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Preface to the Second Edition

The second edition of Feedback Systems contains a variety of changes that are
based on feedback on the first edition, particularly in its use for introductory
courses in control. One of the primary comments from users of the text was that
the use of control tools for design purposes occurred only after several chapters of
analytical tools, leaving the instructor having to try to convince students that the
techniques would soon be useful. In our own teaching, we find that we often use
design examples in the first few weeks of the class and use this to motivate the
various techniques that follow. This approach has been particularly useful in engi-
neering courses, where students are often eager to apply the tools to examples as
part of gaining insight into the methods. We also found that universities that have a
laboratory component attached to their controls class need to introduce some basic
design techniques early, so that students can be implementing control laws in the
laboratory in the early weeks of the course.

To help emphasize this more design-oriented flow, we have added a new chapter
on “Feedback Principles” that illustrates some simple design principles and tools
that can be used to show students what types of problems can be solved using feed-
back. This new chapter uses simple models, simulations, and elementary analysis
techniques, so that it should be accessible to students from a variety of engineer-
ing and scientific backgrounds. For courses in which students have already been
exposed to the basic ideas of feedback, perhaps in an earlier discipline-specific
course, this new chapter can easily be skipped without any loss of continuity.

We have also rearranged some of the material in the final chapters of the book,
moving material on fundamental limits from the chapters on frequency domain
design (Chapter 11 in the original text, now Chapter 12) and robust performance
(Chapter 12 in the original text, now Chapter 13) into a separate chapter on funda-
mental limits (Chapter 14). This new chapter also contains some additional mate-
rial on limits imposed by nonlinearities as well as technique for robust pole place-
ment.

Finally, for the electronic versions of the text, we have added a new chapter
to the end of the book, focused on control architectures and design. Our intention
in this chapter is to provide a systems view that describes how control design is
integrated into a larger model-based development framework, motivated in part by
our consulting activities with large companies. In this new chapter we also take the
opportunity to present some overview material on “bottoms up” and “top down”
approaches to control architectures, briefly introducing some of the many addi-
tional concepts from the field of control that are in widespread use in applications.
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In addition to these relatively large changes, we have made many other smaller
changes based on the feedback we have received from early adopters of the text.
We have added some material on the Routh—Hurwitz criterion and root locus plots,
to at least serve as “hooks” for instructors who wish to cover that material in
more detail. We have also made some notational changes throughout, most no-
tably changing the symbols for disturbance and noise signals to v and w, respec-
tively. The notation in the biological examples has also been updated to match the
notation used in the textbook by Del Vecchio and Murray [DM14].

The electronic version of this text also contains a variety of marginal notes
that provide additional information and links to web pages, to enable readers to
access supplementary information that may be useful for those interested in more
detail. The following symbols in the margin may be used to access supplementary
information:

@ Advanced material with additional details

® Frequently asked question; additional details available

@ Historical information

(@ Link to an external site

We are indebted to numerous individuals who have taught out of the text and

sent us feedback on changes that would better serve their needs. In addition to
the many individuals listed in the preface to the first edition, we would like to
also thank Kalle Astrom, Karl Berntorp, Constantine Caramanis, Bjorn Olofsson,

Richard Pates, Clancy Rowley, and André Tits for their feedback, insights, and
contributions.

Karl Johan Astrom Richard M. Murray
Lund, Sweden Pasadena, California


http://fbsbook.org/advanced
http://fbsbook.org/faq
http://fbsbook.org/historical
http://fbsbook.org/link

Preface to the First Edition

This book provides an introduction to the basic principles and tools for the design
and analysis of feedback systems. It is intended to serve a diverse audience of
scientists and engineers who are interested in understanding and utilizing feedback
in physical, biological, information and social systems. We have attempted to keep
the mathematical prerequisites to a minimum while being careful not to sacrifice
rigor in the process. We have also attempted to make use of examples from a
variety of disciplines, illustrating the generality of many of the tools while at the
same time showing how they can be applied in specific application domains.

A major goal of this book is to present a concise and insightful view of the
current knowledge in feedback and control systems. The field of control started
by teaching everything that was known at the time and, as new knowledge was
acquired, additional courses were developed to cover new techniques. A conse-
quence of this evolution is that introductory courses have remained the same for
many years, and it is often necessary to take many individual courses in order
to obtain a good perspective on the field. In developing this book, we have at-
tempted to condense the current knowledge by emphasizing fundamental concepts.
We believe that it is important to understand why feedback is useful, to know the
language and basic mathematics of control and to grasp the key paradigms that
have been developed over the past half century. It is also important to be able to
solve simple feedback problems using back-of-the-envelope techniques, to recog-
nize fundamental limitations and difficult control problems and to have a feel for
available design methods.

This book was originally developed for use in an experimental course at Cal-
tech involving students from a wide set of backgrounds. The course was offered to
undergraduates at the junior and senior levels in traditional engineering disciplines,
as well as first- and second-year graduate students in engineering and science. This
latter group included graduate students in biology, computer science and physics.
Over the course of several years, the text has been classroom tested at Caltech and
at Lund University, and the feedback from many students and colleagues has been
incorporated to help improve the readability and accessibility of the material.

Because of its intended audience, this book is organized in a slightly unusual
fashion compared to many other books on feedback and control. In particular, we
introduce a number of concepts in the text that are normally reserved for second-
year courses on control and hence often not available to students who are not con-
trol systems majors. This has been done at the expense of certain traditional top-
ics, which we felt that the astute student could learn independently and are often
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explored through the exercises. Examples of topics that we have included are non-
linear dynamics, Lyapunov stability analysis, the matrix exponential, reachability
and observability, and fundamental limits of performance and robustness. Topics
that we have deemphasized include root locus techniques, lead/lag compensation
and detailed rules for generating Bode and Nyquist plots by hand.

Several features of the book are designed to facilitate its dual function as a basic
engineering text and as an introduction for researchers in natural, information and
social sciences. The bulk of the material is intended to be used regardless of the
audience and covers the core principles and tools in the analysis and design of
feedback systems. Advanced sections, marked by the “dangerous bend” symbol
shown here, contain material that requires a slightly more technical background,
of the sort that would be expected of senior undergraduates in engineering. A few
sections are marked by two dangerous bend symbols and are intended for readers
with more specialized backgrounds, identified at the beginning of the section. To
limit the length of the text, several standard results and extensions are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here, a companion web site
has been developed and is available from the publisher’s web page:

http://www.fbsbook.org

The web site contains a database of frequently asked questions, supplemental ex-
amples and exercises, and lecture material for courses based on this text. The mate-
rial is organized by chapter and includes a summary of the major points in the text
as well as links to external resources. The web site also contains the source code
for many examples in the book, as well as utilities to implement the techniques
described in the text. Most of the code was originally written using MATLAB M-
files but was also tested with LabView MathScript to ensure compatibility with
both packages. Many files can also be run using other scripting languages such as
Octave, Scilab, SysQuake and Xmath.

The first half of the book focuses almost exclusively on state space control sys-
tems. We begin in Chapter 3! with a description of modeling of physical, biolog-
ical and information systems using ordinary differential equations and difference
equations. Chapter 4 presents a number of examples in some detail, primarily as a
reference for problems that will be used throughout the text. Following this, Chap-
ter 5 looks at the dynamic behavior of models, including definitions of stability
and more complicated nonlinear behavior. We provide advanced sections in this
chapter on Lyapunov stability analysis because we find that it is useful in a broad
array of applications and is frequently a topic that is not introduced until later in
one’s studies.

The remaining three chapters of the first half of the book focus on linear sys-
tems, beginning with a description of input/output behavior in Chapter 6. In Chap-
ter 7, we formally introduce feedback systems by demonstrating how state space
control laws can be designed. This is followed in Chapter 8 by material on output

Chapter numbers reflect those in the second edition.
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feedback and estimators. Chapters 7 and 8 introduce the key concepts of reacha-
bility and observability, which give tremendous insight into the choice of actuators
and sensors, whether for engineered or natural systems.

The second half of the book presents material that is often considered to be
from the field of “classical control.” This includes the transfer function, introduced
in Chapter 9, which is a fundamental tool for understanding feedback systems.
Using transfer functions, one can begin to analyze the stability of feedback systems
using frequency domain analysis, including the ability to reason about the closed
loop behavior of a system from its open loop characteristics. This is the subject of
Chapter 10, which revolves around the Nyquist stability criterion.

In Chapters 11 and 12, we again look at the design problem, focusing first
on proportional-integral-derivative (PID) controllers and then on the more general
process of loop shaping. PID control is by far the most common design technique
in control systems and a useful tool for any student. The chapter on frequency
domain design introduces many of the ideas of modern control theory, including
the sensitivity function. In Chapter 13, we combine the results from the second half
of the book to analyze some of the fundamental trade-offs between robustness and
performance. This is also a key chapter illustrating the power of the techniques that
have been developed and serving as an introduction for more advanced studies.

The book is designed for use in a 10- to 15-week course in feedback systems
that provides many of the key concepts needed in a variety of disciplines. For a 10-
week course, Chapters 1-3, 5-7 and 9—12 can each be covered in a week’s time,
with the omission of some topics from the final chapters. A more leisurely course,
spread out over 1415 weeks, could cover the entire book, with 2 weeks on mod-
eling (Chapters 3 and 2)—particularly for students without much background in
ordinary differential equations—and 2 weeks on robust performance (Chapter 13).

The mathematical prerequisites for the book are modest and in keeping with
our goal of providing an introduction that serves a broad audience. We assume
familiarity with the basic tools of linear algebra, including matrices, vectors and
eigenvalues. These are typically covered in a sophomore-level course on the sub-
ject, and the textbooks by Apostol [Apo69], Arnold [Arn87] and Strang [Str88]
can serve as good references. Similarly, we assume basic knowledge of differ-
ential equations, including the concepts of homogeneous and particular solutions
for linear ordinary differential equations in one variable. Apostol [Apo69] and
Boyce and DiPrima [BD04] cover this material well. Finally, we also make use
of complex numbers and functions and, in some of the advanced sections, more
detailed concepts in complex variables that are typically covered in a junior-level
engineering or physics course in mathematical methods. Apostol [Apo67] or Stew-
art [Ste02] can be used for the basic material, with Ahlfors [Ahl66], Marsden and
Hoffman [MH98], or Saff and Snider [SS02] being good references for the more
advanced material. We have chosen not to include appendices summarizing these
various topics since there are a number of good books available.

One additional choice that we felt was important was the decision not to rely
on a knowledge of Laplace transforms in the book. While their use is by far the
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most common approach to teaching feedback systems in engineering, many stu-
dents in the natural and information sciences may lack the necessary mathematical
background. Since Laplace transforms are not required in any essential way, we
have included them only in an advanced section intended to tie things together
for students with that background. Of course, we make tremendous use of trans-
fer functions, which we introduce through the notion of response to exponential
inputs, an approach we feel is more accessible to a broad array of scientists and
engineers. For classes in which students have already had Laplace transforms, it
should be quite natural to build on this background in the appropriate sections of
the text.
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback governs how we grow, respond
to stress and challenge, and regulate factors such as body temperature, blood pressure, and
cholesterol level. The mechanisms operate at every level, from the interaction of proteins in
cells to the interaction of organisms in complex ecologies.

M. B. Hoagland and B. Dodson, The Way Life Works, 1995 [HD9S5].

In this chapter we provide an introduction to the basic concept of feedback
and the related engineering discipline of control. We focus on both historical and
current examples, with the intention of providing the context for current tools in
feedback and control.

1.1 What Is Feedback?

A dynamical system is a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The term feedback refers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult because the first system in-
fluences the second and the second system influences the first, leading to a circular
argument. A consequence of this is that the behavior of feedback systems is of-
ten counter-intuitive, and it is therefore necessary to resort to formal methods to
understand them.

Figure 1.1 illustrates in block diagram form the idea of feedback. We often use
the terms open loop and closed loop when referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
shown in Figure 1.1a. If we break the interconnection, we refer to the configuration

u y r u y
System 1 —| System 2 — System 1 —{ System 2 —
(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used as the input of
system 2, and the output of system 2 becomes the input of system 1, creating a closed loop
system. (b) The interconnection between system 2 and system 1 is removed, and the system
is said to be open loop.
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugal governor on the
left consists of a set of flyballs that spread apart as the speed of the engine increases. The
steam engine on the right uses a centrifugal governor (above and to the left of the flywheel)
to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip Taylor [1828].)

as an open loop system, as shown in Figure 1.1b. Note that since the system is in
a feedback loop, the choice of system 1 versus system 2 is somewhat arbitrary. It
just depends where you want to start describing how the system works.

As the quote at the beginning of this chapter illustrates, a major source of ex-
amples of feedback systems is biology. Biological systems make use of feedback
in an extraordinary number of ways, on scales ranging from molecules to cells to
organisms to ecosystems. One example is the regulation of glucose in the blood-
stream through the production of insulin and glucagon by the pancreas. The body
attempts to maintain a constant concentration of glucose, which is used by the
body’s cells to produce energy. When glucose levels rise (after eating a meal, for
example), the hormone insulin is released and causes the body to store excess glu-
cose in the liver. When glucose levels are low, the pancreas secretes the hormone
glucagon, which has the opposite effect. Referring to Figure 1.1, we can view the
liver as system 1 and the pancreas as system 2. The output from the liver is the glu-
cose concentration in the blood, and the output from the pancreas is the amount of
insulin or glucagon produced. The interplay between insulin and glucagon secre-
tions throughout the day helps to keep the blood-glucose concentration constant,
at about 90 mg per 100 mL of blood.

An early engineering example of a feedback system is a centrifugal governor,
in which the shaft of a steam engine is connected to a flyball mechanism that is
itself connected to the throttle of the steam engine, as illustrated in Figure 1.2. The
system is designed so that as the speed of the engine increases (perhaps because
of a lessening of the load on the engine), the flyballs spread apart and a linkage
causes the throttle on the steam engine to be closed. This in turn slows down the
engine, which causes the flyballs to come back together. We can model this system
as a closed loop system by taking system 1 as the steam engine and system 2 as
the governor. When properly designed, the flyball governor maintains a constant
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speed of the engine, roughly independent of the loading conditions. The centrifugal
governor was an enabler of the successful Watt steam engine, which fueled the
industrial revolution.

The examples given so far all deal with negative feedback, in which we attempt
to react to disturbances in such a way that their effects decrease. Positive feedback
is the opposite, where the increase in some variable or signal leads to a situation
in which that quantity is further increased through feedback. This has a destabiliz-
ing effect and is usually accompanied by a saturation that limits the growth of the
quantity. Although often considered undesirable, this behavior is used in biological
(and engineering) systems to obtain a very fast response to a condition or signal.
Encouragement is a type of positive feedback that is often used in education. An-
other common use of positive feedback is in the design of systems with oscillatory
dynamics.

Feedback has many interesting properties that can be exploited in designing
systems. As in the case of glucose regulation or the flyball governor, feedback can
make a system resilient toward external influences. It can also be used to create
linear behavior out of nonlinear components, a common approach in electronics.
More generally, feedback allows a system to be insensitive both to external distur-
bances and to variations in its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabili-
ties in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

Feedback systems are ubiquitous in both natural and engineered systems. Con-
trol systems maintain the environment, lighting, and power in our buildings and
factories; they regulate the operation of our cars, consumer electronics, and manu-
facturing processes; they enable our transportation and communications systems;
and they are critical elements in our military and space systems. For the most part
they are hidden from view, buried within the code of embedded microprocessors,
executing their functions accurately and reliably. Feedback has also made it pos-
sible to increase dramatically the precision of instruments such as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintains thermal, chemical, and
biological conditions through feedback. At the other end of the size scale, global
climate dynamics depend on the feedback interactions between the atmosphere,
the oceans, the land, and the sun. Ecosystems are filled with examples of feedback
due to the complex interactions between animal and plant life. Even the dynam-
ics of economies are based on the feedback between individuals and corporations
through markets and the exchange of goods and services.
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(a) Feedback system (b) Feedforward system

Figure 1.3: Feedback system versus feedforward system. In both systems we have a process
P and a controller C. The feedback controller (a) measures the output y to determine the
effect of the disturbance v, while the feedforward controller (b) measures the disturbance
directly, but does not directly measure the process output.

1.2 What is Feedforward?

Feedback is reactive: there must be an error before corrective actions are taken.
However, in some circumstances it is possible to measure a disturbance before it
enters the system, and this information can then be used to take corrective action
before the disturbance has influenced the system. The effect of the disturbance
is thus reduced by measuring it and generating a control signal that counteracts it.
This way of controlling a system is called feedforward. Feedforward is particularly
useful in shaping the response to command signals because command signals are
always available. Since feedforward attempts to match two signals, it requires good
process models; otherwise the corrections may have the wrong size or may be
badly timed.

Figure 1.3 illustrates the difference between feedforward and feedback control.
In both figures there is a reference signal r that describes the desired output of
the process P and a disturbance signal v that represents an external perturbation
to the process. In a feedback system, we measure the output y of the system and
the controller C attempts to adjust the input to the process in a manner that causes
the process output to maintain the desired the reference value. In a feedforward
system, we instead measure the reference r and disturbance v and compute an input
to the process that will create the desired output. Notice that the feedback controller
does not directly measure the disturbance v while the feedforward controller does
not measure the actual output y.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties, which are summarized in Table 1.1.
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Table 1.1: Properties of feedback and feedforward

Feedback Feedforward
Closed loop Open loop
Acts on deviations Acts on plans
Robust to model uncertainty ~ Sensitive to model uncertainty
Risk for instability No risk for instability

1.3 What Is Control?

The term control has many meanings and often varies between communities. In
this book, we define control to be the use of algorithms and feedback in engineered
systems. Thus, control includes such examples as feedback loops in electronic am-
plifiers, setpoint controllers in chemical and materials processing, “fly-by-wire”
systems on aircraft, and even router protocols that control traffic flow on the Inter-
net. Emerging applications include high-confidence software systems, autonomous
vehicles and robots, real-time resource management systems, and biologically en-
gineered systems. At its core, control is an information science and includes the
use of information in both analog and digital representations.

A modern controller senses the operation of a system, compares it against the
desired behavior, computes corrective actions based on a model of the system’s
response to external inputs, and actuates the system to effect the desired change.
This basic feedback loop of sensing, computation, and actuation is the central con-
cept in control. The key issues in designing control logic are ensuring that the dy-
namics of the closed loop system are stable (bounded disturbances give bounded
errors) and that they have additional desired behavior (good disturbance attenua-
tion, fast responsiveness to changes in operating point, etc). These properties are
established using a variety of modeling and analysis techniques that capture the
essential dynamics of the system and permit the exploration of possible behaviors
in the presence of uncertainty, noise, and component failure.

A typical example of a control system is shown in Figure 1.4. The basic ele-
ments of sensing, computation, and actuation are clearly seen. In modern control
systems, computation is typically implemented on a digital computer, requiring the
use of analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty
enters the system through noise in sensing and actuation subsystems, external dis-
turbances that affect the underlying system operation, and uncertain dynamics in
the system (parameter errors, unmodeled effects, etc). The algorithm that computes
the control action as a function of the sensor values is often called a control law.
The system can be influenced externally by an operator who introduces command
signals to the system.

Control engineering relies on and shares tools from physics (dynamics and
modeling), computer science (information and software), and operations research
(optimization, probability theory, and game theory), but it is also different from
these subjects in both insights and approach.
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Figure 1.4: Components of a computer-controlled system. The upper dashed box represents
the process dynamics, which include the sensors and actuators in addition to the dynamical
system being controlled. Noise and external disturbances can perturb the dynamics of the
process. The controller is shown in the lower dashed box. It consists of a filter and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a computer that implements
the control algorithm. A system clock controls the operation of the controller, synchronizing
the A/D, D/A, and computing processes. The operator input is also fed to the computer as an
external input.

Perhaps the strongest area of overlap between control and other disciplines is in
the modeling of physical systems, which is common across all areas of engineering
and science. One of the fundamental differences between control-oriented model-
ing and modeling in other disciplines is the way in which interactions between
subsystems are represented. Control relies on a type of input/output modeling that
allows many new insights into the behavior of systems, such as disturbance attenu-
ation and stable interconnection. Model reduction, where a simpler (lower-fidelity)
description of the dynamics is derived from a high-fidelity model, is also naturally
described in an input/output framework. Perhaps most importantly, modeling in a
control context allows the design of robust interconnections between subsystems,
a feature that is crucial in the operation of all large engineered systems.

Control is also closely associated with computer science since virtually all
modern control algorithms for engineering systems are implemented in software.
However, control algorithms and software can be very different from traditional
computer software because of the central role of the dynamics of the system and
the real-time nature of the implementation.

1.4 Use of Feedback and Control

Feedback has many interesting and useful properties. It makes it possible to de-
sign precise systems from imprecise components and to make relevant quantities
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Figure 1.5: A small portion of the European power network. In 2016 European power
suppliers operated a single interconnected network covering a region from the Arctic to
the Mediterranean and from the Atlantic to the Urals. The installed power was more
than 800 GW (8 x 101 W) serving more than 500 million citizens. (Source: ENTSO-E
http://www.entsoe.eu)
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in a system change in a prescribed fashion. An unstable system can be stabilized
using feedback, and the effects of external disturbances can be reduced. Feedback
also offers new degrees of freedom to a designer by exploiting sensing, actuation,
and computation. In this section we briefly survey some of the important applica-
tions and trends for feedback in the world around us. Considerably more detail is
available in several recent reports [Mur(03, MAB+03, SA14, LLAE+17].

Power Generation and Transmission. Access to electrical power has been one of
the major drivers of technological progress in modern society. Much of the early
development of control was driven by the generation and distribution of electrical
power. Control is mission critical for power systems, and there are many control
loops in individual power stations. Control is also important for the operation of
the whole power network since it is difficult to store energy and it is thus necessary
to match production to consumption. Power management is a straightforward reg-
ulation problem for a system with one generator and one power consumer, but it
is more difficult in a highly distributed system with many generators and long dis-
tances between consumption and generation. Power demand can change rapidly in
an unpredictable manner, and combining generators and consumers into large net-
works makes it possible to share loads among many suppliers and to average con-
sumption among many customers. Large transcontinental and transnational power
systems have therefore been built, such as the one show in Figure 1.5.

Telecommunications. When telecommunications emerged in the early 20th cen-
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tury there was a strong need to amplify signals to enable telephone communication
over long distances. The only amplifier available at the time was based on vacuum
tubes. Since the properties of vacuum tubes are nonlinear and time varying the am-
plifiers created a lot of distortion. A major advance was made when Black invented
the negative feedback amplifier [Bla34, Bla77], which made it possible to obtain
stable amplifiers with linear characteristics. Research on feedback amplifiers also
generated fundamental understanding of feedback in the form of Nyquist’s stabil-
ity criterion and Bode’s methods for design of feedback amplifiers and his theo-
rems on fundamental limits [Bod45, Nyq56]. Feedback is used extensively in cel-
lular phones and networks, and the future 5G communication networks will permit
execution of control over the networks [TFKH16].

Aerospace and Transportation. In aerospace, control has been a key technological
capability tracing back to the beginning of the 20th century. Indeed, the Wright
brothers are correctly famous not for demonstrating simply powered flight but
controlled powered flight. Their early Wright Flyer incorporated moving control
surfaces (vertical fins and canards) and warpable wings that allowed the pilot to
regulate the aircraft’s flight. In fact, the aircraft itself was not stable, so continuous
pilot corrections were mandatory. This early example of controlled flight was fol-
lowed by a fascinating success story of continuous improvements in flight control
technology, culminating in the high-performance, highly reliable automatic flight
control systems we see in modern commercial and military aircraft today.

Materials and Processing. The chemical industry is responsible for the remarkable
progress in developing new materials that are key to our modern society. In addi-
tion to the continuing need to improve product quality, several other factors in the
process control industry are drivers for the use of control. Environmental statutes
continue to place stricter limitations on the production of pollutants, forcing the
use of sophisticated pollution control devices. Environmental safety considera-
tions have led to the design of smaller storage capacities to diminish the risk of
major chemical leakage, requiring tighter control on upstream processes and, in
some cases, supply chains. And large increases in energy costs have encouraged
engineers to design plants that are highly integrated, coupling many processes that
used to operate independently. All of these trends increase the complexity of these
processes and the performance requirements for the control systems, making con-
trol system design increasingly challenging.

Instrumentation. The measurement of physical variables is of prime interest in
science and engineering. Consider, for example, an accelerometer, where early in-
struments consisted of a mass suspended on a spring with a deflection sensor. The
precision of such an instrument depends critically on accurate calibration of the
spring and the sensor. There is also a design compromise because a weak spring
gives high sensitivity but low bandwidth. A different way of measuring accelera-
tion is to use force feedback. The spring is replaced by a voice coil that is controlled
so that the mass remains at a constant position. The acceleration is proportional to
the current through the voice coil. In such an instrument, the precision depends en-
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Figure 1.6: The voltage clamp method for measuring ion currents in cells using feedback. A
pipette is used to place an electrode in a cell (left and middle) and maintain the potential of
the cell at a fixed level. The internal voltage in the cell is v;, and the voltage of the external
fluid is ve. The feedback system (right) controls the current / into the cell so that the voltage
drop across the cell membrane Av = v; — v, is equal to its reference value Av,.. The current /
is then equal to the ion current.

tirely on the calibration of the voice coil and does not depend on the sensor, which
is used only as the feedback signal. The sensitivity/bandwidth compromise is also
avoided.

Another important application of feedback is in instrumentation for biological
systems. Feedback is widely used to measure ion currents in cells using a device
called a voltage clamp, which is illustrated in Figure 1.6. Hodgkin and Huxley
used the voltage clamp to investigate propagation of action potentials in the giant
axon of the squid. In 1963 they shared the Nobel Prize in Medicine with Eccles
for “their discoveries concerning the ionic mechanisms involved in excitation and
inhibition in the peripheral and central portions of the nerve cell membrane.” A
refinement of the voltage clamp called a patch clamp made it possible to measure
exactly when a single ion channel is opened or closed. This was developed by
Neher and Sakmann, who received the 1991 Nobel Prize in Medicine “for their
discoveries concerning the function of single ion channels in cells.”

Robotics and Intelligent Machines. The goal of cybernetic engineering, already ar-
ticulated in the 1940s and even before, has been to implement systems capable of
exhibiting highly flexible or “intelligent” responses to changing circumstances. In
1948 the MIT mathematician Norbert Wiener gave a widely read account of cy-
bernetics [Wie48]. A more mathematical treatment of the elements of engineering
cybernetics was presented by H. S. Tsien in 1954, driven by problems related to
the control of missiles [Tsi54]. Together, these works and others of that time form
much of the intellectual basis for modern work in robotics and control.

Two recent areas of advancement in robotics and autonomous systems are (con-
sumer) drones and autonomous cars, some examples of which are shown in Fig-
ure 1.7. Quadrocopters such as the DJI Phantom make use of GPS receivers, ac-
celerometers, magnetometers, and gyros to provide stable flight and also use sta-
bilized camera platforms to provide high quality images and movies. Autonomous
vehicles, such as the Google autonomous car project (now Waymo), make use of a
variety of laser rangefinders, cameras, and radars to perceive their environment and
then use sophisticated decision-making and control algorithms to enable them to
safely drive in a variety of traffic conditions, from high-speed freeways to crowded
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Figure 1.7: Autonomous vehicles. The figure on the left is a DJI Phantom 3 drone, which
is able to maintain its position using GPS and inertial sensors. The figure on the right is an
autonomous car that was developed by Google and is capable of driving on city streets by
using sophisticated sensing and decision-making (control) software.

city streets.

Networks and Computing Systems. Control of networks is a large research area
spanning many topics, including congestion control, routing, data caching, and
power management. Several features of these control problems make them very
challenging. The dominant feature is the extremely large scale of the system; the
Internet is probably the largest feedback control system humans have ever built.
Another is the decentralized nature of the control problem: decisions must be made
quickly and based only on local information. Stability is complicated by the pres-
ence of varying time lags, as information about the network state can be observed
or relayed to controllers only after a delay, and the effect of a local control action
can be felt throughout the network only after substantial delay.

Related to the control of networks is control of the servers that sit on these
networks. Computers are key components of the systems of routers, web servers,
and database servers used for communication, electronic commerce, advertising,
and information storage. A typical example of a multilayer system for e-commerce
is shown in Figure 1.8a. The system has several tiers of servers. The edge server
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(a) Multitiered Internet services (b) Individual server

Figure 1.8: A multitier system for services on the Internet. In the complete system shown
schematically in (a), users request information from a set of computers (tier 1), which in turn
collect information from other computers (tiers 2 and 3). The individual server shown in (b)
has a set of reference parameters set by a (human) system operator, with feedback used to
maintain the operation of the system in the presence of uncertainty. (Based on Hellerstein et
al. [HDPTO04].)
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accepts incoming requests and routes them to the HTTP server tier where they
are parsed and distributed to the application servers. The processing for differ-
ent requests can vary widely, and the application servers may also access external
servers managed by other organizations. Control of an individual server in a layer
is illustrated in Figure 1.8b. A quantity representing the quality of service or cost of
operation—such as response time, throughput, service rate, or memory usage—is
measured in the computer. The control variables might represent incoming mes-
sages accepted, priorities in the operating system or memory allocation. The feed-
back loop then attempts to maintain quality-of-service variables within a target
range of values.

