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Chapter Nine
Transfer Functions

The typical regulator system can frequently be described, in essentials, by differential equa-

tions of no more than perhaps the second, third or fourth order. . . . In contrast, the order of

the set of differential equations describing the typical negative feedback amplifier used in

telephony is likely to be very much greater. As a matter of idle curiosity, I once counted to

find out what the order of the set of equations in an amplifier I had just designed would have

been, if I had worked with the differential equations directly. It turned out to be 55.

Hendrik Bode, 1960 [Bod60].

This chapter introduces the concept of the transfer function, which is a compact
description of the input/output relation for a linear time invariant system. Combin-
ing transfer functions with block diagrams gives a powerful method for dealing
with complex linear systems. The relationship between transfer functions and other
descriptions of system dynamics is also discussed.

9.1 Frequency Domain Modeling

Figure 9.1 is a block diagram for a typical control system, consisting of a process
to be controlled and a controller that combines feedback and feedforward. We
saw in the previous two chapters how to analyze and design such systems using
state space descriptions of the blocks. As mentioned in Chapter 3, an alternative
approach is to focus on the input/output characteristics of the system. Since it is
the inputs and outputs that are used to connect the systems, one could expect that
this point of view would allow an understanding of the overall behavior of the
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Figure 9.1: A block diagram for a feedback control system. The reference signal r is fed
through a reference shaping block, which generates a signal which is compared with the
output y to form the error e. The control signal u is generated by the controller which has the
error as the input. The load disturbance v and the measurement noise w are external signals.
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system. Transfer functions are the main tool in implementing this approach for
linear systems.

The basic idea of the transfer function comes from looking at the frequency
response of a system. Suppose that we have an input signal that is periodic. Then
we can decompose this signal into the sum of a set of sines and cosines,

u(t) =
∞

∑
k=0

ak sin(kωt)+bk cos(kωt),

where ω is the fundamental frequency of the periodic input. As we saw in Sec-
tion 6.3, the input u(t) generates corresponding sine and cosine outputs (in steady
state), with possibly shifted magnitude and phase. The gain and phase at each fre-
quency are determined by the frequency response given in equation (6.24):

G(s) =C(sI−A)−1B+D, (9.1)

where we set s = i(kω) for each k = 1, . . . ,∞ and i =
√
−1. If we know the steady-

state frequency response G(s), we can thus compute the response to any (periodic)
signal using superposition. The transfer function generalizes this notion to allow
a broader class of input signals besides periodic ones. As we shall see in the next
section, the transfer function represents the response of the system to an exponen-
tial input, u = est . It turns out that the form of the transfer function is precisely
the same as that of equation (9.1). This should not be surprising since we derived
equation (9.1) by writing sinusoids as sums of complex exponentials. The transfer
function can also be introduced as is the ratio of the Laplace transforms of output
and input when the state is zero, although one does not have to understand the
details of Laplace transforms in order to make use of transfer functions.

Modeling a system through its response to sinusoidal and exponential signals
is known as frequency domain modeling. This terminology stems from the fact that
we represent the dynamics of the system in terms of the generalized frequency s
rather than the time domain variable t. The transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a particularly convenient
representation in manipulating and analyzing complex linear feedback systems.
As we shall see, there are graphical representations of transfer functions (Bode
and Nyquist plots) that capture interesting properties of the underlying dynamics.
Transfer functions also make it possible to express the changes in a system be-
cause of modeling error, which is essential when considering sensitivity to process
variations of the sort discussed in Chapter 13. More specifically, using transfer
functions, it is possible to analyze what happens when dynamic models are ap-
proximated by static models or when high-order models are approximated by low-
order models. One consequence is that we can introduce concepts that express the
degree of stability of a system.

While many of the concepts for state space modeling and analysis apply di-
rectly to nonlinear systems, frequency domain analysis applies primarily to linear
systems. The notions of gain and phase can, however, be generalized to nonlinear
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systems and, in particular, propagation of sinusoidal signals through a nonlinear
system can approximately be captured by an analog of the frequency response
called the describing function. These extensions of frequency response will be dis-
cussed in Section 10.5.

9.2 Determining the Transfer Function

As we have seen in previous chapters, the input/output dynamics of a linear sys-
tem have two components: the initial condition response and the forced response,
which depends on the system input. The forced response can be completely char-
acterized by the transfer function. In Section 2.1 we briefly introduced the transfer
function as the response to an exponential function est . In this section we will
compute transfer functions for general linear systems and we will show that the
transfer function is indeed a complete characterization of the input/output behav-
ior of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we will make use of a
special type of signal, called an exponential signal, of the form est , where s =
σ + iω is a complex number. Exponential signals play an important role in linear
systems. They appear in the solution of differential equations and in the impulse
response of linear systems, and many signals can be represented as exponentials
or sums of exponentials. For example, a constant signal is simply eαt with α = 0.
Damped sine and cosine signals can be represented by

e(σ+iω)t = eσteiωt = eσt(cosωt + isinωt),

where σ < 0 determines the decay rate. Figure 9.2 gives examples of signals that
can be represented by complex exponentials; many other signals can be repre-
sented by linear combinations of these signals.

As in the case of the sinusoidal signals we considered in Section 6.3, we will
allow complex-valued signals in the derivation that follows, although in practice
we always add together combinations of signals that result in real-valued functions.

To find the transfer function for the state space system

dx

dt
= Ax+Bu, y =Cx+Du, (9.2)

we let the input be the exponential signal u(t) = est and assume that s ̸∈ λ (A). The
state is then given by

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Besτ dτ = eAtx(0)+ eAt(sI−A)−1

(
e(sI−A)t − I

)
B.
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Figure 9.2: Examples of exponential signals. The top row corresponds to exponential signals
with a real exponent, and the bottom row corresponds to those with complex exponents. The
dashed line in the last two cases denotes the bounding envelope for the oscillatory signals.
In each case, if the real part of the exponent is negative then the signal decays, while if the
real part is positive then it grows.

The output y of equation (9.2) then becomes

y(t) =Cx(t)+Du(t)

= CeAtx(0)
︸ ︷︷ ︸

initial state response

+
(

C(sI−A)−1B+D
)

est −CeAt(sI−A)−1B
︸ ︷︷ ︸

input response

=CeAt
(

x(0)− (sI−A)−1B
)

︸ ︷︷ ︸
transient response

+
(

C(sI−A)−1B+D
)

est

︸ ︷︷ ︸
pure exponential response

.

(9.3)

and the transfer function from u to y of the system (9.2) is the coefficient of the
term est , hence

G(s) =C(sI−A)−1B+D. (9.4)

Compare this with the definition of frequency response given by equations (6.23)
and (6.24).

An important point in the derivation of the transfer function is the fact that
we have restricted s so that s ̸= λ j(A), the eigenvalues of A. At those values of s,
we see that the response (9.3) of the system is singular (since sI−A then is not
invertible). The transfer function can, however, be extended to all values of s by
analytic continuation.

To give some insight we will now discuss the equation (9.3). We first notice that
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the output y(t) can be separated in terms in two ways with different interpretations.
The response of the system to initial conditions is CeAtx(0). Recall that eAt can be
written in terms of the eigenvalues of A (using the Jordan form in the case of
repeated eigenvalues), and hence the transient response is a linear combination of
terms of the form p j(t)eλ jt , where λ j are eigenvalues of A and p j(t) is a polynomial
whose degree is less than the multiplicity of the eigenvalue (Exercise 9.2).

The response to the input u(t) = est contains a mixture of terms p j(t)eλ jt and
the exponential function

yp(t) =
(
C(sI−A)−1B+D

)
est , (9.5)

which is a particular solution to the differential equation (9.2). We call equa-
tion (9.5) the pure exponential solution because it has only one exponential est .
It follows from equation (9.3) that the output y(t) is equal to the pure exponential
solution yp(t) if the initial condition is chosen as

x(0) = (sI−A)−1B. (9.6)

If the system (9.2) is aymptotically stable, then eAt → 0 as t→∞. If in addition
the input u(t) is a constant u(t) = e0· t or a sinusoid u(t) = eiω the response then
goes to a constant or sinusoidal steady state solution (as shown in equation (6.23)).

To simplify manipulation of the equations describing linear time invariant sys-
tems, we introduce E as the class of time functions that can be created from combi-
nations of signals of the form X(s)est , where the parameter s is a complex variable
and X(s) is a complex function (vector valued if needed). It follows from equa-
tions (9.3) and (9.4) that if a system with transfer function G(s) has the input
u ∈ E then there is a particular solution y ∈ E that satisfies the dynamics of the
system. This solution is the actual response of the system if the initial condition
is chosen as equation (9.6). Since the transfer function of a system is given by
the pure exponential response, we can derive transfer functions using exponential
signals, and we will use the notation

y = Gyuu, u,y ∈ E (9.7)

where Gyu is the transfer function for the linear input/output system taking u to y.
Mathematically, it is important to remember that this notation assumes the use of
combinations of exponential signals. We will also often drop the subscripts on G
and just write y = Gu when the meaning is clear from context.

