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Chapter 7

State Feedback

Intuitively, the state may be regarded as a kind of information storage
or memory or accumulation of past causes. We must, of course, de-
mand that the set of internal states Σ be sufficiently rich to carry all
information about the past history of Σ to predict the effect of the past
upon the future. We do not insist, however, that the state is the least
such information although this is often a convenient assumption.

R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical
System Theory, 1969 [KFA69].

This chapter describes how the feedback of a system’s state can be used to
shape the local behavior of a system. The concept of reachability is introduced and
used to investigate how to design the dynamics of a system through assignment of
its eigenvalues. In particular, we show that under certain conditions it is possible
to assign the system eigenvalues arbitrarily by appropriate feedback of the system
state.

7.1 Reachability

One of the fundamental properties of a control system is what set of points in the
state space can be reached through the choice of a control input. It turns out
that the property of reachability is also fundamental in understanding the extent
to which feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of the system and focusing on
the evolution of the state, given by

dx

dt
= Ax+Bu, (7.1)

where x ∈ Rn, u ∈ R, A is an n×n matrix, and B a column vector. A fundamental
question is whether it is possible to find control signals so that any point in the
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x(T )

x0

R(x0,≤ T )

(a) Reachable set

Req

(b) Reachability through control

Figure 7.1: The reachable set for a control system. The set R(x0,≤ T ) shown in
(a) is the set of points reachable from x0 in time less than T . The phase portrait in
(b) shows the dynamics for a double integrator, with the natural dynamics drawn
as horizontal arrows and the control inputs drawn as vertical arrows. The set of
achievable equilibrium points is the x axis. By setting the control inputs as a
function of the state, it is possible to steer the system to the origin, as shown on
the sample path.

state space can be reached through some choice of input. To study this, we define
the reachable set R(x0,≤ T ) as the set of all points xf such that there exists an
input u(t), 0 ≤ t ≤ T that steers the system from x(0) = x0 to x(T ) = xf, as
illustrated in Figure 7.1a.

Definition 7.1 (Reachability). A linear system is reachable if for any x0, xf ∈ Rn

there exists a T > 0 and u : [0, T ] → R such that if x(0) = x0 then the corresponding
solution satisfies x(T ) = xf.

The definition of reachability addresses whether it is possible to reach all points
in the state space in a transient fashion. In many applications, the set of points
that we are most interested in reaching is the set of equilibrium points of the system
(since we can remain at those points with constant input u). The set of all possible
equilibrium points for constant controls is given by

Req = {xe : Axe +Bue = 0 for some ue ∈ R}.

This means that possible equilibrium points lie in a one- (or possibly higher) di-
mensional subspace. If the matrix A is invertible, this subspace is one-dimensional
and is spanned by A−1B.

The following example provides some insight into the possibilities.

Example 7.1 Double integrator
Consider a linear system consisting of a double integrator whose dynamics are given
by

dx1

dt
= x2,

dx2

dt
= u.

Figure 7.1b shows a phase portrait of the system. The open loop dynamics (u = 0)
are shown as horizontal arrows pointed to the right for x2 > 0 and to the left for
x2 < 0. The control input is represented by a double-headed arrow in the vertical
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direction, corresponding to our ability to set the value of ẋ2. The set of equilibrium
points E corresponds to the x1 axis, with ue = 0.

Suppose first that we wish to reach the origin from an initial condition (a, 0).
We can directly move the state up and down in the phase plane, but we must rely
on the natural dynamics to control the motion to the left and right. If a > 0, we
can move toward the origin by first setting u < 0, which will cause x2 to become
negative. Once x2 < 0, the value of x1 will begin to decrease and we will move to
the left. After a while, we can set u to be positive, moving x2 back toward zero
and slowing the motion in the x1 direction. If we bring x2 to a positive value, we
can move the system state in the opposite direction.

Figure 7.1b shows a sample trajectory bringing the system to the origin. Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since ẋ1 = 0 when x2 = 0), but if we go to a point in the state space
with x2 %= 0, we can pass through the point only in a transient fashion. ∇

To find general conditions under which a linear system is reachable, we will first
give a heuristic argument based on formal calculations with impulse functions. We
note that if we can reach all points in the state space through some choice of input,
then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system (7.1) to an input u(t) is
given by

x(t) =

∫ t

0
eA(t−τ)Bu(τ) dτ. (7.2)

If we choose the input to be a impulse function δ(t) as defined in Section 6.3, the
state becomes

xδ(t) =

∫ t

0
eA(t−τ)Bδ(τ) dτ = eAtB.

(Note that the state changes instantaneously in response to the impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise 6.1):

xδ̇(t) =
dxδ
dt

= AeAtB.

Continuing this process and using the linearity of the system, the input

u(t) = α1δ(t) + α2δ̇(t) + α3δ̈(t) + · · ·+ αnδ
(n−1)(t)

gives the state

x(t) = α1e
AtB + α2Ae

AtB + α3A
2eAtB + · · ·+ αnA

n−1eAtB.

Taking the limit as t goes to zero through positive values, we get

lim
t→0+

x(t) = α1B + α2AB + α3A
2B + · · ·+ αnA

n−1B.
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On the right is a linear combination of the columns of the matrix

Wr =

B AB · · · An−1B


 . (7.3)

To reach an arbitrary point in the state space, we thus require that Wr has n
independent columns (full rank). The matrix Wr is called the reachability matrix
and it is full rank if and only if its determinant is nonzero.

Although we have only considered the scalar input case, it turns out that this
same test works in the multi-input case, where we require that Wr be full column
rank (have n linearly independent columns). In addition, it can be shown that only
the terms up to An−1B must be computed; additional terms add no new directions
to Wr (see Exercise 7.3).

An input consisting of a sum of impulse functions and their derivatives is a very
violent signal. To see that an arbitrary point can be reached with smoother signals
we can make use of the convolution equation. Assuming that the initial condition
is zero, the state of a linear system is given by

x(t) =

∫ t

0
eA(t−τ)Bu(τ)dτ =

∫ t

0
eAτBu(t− τ)dτ.

It follows from the theory of matrix functions, specifically the Cayley–Hamilton
theorem (Exercise 7.3), that

eAτ = Iα0(τ) +Aα1(τ) + · · ·+An−1αn−1(τ),

where αi(τ) are scalar functions, and we find that

x(t) = B

∫ t

0
α0(τ)u(t− τ) dτ +AB

∫ t

0
α1(τ)u(t− τ) dτ

+ · · ·+An−1B

∫ t

0
αn−1(τ)u(t− τ) dτ.

Again we observe that the right-hand side is a linear combination of the columns
of the reachability matrix Wr given by equation (7.3). This basic approach leads
to the following theorem.

Theorem 7.1 (Reachability rank condition). A linear system of the form (7.1) is
reachable if and only if the reachability matrix Wr is invertible (full column rank).

The formal proof of this theorem is beyond the scope of this text but follows
along the lines of the previous sketch and can be found in most books on linear
control theory, such as Callier and Desoer [CD91] or Lewis [Lew03]. It is also
interesting to note that Theorem 7.1 makes no mention of the time T that was in
our definition of reachability. For a linear system, it turns out that we can find an
input taking x0 to xf for any T > 0, though the size of the input required can be
very large when T is very small.

We illustrate the concept of reachability with the following example.

Example 7.2 Balance system
Consider the balance system introduced in Example 3.2 and shown in Figure 7.2.
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(a) Segway
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(b) Cart–pendulum system

Figure 7.2: Balance system. The Segway® Personal Transporter shown in (a)
is an example of a balance system that uses torque applied to the wheels to keep
the rider upright. A simplified diagram for a balance system is shown in (b). The
system consists of a mass m on a rod of length l connected by a pivot to a cart
with mass M .

Recall that this system is a model for a class of examples in which the center of mass
is balanced above a pivot point. One example is the Segway® Personal Transporter
shown in Figure 7.2a, about which a natural question to ask is whether we can move
from one stationary point to another by appropriate application of forces through
the wheels.

