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Figure 14.18: Block diagram of a controller based on model following, state feedback, and
an observer.

be used in the individual subsystems, instead we can select one controller with
integral action or we can use a central integrator and distribut its output to the
controler of the subsystems.

14.5 Top-Down Architectures

• Introduction: controllers, logic

• Correctness by design

• Logic and FMS

• State Feedback and Observers

• Theorem proving

• State Based Control, FSM

• Model Predictive Control

Top-down paradigms start with a problem formulation in terms of an opti-
mization problem. Paradigms that support a top-down approach are optimization,
state feedback, observers, predictive control, and linearization. In the top-down
approach it is natural to deal with many inputs and many outputs simultaneously.
Since this is not the main topic of this book we will only give a brief discus-
sion. The top-down approach often leads to the controller structure shown in Fig-
ure 14.18. In this system all measured process variables y together with the control
variables u are sent to an observer, which uses the sensor information and a mathe-
matical model to generate a vector x̂ of good estimates of internal process variables
and important disturbances. The estimated state x̂ is then compared with the ideal
state xm produced by the feedforward generator, and the difference is fed back to
the process. The feedforward generator also gives a feedforward signal u f f , which
is sent directly to the process inputs. The controller shown in Figure 14.18 is use-
ful for process segments where there are several inputs and outputs that interact,
but the system becomes very complicated when there is a large number of inputs
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and outputs. In such a case it may be better to decompose the system into several
subsystems.

An advantage with the top-down approach is that the total behavior of the sys-
tem is taken into account. A systematic approach based on mathematical modeling
and simulation makes it easy to understand the fundamental limitations. Commis-
sioning of the system is, however, difficult because many feedback loops have to
be closed simultaneously. When using the top-down approach it is therefore good
practice to first tune loops based on simulation, possibly also hardware in the loop
simulation.

Real-time trajectory generation [from OBC]

In Section 8.5 we introduced the use of feedforward compensation in control sys-
tem design. We briefly review those concepts here and provide an overview of
approaches to solving the trajectory generation problem and linking it to feedback
control problems.

Two degree of freedom design

A large class of control problems consist of planning and following a trajectory
in the presence of noise and uncertainty. Examples include autonomous vehicles
maneuvering in city streets, mobile robots performing tasks on factor floors (or
other planets), manufacturing systems that regulate the flow of parts and materials
through a plant or factory, and supply chain management systems that balance or-
ders and inventories across an enterprise. All of these systems are highly nonlinear
and demand accurate performance.

To control such systems, we make use of the notion of two degree of free-
dom controller design. This is a standard technique in linear control theory that
separates a controller into a feedforward compensator and a feedback compen-
sator. The feedforward compensator generates the nominal input required to track
a given reference trajectory. The feedback compensator corrects for errors between
the desired and actual trajectories. This is shown schematically in Figure 14.19.

In a nonlinear setting, two degree of freedom controller design decouples the
trajectory generation and asymptotic tracking problems. Given a desired output
trajectory, we first construct a state space trajectory xd and a nominal input ud that
satisfy the equations of motion. The error system can then be written as a time-
varying control system in terms of the error, e = x−xd . Under the assumption that
that tracking error remains small, we can linearize this time-varying system about
e = 0 and stabilize the e = 0 state. (Note: in early chapters the notation uff was
used for the desired [feedforward] input. We use ud here to match the desired state
xd .)

More formally, we assume that our process dynamics can be described by a
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Figure 14.19: Two degree of freedom controller design for a process P with uncertainty
∆. The controller consists of a trajectory generator and feedback controller. The trajectory
generation subsystem computes a feedforward command ud along with the desired state
xd . The state feedback controller uses the measured (or estimated) state and desired state
to compute a corrective input ufb. Uncertainty is represented by the block ∆, representing
unmodeled dynamics, as well as disturbances and noise.

nonlinear differential equation of the form

ẋ = f (x,u), x ∈ Rn,u ∈ Rm,

y = h(x,u), y ∈ Rp,
(14.19)

where x is the system state, u is a vector of inputs and f is a smooth function
describing the dynamics of the process. The smooth function h describes the output
y that we wish to control. We are particularly interested in the class of control
problems in which we wish to track a time-varying reference trajectory r(t), called
the trajectory tracking problem. In particular, we wish to find a control law u =
α(x,r( ·)) such that

lim
t→∞

(
y(t)− r(t)

)
= 0.

We use the notation r( ·) to indicate that the control law can depend not only on
the reference signal r(t) but also derivatives of the reference signal.

A feasible trajectory for the system (14.19) is a pair (xd(t),ud(t)) that satisfies
the differential equation and generates the desired trajectory:

ẋd(t) = f
(
xd(t),ud(t)

)
r(t) = h

(
xd(t),ud(t)

)
.

The problem of finding a feasible trajectory for a system is called the trajectory
generation problem, with xd representing the desired state for the (nominal) system
and ud representing the desired input or the feedforward control. If we can find a
feasible trajectory for the system, we can search for controllers of the form u =
α(x,xd ,ud) that track the desired reference trajectory.

In many applications, it is possible to attach a cost function to trajectories that
describe how well they balance trajectory tracking with other factors, such as the
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magnitude of the inputs required. In such applications, it is natural to ask that
we find the optimal controller with respect to some cost function. We can again
use the two degree of freedom paradigm with an optimal control computation for
generating the feasible trajectory. This subject is examined in more detail in Chap-
ter ??. In addition, we can take the extra step of updating the generated trajectory
based on the current state of the system. This additional feedback path is denoted
by a dashed line in Figure 14.19 and allows the use of so-called receding horizon
control techniques: a (optimal) feasible trajectory is computed from the current
position to the desired position over a finite time T horizon, used for a short pe-
riod of time δ < T , and then recomputed based on the new system state. Receding
horizon control is described in more detail in Chapter ??.

A key advantage of optimization-based approaches is that they allow the poten-
tial for customization of the controller based on changes in mission, condition and
environment. Because the controller is solving the optimization problem online,
updates can be made to the cost function, to change the desired operation of the
system; to the model, to reflect changes in parameter values or damage to sensors
and actuators; and to the constraints, to reflect new regions of the state space that
must be avoided due to external influences. Thus, many of the challenges of de-
signing controllers that are robust to a large set of possible uncertainties become
embedded in the online optimization.

Trajectory tracking and gain scheduling

We begin by considering the problem of tracking a feasible trajectory. Assume
that a trajectory generator is able to generate a trajectory (xd ,ud) that satisfies the
dynamics (14.19) and satisfies r(t) = h(xd(t),ud(t)). To design the controller, we
construct the error system. Let e= x−xd and v= u−ud and compute the dynamics
for the error:

ė = ẋ− ẋd = f (x,u)− f (xd ,ud)

= f (e+ xd ,v+ud)− f (xd) =: F(e,v,xd(t),ud(t)).

The function F represents the dynamics of the error, with control input v and ex-
ternal inputs xd and ud . In general, this system is time-varying through the desired
state and input.

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around e = 0:

de

dt
≈ A(t)e+B(t)v, A(t) =

∂F

∂e

∣∣∣∣
(xd(t),ud(t))

, B(t) =
∂F

∂v

∣∣∣∣
(xd(t),ud(t)

.

It is often the case that A(t) and B(t) depend only on xd , in which case it is conve-
nient to write A(t) = A(xd) and B(t) = B(xd).

We start by reviewing the case where A(t) and B(t) are constant, in which case
our error dynamics become

ė = Ae+Bv.
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This occurs, for example, if the original nonlinear system is linear. We can then
search for a control system of the form

v =−Ke+ krr.

In the case where r is constant, we can apply the results of Chapter 7 and solve the
problem by finding a gain matrix K that gives the desired closed loop dynamics
(e.g., by eigenvalue assignment) and choosing kr to give the desired output value
at equilibrium. The equilibrium point is given by

xe =−(A−BK)−1Bkrr =⇒ ye =−C(A−BK)−1Bkrr

and if we wish the output to be y = r it follows that

kr =−1/
(
C(A−BK)−1B

)
.

It can be shown that this formulation is equivalent to a two degree of freedom de-
sign where xd and ud are chosen to give the desired reference output (Exercise ??).

Exercise ??
Returning to the full nonlinear system, assume now that xd and ud are either

constant or slowly varying (with respect to the performance criterion). This allows
us to consider just the (constant) linearized system given by (A(xd),B(xd)). If we
design a state feedback controller K(xd) for each xd , then we can regulate the
system using the feedback

v = K(xd)e.

Substituting back the definitions of e and v, our controller becomes

u =−K(xd)(x− xd)+ud .

Note that the controller u = α(x,xd ,ud) depends on (xd ,ud), which themselves
depend on the desired reference trajectory. This form of controller is called a gain
scheduled linear controller with feedforward ud .

More generally, the term gain scheduling is used to describe any controller that
depends on a set of measured parameters in the system. So, for example, we might
write

u =−K(x,µ) ·(x− xd)+ud ,

where K(x,µ) depends on the current system state (or some portion of it) and an
external parameter µ . The dependence on the current state x (as opposed to the de-
sired state xd) allows us to modify the closed loop dynamics differently depending
on our location in the state space. This is particularly useful when the dynamics of
the process vary depending on some subset of the states (such as the altitude for
an aircraft or the internal temperature for a chemical reaction). The dependence
on µ can be used to capture the dependence on the reference trajectory, or they
can reflect changes in the environment or performance specifications that are not
modeled in the state of the controller.

Example 14.3 Steering control with velocity scheduling
Consider the problem of controlling the motion of a automobile so that it follows
a given trajectory on the ground, as shown in Figure 14.20a. We use the model
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Figure 14.20: Vehicle steering using gain scheduling.

derived in Example ??, choosing the reference point to be the center of the rear
wheels. This gives dynamics of the form

ẋ = cosθ v, ẏ = sinθ v, θ̇ =
v

l
tanϕ, (14.20)

where (x,y,θ) is the position and orientation of the vehicle, v is the velocity and ϕ
is the steering angle, both considered to be inputs, and l is the wheelbase.

A simple feasible trajectory for the system is to follow a straight line in the x
direction at lateral position yr and fixed velocity vr. This corresponds to a desired
state xd = (vrt,yr,0) and nominal input ud = (vr,0). Note that (xd ,ud) is not an
equilibrium point for the system, but it does satisfy the equations of motion.

Linearizing the system about the desired trajectory, we obtain

Ad =
∂ f

∂x

∣∣∣∣
(xd ,ud)

=

⎧
⎪⎪⎪⎪⎪⎩

0 0 −sinθ
0 0 cosθ
0 0 0

⎫
⎪⎪⎪⎪⎪⎭

∣∣∣∣∣∣
(xd ,ud)

=

⎧
⎪⎪⎪⎪⎪⎩

0 0 0
0 0 1
0 0 0

⎫
⎪⎪⎪⎪⎪⎭ ,

Bd =
∂ f

∂u

∣∣∣∣
(xd ,ud)

=

⎧
⎪⎪⎪⎪⎪⎩

1 0
0 0
0 vr/l

⎫
⎪⎪⎪⎪⎪⎭ .

We form the error dynamics by setting e = x− xd and w = u−ud:

ėx = w1, ėy = eθ , ėθ =
vr

l
w2.
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We see that the first state is decoupled from the second two states and hence we can
design a controller by treating these two subsystems separately. Suppose that we
wish to place the closed loop eigenvalues of the longitudinal dynamics (ex) at λ1

and place the closed loop eigenvalues of the lateral dynamics (ey, eθ ) at the roots
of the polynomial equation s2 +a1s+a2 = 0. This can accomplished by setting

w1 =−λ1ex

w2 =
l

vr
(a1ey +a2eθ ).

Note that the gains depend on the velocity vr (or equivalently on the nominal input
ud), giving us a gain scheduled controller.

In the original inputs and state coordinates, the controller has the form

⎧
⎪⎪⎩

v
ϕ

⎫
⎪⎪⎭=−

⎧
⎪⎪⎪⎪⎪⎩

λ1 0 0

0
a1l

vr

a2l

vr

⎫
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
Kd

⎧
⎪⎪⎪⎪⎪⎩

x− vrt
y− yr

θ

⎫
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
e

+

⎧
⎪⎪⎩

vr

0

⎫
⎪⎪⎭

︸ ︷︷ ︸
ud

.

The form of the controller shows that at low speeds the gains in the steering an-
gle will be high, meaning that we must turn the wheel harder to achieve the same
effect. As the speed increases, the gains become smaller. This matches the usual
experience that at high speed a very small amount of actuation is required to con-
trol the lateral position of a car. Note that the gains go to infinity when the vehicle
is stopped (vr = 0), corresponding to the fact that the system is not reachable at
this point.

