators
ΦS(S, T ), and ΦT (S, T ) as defined in Equations (6.74) and (6.75), and consider the

sequences Sk+1 = ΦS(Sk, Tk) and Tk+1 = ΦT (Sk, Tk). Consider L∗
S,T = −

(
U +B′

(
(1 − ᾱ)S + ᾱT

)
B
)−1

B′SA.
operators
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Then the following facts are true:

1.

Υ(S, T, L) =(1−
ν̄

1 − ᾱ
)A′

SA+W+
ν̄

1 − ᾱ

`

A+(1−ᾱ)BL
´′

S
`

A+(1−ᾱ)BL
´

+ν̄L
′
UL+ν̄ᾱL

′
B

′
TBL

2. ΦS(S, T ) = minL Υ(S, T, L)

3. 0 ≤ Υ(S, T, L∗
S,T ) = ΦS(S, T ) ≤ Υ(S, T, L) ∀L

4. If Sk+1 > Sk and Tk+1 > Tk, then Sk+2 > Sk+1 and Tk+2 > Tk+1.

5. If the pair (A,W 1/2) is observable and S = ΦS(S, T ) and T = ΦT (S, T ), then
S > 0 and T > 0.

Proof. Fact (a) can be easily checked by direct substitution.
(b) If U is invertible then it is easy to verify by substitution that

Υ(S, T, L) = ΦS(S, T ) + ν̄(L− L∗
S,T )′

(
U +B′

(
(1 − ᾱ)S + ᾱT

)
B
)
(L− L∗

S,T )

≥ ΦS(S, T )

(c) The non-negativeness follows from the observation that Υ(S, T, L) is a sum

of positive semi-definite matrices. In fact (1 − ν̄
1−ᾱ ) = γ̄(1−ν̄)

ν̄+γ̄(1−ν̄) ≥ 0 and 0 ≤ ᾱ ≤ 1.

The equality Υ(S, T, L∗
S,T ) = ΦS(S, T ) can be verified by direct substitution. The

last inequality follows directly from Fact (b).
(d)

Sk+2 = ΦS(Sk+1, Tk+1) = Υ(Sk+1, Tk+1, L
∗
Sk+1,Tk+1

)

≥ Υ(Sk, Tk, L
∗
Sk+1,Tk+1

) ≥ Υ(Sk, Tk, L
∗
Sk,Tk

)

= ΦS(Sk, Tk) = Sk+1

Tk+2 = ΦT (Sk+1, Tk+1) ≥ ΦT (Sk, Tk) = Tk+1

(e) First observe that S = ΦS(S, T ) ≥ 0 and T = ΦT (S, T ) ≥ 0. Thus, to prove
that S, T > 0, we only need to establish that S, T are nonsingular. Suppose they
are singular, the there exist vectors 0 6= vs ∈ N (S) and 0 6= vt ∈ N (T ), i.e. Svs = 0
and Tvt = 0, where N (·) indicates the null space. Then

0 = v′sSvs = v′sΦ
S(S, T )vs = v′sΥ(S, T, L∗

S,T )vs
= (1 − ν̄

1−ᾱ )v′sA
′SAvs + v′sWvs + ⋆

where ⋆ indicates other terms. Since all the terms are positive semi-definite matrices,
this implies that all the term must be zero:

v′sA
′SAvs = 0 =⇒ SAvs = 0 =⇒ Avs ∈ N (S)

v′sWvs = 0 =⇒W 1/2vs = 0

As a result, the null space N (S) is A-invariant. Therefore, N (S) contains an eigen-
vector of A, i.e. there exists u 6= 0 such that Su = 0 and Au = σu. As before, we
conclude that Wu=0. This implies (using the PBH test) that the pair (A,W 1/2)
is not observable, contradicting the hypothesis. Thus, N (S) is empty, proving that
S > 0. The same argument can be used to prove that also T > 0.
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Proof of Theorem 6.11

(a)⇒(b) The main idea of the proof consists in the proving of the convergence
of several monotonic sequences. Consider the sequences Vk+1 = Υ(Vk, Zk, L̃) and
Zk+1 = ΦT (Vk, Zk) with initial conditions V0 = Z0 = 0. It is easy to verify by sub-
stitution that V1 = W + ν̄L̃′UL̃ ≥ 0 = V0 and Z1 = W ≥ 0 = Z0. Lemma 6.11(a)
shows that the operator Υ(V,Z, L̃) is linear and monotonically increasing in V and
Z, i.e.
(Vk+1 ≥ Vk, Zk+1 ≥ Zk) ⇒ (Vk+2 ≥ Vk+1, Zk+2 ≥ Zk+1). Also the operator ΦT (V,Z)
is linear and monotonically increasing in V and Z. Since V1 ≥ V0 and Z1 ≥ Z0, using
an induction argument we have that Vk+1 ≥ Vk, Zk+1 ≥ Zk for all time k, i.e. the
sequences are monotonically increasing. These sequences are also bounded, in fact
(V0 ≤ S̃), (Z0 ≤ T̃ ) ⇒ (V1 = Υ(0, 0, L̃) ≤ Υ(S̃, T̃ , L̃) = S̃), (Z1 = ΦT (0, 0) ≤
ΦT (S̃, T̃ ) = T̃ ) and the same argument can be inductively used to show that
Vk ≤ S̃ and Zk ≤ T̃ for all K. Consider now the sequences Sk, Tk as defined
in the theorem initialized with S0 = T0 = 0. By direct substitution we find that
S1 = W ≥ 0 = S0 and T1 = W ≥ 0 = T0. By Lemma 6.11(d) follows that the se-
quences Sk, Tk are monotonically increasing. Moreover, by Lemma 6.11(c) it follows
that (Sk ≤ Vk, Tk ≤ Zk) ⇒ (Sk+1 = ΦS(Sk, Tk) ≤ Υ(Sk, Tk, L̃) ≤ Υ(Vk, Zk, L̃) =
Vk+1), Tk+1 = ΦT (Sk, Tk) ≤ ΦT (Vk, Zk) = Zk+1). Since this is verified for k = 0,
it inductively follows that (Sk ≤ Vk, Tk ≤ Zk) for all k. Finally since Vk, Zk are
bounded, we have that (Sk ≤ S̃, Tk ≤ T̃ . Since Sk, Tk) are monotonically increas-
ing and bounded, it follows that limk→∞ Sk = S∞ and limk→∞ Tk = T∞, where
S∞, T∞ are semi-definite matrices. From this it easily follows that these matrices
have the property S∞ = ΦS(S∞, T∞), T∞ = ΦT (S∞, T∞). Definite positiveness of
S∞ follows from Lemma 6.11(e) using the hypothesis that (A,W 1/2) is observable.
The same argument can be used to prove that T∞ > 0. Finally proof of uniqueness
of solution and convergence for all initial conditions S0, T0 can be obtained similarly
to Theorem 1 in [?] and it is therefore omitted.

(b)⇒(a)
This part follows easily by choosing L̃ = L∗

S∞,T∞

, where L∗ is defined in Lemma 6.11.

Using Lemma 6.11(c) we have S∞ = ΦS(S∞, T∞) = Υ(S∞, T∞, L̃), therefore the
statement is verified using S̃ = S∞ and T̃ = T∞.

Proof of Lemma 6.9

To prove the necessity condition, it is sufficient to show that there exist some
initial conditions S0, T0 ≥ 0 for which the sequences Sk+1 = ΦS(Sk, Tk), Tk+1 =
ΦT (Sk, Tk) are unbounded, i.e. limk→∞ Sk = limk→∞ Tk = ∞. To do so, suppose
that at some time-step k we have Sk ≥ skvv

′ and Tk ≥ tkvv
′, where sk, tk > 0, and

v is the eigenvector corresponding to the largest eigenvalue of A′, i.e. A′v = λmaxv
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and |λmax| = |A′| = |A|. Then we have:

Sk+1 = ΦS(Sk, Tk) ≥ ΦS(skvv
′, tkvv

′)

= min
L

Υ(skvv
′, tkvv

′, L)

= min
L

(
skA

′vv′A+W + 2skν̄A
′vv′BL+

+ν̄L′
(
U +B′

(
(1 − ᾱ)skvv

′ + ᾱtkvv
′
)
B
)
L
)

≥ min
L

(
sk|A|2vv′ + 2skν̄λmaxvv

′BL+

+ν̄L′B′
(
(1 − ᾱ)skvv

′ + ᾱtkvv
′
)
BL
)

= min
L

(
sk|A|2vv′ −

|A|2ν̄s2k
ξk

vv′ +

+ν̄ξk(λmaxs
2
kI +

1

ξk
BL)′vv′(λmaxs

2
kI +

1

ξk
BL)

)

≥ sk|A|2vv′ −
|A|2ν̄s2k

(1 − ᾱ)sk + ᾱtk
vv′

= |A|2sk
(
1 − ν̄sk

(1 − ᾱ)sk + ᾱtk

)
vv′

= sk+1vv
′

where I is the identity matrix and ξk = (1 − ᾱ)sk + ᾱtk. Similarly we have:

Tk+1 = ΦT (Sk, Tk) ≥ ΦT (skvv
′, tkvv

′)

= (1 − γ̄)tkA
′vv′A+ γ̄skA

′vv′A+W

≥ (1 − γ̄)tk|A2|vv′ + γ̄sk|A|2vv′
= |A|2

(
(1 − γ̄)tk + γ̄sk)

)
vv′

= tk+1vv
′

We can summarize the previous results as follows:

(Sk≥ skvv′, Tk ≥ tkvv
′) ⇒ (Sk+1 ≥ sk+1vv

′, Tk+1 ≥ tk+1vv
′)

sk+1 =φs(sk, tk) = |A|2sk
(
1 − ν̄sk

(1 − ᾱ)sk + ᾱtk

)
,

tk+1 =φt(sk, tk) = |A|2
(
(1 − γ̄)tk + γ̄sk)

)

Let us define the following sequences:

Sk+1 =ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk), S0 = T0 = vv′

sk+1 =φs(sk, tk), tk+1 = φt(sk, tk), s0 = t0 = 1

S̃k= skvv
′, T̃k = tkvv

′

From the previous derivations, we have that Sk ≥ S̃k, Tk ≥ T̃k for all time k.
Therefore, it is sufficient to find when the scalar sequences sk, tk diverges to find
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the necessary conditions. It should be evident also that the operators φs(s, t), φt(s, t)
are monotonic in their arguments. Also, it should be clear that the only fixed points
of s = φs(s, t), t = φt(s, t) are s = t = 0. Therefore we should find when the origin
is an unstable equilibrium point, since in this case limk→∞ sk, tk = ∞. Note that
t = φt(s, t) can be written as:

t = ΦT (s, t) = (1 − γ̄)|A|2t+ γ̄|A|2s

= ψ(s) =
γ̄|A|2s

1 − (1 − γ̄)|A|2

with the additional assumption 1 − (1 − γ̄)A2 > 0. A necessary condition for the
stability of the origin is that the origin of restricted map zk+1 = φ(zk, ψ(zk)) is
stable. The restricted map is given by:

zk+1 = |A|2zk


1 − ν̄

zk

(1 − ᾱ)zk + ᾱ γ̄|A|2

1−(1−γ̄)A2 zk




= |A|2

1 − ν̄

(1 − ᾱ) + ᾱ γ̄|A|2

1−(1−γ̄)A2


 zk

= |A|2
(

1 − ν̄(1 − (1 − γ̄)|A|2)
γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2

)
zk

=

(
γ̄(1 − ν̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)
zk

This is a linear map and it is stable only if the term inside the parenthesis is smaller
than unity, i.e.

(
γ̄(1 − ν̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)

< 1

γ̄(1 − ν̄)|A|2 < γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − γ̄ν̄

which concludes the lemma.

Proof of Lemma 6.10

The proof is constructive. In fact, we find a control feedback gain L̃ that satisfies the
conditions stated in Theorem 6.11(a). Let L̃ = −ηB−1A where η > 0 is a positive
scalar that is to be determined. Also consider S = sI, T = tI, where I is the identity
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matrix and s, t > 0 are positive scalars. Then we have

Υ(sI, tI, L̃) = A′sA+W − 2ν̄ηA′sA+ ν̄A′B−′

UB−1A+

+ν̄η2A′
(
(1 − ᾱ)s+ ᾱt

)
A

≤ |A|2
(
s− 2ν̄sη + ν̄

(
(1 − ᾱ)s+ ᾱt

)
η2
)
I + wI

= ϕs(s, t, η)I (6.84)

ΦT (sI, tI) = γ̄A′sA+ (1 − γ̄)A′tA+W

≤
(
γ̄|A|2s+ (1 − γ̄)|A|2t

)
I + wI

≤ ϕt(s, t)I (6.85)

where w = |W + ν̄A′B−′

UB−1A| > 0 and I is the identity matrix. Let us consider
the following scalar operators and sequences:

ϕs(s, t, η) = |A|2(1 − 2ν̄η + ν̄(1 − ᾱ)η2)s+ ν̄ᾱη2t+ w

ϕt(s, t) = γ̄|A|2s+ (1 − γ̄)|A|2t+ w

sk+1 = ϕs(sk, tk, η), tk+1 = ϕt(sk, tk), s0 = t0 = 0

The operators are clearly monotonically increasing in s, t, and since s1 = ϕs(s0, t0, η) =
w ≥ s0 and t1 = ϕt(s0, t0) = w ≥ t0, it follows that the sequences sk, tk are
monotonically increasing. If these sequences are bounded, then they must converge
to s̃, t̃. Therefore sk, tk are bounded if and only if there exist s̃, t̃ > 0 such that
s̃ = ϕs(s̃, t̃, η) and t̃ = ϕt(s̃, t̃). Let us find the fixed points:

t̃ = ϕt(s̃, t̃) ⇒

t̃ =
γ̄|A|2

1 − (1 − γ̄)|A|2 s̃+ wt

where wt
∆
= w

1−(1−γ̄)|A|2 > 0, and we must have 1 − (1 − γ̄)|A|2 > 0 to guarantee

that t̃ > 0. Substituting back into the operator ϕs we have:

s̃ = |A|2(1 − 2ν̄η + ν̄(1 − ᾱ)η2)s̃+ ν̄ᾱη2 γ̄|A|2
1 − (1 − γ̄)|A|2 s̃+

+ν̄ᾱη2wt + w

= |A|2
(

1 − 2ν̄η + ν̄
(
(1 − ᾱ) +

γ̄ᾱ|A|2
1 − (1 − γ̄)|A|2

)
η2

)
s̃+ w(η)

= |A|2
(

1 − 2ν̄η + ν̄
γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2

1 − (1 − γ̄)|A|2 η2

)
s̃+ w(η)

= a(η)s̃+ w(η)

where w(η)
∆
= ν̄ᾱη2wt + w > 0. For a positive solution s̃ to exist, we must have

a(η) < 1. Since a(η) is a convex function of the free parameter η, we can try to
increase the basin of existence of solutions by choosing η∗ = argminηa(η), which

can be found by solving da
dη (η∗) = 0 and is given by:

η∗ =
1 − (1 − γ̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
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Therefore a sufficient condition for existence of solutions are given by:

a(η∗) < 1

|A|2
(

1 − ν̄
1 − (1 − γ̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)

< 1

(
γ̄(1 − ν̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)

< 1

which is the same bound for the necessary condition of convergence in Lemma 6.9.
If this condition is satisfied then limk→∞ sk = s̃ and limk→∞ tk = t̃. Let

us consider now the sequences S̄k = skI, T̄k = tkI, Sk+1 = Υ(Sk, Tk, L̃) and
Tk+1 = ΦT (Sk, Tk), where L̃ = −η∗B−1A, S0 = T0 = 0, and sk, tk where defined
above. These sequences are all monotonically increasing. From Equations (6.84) and
(6.85) it follows that (Sk ≤ skI, Tk ≤ tkI) ⇒ (Sk+1 =≤ sk+1I, Tk+1 ≤ tkI). Since
this is verified for k = 0 we can claim that Sk < s̃I and Tk < t̃I for all k. Since
Sk, Tk are monotonically increasing and bounded, then they must converge to pos-
itive semi-definite matrices S̃, T̃ ≥ 0 which solve the equations S̃ = Υ(S̃, T̃ , L̃) and
T̃ = ΦT (S̃, T̃ ). Since, by hypothesis, the pair (A,W 1/2) is observable, using similar
arguments of Lemma 6.11(e), it is possible to show that S̃, T̃ > 0. Therefore S̃, T̃ , L̃
satisfy the conditions of statement (a) Theorem 6.11, from which if follows state-
ment (b) of the same theorem. This implies that the sufficient conditions derived
here guarantee the claim of the lemma.

The text below is from twoblock.tex, which was written by Vijay. Integrate as Bruno

appropriate. You might want to leave this in its own file, to make revisions between
authors easier for subversion to handle.

6.15 Introduction

In the second part of the chapter, we will consider the two block design with an
analog erasure channel inside the control loop. As discussed earlier, the analog
erasure model (also referred to as the packet erasure or packet loss model) can be
described as follows. The channel operates in discrete time steps. At every time
step, the channel accepts as input a finite dimensional real vector r(k). The value
of the output of the channel y(k) is chosen according to an erasure process. At
every time step, the erasure process assumes either the value T or the value R. If
the value at time k is T , y(k + 1) = r(k) and a successful transmission is said to
have occurred. Otherwise, y(k + 1) = φ and an erasure event, or a packet loss, is
said to have occurred at time k. The symbol φ denotes that the receiver does not
receive any data; however, the receiver is aware that an erasure event has occurred
at that time. Note that we have assumed that the channel introduces a constant
delay of one time step.

While an analog erasure model has an infinite capacity in an information theo-
retic sense, it is often a useful representation for the cases when the communication
protocols allow for large data packets to be transmitted at every time step. For
instance, the minimum size of an ethernet data packet is 72 bytes. This is much
more space for carrying information than usually required inside a control loop. If
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the data packets allow for transmission of control and sensing data to a high fidelity,
the quantization effects are often ignored and an analog erasure model adopted.

To begin with, consider a set-up in which the linear time invariant process
evolves as

x(k + 1) = Ax(k) +Bu(k) + w(k),

where the state x(k) ∈ Rn, the control variable u(k) ∈ Rm and w(k) is process
noise considered to be white and Gaussian with zero mean and covariance Rw > 0.
The initial condition x(0) is assumed to be Gaussian with zero mean and covariance
P (0). The process is observed using a sensor of the form

y(k) = Cx(k) + v(k),

where v(k) is measurement noise that is again white Gaussian with zero mean and
covariance Rv > 0. We suppose all the sources of randomness in the system (initial
condition, process and measurement noise, and the erasure process for the channels)
to be independent. The inputs are chosen to minimize the cost

JLQG = E

[
K∑

k=1

(
xT (k)Qx(k) + uT (k)Ru(k)

)
+ xT (K + 1)P (K + 1)x(K + 1)

]
,

where the expectation at time k is taken with respect to the future values of the
packet erasure events, the initial condition, and the measurement and process noises.
Further, the matrices P (K + 1), Q and R are all assumed to be positive definite.
The pair (A,B) is assumed to be controllable, and the pair (A,C) is assumed to
be observable.

As with the one-block design, we can consider two cases:

1. When there is only one channel in the control loop, present between the sensor
and the controller. Such a situation can arise, e.g., when the controller is co-
located with the process and the sensor is remote, or the controller has access
to large transmission power.

2. When there are two channels present. In addition to the sensor-controller
channel, there is an additional channel between the controller and the actua-
tor. In this case, it is also important to specify the action that the actuator
takes when it does not receive a packet. The action depends on the amount of
processing, memory and information about the process that is assumed to be
available at the actuator. We consider the simplest choice, which is to apply
zero control input if no packet was received. Other actions by the actuator
can be treated in a similar fashion.

For most of the following discussion we assume that the erasures on the two channels
occur in an i.i.d. fashion, independently of each other. However, erasures according
to a Markov model, or correlated across the channels can be easily considered.

Two block design

As discussed earlier, two block design involves designing both an encoder at the
input of a channel, and a decoder at the output to minimize the estimation / control
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cost. Note that the decoder for the sensor-controller channel and the encoder for
the controller-actuator channel are merely the controller.

To begin with, we will consider only the sensor-controller channel to be present.
To proceed, we must define the class of encoders that we will consider. The infor-
mation theoretic capacity of an analog erasure channel is infinite. Thus, the only
constraints we impose on the encoder are that the transmitted vector is some causal
(possibly time-varying) function of the measurements available to the encoder until
time k and that the dimension of the vector is finite. We will sometimes refer to the
encoder as an encoding algorithm. For the controller-actuator channel, the choice
of decoder will depend on the knowledge and processing available at the actuator.
We will consider the case of this channel being present briefly towards the end.

At every time step k, the encoder at the sensor calculates a vector s(k) =
f
(
k, {y(j)}kj=0

)
and transmits it. Note that we have not assumed that the encoder

has access to any acknowledgements from the decoder about which transmissions
have been successful. However, we will show that the presence of such acknowledge-
ments does not improve the optimal performance achievable by a suitable encoder.