The nonlinear equations of motion for the system are given in equation (3.9)
and repeated here:

(M +m)q̈ −ml cos θ θ̈ = −cq̇ −ml sin θ θ̇2 + F,

(J +ml2)θ̈ −ml cos θ q̈ = −γθ̇ +mgl sin θ.
(7.4)

For simplicity, we take c = γ = 0. Linearizing around the equilibrium point xe =
(0, 0, 0, 0), the dynamics matrix and the control matrix are

A =




0 0 1 0
0 0 0 1

0 m2l2g/µ 0 0

0 Mtmgl/µ 0 0




, B =




0
0

Jt/µ

lm/µ




,

where µ = MtJt −m2l2, Mt = M +m, and Jt = J +ml2. The reachability matrix
is

Wr =




0 Jt/µ 0 gl3m3/µ2

0 lm/µ 0 gl2m2Mt/µ2

Jt/µ 0 gl3m3/µ2 0

lm/µ 0 gl2m2Mt/µ2 0




. (7.5)

To compute the determinant we permute the first and the last columns of the
matrix Wr and use the fact that such a permutation changes the determinant by a
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Figure 7.3: An unreachable system. The cart–pendulum system shown on the
left has a single input that affects two pendula of equal length and mass. Since
the forces affecting the two pendula are the same and their dynamics are identical,
it is not possible to arbitrarily control the state of the system. The figure on the
right is a block diagram representation of this situation.

factor of −1. This gives a block diagonal matrix with two identical blocks and the
determinant becomes

det(Wr) = −
(gl4m4

µ3
− gl2m2JtMt

µ3

)2
= −g2l4m4

µ6
(MJ +mJ +Mml2)2,

and we can conclude that the system is reachable. This implies that we can move
the system from any initial state to any final state and, in particular, that we can
always find an input to bring the system from an initial state to an equilibrium
point. ∇

It is useful to have an intuitive understanding of the mechanisms that make
a system unreachable. An example of such a system is given in Figure 7.3. The
system consists of two identical systems with the same input. We cannot separately
cause the first and the second systems to do something different since they have
the same input. Hence we cannot reach arbitrary states, and so the system is not
reachable (Exercise 7.4).

More subtle mechanisms for nonreachability can also occur. For example, if
there is a linear combination of states that always remains constant, then the system
is not reachable. To see this, suppose that there exists a row vector H such that

0 =
d

dt
Hx = H(Ax+Bu), for all x and u.

Then H is in the left null space of both A and B and it follows that

HWr = H

B AB · · · An−1B


 = 0.

Hence the reachability matrix is not full rank. In this case, if we have an initial
condition x0 and we wish to reach a state xf for which Hx0 %= Hxf, then since
Hx(t) is constant, no input u can move the state from x0 to xf.
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Figure 7.4: Block diagram for a system in reachable canonical form. The indi-
vidual states of the system are represented by a chain of integrators whose input
depends on the weighted values of the states. The output is given by an appropriate
combination of the system input and other states.

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient to change
coordinates and write the dynamics of the system in the transformed coordinates
z = Tx. One application of a change of coordinates is to convert a system into a
canonical form in which it is easy to perform certain types of analysis.

A linear state space system is in reachable canonical form if its dynamics are
given by

dz

dt
=




−a1 −a2 −a3 . . . −an
1 0

01 0
. . .

. . .0
1 0




z +




1
0
0
...
0




u,

y =

b1 b2 b3 . . . bn


 z + du.

(7.6)

A block diagram for a system in reachable canonical form is shown in Figure 7.4.
We see that the coefficients that appear in the A and B matrices show up directly
in the block diagram. Furthermore, the output of the system is a simple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable canonical form is given
by

λ(s) = sn + a1s
n−1 + · · ·+ an−1s+ an. (7.7)

The reachability matrix also has a relatively simple structure:

W̃r =

B̃ ÃB̃ . . . Ãn−1B̃


 =




1 −a1 a21 − a2
0 1 −a1 *

. . .
. . .
1 −a10

1




,
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where ∗ indicates a possibly nonzero term and we use a tilde to remind us that A
and B are in a special form. The matrix Wr is full rank since no column can be
written as a linear combination of the others because of the triangular structure of
the matrix.

We now consider the problem of finding a change of coordinates such that the
dynamics of a system can be written in reachable canonical form. Let A,B represent
the dynamics of a given system and Ã, B̃ be the dynamics in reachable canonical
form. Suppose that we wish to transform the original system into reachable canon-
ical form using a coordinate transformation z = Tx. As shown in the previous
chapter, the dynamics matrix and the control matrix for the transformed system
are

Ã = TAT−1, B̃ = TB.

The reachability matrix for the transformed system then becomes

W̃r =

B̃ ÃB̃ · · · Ãn−1B̃


 .

Transforming each element individually, we have

ÃB̃ = TAT−1TB = TAB,

Ã2B̃ = (TAT−1)2TB = TAT−1TAT−1TB = TA2B,

...

ÃnB̃ = TAnB,

and hence the reachability matrix for the transformed system is

W̃r = T

B AB · · · An−1B


 = TWr. (7.8)

If Wr is invertible, we can thus solve for the transformation T that takes the system
into reachable canonical form:

T = W̃rW
−1
r .

The following example illustrates the approach.

Example 7.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx

dt
=


 α ω
−ω α


x+


0
1


u.

We wish to find the transformation that converts the system into reachable canon-
ical form:

Ã =


−a1 −a2

1 0


 , B̃ =


1
0


 .

The coefficients a1 and a2 can be determined from the characteristic polynomial
for the original system:

λ(s) = det(sI −A) = s2 − 2αs+ (α2 + ω2) =⇒
a1 = −2α,

a2 = α2 + ω2.
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The reachability matrix for each system is

Wr =


0 ω
1 α


 , W̃r =


1 −a1
0 1


 .

The transformation T becomes

T = W̃rW
−1
r =



−(a1 + α)/ω 1

1/ω 0


 =



α/ω 1

1/ω 0


 ,

and hence the coordinates

z1
z2


 = Tx =


αx1/ω + x2

x1/ω




put the system in reachable canonical form. ∇

We summarize the results of this section in the following theorem.

Theorem 7.2 (Reachable canonical form). Let A and B be the dynamics and con-
trol matrices for a reachable system and suppose that the characteristic polynomial
for A is given by

det(sI −A) = sn + a1s
n−1 + · · ·+ an−1s+ an.

Then there exists a transformation z = Tx such that in the transformed coordinates
the dynamics and control matrices are in reachable canonical form (7.6).

One important implication of this theorem is that for any reachable system, we
can assume without loss of generality that the coordinates are chosen such that the
system is in reachable canonical form. This is particularly useful for proofs, as we
shall see later in this chapter. However, for high-order systems, small changes in
the coefficients ai can give large changes in the eigenvalues. Hence, the reachable
canonical form is not always well conditioned and must be used with some care.

7.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variables that permits prediction
of the future evolution of a system given its future inputs. We now explore the
idea of designing the dynamics of a system through feedback of the state. We will
assume that the system to be controlled is described by a linear state model and
has a single input (for simplicity). The feedback control law will be developed step
by step using a single idea: the positioning of closed loop eigenvalues in desired
locations.

State Space Controller Structure

Figure 7.5 is a diagram of a typical control system using state feedback. The full
system consists of the process dynamics, which we take to be linear, the controller
elements K and kf, the reference input (or command signal) r, and process dis-
turbances v. The goal of the feedback controller is to regulate the output of the



7-10 CHAPTER 7. STATE FEEDBACK

Controller

y
u

Σ Σkfr
ẋ = Ax+Bu

y = Cx+Du

Process
v

−K
x

Figure 7.5: A feedback control system with state feedback. The controller uses
the system state x and the reference input r to command the process through its
input u. We model disturbances via the additive input v.

system y such that it tracks the reference input in the presence of disturbances and
also uncertainty in the process dynamics.

An important element of the control design is the performance specification. The
simplest performance specification is that of stability: given a constant reference r
and in the absence of any disturbances, we would like the equilibrium point of the
system to be asymptotically stable. More sophisticated performance specifications
typically involve giving desired properties of the step or frequency response of the
system, such as specifying the desired rise time, overshoot, and settling time of the
step response. Finally, we are often concerned with the disturbance attenuation
properties of the system: to what extent can we experience disturbance inputs v
and still hold the output y near the desired value?

Consider a system described by the linear differential equation

dx

dt
= Ax+Bu, y = Cx+Du, (7.9)

where we have ignored the disturbance signal v for now. Our goal is to drive the
output y to a given reference value r and hold it there.

We begin by assuming that all components of the state vector are measured.
Since the state at time t contains all the information necessary to predict the future
behavior of the system, the most general time-invariant control law is a function of
the state and the reference input:

u = α(x, r).

