
Vehicle Steering
Karl J. Astrom and Richard M. Murray
17 Jul 2019

This notebook contains the computations for the vehicle steering running example in Feedback Systems.

RMM comments to Karl, 27 Jun 2019

I'm using this notebook to walk through all of the vehicle steering examples and make sure that all
of the parameters, conditions, and maximum steering angles are consitent and reasonable.
Please feel free to send me comments on the contents as well as the bulletted notes, in whatever
form is most convenient.
Once we have sorted out all of the settings we want to use, I'll copy over the changes into the
MATLAB files that we use for creating the figures in the book.
These notes will be removed from the notebook once we have finalized everything.

In [1]: import numpy as np
import matplotlib.pyplot as plt
import control as ct
ct.use_fbs_defaults()
ct.use_numpy_matrix(False)

Vehicle steering dynamics (Example 3.11)
The vehicle dynamics are given by a simple bicycle model. We take the state of the system as
where is the position of the reference point of the vehicle in the plane and is the angle of the vehicle
with respect to horizontal. The vehicle input is given by where is the forward velocity of the vehicle
and is the angle of the steering wheel. We take as parameters the wheelbase and the offset between
the rear wheels and the reference point. The model includes saturation of the vehicle steering angle
(maxsteer).

System state: x, y, theta
System input: v, delta
System output: x, y
System parameters: wheelbase, refoffset, maxsteer

Assuming no slipping of the wheels, the motion of the vehicle is given by a rotation around a point O that
depends on the steering angle . To compute the angle of the velocity of the reference point with respect
to the axis of the vehicle, we let the distance from the center of rotation O to the contact point of the rear
wheel be and it the follows from Figure 3.X in FBS that and , which implies that

.

Reasonable limits for the steering angle depend on the speed. The physical limit is given in our model as 0.5
radians (about 30 degrees). However, this limit is rarely possible when the car is driving since it would cause
the tires to slide on the pavement. We us a limit of 0.1 radians (about 6 degrees) at 10 m/s (35 kph) and
0.05 radians (about 3 degrees) at 30 m/s (110 kph).

(x, y, θ)
(x, y) θ

(v, δ) v
δ b a

δ α

rr b = tan δrr a = tan αrr
tan α = (a/b) tan δ

∼
∼

In [2]: def vehicle_update(t, x, u, params):
 # Get the parameters for the model
 a = params.get('refoffset', 1.5) # offset to vehicle refere
nce point
 b = params.get('wheelbase', 3.) # vehicle wheelbase
 maxsteer = params.get('maxsteer', 0.5) # max steering angle (rad)

 # Saturate the steering input
 delta = np.clip(u[1], -maxsteer, maxsteer)
 alpha = np.arctan2(a * np.tan(delta), b)

 # Return the derivative of the state
 return np.array([
 u[0] * np.cos(x[2] + alpha), # xdot = cos(theta + alpha) v
 u[0] * np.sin(x[2] + alpha), # ydot = sin(theta + alpha) v
 (u[0] / b) * np.tan(delta) # thdot = v/l tan(phi)
])

def vehicle_output(t, x, u, params):
 return x[0:2]

Default vehicle parameters (including nominal velocity)
vehicle_params={'refoffset': 1.5, 'wheelbase': 3, 'velocity': 30, 'max
steer': 0.5}

Define the vehicle steering dynamics as an input/output system
vehicle = ct.NonlinearIOSystem(
 vehicle_update, vehicle_output, states=3, name='vehicle',
 inputs=('v', 'delta'), outputs=('x', 'y'), params=vehicle_params)

Vehicle driving on a curvy road (Figure 8.6a)
To illustrate the dynamics of the system, we create an input that correspond to driving down a curvy road.
This trajectory will be used in future simulations as a reference trajectory for estimation and control.

RMM notes, 27 Jun 2019:

The figure below appears in Chapter 8 (output feedback) as Example 8.3, but I've put it here in the
notebook since it is a good way to demonstrate the dynamics of the vehicle.
In the book, this figure is created for the linear model and in a manner that I can't quite understand,
since the linear model that is used is only for the lateral dynamics. The original file is
OutputFeedback/figures/steering_obs.m.
To create the figure here, I set the initial vehicle angle to be rad and then used an input
that gives a figure approximating Example 8.3 To create the lateral offset, I think subtracted the
trajectory from the averaged straight line trajectory, shown as a dashed line in the figure below.
I find the approach that we used in the MATLAB version to be confusing, but I also think the
method of creating the lateral error here is a hart to follow. We might instead consider choosing a
trajectory that goes mainly vertically, with the 2D dynamics being the , dynamics instead of the

, dynamics.

