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Chapter Thirteen
Robust Performance

However, by building an amplifier whose gain is deliberately made, say 40 decibels higher
than necessary (10000 fold excess on energy basis), and then feeding the output back on the
input in such a way as to throw away that excess gain, it has been found possible to effect
extraordinary improvement in constancy of amplification and freedom from non-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1934 [Bla34].

This chapter focuses on the analysis of robustness of feedback systems, a vast
topic for which we provide only an introduction to some of the key concepts. We
consider the stability and performance of systems whose process dynamics are
uncertain and derive fundamental limits for robust stability and performance. To
do this we develop ways to describe uncertainty, both in the form of parameter
variations and in the form of neglected dynamics. We also briefly mention some
methods for designing controllers to achieve robust performance.

13.1 Modeling Uncertainty

Harold Black’s quote above illustrates that one of the key uses of feedback is to
provide robustness to uncertainty (“‘constancy of amplification”). It is one of the
most useful properties of feedback and is what makes it possible to design feed-
back systems based on strongly simplified models.

One form of uncertainty in dynamical systems is parametric uncertainty in
which the parameters describing the system are not precisely known. A typical
example is the variation of the mass of a car, which changes with the number of
passengers and the weight of the baggage. When linearizing a nonlinear system,
the parameters of the linearized model also depend on the operating conditions.
It is straightforward to investigate the effects of parametric uncertainty simply by
evaluating the performance criteria for a range of parameters. Such a calculation
reveals the consequences of parameter variations. We illustrate by a simple exam-
ple.

Example 13.1 Cruise control

The cruise control problem is described in Section 4.1, and a PI controller was
designed in Example 11.3. To investigate the effect of parameter variations, we
will choose a controller designed for a nominal operating condition corresponding
to mass m = 1600 kg, fourth gear (o = 12) and speed v, = 25 m/s; the controller
gains are k, = 0.72 and k; = 0.18. Figure 13.1a shows the velocity error e and
the throttle # when encountering a hill with a 3° slope with masses in the range
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Figure 13.1: Responses of the cruise control system to a slope increase of 3° (a) and the
eigenvalues of the closed loop system (b). Model parameters are swept over a wide range.
The closed loop system is of second order.

1600 < m < 2000 kg, gear ratios 3—5 (a = 10, 12 and 16) and velocity 10 <v <
40 m/s. The simulations were done using models that were linearized around the
different operating conditions. The figure shows that there are variations in the
response but that they are quite reasonable. The largest velocity error is in the
range of 0.2-0.6 m/s, and the settling time is about 15 s. The control signal is
marginally larger than 1 in some cases, which implies that the throttle is fully open.
A full nonlinear simulation using a controller with windup protection is required
if we want to explore these cases in more detail. The closed loop system has two
eigenvalues, shown in Figure 13.1b for the different operating conditions. We see
that the closed loop system is well damped in all cases. \%

This example indicates that at least as far as parametric variations are con-
cerned, a design based on a simple nominal model will give satisfactory control.
The example also indicates that a controller with fixed parameters can be used in
all cases. Notice that we have not considered operating conditions in low gear and
at low speed, but cruise controllers are not typically used in these cases.

Unmodeled Dynamics

It is generally easy to investigate the effects of parametric variations. However,
there are other uncertainties that also are important, as discussed at the end of Sec-
tion 3.3. The simple model of the cruise control system captures only the dynamics
of the forward motion of the vehicle and the torque characteristics of the engine
and transmission. It does not, for example, include a detailed model of the engine
dynamics (whose combustion processes are extremely complex) or the slight de-
lays that can occur in modern electronically controlled engines (as a result of the
processing time of the embedded computers). These neglected mechanisms are
called unmodeled dynamics.

Unmodeled dynamics can be accounted for by developing a more complex
model. Such models are commonly used for controller development, but substan-
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Figure 13.2: Unmodeled dynamics in linear systems. Uncertainty can be represented using
additive perturbations (left), multiplicative perturbations (middle) or feedback perturbations
(right). The nominal system is P, and A, § and Ag, represent unmodeled dynamics.

tial effort is required to develop them. An alternative is to investigate if the closed
loop system is sensitive to generic forms of unmodeled dynamics. The basic idea
is to describe the unmodeled dynamics by including a transfer function in the sys-
tem description whose frequency response is bounded but otherwise unspecified.
For example, we might model the engine dynamics in the cruise control example
as a system that quickly provides the torque that is requested through the throt-
tle, giving a small deviation from the simplified model, which assumed the torque
response was instantaneous. This technique can also be used in many instances
to model parameter variations, allowing a quite general approach to uncertainty
management.

In particular, we wish to explore if additional linear dynamics may cause dif-
ficulties. A simple way is to assume that the transfer function of the process is
P(s) + A, where P(s) is the nominal simplified transfer function and A represents
the unmodeled dynamics in terms of additive uncertainty. Different representa-
tions of uncertainty are shown in Figure 13.2. The relations between the different
representations of unmodeled dynamics are

A A )
O=p An= TP(PrA) . P(1+6)

When Are Two Systems Similar? The Vinnicombe Metric

A fundamental issue in describing robustness is to determine when two systems are
close. Given such a characterization, we can then attempt to describe robustness
according to how close the actual system must be to the model in order to still
achieve the desired levels of performance. This seemingly innocent problem is
not as simple as it may appear. A naive approach is to say that two systems are
close if their open loop responses are close. Even if this appears natural, there are
complications, as illustrated by the following examples.

Example 13.2 Similar in open loop but large differences in closed loop
The systems with the transfer functions

k k
A =7 PO =Goparm

have very similar open loop step responses for small values of 7', as illustrated in
the top plot in Figure 13.3a, which is plotted for 7 = 0.025 and k = 100. The dif-

(13.1)
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Figure 13.3: Determining when two systems are close. The plots in (a) show a situation
when the open loop responses are almost identical, but the closed loop responses are very
different. The processes are given by equation (13.1) with k = 100 and 7" = 0.025. The plots
in (b) show the opposite situation: the systems are different in open loop but similar in closed
loop. The processes are given by equation (13.2) with £ = 100.

ferences between the step responses are barely noticeable in the figure. The step re-
sponses with unit gain error feedback are shown in the bottom plot in Figure 13.3a.
Notice that one closed loop system is stable and the other one is unstable. \%

Example 13.3 Different in open loop but similar in closed loop
Consider the systems
k k
s+17 2(s) s—1
The open loop responses are very different because P; is stable and P, is unstable,
as shown in the top plot in Figure 13.3b. Closing a feedback loop with unit gain
around the systems, we find that the closed loop transfer functions are

(13.2)

P] (S)

k k
T = T =
1(S) S+k—|—]’ 2(5) S+k—]’
which are very close for large k, as shown in Figure 13.3b. \%

These examples show that if our goal is to close a feedback loop, it may be
very misleading to compare the open loop responses of the system.