Figure 14.20b shows the response of the controller to a step change in lateral
position at three different reference speeds. Notice that the rate of the response
is constant, independent of the reference speed, reflecting the fact that the gain
scheduled controllers each set the closed loop poles to the same values. ∇

One limitation of gain scheduling as we have described it is that a separate
set of gains must be designed for each operating condition xd . In practice, gain
scheduled controllers are often implemented by designing controllers at a fixed
number of operating points and then interpolating the gains between these points,
as illustrated in Figure 14.21. Suppose that we have a set of operating points xd, j,
j = 1, . . . ,N. Then we can write our controller as

u = ud−K(x)e K(x) =
N

∑
j=1

α j(x)Kj,

where Kj is a set of gains designed around the operating point xd, j and α j(x) is a
weighting factor. For example, we might choose the weights α j(x) such that we
take the gains corresponding to the nearest two operating points and weight them
according to the Euclidean distance of the current state from that operating point;
if the distance is small then we use a weight very near to 1 and if the distance is
far then we use a weight very near to 0.
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RMM: Redraw

Figure 14.21: Gain scheduling. A general gain scheduling design involves finding a gain K

at each desired operating point. This can be thought of as a gain surface, as shown on the left
(for the case of a scalar gain). An approximation to this gain can be obtained by computing
the gains at a fixed number of operating points and then interpolated between those gains.
This gives an approximation of the continuous gain surface, as shown on the right.

Add example showing weighting functions. Use a different example (non-mechanical).RMM

While the intuition behind gain scheduled controllers is fairly clear, some cau-
tion in required in using them. In particular, a gain scheduled controller is not
guaranteed to be stable even if K(x,µ) locally stabilizes the system around a given
equilibrium point. Gain scheduling can be proven to work in the case when the
gain varies sufficiently slowly (Exercise ??).

Exercise ??

Trajectory tracking and differential flatness

We now return to the problem of generating a trajectory for a nonlinear system.
Consider first the case of finding a trajectory xd(t) that steers the system from an
initial condition x0 to a final condition x f . We seek a feasible solution (xd(t),ud(t))
that satisfies the dynamics of the process:

ẋd = f (xd ,ud), xd(0) = x0, xd(T ) = x f . (14.21)

Formally, this problem corresponds to a two-point boundary value problem and
can be quite difficult to solve in general.

In addition, we may wish to satisfy additional constraints on the dynamics.
These can include input saturation constraints |u(t)|<M, state constraints g(x)≤ 0
and tracking constraints h(x) = r(t), each of which gives an algebraic constraint
on the states or inputs at each instant in time. We can also attempt to optimize a
function by choosing (xd(t),ud(t)) to minimize

∫ T

0
L(x,u)dt +V (x(T ),u(T )).

As an example of the type of problem we would like to study, consider the
problem of steering a car from an initial condition to a final condition, as show
in Figure 14.22. To solve this problem, we must find a solution to the differential
equations (14.20) that satisfies the endpoint conditions. Given the nonlinear nature
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input constraints→ curvature constraints

Figure 14.22: Simple model for an automobile. We wish to find a trajectory from an initial
state to a final state that satisfies the dynamics of the system and constraints on the curvature
(imposed by the limited travel of the front wheels).

of the dynamics, it seems unlikely that one could find explicit solutions that satisfy
the dynamics except in very special cases (such as driving in a straight line).

A closer inspection of this system shows that it is possible to understand the
trajectories of the system by exploiting the particular structure of the dynamics.
Suppose that we are given a trajectory for the rear wheels of the system, xd(t) and
yd(t). From equation (14.20), we see that we can use this solution to solve for the
angle of the car by writing

ẏ

ẋ
=

sinθ

cosθ
=⇒ θd = tan−1(ẏd/ẋd).

Furthermore, given θ we can solve for the velocity using the equation

ẋ = vcosθ =⇒ vd = ẋd/cosθd ,

assuming cosθd ̸= 0 (if it is, use v = ẏ/sinθ ). And given θ , we can solve for ϕ
using the relationship

θ̇ =
v

l
tanϕ =⇒ ϕd = tan−1(

lθ̇d

vd
).

Hence all of the state variables and the inputs can be determined by the trajec-
tory of the rear wheels and its derivatives. This property of a system is known as
differential flatness.

Definition 14.1 (Differential flatness). A nonlinear system (14.19) is differentially
flat if there exists a function α such that

z = α(x,u, u̇ . . . ,u(p))

and we can write the solutions of the nonlinear system as functions of z and a finite
number of derivatives

x = β (z, ż, . . . ,z(q)),

u = γ(z, ż, . . . ,z(q)).
(14.22)

For a differentially flat system, all of the feasible trajectories for the system can
be written as functions of a flat output z( ·) and its derivatives. The number of flat
outputs is always equal to the number of system inputs. The kinematic car is dif-
ferentially flat with the position of the rear wheels as the flat output. Differentially
flat systems were originally studied by Fliess et al. [FLMR92].
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Differentially flat systems are useful in situations where explicit trajectory gen-
eration is required. Since the behavior of a flat system is determined by the flat
outputs, we can plan trajectories in output space, and then map these to appropri-
ate inputs. Suppose we wish to generate a feasible trajectory for the the nonlinear
system

ẋ = f (x,u), x(0) = x0, x(T ) = x f .

If the system is differentially flat then

x(0) = β
(
z(0), ż(0), . . . ,z(q)(0)

)
= x0,

x(T ) = γ
(
z(T ), ż(T ), . . . ,z(q)(T )

)
= x f ,

(14.23)

and we see that the initial and final condition in the full state space depends on just
the output z and its derivatives at the initial and final times. Thus any trajectory for z
that satisfies these boundary conditions will be a feasible trajectory for the system,
using equation (14.22) to determine the full state space and input trajectories.

In particular, given initial and final conditions on z and its derivatives that sat-
isfy equation (14.23), any curve z( ·) satisfying those conditions will correspond to
a feasible trajectory of the system. We can parameterize the flat output trajectory
using a set of smooth basis functions ψi(t):

z(t) =
N

∑
i=1

αiψi(t), αi ∈ R.

We seek a set of coefficients αi, i = 1, . . . ,N such that z(t) satisfies the boundary
conditions (14.23). The derivatives of the flat output can be computed in terms of
the derivatives of the basis functions:

ż(t) =
N

∑
i=1

αiψ̇i(t)

...

ż(q)(t) =
N

∑
i=1

αiψ
(q)
i (t).

We can thus write the conditions on the flat outputs and their derivatives as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1(0) ψ2(0) . . . ψN(0)
ψ̇1(0) ψ̇2(0) . . . ψ̇N(0)

...
...

...

ψ(q)
1 (0) ψ(q)

2 (0) . . . ψ(q)
N (0)

ψ1(T ) ψ2(T ) . . . ψN(T )
ψ̇1(T ) ψ̇2(T ) . . . ψ̇N(T )

...
...

...

ψ(q)
1 (T ) ψ(q)

2 (T ) . . . ψ(q)
N (T )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

α1
...

αN

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(0)
ż(0)

...

z(q)(0)

z(T )
ż(T )

...

z(q)(T )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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This equation is a linear equation of the form Mα = z̄. Assuming that M has a
sufficient number of columns and that it is full column rank, we can solve for a
(possibly non-unique) α that solves the trajectory generation problem.

Example 14.4 Nonholonomic integrator
A simple nonlinear system called a nonholonomic integrator [?] is given by the
differential equations

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1.

This system is differentially flat with flat output z = (x1,x3). The relationship be-
tween the flat variables and the states is given by

x1 = z1, x2 = ẋ3/ẋ1 = ż2/ż1, x3 = z2. (14.24)

Using simple polynomials as our basis functions,

ψ1,1(t) = 1, ψ1,2(t) = t, ψ1,3(t) = t2, ψ1,4(t) = t3,

ψ2,1(t) = 1 ψ2,2(t) = t, ψ2,3(t) = t2, ψ2,4(t) = t3,

the equations for the feasible (flat) trajectory become
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 T T 2 T 3 0 0 0 0
0 1 2T 3T 2 0 0 0 0
0 0 0 0 1 T T 2 T 3

0 0 0 0 0 1 2T 3T 2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α11

α12

α13

α14

α21

α22

α23

α24

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,0

1
x3,0

x2,0

x1, f

1
x3, f

x2, f

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

This is a set of 8 linear equations in 8 variables. It can be shown that the matrix M
is full rank when T ̸= 0 and the system can be solved numerically. ∇

Add remarks: RMM

• There are several remaining degrees of freedom (T , 1, etc) that have to be
specified =⇒ solutions are not unique.

• Possible to over-parameterize and solve using least squares

Note that no ODEs need to be integrated in order to compute the feasible trajec-
tories for a differentially flat system (unlike optimal control methods that we will
consider in the next chapter, which involve parameterizing the input and then solv-
ing the ODEs). This is the defining feature of differentially flat systems. The prac-
tical implication is that nominal trajectories and inputs that satisfy the equations
of motion for a differentially flat system can be computed in a computationally
efficient way (solving a set of algebraic equations). Since the flat output functions
do not have to obey a set of differential equations, the only constraints that must
be satisfied are the initial and final conditions on the endpoints, their tangents, and
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higher order derivatives. Any other constraints on the system, such as bounds on
the inputs, can be transformed into the flat output space and (typically) become
limits on the curvature or higher order derivative properties of the curve.

Add a text + equations for the tracking problem, plus a worked out example (dou-RMM

ble integrator)

If there is a performance index for the system, this index can be transformed
and becomes a functional depending on the flat outputs and their derivatives up
to some order. By approximating the performance index we can achieve paths for
the system that are suboptimal but still feasible. This approach is often much more
appealing than the traditional method of approximating the system (for example by
its linearization) and then using the exact performance index, which yields optimal
paths but for the wrong system.

Add example (non-mech) showing optimizationRMM

In light of the techniques that are available for differentially flat systems, the
characterization of flat systems becomes particularly important. Unfortunately,
general conditions for flatness are not known, but many important class of non-
linear systems, including feedback linearizable systems, are differential flat. One
large class of flat systems are those in “pure feedback form”:

ẋ1 = f1(x1,x2)

ẋ2 = f2(x1,x2,x3)

...

ẋn = fn(x1, . . . ,xn,u).

Under certain regularity conditions these systems are differentially flat with out-
put y = x1. These systems have been used for so-called “integrator backstepping”
approaches to nonlinear control by Kokotovic et al. [?] and constructive control-
lability techniques for nonholonomic systems in chained form [?].† Figure 14.23RMM: Check to make

sure this is the correct
reference

shows some additional systems that are differentially flat.

The example has been rewritten to use the PVTOL example of early chapters.RMM

Check to make sure it reads correctly.

Example 14.5 Vectored thrust aircraft
Consider the dynamics of a planar, vectored thrust flight control system as shown
in Figure 14.24. This system consists of a rigid body with body fixed forces and is
a simplified model for a vertical take-off and landing aircraft (see Example ??). Let
(x,y,θ) denote the position and orientation of the center of mass of the aircraft. We
assume that the forces acting on the vehicle consist of a force F1 perpendicular to
the axis of the vehicle acting at a distance r from the center of mass, and a force F2

parallel to the axis of the vehicle. Let m be the mass of the vehicle, J the moment
of inertia, and g the gravitational constant. We ignore aerodynamic forces for the
purpose of this example.
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(a) Kinematic car (b) Ducted fan

(c) N trailers

(d) Towed cable

Figure 14.23: Examples of flat systems.

The dynamics for the system are

mẍ = F1 cosθ −F2 sinθ ,

mÿ = F1 sinθ +F2 cosθ −mg,

Jθ̈ = rF1.

(14.25)

Martin et al. [?] showed that this system is differentially flat and that one set of flat
outputs is given by

z1 = x− (J/mr)sinθ ,

z2 = y+(J/mr)cosθ .
(14.26)

Using the system dynamics, it can be shown that

z̈1 cosθ +(z̈2 +g)sinθ = 0 (14.27)

and thus given z1(t) and z2(t) we can find θ(t) except for an ambiguity of π and
away from the singularity z̈1 = z̈2 + g = 0. The remaining states and the forces
F1(t) and F2(t) can then be obtained from the dynamic equations, all in terms of
z1, z2, and their higher order derivatives. ∇

Other methods of trajectory generation

a. Primitives b. Graph search
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y

θ

F1

F2

r

x

Figure 14.24: Vectored thrust aircraft (from Example ??). The net thrust on the aircraft can
be decomposed into a horizontal force F1 and a vertical force F2 acting at a distance r from
the center of mass.

Receding Horizon Control

This set of notes builds on the previous two chapters and explores the use of online
optimization as a tool for control of nonlinear control. We begin with a high-level
discussion of optimization-based control, refining some of the concepts initially
introduced in Chapter ??. We then describe the technique of receding horizon con-
trol (RHC), including a proof of stability for a particular form of receding horizon
control that makes use of a control Lyapunov function as a terminal cost. We con-
clude the chapter with a detailed design example, in which we can explore some
of the computational tradeoffs in optimization-based control.