Denote by I(k) the information set that the decoder can utilize to calculate
the control at time k. As an example, if no erasures were happening, I(k) =
{y(0), y(1), · · · , y(k−1)}. More generally, given any packet erasure pattern, we can
define a time stamp ts(k) at every time step k such that the erasures did not allow
any information transmitted by the encoder after time ts(k) to reach the decoder.
Without loss of generality, we can restrict attention to information-set feedback
controllers. For a given information set I(.), denote the minimal value of the cost
JLQG that can be achieved with the optimal controller design by J⋆LQG(I), and the
smallest sigma algebra generated by the information set as I(.). If two information
sets I1(.) and I2(.) are such that I1(k) ⊆ I2(k), we have J⋆LQG(I2) ≤ J⋆LQG(I1).

Consider an algorithm A1 in which at every time step k, the sensor trans-
mits all measurements y(0), y(1), · · · , y(k) to the decoder. Note that this algo-
rithm is not a valid encoding algorithm since the dimension of the transmitted
vector is not bounded, as k increases. However, with this algorithm, for any drop
sequence, the decoder has access to an information set of the form Imax(k) =
{y(0), y(1), · · · , y(ts(k))}, where ts(k) ≤ k − 1 is the time stamp defined above.
This is the maximal information set that the decoder can have access to with any
algorithm, in the sense that I(k) ⊆ Imax(k), for any other algorithm that yields the
information set I(k). Thus, one way to achieve the optimal value of the cost func-
tion is to utilize an algorithm that makes Imax(k) available to the sensor at every
time k along with a controller that optimally utilizes this set. Further, one such
encoder algorithm is A1. However, as discussed above, A1 is not a valid encoding
algorithm. Surprisingly, as shown below, we can achieve the same performance with
an algorithm that transmits a vector with finite dimension.

We begin with the following separation principle when the decoder has access
to the maximal information set. Denote by α̂(k|β(k)) the minimum mean squared
error (MMSE) estimate of the random variable α(k) based on the information β(k).

Theorem 6.13 (Separation Principle with Maximal Information Set). Consider
the control problem as defined above, when the decoder has access to the maximal
information set Imax(k) at every time step. Then, the optimal control input is given
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by
u(k) = ûLQ

(
k|Imax(k), {u(j)}k−1

j=0

)
,

where uLQ(k) is the optimal LQ control law.

The proof of this result is similar to the standard separation principle (see,
e.g., [?, Chapter 9]) and is omitted here. For our setting, the importance of this
result lies in the fact that it recognizes that ûLQ

(
k|Imax(k), {u(j)}k−1

j=0

)
(or, in turn,

x̂LQ
(
k|Imax(k), {u(j)}k−1

j=0

)
) is a sufficient statistic to calculate the control input

that achieves the minimum possible cost for any encoding algorithm. Utilizing the
fact that the optimal MMSE estimate of x(k) is linear in the effects of the maximal
information set and the previous control inputs, we can identify the quantity that
the encoder should transmit that depends only on the measurements. We have the
following result.

Theorem 6.14 (Separation of the Effect of the Control Inputs). The quantity
x̂LQ

(
k|Imax(k), {u(j)}k−1

j=0

)
can be calculated as

x̂LQ
(
k|Imax(k), {u(j)}k−1

j=0

)
= x̄LQ (k|Imax(k)) + ψ(k),

where x̄LQ (k|Imax(k)) depends only on Imax(k) but not on the control inputs and
ψ(k) depends only on the control inputs {u(j)}k−1

j=0 . Further both x̄LQ (k|Imax(k))
and ψ(k) can be calculated recursively.

Proof. The proof follows readily from noting that x̂LQ
(
k|Imax(k), {u(j)}k−1

j=0

)
can

be obtained from the Kalman filter which is affine in both measurements and control
inputs. We can identify

x̄LQ (k|Imax(k)) = Ak−ts(k)−1x̆(ts(k) + 1|ts(k))

ψ(k) = Ak−ts(k)−1ψ̆(ts(k) + 1) +

k−ts(k)−2∑

i=0

AiBu(k − i− 1),

where x̆(j + 1|j) evolves as

M−1(j|j) = M−1(j|j − 1) + CTR−1
v C

M−1(j|j)x̆(j|j) = M−1(j|j − 1)x̆(j|j − 1) + CTR−1
v y(j)

M(j|j − 1) = AM(j − 1|j − 1)AT +Rw

x̆(j|j − 1) = Ax̆(j − 1|j − 1),

with the initial conditions x̆(0| − 1) = 0 and M(0| − 1) = Π(0), and ψ̆(j) evolves as

ψ̆(j) = Bu(j − 1) + Γ(j − 1)ψ̆(j − 1)

Γ(j) = AM−1(j − 1|j − 1)M(j − 1|j − 2),

with the initial condition ψ̆(0) = 0.

Now consider the following algorithm A2. At every time step k, the encoder
calculates and transmits the quantity x̆(k|k) using the algorithm in the above proof.
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The decoder calculates the quantity ψ(k). If the transmission is successful, the
decoder calculates

x̂LQ
(
k + 1|Imax(k + 1), {u(j)}kj=0

)
= x̄LQ (k + 1|Imax(k + 1)) + ψ(k)

= Ax̆(k|k) + ψ(k).

If the transmission is unsuccessful, the decoder calculates

x̂LQ
(
k + 1|Imax(k + 1), {u(j)}kj=0

)
= Ak−ts(k)x̄LQ (k + 1|Imax(ts(k) + 1)) + ψ(k),

where the quantity x̄LQ (k + 1|Imax(ts(k) + 1))) is stored in the memory from the
last successful transmission (note that only the last successful transmission needs to
be stored). Using the Theorems 6.13 and 6.14 clearly allows us to state the following
result.

Theorem 6.15 (Optimality of the Algorithm A2). Algorithm A2 is optimal in the
sense that it allows the controller to calculate the control input u(k) that minimizes
JLQG.

Proof. At every time step, the algorithm A2 makes x̂LQ
(
k + 1|Imax(k + 1), {u(j)}kj=0

)

available to the controller. Thus, the controller can calculate the same control input
as with the algorithm A1 which together with an LQ controller yields the minimum
value of JLQG.

Note that the optimal algorithm is non-linear (in particular, it is a switched
linear system). This is not unexpected, in view of the non-classical information
pattern in the problem.

Remarks
• Boundedness of the Transmitted Quantity: It should be emphasized that the

quantity x̆(k|k) that the encoder transmits is not the estimate of x(k) (or the state
of some hypothetical open loop process) based only on the measurements y(0), · · · ,
y(k). In particular under the constraint on the erasure probability that we derive
later, the state x(k) is stable and hence the measurements y(k) are bounded. Thus,
the quantity x̆(k|k) is bounded. This can also be seen from the recursive filter used
in the proof of Theorem 6.14. If the closed loop system x(k) is unstable due to
high erasure probabilities, x̆(k|k) would, of course, not be bounded. However, the
optimality result implies that the system cannot be stabilized by transmitting any
other bounded quantity (such as measurements).

• Optimality for any Erasure Pattern and the ‘Washing Away’ Effect: The op-
timality of the algorithm required no assumption about the erasure statistics. The
optimality result holds for an arbitrary erasure sequence, and at every time step (not
merely in an average sense). Moreover, any successful transmission ‘washes away’
the effect of the previous erasures in the sense that it ensures that the control input
is identical to the case as if all previous transmissions were successful.

• Presence of Delays: We assumed that the communication channel introduces
a constant delay of one time step. However, the same algorithm continues to remain
optimal even if the channel introduces larger (or even time-varying) delays, as long
as there is the provision of a time stamp from the encoder regarding the time it
transmits any vector. The decoder uses the packet it receives at any time step only
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if it was transmitted later than the quantity it has stored from the previous time
steps. If this is not true due to packet re-ordering, the decoder continues to use
the quantity stored from previous time steps. Further, if the delays are finite, the
stability conditions derived below remain unchanged. Infinite delays are equivalent
to packet erasures, and can be handled by using the same framework.

Stability and Performance: Both the stability and performance of the system
with this optimal coding algorithm in place can be analyzed by assuming specific
models for the erasure process. For pedagogical ease, we adopt the i.i.d. erasure
model, with an erasure occurring at any time step with probability p. Due to the
separation principle, to obtain the stability conditions, we need to consider the
conditions under which the LQ control cost for the system, and the covariance of
the estimation error between the state of the process x(k) and the estimate at the
controller x̂(k) remain bounded, as time k increases. Under the controllability and
observability assumptions the LQ cost remains bounded, if the control value does.
Define the estimation error and its covariance as

e(k) = x(k) − x̂(k)

P (k) = E
[
e(k)eT (k)

]
,

where the expectation is taken with respect to the process and measurement noises,
and the initial condition (but not the erasure process). Due to the ‘washing away’
effect of the algorithm, the error of the estimate at the decoder evolves as

e(k + 1) =

{
ē(k + 1) no erasure

Ae(k) erasure event,

where ē(k) is the error between x(k) and the estimate of x(k) given all control
inputs {u(j)}k−1

j=0 and measurements {y(j)}k−1
j=0 . Thus, the error covariance evolves

as

P (k + 1) =

{
M(k + 1) with probability 1 − p

AP (k)AT +Rw with probability p,

where M(k) is the covariance of the error ē(k). Thus, we obtain

E[P (k + 1)] = (1 − p)M(k + 1) + pRw + pAE[P (k)]AT ,

where the extra expectation for the error covariance is taken over the erasure pro-
cess in the channel. Since the system is observable, M(k) converges exponentially
to a steady state value M⋆. Thus, the necessary and sufficient condition for the
convergence of the above discrete algebraic Lyapunov recursion is

pρ(A)2 < 1,

where ρ(A) is the spectral radius of A. Due to the optimality of the algorithm
considered above, this condition is necessary for stability of the system with any
causal encoding algorithm. In particular, for the strategy of simply transmitting
the latest measurement from the sensor as considered in the one block design, this
condition turns out to be necessary for stability (though not sufficient for a general
process model). For achieving stability with this condition, we require an encoding
strategy, such as the recursive algorithm provided above.
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This analysis can be generalized to more general erasure models. For example,
for a Gilbert-Eliot type channel model, the necessary and sufficient condition for
stability is given by

q00ρ(A)2 < 1,

where q00 is the conditional probability of an erasure event at time k+ 1, provided
an erasure occurs at time k. In addition, by calculating the terms E[P (k)] and the
LQ control cost of the system with full state information, the performance JLQG can
also be calculated through the separation principle proved above. The value of the
cost function thus achieved provides a lower bound to the value of the cost function
achievable using any other encoding or control algorithm, for the same probability
of erasure. An alternative viewpoint is to consider the encoding algorithm above
as a means for transmitting data with lesser frequency to achieve the same level of
performance, than, e.g., transmitting measurements to the controller.

Higher Order Moments: It can be seen that the treatment above can be
extended to consider the stability of higher order moments of the estimation error,
or the state value. In fact, the entire steady state probability distribution function
of the estimation error can be calculated.

Extensions and Open Questions

The above framework was explained for a very simple set-up of an LQG problem.
It is natural to consider its generalization to other models by removing various
assumptions. We consider some of these assumptions below. We also point out
some of the open questions.

• Channel between Controller and Actuator: The encoding algorithm presented
above continues to remain optimal when a channel is present between the controller
and the actuator (as considered in Figure ??), as long as there is a provision for
acknowledgement from actuator to controller for any successful transmission, and
the protocol that the actuator follows in case of an erasure is known at the controller.
This is because these two assumptions are enough for the separation principle to
hold. If no such acknowledgement is available, the control input begins to have
a dual effect and the optimal algorithm is still unknown. Moreover, the problem
of designing the optimal encoder for the controller-actuator channel can also be
considered. This design will intimately depend on the information that is assumed
to be known at the actuator (e.g., the cost function, the system matrices and so
on). Algorithms that optimize the cost function for such information sets are largely
unknown. A simpler version of the problem would involve either

• analyzing the stability and performance gains for given encoding and decoding
algorithms employed by the controller and the actuator respectively, or,

• considering algorithms that are stability optimal, in the sense of designing
recursive algorithms that achieve the largest stability region for any possible
causal encoding algorithm.

Both these directions have seen research activity. For the first direction, algorithms
typically involve transmitting some future control inputs at every time step, or the
actuator using some linear combination of past control inputs if an erasure occurs.
The second direction has identified the stability conditions that are necessary for
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any causal algorithm. Moreover, recursive designs that can achieve stability when
these conditions are satisfied have also been identified. Surprisingly, the design is
in the form of a universal actuator that does not require access to the model of
the plant. Even if such knowledge were available, the stability conditions do not
change. Thus, the design is stability optimal.

• Presence of a Communication Network: So far we have concentrated on the
case when the sensor and the controller are connected using a single communication
channel. A typical scenario, particularly in a wireless context, would instead involve
a communication network with multiple such channels. If no encoding algorithm
is implemented, and every node in the network (including the sensor) transmits
simply the measurements, the network can be replaced by a giant erasure channel
with the equivalent erasure probability being some measure of the reliability of the
network. However, the performance degrades rapidly as the network size increases.
If encoding is permitted, such an equivalence breaks down. The optimal algorithm
is an extension of the single channel case, and is provided in [?]. The stability and
performance calculations are considerably more involved. However, the stability
condition has an interesting interpretation in terms of the capacity for fluid net-
works. The necessary and sufficient condition for stability can be expressed as the
inequality

pmax-cutρ(A)2 < 1,

where pmax-cut is the max-cut probability calculated in a manner similar to the
min-cut capacity of fluid networks. We construct cut-sets by dividing the nodes in
the network into two sets with one set containing the sensor, and the other the con-
troller. For each cut-set, we calculate the cut-set erasure probability by multiplying
the erasure probabilities of all the channels from the set containing the sensor to
the set containing the controller. The maximum such cut-set erasure probability
(over all possible cut-sets) denotes the max-cut probability of the network. The
improvement in the performance and stability region of the system by using the
encoding algorithm increases drastically with the size and the complexity of the
network.

• Multiple Sensors: Another direction in which the above framework can be
extended is to consider multiple sensors observing the same process. As with the
case with one sensor, one can identify the necessary stability conditions and a
lower bound for the achievable cost function with any causal coding algorithm.
These stability conditions are also sufficient and recursive algorithms for achieving
stability when these conditions are satisfied have been identified. These conditions
are a natural extension of the stability conditions for the single sensor case. As an
example, for the case of two sensors described by sensing matrices C1 and C2 that
transmit data to the controller across erasure channels for which erasure events are
i.i.d. with probabilities p1 and p2 respectively, the stability conditions are given by
the set

p2ρ(A1)
2 < 1

p1ρ(A2)
2 < 1

p1p2ρ(A)2 < 1,

where ρ(Ai) denotes the spectral radius of the unobservable part of the system
matrix A, when the pair (A,Ci) is represented in the observability canonical form.
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However, the problem of identifying distributed encoding algorithms to be followed
at each sensor for achieving the lower bounds on the achieved cost function remains
largely open. This problem is related to the track fusion problem that considers
identifying algorithms for optimal fusion of information from multiple sensors that
interact intermittently (e.g., see [?]). That transmitting estimates based on local
data from each sensor is not optimal is long known. While algorithms that achieve
a performance close to the lower bound of the cost function have been identified, a
complete solution is not available.

• Inclusion of More Communication Effects: Our discussion has focussed on
modeling the loss of data transmitted over the channel. In our discussion of the
optimal encoding algorithms, we also briefly considered the possibility of data be-
ing delayed or received out of order. An important direction for future work is
to consider other effects due to communication channels. Both from a theoretical
perspective, and for many applications such as underwater systems, an important
effect is to impose a limit on the number of bits that can be communicated for every
successful transmission. Some recent work [?, ?] has considered the analog digital
channel in which the channel supports n bits per time step and transmits them with
a certain probability p at every time step. Stability conditions for such a channel
have been identified and are a natural combination of the stability conditions for
the analog erasure channel above and the ones for a noiseless digital channel, as
considered elsewhere in the book. The performance of optimal encoding algorithms
and the optimal performance that is achievable remain unknown. Another channel
effect that has largely been ignored is the addition of channel noise to the data
received successfully.

• More General Performance Criteria: Our treatment focussed on a particular
performance measure - a quadratic cost, and the stability notions emanating from
that measure. Other cost functions may be relevant in applications. Thus the cost
function may be related to target tracking, measures such as H2 or H∞ [?], or
some combination of communication and control costs. The analysis and optimal
encoding algorithms for such measures are expected to differ significantly. An an
example, for target tracking, the properties of the reference signal that needs to be
tracked can be expected to play a significant role. Similarly, for H∞ related costs,
the sufficient statistic, and hence the encoding algorithms to transmit it, may be
vastly different than the LQG case. Finally, a distributed control problem with
multiple processes, sensors and actuators is a natural direction to consider.

• More General Plant Dynamics: The final direction is to consider plant dynam-
ics that are more general than the linear model that we have considered. Moving
to models such as jump linear systems, hybrid systems, and general non-linear sys-
tems will provide new challenges and results. As an example, for non-linear plants
concepts such as spectral radius no longer hold. Thus, the analysis techniques are
likely to be different and measures such as Lyapunov exponents and the Lipschitz
constant for the dynamics will likely become important.

Please send references that were cited, preferably in bibtex format. Bibitems are Vijay

commented out in source file.
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Chapter 7
Information Flow and Consensus

In this chapter we move from the problem of estimation and control of a single
system across a communications channel to the challenge of sensing, estimation
and control of a multi-agent system, with the information available to the agents
represented by a graph of interconnections. We begin with a review of the relevant
concepts in graph theory, focused on the use of algebraic techniques to characterize
the properties of the interconnection structure. We then apply these concepts to
study the problem of a group of agents reaching consensus on a shared property of
the system.

The contents of this chapter are currently based on slides from the EECI course, RMM

which were generated using some notes from Reza’s course at Caltech. Need to go
through and make sure that I am not directly making use of any of his material.

7.1 Graph Theory

In this section we give a brief overview of the field of graph theory, focused on some
of the algebraic methods that characterize the properties of the graph in terms
of a set of matrices associated with it. These techniques will be very important
for helping understand the interactions between dynamic agents across a graph,
including the consensus problem in this chapter and the distributed estimation and
control problems in the subsequent chapters. More detailed treatments are available
in a number of textbooks, including Diestel [?], Godsil and Royle [?], and Horn
and Johnson [?]. This section is based in part on a set of course notes originally
developed by Reza Olfati-Saber [?].† RMM: Need to run this

section by Reza and make
sure he is OK with the
contents.

Basic Definitions

We define a directed graph as a pair G = (V, E) consisting of a set of vertices V and
a set of edges E ⊆ V ×V. We represent a vertex (or node) as an element vi ∈ V and
an edge (or link) as a connection between two vertices, eij = (vi, vj) ∈ E . We write
|V| for the number of vertices in the graph, also known as the order of the graph.
qAn edge has an orientation given by the ordering of the vertices, so the edge eij
is distinct from the edge eji. We call vi the head of the edge and vj the tail. A
directed graph is also referred to as a digraph.

We say that two vertices vi and vj are adjacent if there exists and edge e =
(vi, vj) and vertex vj is called a neighbor of vi. We write Ni = set of all neighbors of
vi and we say that a graph G is complete if all vertices are adjacent to each other.
We define the out-degree of a vertex vi, written degout(Vi), as the number of edges
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Figure 7.1: A graph with 6 vertices.

whose head is vi. Similarly, the in-degree of a vertex vi, degin(vi) is the number of
edges with tail vi.

Example 7.1 6 node graph
Consider a graph given by the vertices V = {1, 2, 3, 4, 5, 6} and a set of edges

E = {(1, 6), (2, 1), (2, 3), (2, 6), (6, 2), (3, 4),

(3, 6), (4, 3), (4, 5), (5, 1), (6, 1), (6, 2), (6, 4)},

as shown in Figure 7.1. Node 1 has an in-degree of 3 and an out-degree of 1. Its
neighbor set is given by N1 = {v6}. Node 2 has an in-degree of 1 and an out-degree
of 3. Its neighbor set is given by N2 = {v1, v2, v6}. ∇

In many instances the orientation of the edges in a graph will not matter and
we can ignore the ordering of the verticies in an edge eij = (vi, vj). Formally, we
will consider a graph to be undirected if eij ∈ E implies that eji ∈ E . In these cases
it will often be easier to simply say that the graph is undirected and consider an
edge eij to be equivalent to an edge eji. For an undirected graph the indegree and
outdegree are the same, so we simply refer to the degree of a vertex. An undirected
graph is regular (or k-regular) if all vertices of a graph have the same degree k. A
directed graph is balanced if the out-degree is equal to the in-degree at each vertex.