Economics. The economy is a large dynamical system with many actors: govern-
ments, organizations, companies, and individuals. Governments control the econ-
omy through laws and taxes, the central banks by setting interest rates, and com-
panies by setting prices and making investments. Individuals control the econ-
omy through purchases, savings, and investments. Many efforts have been made
to model and control the system both at the macro level and at the micro level, but
this modeling is difficult because the system is strongly influenced by the behav-
iors of the different actors in the system.

The financial system can be viewed as a global controller for the economy.
Unfortunately this important controller does not always function as desired, as
expressed by the following quote by Paul Krugman [Kru09]:

We have magneto trouble, said John Maynard Keynes at the start of
the Great Depression: most of the economic engine was in good shape,
but a crucial component, the financial system, was not working. He
also said this: “We have involved ourselves in a colossal muddle, hav-
ing blundered in the control of a delicate machine, the working of
which we do not understand.” Both statements are as true now as they
were then.

One of the reasons why it is difficult to model economic systems is that conser-
vation laws for important variables are missing. A typical example is that the value
of a company as expressed by its stock can change rapidly and erratically. There
are, however, some areas with conservation laws that permit accurate modeling.
One example is the flow of products from a manufacturer to a retailer as illustrated
in Figure 1.9. The products are physical quantities that obey a conservation law,
and the system can be modeled by accounting for the number of products in the
different inventories. There are considerable economic benefits in controlling sup-
ply chains so that products are available to customers while minimizing products
that are in storage. Realistic supply chain problems are more complicated than in-
dicated in the figure because there may be many different products, there may be
different factories that are geographically distributed and the factories may require
raw material or subassemblies.

Feedback in Nature. Many problems in the natural sciences involve understanding
aggregate behavior in complex large-scale systems. This behavior emerges from
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Figure 1.9: Supply chain dynamics (after Forrester [For61]). Products flow from the pro-
ducer to the customer through distributors and retailers as indicated by the solid lines. There
are typically many factories and warehouses and even more distributors and retailers. Multi-
ple feedback loops are present as each agent tries to maintain the proper inventory level.

the interaction of a multitude of simpler systems with intricate patterns of infor-
mation flow. Representative examples can be found in fields ranging from embry-
ology to seismology. Researchers who specialize in the study of specific complex
systems often develop an intuitive emphasis on analyzing the role of feedback (or
interconnection) in facilitating and stabilizing aggregate behavior. We briefly high-
light three application areas here.

A major theme currently of interest to the biology community is the science of
reverse (and eventually forward) engineering of biological control networks such
as the one shown in Figure 1.10. There are a wide variety of biological phenom-
ena that provide a rich source of examples of control, including gene regulation
and signal transduction; hormonal, immunological, and cardiovascular feedback
mechanisms; muscular control and locomotion; active sensing, vision, and propri-
oception; attention and consciousness; and population dynamics and epidemics.
Each of these (and many more) provide opportunities to figure out what works,
how it works, and what we can do to affect it.

In contrast to individual cells and organisms, emergent properties of aggre-
gations and ecosystems inherently reflect selection mechanisms that act on mul-
tiple levels, and primarily on scales well below that of the system as a whole.
Because ecosystems are complex, multiscale dynamical systems, they provide a
broad range of new challenges for the modeling and analysis of feedback systems.
Recent experience in applying tools from control and dynamical systems to bacte-
rial networks suggests that much of the complexity of these networks is due to the
presence of multiple layers of feedback loops that provide robust functionality to
the individual cell [Kit04, SSS+04, YHSDO0Oa]. Yet in other instances, events at
the cell level benefit the colony at the expense of the individual. Systems level anal-
ysis can be applied to ecosystems with the goal of understanding the robustness of
such systems and the extent to which decisions and events affecting individual
species contribute to the robustness and/or fragility of the ecosystem as a whole.

In nature, development of organisms and their control systems have often de-
veloped in synergy. The development of birds is an interesting example, as noted
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Figure 1.10: The wiring diagram of the growth-signaling circuitry of the mammalian
cell [HWOO]. The major pathways that are thought to play a role in cancer are indicated
in the diagram. Lines represent interactions between genes and proteins in the cell. Lines
ending in arrowheads indicate activation of the given gene or pathway; lines ending in a
T-shaped head indicate repression. (Used with permission of Elsevier Ltd. and the authors.)

by John Maynard Smith in 1952 [Smi52]: .

[T]he earliest birds, pterosaurs, and flying insects were stable. This
is believed to be because in the absence of a highly evolved sensory
and nervous system they would have been unable to fly if they were
not. ... To a flying animal there are great advantages to be gained by
instability. The greater manoeuvrability is of equal importance to an
animal which catches its food in the air and to the animals upon which
it preys. ... It appears that in the birds and at least in some insects [...]
the evolution of the sensory and nervous systems rendered the stability
found in earlier forms no longer necessary.

1.5 Feedback Properties

Feedback is a powerful idea which, as we have seen, is used extensively in natural
and technological systems. The principle of feedback is simple: base correcting
actions on the difference between desired and actual performance. In engineering,
feedback has been rediscovered and patented many times in many different con-
texts. The use of feedback has often resulted in vast improvements in system ca-
pability, and these improvements have sometimes been revolutionary, as discussed
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Figure 1.11: A feedback system for controlling the speed of a vehicle. In the block diagram
on the left, the speed of the vehicle is measured and compared to the desired speed within
the “Compute” block. Based on the difference in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehicle by the engine, drivetrain, and
wheels. The figure on the right shows how the velocity changes when the car travels on a
horizontal road and the slope of the road changes to a constant downhill slope. The three
different curves correspond to differing masses of the vehicle, between 1000 and 3000 kg,
demonstrating that feedback can indeed compensate for the changing slope and that the
closed loop system is robust to a large change in the vehicle characteristics.

above. The reason for this is that feedback has some truly remarkable properties.
In this section we will discuss some of the properties of feedback that can be un-
derstood intuitively. This intuition will be formalized in subsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness to uncertainty. For exam-
ple, by measuring the difference between the sensed value of a regulated signal and
its desired value, we can supply a corrective action to partially compensate for the
effect of disturbances. This is precisely the effect that Watt exploited in his use of
the centrifugal governor on steam engines. Another use of feedback is to provide
robustness to variations in the process dynamics. If the system undergoes some
change that affects the regulated signal, then we sense this change and try to force
the system back to the desired operating point, even if the process parameters are
not directly measured. In this way, a feedback system provides robust performance
in the presence of uncertain dynamics.
As an example, consider the simple feedback system shown in Figure 1.11.

In this system, the speed of a vehicle is controlled by adjusting the amount of gas
flowing to the engine. Simple proportional-integral (PI) feedback is used to make
the amount of gas depend on both the error between the current and the desired
speed and the integral of that error. The plot on the right shows the effect of this
feedback when the vehicle travels on a horizontal road and it encounters a downbhill
slope. When the slope changes, the car accelerates due to gravity forces and the
velocity initially increases. The velocity error is sensed by the controller, which
acts to restore the velocity to the desired value by pulling back on the throttle. The
figure also shows what happens when the same controller is used for a different
masses of the car, which might result from having a different number of passen-
gers or towing a trailer. Notice that the steady-state speed of the vehicle always
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approaches the desired speed and achieves that speed within approximately 15 s,
independent of the mass (which varies by a factor of 3!), Thus feedback improves
both performance and robustness of the system.

Another early example of the use of feedback to provide robustness is the nega-
tive feedback amplifier. When telephone communications were developed, ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuum tube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black used negative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a system. Through feed-
back, we can alter the behavior of a system to meet the needs of an application:
systems that are unstable can be stabilized, systems that are sluggish can be made
responsive and systems that have drifting operating points can be held constant.
Control theory provides a rich collection of techniques to analyze the stability and
dynamic response of complex systems and to place bounds on the behavior of such
systems by analyzing the gains of linear and nonlinear operators that describe their
components.

An example of the use of control in the design of dynamics comes from the
area of flight control. The following quote, from a lecture presented by Wilbur
Wright to the Western Society of Engineers in 1901 [McF53], illustrates the role
of control in the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the
age of flying will have arrived, for all other difficulties are of minor
importance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
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Figure 1.12: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch, and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [Hug93].

tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. The Wright
Brothers were well aware of the compromise between stability and maneuverabil-
ity when the designed they Wright Flyer [Dra55] and they made the first successful
flight at Kitty Hawk in 1903. Modern fighter airplanes are also unstable in certain
flight regimes, such as take-off and landing.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was point-
ing down, and vice versa. The Sperry autopilot was the first use of feedback in
aeronautical engineering, and Sperry won a prize in a competition for the safest
airplane in Paris in 1914. Figure 1.12 shows the Curtiss seaplane and the Sperry
autopilot. The autopilot is a good example of how feedback can be used to stabilize
an unstable system and hence “design the dynamics” of the aircraft.

Creating Modularity

Feedback can be used to create modularity and shape well-defined relations be-
tween inputs and outputs in a structured hierarchical manner. A modular system is
one in which individual components can be replaced without having to modify the
entire system. By using feedback, it is possible to allow components to maintain
their input/output properties in a manner that is robust to changes in its intercon-
nections. A typical example is the electrical drive system shown in Figure 1.13,
which has an architecture with three cascaded loops. The innermost loop is a cur-
rent loop, where the controller CC drives the amplifier so that the current to the
motor follows the set point. The velocity loop with the controller VC drives the



1.5. FEEDBACK PROPERTIES 1-17

vy i F

PC

CC Amplifier Motor -

Current loop

Velocity loop

Position loop

Figure 1.13: Block diagram of a system for position control. The system has three cascaded
loops for control of current, velocity, and position.

set point of the current controller so that velocity follows the set point of VC. The
outer loop drives the set point of the velocity loop to follow the set point of the
position controller PC.

The control architecture with nested loops shown in Figure 1.13 is common. It
simplifies design, commissioning, and operation. Consider for example the design
of the velocity loop. With a well-designed current controller the motor current
follows the set point of the controller CC. Since the motor velocity is proportional
to the current, the dynamics relating velocity to the input of the current controller
is approximately an integrator, because force is proportional to current and angular
acceleration is proportional to force. This simplified model can be used to design
the velocity loop so that effects of friction and other disturbances are reduced. With
a well-designed velocity loop, the design of the position loop is also simple. The
loops can also be tuned sequentially starting with the inner loop.

This architecture illustrates how feedback can be used to simplify the overall
design of the controller by breaking the problem into stages. This architecture also
provides a level of modularity since each design stage depends only on the closed
loop behavior of the system. If we replace the motor when a new motor, then by
redesigning the current controller (CC) to give the same closed loop performance,
we can leave the outer level loops unchanged. Similarly, if we need to redesign
one of the outer layer controllers for an application with different specifications,
we can often make use of an existing inner loop design (as long as the existing
design provide enough performance to satisfy the outer loop requirements).

Challenges of Feedback

While feedback has many advantages, it also has some potential drawbacks. Chief
among these is the possibility of instability if the system is not designed properly.
We are all familiar with the effects of positive feedback when the amplification
on a microphone is turned up too high in a room. This is an example of feedback
instability, something that we obviously want to avoid. This is tricky because we
must design the system not only to be stable under nominal conditions but also to
remain stable under all possible perturbations of the dynamics.

In addition to the potential for instability, feedback inherently couples different
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parts of a system. One common problem is that feedback often injects measure-
ment noise into the system. Measurements must be carefully filtered so that the
actuation and process dynamics do not respond to them, while at the same time
ensuring that the measurement signal from the sensor is properly coupled into the
closed loop dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding a con-
trol system in a product. While the cost of sensing, computation, and actuation
has decreased dramatically in the past few decades, the fact remains that control
systems are often complicated, and hence one must carefully balance the costs and
benefits. An early engineering example of this is the use of microprocessor-based
feedback systems in automobiles.The use of microprocessors in automotive appli-
cations began in the early 1970s and was driven by increasingly strict emissions
standards, which could be met only through electronic controls. Early systems
were expensive and failed more often than desired, leading to frequent customer
dissatisfaction. It was only through aggressive improvements in technology that
the performance, reliability, and cost of these systems allowed them to be used in
a transparent fashion. Even today, the complexity of these systems is such that it is
difficult for an individual car owner to fix problems.

1.6 Simple Forms of Feedback

The idea of feedback to make corrective actions based on the difference between
the desired and the actual values of a quantity can be implemented in many differ-
ent ways. The benefits of feedback can be obtained by very simple feedback laws
such as on-off control, proportional control, and proportional-integral-derivative
control. In this section we provide a brief preview of some of the topics that will
be studied more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

. Umax %fe>0, (1.1
Umin i1f e <0,

where the control error e = r —y is the difference between the reference signal (or
command signal) r and the output of the system y, and u is the actuation command.
Figure 1.14a shows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equation (1.1) is called on-off control. One of its chief advan-
tages is that it is simple and there are no parameters to choose. On-off control often
succeeds in keeping the process variable close to the reference, such as the use of
a simple thermostat to maintain the temperature of a room. It typically results in
a system where the controlled variables oscillate, which is often acceptable if the
oscillation is sufficiently small.
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Figure 1.14: Input/output characteristics of on-off controllers. Each plot shows the input on
the horizontal axis and the corresponding output on the vertical axis. Ideal on-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (c). Note that for on-off
control with hysteresis, the output depends on the value of past inputs.

Notice that in equation (1.1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figure 1.14b and 1.14c).

PID Control

The reason why on-off control often gives rise to oscillations is that the system
overreacts since a small change in the error makes the actuated variable change
over the full range. This effect is avoided in proportional control, where the char-
acteristic of the controller is proportional to the control error for small errors. This
can be achieved with the control law

Umax 1f € > emax,
u=\y kpe if epin < e < emax, (1.2)

Umin if e < emin,

where k, is the controller gain, emin = Umin/kp, and emax = Umax /kp. The interval
(emin; €max ) s called the proportional band because the behavior of the controller
is linear when the error is in this interval:

u=hkp(r—y)=kpe if emin < e < emax- (1.3)

While a vast improvement over on-off control, proportional control has the
drawback that the process variable often deviates from its reference value. In par-
ticular, if some level of control signal is required for the system to maintain a
desired value, then we must have e # 0 in order to generate the requisite input.

This can be avoided by making the control action proportional to the integral
of the error:

u(t) = ki /0 ' e(1)dr. (1.4)

This control form is called integral control, and k; is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error (Exercise 1.5). The catch is that there may not always be a steady
state because the system may be oscillating. In addition, if the control action has
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Figure 1.15: Action of a PID controller. At time ¢, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedback is based on the integral
of the error up to time ¢ (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of change of the error. Ty
represents the approximate amount of time in which the error is projected forward (see text).

magnitude limits, as in equation (1.2), an effect known as “integrator windup”
can occur and may result in poor performance unless appropriate “anti-windup”
compensation is used. Despite the potential drawbacks, which can be overcome
with careful analysis and design, the benefits of integral feedback in providing
zero error in the presence of constant disturbances have made it one of the most
used forms of feedback.

An additional refinement is to provide the controller with an anticipative abil-
ity by using a prediction of the error. A simple prediction is given by the linear
extrapolation

de(t)
dt ’

e(t+Ty) ~e(t)+ Ty

which predicts the error Ty time units ahead. Combining proportional, integral, and
derivative control, we obtain a controller that can be expressed mathematically as

u(t) :kpe(z)+ki/ote(r)dr+kdd2(;). (1.5)

The control action is thus a sum of three terms: the past as represented by the
integral of the error, the present as represented by the proportional term and the
future as represented by a linear extrapolation of the error (the derivative term).
This form of feedback is called a proportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.15.

A PID controller is very useful and is capable of solving a wide range of control
problems. More than 95% of all industrial control problems are solved by PID
control, although many of these controllers are actually proportional-integral (PI)
controllers because derivative action is often not included [DMO02a].
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Figure 1.16: Finite state machine for cruise control system. The figure on the left shows
some typical buttons used to control the system. The controller can be in one of four modes,
corresponding to the nodes in the diagram on the right. Transition between the modes is
controlled by pressing one of the four buttons on the cruise control interface: on/off, set,
resume, or cancel.

1.7 Combining Feedback with Logic

Continuous control is often combined with logic to cope with different operating
conditions. Logic is typically related to changes in operating conditions, equip-
ment protection, manual interaction, and saturating actuators. One situation is
when there is one variable that is of primary interest, but other variables may have
to be controlled for equipment protection. For example, when controlling a com-
pressor the outflow is the primary variable but it may be necessary to switch to a
different mode to avoid compressor stall, which may damage the compressor. We
illustrate some ways in which logic and feedback are combined by a few examples.

Cruise control

The basic control function in a cruise controller, such as the one shown in Fig-
ure 1.11, is to keep the velocity constant. It is typically done with a PI controller.
The controller normally operates in automatic mode but it is is necessary to switch
it off when braking, accelerating, or changing gears. The cruise control system has
a human-machine interface that allows the driver to communicate with the system.
There are many different ways to implement this system; one version is illustrated
in Figure 1.16a. The system has four buttons: on/off, coast/set, resume/accelerate,
and cancel. The operation of the system is governed by a finite state machine that
controls the modes of the PI controller and the reference generator, as shown in
Figure 1.16b.

The finite state machine has four modes: off, standby, cruise, and hold. The
state changes depending on actions of the driver who can brake, accelerate, and
operate using the buttons. The on/off switch moves the states between off and
standby. From standby the system can be moved to cruise by pushing the set/coast
button. The velocity reference is set as the velocity of the car when the button
is released. In the cruise state the operator can change the velocity reference; it
is increased using the resume/accelerate button and decreased using the set/coast



1-22 CHAPTER 1. INTRODUCTION

Figure 1.17: Large computer “server farm”.

button. If the driver accelerates by pushing the gas pedal the speed increases but
it will go back to the set velocity when the gas pedal is released. If the driver
brakes the car brakes and the cruise controller goes into hold but it remembers the
set point of the controller; it can be brought to the cruise state by pushing the re-
sume/accelerate button. The system also moves from cruise mode to standby if the
cancel button is pushed. The reference for the velocity controller is remembered.
The system goes into off mode by pushing on/off when the system is engaged.
The PI controller is designed to have good regulation properties and to give
good transient performance when switching between resume and control modes.

Server Farms

Server farms consist of a large number of computers for providing Internet services
(cloud computing). Large server farms, such as the one shown in Figure 1.17, may
have thousands of processors. Power consumption for driving the servers and for
cooling them is a prime concern. The cost for energy can be more than 40% of the
operating cost for data centers [EKRO3]. The prime task of the server farm is to
respond to a strongly varying computing demand. There are constraints given by
electricity consumption and the available cooling capacity. The throughput of an
individual server depends on the clock rate, which can be changed by adjusting the
voltage applied to the system. Increasing the supply voltage increases the energy
consumption and more cooling is required.

Control of server farms is often performed using a combination of feedback
and logic. Capacity can be increased rapidly if a server is switched on simply by
increasing the voltage to a server, but a server that is switched on consumes en-
ergy and requires cooling. To save energy it is advantageous to switch off servers
that are not required, but it takes some time to switch on a new server. A control
system for a server farm requires individual control of the voltage and cooling of
each server and a strategy for switching servers on and off. Temperature is also
important. Overheating will reduce the life time of the system and may even de-
stroy it. The cooling system is complicated because cooling air goes through the
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Figure 1.18: Air-fuel controller based on selectors. The left figure shows the system archi-
tecture. The letters r and y in the PI controller denotes the input ports for reference and
measured signal respectively. The right figure shows a simulation where the power reference
r is changed stepwise at t = 1 and ¢ = 15. Notice that the normalized air flow is larger than
the normalized fuel flow both for increasing and decreasing reference steps.

servers in series and parallel. The measured value for the cooling system is there-
fore the server with the highest temperature. Temperature control is accomplished
by a combination of feedforward logic to determine when servers are switched on
and off and feedback using PID control.

Air-Fuel Control

Air-fuel control is an important problem for ship boilers. The control system con-
sists of two loops for controlling air and oil flow and a supervisory controller that
adjusts the air-fuel ratio. The ratio should be adjusted for optimal efficiency when
the ships are on open sea but it is necessary to run the system with air excess
when the ships are in the harbor, since generating black smoke will result in heavy
penalties.

An elegant solution to the problem can be obtained by combining PI controllers
with maximum and minimum selectors, as shown in Figure 1.18a. A selector is a
static system with several inputs and one output: a maximum selector gives an out-
put that is the largest of the inputs, a minimum selector gives an output that is the
smallest of the inputs. Consider the situation when the power demand is increased:
the reference r to the air controller is selected as the commanded power level by
the maximum selector, and the reference to the oil flow controller is selected as
the measured airflow. The oil flow will lag the air flow and there will be air excess.
When the commanded power level is decreased, the reference of the oil flow con-
troller is selected as the power demand by the minimum selector and the reference
for the air flow controller is selected as the oil flow by the the maximum selector.
The system then operates with air excess when power is decreased.

The resulting response of the system for step changes in the desired power level
is shown in Figure 1.18b, verifying that the system maintains air excess for both
power increases and decreases.
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Figure 1.19: Layered decomposition of a control system.

Selectors are commonly used to implement logic in engines and power systems.
They are also used for systems that require very high reliability: by introducing
three sensors and only accepting values where two sensors agree it is possible to
guard for the failure of a single sensor.

1.8 Control System Architectures

Most of the control systems we are investigating in this book will be relatively
simple feedback loops. In this section we will try to give a glimpse of the fact that
in reality the simple loops combine to form a complex system which often has an
hierarchical structure with controllers, logic, and optimization in different com-
binations. Figure 1.19 shows an example of such a hierarchy, exposing different
“layers” of the control system. This class of systems is discussed in more detail
in Chapter 15. We focus here on a few representative examples to illustrate some
basic points.

Freight Train Trip Optimizer

An example of two of the layers represented in Figure 1.19 can be see in the control
of modern locomotives developed by General Electric (GE). Typical requirements
for operating a freight train is to arrive in time and to use as little fuel as possible.
The key issue is to avoid unnecessary braking. Figure 1.20 illustrates a system de-
veloped by GE. At the low layer the train has a speed regulator and a simple logic
to avoid entering a zone where there is another train. The key disturbance for the
speed control is the slope of the ground. The speed controller has a model of the
track, a GPS sensor, and an estimator. The set point for the speed controller is ob-
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Figure 1.20: Freight train trip optimizer. GE’s Trip Optimizer™takes data about the train,
the terrain, and the propulsion system and computes the best speed for the train in order to
reach the destination on time while burning the least amount of diesel fuel. (Figure courtesy
GE.)

tained from a trip optimizer, which computes a driving plan that minimizes the fuel
consumption while arriving at the desired arrival time. The arrival time is provided
by a dispatch center which in turn may use some optimization. This optimization
represents the second layer in Figure 1.19, with the top layer (decision-making)
provided by the human operator.

Diesel-electric freight locomotives pull massive loads of freight cars, weighing
more than 20,000 tons (US), and may be more than a mile in length. A typical
locomotive burns about 35,000 gallons per year and can save an average 10% using
the Trip Optimizer autopilot, representing a substantial savings in cost, natural
resources, and pollution.

Process Control Systems

Process control systems are used to monitor and regulate the manufacturing of a
wide range of chemicals and materials. One example is a paper factory, such as
the one depicted in Figure 1.21. The factory produces paper for a variety of pur-
poses from logs of wood. There are multiple fiber lines and paper machines, with a
few dozen mechanical and chemical production processes that convert the logs to
a slurry of fibers in different steps, and then paper machines that convert the fiber
slurry to paper. Each production unit has PI(D) controllers that control flow, tem-
perature, and tank levels. The loops typically operate on time scales from fractions
of seconds to minutes. There is logic to make sure that the process is safe and there
is sequencing for start, stop, and production changes. The setpoints of the low level
control loops are determined from production rates and recipes, sometimes using
optimization. The operation of the system is governed by a supervisory system
that measures tank levels and sets the production rates of the different production
units. This system performs optimization based on demanded production, mea-
surement of tank levels, and flows. The optimization is performed at the time scale
of minutes to hours, and it is constrained by the production rates of the different
production units. Process for continuous production in the chemical and pharma-
ceutical industry are similar to the paper factory but the individual production units
may be very different.
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Figure 1.21: Schematic diagram for a pulp and paper manufacturing plant. The input to the
plant is wood (upper left), which is then process through a number of stages to create paper
products.

One of the features of modern process control systems is that they operate
across many time and spatial scales. Modern process control systems are also in-
tegrated with supply chains and product distribution chains, leading to the use of
production planning systems and enterprise resource management systems. An ex-
ample of an architecture for distributed control system (DCS), typical for complex
manufacturing systems, is shown in Figure 1.22.

Autonomous Driving

The cruise controller in Figure 1.11 relieves the driver of one task to keep constant
speed, but a driver still has many tasks to perform: plan the route, avoid collisions,
decide the proper speed, plan the route, do lane changes, make turns, keep proper
distance to the car ahead. Car manufacturers are continuously automating several
of these functions going as far as automatic driving. As an example of a control
system for an autonomous vehicle is shown in Figure 1.23. This control system is
designed for driving in urban environments. The feedback system fuses data from
road and traffic sensors (cameras, laser range finders, and radar) to create a multi-
layer “map” of the environment around the vehicle. This map is used to make
decisions about actions that the vehicle should take (drive, stop, change lanes) and
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Figure 1.22: Functional architecture of process control system, implemented as a distributed
control system (DCS). Figure courtesy of ABB, Inc.

plan a specific path for the vehicle to follow. An optimization-based planner is used
to compute the trajectory for the vehicle to follow, which is passed to a trajectory
tracking module. A supervisory control module performs higher-level tasks such
as mission planning and contingency management (if a sensor or actuator fails).

We see that this architecture has the basic features shown in Figure 1.19. The
control layers are shown in the navigation block, with the mission planner and
traffic planner representing two levels of discrete decision-making logic, the path
planner representing a trajectory optimization function and then the lower layers of
control. Similarly, there are multiple layers of sensing, with low level information,
such as vehicle speed and position in the lane, being sent to the trajectory tracking
controller, while higher level information about other vehicles on the road and their
predicted motions is sent to the trajectory, traffic, and mission planners.
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Figure 1.23: DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the 2005 and 2007
competitions and its networked control architecture [CFG+-06].
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1.9 Further Reading

The material in the first half of this chapter draws from the report of the Panel on
Future Directions on Control, Dynamics and Systems [Mur03]. Several additional
papers and reports have highlighted the successes of control [NS99] and new vistas
in control [Bro00, KumO1, Wis07, LLAE+17]. The early development of control
is described by Mayr [May70] and in the books by Bennett [Ben79, Ben93], which
cover the period 1800—-1955. A fascinating examination of some of the early his-
tory of control in the United States has been written by Mindell [Min02]. A popular
book that describes many control concepts across a wide range of disciplines is Out
of Control by Kelly [Kel94].

There are many textbooks available that describe control systems in the con-
text of specific disciplines. For engineers, the textbooks by Franklin, Powell, and
Emami-Naeini [FPENOS5], Dorf and Bishop [DB04], Kuo and Golnaraghi [KG02],
and Seborg, Edgar, and Mellichamp [SEMO04] are widely used. More mathemati-
cally oriented treatments of control theory include Sontag [Son98] and Lewis [Lew03].
At the opposite end of the spectrum, the textbook Feedback Control for Every-
one [AM10] provides a readable introduction with minimal mathematical back-
ground required. The books by Hellerstein et al. [HDPT04] and Janert [Jan14]
provide descriptions of the use of feedback control in computing systems. A num-
ber of books look at the role of dynamics and feedback in biological systems,
including Milhorn [Mil66] (now out of print), J. D. Murray [Mur(04], and Ellner
and Guckenheimer [EGOS5]. The book by Fradkov [FraO7] and the tutorial arti-
cle by Bechhoefer [BecO5] cover many specific topics of interest to the physics
community.

Systems that combine continuous feedback with logic and sequencing are called
hybrid systems. The theory required to properly model and analyze such systems is
outside the scope of this text, but a comprehensive description is given by Goebel,
Sanfelice, and Teele [GST12]. It is very common that practical control systems
combine feedback control with logic sequencing and selectors; many examples
are given by Astrom and T. Higglund [AHO06].

Exercises

1.1 (Eye motion) Perform the following experiment and explain your results: Hold-
ing your head still, move one of your hands left and right in front of your face,
following it with your eyes. Record how quickly you can move your hand before
you begin to lose track of it. Now hold your hand still and shake your head left to
right, once again recording how quickly you can move before losing track of your
hand.

1.2 Identify five feedback systems that you encounter in your everyday environ-
ment. For each system, identify the sensing mechanism, actuation mechanism, and
control law. Describe the uncertainty with respect to which the feedback system
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provides robustness and/or the dynamics that are changed through the use of feed-
back.

1.3 (Balance systems) Balance yourself on one foot with your eyes closed for 15 s.
Using Figure 1.4 as a guide, describe the control system responsible for keeping
you from falling down. Note that the “controller” will differ from that in the dia-
gram (unless you are an android reading this in the far future).

1.4 (Cruise control) Download the MATLAB code used to produce simulations for
the cruise control system in Figure 1.11 from the companion web site. Using trial
and error, change the parameters of the control law so that the overshoot in speed
is not more than 1 m/s for a vehicle with mass m = 1000 kg.