Example 9.1 Damped oscillator
Consider the response of a damped linear oscillator, whose state space dynamics
were studied in Section 7.3:

dx

dt
=

⎧
⎪⎪⎩

0 ω0

−ω0 −2ζ ω0

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

0
kω0

⎫
⎪⎪⎭u, y =

⎧
⎩1 0

⎫
⎭x. (9.8)

This system is asymptotically stable if ζ > 0, and so we can look at the steady-state
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response to an input u = est ,

Gyu(s) =C(sI−A)−1B =
⎧
⎩1 0

⎫
⎭
⎧
⎪⎪⎩

s −ω0

ω0 s+2ζ ω0

⎫
⎪⎪⎭
−1⎧⎪⎪⎩

0
kω0

⎫
⎪⎪⎭

=
⎧
⎩1 0

⎫
⎭
(

1

s2 +2ζ ω0s+ω2
0

⎧
⎪⎪⎩

s+2ζ ω0 −ω0

ω0 s

⎫
⎪⎪⎭
)⎧
⎪⎪⎩

0
kω0

⎫
⎪⎪⎭

=
kω2

0

s2 +2ζ ω0s+ω2
0

.

(9.9)

The steady-state response to a step input is obtained by setting s = 0 which gives

u = 1 =⇒ y = Gyu(0)u = k.

If we wish to compute the steady-state response to a sinusoid, we write

u = sinωt =
1

2

(
ie−iωt − ieiωt

)
,

y =
1

2

(
iGyu(−iω)e−iωt − iGyu(iω)eiωt

)
.

We can now write G(iω) in terms of its magnitude and phase,

G(iω) =
kω2

0

−ω2 +(2ζ ω0ω)i+ω2
0

= Meiθ ,

where the magnitude (or gain) M and phase θ are given by

M =
kω2

0√
(ω2

0 −ω2)2 +(2ζ ω0ω)2
,

sinθ

cosθ
=
−2ζ ω0ω

ω2
0 −ω2

.

We can also make use of the fact that G(−iω) is given by its complex conjugate
G∗(iω), and it follows that G(−iω) = Me−iθ . Substituting these expressions into
our output equation, we obtain

y =
1

2

(
i(Me−iθ )e−iωt − i(Meiθ )eiωt

)

= M ·
1

2

(
ie−i(ωt+θ)− iei(ωt+θ)

)
= M sin(ωt +θ).

The responses to other signals can be computed by writing the input as an appro-
priate combination of exponential responses and using linearity. ∇

Transfer Functions for Linear Differential Equations

Consider a linear input/output system described by the differential equation

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = b0

dmu

dtm
+b1

dm−1u

dtm−1
+ · · ·+bmu, (9.10)

where u is the input and y is the output. This type of description arises in many
applications, as described briefly in Chapter 2 and Section 3.2; bicycle dynamics
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and AFM modeling are two specific examples. Note that here we have generalized
our system description from Section 3.2 to allow both the input and its derivatives
to appear.

To determine the transfer function of the system (9.10), let the input be u(t) =
est . Since the system is linear, there is an output of the system that is also an
exponential function y(t) = y0est . Inserting the signals into equation (9.10), we
find

(sn +a1sn−1 + · · ·+an)y0est = (b0sm +b1sm−1 · · ·+bm)e
st ,

and the response of the system can be completely described by two polynomials

a(s) = sn +a1sn−1 + · · ·+an, b(s) = b0sm +b1sm−1 + · · ·+bm. (9.11)

The polynomial a(s) is the characteristic polynomial of the ordinary differential
equation. If a(s) ̸= 0, it follows that

y(t) = y0est =
b(s)

a(s)
est . (9.12)

The transfer function of the system (9.10) is thus the rational function

G(s) =
b(s)

a(s)
, (9.13)

where the polynomials a(s) and b(s) are given by equation (9.11). Notice that the
transfer function for the system (9.10) can be obtained by inspection since the
coefficients of a(s) and b(s) are precisely the coefficients of the derivatives of u
and y. The order of the transfer function is defined as the order of the denominator
polynomial.

Example 9.2 Electrical circuit elements
Modeling of electrical circuits is a common use of transfer functions. Consider, for
example, a resistor modeled by Ohm’s law V = IR, where V is the voltage across
the resistor, I is the current through the resistor and R is the resistance value. If we
consider current to be the input and voltage to be the output, the resistor has the
transfer function Z(s) = R. Z(s) is also called the impedance of the circuit element.

Next we consider an inductor whose input/output characteristic is given by

L
dI

dt
=V.

Letting the current be I(t) = est , we find that the voltage is V (t) = Lsest and the
transfer function of an inductor is thus Z(s) = Ls. A capacitor is characterized by

C
dV

dt
= I,

and a similar analysis gives a transfer function from current to voltage of Z(s) =
1/(Cs). Using transfer functions, complex electrical circuits can be analyzed alge-
braically by using the complex impedance Z(s) just as one would use the resistance
value in a resistor network. ∇
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Figure 9.3: Stable amplifier based on negative feedback around an operational amplifier.
The block diagram on the left shows a typical amplifier with low-frequency gain R2/R1. If
we model the dynamic response of the op amp as G(s) = ak/(s+a), then the gain falls off at
frequency ω = aR1k/R2, as shown in the gain curves on the right. The frequency response
is computed for k = 107, a = 10 rad/s, R2 =106 Ω, and R1 = 1, 102, 104 and 106 Ω.

Example 9.3 Operational amplifier circuit
To further illustrate the use of exponential signals, we consider the operational
amplifier circuit described in Section 4.3 and reproduced in Figure 9.3 (left). The
model in Section 4.3 is a simplification because the linear behavior of the ampli-
fier is modeled as a constant gain. In reality there are significant dynamics in the
amplifier, and the static model vout = −kv (equation (4.10)) should therefore be
replaced by a dynamic model vout =−Gv. A simple transfer function is

G(s) =
ak

s+a
. (9.14)

These dynamics correspond to a first-order system with time constant 1/a. The
parameter k is called the open loop gain, and the product ak is called the gain-
bandwidth product; typical values for these parameters are k = 107 and ak = 107–
109 rad/s.

If the input v1 is an exponential signal est , then there are solutions where all
signals in the circuit are exponentials, v,v1,v2 ∈ E , since all of the elements of the
circuit are modeled as being linear. The equations describing the system can then
be manipulated algebraically.

Assuming that the current into the amplifier is zero, as is done in Section 4.3,
the current through the resistors R1 and R2 are the same, hence

v1− v

R1
=

v− v2

R2
, or (R1 +R2)v = R2v1 +R1v2

Combining the above equation with the open loop dynamics of the operational
amplifier (9.14), which can be written as v2 =−Gv in the simplified notation (9.7),
then give the following model for the closed loop system:

(R1 +R2)v = R2v1 +R1v2, v2 =−Gv, v,v1,v2 ∈ E . (9.15)

Eliminating v between these equations gives

v2 =
−R2G

R1 +R2 +R1G
v1 =

−R2ak

R1ak+(R1 +R2)(s+a)
v1.
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and the transfer function of the closed loop system is

Gv2v1 =
−R2ak

R1ak+(R1 +R2)(s+a)
. (9.16)

The low-frequency gain is obtained by setting s = 0, hence

Gv2v1(0) =
−kR2

(k+1)R1 +R2
≈−

R2

R1
,

which is the result given by equation (4.11) in Section 4.3. The bandwidth of the
amplifier circuit is

ωb = a
R1(k+1)+R2

R1 +R2
≈ a

R1k

R2
for k≫ 1,

where the approximation holds for R2/R1≫ 1. The gain of the closed loop system
drops off at high frequencies as R2k/(ω(R1 +R2)). The frequency response of the
transfer function is shown in Figure 9.3 (right) for k = 107, a = 10 rad/s, R2 =
106 Ω and R1 = 1, 102, 104 and 106 Ω.

Note that in solving this example, we bypassed explicitly writing the signals
as v = V (s)est and instead worked directly with v, assuming it was an exponen-
tial. This shortcut is handy in solving problems of this sort and when manipulating
block diagrams. A comparison with Section 4.3, where we make the same calcu-
lation when G(s) is a constant, shows analysis of systems using transfer functions
is as easy as using static systems. The calculations are the same if the resistances
R1 and R2 are replaced by impedances, as discussed in Example 9.2. ∇

Although we have focused thus far on ordinary differential equations, transfer !
functions can also be used for other types of linear systems. We illustrate this
using time delays and systems described by a partial differential equation.

Example 9.4 Time delay
Time delays appear in many systems: typical examples are delays in nerve prop-
agation, communication and mass transport. A system with a time delay has the
input/output relation

y(t) = u(t− τ). (9.17)

To obtain the corresponding transfer function we let the input be u(t) = est , and
the output is then

y(t) = u(t− τ) = es(t−τ) = e−sτest = e−sτu(t).

We find that the transfer function of a time delay is thus G(s) = e−sτ , which is not
a rational function. ∇

Example 9.5 Heat propagation
Consider the problem of one-dimensional heat propagation in a semi-infinite metal
rod. Assume that the input is the temperature at one end and that the output is the
temperature at a point along the rod. Let θ(x, t) be the temperature at position x
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and time t. With a proper choice of length scales and units, heat propagation is
described by the partial differential equation

∂θ

∂ t
=

∂ 2θ

∂ 2x
, y(t) = θ(1, t) (9.18)

and the point of interest can be assumed to have x = 1. The boundary condition for
the partial differential equation is

θ(0, t) = u(t).