Inspired by these examples we introduce the Vinnicombe metric, which is a
distance measure that is appropriate for closed loop systems. Consider two systems
with the transfer functions P; and P>, and define

. Py (i0) — Py (io)]
W) =S T RGP 1+ B@)P)

(13.3)
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Figure 13.4: Geometric interpretation of d(Py,P,). At each frequency, the points on the
Nyquist curve for P; (solid) and P, (dashed) are projected onto a sphere of radius 1 sitting
at the origin of the complex plane. The projection of the point 1 —i is shown. The distance
between the two systems is defined as the maximum distance between the projections of
Py (iw) and P> (iw) over all frequencies . The figure is plotted for the transfer functions
Pi(s)=2/(s+1) and P,(s) =2/(s — 1). (Diagram courtesy G. Vinnicombe.)

which is a metric with the property 0 < d(P;,P,) < 1. The number d(P;,P,) can
be interpreted as the difference between the complementary sensitivity functions
for the closed loop systems that are obtained with unit feedback around P; and P»;
see Exercise 13.3. The metric also has a nice geometric interpretation, as shown in
Figure 13.4, where the Nyquist plots of P; and P, are projected onto a sphere with
radius 1 sitting at the origin of the complex plane (called the Riemann sphere).
Points in the complex plane are projected onto the sphere by a line through the
point and the north pole (Figure 13.4). The distance d(Py, P;) is the longest chordal
distance between the projections of P; (iw) and P, (i®). The distance is small when
P (iw) and P, (i®) are both small or both large.

The distance d(P;,P,) has one drawback for the purpose of comparing the be-
havior of systems under feedback. If P is perturbed continuously from Pj to P,
there can be intermediate transfer functions P where d(P;,P) is 1 even if d(Py, P;)
is small (see Exercise 13.4). To explore when this could happen, we observe that

(1+P(iw)P(—iw))(1 + P(—iw) P (iw))
(1+|Pi(i@)])(1+ |P(i)[?) '

The right-hand side is zero, and hence d(P;,P) = 1 if 1 + P(iw)P;(—i®) = 0 for
some .

Some technical conditions are required to avoid the difficulty. Vinnicombe [VinO1]
introduced the set ¢ of all pairs (P;, P») such that the functions f; = 14 P;(s)P;(—s)
and fo = 1 + Py(s)Pi(—s) have the same number of zeros in the right half-plane.
He then defined

1—-d*(P,P) =

d(Pl,Pz), if (Pl,Pz) €€

. (13.4)
1, otherwise.

oy(P1,P) = {

which we call the Vinnicombe metric or v-gap metric. Vinnicombe showed that
Oy (P, Py) is a metric, gave strong robustness results based on the metric, and de-
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veloped the theory for systems with many inputs and many outputs. We illustrate
its use by computing the metric for the systems in the previous examples.

Example 13.4 Vinnicombe metric for Examples 13.2 and 13.3
For the systems in Example 13.2 we have

fils) =1+ P(s)Pi(=s) = ——5—,

1+ k>4 25T + (T? — 1)s*> — 25T — 572
= 14+ Py(s)Py(—s) =
fas) =1+ Pa(s)Pi (=) (1—s2)(1+2sT +52T2)

The function f; has one zero in the right half-plane. A numerical calculation
for k = 100 and T = 0.025 shows that the function f; has the roots 46.3, -86.3,
—20.0£60.0i. Both functions have one zero in the right half-plane, allowing us to
compute the norm (13.4). For T = 0.025 this gives 8, (P;,P,) = 0.98, which is a
quite large value. To have reasonable robustness Vinnicombe recommended values
less than 1/3.

For the system in Example 13.3 we have

1 +k>—s? 1 — k> =25+ 57
1+P(s)P(—=5) = ————, 1+P(s)Pi(—s)= Tt

1—s2
These functions have the same number of zeros in the right half-plane if £ > 1.
In this particular case the Vinnicombe metric is d(Py,P>) = 2k/(1 + k) (Exer-
cise 13.4) and with kK = 100 we get &,(P;,P») = 0.02. Figure 13.4 shows the
Nyquist curves and their projections for k = 2. Notice that d(Py, P;) is very small
for small k even though the closed loop systems are very different. It is therefore
essential to consider the condition (P}, Py) € €, as discussed in Exercise 13.4. V

13.2 Stability in the Presence of Uncertainty

Having discussed how to describe uncertainty and the similarity between two sys-
tems, we now consider the problem of robust stability: When can we show that
the stability of a system is robust with respect to process variations? This is an im-
portant question since the potential for instability is one of the main drawbacks of
feedback. Hence we want to ensure that even if we have small inaccuracies in our
model, we can still guarantee stability and performance of the closed loop system.

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant way to study the effects
of uncertainty for linear systems. A simple criterion is that the Nyquist curve be
sufficiently far from the critical point —1. Recall that the shortest distance from
the Nyquist curve to the critical point is s, = 1/M,, where M; is the maximum of
the sensitivity function and s, is the stability margin introduced in Section 10.3.
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Figure 13.5: Robust stability using the Nyquist criterion. The plot (a) shows that the shortest
distance to the critical point s, is a robustness measure. The plot (b) shows the Nyquist
curve of the nominal loop transfer function L, the circle shows its uncertainty due to additive
process variations A.

The maximum sensitivity M; or the stability margin s, is thus a good robustness
measure, as illustrated in Figure 13.5a.

We will now derive explicit conditions on the controller C such that stability is
guaranteed for process perturbations where |A| is less than a given bound. Consider
a stable feedback system with a process P and a controller C. If the process is
changed from P to P+ A, the loop transfer function changes from PC to PC + CA,
as illustrated in Figure 13.5b. If we have a bound on the size of A (represented by
the dashed circle in the figure), then the system remains stable as long the perturbed
loop tansfer function |1+ (P+ A)C| never reaches the critical point —1 point, since
the number of encirclements of —1 remain unchanged.

Some additional assumptions are required for the analysis to hold. Most impor-
tantly, we require that the process perturbations A be stable so that we do not in-
troduce any new right half-plane poles that would require additional encirclements
in the Nyquist criterion.

We will now compute an analytical bound on the allowable process distur-
bances. The distance from the critical point —1 to the loop transfer function L is
|1 + L|. This means that the perturbed Nyquist curve will not reach the critical
point —1 provided that |[CA| < |1+ L|, which is guaranteed if

1+PC’ 1
c 7|

1A| < ‘ 5] < where & := ’%’. (13.5)

This condition must be valid for all points on the Nyquist curve, i.e, pointwise
for all frequencies. The condition for robust stability can thus be written as
1

L |Alio)
16(iw)| = )P(iw)’ ey Tralez0 (13.6)

Notice that the condition is conservative because it follows from Figure 13.5 that
the critical perturbation is in the direction toward the critical point —1. Larger
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perturbations can be permitted in the other directions.

The condition in equation (13.6) allows us to reason about uncertainty without
exact knowledge of the process perturbations. Namely, we can verify stability for
any uncertainty A that satisfies the given bound. From an analysis perspective,
this gives us a measure of the robustness for a given design. Conversely, if we
require robustness of a given level, we can attempt to choose our controller C such
that the desired level of robustness is available (by asking that 7" be small) in the
appropriate frequency bands.

Equation (13.6) is one of the reasons why feedback systems work so well in
practice. The mathematical models used to design control systems are often simpli-
fied, and the properties of a process may change during operation. Equation (13.6)
implies that the closed loop system will at least be stable for substantial variations
in the process dynamics.

It follows from equation (13.6) that the variations can be large for those fre-
quencies where T is small and that smaller variations are allowed for frequencies
where T is large. A conservative estimate of permissible process variations that
will not cause instability is given by

3(i0)] = | 2o | <

ﬁta

Aliw)
P(iw)

where M, is the largest value of the complementary sensitivity
PC H
1+ PClle’

Reasonable values of M; are in the range of 1.2 to 2. It is shown in Exercise 13.5
that if M, = 2 then pure gain variations of 50% or pure phase variations of 30° are
permitted without making the closed loop system unstable.