Example 7.2
Figure 7.3 shows three examples of graphs. ∇

Connectedness of Graphs

A key set of properties of a graph have to do with whether there exists paths that
connect its nodes. Formally, a path is a subgraph π = (V, Eπ) ⊂ G with distinct
vertices V = {v1, v2, . . . , vm} and

Eπ := {(v1, v2), (v2, v3), . . . , (vm−1, vm)}.

The length of π is defined as |Eπ| = m − 1. A cycle (or m-cycle) C = (V, EC) is a
path (of length m) with an extra edge (vm, v1) ∈ E . We define the distance between
two vertices v and w as the length of the shortest path between them.



graphtheory.tex, v1078 2009-12-22 00:27:26Z (murray)

7.1. GRAPH THEORY 7-3

(a) (b)

(c)

Figure 7.2: Examples of graphs with different properties.

(a) (b) (c)

Figure 7.3: Examples of graphs with different properties.

An undirected graph G is called connected if there exists a path π between any
two distinct vertices of G. For a connected graph G, the length of the maximum
distance between two vertices is called the diameter of G. A graph with no cycles
is called acyclic. A tree is a connected acyclic graph.

A digraph is called strongly connected if there exists a directed path π between
any two distinct vertices of G. A digraph is called weakly connected if there exists
an undirected path between any two distinct vertices of G.

Example 7.3
Figure ?? shows examples of graphs and their connectedness properties. ∇

Matrices Associated with a Graph

In order to characterize the properties of a graph, we will use matrices to represent
the structure of the graph. The properties of these matrices can then be related
back to the properties of the graph.
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The adjacency matrix A = [aij ] ∈ Rn×n of a graph G of order n is given by:

aij :=

{
1 if (vi, vj) ∈ E
0 otherwise

The degree matrix of a graph as a diagonal n× n (n = |V|) matrix

∆ = diag{degout(vi)}
with diagonal elements equal to the out-degree of each vertex and zero everywhere
else. The Laplacian matrix L of a graph is defined as

L = ∆ −A

. It follows from the definition that the row sums of the Laplacian are all 0.

Example 7.4 6 node graph
Consider the graph shown in Example ??. The adjancy matrix and Laplacian are
given by

A =




0 0 0 0 0 1
1 0 1 0 0 1
0 0 0 1 0 1
0 0 1 0 1 0
1 0 0 0 0 0
1 1 0 1 0 0



, L =




1 0 0 0 0 −1
−1 3 −1 0 0 −1
0 0 2 −1 0 −1
0 0 −1 2 −1 0
−1 0 0 0 1 0
−1 −1 0 −1 0 3



.

∇

Periodic Graphics and Weighted Graphs

A graph with the property that the set of all cycle lengths has a common divisor
k > 1 is called k-periodic. A graph without cycles is said to be acyclic.

A weighted graph is graph (V, E) together with a map ϕ : E → R that assigns a
real number wij = ϕ(eij) called a weight to an edge eij = (vi, vj) ∈ E . The set of all
weights associated with E is denoted by W. A weighted graph can be represented
as a triplet G = (V, E ,W).

In some applications it is natural to “normalize” the Laplacian by the outdegree.
We define the weighted Laplacian as

L̃ := ∆−1L = I − Ã = I − ∆−1A

, where Ã = ∆−1A (weighted adjacency matrix).

Example 7.5 Weighted Laplacian for formation graph
Consider the graph in Figure 7.4. The weighted Laplacian is given by

L =




1 − 1
2 0 0 0 − 1

2
− 1

2 1 − 1
2 0 0 0

0 0 1 0 − 1
2 − 1

2
0 0 −1 1 0 0
0 0 − 1

2 − 1
2 1 0

0 −1 0 0 0 1




∇
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Figure 7.4: Formation control graph.

Gershgorin Disk Theorem

Add some explanatory text indicating what we are going to use all of this for. RMM

Theorem 7.1 (Gershgorin Disk Theorem). Let A = [aij ] ∈ Rn×n and define the
deleted absolute row sums of A as

ri :=

n∑

j=1,j 6=i

|aij | (7.1)

Then all the eigenvalues of A are located in the union of n disks

G(A) :=
n⋃

i=1

Gi(A), with Gi(A) := {z ∈ C : |z − aii| ≤ ri} (7.2)

Furthermore, if a union of k of these n disks forms a connected region that is
disjoint from all the remaining n − k disks, then there are precisely k eigenvalues
of A in this region.

Sketch of proof. Let λ be an eigenvalue of A and let v be a corresponding eigenvec-
tor. Choose i such that |vi| = maxj |vj > 0. Since v is an eigenvector,

λvi =
∑

i

Aijvj =⇒ (λ− aii)vi =
∑

i6=j

Aijvj

Now divide by vi 6= 0 and take the absolute value to obtain

|λ− aii| = |
∑

j 6=i

aijvj | ≤
∑

j 6=i

|aij | = ri

We can use the Gershgorin disk theorem to reason about the eigenvalues of the
Laplacian and the weighted Laplacian.

Proposition 7.2. Let L be the Laplacian matrix of a digraph G with maximum
vertex out–degree of dmax > 0. Then all the eigenvalues of A = −L are located in
a disk

B(G) := {s ∈ C : |s+ dmax| ≤ dmax} (7.3)

that is located in the closed LHP of s-plane and is tangent to the imaginary axis at
s = 0.
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RMM: Figure is currently
not referenced in the text

Figure 7.5: Graphical description of the Gershgorin disk theorem.

Proposition 7.3. Let L̃ be the weighted Laplacian matrix of a digraph G. Then all
the eigenvalues of A = −L are located inside a disk of radius 1 that is located in
the closed LHP of s-plane and is tangent to the imaginary axis at s = 0.

Another property of the Laplacian is that its rank determines the connectivity
of the graph.

Theorem 7.4 (Olfati-Saber). Let G = (V, E ,W ) be a weighted digraph of order n
with Laplacian L. If G is strongly connected, then rank(L) = n− 1.

The proof for the directed case can be found in standard textbooks on graph
theory, such as those listed at the beginning of this section.†. The proof for theRMM: check

undirected case is available in [OSM04]. Note that for directed graphs, we require
that G be strongly connected; the converse statement is not true.

Perron-Frobenius Theory

The spectrum of a matrix A is defined as spec(A) = {λ1, . . . , λn}, where λi, i =
1, . . . , n are the eigenvalues of A. The distance to the largest eigenvalue ρ(A) =
|λn| = maxk |λk| is called the spectral radius of A.

Theorem 7.5 (Perron’s Theorem, 1907). If A ∈ Rn×n is a positive matrix (A > 0),
then

1. ρ(A) > 0;

2. r = ρ(A) is an eigenvalue of A;

3. There exists a positive vector x > 0 such that Ax = ρ(A)x;

4. |λ| < ρ(A) for every eigenvalue λ 6= ρ(A) of A, i.e. ρ(A) is the unique eigen-
value of maximum modulus; and

5. [ρ(A)−1A]m → R as m → +∞ where R = xyT , Ax = ρ(A)x, AT y = ρ(A)y,
x > 0, y > 0, and xT y = 1.

Theorem 7.6 (Perron’s Theorem for Non–Negative Matrices). If A ∈ Rn×n is
a non-negative matrix (A ≥ 0), then ρ(A) is an eigenvalue of A and there is a
non–negative vector x ≥ 0, x 6= 0, such that Ax = ρ(A)x.
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(a) (b)

(c)

Figure 7.6: Irreducibility of a graph.

A directed graph is irreducible if, given any two vertices, there exists a path
from the first vertex to the second. (Irreducible = strongly connected) A matrix is
irreducible if it is not similar to a block upper triangular matrix via a permutation.
A digraph is irreducible if and only if its adjacency matrix is irreducible.

Example 7.6
Consider the graph in Figure 7.6.

Complete example RMM

∇
Theorem 7.7 (Frobenius). Let A ∈ Rn×n and suppose that A is irreducible and
non-negative. Then

1. ρ(A) > 0;

2. r = ρ(A) is an eigenvalue of A;

3. There is a positive vector x > 0 such that Ax = ρ(A)x;

4. r = ρ(A) is an algebraically simple eigenvalue of A; and

5. If A has h eigenvalues of modulus r, then these eigenvalues are all distinct
roots of λh − rh = 0.

Using the Perron and Frobenius theorems, we can study additional properties
of the Laplacian matrix of a graph. In particular, it can be shown that If G is
strongly connected, the zero eigenvalue of L is simple. If G is aperiodic, all nonzero
eigenvalues lie in the interior of the Gershgorin disk. If G is k-periodic, L has k
evenly spaced eigenvalues on the boundary of the Gershgorin disk.

Theorem 7.8 (Variant of Courant-Fischer). Let A ∈ Rn×n be a Hermitian matrix
with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and let w1 be the eigenvector of A associated
with the eigenvalue λ1. Then

λ2 = min
x 6= 0, x ∈ Cn,

x⊥w1

x∗Ax

x∗x
= min

x∗x = 1,
x⊥w1

x∗Ax (7.4)
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RMM: Figure is currently
not referenced

Figure 7.7: Spectra of the Laplacian for classes of graphs.

Proof. Since A is Hermitian matrix, it is unitary diagonalizable (see Theorem ??),
i.e. A = UΛU∗ where Λ = diag(λ1, λ2, . . . , λn). Let U = [w1|w2| · · · |wn] (wk is the
kth column of U). Then

x∗Ax = x∗UΛU∗x = (U∗x)∗Λ(U∗x)

=
n∑

i=1

λi|(U∗x)i|2 =
n∑

i=1

λi|w∗
i x|2 =

n∑

i=2

λi|w∗
i x|2 (x⊥w1)

≥ λ2

n∑

i=2

|w∗
i x|2 = λ2

n∑

i=1

|w∗
i x|2 (x⊥w1) = λ2

n∑

i=1

|(U∗x)i|2

= λ2(x
∗UU∗x) = λ2x

∗x

(7.5)

Thus, for x⊥w1 and x 6= 0
x∗Ax ≥ λ2x

∗x

where the equality is achieved with x = w2.

The second eigenvalue of the Laplacian λ2 is called the algebraic connectivity of
L.

Cyclically Separable Graphs

Definition 7.1 (Cyclic separability). A digraph G = (V, E) is cyclically separable
if and only if there exists a partition of the set of edges E = ∪nc

k=1Ek such that each
partition Ek corresponds to either the edges of a cycle of the graph, or a pair of
directed edges ij and ji that constitute an undirected edge. A graph that is not
cyclically separable is called cyclically inseparable.

Lemma 7.1. Let L be the Laplacian matrix of a cyclically separable digraph G and
set u = −Lx, x ∈ Rn. Then

∑n
i=1 ui = 0,∀x ∈ Rn and 1 = (1, . . . , 1)T is the left

eigenvector of L.

Proof. The proof follows from the fact that by definition of cyclic separability. We
have

−
n∑

i=1

ui =
∑

ij∈E

(xj − xi) =

nc∑

k=1

∑

ij∈Ek

(xj − xi) = 0
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(a) (b)

Figure 7.8: Cyclic separability.

because the inner sum is zero over the edges of cycles and undirected edges of the
graph.

Example 7.7 Cyclic separability
∇

Let G = (V, E) be a digraph. We say G is balanced if and only if the in–degree
and out–degree of all vertices of G are equal, i.e.

degout(vi) = degin(vi), ∀vi ∈ V (7.6)

Let G be a digraph with a weighted adjacency matrix A = [aij ] ∈ Rn×n that
has the property aii = 0. Then, G is balanced if and only if wl = 1.

Theorem 7.9. A digraph is cyclically separable if and only if it is balanced.

Proof. Assume the graph is cyclically separable. Then any arbitrary vertex vi of
the graph belongs to a finite number of cycles and/or undirected edges. The main
property of a cycle is that corresponding to any directed edge arriving at a vertex,
there is one edge leaving that vertex and therefore the in–degree and out-degree of
any vertex are equal, i.e. the graph is balanced.

Now, let us assume that the graph is balanced, we show that it is cyclically
separable. Suppose the opposite holds, meaning that the graph is not cyclically
separable. Then there exists a directed edge (vk, vl) of the graph which does not
belong to any cycles and/or undirected edges. Set xi = 0,∀i 6= l and let xl = 1.
Define u = −Lx, we have ui = 0,∀i 6= k and uk = xl − xk = 1 (notice that ul = 0
since k is not an out–neighbor of l). Thus

∑n
i=1 ui = 1Tu = 1 6= 0. But we know

that 1 eigenvector of L for any balanced graph, thus 1Tu = −1TLx = 0,∀x. This
is a contradiction which means every directed edge of a balanced graph belongs to
a cycle or an undirected edge, i.e. the graph is cyclically separable.

7.2 Consensus algorithms

The consensus problem involves a group of agents reaching an agreement on a
decision in a decentralized problem. In this sectoin we describe one approach to
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solving this problem, with the agents communicating on a graph.†RMM: Rewrite

Average Consensus

Consider a collection of N agents that communicate along a set of undirected links
described by a graph G. Each agent has a state xi with initial value xi(0) and to-
gether they wish to determine the average of the initial states Ave(x0) = 1/N

∑
xi0.†RMM: Ave not defined

The agents implement the following consensus algorithm:

xik+1 = ǫ
∑

j∈Ni

(xjk − xik) = −ǫ|Ni|(xik − Ave(xNi

k ))

which is equivalent to the dynamical system

xk+1 == −ǫLxk.
Proposition 7.10. If the graph is connected, there exists an ǫ such that the state
of the agents converges to x∗i = Ave(x0) exponentially fast.

• Proposition 1 implies that the spectra of L controls the stability (and conver-
gence) of the consensus protocol.

• To (partially) prove this theorem, we need to show that the eigenvalues of L
are all positive.

ẋ = −Lx L = ∆ −A

Note first that the subspaced spanned by 1 = (1, 1, . . . , 1)T is an invariant
subspace since L·1 = 0 Assume that there are no other eigenvectors with eigenvalue
0. Hence it suffices to look at the convergence on the complementary subspace 1⊥.

Let δ be the disagreement vector

δ = x− Ave(x(0))1

and take the square of the norm of δ as a Lyapunov function candidate, i.e. define

V (δ) = ‖δ‖2 = δT δ (7.7)

Differentiating V (δ) along the solution of δ̇ = −Lδ, we obtain

V̇ (δ) = −2δTLδ < 0, ∀δ 6= 0, (7.8)

where we have used the fact that G is connected and hence has only 1 zero eigenvalue
(along 1). Thus, δ = 0 is globally asymptotically stable and δ → 0 as t→ +∞, i.e.
x∗ = limt→+∞ x(t) = α01 because α(t) = α0 = Ave(x(0)),∀t > 0. In other words,
the average–consensus is globally asymptotically achieved.

For an undirected graph with Laplacian L, the rate of convergence for the con-
sensus protocol is bounded by the second smallest eigenvalue λ2

Corollary 7.10.1. Consider a network of integrators with a directed information
flow G and vertices that apply the consensus protocol. Then, α = Ave(x) is an
invariant quantity if and only if G is balanced.

Remarks.

• Balanced graphs generalized undirected graphs and retain many key proper-
ties
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Consensus on Directed Graphs

Talk through the case where the graph is directed. This includes balanced graphs, RMM

for which we recover the directed case, but also non-balanced graphs, where we
reach a consensus but the value is not the average. Can also talk here about using
different link weights, though can’t talk about the effect on rate since that is not
covered until the next section.

Consensus over Communication Channels

The plan for this subsection is to talk about modifications to the basic consensus RMM

algorithm that take into account packet losses, rate limits and delays. Need to look
through the literature to make sure we get the right basic results here to be useful.

Consensus for Idempotent Functions

Look at extensions of consensus for computing min, max and other idempotent RMM

functions. Can also talk about what happens when we get join/rejoin actions, ala
Charpentier and Chandy, though this might go better in a later section.

7.3 Effects of Information Topology

This section will cover some of the effects of the information topology on the con- RMM

sensus problem. Need to think of a better title, though.

Outline:

• Fixed graphs—rates of convergence (λ2)

• Nearest neighbor graphs

• Gossip algorithms

• Eigenvalues of the Laplacian (including small word, scale free, etc)

7.4 Applications of Consensus

This section will cover some of the applications of consensus algorithms. RMM

Outline:

• Distributed computation (Tsitsiklis, PageRank [Ishi and Tempo])

• Flocking

• Load balancing

• Intrusion detection
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7.5 Further Reading

Exercises
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Chapter 8
Distributed Estimation

In this chapter we consider the problem of state estimation in which we have a
collection of sensors that are distributed across a network. We begin by exploring
the problem of aggregating data from a decentralized network of sensors, either
at a centralized node or across a fully connected network, where the goal is to
minimize either communication or computation and the graph structure does not
play a central role. We then consider more general distributed estimation problem
where the graph is not completely connected, so that different agents on the network
have different information at different times. We next investigate the case where the
information can be lost as it is sent around the network, requiring the use of more
advanced methods of design and analysis to accommodate the network dynamics.
Finally, we provide some general remarks about when the estimation problem can
be separated from the control problem, allow us to separately solve the (optimal)
estimation problem. The next chapter looks in more detail at the distributed control
problem, where we wish to design a feedback control system across a graph to solve
a given task.

8.1 Decentralized Sensor Fusion

Note: The goal of this section is going to be to summary the “classical” results in
distributed sensor fusion, focused mainly on the information form. [RMM, 19 Jun
09]

Decide how much of the sensor fusion/information filter work currently in Chapter RMM

2 should be put here instead. For now, the material here comes from the OBC
book, but we can either toss this material or move the material from Ch 2 up and
integrate them.

Consider a single process with multiple sensors connected together across a
network, as shown in Figure 8.1. We assume that the system being observed has
dynamics

x[k + 1] = Ax[k] +Bu+ w,

where X ∈ Rn† represents the state, u ∈ Rp represents the (deterministic) input, RMM: Decide whether to
be more formally correct
here

W ∈ Rq represents process disturbances, Y ∈ Rq represents the system output and
W ∈ Rq represents measurement noise. We would like to form an estimation of the
state x̂, either at each sensor or at the central hub.

Introduce some examples here? RMM
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Figure 8.1: Schematic diagram of a distributed sensing system. The system on
the left represents the system being observed. Multiple sensors take measurements
and communication with each other across a communications network. A (optional)
centralized hub collections information across the network.

Figure 8.2: Sensor fusion

• Alice - multiple sensors looking at the environment plus possible need for
different information at different points (e.g. urban planning)

• RoboFlag - each robot needs an estimate of the (local) environment plus
players need to know the entire centralized hub.

The approach we take to solve this problem depends on the structure of the
information pattern. If a centralized hub is available, all sensors can send data
to the hub and a centralized Kalman filter can be used to compute the estimate.
An alternative, which is more efficient in some settings [?], is to have some of the
information processing done at the sensor nodes. To see how this can be done, we
reformulate the Kalman filter in an alternative form.

The text below partially duplicates information contained in Chapter 2. Need toRMM

decide what goes where.

Consider the situation described in Figure 8.2, where we have an input/output
dynamical system with multiple sensors capable of taking measurements. The prob-
lem of sensor fusion involves deciding how to best combine the measurements from
the individual sensors in order to accurately estimate the process state X. Since
different sensors may have different noise characteristics, evidently we should com-
bine the sensors in a way that places more weight on sensors with lower noise. In
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addition, in some situations we may have different sensors available at different
times, so that not all information is available on each measurement update.

To gain more insight into how the sensor data are combined, we investigate the
functional form of L[k|k]. Suppose that each sensor takes a measurement of the
form

Y i = CiX + V i, i = 1, . . . , q,

where the superscript i corresponds to the specific sensor. Let V i be a zero mean,
white noise process with covariance σ2

i = RV i(0). It follows from Lemma ?? that

L[k|k] = P [k|k]CTR−1
W .

First note that if P [k|k] is small, indicating that our estimate of X is close to
the actual value (in the MMSE sense), then L[k|k] will be small due to the leading
P [k|k] term. Furthermore, the characteristics of the individual sensors are contained
in the different σ2

i terms, which only appears in RW . Expanding the gain matrix,
we have

L[k|k] = P [k|k]CTR−1
W , R−1

W =




1/σ2
1

. . .

1/σ2
q


 .

We see from the form of R−1
W that each sensor is inversely weighted by its covariance.

Thus noisy sensors (σ2
i ≫ 1) will have a small weight and require averaging over

many iterations before their data can affect the state estimate. Conversely, if σ2
i ≪

1, the data is “trusted” and is used with higher weight in each iteration.

An alternative formulation of the Kalman filter is to make use of the inverse of

the covariance matrix, called the information matrix, to represent the error of the
estimate. It turns out that writing the state estimator in this form has several
advantages both conceptually and when implementing distributed computations.
This form of the Kalman filter is known as the information filter.

We begin by defining the information matrix I and the weighted state estimate
Ẑ:

I[k|k] = P−1[k|k], Ẑ[k|k] = P−1[k|k]X̂[k|k].