To determine the transfer function we choose the input as u(t) = est . Assume that
there is a solution to the partial differential equation of the form θ(x, t) = ψ(x)est

and insert this into equation (9.18) to obtain

sψ(x) =
d2ψ

dx2
,

with boundary condition ψ(0) = 1. This ordinary differential equation (with inde-
pendent variable x) has the solution

ψ(x) = Aex
√

s +Be−x
√

s.

Since the temperature of the rod is bounded we have A= 0, the boundary condition
gives B = 1, and the solution is then

y(t) = θ(1, t) = ψ(1)est = e−
√

sest = e−
√

su(t).

The system thus has the transfer function G(s) = e−
√

s. As in the case of a time
delay, the transfer function is not a rational function but is analytic except at s = 0.

∇

Transfer functions for some common linear time-invariant systems are given in
Table 9.1.

Coordinate Changes

The matrices A, B and C in the state space equations (9.2) depend on the choice
of coordinate system for the states. Since the transfer function relates input to out-
puts, it should be invariant to coordinate changes in the state space. To show this,
consider the model (9.2) and introduce new coordinates z by the transformation
z = T x, where T is a nonsingular matrix. The system is then described by

dz

dt
= T (Ax+Bu) = TAT−1z+T Bu =: Ãz+ B̃u,

y =Cx+Du =CT−1z+Du =: C̃z+Du.

This system has the same form as equation (9.2), but the matrices A, B and C are
different:

Ã = TAT−1, B̃ = T B, C̃ =CT−1. (9.19)
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Table 9.1: Transfer functions for some common linear time-invariant systems.

Type System Transfer Function

Integrator ẏ = u
1

s

Differentiator y = u̇ s

First-order system ẏ+ay = u
1

s+a

Double integrator ÿ = u
1

s2

Damped oscillator ÿ+2ζ ω0ẏ+ω2
0 y = u

1

s2 +2ζ ω0s+ω2
0

State space systm ẋ = Ax+Bu,y =Cx+Du C(sI−A)−1B+D

PID controller y = kpu+ kdu̇+ ki
∫

u kp + kds+
ki

s

Time delay y(t) = u(t− τ) e−τs

Computing the transfer function of the transformed model, we get

G̃(s) = C̃(sI− Ã)−1B̃+ D̃ =CT−1(sI−TAT−1)−1T B+D

=C
(
T−1(sI−TAT−1)T

)−1
B+D =C(sI−A)−1B+D = G(s),

which is identical to the transfer function (9.4) computed from the system descrip-
tion (9.2). The transfer function is thus invariant to changes of the coordinates in
the state space.

Laplace Transforms
!

Traditionally, Laplace transforms were used to compute responses of linear sys-
tems to different stimuli. Today we can easily generate the responses using com-
puters. Laplace transforms were also used to derive transfer functions, which we
illustrate in this section. Only a few elementary properties are needed for basic
control applications. Students who are not familiar with them can safely skip this
section. A good reference for the mathematical material in this section is the classic
book by Widder [Wid41].

Consider a function f (t), f : R+ → R, that is integrable and grows no faster
than es0t for some finite s0 ∈ R and large t. The Laplace transform maps f to a
function F = L f : C→ C of a complex variable. It is defined by

F(s) =
∫ ∞

0
e−st f (t)dt, Res > s0. (9.20)

The transform has some properties that makes it well suited to deal with linear
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systems. First we observe that the transform is linear because

L (a f +bg) =
∫ ∞

0
e−st(a f (t)+bg(t))dt

= a

∫ ∞

0
e−st f (t)dt +b

∫ ∞

0
e−stg(t)dt = aL f +bL g.

(9.21)

Next we will calculate the Laplace transform of the integral of a function. Using
integration by parts, we get

L

∫ t

0
f (τ)dτ =

∫ ∞

0

(
e−st

∫ t

0
f (τ)dτ

)
dt

=−
e−st

s

∫ t

0
f (τ)dτ

∣∣∣
∞

0
+
∫ ∞

0

e−sτ

s
f (τ)dτ =

1

s

∫ ∞

0
e−sτ f (τ)dτ ,

hence

L

∫ t

0
f (τ)dτ =

1

s
L f =

1

s
F(s). (9.22)

Integration of a time function thus corresponds to division of the corresponding
Laplace transform by s.

Since integration corresponds to division by s, we can expect that differenti-
ation corresponds to multiplication by s. This is not quite true as we will see by
calculating the Laplace transform of the derivative of a function. We have

L
d f

dt
=
∫ ∞

0
e−st f ′(t)dt = e−st f (t)

∣∣∣
∞

0
+ s

∫ ∞

0
e−st f (t)dt =− f (0)+ sL f ,

where the second equality is obtained using integration by parts. We thus obtain

L
d f

dt
= sL f − f (0) = sF(s)− f (0). (9.23)

Notice the appearance of the initial value f (0) of the function. The formula (9.23)
is particularly simple if the initial conditions are zero, because if f (0)= 0 it follows
that differentiation of a function corresponds to multiplication of the transform by
s, compare with the differentiation of exponential signals.

Using Laplace transforms the transfer function for a linear time invariant sys-
tem can be defined as the ratio of the transform of the input and the output, when
the transforms are computed under the assumption that all initial conditions are
zero. We will now illustrate how Laplace transforms can be used to compute trans-
fer functions.

Example 9.6 Transfer function of state space model
Consider the state space system described by equation (9.2). Taking Laplace trans-
forms gives

sX(s)− x(0) = AX(s)+BU(s) Y (s) =CX(s)+DU(s).

Elimination of X(s) gives

X(s) = (sI−A)−1x(0)+(sI−A)−1BU(s). (9.24)
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When the initial condition x(0) is zero we have

X(s) = (sI−A)−1BU(s), Y (s) =
(

C(sI−A)−1B+D
)

U(s).

and the transfer function is G(s)=C(sI−A)−1B+D (compare with equation (9.4)).
∇

Example 9.7 Transfer functions and impulse response
Consider a linear time-invariant system with zero initial state. We saw in Sec-
tion 6.3 that the relation between the input u and the output y is given by the
convolution integral

y(t) =
∫ ∞

0
h(t− τ)u(τ)dτ ,

where h(t) is the impulse response for the system (assumed causal). Taking the
Laplace transform of this expression gives

Y (s) =
∫ ∞

0
e−sty(t)dt =

∫ ∞

0
e−st

∫ ∞

0
h(t− τ)u(τ)dτ dt

=
∫ ∞

0

∫ t

0
e−s(t−τ)e−sτh(t− τ)u(τ)dτ dt

=
∫ ∞

0
e−sτu(τ)dτ

∫ ∞

0
e−sth(t)dt = H(s)U(s).

Thus, the input/output response is given by Y (s) = H(s)U(s), where H, U and Y
are the Laplace transforms of h, u and y.

The system theoretic interpretation is that the Laplace transform of the output
of a linear system is a product of two terms, the Laplace transform of the input
U(s) and the Laplace transform of the impulse response of the system H(s). A
mathematical interpretation is that the Laplace transform of a convolution is the
product of the transforms of the functions that are convolved. The fact that the
formula Y (s) = H(s)U(s) is much simpler than a convolution is one reason why
Laplace transforms have traditionally been popular in engineering. ∇

9.3 Block Diagrams and Transfer Functions

The combination of block diagrams and transfer functions is a powerful way to
represent control systems. Transfer functions relating different signals in the sys-
tem can be derived by purely algebraic manipulations of the transfer functions of
the blocks using block diagram algebra. To show how this can be done, we will
begin with simple combinations of systems. We will assume that all signals are
exponential signals E and we will use the compact notation y = Gu for the out-
put y ∈ E of a linear time-invariant system with the input u ∈ E and the transfer
function G (see equation (9.7) and recall its interpretation).

Consider a system that is a cascade combination of systems with the transfer
functions G1(s) and G2(s), as shown in Figure 9.4a. Let the input of the system be
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G1 G2

u y

(a) Gyu = G2G1

G2

Σ
u y

G1

(b) Gyu = G1 +G2

−G2

Σ
eu y

G1

(c) Gyu =
G1

1+G1G2

Figure 9.4: Interconnections of linear systems. Series (a), parallel (b) and feedback (c) con-
nections are shown. The transfer functions for the composite systems can be derived by
algebraic manipulations assuming exponential functions for all signals.

u ∈ E . The output of the first block is then G1u ∈ E , which is also the input to the
second system. The output of the second The output of the second system is then

y = G2(G1u) = (G2G1)u, u,y ∈ E . (9.25)

The transfer function of the series connection is thus G = G2G1, i.e., the product
of the transfer functions. The order of the individual transfer functions is due to
the fact that we place the input signal on the right-hand side of this expression,
hence we first multiply by G1 and then by G2. Unfortunately, this has the opposite
ordering from the diagrams that we use, where we typically have the signal flow
from left to right, so one needs to be careful. The ordering is important if either G1

or G2 is a vector-valued transfer function, as we shall see in some examples.
Consider next a parallel connection of systems with the transfer functions G1

and G2, as shown in Figure 9.4b and assume that all signals are exponential signals.
The outputs of the first and second systems are simply G1u and G2u and the output
of the parallel conncection is

y = G1u+G2u = (G1 +G2)u, u,y ∈ E .