1.5 (Integral action) We say that a system with a constant input reaches steady
state if all system variables approach constant values as time increases. Show that
a controller with integral action, such as those given in equations (1.4) and (1.5),
gives zero error if the closed loop system reaches steady state. Notice that there is
no saturation in the controller.

1.6 (Combining feedback with logic) Consider a system for cruise control where
the overall function is governed by the state machine in Figure 1.16. Assume that
the system has a continuous input for vehicle velocity, discrete inputs indicating
braking and gear changes, and a PI controller with inputs for the reference and
measured velocities and an output for the control signal. Sketch the actions that
have to be taken in the states of the finite state machine to handle the system prop-
erly. Think about if you have to store some extra variables, and if the PI controller
has to be modified.

1.7 Search the web and pick an article in the popular press about a feedback and
control system. Describe the feedback system using the terminology given in the
article. In particular, identify the control system and describe (a) the underlying
process or system being controlled, along with the (b) sensor, (c) actuator, and
(d) computational element. If the some of the information is not available in the
article, indicate this and take a guess at what might have been used.






Chapter Two
Feedback Principles

Feedback - it is the fundamental principle that underlies all self-regulating systems, not only
machines but also the processes of life and the tides of human affairs.

A. Tustin, “Feedback™, Scientific American, 1952 [Tus52].

This chapter presents examples that illustrate fundamental properties of feed-
back: disturbance attenuation, command signal following, robustness to uncer-
tainty, and shaping of behavior. The analysis is based on simple static and dy-
namical models. After reading this chapter, readers should have some insight into
the power of feedback, they should know about transfer functions and block di-
agrams, and they should be able to design simple feedback systems. The basic
concepts described in this chapter are explained in more detail in the remainder of
the text, and this chapter can be skipped for readers who prefer to move directly to
the more detailed analysis and design techniques.

2.1 Nonlinear Static Models

We will start by capturing the behavior of the process and the controller using static
models. Although these models are very simple, they give significant insight about
the fundamental properties of feedback: negative feedback increases the range of
linearity, it improves command signal following, and it reduces the gain and the
effects of disturbances and parameter variations. Moderate positive feedback has
the opposite properties: it shrinks the range of linearity and increases the gain of
the system. At a critical value the gain becomes infinite and the system behaves like
arelay; larger values of the gain gives hysteretic behavior. Although static models
give some insight, they cannot capture dynamic phenomena like stability. Positive
feedback combined with dynamics often leads to instability and oscillations, as
will be discussed toward the end of the chapter.

Consider the closed loop system whose block diagram is shown in Figure 2.1.
The closed loop system has a command signal or a reference r that gives the desired
system output. The controller C has an input e that is the difference between the
reference r and the process output y, and the output of the controller is the control
signal u. There is also a load disturbance v at the process input that perturbs the
system. Although we will mostly deal with negative feedback, this simple model
also permits analysis of positive feedback.

The process P is modeled as a function that is linear for inputs that are less
than one in magnitude and saturates for inputs of magnitude larger than one. The



2-2 CHAPTER 2. FEEDBACK PRINCIPLES

+1 =

Figure 2.1: Block diagram of simple, static feedback system. The controller is a constant
gain k > 0 and the process is modeled by a nonlinear function F(w). The process output is
v, the control signal is u, the external signals are the reference r, and the load disturbance v.
The sign in the lower block indicates whether the feedback is positive (+) or negative (—).

controller is modeled by a constant gain k. Formally the process and the controller
are described by the functions

-1 ifw< -1,
y=F(w)=satiw)=qw if|lw/<1, and u=ke. (2.1
1 ifw>1,

The process is linear for |w| < 1, which is called the linearity region. In this region
we have y = w and the process gain is 1. The controller gain is k because the
controller’s output u is k times its input e.

The open loop system is the combination of the controller and the process when
there is no feedback. Neglecting the disturbance v, it follows from equation (2.1)
that the input/output relation for the open loop system is

y = F(kr) = sat(kr). (2.2)

It has the gain k and the linearity region |r| < 1/k.

Response to Command Signals

To explore how well the system output y can follow the command signal r we
assume that the load disturbance v in Figure 2.1 is zero. We will first consider
negative feedback by setting the gain in the lower block of Figure 2.1 to —1. It
follows from Figure 2.1 and equation (2.1) that the closed loop system is described
by

y =sat(u), u=k(r—y). (2.3)

Eliminating u in these equations we obtain
y =sat(k(r—y)). 2.4)

To find the relation between the reference r and the output y we have to solve
an algebraic equation. In the linear range |k(r —y)| < 1 we have y = ﬁklr. When
|k(r—y)| > 1 the output saturates and we obtain y = +1 (depending on the sign of
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Figure 2.2: Input/output behavior of the system: (a) for large negative feedback (b) posi-
tive feedback k < 1 and (c) large positive feedback. The solid line is the response of the
closed loop system and the dotted line is the response of the open loop system. Redrawn
from [SGA18, Figure 20.5].

k(r—y). It can be shown that the overall input/output relationship satisfies

k+1
-1 r<-k

y=sai( ) =9 Il < 5 (2.5)
1 F> ktl
- k .
k+1

The linearity range for the closed loop system is |r| < *—. Comparing with equa-
tion (2.2) we find that negative feedback widens the linear range of the system by a
factor of k4 1 compared to the open loop system. This is illustrated in Figure 2.2a,
which shows the input/output relations of the open loop system (dashed) and the
closed loop system (solid).

Robustness to Parameter Uncertainty

Next we will investigate the sensitivity of the closed loop system to gain variations.
The sensitivity of a system describes how changes in the system parameters affect
the performance of the system. For the open loop system in the linear range we
have y = kw and it thus follows that

dy_ =7 dy _ dk

ak”"Tr T 3Tk

The relative change of the output is thus equal to the relative change of the param-
eter and we say that the sensitivity is 1. Thus, for the open loop system, a change
in k of 10% will lead to a change in the output of 10%.

For the closed loop system with an input in the linear range, it follows from
equation (2.5) that

(2.6)

dy r kr r y

dk— k+1 (k+12  (k+1)2  k(k+1)

and hence
—_— = .7
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A comparison with equation (2.6) shows that negative feedback with gain k re-
duces the sensitivity to gain variations by a factor of k+ 1. If k is 100, for example,
a 10% change in k would lead to less than a 0.1% change in y, so the closed loop
system is much less sensitive to parameter variation.

This type of analysis can also be used to investigate the effect of positive feed-
back. If the —1 in the feedback loop in Figure 2.1 is replaced by +1, equation (2.5)
becomes

y= sat( — kk+ 1 r). (2.8)

Notice that the gain of the closed loop system is positive and larger than the open
gain for k < 1, as shown in Figure 2.2b. The linearity range is |r| < (1 —k)/k.
A comparison with the open loop system in equation (2.2) shows that positive
feedback with k < 1 shrinks the linearity range by a factor of 1 —k. As k approaches
1 the closed loop gain approaches infinity, the range shrinks to zero, and the system
behaves like a relay.

For positive feedback with k& > 1 it follows from equation (2.8) that the closed
loop gain is negative, as shown in Figure 2.2c, and that it approaches —1 as k ap-
proaches infinity. Positive feedback with large gains creates an input/output char-
acteristic with multiple output values possible for inputs in the range |r| < k/(k+1)
and the closed loop system behaves like a switch with hysteresis. This concept is
explored in more detail in Section 2.6, and it is shown that if the process has dy-
namics then all points where the input/output characteristics has negative slope are
unstable.

We will mostly deal with negative feedback but there are systems that employ
positive feedback, which is illustrated by the following example.

Example 2.1 The Superregenerative Amplifier

Armstrong constructed a “superregenerative” radio receiver with only one vacuum
tube in 1914, when he was still an undergraduate at Columbia University. The su-
perregenerative amplifier can be modeled as an amplifier with open loop gain k
and a saturated output, combined with a positive feedback loop, as shown in Fig-
ure 2.1. Using equation (2.8), we can compute the gain of the closed loop system
to be kg = k/(1 — k). A very large closed loop gain can be obtained by selecting a
feedback gain k that is just below 1. Choosing k = 0.999 gives k¢ = 999, which is
a gain increase of almost three orders of magnitude.

The drawback by using positive feedback is that the system is highly sensitive
and that the gain has to be adjusted carefully to avoid oscillations. For example, if
the gain k is 0.99 instead of 0.999 (a difference of less than 1%), then the closed
loop gain becomes k¢ = 99, a difference of 10X (or 1000%). The oscillatory nature
of this circuit requires the use of a more advanced (dynamic) model for analysis of
the amplifier.

Despite its limitations, this type of amplifier is still used in simple walkie-
talkies, garage door openers, and toys. \%
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Load Disturbance Attenuation

Another use of feedback is to reduce the effects of external disturbances, repre-
sented by the signal v in Figure 2.1. For the open loop system, the output when
v # 0 is given by

y =sat(kr+v).

In the linear region we thus have a gain of 1 between v and y, so that disturbances
are passed through with no attenuation.

To investigate the effect of feedback on load disturbances we consider the sys-
tem in Figure 2.1 with negative feedback and, for simplicity, we set the reference
signal r to be zero. The relationship between the load disturbance v and the the
output y is given by y = sat(v — ky), which is again an algebraic equation. In the
linear range we get y = v/(k+ 1) and more generally it can be shown that

v
=sat{ — ). 29
v <k +1 ) (29)
In the linear region, negative feedback thus reduces the effect of load disturbances
by the factor k4 1. The analysis of the effects of positive feedback is discussed in

Exercise 2.1.

Combining these three sets of analyses, we see that negative feedback increases the
range of linearity of the system, decreases the sensitivity of the system to param-
eter uncertainty, and attenuates load disturbances. The trade-off is that the closed
loop gain is decreased. Positive feedback has the opposite effect: it can increase
the closed loop gain, but at the cost of increased sensitivity and amplification of
disturbances.

2.2 Linear Dynamical Models

The analysis in the previous section was based on static models and the dynamics
of the process were neglected. We will now introduce a set of concepts and tools to
analyze the effects of dynamics. To do this we will introduce block diagrams, linear
differential equations, and transfer functions. The block diagram is an abstraction
that describes a system as an interconnection of blocks, whose input/output behav-
ior is described by differential equations. The transfer function, which is a function
of complex variables, is a convenient representation of the differential equations
describing the dynamics of the system. Transfer functions make it possible for
us to find the relations between the signals of a complex system represented by
block diagrams using simple algebra. The values of the transfer function on the
imaginary axis gives the steady state response to sinusoidal signals, which means
that the transfer function can be determined experimentally from the steady state
response to sinusoidal signals.
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Linear Differential Equations and Transfer Functions

In many practical situations, the input/output behavior of a system can be modeled
by a linear differential equation of the form

d"y an! d"u d™lu
drm +a1dl‘”_l +"‘+any:bOW‘Fle"i‘"'-i-bmu, (2.10)
where u is the input, y is the output, and the coefficients @; and by are real numbers.
The differential equation (2.10) is characterized by two polynomials

a(s) =s"+as" - +a,, b(s):bosm+b1s’"_1+---+bm, 2.11)

where a(s) is the characteristic polynomial of the differential equation (2.10). We
assume that the polynomials a(s) and b(s) do not have common roots. (The con-
sequences of having common roots is discussed in Section 8.3.)

Equation (2.10) represents a time invariant system because if the pair u(t),y(t)
satisfies the equation so does u(r + 7),y(¢ + 7). The equation is also /inear because
ifu(¢), y1(¢), and up (), y(¢) satisfy the equation so does au () + Bua(t), oy (¢) +
Bya(t), where o and B are real numbers. Systems that are linear and time invariant
are often called LT1 systems. We can visualize these systems as being characterized
by a huge table of corresponding input/output signal pairs. An interesting property
of an LTI system is that it can be characterized by a single carefully chosen pair,
for example the response of the system to a step input.

The solution to equation (2.10) is the sum of two terms: the general solution to
the homogeneous equation, which does not depend on the input, and a particular
solution, which depends on the input. The homogeneous equation associated with
equation (2.10) is

dny dnfly

arm N g
Letting sy represent the roots of the characteristic equation a(s) = 0, the solution
to equation (2.12) is of the form

+...4a,y=0. (2.12)

y(t) = Z Cre'™ (2.13)
k=1

if the characteristic equation does not have repeated roots. The numbers Cy,...,C,
can be determined from the initial conditions at f = 0.

Since the coefficients a; are real, the roots of the characteristic equation are ei-
ther real-valued or occur in complex conjugate pairs. A real root s; of the character-
istic equation corresponds to the exponential function ¢**’. This function decreases
over time if s; is negative, is constant if s; = 0, and increases if s; is positive, as
shown in the top row of Figure 2.3. For real roots s; the parameter 7' = 1/sy is
called the time constant, because it describes how quickly the signal decays.

A complex root s = 0 £ i® corresponds to the time functions

% sin (ot), e® cos (ot),

which have oscillatory behavior, as illustrated in the bottom row of Figure 2.3.
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Figure 2.3: Examples of exponential signals. The top row corresponds to exponential signals
with a real exponent, and the bottom row corresponds to those with complex exponents. The
dashed line in the last two cases denotes the bounding envelope for the oscillatory signals.
In each case, if the real part of the exponent is negative then the signal decays, while if the
real part is positive then it grows.

The sine terms are shown as solid lines; they have zero crossings with the spacing
7/®. The dashed lines show the envelopes, which correspond to the exponential
function +-€°.

When the characteristic equation (2.13) has repeated roots, the solutions to the
homogeneous equation (2.12) take the form

y(1) =Y C(r)e™, (2.14)
k=1

where Ci(t) is a polynomial with degree less than the multiplicity of the root sy.
The solution (2.14) has };* | (degCy + 1) = n free parameters.

Having explored the solution to the homogeneous equation, we now turn to
the input-dependent part of the solution. The solution to equation (2.10) for an
exponential input is of particular interest, as will be shown in the following. We
setu(r) = e*, where s # s is a complex number, and investigate if there is a unique
particular solution of the form y(¢) = G(s)e*. Assuming this to be the case, we find

@ — sest7 d*u — s263t7 d"u — et

dt dr? dem

p 2 o (2.15)
d%] = 5G(s)e", dTg = szG(s)eS’, dtz =s"G(s)e”
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Inserting these expressions into the differential equation (2.10) gives
(s"+ars" 4 4a,)G(s)e" = (bos™ +bis" -+ by)e

and hence b gy 1
-1 4p b
Gs) = 0" bt e b B(s) (2.16)
s"taps" M+ +a, a(s)

This function is called the transfer function of the system. It describes a particu-
lar solution to the differential equation for the input e*. Combining this with the
solution to the homogeneous equation, we find that a solution to the differential
equation (2.10) for the exponential input u(r) = e is

y(t) = i Ci(t)e™ +G(s)e”. (2.17)
k=1

The relation between the transfer function (2.16) and the differential equa-
tion (2.10) is clear: the transfer function (2.16) can be obtained by inspection from
the differential equation (2.10), and conversely the differential equation can be ob-
tained from the transfer function if the polynomials a(s) and b(s) do not have com-
mon factors. The transfer function can thus be regarded as a shorthand notation for
the differential equation (2.10). It is a complete characterization of the differential
equation even if it was derived as the response to a specific input u(z) = . We
note that the input and the initial conditions must both be given to obtain the full
solution of the differential equation, also referred to as the response of the system.

To deal with oscillatory signals, like those shown in the bottom row of Fig-
ure 2.3, we allow s to be a complex number. The transfer function G is then a
function that maps complex numbers to complex numbers. We let arg represent
the argument (phase, angle) of a complex number and |-| the magnitude, and
note that the complex response to an input u = ¢'®’ = cos @t + isin @t is given
by G(imt)e'®. Using just the imaginary parts of the signals, it follows that the

particular solution for the input u = sin(®t) = Ime'® is

¥(1) = Im (G(iw) &) = Im (|G(im) | /& 1®) £i0)
= |G(iw)|Im @20+ — |G (iw)|sin(wr + arg G(im)).

The input is thus amplified by |G(i®)| and the phase shift between input and output
is arg G(iw). The functions G(iw), |G(iw)|, and arg G(iw) are called the frequency
response, gain, and phase. Gain and phase are also called magnitude and angle.

When the input and the output are constant, u(z) = up and y(¢) = yo, the dif-
ferential equation (2.10) has the particular solution y(t) = (b,/an)uo = G(0)uo,
obtained by setting s = 0. The input is thus amplified by the factor G(0), which
is therefore called the zero frequency gain (or sometimes the static gain). If the
differential equation is stable the solution will converge to G(0)ug as ¢ goes to
infinity.

The full response to an exponential input is the sum of a particular solution and
a solution to the homogeneous equation that is determined by the initial conditions,
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Figure 2.4: Two responses of a linear time-invariant system to a sinusoidal input. The dashed
line shows the output when the initial conditions are chosen so that the output is purely
sinusoidal. The solid line shows the response response for the initial conditions y(0) = 0 and
y'(0) = 0. The transfer function G(s) = 1/(s+1).

as given in equation (2.17). An illustration is given in Figure 2.4 for the transfer
function G(s) = 1/(s+ 1)2. The dashed line, which is a pure sine wave, is the
solution obtained when all C; in equation (2.17) are zero. The solid line shows the
response obtained when the Cy, are chosen so that y(0) and its derivatives y*)(0),
k=1,...,n—1 are all zero. Since all roots of the characteristic equation have
negative real parts, the solution to the homogeneous equation (2.14) goes to zero
as t — oo and the general solution converges to the particular solution.

The transfer function has many interpretations that can be exploited for insight,
analysis, and design. The roots sy of the characteristic equation a(s) = 0 are called
poles of the transfer function: the transfer function is infinite for s = s;. The poles
s, appear as exponents in the general solution to the homogeneous equation, as
seen in equations (2.13) and (2.14). Systems with poles that are “lightly damped”
(Re(sg) is negative but close to zero) can exhibit resonances when a sinusoidal
input is applied whose frequency is near the imaginary part of sy.

The roots s; of the polynomial b(s) are called zeros of the transfer function. The
reason is that if b(s;) = 0 it follows that G(s;) = 0, and the particular solution for
the input e** is then zero. A system theoretic interpretation is that the transmission
of the exponential signal e’/ is blocked by the zero s = s, which is therefore also
called a transmission zero.

The transfer function can also convey a great deal of intuition: G(0) is the zero
frequency gain for constant inputs and the frequency response G(i®) captures the
steady state response to sinusoidal functions. The frequency response of a stable
system can be determined experimentally by exploring the steady state response
of a system to sinusoidal signals. This is an alternative or a complement to physi-
cal modeling. A more elaborate treatment of transfer functions and the frequency
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response will be given in Chapter 9.

Stability: The Routh—Hurwitz Criterion

When using feedback there is always the danger that the system may become un-
stable, and it is therefore important to have a stability criterion. The differential
equation (2.10) is called stable if all solutions of the homogeneous equation (2.12)
go to zero for any initial condition. It follows from equation (2.14) that this requires
that all the roots of the characteristic equation

a(s)=s"+a;s" '+ 4a,=0

have negative real parts.

It can often be difficult to analytically compute the roots of a high-order poly-
nomial. The Routh—Hurwitz criterion is a stability criterion that does not require
explicit calculation of the roots, because it gives conditions in terms of the coeffi-
cients of the characteristic polynomial.

We illustrate the Routh—Hurwitz criterion by describing it for low-order differ-
ential equations. A first-order differential equation is stable when the coefficient
ay of the characteristic polynomial is positive, since the root of the characteristic
polynomial will be s = —a; < 0. A second-order polynomial has the roots

1
s:§<—a1i\/a%—4a2>,

and it is easy to verify that the real parts of the roots are both negative if and only
if a; > 0 and ap > 0. A third order differential equation is more complicated, but
the roots can be shown to have negative real parts if and only if

aj,az,a3 >0, and aja; > as. (2.18)
The corresponding conditions for a fourth order differential equation are
ay, ay,az, as >0, ayay >az, and ajaaz > a%a4 —i—a%. (2.19)

The Routh—Hurwitz criterion [Gan60] gives similar conditions for arbitrarily high
order polynomials. Stability of a linear differential equation can thus be investi-
gated just by analyzing the signs of various combinations of the coefficients of the
characteristic polynomial.

Block Diagrams and Transfer Functions

As we saw already in Chapter 1, control systems are often described using block
diagrams, such as the ones shown in Figures 1.1 and 1.4. If the behavior of the
blocks are represented by transfer functions, the transfer function of a system can
be obtained simply by algebraic manipulations. It follows from equation (2.17) that
the transfer function can be derived from the particular solution for the input ¢*. To
derive the transfer function for a system composed of several blocks, we assume
that the input signal is an exponential u(¢) = ¢* and compute the corresponding
particular solutions for all blocks.
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Figure 2.5: Interconnections of linear systems. Series (a), parallel (b) and feedback (c) con-
nections are shown. The transfer functions for the composite systems can be derived by
algebraic manipulations assuming exponential functions for all signals.

Consider for example the system in Figure 2.5a, which is a series connection
of two systems with the transfer functions G (s) and G,(s). Let the input of the
system be u(t) = e* The output of the first block is then y; () = G (s)e*, which
is also an exponential, and the output of the second system is y(¢) = Gz (s)y;(s) =
G2(5)G1(s)e” = Ga(s)G1(s)u(r). The transfer function of the system is thus Gy, (s) =
G>(s)G1(s), where we use the convention that the right subscript is the input and
the left subscript is the output, so that y = Gy,u.

Next we will consider parallel connections of systems as shown in Figure 2.5b.
Assuming that the input is u(z) = e, the exponential outputs of the blocks are
y1(t) = Gi(s)e* and y»(r) = G4(s)e”. The output of the system is then

y(t) = (G1 (s)e” + Gz(s)e“) = (Gl (s)+ Gz(s)) e,

and the transfer function of a parallel connection of systems with the transfer func-
tions G(s) and Gy (s) is thus Gy, (s) = Gi(s) + Ga(s).

Finally we will consider the feedback connection shown in Figure 2.5c. If the
input u(¢) = ¢ is an exponential we find

y(t) = Gi(s)e(t) = Gi(s) (u(t) — Ga(s)y(r)) = Gi(s) (e — Ga(s)y(1)).
Solving for y(z) gives
B Gi(s)
YO = 6 ()60)

The transfer function of a feedback connection of systems with the transfer func-
tions Gy (s) and G(s) is thus
Gi(s)

Owls) = 177G, (5)Ga(s)”

By using polynomials and transfer functions the relations between signals in a
feedback system can thus be obtained by algebra. With some practice the transfer
functions can often be obtained by inspection, as we explore in more detail in
Chapter 9.

e = Gyu(s)e”.

(2.20)
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Figure 2.6: Sample step response. The rise time Ty, overshoot M, settling time T, and
steady-state value ygs describe important performance properties of the signal.

Computations Using Transfer Functions

Many software packages for control system analysis and design permit direct ma-
nipulation of transfer functions. In MATLAB the transfer function

s+1

CO= @156

can be created by the commands s=tf (' s’) and G=(s+1) / (s"2+5*xs+6).
Given two transfer functions G1 and G2, we can form series, parallel, and feed-
back interconnections using the commands Gs = series(Gl, G2), Gp =
parallel (Gl, G2), and Gf = feedback (Gl, G2) (by default, MAT-
LAB’s feedback () command uses negative feedback).

Software packages can also be used to compute the response of a linear in-
put/output system, represented by its transfer function, to different types of inputs.
A common input that is used for performance characterization is a signal that is 0
for t <0 and then 1 for ¢ > 0. This type of input is called a “step input” and the
response of the system to a step input is called the step response of the system.
A typical step response for a linear system is shown in Figure 2.6. Some stan-
dard features of a step response are the rise time 7;, settling time 7, overshoot
M, and steady state value ygs, as illustrated in the figure. The step response for a
transfer function G is generated by the MATLAB command y=step (G) . If we
want to specify the simulation time interval explicitly, we can instead use the com-
mand y=step (G, T). The response to a specific input signal can be generated
by y=1sim (G, u, T). Having a transfer function, it is thus very easy to generate
time responses.

A detailed presentation of transfer functions will be given in Chapter 9, where
we will see that transfer functions can also be used to represent systems with time
delays and systems described by partial differential equations.
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Figure 2.7: Block diagram of a simple feedback system. The controller transfer function is
C(s) and the process transfer function is P(s). The process output is y, the external signals
are the reference r and the load disturbance v.

2.3 Using Feedback to Improve Disturbance Attenuation

Reducing the effects of disturbances is a primary use of feedback. It was used by
James Watt to make steam engines run at constant speed in spite of varying load
and by electrical engineers to make generators driven by water turbines deliver
electricity with constant frequency and voltage. Feedback is commonly used to
alleviate effects of disturbances in the process industry, for machine tools, and for
engine and cruise control in cars. The human body exploits feedback to keep body
temperature, blood pressure, and other important variables constant. For example
the pupillary reflex guarantees that the light intensity of the retina is reasonably
constant in spite of large variations in the ambient light intensity. Keeping variables
close to a desired, constant reference value in spite of disturbances is called a
regulation problem.

To discuss disturbance attenuation we consider the system shown in Figure 2.7.
Since we will focus on the effects of a load disturbance v we will assume for now
that the reference r is zero. To derive the transfer functions from the disturbance
input v to the process output y, which we write as Gy,, we assume that the dis-
turbance is an exponential function v = e*. Applying block diagram algebra to
Figure 2.7 gives

P(s)
t) = P(s)e" — P(s)C N = = ——"——¢"
¥(t) = P(9)e" = P(5)C()3(0) Y0 = 1 pieh)
The transfer function relating the output y to the load disturbance v is thus
P(s)
Gp(s) = —————. 221
) = TRl (221

To explore the use of feedback to improve disturbance attenuation, we will focus
on a simple process modeled by the first order differential equation

dy

E—i—ay:bu, a>0, b>0.
The corresponding transfer function is
Pls) = 2. (222)
s+a

This model is a reasonable approximation for a physical process if the storage of



2-14 CHAPTER 2. FEEDBACK PRINCIPLES

mass, momentum, or energy can be captured by a single state variable. Typical
examples are the velocity of a car on a road, the angular velocity of a rotating
system, and the fluid level of a tank.

Proportional Control

We will first investigate the case of proportional control, when the control signal
is proportional to the output error: u = kpe, as introduced already in Section 1.6.
The controller transfer function is then C(s) = k,. The process transfer function
is given by equation (2.22) and the effect of the disturbance on the output is then
described by the transfer function (2.21):
G (s) P(s) b/(s+a) b
§) = = — .
Y 14+ P(s)C(s) 1+4bky/(s+a) s+ (a+bky)

The relation between the disturbance v and the output y is thus given by the differ-
ential equation

dy
i + (a+ bky)y = bv.

The closed loop system is stable if @ + bk, > 0. A constant disturbance v = vy then
gives an output that exponentially approaches the value

b
= Y
a+bky

with the time constant T = 1/(a + bk;). Without feedback, k, = 0 and for a con-
stant disturbance vy, the output will instead approach bvg/a. The effect of the dis-
turbance is thus reduced if k, > 0.

We have thus shown that a constant disturbance gives an error that can be re-
duced by feedback using a proportional controller. The error decreases with in-
creasing controller gain. Figure 2.8a shows the responses for a few values of the
controller gain k.

Yo = Gyv(O)VO

Proportional-Integral (Pl) Control

The PI controller, introduced in Section 1.6, is described by

1
u(t) = kpe(t) + / e(7)dr. (2.23)
0
To determine the transfer function of the controller we differentiate to obtain
du de
by Sy
dt  Pdt +hie,

and we find that the transfer function is C(s) = kp + ki /s. To investigate the effect
of the disturbance v on the output we use the block diagram in Figure 2.7, and the
transfer function from v to y is

P(s) bs

= (2.24)

D) =TT PWCE) ~ 1 (at bhy)s 1 b
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Figure 2.8: Step responses for a first-order, closed loop system with proportional control
(a) and PI control (b). The process transfer function is P =2/(s+ 1). The controller gains
for proportional control are kp = 0, 0.5, 1, and 2. The PI controller is designed using equa-
tion (2.28) with {. = 0.707 and @, = 0.707, 1, and 2, which gives the controller parameters
kp =0, 0.207, and 0.914 and k; = 0.25, 0.50, and 2.

Using the relationship between transfer functions and differential equations given
by equations (2.10) and (2.16), it follows that the relation between the load distur-
bance and the output is given by the differential equation
2
%+(a+bkp)% +bkiy:b%. (2.25)

Notice that since the disturbance enters as a derivative on the right hand side,
a constant disturbance gives no steady state error. The same conclusion can be
drawn from the observation that G, (0) = 0. This is consistent with the discussion
of integral action and steady state error in Section 1.6.

To find suitable values of the controller parameters k, and k;, we consider the
characteristic polynomial of the differential equation (2.25),

ac(s) = s+ (a+ bky)s + bk;. (2.26)

We can assign arbitrary roots to the characteristic polynomial by choosing the
controller gains k, and k;. The most common case is that we assign complex roots
that give the characteristic polynomial

(s+ O+ iwg)(s+ Cg — i g) = s* + 2045+ 07 + @7 (2.27)

By construction, this polynomial has roots at s = —0q £ i @q. The general solution
to the homogeneous equation is then a linear combination of the terms

e % sin(wqt), e % cos(mqt),

which are damped sine and cosine functions, as shown in the lower middle plot
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in Figure 2.3. The coefficient oy determines the decay rate and the parameter wy
gives the frequency of the decaying oscillation. Identifying coefficients of equal
powers of s in the polynomials (2.26) and (2.27) gives

204 —a o;+ w?
kp = o ==
We can thus choose the controller gains to give a desired closed lop response.