If the control law is restricted to be linear, it can be written as

u = −Kx+ kfr, (7.10)

where r is the reference value, assumed for now to be a constant.
This control law corresponds to the structure shown in Figure 7.5. The negative

sign is a convention to indicate that negative feedback is the normal situation. The
term kfr represents a feedforward signal from the reference to the control. The
closed loop system obtained when the feedback (7.10) is applied to the system (7.9)
is given by

dx

dt
= (A−BK)x+Bkfr. (7.11)
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We attempt to determine the feedback gain K so that the closed loop system has
the characteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn. (7.12)

This control problem is called the eigenvalue assignment problem or pole placement
problem (we will define poles more formally in Chapter 9).

Note that kf does not affect the stability of the system (which is determined by
the eigenvalues of A−BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the closed loop system are given
by

xe = −(A−BK)−1Bkfr, ye = Cxe +Due,

and hence kf should be chosen such that ye = r (the desired output value). Since
kf is a scalar, we can easily solve to show that if D = 0 (the most common case),

kf = −1/
(
C(A−BK)−1B

)
. (7.13)

Notice that kf is exactly the inverse of the zero frequency gain of the closed loop
system. The solution for D %= 0 is left as an exercise.

Using the gains K and kf, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to construct such a state feedback
control law, we begin with a few examples that provide some basic intuition and
insights.

Example 7.4 Vehicle steering
In Example 6.13 we derived a normalized linear model for vehicle steering. The
dynamics describing the lateral deviation were given by the normalized dynamics

A =


0 1
0 0


 , B =


γ
1


 ,

C =

1 0


 , D = 0,

where γ = a/b is the ratio of the distance between the center of mass and the rear
wheel, a, and the wheelbase b. We want to design a controller that stabilizes the
dynamics and tracks a given reference value r of the lateral position of the vehicle.
To do this we introduce the feedback

u = −Kx+ kfr = −k1x1 − k2x2 + kfr,

and the closed loop system becomes

dx

dt
= (A−BK)x+Bkfr =


−γk1 1− γk2

−k1 −k2


x+


γkf

kf


 r,

y = Cx+Du =

1 0


x.

(7.14)

The closed loop system has the characteristic polynomial

det (sI −A+BK) = det


s+ γk1 γk2 − 1

k1 s+ k2


 = s2 + (γk1 + k2)s+ k1.
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Figure 7.6: State feedback control of a steering system. Unit step responses
(from zero initial condition) obtained with controllers designed with ζc = 0.7 and
ωc = 0.5, 0.7, and 1 [rad/s] are shown in (a). The dashed lines indicate ±5%
deviations from the setpoint. Notice that response speed increases with increasing
ωc, but that large ωc also give large initial control actions. Unit step responses
obtained with a controller designed with ωc = 0.7 and ζc = 0.5, 0.7, and 1 are
shown in (b).

Suppose that we would like to use feedback to design the dynamics of the system
to have the characteristic polynomial

p(s) = s2 + 2ζcωcs+ ω2
c .

Comparing this polynomial with the characteristic polynomial of the closed loop
system, we see that the feedback gains should be chosen as

k1 = ω2
c , k2 = 2ζcωc − γω2

c .

Equation (7.13) gives kf = k1 = ω2
c , and the control law can be written as

u = k1(r − x1)− k2x2 = ω2
c (r − x1)− (2ζcωc − γω2

c )x2.

To find reasonable values of ωc we have to balance the speed of response with
the available control authority. The unit step responses for the closed loop system
for different values of the design parameters are shown in Figure 7.6. The effect
of ωc is shown in Figure 7.6a, which shows that the response speed increases with
increasing ωc. All responses have overshoot less than 5%, as indicated by the
dashed lines, which corresponds to 15 cm assuming a wheelbase b = 3 m. The
settling times range from 3 to 6 normalized time units, which corresponds to about
2–4 s at v0 = 15 m/s. The effect of ζc is shown in Figure 7.6b. The response speed
and the overshoot increase with decreasing damping.

To select the specific gains to use, we can evaluate how the choice of parameters
affects vehicle handling characteristics. For example, a lateral error of 20% of the
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wheelbase is relatively large and we might choose ωc to exert a relatively large
steering angle to correct for such an error. For ωc = 0.7 and a step input of size 0.2
(in normalized units), Figure 7.6a indicates that the initial steering angle will be
0.1 rad, which is aggressive but not unreasonable at moderate speeds. The value
for ζc can be also be chosen as 0.7, which gives a fast response with approximately
5% overshoot. ∇

The example of the vehicle steering system illustrates how state feedback can
be used to set the eigenvalues of a closed loop system to arbitrary values. We see
that for this example we can set the eigenvalues to any location. We now show that
this is a general property for reachable systems.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system are
the coefficients of the characteristic polynomial. It is therefore natural to consider
systems in this form when solving the eigenvalue assignment problem.

Consider a system in reachable canonical form, i.e.,

dz

dt
= Ãz + B̃u =




−a1 −a2 −a3 . . . −an
1 0

01 0
. . .

. . .0
1 0




z +




1
0
0
...
0




u

y = C̃z =

b1 b2 · · · bn


 z.

(7.15)

It follows from equation (7.7) that the open loop system has the characteristic
polynomial

det(sI −A) = sn + a1s
n−1 + · · ·+ an−1s+ an.

Before making a formal analysis we can gain some insight by investigating the block
diagram of the system shown in Figure 7.4. The characteristic polynomial is given
by the parameters ak in the figure. Notice that the parameter ak can be changed
by feedback from state zk to the input u. It is thus straightforward to change the
coefficients of the characteristic polynomial by state feedback.

Returning to equations, introducing the control law

u = −K̃z + kfr = −k̃1z1 − k̃2z2 − · · ·− k̃nzn + kfr, (7.16)

the closed loop system becomes

dz

dt
=




−a1 − k̃1 −a2 − k̃2 −a3 − k̃3 . . . −an − k̃n
1 0

01 0
. . .

. . .0
1 0




z +




kf
0
0
...
0




r,

y =

b1 b2 · · · bn


 z.

(7.17)
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The feedback changes the elements of the first row of the A matrix, which corre-
sponds to the parameters of the characteristic polynomial. The closed loop system
thus has the characteristic polynomial

sn + (a1 + k̃1)s
n−1 + (a2 + k̃2)s

n−2 + · · ·+ (an−1 + k̃n−1)s+ an + k̃n.

Requiring this polynomial to be equal to the desired closed loop polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn,

we find that the controller gains should be chosen as

k̃1 = p1 − a1, k̃2 = p2 − a2, · · · k̃n = pn − an.

This feedback simply replaces the parameters ai in the system (7.15) by pi. The
feedback gain for a system in reachable canonical form is thus

K̃ =

p1 − a1 p2 − a2 · · · pn − an


 . (7.18)

To have zero frequency gain equal to unity, we compute the equilibrium point
ze by setting the right hand side of equation (7.17) to zero and then compute the
corresponding output. It can be seen that ze,1, . . . , ze,n−1 must all be zero and we
are left with

(−an − k̃n)ze,n + kfr = 0 and ye = bnze,n.

It follows that in order for ye to be equal to r then the parameter kf should be
chosen as

kf =
an + k̃n

bn
=

pn
bn

. (7.19)

Notice that it is essential to know the precise values of parameters an and bn in
order to obtain the correct zero frequency gain. The zero frequency gain is thus
obtained by precise calibration. This is very different from obtaining the correct
steady-state value by integral action, which we shall see in later sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. To solve the problem in
the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

dx

dt
= Ax+Bu, y = Cx+Du. (7.20)

We can change the coordinates by a linear transformation z = Tx so that the trans-
formed system is in reachable canonical form (7.15). For such a system the feed-
back is given by equation (7.16), where the coefficients are given by equation (7.18).
Transforming back to the original coordinates gives the control law

u = −K̃z + kfr = −K̃Tx+ kfr.

The form of the controller is a feedback term −Kx and a feedforward term kfr.

The results obtained can be summarized as follows.
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Theorem 7.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation (7.20), with one input and one output. Let λ(s) = sn + a1sn−1 +
· · · + an−1s + an be the characteristic polynomial of A. If the system is reachable,
then there exists a control law

u = −Kx+ kfr

that gives a closed loop system with the characteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn

and unity zero frequency gain between r and y. The feedback gain is given by

K = K̃T =

p1 − a1 p2 − a2 · · · pn − an


 W̃rW

−1
r , (7.21)

where ai are the coefficients of the characteristic polynomial of the matrix A and
the matrices Wr and W̃r are given by

Wr =

B AB · · · An−1B


 , W̃r =




1 a1 a2 · · · an−1

1 a1 · · · an−2

. . .
. . .