M, = sup|T(iw)| = H (13.7)
(0]

Example 13.5 Cruise control
Consider the cruise control system discussed in Section 4.1. The model of the car
in fourth gear at speed 25 m/s is

1.38

P(s) = ——°
()= oo

and the controller is a PI controller with gains k, = 0.72 and k; = 0.18. Fig-
ure 13.6 plots the allowable size of the process uncertainty using the bound in
equation (13.6). At low frequencies, 7(0) = 1 and so the perturbations can be as
large as the original process (|6| = |A/P| < 1). The complementary sensitivity has
its maximum M; = 1.14 at @,,; = 0.35, and hence this gives the minimum allow-
able process uncertainty, with |8| < 0.87 or |A| < 3.47. Finally, at high frequencies,
T — 0 and hence the relative error can get very large. For example, at @ =5 we
have |T (iw)| = 0.195, which means that the stability requirement is |6| < 5.1. The
analysis clearly indicates that the system has good robustness and that the high-
frequency properties of the transmission system are not important for the design
of the cruise controller.
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Figure 13.6: Robustness for a cruise controller. On the left the maximum relative error 1/|T|
(solid) and the absolute error |P|/|T| (dashed) for the process uncertainty A. The Nyquist
curve is shown on the right as a solid line. The dashed circles show permissible perturbations
in the process dynamics, |A| = |P|/|T|, at the frequencies @ = 0, 0.0142 and 0.05.

Another illustration of the robustness of the system is given in the right dia-
gram in Figure 13.6, which shows the Nyquist curve of the transfer function of the
process and the uncertainty bounds A = |P|/|T| for a few frequencies. Note that
the controller can tolerate large amounts of uncertainty and still maintain stability
of the closed loop. \%

The situation illustrated in the previous example is typical of many processes:
moderately small uncertainties are required only around the gain crossover fre-
quencies, but large uncertainties can be permitted at higher and lower frequencies.
A consequence of this is that a simple model that describes the process dynamics
well around the crossover frequency is often sufficient for design. Systems with
many resonant peaks are an exception to this rule because the process transfer
function for such systems may have large gains for higher frequencies also, as
shown for instance in Example 10.9.

The robustness condition given by equation (13.6) can be given another inter-
pretation by using the small gain theorem (Theorem 10.4). To apply the theorem
we start with block diagrams of a closed loop system with a perturbed process and
make a sequence of transformations of the block diagram that isolate the block
representing the uncertainty, as shown in Figure 13.7. The result is the two-block
interconnection shown in Figure 13.7c, which has the loop transfer function

PC A
S 1+PCP

Equation (13.6) implies that the largest loop gain is less than 1 and hence the
system is stable via the small gain theorem.

The small gain theorem can be used to check robust stability for uncertainty in
a variety of other situations. Table 13.1 summarizes a few of the common cases;
the proofs (all via the small gain theorem) are left as exercises.

The following example illustrates that it is possible to design systems that are
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Figure 13.7: Tllustration of robustness to process perturbations. A system with additive un-
certainty (left) can be manipulated via block diagram algebra to one with multiplicative
uncertainty 6 = A/P (center). Additional manipulations isolate the uncertainty in a manner
that allows application of the small gain theorem (right)

robust to parameter variations.

Example 13.6 Bode’s ideal loop transfer function

A major problem in the design of electronic amplifiers is to obtain a closed loop
system that is insensitive to changes in the gain of the electronic components.
Bode found that the loop transfer function L(s) = ks™", with 1 < n <5/3, was
an ideal loop transfer function. The gain curve of the Bode plot is a straight line
with slope —n and the phase is constant argL(i®) = —nm /2. The phase margin
is thus ¢, = 90(2—n)° for all values of the gain k and the stability margin is
sm = sinm(1 —n/2). This transfer function cannot be realized with physical com-
ponents unless 7 is an integer, but it can be approximated over a given frequency
range with a proper rational function (Exercise 13.7) for any n. An operational am-
plifier circuit that has the approximate transfer function G(s) = k/(s+a) is a real-
ization of Bode’s ideal transfer function with n = 1, as described in Example 9.3.
Designers of operational amplifiers go to great efforts to make the approximation
valid over a wide frequency range. \%

Youla Parameterization

Since stability is such an essential property, it is useful to characterize all con-
trollers that stabilize a given process. Such a representation, which is called a Youla
parameterization, is very useful when solving design problems because it makes it
possible to search over all stabilizing controllers without the need to test stability
explicitly.

Table 13.1: Conditions for robust stability for different types of uncertainty

Process Uncertainty Type  Robust Stability
P+A Additive ICSAl < 1
P(1+49) Multiplicative 178 < 1

P/(1+Ag-P) Feedback [[PSAR ||l < 1
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Figure 13.8: Youla parameterization. Block diagrams of Youla parameterizations for a stable
system (a) and an unstable system (b). Notice that the signal v is zero in steady state.

We will first derive Youla’s parameterization for a stable process with a rational
transfer function P. A system with the complementary sensitivity function 7" can
be obtained by feedforward control with the stable transfer function Q if T = PQ.
Notice that 7 must have the same right half-plane zeros as P since Q is stable.
Now assume that we want to implement the complementary transfer function 7
by using unit feedback with the controller C. Since T = PC/(1 + PC) = PQ, it
follows that the controller transfer function is

_ 0
C=iho

A straightforward calculation gives

S=1-PQ, PS=P(1-PQ), CS=0Q, T=PQ.

(13.8)

These transfer functions are all stable if P and Q are stable and the controller given
by equation (13.8) is thus stabilizing. Indeed, it can be shown that all stabilizing
controllers are in the form given by equation (13.8) for some choice of Q. The
parameterization is illustrated by the block diagrams in Figure 13.8a. Notice that
the signal v is always zero.

A similar characterization can be obtained for unstable systems. Consider a
process with a rational transfer function P(s) = a(s)/b(s), where a(s) and b(s) are
polynomials. By introducing a stable polynomial c(s), we can write

b B

a(s)  A(s)
where A(s) = a(s)/c(s) and B(s) = b(s)/c(s) are stable rational functions. Simi-
larly we introduce the controller Cy(s) = Go(s)/Fo(s), where Fy(s) and Go(s) are
stable rational functions. We have

1 AF() BFO
SO — - b} PSO - = I D)
1+PCy AFy+ BGy AFy+ BGy
AG BG
CoSo = — o, Ty :

~ AFy+BGy’
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Figure 13.9: Block diagram of a basic feedback loop. The external signals are the reference
signal r, the load disturbance v and the measurement noise w. The process output is y, and
the control signal is u. The process P may include unmodeled dynamics, such as additive
perturbations.

The controller Cy is stabilizing if and only if the rational function AFy + BG( does
not have any zeros in the right half-plane. Let Q be a stable rational function and
consider the controller G "
_ Gt o (13.9)
Fy— OB

The Gang of Four for P and C is
A(Fy— OB B(Fp — OB

- AFy+BGy’  AFy+BGy’
CS_A(G0+QA) T B(Go+QA)
a AFy+ BGy ’ n AFy+ BGy ’

All these transfer functions are stable because A, B, Iy and G are stable and AFy +
BGy does not have any zeros in the right half plane. The controller C given by
(13.9) thus stabilizes the closed loop system for any stable Q. A block diagram of
the closed loop system with the controller C is shown in Figure 13.8b. Notice that
the signal v is zero.

13.3 Performance in the Presence of Uncertainty

So far we have investigated the risk for instability and robustness to process un-
certainty. We will now explore how responses to load disturbances, measurement
noise and reference signals are influenced by process variations. To do this we will
analyze the system in Figure 13.9, which is identical to the basic feedback loop
analyzed in Chapter 12.