KJA comments, 1 Jul 2019:

1. I think we should point out that the reference point is typically the projection of the center of mass
of the whole vehicle.

2. The heading angle must be marked in Figure 3.17b.
3. I think it is useful to start with a curvy road that you have done here but then to specialized to a

trajectory that is essentially horizontal, where is the deviation from the nominal horizontal axis.
Assuming that and are small we get the natural linearization of (3.26) and

RMM response, 16 Jul 2019:

I've changed the trajectory to be about the horizontal axis, but I am ploting things vertically for
better figure layout. This corresponds to what is done in Example 9.10 in the text, which I think
looks OK.

θ(0) = 0.75

xy

x θ
y θ

θ

y x
α θ = vẋ = v(α + θ)ẏ

In [3]: # System parameters
wheelbase = vehicle_params['wheelbase']
v0 = vehicle_params['velocity']

Control inputs
T_curvy = np.linspace(0, 7, 500)
v_curvy = v0*np.ones(T_curvy.shape)
delta_curvy = 0.018*np.sin(T_curvy) - 0.003 * T_curvy
u_curvy = [v_curvy, delta_curvy]
X0_curvy = [0, 0, 0]

Simulate the system + estimator
t_curvy, y_curvy, x_curvy = ct.input_output_response(
 vehicle, T_curvy, u_curvy, X0_curvy, params=vehicle_params, return
_x=True)

Configure matplotlib plots to be a bit bigger and optimize layout
plt.figure(figsize=[9, 4.5])

Plot the resulting trajectory (and some road boundaries)
plt.subplot(1, 4, 2)
plt.plot(y_curvy[1], y_curvy[0])
plt.plot(y_curvy[1] - 9/np.cos(x_curvy[2]), y_curvy[0], 'k-', linewidt
h=1)
plt.plot(y_curvy[1] - 3/np.cos(x_curvy[2]), y_curvy[0], 'k--', linewid
th=1)
plt.plot(y_curvy[1] + 3/np.cos(x_curvy[2]), y_curvy[0], 'k-', linewidt
h=1)

plt.xlabel('y [m]')
plt.ylabel('x [m]');
plt.axis([-30, 30, 0, 200])

Plot the lateral position
plt.subplot(2, 2, 2)
plt.plot(t_curvy, y_curvy[1])
plt.ylabel('Lateral position y [m]')

Plot the steering angle
plt.subplot(2, 2, 4)
plt.plot(t_curvy, delta_curvy)
plt.ylabel('Steering angle $\\delta$ [rad]')
plt.xlabel('Time t [sec]')
plt.tight_layout()

Linearization of lateral steering dynamics (Example 6.13)
We are interested in the motion of the vehicle about a straight-line path () with constant velocity

. To find the relevant equilibrium point, we first set and we see that we must have ,
corresponding to the steering wheel being straight. The motion in the xy plane is by definition not at
equilibrium and so we focus on lateral deviation of the vehicle from a straight line. For simplicity, we let

, which corresponds to driving along the axis. We can then focus on the equations of motion in the
 and directions with input .

θ = θ0
≠ 0v0 = 0θ̇ δ = 0

= 0θe x
y θ u = δ

In [4]: # Define the lateral dynamics as a subset of the full vehicle steering
dynamics
lateral = ct.NonlinearIOSystem(
 lambda t, x, u, params: vehicle_update(
 t, [0., x[0], x[1]], [params.get('velocity', 1), u[0]], params
)[1:],
 lambda t, x, u, params: vehicle_output(
 t, [0., x[0], x[1]], [params.get('velocity', 1), u[0]], params
)[1:],
 states=2, name='lateral', inputs=('phi'), outputs=('y', 'theta')
)

Compute the linearization at velocity 10 m/sec
lateral_linearized = ct.linearize(lateral, [0, 0], [0], params=vehicle
_params)

Normalize dynamics using state [x1/b, x2] and timescale v0 t / b
b = vehicle_params['wheelbase']
v0 = vehicle_params['velocity']
lateral_transformed = ct.similarity_transform(
 lateral_linearized, [[1/b, 0], [0, 1]], timescale=v0/b)

Set the output to be the normalized state x1/b
lateral_normalized = lateral_transformed[0,:] * (1/b)
print("Linearized system dynamics:\n")
print(lateral_normalized)

Save the system matrices for later use
A = lateral_normalized.A
B = lateral_normalized.B
C = lateral_normalized.C

Linearized system dynamics:

A = [[0. 1.]
 [0. 0.]]

