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Chapter 13

Robust Performance

However, by building an amplifier whose gain is deliberately made, say
40 decibels higher than necessary (10000 fold excess on energy basis),
and then feeding the output back on the input in such a way as to
throw away the excess gain, it has been found possible to effect extraordi-
nary improvement in constancy of amplification and freedom from non-
linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1934 [Bla34].

This chapter focuses on the analysis of robustness of feedback systems, a vast
topic for which we provide only an introduction to some of the key concepts. We
consider the stability and performance of systems whose process dynamics are un-
certain. We make use of generalizations of Nyquist’s stability criterion as a mech-
anism to characterize robust stability and performance. To do this we develop
ways to describe uncertainty, both in the form of parameter variations and in the
form of neglected dynamics. We also briefly mention some methods for designing
controllers to achieve robust performance.

13.1 Modeling Uncertainty

Harold Black’s quote illustrates that one of the key uses of feedback is to provide
robustness to uncertainty (“constancy of amplification”). It is one of the most
useful properties of feedback and is what makes it possible to design feedback
systems based on strongly simplified models. In this section we explore different
types of uncertainty in our knowledge of the dynamics of the system, including the
important problem of determining when two systems are similar from a controls
perspective.

Parametric Uncertainty

One form of uncertainty in dynamical systems is parametric uncertainty in which
the parameters describing the system are not precisely known. A typical example is
the variation of the mass of a car, which changes with the number of passengers and
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Figure 13.1: Responses of the cruise control system to a slope increase of 4◦ (a)
and the eigenvalues of the closed loop system (b). Model parameters are swept
over a wide range. The closed loop system is of second order.

the weight of the baggage. When linearizing a nonlinear system, the parameters
of the linearized model also depend on the operating conditions. It is straight-
forward to investigate the effects of parametric uncertainty simply by evaluating
the performance criteria for a range of parameters. Such a calculation reveals the
consequences of parameter variations. We illustrate by an example.

Example 13.1 Cruise control
The cruise control problem is described in Section 4.1, and a PI controller was
designed in Example 11.3. To investigate the effect of parameter variations, we
will choose a controller designed for a nominal operating condition corresponding
to mass m = 1600 kg, fourth gear (α = 12), and speed ve = 20 m/s; the controller
gains are kp = 0.5 and ki = 0.1. Figure 13.1a shows the velocity error e and
the throttle u when encountering a hill with a 4◦ slope with masses in the range
1600 < m < 2000 kg, gear ratios 3–5 (α = 10, 12, and 16), and velocity 10 ≤ v ≤ 40
m/s. The simulations were done using models that were linearized around the
different operating conditions. The figure shows that there are variations in the
response but that they are all quite reasonable. The largest velocity error is in
the range of 0.5–1.2 m/s, and the settling time is about 15 s. The control signal
is larger than 1 in some cases, which implies that the throttle is fully open. (A
full nonlinear simulation using a controller with windup protection is required if
we want to explore these cases in more detail.) The closed loop system has two
eigenvalues, shown in Figure 13.1b for the different operating conditions. We see
that the closed loop system is well damped in all cases. ∇

This example indicates that at least as far as parametric variations are con-
cerned, a design based on a simple nominal model will give satisfactory control.
The example also indicates that a controller with fixed parameters can be used in
all cases. Notice that we have not considered operating conditions in low gear and
at low speed, but cruise controllers are not typically used in these cases.
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Figure 13.2: Unmodeled dynamics in linear systems. Uncertainty can be repre-
sented using additive perturbations (a), multiplicative perturbations (b), or feed-
back perturbations (c). The nominal system is P , and ∆, δ, and ∆fb represent
unmodeled dynamics.

Unmodeled Dynamics

It is generally easy to investigate the effects of parametric variations. However,
there are other uncertainties that also are important, as discussed at the end of
Section 3.1. The simple model of the cruise control system captures only the dy-
namics of the forward motion of the vehicle and the torque characteristics of the
engine and transmission. It does not, for example, include a detailed model of the
engine dynamics (whose combustion processes are extremely complex) or the slight
delays that can occur in modern electronically-controlled engines (as a result of
the processing time of the embedded computers). These neglected mechanisms are
called unmodeled dynamics.

One way to account for unmodeled dynamics is by developing a more complex
model that includes additional details that are deemed important for control design.
Such models are commonly used for controller development, but substantial effort
is required to generate them. In addition, these models are themselves likely to
be uncertain, since the parameter values may vary over time or between units.
Performing parametric analysis on complex models can be very time-consuming,
especially if the parameter space is large.

An alternative is to investigate whether the closed loop system can be made
insensitive to generic forms of unmodeled dynamics. The basic idea is to augment
the nominal model with a bounded input/output transfer function that captures
the gross features of the unmodeled dynamics. For example, in the cruise control
example the model of the engine can be a static model that provides the torque
instantaneously and the augmented model can include a time delay with an un-
known but bounded value. Describing unmodeled dynamics with transfer functions
permits us to handle infinite-dimensional systems like time delays.

Figure 13.2 illustrates some ways in which unmodeled dynamics can be captured.
The transfer functions ∆, δ, ∆fb are taken as bounded input/output operators that
represent the unmodeled dynamics. For example, in Figure 13.2a we assume that
the transfer function of the process is P̃ (s) = P (s) + ∆(s), where P (s) is the
nominal simplified transfer function and ∆(s) is a transfer function that represents
the unmodeled dynamics in terms of additive uncertainty. If we can show that the
closed loop system is stable for all ∆(s) satisfying a given bound (e.g., |∆(s)| < ε),
then the system is said to be robustly stable.

Different representations are possible in addition to additive uncertainty. Fig-
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ure 13.2b shows a representation for multiplicative uncertainty and Figure 13.2c
represents feedback uncertainty. The specific form that is used depends on what
provides the best representation of the unmodeled dynamics. The different types
of uncertainty can also be related to each other:

δ =
∆

P
, ∆fb =

∆

P (P +∆)
=

δ

P (1 + δ)
.

We will return to these representations in the next section, where we develop con-
ditions for robust stability in the presence of unmodeled dynamics.

When Are Two Systems Similar?

A fundamental issue in describing robustness is to determine when two systems are
close. Given such a characterization, we can then attempt to describe robustness
according to how close the actual system must be to the model in order to still
achieve the desired levels of performance. This seemingly innocent problem is not
as simple as it may appear. A naive approach is to say that two systems are
close if their open loop responses are close. Even if this appears natural, there are
complications, as illustrated by the following examples.

Example 13.2 Systems similar in open loop but different in closed loop
The systems with the transfer functions

P1(s) =
k

s+ 1
, P2(s) =

k

(s+ 1)(sT + 1)2
(13.1)

have very similar open loop step responses for small values of T , as illustrated in
the upper plot in Figure 13.3a, which corresponds to T = 0.025 and k = 100.

The differences between the open loop step responses are barely noticeable in
the figure. Closing a feedback loop with unit gain (C = 1) around the systems gives
closed loop systems with the transfer functions

T1(s) =
k

s+ 1 + k
, T2(s) =

k

s3T 2 + (T 2 + 2T )s2T + (1 + 2T )s+ 1 + k
. (13.2)

We find that T1 is stable for k > −1 and T2 is stable for −1 < k < 2T + 4 + 2/T .
With the numerical values k = 100 and T = 0.025 the transfer function T1 is stable
and T2 is unstable, which is clearly seen in the closed loop step responses in the
lower plot in Figure 13.3a. ∇

Example 13.3 Systems different in open loop but similar in closed loop
Consider the systems

P1(s) =
k

s+ 1
, P2(s) =

k

s− 1
. (13.3)

The open loop responses are different because P1 is stable and P2 is unstable, as
shown in the upper plot in Figure 13.3b. Closing a feedback loop with unit gain
(C = 1) around the systems, we find that the closed loop transfer functions are

T1(s) =
k

s+ k + 1
, T2(s) =

k

s+ k − 1
, (13.4)

which are very close for large k, as shown in the lower plot in Figure 13.3b. ∇
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Figure 13.3: Determining when two systems are close. The plots in (a) show
a situation when the open loop responses are almost identical, but the closed
loop responses are very different. The processes are given by equation (13.1) with
k = 100 and T = 0.025. The plots in (b) show the opposite situation: the systems
are different in open loop but similar in closed loop. The processes are given by
equation (13.3) with k = 100.

The examples we have just discussed indicate that comparing time responses
may not be a good way to compare systems. We will next compare frequency
responses.