We also make use of the following quantities, which appear in the Kalman filter
equations: RMM: Need to sort out

subscripts versus
superscriptsΩi[k|k] = (Ci)TR−1

W i [k|k]Ci, Ψi[k|k] = (Ci)TR−1
W i [k|k]CiX̂[k|k].

Using these quantities, we can rewrite the Kalman filter equations as

Prediction Correction

I[k|k−1] =
(
AI−1[k−1|k−1]AT +RW

)−1

, I[k|k] = I[k|k−1] +

q∑

i=1

Ωi[k|k],

Ẑ[k|k−1] = I[k|k−1]AI−1[k−1|k−1]Ẑ[k−1|k−1] +Bu[k−1], Ẑ[k|k] = Ẑ[k|k−1] +

q∑

i=1

Ψi[k|k].
RMM: These equations
need to be checked and
also reformatted
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(a)

Plots
(b)

Figure 8.3: Distributed estimation on a graph.

Note that these equations are in a particularly simple form, with the information
matrix being updated by each sensor’s Ωi and similarly the state estimate being
updated by each sensors Ψi.

Remarks:

1. Information form allows simple addition for correction step. Intuition: add
information through additional data.

2. Sensor fusion: information content = inverse covariance (for each sensor)

3. Variable rate: incorporate new information whenever it arrives. No data =⇒
no information =⇒ prediction update only.

Say something here about hierarchical Kalman filtering in the context of the in-RMM

formation filter formulation. Basically demonstrate results from Chong using the
information filter formulation.

Another classical information pattern is that of a fully connected network. In this
case, everyone can send either measurements to each other and we can reconstruct
the state using local Kalman (or information) filters.

Talk through the computational and communication tradeoffs. This material followsRMM

Rao et al and should summarize a number of special cases, including Speyer and
Willsky.

8.2 Distributed estimation on a graph

A more general case occurs when the information is distributed along a graph, as
shown in Figure 8.3. Suppose that we have no central hub and we want each sensor
to converge to a single global estimate. For simplicity we first consider the static
system case, in which all nodes should converge to the optimal estimate

x̂∞ =

N∑

j=1

R−1
j yj .

As our starting point, we make use of the consensus algorithms described in
Section ??. The basic algorithm is as follows:
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• Each node measures yi

• Each node initializes its state to x(0) = R−1
i yi, where Ri is the covariance

associated with sensor i

• Run the consensus protocol, which implies that each node converges to the
optimal estimate.

From the results on consensus filters, it can be shown that the convergence rate
is bounded by e−λ2t, where λ2 is the second smallest eigenvalue of the graph
Laplacian.†. Many extensions to this basic algorithm are possible, including the RMM: Think through

the directed casecase of time-varying communication graphs, delays and intermittent communica-
tions.

The static algorithm can be extended to the case of a dynamic system in several
different ways:

• Fixed graph, ala Durrant-Whyte et al

– Communication measurements and run full KF

– Communication local estimate + covariance and account for duplica-
tion [?]

– Doesn’t handle dropped packets, changing communications graph

• “Microfilter architecture” (Olfati-Saber)

– Need CF to convert quickly (compared to KF dynamics) and track mea-
surements

– Resulting filter is approximate (may not be optimal prior to convergence),
but handles packet delays, etc (inherited from CF properties).

– ??? sending measurements plus covariance matrices (if Ri(k) not con-
stant)

• Consensus on estimates

Proposition 8.1 (Olfati-Saber). In the absence of noise, x̂i → x.

Proof. Include sketch RMM
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Remarks:

1. Can write in discrete time

2. Only approximate KF; lose optimality during transient

3. Can handle varying graph, packet loss, time delay, etc

4. Only requires sensing estimates; Pi is local error covariance (doesn’t account
for neighbor covariance)

Final remarks (on distributed estimation):

1. Distributed KF on a fixed graph (star, completely connected, undirected) is
well understood. Basically manipulate the information filter.

2. Alternative approach: use consensus filter on measurements or estimates. Lose
optimality, but can handle network effects.

8.3 Distributed Estimation with Packet Loss

We now consider what happens if the graph describing the flow of information
around the network is not along a fixed graph. We consider a number of cases,
starting with the case in which we can only use a subset of the links on a network
at a given time, and then moving to more complicated situations in which the
network can drop packets in an unknown way.

Outline:RMM

• Sensor scheduling with a deterministic pattern

• Multiple sensors, packet erasure (Gupta Phd Sec 3.6?)

• Stochastic sensor scheduling

• Multi-description code? (perhaps as part of broader list of “advanced tech-
niques”?

8.4 Combining Estimation and Control

In many applications we wish to make use of our estimate of the state of a system
for the purposes of controlling the behavior of the system. In this case, the system
state depends on the action of the controller, which itself depends on the estimate of
the state. In traditional control systems, it can be shown that a separation principle
applies, in which we can design the controller assuming we measure the exact state
and design the estimator without taking the specific form of the feedback controller
into account. In this section we summarize the situations in which we can similar
separation principles in distributed estimation principles. We defer the analysis and
design of the distributed controllers to the next chapter.

Write up summary of when we can get a separation principle, following results fromRMM

Vijay’s thesis.
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8.5 Further Reading

The early literature on distributed estimation (and control) focused on extending
optimal estimation techniques in which the information distribution network was
either completely connected [?, ?] or hierarchical [?]. A key question was how to
incorporate data taken from a number of sensors into either a centralized node or
a (completely connected) set of agents. Much of the early work was focused on the
problem of target tracing across a distributed geographical area. A fairly general
version of these decentralized estimation results that made use of the information
form of the Kalman filter was presented by Rao et al. [?].

Second paragraph on the more recent literature, including some of our own papers. RMM
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Chapter 9
Distributed Control

Outline:

• Problem discription: centralized, decentralized, distributed, coupled

• Stability and performance of networked systems (Fax stability criterion +
sensitivity analysis by Z. Jin and S. Tonetti)

• (Sub) Optimal distributed control

• Spatially invariant systems (Dulerud, D’Andrea et al + Rotkowitz, Lall)

9.1 Introduction

9.2 Stability and performance of interconnected systems

9.3 Stability of interconnected sytems

Note: Plan to describe the stability conditions from Alex Fax that show how graph
topology interacts with dynamics. Other possible things to include:

• Signal flow graphs (useful for computing sensitivity functions, ala Stefania)

• Formula for characteristic equation for the graph Laplacian (from H̊akan)

[RMM, 19 Jun 09]

Suppose that each agent’s dynamics are governed by

ẋi = Axi +Bui

yi = Cxi
(9.1)

Fax [FM04] considers a control law in which each system attempts to stabilize itself
relative to its neighbors. This is accomplished by constructing an error for each
system that is a weighted combination of the relative outputs of the neighbors:

ei =
∑

j∈N i

αij(y
j − yi) (9.2)

where αij is the relative weight. For simplicity, we consider uniform weighting here,
so that αij = 1/|N i| where |N i| is the number of neighbors of node i. The results
are easily extended to the more general case.
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Given the error (10.3), we apply a compensator that attempts to stabilize the
overall system. For simplicity, we assume here that the stabilizer is given by a
constant gain

ui = Kei, (9.3)

with K ∈ Rm×m representing the compensation (gain) matrix. In practice, one can
use a dynamic compensator to improve performance, but for analysis purposes we
can just assume these dynamics are included in the system dynamics (10.2).

The interconnectedness of the system, represented by the neighbor sets Ni can
be studied using tools from graph theory. In particular, for the the case of uniform
weighting of the errors, it turns out that the combined error vector e ∈ RN ·m can
be written as

e = (L̄⊗ I)x (9.4)

where ⊗ represents the Kronecker product and L̄ is the weighted Laplacian as-
sociated with the (directed) graph that models the neighbors of each node. The
weighted Laplacian is a standard object in graph theory and can be defined as

L̄ = D−1(D −A)

where D is a diagonal matrix whose entries are the out-degree of each node and
A is the adjacency matrix for the graph (see [FM04] for more detail). Using this
framework, Fax showed the following:

Theorem 9.1. A local controller K stabilizes the formation dynamics in equa-
tion (10.2) with error (10.5) and gain K if and only if it stabilizes the set of N
systems given by

ẋ = Ax+B · λi · (Ky)
y = Cx

(9.5)

where {λi} are the eigenvalues of the weighted graph Laplacian L̄.

Proof. We make use of the following notational conventions:

• Â = IN ⊗A: block diagonal matrix with A as elements

• A(n) = A⊗ In: replace elemnts of A with aijIn

• For X ∈ Rr×s and Y ∈ RN×N , X̂Y(s) = Ŷ X(r)

Let T be a Schur transformation for L, so that U = T−1LT is upper triangular.
Transform the (stacked) process states as x̃ = T(n)x and the (stacked) controller

states as ξ̃ = T(n)ξ. The resulting dynamics become

d

dt

[
x̃

ξ̃

]
=

[
Â+ B̂K̂ĈU(n) B̂Ĥ

ĜĈU(n) F

] [
x̃

ξ̃

]
.

This system is upper triangular, and so stability is determined by the elements on
the (block) diagonal:

d

dt

[
x̃j
ξ̃j

]
=

[
A+BKCλj BH

GCλj F

] [
x̃

ξ̃

]
.

This is equivalent to coupling the process and controller with a gain λi.
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Figure 9.1: Interpretation of Theorem 1. The left figure shows the graph represen-
tation of the interconnected system and the right figure shows the corresponding
Nyquist test. The addition of the dashed line to the graph moves the negative,
inverse eigenvalues of L̄ from the positions marked by circles to those marked by
crosses.

This theorem has a very natural interpretation in terms of the Nyquist plot of
dynamical system. In the standard Nyquist criterion, one checks for stability of a
feedback system by plotting the open loop frequency response of the system in the
complex plane and checking for net encirclements of the −1 point. The conditions
in Theorem 1 correspond to replacing the −1 point with −1/λi for each eigenvalue
λi of L̄. This interpretation is illustrated in Figure 10.15. The results can easily be
extended to consider weightings that are nonuniform.

Theorem 10.1 illustrates how the dynamics of the system, as represented by
equation (10.2), interacts with the information flow of the system, as represented by
the graph Laplacian. In particular, we see that it is the eigenvalues of the Laplacian
that are critical for determining stability of the overall system. Additional results
in this framework allow tuning of the information flow (considered as both sensed
and communicated signals) to improve the transient response of the system [FM04].
Extensions in a stochastic setting [?, OSM04] allow analysis of interconnected sys-
tems whose dynamics are not identical and where the graph topology changes over
time.

9.4 (Sub-) Optimal Control

Insert Vijay’s EECI writeup here RMM

9.5 Spatially Invariant Systems
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Chapter 10
Cooperative Control

This chapter is currently a verbatim copy of material from a journal submission. RMM

Need to rewrite or get permission to include

This chapter presents a survey of recent research in cooperative control of
multi-vehicle systems, using a common mathematical framework to allow different
methods to be described in a unified way. The survey has three primary parts: an
overview of current applications of cooperative control, an summary of some of the
key technical approaches that have been explored, and a description of some possi-
ble future directions for research. Specific technical areas that are discussed include
formation control, cooperative tasking, spatio-temporal planning and consensus.
This chapter is based in large part on a previously published research survey [?].

10.1 Introduction

Research on control of multi-vehicle systems performing cooperative tasks dates
back to the late 1980s, initially beginning in the field of mobile robotics (see [?]
for a more detailed history). Aided by the development of inexpensive and reliable
wireless communications systems, research in this area increased substantially in the
1990s. California’s Partners for Advanced Transit and Highways (PATH) project [?]
demonstrated multiple automobiles driving together in “platoons” and this was
quickly followed by other highway automation projects [?, ?]. In the late 1990s and
early 2000s, cooperative control of multiple aircraft, especially unmanned aerial ve-
hicles (UAVs), became a highly active research area in the United States [CPR01],
spurring further advances. Over the last decade this research area has blossomed,
with many new systems being proposed in application areas ranging from mil-
itary battle systems to mobile sensors networks to commercial highway and air
transportation systems. Some of the specific challenges of cooperative control of
multi-vehicle systems include uncertainty caused by inter-vehicle communications
and distributed operation, system complexity due to the problem size and coupling
between tasks, and scaleability to a potentially large collection of vehicles.

The purpose of this article is to provide a survey of some of the recent research
in cooperative control of multi-vehicle systems. We focus on research in the last two
decades, with some historical notes on work before this period. To help focus the
topics that are surveyed, we focus exclusively on control of multi-vehicle systems
that are working together to complete a shared task. Several other surveys of the
literature in cooperative control are available that complement the current paper
(see, e.g., [?]).

It will be helpful in the sequel to have a clear notion of some terms that will
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define the object of the survey, in particular a concise definition of “cooperative”,
which has been used in many different ways by the broad research communities
interested in this topic. For the purposes of this survey, we will consider a vehicle to
be a dynamical system whose position is given by its location in three dimensional
space. We will consider a collection of N vehicles that are performing a shared task,
where the task depends on the relationship between the locations of the individual
vehicles. The vehicles are able to communicate with each other in carrying out the
task, with the individual vehicles able to communicate with some subset of the
other vehicles.

We assume that the dynamics of the ith vehicle can be written as

ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm

ẏi = hi(xi) yi ∈ SE(3),

where xi is the state of the ith vehicle, ui is the input that controls the vehicle’s
state and f i is a smooth vector field representing its dynamics. We assume that the
location of the vehicle is given by the output yi ∈ SE(3), where SE(3) is the set
of rigid body configurations (position and orientation). More general formulations
allowing position and velocity as part of the location description are possible as well,
but will be omitted for simplicity. We let x = (x1, . . . , xN ) represent the complete
state for a collection of N vehicles.

In addition to the location of the vehicle, we will also assume that each vehicle
has a discrete state, αi, which we define as the role of the vehicle. The role of
the vehicle will be represented as an element of a discrete set A whose definition
will depend on the specific cooperative control problem under consideration. As
indicated by the terminology, we will generally consider the role variable αi to
represent the portion of the vehicle’s overall state that encodes its current actions
and its relationship with the overall task being performed. We will assume that the
role of a vehicle can change at any time and we will write a change of role as

α′ = r(x, α),

where α′ indicates the new value of α. We let α = (α1, . . . , αN ) represent the roles
of the collection of N vehicles and write αi(t) for the role of vehicle i at time t.

We assume that the vehicles are able to communicate with some set of other
vehicles and we represent the set of possible communication channels by a graph
G. The nodes of the graph represent the individual vehicles and a directed edge
between two nodes represents the ability of a vehicle to receive information from
another vehicle. We write N i(G) to represent the neighbors of vehicle i, that is, the
set of vehicles that vehicle i is able to obtain information from (either by explicit
communication or by sensing the position of the other vehicle). In general, N i

can depend on the locations and roles of the vehicles, in which case we will write
N i(x, α). The number of neighbors of the ith vehicle is given by the number of
elements of N i, written |N i|.

Given a collection of vehicles with state x and roles α, we will define a task in
terms of a performance function

J =

∫ T

0

L(x, α, u) dt+ V (x(T ), α(T )),
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where T is the horizon time over which the task should be accomplished, L repre-
sents the incremental cost of the task and V represents the terminal cost of the task.
As special cases, we can take T = ∞ to represent infinite horizon problems or take
L = 0 to represent tasks in which we are only interested in the final state. We may
also have constraints on the states or inputs, although we shall generally consider
such constraints to be included in the cost function (eg, via Lagrange multipliers)
for ease of presentation.

A strategy for a given task is an assignment of the inputs ui for each vehicle
and a selection of the roles of the vehicles. We will assume that the inputs to the
vehicles’ dynamics are given by control laws of the form

ui = γ(x, α)

where γ is a smooth function. For the choice of roles, we make use of the notion of
a guarded command language (see [KM04]): a program is a set of commands of the
form

{gij(x, α) : rij(x, α)}
where gij is a guard that evaluates to either true or false and rij is a rule that

defines how the role αi should be updated if the rule evaluates to true. Thus, the
role evolves according to the update law

αi ′ =

{
rij(x, α) g(x, α) = true

unchanged otherwise.

This update is allowed to happen asynchronously, although in practice it may be
assigned by a central agent in the system, in which case it may evolve in a more
regular fashion. We write Σi to represent the overall strategy (control law and
guarded commands) for the ith vehicle. Σ = (Σ1, . . . ,ΣN ) is used to represent the
complete strategy for the system.

Using these definitions, we can now provide a more formal description of a
cooperative control problem. We say that a task can be additively decoupled (or
just decoupled) if the cost function J can be written as

J =

N∑

i=0

(∫ T

0

Li(xi, αi, ui) dt+ V i(xi(T ), αi(T ))

)
.

If a task is not decoupled, we say that the task is cooperative, by which we mean
that the task performance depends on the joint locations, roles and inputs of the
vehicles. (Note that we are assuming here that all vehicles are trying to solve a
common objective and hence not considering adversarial tasks, for which a more
careful notation would be required.)

We say that a strategy is centralized if Σi depends on the location or role of any
vehicle that is not a neighbor of i. A strategy is decentralized if

ui(x, α) = ui(xi, αi, x−i, α−i)

{gij(x, α) : rij(x, α)} = {gij(xi, αi, x−i, α−i) : rij(x
i, αi, x−i, α−i)},

where we use the shorthand x−i and α−i to represent the location and roles of
vehicle i’s neighbors (hence x−i = {xj1 , . . . , xjmi where jk ∈ N i and mi = |N i|.}.
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We will mainly be interested in cooperative tasks that can be solved using a decen-
tralized strategy.

We note that the definitions used here are not the most general possible and
we have ignored some subtleties regarding the formal definition of the “solution” of
a task (i.e., we assume existence and uniqueness of solutions for a given strategy).
These details are important and can be found in the various papers referenced in
this survey. One alternative set of definitions for cooperative agents can be found
in the work of Parker [?], which makes use of the notions of local/global goals and
control.

With these definitions in hand, we now proceed to consider some of the primary
applications of cooperative control of multi-vehicle systems, followed by some of the
key technical results that have been proposed in the last decade. We end the paper
with a partial listing of some of the open research directions that are currently
under exploration.

10.2 Applications Overview

In this section we summarize some of the main applications for cooperative control
of multi-vehicle systems. This summary is based on those applications of which the
author is most aware (including the results of a recent survey of future directions
in control, dynamics and systems [Mur03]), as well as a survey of the literature
(with emphasis on papers that are frequently referenced by others). Although not
comprehensive, the applications cited here demonstrate some of the key features
that must be addressed in solving cooperative control problems.

Military Systems

Modern military systems are becoming increasingly sophisticated, with a mixture
of manned and unmanned vehicles being used in complex battlefield environments,
such as the one depicted in Figure 10.1. Traditional solutions involve a central-
ized resource allocation (assignment of planes to targets), followed by decentralized
execution (each attack vehicle is responsible for a set of targets). More modern
battlespace management systems are considering the use of cooperative operation
of large collections of distributed vehicles, with location computation, global com-
munication connections and decentralized control actions [Mur03, ?].

Formation flight. One of the simplest cooperative control problems is that of for-
mation flight: a set of aircraft fly in a formation, specified by the relative locations
of nearby aircraft. This area has received considerable attention in the literature.
Some of the earliest work in this area is that of Parker [?], who consider the design
of control laws that use a combination of local and global knowledge to maintain a
formation.

NASA has experimented with formation flight as a method for reducing drag
on a collection of aircraft [Lav02]. The key idea is to locate the aircraft such that
the tip vortices of one aircraft help reduce the induced drag of the tailing aircraft.
This task requires precise alignment of an aircraft with the aircraft in front of it.
To date, demonstrations of this concept in engineering systems have been restricted



coopctrl.tex, v1070 2009-12-20 14:18:10Z (murray)

10.2. APPLICATIONS OVERVIEW 10-5

Figure 10.1: Battle space management scenario illustrating distributed com-
mand and control between heterogeneous air and ground assets. Figure courtesy
of DARPA.

to small numbers of aircraft. Similar formations in nature can involve many more
individuals [?].

Cooperative classification and surveillance. Chandler et al. [CPR01] define the co-
operative classification problem as “the task of optimally and jointly using multiple
vehicles’ sightings to maximize the probability of correct target classification”. More
generally, we can define the cooperative surveillance problem as that of using a col-
lection of vehicles to maintain a centralized or decentralized description of the state
of a geographic area. This description might include the current state of features
that are spatially fixed (such as the number of people in a given location) or in-
formation about entities that are moving in the region of interest (eg, locations of
cars and planes in a given region).

The cooperative classification problem is one in which the performance function
involves the collection of maximal amounts of relevant information. One typically
assumes that the vehicles can communicate over some range (possibly limited by
line of site, especially for ground-based vehicles) and information shared between
the vehicles can be used by the vehicles in determining their motion.