Instead of parameterizing the closed loop system in terms of o4 and @y it is

common practice to use the undamped natural frequency @, = vV Gg + a)g and the
damping ratio {. = 64/ @.. The closed loop characteristic polynomial is then

ki (2.28)

ac(s) = s> + 2045 + 62 + 0F = > + 2L w5 + 2.

This parameterization has the advantage that {., which is in the range [—1,1],
determines the shape of the response and @, gives the response speed.

Figure 2.8b shows the output y and the control signal u for {. = 1/v2 =
0.707 and different values of the design parameter @.. Proportional control gives a
steady-state error that decreases with increasing controller gain k,. With PI control
the steady-state error is zero. Both the decay rate and the peak error decrease when
the design parameter @) is increased. Larger controller gains give smaller errors
and control signals that react more quickly to the disturbance.

With the controller parameters (2.28), the transfer function (2.24) from distur-
bance v to process output y becomes

B P(s) B bs
SR T P Gt ol

For efficient attenuation of disturbances, it is desirable that |G,,(i®)| is small for
all @. For small values of @ we have |Gy, (i®)| ~ bo/®?, while for large @ we
have |Gy, (iw)| ~ b/w. The largest value of |G,,(iw)| is b/(2{. @) for ® = o. It
thus follows that a large value of . gives good load disturbance attenuation.

In summary, we find that the analysis gives a simple way to find the parameters
of PI controllers for processes whose dynamics can be approximated by a first-
order system. The technique can be generalized to more complicated systems but
the controller will be more complex. To achieve the benefits of large control gains
the model must be accurate over wide frequency ranges, as will be discussed next.

Unmodeled Dynamics

The analysis we have made so far indicates that there are no limits to the perfor-
mance that can be achieved. Figure 2.8b shows that arbitrarily fast response can
be obtained simply by making . sufficiently large. In reality there are of course
limits on what is achievable. One reason is that the controller gains increase with
@: the proportional gain is k, = (2{.@. —a)/b and the integral gain is k; = w? /b.
A large value of @ thus gives large controller gains and the control signal may
saturate. Another reason is that the model (2.22) is a simplification: it is only valid
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in a given frequency range. If the model is instead

b
P(s) = ———F—,
(s) (s+a)(1+sT)
where the term 1+ s7 represents the dynamics of sensors, actuators, or other dy-
namics that were neglected when deriving equation (2.22)—so-called unmodeled
dynamics—the closed loop characteristic polynomial for the closed loop system
becomes

(2.29)

aq = s(s+a)(1+T) +kps +k = s°T +5*(1 +aT) + 28 @es + 2.

It follows from the Routh—Hurwitz criterion (2.18) that the closed loop system is
stable if W2T < 2&.w.(14aT) or if

. T <28 (1+aT).

The frequency @ and the achievable response time are thus limited by the unmod-
eled dynamics represented by T, which typically is smaller than the time constant
1/a of the process. When models are developed for control it is therefore important
to also consider the unmodeled dynamics.

The fact that unmodeled dynamics limit the performance of a feedback system
is an important property and must be considered during the system design. It is
common to use simplified models when designing components of complex systems
and if the unmodeled dynamics of those components (or the other subsystems they
interact with) are not properly taken into account, the implementation of the system
can display poor behavior (of which instability is one extreme example). As we
shall see in later chapters, it is the ability to reason about the effects of uncertainty
that makes control theory a particularly powerful mathematical tool for systems
design.

2.4 Using Feedback to Follow Command Signals

Another major application of feedback is to make a system output follow a ref-
erence value, which is called the servo problem. Cruise control, steering of a car,
and tracking a satellite with an antenna or a star with a telescope are some exam-
ples. Other examples are high performance audio amplifiers, machine tools, and
industrial robots.

To illustrate command signal following we will consider the system in Fig-
ure 2.7 where the process is a first-order system and the controller is a PI controller
with proportional gain kj, and integral gain k;. The transfer functions of the process
and the controller are

k ki
b C(s) = KpS TR

P(s) —
(s) s+a’ s

(2.30)

Since we will focus on following the command signal r, we will neglect the load
disturbance and set v = 0. Applying block diagram algebra to the system in Fig-
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Figure 2.9: Responses to a unit step change in the command signal for different values of
the design parameters @. and {.. The left figure shows responses for fixed {. = 0.707 and
. =1, 2, and 5. The right figure shows responses for @. =2 and {. = 0.5, 0.707, and 1.
The process parameters are a = b = 1. The initial value of the control signal is kp.

ure 2.7, we find that the transfer function from the command signal r to the output
yis
P(s)C(s) bkps + bk;

Gyr(s) = 14+ P(s)C(s) 2+ (a+bky)s+ bk’ @31)

Since Gy, (0) = 1 it follows that 7 = y when r and y are constant, independent of the
values of the parameters a and b, as long as the closed loop is stable. The steady
state output is thus equal to the reference, a consequence of the integral action in
the controller.

To determine suitable values of the controller parameters k;, and k;, we proceed
as in Section 2.3 by choosing controller parameters that make the closed-loop char-

acteristic polynomial
ac(s) = s>+ (a+ bky)s + bk; (2.32)

equal to s + 2. w.s + ®? with {. > 0 and @, > 0. Identifying coefficients of equal
powers of s in these polynomials gives

2.0, —a ©?
k= —=>—— k= —=< 2.33
P b 9 1 b 9 ( )

which is equivalent to equation (2.28). Notice that integral gain increases with the
square of @.. Figure 2.9 shows the output signal y and the control signal u for
different values of the design parameters {. and @.. The response time decreases
with increasing @, and the initial value of the control signal also increases because
it takes more effort to move rapidly. The overshoot decreases with increasing (..
For @, = 2, the design choice {. = 1 gives a short settling time and a response
without overshoot.
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Figure 2.10: Block diagram of a closed-loop system with a PI controller having an architec-
ture with two degrees of freedom.

It is desirable that the output y will track the reference signal r for time-varying
references. This means that we would like the transfer function G,,(s) to be close
to 1 for large frequency ranges. With the controller parameters (2.33), it follows
from equation (2.31) that

P(s)C(s) (2.0 —a)s+ w?

G = = .
) = T PEICH) ~ 12800+ @

Since Gy,(0) = 1, tracking of constant inputs is perfect. In addition, if s = i®
is smaller in magnitude than @, then we see that G,,(s) will be very close to
one. The frequency @, thus determines the upper bound of the frequency of input
signals that can be tracked with small error, and this bound is referred to as the
bandwidth of the closed loop system. The frequency response of G, thus provides
a quantitative representation of the tracking abilities.

Controllers with Two Degrees of Freedom

The control law in Figure 2.7 has error feedback because the control signal u is
generated from the error e = r —y. With proportional control, a step in the reference
signal r gives an immediate step change in the control signal u. This rapid reaction
can be advantageous, but it may give large overshoot, which can be avoided by a
replacing the PI controller in equation (2.23) with a controller of the form

u(t) = ko (Br(t) — (1)) +Ki /0 ' (1(7) = y(2)) . (2.34)

In this modified PI algorithm, the proportional action only acts on the fraction 3
of the reference signal. The signal transmissions from reference r to # and from
output y to u can be represented by the transfer functions

Cur(s) = By + k; Cun(s5) = iy + k; —C(s). (2.35)

The controller (2.34) is called a controller with two degrees of freedom since the
transfer functions C,,-(s) and C,(s) are different.

A block diagram of a closed loop system with a PI controller having two de-
grees of freedom is shown in Figure 2.10. Let the process transfer function be
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Figure 2.11: Response to a step change in the command signal for a system with a PI con-
troller having two degrees of freedom. The process transfer function is P(s) = 1/s and the
controller gains are k, = 1.414, k; = 1, and B =0,0.5,and 1.

P(s) = b/(s+ a). The transfer functions from reference r and disturbance v to
output y are

bBkps + bk; bs
, Gy (s) = )
52+ (a+ bkp)s + bk; 52+ (a+ bkp)s + bk;

Comparing with the corresponding transfer function for a controller with error
feedback in equations (2.24) and (2.31), we find that the responses to the load
disturbances is the same but the response to reference signals is different.

A simulation of the closed loop system for a = 0 and b = 1 is shown in Fig-
ure 2.11. The figure shows that the parameter 3 has a significant effect on the
responses. Comparing the system with error feedback (8 = 1) to the system with
smaller values of 8 we find that using a system with two degrees of freedom gives
less overshoot and gentler control actions.

The example shows that command signal response can be improved by using
a controller architecture having two degrees of freedom. In Section 12.4 we will
further show that the responses to command signals and disturbances can be com-
pletely separated by using a more general system architecture. To use a system
with two degrees of freedom both the reference signal r and the output signal y
must be measured. There are situations where only the error signal e = r —y can
be measured; typical examples are DVD players, optical memories, and atomic
force microscopes. In these cases, only single degree of freedom (error feedback)
controllers can be used.

Gyr(s) = (2.36)

2.5 Using Feedback to Provide Robustness

Feedback can be used to make good systems from imprecise components. Black’s
invention of the feedback amplifier for the telephone network is an early exam-
ple [Bla77]. Black used negative feedback to design extremely good amplifiers
with linear characteristics from components with nonlinear and time-varying prop-
erties. Since signals are transmitted over long distances they must be amplified. At
the time, the thermionic valve—invented by Lee de Forest in 1906—was the only
available technology for amplifying electric signals until the transistor was in in-
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vented in 1947. Vacuum tubes were the key to develop radio, telephony, and elec-
tronics in the first half of the 20th century. They are still used by hi-fi aficionados
in high quality audio amplifiers.

Vacuum tubes can give high gain but they have nonlinear and time varying
input/output characteristics which distorts the transmitted signals. Bode [Bod60]
expressed the problem as follows:

Most of you with hi-fi systems are no doubt proud of the quality of
your amplifiers, but I doubt whether many of you would care to listen
to the sound after the signal had gone in succession through several
dozen or several hundred even of your fine amplifiers.

The effect is illustrated in Exercise 2.10.

Black’s idea to develop a good amplifier was to close a loop with negative feed-
back around the tube amplifier. In this way he could obtain a closed loop system
with a linear input/output relation having constant gain. The general recipe is to lo-
calize the nonlinearities and the source of process variations, and to close feedback
loops around them.

Reducing Effects of Parameter Variations and Nonlinearities

Consider an amplifier with a static, nonlinear input/output relation with consider-
able variability, as illustrated in Figure 2.12a. The nominal input/output character-
istics is shown as a dashed bold line and examples of variations as thin lines. The
nonlinearity in the figure is given by

y=F(u) = a(u+pu’), -3<u<3. (2.37)

The nominal values corresponding to the dashed line are &« = 0.2 and § = 1. The
variations of the parameters & and f3 are in the ranges 0.1 < @ < 0.5,0 < <2.
The responses of the system to the input

u(t) = sin(r) 4 sin(zr) 4 sin(7%t). (2.38)

are shown in Figure 2.12b. The desired response y = u is shown as a solid bold line
and responses for a range of parameters are shown with thin lines. The nominal
response of the nonlinear system is shown as a dashed bold line. It is distorted
due to the nonlinearity. Notice in particular the heavy distortion both for small and
large signal amplitudes.

The behavior of the system is clearly not satisfactory, but it can be improved
significantly by introducing feedback. A block diagram of a system with a sim-
ple integral controller is shown in Figure 2.13, where the reference input is now
taken as r. Figure 2.14 shows the behavior of the closed loop system with the same
parameter variations as in Figure 2.12. The input/output plot in Figure 2.14a is a
scatter plot of the inputs and the outputs of the feedback system. The input/output
relation is practically linear and close to the desired response. There is some vari-
ability because of the dynamics introduced by the feedback. Figure 2.14b shows

@
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Figure 2.12: Responses of a static nonlinear system. The left figure shows the input/output
relations of the open-loop systems and the right figure shows responses to the input sig-
nal (2.38). The ideal response is shown solid bold lines. The nominal response of the nonlin-
ear system is shown using dashed bold lines and the responses for different parameter values
are shown using thin lines. Notice the large variability in the responses.

the responses to the reference signal; notice the dramatic improvement compared
with Figure 2.12b. The tracking error is shown in Figure 2.14c.

Analysis

Analysis of the closed loop system is difficult because it is nonlinear. We can,
however, obtain significant insight by using approximations. We first observe that
the system is linear when 8 = 0. In other situations we can thus approximate the
nonlinear function by a straight line around an operating point # = ug. The slope
of the nonlinear function at u = ug is f’(up) and we will approximate the process
with a linear system with the gain f”(ug). The transfer functions of the process and
the controller are

P(s) = f'(uo) = a(1 +3Bu(2)) =b, C(s) = %, (2.39)

where ug denotes the operating condition. It follows from equation (2.21) that the
transfer functions relating the output y and the error e to the reference signal r are
bki N

Gyr(S) = s—|—bki7 Ger(s) =1- Gyr = ?bkl (240)

c="h = P = f(u) -

Figure 2.13: Block diagram of a nonlinear system with integral feedback.
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Figure 2.14: Responses of the systems with integral feedback (k; = 1000). The left figure
shows the input/output relationships for the open-loop systems, and the center figure shows
responses to the input signal (2.38) (compare to the corresponding responses in Figure 2.12a
and b). The right figure shows the individual errors (solid lines) and the approximate error
given by equation (2.42) (dashed line).

The closed loop system is a first-order system with the pole s = —bk;. The process
gain b = (1 +3Bu3) depends on the values of «, 3, and u, and its smallest value
is 0.1. If the integral gain is chosen as k; = 1000, the smallest value of the closed
loop pole is 100 rad/s, which is fast compared to the high frequency component
9.9 rad/s of the input signal. It follows from equation (2.40) that the error e(¢) is
given by the differential equation

% = —bkie+ %, % = cos(1) 4 mcos(mt) + m% cos(m’t). (2.41)
The fast frequency component of the input (2.38) has the frequency 7> = 9.86; it
is slower than the process dynamics for all parameter variations. Neglecting the
term de/dt in equation (2.41) gives

1 dr n? )
e(t) =~ ok dt = ok cos(mt). (2.42)
An estimate of the largest error e(t) =~ 0.1cos(7%t) is obtained for the smallest
value of b = 0.1. It is shown as a dashed line in Figure 2.14c, and we see that it
gives a good estimate of the maximum error across the uncertain parameter space.
This analysis is based on the assumption that the amplifier can be modeled by
a constant gain. The closed loop system is however a dynamic system because the
controller is an integrator. It follows from equation (2.40) that the closed loop dy-
namics have the time constant 7y = 1/(bk;). If the amplifier has dynamics, its time
constant must thus be small compared to T in order to provide good tracking. It
follows that the largest admissible integral gain k; is determined by the unmodeled
dynamics.
This example illustrates that feedback can be used to design an amplifier that
has practically linear input/output relation even if the basic amplifier is nonlinear
with strongly varying characteristics.
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Figure 2.15: Schematic diagram of the neural network that controls swimming motions in
the marine mollusk Tritonia, which has both positive and negative feedback [Wil99]. An
excitatory connection (positive feedback) is denoted with a line ending with an arrow, an
inhibitory interaction (negative feedback) is denoted with an arrow ending with a circle.
(Figure adapted from [Wil99].)

2.6 Positive Feedback

Most of this book is focused on negative feedback because of its amazingly good
properties, which have been illustrated in the previous sections. In this section
we will briefly discuss positive feedback, which has complementary properties. In
spite of this, positive feedback has found good use in several contexts.

Systems with negative feedback can be well understood by linear analysis. To
understand systems with positive feedback it is necessary to consider nonlinear
effects, because without the nonlinearities the instability caused by positive feed-
back will grow without bound. The nonlinear elements can create interesting and
useful effects by limiting the signals.

Positive feedback is common in many settings. Encouraging a student or a
coworker when they have performed well encourages them do to even better. In
biology, it is standard to distinguish inhibitory connections (negative feedback)
from excitatory feedback (positive feedback) as illustrated in Figure 2.15. Neurons
use a combination of positive and negative feedback to generate spikes.

Positive feedback may cause instabilities. Exponential growth, where the rate
of change of a quantity x is proportional to x,

dx

dt
is a typical example, which results in exponential growth x(¢) = ¢*. In nature,
exponential growth of a species is limited by the finite amount of food. Another
common example is when a microphone is placed close to a speaker in public ad-
dress systems, resulting in a howling noise. Positive feedback can create stampedes
in cattle herds, runs on banks, and boom-bust behavior. In all these cases there is
exponential growth that is finally limited by finite resources.

The notions of positive and negative feedback are clear if the feedback is static,
as we saw for example in Section 2.1. If the feedback is dynamic its action can
change from positive to negative depending on the frequency of the signals and
hence more care is required. Use of positive feedback will be illustrated by a few
examples.

ox,
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(a) Hewlett’s oscillator (b) Operational amplifier version

Figure 2.16: Circuit diagrams of William Hewlett’s oscillator. (a) Original system with vac-
uum tubes. (b) Equivalent realization with an operational amplifier.

Hewlett’'s Oscillator

William Hewlett used positive and negative feedback very cleverly to design a sta-
ble oscillator in his master thesis from Stanford University in 1939. The oscillator
was the first product made by Hewlett-Packard, the company that Hewlett founded
with David Packard in 1939 [Pac13].

Electronic circuits in the 1930s and 1940s were based on vacuum tube technol-
ogy. The simplest vacuum tube amplifier has three electrodes: a cathode, grid, and
anode enclosed in a glass tube with vacuum. The cathode, which is heated with a
filament, emits free electrons. A current is created by applying a high positive volt-
age between the anode and the cathode. The current can be regulated by changing
the voltage on a grid positioned between the anode and the cathode. The current
depends on the voltage difference between the grid and the cathode, V, — V.. In-
creasing this voltage difference increases the current. The vacuum tube amplifier
can be regarded as a valve for controlling a current by applying a voltage to the
grid.

A schematic diagram of Hewlett’s oscillator is shown in Figure 2.16a. Signals
are amplified by two vacuum tubes and there are two feedback loops. One loop
provides positive feedback from the anode of the second tube to the grid of the first
tube via the network R1,C,R>,C,. The second feedback loop provides negative
feedback from the output of the second tube to the cathode of the first tube via the
resistor Ry and the lamp which has resistance R,. With a proper gain the positive
feedback loop generates an oscillation with the frequency @ = 1/v/R;R,C;C;. The
gain is given by the negative feedback loop from the anode of the second loop to
the cathode of the first loop, through the resistor R¢ and the lamp Ry,. This loop
has nonlinear gain because the resistance R}, of the lamp increases with increasing
temperature. An increase of the amplitude of V,, increases the current through the
lamp, which reduces the gain. The result is that an oscillation with stable amplitude
and frequency is obtained.

The feedback loops are more clearly visible in the implementation of the oscil-
lator based on an operational amplifier, shown in Figure 2.16b.
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Figure 2.17: Implementation of integral action by positive feedback.

Implementation of Integral Action by Positive Feedback

Early feedback controllers made of use of integral action that was implementing by
using positive feedback around a system with first order dynamics, as shown in the
block diagram of Figure 2.17. Intuitively the system can be explained as follows.
Proportional feedback typically gives a steady state error. This can be overcome
by adding a bias signal that cancels the steady state error. In Figure 2.17 the bias
is estimated by low pass filtering the control signal and adding it back into to the
signal path. This serves to compensate for any error that is present.

The circuit can be understood better by a little analysis. Using block diagram
algebra we find that the transfer function of the system is

kp k
— P  —f+2
1—1/(1+sT) L

which is a transfer function of a PI controller. This way of implementing integral
action is still used in many industrial regulators.

Gue =

Positive Feedback Combined with Saturation

Systems with interesting and useful properties can be obtained by combining linear
and nonlinear components with positive feedback. In this section we consider an
example of a simple form of memory implemented using a feedback circuit.

Consider the system in Figure 2.18, which consists of a linear block with first-
order dynamics and a nonlinear block with positive feedback. Assume that the
nonlinearity is

y="F(x) -

which gives x=F~!(y) = (e
-y

_ X
IRENE

+1 =

Figure 2.18: Block diagram of system with positive feedback and saturation. The parameters
area=1and b = 10.



2.6. POSITIVE FEEDBACK 2-27

T 1 T T
0.5 > A [
I
o 0.5f o | 1
- ~ > B | |
= ~ = I I
= ~ 4
© 0 - = > C O 0 : '
Il ~ Il [ 1
~ No > 1 |
~ i | |
-0.5 | /
-0.5f . e
I I -1 I I I I
-1 -0.5 0 0.5 1 -0.4 -02 0 02 04 06
y r
(a) Stable and unstable equilibrium points (b) Hysteretic input/output map y = G (r)
S5r -~ -
’ \ N
— 4 N 7 N ,/ \ 7
= v \ \ ,
>0 < —~ I — Y —
= \ \ / %L,
= 7/ N
AN - - \ / ~ _ e
N /7
-5 | | | | L~ | | | ]
0 10 20 30 40 50 60 70 80 90 100
Time ¢

(c) Input/output behavior

Figure 2.19: System with positive feedback and saturation. (a) For a fixed reference value r,
the intersections with the curve r = G(y) corresponds to equilibrium points for the system.
Equilibrium points at selected values of r are shown by circles (note that for some refer-
ence values there are multiple equilibrium points). Arrows indicate the sign of the derivative
of y away from the equilibrium points, with the solid portions of r = G(y) representing
stable equilibria and dashed portions representing unstable equilibria. (b) The hysteretic in-
put/output map given by the y = GT(r), showing that some values of r have single equilib-
rium points while others have two possible (stable) steady state output values. (c) Simulation
of the system dynamics showing the reference r (dashed curve) and the output y (solid curve).

The system is described by the differential equation

afF~'(y) ay
2 y=—
b b(1—|yl)

Rewriting the dynamics in terms of the variable y = F(x), we get the following
relation between the input r and the output y:

dy dy dx dF~'(y)

ey e ()} (2.43)

% =—ax+b(r+y)=b(r—G(y)), G(y) =

It can be shown that dF ~!(y) /dy is everywhere nonzero and so the equilibria for a
constant input r are given by the solutions of » = G(y). The graph of the function
G is shown in Figure 2.19a for a = 1 and b = 4. The function G(y) has a local
maximum rpax = 1 +a/b—2+/a/b=0.25aty=—1/y/14+a/b=—0.5and a
local minimum rp;, = —0.25 at y = 0.5. The set of possible equilibria as a function
of r is shown in Figure 2.19b. There is one unique equilibria if |r| > 0.25, two
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equilibria if |r| = 0.25 and three equilibria if |r| < 0.25.

The differential equation (2.43) is of first order and the equilibrium is stable if
g’ (yo) is positive and unstable if g’(yo) is negative. Stable equilibria are shown in
solid lines and unstable equilibria by dashed lines in Figure 2.19a. The differen-
tial equation thus has two stable equilibria when 7, < 7 < rmax and one stable
equilibrium when |r| > rmpax.

To understand the behavior of the system, we will explore what happens when
the reference is changed. If the reference r is zero there are two stable equilibria,
as can be seen in Figure 2.19a by looking at the horizontal line at r = 0 (labeled
C). We assume that the system is in the stable left equilibrium, where y is negative.
If the reference is increased, the equilibrium moves slightly to the right. When the
reference reaches the value 0.25, which corresponds an unstable equilibrium, the
solution moves towards the right stable equilibrium point, where y is positive, as
indicated by the line marked B in Figure 2.19a. If the value of r is increased further,
the output y also increases. The static input/output relation is thus given by the
“inverse function” y = G'(r), which gives the value(s) of the stable output values
as a function of r. The system has hysteretic behavior as shown in Figure 2.19b,
where the dashed line indicates the switches between the branches of the solution
curves, and they occur at r = £rpax = +£0.25.

The temporal behavior of the system is illustrated by the simulations in Fig-
ure 2.19¢c, where the input r is dashed and the output y is solid. The shapes of the
signals depend on the parameters; the values @ = 5, b = 50 were used in the fig-
ure. The hysteresis width is 2rp,x and the parameter a gives the sharpness of the
corners of the output. The circuit shown in the Figure 2.18 is commonly used as a
trigger to detect changes in a signal (known as a Schmitt trigger). It is also used as
a memory element in solid state memories, illustrating that feedback can be used
to obtain discrete behavior.

2.7 Further Reading

The books by Bennett [Ben79, Ben93] and Mindel [Min02, Min(08] give inter-
esting perspective on the development of control. Much of the material touched
upon in this chapter is classical control; see [CM51], [JNP47], and [Tru55]. A
more thorough introduction to the principles of feedback with minimal mathe-
matical prerequisites is available in the textbook Feedback Control for Every-
one [AMI10]. The notion of controllers with two degrees of freedom was intro-
duced by Horowitz [Hor63].

The analysis introduced here will be elaborated in the rest of the book. Trans-
fer functions and other descriptions of dynamics are discussed in Chapters 3 and 9,
methods to investigate stability in Chapters 5 and 10. The simple method to find
parameters of controllers based on matching of coefficients of the closed loop char-
acteristic polynomial is developed further in Chapters 7, 8, and 13. Feedforward
control is discussed in Sections 8.5 and 12.4.
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Exercises

2.1 Consider the system in Figure 2.1, where F(w) = sat(w) with a negative sign
in the feedback. Assume that r = 0 and v = 1. Sketch the input/output relation for
k=-3,-2,-1,0,1,2.

2.2 Lety € R and u € R. Solve the differential equations

dy d?y dy du

— =b —— 42— 4y=2—

a = a2 ta YTt
for + > 0. Determine the responses to a unit step u(¢) = 1 and the exponential
signal u(t) = ¢* when the initial condition is zero. Derive the transfer functions of

the systems.

2.3 Let yy(7) be the response of a system with the transfer function Gy(s) to a given
input. The transfer function G(s) = (1 + sT)Go(s) has the same zero frequency
gain but it has an additional zero at z = —1/T. Let y(r) be the response of the
system with the transfer function G(s) and show that

dyo
¥(t) = yo(t) + T2, (2.44)
Next consider the system with the transfer function
s+a
G(s)= —— =
(s) a(s?+2s+1)’

which has unit zero-frequency-gain (G(0) = 1). Use the result in equation (2.44)
to explore the effect of the zero s = —1/T on the step response of a system

2.4 Consider a closed loop system with process dynamics and a PI controller
modeled by

d t
Ybay=bu,  u=kylr-y) +ki/0 (r(2) — (1)) dr,

where r is the reference, u is the control variable, and y is the process output.

(a) Derive a differential equation relating the output y to the reference r by di-
rect manipulation of the equations and compute the transfer function Hy,(s).
Make the derivations both by direct manipulation of the system equations
and by polynomial algebra.

(b) Draw a block diagram of the system and derive the transfer functions of the
process P(s) and the controller C(s).

(c) Use block diagram algebra to compute the transfer function from reference
r to output y of the closed loop system and verify that your answer matches
your answer in part (a).
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2.5 The dynamics of the pupillary reflex is approximated by a linear system with
the transfer function
~0.2(1-0.1s)

PO =501

Assume that the nerve system that controls the pupil opening is modeled as a
proportional controller with the gain k. Use Routh—Hurwitz criterion to determine
the largest gain that gives a stable closed loop system.

2.6 A simple model for the relation between speed v and throttle u for a car is

given by the transfer function b

- s+a
where b = 1 m/s? and a = 0.025 rad/s. The control signal is normalized to the

range 0 < u < 1. Design a PI controller for the system that gives a closed loop
system with the characteristic polynomial

G

ac(s) = s* + 2L oes + 2.

What are the consequences of choosing different values of the design parameters
{ and w.? Use your judgment to find suitable values. Hint: Investigate maximum
acceleration and maximum velocity for step changes in the velocity reference.

2.7 Consider the feedback system in Figure 2.7. Let the disturbance v=0, P(s) = 1
and C(s) = k;/s. Determine the transfer function G,, from reference r to output y.
Also determine how much G, is changed when the process gain changes by 10%.

2.8 The calculations in Section 2.3 can be interpreted as a design method for a
PI controller for a first-order system. A similar calculation can be made for PID
control of the second order system. Let the transfer functions of the process and
the controller be

b

P = ==
(S) S2+a1s+a2’

Show that the controller parameters

k.
C(s) =kp+ ?1 + kgs.

(14+2a8)w? —a; L aw? P (o +28) @ —a
b ) 1 b y d — b .
give a closed loop system with the characteristic polynomial

kp =
(s> + 28 s + ) (s + aw).

2.9 Consider an open loop system with the nonlinear input-output relation y =
F(u). Assume that the system is closed with the proportional controller u = k(r —
y). Show that the input-output relation of the closed loop system is

1
y+%F71()’> =r
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Estimate the largest deviation from ideal linear response y = r. lllustrate by plotting
the input output responses for a) F(u) = \/u and b) F (1) = u® with 0 < u < 1 and
k=15,10 and 100.