B = [[0.5]
 [1.]]

C = [[1. 0.]]

D = [[0.]]

Eigenvalue placement controller design (Example 7.4)
We want to design a controller that stabilizes the dynamics of the vehicle and tracks a given reference value
 of the lateral position of the vehicle. We use feedback to design the dynamics of the system to have the

characteristic polynomial .

To find reasonable values of we observe that the initial response of the steering angle to a unit step
change in the steering command is , where is the commanded lateral transition. Recall that the model
is normalized so that the length unit is the wheelbase and the time unit is the time to travel one
wheelbase. A typical car has a wheelbase of about 3 m and, assuming a speed of 30 m/s, a normalized time
unit corresponds to 0.1 s. To determine a reasonable steering angle when making a gentle lane change, we
assume that the turning radius is = 600 m. For a wheelbase of 3 m this corresponds to a steering angle

 rad and a lateral acceleration of = 302/600 = 1.5 m/s . Assuming that a lane
change corresponds to a translation of one wheelbase we find = 0.07 rad/s.

The unit step responses for the closed loop system for different values of the design parameters are shown
below. The effect of is shown on the left, which shows that the response speed increases with increasing

. All responses have overshoot less than 5% (15 cm), as indicated by the dashed lines. The settling times
range from 30 to 60 normalized time units, which corresponds to about 3–6 s, and are limited by the
acceptable lateral acceleration of the vehicle. The effect of is shown on the right. The response speed
and the overshoot increase with decreasing damping. Using these plots, we conclude that a reasonable
design choice is and .

RMM note, 27 Jun 2019:

The design guidelines are for = 30 m/s (highway speeds) but most of the examples below are
done at lower speed (typically 10 m/s). Also, the eigenvalue locations above are not the same ones
that we use in the output feedback example below. We should probably make things more
consistent.

KJA comment, 1 Jul 2019:

I am all for maikng it consist and choosing e.g. v0 = 30 m/s

RMM comment, 17 Jul 2019:

I've updated the examples below to use v0 = 30 m/s for everything except the forward/reverse
example. This corresponds to ~105 kph (freeway speeds) and a reasonable bound for the steering
angle to avoid slipping is 0.05 rad.

In [5]: # Utility function to place poles for the normalized vehicle steering
system
def normalized_place(wc, zc):
 # Get the dynamics and input matrices, for later use
 A, B = lateral_normalized.A, lateral_normalized.B

r
p(s) = + 2 +s2 ζcωc ω2c

ωc
rω2c r

b b/v0

R
δ ≈ 3/600 = 0.005 /Rv2 2

=ωc 0.005‾ ‾‾‾‾√

ωc
ωc

ζc

= 0.07ωc = 0.7ζc

v0

 # Compute the eigenvalues from the characteristic polynomial
 eigs = np.roots([1, 2*zc*wc, wc**2])

 # Compute the feedback gain using eigenvalue placement
 K = ct.place(A, B, eigs)

 # Create a new system representing the closed loop response
 clsys = ct.StateSpace(A - B @ K, B, lateral_normalized.C, 0)

 # Compute the feedforward gain based on the zero frequency gain of
the closed loop
 kf = np.real(1/clsys.evalfr(0))

 # Scale the input by the feedforward gain
 clsys *= kf

 # Return gains and closed loop system dynamics
 return K, kf, clsys

Utility function to plot simulation results for normalized vehicle s
teering system
def normalized_plot(t, y, u, inpfig, outfig):
 plt.sca(outfig)
 plt.plot(t, y)
 plt.sca(inpfig)
 plt.plot(t, u[0])

Utility function to label plots of normalized vehicle steering syste
m
def normalized_label(inpfig, outfig):
 plt.sca(inpfig)
 plt.xlabel('Normalized time $v_0 t / b$')
 plt.ylabel('Steering angle δ [rad]')

 plt.sca(outfig)
 plt.ylabel('Lateral position y/b')
 plt.plot([0, 120], [0.95, 0.95], 'k--')
 plt.plot([0, 120], [1.05, 1.05], 'k--')

Configure matplotlib plots to be a bit bigger and optimize layout
plt.figure(figsize=[9, 4.5])

Explore range of values for omega_c, with zeta_c = 0.7
outfig = plt.subplot(2, 2, 1)
inpfig = plt.subplot(2, 2, 3)
zc = 0.7
for wc in [0.05, 0.07, 0.1]:
 # Place the poles of the system
 K, kf, clsys = normalized_place(wc, zc)