Disturbance Attenuation

The sensitivity function S gives a rough characterization of the effect of feedback
on disturbances, as was discussed in Section 12.3. A more detailed characterization



13.3. PERFORMANCE IN THE PRESENCE OF UNCERTAINTY 13-13

is given by the transfer function from load disturbances to process output:

P
Ow=17pc ="
Load disturbances typically have low frequencies, and it is therefore important
that the transfer function Gy, is small for low frequencies. For processes P with
constant low-frequency gain and a controller with integral action it follows from
equation (13.10) that Gy, = s/k;. The integral gain ; is thus a simple measure of
the attenuation of low frequency load disturbances.
To find out how the transfer function Gy, is influenced by small variations in
the process transfer function we differentiate equation (13.10) with respect to P,
yielding

(13.10)

dG,, 1 SP Gy

dP ~ (1+PC)2_ P(1+PC) " P’

and it follows that 4G, AP
G = S 7 (13.11)
w
The response to load disturbances is thus insensitive to process variations for fre-
quencies where |S(i®)]| is small.

A drawback with feedback is that the controller feeds measurement noise into
the system. It is thus also important that the control actions generated by measure-
ment noise are not too large. It follows from Figure 13.9 that the transfer function
G, from measurement noise to controller output is given by

C T

spc- P (13.12)
Since measurement noise typically has high frequencies, the transfer function G,
should not be too large for high frequencies. The loop transfer function PC is typ-
ically small for high frequencies, which implies that G,,, ~ C for large s. To avoid
injecting too much measurement noise the high frequency gain of the controller
transfer function C(s) should thus be small. This property is called high-frequency
roll-off. In PID control is is common practice to low-pass filter the measured sig-
nal; see Section 11.5.

To determine how the transfer function G,,, is influenced by small variations in
the process transfer, we differentiate equation (13.12):

Guw =

dGwy _d (_C \__C . Gu
dPp dP\ 1+PC) (1+PC)* P
Rearranging the terms gives
dGy, dP
=—-T—. (13.13)
GMW P

Since the complementary sensitivity function is also small for high frequencies,
we find that process uncertainty has little influence on the transfer function G,
for frequencies where measurements are important.
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Figure 13.10: Operational amplifier with uncertain dynamics. The circuit on the left is mod-
eled using the transfer function G(s) to capture its dynamic properties and it has a load at
the output. The block diagram on the right shows the input/output relationships. The load is
represented as a disturbance d applied at the output of G(s).

Reference Signal Tracking

The transfer function from reference to output is given by

. — PCr 1

71+ PC '

which contains the complementary sensitivity function. To see how variations in P
affect the performance of the system, we differentiate equation (13.14) with respect

to the process transfer function:
dGy,  CF PCFC CF Gyr

— — — =9
dP  1+PC (14+PC)? (1+PC)? P’
and it follows that

(13.14)

Gy, _ (AP
Gy P

The relative error in the closed loop transfer function thus equals the product of
the sensitivity function and the relative error in the process. In particular, it follows
from equation (13.15) that the relative error in the closed loop transfer function is
small when the sensitivity is small. This is one of the useful properties of feedback.

As in the previous section, there are some mathematical assumptions that are
required for the analysis presented here to hold. As already stated, we require that
the perturbations A be small (as indicated by writing dP). Second, we require that
the perturbations be stable, so that we do not introduce any new right half-plane
poles that would require additional encirclements in the Nyquist criterion. Also, as
before, this condition is conservative: it allows for any perturbation that satisfies
the given bounds, while in practice the perturbations may be more restricted.

(13.15)

Example 13.7 Operational amplifier circuit
To illustrate the use of these tools, consider the performance of an op amp-based
amplifier, as shown in Figure 13.10. We wish to analyze the performance of the
amplifier in the presence of uncertainty in the dynamic response of the op amp
and changes in the loading on the output. We model the system using the block
diagram in Figure 13.10b, which is based on the derivation in Example 10.1.
Consider first the effect of unknown dynamics for the operational amplifier.
Letting the dynamics of the op amp be modeled as v; = —G(s)v, it then follows
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from the block diagram in Figure 13.10b that the transfer function for the overall
circuit is

Rz G(S)

R G(S) +R2/R1 +1

Gv2v1 =

We see that if G(s) is large over the desired frequency range, then the closed loop
system is very close to the ideal response & = R, /R|. Assuming G(s) =b/(s+a),
where b is the gain-bandwidth product of the amplifier, as discussed in Exam-
ple 9.3, the sensitivity function and the complementary sensitivity function become

_ sta T ab
~ s+a+ab’ C statab
The sensitivity function around the nominal values tells us how the tracking re-

sponse response varies as a function of process perturbations:

dGy, _ (dP
Gy P

We see that for low frequencies, where S is small, variations in the bandwidth a or
the gain-bandwidth product b will have relatively little effect on the performance
of the amplifier (under the assumption that b is sufficiently large).

To model the effects of an unknown load, we consider the addition of a dis-
turbance at the output of the system, as shown in Figure 13.10b. This disturbance
represents changes in the output voltage due to loading effects. The transfer func-
tion Gy4 = § gives the response of the output to the load disturbance, and we see
that if S is small, then we are able to reject such disturbances. The sensitivity of G4
to perturbations in the process dynamics can be computed by taking the derivative
of G4 with respect to P:

dG,y ~ —C T dG,y  _dP

P~ (1+pC2 p ™ Gya P

Thus we see that the relative changes in the disturbance rejection are roughly the
same as the process perturbations at low frequency (when 7T is approximately 1)
and drop off at higher frequencies. However, it is important to remember that G,y
itself is small at low frequency, and so these variations in relative performance may
not be an issue in many applications. \%

13.4 Robust Pole Placement

In Chapters 7 and 8 we saw how to design controllers by setting the locations
of the eigenvalues of the closed loop system. If we analyze the resulting system
in the frequency domain, the closed loop eigenvalues correspond to the poles of
the closed loop transfer function and hence these methods are often referred to as
design by pole placement.
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State space design methods, like many methods developed for control system
design, do not explicitly take robustness into account. In such cases it is essen-
tial to always investigate the robustness because there are seemingly reasonable
designs that give controllers with poor robustness. We illustrate this by analyzing
controllers designed by state feedback and observers. The closed loop poles can
be assigned to arbitrary locations if the system is observable and reachable. How-
ever, if we want to have a robust closed loop system, the poles and zeros of the
process impose severe restrictions on the location of the closed loop poles. Some
examples are first given; based on the analysis of these examples we then present
design rules for robust pole (eigenvalue) placement.

Slow Stable Process Zeros

We will first explore the effects of slow stable zeros, and we begin with a simple
example.

Example 13.8 Vehicle steering
Consider the linearized model for vehicle steering in Example 9.8, which has the

transfer function 0.554 1
Ss
P(s) = —a

A controller based on state feedback was designed in Example 7.4, and state feed-
back was combined with an observer in Example 8.4. The system simulated in
Figure 8.8 has closed loop poles specified by @w. = 0.3, {. = 0.707, ®, = 7 and
&, = 9. Assume that we want a faster closed loop system and choose @. = 10,
& =0.707, ®, =20 and {, = 0.707. Using the state representation in Example 8.3,
a pole placement design gives state feedback gains k; = 100 and k, = —35.86 and
observer gains [; = 28.28 and [, = 400. The controller transfer function is

C(s) —11516s + 40000
s) = )
§2+42.454+6657.9

Figure 13.11 shows Nyquist and Bode plots of the loop transfer function. The
Nyquist plot indicates that the robustness is poor since the loop transfer function is
very close to the critical point —1. The phase margin is 7° and the stability margin
is s, = 0.077. The poor robustness shows up in the Bode plot, where the gain
curve hovers around the value 1 and the phase curve is close to —180° for a wide
frequency range. More insight is obtained by analyzing the sensitivity functions,
shown as solid lines in Figure 13.12. The maximum sensitivities are My = 13 and
M; = 12, indicating that the system has poor robustness.