2.10 The effect of distortion in an amplifier can be illustrated by the following
MATLAB script:

oe

load handel Load Handel’s Messiah
sound(y, Fs); pause % Play the original music through speaker

% Music filtered through two cascaded open loop amplifiers
yl = anm_ol(y, 1); y2 = amp_ol(yl, 1);
sound(y2, Fs); pause

% Music filtered through cascaded amplifiers with feedback k=100
y3 = amp_cl(y, 1, 100); y4 = amp_cl(y3, 1, 100);
sound (y4, Fs); pause

where the functions representing the open and closed loop amplifiers are:

)

% Nonlinear static amplifier

function y = amp_ol (x, a)

z = (x + 1)/2;

y =2 % (z +ax*x z.x(1 - z) - 0.5);
end

)

% Nonlinear amplifier with negative feedback

function y = amp_cl(x, a, k)
y =x - (1/k) * (0.5 + x + a ~ (1 - x.72)/2);
end

The script operates as follows: A file with Handel’s Messiah is first loaded as y
and played. The music is then sent through two amplifiers with the nonlinearity
amp_ol and played again. Finally, the music is sent through the same amplifiers
with feedback k = 10 amp_c1 and played. Listen to the music when you run the
script and explain the action of the filters on the music.

2.11 Consider a queuing system modeled by
dx b

A~ iy ——
dt Hmax 1

The model is nonlinear and the dynamics of the system changes significantly with
the queuing length; see Example 3.15. Investigate the situation when a PI controller
is used for admission control. The arrival intensity A is then given by

t
A =ky(r—x)+k / (r(t) — x(t))d.
The controller parameters are determined from the approximate model

dx
g |
dt
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Find controller parameters that give the closed loop characteristic polynomial s +
2s + 1 for the approximate model. Investigate the behavior of the control strategy
for the nonlinear model by simulation for the input r = 5+ 4sin(0.1¢).



Chapter Three
System Modeling

... 1 asked Fermi whether he was not impressed by the agreement between our calculated
numbers and his measured numbers. He replied, “How many arbitrary parameters did you
use for your calculations?” I thought for a moment about our cut-off procedures and said,
“Four” He said, “I remember my friend Johnny von Neumann used to say, with four param-
eters I can fit an elephant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for meson-proton scattering to
Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamics used to answer
questions via analysis and simulation. The model we choose depends on the ques-
tions we wish to answer, and so there may be multiple models for a single dy-
namical system, with different levels of fidelity depending on the phenomena of
interest. In this chapter we provide an introduction to the concept of modeling and
present some basic material on two specific methods commonly used in feedback
and control systems: differential equations and difference equations.

3.1 Modeling Concepts

A model is a mathematical representation of a physical, biological, or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models
of dynamical systems describing the input/output behavior of systems, and we
will often work in “state space” form. As pointed out already in Chapter 1, when
using models it is important to keep in mind that they are an approximation of
the underlying system. Analysis and design using models must always be done
carefully to ensure that the limits of the model are respected.

Roughly speaking, a dynamical system is one in which the effects of actions
do not occur immediately. For example, the velocity of a car does not change
immediately when the gas pedal is pushed nor does the temperature in a room
rise instantaneously when a heater is switched on. Similarly, a headache does not
vanish right after an aspirin is taken, requiring time for it to take effect. In business
systems, increased funding for a development project does not increase revenues in
the short term, although it may do so in the long term (if it was a good investment).
All of these are examples of dynamical systems, in which the behavior of the
system evolves with time.

In the remainder of this section we provide an overview of some of the key
concepts in modeling. The mathematical details introduced here are explored more
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Figure 3.1: Spring—mass system with nonlinear damping. The position of the mass is de-
noted by ¢, with ¢ = 0 corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring constant k and a damper with force depen-
dent on the velocity 4.

fully in the remainder of the chapter.

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary motion. The
basis was detailed observations of the planets by Tycho Brahe and the results of
Kepler, who found empirically that the orbits of the planets could be well described
by ellipses. Newton embarked on an ambitious program to try to explain why the
planets move in ellipses, and he found that the motion could be explained by his
law of gravitation and the formula stating that force equals mass times acceleration.
In the process he also invented calculus and differential equations.

One of the triumphs of Newton’s mechanics was the observation that the mo-
tion of the planets could be predicted based on the current positions and velocities
of all planets. It was not necessary to know the past motion. The state of a dynam-
ical system is a collection of variables that completely captures the past motion of
a system for the purpose of predicting future motion. For a system of planets the
state is simply the positions and the velocities of the planets. We call the set of all
possible states the state space.

A common class of mathematical models for dynamical systems is ordinary
differential equations (ODEs). In mechanics, one of the simplest such differential
equations is that of a spring—mass system with damping:

méj+c(q) +kg = 0. 3.1)

This system is illustrated in Figure 3.1. The variable g € R represents the position
of the mass m with respect to its rest position. We use the notation ¢ to denote
the derivative of g with respect to time (i.e., the velocity of the mass) and § to
represent the second derivative (acceleration). The spring is assumed to satisfy
Hooke’s law, which says that the force is proportional to the displacement. The
friction element (damper) is taken as a nonlinear function ¢(¢), which can model
effects such as stiction and viscous drag. The position g and velocity ¢ represent
the instantaneous state of the system. We say that this system is a second-order
system since it has two states that we combine in the state vector x = (q,q).
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Figure 3.2: Illustration of a state model. A state model gives the rate of change of the state
as a function of the state. The plot on the left shows the evolution of the state as a function of
time. The plot on the right, called a phase portrait, shows the evolution of the states relative
to each other, with the velocity of the state denoted by arrows.

The evolution of the position and velocity can be described using either a time
plot or a phase portrait, both of which are shown in Figure 3.2. The time plot,
on the left, shows the values of the individual states as a function of time. The
phase portrait, on the right, shows the traces of some of the states from different
initial conditions: it illustrates how the states move in the state space. In the phase
portrait we have also shown arrows that represent the velocity x of the state x
in a few points. The phase portrait gives a strong intuitive representation of the
equation as a vector field or a flow. While systems of second order (two states)
can be represented in this way, unfortunately it is difficult to visualize equations of
higher order using this approach.

The differential equation (3.1) is called an autonomous system because there
are no external influences. (Note that this usage of “autonomous” is slightly dif-
ferent than in the phrase “autonomous vehicle”.) Such a model is natural for use
in celestial mechanics because it is difficult to influence the motion of the planets.
In many examples, it is useful to model the effects of external disturbances or con-
trolled forces on the system. One way to capture this is to replace equation (3.1)
by

mg+c(q) +kq = u, (3.2)

where u represents the effect of external inputs. The model (3.2) is called a forced
or controlled differential equation. It implies that the rate of change of the state
can be influenced by the input u(¢). Adding the input makes the model richer and
allows new questions to be posed. For example, we can examine what influence
external disturbances have on the trajectories of a system. Or, in the case where
the input variable is something that can be modulated in a controlled way, we can
analyze whether it is possible to “steer” the system from one point in the state
space to another through proper choice of the input.
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Figure 3.3: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one on the right is its
representation as a block diagram.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where the de-
sign of electronic amplifiers led to a focus on input/output behavior. A system was
considered a device that transforms inputs to outputs, as illustrated in Figure 3.3.
Conceptually an input/output model can be viewed as a giant table of input and
output signals. Given an input signal u(z) over some interval of time, the model
should produce the resulting output y(z).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio
or a television and break it down into manageable pieces such as the receiver,
demodulator, amplifier, and speakers. Each of these pieces has a set of inputs and
outputs and, through proper design, these components can be interconnected to
form the entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully later in this chapter, but
roughly speaking a system is linear if the superposition (addition) of two inputs
yields an output that is the sum of the outputs that would correspond to individual
inputs being applied separately. A system is time-invariant if the output response
for a given input does not depend on when that input is applied.

Many electrical engineering systems can be modeled by linear time-invariant
systems and hence a large number of tools have been developed to analyze them.
One such tool is the step response, which describes the relationship between an
input that changes from zero to a constant value abruptly (a step input) and the
corresponding output. As we shall see later in the text, the step response is very
useful in characterizing the performance of a dynamical system, and it is often used
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Figure 3.4: Input/output response of a linear system. The step response (a) shows the output
of the system due to an input that changes from O to 1 at time # = 5 s. The frequency re-
sponse (b) shows the amplitude gain and phase change due to a sinusoidal input at different
frequencies.

to specify the desired dynamics. A sample step response is shown in Figure 3.4a.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged.
The results are based on the theory of complex variables and Laplace transforms.
The basic idea behind frequency response is that we can completely characterize
the behavior of a system by its steady-state response to sinusoidal inputs. Roughly
speaking, this is done by decomposing any arbitrary signal into a linear combi-
nation of sinusoids (e.g., by using the Fourier transform) and then using linearity
to compute the output by combining the response to the individual frequencies. A
sample frequency response is shown in Figure 3.4b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems. In the 1970s the development was
influenced by advances in automation, which emphasized the need to include logic
and sequencing.

The development of state space models involved modifying the models from
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mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, the model given by equation (3.2) was replaced by

dx _ (x,u), y = h(x,u), (3.3)

dt
where x is a vector of state variables, u is a vector of control signals, and y is a
vector of measurements. The term dx/dt represents the derivative of the vector
x with respect to time, and f and & are (possibly nonlinear) mappings of their
arguments to vectors of the appropriate dimension. For mechanical systems, the
state consists of the position and velocity of the system, so that x = (¢, ¢) in the case
of a damped spring—mass system. Note that in the control formulation we model
dynamics as first-order differential equations, but we will see that this can capture
the dynamics of higher-order differential equations by appropriate definition of the
state and the maps f and A.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 7 and 8.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
systems with uncertainty since state models are convenient to describe a nominal
model but uncertainties are easier to describe using input/output models (often via
a frequency response description). Uncertainty will be a constant theme through-
out the text and will be studied in particular detail in Chapter 13.

An interesting observation in the design of control systems is that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

Multidomain Modeling

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previ-
ous discussion of mechanical and electrical engineering. A difficulty in systems



3.1. MODELING CONCEPTS 3-7

engineering is that it is frequently necessary to deal with heterogeneous systems
from many different domains, including chemical, electrical, mechanical, and in-
formation systems.

To model such multidomain systems, we start by partitioning a system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy, and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how
the variables of the subsystem behave when the subsystems are interconnected.
These interfaces act by constraining variables within the individual subsystems to
be equal (such as mass, energy, or momentum fluxes). The complete model is then
obtained by combining the descriptions of the subsystems and the interfaces.

Using this methodology it is possible to build up libraries of subsystems that
correspond to physical, chemical, and informational components. The procedure
mimics the engineering approach where systems are built from subsystems that
are themselves built from smaller components. As experience is gained, the com-
ponents and their interfaces can be standardized and collected in model libraries.
In practice, it takes several iterations to obtain a good library that can be reused for
many applications.

State models or ordinary differential equations are not suitable for component-
based modeling of this form because states may disappear when components are
connected. This implies that the internal description of a component may change
when it is connected to other components. As an illustration we consider two ca-
pacitors in an electrical circuit. Each capacitor has a state corresponding to the
voltage across the capacitors, but one of the states will disappear if the capacitors
are connected in parallel. A similar situation happens with two rotating inertias,
each of which is individually modeled using the angle of rotation and the angular
velocity. Two states will disappear when the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations by differential
algebraic equations, which have the form

F(z,z2) =0,
where z € R". A simple special case is

i=f(xy), gy =0, (3.4)

where z = (x,y) and F = (x — f(x,y),g(x,y)). The key property is that the deriva-
tive 7 is not given explicitly and there may be pure algebraic relations between the
components of the vector z. Modeling using differential algebraic equations is also
called equation-based modeling, acausal modeling, or behavioral modeling.

The model (3.4) captures the examples of the parallel capacitors and the linked
rotating inertias. For example, when two capacitors are connected, we simply add
the algebraic equation expressing that the voltages across the capacitors are the
same.

Modelica is a language that has been developed to support component-based
modeling. Differential algebraic equations are used as the basic description, and
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object-oriented programming is used to structure the models. Modelica is used to
model the dynamics of technical systems in domains such as mechanical, electri-
cal, thermal, hydraulic, thermofluid, and control subsystems. Modelica is intended
to serve as a standard format so that models arising in different domains can be
exchanged between tools and users. A large set of free and commercial Modelica
component libraries are available and are used by a growing number of people
in industry, research, and academia. For further information about Modelica, see
http://www.modelica.org or Tiller [Til0O1].

Finite State Machines and Hybrid Systems

A final type of modeling has been developed within the computer-controlled sys-
tems community. A hybrid system (also called a cyberphysical system) is one that
combines continuous dynamics with discrete logic. The discrete portion of the sys-
tem represents logical variables that reside in a computer, such as the mode of a
system (on, off, degraded, etc.).

Discrete state dynamics are often represented using a finite state machine that
consists of a finite set of discrete states o¢ € Q. We can think of o as the “mode” of
the system. The dynamics of a finite state machine are defined in terms of transi-
tions between the states. One convenient representation is as a guarded transition
system:

gi(avﬁ) = a/:ri(a)v l:177N

Here the function g is a Boolean (true/false) function that depends on the current
system mode « and an input 3, which might represent an environmental event
(button press, component failure, etc). If the guard g; is true then the system transi-
tions from the current state & to a new state o, determined by the rule (transition
map) r;. A guarded transition system can have many different rules, depending on
the system state and external input.

It is also possible to combine systems that have finite states with those having
discrete states, creating a hybrid system. For example, if a system has a continuous
state x and discrete state o, we might write the overall system dynamics as

dx , .
E:fa(x,u,v), gilx,o,B) = o =ri(x,a), i=1,...,N.
In this representation, the continuous dynamics (with state x) are governed by an
ordinary differential equation that may depend on the system mode & (indicated
by the subscript in f;). The discrete transition system is also influenced by the
continuous state, so that the guards g; and rules r; now depend on the continuous
state.

Many other representations are possible for hybrid systems, including models
that allow a non-continuous change in the continuous variables when a change in
the discrete state occurs (so-called reset logic). Computer modeling packages for
hybrid systems include StateFlow (part of the MATLAB suite of tools), Modelica,
and Ptolemy [Pto14].
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Figure 3.5: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relationship and the
dashed lines indicate the range of possible uncertainty. The uncertainty lemon [GPD59] in
(b) is one way to capture uncertainty in dynamical systems emphasizing that a model is valid
only in the amplitude and frequency ranges within the shaded region. In (c) a model is rep-
resented by a nominal model M and another model A representing the uncertainty analogous
to the representation of parameter uncertainty.

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback, and it is there-
fore important to characterize uncertainty. When making measurements, there is a
good tradition to assign both a nominal value and a measure of uncertainty. It is
useful to apply the same principle to modeling, but unfortunately it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be characterized by a func-
tion, uncertainty can be expressed by an uncertainty band as illustrated in Fig-
ure 3.5a. At low signal levels there are uncertainties due to sensor resolution, fric-
tion, and quantization. For example, some models for queuing systems or cells are
based on averages that exhibit significant variations for small populations. At large
signal levels there are saturations or even system failures. The signal ranges where
a model is reasonably accurate vary dramatically between applications, but it is
rare to find models that are accurate for signal ranges larger than 10

Characterization of the uncertainty of a dynamical model is much more diffi-
cult. We can try to capture uncertainties by assigning uncertainties to parameters
of the model, but this is often not sufficient. There may be errors due to phenom-
ena that have been neglected, e.g., small time delays. In control the ultimate test is
how well a control system based on the model performs, and time delays can be
important. There is also a frequency aspect. There are slow phenomena, such as
aging, that can cause changes or drift in the systems. There are also high-frequency
effects: a resistor will no longer be a pure resistance at very high frequencies, and
a beam has stiffness and will exhibit additional dynamics when subject to high-
frequency excitation. The uncertainty lemon [GPD59] shown in Figure 3.5b is one
way to conceptualize the uncertainty of a system. It illustrates that a model is valid
only in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in Chapter 13
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using figures such as Figure 3.5c. These tools make use of the concept of a transfer
function, which describes the frequency response of an input/output system. For
now, we simply note that one should always be careful to recognize the limits of
a model and not to make use of models outside their range of applicability. For
example, one can describe the uncertainty lemon and then check to make sure that
signals remain in this region. In early analog computing, a system was simulated
using operational amplifiers, and it was customary to give alarms when certain
signal levels were exceeded. Similar features can be included in digital simulation.

3.2 State Space Models

In this section we describe the two primary forms of models that we use in this
text: differential equations and difference equations. Both make use of the notions
of state, inputs, outputs, and dynamics to describe the behavior of a system. We
also briefly discuss modeling of finite state systems.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a physical system the state is
composed of the variables required to account for storage of mass, momentum,
and energy. A key issue in modeling is to decide how accurately this information
has to be represented. The state variables are gathered in a vector x € R” called the
state vector. The control variables are represented by another vector u € R”, and
the measured signal by the vector y € R?. A system can then be represented by the
differential equation

dx = f(x,u), y = h(x,u), (3.5)
dt
where f: R" x R? — R" and & : R” x R? — R? are smooth mappings. We call a
model of this form a state space model.

The dimension of the state vector is called the order of the model. The model
given in equation (3.5) is called time-invariant because the functions f and & do
not depend explicitly on time #; there are more general time-varying systems where
the functions do depend on time. The model consists of two functions: the function
f gives the rate of change of the state vector as a function of state x and control u,
and the function £ gives the measured values as functions of state x and control u.

A model is called a linear state space model (or often just a “linear system”) if
the functions f and A are linear in x and u. A linear state space model can thus be
represented by

d
di; = Ax+ Bu, y = Cx+Du, (3.6)

where A, B, C, and D are constant matrices. Such a model is said to be linear and
time-invariant, or LTI for short. (In this text we will usually omit the term time-
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invariant and just say the model is linear.) The matrix A is called the dynamics
matrix, the matrix B is called the control matrix, the matrix C is called the sensor
matrix, and the matrix D is called the direct term. Frequently models will not
have a direct term, indicating that the control signal does not influence the output
directly.
A different form of linear differential equations, generalizing the second-order
dynamics from mechanics, is an equation of the form
n n—1
fhf +a1fhn_f Fotay =, 3.7)
where ¢ is the independent (time) variable, y() is the dependent (output) variable
and u(t) is the input. The notation d¥y/dt* is used to denote the kth derivative
of y with respect to ¢, sometimes also written as y(k). The controlled differential
equation (3.7) is said to be an nth-order model. This model can be converted into
state space form by defining

X dn_ly/dtn_l
X2 dn—Zy/dtn—Z
X = : = : )
Xp—1 dy/dt
Xn y

and the state space equations become

X1 —aiXy — - — Xy u
X2 X1 0
d -
el — : V=X
dt |
Xn—1 Xn—2 0
X Xn_1 0

With the appropriate definitions of A, B, C, and D, this equation is in linear state
space form.

An even more general model is obtained by letting the output be a linear com-
bination of the states of the model, i.e.,

y=>bix1 +byxy+ -+ byx,+du.

This model can be represented in state space as

X1 —a; —ap —ay—1 —ay 1
X 10 0 0 0

d ] -] o 1 0 0 |t |0]u

dr 1 : : (3.8)
X 0 0 1 0 0
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(a) Segway (b) Saturn rocket (c) Cart—pendulum system

Figure 3.6: Balance systems. (a) Segway Personal Transporter, (b) Saturn rocket, and (c)
inverted pendulum on a cart. Each of these examples uses forces at the bottom of the system
to keep it upright.

This particular form of a linear state space model is called reachable canonical
form and will be studied in more detail in later chapters. Many other representa-
tions for a model are possible and we shall see several of these in Chapters 6—8.
It is also possible to expand the form of equation (3.7) to allow derivatives of the
input to appear, as we saw briefly in Chapter 2.

Example 3.1 Spring-mass system
As a simple example of convering a linear differential equation to state space form,
consider the externally-driven spring mass system whose dynamics are given in
equation (3.2):

mg+c(q) +kq = u.

This has the same form as equation (3.7) where the output y is the position g. The
state of the system can then be written as

-1

and the state space equations are
d (x1) _ [—¢/m —k/m) (x1 . 1/m
dt () | 1 0 X o "

Example 3.2 Balance systems

A more complex example of a type of system that can be modeled using ordinary
differential equations is the class of balance systems. A balance system is a me-
chanical system in which the center of mass is balanced above a pivot point. Some
common examples of balance systems are shown in Figure 3.6. The Segway®
Personal Transporter (Figure 3.6a) uses a motorized platform to stabilize a person
standing on top of it. When the rider leans forward, the transportation device pro-

\%
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pels itself along the ground but maintains its upright position. Another example is
a rocket (Figure 3.6b), in which a gimbaled nozzle at the bottom of the rocket is
used to stabilize the body of the rocket above it. Other examples of balance sys-
tems include humans or other animals standing upright or a person balancing a
stick on their hand.

Balance systems are a generalization of the spring—mass system we saw earlier.
We can write the dynamics for a mechanical system in the general form

M(q)§+C(q,9) +K(q) = B(q)u,

where M(q) is the inertia matrix for the system, C(g,q) represents the Coriolis
forces as well as the damping, K(g) gives the forces due to potential energy, and
B(q) describes how the external applied forces couple into the dynamics. Note
that ¢ may be a vector, rather than just a scalar, and represents the configuration
variables of the system. The specific form of the equations can be derived using
Newtonian mechanics. Each of the terms depends on the configuration of the sys-
tem ¢ and these terms are often nonlinear in the configuration variables.

Figure 3.6c shows a simplified diagram for a balance system consisting of an
inverted pendulum on a cart. To model this system, we choose state variables that
represent the position and velocity of the base of the system, p and p, and the an-
gle and angular rate of the structure above the base, 8 and 6. We let F represent
the force applied at the base of the system, assumed to be in the horizontal direc-
tion (aligned with p), and choose the position and angle of the system as outputs.
With this set of definitions, the dynamics of the system can be computed using
Newtonian mechanics and have the form

(M+m) —mlcosO) (p n cp+mlsin66?)  (F (3.9)
—mlcos® (J+ml?) 6 ¥0 —mglsing | — | 0]~ :

where M is the mass of the base, m and J are the mass and moment of inertia of the
system to be balanced, / is the distance from the base to the center of mass of the
balanced body, ¢ and y are coefficients of viscous friction, and g is the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space form by defining the

state as x = (p, 0, p,0), the input as u = F, and the output as y = (p,0). If we
define the total mass and total inertia as

M=M+m,  Jo=J+ml>,
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the equations of motion then become

P
p 0
d e —mlsg8% +mg(mi*/J))sgce —cp— (y/J)mice® +u
da |p| M, —m(mi2 /)¢5 7
0 —mil®sgce0? + Mglsg — clcgp — Y(M/m)0 + Icqu
Ju(M/m) —m(lcg)? J

(p
y = 6] Y
where we have used the shorthand cg = cos 0 and sg = sin 6.
In many cases, the angle 6 will be very close to 0, and hence we can use the
approximations sin@ ~ 6 and cos 6 ~ 1. Furthermore, if 0 is small, we can ig-

nore quadratic and higher terms in 6. Substituting these approximations into our
equations, we see that we are left with a linear state space equation

p 0 0 1 0 p 0
dle 0 0 0 1 0 0
—1sl= 272 |t u,
dt | p 0 milg/u  —ch/u —vyim/u| | p Jo/u
6 (0 Mumgl/u  —clm/u  —yM;/1 6 Im/u
(Lt 000
Yo 10 0)"
where U = MJ; — m212. \%

Example 3.3 Inverted pendulum

A variation of the previous example is one in which the location of the base p does
not need to be controlled. This happens, for example, if we are interested only in
stabilizing a rocket’s upright orientation without worrying about the location of the
base of the rocket. The dynamics of this simplified system are given by

d [9] = [mgl }? l ] y=20 (3.10)
. 9 - . _ A e ) — Y .
dt Tt sin 0 Jt9+JtuCOSG

where 7 is the coefficient of rotational friction, J; = J +mil?, and u is the force
applied at the base. This system is referred to as an inverted pendulum. \%

Difference Equations

In some circumstances, it is more natural to describe the evolution of a system
at discrete instants of time rather than continuously in time. If we refer to each
of these times by an integer k = 0,1,2,..., then we can ask how the state of the
system changes for each k. Just as in the case of differential equations, we define
the state to be the set of variables that summarizes the past of the system for the
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purpose of predicting its future. Systems described in this manner are referred to
as discrete-time systems.
The evolution of a discrete-time system can be written in the form

xlk+1] = f (x[k], ulk]), YIk] = h(x[k], ulk]), (3.11)

where x[k] € R" is the state of the system at time k (an integer), ulk] € R” is the
input, and y[k] € R? is the output. As before, f and h are smooth mappings of the
appropriate dimension. We call equation (3.11) a difference equation since it tells
us how x[k + 1] differs from x[k]. The state x[k]| can be either a scalar- or a vector-
valued quantity; in the case of the latter we write x;[k] for the value of the jth state
at time k.

Just as in the case of differential equations, it is often the case that the equations
are linear in the state and input, in which case we can describe the system by

x[k+ 1] = Ax[k] + Bulk], y[k] = Cx[k] + Dulk].

As before, we refer to the matrices A, B, C, and D as the dynamics matrix, the con-
trol matrix, the sensor matrix, and the direct term. The solution of a linear differ-
ence equation with initial condition x[0] and input «[0],...,u[T| can be computed
using repeated substitution and is given by

k—1
x[k] = A%x[0] + Y A7 Bu ),
m k> 0. (3.12)
y[k] = CA*x[0] + Y CA*~/~'Bulj] + Dulk],
j=0

Difference equations are also useful as an approximation of differential equa-
tions, as we will show later.

Example 3.4 Predator—prey

As an example of a discrete-time system, consider a simple model for a predator—
prey system. The predator—prey problem refers to an ecological system in which
we have two species, one of which feeds on the other. This type of system has
been studied for decades and is known to exhibit interesting dynamics. Figure 3.7
shows a historical record taken over 90 years for a population of lynxes versus a
population of hares [Mac37]. As can been seen from the graph, the annual records
of the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-time
model to keep track of the rate of births and deaths of each species. Letting H
represent the population of hares and L represent the population of lynxes, we can
describe the state in terms of the populations at discrete periods of time. Letting &
be the discrete-time index (corresponding here to each day), we can write

Hlk+ 1) = H[K] + by (u) H[k] — aL[k]H[K],
Llk+ 1] = LIk] + cLIkH[K] — diL]K],

(3.13)
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Figure 3.7: Predator versus prey. The photograph on the left shows a Canadian lynx and
a snowshoe hare, the lynx’s primary prey. The graph on the right shows the populations of
hares and lynxes between 1845 and 1935 in a section of the Canadian Rockies [Mac37]. The

data were collected on an annual basis over a period of 90 years. (Photograph copyright Tom
and Pat Leeson.)

where by (u) is the hare birth rate per unit period and is a function of the food
supply u, d; is the lynx mortality rate, and a and c are the interaction coefficients.
The interaction term aL[k]H[k] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey meet and is hence given
by the product of the population sizes. The interaction term cL[k|H [k] in the lynx
dynamics has a similar form and represents the rate of growth of the lynx popula-
tion. This model makes many simplifying assumptions—such as the fact that hares
decrease in number only through predation by lynxes—but it often is sufficient to
answer basic questions about the system.

To illustrate the use of this system, we can compute the number of lynxes and
hares at each time point from some initial population. This is done by starting with
x[0] = (Ho,Lo) and then using equation (3.13) to compute the populations in the
following period. By iterating this procedure, we can generate the population over
time. The output of this process for a specific choice of parameters and initial con-
ditions is shown in Figure 3.8. While the details of the simulation are different
from the experimental data (to be expected given the simplicity of our assump-
tions), we see qualitatively similar trends and hence we can use the model to help

250 \ \ T
—e—Hares — & -Lynxes
200
=
£ 150
<
=
g 100
~
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1850 1860 1870 1880 1890 1900 1910 1920
Year

Figure 3.8: Discrete-time simulation of the predator—prey model (3.13). Using the parame-
ters a = ¢ = 0.014, by, (u) = 0.6, and d = 0.7 in equation (3.13), the period and magnitude of
the lynx and hare population cycles approximately match the data in Figure 3.7.
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explore the dynamics of the system. \%

Example 3.5 E-mail server
The IBM Lotus server is a collaborative software system that administers users’
e-mail, documents, and notes. Client machines interact with end users to provide
access to data and applications. The server also handles other administrative tasks.
In the early development of the system it was observed that the performance was
poor when the central processing unit (CPU) was overloaded because of too many
service requests, and mechanisms to control the load were therefore introduced.

The interaction between the client and the server is in the form of remote proce-
dure calls (RPCs). The server maintains a log of statistics of completed requests.
The total number of requests being served, called RIS (RPCs in server), is also
measured. The load on the server is controlled by a parameter called MaxUsers,
which sets the total number of client connections to the server. This parameter is
controlled by the system administrator. The server can be regarded as a dynami-
cal system with MaxUsers as the input and RIS as the output. The relationship
between input and output was first investigated by exploring the steady-state per-
formance and was found to be linear.