Example 13.4 Comparison of systems via frequency responses
Consider the systems

P1(s) =
2

(1 + 5s)3(1− 0.05s)
, P2(s) =

2

(1 + 5s)3(1 + 0.05s)
. (13.5)

Bode and Nyquist plots of these transfer functions are shown in Figure 13.4. The
figure shows that both systems have very similar Bode and Nyquist plots. In spite of
this, the closed loop systems obtained with unit feedback are very different. Neither
system has any zeros, but P1 has two poles in the left half-plane and one pole in
the right half-plane while P2 has all its poles in the left half-plane. Both 1 + P1

and 1 + P2 have winding number nw = 0. Since P1 has a pole in the right half-
plane it follows from the Nyquist criterion (Theorem 10.3) that the characteristic
polynomial of the closed loop system obtained with unit feedback has one zero in
the right half-plane (f = 1 + P1, nz,D = nw,Γ + np,D in the principle of variation
of the argument, Theorem 10.2). Thus the closed loop system using P1 is unstable
while the closed loop system using P2 is stable. ∇

The important lesson to learn from this example is that two systems may not be
close from the point of view of feedback even if their open loop frequency responses
are similar. It is also necessary that both systems satisfy the winding number
condition.
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Figure 13.4: Comparison of frequency response of P1(s) (solid) and P2(s)
(dashed). (a) Bode plot and (b) Nyquist plot.

The Vinnicombe Metric
!

Examples 13.2 and 13.3 show that comparing open loop time responses is not a
good way to judge closed loop behavior. Example 13.4 shows that it is necessary
to have a winding number condition if frequency responses are compared. We will
now introduce the Vinnicombe metric, which is the proper way to compare open
loop systems in a way that reflects their closed loop behavior. The metric is closely
related to the Nyquist plot; more information is available in [Vin93, Vin01].

We start by introducing the chordal metric, which is a function C × C → [0 1]
that maps two complex numbers to a real variable in the range 0 ≤ x ≤ 1. Applied
to the transfer functions P1(s) and P2(s) the chordal metric is defined as

dP1P2
(ω) :=

|P1(iω)− P2(iω)|√
1 + |P1(iω)|2

√
1 + |P2(iω)|2

. (13.6)

The chordal metric dP1P2
has a nice geometric interpretation, illustrated in Fig-

ure 13.5. The points P1(iω) and P2(iω) are projected onto a sphere with diameter
1 positioned at the origin of the complex plane (the Riemann sphere). The pro-
jection is the intersection of the sphere with a straight line from the point to the
north pole of the sphere (inverse stereographic projection). The chordal distance is
then the Euclidean distance between the two points on the sphere.

To define a metric between two transfer functions, Vinnicombe introduced the
following set C of rational transfer functions P1 and P2:

C =
{
P1, P2 : 1 + P1(iω)P2(−iω) &= 0∀ω,

nw,Γ(1 + P1(s)P2(−s)) + np,rhp(P1(s))− np,rhp(P2(−s)) = 0
}
,

(13.7)
where nw,Γ(f) is the winding number for the function f(s) around the Nyquist
contour Γ and np,rhp(f) is the number of poles of the f(s) in the open right half-
plane. (Compare with the corresponding conditions in Nyquist’s criterion in The-
orem 10.3.) The metric is then defined as follows.

Definition 13.1 (The ν-gap metric). Let P1(s) and P2(s) be rational transfer
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Figure 13.5: Geometric interpretation of the chordal metric d(P1, P2) on a
Nyquist plot with a Riemann sphere. At each frequency, the points on the Nyquist
curve for P1 (solid, starting at A) and P2 (dashed, starting at B) are projected
onto the sphere of diameter 1 positioned at the origin of the complex plane. The
projection of the point 1 − i is shown in the figure. The distance between the
two systems is defined as the maximum distance between the projections of P1(iω)
and P2(iω) over all frequencies ω. The figure is plotted for the transfer functions
P1(s) = 2/(s+ 1) and P2(s) = 2/(s− 1). (Diagram courtesy G. Vinnicombe.)

functions. The ν-gap metric is

δν(P1, P2) =

{
supω dP1P2

(ω), if (P1, P2) ∈ C,
1, otherwise,

(13.8)

where dP1P2
(ω) is given by equation (13.6).

We will also call this metric the Vinnicombe metric after its inventor. Vinni-
combe showed that δν(P1, P2) is indeed a metric. He extended it to multivariable
and infinite-dimensional systems, and he gave strong robustness results that will
be discussed later. There is a MATLAB command gapmetric for computing the
Vinnicombe metric.

Vinnicombe gave several interpretations of the winding number condition that
determines if (P1, P2) belong to C. He showed that the condition implies that
the closed loop system obtained when P1(s) is connected in a feedback loop with
P1(−s) has the same number of right half-plane poles as when P1(s) is connected
with P2(−s). A necessary condition is that the rational functions 1 + P1(s)P1(−s)
and 1 + P1(s)P2(−s) have the same number of zeros in the right half-plane. This
condition can be interpreted as a continuity condition: the transfer function P can
be continuously perturbed from P1 to P2 in such a way that there is no intermediate
transfer function P where dP1P (ω) = 1.

We illustrate the Vinnicombe metric by computing it for the systems in Exam-
ples 13.2 and 13.3.

Example 13.5 Vinnicombe metric for Example 13.2
The transfer functions P1 and P2 for the systems in Example 13.2 are given by
equation (13.1). We have

f(s) = 1 + P1(s)P2(−s) = 1 +
k2

(1− s2)(1− sT )2
, k = 100.
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Figure 13.6: Graphs of the function f(iω) = 1 + P1(iω)P2(−iω) for −∞ ≤
ω ≤ ∞. The plots for Example 13.2 with P1(s) = 100/(s + 1) and P2(s) =
100/((s+ 1)(0.025s+ 1)2 are shown in (a), with an enlargement in the area close
to the origin in (b). The plots for Example 13.3 with P1(s) = k/(s + 1) and
P2(s) = k/(−s + 1) are shown in (c), with gains k = 1.25 (outer), k = 1, and
k = 0.8 (inner). Values for positive ω are shown as solid lines and negative values
are shown as dashed lines.

The graph of f(iω) for −∞ ≤ ω ≤ ∞ is a closed contour in the right half-plane
that does not encircle the origin (see Figure 13.6a and 13.6b for an enlargement
of the region around the origin), hence nw,Γ(1 + P1(s)P2(−s)) = 0. In addition,
the transfer functions P1 and P2 have no poles in the right half-plane and we can
conclude that (P1, P2) ∈ C (equation (13.7)). An alternative to verify the winding
number condition is to compute the number of right half-plane zeros of the transfer
functions 1 + P1(s)P1(−s) and 1 + P1(s)P2(−s). A direct computation shows that
both transfer functions have one zero in the open right half-plane. It follows from
equation (13.8) that the Vinnicombe metric is δν(P1, P2) = 0.89, which is large
since 1.0 is as big as it can get, confirming that P1 and P2 are quite different. ∇

Example 13.6 Vinnicombe metric for Example 13.3
The transfer functions P1 and P2 for the systems in Example 13.3 are given by
equation (13.3). We have

1 + P1(iω)P2(−iω) = 1− k2

(1 + iω)2
= 1− k2(1− ω2)

(1 + ω2)2
+

2k2iω

(1 + ω2)2
.

The imaginary part of the function 1+P1(iω)P2(−iω) is zero for ω = 0 and ω = ∞
and the corresponding values of the real part are 1−k2 and 1. The function is thus
zero only for ω = 0 and k = 1. Furthermore

f(s) = 1 + P1(s)P2(−s) = 1− k2

(s+ 1)2
=

s2 + 2s+ 1− k2

(s+ 1)2
.

The function f(s) has a zero in the open right half-plane if k > 1. The winding
number of 1+P1(s)P2(−s) is 0 if k ≤ 1 and 1 if k > 1, as seen in Figure 13.6c. Since
P1 has no poles in the right half-plane and P2 has one pole in the right half-plane,
equation (13.8) implies that δν(P1, P2) = 1 if k ≤ 1.
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Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows
the stability margin sm = 1/Ms. The plot (b) shows the Nyquist curve and the
circle shows uncertainty due to stable additive process variations ∆.

We have thus found that (P1, P2) ∈ C if k > 1, and equation (13.6) implies that

dP1P2
(ω) =

2k

1 + k2 + ω2
.

The largest value occurs for ω = 0, and the Vinnicombe metric, equation (13.8),
becomes

δν(P1, P2) =






1 if k ≤ 1,
2k

1 + k2
if k > 1.