...
0 1 a1

1




−1

.

The feedforward gain is given by

kf = −1/
(
C(A−BK)−1B

)
.

For simple problems, the eigenvalue assignment problem can be solved by in-
troducing the elements ki of K as unknown variables. We then compute the char-
acteristic polynomial

λ(s) = det(sI −A+BK)

and equate coefficients of equal powers of s to the coefficients of the desired char-
acteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn.

This gives a system of linear equations to determine ki. The equations can always
be solved if the system is reachable, exactly as we did in Example 7.4.

Equation (7.21), which is called Ackermann’s formula [Ack72, Ack85], can be
used for numeric computations. It is implemented in the MATLAB function acker.
The MATLAB function place is preferable for systems of high order because it is
better conditioned numerically.

Example 7.5 Predator–prey
Consider the problem of regulating the population of an ecosystem by modulating
the food supply. We use the predator–prey model introduced in Example 5.16 and
described in more detail in Section 4.7. The dynamics for the system are given by

dH

dt
= (r + u)H

(
1− H

k

)
− aHL

c+H
, H ≥ 0,

dL

dt
= b

aHL

c+H
− dL, L ≥ 0.
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We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a = 3.2, b = 0.6, c = 50,

d = 0.56, k = 125 r = 1.6.

We take the parameter r, corresponding to the growth rate for hares, as the input
to the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term (r + u) in the first equation, where here
r represents a constant parameter (not the reference signal) and u represents the
controlled modulation. We choose the number of lynxes L as the output of our
system.

To control this system, we first linearize the system around the equilibrium point
of the system (He, Le), which can be determined numerically to be xe ≈ (20.6, 29.5).
This yields a linear dynamical system

d

dt


z1
z2


 =


0.13 −0.93
0.57 0




z1
z2


+


17.2

0


 v, w =


0 1




z1
z2


 ,

where z1 = H −He, z2 = L− Le, and v = u. It is easy to check that the system is
reachable around the equilibrium point (z, v) = (0, 0), and hence we can assign the
eigenvalues of the system using state feedback.

Selecting the eigenvalues of the closed loop system requires balancing the ability
to modulate the input against the natural dynamics of the system. This can be
done by the process of trial and error or by using some of the more systematic
techniques discussed in the remainder of the text. For now, we simply choose the
desired closed loop eigenvalues to be at λ = {−0.1,−0.2}. We can then solve for
the feedback gains using the techniques described earlier, which results in

K =

0.025 −0.052


 .

Finally, we solve for the feedforward gain kf, using equation (7.13) to obtain kf =
0.002.

Putting these steps together, our control law becomes

v = −Kz + kfLd,

where Ld is the desired number of lynxes. In order to implement the control law,
we must rewrite it using the original coordinates for the system, yielding

u = ue −K(x− xe) + kf(Ld − ye)

= −

0.025 −0.052




H − 20.6

L− 29.5


+ 0.002 (Ld − 29.5).

This rule tells us how much we should modulate u as a function of the current
number of lynxes and hares in the ecosystem. Figure 7.7a shows a simulation of
the resulting closed loop system using the parameters defined above and starting
with an initial population of 15 hares and 20 lynxes. Note that the system stabilizes
the population of lynxes at the reference value (Ld = 30). A phase portrait of the
system is given in Figure 7.7b, showing how other initial conditions converge to the
stabilized equilibrium population. Notice that the dynamics are very different from
the natural dynamics (shown in Figure 4.20). ∇
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Figure 7.7: Simulation results for the controlled predator–prey system. The
population of lynxes and hares as a function of time is shown in (a), and a phase
portrait for the controlled system is shown in (b). Feedback is used to make the
population stable at He = 20.6 and Le = 30.

The results of this section show that we can use state feedback to design the
dynamics of a reachable system, under the strong assumption that we can mea-
sure all of the states. We shall address the availability of the states in the next
chapter, when we consider output feedback and state estimation. In addition, The-
orem 7.3, which states that the eigenvalues can be assigned to arbitrary locations,
is also highly idealized and assumes that the dynamics of the process are known to
high precision. The robustness of state feedback combined with state estimators is
considered in Chapter 13 after we have developed the requisite tools.

7.3 Design Considerations

The location of the eigenvalues determines the behavior of the closed loop dynamics,
and hence where we place the eigenvalues is the main design decision to be made. As
with all other feedback design problems, there are trade-offs among the magnitude
of the control inputs, the robustness of the system to perturbations, and the closed
loop performance of the system. In this section we examine some of these trade-offs
starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class
of systems and build more intuition about the relationship between stability and
performance.

A canonical second-order system is a differential equation of the form

q̈ + 2ζω0q̇ + ω2
0q = kω2

0u, y = q. (7.22)
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In state space form, this system can be represented as

dx

dt
=


 0 ω0

−ω0 −2ζω0


x+


 0
kω0


u, y =


1 0


x, (7.23)

where x = (q, q̇/ω0) represents a normalized choice of states. The eigenvalues of
this system are given by

λ = −ζω0 ± ω0

√
(ζ2 − 1),

and we see that the system is stable if ω0 > 0 and ζ > 0. Note that the eigenvalues
are complex if ζ < 1 and real otherwise. Equations (7.22) and (7.23) can be used
to describe many second-order systems, including damped oscillators, active filters,
and flexible structures, as shown in the examples below.

The form of the solution depends on the value of ζ, which is referred to as the
damping ratio for the system. If ζ > 1, we say that the system is overdamped, and
the natural response (u = 0) of the system is given by

y(t) =
βx10 + x20

β − α
e−αt − αx10 + x20

β − α
e−βt,

where α = ω0(ζ +
√
ζ2 − 1) and β = ω0(ζ −

√
ζ2 − 1). We see that the response

consists of the sum of two exponentially decaying signals. If ζ = 1, then the system
is critically damped and solution becomes

y(t) = e−ζω0t
(
x10 + (x20 + ζω0x10)t

)
.

Note that this is still asymptotically stable as long as ω0 > 0, although the second
term within the outer parentheses is increasing with time (but more slowly than
the decaying exponential that is multiplying it).

Finally, if 0 < ζ < 1, then the solution is oscillatory and equation (7.22) is said
to be underdamped. The natural response of the system is given by

y(t) = e−ζω0t

(
x10 cosωdt+

(ζω0

ωd
x10 +

1

ωd
x20

)
sinωdt

)
,

where ωd = ω0

√
1− ζ2 is called the damped frequency. For ζ , 1, ωd ≈ ω0 defines

the oscillation frequency of the solution and ζ gives the damping rate relative to ω0.
The parameter ω0 is referred to as the natural frequency of the system, stemming
from the fact that for ζ = 0 the oscillation frequency is given by ω0.

Because of the simple form of a second-order system, it is possible to solve for
the step and frequency responses in analytical form. The solution for the step
response depends on the magnitude of ζ:

y(t) =






k

(
1− e−ζω0t cosωdt− ζ√

1−ζ2
e−ζω0t sinωdt

)
, if ζ < 1;

k (1− e−ω0t(1 + ω0t)) , if ζ = 1;

k

(
1− 1

2

(
ζ√
ζ2−1

+ 1
)
e−ω0t(ζ−

√
ζ2−1)

+ 1
2

(
ζ√
ζ2−1

− 1
)
e−ω0t(ζ+

√
ζ2−1)

)
, if ζ > 1,

(7.24)
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Figure 7.8: Step response for a second-order system. Normalized step responses
for the system (7.23) for ζ = 0, 0.4, 0.7 (thicker), 1, and 1.2. As the damping ratio
is increased, the rise time of the system gets longer, but there is less overshoot.
The horizontal axis is in scaled units ω0t; higher values of ω0 result in a faster
response (rise time and settling time).

where we have taken x(0) = 0. Note that for the lightly damped case (ζ < 1) we
have an oscillatory solution at frequency ωd.

Step responses of systems with k = 1 and different values of ζ are shown in
Figure 7.8. The shape of the response is determined by ζ, and the speed of the
response is determined by ω0 (included in the time axis scaling): the response is
faster if ω0 is larger.