Cooperative attack and rendezvous. The rendezvous problem involves bringing a
collection of vehicles to a common location at a common time. Depending on the
application, the rendezvous time may either be fixed ahead of time or determined
dynamically, based on when all vehicles reach the same area. Military applications
of rendezvous include minimizing exposure to radar by allowing aircraft to fly in-
dividual paths that are locally optimized [CPR01].
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Figure 10.2: Autonomous ocean sampling network: (a) a depiction of the collec-
tion of vehicles that were part of the summer 2003 experiment; (b) an example of
using a collection of gliders for sampling a region of interest.

Mixed initiative systems. A variant of the cooperative control problem is the mixed
initiative cooperative control problem, in which collections of autonomous vehicles
and human operators (on the ground or in vehicles) must collectively perform a task
or a mission. This class of problems adds the complexity of providing situational
awareness to the operators and allow varying levels of control of the autonomous
system.

Mobile Sensor Networks

A second area of application in cooperative control is networks of sensors that
can be positioned so as to maximize the amount of information they are able to
gather. In this section we provide some examples of the types of cooperative control
applications that are being pursued in this area.

Environmental sampling. The Autonomous Ocean Sampling Network (AOSN) [?],
pictured in Figure 10.2 is an example of an environmental sampling network. †RMM: Get original

pictures from Naomi
[later]

The network consists of a collection of robotic vehicles that are used for “adaptive
sampling”, in which the motion of the vehicles is based on the observations taken by
the vehicles. This approach allows the sensors to be positioned in the areas in which
they can do the most good, as a function of the data already collected. Because
of the distributed nature of the measurements being taken, a cooperative control
strategy is used to control the motion of the vehicles. In tests done in the summer
of 2003, over 20 vehicles were controlled over 4 weeks to collect data [?].

Distributed aperture observing. A related application for cooperative control of
multi-vehicle systems is distributed aperture (or phased array) imaging, illustrated
in Figure 10.3. The proposed TechSat 21 project was sponsored by the US Air
Force Research Laboratory (AFRL) and was to have launched a collection of “mi-
crosatellites” that would be used to form a “virtual” satellite with a single, large
aperture antenna (the project was canceled in 2003). Another example of a dis-
tributed aperture observing system is the terrestrial planet finder (TPF), being
proposed by NASA. TPF uses optical interferometry to image distance stars and
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Figure 10.3: Distributed aperture observing systems: (a) the proposed TechSat
21 concept would use a collection of microsatellites to form the equivalent of a
larger aperture imaging system; (b) the terrestrial planet finder uses formation
flying to enable optimal interferometry for detecting planets.

to detect slight shifts in the stars positions that indicated the presence of planets
orbiting the stars [?].

Transportation Systems

Finally, the use of cooperative control in transportation systems has received con-
siderable attention over the last few decades.

Intelligent highways. Several groups around the world have begun to explore the use
of distributed control for problems related to intelligent highway and transportation
systems. These problems include increased interaction between individual vehicles
to provide safer operations (e.g., collision warning and avoidance), as well as inter-
action between vehicles and the roadway infrastructure. These latter applications
are particularly challenging since they begin to link heterogeneous vehicles through
communications systems that will experience varying bandwidths and latency (time
delays) depending on the local environment. Providing safe, reliable, and comfort-
able operation for such systems is a major challenge that will have application in a
variety of consumer, industrial, and military products and systems.

A representative example of this class of applications is the California Partners
for Advanced Transit and Highways (PATH) project [?]. In 1997 the PATH project
developed and demonstrated a system for allowing cars to be driven automatically
down a freeway at close spacing, as shown in Figure 10.4a. By decreasing the spacing
of cars, the density of traffic on a highway can be increased without requiring
additional lanes. Additional work within the PATH project has looked at a variety
of other systems for better managing traffic flow [?].

Air traffic control. Air traffic control systems are another area where methods for
cooperative control are being explored (see, e.g., [TPS98]). As the density of air
traffic continues to increase, congestion at major airports and automated collision
warning systems are becoming increasingly common. Figure 10.4b illustrates some
of the complexity of the current air traffic control networks. Next generation air traf-
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(a) (b)

Figure 10.4: Transportation systems. (a) A platoon of cars driving down the San
Diego freeway as part of the PATH project [?]. (b) The San Francisco Bay area
aircraft arrival and departure routes (courtesy of Federal Aviation Authority).

fic control systems will likely move from a human-controlled, centralized structure
within a given region to a more distributed system with “free flight” technologies
allowing aircraft to travel in direct paths rather than staying in pre-defined air
traffic control corridors. Efforts are now being made to improve the current system
by developing cockpit “sensors” such as augmented GPS navigation systems and
data links for aircraft to aircraft communication citeatc.

Testbeds

A variety of testbeds have been developed to explore cooperative control problems
in laboratory settings. Perhaps the most well known is RoboCup, a multi-vehicle
game of robot soccer. RoboCup was initially conceived as an attempt to foster
research in artificial intelligence, specifically that of multiple vehicles in a highly
dynamic environment [?]. The RoboCup competition is now held annually and has
competitions involving a variety of different physical and simulation platforms. Most
of the RoboCup competitions allow the use of centralized computation, although
some teams have made use of decentralized strategies [?].

A related game, dubbed RoboFlag has been developed at Cornell [?] and is
loosely based on “Capture the Flag” and “Paintball”. Two teams play the game,
the red team and the blue team, as depicted in Figure 10.5. The red team’s objective
is to infiltrate blue’s territory, grab the blue flag, and bring it back to the red home
zone. At the same time, the blue team’s objective is to infiltrate red’s territory,
grab the red flag, and bring it back to the blue home zone. The game is thus
a mix of offense and defense: secure the opponent’s flag, while at the same time
prevent the opponent from securing your flag. Sensing and communications are
both limited to provide a more realistic distributed computing environment. The
game is meant to provide an example of multi-vehicle, semi-autonomous systems
operating in dynamic, uncertain, and adversarial environments. Human operators
can also be present in the system and can be used either as high level controllers or
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Figure 10.5: The RoboFlag playing field [?].

as low level (remote) “pilots”. A centralized control unit may be used to coordinate
the vehicles, but it must respect the communication constraints (bandwidth and
latency) of the system.

Several physical testbeds have also been developed, ranging from wheeled robots
such as those used in RoboCup, to hovercraft that provide some of the dynamics
more typical of aircraft [?, VSR+04], to small-scale aircraft [HRW+04, KKAH04]
and helicopters [SKS03, SV99]. These citations are far from complete, but give an
example of the range of physical testbeds that have been developed.

10.3 Technology Overview

In this section we provide a brief survey of some of the techniques that have been
developed for designing strategies for cooperative control tasks. We make use of
the mathematical notation defined in the introduction wherever possible. We focus
primarily on the problem formulation and the approach used in its solution, leaving
the details of the proofs of stability, convergence and optimality to the original
papers.

Formation Control

Many of the applications above have as part of their solution the ability to maintain
the position of a set of vehicles relative to each other or relative to a reference. This
problem is known as formation control and has received considerable attention,
both as a centralized and as a decentralized problem.

Optimization-based approaches. One way to approach the formation control problem
is to formulate it as an optimization problem. If we let Li(xi, x−i) represent the
individual formation error between the ith vehicle and its neighbors, then we can
establish a cost function

L(x, α, u) =
∑

Li(xi, x−1) + ‖ui‖2
R,
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Figure 10.6: Four vehicle formation using distributed receding horizon con-
trol [DM06].

where the summation over the individual formation errors gives the cumulative
formation error [?] and the final term is a penalty on the inputs (other forms could
be used).

This problem can be solved in either a centralized manner or a distributed man-
ner. One distributed approach is the work of Dunbar et al. [DM06], who considers
cooperative control problems using receding horizon optimal control. For a cost
function whose coupling reflects the communication constraints of the vehicles, he
generates distributed optimal control problems for each subsystem and establishes
that the distributed receding horizon implementation is asymptotically stabilizing.
The communication requirements between subsystems with coupling in the cost
function are that each subsystem obtain the previous optimal control trajectory of
those subsystems at each receding horizon update. The key requirements for stabil-
ity are that each distributed optimal control not deviate too far from the previous
optimal control, and that the receding horizon updates happen sufficiently fast.

Figure 10.6 shows a simulation of Dunbar’s results. The vehicles are flying in
“fingertip formation”, with vehicles 2 and 3 maintaining position relative to vehicle
1 and vehicle 4 maintaining position relative to vehicle 2. The control goal is to
maintain formation around the black square, which is flying along a trajectory that
is not known to the individual aircraft. The localized optimization for each vehicle
uses a previous optimal path for its neighbors while constraining its own path to
stay near the previous path that it communicated to others.

Potential field solutions. Another approach to solving the formation control problem
is to consider the mechanical nature of the systems and to shape the dynamics of
the formation using potential fields. In this case, the control law for the individual
vehicles has the form

ui = ∇V (αi, xi, x−1)

where V is a potential function that depends on the mode of the vehicle, αi (typi-
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Figure 10.7: Formation stabilization using potential functions [OSM02]. (a) Sta-
bilization of three vehicles in the plane. (b) Time traces for individual positions of
the vehicles. (c) Stabilization of a six vehicle formation.

cally whether it is a leader or a follower).
A representative body of research in this area is the work of Fiorelli and Leonard,

who use the concept of “virtual leaders” that guide the motion of the other vehi-
cles [LF01, OFL04]. They consider two types of potential functions: an interaction
function VI and a potential generated by “leaders”, Vh. Each function generates
a repulsive force if vehicles are very close to each other, an attractive force if the
vehicles are within some interaction range but not too close or too far and no force
for vehicles beyond a certain radius. Their resulting control law is of the form

ui = −
N∑

j 6=i

∇VI(‖yi − yj‖) −
∑

k∈L

∇Vh(‖yi − yk‖) + fvi ,

where L is the set of leaders, fvi is a dissipative force based on the velocity of
the i vehicle, and local coordinates are used for yi ∈ SE(3). By appropriate choice
of fvi they are able to show asymptotic stability of various schooling and flocking
behaviors.

Other work on the use of potential fields includes that of Olfati-Saber [OSM02],
who uses potential functions obtained from structural constraints of a desired forma-
tion in a way that leads to a collision-free, distributed, and bounded state feedback
law for each vehicle. Figure 10.7 demonstrates some of the results of his algorithm
for formation control.

String stability. One issue that arises in formation control is that of “string sta-
bility,” in which disturbances grow as they propagate through a system of vehi-
cles [SH96]. One of the early sources of research on this problem was in the control
of vehicle platoons, in which one wanted to ensure that small disturbances at the
beginning of a chain of vehicles did not get amplified as one progressed down the
chain.

For simplicity, we assume that the disturbances enter through the initial states
of the vehicles. String stability is defined in terms of an infinite collection of vehicles
and our goal is to find a control law for each of the vehicles so that given ǫ > 0
there exists a δ > 0 such that

sup
i

‖xi(0)‖ < δ ⇐⇒ sup
i

‖xi(·)‖∞ < ǫ,
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Figure 10.8: String stability results for a five vehicle formation [JM04]. Each
column represents a different information topology, as shown in the diagram at
the top of the column. The first row of plots corresponds to the use of purely
local information, while the second two rows allow increasing amounts of global
information.

where the ∞ norm is taken with respect to time. In particular, this implies that
the motion of each vehicle is bounded for all time. More general norms can also be
used, as described in [SH96].

Using this definition, one can show that a system is string stable if the H∞ gain
between any two neighbors is less than one. If this is the case, then disturbances are
attenuated as they pass down the chain of vehicles. Conversely, if the dynamics and
control laws for each vehicle are identical and if the gain of the transfer function
is greater than 1 at some frequency, then disturbances at that frequency can be
amplified as they propagate down the chain. These definitions can be generalized
to different topologies in which the neighbor sets are more complicated than a single
chain.

To help compensate for string instabilities, one can make use of globally trans-
mitted information that allows the vehicles to pre-compensate for disturbances. In
essence, one changes the topology of the information flow from one in which each
vehicle only sees the vehicle in front of it, to one in which vehicles also have global
information about the position of the lead vehicle. Figure 10.8 shows the responses
of a set of vehicles with different topologies and different levels of global informa-
tion. In this simulation, the lead vehicle responds to a step input at time t = 15.
The variable α controls the amount of mixing between the purely local strategy
(α = 0) and a purely centralized strategy (α = 1).

It is also possible to define the performance in ways that are more structured
than string stability, for example asking whether the distances between specified
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sets of vehicles have certain levels of disturbance attenuation [JM03, Jin06].

Swarms. Finally, although not strictly a formation control problem, there has been
a great deal of interest in so-called “swarms” of vehicles. Roughly speaking, a swarm
is a large collection of vehicles that perform in a collective fashion, such as flying
together in a given direction. One early work in swarm-like behavior was that of
Reynolds, who developed a set of rules that he used to generate realistic motion of
vehicles for animation purposes [Rey87].

An innovative approach to understanding swarm behavior was taken by Jad-
babaie, Lin and Morse [JLM03], who described how to achieve coordination of
groups of mobile autonomous agents using nearest neighbor rules. The control law
was quite simple, making use of a simple heading model in which each agent up-
dated its heading according to the rule

ui =
1

1 + |N i(t)|


θi(t) +

∑

j∈N i(t)

θj(t) − θi(t)




where N i(t) is the set of vehicles that are within a radius r of vehicle i at time t.
The first term is the average heading of the neighbors of vehicle i and hence this
control essentially tells each vehicle to steer in the same direction as its neighbors.

Jadbabaie et al. are able to demonstrate that with this control law, all vehicles
will converge to a common heading. They make use of an “eventual connectivity”
assumption in which the vehicles are connected together across intervals. In other
words, while it may never be the case that at a given instant of time the graph
describing the interconnectivity is complete, as long as over a suitable interval all
vehicles are able to share information, the solution will converge to a common value.

Control laws for swarms often involve using attractive and repulsive functions
between nearby vehicles. In addition to the work of Leonard et al. already described
above, another representative work in this regard is that of Olfati-Saber [OS06], who
makes of a control input consisting of three terms

ui = f ig + f id + f iγ .

The first term f ig = −∇V (yi, y−1) is a gradient-based term where V is a potential

function. The second term f id is a damping term based on the relative velocities of
neighboring vehicles and has the form α(q)(vi − vj). The final term f iγ is a naviga-
tional feedback term that takes into account a group objective, such as moving to a
given rendezvous point. Figure 10.9 shows a sample maneuver in which 150 agents
squeeze through an opening without collision.

Substantial additional literature on stability analysis and motion control of
swarms exists in the literature; see [OS06] for a recent survey.

Cooperative Tasking

A major element of cooperative control is deciding on the tasks that different vehi-
cles will perform to satisfy the team objective. This essentially amounts to choosing
the role of the vehicles, αi.
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Figure 10.9: A squeezing maneuver using flocking algorithms of Olfati-
Saber [OS06].

MILP formulations. Several groups have formulated this problem as a mixed integer
linear program (MILP) [ED05, RBTH02, SCPP03], in which the integer variables
correspond to the role αi.

The work of Richards et al. [RBTH02] considers the problem of designing tra-
jectories for a group of vehicles that collectively visit a set of waypoints within a
given set of time constraints. They minimize a cost function of the form

J = t̄+ ρ1

N∑

p=1

(
tp + ρ2

T∑

t=0

(
|u1(t)| + |u2(t)|

)
)

where tp is the time at which the pth vehicle completes its task and t̄ is the time
at which the last vehicle completes its task. This cost function thus trades off the
input forces on the vehicles with the time that the overall task is completed as well
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Figure 10.10: Resource allocation using mixed integer linear programming
(MILP) [RBTH02].

as the tasks of the individual vehicles.
In the MILP formulation used by Richards et al. [RBTH02], the individual

assignments of waypoints to vehicles is handled by using decision variables to con-
strain the problem such that each waypoint is visited exactly once by a vehicle.
This constraint can be written in the form

T∑

t=0

N∑

p=1

Kpibipt = 1 for all waypoints i

where Kpi is the suitability of vehicle p to visit waypoint i and bipt is 1 if vehicle p
visits waypoint i and time t and zero otherwise.

Figure 10.10 shows an example of the allocation problem applied to set set of 6
vehicles. The scenario includes 12 waypoints that must all be visited, along with a
region of no fly zones (obstacles). An approximate method described in [RBTH02]
is used to solve the problem in 27 seconds on a standard PC.

A similar approach has been developed independently by Earl and D’Andrea [ED05],
in which the MILP formulation is used to solve a subproblem of the RoboFlag ex-
ample in Section 10.2. Specifically, they solve the problem of guarding a defense
zone from attackers that are trying to enter it. They formulate the problem in dis-
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crete time to be consistent with the MILP framework; for simplicity we will use a
single time discretization here and re-use t as the discrete time.

The objective function is given by

J =

T∑

t=0

γ(t) + ρ

T∑

t=0

|u(t)|

where γ(t) is a binary variable that takes on the value 1 if and only if one of the
attackers is in the defense zone at time t. This function must be minimized while
also constraining the position of the defending robots so that they avoid collisions
with each other and stay outside of the defense zone.

In addition to the dynamics of the vehicles, a complete description of the prob-
lem also requires that we define the dynamics of the attacking robots. We do this
using a discrete variable βi for each attacker that describes whether an attacker is
active or inactive. An attacker is active initially and becomes inactive if it either
enters the defense region or is “intercepted” by a defending robot (modeled by a
defending robot getting within a certain distance of the attacking robot). We as-
sume that if an attacking robot is active, it moves toward the defense zone in a
straight line.

Note that in both of these formulations, the assignment is handled implicitly:
the problem does not explicitly assign a given defender to specific attacker, but
rather relies on the optimization to choose motions of the group of defenders such
that no attackers enter the defense region.

Assignment protocols. Another approach to the cooperative tasking problem has
been to develop protocols that are used to decide on who is assigned to what task.
By “protocol” we mean a set of rules that are used to determine the individual roles
(assignments) of each vehicle. One seeks to prove that this protocol results in all
tasks being assigned to a vehicle, even in the presence of changing environmental
conditions or failures.

One of the early approaches to distributed task allocation was the ALLIANCE
software architecture developed by Parker [?]. Their approach made use of behavior
sets that were activated under certain conditions. Each behavior could itself inhibit
other behaviors, so that it was possible for a single behavior set to control the
motion of the robot. Figure 10.11 illustrates this architecture.

The activation of a behavior set is controlled through ”motivational behaviors”.
Each motivation behavior responds to some set of inputs, including external sen-
sors, inter-robot communications, inhibitory feedback from other behaviors, and
internal motivations. The two internal motivations, robot impatience and robot ac-
quiescence, allow the robot to progress when other robots fail to complete a task
or when the robot itself fails to accomplish a task. These motivational behaviors
can be viewed in the context of the guarded command framework discussed in
Section 10.1.

A related approach has been taken by Klavins [?], who constructed a language
for describing and verifying protocols for cooperative control. The computation
and control language (CCL) uses the guarded command formalism to specify sets of
actions for a collection of robots. Figure 10.12 gives an example of how a distributed
area denial task can be solved in CCL. In this example, drawn from the RoboFlag
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Figure 10.11: The ALLIANCE architecture [?].

Figure 10.12: The RoboFlag Drill.

game, 6 defensive robots are trying to protect a defense zone for an incoming set
of robots, which descend vertically at a fixed speed. The defending robots must
move underneath the incoming robots, but are not allowed to run into each other.
The defenders are randomly assigned incoming robots and are allowed to talk to
their neighbors and switch assignments under a given protocol. A protocol was
developed in [?] that is able to provably solve this problem, including ensuring
that no two robots collide and that all defensive robots eventually end up assigned
to an incoming robot with no crossing of assignments. Extensions to this approach
for observability and controllability have also been developed [DMK06, Del06].

Other approaches. Other approaches to the multi-vehicle task assignment problem
include the use of genetic algorithms [SRSP06] and tree search [?].

Spatio-Temporal Planning

A broad collection of technological developments can be described under the head-
ing of “spatio-temporal planning”, in which the paths of the robots and their lo-
cations with respect to time are to be specified and controlled. In this section we
consider two typical spatio-temporal planning problems: rendezvous and coverage.

Rendezvous. The rendezvous problem is a specific cooperative task in which one
wants to have a number of individual vehicles meet at a common point at a common
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(a) (b)

Figure 10.13: (a) Definition of the rendezvous problem for two scalar agents. (b)
Solution via construction of invariant cones.

time. The key element in the rendezvous problem is that all agents should arrive
at the same time, so that if one vehicle is delayed the other vehicles should adjust
their trajectories so that they do not arrive early.

Bhattacharya et al. [?, TFI+04] formulated the rendezvous problem by defining a
rendezvous region R around the rendezvous point (taken as the origin) and letting ρ
be the ratio of the maximum and minimum distances of the vehicles at the time that
one of them enters the rendezvous point. Letting δ be the radius of the rendezvous
region and ta the time at which the first vehicle enters the region, they define ρ as

ρ =
max(‖xi(ta)‖)

δ
.