With k = 100 we get δν(P1, P2) = 0.02, indicating that the closed loop transfer
functions are very close, as illustrated in Figure 13.3b. ∇

13.2 Stability in the Presence of Uncertainty

Having discussed how to describe uncertainty and the similarity between two sys-
tems, we now consider the problem of robust stability: when can we show that
the stability of a system is robust with respect to process variations? This is an
important question since the potential for instability is one of the main drawbacks
of feedback. Hence we want to ensure that even if we have small inaccuracies in our
model, we can still guarantee stability and performance of the closed loop system.

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant way to study the effects of
uncertainty for linear systems. A simple criterion for a stable system is that the
Nyquist curve be sufficiently far from the critical point −1. Recall that the shortest
distance from the Nyquist curve to the critical point is sm = 1/Ms, where Ms is
the maximum of the sensitivity function and sm is the stability margin introduced
in Section 10.3. The maximum sensitivity Ms or the stability margin sm is thus a
good robustness measure, as illustrated in Figure 13.7a.
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We will now derive explicit conditions on the controller C such that stability is
guaranteed for process perturbations where |∆| is less than a given bound. Consider
a stable feedback system with a process P and a controller C. If the process is
changed from P to P+∆, the loop transfer function changes from PC to PC+C∆,
as illustrated in Figure 13.7b. The additive perturbation∆must be a stable transfer
function to satisfy the winding number condition in the Nyquist criterion. If we have
a bound on the size of ∆ (represented by the dashed circle in the figure), then the
system remains stable as long as the perturbed loop transfer function |1+(P+∆)C|
never reaches the critical point −1, since the number of encirclements of −1 remains
unchanged.

We will now compute an analytical bound on the allowable process disturbances.
The distance from the critical point −1 to the loop transfer function L = PC is
|1 + L|. This means that the perturbed Nyquist curve will not reach the critical
point −1 provided that |C∆| < |1 + L|, which is guaranteed if

|∆| <
∣∣∣
1 + PC

C

∣∣∣ =
∣∣∣
1 + L

C

∣∣∣ or |δ| < 1

|T | , where δ :=
∆

P
. (13.9)

This condition must be valid for all points on the Nyquist curve, i.e. pointwise
for all frequencies. The condition for robust stability can thus be written as

|δ(iω)| =
∣∣∣
∆(iω)

P (iω)

∣∣∣ <
∣∣∣
1 + L(iω)

L(iω)

∣∣∣ =
1

|T (iω)| for all ω ≥ 0. (13.10)

Notice that the condition is conservative in the sense that the critical perturbation is
in the direction toward the critical point −1. Larger perturbations can be permitted
in the other directions.

Robustness is normally defined as the margin to maintain stability. It is easy to
modify the criterion and obtain a robustness condition that guarantees a specified
stability margin (Exercise 13.6).

The condition in equation (13.10) allows us to reason about uncertainty without
exact knowledge of the process perturbations. Namely, we can verify stability for
any uncertainty ∆ that satisfies the given bound. From an analysis perspective,
this gives us a measure of the robustness for a given design. Conversely, if we
require robustness of a given level, we can attempt to choose our controller C such
that the desired level of robustness is available (by asking that T be small) in the
appropriate frequency bands.

Equation (13.10) is one of the reasons why feedback systems work so well in prac-
tice. The mathematical models used to design control systems are often simplified,
and the properties of a process may change during operation. Equation (13.10)
implies that the closed loop system will at least be stable for substantial variations
in the process dynamics.

It follows from equation (13.10) that the variations can be large for those fre-
quencies where T is small and that smaller variations are allowed for frequencies
where T is large. A conservative estimate of permissible process variations that will
not cause instability is given by

|δ(iω)| =
∣∣∣
∆(iω)

P (iω)

∣∣∣ <
1

|T (iω)| ≤
1

Mt
, (13.11)
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Figure 13.8: Robustness for a cruise controller. (a) The maximum relative error
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where Mt is the largest value of the complementary sensitivity

Mt = sup
ω

|T (iω)| =
∥∥∥

PC

1 + PC

∥∥∥
∞
. (13.12)

Reasonable values of Mt are in the range of 1.2 to 2. It is shown in Exercise 13.7
that if Mt = 2 then pure gain variations of 50% or pure phase variations of 30◦ are
permitted without making the closed loop system unstable.

Example 13.7 Cruise control
Consider the cruise control system discussed in Section 4.1. Using the parameters
from Example 6.11, the model of the car in fourth gear at speed 20 m/s is

P (s) =
1.32

s+ 0.01
,

and the controller is a PI controller with gains kp = 0.5 and ki = 0.1. Fig-
ure 13.8 plots the allowable size of the process uncertainty using the bound in
equation (13.10).

At low frequencies T → 1 and so the perturbations can be as large as the orig-
inal process (|δ| = |∆/P | < 1). The complementary sensitivity has its maximum
Mt = 1.17 at ωmt = 0.26, and hence this gives the lowest allowable process un-
certainty, with |δ| < 0.86 or |∆| < 4.36. Finally, at high frequencies, T → 0 and
hence the relative error can get very large. For example, at ω = 5 rad/s we have
|T (iω)| = 0.264, which means that the stability requirement is |δ| < 3.8. The
analysis clearly indicates that the system has good robustness and that the high-
frequency properties of the transmission system are not important for the design
of the cruise controller.

Another illustration of the robustness of the system is given in Figure 13.8b,
which shows the Nyquist curve of the loop transfer function L along with the
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Figure 13.9: Illustration of robustness to process perturbations. A system with
additive uncertainty (a) can be manipulated via block diagram algebra to one
with multiplicative uncertainty δ = ∆/P (b). Additional manipulations isolate
the uncertainty in a manner that allows application of the small gain theorem (c).

allowable perturbations. We see that the system can tolerate large amounts of
uncertainty and still maintain stability of the closed loop. ∇

The situation illustrated in the previous example is typical of many processes:
moderately small uncertainties are required only around the gain crossover frequen-
cies, but large uncertainties can be permitted at higher and lower frequencies. A
consequence of this is that a simple model that describes the process dynamics well
around the crossover frequency is often sufficient for design. Systems with many
resonant peaks are an exception to this rule because the process transfer function
for such systems may also have large gains for higher frequencies, as shown for
instance in Example 10.9.

The robustness condition given by equation (13.10) can be given another inter-
pretation by using the small gain theorem (Theorem 10.4). To apply the theorem
we start with block diagrams of a closed loop system with a perturbed process and
make a sequence of transformations of the block diagram that isolate the block
representing the uncertainty, as shown in Figure 13.9. The result is the two-block
interconnection shown in Figure 13.9c, which has the loop transfer function

L =
PC

1 + PC

∆

P
= T δ.

Equation (13.10) implies that the largest loop gain is less than 1 and hence the
system is stable via the small gain theorem.

The small gain theorem can be used to check robust stability for uncertainty in
a variety of other situations. Table 13.1 summarizes a few of the common cases;
the proofs (all via the small gain theorem) are left as exercises.

The circle criterion can also be used to understand robustness to nonlinear gain
variations, as illustrated by the following example.

Example 13.8 Robustness for sector-bounded nonlinearities
Consider a system with a nonlinear gain F (x) that can be isolated through appro-
priate manipulation of the block diagram, resulting in a system that is a feedback
composition of the nonlinear block F (x) and a linear part with the transfer function
H(s). If the nonlinearity is sector bounded,

klow x < F (x) < khigh x,
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Table 13.1: Conditions for robust stability for different types of uncertainty.

Process Uncertainty Type Robust Stability

P +∆ Additive ‖CS∆‖∞ < 1

P (1 + δ) Multiplicative ‖T δ‖∞ < 1

P/(1 +∆fb ·P ) Feedback ‖PS∆fb‖∞ < 1

and the nominal system has been designed to have maximum sensitivities Ms and
Mt, we can use the circle criterion to verify stability of the closed loop system. In
particular, the system can be shown to be stable for sector-bounded nonlinearities
with

klow =
Ms

Ms + 1
or

Mt − 1

Mt
, khigh =

Ms

Ms − 1
or

Mt + 1

Mt
.

With Ms = Mt = 1.4 we can thus permit gain variations from 0.3 to 3.5, and for
a design with Ms = Mt = 2 we can allow gain variations of 0.5 to 2 without the
system becoming unstable. ∇

The following example illustrates that it is possible to design systems that are
robust to parameter variations.