In addition to the explicit form of the solution, we can also compute the proper-
ties of the step response that were defined in Section 6.3. For example, to compute
the maximum overshoot for an underdamped system, we rewrite the output as

y(t) = k

(

1− 1√
1− ζ2

e−ζω0t sin(ωdt+ ϕ)

)

, (7.25)

where ϕ = arccos ζ. The maximum overshoot will occur at the first time in which
the derivative of y is zero, at which time the fraction of the final value can be shown
to be

Mp = e−πζ/
√

1−ζ2 .

The rise time is normally defined as the time for the step response to go from
p% of its final value to (100−p)%. Typical values are p = 5 or 10%. An alternative
definition is the inverse of the steepest slope: by differentiating equation (7.25) we
find after straightforward but tedious calculations that

Tr =
1

ω0
eϕ/ tanϕ, ϕ = arccos ζ.

Similar computations can be done for the other characteristics of a step response.
Table 7.1 summarizes these calculations.

The frequency response for a second-order system can also be computed explic-
itly and is given by

Meiθ =
kω2

0

(iω)2 + 2ζω0(iω) + ω2
0

=
kω2

0

ω2
0 − ω2 + 2iζω0ω

.
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Table 7.1: Properties of the step response for a second-order system q̈+2ζω0q̇+
ω2
0q = kω2

0u with 0 < ζ ≤ 1.

Property Value ζ = 0.5 ζ = 1/
√
2 ζ = 1

Steady-state value k k k k

Rise time (inverse slope) Tr = eϕ/ tanϕ /ω0 1.8/ω0 2.2/ω0 2.7/ω0

Overshoot Mp = e−πζ/
√

1−ζ2 16% 4% 0%

Settling time (2%) Ts ≈ 4/ζω0 8.0/ω0 5.6/ω0 4.0/ω0

A graphical illustration of the frequency response is given in Figure 7.9. Notice the
resonant peak that increases with decreasing ζ. The peak is often characterized by
its Q-value, defined as Q = 1/2ζ. The properties of the frequency response for a
second-order system are summarized in Table 7.2.

Example 7.6 Drug administration
To illustrate the use of these formulas, consider the two-compartment model for
drug administration, described in Section 4.6. The dynamics of the system are

dc

dt
=


−k0 − k1 k1

k2 −k2


 c+


b0

0


u, y =


0 1


 c,

where c1 and c2 are the concentrations of the drug in each compartment, k0, k1, k2,
and b0 are parameters of the system, u is the flow rate of the drug into compart-
ment 1, and y is the concentration of the drug in compartment 2. We assume that
we can measure the concentrations of the drug in each compartment, and we would
like to design a feedback law to maintain the output at a given reference value r.

We choose ζ = 1/
√
2 to minimize the overshoot and additionally require the

rise time to be Tr = 10 min. Using the formulas in Table 7.1, this gives a value for
ω0 = 0.22. We can now compute the gains to place the eigenvalues at this location.
Setting u = −Kx+ kfr, the closed loop eigenvalues for the system satisfy

λ(s) = −0.2± 0.096i.

Table 7.2: Properties of the frequency response for a second-order system q̈ +
2ζω0q̇ + ω2

0q = kω2
0u with 0 < ζ ≤ 1.

Property Value ζ=0.1 ζ=0.5 ζ=1/
√
2

Zero frequency
gain

M0 k k k

Bandwidth ωb = ω0

√

1− 2ζ2 +
√

(1− 2ζ2)2 + 1 1.54ω0 1.27ω0 ω0

Resonant peak
gain

Mr =

{

k/(2ζ
√

1− ζ2) ζ ≤
√
2/2,

N/A ζ >
√
2/2

5 k 1.15 k k

Resonant
frequency

ωmr =

{

ω0

√

1− 2ζ2 ζ ≤
√
2/2,

0 ζ >
√
2/2

ω0 0.707ω0 0
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Figure 7.9: Frequency response of a second-order system (7.23). (a) Eigenvalues
as a function of ζ. (b) Frequency response as a function of ζ. The upper curve
shows the gain ratio M , and the lower curve shows the phase shift θ. For small
ζ there is a large peak in the magnitude of the frequency response and a rapid
change in phase centered at ω = ω0. As ζ is increased, the magnitude of the peak
drops and the phase changes more smoothly between 0◦ and -180◦.

Choosing k̃1 = −0.2 and k̃2 = 0.2, with K = (k̃1, k̃2) to avoid confusion with the
rates ki in the dynamics matrix, gives the desired closed loop behavior. Equa-
tion (7.13) gives the feedforward gain kf = 0.065. The response of the controller is
shown in Figure 7.10 and compared with an open loop strategy involving adminis-
tering periodic doses of the drug. ∇

Higher-Order Systems

Our emphasis so far has considered only second-order systems. For higher-order
systems, eigenvalue assignment is considerably more difficult, especially when trying
to account for the many trade-offs that are present in a feedback design.

One of the other reasons why second-order systems play such an important
role in feedback systems is that even for more complicated systems the response is
often characterized by the dominant eigenvalues. To define these more precisely,
consider a stable system with eigenvalues λj , j = 1, . . . , n. We say that a complex
conjugate pair of eigenvalues λ, λ∗ is a dominant pair if they are the closest pair
to the imaginary axis. In the case when multiple eigenvalues pairs are the same
distance to the imaginary axis, a second criterion is to look at the relative damping
of the system modes. We define the damping ratio for a complex eigenvalue λ as

ζ =
−Reλ

|λ| .

Given multiple complex conjugate pairs with the same real part, the dominant pair
will be the set with the lowest damping ratio.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be
the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
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Figure 7.10: Open loop versus closed loop drug administration. Comparison
between drug administration using a sequence of doses versus continuously moni-
toring the concentrations and adjusting the dosage continuously. In each case, the
concentration is (approximately) maintained at the desired level, but the closed
loop system has substantially less variability in drug concentration.

pair of eigenvalues:

dz

dt
=




λ
λ∗

J2
. . .

Jk




z +Bu, y = Cz.

(Note that the state z may be complex because of the Jordan transformation.)
The response of the system will be a linear combination of the responses from each
of the individual Jordan subsystems. As we see from Figure 7.8, for ζ < 1 the
subsystem with the slowest response is precisely the one with eigenvalues closest to
the imaginary axis. Hence, when we add the responses from each of the individual
subsystems, it is the dominant pair of eigenvalues that will be the primary factor
after the initial transients due to the other terms in the solution die out. While
this simple analysis does not always hold (e.g., if some non-dominant terms have
larger coefficients because of the particular form of the system), it is often the case
that the dominant eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment is that the system be
reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will be
discussed in depth in Chapters 12–14.

We illustrate some of the main ideas using the balance system as an example.
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Example 7.7 Balance system
Consider the problem of stabilizing a balance system, whose dynamics were given
in Example 7.2. The dynamics are given by

A =




0 0 1 0
0 0 0 1

0 m2l2g/µ −cJt/µ −γlm/µ

0 Mtmgl/µ −clm/µ −γMt/µ




, B =




0
0

Jt/µ

lm/µ




,

where Mt = M + m, Jt = J + ml2, µ = MtJt − m2l2 and we have left c and γ
nonzero. We use the following parameters for the system (corresponding roughly
to a human being balanced on a stabilizing cart):

M = 10 kg, m = 80 kg, c = 0.1 N s/m,

J = 100 kg m2/s2, l = 1 m, γ = 0.01 N m s,
g = 9.8 m/s2.

The eigenvalues of the open loop dynamics are given by λ ≈ 0,−0.0011,±2.68.
We have verified already in Example 7.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and provide a desired level of
performance.

To decide where to place the closed loop eigenvalues, we note that the closed
loop dynamics will roughly consist of two components: a set of fast dynamics that
stabilize the pendulum in the inverted position and a set of slower dynamics that
control the position of the cart. For the fast dynamics, we look to the natural
period of the pendulum (in the hanging-down position), which is given by ω0 =√

mgl/(J +ml2) ≈ 2.1 rad/s. To provide a fast response we choose a damping
ratio of ζ = 0.5 and try to place the first pair of eigenvalues at λ1,2 ≈ −ζω0± iω0 ≈
−1 ± 2i, where we have used the approximation that

√
1− ζ2 ≈ 1. For the slow

dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s. This
gives eigenvalues λ3,4 = −0.35± 0.35i.