The transfer function for a parallel connection is thus G = G1 +G2.
Finally, consider a feedback connection of systems with the transfer functions

G1 and G2, as shown in Figure 9.4c. Writing the relations between the signals for
the different blocks and the summation unit, we find

y = G1e, e = u−G2y, y,e,u ∈ E . (9.26)

Elimination of e gives

y = G1(u−G2y) =⇒ (1+G1G2)y = G1u =⇒ y =
G1

1+G1G2
u.

The transfer function of the feedback connection is thus

G =
G1

1+G1G2
. (9.27)
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ν
Σ Σ

v

Σ

w

ye u η
F(s)

r
C(s) P(s)

−1

Figure 9.5: Block diagram of a feedback system. The inputs to the system are the reference
signal r, the process disturbance v and the measurement noise w. The remaining signals in
the system can all be chosen as possible outputs, and transfer functions can be used to relate
the system inputs to the other labeled signals.

These three basic interconnections can be used as the basis for computing transfer
functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figure 9.5, which was given at the beginning of the chapter.
The system has three blocks representing a process P, a feedback controller C and a
feedforward controller F . Together, C and F define the control law for the system.
There are three external signals: the reference (or command signal) r, the load
disturbance v and the measurement noise w. A typical problem is to find out how
the error e is related to the signals r, v and w.

To derive the transfer functions we are interested in, we assume that all signals
are exponential signals E and we write the relations between the signals for each
block in the system block diagram. Assume for example that we are interested in
the control error e. The summation point and the block F(s) gives

e = Fr− y, e,r,y ∈ E .

The signal y is the sum of w and η , where η is the output of the process P(s): .

y = n+η , η = P(v+u), u =Ce, y,n,η ,v,u,e ∈ E .

Combining these equations gives

e = Fr− y = Fr− (n+η) = Fr−
(
n+P(d +u)

)

= Fr−
(
n+P(d +Ce)

)
,

and hence
e = Fr−w−Pv−PCe, e,r,w,v ∈ E .

Finally, solving this equation for e gives

e =
F

1+PC
r−

1

1+PC
w−

P

1+PC
v = Gerr+Geww+Gevv, (9.28)

and the error is thus the sum of three terms, depending on the reference r, the
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(c)

(b)

F PC
r e

Σ

−1

F
r

PC
1+PC

y

PCF
1+PC

yr

y

(a)

Figure 9.6: Example of block diagram algebra. The results from multiplying the process and
controller transfer functions (from Figure 9.5) are shown in (a). Replacing the feedback loop
with its transfer function equivalent yields (b), and finally multiplying the two remaining
blocks gives the reference to output representation in (c).

measurement noise w and the load disturbance v. The functions

Ger =
F

1+PC
, Gew =

−1

1+PC
, Gev =

−P

1+PC
(9.29)

are transfer functions from reference r, noise w and disturbance v to the error e.
We can also derive transfer functions by manipulating the block diagrams di-

rectly, as illustrated in Figure 9.6. Suppose we wish to compute the transfer func-
tion between the reference r and the output y. We begin by combining the process
and controller blocks in Figure 9.5 to obtain the diagram in Figure 9.6a. We can
now eliminate the feedback loop using the algebra for a feedback interconnection
(Figure 9.6b) and then use the series interconnection rule to obtain

Gyr =
PCF

1+PC
. (9.30)

Similar manipulations can be used to obtain the other transfer functions (Exer-
cise 9.9).

The above analysis illustrates an effective way to manipulate the equations to
obtain the relations between inputs and outputs in a feedback system. The general
idea is to start with the variable of interest and to trace variables backwards around
the feedback loop. With some practice, equations (9.28) and (9.29) can be written
directly by inspection of the block diagram. Notice, for example, that all terms in
equation (9.29) have the same denominator and that the numerators are the blocks
that one passes through when going directly from input to output (ignoring the
feedback). This type of rule can be used to compute transfer functions by inspec-
tion, although for systems with multiple feedback loops it can be tricky to compute
them without writing down the algebra explicitly.

We can also use block diagram algebra to obtain insights about state space con-
trollers. Consider a state space controller that uses an observer, such as the one
shown in Figure 8.7. The process model is

dx

dt
= Ax+Bu, y =Cx,
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and the controller (8.14) is given by

u =−Kx̂+ krr, (9.31)

where x̂ is the output of a state observer (8.15) given by

dx̂

dt
= Ax̂+Bu+L(y−Cx̂), u =−Kx̂+ krr. (9.32)

The controller is a system with one input u and two outputs the reference r and
the measured signal y. Using transfer functions and exponential signals it can be
represented as

u = Gurr+Guyy, u,r,y ∈ E . (9.33)

The transfer function, Guy, from y to u describes the feedback action and, Gur(s),
from r to u describes the feedforward action. We call these open loop transfer func-
tions because they represent the relationships between the signals without consid-
ering the dynamics of the process (e.g., removing P(s) from the system description
or cutting the loop at the process input or output). To derive the controller transfer
functions we rewrite equation (9.32) as

dx̂

dt
= (A−BK−LC)x̂+Bkrr+Ly, u =−Kx̂+ krr.

Letting x, r, and y be exponential signals, the above equation gives

(sI− (A−BK−LC))x̂ = Bkr +Ly, u =−Kx̂+ krr, x,r,y ∈ E ,

and we find that the controller transfer functions in equation (9.33) are

Gur = kr−K(sI−BK−KC)−1Bkr, Guy =−K(sI−BK−LC)−1L (9.34)

We illustrate with an example.

Example 9.8 Vehicle steering
Consider the linearized model for vehicle steering introduced in Example 6.12. In
Examples 7.4 and 8.3 we designed a state feedback controller and state estimator
for the system. A block diagram for the resulting control system is given in Fig-
ure 9.7. Note that we have split the estimator into two components, Gx̂u(s) and
Gx̂y(s), corresponding to its inputs u and y. Using the expressions for A, B, C and
L from Example 8.3, it follows from equation (9.34) that

Guy(s) =−
s(k1l1 + k2l2)+ k1l2

s2 + s(γk1 + k2 + l1)+ k1 + l2 + k2l1− γk2l2
=
−KGx̂y(s)

1+KGx̂u(s)
,

and

Gur(s) =
kr(s2 + l1s+ l2)

s2 + s(γk1 + k2 + l1)+ k1 + l2 + k2l1− γk2l2
=

kr

1+KGx̂u(s)
,

where k1 and k2 are the state feedback gains and kr is the reference gain. The last
equalities are obtained applying block diagram algebra to Figure 9.7.
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y(t)

r(t)

Controller

Σ

K
Gx̂u Gx̂y

−1 Σ

P(s)
u yr

kr

Estimator

x̂

Figure 9.7: Block diagram for a steering control system. The control system is designed to
maintain the lateral position of the vehicle along a reference curve (left). The structure of the
control system is shown on the right as a block diagram of transfer functions. The estimator
consists of two components that compute the estimated state x̂ from the combination of the
input u and output y of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commanded steering angle u.

To compute the full closed loop dynamics, we begin by deriving the transfer
function for the process P(s). We can compute this directly from the state space
description, which was given in Example 6.12. Using that description, we have

P(s) = Gyu(s) =C(sI−A)−1B+D =
⎧
⎩1 0

⎫
⎭
⎧
⎪⎪⎩

s −1
0 s

⎫
⎪⎪⎭
−1⎧⎪⎪⎩

γ
1

⎫
⎪⎪⎭=

γs+1

s2
.

The transfer function for the full closed loop system between the input r and the
output y is then given by

Gyr =
P(s)Gur(s)

1−P(s)Guy(s)
=

kr(γs+1)

s2 +(k1γ + k2)s+ k1
.

Note that the observer gains l1 and l2 do not appear in this equation. This is because
we are considering steady-state analysis and, in steady state, the estimated state
exactly tracks the state of the system assuming perfect models. We will return to
this example in Chapter 13 to study the robustness of this particular approach.

∇

Algebraic Loops
!

When analyzing or simulating a system described by a block diagram, it is neces-
sary to form the differential equations that describe the complete system. In many
cases the equations can be obtained by combining the differential equations that
describe each subsystem and substituting variables. This simple procedure cannot
be used when there are closed loops of subsystems that all have a direct connection
between inputs and outputs, known as an algebraic loop.

To see what can happen, consider a system with two blocks, a first-order non-
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linear system,
dx

dt
= f (x,u), y = h(x), (9.35)

and a proportional controller described by u = −ky. There is no direct term since
the function h does not depend on u. In that case we can obtain the equation for
the closed loop system simply by replacing u by −ky in (9.35) to give

dx

dt
= f (x,−ky), y = h(x).

Such a procedure can easily be automated using simple formula manipulation.
The situation is more complicated if there is a direct term. If y = h(x,u), then

replacing u by −ky gives

dx

dt
= f (x,−ky), y = h(x,−ky).

To obtain a differential equation for x, the algebraic equation y = h(x,−ky) must
be solved to give y = α(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. Resolving algebraic
loops is a nontrivial problem because it requires the symbolic solution of alge-
braic equations. Most block diagram-oriented modeling languages cannot handle
algebraic loops, and they simply give a diagnosis that such loops are present. In
the era of analog computing, algebraic loops were eliminated by introducing fast
dynamics between the loops. This created differential equations with fast and slow
modes that are difficult to solve numerically. Advanced modeling languages like
Modelica use several sophisticated methods to resolve algebraic loops.