The goal can then be defined as finding control laws such that from all initial
conditions,

ρ ≤ ρdes ≤ 1.

The case of “perfect” rendezvous corresponds to ρ = 1, in which case all vehicles
must reach the rendezvous region at precisely the same time.

This problem can be solved using a Lyapunov-based approach that uses feed-
back to create an invariant cone in the phase space [TFI+04, ?], as illustrated in
Figure 10.13. The problem definition is shown in Figure 10.13a, which shows the
phase space for two scalar vehicles. To achieve rendezvous, these vehicles must
reach x = 0 at approximately the same time, without either of the individual ve-
hicles coming near x = 0 before that time. This creates a set of forbidden regions
in the phase space. By proper choice of control law, it is possible to render certain
cones as invariant, as shown in Figure 10.13b. The resulting trajectories satisfy the
rendezvous problem. The feedback in this case is centralized, requiring each vehicle
to communicate its position to nearby vehicles.

Coverage. The coverage control problem refers to the use of a collection of vehicles
to provide sensor coverage for a given geographic area. It is thus one approach to
the cooperative surveillance problem. Given a set of N vehicles, we wish to allocate
each vehicle to a region in which it is responsible for providing sensor information.
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Figure 10.14: Coverage control applied to a polygonal region with Gaussian
density function around the point in the upper right [?].

The centralized version of this problem is referred to as the locational optimization
problem and there is a large literature describing different approaches (see [?] for a
survey). We focus here on the decentralized solution proposed by Cortes et al. [?].

The approach taken by Cortes et al. is to partition a region Q into a set of
polytopes W = {W 1, . . . ,WN} that cover Q. Each polytope is assigned to a specific
vehicle to each region and we let f i : R+ → R+ represent the sensing performance
of a vehicle based on its distance from a given point, with f small representing good
performance. We then form the coverage control problem as choosing the locations
of each vehicle such that we minimize

L =

n∑

i=1

∫

W i

f(‖q − yi‖)φ(q)dq, (10.1)

where φ(q) is a distribution density function that represents the importance of a
given area.

It can be shown that if the location of the vehicles are fixed, the optimal de-
composition of the space Q is a Voronoi decomposition where

W i = {q ∈ Q|‖q − yi‖ ≤ ‖q − yj‖,∀j 6= i}.
This decomposition corresponds to each vehicle being responsible for the points that
are closest to it. This decomposition also introduces a natural graph of neighbors,
with two vehicles being neighbors if their Voronoi partitions share an edge.

If we let CV i represent the centroids of the Voronoi partition, then it turns out
that the control law

ui = −k(yi − CV i)

converges asymptotically to a set of critical points for the cost function, and hence
provides (locally) optimal coverage. A key element of this approach is that the only
communication required is with the nearest neighbors of the vehicle (since this is
what is needed to determine the Voronoi decomposition). Figure 10.14 illustrates
the coverage algorithm applied to a region with φ(q) being a Gaussian around the
point in the upper right portion of the region.

The above formulation assumes that the collection of vehicles that is available is
sufficient to cover the entire region of interest. A slightly different problem occurs
when there is not enough sensor range to simultaneous view all portions of the
environment that are of interest. In this case, one must selectively cover different
regions of space and change those regions over time (so that no region goes unviewed
forever). Several groups have considered this problem [?, ?, TJJM05]
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Consensus algorithms

As a final technology in cooperative control, we briefly describe the problem of
“consensus”. The consensus problem is to have a group of vehicles (or more general
agents) reach a common assessment or decision based on distributed information
and a communications protocols. Many of the decentralized problems listed above,
especially those involving assignment, can be thought of as special cases of consen-
sus.

The consensus problem has been formulated as a coordinated control problem
by Fax [FM04] and Olfati-Saber [OSM04]. A particularly simple solution to the
consensus problem is to let the behavior of each agent be governed by the first
order differential equation

ẋi = − 1

|N i|

|N i|∑

j=1

(xi − xj),

where xi ∈ R is the internal state of the agent. For this system, one can show that
if the information flow is bidirectional (if agent i is a neighbor of agent j, then j
is a neighbor of i), the states of the individual vehicles asymptotically converge to
the average of the initial state values for any connected graph G.

If G is not bidirectional (so that there are asymmetries in the information avail-
able to each agent), then the interaction above does not necessarily lead to average
consensus. We define a graph to be balanced if the in-degree and out-degree of all
nodes are equal. In the case of balanced graphs, one can once again show that any
connected graph solves the average consensus problem using the interaction rules
above [OSM04]. Furthermore, even if the connections are changing as a function of
time, it can be shown that the average consensus is still reached.

When the behavior of the individual agents is more complicated, we can still
pose the problem in a similar manner. Suppose that each agent’s dynamics are
governed by

ẋi = Axi +Bui

yi = Cxi
(10.2)

Fax [FM04] considers a control law in which each system attempts to stabilize itself
relative to its neighbors. This is accomplished by constructing an error for each
system that is a weighted combination of the relative outputs of the neighbors:

ei =
∑

j∈N i

αij(y
j − yi) (10.3)

where αij is the relative weight. For simplicity, we consider uniform weighting here,
so that αij = 1/|N i| where |N i| is the number of neighbors of node i. The results
are easily extended to the more general case.

Given the error (10.3), we apply a compensator that attempts to stabilize the
overall system. For simplicity, we assume here that the stabilizer is given by a
constant gain

ui = Kei, (10.4)
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with K ∈ Rm×m representing the compensation (gain) matrix. In practice, one can
use a dynamic compensator to improve performance, but for analysis purposes we
can just assume these dynamics are included in the system dynamics (10.2).

The interconnectedness of the system, represented by the neighbor sets Ni can
be studied using tools from graph theory. In particular, for the the case of uniform
weighting of the errors, it turns out that the combined error vector e ∈ RN ·m can
be written as

e = (L̄⊗ I)x (10.5)

where ⊗ represents the Kronecker product and L̄ is the weighted Laplacian as-
sociated with the (directed) graph that models the neighbors of each node. The
weighted Laplacian is a standard object in graph theory and can be defined as

L̄ = D−1(D −A)

where D is a diagonal matrix whose entries are the out-degree of each node and
A is the adjacency matrix for the graph (see [FM04] for more detail). Using this
framework, Fax showed the following:

Theorem 10.1. A local controller K stabilizes the formation dynamics in equa-
tion (10.2) with error (10.5) and gain K if and only if it stabilizes the set of N
systems given by

ẋ = Ax+B · λi · (Ky)
y = Cx

(10.6)

where {λi} are the eigenvalues of the weighted graph Laplacian L̄.

This theorem has a very natural interpretation in terms of the Nyquist plot of
dynamical system. In the standard Nyquist criterion, one checks for stability of a
feedback system by plotting the open loop frequency response of the system in the
complex plane and checking for net encirclements of the −1 point. The conditions
in Theorem 1 correspond to replacing the −1 point with −1/λi for each eigenvalue
λi of L̄. This interpretation is illustrated in Figure 10.15. The results can easily be
extended to consider weightings that are nonuniform.

Theorem 10.1 illustrates how the dynamics of the system, as represented by
equation (10.2), interacts with the information flow of the system, as represented by
the graph Laplacian. In particular, we see that it is the eigenvalues of the Laplacian
that are critical for determining stability of the overall system. Additional results
in this framework allow tuning of the information flow (considered as both sensed
and communicated signals) to improve the transient response of the system [FM04].
Extensions in a stochastic setting [?, OSM04] allow analysis of interconnected sys-
tems whose dynamics are not identical and where the graph topology changes over
time.

10.4 Future Directions

While there has been substantial work in cooperative control over the past decade,
there are still many open problems that remain to be solved. In this section we
provide a brief review of some of the future opportunities in cooperative control.
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Figure 10.15: Interpretation of Theorem 1. The left figure shows the graph repre-
sentation of the interconnected system and the right figure shows the corresponding
Nyquist test. The addition of the dashed line to the graph moves the negative, in-
verse eigenvalues of L̄ from the positions marked by circles to those marked by
crosses.

The topics listed here are not intended to be exhaustive, but rather to be indicative
of the classes of problems which remain open. Many of these are drawn from the
recent report on future directions in control, dynamics and systems [Mur03].

Integrated control, communications and computer science

By its very nature, cooperative control involves the integration of communications
and (distributed) computing systems with feedback control. In many applications,
the traditional separation of computing, communications and control is no longer
valid and new methods that integrate advances from the different disciplines are
needed. Recent research in hybrid systems, in which continuous and logical domains
are integrated, are a step in the right direction but these techniques often ignore
issues associated with distributed computing and communication channels. Theories
that define fundamental limits such as real-time computational complexity and
performance limits of feedback systems with rate limited channels are needed.

Verification and validation

Prescribed safety and reliability is a significant challenge for current mission-critical
systems. Requirements, design, and test coverage and their quantification all signif-
icantly impact overall system quality, but software test coverage is especially signif-
icant to development costs. For certain current systems, verification and validation
(V&V) can comprise over 50% of total development costs. This percentage will
be even higher using current V&V strategies on emerging autonomous systems. Al-
though traditional certification practices have historically produced sufficiently safe
and reliable systems, they will not be cost effective for next-generation autonomous
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systems due to inherent size and complexity increases from added functionality.
New methods in high confidence software combined with advances in systems

engineering and the use of feedback for active management of uncertainty provide
new possibilities for fundamental research aimed at addressing these issues. These
methods move beyond formal methods in computer science to incorporate dynamics
and feedback as part of the system specification.

Higher levels of decision making

The research surveyed in this paper has focused on cooperative control problems
that can be formulated as optimization problems over some cost function. Many
autonomous systems must make decisions for which an underlying set of continuous
and discrete variables may not provide an appropriate level of abstraction for deci-
sion making. Cooperative systems that must reason about the complex interactions
between the group’s dynamics and the environment in which they operate may re-
quire different levels of representation of their task and their dynamics. Techniques
from artificial intelligence that allow identification of strategies and tactics that can
be coded as lower-level optimization-based problems are needed.

10.5 Conclusions

In this survey we have described some of the driving applications of cooperative
control, surveyed some of the relevant technology that has been developed over the
past decade and provided some possible directions for future study. Given the large
and growing literature in this area, many interesting results have not been included
in an attempt to capture some of the key areas of interest.

What is clear is that many of the basic problems of cooperative control have been
explored and a wealth of results are available demonstrating the potential of such
systems. To transition these research results to applications will require additional
effort in the integration of control, communications and computer science; decision-
making at higher levels of abstraction; verification and validation of distributed
embedded systems; and an extensible architecture for networked control systems
implementation.

The author would like to thank the US Air Force Office of Scientific Research
for their past and continuing support of research in this area.
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Chapter 11
Efficient Computation and Communications

11.1 Measurement Communication versus Estimate

Communication

Figure 11.1: Estimation over a Network

Consider the following discrete-time process (Figure 11.1)

xk+1 = Axk + wk. (11.1)

A sensor measures xk and outputs

yx = Cxk + vk (11.2)

at each time k. In equation (11.1) and (11.2), wk and vk are uncorrelated zero-mean
Gaussian random vectors with covariances Q ≥ 0 and R > 0. The initial state x0

is also assumed to be zero-mean and Gaussian with covariance Π0.
The sensor communicates its data with a remote estimator across a network.

Upon receiving the sensor data, the remote estimator computes the optimal linear
estimate x̂k of xk.

We consider two scenarios in this section. In the first scenario, the sensor has
limited computation and only sends yk to the remote estimator. We also call this
measurement communication (or scheme one). In the second scenario, the sensor
has sufficient computation and it runs a local Kalman filter to compute x̂sk and P sk ,
and sends x̂sk to the remote estimator. We also call this estimate communication
(or scheme two).

Clearly x̂sk is given by x̂sk = E[xk|y1, . . . , yk] and is computed from a Kalman
filter.

Estimation over a Perfect Network

If the communication network is perfect and does not introduce any data packet
drops, it is easy to see that for scheme two, upon receiving x̂k,s, the state estimate
x̂k(2) is set to be equal to x̂k,s. Hence

x̂k(1) = E[xk|y1, . . . , yk] = x̂k,s = x̂k(2).
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Therefore, we have the following result.

Proposition 11.1. Assume the sensor has unlimited computation capability and
the communication network does not introduce any packet drops. Then Pk(1) =
Pk(2) ∀ k > 0, and

lim
k→∞

Pk(1) = lim
k→∞

Pk(2) = P∞.

In other words, the two communication schemes produce the same estimation equal-
ity at the estimator.

Estimation over a Packet-dropping Network

Now consider the case when the communication network introduces data packet
drops.

Let γk(1) and γk(2) be the indicator functions of whether the yk or x̂k,s is
successfully transmitted to the estimator or not, e.g., γk(1) = 1 means yk is received
by the estimator and γk(1) = 0 means yk is dropped by the network and hence it
will not be available at the estimator.

Consider the measurement communication scheme. When γk(1) = 1, it is clear
that (

x̂k(1), Pk(1)
)

= KF
(
x̂k−1(1), Pk−1(1), yk

)
.

When γk(1) = 0, we can write x̂k and Pk as

x̂k(1) = Ax̂k−1(1),

Pk(1) = APk−1(1)A′ +Q.

In other words, when γk = 0, only the time update in the standard Kalman filter
is performed. Define the function h : Sn+ → Sn+ as

h(X) , AXA′ +Q. (11.3)

and the function g : Sn+ → Sn+ as

g(X) , X −XC ′[CXC ′ +R]−1CX. (11.4)

Then we can write Pk(1) in a compact form as

Pk(1) =

{
h
(
Pk−1(1)

)
if γk(1) = 0,

g ◦ h
(
Pk−1(1)

)
if γk(1) = 1.

Now consider the estimate communication scheme. When γk(2) = 1, it is easy
to see that x̂k(2) = x̂k,s and as a result, Pk(2) = Pk,s. When γk(2) = 0, it is also
easy to see that x̂k(2) = Ax̂k−1. Therefore

Pk(2) = APk−1(2)A′ +Q.

We can also write Pk(2) in a compact form as

Pk(2) =

{
h
(
Pk−1(2)

)
if γk(2) = 0,

Pk,s if γk(2) = 1,
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where Pk,s = g ◦ h(Pk−1,s).
Notice that, since γk(1) and γk(2) are random quantities, Pk(1) and Pk(2) are

also random. Therefore instead of directly comparing Pk(1) and Pk(2), we compare
their expected values. Before we state the main result of this section, we introduce
a lemma.

Lemma 11.1. For any X ≥ Y ≥ 0, the following hold:

1. h(X) ≥ h(Y ), g(X) ≥ g(Y ).

2. g(X) ≤ X.

Proof. 1. h(X) ≥ h(Y ) is easy to show as h(X) is quadratic in X. The proof for
g(X) ≥ g(Y ) can be found in Lemma 1-c at Appendix A in [?].

2. Since XC ′[CXC ′ +R]−1CX ≥ 0, by definition,

g(X) = X −XC ′[CXC ′ +R]−1CX ≤ X.

Proposition 11.2. Assume the sensor has unlimited computation capability and
the communication network may drop data packet. Further assume that γk(1) and
γk(2) have the same distribution. Then

1. E[Pk(1)] ≥ E[Pk(2)] ∀k > 0. In other words, the average estimation equality
at the estimator using scheme two is always better than using scheme one.

2. limk→∞ E[Pk(1)] ≤M1, limk→∞ E[Pk(2)] = M2, where M1 ≥M2 ≥ 0 satisfy

M1 = γg ◦ h(M1) + (1 − γ)h(M1), (11.5)

M2 = γP∞ + (1 − γ)h(M2). (11.6)

Proof. 1. Since γk(1) and γk(2) have the same distribution, by definition of the
expected value, it is sufficient to show

Pk(1) ≥ Pk(2) (11.7)

for any realization of the packet drop sequences γk = γk(1) = γk(2). We use
mathematical induction to prove Eqn (11.7).

(a) P0(1) = P0(2) = P0.

(b) Assume Pm(1) ≥ Pm(2) for 0 ≤ m < k.

(c) At m+ 1:

i. If γm+1 = 1, then

Pm+1(1) = g ◦ h
(
Pm(1)

)
= g ◦ h ◦ fm ◦ fm−1 ◦ · · · ◦ f1(P0)

≥ (g ◦ h)m+1(P0) = Pm+1,s = Pm+1(2),

where fi = g ◦ h if γi = 1 and fi = 0 if γi = 0, i = 1, . . . ,m. The
inequality is from Lemma 11.1 as h ≥ g ◦ h.
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ii. If γm+1 = 0, then

Pm+1(1) = h
(
Pm(1)

)
≥ h

(
Pm(2)

)
= Pm+1(2).

The inequalities appeared in the induction steps are from Lemma 11.1. The
three steps above complete the induction.

2. From [?], the operator gl is concave, hence by Jensen’s Inequality, we get

E[Pk(1)] = γE
[
g ◦ h

(
Pk−1(1)

)]
+ (1 − γ)E

[
h
(
Pk−1(1)

)]

≤ γg ◦ h
(
E[Pk−1(1)]

)
+ (1 − γ)h

(
E[Pk−1(1)]

)
.

It is then easy to show by induction that Eqn (11.5) holds. Without loss of
generality, assume Pk(2) = Pk,s = P∞. Then

lim
k→∞

E[Pk(2)] =

∞∑

i=0

γ(1 − γ)ihi(P∞)

= γP∞ + (1 − γ)h
( ∞∑

i=0

γ(1 − γ)ihi(P∞)
)

= γP∞ + (1 − γ)h
(

lim
k→∞

E[Pk(2)]
)
.

Therefore
lim
k→∞

E[Pk(2)] = M2

and M2 satisfies Eqn (11.6). Finally note that

M2 = lim
k→∞

E[Pk(2)] ≤ lim
k→∞

E[Pk(1)] ≤M1.

From [?], there exists a critical rate γc ∈ [0, 1) such that if and only if γ > γc,
Eqn (11.5) has a unique bounded solution and

lim
k→∞

E[Pk(1)] <∞.

A lower bound γ and an upper bound γ are also provided in [?] to bound the value
of γc. The lower bound is given by

γ = 1 − 1

ρ2(A)
, (11.8)

where ρ(A) is the spectral radius of the matrix A. When C−1 exists, it is proved
that γc = γ. It also turns out that as long as γ > γ, Eqn (11.6) has a unique
solution which can be verified by noticing

M2 = γP∞ + (1 − γ)h(M2) = ÃM2Ã
′ + (1 − γ)Q+ γP∞,

where Ã =
√

1 − γA.
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11.2 Trading Computation for Communication

(e.g., estimate error at the sensor; transmit new measurement if the error is large)

11.3 Local Temporary Autonomy and Shock Absorbers

The concept of Local Temporary Autonomy (LTA) was first proposed in the IT
Convergence lab at the University of Illinois. In a networked control system, LTA
can reduce an individual component’s temporal dependency on other components
and allow it to operate for some time even if other components fail to work.

The main idea of LTA is to introduce Shock Absorbers consisting of State Esti-
mators placed at the controller and Actuation Buffer placed at the actuator.

As we see from previous chapters, networked control system offers many advan-
tages than classic feedback control. However, many new issues arise such as random
data packet delays, drops, etc., which may affect the system performance or even
cause instability. The data packet delays and drops are frequently seen on a wireless
communication network.

State Estimators

Figure 11.2: Use a state estimator to minimize the effect of sensor data delays
or drops

Figure 11.2 shows one scenario where an estimator is placed at the controller
side. Even when the sensor data arrive at random times due to the delay or drops,
the estimator can always produce a regular state estimate. It is easy to note that
this design can also tolerate temporary sensor failure. Hence if we need to shut
down the sensor (e.g., change its battery) for a short period of time, the entire
system can still work properly.

Actuation Buffer

While placing an estimator at the controller helps minimize the effect of sensor
data delays or drops, placing an actuation buffer (or control buffer) at the actuator
(Figure 11.3) helps minimize the effect of control data delays or drops. At each time,
the controller computes not only the current control law to be applied, but also a
sequence of future control laws using a receding horizon model predictive control
approach, and sends these future control laws along with the current control law to
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Figure 11.3: Use an actuation buffer to minimize the effect of control data delays
or drops

the actuator. If the current control data is not received, the actuator executes the
“current” control law which is from previous received data packet. If the current
control data is received, then the entire data packet is put in the actuation buffer
and the previous control data is discarded.

It was demonstrated in the IT Convergence lab that above approaches can
effectively increase the system’s LTA.

11.4 Event-based Control: Transmit When Necessary

11.5 Further Reading

11.6 Exercise
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Chapter 12

Sensor Networks

12.1 Introduction to Sensor Networks

’Technological advances in semiconductors, storage, interfaces and networks enable
a new computer class (platform) to form about every decade to serve a new need.’

This empirical law, well backed up by historical data, was first formulated by
Gordon Bell in 1972. As circuits continue to grow both smaller in size and greater
in density, these new computers are also smaller, more powerful and cheaper to
build, enabling their ubiquitous presence in our worlds.