The controller consists of feedback on the state and a feedforward gain for the
reference input. The feedback gain is given by

K =

−15.6 1730 −50.1 443


 ,

which can be computed using Theorem 7.3 or using the MATLAB place command.
The feedforward gain is kf = −1/(C(A−BK)−1B) = −15.6. The step response for
the resulting controller (applied to the linearized system) is given in Figure 7.11a.
While the step response gives the desired characteristics, the input required (lower
left) is excessively large, almost three times the force of gravity at its peak.

To provide a more realistic response, we can redesign the controller to have
slower dynamics. We see that the peak of the input force occurs on the fast time
scale, and hence we choose to slow this down by approximately a factor of 3, leaving
the damping ratio unchanged. We also slow down the second set of eigenvalues,
with the intuition that we should move the position of the cart more slowly than we
stabilize the pendulum dynamics. Leaving the damping ratio for the slow dynamics
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(b) λ1,2 = −0.33± 0.66i

Figure 7.11: State feedback control of a balance system. The step response of a
controller designed to give fast performance is shown in (a). Although the response
characteristics (upper left) look very good, the input magnitude (lower left) is very
large. Also note that the force is negative initially. A less aggressive controller is
shown in (b). Here the response time is slowed down, but the input magnitude is
much more reasonable. Both step responses are applied to the linearized dynamics.

unchanged at 0.7 and changing the frequency to 1 (corresponding to a rise time of
approximately 10 s), the desired eigenvalues become

λ = {−0.33± 0.66i, −0.18± 0.18i}.

The performance of the resulting controller is shown in Figure 7.11b. ∇

As we see from this example, it can be difficult to decide where to place the
eigenvalues using state feedback. This is one of the principal limitations of this
approach, especially for systems of higher dimension. Optimal control, such as the
linear quadratic regulator problem discussed in Section 7.5, is one approach that is
available. One can also focus on the frequency response for performing the design,
which is the subject of Chapters 9–13.

7.4 Integral Action

Controllers based on state feedback achieve the correct steady-state response to
command signals by careful calibration of the gain kf. However, one of the primary
uses of feedback is to allow good performance in the presence of uncertainty and
hence requiring that we have an exact model of the process is undesirable. An
alternative to calibration is to make use of integral feedback, in which the controller
uses an integrator to provide zero steady-state error. The basic concept of integral
feedback was introduced in Section 1.6 and discussed briefly in Sections 2.3 and 2.4;
here we provide a more complete description and analysis.
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System Augmentation

The basic approach in integral feedback is to create a state within the controller
that computes the integral of the error signal, which is then used as a feedback
term. We do this by augmenting the description of the system with a new state z,
which is the integral of the difference between the the actual output y and desired
output r. The augmented state equations become

d

dt


x
z


 =


Ax+Bu

y − r


 =


Ax+Bu

Cx− r


 . (7.26)

Note that if we find a controller that stabilizes the system, then we will necessarily
have ż = 0 in steady state and hence y = r in steady state.

Given the augmented system, we design a state space controller in the usual
fashion, with a control law of the form

u = −Kx− kiz + kfr, (7.27)

where K is the usual state feedback term, ki is the integral term, and kf is used to
set the nominal input for the desired steady state. The resulting equilibrium point
for the system is given by

xe = −(A−BK)−1B(kfr − kize), Cxe = r,

which comes from setting the right hand side of equation (7.26) to zero and substi-
tuting u from equation (7.27). Note that the value of ze is not specified but rather
will automatically settle to the value that makes ż = y − r = 0, which implies that
at equilibrium the output will equal the reference value. This holds independently
of the specific values of A, B, and K as long as the system is stable (which can be
done through appropriate choice of K and ki).

The final control law is given by

u = −Kx− kiz + kfr,
dz

dt
= y − r,

where we have now included the dynamics of the integrator as part of the specifica-
tion of the controller. This type of control law is known as a dynamic compensator
since it has its own internal dynamics. The following example illustrates the basic
approach.

Example 7.8 Cruise control
Consider the cruise control example introduced in Section 1.5 and considered further
in Example 6.11 (see also Section 4.1). The linearized dynamics of the process
around an equilibrium point ve, ue are given by

dx

dt
= −ax− bgθ + bw, y = v = x+ ve,

where x = v − ve, w = u − ue, m is the mass of the car, and θ is the angle of the
road. The constants a, b, and bg depend on the properties of the car and are given
in Example 6.11.
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If we augment the system with an integrator, the system dynamics become

dx

dt
= −ax− bgθ + bw,

dz

dt
= y − vr = ve + x− vr,

or, in state space form,

d

dt


x
z


 =


−a 0

1 0




x
z


+


b
0


w +


−bg

0


 θ +


 0
ve − vr


 .

Note that when the system is at equilibrium, we have that ż = 0, which implies
that the vehicle speed v = ve + x should be equal to the desired reference speed vr.
Our controller will be of the form

dz

dt
= y − vr, w = −kpx− kiz + kfvr,

and the gains kp, ki, and kf will be chosen to stabilize the system and provide the
correct input for the reference speed.

Assume that we wish to design the closed loop system to have the characteristic
polynomial

λ(s) = s2 + a1s+ a2.

Setting the disturbance θ = 0, the characteristic polynomial of the closed loop
system is given by

det
(
sI − (A−BK)

)
= s2 + (bkp + a)s+ bki,

and hence we set

kp =
a1 − a

b
, ki =

a2
b
, kf = −1/

(
C(A−BK)−1B

)
=

a1
b
.

The resulting controller stabilizes the system and hence brings ż = y − vr to zero,
resulting in perfect tracking. Notice that even if we have a small error in the values
of the parameters defining the system, as long as the closed loop eigenvalues are
still stable, then the tracking error will approach zero. Thus the exact calibration
required in our previous approach (using kf) is not needed here. Indeed, we can
even choose kf = 0 and let the feedback controller do all of the work. However,
kf does influence the transient response to reference signals and setting it properly
will generally give a more favorable response.

Integral feedback can also be used to compensate for constant disturbances.
Figure 7.12 shows the results of a simulation in which the car encounters a hill
with angle θ = 4◦ at t = 5 s. The steady-state values of the throttle for a state
feedback controller and a controller with integral action are very close, but the
corresponding values of the car velocity are quite different. The reason for this
is that the zero frequency gain from throttle to velocity is −b/a = 130 is high.
The stability of the system is not affected by this external disturbance, and so we
once again see that the car’s velocity converges to the reference speed. This ability
to handle constant disturbances is a general property of controllers with integral
feedback (see Exercise 7.15). ∇
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Figure 7.12: Velocity and throttle for a car with cruise control based on state
feedback (dashed) and state feedback with integral action (solid). The controller
with integral action is able to adjust the throttle to compensate for the effect of the
hill and maintain the speed at the reference value of vr = 20 m/s. The controller
gains are kp = 0.5 and ki = 0.1.

Reachability of the Augmented System

Eigenvalue assignment requires that the augmented system (7.26) is reachable. To
explore this we compute the reachability matrix of the augmented system:

Wr =


B AB . . . AnB

0 CB . . . CAn−1B


 .

To find the conditions for Wr to be of full rank, the matrix will be transformed by
making column operations. Let ak be the coefficients of the characteristic polyno-
mial of the matrix A:

λA(s) = sn + a1s
n−1 + · · ·+ an−1s+ an.

Multiplying the first column by an, the second by an−1, through multiplication of
the (n-1)th column by a1 and then adding these to the last column of the matrixWr,
it follows from the Cayley–Hamilton theorem (Exercise 7.3) that the transformed
matrix becomes

Wr =


B AB · · · An−1B 0

0 CB · · · CAn−2B bn


 ,

where
bn = C(An−1B + a1A

n−2B + . . .+ an−1B). (7.28)

If the matrix A is invertible, implying that there are no eigenvalues at the origin,
then we can rewrite the formula for bn as

bn = CA−1(An + a1A
n−1 + . . .+ an−1A)B = −anCA−1B,

where the final equality follows from a second application of the Cayley–Hamilton
theorem. As long as the coefficient bn %= 0, then the system is reachable and it is
possible to assign the eigenvalues of the augmented system to arbitrary values.

We will see in Chapter 9 that the coefficient bn can be identified with a coefficient
of the transfer function

G(s) =
b1sn−1 + b2sn−2 + . . .+ bn
sn + a1sn−1 + . . .+ an

.

The condition for reachability is thus that the original system does not contain a
pure derivative in the input/output response.
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7.5 Linear Quadratic Regulators !