9.4 Gain, Poles and Zeros

The transfer function has many useful interpretations and the features of a transfer
function are often associated with important system properties. Three of the most
important features are the gain and the locations of the poles and zeros.

Zero Frequency Gain

The zero frequency gain of a system is given by the magnitude of the transfer
function at s = 0. It represents the ratio of the steady-state value of the output with
respect to a step input (which can be represented as u = est with s = 0). For a state
space system, we computed the zero frequency gain in equation (6.22):

G(0) = D−CA−1B.

For a system written as a linear differential equation

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = b0

dmu

dtm
+b1

dm−1u

dtm−1
+ · · ·+bmu.
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If we assume that the input and output of the system are constants y0 and u0, then
we find that any0 = bmu0, and the zero frequency gain is

G(0) =
y0

u0
=

bm

an
. (9.36)

Poles and Zeros

Next consider a linear system with the rational transfer function

G(s) =
b(s)

a(s)
.

The roots of the polynomial a(s) are called the poles of the system, and the roots of
b(s) are called the zeros of the system. If p is a pole, it follows that y(t) = ept is a
solution of equation (9.10) with u = 0 (the solution to the homogeneous equation).
A pole p corresponds to a mode of the system with corresponding modal solution
ept . The unforced motion of the system after an arbitrary excitation is a weighted
sum of modes.

Zeros have a different interpretation. Since the pure exponential output corre-
sponding to the input u(t) = est with a(s) ̸= 0 is G(s)est , it follows that the pure
exponential output is zero if b(s) = 0. Zeros of the transfer function thus block
transmission of the corresponding exponential signals.

For a state space system with transfer function G(s) = C(sI−A)−1B+D, the
poles of the transfer function are the eigenvalues of the matrix A in the state space
model. One easy way to see this is to notice that the value of G(s) is unbounded
when s is an eigenvalue of a system since this is precisely the set of points where
the characteristic polynomial λ (s) = det(sI−A) = 0 (and hence sI−A is non-
invertible). It follows that the poles of a state space system depend only on the
matrix A, which represents the intrinsic dynamics of the system. We say that a
transfer function is stable if all of its poles have negative real part.

To find the zeros of a state space system, we observe that the zeros are complex
numbers s such that the input u(t) = U0est gives zero output. Inserting the pure
exponential response x(t) = X0est and setting y(t) = 0 in equation (9.2) gives

sestx0 = AX0est +BU0est 0 =CestX0 +DestU0,

which can be written as
⎧
⎪⎪⎩

A− sI B
C D

⎫
⎪⎪⎭
⎧
⎪⎪⎩

X0

U0

⎫
⎪⎪⎭est = 0.

This equation has a solution with nonzero X0, U0 only if the matrix on the left does
not have full column rank. The zeros are thus the values s such that the matrix

⎧
⎪⎪⎩

A− sI B
C D

⎫
⎪⎪⎭ (9.37)

loses rank.
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Figure 9.8: A pole zero diagram for a transfer function with zeros at−5 and−1 and poles at
−3 and−2±2 j. The circles represent the locations of the zeros, and the crosses the locations
of the poles. A complete characterization requires we also specify the gain of the system.

Since the zeros depend on A, B, C and D, they therefore depend on how the
inputs and outputs are coupled to the states. Notice in particular that if the matrix
B has full row rank, then the matrix in equation (9.37) has n linearly independent
rows for all values of s. Similarly there are n linearly independent columns if the
matrix C has full column rank. This implies that systems where the matrix B or C
is square and full rank do not have zeros. In particular it means that a system has
no zeros if it is fully actuated (each state can be controlled independently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfer function is through
a pole zero diagram, as shown in Figure 9.8. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are multiple poles or zeros at
a fixed location, these are often indicated with overlapping crosses or circles (or
other annotations). Poles in the left half-plane correspond to stable modes of the
system, and poles in the right half-plane correspond to unstable modes. We thus
call a pole in the left-half plane a stable pole and a pole in the right-half plane an
unstable pole. A similar terminology is used for zeros, even though the zeros do
not directly relate to stability or instability of the system. Notice that the gain must
also be given to have a complete description of the transfer function.

Example 9.9 Balance system
Consider the dynamics for a balance system, shown in Figure 9.9. The transfer
function for a balance system can be derived directly from the second-order equa-
tions, given in Example 3.1:

Mt
d2 p

dt2
−ml

d2θ

dt2
cosθ + c

d p

dt
+ml sinθ

(dθ

dt

)2
= F,

−ml cosθ
d2 p

dt2
+ Jt

d2θ

dt2
+ γ

dθ

dt
−mgl sinθ = 0.

If we assume that θ and θ̇ are small, we can approximate this nonlinear system by
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(a) Cart–pendulum system
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(c) Pole zero diagram for HpF

Figure 9.9: Poles and zeros for a balance system. The balance system (a) can be modeled
around its vertical equilibrium point by a fourth order linear system. The poles and zeros for
the transfer functions HθF and HpF are shown in (b) and (c), respectively.

a set of linear second-order differential equations,

Mt
d2 p

dt2
−ml

d2θ

dt2
+ c

d p

dt
= F,

−ml
d2 p

dt2
+ Jt

d2θ

dt2
+ γ

dθ

dt
−mglθ = 0.

If we let F be an exponential signal, the resulting response satisfies

Mts
2 p−mls2 θ + cs p = F,

Jts
2 θ −mls2 p+ γsθ −mgl θ = 0,

where all signals are exponential signals. The resulting transfer functions for the
position of the cart and the orientation of the pendulum are given by solving for p
and θ in terms of F to obtain

HθF =
mls

(MtJt −m2l2)s3 +(γMt + cJt)s2 +(cγ−Mtmgl)s−mglc
,

HpF =
Jts

2 + γs−mgl

(MtJt −m2l2)s4 +(γMt + cJt)s3 +(cγ−Mtmgl)s2−mglcs
,

where each of the coefficients is positive. The pole zero diagrams for these two
transfer functions are shown in Figure 9.9 using the parameters from Example 7.7.
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If we assume the damping is small and set c = 0 and γ = 0, we obtain

HθF =
ml

(MtJt −m2l2)s2−Mtmgl
,

HpF =
Jts

2−mgl

s2
(
(MtJt −m2l2)s2−Mtmgl

) .

This gives nonzero poles and zeros at

p =±
√

mglMt

MtJt −m2l2
≈±2.68, z =±

√
mgl

Jt
≈±2.09.

We see that these are quite close to the pole and zero locations in Figure 9.9. ∇

Pole/Zero Cancellations

Because transfer functions are often polynomials in s, it can sometimes happen
that the numerator and denominator have a common factor, which can be can-
celed. Sometimes these cancellations are simply algebraic simplifications, but in
other situations they can mask potential fragilities in the model. In particular, if a
pole/zero cancellation occurs because terms in separate blocks that just happen to
coincide, the cancellation may not occur if one of the systems is slightly perturbed.
In some situations this can result in severe differences between the expected be-
havior and the actual behavior.

Consider the block diagram in Figure 9.1 with F = 1 (no feedforward compen-
sation) and let C and P be given by

C(s) =
nc(s)

dc(s)
, P(s) =

np(s)

dp(s)
.

The transfer function from r to e is then given by

Ger(s) =
1

1+PC
=

dc(s)dp(s)

dc(s)dp(s)+nc(s)np(s)
.

If there are common factors in the numerator and denominator polynomials, then
these terms can be factored out and eliminated from both the numerator and de-
nominator. For example, if the controller has a zero at s =−a and the process has
a pole at s =−a, then we will have

Ger(s) =
(s+a)dc(s)d′p(s)

(s+a)dc(s)d′p(s)+(s+a)n′c(s)np(s)
=

dc(s)d′p(s)

dc(s)d′p(s)+n′c(s)np(s)
,

where n′c(s) and d′p(s) represent the relevant polynomials with the term s+a fac-
tored out. We see that the s+ a term it does not appear in the transfer function
Ger.

Suppose instead that we compute the transfer function from v to e, which repre-
sents the effect of a disturbance on the error between the reference and the output.
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Figure 9.10: Car with PI cruise control encountering a sloping road. The velocity error is
shown on the left and the throttle is shown on the right. Results with a PI controller with
kp = 0.5 and ki = 0.0051, where the process pole s =−0.0101, is shown by solid lines, and
a controller with kp = 0.5 and ki = 0.5 is shown by dashed lines. Compare with Figure 4.3b.

This transfer function is given by

Gev(s) =−
dc(s)np(s)

(s+a)dc(s)d′p(s)+(s+a)n′c(s)np(s)
.

Notice that if a < 0, then the pole is in the right half-plane and the transfer function
Gev is unstable. Hence, even though the transfer function from r to e appears to be
okay (assuming a perfect pole/zero cancellation), the transfer function from v to e
can exhibit unbounded behavior. This unwanted behavior is typical of an unstable
pole/zero cancellation.

It turns out that the cancellation of a pole with a zero can also be understood in!
terms of the state space representation of the systems. Reachability or observability
is lost when there are cancellations of poles and zeros (Exercise 9.7). In particular,
if we make use of the Kalman decomposition (Section 8.3), then the transfer func-
tion depends only on the dynamics in the reachable and observable subspace Σro

(Exercise 9.8).