Example 13.9 Bode’s ideal loop transfer function
A major problem in the design of electronic amplifiers is to obtain a closed loop
system that is insensitive to changes in the gain of the electronic components. Bode
found that the loop transfer function

L(s) = ks−n, 1 ≤ n ≤ 5/3 (13.13)

had very useful robustness properties. The gain curve of the Bode plot is a straight
line with slope −n and the phase is constant argL(iω) = −nπ/2. The phase mar-
gin is thus ϕm = 90(2− n)◦ for all values of the gain k and the stability margin
is sm = sinπ(1− n/2). Bode called the transfer function the “ideal cut-off charac-
teristic” [Bod60, pp. 454–458]; we will call it Bode’s ideal loop transfer function in
honor of Bode. The transfer function cannot be realized with lumped physical com-
ponents unless n is an integer, but it can be approximated over a given frequency
range with a proper rational function for any n (Exercise 13.8). An operational
amplifier circuit that has the approximate transfer function G(s) = k/(s + a) is a
realization of Bode’s ideal transfer function with n = 1, as described in Example 9.2.
Designers of operational amplifiers go to great efforts to make the approximation
valid over a wide frequency range. ∇

Youla Parameterization
!

Since stability is such an essential property, it is useful to characterize all controllers
that stabilize a given process. Such a representation, which is called a Youla pa-
rameterization, is also very useful when solving design problems because it makes
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Figure 13.10: Block diagrams of Youla parameterizations for a stable process
(a) and an unstable process (b). Notice that the signal z is zero in steady state in
both cases.

it possible to search over all stabilizing controllers without the need to test stability
explicitly.

We will first derive Youla’s parameterization for a stable process with a rational
transfer function P . A system with a given complementary sensitivity function T
can be obtained by feedforward control with the stable transfer function Q where
T = PQ. Assume that we want to implement the transfer function T by feedback
with the controller C. Since T = PC/(1 + PC) = PQ, the controller transfer
function and its input-output relation are

C =
Q

1− PQ
, u = Q(r − y + Py). (13.14)

A straightforward calculation gives the transfer functions for the Gang of Four as

S = 1− PQ, PS = P (1− PQ), CS = Q, T = PQ.

These transfer functions are all stable if P and Q are stable and the controller given
by equation (13.14) is thus stabilizing. Indeed, it can be shown that all stabilizing
controllers for a stable process are in the form given by equation (13.14) for some
choice of Q.

The closed loop system with the controller (13.14) can be represented by the
block diagram in Figure 13.10a. Notice that the signal z is always zero in steady
state, because it is a subtraction of identical signals. Using block diagram algebra
we find from the figure that the transfer function of the closed loop system is PQ.
The fact that there are two blocks with transfer function P in parallel in the block
diagram implies that there are modes, corresponding to the poles of P , that are
not reachable and observable. These modes are stable because we assumed that P
was stable. Architectures similar to Figure 13.10a appear in the Smith predictor
and the internal model controller that will be discussed later in Section 15.4.

The scheme in Figure 13.10a cannot be used when the process is unstable but
we can make a similar construct. Consider a closed loop system where the process
is a rational transfer function P = np/dp, where dp and np are polynomials with
no common factors. Assume that the controller C = nc/dc, where dc and nc are
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polynomials without common factors, stabilizes the system in the sense that all
sensitivity functions are stable. By introducing stable polynomials fp and fc we
obtain

P =
np

dp
=

Np

Dp
, C =

nc

dc
=

Nc

Dc
, (13.15)

where Np = dp/fp, Dp = np/fp, Nc = nc/fc, and Dc = dc/fc are rational functions
with no zeros in the right half-plane (stable rational functions). The sensitivity
functions are

S =
1

1 + PC
=

DpDc

DpDc +NpNc
, PS =

P

1 + PC
=

NpDc

DpDc +NpNc
,

CS =
C

1 + PC
=

DpNc

DpDc +NpNc
, T =

PC

1 + PC
=

NpNc

DpDc +NpNc
.

The controller C is stabilizing if and only if the rational function DpDc+NpNc does
not have any zeros in the right half-plane. Letting Q be a stable rational function,
we observe that the closed loop poles do not change if the controller C is changed
by adding NpQ to Dc and subtracting DpQ from Nc, resulting in the controller

C =
Nc −DpQ

Dc +NpQ
, Dcu = Nc(r − y) +Q(Dpy −Npu). (13.16)

A block diagram of the closed loop system is shown in Figure 13.10b.
Figure 13.10b and 13.10a share the same basic structure, despite their difference

in appearance. In both cases we form a signal z that is zero in steady state and feed
it back into the system via the stable transfer function Q. The sensitivity functions
of the closed loop system are

S =
1

1 + PC
=

Dp(Dc +NpQ)

DpDc +NpNc
, PS =

P

1 + PC
=

Np(Dc +NpQ)

DpDc +NpNc
,

CS =
C

1 + PC
=

Dp(Nc −DpQ)

DpDc +NpNc
, T =

PC

1 + PC
=

Np(Nc −DpQ)

DpDc +NpNc
.

(13.17)

These transfer functions are all stable and equation (13.16) is therefore a parameter-
ization of controllers that stabilize the process P . Conversely it can be shown that
all stabilizing controllers can be represented by the controller (13.16); see [Vid85,
Section 3.1]. The controller C is a called a Youla parameterization of the controller
C.

The Youla parameterization is very useful for controller design because it charac-
terizes all controllers that stabilize a given process. The fact that the transfer func-
tion Q appears affinely in the expressions for the Gang of Four in equation (13.17)
is very useful if we want to use optimization techniques to find a transfer function
Q that yields desired closed loop properties.

13.3 Performance in the Presence of Uncertainty

So far we have investigated the risk for instability and robustness to process un-
certainty. We will now explore how responses to load disturbances, measurement
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Figure 13.11: Block diagram of a basic feedback loop. The external signals
are the reference signal r, the load disturbance v, and the measurement noise w.
The process output is y, and the control signal is u. The process P may include
unmodeled dynamics, such as additive perturbations.

noise, and reference signals are influenced by process variations. To do this we will
analyze the system in Figure 13.11, which is identical to the basic feedback loop
analyzed in Chapter 12.

Disturbance Attenuation

The sensitivity function S gives a rough characterization of the effect of feedback
on disturbances, as was discussed in Section 12.2. A more detailed characterization
is given by the transfer function from load disturbances to process output:

Gyv =
P

1 + PC
= PS. (13.18)

Load disturbances typically have low frequencies, and it is therefore important
that the transfer function Gyv is small for low frequencies. For processes P with
constant low-frequency gain and a controller with integral action it follows from
equation (13.18) that Gyv ≈ s/ki. The integral gain ki is thus a simple measure of
the attenuation of low-frequency load disturbances.

To find out how the transfer function Gyv is influenced by small variations in
the process transfer function we differentiate equation (13.18) with respect to P ,
yielding

dGyv

dP
=

1

(1 + PC)2
=

SP

P (1 + PC)
= S

Gyv

P
,

and it follows that
dGyv

Gyv
= S

dP

P
, (13.19)

where we write dG and dP as a reminder that this expression holds for small
variations.

In this form, we see that the relative error in the transfer function Gyu is deter-
mined by the relative error in the process transfer function, scaled by the sensitivity
function S. The response to load disturbances is thus insensitive to process varia-
tions for frequencies where |S(iω)| is small.

A drawback with feedback is that the controller feeds measurement noise into the
system. It is thus also important that the control actions generated by measurement
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noise are not too large. It follows from Figure 13.11 that the transfer function Guw

from measurement noise to controller output is given by

Guw = − C

1 + PC
= −T

P
. (13.20)

Since measurement noise typically has high frequencies, the transfer function Guw

should not be too large for high frequencies. The loop transfer function PC is typ-
ically small for high frequencies, which implies that Guw ≈ C for large s. To avoid
injecting too much measurement noise the high-frequency gain of the controller
transfer function C(s) should thus be small. This property is called high-frequency
roll-off. Low-pass filtering of the measured signal is a simple way to achieve this
property, and this is common practice in PID control; see Section 11.5.

To determine how the transfer function Guw is influenced by small variations in
the process transfer function, we differentiate equation (13.20) with respect to P :

dGuw

dP
=

d

dP

(
− C

1 + PC

)
=

C

(1 + PC)2
C = −T

Guw

P
.

Rearranging the terms gives
dGuw

Guw
= −T

dP

P
. (13.21)

If PC is small for high frequencies the complementary sensitivity function is also
small, and we find that process uncertainty has little influence on the transfer
function Guw for those frequencies.

Response to Reference Signals

The transfer function from reference to output is given by

Gyr =
PCF

1 + PC
= TF, (13.22)

which contains the complementary sensitivity function. To see how variations in P
affect the performance of the system, we differentiate equation (13.22) with respect
to the process transfer function:

dGyr

dP
=

CF

1 + PC
− PCFC

(1 + PC)2
=

CF

(1 + PC)2
= S

Gyr

P
,

and it follows that
dGyr

Gyr
= S

dP

P
. (13.23)

The relative error in the closed loop transfer function thus equals the product of the
sensitivity function and the relative error in the process. In particular, it follows
from equation (13.23) that the relative error in the closed loop transfer function is
small when the sensitivity is small. This is one of the useful properties of feedback.