As an alternative to selecting the closed loop eigenvalue locations to accomplish a
certain objective, the gains for a state feedback controller can instead be chosen by
attempting to optimize a cost function. This can be particularly useful in helping
balance the performance of the system with the magnitude of the inputs required
to achieve that level of performance.

The linear quadratic regulator (LQR) problem is one of the most common op-
timal control problems. Given a multi-input linear system

dx

dt
= Ax+Bu, x ∈ Rn, u ∈ Rp

with initial condition x(0) = x0, we attempt to minimize the quadratic cost function

J(x0) =

∫ tf

0

(
xTQxx+ uTQuu

)
dt+ xT (tf)Qfx(tf), (7.29)

where Qx . 0, Qu / 0 and Qf . 0 are symmetric, positive (semi-) definite matrices
of the appropriate dimensions. This cost function represents a trade-off between
the deviation of the state from the origin and the cost of the control input. By
choosing the matrices Qx, Qu, and Qf we can balance the rate of convergence of
the solutions with the cost of the control.

The solution to the LQR problem is given by a linear control law of the form

u = −Kx, K = Q−1
u BTS, (7.30)

where S ∈ Rn×n is a positive definite, symmetric matrix given by

− dS

dt
= ATS + SA− SBQ−1

u BTS +Qx, S(tf) = Qf. (7.31)

This differential equation, called the Riccati differential equation, is integrated back-
wards in time starting with S(tf) = Qf. The minimal cost function, representing
the optimal cost, is given by

min
u

∫ tf

0

(
xTQxx+ uTQuu

)
dt+ xT (tf)Qfx(tf) = xT (0)S(0)x(0). (7.32)

The matrices A, B, Qx, Qu, and K may depend on time. A solution to the optimal
control problem exists if the Riccati equation has a unique positive solution. The
LQR approach is particularly well suited when linearizing around a trajectory, as
will be done later in Section 8.5.

The LQR problem is simplified significantly if the time horizon is infinite and
all matrices are constants, in which case S is a constant matrix given by the steady-
state solution of (7.31):

ATS + SA− SBQ−1
u BTS +Qx = 0. (7.33)

This equation is called the algebraic Riccati equation. If the system is reach-
able, it can be shown that there is a unique positive definite matrix S satisfy-
ing equation (7.33) that makes the closed loop system stable. The feedback gain
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K = Q−1
u BTS is then also a constant matrix. The MATLAB command lqr returns

K, S, and the dynamics matrix E = A−BK of the closed loop system.
A key question in LQR design is how to choose the weights Qx, Qu, and Qf. To

guarantee that a solution exists, we must have Qx . 0 and Qu / 0. In addition,
there are certain “observability” conditions on Qx that limit its choice. Here we
assume Qx / 0 to ensure that solutions to the algebraic Riccati equation always
exist. To choose specific values for the cost function weights Qx and Qu, we must
use our knowledge of the system we are trying to control. A particularly simple
choice is to use diagonal weights

Qx =




q1
0. . .

0 qn




, Qu =




ρ1
0. . .

0 ρn




.

For this choice of Qx and Qu, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we
can take states that should remain small and attach higher weight values to them.
Similarly, we can penalize an input versus the states and other inputs through
choice of the corresponding input weight ρ.

Example 7.9 Vectored thrust aircraft
Consider the original dynamics of the system (3.28), written in state space form as

dz

dt
=




z4
z5
z6

− c
m z4

−g − c
m z5

0




+




0
0
0

F1

m cos θ − F2

m sin θ
F1

m sin θ + F2

m cos θ
r
J F1




(see also Example 6.4). The system parameters are m = 4 kg, J = 0.0475 kg m2,
r = 0.25 m, g = 9.8 m/s2, and c = 0.05 N s/m, which correspond to a scaled model
of the system. The equilibrium point for the system is given by F1 = 0, F2 = mg,
and ze = (xe, ye, 0, 0, 0, 0). To derive the linearized model near an equilibrium point,
we compute the linearization according to equation (6.35):

A =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g −c/m 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 0




, B =




0 0
0 0
0 0

1/m 0
0 1/m

r/J 0




,

C =


1 0 0 0 0 0
0 1 0 0 0 0


 , D =


0 0
0 0


 .

Letting ξ = z − ze and v = F − Fe, the linearized system is given by

dξ

dt
= Aξ +Bv, y = Cξ.
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Figure 7.13: Step response for a vectored thrust aircraft with an LQR controller.
The plot in (a) shows the x and y positions of the aircraft when it is commanded
to move 1 m in each direction. In (b) the x motion is shown for control weights
ρ = 1, 102, 104. A higher weight of the input term in the cost function causes a
more sluggish response.

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, we write the cost func-

tion as

J =

∫ ∞

0
(ξTQξξ + vTQvv) dt,

where ξ = z − ze and v = F − Fe again represent the local coordinates around the
desired equilibrium point (ze, Fe). We begin with diagonal matrices for the state
and input costs:

Qξ =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, Qv =


ρ 0
0 ρ


 .

This gives a control law of the form v = −Kξ, which can then be used to derive
the control law in terms of the original variables:

F = v + Fe = −K(z − ze) + Fe.

As computed in Example 6.4, the equilibrium points have Fe = (0,mg) and ze =
(xe, ye, 0, 0, 0, 0). The response of the controller to a step change in the desired
position is shown in Figure 7.13a for ρ = 1. The response can be tuned by adjusting
the weights in the LQR cost. Figure 7.13b shows the response in the x direction
for different choices of the weight ρ. ∇

Linear quadratic regulators can also be designed for discrete-time systems, as
illustrated by the following example.

Example 7.10 Web server control
Consider the web server example given in Section 4.4, where a discrete-time model
for the system was given. We wish to design a control law that sets the server
parameters so that the average server processor load is maintained at a desired
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Figure 7.14: Feedback control of a web server. The controller sets the values of
the web server parameters based on the difference between the nominal parameters
(determined by kfrcpu) and the current load ycpu. The disturbance dcpu represents
the load due to other processes running on the server. Note that the measurement
is taken after the disturbance so that we measure the total load on the server.

level. Since other processes may be running on the server, the web server must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 7.14. We focus on
the special case where we wish to control only the processor load using both the
KeepAlive and MaxClients parameters. We also include a “disturbance” on the
measured load that represents the use of the processing cycles by other processes
running on the server. The system has the same basic structure as the generic
control system in Figure 7.5, with the variation that the disturbance enters after
the process dynamics.

The dynamics of the system are given by a set of difference equations of the
form

x[k + 1] = Ax[k] +Bu[k], ycpu[k] = xcpu[k] + dcpu[k],

where x = (xcpu, xmem) is the state of the web server, u = (uka, umc) is the input,
dcpu is the processing load from other processes on the computer, and ycpu is the
total processor load. The matrices A ∈ R2×2 and B ∈ R2×2 are described in
Section 4.4.

We choose our controller to be a feedback controller of the form

u = −K


 ycpu
xmem


+ kfrcpu,

where rcpu is the desired processor load. Note that we have used the measured
processor load ycpu instead of the CPU state xcpu to ensure that we adjust the
system operation based on the actual load. (This modification is necessary because
of the nonstandard way in which the disturbance enters the process dynamics.)

The feedback gain matrix K can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, with the cost function given
by

Qx =


5 0
0 1


 , Qu =


1/502 0

0 1/10002


 .

The cost function for the state Qx is chosen so that we place more emphasis on the
processor load versus the memory usage. The cost function for the inputs Qu is
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Figure 7.15: Web server with LQR control. The plot in (a) shows the state of the
system under a change in external load applied at k = 10 ms. The corresponding
web server parameters (system inputs) are shown in (b). The controller is able to
reduce the effect of the disturbance by approximately 40%.

chosen so as to normalize the two inputs, with a KeepAlive timeout of 50 s having
the same weight as a MaxClients value of 1000. These values are squared since
the cost associated with the inputs is given by uTQuu. Using the dynamics in
Section 4.4 and the dlqr command in MATLAB, the resulting gains become

K =


−22.3 10.1

382.7 77.7


 .

As in the case of a continuous-time control system, the feedforward gain kf is
chosen to yield the desired operating point for the system. Setting x[k+1] = x[k] =
xe, the steady-state equilibrium point and output for a given reference input r are
given by

xe = (A−BK)xe +Bkfr, ye = Cxe.