At first sight it may be surprising that a controller where the nominal closed
system has well damped poles and zeros is so sensitive to process variations. We
have an indication that something is unusual because the controller has a slow zero
at s = 3.5, recall that the observer and controller poles have @, = 10 and @, = 20.
To understand what happens, we will investigate the reason for the peaks of the
sensitivity functions.
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Figure 13.11: Observer-based control of steering. The Nyquist plot (left) and Bode plot
(right) of the loop transfer function for vehicle steering with a controller based on state
feedback and an observer. The controller provides stable operation, but with very low gain
and phase margin.

Let the transfer functions of the process and the controller be

_n (s) B ne(s)
PO=aw Y aty

where n,(s), nc(s), d,(s) and d.(s) are the numerator and denominator polynomi-

als. The complementary sensitivity function is

__Pc _ np(s)ne(s)
1+PC  dy(s)dc(s)+np(s)ne(s)

T(s)

The poles of T'(s) are the poles of the closed loop system and the zeros are the
zeros of the process and of the controller. A Bode plot of the gain curve of T is
shown in Figure 13.12a. We have 7' (0) = 1, because L(0) = P(0)C(0) = oo, due
to the double integrator of P. The gain |7 (i®)| increases for increasing @ due to
the process zero at @ = 2. It increases further at the controller zero at @ = 3.5,
and it does not start to decrease until the closed loop poles appear at @ = 10 and

0 0 /\
=10 === — 10 = -
§ N N § 7 ’
= - AN = 7
=102k Original N 0 e |
— — —Improved N ,
10” 10° 10" 10°

Frequency o [rad/s]

Frequency o [rad/s]

Figure 13.12: Gain curves of Bode plots for the sensitivity functions of observer-based
control of vehicle steering. The complementary sensitivity function is shown in (a) and the
sensitivity function in (b). The plots for the original controller with @, = 10, {. = 0.707,
@, = 20, £, = 0.707 is shown in solid lines and the improved controller with . = 10,
£ = 2.6 is shown in dashed lines.
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@ = 20. The gain of the complementary sensitivity function has a peak indicating
poor sensitivity of the closed loop system.

The peak of the complementary sensitivity function can be avoided by assign-
ing a closed loop pole at the slow process zero or close to it. We can achieve this
by choosing @, = 10 and {. = 2.6, which gives closed loop poles at s = —2 and

s = —50. The controller transfer function then becomes
3628s 440000 s+11.02
C(s) = = 3628 .
() = 580,285+ 156.56 (5+2)(s+78.28)

The sensitivity functions are shown by dashed lines in Figure 13.12b. The closed
loop system has the maximum sensitivities My = 1.34 and M, = 1.41, which indi-

cate good robustness. Notice that the controller has a pole at s = —2 that cancels
the slow process zero. The design can be done simply by first canceling the slow
stable process zero and then designing the controller. \%

One lesson from the example is that it is necessary to choose closed loop poles
that are equal to or close to slow stable process zeros. Another lesson is that slow
unstable process zeros impose limitations on the achievable bandwidth, as already
noted in Section 12.6.

Fast Stable Process Poles
The next example shows the effect of fast stable poles.

Example 13.9 Fast system poles
Consider a PI controller for a first-order system, where the process and the con-
troller have the transfer functions P(s) = b/(s+a), with a > 0, and C(s) =k, +
ki/s. The loop transfer function is

b(kps +k;)

L(s) =
(s) s(s+a)
and the closed loop characteristic polynomial is

s(s+a) +b(kys +k;) = s>+ (a+bk,)s + kib.

)

If we specify the desired closed loop poles should be —p; and —p;, we find that
the controller parameters are given by

Pitp2—a P12
ky=—"—7"—— ki=——.
P b ) 1 b
The sensitivity functions are then
~ s(s+a) _(pr+p2—a)s+pip2
=77~ Tb)=
(s+p1)(s+p2) (s+p1)(s+p2)

Assume that the process pole —a is much more negative than the closed loop poles
—p1 and —p», say, p; < p2 < a. Notice that the proportional gain k), is negative
and that the controller has a zero in the right half-plane if a > p; + p», an indication
that the system has bad properties.
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Figure 13.13: Gain curves of Bode plots of the sensitivity function S for designs with p; <
p2 <a(left)yand a < p; < p (right). The solid lines are the true sensitivities, and the dashed
lines are the asymptotes.

Next consider the sensitivity function, which is 1 for high frequencies. Fig-
ure 13.13a shows that the sensitivity increases for @ = a corresponding to the
process pole. The sensitivity does not decrease until the breakpoints of closed
loop poles are reached, resulting in a large sensitivity peak that is approximately
a/ p>. The gain of the sensitivity function is shown in Figure 13.13afora =0 =1,
p1 = 0.05 and p, = 0.2. Notice the high-sensitivity peak. For comparison we also
show the gain curve for the case when the closed loop poles (p; =5, p» = 20) are
faster than the process pole (@ = 1) in Figure 13.13b.

The problem with poor robustness can be avoided by choosing one closed loop
pole equal to the process pole, i.e., p» = a. The controller gains then become

P1 api
k,=— ki=—
b ) 1 b b
which means that the fast process pole is canceled by a controller zero at s = —a.
The loop transfer function and the sensitivity functions are
bk s bk
L(s)=—" S T(s)=—2>"—.
(S) Y (S) (S) s _|__ bkp

s s+ bk,’
The maximum sensitivities are now less than 1 for all frequencies. Notice that this
is possible because the process transfer function goes to zero as s . \%

Design Rules for Pole Placement

Based on the insight gained from the examples, it is now possible to obtain design
rules that give controllers with good robustness. Consider the expression (13.7) for
maximum complementary sensitivity, repeated here:

PC H
14 PClle’

M, = sup|T (i) = |
[0)

Let @, be the desired gain crossover frequency. Assume that the process has ze-
ros that are slower than @y.. The complementary sensitivity function is 1 for low
frequencies, and it increases for frequencies close to the process zeros unless there
is a closed loop pole in the neighborhood. To avoid large values of the comple-
mentary sensitivity function we find that the closed loop system should therefore
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have poles close to or equal to the slow stable zeros. This means that slow stable
zeros should be canceled by controller poles. Since unstable zeros cannot be can-
celed, the presence of slow unstable zeros means that achievable gain crossover
frequency must be smaller than the slowest unstable process zero.

Now consider process poles that are faster than the desired gain crossover fre-
quency. Consider the expression for the maximum of the sensitivity function:

1
M; = sup|S(io)| = H 1 +PCHN'

The sensitivity function is 1 for high frequencies. Moving from high to low fre-
quencies, the sensitivity function increases at the fast process poles. Large peaks
can result unless there are closed loop poles close to the fast process poles. To avoid
large peaks in the sensitivity the closed loop system should therefore have poles
that match the fast process poles. This means that the controller should cancel the
fast process poles by controller zeros. Since unstable modes cannot be canceled,
the presence of a fast unstable pole implies that the gain crossover frequency must
be sufficiently large.

To summarize, we obtain the following simple rule for choosing closed loop
poles: slow stable process zeros should be matched by slow closed loop poles,
and fast stable process poles should be matched by fast closed loop poles. Slow
unstable process zeros and fast unstable process poles impose severe limitations.