Optimization-Based Control

Optimization-based control refers to the use of online, optimal trajectory genera-
tion as a part of the feedback stabilization of a (typically nonlinear) system. The
basic idea is to use a receding horizon control technique: a (optimal) feasible tra-
jectory is computed from the current position to the desired position over a finite
time T horizon, used for a short period of time δ < T , and then recomputed based
on the new system state starting at time t + δ until time t +T + δ . Development
and application of receding horizon control (also called model predictive control,
or MPC) originated in process control industries where the processes being con-
trolled are often sufficiently slow to permit its implementation. An overview of theRMM: Move to further

reading evolution of commercially available MPC technology is given in [?] and a survey
of the state of stability theory of MPC is given in [?].

Design approach. The basic philosophy that we propose is illustrated in Figure 14.25.
We begin with a nonlinear system, including a description of the constraint set. We
linearize this system about a representative equilibrium point and perform a lin-
ear control design using standard control design tools. Such a design can provide
provably robust performance around the equilibrium point and, more importantly,
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Nonlinearities

Cost Function

Linearized Model

Linear

Design

Linear Controller

Linear SystemNonlinear System

with Constraints

Model Predictive
Control

Constraints and

Figure 14.25: Optimization-based control approach.

allows the designer to meet a wide variety of formal and informal performance
specifications through experience and the use of sophisticated linear design tools.

The resulting linear control law then serves as a specification of the desired
control performance for the entire nonlinear system. We convert the control law
specification into a receding horizon control formulation, chosen such that for the
linearized system, the receding horizon controller gives comparable performance.
However, because of its use of optimization tools that can handle nonlinearities
and constraints, the receding horizon controller is able to provide the desired per-
formance over a much larger operating envelope than the controller design based
just on the linearization. Furthermore, by choosing cost formulations that have cer-
tain properties, we can provide proofs of stability for the full nonlinear system and,
in some cases, the constrained system.

The advantage of the proposed approach is that it exploits the power of humans
in designing sophisticated control laws in the absence of constraints with the power
of computers to rapidly compute trajectories that optimize a given cost function in
the presence of constraints. New advances in online trajectory generation serve
as an enabler for this approach and their demonstration on representative flight
control experiments shows their viability [?]. This approach can be extended to
existing nonlinear paradigms as well, as we describe in more detail below.

An advantage of optimization-based approaches is that they allow the poten-
tial for online customization of the controller. By updating the model that the
optimization uses to reflect the current knowledge of the system characteristics,
the controller can take into account changes in parameters values or damage to
sensors or actuators. In addition, environmental models that include dynamic con-
straints can be included, allowing the controller to generate trajectories that sat-
isfy complex operating conditions. These modifications allow for many state- and
environment-dependent uncertainties to including the receding horizon feedback
loop, providing potential robustness with respect to those uncertainties.

The paragraph below should be replaced with a paragraph on terminal constraints. RMM
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Move the result to the further reading section.

A number of approaches in receding horizon control employ the use of termi-
nal state equality or inequality constraints, often together with a terminal cost, to
ensure closed loop stability. In Primbs et al. [?], aspects of a stability-guaranteeing,
global control Lyapunov function (CLF) were used, via state and control con-
straints, to develop a stabilizing receding horizon scheme. Many of the nice charac-
teristics of the CLF controller together with better cost performance were realized.
Unfortunately, a global control Lyapunov function is rarely available and often not
possible.

Motivated by the difficulties in solving constrained optimal control problems,
researchers have developed an alternative receding horizon control strategy for the
stabilization of nonlinear systems [?]. In this approach, closed loop stability is en-
sured through the use of a terminal cost consisting of a control Lyapunov function
(defined later) that is an incremental upper bound on the optimal cost to go. This
terminal cost eliminates the need for terminal constraints in the optimization and
gives a dramatic speed-up in computation. Also, questions of existence and reg-
ularity of optimal solutions (very important for online optimization) can be dealt
with in a rather straightforward manner.

Inverse Optimality. The philosophy presented here relies on the synthesis of an op-
timal control problem from specifications that are embedded in an externally gen-
erated controller design. This controller is typically designed by standard classical
control techniques for a nominal process, absent constraints. In this framework,
the controller’s performance, stability and robustness specifications are translated
into an equivalent optimal control problem and implemented in a receding horizon
fashion.

One central question that must be addressed when considering the usefulness
of this philosophy is: Given a control law, how does one find an equivalent optimal
control formulation? The paper by Kalman [?] lays a solid foundation for this class
of problems, known as inverse optimality. In this paper, Kalman considers the
class of linear time-invariant (LTI) processes with full-state feedback and a single
input variable, with an associated cost function that is quadratic in the input and
state variables. These assumptions set up the well-known linear quadratic regulator
(LQR) problem, by now a staple of optimal control theory.

In Kalman’s paper, the mathematical framework behind the LQR problem is
laid out, and necessary and sufficient algebraic criteria for optimality are presented
in terms of the algebraic Riccati equation, as well as in terms of a condition on the
return difference of the feedback loop. In terms of the LQR problem, the task of
synthesizing the optimal control problem comes down to finding the integrated cost
weights Qx and Qu given only the dynamical description of the process represented
by matrices A and B and of the feedback controller represented by K. Kalman
delivers a particularly elegant frequency characterization of this map [?], which
we briefly summarize here.
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We consider a linear system

ẋ = Ax+Bu x ∈ Rn,u ∈ Rm (14.28)

with state x and input u. We consider only the single input, single output case for
now (m = 1). Given a control law

u = Kx

we wish to find a cost functional of the form

J =
∫ T

0
xT Qxx+uT Quudt + xT (T )PT x(T ) (14.29)

where Qx ∈ Rn×n and Qu ∈ Rm×m define the integrated cost, PT ∈ Rn×n is the
terminal cost, and T is the time horizon. Our goal is to find PT > 0, Qx > 0, Qu > 0,
and T > 0 such that the resulting optimal control law is equivalent to u = Kx.

The optimal control law for the quadratic cost function (14.29) is given by

u =−R−1BT P(t),

where P(t) is the solution to the Riccati ordinary differential equation

− Ṗ = AT P+PA−PBR−1BT P+Q (14.30)

with terminal condition P(T ) = PT . In order for this to give a control law of the
form u = Kx for a constant matrix K, we must find PT , Qx, and Qu that give a
constant solution to the Riccati equation (14.30) and satisfy −R−1BT P = K. It
follows that PT , Qx and Qu should satisfy

AT PT +PT A−PT BQ−1
u BT PT +Q = 0

−Q−1
u BT PT = K.

(14.31)

We note that the first equation is simply the normal algebraic Riccati equation of
optimal control, but with PT , Q, and R yet to be chosen. The second equation places
additional constraints on R and PT .

Equation (14.31) is exactly the same equation that one would obtain if we had
considered an infinite time horizon problem, since the given control was constant
and hence P(t) was forced to be constant. This infinite horizon problem is pre-
cisely the one that Kalman considered in 1964, and hence his results apply directly.
Namely, in the single-input single-output case, we can always find a solution to the
coupled equations (14.31) under standard conditions on reachability and observ-
ability [?]. The equations can be simplified by substituting the second relation into
the first to obtain

AT PT +PT A−KT RK +Q = 0.

This equation is linear in the unknowns and can be solved directly (remembering
that PT , Qx and Qu are required to be positive definite).

The implication of these results is that any state feedback control law satisfy-
ing these assumptions can be realized as the solution to an appropriately defined
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receding horizon control law. Thus, we can implement the design framework sum-
marized in Figure 14.25 for the case where our (linear) control design results in a
state feedback controller.

The above results can be generalized to nonlinear systems, in which one takes
a nonlinear control system and attempts to find a cost function such that the given
controller is the optimal control with respect to that cost.

The history of inverse optimal control for nonlinear systems goes back to the
early work of Moylan and Anderson [?]. More recently, Sepulchre et al. [?] showed
that a nonlinear state feedback obtained by Sontag’s formula from a control Lya-
punov function (CLF) is inverse optimal. The connections of this inverse optimal-
ity result to passivity and robustness properties of the optimal state feedback are
discussed in Jankovic et al. [?]. Most results on inverse optimality do not consider
the constraints on control or state. However, the results on the unconstrained in-
verse optimality justify the use of a more general nonlinear loss function in the
integrated cost of a finite horizon performance index combined with a real-time
optimization-based control approach that takes the constraints into account.

Control Lyapunov Functions. For the optimal control problems that we introduce
in the next section, we will make use of a terminal cost that is also a control Lya-
punov function for the system. Control Lyapunov functions are an extension of
standard Lyapunov functions and were originally introduced by Sontag [?]. They
allow constructive design of nonlinear controllers and the Lyapunov function that
proves their stability. A more complete treatment is given in [KKK95].

Consider a nonlinear control system

ẋ = f (x,u), x ∈ Rn, u ∈ Rm. (14.32)

Definition 14.2 (Control Lyapunov Function). A locally positive function V :
Rn→R+ is called a control Lyapunov function (CLF) for a control system (14.32)
if

inf
u∈Rm

(
∂V

∂x
f (x,u)

)
< 0 for all x ̸= 0.

In general, it is difficult to find a CLF for a given system. However, for many
classes of systems, there are specialized methods that can be used. One of the
simplest is to use the Jacobian linearization of the system around the desired equi-
librium point and generate a CLF by solving an LQR problem.

Add a theorem about the existence of a stabilizing control lawRMM

As described in Chapter ??, the problem of minimizing the quadratic perfor-
mance index,

J =
∫ ∞

0
(xT (t)Qx(t)+uT Ru(t))dt subject to

ẋ = Ax+Bu,

x(0) = x0,
(14.33)

results in finding the positive definite solution of the following Riccati equation:

AT P+PA−PBR−1BT P+Q = 0 (14.34)
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The optimal control action is given by

u =−R−1BT Px

and V = xT Px is a CLF for the system.
In the case of the nonlinear system ẋ = f (x,u), A and B are taken as

A =
∂ f (x,u)

∂x
|(0,0) B =

∂ f (x,u)

∂u
|(0,0)

where the pairs (A,B) and (Q
1
2 ,A) are assumed to be stabilizable and detectable

respectively. The CLF V (x) = xT Px is valid in a region around the equilibrium
(0,0), as shown in Exercise ??.

Exercise ??
More complicated methods for finding control Lyapunov functions are often

required and many techniques have been developed. An overview of some of these
methods can be found in [?].

Add examples RMM

Finite Horizon Optimal Control. We briefly review the problem of optimal control
over a finite time horizon as presented in Chapter ?? to establish the notation for
the chapter and set some more specific conditions required for receding horizon
control. This material is based on [?].

Given an initial state x0 and a control trajectory u( ·) for a nonlinear control
system ẋ = f (x,u), let xu( · ;x0) represent the state trajectory. We can write this
solution as a continuous curve

xu(t;x0) = x0 +
∫ t

0
f (xu(τ;x0),u(τ))dτ

for t ≥ 0. We require that the trajectories of the system satisfy an a priori bound

∥x(t)∥ ≤ β (x,T,∥u( ·)∥1)< ∞, t ∈ [0,T ],

where β is continuous in all variables and monotone increasing in T and ∥u( ·)∥1 =
∥u( ·)∥L1(0,T ). Most models of physical systems will satisfy a bound of this type.

The performance of the system will be measured by an integral cost L : Rn×
Rm → R. We require that L be twice differentiable (C2) and fully penalize both
state and control according to

L(x,u)≥ cq(∥x∥2 +∥u∥2), x ∈ Rn,u ∈ Rm

for some cq > 0 and L(0,0) = 0. It follows that the quadratic approximation of L
at the origin is positive definite,

∂L

∂x

∣∣∣∣
(0,0)

≥ cqI > 0.

To ensure that the solutions of the optimization problems of interest are well
behaved, we impose some convexity conditions. We require the set f (x,Rm)⊂Rn

to be convex for each x∈Rn. Letting λ ∈Rn represent the co-state, we also require
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that the pre-Hamiltonian function λ T f (x,u)+L(x,u) =: K(x,u,λ ) be strictly con-
vex for each (x,λ ) ∈ Rn ×Rn and that there is a C2 function ū∗ : Rn ×Rn →
Rm providing the global minimum of K(x,u,λ ). The Hamiltonian H(x,λ ) :=
K(x, ū∗(x,λ ),λ ) is then C2, ensuring that extremal state, co-state, and control tra-
jectories will all be sufficiently smooth (C1 or better). Note that these conditions
are automatically satisfied for control affine f and quadratic L.