In [HDPTO04] a dynamical model in the form of a first-order difference equation
is used to capture the dynamic behavior of this system. Using system identification
techniques, they construct a model of the form

ylk+1] = aylk] 4 bulk],

where u = MaxUsers —MaxUsers and y = RIS — RIS. The parameters a =
0.43 and b = 0.47 are parameters that describe the dynamics of the system around
the operating point, and MaxUsers = 165 and RIS = 135 represent the nomi-
nal operating point of the system. The number of requests was averaged over a
sampling period of 60 s. \%

Another application of difference equations is in the implementation of control
systems on computers. Early controllers were analog physical systems, which can
be modeled by differential equations. When implementing a controller described
by a differential equation using a computer it is necessary to do approximations.
A simple way is to approximate derivatives by finite differences, as illustrated by
the following example.

Example 3.6 Difference approximation of a PI controller
Consider the proportional-integral (PI) controller

u(t) = kpe(t) + ki /Ote(r)d'l: = kpe(t) +x(t), x=ki /Ote(’l:)dr,

where the controller state is given by the differential equation
dx
e
Assume that the error is measured at regular sampling intervals t = h,2h,3h, .. ..

kie(t) (3.14)
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on E-W St. <\—>® on E-W St.

Figure 3.9: A simple model for a traffic light. The diagram on the right is a finite state
machine model of the traffic light controller.

Approximating the derivative in equation (3.14) by differences gives
x(kh+ h) — x(kh)

h
and the controller is then given by the difference equation

x[k+ 1] = x[k] + hki e[k], ulk] = kpelk] + x[k],

where x[k] = x(kh), e[k] = e(kh), and u[k] = u(kh) represent the discrete-time state,
error, and input sampled at each time interval. This controller is easy to implement
on a computer since it consists of just addition and multiplication. \%

= kie(kh),

The approximation in the example works well provided that the sampling in-
terval is so short that the variable e(7) changes very little over a sampling interval.

Finite State Machines

In addition to systems that can be modeled by continuous variables (e.g., positions,
velocities, voltages, temperatures), we often encounter systems that have discrete
states (e.g., on, off, standby, fault). A finite state machine is a model in which the
states of the system are chosen from a finite list of “modes”. The dynamics of
a finite state machine are given by transitions between these modes, possibly in
response to external signals. We illustrate this concept with a simple example.

Example 3.7 Traffic light controller
Consider a finite state machine model of a traffic light control system, as shown
in Figure 3.7. We represent the state of the system in terms of the set of traffic
lights that are turned on (either east—west or north—south). In addition, once a light
is turned on it should stay that way for a certain minimum time, and then only
change when a car comes up to the intersection in the opposite direction. This
gives us two states for each direction of the lights: waiting for a car to arrive and
waiting for the timer to expire. Thus, we have four states for the system, as shown
in Figure 3.7.

The dynamics for the light describe how the system transitions from one state
to another. Starting at the left most state, we assume that the lights are set to allow

4
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traffic in the north—south direction. When a car arrives on the east—west street, we
transition to the state at the top of the diagram, where a timer is started. Once the
timer reaches the designated amount of time, we transition to the state on the right
side of the diagram and turn on the lights in the east—west direction. From here we
wait until a car arrives on the north—south street and continue the cycle.

Viewed as a control system, this model has a state space consisting of four
discrete states: north—south waiting, north—south countdown, east-west waiting,
and east—west countdown. The inputs to the controller consist of the signals that
indicate whether a car is present at the roads leading up to the intersection. The
outputs from the controller are the signals that change the colors of the traffic light.
Finally, the dynamics of the controller are the transition diagram that controls how
the states (or modes) of the system change in time. \%

More formally, a finite state machine can be represented as a finite set of dis-
crete states o € Qgys, where Qgys is a discrete set. The dynamics of the system
are described by transitions between the discrete states, as in the finite state ma-
chine described in the previous example. These transitions can depend on external
inputs or measurements and can generate output actions on transition into or out
of a given state. If we let f € i, represent (discrete) input events (button press,
component failure, etc) and ¥y € Qqy represent (discrete) output actions (such as
turning off a device), then the dynamics of the finite state machine can be written
as a guarded command system

o =r ,'(OC, B )7

Y= ai(av B ) )
Here the function g; is a Boolean (true/false) function that depends on the current
system mode & and an external input . If the guard g; is true then the system
transitions from the current state o to a new state &', determined by the rule (tran-
sition map) r; and the external input. The output action a; is similarly dependent
on the current state and external input. A guarded transition system can have many
different rules, depending on the system state and external input.

The dynamics of a transition system is similar in many ways to the discrete
time dynamics in equation (3.11). The major difference is that the transitions do
not necessarily occur at regularly spaced intervals of time. Indeed, there is no strict
notion of time in a transition system as we have described it here: it is only the
sequence of events that is kept track of (through the evolution of the discrete state).

Specifications for finite transition systems are often written as logical functions
describing the conditions that should be imposed on the system. For example, we
might wish to say that if a specific sensor is not operating, then the system cannot
transition to a mode that requires the use of that sensor. This could be written as
the logical formula

gi(o, ) = i=1,...,N. (3.15)

a € {states with sensor k not functioning} = @’ ¢ {states requiring sensor k}.

The formula of the form p = ¢ where p and ¢ are Boolean propositions can be
written as the logical function (!p) || (p &&g), which asserts that if proposition p is
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Figure 3.10: A driven spring—mass system with damping. Here we use a linear damping
element with coefficient of viscous friction c¢. The mass is driven with a sinusoidal force of
amplitude A.

true then proposition ¢ must be true. In the sensor example, p and g are represented
by whether the system mode ¢ is in some set of states.

Finite state machines are very useful for describing logical operations and
are often combined with continuous state models (differential or difference equa-
tions) to create a hybrid system model. The study of hybrid systems is beyond
the scope of this text, but excellent references include Lee and Seshia [LS15] and
Alur [Alul5].

Simulation and Analysis

State space models can be used to answer many questions. One of the most com-
mon, as we have seen in the previous examples, involves predicting the evolution
of the system state from a given initial condition. While for simple models this can
be done in closed form, more often it is accomplished through computer simula-
tion.

Consider again the damped spring—mass system from Section 3.1, but this time
with an external force applied, as shown in Figure 3.10. We wish to predict the
motion of the system for a periodic forcing function, with a given initial condition,
and determine the amplitude, frequency, and decay rate of the resulting motion.

We choose to model the system with a linear ordinary differential equation.
Using Hooke’s law to model the spring and assuming that the damper exerts a
force that is proportional to the velocity of the system, we have

mg—+cq+kq=u, (3.16)

where m is the mass, g is the displacement of the mass, ¢ is the coefficient of
viscous friction, k is the spring constant, and « is the applied force. In state space
form, using x = (g,¢) as the state and choosing y = ¢ as the output, we have

dx *2
- = c k ul» y=X1.
dt ——Xp— —X|+ —

m m m

We see that this is a linear second-order differential equation with one input u and
one output y.
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Figure 3.11: Simulation of the forced spring—mass system with different simulation time
constants. The solid line represents the analytical solution. The dashed lines represent the
approximate solution via the method of Euler integration, using decreasing step sizes.

We now wish to compute the response of the system to an input of the form u =
Asinwt. Although it is possible to solve for the response analytically, we instead
make use of a computational approach that does not rely on the specific form of
this system. Consider the general state space system

dx
dt
Given the state x at time 7, we can approximate the value of the state at a short time

h > 0 later by assuming that the rate of change f(x,u) is constant over the interval
t to t + h. This gives

= f(x,u).

x(t+h) =x(t)+hf(x(r),u(r)). (3.17)

Iterating this equation, we can thus solve for x as a function of time. This approx-
imation is known as Euler integration and is in fact a difference equation if we let
h represent the time increment and write x[k| = x(kh), as we saw in Example 3.6.
Although modern simulation tools such as MATLAB and Mathematica use more
accurate methods than Euler integration, they still have some of the same basic
trade-offs.

Returning to our specific example, Figure 3.11 shows the results of computing
x(t) using equation (3.17), along with the analytical computation. We see that as
h gets smaller, the computed solution converges to the exact solution. The form
of the solution is also worth noticing: after an initial transient, the system settles
into a periodic motion. The portion of the response after the transient is called the
steady-state response to the input.

In addition to generating simulations, models can also be used to answer other
types of questions. Two that are central to the methods described in this text con-
cern the stability of an equilibrium point and the input/output frequency response.
We illustrate these two computations through the examples below and return to the
general computations in later chapters.

Returning to the damped spring—mass system, the equations of motion with no
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input forcing are given by

X
dx [ ek ] (3.18)

dt ——X) — —X]
m m

where x; is the position of the mass (relative to the rest position) and xp is its
velocity. We wish to show that if the initial state of the system is away from the
rest position, the system will return to the rest position eventually (we will later
define this situation to mean that the rest position is asymptotically stable). While
we could heuristically show this by simulating many, many initial conditions, we
seek instead to prove that this is true for any initial condition.

To do so, we construct a function V : R” — R that maps the system state to a
positive real number. For mechanical systems, a convenient choice is the energy of
the system,

1 1
V(x) = —kx? 4+ —mx3. (3.19)
2 2
If we look at the time derivative of the energy function, we see that
dv k
— = kx1X1 + mxpxo = kx1x +mx2(—£xz ——x1) = —cx%,
dt m m

which is always either negative or zero. Hence V (x(¢)) is never increasing and,
using a bit of analysis that we will see formally later, the individual states must
remain bounded.

If we wish to show that the states eventually return to the origin, we must use
a slightly more detailed analysis. Intuitively, we can reason as follows: suppose
that for some period of time, V (x(z)) stops decreasing. Then it must be true that
V(x(¢)) = 0, which in turn implies that x,(t) = 0 for that same period. In that case,
x2(t) = 0, and we can substitute into the second line of equation (3.18) to obtain

) c k k
0:)62 = ——X) — —X] = ——X].
m m m

Thus we must have that x; also equals zero, and so the only time that V (x(7)) can
stop decreasing is if the state is at the origin (and hence this system is at its rest
position). Since we know that V(x(¢)) is never increasing (because V < 0), we
therefore conclude that the origin is stable (for any initial condition).

This type of analysis, called Lyapunov stability analysis, is considered in detail
in Chapter 5. It shows some of the power of using models for the analysis of system
properties.

Another type of analysis that we can perform with models is to compute the
output of a system to a sinusoidal input, known as the frequency response. We
again consider the spring—mass system, but this time keeping the input and leaving
the system in its original form:

mg+cq+kq=u. (3.20)
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Figure 3.12: A frequency response (gain only) computed by measuring the response of
individual sinusoids. The figure on the left shows the response of the system as a function
of time to a number of different unit magnitude inputs (at different frequencies). The figure
on the right shows this same data in a different way, with the magnitude of the response
plotted as a function of the input frequency. The filled circles correspond to the particular
frequencies shown in the time responses.

We wish to understand how the system responds to a sinusoidal input of the form
u(t) = Asin ot.

We will see how to do this analytically in Chapter 7, but for now we make use of
simulations to compute the answer.

We first begin with the observation that if g(¢) is the solution to equation (3.20)
with input u(7), then applying an input 2u(t) will give a solution 2¢(t) (this is easily
verified by substitution). Hence it suffices to look at an input with unit magnitude,
A = 1. A second observation, which we will prove in Chapter 6, is that the long-
term response of the system to a sinusoidal input is itself a sinusoid at the same
frequency, and so the output has the form

q(1) = g(@)sin(wr + ¢()),

where g() is called the gain of the system and @ () is called the phase (or phase
offset).

To compute the frequency response numerically, we can simulate the system
at a set of frequencies ®y,..., @y and plot the gain and phase at each of these
frequencies. An example of this type of computation is shown in Figure 3.12. For
linear systems the frequency response does not depend on the amplitude A of the
input signal. Frequency response can also be applied to nonlinear systems but the
gain and phase then depend on the A.
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Figure 3.13: Schematic diagrams for different disciplines. Each diagram is used to illustrate
the dynamics of a control system: (a) electrical schematics for a power system [Kun93], (b) a
biological circuit diagram for a synthetic clock circuit [ASMNO3], (c¢) a process diagram for
a distillation column [SEM04], and (d) a Petri net description of a communication protocol.

3.3 Modeling Methodology

To deal with large, complex systems, it is useful to have different representations
of the system that capture the essential features and hide irrelevant details. In all
branches of science and engineering it is common practice to use some graphical
description of systems, called schematic diagrams. They can range from stylistic
pictures to drastically simplified standard symbols. These pictures make it possi-
ble to get an overall view of the system and to identify the individual components.
Examples of such diagrams are shown in Figure 3.13. Schematic diagrams are
useful because they give an overall picture of a system, showing different subpro-
cesses and their interconnection and indicating variables that can be manipulated
and signals that can be measured.
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Figure 3.14: Standard block diagram elements. The arrows indicate the the inputs and out-
puts of each element, with the mathematical operation corresponding to the blocked labeled
at the output. The system block (f) represents the full input/output response of a dynamical
system.

Block Diagrams

A special graphical representation called a block diagram has been developed in
control engineering. The purpose of a block diagram is to emphasize the informa-
tion flow and to hide details of the system. In a block diagram, different process
elements are shown as boxes, and each box has inputs denoted by lines with arrows
pointing toward the box and outputs denoted by lines with arrows going out of the
box. The inputs denote the variables that influence a process, and the outputs de-
note the signals that we are interested in or signals that influence other subsystems.
Block diagrams can also be organized in hierarchies, where individual blocks may
themselves contain more detailed block diagrams.

Figure 3.14 shows some of the notation that we use for block diagrams. Sig-
nals are represented as lines, with arrows to indicate inputs and outputs. The first
diagram is the representation for a summation of two signals. An input/output
response is represented as a rectangle with the system name (or mathematical de-
scription) in the block. Two special cases are a proportional gain, which scales the
input by a multiplicative factor, and an integrator, which outputs the integral of the
input signal.

Figure 3.15 illustrates the use of a block diagram, in this case for modeling the
flight response of a fly. The flight dynamics of an insect are incredibly intricate,
involving careful coordination of the muscles within the fly to maintain stable flight
in response to external stimuli. One known characteristic of flies is their ability to
fly upwind by making use of the optical flow in their compound eyes as a feedback
mechanism. Roughly speaking, the fly controls its orientation so that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose the overall dynamics
of the system into a series of interconnected subsystems (or blocks). Referring to
Figure 3.15, we can model the insect navigation system through an interconnection
of five blocks. The sensory motor system (a) takes the information from the visual
system (e) and generates muscle commands that attempt to steer the fly so that the
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Figure 3.15: A block diagram representation of the flight control system for an insect flying
against the wind. The mechanical portion of the model consists of the rigid-body dynamics
of the fly, the drag due to flying through the air, and the forces generated by the wings. The
motion of the body causes the visual environment of the fly to change, and this information
is then used to control the motion of the wings (through the sensory motor system), closing
the loop.

point of contraction is centered. These muscle commands are converted into forces
through the flapping of the wings (b) and the resulting acrodynamic forces that are
produced. The forces from the wings are combined with the drag on the fly (d) to
produce a net force on the body of the fly. The wind velocity enters through the
drag aerodynamics. Finally, the body dynamics (c) describe how the fly translates
and rotates as a function of the net forces that are applied to it. The insect position,
speed, and orientation are fed back to the drag aerodynamics and vision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicated subsystem. For
example, the visual system of a fruit fly consists of two complicated compound
eyes (with about 700 elements per eye), and the sensory motor system has about
200,000 neurons that are used to process information. A more detailed block dia-
gram of the insect flight control system would show the interconnections between
these elements, but here we have used one block to represent how the motion of
the fly affects the output of the visual system, and a second block to represent how
the visual field is processed by the fly’s brain to generate muscle commands. The
choice of the level of detail of the blocks and what elements to separate into dif-
ferent blocks often depends on experience and on the questions that one wants to
answer using the model. One of the powerful features of block diagrams is their
ability to hide information about the details of a system that may not be needed to
gain an understanding of the essential dynamics of the system.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, we need to
form the differential equations that describe the complete system. In many cases
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the equations can be obtained by combining the differential equations that describe
each subsystem and substituting variables. This simple procedure cannot be used
when there are closed loops of subsystems that all have a direct connection be-
tween inputs and outputs, known as an algebraic loop. A direct connection means
that a change in the output u gives an instantaneous change in the output y.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx
E = f(x,u), y= h(x)v (321)
and a proportional controller described by u = —ky. There is no direct connec-

tion since the function 4 does not depend on u. In that case we can obtain the
equation for the closed loop system simply by replacing u by —ky = —kh(x) in
equation (3.21) to give
X o kA(), vy =h(x)
t

which is an ordinary differential equation.

The situation is more complicated if there is a direct connection. If y = h(x,u),
then replacing u by —ky gives

dx
E:f(xv_ky)a y:h(xa_ky)

To obtain a differential equation for x, the algebraic equation y = h(x, —ky) must
first be solved to give y = a(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. The resulting model
becomes a set of differential algebraic equations, similar to equation (3.4). Re-
solving algebraic loops is a nontrivial problem because it requires the symbolic
solution of algebraic equations. Most block diagram-oriented modeling languages
cannot handle algebraic loops, and they simply give a diagnosis that such loops
are present. In the era of analog computing, algebraic loops were eliminated by
introducing fast dynamics between the loops. This created differential equations
with fast and slow modes that are difficult to solve numerically. Advanced model-
ing languages like Modelica use several sophisticated methods to resolve algebraic
loops.

Modeling from Experiments

Since control systems are provided with sensors and actuators, it is also possible
to obtain models of system dynamics from experiments on the process. The mod-
els are restricted to input/output models since only these signals are accessible to
experiments, but modeling from experiments can also be combined with modeling
from physics through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the response to a
step change in the control signal. Such an experiment begins by setting the control
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Figure 3.16: Step response for a spring—mass system. The magnitude of the step input is
Fy =20 N. The period of oscillation 7' is determined by looking at the time between two
subsequent local maxima in the response. The period combined with the steady-state value
¢g(e=) and the relative decrease between local maxima can be used to estimate the parameters
in a model of the system.

signal to a constant value; then when steady state is established, the control signal
is changed quickly to a new level and the output is observed. The experiment
gives the step response of the system, and the shape of the response gives useful
information about the dynamics. It immediately gives an indication of the response
time, and it tells if the system is oscillatory or if the response is monotone.

Example 3.8 Spring—-mass system
The dynamics of the spring—mass system in Section 3.1 are given by

mg+cq+kq=u. (3.22)

We wish to determine the constants m, ¢, and k by measuring the response of the
system to a step input of magnitude Fy.

We will show in Chapter 7 that when ¢? < 4km, the step response for this system
from the rest configuration is given by

_F() 1 k ct\ .
CI(I)—I 1 ad\/%exp( %)sm(a)dt—i—(p) ,

Vakm — ¢? 4 [ V4km —c?
ygy=—, @ =tan _—
2m c
From the form of the solution, we see that the shape of the step response is deter-
mined by the parameters of the system. Hence, by measuring certain features of
the step response we can determine the parameter values.

Figure 3.16 shows the response of the system to a step of magnitude Fp =20 N,
along with some measurements. We start by noting that the steady-state position
of the mass (after the oscillations die down) is a function of the spring constant k:

q(e0) = — (3.23)
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where Fy is the magnitude of the applied force (Fy = 1 for a unit step input). The
parameter 1 /k is called the gain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2 Vdkm — c2
T 2m '

Finally, the rate of decay of the oscillations is given by the exponential factor in
the solution. Measuring the amount of decay between two peaks, we have )

K K
tog (1) — 7 ) —log ()~ 7) = 5 (2 —n). (3.24)

Using this set of three equations, we can solve for the parameters and determine
that for the step response in Figure 3.16 we have m ~ 250 kg, ¢ ~ 60 N s/m, and
k ~ 40 N/m. \%

Modeling from experiments can also be done using many other signals. Sinu-
soidal signals are commonly used (particularly for systems with fast dynamics)
and precise measurements can be obtained by exploiting correlation techniques.
An indication of nonlinearities can be obtained by repeating experiments with in-
put signals having different amplitudes. Modeling based on sinusoidal signals is
very time consuming for systems with slow dynamics. In such situations it is ad-
vantageous to used signals that switch between two different levels. There is a
whole subfield of control called system identification that deals with experimental
determination of models. Questions like optimal inputs, experiments in open and
closed loop, model accuracy, and fundamental limits are dealt with extensively.

Normalization and Scaling

When deriving a model, it is often useful to introduce dimension-free variables.
Such a procedure can often simplify the equations for a system by reducing the
number of parameters. It can also reveal interesting properties of the model. It is
also useful to normalize variables by scaling to improve numerics and allow faster
and more accurate simulations.

The procedure of scaling is straightforward in principle: choose units for each
independent variable and introduce new variables by dividing the variables by the
chosen normalization unit. We illustrate the procedure with two examples.

Example 3.9 Spring—mass system
Consider again the spring—mass system introduced earlier. Neglecting the damp-
ing, the system is described by

mg—+kq = u.

The model has two parameters m and k. To normalize the model we introduce
dimension-free variables x = ¢/l and T = @pt, where @y = \/k/m and [ is the
chosen length scale. We scale force by mlwg and introduce v = u/(ml@?). The
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scaled equation then becomes

d’x  d*q/l 1

dt?  d(wt)? mlo?

(—kq-+1) = —x-+v,

which is the normalized undamped spring—mass system. Notice that the normal-
ized model has no parameters, while the original model had two parameters m
and k. Introducing the scaled, dimension-free state variables z; = x = ¢/l and
72 =dx/dt = q/(lay), the model can be written as

#3100 )+ 0):

This simple linear equation describes the dynamics of any spring—mass system,
independent of the particular parameters, and hence gives us insight into the fun-
damental dynamics of this oscillatory system. To recover the physical frequency
of oscillation or its magnitude, we must invert the scaling we have applied. \%

Example 3.10 Balance system
Consider the balance system described in Example 3.2. Neglecting damping by
putting ¢ = 0 and Y = 0 in equation (3.9), the model can be written as

d? d*6 do
(M—l—m)d—tlz7 —mlcos® —|—mlsin9(5)2 =F,
2 2
—mlcose% + (J+mlz)—citf —mglsin6 = 0.

Let wy = /mgl/(J +mi?), choose the length scale as /, let the time scale be 1/,
choose the force scale as (M +m)l a)g, and introduce the scaled variables T = wyt,

x=p/landu=F/((M+m)l®}). The equations then become

d*x d*o . dB\2 > d*e .

i acoseﬁ—kasme(ﬂ) =u, —ﬁcoseﬁ%—ﬁ —sin@ =0,
where o = m/(M +m) and B = mi?/(J +mi?). Notice that the original model has
five parameters m, M, J, [, and g but the normalized model has only two parameters
o and B. If M > m and mi? > J, we get ¢ ~ 0 and B ~ 1, and the model can be
approximated by

d? d*6

d—é:u, d—fz—sinezucosﬂ.
The model can be interpreted as a mass combined with an inverted pendulum
driven by the same input. \%

For large systems scaling is not so easy: there are many choices and good selec-
tion of variables and normalization units require good understanding of the physics
of the system and the numerical methods that will be used for analysis, scaling of
large systems is therefore still an art.



3.4. MODELING EXAMPLES 3-31

3.4 Modeling Examples

In this section we introduce additional examples that illustrate some of the differ-
ent types of systems for which one can develop differential equation and difference
equation models. These examples are specifically chosen from a range of differ-
ent fields to highlight the broad variety of systems to which feedback and control
concepts can be applied. A more detailed set of applications that serve as running
examples throughout the text are given in Chapter 4.

Motion Control Systems

Motion control systems involve the use of computation and feedback to control the
movement of a mechanical system. Motion control systems range from nanoposi-
tioning systems (atomic force microscopes, adaptive optics), to control systems
for the read/write heads in a disk drive of a DVD player, to manufacturing systems
(transfer machines and industrial robots), to automotive control systems (antilock
brakes, suspension control, traction control), to air and space flight control systems
(airplanes, satellites, rockets, and planetary rovers).

Example 3.11 Vehicle steering

A common problem in motion control is to control the trajectory of a vehicle
through an actuator that causes a change in the orientation. A steering wheel on an
automobile and the front wheel of a bicycle are two examples, but similar dynam-
ics occur in the steering of ships or control of the pitch dynamics of an aircraft.
In many cases, we can understand the basic behavior of these systems through the
use of a simple model that captures the basic kinematics of the system.

Consider a vehicle with two wheels as shown in Figure 3.17. For the purpose
of steering we are interested in a model that describes how the velocity of the
vehicle depends on the steering angle &. To be specific, let b be the wheelbase and
consider the velocity v at the center of mass, a distance a from the rear wheel, as
shown in Figure 3.17. Let x and y be the coordinates of the center of mass, 0 the
heading angle, and « the angle between the velocity vector v and the centerline of
the vehicle. The point O is at the intersection of the normals to the front and rear
wheels.

Assuming no slipping of the wheels, the motion of the vehicle is given by a
rotation around the point O in the figure. Letting the distance from the center of
rotation O to the contact point of the rear wheel be r;, it the follows from Fig-
ure 3.17 that b = rytan§ and a = rytan o, which implies that tano = (a/b)tand,
and we obtain the following relation between « and the steering angle &:

atanﬁ)‘

o= arctan( (3.25)

If the vehicle speed at its center of mass is v, the motion of the center of mass is
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(a) Overhead view (b) Bicycle model

Figure 3.17: Vehicle steering dynamics. The left figure shows an overhead view of a vehicle
with four wheels. The wheelbase is b and the center of mass at a distance a forward of the
rear wheels. By approximating the motion of the front and rear pairs of wheels by a single
front wheel and a single rear wheel, we obtain an abstraction called the bicycle model, shown
on the right. The steering angle is & and the velocity at the center of mass has the angle a
relative the length axis of the vehicle. The position of the vehicle is given by (x,y) and the
orientation (heading) by 6.

then given by J
d—); =vcos(a+6),
J (3.26)
d%‘) =vsin(a+0).

To see how the heading angle 0 is influenced by the steering angle, we observe
from Figure 3.17 that the distance from the center of mass to the center of rotation
O is r = a/sina. The vehicle thus rotates around the point O with the angular
velocity v/r = (v/a) sin a. Hence

d9 v vsina v,( atan &
=-= = _sin arctan( p ) ~

v
dt r a 1967 (3.27)
where the approximation holds for small § and «.

Equations (3.25)—(3.27) can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the road and that the two front
wheels can be approximated by a single wheel at the center of the car. This model
is often called the bicycle model. The assumption of no slip can be relaxed by
adding an extra state variable, giving a more realistic model. Such a model also
describes the steering dynamics of ships as well as the pitch dynamics of aircraft
and missiles. It is also possible to choose coordinates so that the reference point is
at the rear wheels (corresponding to setting a = 0), a model often referred to as the
Dubins car [Dub57].

Figure 3.17 represents the situation when the vehicle moves forward and has
front-wheel steering. The figure shows that the model also applies to rear wheel
steering if the sign of the velocity is reversed. \%
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(a) Harrier “jump jet” (b) Simplified model

Figure 3.18: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) redirects its
engine thrust downward so that it can “hover” above the ground. Some air from the engine
is diverted to the wing tips to be used for maneuvering. As shown in (b), the net thrust on
the aircraft can be decomposed into a horizontal force F; and a vertical force F, acting at a
distance r from the center of mass.

Example 3.12 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such as the Harrier “jump jet”
shown Figure 3.18a. The Harrier is capable of vertical takeoff by redirecting its
thrust downward and through the use of smaller maneuvering thrusters located on
its wings. A simplified model of the Harrier is shown in Figure 3.18b, where we
focus on the motion of the vehicle in a vertical plane through the wings of the
aircraft. We resolve the forces generated by the main downward thruster and the
maneuvering thrusters as a pair of forces F; and F, acting at a distance r below the
aircraft (determined by the geometry of the thrusters).

Let (x,y,0) denote the position and orientation of the center of mass of the
aircraft. Let m be the mass of the vehicle, J the moment of inertia, g the gravita-
tional constant, and ¢ the damping coefficient. Then the equations of motion for
the vehicle are given by

mx = Fycos0 — F,sin 0 — cx,
my = F|sin 0 + F;cos 0 —mg — ¢y, (3.28)
JO =rF.

It is convenient to redefine the inputs so that the origin is an equilibrium point

of the system with zero input. Letting u; = F| and up = F, — mg, the equations
become

m¥ = —mgsin@ — cx+u;cos6 —uysinf,
my = mg(cos® — 1) —cy+u;sin® +up cos 0, (3.29)
JO = ru.

These equations describe the motion of the vehicle as a set of three coupled second-
order differential equations. \%
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Figure 3.19: Two thermofluid systems. A schematic diagram of a simple water heater a tank
with a submerged electrical heater (a) and schematic diagram of a drum boiler (b).

Thermofluid Systems

Thermofluid systems are commonly used in process control, power generation, and
for heating ventilation and air conditioning in buildings and cars. The processes in-
volve motion of fluids and transmission of energy; typical processes include heat
exchangers, evaporators, chillers, and compressors; The dynamics are often com-
plicated because of two-phase flows and accurate modeling often requires partial
differential equations and computational fluid dynamics. Two examples are given
in Figure 3.19.