As in the previous section, there are some mathematical assumptions that are
required for the analysis presented here to hold. As already stated, we require that
the perturbations ∆ be small (as indicated by writing dP ). Second, we require that
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Figure 13.12: Operational amplifier with uncertain dynamics. The circuit in (a)
is modeled using the transfer function G(s) to capture its dynamic properties and
it has a load at the output. The block diagram in (b) shows the input/output
relationships. The load is represented as a disturbance d applied at the output of
G(s).

the perturbations be stable, so that we do not introduce any new right half-plane
poles that would require additional encirclements in the Nyquist criterion. Also, as
before, this condition is conservative: it allows for any perturbation that satisfies
the given bounds, while in practice the perturbations may be more restricted.

Example 13.10 Operational amplifier circuit
To illustrate the use of these tools, consider the performance of an op amp-based
amplifier, as shown in Figure 13.12a. We wish to analyze the performance of the
amplifier in the presence of uncertainty in the dynamic response of the op amp
and changes in the loading on the output. We model the system using the block
diagram in Figure 13.12b, which is based on the derivation in Exercise 10.1.

Consider first the effect of unknown dynamics for the operational amplifier.
Letting the dynamics of the op amp be modeled as v2 = −G(s)v, it follows from
the block diagram in Figure 13.12b that the transfer function for the overall circuit
is

Gv2v1
= −R2

R1

G(s)

G(s) +R2/R1 + 1
.

We see that if G(s) is large over the desired frequency range, then the closed
loop system is very close to the ideal response α := R2/R1. Assuming G(s) =
b/(s+a), where b = ak is the gain-bandwidth product of the amplifier (as discussed
in Example 9.2), the sensitivity function and the complementary sensitivity function
become

S =
s+ a

s+ a+ αb
, T =

αb

s+ a+ αb
.

The sensitivity function around the nominal values tells us how the tracking re-
sponse varies as a function of process perturbations:

dGv2v1

Gv2v1

= S
dP

P
.

We see that for low frequencies, where S is small, variations in the bandwidth a or
the gain-bandwidth product b will have relatively little effect on the performance
of the amplifier (under the assumption that b is sufficiently large).

To model the effects of an unknown load, we consider the addition of a distur-
bance d at the output of the system, as shown in Figure 13.12b. This disturbance
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represents changes in the output voltage due to loading effects. The transfer func-
tion Gv2d = S gives the response of the output to the load disturbance, and we
see that if S is small, then we are able to reject such disturbances. The sensitivity
of Gv2d to perturbations in the process dynamics can be computed by taking the
derivative of Gv2d with respect to P :

dGv2d

dP
=

−C

(1 + PC)2
= −T

P
Gv2d =⇒ dGv2d

Gv2d
= −T

dP

P
.

Thus we see that the relative changes in disturbance rejection are roughly the same
as the process perturbations at low frequencies (when T is approximately 1) and
drop off at higher frequencies. However, it is important to remember that Gv2d

itself is small at low frequency, and so these variations in relative performance may
not be an issue in many applications. ∇

Analysis of the sensitivity to small process perturbations can performed for
many other system configurations. The analysis for the system in Figure 12.13,
where the reference signal response is improved by feedforward and the load dis-
turbance response is improved by feedforward from measured disturbances, is pre-
sented in Exercise 13.11.

13.4 Design for Robust Performance !

Control design is a rich problem where many factors have to be taken into account.
Typical requirements are that load disturbances should be attenuated, the controller
should inject only a moderate amount of measurement noise, the output should
follow variations in the command signal well, and the closed loop system should be
insensitive to process variations. For the system in Figure 13.11 these requirements
can be captured by specifications on the sensitivity functions S and T and the
transfer functions Gyv, Guw, Gyr, and Gur. Notice that it is necessary to consider
at least six transfer functions, as discussed in Section 12.1. The requirements are
mutually conflicting, and we have to make trade-offs. The attenuation of load
disturbances will be improved if the bandwidth is increased, but the noise injection
will be worse. The following example is an illustration.

Example 13.11 Nanopositioning system for an atomic force microscope
A simple nanopositioner with the process transfer function

P (s) =
ω2
0

s2 + 2ζω0s+ ω2
0

was explored in Example 10.9. It was shown that the system could be controlled
using an integral controller. The closed loop performance was poor because the gain
crossover frequency was limited to ωgc < 2ζω0(1−sm) to have good robustness with
the integral controller. It can be shown that little improvement is obtained by using
a PI controller. We will explore if better performance can be obtained with PID
control. As justified in Example 14.11 in the next chapter, we trying choosing a
controller zero that is near the fast stable process pole. The controller transfer
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Figure 13.13: Nanopositioning system control via cancellation of the fast pro-
cess pole. Gain curves for the Gang of Four for PID control with second-order
filtering (13.25) are shown by solid lines, and the dashed lines show results for an
PID controller without filtering (13.24).

function should thus be chosen as

C(s) =
kds2 + kps+ ki

s
=

ki
s

s2 + 2ζω0s+ ω2
0

ω2
0

, (13.24)

which gives kp = 2ζki/ω0 and kd = ki/ω2
0 . The loop transfer function becomes

L(s) = ki/s.
Figure 13.13 shows, in dashed lines, the gain curves for the Gang of Four for

a system designed with ki = 0.5. A comparison with Figure 10.14 shows that the
bandwidth is increased significantly from ωgc = 0.01 to ωgc = ki = 0.5. How-
ever, since the process pole is canceled, the system will be very sensitive to load
disturbances with frequencies close to the resonant frequency, as seen by the peak
in PS at ω/ω0 = 1. The gain curve of CS has a dip or a notch at the resonant
frequency ω0, which implies that the controller gain is very low for frequencies
around the resonance. The gain curve also shows that the system is very sensitive
to high-frequency noise. The system will likely be unusable because the gain goes
to infinity for high frequencies.

The sensitivity to high-frequency noise can be reduced by modifying the con-
troller to be

C(s) =
ki
s

s2 + 2ζω0s+ ω2
0

ω2
0(1 + sTf + (sTf)2/2)

, (13.25)

which has high-frequency roll-off. Selection of the constant Tf for the filter is a com-
promise between attenuation of high-frequency measurement noise and robustness.
A large value of Tf reduces the effects of sensor noise significantly, but it also reduces
the stability margin. Since the gain crossover frequency without filtering is ki, a
reasonable choice is Tf = 0.2/ki, as shown by the solid curves in Figure 13.13. The
plots of |CS(iω)| and |S(iω)| show that the sensitivity to high-frequency measure-
ment noise is reduced dramatically at the cost of a marginal increase of sensitivity.
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Notice that the poor attenuation of disturbances with frequencies close to the res-
onance is not visible in the sensitivity function because of the cancellation of the
resonant poles (but it can be seen in PS).

The designs thus far have the drawback that load disturbances with frequencies
close to the resonance are not attenuated, since |S(iω0)| is close to one. We will
now consider a design that actively attenuates the poorly damped modes. We start
with an ideal PID controller where the design can be done analytically, and we add
high-frequency roll-off. The loop transfer function obtained with this controller is

L(s) =
ω2
0(kds

2 + kps+ ki)

s(s2 + 2ζω0s+ ω2
0)

. (13.26)

The closed loop system is of third order, and its characteristic polynomial is

s3 + (kdω
2
0 + 2ζω0)s

2 + (kp + 1)ω2
0s+ kiω

2
0 . (13.27)

A general third-order polynomial can be parameterized as

s3 + (αc + 2ζc)ωcs
2 + (1 + 2αcζc)ω

2
cs+ αcω

3
c . (13.28)

The parameters αc and ζc give the relative configuration of the poles, and the pa-
rameter ωc gives their magnitudes, and therefore also the bandwidth of the system.

The identification of coefficients of equal powers of s with equation (13.27) gives
a linear equation for the controller parameters, which has the solution

kp =
(1 + 2αcζc)ω2

c

ω2
0

− 1, ki =
αcω3

c

ω2
0

, kd =
(αc + 2ζc)ωc

ω2
0

− 2ζc
ω0

. (13.29)

Adding high-frequency roll-off, the controller becomes

C(s) =
kds2 + kps+ k

s(1 + sTf + (sTf)2/2)
. (13.30)

If the PID controller is designed without the filter, the filter time constant must
be significantly smaller than Td to avoid introducing extra phase lag; a reasonable
value is Tf = Td/10 = 0.1 kd/k . If more filtering is desired it is necessary to account
for the filter dynamics in the design.