The cost of applying a control u( ·) from an initial state x over the infinite time
interval [0,∞) is given by

J∞(x,u( ·)) =
∫ ∞

0
L(xu(τ;x),u(τ)) dτ .

The optimal cost (from x) is given by

J∗∞(x) = inf
u( ·)

J∞(x,u( ·))

where the control function u( ·) belongs to some reasonable class of admissible
controls (e.g., piecewise continuous). The function J∗∞(x) is often called the optimal
value function for the infinite horizon optimal control problem. For the class of f
and L considered, it can be verified that J∗∞( ·) is a positive definite C2 function in
a neighborhood of the origin [?].†RMM: Look for a better

citation For practical purposes, we are interested in finite horizon approximations of the
infinite horizon optimization problem. In particular, let V ( ·) be a nonnegative C2

function with V (0) = 0 and define the finite horizon cost (from x using u( ·)) to be

JT (x,u( ·)) =
∫ T

0
L(xu(τ;x),u(τ)) dτ +V (xu(T ;x)) (14.35)

and denote the optimal cost (from x) as

J∗T (x) = inf
u( ·)

JT (x,u( ·)) .

As in the infinite horizon case, one can show, by geometric means, that J∗T ( ·) is
locally smooth (C2). Other properties will depend on the choice of V and T .

The next paragraph should be rewrittenRMM

Let Γ∞ denote the domain of J∗∞( ·) (the subset of Rn on which J∗∞ is finite).
It is not too difficult to show that the cost functions J∗∞( ·) and J∗T ( ·), T ≥ 0, are
continuous functions on Γ∞ [?]. For simplicity, we will allow J∗∞( ·) to take values
in the extended real line so that, for instance, J∗∞(x) = +∞ means that there is no
control taking x to the origin.

We will assume that f and L are such that the minimum value of the cost
functions J∗∞(x), J∗T (x), T ≥ 0, is attained for each (suitable) x. That is, given x
and T > 0 (including T = ∞ when x ∈ Γ∞), there is a (C1 in t) optimal trajec-
tory (x∗T (t;x),u∗T (t;x)), t ∈ [0,T ], such that JT (x,u∗T ( · ;x)) = J∗T (x). For instance,
if f is such that its trajectories can be bounded on finite intervals as a function
of its input size, e.g., there is a continuous function β such that ∥xu(t;x0)∥ ≤
β (∥x0∥,∥u( ·)∥L1[0,t]), then (together with the conditions above) there will be a
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minimizing control (cf. [?]). Many such conditions may be used to good effect;
see [?] for a more complete discussion.

It is easy to see that J∗∞( ·) is proper on its domain so that the sub-level sets

Γ∞
r := {x ∈ Γ∞ : J∗∞(x)≤ r2}

are compact and path connected and moreover Γ∞ =
⋃

r≥0 Γ∞
r . Note also that Γ∞

may be a proper subset of Rn since there may be states that cannot be driven to
the origin. We use r2 (rather than r) here to reflect the fact that our integral cost
is quadratically bounded from below. We refer to sub-level sets of J∗T ( ·) and V ( ·)
using

ΓT
r := path connected component of {x ∈ Γ∞ : J∗T (x)≤ r2} containing 0,

and

Ωr := path connected component of {x ∈ Rn : V (x)≤ r2} containing 0.

These results provide the technical framework needed for receding horizon
control.

Receding Horizon Control with CLF Terminal Cost

In receding horizon control, a finite horizon optimal control problem is solved,
generating open-loop state and control trajectories. The resulting control trajectory
is applied to the system for a fraction of the horizon length. This process is then
repeated, resulting in a sampled data feedback law. Although receding horizon
control has been successfully used in the process control industry for many years,
its application to fast, stability-critical nonlinear systems has been more difficult.
This is mainly due to two issues. The first is that the finite horizon optimizations
must be solved in a relatively short period of time. Second, it can be demonstrated
using linear examples that a naive application of the receding horizon strategy can
have undesirable effects, often rendering a system unstable. Various approaches
have been proposed to tackle this second problem; see [?] for a comprehensive
review of this literature. The theoretical framework presented here also addresses
the stability issue directly, but is motivated by the need to relax the computational
demands of existing stabilizing RHC formulations.

Receding horizon control provides a practical strategy for the use of informa-
tion from a model through on-line optimization. Every δ seconds, an optimal con-
trol problem is solved over a T second horizon, starting from the current state.
The first δ seconds of the optimal control u∗T ( · ;x(t)) is then applied to the system,
driving the system from x(t) at current time t to x∗T (δ ,x(t)) at the next sample time
t + δ (assuming no model uncertainty). We denote this receding horizon scheme
as RH (T,δ ).

In defining (unconstrained) finite horizon approximations to the infinite horizon
problem, the key design parameters are the terminal cost function V ( ·) and the
horizon length T (and, perhaps also, the increment δ ). We wish to characterize the
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sets of choices that provide successful controllers.RMM: This paragraph
is sort of a repeat It is well known (and easily demonstrated with linear examples), that simple

truncation of the integral (i.e., V (x) ≡ 0) may have disastrous effects if T > 0 is
too small. Indeed, although the resulting value function may be nicely behaved,
the “optimal” receding horizon closed loop system can be unstable.

Example (RHP zero?): show no terminal cost/constraint followed by terminal con-RMM

straint case

A more sophisticated approach is to make good use of a suitable terminal cost
V ( ·). Evidently, the best choice for the terminal cost is V (x) = J∗∞(x) since then
the optimal finite and infinite horizon costs are the same. Of course, if the opti-
mal value function were available there would be no need to solve a trajectory
optimization problem. What properties of the optimal value function should be re-
tained in the terminal cost? To be effective, the terminal cost should account for
the discarded tail by ensuring that the origin can be reached from the terminal state
xu(T ;x) in an efficient manner (as measured by L). One way to do this is to use
an appropriate control Lyapunov function, which is also an upper bound on the
cost-to-go.

The following theorem shows that the use of a particular type of CLF is in fact
effective, providing rather strong and specific guarantees.

Theorem 14.1. [?] Suppose that the terminal cost V ( ·) is a control Lyapunov
function such that

min
u∈Rm

(V̇ +L)(x,u)≤ 0 (14.36)

for each x∈Ωrv for some rv > 0. Then, for every T > 0 and δ ∈ (0,T ], the resulting
receding horizon trajectories go to zero exponentially fast. For each T > 0, there is
an r̄(T )≥ rv such that ΓT

r̄(T ) is contained in the region of attraction of RH (T,δ ).

Moreover, given any compact subset Λ of Γ∞, there is a T ∗ such that Λ⊂ ΓT
r̄(T ) for

all T ≥ T ∗.

Theorem 14.1 shows that for any horizon length T > 0 and any sampling time
δ ∈ (0,T ], the receding horizon scheme is exponentially stabilizing over the set
ΓT

rv
. For a given T , the region of attraction estimate is enlarged by increasing r

beyond rv to r̄(T ) according to the requirement that V (x∗T (T ;x)) ≤ r2
v on that set.

An important feature of the above result is that, for operations with the set ΓT
r̄(T ),

there is no need to impose stability ensuring constraints which would likely make
the online optimizations more difficult and time consuming to solve.

Sketch of proof. Let xu(τ;x) represent the state trajectory at time τ starting from
initial state x and applying a control trajectory u( ·), and let (x∗T ,u

∗
T )( · ,x) represent

the optimal trajectory of the finite horizon, optimal control problem with horizon
T . Assume that x∗T (T ;x) ∈ Ωr for some r > 0. Then for any δ ∈ [0,T ] we want to
show that the optimal cost x∗T (δ ;x) satisfies

J∗T
(
x∗T (δ ;x)

)
≤ J∗T (x)−

∫ δ

0
q
(
L(x∗T (τ;x),u∗T (τ;x))dτ . (14.37)
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This expression says that solution to the finite-horizon, optimal control problem
starting at time t = δ has cost that is less than the cost of the solution from time t =
0, with the initial portion of the cost subtracted off.†. In other words, we are closer RMM: Add a picture

like the one in Tamas
Keviczky’s CDS 270-2
notes

to our solution by a finite amount at each iteration of the algorithm. It follows using
Lyapunov analysis that we must converge to the zero cost solution and hence our
trajectory converges to the desired terminal state (given by the minimum of the
cost function).

To show equation (14.37) holds, consider a trajectory in which we apply the
optimal control for the first T seconds and then apply a closed loop controller
using a stabilizing feedback u = −k(x) for another T seconds. (The stabilizing
compensator is guaranteed to exist since V is a control Lyapunov function.) Let
(x∗T ,u

∗
T )(t;x), t ∈ [0,T ] represent the optimal control and (xk,uk)(t−T ;x∗T (T ;x)),

t ∈ [T,2T ] represent the control with u = −k(x) applied where k satisfies (V̇ +
L)(x,−k(x)) ≤ 0. Finally, let (x̃(t), ũ(t)), t ∈ [0,2T ] represent the trajectory ob-
tained by concatenating the optimal trajectory (x∗T ,u

∗
T ) with the CLF trajectory

(xk,uk).
We now proceed to show that the inequality (14.37) holds. The cost of using

ũ( ·) for the first T seconds starting from the initial state x∗T (δ ;x)), δ ∈ [0, ,T ] is
given by

JT (x
∗
T (δ ;x), ũ( ·)) =

∫ T+δ

δ
L(x̃(τ), ũ(τ))dτ +V (x̃(T +δ ))

= J∗T (x)−
∫ δ

0
L(x∗T (τ;x),u∗T (τ;x))dτ−V (x∗T (T ;x))

+
∫ T+δ

T
L(x̃(τ), ũ(τ))dτ +V (x̃(T +δ )).

Note that the second line is simply a rewriting of the integral in terms of the optimal
cost J∗T with the necessary additions and subtractions of the additional portions of
the cost for the interval [δ ,T +δ ]. We can how use the bound

L(x̃(τ), ũ(τ))≤ V̇ (x̃(τ), ũ(τ), τ ∈ [T,2T ],

which follows from the definition of the CLF V and stabilizing controller k(x).
This allows us to write

JT (x
∗
T (δ ;x), ũ( ·))≤ J∗T (x)−

∫ δ

0
L(x∗T (τ;x),u∗T (τ;x))dτ−V (x∗T (T ;x))

−
∫ T+δ

T
V̇ (x̃(τ), ũ(τ))dτ +V (x̃(T +δ ))

= J∗T (x)−
∫ δ

0
L(x∗T (τ;x),u∗T (τ;x))dτ−V (x∗T (T ;x))

−V (x̃(τ))
∣∣∣
T+δ

T
+V (x̃(T +δ ))

= J∗T (x)−
∫ δ

0
L(x∗T (τ;x),u∗T (τ;x)).
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Finally, using the optimality of u∗T we have that J∗T (x
∗
T (δ ;x)) ≤ JT (x∗T (δ ;x), ũ( ·))

and we obtain equation (14.37).

An important benefit of receding horizon control is its ability to handle state
and control constraints. While the above theorem provides stability guarantees
when there are no constraints present, it can be modified to include constraints
on states and controls as well. In order to ensure stability when state and control
constraints are present, the terminal cost V ( ·) should be a local CLF satisfying
minu∈U V̇ + L(x,u) ≤ 0 where U is the set of controls where the control con-
straints are satisfied. Moreover, one should also require that the resulting state
trajectory xCLF( ·) ∈X , where X is the set of states where the constraints are
satisfied. (Both X and U are assumed to be compact with origin in their interior).
Of course, the set Ωrv will end up being smaller than before, resulting in a decrease
in the size of the guaranteed region of operation (see [?] for more details).

Receding Horizon Control Using Differential Flatness

In this section we demonstrate how to use differential flatness to find fast numer-
ical algorithms for solving the optimal control problems required for the receding
horizon control results of the previous section. We consider the affine nonlinear
control system

ẋ = f (x)+g(x)u, (14.38)

where all vector fields and functions are smooth. For simplicity, we focus on the
single input case, u ∈ R. We wish to find a trajectory of equation (14.38) that
minimizes the performance index (14.35), subject to a vector of initial, final, and
trajectory constraints

lb0 ≤ ψ0(x(t0),u(t0))≤ ub0,

lb f ≤ ψ f (x(t f ),u(t f ))≤ ub f ,

lbt ≤ S(x,u)≤ ubt ,

(14.39)

respectively. For conciseness, we will refer to this optimal control problem as

min
(x,u)

J(x,u) subject to

{
ẋ = f (x)+g(x)u,

lb≤ c(x,u)≤ ub.
(14.40)

Numerical Solution Using Collocation.

Rewrite this as a more general description of collocation. Perhaps also add otherRMM

methods of collocation.