Example 3.13 Water heater

Consider the water heater in Figure 3.19a, which is a cylindrical tank with cross
section A. The system has two inputs: the inflow gj, and the heating power P and
two outputs, water level 4 and water temperature 7'. The system can be modeled
by a mass balance and an energy balance and we obtain

dm

—7 = 4in — Yout

dt
d(mCT) (3.30)
—a P+CqinTin — CqouT -

Energy losses have been neglected and it is assumed that all water has the same
temperature. The total mass of the water is m, and gj, and goy are the inflow and
the outflow. The temperature of the inflow is 7;,. The mass of the water is m = pAh,
where p is its the density, 4 is the height of the water, and C is the specific heat
capacity for water. The variables 7j, and gy are the disturbances.
By differentiating the energy balance we get
dm dr

CTE +mC dt = P+ CqinTin — CqouT.
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Using the mass balance to eliminate the term dm/dt we get

dm
—. = qin — qout
dt
ﬂ_@(T ,T)+Lp 33D
d  m- " mC
The state variables are the total mass m and the temperature 7', and the control
variables are the input power P and inflow g;,. \%

It is straightforward to model the water heater as illustrated in the example.
The drum in a drum boiler shares many properties with the simple water heater but
there is a significant complication because there is a mixture of water and steam
in both the riser and the drum. Modeling can still be done by mass and energy
balances, but the two-phase flow leads to significant complications, which will be
discussed briefly in the next example.

Example 3.14 Drum Boiler

Control of the drum level is a key problem: if the level is too low the tubes will
burn through, and if the level is too high water may enter the turbine and cause
damage to the turbine blades. We will focus on modeling of the drum level. Water
entering the system is controlled by the feedwater valve; water leaves the drum as
steam through the steam valve. Water circulates through drum-downcomer-riser
drum, and it is heated in the risers. The differences in densities in the downcomers
and the risers creates self-circulation. The figure shows only one riser and one
downcomer, but in the boiler we discuss there are 22 downcomers and 788 risers,
and the drum level is 40 m>. There is pure water in the downcomers and at the
bottom of the riser tubes. Steam is generated by heating the tubes and the amount
of steam increases along the riser tubes. There is a mixture of steam and water in
the drum.

Consider the situation when the system is in equilibrium and the steam valve
is suddenly opened. More steam then leaves the system and we may expect the
drum level to decrease. This will not happen because the pressure in the drum
will decrease when steam leaves the system. The air bubbles in the riser and the
drum will then increase and the water level will initially increase. If we continue
to keep the steam valve open the level will finally start to decrease. The dynamics
relating drum level to feedwater flow has a similar characteristic. If feedwater flow
is increased the water temperature in the drum will decrease bubbles will collapse
and the drum level will initially increase. This effect, which is called shrink and
swell or inverse response, makes it difficult to control the drum level. The effect
is illustrated in Figure 3.20, which shows simulated and experimental data for a
medium sized boiler. The inverse response characteristics are clearly seen in the
figure. The model used in the simulation is a fifth order model based on mass,
energy, and momentum balances; details are given in [AB00].

The inverse response character of the dynamics from feedwater to drum level
makes it difficult to control the drum level. For this reason the system is provided
with sensors of steam flow and feedwater flow as indicated in Figure 3.19b. The
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Figure 3.20: Model (dashed line) and plant data (solid line) for open loop perturbations in
steam flow rate at medium load. Notice that the drum level increases initially when the steam
flow is increased. The experiment was performed by removing all controllers and introducing
a perturbation in the steam flow [AB0O].

extra sensors make it possible to predict whether the mass of water and steam in
the system is decreasing or increasing. We will discuss the consequences of having
dynamics with inverse response in Section 14.5. \%

Information Systems

Information systems range from communication systems like the Internet to soft-
ware systems that manipulate data or manage enterprise-wide resources. Feed-
back is present in all these systems, and designing strategies for routing, flow con-
trol, and buffer management is a typical problem. Many results in queuing theory
emerged from design of telecommunication systems and later from development
of the Internet and computer communication systems [BG87, Kle75, Sch87]. Man-
agement of queues to avoid congestion is a central problem and we will therefore
start by discussing the modeling of queuing systems.

Example 3.15 Queuing systems

A schematic picture of a simple queue is shown in Figure 3.21. Requests arrive
and are then queued and processed. There can be large variations in arrival rates
and service rates, and the queue length builds up when the arrival rate is larger
than the service rate. When the queue becomes too large, service is denied using
an admission control policy.

The system can be modeled in many different ways. One way is to model each
incoming request, which leads to an event-based, discrete-state model where the
state is an integer that represents the queue length. The queue changes when a
request arrives or a request is serviced. The statistics of arrival and servicing are
typically modeled as random processes. In many cases it is possible to determine
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Figure 3.21: Schematic diagram of a queuing system. Messages arrive at rate A and are
stored in a queue. Messages are processed and removed from the queue at rate y. The average
length of the queue is given by x € R.

statistics of quantities like queue length and service time, but the computations can
be quite complicated.

A significant simplification can be obtained by approximating the discrete queue
length by a continuous variable. Instead of keeping track of each request we instead
view service and requests as continuous flows. The model obtained is called a flow
model because of the analogy with fluid dynamics where motion of molecules are
replace by continuous flows. Hence, if the queue length x is a continuous vari-
able and the arrivals and services are flows with rates A and p, the system can be
modeled by the first-order differential equation

%:A—uzl—umaxf(x), x>0, (3.32)

as proposed by Agnew [Agn76]. The service rate i depends on the queue length;
if there are no capacity restrictions we have tt = x/T where T is the time it takes to
serve one customer. The service rate thus increases linearly with the queue length.
In reality the growth will be slower because longer queues require more resources,
and the service rate has an upper limit un,x. These effects are captured by model-
ing the service rate as [max f(x) in equation (3.33). The function f(x) is monotone,
approximately linear for small x, and f(e0) = 1.

For a particular queue, the function can be determined empirically by mea-
suring the queue length for different arrival and service rates. A simple choice is
f(x) =x/(1+x), which gives the model

dx b

dr A ”maxx~|— 1
It was shown by Tipper [TS90], that if arrival and service processes are Poisson
processes, then average queue length is given by equation (3.33).

To explore the properties of the model (3.33) we will first investigate the equi-
librium value of the queue length when the arrival rate A is constant. Setting the
derivative dx/dt to zero in equation (3.33) and solving for x, we find that the queue
length x approaches the steady-state value

_ A
,umax - )L '
Figure 3.22a shows the steady-state queue length as a function of A /pmax, the

(3.33)

(3.34)

Xe



3-38 CHAPTER 3. SYSTEM MODELING

. 100 : . x
= =
< =
&0 en
5 sof 5 1
& & <

0 0 I'I; I:Fll",f
0 . 0.5 A 1 60 80
Service rate excess /umax Time ¢ [s]
(a) Steady-state queue length (b) Overload condition

Figure 3.22: Queuing dynamics. (a) The steady-state queue length as a function of A /timax.
(b) The behavior of the queue length when there is a temporary overload in the system. The
solid line shows a realization of an event-based simulation, and the dashed line shows the
behavior of the flow model (3.33). The maximum service rate is Umax = 1, and the arrival
rate starts at A = 0.5. The arrival rate is increased to A = 4 at time 20, and it returns to
A = 0.5 at time 25.

effective service rate excess. Notice that the queue length increases rapidly as A
approaches Umax. To have a queue length less than 20 requires A /Umax < 0.95.
The average time to service a request can be shown to be Ty = (x+ 1)/ Umax, and it
increases dramatically as A approaches Umax.

Figure 3.22b illustrates the behavior of the server in a typical overload situation.
The figure shows that the queue builds up quickly and clears very slowly. Since the
response time is proportional to queue length, it means that the quality of service
is poor for a long period after an overload. This behavior is called the rush-hour
effect and has been observed in web servers and many other queuing systems such
as automobile traffic.

The dashed line in Figure 3.22b shows the behavior of the flow model, which
describes the average queue length. The simple model captures behavior qualita-
tively, but there are variations from sample to sample when the queue length is
short. \%

Many complex systems use discrete control actions. Such systems can be mod-
eled by characterizing the situations that correspond to each control action, as il-
lustrated in the following example.

Example 3.16 Virtual memory paging control

An early example of the use of feedback in computer systems was applied in the
operating system OS/VS for the IBM 370 [BG68, Cro93]. The system used vir-
tual memory, which allows programs to address more memory than is physically
available as fast memory. Data in current fast memory (random access memory,
RAM) is accessed directly, but data that resides in slower memory (disk) is au-
tomatically loaded into fast memory. The system is implemented in such a way
that it appears to the programmer as a single large section of memory. The sys-
tem performed very well in many situations, but very long execution times were
encountered in overload situations, as shown by the open circles in Figure 3.23a.
The difficulty was resolved with a simple discrete feedback system. The load of
the central processing unit (CPU) was measured together with the number of page
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Figure 3.23: Illustration of feedback in the virtual memory system of the IBM/370. (a) The
effect of feedback on execution times in a simulation, following [BG68]. Results with no
feedback are shown with o, and results with feedback with x. Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three states are obtained based
on process measurements.

swaps between fast memory and slow memory. The operating region was classified
as being in one of three states: normal, underload, or overload. The normal state
is characterized by high CPU activity, the underload state is characterized by low
CPU activity and few page replacements, the overload state has moderate to low
CPU load but many page replacements; see Figure 3.23b. The boundaries between
the regions and the time for measuring the load were determined from simulations
using typical loads. The control strategy was to do nothing in the normal load con-
dition, to exclude a process from memory in the overload condition and to allow
a new process or a previously excluded process in the underload condition. The
crosses in Figure 3.23a show the effectiveness of the simple feedback system in
simulated loads. Similar principles are used in many other situations, e.g., in fast,

on-chip cache memory.
\%

Example 3.17 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications where we want to collect
and aggregate information over a region of space using multiple sensors that are
connected together via a communications network. Examples include monitoring
environmental conditions in a geographical area (or inside a building), monitoring
the movement of animals or vehicles, and monitoring the resource loading across
a group of computers. In many sensor networks the computational resources are
distributed along with the sensors, and it can be important for the set of distributed
agents to reach a consensus about a certain property, such as the average tempera-
ture in a region or the average computational load among a set of computers.

To illustrate how such a consensus might be achieved, we consider the problem
of computing the average value of a set of numbers that are locally available to the
individual agents. We wish to design a “protocol” (algorithm) such that all agents
will agree on the average value. We consider the case in which all agents cannot
necessarily communicate with each other directly, although we will assume that
the communications network is connected (meaning that no two groups of agents
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Figure 3.24: Consensus protocols for sensor networks. (a) A simple sensor network with
five nodes. In this network, node 1 communicates with node 2 and node 2 communicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the convergence of the consensus
protocol (3.35) to the average value of the initial conditions.

are completely isolated from each other). Figure 3.24a shows a simple situation of
this type.

We model the connectivity of the sensor network using a graph, with nodes
corresponding to the sensors and edges corresponding to the existence of a di-
rect communications link between two nodes. For any such graph, we can build
an adjacency matrix, where each row and column of the matrix corresponds to a
node and a 1 in the respective row and column indicates that the two nodes are
connected. For the network shown in Figure 3.24a, the corresponding adjacency
matrix is

01000
1 01 11
A=|10 1 0 1 O
01100
01000

We use the notation .4 to represent the set of neighbors of a node i. For example,
in the network shown in Figure 3.24a .45 = {1,3,4,5} and 45 = {2,4}.

To solve the consensus problem, let x; be the state of the ith sensor, correspond-
ing to that sensor’s estimate of the average value that we are trying to compute. We
initialize the state to the value of the quantity measured by the individual sensor.
The consensus protocol (algorithm) can now be realized as a local update law

xilk+1] =xi[k]+v Y (x;[k] — xi[k]). (3.35)
JEN
This protocol attempts to compute the average by updating the local state of each
agent based on the value of its neighbors. The combined dynamics of all agents
can be written in the form

x[k+ 1] = x[k] — y(D — A)x[k], (3.36)

where A is the adjacency matrix and D is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constant y describes the
rate at which the estimate of the average is updated based on information from
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neighboring nodes. The matrix L := D — A is called the Laplacian of the graph.
The equilibrium points of equation (3.36) are the set of states such that xe [k +
1] = xe[k]. It can be shown that if the network is connected, x. = (&, @, ..., &) is an
equilibrium state for the system, corresponding to each sensor having an identical
estimate o for the average. Furthermore, we can show that ¢ is indeed the average
value of the initial states. Since there can be cycles in the graph, it is possible that
the state of the system could enter into an infinite loop and never converge to the
desired consensus state. A formal analysis requires tools that will be introduced
later in the text, but it can be shown that for any connected graph we can always
find a y such that the states of the individual agents converge to the average. A
simulation demonstrating this property is shown in Figure 3.24b. Although we
have focused here on consensus to the average value of a set of measurements,
other consensus states can be achieved through choice of appropriate feedback
laws. Examples include finding the maximum or minimum value in a network,
counting the number of nodes in a network or computing higher-order statistical
moments of a distributed quantity [OSFMO7]. \%

Biological Systems

Biological systems provide perhaps the richest source of feedback and control ex-
amples. The basic problem of homeostasis, in which a quantity such as temperature
or blood sugar level is regulated to a fixed value, is but one of the many types of
complex feedback interactions that can occur in molecular machines, cells, organ-
isms, and ecosystems.

Example 3.18 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNA) is generated from
a segment of DNA. The promoter region of a gene allows transcription to be con-
trolled by the presence of other proteins, called transcription factors, which bind
to the promoter region and either repress or activate RNA polymerase, the enzyme
that produces an mRNA transcript from DNA. The mRNA is then translated into
a protein according to its nucleotide sequence. This process is illustrated in Fig-
ure 3.25.

A simple model of the transcriptional regulation process is through the use
of a Hill function [dJ02, Mur04]. Consider the regulation of a protein A with a
concentration given by p, and a corresponding mRNA concentration m,. Let B
be a second protein with concentration py, that represses the production of protein
A through transcriptional regulation. The resulting dynamics of p, and m, can be
written as

dm o, d
a ab Foay— Samay Pa

= = Koty — 3.37
dt 1+kabpgab dt ama %paa ( )

where o, + Qo is the unregulated transcription rate, 0, represents the rate of
degradation of mRNA, oy, kap, and ny, are parameters that describe how B re-
presses A, K, represents the rate of production of the protein from its corresponding
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Figure 3.25: Biological circuitry. The cell on the left is a bovine pulmonary cell, stained so
that the nucleus, actin, and chromatin are visible. The figure on the right gives an overview
of the process by which proteins in the cell are made. RNA is transcribed from DNA by
an RNA polymerase enzyme. The RNA is then translated into a polypeptide chain by a
molecular machine called a ribosome, and then the polypeptide chain folds into a protein
molecule.

mRNA, and 7, represents the rate of degradation of the protein A. The parameter
0, describes the “leakiness” of the promoter, and nyy, is called the Hill coefficient
and relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the production of another
protein rather than repressing it. In this case, the equations have the form

dpa
dt

dm, . aabkabpgab
dt 1+kap pgab

= KaMy — YaPa, (3.38)

where the variables are the same as described previously. Note that in the case of
the activator, if py is zero, then the production rate is 09 <K Oy, (VErsus Qqp, + Qo
for the repressor). As py, gets large, the first term in the expression for 1, ap-
proaches 1 and the transcription rate becomes O,y + Qo (Versus oy for the repres-
sor). Thus we see that the activator and repressor act in opposite fashion from each
other.

As an example of how these models can be used, we consider the model of a
“repressilator,” originally due to Elowitz and Leibler [EL0O]. The repressilator is
a synthetic circuit in which three proteins each repress another in a cycle. This is
shown schematically in Figure 3.26a, where the three proteins are TetR, A cI, and
Lacl. The basic idea of the repressilator is that if TetR is present, then it represses
the production of A cI. If A cI is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, then A cI
is no longer repressed, and so on. If the dynamics of the circuit are designed prop-
erly, the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (3.37), with A and
B replaced by the appropriate combination of TetR, clI, and Lacl. The state of
the system is then given by x = (mTeR, PTetR, Mel, Pl MLacl, PLlacl)- Figure 3.26b
shows the traces of the three protein concentrations for parameters n =2, o = 0.5,
k=625x10"% op=5x10"4 8 =58x10"3, k=0.12,and y=1.2x 1073
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Figure 3.26: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, showing
the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

with initial conditions x(0) = (1,200,0,0,0,0) (following [EL00]). \%

Example 3.19 Wave propagation in neuronal networks
The dynamics of the membrane potential in a cell are a fundamental mechanism
in understanding signaling in cells, particularly in neurons and muscle cells. The
Hodgkin—-Huxley equations give a simple model for studying propagation waves
in networks of neurons. The model for a single neuron has the form

dv

CE = —INa — Ix — Leak + linputs

where V is the membrane potential, C is the capacitance, Iy, and Ik are the current
caused by the transport of sodium and potassium ions across the cell membrane,
leak 1s a leakage current, and fiypy is the external stimulation of the cell. Each
current obeys Ohm’s law,

INa = gna(V —ENa), Ik =gk(V—Ex),  heaxk = &leak(V — EL).
The conductance gje.x is constant, gna ~ m3h and Gk ~ n* depend on the voltage
V and the variables m, n and h, which are given by the differential equations
dm  my(V)—m dh  hy(V)—h dn  ng(V)—n
dt (V) . ((v) "’ dt  1,(V)
The function mg,hy,ng, Ty, T, and 1T, are complicated experiments derived from
experimental data. The equilibrium voltage is given by Nernst’s law,

where R is Boltzmann’s constant, T is the absolute temperature, F is Faraday’s
constant, n is the charge (or valence) of the ion, and ¢; and ¢, are the ion con-
centrations inside the cell and in the external fluid. At 20 °C we have RT /F =
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Figure 3.27: Response of a neuron to a current input. The current input is shown in (a) and
the neuron voltage V in (b). The simulation was done using the FitzHugh—Nagumo model.

20mV, ENa =155 mV and Ex = -92 mV. The sodium channel is exhibitory and
the potassium channel is inhibitory.

The Hodgkin-Huxley equations are complicated, many approximations have
therefore been proposed. The time constant 7, is small so the differential equaion
for m can be replaced by the stationary algebraic equation m(V') = m,(V'), more-
over the variables & and n change at approximately the same rate and can be com-
bined to one equation, resulting in a model of second order. One approximation of
this type is the FitzHugh—Nakomo model, see Exercise 3.11. A simulation of this
model is shown in Figure 3.19.

The system is intially at rest at / = and V = 0, a current puls that enters at time
t = 5 ms, the neuron is excited and reponds by sending out spikes. The neuron
becomes quiet at time = 13 ms when the input current becomes zero. The neuron
is excited by a current at time + = 30 ms and the neuron starts spiking agian. ~V

The Hodgkin—Huxley model was originally developed as a means to predict
the quantitative behavior of the squid giant axon [HH52]. Hodgkin and Huxley
shared the 1963 Nobel Prize in Physiology (along with J. C. Eccles) for analysis
of the electrical and chemical events in nerve cell discharges. The voltage clamp
described in Section 1.4. was a key element in Hodgkin and Huxley’s experi-
ments. There are many models for that describe the dynamcis of neurons based on
the Hodkin—Huxley model, a recent reference is [PDS]. Some models combine or-
dinary differential equations with discrete transitions, so—called integrate-and-fire
models or hybrid systems. A special software package Brian 2 has been developed
to simulate such systems efficiently, see [SGBB14].

3.5 Further Reading

Modeling is ubiquitous in engineering and science and has a long history in applied
mathematics. For example, the Fourier series was introduced by Fourier when he
modeled heat conduction in solids [Fou07]. Models of dynamics have been de-
veloped in many different fields, including mechanics [Arn78, Gol53], heat con-
duction [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, El194], robotics [MLS94,
SV89], circuits [Gui63], power systems [Kun93], acoustics [Ber54], and microme-
chanical systems [SenO1]. Control theory requires modeling from many differ-
ent domains, and most control theory texts contain several chapters on model-
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ing using ordinary differential equations and difference equations (see, for ex-
ample, [FPENO5]). A classic book on the modeling of physical systems, espe-
cially mechanical, electrical, and thermofluid systems, is Cannon [Can03]. The
book by Aris [Ari94] is highly original and has a detailed discussion of the use
of dimension-free variables. Two of the authors’ favorite books on modeling of
biological systems are J. D. Murray [Mur04] and Wilson [Wil99]. A good source
for system identification in Ljung [Lju99].

Exercises

3.1 (Chain of integrators form) Consider the linear ordinary differential equa-
tion (3.7). Show that by choosing a state space representation with x; =y, the
dynamics can be written as

0 1 0 0
. .. 0

A=] 0 -0 = ||, C:[l ...00].
—a, —a,_ 1 —ay 1

This canonical form is called the chain of integrators form.

3.2 (Inverted pendulum) Use the equations of motion for a balance system to derive
a dynamical model for the inverted pendulum described in Example 3.3 and verify
that the dynamics are given by equation (3.10).

3.3 (Discrete-time dynamics) Consider the following discrete-time system
xlk+1] = Axk] + Bulk], [k = Cx[K],

where

P I e e e R C:[l o).
X2 0 amx 1
In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions, and the inputs.

(a) For the case when ajp =0 and u = 0, give a closed form expression for the
output of the system.

(b) A discrete system is in equilibrium when x[k + 1] = x[k] for all k. Let u =
r be a constant input and compute the resulting equilibrium point for the
system. Show that if |a;| < 1 for all i, all initial conditions give solutions
that converge to the equilibrium point.

(c) Write a computer program to plot the output of the system in response to a
unit step input, u[k] = 1, k > 0. Plot the response of your system with x[0] =0
and A given by a;; = 0.5, a;p =1, and ax = 0.25.
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3.4 (Keynesian economics) Keynes’ simple model for an economy is given by
Y[k] = Clk]|+I[k] + Gk],

where Y, C, I, and G are gross national product (GNP), consumption, investment
and government expenditure for year k. Consumption and investment are modeled
by difference equations of the form

Clk+1] = aY k], Ik+1]=b(Clk+ 1] —CIk]),

where a and b are parameters. The first equation implies that consumption in-
creases with GNP but that the effect is delayed. The second equation implies that
investment is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

1

- 1 —a €y

where the parameter 1/(1 — a) is the Keynes multiplier (the gain from G to Y).
With a = 0.75 an increase of government expenditure will result in a fourfold

increase of GNP. Also show that the model can be written as the following discrete-
time state model:

[f[[lfill]]] - [aba_b aab] [f[[kk]]] + [;b] Gk,
Y[k] = C[k] +I[k] + G[k].

Y,

3.5 (Least squares system identification) Consider a nonlinear differential equa-
tion that can be written in the form
dx U
E — Z aifi (X),

=1

where f;(x) are known nonlinear functions and ¢ are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estimates) of the full state x at
time instants t,f,...,ty, with N > M. Show that the parameters ¢; can be esti-
mated by finding the least squares solution to a linear equation of the form

Ho=b,

where oo € R is the vector of all parameters and H € RV*™ and b € RV are
appropriately defined.

3.6 (Normalized oscillator dynamics) Consider a damped spring—mass system with
dynamics
mg+cq+kqg=F.

Let @y = \/k/m be the natural frequency and = c¢/(2+v/km) be the damping ratio.
(a) Show that by rescaling the equations, we can write the dynamics in the form

G428 g+ 03q = oiu, (3.39)
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where u = F /k. This form of the dynamics is that of a linear oscillator with
natural frequency @y and damping ratio {.

(b) Show that the system can be further normalized and written in the form

dzy dzy
—_— = - — — _2 . 3.40
It 22, It 21 —280z+y ( )

The essential dynamics of the system are governed by a single damping
parameter §. The Q-value defined as Q = 1/2{ is sometimes used instead
of .

3.7 (Electric generator) An electric generator connected to a strong power grid can
be modeled by a momentum balance for the rotor of the generator:

2

chl—gp =P,— P :Pm—l;—vsinq),

where J is the effective moment of inertia of the generator, ¢ the angle of rota-
tion, Py, the mechanical power that drives the generator, P, is the active electrical
power, E the generator voltage, V the grid voltage and X the reactance of the
line. Assuming that the line dynamics are much faster than the rotor dynamics,
P. =VI=(EV/X)sin @, where [ is the current component in phase with the volt-
age E and ¢ is the phase angle between voltages E and V. Show that the dynamics
of the electric generator has a normalized form that is similar to the dynamics of a

pendulum with forcing at the pivot.

3.8 (Admission control for a queue) Consider the queuing system described in
Example 3.15. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx

dt x+ 1
where the controller is a simple proportional control with saturation (sat(, ) is
defined by equation (4.10)) and r is the desired (reference) queue length. Use a

simulation to show that this controller reduces the rush-hour effect and explain
how the choice of r affects the system dynamics.

= AU — max— U= Sat(O,l)(k(r —x)), (3.41)

3.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

MHQ swz ﬁ S -

Luz
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Using the models from Example 3.18—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady state quickly—
show that the dynamics can be written in normalized coordinates as

dz u dz H
- = —z1—vi, =
dt 1425 dt 142}

— 22— V2, (3.42)

where z; and z; are scaled versions of the protein concentrations and the time scale
has also been changed. Show that it =~ 200 using the parameters in Example 3.18,
and use simulations to demonstrate the switch-like behavior of the system.

3.10 (Motor drive) Consider a system consisting of a motor driving two masses
that are connected by a torsional spring, as shown in the diagram below.

?1 (%]

_— Motor

) o)
Jy Js
This system can represent a motor with a flexible shaft that drives a load. Assuming

that the motor delivers a torque that is proportional to the current /, the dynamics
of the system can be described by the equations

d* ¢ dei dp
D) L k(o — o) =kiI
W e =) o e =, 43
¢y | (dgy  dey '
R (G =)t =) =Ta

where @) and @, are the angles of the two masses, ®; = d;/dt are their velocities,
Ji represents moments of inertia, c is the damping coefficient, k represents the shaft
stiffness, k; is the torque constant for the motor, and 7y is the disturbance torque
applied at the end of the shaft. Similar equations are obtained for a robot with
flexible arms and for the arms of DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized) state

variables x| = @1, x> = @2, x3 = @1 /@, and x4 = @/ @y, where & = \/k(J1 +12)/(J1J2)
is the undamped natural frequency of the system when the control signal is zero.

3.11 (FitzHugh—Nagano) The second-order FitzHugh—Nagumo equations

dv dR
=10V —V*/3—R+1y), — =08(1.25V —R+1.5),

are a simplified version of the Hodgkin—-Huxley equations discussed in Exam-
ple 3.19. The variable V is the voltage across the axon membrane and R is an
auxiliary variable that approximates several ion currents that flow across the mem-
brane. Explore the effect of the input current ;,. Simulate the equations and repro-
duce the simulation in Figure 3.19.



Chapter Four

Examples

... Don’t apply any model until you understand the simplifying assumptions on which it is
based, and you can test their validity. Catch phrase: use only as directed. Don’t limit yourself
to a single model: More than one model may be useful for understanding different aspects of
the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70].

In this chapter we present a collection of examples spanning many different
fields of science and engineering. These examples are used throughout the text
and in exercises to illustrate different concepts. First-time readers may wish to
focus on only a few examples with which they have had the most prior experience
or insight to understand the concepts of state, input, output, and dynamics in a
familiar setting.

4.1 Cruise Control

The cruise control system of a car is a common feedback system encountered in
everyday life. The system attempts to maintain a constant velocity in the presence
of disturbances primarily caused by changes in the slope of a road. The controller
compensates for these unknowns by measuring the speed of the car and adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figure 4.1. Let v be
the speed of the car and v, the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type described briefly in Chapter 1,
receives the signals v and v, and generates a (normalized) control signal u that is
sent to an actuator that controls the throttle position. The throttle in turn controls
the torque T delivered by the engine, which is transmitted through the gears and
the wheels, generating a force F' that moves the car. There are disturbance forces Fy
due to variations in the slope of the road, the rolling resistance, and aerodynamic
forces. The cruise controller also has a human—-machine interface that allows the
driver to set and modify the desired speed. There are also functions that disconnect
the cruise control when the brake is touched.

The system has many individual components—actuator, engine, transmission,
wheels, and car body—and a detailed model can be very complicated. In spite of
this, the model required to design the cruise controller can be quite simple.