 # Compute the step response
 t, y, x = ct.step_response(clsys, np.linspace(0, 120, 100), return

_x=True)

 # Compute the input used to generate the control response
 u = -K @ x + kf * 1

 # Plot the results
 normalized_plot(t, y, u, inpfig, outfig)

Add labels to the figure
normalized_label(inpfig, outfig)
plt.legend(('$\omega_c = 0.05$', '$\omega_c = 0.07$', '$\omega_c = 0.1
$'))

Explore range of values for zeta_c, with omega_c = 0.07
outfig = plt.subplot(2, 2, 2)
inpfig = plt.subplot(2, 2, 4)
wc = 0.07
for zc in [0.5, 0.7, 1]:
 # Place the poles of the system
 K, kf, clsys = normalized_place(wc, zc)

 # Compute the step response
 t, y, x = ct.step_response(clsys, np.linspace(0, 120, 100), return
_x=True)

 # Compute the input used to generate the control response
 u = -K @ x + kf * 1

 # Plot the results
 normalized_plot(t, y, u, inpfig, outfig)

Add labels to the figure
normalized_label(inpfig, outfig)
plt.legend(('$\zeta_c = 0.5$', '$\zeta_c = 0.7$', '$\zeta_c = 1$'))
plt.tight_layout()

RMM notes, 17 Jul 2019

These step responses are very slow. Note that the steering wheel angles are about 10X less than a
resonable bound (0.05 rad at 30 m/s). A consequence of these low gains is that the tracking
controller in Example 8.4 has to use a different set of gains. We could update, but the gains listed
here have a rationale that we would have to update.

Eigenvalue placement observer design (Example 8.3)
We construct an estimator for the (normalized) lateral dynamics by assigning the eigenvalues of the
estimator dynamics to desired value, specifified in terms of the second order characteristic equation for the
estimator dynamics.

In [6]: # Find the eigenvalue from the characteristic polynomial
wo = 1 # bandwidth for the observer
zo = 0.7 # damping ratio for the observer
eigs = np.roots([1, 2*zo*wo, wo**2])

Compute the estimator gain using eigenvalue placement
L = np.transpose(
 ct.place(np.transpose(A), np.transpose(C), eigs))

Create a linear model of the lateral dynamics driving the estimator
est = ct.StateSpace(A - L @ C, np.block([[B, L]]), np.eye(2), np.zeros
((2,2)))

Linear observer applied to linearized system output
A simulation of the observer for a vehicle driving on a curvy road is shown below. The first figure shows the
trajectory of the vehicle on the road, as viewed from above. The response of the observer is shown on the
right, where time is normalized to the vehicle length. We see that the observer error settles in about 3 vehicle
lengths.

RMM note, 26 Jun 2019:

The "actual" trajectory here is the output the linearized system driven by the input corresponding to
the nonlinear system trajectory, but it is not the actual nonlinear system estimation error
converges to zero. However, the text does not make clear that we are applying this to the linearized
dynamics. See next section for what this looks like with the actual state corresponding to the
nonlinear system.

KJA comment, 1 Jul 2019:

You got a very good point. I very much like your nonlinear simulation see next note

RMM response, 17 Jul 2019

This plot will be replaced with the one using the full nonlinear model (next subsection below).
Leaving this response here for now, just to show that it is quite close.

⟹

In [7]: # Generate a trajectory for the normalized model
tau = v0 * t_curvy / wheelbase
t, y_act, x_act = ct.forced_response(lateral_normalized, tau, delta_cu
rvy)

Simulate the system + estimator
t, y_est, x_est = ct.forced_response(est, tau, [delta_curvy, y_act], [
0.2, 0])

Configure matplotlib plots to be a bit bigger and optimize layout
plt.figure(figsize=[9, 4.5])

Plot the actual and estimated states
plt.subplot(2, 2, 1)
plt.plot(t, x_act[0])
plt.plot(t, x_est[0])
plt.legend(['actual', 'estimated'])
plt.ylabel('Lateral position y/b')

plt.subplot(2, 2, 2)
plt.plot(t, x_est[0] - x_act[0])
plt.axis([0, 10, -0.05, 0.2])
plt.ylabel('Lateral error')

plt.subplot(2, 2, 3)
plt.plot(t, x_act[1])
plt.plot(t, x_est[1])
plt.xlabel('Normalized time $v_0 t / b$')
plt.ylabel('Vehicle angle $\\theta$')

plt.subplot(2, 2, 4)
plt.plot(t, x_est[1] - x_act[1])
plt.axis([0, 10, -0.095, 0.02])
plt.xlabel('Normalized time $v_0 t / b$')
plt.ylabel('Angle error')
plt.tight_layout()

Note, 27 Jun 2019: The errors are very small and don't really show up in the plots on the left, except at the
very beginning.