Example 13.10 Nanopositioning system for an atomic force microscope
A simple nanopositioner with the process transfer function
2
@

P(s) =
(5 52+ 28 s + of

was explored in Example 10.9. It was shown that the system could be controlled
using an integral controller. The closed-loop performance was poor because the
gain crossover frequency was limited to @,. < 2{@y(1 —s,,) to have good ro-
bustness with the integral controller. It can be shown that little improvement is
obtained by using a PI controller. We will explore if better performance can be
obtained with PID control. For a modest performance increase, we will use the de-
sign rule derived in Example 13.9 that fast stable process poles should be canceled
by controller zeros. The controller transfer function should thus be chosen as

kas* +kps+ki ki s?+28 s+ of
Cs) = e TRtk _ ki !
s s %

: (13.16)

which gives k, = 2Ck;/my and kg = k;/ wg. The loop transfer function becomes
L(s) =k;/s.

Figure 13.14 shows, in dashed lines, the gain curves for the Gang of Four for
a system designed with k; = 0.5. A comparison with Figure 10.12 shows that the
bandwidth is increased significantly from @y = 0.01 to @y = k; = 0.5. Since
the process pole is canceled, the system will, however, still be very sensitive to
load disturbances with frequencies close to the resonant frequency. The gain curve
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Figure 13.14: Nanopositioning system control via cancellation of the fast process pole. Gain
plots for the Gang of Four for PID control with second-order filtering (13.17) are shown
by solid lines, and the dashed lines show results for an ideal PID controller without filter-
ing (13.16).

of CS has a dip or a notch at the resonant frequency @y, which implies that the
controller gain is very low for frequencies around the resonance. The gain curve
also shows that the system is very sensitive to high-frequency noise. The system
will likely be unusable because the gain goes to infinity for high frequencies.

The sensitivity to high frequency noise can be remedied by modifying the con-
troller to be 5 5
Cls) = ki s*+28ans + ay

s a*(14sTy+ (sTy)?/2)’

which has high-frequency roll-off. Selection of the constant T for the filter is a
compromise between attenuation of high-frequency measurement noise and ro-
bustness. A large value of Ty reduces the effects of sensor noise significantly, but
it also reduces the stability margin. Since the gain crossover frequency without
filtering is k;, a reasonable choice is 7y = 0.2/k;, as shown by the solid curves in
Figure 13.14. The plots of |CS(iw)| and |S(i@)| show that the sensitivity to high-
frequency measurement noise is reduced dramatically at the cost of a marginal
increase of sensitivity. Notice that the poor attenuation of disturbances with fre-
quencies close to the resonance is not visible in the sensitivity function because of
the cancellation of the resonant poles.

The designs thus far have the drawback that load disturbances with frequencies
close to the resonance are not attenuated, since |S(iay)| is close to one. We will
now consider a design that actively attenuates the poorly damped modes. We start
with an ideal PID controller where the design can be done analytically, and we add
high-frequency roll-off. The loop transfer function obtained with this controller is

(13.17)

a? (kgs® +kps + ki)
L(s) = —— P I
s(s?+28as+a?)

(13.18)
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Figure 13.15: Nanopositioner control using active damping. Gain curves for the Gang
of Four for PID control of the nanopositioner designed for @, = wy (dash-dotted), 2@y
(dashed), and 4y (solid). The controller has high-frequency roll-off and has been designed
to give active damping of the oscillatory mode. The different curves correspond to different
choices of magnitudes of the poles, parameterized by @, in equation (13.19).

The closed loop system is of third order, and its characteristic polynomial is
s+ (kga® +28a)s* + (k, + 1)a*s + kia®. (13.19)
A general third-order polynomial can be parameterized as
$3 (0o +28) ps? + (14208 02 s + 0, 07 (13.20)

The parameters o, and . give the relative configuration of the poles, and the pa-
rameter ®, gives their magnitudes, and therefore also the bandwidth of the system.

The identification of coefficients of equal powers of s with equation (13.19)
gives a linear equation for the controller parameters, which has the solution

(1+20.8)w? 007 (o +28 ). 28,
kp=-——7>5"—-1, ki=—5-, ka=-——F5"———".
a on a o
(13.21)
Adding high-frequency roll-off, the controller becomes
kgs® +k,s+k

C(s) = L : 13.22
( ) S(1+STf—|—(STf)2/2) ( )

If the PID controller is designed without the filter, the filter time constant must
be significantly smaller than 7 to avoid introducing extra phase lag, a reasonable
value is Ty = T;/10 = 0.1 kg4 /k . If more filtering is desired it is necessary to ac-
count for the filter dynamics in the design.

Figure 13.15 shows the gain curves of the Gang of Four for designs with
& =0.707, o. = 1 and @, = @y, 2y and 4@y. The figure shows that the largest
values of the sensitivity function and the complementary sensitivity function are
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small. The gain curve for PS shows that the load disturbances are now well attenu-
ated over the whole frequency range, and attenuation increases with increasing wy.
The gain curve for CS shows that large control signals are required to provide ac-
tive damping. The high gain of CS for high frequencies also shows that low-noise
sensors and actuators with a wide range are required. The largest gains for CS are
19, 103 and 434 for wy = a, 2a and 4a, respectively. There is clearly a trade-off be-
tween disturbance attenuation and controller gain. A comparison of Figures 13.14
and 13.15 illustrates the trade-offs between control action and disturbance attenu-
ation for the designs with cancellation of the fast process pole and active damping.

\%

13.5 Design for Robust Performance

Control design is a rich problem where many factors have to be taken into account.
Typical requirements are that load disturbances should be attenuated, the controller
should inject only a moderate amount of measurement noise, the output should
follow variations in the command signal well and the closed loop system should be
insensitive to process variations. For the system in Figure 13.9 these requirements
can be captured by specifications on the sensitivity functions S and 7" and the
transfer functions Gy,, Gy, Gy, and G,,-. Notice that it is necessary to consider
at least seven transfer functions, as discussed Section 12.1. The requirements are
mutually conflicting, and may be necessary to make trade-offs. The attenuation of
load disturbances will be improved if the bandwidth is increased, but so will the
noise injection.

It is highly desirable to have design methods that can guarantee robust perfor-
mance. Such design methods did not appear until the late 1980s. Many of these
design methods result in controllers having the same structure as the controller
based on state feedback and an observer. In this section we provide a brief review
of some of the techniques as a preview for those interested in more specialized
study.

Quantitative Feedback Theory

Quantitative feedback theory (QFT) is a graphical design method for robust loop
shaping that was developed by I. M. Horowitz [Hor91]. The idea is to first de-
termine a controller that gives a complementary sensitivity that is robust to pro-
cess variations and then to shape the response to reference signals by feedforward.
The idea is illustrated in Figure 13.16a, which shows the level curves of the gain
|T(iw)| of the complementary sensitivity function on a Nyquist plot. The com-
plementary sensitivity function has unit gain on the line Re L(i®w) = —0.5. In the
neighborhood of this line, significant variations in process dynamics only give
moderate changes in the complementary transfer function. The shaded part of the
figure corresponds to the region 0.9 < |T(iw)| < 1.1. To use the design method,
we represent the uncertainty for each frequency by a region and attempt to shape
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Figure 13.16: Hall and Nichols charts. The Hall chart is a Nyquist plot with curves for
constant gain and phase of the complementary sensitivity function 7. The Nichols chart is the
conformal map of the Hall chart under the transformation N = log L (with the scale flipped).
The dashed curve is the line where |T'(i®)| = 1, and the shaded region corresponding to loop
transfer functions whose complementary sensitivity changes by no more than +10%.

the loop transfer function so that the variation in 7 is as small as possible. The
design is often performed using the Nichols chart shown in Figure 13.16b.