A numerical approach to solving this optimal control problem is to use the
direct collocation method outlined in Hargraves and Paris [?]. The idea behind
this approach is to transform the optimal control problem into a nonlinear pro-
gramming problem. This is accomplished by discretizing time into a grid of N−1
intervals

t0 = t1 < t2 < .. . < tN = t f (14.41)
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and approximating the state x and the control input u as piecewise polynomials
x̃ and ũ, respectively. Typically a cubic polynomial is chosen for the states and
a linear polynomial for the control on each interval. Collocation is then used at
the midpoint of each interval to satisfy equation (14.38). Let x̃(x(t1), ...,x(tN)) and
ũ(u(t1), ...,u(tN)) denote the approximations to x and u, respectively, depending on
(x(t1), ...,x(tN)) ∈ RnN and (u(t1), ...,u(tN)) ∈ RN corresponding to the value of x
and u at the grid points. Then one solves the following finite dimension approxi-
mation of the original control problem (14.40):

min
y∈RM

F(y)= J(x̃(y), ũ(y)) subject to

⎧
⎪⎪⎨

⎪⎪⎩

˙̃x− f (x̃(y))+g(x̃(y))ũ(y) = 0,

lb≤ c(x̃(y), ũ(y))≤ ub,

∀t =
t j + t j+1

2
j = 1, . . . ,N−1

(14.42)
where y = (x(t1),u(t1), . . . ,x(tN),u(tN)), and M = dimy = (n+1)N.

Seywald [?] suggested an improvement to the previous method (see also [?, p.
362]). Following this work, one first solves a subset of system dynamics in equa-
tion (14.40) for the the control in terms of combinations of the state and its time
derivative. Then one substitutes for the control in the remaining system dynam-
ics and constraints. Next all the time derivatives ẋi are approximated by the finite
difference approximations

˙̄x(ti) =
x(ti+1)− x(ti)

ti+1− ti

to get
p( ˙̄x(ti),x(ti)) = 0
q( ˙̄x(ti),x(ti))≤ 0

}
i = 0, ...,N−1.

The optimal control problem is turned into

min
y∈RM

F(y) subject to

{
p( ˙̄x(ti),x(ti)) = 0

q( ˙̄x(ti),x(ti))≤ 0
(14.43)

where y = (x(t1), . . . ,x(tN)), and M = dimy = nN. As with the Hargraves and Paris
method, this parameterization of the optimal control problem (14.40) can be solved
using nonlinear programming.

The dimensionality of this discretized problem is lower than the dimensionality
of the Hargraves and Paris method, where both the states and the input are the
unknowns. This induces substantial improvement in numerical implementation.

Differential Flatness Based Approach. The results of Seywald give a constrained
optimization problem in which we wish to minimize a cost functional subject to
n− 1 equality constraints, corresponding to the system dynamics, at each time
instant. In fact, it is usually possible to reduce the dimension of the problem further.
Given an output, it is generally possible to parameterize the control and a part of
the state in terms of this output and its time derivatives. In contrast to the previous
approach, one must use more than one derivative of this output for this purpose.
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z j(to)

knotpoint

m j at knotpoints defines smoothness

collocation point

k j−1 degree polynomial between knotpoints

z j(t)

z j(t f )

Figure 14.26: Spline representation of a variable.

When the whole state and the input can be parameterized with one output, the
system is differentially flat, as described in Section 14.5. When the parameteriza-
tion is only partial, the dimension of the subspace spanned by the output and its
derivatives is given by r the relative degree of this output [Isi95]. In this case, it is
possible to write the system dynamics as

x = α(z, ż, . . . ,z(q))

u = β (z, ż, . . . ,z(q))

Φ(z, ż, . . . ,zn−r) = 0

(14.44)

where z∈Rp, p>m represents a set of outputs that parameterize the trajectory and
Φ :Rn×Rm represents n−r remaining differential constraints on the output. In the
case that the system is flat, r = n and we eliminate these differential constraints.

Unlike the approach of Seywald, it is not realistic to use finite difference ap-
proximations as soon as r > 2. In this context, it is convenient to represent z using
B-splines. B-splines are chosen as basis functions because of their ease of en-
forcing continuity across knot points and ease of computing their derivatives. A
pictorial representation of such an approximation is given in Figure 14.26. Doing
so we get

z j =
p j

∑
i=1

Bi,k j
(t)C j

i , p j = l j(k j−m j)+m j

where Bi,k j
(t) is the B-spline basis function defined in [?] for the output z j with

order k j, C
j
i are the coefficients of the B-spline, l j is the number of knot intervals,

and m j is number of smoothness conditions at the knots. The set (z1,z2, . . . ,zn−r)
is thus represented by M = ∑ j∈{1,r+1,...,n} p j coefficients.

In general, w collocation points are chosen uniformly over the time interval
[to, t f ] (though optimal knots placements or Gaussian points may also be consid-
ered). Both dynamics and constraints will be enforced at the collocation points.
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The problem can be stated as the following nonlinear programming form:

min
y∈RM

F(y) subject to

{
Φ(z(y), ż(y), . . . ,z(n−r)(y)) = 0

lb≤ c(y)≤ ub
(14.45)

where

y = (C1
1 , . . . ,C

1
p1
,Cr+1

1 , . . . ,Cr+1
pr+1

, . . . ,Cn
1 , . . . ,C

n
pn
).

The coefficients of the B-spline basis functions can be found using nonlinear pro-
gramming.

A software package called Nonlinear Trajectory Generation (NTG) has been
written to solve optimal control problems in the manner described above (see [?]
for details). The sequential quadratic programming package NPSOL by [?] is used
as the nonlinear programming solver in NTG. When specifying a problem to NTG,
the user is required to state the problem in terms of some choice of outputs and its
derivatives. The user is also required to specify the regularity of the variables, the
placement of the knot points, the order and regularity of the B-splines, and the
collocation points for each output.

Implementation on the Caltech Ducted Fan

To demonstrate the use of the techniques described in the previous section, we
present an implementation of optimization-based control on the Caltech Ducted
Fan, a real-time, flight control experiment that mimics the longitudinal dynamics
of an aircraft. The experiment is show in Figure 14.27.

Description of the Caltech Ducted Fan Experiment. The Caltech ducted fan is an
experimental testbed designed for research and development of nonlinear flight
guidance and control techniques for Uninhabited Combat Aerial Vehicles (UCAVs).
The fan is a scaled model of the longitudinal axis of a flight vehicle and flight test
results validate that the dynamics replicate qualities of actual flight vehicles [?].

The ducted fan has three degrees of freedom: the boom holding the ducted
fan is allowed to operate on a cylinder, 2 m high and 4.7 m in diameter, permitting
horizontal and vertical displacements. A counterweight is connected to the vertical
axis of the stand, allowing the effective mass of the fan to be adjusted. Also, the
wing/fan assembly at the end of the boom is allowed to rotate about its center of
mass. Optical encoders mounted on the ducted fan, counterweight pulley, and the
base of the stand measure the three degrees of freedom. The fan is controlled by
commanding a current to the electric motor for fan thrust and by commanding RC
servos to control the thrust vectoring mechanism.

The sensors are read and the commands sent by a DSP-based multi-processor
system, comprised of a D/A card, a digital I/O card, two Texas Instruments C40
signal processors, two Compaq Alpha processors, and a high-speed host PC inter-
face. A real-time interface provides access to the processors and I/O hardware. The
NTG software resides on both of the Alpha processors, each capable of running
real-time optimization.
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Figure 14.27: Caltech ducted fan.

The ducted fan is modeled in terms of the position and orientation of the fan,
and their velocities. Letting x represent the horizontal translation, z the vertical
translation and θ the rotation about the boom axis, the equations of motion are
given by

mẍ+FXa−FXb
cosθ −FZb

sinθ = 0,

mz̈+FZa +FXb
sinθ −FZb

cosθ = mgeff,

Jθ̈ −Ma +
1

rs
IpΩẋcosθ −FZb

r f = 0,

(14.46)

where FXa = Dcosγ + Lsinγ and FZa = −Dsinγ + Lcosγ are the aerodynamic
forces and FXb

and FZb
are thrust vectoring body forces in terms of the lift (L),

drag (D), and flight path angle (γ). Ip and Ω are the moment of inertia and angular
velocity of the ducted fan propeller, respectively. J is the moment of ducted fan and
r f is the distance from center of mass along the Xb axis to the effective application
point of the thrust vectoring force. The angle of attack α can be derived from the
pitch angle θ and the flight path angle γ by

α = θ − γ.
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The flight path angle can be derived from the spatial velocities by

γ = arctan
−ż

ẋ
.

The lift (L) ,drag (D), and moment (M) are given by

L = qSCL(α) D = qSCD(α) M = c̄SCM(α),

respectively. The dynamic pressure is given by q = 1
2 ρV 2. The norm of the ve-

locity is denoted by V , S the surface area of the wings, and ρ is the atmospheric
density. The coefficients of lift (CL(α)), drag (CD(α)) and the moment coefficient RMM: Add figures?

Parameter values?(CM(α)) are determined from a combination of wind tunnel and flight testing and
are described in more detail in [?], along with the values of the other parameters.

Real-Time Trajectory Generation for the Ducted Fan. In this section we describe
the implementation of the trajectory generation algorithms by using NTG to gen-
erate minimum time trajectories in real time. An LQR-based regulator is used to
stabilize the system. We focus in this section on aggressive, forward flight trajec-
tories. The next section extends the controller to use a receding horizon controller,
but on a simpler class of trajectories.

Stabilization Around Reference Trajectory The results in this section
rely on the traditional two degree of freedom design paradigm described in Chap-
ter ??. In this approach, a local control law (inner loop) is used to stabilize the
system around the trajectory computed based on a nominal model. This compen-
sates for uncertainties in the model, which are predominantly due to aerodynamics
and friction. Elements such as the ducted fan flying through its own wake, ground
effects and velocity- and angle-of-attack† dependent thrust contribute to the aero- RMM: punctuation?

dynamic uncertainty. Actuation models are not used when generating the reference
trajectory, resulting in another source of uncertainty.

Since only the position of the fan is measured, we must estimate the velocities.
We use an extended Kalman filter (described in later chapters) with the optimal
gain matrix is gain scheduled on the (estimated) forward velocity.

The stabilizing LQR controllers were gain scheduled on pitch angle, θ , and the
forward velocity, ẋ. The pitch angle was allowed to vary from −π/2 to π/2 and
the velocity ranged from 0 to 6 m/s. The weights were chosen differently for the
hover-to-hover and forward flight modes. For the forward flight mode, a smaller
weight was placed on the horizontal (x) position of the fan compared to the hover-
to-hover mode. Furthermore, the z weight was scheduled as a function of forward
velocity in the forward flight mode. There was no scheduling on the weights for
hover-to-hover. The elements of the gain matrices for each of the controller and
observer are linearly interpolated over 51 operating points.

Nonlinear Trajectory Generation Parameters We solve a minimum
time optimal control problem to generate a feasible trajectory for the system. The
system is modeled using the nonlinear equations described above and computed
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Figure 14.28: Forward flight test case: (a) θ and ẋ desired and actual, (b) desired FXb
and

FZb
with bounds.

the open loop forces and state trajectories for the nominal system. This system is
not known to be differentially flat (due to the aerodynamic forces) and hence we
cannot completely eliminate the differential constraints.

We choose three outputs, z1 = x, z2 = z, and z3 = θ , which results in a sys-
tem with one remaining differential constraint. Each output is parameterized with
four, sixth order C4 piecewise polynomials over the time interval scaled by the
minimum time. A fourth output, z4 = T , is used to represent the time horizon to
be minimized and is parameterized by a scalar. There are a total of 37 variables in
this optimization problem. The trajectory constraints are enforced at 21 equidistant
breakpoints over the scaled time interval.

There are many considerations in the choice of the parameterization of the
outputs. Clearly there is a trade between the parameters (variables, initial values of
the variables, and breakpoints) and measures of performance (convergence, run-
time, and conservative constraints). Extensive simulations were run to determine
the right combination of parameters to meet the performance goals of our system.

Add a paragraph talking about the input and state constraintsRMM

Forward Flight To obtain the forward flight test data, an operator com-
manded a desired forward velocity and vertical position with joysticks. We set the
trajectory update time δ to 2 seconds. By rapidly changing the joysticks, NTG pro-
duces high angle of attack maneuvers. Figure 14.28aa depicts the reference trajec-
tories and the actual θ and ẋ over 60 s. Figure 14.28b shows the commanded forces
for the same time interval. The sequence of maneuvers corresponds to the ducted
fan transitioning from near hover to forward flight, then following a command
from a large forward velocity to a large negative velocity, and finally returning to
hover.

Figure 14.29 is an illustration of the ducted fan altitude and x position for these
maneuvers. The air-foil in the figure depicts the pitch angle (θ ). It is apparent from
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Figure 14.29: Forward flight test case: altitude and x position (actual (solid) and desired
(dashed)). Airfoil represents actual pitch angle (θ ) of the ducted fan.

this figure that the stabilizing controller is not tracking well in the z direction. This
is due to the fact that unmodeled frictional effects are significant in the vertical
direction. This could be corrected with an integrator in the stabilizing controller.