Figure 13.14 shows the gain curves of the Gang of Four for designs with ζc =
0.707, αc = 1, and ωc = ω0, 2ω0, and 4ω0. The figure shows that the largest values
of the sensitivity functions S and T are small. The gain curve for PS shows that
the load disturbances are now well attenuated over the whole frequency range, and
attenuation increases with increasing ω0. The gain curve for CS shows that large
control signals are required to provide active damping. The high gain of CS for
high frequencies also shows that low-noise sensors and actuators with a wide range
are required. The largest gains for CS are 19, 103, and 434 for ωc = ω0, 2ω0, and
4ω0, respectively. There is clearly a trade-off between disturbance attenuation and
controller gain. A comparison of Figures 13.13 and 13.14 illustrates the trade-offs
between control action and disturbance attenuation for the designs with cancellation
of the fast process pole and active damping. ∇
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Figure 13.14: Nanopositioner control using active damping. Gain curves for the
Gang of Four for PID control of the nanopositioner designed for ωc = ω0 (dash-
dotted), 2ω0 (dashed), and 4ω0 (solid). The controller has high-frequency roll-off
and has been designed to give active damping of the oscillatory mode. The different
curves correspond to different choices of magnitudes of the poles, parameterized
by ωc in equation (13.27).

It is highly desirable to have design methods that can guarantee robust perfor-
mance. Such design methods did not appear until the late 1980s. Many of these
design methods result in controllers having the same structure as the controller
based on state feedback and an observer. In the remainder of this section we pro-
vide a brief review of some of the techniques as a preview for those interested in
more specialized study.

Quantitative Feedback Theory

Quantitative feedback theory (QFT) is a graphical design method for robust loop
shaping that was developed by I. M. Horowitz [Hor91]. The idea is to first determine
a controller that gives a complementary sensitivity that is robust to process varia-
tions and then to shape the response to reference signals by feedforward. The idea
is illustrated in Figure 13.15a, which shows the level curves of the gain |T (iω)| of the
complementary sensitivity function on a Nyquist plot (this type of Nyquist plot is
also called a Hall chart). The complementary sensitivity function has unit gain on
the line ReL(iω) = −0.5. In the neighborhood of this line, significant variations in
process dynamics only give moderate changes in the complementary transfer func-
tion. The shaded part of the figure corresponds to the region 0.9 < |T (iω)| < 1.1.
To use the design method, we represent the uncertainty for each frequency by a
region and attempt to shape the loop transfer function so that the variation in T is
as small as possible. The design is often performed using the Nichols chart shown
in Figure 13.15b.
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Figure 13.15: Hall and Nichols charts. The Hall chart (a) is a Nyquist plot with
curves for constant gain (solid) and phase (dotted) of the complementary sensitivity
function T . The Nichols chart (b) is the conformal map of the Hall chart under the
transformation N = logL (with the scale flipped). The dashed curve is the line
where |T (iω)| = 1, and the shaded region corresponds to loop transfer functions
whose complementary sensitivity changes by no more than ±10%.

Linear Quadratic Control

One way to make the trade-off between the attenuation of load disturbances and
the injection of measurement noise is to design a controller that minimizes the cost
function

J =

∫ ∞

0

(
y2(t) + ρu2(t)

)
dt,

where ρ is a weighting parameter as discussed in Section 8.4. This cost function
gives a compromise between load disturbance attenuation and disturbance injection
because it balances control actions against deviations in the output. If all state
variables are measured, the controller is a state feedback u = −Kx as described in
Section 7.5. It has been shown that this controller is very robust: it has a phase
margin of at least 60◦ and an infinite gain margin. This controller is called a linear
quadratic regulator or LQR controller because the process model is linear and the
criterion is quadratic.

When all state variables are not measured, the state can be reconstructed using
an observer, as discussed in Section 8.3. It is also possible to introduce process
disturbances and measurement noise explicitly in the model and to reconstruct
the states using a Kalman filter, as discussed briefly in Section 8.4. The Kalman
filter has the same structure as the observer designed by eigenvalue assignment in
Section 8.3, but the observer gains L are now obtained by solving an optimization
problem.

The control law obtained by combining linear quadratic control with a Kalman
filter is called linear quadratic Gaussian control or LQG control. The Kalman filter
is optimal when the models for load disturbances and measurement noise are Gaus-
sian. There are efficient programs to compute these feedback and observer gains.
The basic task is to solve algebraic Riccati equations. For numerical calculations
we can use the MATLAB commands care for continuous time systems and dare
for discrete time systems. The are also MATLAB commands lqg, lqi, and kalman
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Figure 13.16: H∞ robust control formulation. (a) General representation of a
control problem used in robust control. The input u represents the control signal,
the input χ represents the external influences on the system, the output ξ is the
generalized error, and the output y is the measured signal. (b) Special case of the
basic feedback loop in Figure 13.11 where the reference signal is zero.

that perform the complete design.
It is interesting that the solution to the optimization problem leads to a con-

troller having the structure of a state feedback and an observer. The state feedback
gains depend on the parameter ρ, and the filter gains depend on the parameters in
the model that characterize process noise and measurement noise (see Section 8.4).

The nice robustness properties of state feedback are unfortunately lost when
the observer is added [Doy78]. There are parameters that give closed loop systems
with poor robustness, and hence there is a fundamental difference between directly
measuring the states of a system and reconstructing the states using an observer.

H∞ Control !

An elegant method for robust control design is called H∞ control because it can
be formulated as minimization of the H∞ norm of a matrix of transfer functions,
defined in equation (10.15). The basic ideas are simple, but the details are com-
plicated and we will therefore just give the flavor of the results. A key idea is
illustrated in Figure 13.16a, where the closed loop system is represented by two
blocks, the process P and the controller C as discussed in Section 12.1. The process
P has two inputs, the control signal u, which can be manipulated by the controller,
and the generalized disturbance χ, which represents all external influences, e.g.,
command signals, load disturbances, and measurement noise. The process has two
outputs, the generalized error ξ, which is a vector of error signals representing the
deviation of signals from their desired values, and the measured signal y, which can
be used by the controller to compute u. For a linear system and a linear controller
the closed loop system can be represented by a linear system

ξ = G(P (s), C(s))χ, (13.31)

which tells how the generalized error ξ depends on the generalized disturbances
χ. The control design problem is to find a controller C such that the gain of the
transfer function G is small even when the process has uncertainties. There are
many different ways to specify uncertainty and gain, giving rise to different designs
depending on the chosen norms.

To illustrate the ideas we will consider a regulation problem for a system where
the reference signal is assumed to be zero and the external signals are the load
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disturbance v and the measurement noise w, as shown in Figure 13.16b. The
generalized error is defined as ξ = (µ, η), where µ = v − u is the part of the load
disturbance that is not compensated by the controller and η is the process output.
The generalized input is χ = (v,−w) (the negative sign of w is not essential but
is chosen to obtain somewhat nicer equations). The closed loop system is thus
modeled by

ξ =


µ
η


 =




1

1 + PC

C

1 + PC
P

1 + PC

PC

1 + PC





 v
−w


 =: G(P,C)χ, (13.32)

which is a special case of equation (13.31). If C is stabilizing we have

‖G(P,C))‖∞ = sup
ω
σ̄(G) = sup

ω

√
(1 + |P (iω)|2)(1 + |C(iω)|2)

|1 + P (iω)C(iω)| , (13.33)

where σ̄ is the largest singular value. Notice that the elements of G are the Gang
of Four. The diagonal elements of G are the sensitivity functions S = 1/(1 + PC)
and T = PC/(1 + PC), which capture robustness. The off-diagonal elements
P/(1+PC) = Gyv and C/(1+PC) = −Guw represent the responses of the output
to load disturbances and of the control signal to measurement noise, and they
capture performance. If we minimize ‖G(P,C)‖∞, we thus balance performance
and robustness.

There are numerical methods for finding a stabilizing controller C that mini-
mizes ‖G(P,C)‖∞, if such a controller exists. This controller has the same structure
as the controller based on state feedback and an observer; see Figure 8.7 and The-
orem 8.3. The controller gains are given by algebraic Riccati equations. They can
be computed numerically by the MATLAB command hinfsyn.