Linear Quadratic Control

One way to make the trade-off between the attenuation of load disturbances and
the injection of measurement noise is to design a controller that minimizes the loss

function -
7= [ (020 +pR)

where p is a weighting parameter as discussed in Section 7.3. This loss function
gives a compromise between load disturbance attenuation and disturbance injec-
tion because it balances control actions against deviations in the output. If all state
variables are measured, the controller is a state feedback u = —Kx and it has the
same form as the controller obtained by eigenvalue assignment (pole placement)
in Section 7.2. However, the controller gain is obtained by solving an optimiza-
tion problem. It has been shown that this controller is very robust. It has a phase
margin of at least 60° and an infinite gain margin. The controller is called a lin-
ear quadratic control or LQ control because the process model is linear and the
criterion is quadratic.

When all state variables are not measured, the state can be reconstructed using
an observer, as discussed in Section 8.3. It is also possible to introduce process
disturbances and measurement noise explicitly in the model and to reconstruct
the states using a Kalman filter, as discussed briefly in Section 8.4. The Kalman
filter has the same structure as the observer designed by eigenvalue assignment in
Section 8.3, but the observer gains L are now obtained by solving an optimization
problem. The control law obtained by combining linear quadratic control with a
Kalman filter is called linear quadratic Gaussian control or LQG control. The
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Figure 13.17: H.. robust control formulation. (a) General representation of a control problem
used in robust control. The input u represents the control signal, the input w represents the
external influences on the system, the output z is the generalized error and the output y is
the measured signal. (b) Special case of the basic feedback loop in Figure 13.9 where the
reference signal is zero. In this case we have w = (n,d) and z = (y, —u).

Kalman filter is optimal when the models for load disturbances and measurement
noise are Gaussian.

It is interesting that the solution to the optimization problem leads to a con-
troller having the structure of a state feedback and an observer. The state feedback
gains depend on the parameter p, and the filter gains depend on the parameters in
the model that characterize process noise and measurement noise (see Section 8.4).
There are efficient programs to compute these feedback and observer gains.

The nice robustness properties of state feedback are unfortunately lost when
the observer is added. There are parameters that give closed loop systems with
poor robustness, similar to Example 13.8. We can thus conclude that there is a
fundamental difference between using sensors for all states and reconstructing the
states using an observer.

H.. Control

Robust control design is often called H.. control for reasons that will be explained
shortly. The basic ideas are simple, but the details are complicated and we will
therefore just give the flavor of the results. A key idea is illustrated in Figure 13.17a,
where the closed loop system is represented by two blocks, the process & and the
controller ¢ as discussed in Section 12.1. The process & has two inputs, the
control signal u, which can be manipulated by the controller, and the generalized
disturbance w, which represents all external influences, e.g., command signals and
disturbances. The process has two outputs, the generalized error Z, which is a vec-
tor of error signals representing the deviation of signals from their desired values,
and the measured signal y, which can be used by the controller to compute u. For
a linear system and a linear controller the closed loop system can be represented
by the linear system

Z=H(P(s),C(s))W, (13.23)

which tells how the generalized error Z depends on the generalized disturbances w.
The control design problem is to find a controller C such that the gain of the trans-
fer function H is small even when the process has uncertainties. There are many

4
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different ways to specify uncertainty and gain, giving rise to different designs. The
names H, and H.. control correspond to the norms ||H || and ||H||c.

To illustrate the ideas we will consider a regulation problem for a system where
the reference signal is assumed to be zero and the external signals are the load dis-
turbance v and the measurement noise w, as shown in Figure 13.17b. The general-
ized input is w = (—w,v). (The negative sign of w is not essential but is chosen to
obtain somewhat nicer equations.) The generalized error is chosen as 7 = (1,V),
where 1) is the process output and v is the part of the load disturbance that is not
compensated by the controller. The closed loop system is thus modeled by

1 P
- |y) | 14+PC 1+4+PC wl W
Z_E[—”]__ c PC [v] —fﬂﬂcj[v], (13.24)
I+PC 1+PC

which is the same as equation (13.23). A straightforward calculation shows that

V(1L +[P(io)[?)(1+]C(i))
|14+ P(io)C(io)|

|H(P,C))]|e = sup (13.25)

There are numerical methods available for finding a stabilizing controller such
that [|[H(P,C)|l. < 7, if such a controller exists. The best controller can then be
found by iterating on 7. The calculations can be made by solving algebraic Riccati
equations, e.g., by using the command hinfsyn in MATLAB. The controller has
the same order as the process and the same structure as the controller based on
state feedback and an observer; see Figure 8.7 and Theorem 8.3.

Notice that if we minimize ||H(P,C)||, we make sure that the transfer func-
tions Gy, = P/(1+ PC), representing the transmission of load disturbances to the
output, and G, = —C/(1 + PC), representing how measurement noise is trans-
mitted to the control signal, are small. Since the sensitivity and the complementary
sensitivity functions are also elements of H(P,C), we have also guaranteed that
the sensitivities are less than y. The design methods thus balance performance and
robustness.

There are strong robustness results associated with the H., controller. It follows
from equations (13.4) and (13.25) that

. 1P+ 1/C] o
o A IPPYA+IT/P] — IHEO]

(13.26)

The inverse of ||H(P,C)|| is thus be interpreted as the shortest distance between
P and —1/C and can therefore be interpreted as a generalized stability margin.
Compare with s,,, which we defined as the shortest distance between the Nyquist
curve of the loop transfer function and the critical point —1. It also follows that if
we find a controller C with ||[H(P,C)||. < 7, then this controller will stabilize any
process P, such that 8, (P,P.) < 1/7.
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Figure 13.18: Block diagrams of a system with disturbance weighting. The left figure pro-
vides a frequency weight on processes disturbances. Through block diagram manipulation,
this can be converted to the standard problem on the right.

Disturbance Weighting

Minimizing the gain ||H (P,C)||. means that the gains of all individual signal trans-
missions from disturbances to outputs are less than ¥ for all frequencies of the in-
put signals. The assumption that the disturbances are equally important and that
all frequencies are also equally important is not very realistic; recall that load
disturbances typically have low frequencies and measurement noise is typically
dominated by high frequencies. It is straightforward to modify the problem so that
disturbances of different frequencies are given different emphasis, by introducing
a weighting filter on the load disturbance as shown in Figure 13.18. For example,
low-frequency load disturbances will be enhanced by choosing W as a low-pass
filter because the actual load disturbance is Wd.

By using block diagram manipulation as shown in Figure 13.18, we find that
the system with frequency weighting is equivalent to the system with no frequency
weighting in Figure 13.18 and the signals are related through

1 P
7= [y] I+PC 14+PC [W] — H(P,C)w, (13.27)
i ¢ pc | |7

1+PC 1+PC
where P = PW and C = W~!C. The problem of finding a controller C that min-
imizes the gain of H(P,C) is thus equivalent to the problem without disturbance
weighting; having obtained C, the controller for the original system is then C =

WC. Notice that if we introduce the frequency weighting W = k/s, we will auto-
matically get a controller with integral action.