Example 9.10 Cruise control
The input/output response from throttle to velocity for the linearized model for a
car has the transfer function G(s) = b/(s+a). A simple (but not necessarily good)
way to design a PI controller is to choose the parameters of the PI controller as
ki = akp. The controller zero at s =−ki/kp =−a then cancels the process pole at
s =−a. The transfer function from reference to velocity is Gvr(s) = bkp/(s+bkp),
and control design is then simply a matter of choosing the gain kp. The closed loop
system dynamics are of first order with the time constant 1/bkp.

Figure 9.10 shows the velocity error when the car encounters an increase in the
road slope. A comparison with the controller used in Figure 4.3b (reproduced in
dashed curves) shows that the controller based on pole/zero cancellation has very
poor performance. The velocity error is larger, and it takes a long time to settle.

Notice that the control signal remains practically constant after t = 15 even
if the error is large after that time. To understand what happens we will analyze
the system. The parameters of the system are a = 0.0101 and b = 1.32, and the
controller parameters are kp = 0.5 and ki = 0.0051. The closed loop time constant
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is 1/(bkp) = 2.5 s, and we would expect that the error would settle in about 10 s
(4 time constants). The transfer functions from road slope to velocity and control
signals are

Gvθ (s) =
bgs

(s+a)(s+bkp)
, Guθ (s) =

bkp

s+bkp
.

Notice that the canceled mode s = a = −0.0101 appears in Gvθ but not in Guθ .
The reason why the control signal remains constant is that the controller has a zero
at s =−0.0101, which cancels the slowly decaying process mode. Notice that the
error would diverge if the canceled pole was unstable. ∇

The lesson we can learn from this example is that it is a bad idea to try to
cancel unstable or slow process poles. A more detailed discussion of pole/zero
cancellations is given in Section 13.4.

9.5 The Bode Plot

The frequency response of a linear system can be computed from its transfer func-
tion by setting s = iω , corresponding to a complex exponential

u(t) = eiωt = cos(ωt)+ isin(ωt).

The resulting output has the form

y(t) = G(iω)eiωt = Mei(ωt+ϕ) = M cos(ωt +ϕ)+ iM sin(ωt +ϕ),

where M and ϕ are the gain and phase of G:

M = |G(iω)|, ϕ = arctan
ImG(iω)

ReG(iω)
.

The phase of G is also called the argument of G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single sinusoid (sin or cos) is
amplified by M and phase-shifted by ϕ . It will often be convenient to represent
the phase in degrees rather than radians. We will use the notation ∠G(iω) for
the phase in degrees and argG(iω) for the phase in radians. In addition, while
we always take argG(iω) to be in the range (−π,π], we will take ∠G(iω) to be
continuous, so that it can take on values outside the range of −180◦ to 180◦.

The frequency response G(iω) can thus be represented by two curves: the gain
curve and the phase curve. The gain curve gives |G(iω)| as a function of frequency
ω , and the phase curve gives ∠G(iω). One particularly useful way of drawing
these curves is to use a log/log scale for the gain plot and a log/linear scale for the
phase plot. This type of plot is called a Bode plot and is shown in Figure 9.11.
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Figure 9.11: Bode plot of the transfer function C(s) = 20 + 10
s + 10s = 10

(s+1)2

s corre-
sponding to an ideal PID controller. The top plot is the gain curve and the bottom plot is the
phase curve. The dashed lines show straight-line approximations of the gain curve and the
corresponding phase curve.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy to sketch and interpret.
Since the frequency scale is logarithmic, they cover the behavior of a linear system
over a wide frequency range.

Consider a transfer function that is a rational function of the form

G(s) =
b1(s)b2(s)

a1(s)a2(s)
.

We have

log |G(s)|= log |b1(s)|+ log |b2(s)|− log |a1(s)|− log |a2(s)|,

and hence we can compute the gain curve by simply adding and subtracting gains
corresponding to terms in the numerator and denominator. Similarly,

∠G(s) = ∠b1(s)+∠b2(s)−∠a1(s)−∠a2(s),

and so the phase curve can be determined in an analogous fashion. Since a poly-
nomial can be written as a product of terms of the type

k, s, s+a, s2 +2ζ ω0s+ω2
0 ,

it suffices to be able to sketch Bode diagrams for these terms. The Bode plot of a
complex system is then obtained by adding the gains and phases of the terms.

The function G(s) = sk is a simple transfer function, with the important special
cases of k = 1 corresponding to a differentiator and k = −1 to an integrator. The
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Figure 9.12: Bode plots of the transfer functions G(s) = sk for k = −2,−1,0,1,2. On a
log-log scale, the gain curve is a straight line with slope k. The phase curves for the transfer
functions are constants, with phase equal to 90◦ × k

.

gain and phase of the term are given by

log |G(iω)|= k logω, ∠G(iω) = 90k.

The gain curve is thus a straight line with slope k, and the phase curve is a constant
at 90◦×k. The case when k = 1 corresponds to a differentiator and has slope 1 with
phase 90◦. The case when k = −1 corresponds to an integrator and has slope −1
with phase −90◦. Bode plots of the various powers of k are shown in Figure 9.12.

Consider next the transfer function of a first-order system, given by

G(s) =
a

s+a
, a > 0.

We have

|G(s)|=
|a|

|s+a|
, ∠G(s) = ∠(a)−∠(s+a),

and hence

log |G(iω)|= loga−
1

2
log(ω2 +a2), ∠G(iω) =−

180

π
arctan

ω

a
.

The Bode plot is shown in Figure 9.13a, with the magnitude normalized by the
zero frequency gain. Both the gain curve and the phase curve can be approximated
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Figure 9.13: Bode plots for first- and second-order systems. (a) The first-order system
G(s) = a/(s+ a) can be approximated by asymptotic curves (dashed) in both the gain and
the frequency, with the breakpoint in the gain curve at ω = a and the phase decreasing by 90◦

over a factor of 100 in frequency. (b) The second-order system G(s)=ω2
0/(s

2+2ζ ω0s+ω2
0 )

has a peak at frequency a and then a slope of −2 beyond the peak; the phase decreases from
0◦ to−180◦. The height of the peak and the rate of change of phase depending on the damp-
ing ratio ζ (ζ = 0.02, 0.1, 0.2, 0.5 and 1.0 shown).

by the following straight lines

log |G(iω)|≈

{
0 if ω < a

loga− logω if ω > a,

∠G(iω)≈

⎧
⎪⎨

⎪⎩

0 if ω < a/10

−45−45(logω− loga) a/10 < ω < 10a

−90 if ω > 10a,

which intersect at ω = a. The approximate gain curve consists of a horizontal line
up to frequency ω = a, called the breakpoint or corner frequency, after which the
curve is a line of slope −1 (on a log-log scale). The phase curve is zero up to
frequency a/10 and then decreases linearly by 45◦/decade up to frequency 10a, at
which point it remains constant at 90◦. Notice that a first-order system behaves like
a constant for low frequencies and like an integrator for high frequencies; compare
with the Bode plot in Figure 9.12.

Finally, consider the transfer function for a second-order system,

G(s) =
ω2

0

s2 +2ω0ζ s+ω2
0

,
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for which we have

log |G(iω)|= 2logω0−
1

2
log
(
ω4 +2ω2

0 ω2(2ζ 2−1)+ω4
0

)
,

∠G(iω) =−
180

π
arctan

2ζ ω0ω

ω2
0 −ω2

,

which intersect at ω = ω0. The gain curve has an asymptote with zero slope for
ω ≪ ω0. For large values of ω the gain curve has an asymptote with slope −2.
The largest gain Q = maxω |G(iω)| ≈ 1/(2ζ ), called the Q-value, is obtained for
ω ≈ ω0. The phase is zero for low frequencies and approaches 180◦ for large
frequencies. The curves can be approximated with the following piecewise linear
expressions

log |G(iω)|≈

{
0 if ω ≪ ω0

2 logω0−2logω if ω ≫ ω0,

∠G(iω)≈

{
0 if ω ≪ ω0

−180 if ω ≫ ω0.

The Bode plot is shown in Figure 9.13b. Note that the asymptotic approximation is
poor near ω =ω0 and that the Bode plot depends strongly on ζ near this frequency.

Given the Bode plots of the basic functions, we can now sketch the frequency
response for a more general system. The following example illustrates the basic
idea.

Example 9.11 Asymptotic approximation for a transfer function
Consider the transfer function given by

G(s) =
k(s+b)

(s+a)(s2 +2ζ ω0s+ω2
0 )
, a≪ b≪ ω0.

The Bode plot for this transfer function appears in Figure 9.14, with the complete
transfer function shown as a solid curve and the asymptotic approximation shown
as a dashed curve.

We begin with the gain curve. At low frequency, the magnitude is given by

G(0) =
kb

aω2
0

.

When we reach ω = a, the effect of the pole begins and the gain decreases with
slope −1. At ω = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used until the effect of the
second-order pole is seen at ω =ω0, at which point the asymptote changes to slope
−2. We see that the gain curve is fairly accurate except in the region of the peak
due to the second-order pole (indicating that for this case ζ is reasonably small).