An analysis of the run times was performed for 30 trajectories; the average
computation time was less than one second. Each of the 30 trajectories converged
to an optimal solution and was approximately between 4 and 12 seconds in length.
A random initial guess was used for the first NTG trajectory computation. Sub-
sequent NTG computations used the previous solution as an initial guess. Much RMM: Rewrite to talk

about initial conditionsimprovement can be made in determining a “good” initial guess. Improvement in
the initial guess will improve not only convergence but also computation times.

Receding Horizon Control. The results of the previous section demonstrate the
ability to compute optimal trajectories in real time, although the computation time
was not sufficiently fast for closing the loop around the optimization. In this sec-
tion, we make use of a shorter update time δ , a fixed horizon time T with a
quadratic integral cost, and a CLF terminal cost to implement the receding horizon
controller described in Section 14.5. We also limit the operation of the system to
near hover, so that we can use the local linearization to find the terminal CLF.

We have implemented the receding horizon controller on the ducted fan exper-
iment where the control objective is to stabilize the hover equilibrium point. The
quadratic cost is given by

L(x,u) =
1

2
x̂T Qx̂+

1

2
ûT Rû

V (x) = γ x̂T Px̂

(14.47)

where
x̂ = x− xeq = (x,z,θ −π/2, ẋ, ż, θ̇)

û = u−ueq = (FXb
−mg,FZb

)

Q = diag{4,15,4,1,3,0.3}
R = diag{0.5,0.5},

For the terminal cost, we choose γ = 0.075 and P is the unique stable solution to
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the algebraic Riccati equation corresponding to the linearized dynamics of equa-
tion (14.46) at hover and the weights Q and R. Note that if γ = 1/2, then V ( ·) is the
CLF for the system corresponding to the LQR problem. Instead V is a relaxed (in
magnitude) CLF, which achieved better performance in the experiment. In either
case, V is valid as a CLF only in a neighborhood around hover since it is based
on the linearized dynamics. We do not try to compute off-line a region of attrac-
tion for this CLF. Experimental tests omitting the terminal cost and/or the input
constraints leads to instability. The results in this section show the success of this
choice for V for stabilization. An inner-loop PD controller on θ , θ̇ is implemented
to stabilize to the receding horizon states θ ∗T , θ̇

∗
T . The θ dynamics are the fastest

for this system and although most receding horizon controllers were found to be
nominally stable without this inner-loop controller, small disturbances could lead
to instability.

The optimal control problem is set-up in NTG code by parameterizing the three
position states (x,z,θ), each with 8 B-spline coefficients. Over the receding hori-
zon time intervals, 11 and 16 breakpoints were used with horizon lengths of 1, 1.5,
2, 3, 4 and 6 seconds. Breakpoints specify the locations in time where the differ-
ential equations and any constraints must be satisfied, up to some tolerance. The
value of Fmax

Xb
for the input constraints is made conservative to avoid prolonged

input saturation on the real hardware. The logic for this is that if the inputs are
saturated on the real hardware, no actuation is left for the inner-loop θ controller
and the system can go unstable. The value used in the optimization is Fmax

Xb
= 9 N.

Computation time is non-negligible and must be considered when implement-
ing the optimal trajectories. The computation time varies with each optimization
as the current state of the ducted fan changes. The following notational definitions
will facilitate the description of how the timing is set-up:

i Integer counter of RHC computations
ti Value of current time when RHC computation i started

δc(i) Computation time for computation i
u∗T (i)(t) Optimal output trajectory corresponding to computation

i, with time interval t ∈ [ti, ti +T ]

A natural choice for updating the optimal trajectories for stabilization is to do so
as fast as possible. This is achieved here by constantly resolving the optimiza-
tion. When computation i is done, computation i+ 1 is immediately started, so
ti+1 = ti +δc(i). Figure 14.30 gives a graphical picture of the timing set-up as the
optimal input trajectories u∗T ( ·) are updated. As shown in the figure, any compu-RMM: Perhaps cite

Dunbar version
(probably below)

tation i for u∗T (i)( ·) occurs for t ∈ [ti, ti+1] and the resulting trajectory is applied for
t ∈ [ti+1, ti+2]. At t = ti+1 computation i+ 1 is started for trajectory u∗T (i+ 1)( ·),
which is applied as soon as it is available (t = ti+2). For the experimental runs de-
tailed in the results, δc(i) is typically in the range of [0.05,0.25] seconds, meaning
4 to 20 optimal control computations per second. Each optimization i requires the
current measured state of the ducted fan and the value of the previous optimal in-
put trajectories u∗T (i−1) at time t = ti. This corresponds to, respectively, 6 initial
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Figure 14.30: Receding horizon input trajectories.

conditions for state vector x and 2 initial constraints on the input vector u. Fig-
ure 14.30 shows that the optimal trajectories are advanced by their computation
time prior to application to the system. A dashed line corresponds to the initial
portion of an optimal trajectory and is not applied since it is not available until
that computation is complete. The figure also reveals the possible discontinuity
between successive applied optimal input trajectories, with a larger discontinuity
more likely for longer computation times. The initial input constraint is an effort
to reduce such discontinuities, although some discontinuity is unavoidable by this
method. Also note that the same discontinuity is present for the 6 open-loop op-
timal state trajectories generated, again with a likelihood for greater discontinuity
for longer computation times. In this description, initialization is not an issue be-
cause we assume the receding horizon computations are already running prior to
any test runs. This is true of the experimental runs detailed in the results.

The experimental results show the response of the fan with each controller
to a 6 meter horizontal offset, which is effectively engaging a step-response to a
change in the initial condition for x. The following details the effects of different
receding horizon control parameterizations, namely as the horizon changes, and
the responses with the different controllers to the induced offset.

The first comparison is between different receding horizon controllers, where
time horizon is varied to be 1.5, 2.0, 3.0, 4.0 or 6.0 seconds. Each controller uses
16 breakpoints. Figure 14.31a shows a comparison of the average computation
time as time proceeds. For each second after the offset was initiated, the data cor-
respond to the average run time over the previous second of computation. Note that
these computation times are substantially smaller than those reported for real-time
trajectory generation, due to the use of the CLF terminal cost versus the terminal
constraints in the minimum-time, real-time trajectory generation experiments.

There is a clear trend toward shorter average computation times as the time
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Figure 14.31: Receding horizon control: (a) moving one second average of computation
time for RHC implementation with varying horizon time, (b) response of RHC controllers
to 6 meter offset in x for different horizon lengths.

horizon is made longer. There is also an initial transient increase in average com-
putation time that is greater for shorter horizon times. In fact, the 6 second horizon
controller exhibits a relatively constant average computation time. One explana-
tion for this trend is that, for this particular test, a 6 second horizon is closer to
what the system can actually do. After 1.5 seconds, the fan is still far from the
desired hover position and the terminal cost CLF is large, likely far from its region
of attraction. Figure 14.31b shows the measured x response for these different con-
trollers, exhibiting a rise time of 8–9 seconds independent of the controller. So a
horizon time closer to the rise time results in a more feasible optimization in this
case.

State Estimation and Sensor Fusion

In this chapter we consider the problem of combining the data from different sen-
sors to obtain an estimate of a (common) dynamical system. Unlike the previ-
ous chapters, we focus here on discrete-time processes, leaving the continuous-
time case to the exercises. We begin with a summary of the input/output proper-
ties of discrete-time systems with stochastic inputs, then present the discrete-time
Kalman filter, and use that formalism to formulate and present solutions for the
sensor fusion problem. Some advanced methods of estimation and fusion are also
summarized at the end of the chapter that demonstrate how to move beyond the
linear, Gaussian process assumptions.

Sensor Fusion

We now return to the main topic of the chapter: sensor fusion. Consider the situa-
tion described in Figure 14.32, where we have an input/output dynamical system
with multiple sensors capable of taking measurements. The problem of sensor fu-
sion involves deciding how to best combine the measurements from the individual
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Figure 14.32: Sensor fusion

sensors in order to accurately estimate the process state X . Since different sensors
may have different noise characteristics, evidently we should combine the sensors
in a way that places more weight on sensors with lower noise. In addition, in some
situations we may have different sensors available at different times, so that not all
information is available on each measurement update.

To gain more insight into how the sensor data are combined, we investigate the
functional form of L[k]. Suppose that each sensor takes a measurement of the form

Y i =CiX +V i, i = 1, . . . , p,

where the superscript i corresponds to the specific sensor. Let V i be a zero mean,
white noise process with covariance σ2

i = RV i(0). It follows from Lemma ?? that

L[k] = P[k|k]CT R−1
W .

First note that if P[k|k] is small, indicating that our estimate of X is close to the
actual value (in the MMSE sense), then L[k] will be small due to the leading P[k|k]
term. Furthermore, the characteristics of the individual sensors are contained in the
different σ2

i terms, which only appears in RW . Expanding the gain matrix, we have

L[k] = P[k|k]CT R−1
W , R−1

W =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1/σ2
1

. . .

1/σ2
p

⎫
⎪⎪⎪⎪⎪⎪⎪⎭
.

We see from the form of R−1
W that each sensor is inversely weighted by its covari-

ance. Thus noisy sensors (σ2
i ≫ 1) will have a small weight and require averaging

over many iterations before their data can affect the state estimate. Conversely, if
σ2

i ≪ 1, the data is “trusted” and is used with higher weight in each iteration.

Work through the case with dynamics. RMM

Information Filters

An alternative formulation of the Kalman filter is to make use of the inverse of
the covariance matrix, called the information matrix, to represent the error of the
estimate. It turns out that writing the state estimator in this form has several advan-
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tages both conceptually and when implementing distributed computations. This
form of the Kalman filter is known as the information filter.

We begin by defining the information matrix I and the weighted state estimate
Ẑ:

I[k|k] = P−1[k|k], Ẑ[k|k] = P−1[k|k]X̂ [k|k].

We also make use of the following quantities, which appear in the Kalman filter
equations:RMM: Need to sort out

subscripts versus
superscripts Ωi[k|k] = (Ci)T R−1

W i [k|k]Ci, Ψi[k|k] = (Ci)T R−1
W i [k|k]CiX̂ [k|k].

Using these quantities, we can rewrite the Kalman filter equations as

Prediction Correction

I[k|k−1] =
(

AI−1[k−1|k−1]AT +RW

)−1
, I[k|k] = I[k|k−1]+

p

∑
i=1

Ωi[k|k],

Ẑ[k|k−1] = I[k|k−1]AI−1[k−1|k−1]Ẑ[k−1|k−1]+Bu[k−1], Ẑ[k|k] = Ẑ[k|k−1]+
p

∑
i=1

Ψi[k|k].
RMM: These equations
need to be checked and

also reformatted Note that these equations are in a particularly simple form, with the information
matrix being updated by each sensor’s Ωi and similarly the state estimate being
updated by each sensors Ψi.

Remarks:

1. Information form allows simple addition for correction step. Intuition: add
information through additional data.

2. Sensor fusion: information content = inverse covariance (for each sensor)

3. Variable rate: incorporate new information whenever it arrives. No data =⇒
no information =⇒ prediction update only.

See EECI notes and NCS book for more detailsRMM

Additional topics

Converting continuous time stochastic systems to discrete time.

Ẋ = AX +Bu+Fw

x(t +h)≈ x(t)+hẋ(t)

= x(t)+hAx(t)+hBu(t)+hFW (t)

= (I +hA)X(t)+(hB)u(t)+(hF)W (t)

X [k+1] = (I +hA)
︸ ︷︷ ︸

Ã

X [k]+ (bB)
︸︷︷︸

B̃

u[k]+ (hF)
︸︷︷︸

F̃

W [k].

Correlated disturbances and noise.
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Figure 14.33: Sensor fusion with correlated measurement noise

As in the case of continuous-time Kalman filters, in the discrete time we can
include noise or disturbances that are non-white by using a filter to generate noise
with the appropriate correlation function.

On practical method to do this is to collect samples W [1],W [2], . . . ,W [N] and
then numerically compute the correlation function

RW (l) = E{W [i]W [i+ l]}=
1

N− l

N−l

∑
j=1

W [ j]W [ j+ l].

Particle Filters

Discrete-decision making and supervisory control [from US]

Introduction: discrete actions and system modes

Finite transition systems

Temporal logic specifications

Model checking

Correct-by-construction synthesis

Linking Continuous and Discrete Controllers [following US]

Problem description

Tool: simulation relations

Approach: discrete abstraction

Cooperative Control for Autonomous Systems

This paper describes a framework for building cooperative control systems and
summarizes recent results in formation stability using graph Laplacians, distributed
optimization for cooperative control and protocols for decentralized decision-making.
Additional results on networked estimation across packet dropping channels are
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also discussed briefly. Applications include multi-vehicle systems performing co-
operative tasks and autonomous systems with high-performance, distributed pro-
cessing.