Limits of Robust Design

There is a limit to what can be achieved by robust design. In spite of the nice prop-
erties of feedback, there are situations where the process variations are so large
that it is not possible to find a linear controller that gives a robust system with
good performance. It is then necessary to use other types of controllers. In some
cases it is possible to measure a variable that is well correlated with the process
variations. Controllers for different parameter values can then be designed and the
corresponding controller can be chosen based on the measured signal. This type of
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control design is called gain scheduling. The cruise controller is a typical example
where the measured signal could be gear position and velocity. Gain scheduling
is the common solution for high-performance aircraft where scheduling is done
based on Mach number and dynamic pressure. When using gain scheduling, it is
important to make sure that switches between the controllers do not create unde-
sirable transients (often referred to as the bumpless transfer problem).

If it is not possible to measure variables related to the parameters, automatic
tuning and adaptive control can be used. In automatic tuning the process dynamics
are measured by perturbing the system, and a controller is then designed automat-
ically. Automatic tuning requires that parameters remain constant, and it has been
widely applied for PID control. It is a reasonable guess that in the future many
controllers will have features for automatic tuning. If parameters are changing, it
is possible to use adaptive methods where process dynamics are measured online.

13.6 Further Reading

The topic of robust control is a large one, with many articles and textbooks devoted
to the subject. Robustness was a central issue in classical control as described in
Bode’s classical book [Bod45]. Robustness was deemphasized in the euphoria of
the development of design methods based on optimization. The strong robustness
of controllers based on state feedback, shown by Anderson and Moore [AM90],
contributed to the optimism. The poor robustness of output feedback was pointed
out by Rosenbrock [RM71], Horowitz [Hor75] and Doyle [Doy78] and resulted
in a renewed interest in robustness. A major step forward was the development
of design methods where robustness was explicitly taken into account, such as
the seminal work of Zames [Zam81]. Robust control was originally developed
using powerful results from the theory of complex variables, which gave con-
trollers of high order. A major breakthrough was made by Doyle, Glover, Khar-
gonekar and Francis [DGKF89], who showed that the solution to the problem
could be obtained using Riccati equations and that a controller of low order could
be found. This paper led to an extensive treatment of H., control, including books
by Francis [Fra87], McFarlane and Glover [MG90], Doyle, Francis and Tannen-
baum [DFT92], Green and Limebeer [GL95], Zhou, Doyle and Glover [ZDG96],
Skogestand and Postlethwaite [SPO5] and Vinnicombe [VinO1]. A major advan-
tage of the theory is that it combines much of the intuition from servomechanism
theory with sound numerical algorithms based on numerical linear algebra and op-
timization. The results have been extended to nonlinear systems by treating the
design problem as a game where the disturbances are generated by an adversary,
as described in the book by Basar and Bernhard [BB91]. Gain scheduling and
adaptation are discussed in the book by Astrom and Wittenmark [AWO08].
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Exercises

13.1 Consider systems with the transfer functions P, = 1/(s+1) and P, = 1 /(s +
a). Show that P; can be changed continuously to P, with bounded additive and
multiplicative uncertainty if a > 0 but not if a < 0. Also show that no restriction
on a is required for feedback uncertainty.

13.2 Consider systems with the transfer functions P = (s +1)/(s+1)?> and P, =
(s+a)/(s+1)2. Show that P; can be changed continuously to P» with bounded
feedback uncertainty if a > 0 but not if @ < 0. Also show that no restriction on a is
required for additive and multiplicative uncertainties.

13.3 (Difference in sensitivity functions) Let 7 (P,C) be the complementary sensi-
tivity function for a system with process P and controller C. Show that

(P—B)C
(1+PC)(1+PC)’

and derive a similar formula for the sensitivity function.

T(P,C)—T(P,C) =

13.4 (The Riemann sphere) Consider systems with the transfer functions P, =
k/(s+1)and P, =k/(s—1). Show that

= S&((PLP)={ 2%

1+k —
1 +k2
Use the Riemann sphere to show geometrically that 6, (P;,P,) = 1 if k < 1. (Hint:
It is sufficient to evaluate the transfer function for @ = 0.)

dP,P) =
( ! 2) otherwise.

13.5 (Stability margins) Consider a feedback loop with a process and a controller
having transfer functions P and C. Assume that the maximum sensitivity is M; = 2.
Show that the phase margin is at least 30° and that the closed loop system will be
stable if the gain is changed by 50%.

13.6 (Bode’s ideal loop transfer function) Make Bode and Nyquist plots of Bode’s
ideal loop transfer function. Show that the phase margin is ¢, =180°-90°n and
that the stability margin is s, = arcsinz(1 —n/2).

13.7 Consider a process with the transfer function P(s) = k/(s(s+ 1)), where the
gain can vary between 0.1 and 10. A controller that is robust to these gain variations
can be obtained by finding a controller that gives the loop transfer function L(s) =
1/(s+/s). Suggest how the transfer function can be implemented by approximating
it by a rational function.

13.8 (Smith predictor) The Smith predictor, a controller for systems with time
delays, is a special version of Figure 13.8a with P(s) = e *"Py(s) and C(s) =
Co(s)/(14Co(s)P(s)). The controller Cy(s) is designed to give good performance
for the process Py(s). Show that the sensitivity functions are

_LHISeMRWGE o RGO .
SO = =T ROICH) TS =1 Rmam
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13.9 (Ideal delay compensator) Consider a process whose dynamics are a pure
time delay with transfer function P(s) = e *. The ideal delay compensator is a
controller with the transfer function C(s) = 1/(1 —e™*). Show that the sensitivity
functions are 7'(s) = e * and S(s) = 1 — e~ and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

13.10 (Vehicle steering) Consider the Nyquist curve in Figure 13.11. Explain why
part of the curve is approximately a circle. Derive a formula for the center and the
radius and compare with the actual Nyquist curve.

13.11 Consider a process with the transfer function
(s+3)(s+200)
P(s) = .
(s+1)(s*+ 105 +40)(s +40)

Discuss suitable choices of closed loop poles for a design that gives dominant poles
with undamped natural frequency 1 and 10.

13.12 (AFM nanopositioning system) Consider the design in Example 13.10 and
explore the effects of changing parameters o and {p.

13.13 (H.. control) Consider the matrix H(P,C) in equation (13.24). Show that it
has the singular values

sy YL PGO)P) (T [CG0)P)
P [1+P(iw)C(iw)|

Also show that 6 = 1/d, (P,—1/C), which implies that 1/& is a generalization of

the closest distance of the Nyquist plot to the critical point.

061=0, ©y=6= = [H(P,C))]-

13.14 Show that
IP(io)+1/C(io))| ~ 1
VA +Pio)P)(1+1/|Cli0)?) [HPC))w

8,(P,~1/C) = inf

13.15 Consider the system

%:Ax—i-Bu: [_11 8]x+ [aIl]u, y=Cx= (O l]y.
Design a state feedback that gives det(s/ — BK) = s + 2{.@.s + ®?, and an ob-
server with det(sl — LC) = s> +2{,@,s + cog and combine them using the sepa-
ration principle to get an output feedback. Choose the numerical values a = 1.5,
. =5, =0.6and o, = 10, §, = 0.6. Compute the eigenvalues of the perturbed
system when the process gain is increased by 2%. Also compute the loop transfer
function and the sensitivity functions. Is there a way to know beforehand that the
system will be highly sensitive?
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13.16 (Robustness using the Nyquist criterion) Another view of robust perfor-
mance can be obtained through appeal to the Nyquist criterion. Let Syax (i®) rep-
resent a desired upper bound on our sensitivity function. Show that the system
provides this level of performance subject to additive uncertainty A if the follow-
ing inequality is satisfied:

- 1
I1+L=1+L+CA|l > ——— for all ® > 0. (13.28)
| | ‘ | |Smax(lw)|

Describe how to check this condition using a Nyquist plot.
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