The phase curve is more complicated since the effect of the phase stretches
out much further. The effect of the pole begins at ω = a/10, at which point we
change from phase 0 to a slope of −45◦/decade. The zero begins to affect the
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Figure 9.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for

the transfer function G(s) = k(s+ b)/(s+ a)(s2 + 2ζ ω0s+ω2
0 ), where a≪ b≪ ω0. Each

segment in the gain and phase curves represents a separate portion of the approximation,
where either a pole or a zero begins to have effect. Each segment of the approximation is a
straight line between these points at a slope given by the rules for computing the effects of
poles and zeros.

phase at ω = b/10, producing a flat section in the phase. At ω = 10a the phase
contributions from the pole end, and we are left with a slope of +45◦/decade (from
the zero). At the location of the second-order pole, s≈ iω0, we get a jump in phase
of −180◦. Finally, at ω = 10b the phase contributions of the zero end, and we are
left with a phase of −180 degrees. We see that the straight-line approximation for
the phase is not as accurate as it was for the gain curve, but it does capture the
basic features of the phase changes as a function of frequency. ∇

The Bode plot gives a quick overview of a system. Since many useful signals
can be decomposed into a sum of sinusoids, it is possible to visualize the behavior
of a system for different frequency ranges. The system can be viewed as a filter
that can change the amplitude (and phase) of the input signals according to the
frequency response. For example, if there are frequency ranges where the gain
curve has constant slope and the phase is close to zero, the action of the system
for signals with these frequencies can be interpreted as a pure gain. Similarly, for
frequencies where the slope is +1 and the phase close to 90◦, the action of the
system can be interpreted as a differentiator, as shown in Figure 9.12.

Three common types of frequency responses are shown in Figure 9.15. The
system in Figure 9.15a is called a low-pass filter because the gain is constant for
low frequencies and drops for high frequencies. Notice that the phase is zero for
low frequencies and −180◦ for high frequencies. The systems in Figure 9.15b and
c are called a band-pass filter and high-pass filter for similar reasons.

To illustrate how different system behaviors can be read from the Bode plots
we consider the band-pass filter in Figure 9.15b. For frequencies around ω = ω0,
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Figure 9.15: Bode plots for low-pass, band-pass and high-pass filters. The top plots are the
gain curves and the bottom plots are the phase curves. Each system passes frequencies in a
different range and attenuates frequencies outside of that range.

the signal is passed through with no change in gain. However, for frequencies well
below or well above ω0, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frequencies below ω0/100
there is a phase lead of 90◦, and for frequencies above 100ω0 there is a phase lag
of 90◦. These actions correspond to differentiation and integration of the signal in
these frequency ranges.

Example 9.12 Transcriptional regulation
Consider a genetic circuit consisting of a single gene. We wish to study the re-
sponse of the protein concentration to fluctuations in the mRNA dynamics. We
consider two cases: a constitutive promoter (no regulation) and self-repression
(negative feedback), illustrated in Figure 9.16. The dynamics of the system are
given by

dm

dt
= α(p)− γm− v,

d p

dt
= βm−δ p,

where v is a disturbance term that affects mRNA transcription.
For the case of no feedback we have α(p) = α0, and when v = 0 the system

has an equilibrium point at me = α0/γ , pe = βα0/(δγ). The open loop transfer
function from v to p is given by

Gol
pv(s) =

−β

(s+ γ)(s+δ )
.

For the case of negative regulation, we have

α(p) =
α1

1+ kpn
+α0,
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Figure 9.16: Noise attenuation in a genetic circuit. The open loop system (a) consists of a
constitutive promoter, while the closed loop circuit (b) is self-regulated with negative feed-
back (repressor). The frequency response for each circuit is shown in (c).

and the equilibrium points satisfy

me =
δ

β
pe,

α

1+ kpn
e

+α0 = γme =
γδ

β
pe.

The resulting transfer function is given by

Gcl
pv(s) =

β

(s+ γ)(s+δ )+βσ
, σ =

nα1kpn−1
e

(1+ kpn
e)

2
.

Figure 9.16c shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). Notice that these curves are very similar to the frequency
response curves for the op amp shown in Figure 9.3. ∇

Transfer Functions from Experiments

The transfer function of a system provides a summary of the input/output response
and is very useful for analysis and design. We can often build an input/output
model for a given application by directly measuring the frequency response and
fitting a transfer function to it. To do so, we perturb the input to the system using a
sinusoidal signal at a fixed frequency. When steady state is reached, the amplitude
ratio and the phase lag give the frequency response for the excitation frequency.
The complete frequency response is obtained by sweeping over a range of frequen-
cies.

By using correlation techniques it is possible to determine the frequency re-
sponse very accurately, and an analytic transfer function can be obtained from the
frequency response by curve fitting. The success of this approach has led to in-
struments and software that automate this process, called spectrum analyzers. We
illustrate the basic concept through two examples.
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Figure 9.17: Frequency response of a preloaded piezoelectric drive for an atomic force mi-
croscope. The Bode plot shows the response of the measured transfer function (solid) and
the fitted transfer function (dashed).

Example 9.13 Atomic force microscope
To illustrate the utility of spectrum analysis, we consider the dynamics of the
atomic force microscope, described in Section 4.5. Experimental determination of
the frequency response is particularly attractive for this system because its dynam-
ics are very fast and hence experiments can be done quickly. A typical example
is given in Figure 9.17, which shows an experimentally determined frequency re-
sponse (solid line). In this case the frequency response was obtained in less than a
second. The transfer function

G(s) =
kω2

2 ω2
3 ω2

5 (s
2 +2ζ1ω1s+ω2

1 )(s
2 +2ζ4ω4s+ω2

4 )e
−sτ

ω2
1 ω2

4 (s
2 +2ζ2ω2s+ω2

2 )(s
2 +2ζ3ω3s+ω2

3 )(s
2 +2ζ5ω5s+ω2

5 )
,

with ωi = 2π fi, k = 5,

f1 = 2.4 kHz, f2 = 2.6 kHz, f3 = 6.5 kHz, f4 = 8.3 kHz, f5 = 9.3 kHz,

ζ4 = 0.025, ζ3 = 0.042, ζ1 = 0.03, ζ2 = 0.03, ζ5 = 0.032,

and τ = 10−4 s, was fitted to the data (dashed line). The frequencies ω1 and ω4

associated with the zeros are located where the gain curve has minima, and the
frequencies ω2, ω3 and ω5 associated with the poles are located where the gain
curve has local maxima. The relative damping ratios are adjusted to give a good
fit to maxima and minima. When a good fit to the gain curve is obtained, the time
delay is adjusted to give a good fit to the phase curve. The piezo drive is preloaded,
and a simple model of its dynamics is derived in Exercise 4.7. The pole at 2.55 kHz
corresponds to the trampoline mode derived in the exercise; the other resonances
are higher modes.

∇
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(a) Closed loop (b) Open loop (c) High gain

Figure 9.18: Light stimulation of the eye. In (a) the light beam is so large that it always
covers the whole pupil, giving closed loop dynamics. In (b) the light is focused into a beam
which is so narrow that it is not influenced by the pupil opening, giving open loop dynamics.
In (c) the light beam is focused on the edge of the pupil opening, which has the effect of
increasing the gain of the system since small changes in the pupil opening have a large effect
on the amount of light entering the eye. From Stark [Sta68].

Example 9.14 Pupillary light reflex dynamics
The human eye is an organ that is easily accessible for experiments. It has a control
system that adjusts the pupil opening to regulate the light intensity at the retina.

This control system was explored extensively by Stark in the 1960s [Sta68].
To determine the dynamics, light intensity on the eye was varied sinusoidally and
the pupil opening was measured. A fundamental difficulty is that the closed loop
system is insensitive to internal system parameters, so analysis of a closed loop
system thus gives little information about the internal properties of the system.
Stark used a clever experimental technique that allowed him to investigate both
open and closed loop dynamics. He excited the system by varying the intensity
of a light beam focused on the eye and measured pupil area, as illustrated in Fig-
ure 9.18. By using a wide light beam that covers the whole pupil, the measurement
gives the closed loop dynamics. The open loop dynamics were obtained by using
a narrow beam, which is small enough that it is not influenced by the pupil open-
ing. The result of one experiment for determining open loop dynamics is given
in Figure 9.19. Fitting a transfer function to the gain curve gives a good fit for
G(s) = 0.17/(1+0.08s)3. This curve gives a poor fit to the phase curve as shown
by the dashed curve in Figure 9.19. The fit to the phase curve is improved by
adding a 0.2 s time delay, which leaves the gain curve unchanged while substan-
tially modifying the phase curve. The final fit gives the model

G(s) =
0.17

(1+0.08s)3
e−0.2s.

The Bode plot of this is shown with solid curves in Figure 9.19. Modeling of the
pupillary reflex from first principles is discussed in detail in [KS01]. ∇

Notice that for both the AFM drive and pupillary dynamics it is not easy to de-
rive appropriate models from first principles. In practice, it is often fruitful to use a
combination of analytical modeling and experimental identification of parameters.
Experimental determination of frequency response is less attractive for systems
with slow dynamics because the experiment takes a long time.
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Figure 9.19: Sample curves from an open loop frequency response of the eye (left) and a
Bode plot for the open loop dynamics (right). The solid curve shows a fit of the data using a
third-order transfer function with 0.2 s time delay. The dashed curve in the Bode plot is the
phase of the system without time delay, showing that the delay is needed to properly capture
the phase. (Figure redrawn from the data of Stark [Sta68].)