Travelling far from the mainframe computers in the 1960s, we are now at the
convergence of cellular phones and computers, having sailed through minicomput-
ers, workstations, personal computers and personal digital assistants (PDA) during
the journey. The latest class of computing devices, according to Bell, will provide
access to streams of real time information to and from the physical world at an
extremely fine level of granularity. For example, these computing devices will al-
low us to seek out and reserve a parking spot in a parking garage when we enter
it, rather than driving endlessly from one level to the next in search of an empty
space. They will give us the ability to adjust from afar the temperature in our
home, office or car; help in preventing catastrophic effects of natural disasters, such
as tsunamis or landslides; continuously monitor our body and transmit periodic
updates to our physician, help scientist uncover the secrets of ecosystems as well
as many many more. This is the goal behind the conception and development of
Wireless Sensor Networks (WSNs). WSNs are ad hoc networks of devices that, in
a single, small package, together have sensing, computing and communication ca-
pabilities. Sometimes called ’motes’, these self-configuring devices can be deployed
in any environment without a pre-designed topology, building a network that can
route information via multi-hop wireless communication. Low power characteristics,
combined with smart power management software and power scavenging modules,
will enable long unattended deployments.

WSNs represent a paradigm shift from conventional networks. Internet technol-
ogy is built around powerful devices that are pre-configured, have a fixed topology
and operate in a static environment. Communication in wireless communication
networks is usually one-to-one, such as cellular phone to base station, or one-to-
many, such as all the broadcast media, with a point-to-point link between sender and
receiver. Here communication is many-to-many, following a dynamically changing
multi-hop path. Every node of the network is now a sender, a receiver and router, all
at the same time. Moreover, connectivity is highly variable and, because of power
savings requirements, radios need to be turned off for most the time.
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A Brief History of WSNs

‘Smart Dust’ is probably the most captivating definition of WSNs. The term refers
to a research project sponsored by DARPA [?], and lead by professor Kristofer
Pister, aimed at building a self-contained, millimeter-scale sensing and communica-
tion platform for massively distributed sensor networks. The target design goal was
an inexpensive device of the size of a grain of sand, equipped with sensors, com-
putational capability, bi-directional wireless communications, and a power supply,
to be deployed by the hundreds. The science and engineering goal of the project
was to build a complete, complex system in a tiny volume using state-of-the art
technologies. The resulting prototype, shown in figure ??, showed the feasibility
of project and paved the way for the development of several other prototypes. In
particular, the scientific community quickly acknowledged the bottleneck that the
lack of adequate software infrastructure would create. Strict power requirements,
computing and memory limitations impose a philosophical shift in the standard
approach to software design. New software services have to be created to ensure
reliable operation, remote management and constant health monitoring of the net-
work, while simultaneously being constrained by the limited resources of computing
power, memory and energy. On the hardware side a more user friendly device was
needed to develop and test software systems based on WSNs. Also, a new, repro-
grammable, reconfigurable device was needed to design and test several different
classes of applications without the need to build custom hardware for each one. To
address these issues a new version of wireless sensors devices was designed. It was
1998. The era of the ’mote’ began.

The mote’s hardware architecture resembles that of a very small computer with
its microcontroller, RAM and storage, with the addition of a radio and a sensor
board. On the hardware side the main differences with smart dust can be summa-
rized as follows:

• Input/output port. An input/output port was included in the design to
allow reprogrammability, swapping sensor boards, connection to a computer
acting as a gateway between the sensor network and the outside world.

• Storage unit. A flash memory was installed to store data locally.

• LEDs. Light emitting diodes were installed for a quick feedback on the op-
eration of the mote, for debugging purposes.

• Radio communication. As opposed to the smart dust node, which uses
passive communication through a series of mirrors to reflect a received laser
beam, the mote employs a radio frequency communication scheme.

Although the architecture has not changed much, several generations of motes have
succeeded and now several companies, such as Crossbow, MoteIV, DUST Networks,
Sensoria and Ember manufacture motes for commercial, military and research mar-
kets. Figure ?? shows the evolution of the Berkeley motes. State of the art encom-
passes extremely low power components, a digital radio, and USB connection.
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Software Architecture

Operating System

The most used operating system in the research community is the TinyOS [?, ?].
The TinyOS is an open-source operating system designed for wireless embedded
sensor networks. It features a component-based architecture which enables rapid
innovation and implementation while minimizing code size as is required by the
severe memory constraints inherent in sensor networks. TinyOS’s component library
includes network protocols, distributed services, sensor drivers, and data acquisition
tools, all of which can be used as-is or be further refined for a custom application.
TinyOS’s event-driven execution model enables fine-grained power management
and allows the scheduling flexibility made necessary by the unpredictable nature of
the interaction of wireless communication systems with the physical world.

TinyOS has been ported to over a dozen platforms and numerous sensor boards.
A wide community uses it in simulation to develop and test various algorithms and
protocols. New releases have been downloaded over 10,000 times. Over 500 research
groups and companies are using TinyOS on the Berkeley/Crossbow Motes. Numer-
ous groups are actively contributing code to the sourceforge site. They working
together to establish standard, interoperable network services based on direct ex-
perience and honed through competitive analysis in an open environment.

A three layer software architecture was conceived to achieve modularity, code
reusability, separation of design objectives. At the bottom level is the software in-
teracting with the platform, which comprises the core software services, such as
a basic scheduler clock, radio stack, sensor drivers. The middle layer, also called
middleware, includes all the software services supporting operations at the applica-
tion level, such as time synchronization, localization, power management, routing
services. At the highest level sits the application layer, where software components
are designed to accomplish the desired functionality. The application layer needs to
map specifications into constraints that are then pushed on the middleware services
employed. A feedback loop is provided to the application layer to indicate if the
constraints are satisfied. Chapter 2 will describe the relationship between different
layers analyzing a Pursuit Evasion Game (PEG) application using Wireless Sensor
Networks.

Middleware Services

• Security.

All data traffic is encrypted using hardware support provided on the node.
Key management strategies for large-scale deployments can be evaluated. In
addition to the key management and encryption, the system must be robust
in the event of a series of attacks, and be able to operate during the attack
while determining appropriate countermeasures to them. For example, if a
portion of the nodes in the network is fully compromised, the attacker may
use these nodes to alter, block or severely modify the running application.
As a countermeasure, a trust map of the sensor network at the base station
needs to be built and updated periodically. In addition, each node could build
a neighbor table and rank its neighbors based on reputation and trust relation.
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The combination of the base station and node trust maps can help in isolating
the compromised nodes, and providing reliable data aggregation.

• Large-scale management.

A low-overhead, low-power, flexible network management facility will be demon-
strated and evaluated. It must be easy to augment system and application
code to enable management. The network operator must be able to easily
express and obtain attributes and regions of interest. The protocols should
scale to the level of management activity, dropping essentially to zero energy
usage when management is inactive, operate even when other network layers
or services are faulty, and have a very limited footprint.

• Self-localization.

The many individual nodes should be able to determine their absolute or
relative positions with little manual intervention, and in a robust and stealthy
manner. Localization has proved to be a really challenging problem. Ranging,
i.e. measuring distance between nodes, is made particularly difficult by fading,
multi-path effects, as noted in the work of Whitehouse et al. [?]. Several
algorithms are available, with different strengths and limitations [?].

• Robust programming and Rapid Retasking.

It must be possible to reliably deliver, using the wireless channel, complete bi-
nary images of system or application code to large or focused subsets of nodes
and to maintain consistency across the set even when nodes are added, die, or
are intermittently connected. The Deluge [?] family of robust dissemination
algorithms and extensions is designed to ensure integrity. It should also be
possible to rapidly re-task the network among a family of possible behaviors.

• Network communication.

The system capabilities above, as well as the application capabilities below,
fundamentally rest upon four basic network communication capabilities: ro-
bust dissemination of information to a large collection of nodes, reliable col-
lection of information, efficient exchange of information among physically lo-
calized groups of nodes, and routing of information from any (potentially
mobile) point to any (potentially mobile) point.

• Sensing and Identification.

Individual nodes have the capability to perform local sensing and signal pro-
cessing. Passive vigilance is needed to ensure that the energy expended in
sensing is proportional to detections, rather than time spent observing. The
key concept is the sensor cascade, in which low-power, low-fidelity sensors
with hardware wake-up capabilities can invoke selectively higher level, higher
capacity assets. In addition, collections of nodes share processed information
to refine the detection and classification.

• Visualization.

It must be possible for human operators to observe the features the network
has detected, as well as the health and status of the network itself. In both
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cases, the operator needs to be apprised of the certainty or uncertainty of the
findings in order to plan responses. This information needs to be provided not
only to fixed assets monitoring the network, but to handheld mobile assets
moving through the network itself.

• Tracking.

Identified objects need to be tracked and their estimated trajectories reported
to a variety of receivers. Tracking multiple objects simultaneously requires
the sensor network to correctly associate sensor readings to the movement of
its respective object, group such readings and process them to produce the
tracking trajectories, either in-network or remotely.

• Asset coordination.

In response to a detection, a remote controlled aerial vehicle with camera
mount will be directed to point of activity to gain further fidelity or au-
tonomous unmanned ground vehicles will pursue the detected object. Such
asset coordination introduces a closed loop feedback that will be utilized in
several other aspects of maintaining the system, including improving localiza-
tion accuracy by actively moving to and obtaining the position of nodes with
high uncertainty, as well as repairing various network faults.

Applications

The availability of WSNs technology has enabled the development of a handful
of new applications, ranging from monitoring and surveillance to asset and people
tracking. While most of these applications still live in the research and development,
there exist products and services based on WSNs. This paragraph will illustrate a
few of these applications.

• Firebug: Design and Construction of a Wildfire Instrumentation
System Using Networked Sensors [?].

Collecting real time data from wildfires is important for safety considerations,
and allows predictive analysis of evolving fire behavior. One way to collect
such data is to deploy sensors in the wildfire environment. FireBugs are small,
wireless sensors (motes) based on TinyOS. The FireBug network self-organizes
into edge-hub configurations for collecting real time data in wild fire environ-
ments. Hub motes act as base stations, by receiving sample data from any
mote and sending commands to any mote. The FireBug system combines
state-of-the-art sensor hardware running TinyOS with standard, off-the-shelf
World Wide Web and database technology for allowing users to rapidly deploy
FireBugs and monitor network behavior. The FireBug system is composed of
a network of GPS-enabled, wireless thermal sensors, a control layer for pro-
cessing sensor data, and a command center for interactively communicating
with the sensor network. Each of these layers is independent of the others,
communicating through well-defined interfaces.

• Habitat Monitoring on Great Duck Island [?].
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In the spring of 2002, the Intel Research Laboratory at Berkeley initiated a
collaboration with the College of the Atlantic in Bar Harbor and the Uni-
versity of California at Berkeley to deploy wireless sensor networks on Great
Duck Island, Maine. These networks monitor the microclimates in and around
nesting burrows used by the Leach’s Storm Petrel. The goal was to develop a
habitat monitoring kit to enable researchers worldwide to engage in the non-
intrusive and non-disruptive monitoring of sensitive wildlife and habitats.

At the end of the field season in November 2002, well over 1 million read-
ings had been logged from 32 motes deployed on the island. Each mote has a
microcontroller, a low-power radio, memory and batteries. For habitat moni-
toring, sensors for temperature, humidity, barometric pressure, and mid-range
infrared were added through a sensor board. Motes periodically sample and
relay their sensor readings to computer base stations on the island. These
in turn feed into a satellite link that allows researchers to access real-time
environmental data over the Internet.

In June 2003, a second generation network with 56 nodes was deployed. The
network was augmented in July 2003 with 49 additional nodes and again in
August 2003 with over 60 more burrow nodes and 25 new weather station
nodes. These nodes form a multi-hop network transferring their data back
”bucket brigade” style through dense forest. Some nodes are more than 1000
feet deep in the forest providing data through a low power wireless transceiver.

• Structural Monitoring.

WSNs are a natural tool for distributed sensing. Being wireless, small and
power efficient, they can be deployed easily without the need for wiring, they
can be mounted anywhere and operate for a long time. Civil engineering ap-
plications such structural monitoring of constructions under solicitations have
largely benefited from this technology. Sample applications include measur-
ing the response of building under severe conditions, such as earthquakes, or
structural health of the critical structures like the Golden Gate bridge in San
Francisco, situated in a seismically unsafe area and subject to high seasonal
winds. In both applications high resolution accelerometers are used together
with nodes manufactured by Crossbow. Data collection is carried out wire-
lessly. Motes route data to a base station via multi-hop communication using
neighboring nodes. In the first project a physical model of a building was
shaken by forces comparable to the Canoga Park earthquake that occurred in
the Los Angeles metropolitan area in 1994. Picture ?? shows the experimental
setup and the shear stress on the building resulting from the simulated quake.
The second project aims at monitoring vibration of the bridge, and detecting
unusual behavior by wind earthquake or local damage. From a technological
standpoint, these projects demonstrate the feasibility of WSNs for applica-
tions requiring high accuracy, high data rate collection and communication.

• Traffic Monitoring [?].

Wireless magnetic sensor networks offer a very attractive, low-cost alterna-
tive to current technologies such as inductive loops, video cameras and radar
for traffic measurement in freeways, urban street intersections and presence
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detection in parking lots. The actual network comprises 5 diameter sensor
nodes glued on the pavement where vehicles are to be detected. The sensor
nodes send their data via radio to the access point on the side of the road.
The access point forwards sensor data to the Traffic Management Center via
GPRS or to the roadside controller. The sensor node has a built-in magneto-
resistive sensor that measures changes in the Earths magnetic field caused by
the presence or passage of a vehicle in the proximity of the node. A low-power
radio relays the detection data to the access point at user-selectable periodic
reporting intervals or on an event driven basis. By placing two nodes a few
feet apart in the direction of traffic, accurate individual vehicle speeds can be
measured and reported.

• Building Monitoring and Control.

Buildings, both residential and commercial, can greatly benefit from the use
of sensor networks, by decreasing construction and operating costs, while im-
proving comfort and safety. Furthermore, more than half of the cost of an
HVAC system in a building is represented by installation and most of it is
wiring. Wireless communications could sensibly lower that cost. Combining
wireless technology with MEMS technology could reduce the cost further, al-
lowing sensors to be embedded in products such as ceiling tiles and furniture,
and enable improved control of the indoor environment. On the operating cost,
WSNs could dramatically improve energy efficiency. With oil prices rising and
not likely to decrease anytime soon, policy makers and researchers are working
together to find ways to decrease consumption by avoiding useless waste. The
United States is the bigger consumer of energy with 8.5 quadrillion British
Thermal Units (BTU). Commercial and residential sectors account for about
40% of total consumption, according to a study conducted by the Energy In-
formation Administration in March 2004). Employment of WSNs technology
could potentially lead to sizeable energy savings. On the comfort and safety
side, WSNs enable functions that traditionally are localized in a single point
to be distributed over a wider space, with an opportunity to build more ef-
ficient systems, with more localized, precise climate control. While academic
institutions are envisioning new applications, several companies, such as Car-
rier, Honeywell, Bosch just to name a few, are looking into integrating WSN
technology into their existing core business.

• Personal Health Monitoring.

The gathering of vital information from a person nowadays follows a pull
process, via scheduled visits and tests. The health care cost of the American
economy is huge, accounting to about 15% of GDP. The aging population will
only increase this cost. Several factors contribute to the inefficiencies of this
system. First of all, most of the clinical data is still on paper. Moving this
information around is still a manual process. Check-ups are still sporadic,
therefore rarely able to predict a problem before it occurs. It is estimated
that Cardiac arrest kills 350,000 Americans per year, and only 6% of those
not already in a hospital at the time they have a heart attack will survive
the ordeal. Using WSN technology, each person could potentially be under
continuous monitoring, and thus increasing the chance of detecting a problem
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at its early stage of development. What’s more, patients’ healthcare data
could be saved, organized and retrieved automatically, which would improve
the detection, prevention and care of medical problems while decreasing the
overall administrative costs of the nation’s health care systems.

Closing the Loop around Sensor Networks

The applications described above can be organized in three categories depending
on the use of the collected data:

• Offline data analysis.

WSNs are used in this context to understand phenomena that have time
and spatial components. Biologists use environmental data to understand
ecosystems; civil engineers measure the stress that structures undergo in the
occurrence of an earthquake, strong winds and other natural phenomena;
traffic engineers collect data to better understand traffic patterns.

These types of applications are the least challenging. Since the data is going
to be analyzed offline, there is virtually no time constraint on the network for
the delivery of the messages. If packets are lost, information can be re-sent.
Also delay is not a main issue. The main challenges the designer has to face
are data reliability, accurate design of a buffer to store the data waiting to be
sent, time synchronization and sensor location information.

• Online event detection.

In these types of applications, data is analyzed online to detect particular
threshold phenomena. In this case, sensor data is used to make a discrete de-
cision. In built environments, typical examples are represented by turning off
unnecessary lighting, regulating A/C equipment and thermostats, and trigger-
ing an alarm if a potential threat is detected. Security systems for intrusion,
anomaly and fault detection all belong to this category of applications. Re-
mote health care systems can use WSNs to detect whether an elder person has
fallen or, in the case of personal health monitoring systems, reveal anomalies
in a person’s physical health.

The applications in this class are substantially more complex to design and
implement. They add a real time and decision making component to the first
class. The main issues here are detection accuracy and timely response. Secu-
rity systems are overloaded due to high false positive detection percentage. In
the decision making part, detection needs to be fast and promptly transmit-
ted. In the sensing part, the WSN needs to be accurate by combining possibly
different sensor data to provide accurate detection. At the network level, cer-
tain constraints, mostly loose, such as maximum tolerable delay, maximum
packet loss, bandwidth limitation need to be satisfied. At the application level,
these parameters have an important effect on application performance met-
rics such as the percentage of false detections, false negatives and delays in
the detection and response.

• Online estimation and control
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This class of applications is probably the most challenging to design and
implement. Here the goal is observe and control a certain dynamical phe-
nomenon. In the most general case, measurements need to be collected and
sent to one or more controllers, which will then estimate the state of the
system and compute inputs to the actuators. Both measurements and inputs
have very stringent time constraints, depending on the system dynamics, that
the network needs to be able to satisfy. Examples of applications are Pursuit
Evasion Games (PEGs), control of power grids, Scada networks, telesurgery,
robocup, industrial control, manufacturing, environmental control.

The third set of applications encompasses all the previous difficulties and intro-
duces new ones. In these kinds of applications, sensor data is collected by the sensors
and sent to a controller via wireless communication. The controller, in turn, com-
putes state estimate from sensory information, calculates the input to be given to
the actuators and sends this information using the WSN multi-hop communication
infrastructure. Placing a communication network in the control loop raises many
issues. One of the key parameters in digital control systems design is the selection
of a fixed sampling period. This is mainly a function of the system dynamics, and
this places a hard constraint on the time necessary to receive observations, esti-
mate the state, compute an input and transmit it to the actuators. All this needs
to happen within one sampling interval. Computing power of modern machines,
combined with usually wired, dedicated interconnection between different parts of
the system guarantees that such constraints are met. When closing the loop around
WSNs, the assumption of data availability does not hold anymore, as packets are
randomly dropped and delayed. While system and control theory provides a wealth
of analytical results, the assumptions that the theory is traditionally based upon
do not hold true in this setting, and neglecting these phenomena may yield to
catastrophic overall system performance. A notion of time, either global or local,
is needed to order and combine possibly different sensor data for state estimation.
The estimator needs to know what to do when observations are not arriving, and
the controller needs to design an input using uncertain state estimates, not knowing
whether its previous input has been successfully received by the actuators.

More generally, the use of networks in control systems imposes a paradigm shift
in the designer’s mentality. Deterministic methods need to be replaced by stochastic
ones, as such is the nature of network phenomena. This argument is particularly true
in wireless networks, where the use of a shared channel with random disturbances
and noise cannot be modelled deterministically. Resources in the network (e.g.,
bandwidth, energy, power, etc.) need to be appropriately allocated in order to
optimize system performance.

Put an overview of the chapter here. LS

12.2 Sensor Scheduling

Literature review here. LS
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Performance Optimization Subject to Resource Constraint

Consider the following system with one process whose state is to be estimated by
multiple sensors

xk+1 = Axk + wk, (12.1)

yix = Hixk + vik, i = 1, . . . , N, (12.2)

where wk and vik are uncorrelated zero-mean Gaussian random vectors with co-
variances Q ≥ 0 and Ri > 0 for all k and i. The initial state x0 is also assumed
to be zero-mean and Gaussian with covariance Π0. Assume at each time k, only
one of the N sensors can send its measurement data to a remote estimator which
computes x̂k, the estimate of xk, based on previously received data. Denote Pk as
the error covariance of x̂k.