Note, 17 Jul 2019: I've left the full time range in the left plot so that you can see the actual duration of the
transient. In the plots on the right (and the plots below), only the first 10 body lengths worth of time are
shown.

Linear observer applied to nonlinear system output

RMM note, 27 Jun 2019:

As an alternative, we can attempt to estimate the state of the full nonlinear system using a linear
estimator. This system does not necessarily converge to zero since there will be errors in the
nominal dynamics of the system for the linear estimator.
The limits on the axis for the time plots are different to show the error over the entire trajectory.
We should decide whether we want to keep the figure above or the one below for the text.

KJA comment, 1 Jul 2019:

I very much like your observation about the nonlinear system. I think it is a very good idea to use
your new simulation

RMM comment, 17 Jul 2019: plan to use this version in the text.

x

In [8]: # Convert the curvy trajectory into normalized coordinates
x_ref = x_curvy[0] / wheelbase
y_ref = x_curvy[1] / wheelbase
theta_ref = x_curvy[2]

Simulate the estimator, with a small initial error in y position
t, y_est, x_est = ct.forced_response(est, tau, [delta_curvy, y_ref], [
.2, 0])

Configure matplotlib plots to be a bit bigger and optimize layout
plt.figure(figsize=[9, 4.5])

Plot the actual and estimated states
plt.subplot(2, 2, 1)
plt.plot(t, y_ref)
plt.plot(t, x_est[0])
plt.axis([0, 10, -0.3, 1.2])
plt.legend(['actual', 'estimated'])
plt.ylabel('Lateral position y/b')

plt.subplot(2, 2, 2)
plt.plot(t, x_est[0] - y_ref)
plt.axis([0, 10, -0.05, 0.2])
plt.ylabel('Lateral error')

plt.subplot(2, 2, 3)
plt.plot(t, theta_ref)
plt.plot(t, x_est[1])
plt.axis([0, 10, -0.1, 0.2])
plt.xlabel('Normalized time $v_0 t / b$')
plt.ylabel('Vehicle angle $\\theta$')

plt.subplot(2, 2, 4)
plt.plot(t, x_est[1] - theta_ref)
plt.axis([0, 10, -0.095, 0.02])
plt.xlabel('Normalized time $v_0 t / b$')
plt.ylabel('Angle error')
plt.tight_layout()

Output Feedback Controller (Example 8.4)

RMM note, 27 Jun 2019

The feedback gains for the controller below are different that those computed in the eigenvalue
placement example (from Ch 7), where an argument was given for the choice of the closed loop
eigenvalues. Should we choose a single, consistent set of gains in both places?
This plot does not quite match Example 8.4 because a different reference is being used for the
laterial position.
The transient in is quiet large. This appears to be due to the error in , which is initialized to
zero intead of to theta_curvy.

KJA comment, 1 Jul 2019:

1. The large initial errors dominate the plots.
2. There is somehing funny happening at the end of the simulation, may be due to the small curvature

at the end of the path?

RMM comment, 17 Jul 2019:

I think the issues are all addressed using the new trajectory

δ θ(0)

In [9]: # Compute the feedback gains
K, kf, clsys = normalized_place(1, 0.707) # Gains from MATLAB
K, kf, clsys = normalized_place(0.07, 0.707) # Gains from above

Print out the gains
print("K = ", K)
print("kf = ", kf)

Construct an output-based controller for the system
clsys = ct.StateSpace(
 np.block([[A, -B@K], [L@C, A - B@K - L@C]]),
 np.block([[B], [B]]) * kf,
 np.block([[C, np.zeros(C.shape)], [np.zeros(C.shape), C]]),
 np.zeros((2,1)))

Simulate the system
t, y, x = ct.forced_response(clsys, tau, y_ref)

Calcaluate the input used to generate the control response
u = kf * y_ref - K @ x[2:4]

Configure matplotlib plots to be a bit bigger and optimize layout
plt.figure(figsize=[9, 4.5])

Plot the actual and estimated states
plt.subplot(1, 2, 1)
plt.plot(t, x[0])
plt.plot(t, y_ref)
plt.legend(['actual', 'reference'])
plt.xlabel('Normalized time $v_0 t / b$')
plt.ylabel('Lateral position y/b')

plt.subplot(2, 2, 2)
plt.plot(t, x[1])
plt.plot(t, x_curvy[2])
plt.ylabel('Vehicle angle $\\theta$')

plt.subplot(2, 2, 4)
plt.plot(t, u[0])
plt.plot(t, delta_curvy)
plt.xlabel('Normalized time $v_0 t / b$')
plt.ylabel('Steering angle $\\delta$')
plt.tight_layout()

Trajectory Generation (Example 8.8)
To illustrate how we can use a two degree-of-freedom design to improve the performance of the system,
consider the problem of steering a car to change lanes on a road. We use the non-normalized form of the
dynamics, which were derived in Example 3.11.