9.6 Further Reading

The idea of characterizing a linear system by its steady-state response to sinusoids
was introduced by Fourier in his investigation of heat conduction in solids [Fou07].
Much later, it was used by the electrical engineer Steinmetz who introduced the iω
method for analyzing electrical circuits. Transfer functions were introduced via the
Laplace transform by Gardner Barnes [GB42], who also used them to calculate the
response of linear systems. The Laplace transform was very important in the early
phase of control because it made it possible to find transients via tables (see, e.g.,
[JNP47]). Combined with block diagrams, transfer functions and Laplace trans-
forms provided powerful techniques for dealing with complex systems. Calcu-
lation of responses based on Laplace transforms is less important today, when
responses of linear systems can easily be generated using computers. There are
many excellent books on the use of Laplace transforms and transfer functions for
modeling and analysis of linear input/output systems. Traditional texts on control
such as [DB04], [FPEN05] and [Oga01] are representative examples. Pole/zero
cancellation was one of the mysteries of early control theory. It is clear that com-
mon factors can be canceled in a rational function, but cancellations have system
theoretical consequences that were not clearly understood until Kalman’s decom-
position of a linear system was introduced [KHN63]. In the following chapters, we
will use transfer functions extensively to analyze stability and to describe model
uncertainty.

Exercises

9.1 Let G(s) be the transfer function for a linear system. Show that if we ap-
ply an input u(t) = Asin(ωt), then the steady-state output is given by y(t) =
|G(iω)|Asin(ωt + argG(iω)). (Hint: Start by showing that the real part of a com-
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plex number is a linear operation and then use this fact.)

9.2 Consider the system
dx

dt
= ax+u.

Compute the exponential response of the system and use this to derive the transfer
function from u to x. Show that when s = a, a pole of the transfer function, the
response to the exponential input u(t) = est is x(t) = eatx(0)+ teat .

9.3 (Inverted pendulum) A model for an inverted pendulum was introduced in
Example 3.2. Neglecting damping and linearizing the pendulum around the upright
position gives a linear system characterized by the matrices

A =

⎧
⎪⎪⎩

0 1
mgl/Jt 0

⎫
⎪⎪⎭ , B =

⎧
⎪⎪⎩

0
1/Jt

⎫
⎪⎪⎭ , C =

⎧
⎩1 0

⎫
⎭ , D = 0.

Determine the transfer function of the system.

9.4 (Solutions corresponding to poles and zeros) Consider the differential equation

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = b1

dn−1u

dtn−1
+b2

dn−2u

dtn−2
+ · · ·+bnu.

(a) Let λ be a root of the characteristic polynomial

sn +a1sn−1 + · · ·+an = 0.

Show that if u(t) = 0, the differential equation has the solution y(t) = eλ t .

(b) Let κ be a zero of the polynomial

b(s) = b1sn−1 +b2sn−2 + · · ·+bn.

Show that if the input is u(t) = eκt , then there is a solution to the differential
equation that is identically zero.

9.5 (Operational amplifier) Consider the operational amplifier described in Sec-
tion 4.3 and analyzed in Example 9.3. A PI controller can be constructed using
an op amp by replacing the resistor R2 with a resistor and capacitor in series, as
shown in Figure 4.10. The resulting transfer function of the circuit is given by

G(s) =−
(

R2 +
1

Cs

)
·

(
kCs(

(k+1)R1C+R2C
)
s+1

)

,

where k is the gain of the op amp, R1 and R2 are the resistances in the compensation
network and C is the capacitance.

(a) Sketch the Bode plot for the system under the assumption that k≫ R2 > R1.
You should label the key features in your plot, including the gain and phase at low
frequency, the slopes of the gain curve, the frequencies at which the gain changes
slope, etc.
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(b) Suppose now that we include some dynamics in the amplifier, as outlined in
Example 8.1. This would involve replacing the gain k with the transfer function

H(s) =
k

1+ sT
.

Compute the resulting transfer function for the system (i.e., replace k with H(s))
and find the poles and zeros assuming the following parameter values

R2

R1
= 100, k = 106, R2C = 1, T = 0.01.

(c) Sketch the Bode plot for the transfer function in part (b) using straight line
approximations and compare this to the exact plot of the transfer function (using
MATLAB). Make sure to label the important features in your plot.

9.6 (Transfer function for state space system) Consider the linear state space sys-
tem

dx

dt
= Ax+Bu, y =Cx.

(a) Show that the transfer function is

G(s) =
b1sn−1 +b2sn−2 + · · ·+bn

sn +a1sn−1 + · · ·+an
,

where

b1=CB, b2=CAB+a1CB, . . . , bn=CAn−1B+a1CAn−2B+ · · ·+an−1CB

and λ (s) = sn +a1sn−1 + · · ·+an is the characteristic polynomial for A.

(b) Compute the transfer function for a linear system in reachable canonical form
and show that it matches the transfer function given above.

9.7 (Common poles) Consider a closed loop system of the form of Figure 9.5, with !
F = 1 and P and C having a pole/zero cancellation. Show that if each system is
written in state space form, the resulting closed loop system is not reachable and
not observable.

9.8 (Kalman decomposition) Show that the transfer function of a system depends !
only on the dynamics in the reachable and observable subspace of the Kalman
decomposition. (Hint: Consider the representation given by equation (8.19).)

9.9 Using block diagram algebra, show that the transfer functions from v to y and
w to y in Figure 9.5 are given by

Gyv =
P

1+PC
Gyw =

1

1+PC
.
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9.10 (Bode plot for a simple zero) Show that the Bode plot for transfer function
G(s) = (s+a)/a can be approximated by

log |G(iω)|≈

{
0 if ω < a

logω− loga if ω > a,

∠G(iω)≈

⎧
⎪⎨

⎪⎩

0 if ω < a/10

45+45(logω− loga) a/10 < ω < 10a

90 if ω > 10a.

9.11 (Vectored thrust aircraft) Consider the lateral dynamics of a vectored thrust
aircraft as described in Example 3.11. Show that the dynamics can be described
using the following block diagram:

1

ms2 + cs

θ
−mg Σ

ν
u1

r

Js2
x

Use this block diagram to compute the transfer functions from u1 to θ and x and
show that they satisfy

Hθu1
=

r

Js2
, Hxu1 =

Js2−mgr

Js2(ms2 + cs)
.

9.12 (Congestion control) Consider the congestion control model described in Sec-
tion 4.4. Let w represent the individual window size for a set of N identical sources,
q represent the end-to-end probability of a dropped packet, b represent the number
of packets in the router’s buffer and p represent the probability that a packet is
dropped by the router. We write w̄ = Nw to represent the total number of packets
being received from all N sources. Show that the linearized model can be described
by the transfer functions

Gbw̄(s) =
e−τ f s

τes+ e−τ f s , Gw̄q(s) =−
N

qe(τes+qewe)
, Gpb(s) = ρ,

where (we,be) is the equilibrium point for the system, τe is the steady-state round-
trip time and τ f is the forward propagation time.

9.13 (Inverted pendulum with PD control) Consider the normalized inverted pen-
dulum system, whose transfer function is given by P(s)= 1/(s2−1) (Exercise 9.3).
A proportional-derivative control law for this system has transfer function C(s) =
kp + kds (see Table 9.1). Suppose that we choose C(s) = α(s− 1). Compute the
closed loop dynamics and show that the system has good tracking of reference
signals but does not have good disturbance rejection properties.

9.14 (Vehicle suspension [HB90]) Active and passive damping are used in cars to
give a smooth ride on a bumpy road. A schematic diagram of a car with a damping
system in shown in the figure below.
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(Porter Class I race car driven by Todd Cuffaro)

xb

xw

xr

F +

-
Σ

F

Body

Actuator

Wheel

This model is called a quarter car model, and the car is approximated with two
masses, one representing one fourth of the car body and the other a wheel. The
actuator exerts a force F between the wheel and the body based on feedback from
the distance between the body and the center of the wheel (the rattle space).

Let xb, xw and xr represent the heights of body, wheel and road measured from
their equilibria. A simple model of the system is given by Newton’s equations for
the body and the wheel,

mbẍb = F, mwẍw =−F + kt(xr− xw),

where mb is a quarter of the body mass, mw is the effective mass of the wheel
including brakes and part of the suspension system (the unsprung mass) and kt is
the tire stiffness. For a conventional damper consisting of a spring and a damper,
we have F = k(xw− xb) + c(ẋw− ẋb). For an active damper the force F can be
more general and can also depend on riding conditions. Rider comfort can be
characterized by the transfer function Gaxr from road height xr to body acceler-
ation a = ẍb. Show that this transfer function has the property Gaxr(iωt) = kt/mb,

where ωt =
√

kt/mw (the tire hop frequency). The equation implies that there are
fundamental limitations to the comfort that can be achieved with any damper.

9.15 (Vibration absorber) Damping vibrations is a common engineering problem.
A schematic diagram of a damper is shown below:

m1

k1

m2

c1

k2

F

x1

x2
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The disturbing vibration is a sinusoidal force acting on mass m1, and the damper
consists of the mass m2 and the spring k2. Show that the transfer function from
disturbance force to height x1 of the mass m1 is

Gx1F =
m2s2 + k2

m1m2s4 +m2c1s3 +(m1k2 +m2(k1 + k2))s2 + k2c1s+ k1k2
.

How should the mass m2 and the stiffness k2 be chosen to eliminate a sinusoidal
oscillation with frequency ω0. (More details are vibration absorbers is given in the
classic text by Den Hartog [DH85, pp. 87–93].)
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