Let θ be a scheduling scheme that determines at each k, which sensor is selected
to send its measurement. Clearly x̂k and Pk are functions of θ and they are computed
as

x̂k(θ) = E[xk|all data packets received up to k],

Pk(θ) = E[(xk − x̂k)(xk − x̂k)
′|all data packets received up to k].

From Chapter 2, when sensor i is selected at time k, the a priori error covariance
matrix Pk|k−1 evolves as

Pk+1|k = APk|k−1A
′ +Q

−APk|k−1H
′
i[HiPk|k−1H

′
i +Ri]

−1HiPk|k−1A
′ (12.3)

where the recursion starts from P0|−1 = Π0. We shall simply write Pk|k−1 as Pk for
notational convenience. Apparently, Pk depends on the schedule of the sensors. We
wish to find a schedule such that Pk is minimum in the steady state. Consider the
following simple algorithm [?] that chooses a sensor i at time k stochastically. First
we have the following result on the upper bound of the expected estimation error.

Theorem 12.1. Assume the i-th sensor is chosen at time k with probability πi in-
dependently at each time. Then E[Pk], the expected error covariance of the estimate,
is upper bounded by ∆k which is given by the following recursion

∆k+1 = A∆kA
′ +Q−

N∑

i=1

πiA∆kH
′
i[Hi∆kH

′
i +Ri]

−1Hi∆kA
′, (12.4)

where the initial condition is ∆0 = Π0.

Proof. Define

fHi
(P ) = APA′ +Q−APH ′

i[HiPH
′
i +Ri]

−1HiPA
′

and
fkHi

(P ) = fHi
(fHi

(· · · (fHi
(P ) · · · ))︸ ︷︷ ︸

fHi
applied k times

.
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From [?], fHi
is concave and increasing in P when P ≥ 0. We can also rewrite Pk

in equation (12.3) as

Pk+1 = fHi
(Pk) when sensor i is selected.

Therefore

E[Pk+1] =
N∑

i=1

πiE[fHi
(Pk)].

Since fHi
(P ) is concave in P , using Jensen’s Inequality, we immediately obtain

E[Pk+1] =

N∑

i=1

πiE[fHi
(Pk)] ≤

N∑

i=1

πifHi

(
E[Pk]

)
.

As fHi
is an increasing operator, we obtain the upper bound ∆k.

The convergence of the upper bound ∆k implies boundedness of the recursion
in equation (12.3). As an example, if A is stable, the recursion in equation (12.4)
converges. The case when A is stable (and thus the process to be estimated does
not grow unbounded) is very important in a large number of practical applications
of estimation. The algorithm thus consists of choosing πi’s so as to optimize the
upper bound as a means of optimizing the expected steady-state value of Pk itself.
The problem is solved under the constraint of probabilities being non-negative and
summing up to 1. The optimization problem can be solved by a gradient search al-
gorithm or even by brute force search for a reasonable value of N . After determining
the probability values, the sensors are turned on and off with their corresponding
probabilities. Note that the implementation does assume some shared randomness
and synchronization among the sensors so that two sensors are not turned on at the
same time. This can readily be achieved, e.g., through a common seed for a pseudo-
random number generator available to all the sensors. Alternatively a token-based
mechanism for the scheme can be implemented. Also note that the algorithm is
run off-line and it has to be reapplied every time the number of sensors changes.
However, if a sensor is stochastically failing with a known probability, we can model
that in the algorithm.

Resource Optimization with Guaranteed Performance

Consider a linear system

xk+1 = Axk + wk,

yk = Cxk + vk.
(12.5)

where wk, vk, x0 are independent Gaussian random variables, and x0 ∼ N (0, Σ),
wk ∼ N (0, Q) and vk ∼ N (0, R). We assume that xk ∈ Rn and yk = [yk,1, yk,2, . . . , yk,m]T ∈
Rm is the vector of the measurements from the sensors such that the element yk,i
represents the measure of the sensor i at time k.

Assume that the sensor nodes are battery powered. Let Ek,i denote the remain-

ing energy of sensor Si after time k and define Ek , [Ek,1, . . . , Ek,m]T . Without
introducing conservatism, we also assume that the energy cost for Si sending a
measurement packet to the fusion center is 1.
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Fusion Center

S3

S7S6
S5

S1

S2

S4

Figure 12.1: Sensors Selected at time k

Assume that the sensors start sending measurement from time 1. Let Sk, k =
1, 2, . . ., be the set of sensors that are selected to transmit their measurements to
the fusion center at time k. For example, in Figure 12.1, Sk = {S1, S2, S6}. A
sensor selection schedule is defined as an infinite series of sensor selection strategy
S = (S1,S2, . . .) and it is defined feasible if Ek,i ≥ 0, ∀k, i, which means we are not
using the sensors that have no power left.

Let Pk denote the error covariance at the estimator at time k, which clearly
depends on the set of data measurement received from time 1 to time k, and we
indicate Pk as Pk(S) to underline the dependence on the sensor selection strategies.

Suppose it is required that Pk ≤ Pd for all k, where Pd is a given positive
definite matrix, which can be interpreted as a desired estimation accuracy level.
The lifetime L of the network under schedule S is defined to be

L(S) , min
k

{k : Pk(S) � Pd} − 1. (12.6)

The maximal lifetime of the network is defined as

L , sup
S feasible

L(S). (12.7)

The main goal is to find the optimal or suboptimal scheduling policy, i.e., de-
termining Sk at each time k such that the L is maximized.

Include results from Mo et al. (sensor selection, cdc09 and ascc09).LS

12.3 Centralized Kalman Filtering Over a Static Sensor Tree

Consider the problem of state estimation over a wireless sensor network (Fig-
ure 12.2). The process dynamics is described by

xk+1 = Axk + wk. (12.8)

A wireless sensor network consisting of N sensors {S1, · · · , SN} is used to mea-
sure the state. When Si takes a measurement of the state in Eqn (12.8), it returns

yik = Hixk + vik, i = 1, . . . , N. (12.9)
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In Eqn (12.8) and (12.9), xk ∈ Rn is the state vector, yik ∈ Rmi is the observation
vector for Si, wk−1 ∈ Rn and vik ∈ Rmi are zero-mean white Gaussian random

vectors with E[wkwj
′] = δkjQ ≥ 0, E[vikv

i
t
′] = δktΠi > 0, E[vikv

j
t
′] = 0 ∀t, k and

i 6= j, E[wkv
i
t
′] = 0 ∀i, t, k. We assume that (A,

√
Q) is controllable and (Call, A)

is observable, where Call = [H1; · · · ;HN ], i.e., the joint measurement matrix of all
sensors.

Each sensor can potentially communicate via a single-hop connection with a
subset of all the sensors by adjusting its transmission power. Let us introduce a
fusion center which we denote as S0, and consider a tree T with root S0 (see Fig-
ure 12.3). We suppose that there is a non-zero single-hop communication delay,
which is smaller than the sampling time of the process. All sensors are synchro-
nized in time, so the data packet transmitted from Si to S0 is delayed one sample
when compared with the parent node of Si. We also assume that Si aggregates the
previous time data packets from all its child nodes with its current time measure-
ment into a single data packet. Therefore only one data packet is sent from Si to
its parent node at each time k.

Let us define the following state estimate and other quantities at S0 for a given

Figure 12.2: State Estimation Using a Wireless Sensor Network
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Figure 12.3: An Example of a Sensor Tree

T :

x̂−k (T ) , E[xk|all measurements up to k − 1],

x̂k(T ) , E[xk|all measurements up to k],

P−
k (T ) , E[(xk − x̂−k (T ))(xk − x̂−k (T ))′],

Pk(T ) , E[(xk − x̂k(T ))(xk − x̂k(T ))′],

P−
∞(T ) , lim

k→∞
P−
k (T ), if the limit exists,

P∞(T ) , lim
k→∞

Pk(T ), if the limit exists.

We drop the dependence on T , i.e., we write x̂−k (T ) as x̂−k , etc., if there is no
confusion on the underlying T . In this chapter, we are interested in computing x̂k
and Pk for a given T .

Optimal Estimation Over a Sensor Tree

Assume T has depth D. Define Yk−i+1
k as the set of all measurements available at

the fusion center for time k− i+ 1 at time k, i = 1, · · · ,D. For the tree example in
Figure 12.3, at time k, the fusion center has

Ykk = {y1
k, y

2
k},

Yk−1
k = {y1

k−1, y
2
k−1, y

3
k−1, y

4
k−1}.

We immediately notice that Yk−ik−i ⊂ Yk−ik , i.e., more measurements for time k − i

are collected at k compared with at time k − i. For example, Yk−1
k−1 = {y1

k−1, y
2
k−1}

are the only available measurements at time k−1. However at time k, the available
measurements for time k−1 changes to Yk−1

k . Hence we can obtain a better estimate
of xk−1 at time k than at time k − 1. This inspires us to recompute the optimal
estimate of the previous states and use them as input to generate the current
estimate. That is the basic idea contained in Theorem 12.2, where we recompute
the optimal estimate of xk−D+1, · · · , xk−1 at time k and then make use of the
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updated estimates to compute the current estimate x̂k. Figure 12.4 shows the overall
estimation scheme at time k.

Let Sij be the node that is j hops away from S0. Define

Γj , [H1j
;H2j

; · · · ], j = 1, · · · ,D
Ci , [Γ1; · · · ; Γi], i = 1, · · · ,D
Υj , diag{Π1j

,Π2j
, · · · }, j = 1, · · · ,D

Ri , diag{Υ1, · · · ,Υi}, i = 1, · · · ,D.

Intuitively, Γj is the joint measurement matrix and Υj is the joint noise co-
variance from all sensors that are j hops from the fusion center. Ci is the joint
measurement matrix, and Ri is the joint noise covariance from all sensors that are
j or less than j hops from the fusion center. With these definitions, the following
theorem presents the optimal estimation algorithm over a sensor tree.

Figure 12.4: Kalman Filter Iterations at Time k

Theorem 12.2. Consider a sensor tree T with depth D.

1. x̂k and Pk can be computed from D Kalman filters as

(x̂k−D+1, Pk−D+1) = KF(x̂k−D, Pk−D,Yk−D+1
k , CD, RD)

...

(x̂k−1, Pk−1) = KF(x̂k−2, Pk−2,Yk−1
k , C2, R2)

(x̂k, Pk) = KF(x̂k−1, Pk−1,Ykk , C1, R1).
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2. P−
∞ and P∞ satisfy

P−
∞ = gC2

◦ · · · ◦ gCD−1
(P ∗), (12.10)

P∞ = g̃C1
◦ gC2

◦ · · · ◦ gCD−1
(P ∗), (12.11)

where P ∗ is the unique solution to gCD
(P ∗) = P ∗.

Proof. 1) We know that the estimate x̂k is generated from the estimate of x̂k−1

together with all the available measurements at time k through a traditional Kalman
filter. Similarly, the estimate x̂k−1 is generated from the estimate of x̂k−2 together
with all the available measurements for time k − 1 at time k, etc. This recursion
for D steps corresponds to the D Kalman filters stated in the theorem.
2) Follows directly from Kalman filter recursive equations.

The estimation algorithm presented in Theorem 12.2 readily extends to a general
graph that represents the sensor communications. The fusion center only needs to
keep track of the measurement data up to previous time k − D + 1. Thus in a
distributed setting, every node acts as a fusion center and the system robustness
(against sensor failure) is increased.

Example

We consider an integrator chain in this section. The discrete time system dynamics
is given by Eqn (12.8) with

A =

[
1 0.1
0 1

]
.

and with process noise covariance Q = 0.3I. There are two sensors available. The
measurement equations are given by

y1
k = [ 0 1 ]xk + v1

k = H1xk + v1
k,

y2
k = [ 1 0 ]xk + v2

k = H2xk + v2
k,

with covariances Π1 = 0.25 and Π2 = 0.5. Consider the following two sensor topolo-
gies (Figure. 12.5).

Figure 12.5: Integrator Chain Example

The first one is the star topology, i.e., the two sensors communicate with the
fusion center directly, which corresponds to the centralized Kalman filter. The sec-
ond one is a line topology (a special tree), and the measurement data from sensor
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two to the fusion center get delayed by one step. For this example, it is easy to
calculate that

P ∗ =

[
0.1838 0.0103
0.0103 0.1822

]
,

which is the unique solution to P ∗ = g[H1;H2](P
∗). As a result, for the star topology,

P∞(star) = g̃[H1;H2](P
∗) =

[
0.0825 0.0021
0.0021 0.0822

]
,

with Tr
(
P∞(star)

)
= 0.1647. For the line topology,

P∞(line) = g̃[H1](P
∗) =

[
0.1835 0.0047
0.0047 0.0823

]
,

with Tr
(
P∞(line)

)
= 0.2658.

0 5 10 15 20 25 30 35 40 45 50
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estimate from star topology
estimate from line topology

Figure 12.6: True State and its Estimates

We plot the first component of the true state and its estimates based on the two
sensor topologies in Figure 12.6. We also plot the corresponding error covariance
in Figure. 12.7. As those figures demonstrate, the simulations agree well with the
theory developed.
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Figure 12.7: Error Covariances

Applications

Sensor Tree Performance Comparison

Consider a tree T of depth D with root at S0. In Theorem 12.2, we have shown
that the steady-state error covariance matrix can be found in an exact form as

P∞(T ) = g̃C1(T ) ◦ gC2(T ) ◦ · · · ◦ gCD−1(T )

(
P ∗(T )

)
(12.12)

and P ∗(T ) is the unique solution to gCD(T )

(
P ∗(T )

)
= P ∗(T ).

In many cases, we are interested in finding a tree T that has some desired
properties, such as it has the minimum error covariance P (T ). This often involves
comparing two trees T1 and T2. In general, since P (T ) ∈ Sn+ where only partial

order exists, it may not always hold that either P (T1) ≤ P (T2) or P (T2) ≤ P (T1).
However, in many circumstances, we are still able to compare the performance of
two trees. We first prove the following lemma.

Lemma 12.1. Assume 1 ≤ l1 ≤ l2 ≤ D and P ∈ Sn+. Then

C ′
l1 [Cl1PC

′
l1 +Rl1 ]

−1Cl1 ≤ C ′
l2 [Cl2PC

′
l2 +Rl2 ]

−1Cl2 . (12.13)

Proof. We first prove the case l1 = 1 and l2 = 2. Note that we write Eqn (12.13) as

C ′
1[C1PC

′
1 +R1]

−1C1 ≤
[
C1

Γ2

]′ [[
C1

Γ2

]
P

[
C1

Γ2

]′
+R2

]−1 [
C1

Γ2

]

=

[
C1

Γ2

]′ [
B M
M ′ G

]−1 [
C1

Γ2

]
,
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Figure 12.8: Comparison of Three Sensor Trees

where B = C1PC
′
1 +R1, G = Γ2PΓ′

2 + Υ2, and M = C1PΓ′
2. Since B > 0, G > 0,

and [
B M
M ′ G

]
> 0,

the Schur complement SB , B −MG−1M ′ > 0. Therefore by performing block
matrix inversion, we obtain

[
C1

Γ2

]′ [
B M
M ′ G

]−1 [
C1

Γ2

]
=

[
C1

Γ2

]′ [
X1 −B−1MS−1

B

−S−1
B M ′B−1 S−1

B

] [
C1

Γ2

]

= C ′
1B

−1C1 +X2X
′
2 ≥ C ′

1B
−1C1,

where X1 = B−1 + B−1MS−1
B M ′B−1 and X2 = C ′

1B
−1MS

− 1
2

B − Γ′
2S

− 1
2

B . Having
proved the case i = 1, j = 2, the general case easily follows if we write C1 := Cl1
and Γ2 is such that Cl2 = [Cl1 ; Γ2].

Corollary 12.2.1. For all l = 1, · · · ,D − 1, and all X ≥ 0, gCl+1
(X) ≤ gCl

(X).

Corollary 12.2.2. For all l = 1, · · · ,D − 1, and all X ≥ 0, g̃Cl+1
(X) ≤ g̃Cl

(X).

We can interpret Corollary 12.2.1 and 12.2.2 in the following sense. For an
estimator, the more information it has (i.e., more sensors) and the less delay the
measurement data arrive, the more accurate it can estimate the process state.

For a given tree T , define

Sl−hop(T ) , {Si : Si is within l−hops away from S0} (12.14)

for l = 1, · · · ,D. For example, in Fig. 12.8, S1−hop(T ) = {S1, S2}, and S2−hop(T ) =
{S1, S2, S3, S4}.

Theorem 12.3. For two trees T1 and T2, if Sl−hop(T1) ⊂ Sl−hop(T2) ∀ l =
1, · · · ,D, then P (T2) ≤ P (T1).

Proof. Since Sj−hop(T1) ⊂ Sj−hop(T2) ∀ j = 1, · · · ,D, from Lemma 12.1, we have
gCj−1(T1) ≥ gCj−1(T2) and g̃Cj−1(T1) ≥ g̃Cj−1(T2). Therefore the theorem follows
immediately from Eqn (12.12).

Corollary 12.3.1. If T1 ⊂ T2, then P (T2) ≤ P (T1).
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Figure 12.9: Estimation over a Packet-delaying Network

These results provide an easy to compare the performance of different sensor
trees. For example, consider the three sensor trees in Fig. 12.8. Apparently, T1 ⊂ T2,
and Sj−hop(T2) ⊂ Sj−hop(T3), j = 1, 2, therefore from Theorem 12.3 and Corol-
lary 12.3.1, we immediately obtain

P (T3) ≤ P (T2) ≤ P (T1).

Minimum-energy Sensor Tree

In [?], Shi et al. first considered the problem of minimizing sensor energy usage
while guaranteeing a desired level of estimation quality at the fusion center. Let
e(T ) denote the total energy cost (i.e., transmission energy and receiving energy,
etc.) when the sensor communication with S0 is represented by T . Further denote
Tall as the set of all trees with depth D that are rooted at S0. The following problem
is then considered.

min
T∈Tall

e(T )

subject to

P (T ) ≤ Pdesired

where Pdesired ≥ 0 is given. The result in Theorem 12.2 was used to guide the
construction of the minimum energy sensor tree. The basic idea is as follows. If
P (T ) � Pdesired, then T is reconfigured to T ′ by connecting a sensor that is currently
two-hops away from S0 directly to S0. It is shown that P (T ′) ≤ P (T ), and within
at most N steps, P (T ′) ≤ Pdesired, i.e., T ′ is now a feasible solution. A minimum
energy subtree algorithm is then run on T ′ to further reduce the energy cost.

From Packet Delay to Packet Drop

Consider the problem of state estimation over a packet-delaying network as seen
from Fig. 12.9. The process dynamics is the same as in Eqn (12.8) and sensor
measurement equation is given by

yk = Cxk + vk. (12.15)

After taking a measurement at time k, the sensor sends yk to a remote estimator for
generating the state estimate. We assume that the measurement data packets from
the sensor are to be sent across a packet-delaying network to the estimator. Each
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yk is delayed by dk times, where dk is a random variable described by a probability
mass function f , i.e.,

f(j) = Pr[dk = j], j = 0, 1, · · · (12.16)

We assume dk1 and dk2 are independent if k1 6= k2, and the estimator discards any
data yk (or x̂sk) that are delayed by D times or more.

Given the system and the network delay models in Eqn (12.8), and Eqn (12.15)–
(12.16), we are interested in computing Pr[Pk ≤ M ], the probability that Pk is
bounded by a given matrix M ∈ Sn+. The probabilistic metric was proposed in [?]
for state estimation over packet-dropping networks.

The recursive Kalman filtering technique from Theorem 12.2 dealing with de-
layed measurement provides a promising way to bridge the gap between packet
drop analysis and packet delay analysis. The basic ideas is as follows. Since yk−i
may arrive at time k, we can improve the estimation quality by recalculating x̂k−i
utilizing the new available measurement yk−i. Once x̂k−i is updated, we can update
x̂k−i+1 in a similar fashion. Fig. 12.10 illustrates the idea, where γkk−i = 1 or 0 is
the indicator function whether the measurement packet generated at time k − i
arrives at time k or not.

Define γk−i ,
∑i
j=0 γ

k−j
k−i , i.e., γk−i indicates whether yk−i is received by the

estimator at or before k, and define γ̂i(D) as

γ̂i(D) ,

{ ∑i
j=0 f(j), if 0 ≤ i < D,∑D−1
j=0 f(j), if i ≥ D.

Then it is easy to verify that for a fixed D,

Pr[γk−i = 1] = γ̂i(D). (12.17)

Notice that now Pr[γk−i = 1] becomes a constant, thus given a stochastic descrip-
tion of the packet delays in Eqn (12.16), we can convert the packet delay model
into a packet drop model. Similar to [?], we are then able to obtain similar bounds
on Pr[Pk ≤M ] using the corresponding new packet arrival rate γ̂i(D).

12.4 Distributed Control over Sensor Networks

include main ideas from the following paper. LS

12.5 Further Reading

12.6 Exercise
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Figure 12.10: Recursive Kalman filtering
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