This is a matrix equation in which kf is a column vector that sets the two input
values based on the desired reference. Since we have two inputs, we can set both
the desired CPU load ycpu,e and the desired memory usage xmem,e. If we take the
desired equilibrium state to be of the form xe = (r, 0), where we choose the desired
value of memory usage to be zero to make as much memory as possible available
for other tasks, then we must solve


r
0


 = (A−BK − I)−1Bkf r.

Solving this equation for kf, we obtain

kf =
((

(A−BK − I)−1B
))−1


1
0


 =


 49.3
539.5


 .

The dynamics of the closed loop system are illustrated in Figure 7.15. We apply
a change in load of dcpu = 0.3 at time t = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desired load at 0.57. Note that
both the KeepAlive and MaxClients parameters are adjusted. Although the load
is decreased, it remains approximately 0.2 above the desired steady state. ∇
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7.6 Further Reading

The importance of state models and state feedback was discussed in the seminal
paper by Kalman [Kal60], where the state feedback gain was obtained by solving
an optimization problem that minimized a quadratic loss function. The notions of
reachability and observability (Chapter 8) are also due to Kalman [Kal61b] (see
also [Gil63, KHN63]). Kalman defines controllability and reachability as the ability
to reach the origin and an arbitrary state, respectively [KFA69]. Reachability is
also used in graph theory as the ability to get from one vertex to another. We note
that in most textbooks the term “controllability” is used instead of “reachability,”
but we prefer the latter term because it is more descriptive of the fundamental
property of being able to reach arbitrary states. The result that the eigenvalues of
a reachable linear system could be placed in arbitrary positions was first realized
by J. Bertram in 1959 [KFA69], who worked in a control group at IBM Research
led by Kalman. Bertram’s results were based on root-locus analysis; an analyt-
ical proof was given in 1960 [Ris60]. Most undergraduate textbooks on control
contain material on state space systems, including, for example, Franklin, Powell,
and Emami-Naeini [FPEN05] and Ogata [Oga01]. Friedland’s textbook [Fri04] cov-
ers the material in the previous, current, and next chapter in considerable detail,
including the topic of optimal control.

Exercises

7.1 (Double integrator) Consider the double integrator. Find a piecewise constant
control strategy that drives the system from the origin to the state x = (1, 1).

7.2 (Reachability from nonzero initial state) Extend the argument in Section 7.1
to show that if a system is reachable from an initial state of zero, it is reachable
from a nonzero initial state.

7.3 (Cayley–Hamilton theorem) Let A ∈ Rn×n be a matrix with characteristic
polynomial λ(s) = det(sI − A) = sn + a1sn−1 + · · · + an−1s + an. Show that the
matrix A satisfies

λ(A) = An + a1A
n−1 + · · ·+ an−1A+ anI = 0,

where the zero on the right hand side represents a matrix of elements with all zeros.
Use this result to show that An can be written in terms of lower order powers of
A and hence any matrix polynomial in A can be rewritten using terms of order at
most n− 1.

7.4 (Unreachable systems) Consider a system with the state x and z described by
the equations

dx

dt
= Ax+Bu,

dz

dt
= Az +Bu.

If x(0) = z(0) it follows that x(t) = z(t) for all t regardless of the input that is
applied. Show that this violates the definition of reachability and further show that
the reachability matrix Wr is not full rank.
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7.5 (Rear-steered bicycle) A simple model for a bicycle was given by equation (4.5)
in Section 4.2. A model for a bicycle with rear-wheel steering is obtained by revers-
ing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.

7.6 (Characteristic polynomial for reachable canonical form) Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (7.7) and that

dnzk
dtn

+ a1
dn−1zk
dtn−1

+ · · ·+ an−1
dzk
dt

+ anzk =
dn−ku

dtn−k
,

where zk is the kth state.

7.7 (Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

W̃−1
r =




1 a1
1

a2 · · · an−1

a1 · · · an−2

0
1

. . .
...

. . . a1
1




.

7.8 (Non-maintainable equilibrium points) Consider the normalized model of a
pendulum on a cart

d2x

dt2
= u,

d2θ

dt2
= −θ + u,

where x is cart position and θ is pendulum angle. Can the angle θ = θ0 for θ0 %= 0
be maintained?

7.9 (Eigenvalue assignment) Consider the system

dx

dt
= Ax+Bu =


−1 0

1 0


x+


a− 1

1


u,

with a = 1.25. Design a state feedback that gives det(sI−BK) = s2+2ζcωcs+ω2
c ,

where ωc = 5, and ζc = 0.6.

7.10 (Eigenvalue assignment for unreachable system) Consider the system

dx

dt
=


0 1
0 0


x+


1
0


u, y =


1 0


x,

with the control law
u = −k1x1 − k2x2 + kfr.

Compute the rank of the reachability matrix for the system and show that eigen-
values of the system cannot be assigned to arbitrary values.
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7.11 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise 3.7. Using the following normalized parameters,

J1 = 10/9, J2 = 10, c = 0.1, k = 1, kI = 1,

verify that the eigenvalues of the open loop system are 0, 0,−0.05 ± i. Design a
state feedback that gives a closed loop system with eigenvalues −2, −1, and −1± i.
This choice implies that the oscillatory eigenvalues will be well damped and that
the eigenvalues at the origin are replaced by eigenvalues on the negative real axis.
Simulate the responses of the closed loop system to step changes in the reference
signal for θ2 and a step change in a disturbance torque on the second rotor.

7.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (4.8) in Section 4.2. Using the parameters from the companion web site, the
model is unstable at the velocity v0 = 5 m/s and the open loop eigenvalues are
−1.84, −14.29, and 1.30 ± 4.60i. Find the gains of a controller that stabilizes the
bicycle and gives closed loop eigenvalues at −2, −10, and −1 ± i. Simulate the
response of the system to a step change in the steering reference of 0.002 rad.

7.13 (Dominant eigenvalues) Consider the following two linear systems:

Σ1 :

dx

dt
=


−1.1 −0.1

1 0


x+


1
0


u,

y =

1.01 0.11


x,

Σ2 :

dx

dt
=


−1.1 −0.1

1 0


x+


1
0


u,

y =

1.1 1.01


x.

Show that although both systems have the same eigenvalues, the step responses of
the two systems are dominated by different sets of eigenvalues.

7.14 Consider the second-order system

d2y

dt2
+ 0.5

dy

dt
+ y = a

du

dt
+ u.

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response is a. Discuss what it means
when a < 0.

(b) Show that there are points on the unit step response that are invariant with a.
Discuss qualitatively the effect of the parameter a on the solution.

(c) Simulate the system and explore the effect of a on the rise time and overshoot.

7.15 (Integral feedback for rejecting constant disturbances) Consider a linear sys-
tem of the form

dx

dt
= Ax+Bu+ Fd, y = Cx,

where u is a scalar and v is a disturbance that enters the system through a distur-
bance vector F ∈ Rn. Assume that the matrix A is invertible and the zero frequency
gain CA−1B is nonzero. Show that integral feedback can be used to compensate for
a constant disturbance by giving zero steady-state output error even when d %= 0.
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7.16 (Bryson’s rule) Bryson and Ho [BH75] have suggested the following method
for choosing the matrices Qx and Qu in equation (7.29). Start by choosing Qx

and Qu as diagonal matrices whose elements are the inverses of the squares of the
maxima of the corresponding variables. Then modify the elements to obtain a
compromise among response time, damping, and control effort. Apply this method
to the motor drive in Exercise 7.11. Assume that the largest values of the ϕ1 and
ϕ2 are 1, the largest values of ϕ̇1 and ϕ̇2 are 2, and the largest control signal is 10.
Simulate the closed loop system for ϕ2(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonal elements for Qx and Qu.

7.17 (LQR proof) Use the Riccati equation (7.31) and the relation

xT (tf)Qfx(tf)− xT (0)S(0)x(0) =
∫ tf

0

(
ẋT (t)S(t)x(t) + xT Ṡ(t)x(t) + xT (t)S(t)ẋ(t)

)
dt

to show that the cost function for the linear quadratic regulator problem can be
written as

∫ tf

0

(
xT (t)Qxx(t) + uT (t)Quu(t)

)
dt+ xT (tf)Qfx(tf)

= xT (0)S(0)x(0)+

∫ tf

0

(
u(t)+Q−1

u BTS(t)x(t)
)T

Qu

(
u(t)+Q−1

u BTS(t)x(t)
)
dt,

from which it follows that the control law u(t) = −Kx(t) = −Q−1
u BTS(t)x(t) is

optimal. Does the proof hold when all matrices depend on time?
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