Introduction

Research on control of multi-vehicle systems performing cooperative tasks dates
back to the late 1980s, initially beginning in the field of mobile robotics (see [?]
for a more detailed history). Aided by the development of inexpensive and reliable
wireless communications systems, research in this area increased substantially
in the 1990s. California’s Partners for Advanced Transit and Highways (PATH)
project [?] demonstrated multiple automobiles driving together in “platoons” and
this was quickly followed by other highway automation projects [?, ?]. In the
late 1990s and early 2000s, cooperative control of multiple aircraft, especially un-
manned aerial vehicles (UAVs), became a highly active research area in the United
States [?], spurring further advances. Over the last decade this research area has
blossomed, with many new systems being proposed in application areas ranging
from military battle systems to mobile sensors networks to commercial highway
and air transportation systems.

Today, increases in fast and inexpensive computing and communications have
enabled a new generation information-rich control systems that rely on multi-
threaded networked execution, distributed optimization, adaptation and learning,
and contingency management in increasingly sophisticated ways. The applications
of the systems have extended beyond cooperative control of robotic vehicles and
include applications such as load balancing in computer networks, distributed elec-
tric power generation and manufacturing systems and supply chains. In this pa-
per we focus primarily on applications in robotics and autonomy; for a broader
overview of applications see [?] and the references therein.

As an example of the type of system that we would like to study, we consider
the RoboFlag game developed at Cornell [?], which is loosely based on “Capture
the Flag” and “Paintball”. Two teams play the game, the red team and the blue
team, as depicted in Figure 14.34. The red team’s objective is to infiltrate the blue
team’s territory, grab the blue flag, and bring it back to the red home zone. At the
same time, the blue team’s objective is to infiltrate the red team’s territory, grab the
red flag, and bring it back to the blue home zone. The game is thus a mix of offense
and defense: capture the opponent’s flag while at the same time preventing the
opponent from capturing your flag. Sensing and communications are both limited
to provide a more realistic distributed computing environment. The game is meant
to provide an example of multi-vehicle, semi-autonomous systems operating in
dynamic, uncertain, and adversarial environments. Human operators can also be
present in the system and can be used either as high level controllers or as low level
(remote) “pilots”. A centralized control unit may be used coordinate the vehicles,
but it must respect the communication constraints (bandwidth and latency) of the
system.
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Figure 14.34: The RoboFlag playing field [?].

To study this problem and ones like it, we will first describe a mathematical
formulation that attempts to capture some of the essential elements of the problem.
We then survey some recent contributions to the networked control theory based
on the work of the author at Caltech. An earlier version of some of the information
in this paper, with more detailed descriptions of applications and work from other
groups, is contained in [?].

A Mathematical Framework for Cooperative Control

We consider a set of vehicles with the dynamics of the ith vehicle written as

ẋi = f i(xi,ui) xi ∈ Rn,ui ∈ Rm

ẏi = hi(xi) yi ∈ SE(3),
(14.48)

where xi is the state of the ith vehicle, ui is the control input for the vehicle’s and
f i is a smooth vector field representing its dynamics. We assume that the location
of the vehicle is given by the output yi ∈ SE(3) (position and orientation). We let
x = (x1, . . . ,xN) represent the complete state for a collection of N vehicles.

We also assume that each vehicle has a discrete state, α i, which we define
as the role (or mode) of the vehicle. The role of the vehicle will be represented
as an element of a discrete set A . We consider the role variable α i to represent
the portion of the vehicle’s overall state that encodes its current actions and its
relationship with the overall task being performed. We will assume that the role of
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a vehicle can change at any time and we will write a change of role as

α ′ = r(x,α),

where α ′ indicates the new value of α . We let α = (α1, . . . ,αN) represent the roles
of the collection of N vehicles and write α i(t) for the role of vehicle i at time t.

We model the communications between vehicles by a graph G whose nodes of
the graph represent the individual vehicles and a directed edge between two nodes
represents the ability of a vehicle to receive information from another vehicle. We
write N i(G ) to represent the neighbors of vehicle i. In general, N i can depend
on the locations and roles of the vehicles, in which case we will write N i(x,α).
The number of neighbors of the ith vehicle is given by the number of elements of
N i, written |N i|.

In addition to limits on the agents that can talk to each other, we also allow for
the possibility of packet loss along the channels. We model this packet loss using
a simple indicator variable γ i, j which indicates at any given time whether data
is transmitted across the link. The channel transmission characteristics can either
be fixed, γ i, j(t) is a binary random process independent of the network traffic,
or dependent on the environment, γ i, j(t) = γ i, j(r(t),y(t)) where r is the vector
of transmission rates across each edge in the communications graph and the y
dependence allows the probability of a dropped packet to depend on the physical
location of the vehicles.

Given a collection of vehicles with state x and roles α , we will define a task in
terms of a performance function

J =
∫ T

0
L(x,α,u)dt +V (x(T ),α(T )),

where T is the horizon time over which the task should be accomplished, L repre-
sents the incremental cost of the task and V represents the terminal cost of the task.
As special cases, we can take T = ∞ to represent infinite horizon problems or take
L = 0 to represent tasks in which we are only interested in the final state. We may
also have constraints on the states or inputs, but we omit these here for simplicity.

A strategy for a task is an assignment of the inputs ui for each vehicle and
a selection of the roles of the vehicles. We focus on decentralized strategies in
which the vehicles are only able to use information from their own state and the
communicated position and mode from neighbor vehicles. The control law has the
form

ui(x,α) = ui(xi,α i,x−i,α−i,γ−i)

{gi
j(x,α) : ri

j(x,α)}= {gi
j(x

i,α i,x−i,α−i) :

ri
j(x

i,α i,x−i,α−i)},

where we use the shorthand x−i, α−i and γ−1 to represent the location, roles and
channel status of vehicle i’s neighbors (hence x−i = {x j1 , . . . ,x jmi where jk ∈N i

and mi = |N i|.}.
The discrete update laws are written in terms of a guard gi

j that evaluates to
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either true or false and ri
j is a rule that defines how the role α i should be updated

if the rule evaluates to true. Thus, the role evolves according to the update law

α i ′ =

{
ri

j(x,α) g(x,α) = true

unchanged otherwise.

This update is allowed to happen asynchronously, although in practice it may be
assigned by a central agent in the system, in which case it may evolve in a more
regular fashion.

Formation control using graph Laplacians

We consider first the problem of stabilization a collection of agents who share
information along a communication graph with fixed topology. For simplicity we
assume that the agents’ dynamics are linear and governed by

ẋi = Axi +Bui,

yi =Cxi.
(14.49)

Fax [?] considers a control law in which each system attempts to stabilize itself
relative to its neighbors. This is accomplished by constructing an error for each
system that is a weighted combination of the relative outputs of the neighbors:

ei = ∑
j∈N i

αi j(y
j− yi), (14.50)

where αi j is the relative weight. For simplicity, we consider uniform weighting
here, so that αi j = 1/|N i| where N i is the number of neighbors of node i. The
results are easily extended to the more general case.

Given the error (14.50), we apply a compensator that attempts to stabilize the
overall system. For simplicity, we assume here that the stabilizer is given by a
constant gain

ui = Kei, (14.51)

with K ∈ Rm×m representing the compensation (gain) matrix. In practice, one can
use a dynamic compensator to improve performance, but for analysis purposes we
can just assume these dynamics are included in the system dynamics (14.49).

The interconnectedness of the system, represented by the neighbor sets Ni can
be studied using tools from graph theory. In particular, for the the case of uniform
weighting of the errors, it turns out that the combined error vector e ∈ RN ·m can
be written as

e = (L̄⊗ I)x (14.52)

where ⊗ represents the Kronecker product and L̄ is the weighted Laplacian as-
sociated with the (directed) graph that models the neighbors of each node. The
weighted Laplacian is a standard object in graph theory and can be defined as

L̄ = D−1(D−A)
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Figure 14.35: Interpretation of Theorem 1. The left figure shows the graph representation
of the interconnected system and the right figure shows the corresponding Nyquist test. The
addition of the dashed line to the graph moves the negative, inverse eigenvalues of L̄ from
the positions marked by circles to those marked by crosses.

where D is a diagonal matrix whose entries are the out-degree of each node and A is
the adjacency matrix for the graph (see [?] for more detail). Using this framework,
Fax showed the following:

Theorem 14.2. A local controller K stabilizes the formation dynamics in equa-
tion (14.49) with error (14.52) and gain K if and only if it stabilizes the set of N
systems given by

ẋ = Ax+B·λi ·(Ky)

y =Cx
(14.53)

where λi are the eigenvalues of the weighted graph Laplacian L̄.

This theorem has a very natural interpretation in in terms of the Nyquist plot of
dynamical system. In the standard Nyquist criterion, one checks for stability of a
feedback system by plotting the open loop frequency response of the system in the
complex plane and checking for net encirclements of the−1 point. The conditions
in Theorem 1 correspond to replacing the−1 point with−1/λi for each eigenvalue
λi of L̄. This interpretation is illustrated in Figure 14.35. The results can easily be
extended to consider weightings that are nonuniform.

Theorem 14.2 illustrates how the dynamics of the system, as represented by
equation (14.49), interacts with the information flow of the system, as represented
by the graph Laplacian. In particular, we see that it is the eigenvalues of the Lapla-
cian that are critical for determining stability of the overall system. Additional
results in this framework allow tuning of the information flow (considered as both
sensed and communicated signals) to improve the transient response of the sys-
tem [?]. Extensions in a stochastic setting [?, ?] allow analysis of interconnected
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systems whose dynamics are not identical and where the graph topology changes
over time.

Distributed optimization

Another way to approach the formation control problem is to formulate it as an
optimization problem. If we let Li(xi,x−i) represent the individual formation error
between the ith vehicle and its neighbors, then we can establish a cost function

L(x,α,u) = ∑Li(xi,x−i)+∥ui∥2
R,

where the summation over the individual formation errors gives the cumulative
formation error [?] and the final term is a penalty on the inputs (other forms could
be used).

This problem can be solved in either a centralized manner or a distributed man-
ner. One distributed approach is the work of Dunbar et al. [?], who considers coop-
erative control problems using receding horizon optimal control. For a cost func-
tion whose coupling reflects the communication constraints of the vehicles, they
generate distributed optimal control problems for each subsystem and establishes
that the distributed receding horizon implementation is asymptotically stabilizing.
The communication requirements between subsystems with coupling in the cost
function are that each subsystem obtain the previous optimal control trajectory of
those subsystems at each receding horizon update. The key requirements for sta-
bility are that each distributed optimal control not deviate too far from the previous
optimal control, and that the receding horizon updates happen sufficiently fast.

The specific optimization problem that is solved by each vehicle has the form

min
ui( ·)

{∫ tk+T

tk

Li(xi(τ),x−i(τ),ui(τ))dτ +V i(xi(tk +T ))

}

subject to ẋi = f (xi,ui)

ui ∈Ui, xi(tk +T ) ∈ Xi
f

∥xi(t)− x̂i(t)∥ ≤ δ 2κ,

where U f and Xi
f are constraints on the input and final state, x̂i is the trajectory last

sent to vehicle i’s neighbors, and δ and κ are parameters that control how much
variation in the trajectory is allowed between iterations. Figure 14.36 shows a sim-
ulation of Dunbar’s results. The vehicles are flying in “fingertip formation”, with
vehicles 2 and 3 maintaining position relative to vehicle 1 and vehicle 4 maintain-
ing position relative to vehicle 2. The control goal is to maintain formation around
the black square, which is flying along a trajectory that is not known to the indi-
vidual aircraft. The localized optimization for each vehicle uses a previous optimal
path for its neighbors while constraining its own path to stay near the previous path
that it communicated to others.

A natural question in the context of distributed optimization is that of what
tasks can be decomposed into a decentralized strategy. This problem has been
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Figure 14.36: Four vehicle formation using distributed receding horizon control [?].

recently studied by Spanos [?], who presented a formalism for modeling dynamic
coordination in networks with local communication capabilities encoded as a set of
vectorial subspaces. This representation is capable of modeling many common net-
work interaction patterns including global control, pairwise neighbor interactions,
and multi-hop message routing. Within this framework, coordination is modeled
as requirements that certain functions either decrease or remain invariant under the
dynamics of the network, and that these requirements be locally verifiable in each
of the subspaces comprising the network model.