KJA comment, 1 Jul 2019:

1. I think the reference trajectory is too much curved in the end compare with Example 3.11

In summary I think it is OK to change the reference trajectories but we should make sure that the curvature is
less than not to have too high acceleratarion.

RMM response, 16 Jul 2019:

Not sure if the comment about the trajectory being too curved is referring to this example. The
steering angles (and hence radius of curvature/acceleration) are quite low. ??

ρ = 600m

K = [[1. 0.914]]
kf = [[1.]]

In [10]: import control.flatsys as fs

Function to take states, inputs and return the flat flag
def vehicle_flat_forward(x, u, params={}):
 # Get the parameter values
 b = params.get('wheelbase', 3.)

 # Create a list of arrays to store the flat output and its derivat
ives
 zflag = [np.zeros(3), np.zeros(3)]

 # Flat output is the x, y position of the rear wheels
 zflag[0][0] = x[0]
 zflag[1][0] = x[1]

 # First derivatives of the flat output
 zflag[0][1] = u[0] * np.cos(x[2]) # dx/dt
 zflag[1][1] = u[0] * np.sin(x[2]) # dy/dt

 # First derivative of the angle
 thdot = (u[0]/b) * np.tan(u[1])

 # Second derivatives of the flat output (setting vdot = 0)
 zflag[0][2] = -u[0] * thdot * np.sin(x[2])
 zflag[1][2] = u[0] * thdot * np.cos(x[2])

 return zflag

Function to take the flat flag and return states, inputs
def vehicle_flat_reverse(zflag, params={}):
 # Get the parameter values
 b = params.get('wheelbase', 3.)

 # Create a vector to store the state and inputs
 x = np.zeros(3)
 u = np.zeros(2)

 # Given the flat variables, solve for the state
 x[0] = zflag[0][0] # x position
 x[1] = zflag[1][0] # y position
 x[2] = np.arctan2(zflag[1][1], zflag[0][1]) # tan(theta) = ydot/x
dot

 # And next solve for the inputs
 u[0] = zflag[0][1] * np.cos(x[2]) + zflag[1][1] * np.sin(x[2])
 thdot_v = zflag[1][2] * np.cos(x[2]) - zflag[0][2] * np.sin(x[2])
 u[1] = np.arctan2(thdot_v, u[0]**2 / b)

 return x, u

vehicle_flat = fs.FlatSystem(vehicle_flat_forward, vehicle_flat_revers
e, inputs=2, states=3)

To find a trajectory from an initial state to a final state in time we solve a point-to-point trajectory
generation problem. We also set the initial and final inputs, which sets the vehicle velocity and steering
wheel angle at the endpoints.

x0 xf Tf
v

δ

In [11]: # Define the endpoints of the trajectory
x0 = [0., 2., 0.]; u0 = [30., 0.]
xf = [120., -2., 0.]; uf = [30., 0.]
Tf = xf[0] / uf[0]

Define a set of basis functions to use for the trajectories
poly = fs.PolyFamily(6)

Find a trajectory between the initial condition and the final condit
ion
traj = fs.point_to_point(vehicle_flat, x0, u0, xf, uf, Tf, basis=poly)

Create the trajectory
t = np.linspace(0, Tf, 100)
x, u = traj.eval(t)

Configure matplotlib plots to be a bit bigger and optimize layout
plt.figure(figsize=[9, 4.5])

Plot the trajectory in xy coordinate
plt.subplot(1, 4, 2)
plt.plot(x[1], x[0])
plt.xlabel('y [m]')
plt.ylabel('x [m]')

Add lane lines and scale the axis
plt.plot([-4, -4], [0, 130], 'k-', linewidth=1)
plt.plot([0, 0], [0, 130], 'k--', linewidth=1)
plt.plot([4, 4], [0, 130], 'k-', linewidth=1)
plt.axis([-10, 10, -5, 130])