The Generalized Stability Margin

In Section 13.2 we introduced the stability margin as sm = infω |1 + P (iω)C(iω)|
for systems such that C stabilizes P . The margin can be interpreted as the shortest
distance between the Nyquist plot of the loop transfer function PC and the critical
point −1, as shown in Figure 13.7a. We also found that sm = 1/Ms where Ms is
the maximum sensitivity. We now define the generalized stability margin

σm =






infω
|1 + P (iω)C(iω)|√

(1 + |P (iω)|2)(1 + |C(iω)|2)
if C stabilizes P ,

0 otherwise.
(13.34)

It can be shown that

inf
ω

|1 + P (iω)C(iω)|√
(1 + |P (iω)|2)(1 + |C(iω)|2)

= inf
ω

|P (iω) + 1/C(iω)|√
(1 + |P (iω)|2)(1 + |1/C(iω)|2)

,

and it follows that σm can be interpreted as the shortest chordal distance between
P (iω) and −1/C(iω). Furthermore equations (13.6) and (13.33) imply that

σm(P,C) =






1

‖G(P,C)‖∞
if C stabilizes P ,

0 otherwise.
(13.35)
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Using the generalized stability margin we have the following fundamental robustness
theorem, which is proved in [Vin01].

Theorem 13.1 (Vinnicombe’s robustness theorem). Consider a process with trans-
fer function P . Assume that the controller C is designed to give the generalized
stability margin σm. Then the controller C will stabilize all processes P1 such that
δν(P, P1) < σm(P,C), where δν is the Vinnicombe metric.

The theorem is a generalization of equation (13.11). The generalized stability
margins can be related to the classical gain and phase margins. It follows from
equation (13.34) that

|1 + P (iω)C(iω)|2 ≥ σ2
m(1 + |P (iω)|2)(1 + |C(iω)|2). (13.36)

If the Nyquist curve of the loop transfer function PC intersects the negative real
axis for some ω we have P (iω)C(iω) = −k for some 0 < k < 1 and equation (13.36)
becomes

|1− k|2 ≥ σ2
m(1 + |P (iω)|2 + |C(iω)|2 + k2) ≥ σ2

m(1 + k)2,

which implies that

k ≤ 1− σm
1 + σm

, gm =
1

k
≥ 1 + σm

1− σm
. (13.37)

If the loop transfer function intersects the unit circle so that the phase margin
is ϕm we have P (iω)C(iω) = ei(π+ϕm) = −eiϕm and equation (13.36) becomes

|1− eiϕm |2 ≥ σ2
m(1 + |P (iω)|2 + 1/|P (iω)|2 + 1) ≥ 4σ2

m,

where the last inequality follows from the fact that |x|+1/|x| ≥ 2. Since |1−eiϕm | =
2 sin(ϕm/2) (think geometrically) it follows that the above inequality can be written
as

4 sin(ϕm/2) ≥ 4σ2
m, ϕm ≥ 2 arcsinσm (13.38)

(compare with equation 10.7). For σm = 1/3, 1/2, 2/3 we have gm ≥ 2, 3, 5 and
ϕm ≥ 39◦, 60◦, 84◦.

Disturbance Weighting

H∞ control attempts to find a controller that minimizes the effect of external
signals (χ in Figure 13.16a or ν and w in Figure 13.16b) on the generalized error ξ,
in the sense that the largest singular value of the matrix ‖G(P,C)‖∞ is as small as
possible. The solution of the problem can be changed by introducing weights W ,
which is illustrated in Figure 13.17a.

Figures 13.17b and 13.17c show how the problem with a weight W can be
transformed into a problem of the same form as in Figure 13.17a. This allows the
weighted problem to be solved using the same tools as the unweighted problem. In
the transformed problem the process transfer function P is replaced by P = PW
and the controller transfer function is replaced by C = W−1C. The relation between
the transformed signals then becomes

ξ̄ =


µ̄
η̄







1

1 + P C

P

1 + P C

C

1 + P C

P C

1 + P C





 v̄
−w


 = G(P ,C)χ̄.
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Figure 13.17: Block diagrams that illustrate frequency weighting of load dis-
turbances. A frequency weight W is introduced on the load disturbance in (a).
Block diagram transformations are used in (b) to obtain a system in standard
form, which is redrawn in (c) using P = PW and C = W−1C.

Notice that PC = PC, which means that only the off diagonal block elements in
the matrix G(P ,C) are different from those in G(P,C). Weighting thus does not
change the sensitivity and complementary sensitivity functions. The matrix element
corresponding to load disturbances changes from P/(1+PC) to PW/(1+PC) and
the matrix element corresponding to measurement noise changes from C/(1+PC)
to CW−1/(1 + PC).

Having chosen the desired weight W , the solution to the weighted H∞ problem
gives the controller C. Transforming back then gives the real controller C = WC.
Choosing proper weights allows the designer to obtain a controller that reflects the
design specifications. If W is a scalar greater than one it means that we are increas-
ing the effect of the load disturbances and reducing the effect of the measurement
noise. The weighting can also be made frequency dependent. For example, choos-
ing the weight as W = k/s will automatically give a controller with integral action.
Similarly a weighting that emphasizes high frequencies will give a controller with
high-frequency roll-off. Frequency weighting allows the designer to modify the so-
lution to reflect the many different design specifications, making H∞ loop shaping
a very powerful design method.

Limits of Robust Design

There is a limit to what can be achieved by robust design. In spite of the nice
properties of feedback, there are situations where the process variations are so large
that it is not possible to find a linear controller that gives a robust system with
good performance. It is then necessary to use other types of controllers. In some
cases it is possible to measure a variable that is well correlated with the process
variations. Controllers for different parameter values can then be designed and the
corresponding controller can be chosen based on the measured signal. This type of
control design is called gain scheduling and it was discussed briefly in Section 8.5.
The cruise controller is a typical example where the measured signal could be gear
position and velocity. Gain scheduling is the common solution for high-performance
aircraft where scheduling is done based on Mach number and dynamic pressure.
When using gain scheduling, it is important to make sure that switches between
the controllers do not create undesirable transients (often referred to as the bumpless
transfer problem).

It is often not possible to measure variables related to the parameters, in which
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case automatic tuning and adaptive control can be used. In automatic tuning the
process dynamics are measured by perturbing the system, and a controller is then
designed automatically. Automatic tuning requires that parameters remain con-
stant, and it has been widely applied for PID control. It is a reasonable guess that
in the future many controllers will have features for automatic tuning. If param-
eters are changing, it is possible to use adaptive methods where process dynamics
are measured online.

13.5 Further Reading

The topic of robust control is a large one, with many articles and textbooks de-
voted to the subject. Robustness was a central issue in classical control as de-
scribed in the books by Bode [Bod45], James, Nichols, and Phillips [JNP47], and
Horowitz [Hor63]. Quantitative feedback theory (QFT) [Hor93] can be regarded
as an extension of Bode’s work. The interesting properties of Bode’s ideal loop
transfer function were rediscovered in the late 1990s, creating an interest in frac-
tional transfer functions [MCV+10]. It took a long time before the fundamental
question of when two systems are similar was clearly formulated. The gap metric
was introduced by Zames and El-Sakkary [ZES80], and Vidyasagar introduced the
graph metric a few year later [Vid84, Vid85].

The ν-gap metric, which is the proper notion, is due to Vinnicombe [Vin93,
Vin01]. Robustness was de-emphasized in the euphoria of the development of de-
sign methods based on optimization. The strong robustness of controllers based
on state feedback, shown by Anderson and Moore [AM90], contributed to the
optimism. The poor robustness of output feedback was pointed out by Rosen-
brock [RM71], Horowitz [Hor75], and Doyle [Doy78] and resulted in a renewed
interest in robustness. A major step forward was the development of design meth-
ods where robustness was explicitly taken into account, such as the seminal work
of Zames [Zam81].

Robust control was originally developed using powerful results from the theory of
complex variables, which gave controllers of high order. A major breakthrough was
made by Doyle, Glover, Khargonekar, and Francis [DGKF89], who showed that the
solution to the problem could be obtained using Riccati equations and that a con-
troller of low order could be found. This paper led to an extensive treatment of H∞
control, including books by Francis [Fra87], McFarlane and Glover [MG90], Doyle,
Francis, and Tannenbaum [DFT92], Green and Limebeer [GL95], Zhou, Doyle, and
Glover [ZDG96], Skogestad and Postlethwaite [SP05], and Vinnicombe [Vin01]. A
major advantage of the theory is that it combines much of the intuition from ser-
vomechanism theory with sound numerical algorithms based on numerical linear
algebra and optimization. The results have been extended to nonlinear systems by
treating the design problem as a game where the disturbances are generated by an
adversary, as described in the book by Basar and Bernhard [BB91]. Gain scheduling
and adaptation are discussed in the book by Åström and Wittenmark [ÅW08a].

Exercises

13.1 Consider systems with the transfer functions P1 = 1/(s+1) and P2 = 1/(s+
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a). Show that P1 can be changed continuously to P2 with bounded additive and
multiplicative uncertainty if a > 0 but not if a < 0. Also show that no restriction
on a is required for feedback uncertainty.