Distributed protocols

The final problem that we present is the incorporation of protocols (or logic) into
the solution. We model protocols using the guarded command formalism described
in Section 14.5 and presented in more detail in [?]. A decentralized protocol is a
description of the mode dynamics in the form

α i ′ =

{
ri

j(x
i,x−i,α i,α−i) g(x,α) = true

unchanged otherwise,

where α i ′ represents the new value of the mode variables for agent i. Reasoning
about such protocols is tricky because we make no assumptions about when indi-
vidual rules can be tested. Hence the commands can be executed in any order, at
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Figure 14.37: The RoboFlag Drill.

any time. We will assume one constraint on the dynamics, namely that all rules are
evaluated no more than once before any rule is evaluated twice.

One implementation of this formalism is the computation and control language
(CCL) developed by Klavins [?]. In this formalism, stability is determined by con-
structing Lyapunov function V (x,α) that have the property that V (x,α)≥ 0 for all
x and α , V (x,α) = 0 only when the state and mode are at a desired value and for
any execution cycle no allowable transitions increase V and at least one transition
decreases V . The resulting V has the essential properties of a Lyapunov function
and we can use the same intuition as with Lyapunov functions to show that the
state (x,α) eventually converges to the desired state.

Figure 14.37 gives an example of how a distributed area denial task can be
solved in CCL. In this example, drawn from the RoboFlag game, 6 defensive
robots are trying to protect a defense zone for an incoming set of robots, which
descend vertically at a fixed speed. The defending robots must move underneath
the incoming robots, but are not allowed to run into each other. The defenders are
randomly assigned incoming robots and are allowed to talk to their neighbors and
switch assignments under a given protocol. A protocol was developed in [?] that is
able to provably solve this problem, including insuring that no two robots collide
and that all defensive robots eventually end up assigned to an incoming robot with
now crossing of assignments.

The desired properties for the closed loop systems are described using temporal
logic formulas that capture the specifications given above. Let xi represent the
position of the ith defending robot, y j represent the height of the jth attacking
robot, z j represent the (horizontal) position of jth attacking robot and α(i) is the
assignment for defending robot i. We assume that each attacking robot moves down
a distance δ at each iteration. The Lyapunov function that is used to verify the
stability of the protocol is given by

V =

[(
n

2

)
+1

]
ρ +β ,
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where

ρ =
n

∑
i=1

r(i, i), r(i, j) =

{
1 if yα( j) < |zi− xα( j)−δ

0 otherwise,

and

β =
n

∑
i=1

n

∑
j=i+1

γ(i, j) where γ(i, j) =

{
1 if xα(i) > xα( j)

0 otherwise.

The function ρ encodes the number of defending robots that are too far away to
reach the robot they are assigned to defend against and the the function β is the
total number of conflicts (assignments requiring robots to collide) in the current
state. This Lyapunov function thus reaches a minimum when the set of assignments
has a solution and it is possible to show that V always decreases whenever a switch
happens. A full proof of stability is given in [?].

Extensions to this approach for observability and controllability have also been
developed [?, ?].

Additional results

A number of other recent results in networked control systems have become avail-
able in the past few years. In this section we briefly summarize some of these
results coming out of the author’s research group.

Estimation and Control with Information Loss. Through a sequence of results,
we have explored the performance of estimation algorithms in the presence of
networked channels in which information can be lost. This work builds on the
results of Sinopoli et al. in which they develop bounds on the performance of a
Kalman filter in the presence of packet loss [?].

In [?], we consider a discrete time state estimation problem over a packet-based
network. In each discrete time step, the measurement is sent to a Kalman filter with
some probability that it is received or dropped. The previous work of Sinopoli
et al. on Kalman filtering with intermittent observation losses shows that there
exists a certain threshold of the packet dropping rate below which the estimator is
stable in the expected sense. In their analysis, they assume that packets are dropped
independently between all time steps. We have developed a different point of view
that extends this analysis in two ways. First, we do not required that the packets
are dropped independently but just that the information gain πg—defined to be the
limit of the ratio of the number of received packets n during N time steps as N goes
to infinity—exists. Second, we show that for any given πg, as long as πg > 0, the
estimator is stable almost surely, i.e. for any given ε > 0 the error covariance matrix
Pk is bounded by a finite matrix M, with probability 1−ε . Given an error tolerance
M, πg can in turn be found. We also give explicit formula for the relationship
between M and ε .

Another approach that we have explored is the use of multi-description source
coding [?, ?, ?]. In this work, we split the information that we wish to send across
multiple packets, but encode the information so that if any collection of packets are
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lost, the resulting information has a known level of distortion. We have considered
two cases: when the packet loss over network links occurs in an i.i.d. fashion or in
a bursty fashion. Compared with the traditional single description source coding,
multi-description (MD) coding scheme can greatly improve the performance of
Kalman filtering over a large set of packet loss scenarios in both cases.

We have also considered the problem of (optimal) control in the presence of
packet loss [?, ?]. We first prove a separation principle that allows us to solve this
problem using a standard LQR state-feedback design, along with an optimal algo-
rithm for propagating and using the information across the unreliable link. Then we
present one such optimal algorithm, which consists of a Kalman filter at the sensor
side of the link, and a switched linear filter at the controller side. Our design does
not assume any statistical model of the packet drop events, and is thus optimal for
any arbitrary packet drop pattern. Further, the solution is appealing from a prac-
tical point of view because it can be implemented as a small modification of an
existing LQG control design.

We have extended this work in three ways to consider more realistic networks,
where information may route through multiple nodes before being delivered to its
destination.

In the first work, we consider the use of multi-hop protocols for improving
the convergence rates of consensus algorithms [?]. We propose multi-hop relay
protocols based on the current “nearest neighbor rules” consensus protocols. By
employing multiple-hop paths in the network, more information is passed around
and each agent enlarges its ”available” neighborhood. We demonstrate that these
relay protocols can increase the algebraic connectivity without physically adding
or changing any communication links. Moreover, time delay sensitivity of relay
protocols are discussed in detail. We point out that a trade off exists between con-
vergence performance and time delay robustness. Simulation results are also pro-
vided to verify the efficiency of relay protocols.

We have also considered the problem of data transmissions over networks,
where each node in the network is allowed to perform some amount of compu-
tation [?]. We consider the problem of determining the optimal processing at each
node in the network and provide a strategy that yields the optimal performance at
the cost of constant memory and processing at each node. We also provide con-
ditions on the network for the estimate error covariance to be stable under this
algorithm. This approach is applicable for networks of sensors that are performing
spatio-temporal tasks such as cooperative situational awareness.

Finally, we have also explored the design of control strategies over lossy net-
works [?, ?]. A network is assumed to exist between the sensor and the con-
troller and between the latter and the actuator. Packets are dropped according to a
Bernoulli independent process, with γ and µ being the probabilities of losing an
observation packet and a control packet respectively, at time any instant t. A reced-
ing horizon control scheme is proposed for the Linear Quadratic Control (LQG)
problem. At each instant, N future control inputs are sent in addition to the current
one. Under this scheme the separation of estimation and control is shown and sta-
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bility conditions, dependent on loss probabilities, are provided. Simulations show
how the overall performance, in terms of lower cost, increases with the length of
the horizon.

Distributed Sensor Fusion Using Dynamic Consensus.
A complementary way to explore distributed sensor fusion is to make use of

previous results on consensus algorithms. A consensus algorithm seeks to get
agreement between a set of distributed agents on a common quantity. In [?] we ex-
amined several dynamical aspects of average consensus in mobile networks. The
results allow consensus on general time-varying signals, and allow tracking anal-
ysis using standard frequency-domain techniques. Further, the frequency-domain
analysis naturally inspires a robust small-gain version of the algorithm, which tol-
erates arbitrary non-uniform time delays. Finally, we show how to exploit a dynam-
ical conservation property in order to ensure consensus tracking despite splitting
and merging of the underlying mobile network.

This work can be extended to to obtain least-squares fused estimates based on
spatially distributed measurements [?]. This mechanism is very robust to changes
in the underlying network topology and performance, making it an interesting can-
didate for sensor fusion on autonomous mobile networks. Examples have been ex-
plored to demonstrate the the dependence of the performance on the structure of
the underlying network. A more systematic analysis of the performance as various
network quantities such as connection density, topology, and bandwidth are varied
has also been carried out [?]. Our main contribution is a frequency-domain char-
acterization of the distributed estimator’s steady-state performance; this is quan-
tified in terms of a special matrix associated with the connection topology called
the graph Laplacian, and also the rate of message exchange between immediate
neighbors in the communication network.

These results have led to a more general formulation of the problem of dis-
tributed computing [?]. The main theoretical contribution of this work is a geomet-
ric formalism in which to cast distributed systems. This has numerous advantages
and naturally parameterizes a wide class of distributed interaction mechanisms in
a uniform way. We make use of this framework to present a model for distributed
optimization, and we introduce the distributed gradient as a general design tool for
synthesizing dynamics for distributed systems. The distributed optimization model
is a useful abstraction in its own right and motivates a definition for a distributed
extremum. As one might expect, the distributed gradient is zero at a distributed
extremum, and the dynamics of a distributed gradient flow must converge to a dis-
tributed extremum. This forms the basis for a wide variety of designs, and we are
in fact able to recover a widely studied distributed consensus algorithm as a special
case.

Robustness to Process Uncertainty and Node Failure.
In most of the work on sensor coverage and distributed sensor fusion, it is as-

sumed that the participating vehicles stay within communications range of each
other and maintain overall connectivity of the network. We have analyzed the fea-
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sibility aspects of motion planning for groups of agents connected by a range-
constrained wireless network [?]. Specifically, we address the difficulties encoun-
tered when trajectories are required to preserve the connectedness of the network.
The analysis utilizes a quantity called the connectivity robustness of the network,
which can be calculated in a distributed fashion, and thus is applicable to dis-
tributed motion planning problems arising in control of vehicle networks. Further,
these results show that network constraints posed as connectivity robustness con-
straints have minimal impact on reachability, provided that an appropriate topol-
ogy control algorithm is implemented. This contrasts with more naive approaches
to connectivity maintenance, which can significantly reduce the reachable set.

In [?, ?], we consider a robust network control problem. We consider linear
unstable and uncertain discrete time plants with a network between the sensor and
controller and the controller and plant. We investigate two defining characteristics
of network controlled systems and the impact of uncertainty on the process dy-
namics (modeled as parametric uncertainty). We compute the minimum data rate
and minimum packet arrival rate to ensure stability of the closed loop system.

Another notion of robustness is robustness to failure of individual computa-
tional nodes [?]. This type of uncertainty has been considered in the area of dis-
tributed computation, but has not been considered in many of the networked esti-
mation and control architectures that have been proposed. For a distributed algo-
rithm to be practical, one should be able to guarantee that the task is still satisfac-
torily executed even when agents fail to communicate with others or to perform
their designated actions correctly. We present a concept of robustness which is
well-suited for general distributed algorithms for teams of dynamic agents. Our
definition extends a similar notion introduced in the distributed computation liter-
ature for consensus problems. We illustrate the definition by considering a variety
of algorithms and identify possible ways to make an algorithm robust.

Networked Control Systems Architecture. In addition to the specific research ac-
complishments listed above, work over the past 5 years has led to the develop-
ment of a networked control systems architecture, illustrated in Figure 14.38, that
is serving as the basis for multiple ongoing projects at Caltech. Building on the
open source Spread group communications protocol, we have developed a mod-
ular software architecture that provides inter-computer communications between
sets of linked processes. This approach allows the use of significant amounts of
distributed computing for sensor processing and optimization-based planning, as
well as providing a very flexible backbone for building autonomous systems and
fault tolerant computing systems.

This architecture has been implemented and tested as part of Caltech’s partici-
pation in the 2005 DARPA Grand Challenge [CFG+06, ?].
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Figure 14.38: Networked Control Systems Architecture.

14.6 Adaptation Learning and Cognition

In this section we will discuss more sophisticased control laws with abilities to
adapt, learn and reason. These funtions are key elements for autonomous control.
Before proceeding we will consider review the maning of the words. Adapt is to
adjust to a specified use or situation, learn is to acquire knowledge or skill by
study, instruction or experience, reason is the intellectual process of seeking truth
or knowledge by infering from either fact of logic and autonomy is the ability of
beeing self-governing. When these words are used in the engineering context it is
clear that the abilities are far from what we can accomplish as humans, but the
development of autonomous cars and airvehicles are good indicatotrs of progress.

Adaptive Control

Adaptive control is a technique that can be used when there are significant varia-
tions in the process and its environment and where neither robust control nor gain
scheduling is applicable. Model reference control and the self-tuning controller
are two common approaches to adaptive control, see Figure 14.39. Model refer-
ence adaptive control (MRAS) is primarily used for command signal following
and the self-tuning regulator is used both for intended for reduction of load distur-
bances. Notice in Figure 14.39 that there are two feedback loops: one conventional
feedback loop involving the process P and the controller C and a slower loop to
adjust the controller parameters θ .
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