Time traces of the state and input
plt.subplot(2, 4, 3)
plt.plot(t, x[1])
plt.ylabel('y [m]')

plt.subplot(2, 4, 4)
plt.plot(t, x[2])
plt.ylabel('theta [rad]')

plt.subplot(2, 4, 7)
plt.plot(t, u[0])
plt.xlabel('Time t [sec]')
plt.ylabel('v [m/s]')
plt.axis([0, Tf, u0[0] - 1, uf[0] +1])

plt.subplot(2, 4, 8)
plt.plot(t, u[1]);
plt.xlabel('Ttime t [sec]')
plt.ylabel('δ [rad]')
plt.tight_layout()

Vehicle transfer functions for forward and reverse driving
(Example 10.11)
The vehicle steering model has different properties depending on whether we are driving forward or in
reverse. The figures below show step responses from steering angle to lateral translation for a the linearized
model when driving forward (dashed) and reverse (solid). In this simulation we have added an extra pole with
the time constant to approximately account for the dynamics in the steering system.

With rear-wheel steering the center of mass first moves in the wrong direction and the overall response with
rear-wheel steering is significantly delayed compared with that for front-wheel steering. (b) Frequency
response for driving forward (dashed) and reverse (solid). Notice that the gain curves are identical, but the
phase curve for driving in reverse has non-minimum phase.

T = 0.1

RMM note, 27 Jun 2019:

I cannot recreate the figures in Example 10.11. Since we are looking at the lateral velocity, there is a
differentiator in the output and this takes the step function and creates an offset at (intead of
a smooth curve).
The transfer functions are also different, and I don't quite understand why. Need to spend a bit
more time on this one.

KJA comment, 1 Jul 2019: The reason why you cannot recreate figures i Example 10.11 is because the
caption in figure is wrong, sorry my fault, the y-axis should be lateral position not lateral velocity. The
approximate expression for the transfer functions

are quite close to the values that you get numerically

In this case I think it is useful to have v=1 m/s because we do not drive to fast backwards.

RMM response, 17 Jul 2019

Updated figures below use the same parameters as the running example (the current text uses
different parameters)
Following the material in the text, a pole is added at s = -1 to approximate the dynamics of the
steering system. This is not strictly needed, so we could decide to take it out (and update the text)

t = 0

= = =Gyδ
a s +v0 v2

0
bs

1.5s + 1
3s2

0.5s + 0.33
s

In [12]: # Time contstant for the steering system
Tsteer = 0.1

Magnitude of the steering input
Msteer = vehicle_params['maxsteer']

Create a linearized model of the system going forward at 1 m/s
forward_lateral = ct.linearize(lateral, [0, 0], [0], params={'velocity
': 2})
forward_tf = ct.ss2tf(forward_lateral)[0, 0] * ct.tf([1], [Tsteer, 1])
print("Forward TF = ", forward_tf)

Create a linearized model of the system going in reverise at 1 m/s
reverse_lateral = ct.linearize(lateral, [0, 0], [0], params={'velocity
': -2})
reverse_tf = ct.ss2tf(reverse_lateral)[0, 0] * ct.tf([1], [Tsteer, 1])
print("Reverse TF = ", reverse_tf)

Forward TF =
 s + 1.333

0.1 s^3 + s^2 + 7.643e-16 s - 1.848e-16

Reverse TF =
 -s + 1.333

0.1 s^3 + s^2 - 8.013e-16 s - 1.848e-16

In [13]: # Configure matplotlib plots to be a bit bigger and optimize layout
plt.figure()

Forward motion
t, y = ct.step_response(forward_tf * Msteer, np.linspace(0, 4, 500))
plt.plot(t, y, 'b--')

Reverse motion
t, y = ct.step_response(reverse_tf * Msteer, np.linspace(0, 4, 500))
plt.plot(t, y, 'b-')

Add labels and reference lines
plt.axis([0, 4, -1, 5])
plt.legend(['forward', 'reverse'], loc='upper left')
plt.xlabel('Time t [s]')
plt.ylabel('Lateral position [m]')
plt.plot([0, 4], [0, 0], 'k-', linewidth=1)

Plot the Bode plots
plt.figure()
plt.subplot(1, 2, 2)
ct.bode_plot(forward_tf[0, 0], np.logspace(-1, 1, 100), color='b', lin
estyle='--',
 initial_phase=-180)
ct.bode_plot(reverse_tf[0, 0], np.logspace(-1, 1, 100), color='b', lin
estyle='-',
 initial_phase=-180);
plt.legend(('forward', 'reverse'));

Feedforward Compensation (Example 12.6)
For a lane transfer system we would like to have a nice response without overshoot, and we therefore
consider the use of feedforward compensation to provide a reference trajectory for the closed loop system.
We choose the desired response as , where the response speed or aggressiveness of
the steering is governed by the parameter .