13.2 Consider systems with the transfer functions P1 = (s+ 1)/(s+ 1)2 and P2 =
(s + a)/(s + 1)2. Show that P1 can be changed continuously to P2 with bounded
feedback uncertainty if a > 0 but not if a < 0. Also show that no restriction on a
is required for additive and multiplicative uncertainties.

13.3 (Difference in sensitivity functions) Let T (P,C) be the complementary sensi-
tivity function for a system with process P and controller C. Show that

T (P1, C)− T (P2, C) =
(P1 − P2)C

(1 + P1C)(1 + P2C)
,

and compare with equation (13.6). Derive a similar formula for the sensitivity
function.

13.4 (Vinnicombe metrics) Consider the transfer functions

P1(s) =
k

4s+ 1
, P2(s) =

k

(2s+ 1)2
, P3(s) =

k

(s+ 1)4
.

Compute the Vinnicombe metric for all combinations of the transfer functions when
k = 1 and k = 2. Discuss the results.

13.5 (Sensitivity of feedback and feedforward) Consider the system in Figure 13.11
and let Gyr be the transfer function relating the measured signal y to the reference
r. Show that the sensitivities of Gyr with respect to the feedforward and feedback
transfer functions F and C are given by dGyr/dF = CP/(1+PC) and dGyr/dC =
FP/(1 + PC)2 = GyrS/C.

13.6 (Guaranteed stability margin) The inequality given by equation (13.10) guar-
antees that the closed loop system is stable for process uncertainties. Let s0m =
1/M0

s be a specified stability margin. Show that the inequality

|δ(iω)| < 1− s0m|S(iω)|
|T (iω)| =

1− |S(iω)|/M0
s

|T (iω)| , for all ω ≥ 0,

guarantees that the closed loop system has a stability margin greater than s0m for
all perturbations (compare with equation (13.10)).

13.7 (Stability margins) Consider a feedback loop with the process and the con-
troller having transfer functions P and C. Assume that the maximum sensitivity
is Ms = 2. Show that the phase margin is at least 30◦ and that the closed loop
system will be stable if the gain is changed by 50%.

13.8 Consider a process with the transfer function P (s) = k/(s(s+ 1)), where the
gain can vary between 0.1 and 10. A controller that has a phase margin close to
ϕm = 45◦ for the gain variations can be obtained by finding a controller that gives
the loop transfer function L(s) = 1/(s

√
s). Suggest how the transfer function can

be implemented by approximating it by a rational function.
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13.9 (Bode’s ideal loop transfer function) Bode’s ideal loop transfer function is
given in Example 13.9. Show that the phase margin is ϕm =180◦–90◦n and that
the stability margin is sm = sinπ(1− n/2). Make Bode and Nyquist plots of the
transfer function for n = 5/3.

13.10 (Ideal delay compensator) Consider a process whose dynamics are a pure
time delay with transfer function P (s) = e−s. The ideal delay compensator is a
controller with the transfer function C(s) = 1/(1− e−s). Show that the sensitivity
functions are T (s) = e−s and S(s) = 1− e−s and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

13.11 (Sensitivity of two degree-of-freedom controllers to process variations) Con-
sider the two degree-of-freedom controller shown in Figure 12.13, which uses feedfor-
ward compensation to provide improved response to reference signals and measured
disturbances. Show that the input/output transfer functions and the correspond-
ing sensitivities to process variations for the feedforward, feedback, and combined
controllers are given by

Controller Gyr
dGyr

Gyr
Gyv

dGyv

dP1

Feedforward (C = 0) Fm
dP
P

0 −P2

P1

Feedback (Fr, Fv = 0 ) TFm S
dP
P

S P2 −S
P2

P1

Feedforward and Feedback Fm S
dP
P

0 S
P2

P1

13.12 (H∞ control) Consider the matrix G(P,C) in equation (13.32). Show that
it has the singular values

σ1 = 0, σ2 = σ̄ = sup
ω

√
(1 + |P (iω)|2)(1 + |C(iω)|2)

|1 + P (iω)C(iω)| = ‖G(P,C)‖∞.

Also show that σ̄ = 1/δν(P,−1/C), which implies that 1/σ̄ is a generalization of
the closest distance of the Nyquist plot to the critical point and hence also serves
as a measure of the stability margin.

13.13 (Disturbance weighting) Consider an H∞ control problem with the distur-
bance weight W (P = PW and C = W−1C). Show that

‖G(P ,C)‖∞ ≥ sup
ω

(
|S(iω)|+ |T (iω)|

)
.


	Contents
	Preface to the Second Edition
	Preface to the First Edition
	1 Introduction
	1.1 What Is Feedback?
	1.2 What is Feedforward?
	1.3 What Is Control?
	1.4 Uses of Feedback and Control
	1.5 Feedback Properties
	1.6 Simple Forms of Feedback
	1.7 Combining Feedback with Logic
	1.8 Control System Architectures
	1.9 Further Reading
	 Exercises

	2 Feedback Principles
	2.1 Nonlinear Static Models
	2.2 Linear Dynamical Models
	2.3 Using Feedback to Attenuate Disturbances
	2.4 Using Feedback to Track Reference Signals
	2.5 Using Feedback to Provide Robustness
	2.6 Positive Feedback
	2.7 Further Reading
	 Exercises

	3 System Modeling
	3.1 Modeling Concepts
	3.2 State Space Models
	3.3 Modeling Methodology
	3.4 Modeling Examples
	3.5 Further Reading
	 Exercises

	4 Examples
	4.1 Cruise Control
	4.2 Bicycle Dynamics
	4.3 Operational Amplifier Circuits
	4.4 Computing Systems and Networks
	4.5 Atomic Force Microscopy
	4.6 Drug Administration
	4.7 Population Dynamics
	 Exercises

	5 Dynamic Behavior
	5.1 Solving Differential Equations
	5.2 Qualitative Analysis
	5.3 Stability
	5.4 Lyapunov Stability Analysis
	5.5 Parametric and Nonlocal Behavior
	5.6 Further Reading
	 Exercises

	6 Linear Systems
	6.1 Basic Definitions
	6.2 The Matrix Exponential
	6.3 Input/Output Response
	6.4 Linearization
	6.5 Further Reading
	 Exercises

	7 State Feedback
	7.1 Reachability
	7.2 Stabilization by State Feedback
	7.3 Design Considerations
	7.4 Integral Action
	7.5 Linear Quadratic Regulators
	7.6 Further Reading
	 Exercises

	8 Output Feedback
	8.1 Observability
	8.2 State Estimation
	8.3 Control Using Estimated State
	8.4 Kalman Filtering
	8.5 State Space Controller Design
	8.6 Further Reading
	 Exercises

	9 Transfer Functions
	9.1 Frequency Domain Modeling
	9.2 Determining the Transfer Function
	9.3 Laplace Transforms
	9.4 Block Diagrams and Transfer Functions
	9.5 Zero Frequency Gain, Poles, and Zeros
	9.6 The Bode Plot
	9.7 Further Reading
	 Exercises

	10 Frequency Domain Analysis
	10.1 The Loop Transfer Function
	10.2 The Nyquist Criterion
	10.3 Stability Margins
	10.4 Bode's Relations and Minimum Phase Systems
	10.5 Generalized Notions of Gain and Phase
	10.6 Further Reading
	 Exercises

	11 PID Control
	11.1 Basic Control Functions
	11.2 Simple Controllers for Complex Systems
	11.3 PID Tuning
	11.4 Integral Windup
	11.5 Implementation
	11.6 Further Reading
	 Exercises

	12 Frequency Domain Design
	12.1 Sensitivity Functions
	12.2 Performance Specifications
	12.3 Feedback Design via Loop Shaping
	12.4 Feedforward Design
	12.5 The Root Locus Method
	12.6 Design Example
	12.7 Further Reading
	 Exercises

	13 Robust Performance
	13.1 Modeling Uncertainty
	13.2 Stability in the Presence of Uncertainty
	13.3 Performance in the Presence of Uncertainty
	13.4 Design for Robust Performance
	13.5 Further Reading
	 Exercises

	14 Fundamental Limits
	14.1 System Design Considerations
	14.2 Bode's Integral Formula
	14.3 Gain Crossover Frequency Inequality
	14.4 The Maximum Modulus Principle
	14.5 Robust Pole Placement
	14.6 Nonlinear Effects
	14.7 Further Reading
	 Exercises

	15 Architecture and System Design
	15.1 Introduction
	15.2 System and Control Design
	15.3 Top-Down Architectures
	15.4 Bottom-Up Architectures
	15.5 Interaction
	15.6 Adaptation and Learning
	15.7 Control Design in Common Application Fields
	15.8 Further Reading

	Bibliography
	Index