(s) = 2/(s + aFm a2)2

a

RMM note, 27 Jun 2019:

 was used in the original description of the dynamics as the reference offset. Perhaps choose a
different symbol here?
In current version of Ch 12, the axis is labeled in absolute units, but it should actually be in
normalized units, I think.
The steering angle input for this example is quite high. Compare to Example 8.8, above. Also, we
should probably make the size of the "lane change" from this example match whatever we use in
Example 8.8

KJA comments, 1 Jul 2019: Chosen parameters look good to me

RMM response, 17 Jul 2019

I changed the time constant for the feedforward model to give something that is more reasonable in
terms of turning angle at the speed of m/s. Note that this takes about 30 body lengths to
change lanes (= 9 seconds at 105 kph; OK?).

a

y

= 30v0

In [14]: # Define the desired response of the system
a = 0.15
P = ct.ss2tf(lateral_normalized)
Fm = ct.TransferFunction([a**2], [1, 2*a, a**2])
Fr = Fm / P

Compute the step response of the feedforward components
t, y_ffwd = ct.step_response(Fm, np.linspace(0, 40, 100))
t, delta_ffwd = ct.step_response(Fr, np.linspace(0, 40, 100))

Scale and shift to correspond to lane change (-2 to +2)
y_ffwd = 0.5 - 1 * y_ffwd
delta_ffwd *= 2

Overhead view
plt.subplot(1, 2, 1)
plt.plot(y_ffwd, t)
plt.plot(-1*np.ones(t.shape), t, 'k-', linewidth=1)
plt.plot(0*np.ones(t.shape), t, 'k--', linewidth=1)
plt.plot(1*np.ones(t.shape), t, 'k-', linewidth=1)
plt.axis([-5, 5,-2, 32])

Plot the response
plt.subplot(2, 2, 2)
plt.plot(t, y_ffwd)
plt.axis([0, 10, -5, 5])
plt.ylabel('Normalized position y/b')

plt.subplot(2, 2, 4)
plt.plot(t, delta_ffwd)
plt.axis([0, 10, -1, 1])
plt.ylabel('$\\delta$ [rad]')
plt.xlabel('Normalized time $v_0 t / b$');

plt.tight_layout()

Fundamental Limits (Example 14.13)
Consider a controller based on state feedback was combined with an observer where we want a faster
closed loop system and choose , , , and .

In [15]: # Compute the feedback gain using eigenvalue placement
wc = 10
zc = 0.707
eigs = np.roots([1, 2*zc*wc, wc**2])
K = ct.place(A, B, eigs)
kr = np.real(1/clsys.evalfr(0))
print("K = ", np.squeeze(K))

Compute the estimator gain using eigenvalue placement
wo = 20
zo = 0.707
eigs = np.roots([1, 2*zo*wo, wo**2])
L = np.transpose(
 ct.place(np.transpose(A), np.transpose(C), eigs))
print("L = ", np.squeeze(L))

Construct an output-based controller for the system
C1 = ct.ss2tf(ct.StateSpace(A - B@K - L@C, L, K, 0))
print("C(s) = ", C1)

Compute the loop transfer function and plot Nyquist, Bode
L1 = P * C1
plt.figure(); ct.nyquist_plot(L1, np.logspace(0.5, 3, 500))
plt.figure(); ct.bode_plot(L1, np.logspace(-1, 3, 500));

= 10ωc = 0.707ζc = 20ωo = 0.707ζo

K = [100. -35.86]
L = [28.28 400.]
C(s) =
-1.152e+04 s + 4e+04

s^2 + 42.42 s + 6658

In [16]: # Modified control law
wc = 10
zc = 2.6
eigs = np.roots([1, 2*zc*wc, wc**2])
K = ct.place(A, B, eigs)
kr = np.real(1/clsys.evalfr(0))
print("K = ", np.squeeze(K))

Construct an output-based controller for the system
C2 = ct.ss2tf(ct.StateSpace(A - B@K - L@C, L, K, 0))
print("C(s) = ", C2)

K = [100. 2.]
C(s) =
 3628 s + 4e+04

s^2 + 80.28 s + 156.6

In [17]: # Plot the gang of four for the two designs
ct.gangof4(P, C1, np.logspace(-1, 3, 100))
ct.gangof4(P, C2, np.logspace(-1, 3, 100))