To develop a mathematical model we start with a force balance for the car body.
Let v be the speed of the car, m the total mass (including passengers), F' the force
generated by the contact of the wheels with the road, and Fy the disturbance force
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Figure 4.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torque 7" that is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environment, such as aerodynamic
drag and gravitational forces on hills, the net force causes the car to move. The velocity of
the car v is measured by a control system that adjusts the throttle through an actuation mech-
anism. A driver interface allows the system to be turned on and off and the reference speed
v, to be established.

due to gravity, friction, and aerodynamic drag. The equation of motion of the car
is simply
—=F—-F. 4.1
m d 4.1)
The force F is generated by the engine, whose torque is proportional to the
rate of fuel injection, which is itself proportional to a control signal 0 < u <1
that controls the throttle position. The torque also depends on engine speed w. A
simple representation of the torque at full throttle is given by the torque curve

T(®) =T 1—[3<(Z’—1>2 , 4.2)

m

where the maximum torque Ty, is obtained at engine speed @),. Typical parameters
are T, = 190 Nm, @,, = 420 rad/s (about 4000 RPM), and B = 0.4. Let n be
the gear ratio and r the wheel radius. The engine speed is related to the velocity
through the expression

and the driving force can be written as
F=""T(0) = ouT (o).
r

Typical values of o, for gears 1 through 5 are o) =40, 0p =25, o3 =16, oy = 12,
and a5 = 10. The inverse of o, has a physical interpretation as the effective wheel
radius. Figure 4.2 shows the torque as a function of engine speed and vehicle
speed. The figure shows that the effect of the gear is to “flatten” the torque curve
so that an almost full torque can be obtained almost over the whole speed range.
The disturbance force Fy has three major components: Fg, the forces due to
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Figure 4.2: Torque curves for typical car engine. The graph on the left shows the torque
generated by the engine as a function of the angular velocity of the engine, while the curve
on the right shows torque as a function of car speed for different gears.

gravity; F,, the forces due to rolling friction; and F,, the aerodynamic drag. Letting
the slope of the road be 6, gravity gives the force F, = mgsin 6, as illustrated in
Figure 4.3a, where g = 9.8 m/s? is the gravitational constant. A simple model of
rolling friction is

F, = mgC,sgn(v),

where C, is the coefficient of rolling friction and sgn(v) is the sign of v (1) or
zero if v = 0. A typical value for the coefficient of rolling friction is C, = 0.01.
Finally, the aerodynamic drag is proportional to the square of the speed:

1
F,= EpCdA|v|v,

where p is the density of air, Cy4 is the shape-dependent aerodynamic drag coeffi-
cient, and A is the frontal area of the car. Typical parameters are p = 1.3 kg/m>,
Ca=0.32,and A =2.4m>

Summarizing, we find that the car’s speed can be modeled by

dv 1 .
mo = 0,uT (o) —mgCrsgn(v) — EpCdA|v|v —mgsin@, (4.3)

where the function T is given by equation (4.2). The model (4.3) is a dynamical
system of first order. The state is the car velocity v, which is also the output. The
input is the signal u that controls the throttle position, and the disturbance is the
force Fy, which depends on the slope of the road. The system is nonlinear because
of the torque curve, the gravity term, and the nonlinear character of rolling friction
and aerodynamic drag. There can also be variations in the parameters; e.g., the
mass of the car depends on the number of passengers and the load being carried in
the car.

We add to this model a feedback controller that attempts to regulate the speed
of the car in the presence of disturbances. We shall use a proportional-integral
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Figure 4.3: Car with cruise control encountering a sloping road. A schematic diagram is
shown in (a), and (b) shows the response in speed and throttle when a slope of 4° is encoun-
tered. The hill is modeled as a net change of 4° in hill angle 0, with a linear change in the
angle between t = 5 and ¢ = 6. The PI controller has proportional gain k, = 0.5 and integral
gain k; =0.1.

controller, which has the form

u(t) = koe (1) + ki /0 "e(1)dx.

This controller can itself be realized as an input/output dynamical system by defin-
ing a controller state z and implementing the differential equation

dz

dr
where v, is the desired (reference) speed. As discussed briefly in Section 1.6, the
integrator (represented by the state z) ensures that in steady state the error will be
driven to zero, even when there are disturbances or modeling errors. (The design
of PI controllers is the subject of Chapter 11.) Figure 4.3b shows the response of
the closed loop system, consisting of equations (4.3) and (4.4), when it encounters
a hill. The figure shows that even if the hill is so steep that the throttle changes
from 0.17 to almost full throttle, the largest speed error is less than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (4.3). It may seem
surprising that such a seemingly complicated system can be described by the sim-
ple model (4.3). It is important to make sure that we restrict our use of the model
to the uncertainty lemon conceptualized in Figure 3.5b. The model is not valid for
very rapid changes of the throttle because we have ignored the details of the engine
dynamics, neither is it valid for very slow changes because the properties of the
engine will change over the years. Nevertheless the model is very useful for the
design of a cruise control system. As we shall see in later chapters, the reason for
this is the inherent robustness of feedback systems: even if the model is not per-
fectly accurate, we can use it to design a controller and make use of the feedback

Ve —V, u=kp(v,—v)+kiz, 4.4)
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Figure 4.4: Finite state machine for cruise control system. The figure on the left shows
some typical buttons used to control the system. The controller can be in one of four modes,
corresponding to the nodes in the diagram on the right. Transition between the modes is
controlled by pressing one of the five buttons on the cruise control interface: on, off, set,
resume, or cancel.

in the controller to manage the uncertainty in the system.

The cruise control system also has a human—machine interface that allows the
driver to communicate with the system. There are many different ways to imple-
ment this system; one version is illustrated in Figure 4.4. The system has four
buttons: on-off, set/decelerate, resume/accelerate, and cancel. The operation of the
system is governed by a finite state machine that controls the modes of the PI con-
troller and the reference generator. Implementation of controllers and reference
generators will be discussed more fully in Chapter 11.

The use of control in automotive systems goes well beyond the simple cruise
control system described here. Applications include emissions control, traction
control, power control (especially in hybrid vehicles), and adaptive cruise control.
Many automotive applications are discussed in detail in the book by Kiencke and
Nielsen [KNOO] and in the survey papers by Powers et al. [BP96, PNOO]. New
vehicles coming on the market also include many “self-driving” features, which
represent even more complex feedback systems.

4.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the feature that one of its key
properties is due to a feedback mechanism that is created by the design of the
front fork. A detailed model of a bicycle is complex because the system has many
degrees of freedom and the geometry is complicated. However, a great deal of
insight can be obtained from simple models.

To derive the equations of motion we assume that the bicycle rolls on the hori-
zontal xy plane. Introduce a coordinate system that is fixed to the bicycle with the
&-axis through the contact points of the wheels with the ground, the 7n-axis hor-
izontal, and the {-axis vertical, as shown in Figure 4.5. Let v be the velocity of
the bicycle at the rear wheel, b the wheelbase, ¢ the tilt angle, and J the steering
angle. The coordinate system rotates around the point O with the angular veloc-
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Figure 4.5: Schematic views of a bicycle. The steering angle is &, and the roll angle is ¢.
The center of mass has height /. and distance a from a vertical through the contact point P;
of the rear wheel. The wheelbase b is the distance between P; and P,, and the trail c is the
distance between P> and P;.

ity @ =vyd /b, and an observer fixed to the bicycle experiences forces due to the
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pendulum, as shown
in the rear view in Figure 4.5b. To model the tilt, consider the rigid body obtained
when the wheels, the rider, and the front fork assembly are fixed to the bicycle
frame. Let m be the total mass of the system, J the moment of inertia of this body
with respect to the &-axis, and D the product of inertia with respect to the & { axes.
Furthermore, let the & and { coordinates of the center of mass with respect to the
rear wheel contact point, P;, be a and h, respectively. We have J ~ mh”> and D =
mah. The torques acting on the system are due to gravity and centripetal action.
Assuming that the steering angle & is small, the equation of motion becomes

2 2
chh(zp—l)bvoci;dzmghsin(p—i—ntoh& 4.5
The term mghsin @ is the torque generated by gravity. The terms containing 6 and
its derivative are the torques generated by steering, with the term (Dvy/b)dé /dt
due to inertial forces and the term (mv3h/b) § due to centripetal forces.

The steering angle is influenced by the torque the rider applies to the handle
bar. Because of the tilt of the steering axis and the shape of the front fork, the
contact point of the front wheel with the road P is behind the axis of rotation of
the front wheel assembly, as shown in Figure 4.5c. The distance ¢ between the
contact point of the front wheel P, and the projection of the axis of rotation of
the front fork assembly P; is called the trail. The steering properties of a bicycle
depend critically on the trail. A large trail increases stability but makes the steering
less agile.

A consequence of the design of the front fork is that the steering angle & is
influenced both by steering torque 7 and by the tilt of the frame ¢. This means
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Figure 4.6: Block diagram of a bicycle with a front fork. The steering torque applied to the
handlebars is T, the roll angle is ¢, and the steering angle is §. Notice that the front fork
creates a feedback from the roll angle @ to the steering angle § that under certain conditions
can stabilize the system.

that a bicycle with a front fork is a feedback system as illustrated by the block
diagram in Figure 4.6. The steering angle § influences the tilt angle ¢, and the
tilt angle influences the steering angle, giving rise to the circular causality that is
characteristic of reasoning about feedback. For a front fork with a positive trail,
the bicycle will steer into the lean, creating a centrifugal force that attempts to
diminish the lean.

Under certain conditions, the feedback can actually stabilize the bicycle. A
crude empirical model is obtained by assuming that the block B can be modeled as
the static system

0 =kT—ko. (4.6)

Combining the model of the bicycle frame (4.5) with the model of the front fork (4.6),
we get the the following system model:

dZ(P Dvoky d£ (mv(z)hkz —mgh) o= Dvoky dl mv(z)hkl

— T 4.7
! * b b dt b ’ @7

dr? b dt

where we have approximated sin ¢ with @. The left hand side of this equation looks
like the equation for a spring mass system, where the damping term is Dvok, /b
and the spring term is mv%kz /b — mgh. Notice that the spring term is negative if
vo = 0 and that it becomes positive for v > \/gb/k,. We can thus conclude that the
bicycle is unstable for small velocities but that the feedback provided by the front
fork makes the bicycle stable if the velocity is sufficiently large.

The simple model given by equations (4.5) and (4.6) neglects the dynamics of
the front fork, the tire—road interaction, and the fact that the parameters depend on
the velocity. A more accurate model, called the Whipple model, is obtained using
the rigid-body dynamics of the front fork and the frame. Assuming small angles,
this model becomes

¢ ¢ 2 0
M[s] +Cvo [5] T (Ko+Kand) [‘f;] - [T] (48)
where the elements of the 2 x 2 matrices M, C, Ky, and K, depend on the geometry
and the mass distribution of the bicycle. Note that this has a form somewhat similar
to that of the spring—mass system introduced in Chapter 3 and the balance system

in Example 3.2. Even this more complex model is inaccurate because the interac-
tion between the tire and the road is neglected; taking this into account requires two
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Figure 4.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all connections. (c) Only the
signal connections.

additional state variables. Again, the uncertainty lemon in Figure 3.5b provides a
framework for understanding the validity of the model under these assumptions.

Interesting presentations on the development of the bicycle are given in the
books by D. Wilson [Wil0O4] and Herlihy [Her04]. The model (4.8) was presented
in a paper by Whipple in 1899 [Whi99]. More details on bicycle modeling are
given in the papers [AKL05, LS06], which has many additional references.

4.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementation of Black’s feedback
amplifier. It is a universal component that is widely used for instrumentation, con-
trol, and communication. It is also a key element in analog computing. Schematic
diagrams of the operational amplifier are shown in Figure 4.7. The amplifier has
one inverting input (v_), one noninverting input (v ), and one output (vout). There
are also connections for the supply voltages, e_ and e, and a zero adjustment (off-
set null). A simple model is obtained by assuming that the input currents i_ and i+
are zero and that the output is given by the static relation

Vour = $at(y, . vy (kv —v2)), (4.9)
where sat denotes the saturation function
a ifx<a,
sat(,p)(x) = qx ifa <x<b, (4.10)
b ifx>b.

We assume that the gain k is large, in the range of 10°~10%, and the voltages vpin

and vax satisfy
€— < Vmin < Vmax < €4

and hence are in the range of the supply voltages. More accurate models are ob-
tained by replacing the saturation function with a smooth function as shown in
Figure 4.8. For small input signals the amplifier characteristic (4.9) is linear:

Vout = k(vy —v_) =: —kw. 4.11)
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Figure 4.8: Input/output characteristics of an operational amplifier. The differential input is
given by v. —v_. The output voltage is a linear function of the input in a small range around
0, with saturation at vp,;; and viax. In the linear regime the op amp has high gain.

Since the open loop gain k is very large, the range of input signals where the system
is linear is very small.

A simple amplifier is obtained by arranging feedback around the basic opera-
tional amplifier as shown in Figure 4.9a. To model the feedback amplifier in the
linear range, we assume that the current iy = i_ + i is zero and that the gain of
the amplifier is so large that the voltage v = v_ — v is also zero. It follows from
Ohm’s law that the currents through resistors R; and R; are given by

n__»"n
RI R’
and hence the closed loop gain of the amplifier is
R
Y2 — kg, where kgq=-2. (4.12)
Vi R

A more accurate model is obtained by continuing to neglect the current ip but
assuming that the voltage v is small but not negligible. The current balance is then

Vi—V  V—WV
Ry R,

(4.13)

Assuming that the amplifier operates in the linear range and using equation (4.11),

OoO—MNV MV
R, Ry
v
. Vi | R € R v V2
D) L, R I P
Ry R +Ry
V2
o 0
(a) Amplifier circuit (b) Block diagram

Figure 4.9: Stable amplifier using an op amp. The circuit (a) uses negative feedback around
an operational amplifier and has a corresponding block diagram (b). The resistors R and R;
determine the gain of the amplifier.
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the gain of the closed loop system becomes

v Ry kR, R,
kg=——=—"F——"7""—~ —
vi Ry Ri+Ry+kR, R
If the open loop gain k of the operational amplifier is large, the closed loop gain
k1 is the same as in the simple model given by equation (4.12). Notice that the
closed loop gain depends only on the passive components and that variations in k
have only a marginal effect on the closed loop gain. For example if k = 10° and
R>/R; =100, a variation of k by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nice illustration of how feedback
can be used to make precise systems from uncertain components. In this particular
case, feedback is used to trade high gain and low robustness for low gain and high
robustness. Equation (4.14) was the formula that inspired Black when he invented
the feedback amplifier [Bla34] (see the quote at the beginning of Chapter 13).

It is instructive to develop a block diagram for the feedback amplifier in Fig-
ure 4.9a. To do this we will represent the pure amplifier with input v and output v,
as one block. To complete the block diagram, we must describe how v depends on
v1 and v,. Solving equation (4.13) for v gives

Ry R Ry (RZ )

= vi+ Vo = —Vvi+v
Ri+R ! R+ R 2 Ri+Ry \Ry ! 2

and we obtain the block diagram shown in Figure 4.9b. The diagram clearly shows
that the system has feedback and that the gain from v, to vis R;/(R; + R;), which
can also be read from the circuit diagram in Figure 4.9a. If the loop is stable and
the gain of the amplifier is large, it follows that the error e is small, and we find that
vo = —(Ry/Ry)vy. Notice that the resistor Ry appears in two blocks in the block
diagram. This situation is typical in electrical circuits, and it is one reason why
block diagrams are not always well suited for some types of physical modeling.

The simple model of the amplifier given by equation (4.11) provides qualitative
insight, but it neglects the fact that the amplifier is a dynamical system. A more
realistic model is

(4.14)

v

dvout
dt

The parameter b has dimensions of frequency and is called the gain-bandwidth
product of the amplifier. Whether a more complicated model is used depends on
the questions to be answered and the required size of the uncertainty lemon. The
model (4.15) is still not valid for very high or very low frequencies since drift
causes deviations at low frequencies and there are additional dynamics that appear
at frequencies close to b. The model is also not valid for large signals—an upper
limit is given by the voltage of the power supply, typically in the range of 5-10 V—
neither is it valid for very low signals because of electrical noise. These effects can
be added, if needed, but increase the complexity of the analysis.

The operational amplifier is very versatile, and many different systems can be
built by combining it with resistors and capacitors. In fact, any linear system can
be implemented by combining operational amplifiers with resistors and capacitors.

= —avout — bv. (4.15)
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Figure 4.10: Circuit diagram of a PI controller obtained by feedback around an operational
amplifier. The capacitor C is used to store charge and represents the integral of the input.

Exercise 4.5 shows how a second-order oscillator is implemented, and Figure 4.10
shows the circuit diagram for an analog proportional-integral controller. To de-
velop a simple model for the circuit we assume that the current ig is zero and that
the open loop gain £ is so large that the input voltage v is negligible. The current i
through the capacitor is i = Cdv./dt, where v, is the voltage across the capacitor.
Since the same current goes through the resistor Ry, we get

121 dv,

TR T ar
which implies that

vel(t) = é/i(r)dt _ ch/()tvl(r)dr.

The output voltage is thus given by

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [Lun05,
Phi48], and their usage is described in many textbooks (e.g., [CD75]). Good infor-
mation is also available from suppliers [Jun02, Man(2].

4.4 Computing Systems and Networks

The application of feedback to computing systems follows the same principles as
the control of physical systems, but the types of measurements and control inputs
that can be used are somewhat different. Measurements (sensors) are typically
related to resource utilization in the computing system or network and can in-
clude quantities such as the processor load, memory usage, or network bandwidth.
Control variables (actuators) typically involve setting limits on the resources avail-
able to a process. This might be done by controlling the amount of memory, disk
space, or time that a process can consume, turning on or off processing, delaying
availability of a resource, or rejecting incoming requests to a server process. Pro-
cess modeling for networked computing systems is also challenging, and empirical
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Figure 4.11: Feedback control of a web server. Connection requests arrive on an input queue,
where they are sent to a server process. A finite state machine keeps track of the state of the
individual server processes and responds to requests. A control algorithm can modify the
server’s operation by controlling parameters that affect its behavior, such as the maximum
number of requests that can be serviced at a single time (MaxClients) or the amount of
time that a connection can remain idle before it is dropped (KeepAlive).

models based on measurements are often used when a first-principles model is not
available.

Web Server Control

Web servers respond to requests from the Internet and provide information in the
form of web pages. Modern web servers start multiple processes to respond to
requests, with each process assigned to a single source until no further requests are
received from that source for a predefined period of time. Processes that are idle
become part of a pool that can be used to respond to new requests. To provide a
fast response to web requests, it is important that the web server processes do not
overload the server’s computational capabilities or exhaust its memory. Since other
processes may be running on the server, the amount of available processing power
and memory is uncertain, and feedback can be used to provide good performance
in the presence of this uncertainty.

Figure 4.11 illustrates the use of feedback to modulate the operation of an
Apache web server. The web server operates by placing incoming connection re-
quests on a queue and then starting a subprocess to handle requests for each ac-
cepted connection. This subprocess responds to requests from a given connection
as they come in, alternating between a Busy state and a Wa it state. (Keeping the
subprocess active between requests is known as the persistence of the connection
and provides a substantial reduction in latency to requests for multiple pieces of
information from a single site.) If no requests are received for a sufficiently long
period of time, controlled by the KeepAlive parameter, then the connection is
dropped and the subprocess enters an Id1e state, where it can be assigned another
connection. A maximum of MaxClients simultaneous requests will be served,
with the remainder remaining on the incoming request queue.
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The parameters that control the server represent a trade-off between perfor-
mance (how quickly requests receive a response) and resource usage (the amount
of processing power and memory used by the server). Increasing the MaxClients
parameter allows connection requests to be pulled off of the queue more quickly
but increases the amount of processing power and memory usage that is required.
Increasing the KeepAlive timeout means that individual connections can remain
idle for a longer period of time, which decreases the processing load on the ma-
chine but increases the length of the queue (and hence the amount of time required
for a user to initiate a connection). Successful operation of a busy server requires
a proper choice of these parameters, often based on trial and error.

To model the dynamics of this system in more detail, we create a discrete-time
model with states given by the average processor load xcp, and the percentage
memory usage Xmem. Lhe inputs to the system are taken as the maximum number
of clients uy, and the keep-alive time uy,. If we assume a linear model around the
equilibrium point, the dynamics can be written as

Xepulk+1] ) _ (A An Xepu K] n By B2 Uka k] 4.16)
Xmem [k + 1] Ay Ax Xmem [k] B>y B Umc [k] ’ '
where the coefficients of the A and B matrices can be determined based on empiri-
cal measurements or detailed modeling of the web server’s processing and memory

usage. Using system identification, Diao et al. [DGH+02, HDPT04] identified the
linearized dynamics as

_ (054 —0.11 (-85 44 4
A= [—0.026 0.63 ] B= [—2.5 2.8] 1077,

where the system was linearized about the equilibrium point
Xepu = 0.58, Ugg = 11s, Xmem = 0.55, Ume = 600.

This model shows the basic characteristics that were described above. Looking
first at the B matrix, we see that increasing the KeepAlive timeout (first col-
umn of the B matrix) decreases both the processor usage and the memory usage
since there is more persistence in connections and hence the server spends a longer
time waiting for a connection to close rather than taking on a new active connec-
tion. The MaxClients connection increases both the processing and memory
requirements. Note that the largest effect on the processor load is the KeepAlive
timeout. The A matrix tells us how the processor and memory usage evolve in a re-
gion of the state space near the equilibrium point. The diagonal terms describe how
the individual resources return to equilibrium after a transient increase or decrease.
The off-diagonal terms show that there is coupling between the two resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later examples that it can
be used to modify the parameters controlling the server in real time and provide
robustness with respect to uncertainties in the load on the machine. Similar types
of mechanisms have been used for other types of servers. It is important to re-
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Figure 4.12: Internet congestion control. (a) Source computers send information to routers,
which forward the information to other routers that eventually connect to the receiving com-
puter. When a packet is received, an acknowledgment packet is sent back through the routers
(not shown). The routers buffer information received from the sources and send the data
across the outgoing link. (b) The equilibrium buffer size b, for a set of N identical comput-
ers sending packets through a single router with drop probability p.

member the assumptions on the model and their role in determining when the
model is valid. In particular, since we have chosen to use average quantities over
a given sample time, the model will not provide an accurate representation for
high-frequency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decentralized, efficient, and ex-
pandable communication system. The system consists of a large number of inter-
connected gateways. A message is split into several packets that are transmitted
over different paths in the network, and the packages are rejoined to recover the
message at the receiver. An acknowledgment (“ack”) message is sent back to the
sender when a packet is received. The operation of the system is governed by a
simple but powerful decentralized control structure that has evolved over time.

The system has two control mechanisms called protocols: the Transmission
Control Protocol (TCP) for end-to-end network communication and the Internet
Protocol (IP) for routing packets and for host-to-gateway or gateway-to-gateway
communication. The current protocols evolved after some spectacular congestion
collapses occurred in the mid 1980s, when throughput unexpectedly could drop by
a factor of 1000 [Jac95]. The control mechanism in TCP is based on conserving
the number of packets in the loop from the sender to the receiver and back to the
sender. The sending rate is increased exponentially when there is no congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we model three separate
elements of the system: the rate at which packets are sent by individual sources
(computers), the dynamics of the queues in the links (routers), and the admission
control mechanism for the queues. Figure 4.12a is a block diagram of the system.
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The current source control mechanism on the Internet is a protocol known as
TCP/Reno [LPDO2]. This protocol operates by sending packets to a receiver and
waiting to receive an acknowledgment from the receiver that the packet has ar-
rived. If no acknowledgment is sent within a certain timeout period, the packet is
retransmitted. To avoid waiting for the acknowledgment before sending the next
packet, Reno transmits multiple packets up to a fixed window around the latest
packet that has been acknowledged. If the window size is chosen properly, packets
at the beginning of the window will be acknowledged before the source transmits
packets at the end of the window, allowing the computer to continuously stream
packets at a high rate.

To determine the size of the window to use, TCP/Reno uses a feedback mech-
anism in which (roughly speaking) the window size is increased at a fixed rate as
long as packets are acknowledged and the window size is cut in half when packets
are lost. This mechanism allows a dynamic adjustment of the window size in which
each computer acts in a greedy fashion as long as packets are being delivered but
backs off quickly when congestion occurs.

A model for the behavior of the source can be developed by describing the
dynamics of the window size. Suppose we have N computers and let w; be the
current window size (measured in number of packets) for the ith computer. Let
g; represent the end-to-end probability that a packet will be dropped someplace
between the source and the receiver. We can model the dynamics of the window
size by the differential equation

dw; (1 Fl'(l‘ - Ti)

dr ( qi) Wi
where 7; is the end-to-end transmission time for a packet to reach is destination and
the acknowledgment to be sent back and r; is the resulting rate at which packets
are cleared from the list of packets that have been received. The first term in the
dynamics represents the increase in window size when a packet is received, and
the second term represents the decrease in window size when a packet is lost.
Notice that r; is evaluated at time ¢ — 7;, representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the router queue and the
admission control mechanism for the queue. Assume that we have L links in the
network and use / to index the individual links. We model the queue in terms of
the current number of packets in the router’s buffer b; and assume that the router
can contain a maximum of b; .« packets and transmits packets at a rate ¢;, equal
to the capacity of the link. The buffer dynamics can then be written as
%:sl—cl, ] = Z ri(t—’flfi), (4.18)

{i: IeL;}

+qi(—%r,-(t—fi))a = (4.17)

i

where L; is the set of links that are being used by source i, Tlfi is the time it takes a
packet from source i to reach link /, and s; is the total rate at which packets arrive
at link /.
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The admission control mechanism determines whether a given packet is ac-
cepted by a router. Since our model is based on the average quantities in the net-
work and not the individual packets, one simple model is to assume that the proba-
bility that a packet is dropped depends on how full the buffer is: p; = m; (b, bmax)-
For simplicity, we will assume for now that p; = p;b; (see Exercise 4.6 for a more
detailed model). The probability that a packet is dropped at a given link can be
used to determine the end-to-end probability that a packet is lost in transmission:

gi=1-[J(0=p)= Y pi(t—1)), (4.19)

leL; leL;

where rlbl. is the backward delay from link / to source i and the approximation is
valid as long as the individual drop probabilities are small. We use the backward
delay since this represents the time required for the acknowledgment packet to be
received by the source.

Together, equations (4.17), (4.18), and (4.19) represent a model of congestion
control dynamics. We can obtain substantial insight by considering a special case
in which we have N identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be ignored, in which case
the dynamics can be reduced to the form

dwi 1 pc(2+w?) db Wi b
- - _ = il — =Y ——¢, T=—, (4.20)
dt T 2 1; T c
where w; € R, i = 1,...,N, are the window sizes for the sources of data, b € R

is the current buffer size of the router, p controls the rate at which packets are
dropped, and c is the capacity of the link connecting the router to the computers.
The variable 7 represents the amount of time required for a packet to be processed
by a router, based on the size of the buffer and the capacity of the link. Substituting
7 into the equations, we write the state space dynamics as

dw; ¢ w? db Y ew;
Y @ _y i 421
dt b pc<+2)’ i =b © 2D

More sophisticated models can be found in [HMTGO00, LPD02]. _
The nominal operating point for the system can be found by setting w; = b =0:

2
C w; cwi
OZb—pC(l-‘r2>, 0 E 7—6'

i=1

Exploiting the fact that all of the source dynamics are identical, it follows that all
of the w; should be the same, and it can be shown that there is a unique equilibrium
satisfying the equations
be T 1 3
Wie = 30 = 37 W(Pbe) +(pbe) —1=0. (4.22)
The solution for the second equation is a bit messy but can easily be determined
numerically. A plot of its solution as a function of 1/(2p>N?) is shown in Fig-
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Figure 4.13: Internet congestion control for N identical sources across a single link. As
shown on the left, multiple sources attempt to communicate through a router across a single
link. An “ack” packet sent by the receiver acknowledges that the message was received;
otherwise the message packet is resent and the sending rate is slowed down at the source.
The simulation on the right is for 60 sources starting random rates, with 20 sources dropping
out at t = 500 ms. The buffer size is shown at the top, and the individual source rates for 6
of the sources are shown at the bottom.

ure 4.12b. We also note that at equilibrium we have the following additional equal-
ities:
b N
== g =Npe=Npbe, re=-t. (4.23)
c c Te

Figure 4.13 shows a simulation of 60 sources communicating across a single
link, with 20 sources dropping out at + = 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Note that the buffer size and
window sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [Tan96]. A good presentation of the ideas behind the control princi-
ples for the Internet is given by one of its designers, Van Jacobson, in [Jac95]. F.
Kelly [Kel85] presents an early effort on the analysis of the system. The books by
Hellerstein et al. [HDPTO04] and Janert [Jan14] give many examples of the use of
feedback in computer systems.

4.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Heinrich Rohrer
for their design of the scanning tunneling microscope. The idea of the instrument
is to bring an atomically sharp tip so close to a conducting surface that tunneling
occurs. An image is obtained by traversing the tip across the sample and measuring
the tunneling current as a function of tip position. This invention has stimulated
the development of a family of instruments that permit visualization of surface
structure at the nanometer scale, including the atomic force microscope (AFM),
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Figure 4.14: Atomic force microscope. (a) A schematic diagram of an atomic force micro-
scope, consisting of a piezo drive that scans the sample under the AFM tip. A laser reflects
off of the cantilever and is used to measure the detection of the tip through a feedback con-
troller. (b) An AFM image of strands of DNA. (Image courtesy Veeco Instruments.)

where a sample is probed by a tip on a cantilever. An AFM can operate in two
modes. In fapping mode the cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. In contact mode the cantilever is in contact with the
sample, and its bending is controlled by feedback. In both cases control is actuated
by a piezo element that controls the vertical position of the cantilever base (or the
sample). The control system has a direct influence on picture quality and scanning
rate.

A schematic picture of an atomic force microscope is shown in Figure 4.14a. A
microcantilever with a tip having a radius of the order of 10 nm is placed close to
the sample. The tip can be moved vertically and horizontally using a piezoelectric
scanner. It is clamped to the sample surface by attractive van der Waals forces and
repulsive Pauli forces. The cantilever tilt depends on the topography of the surface
and the position of the cantilever base, which is controlled by the piezo element.
The tilt is measured by sensing the deflection of the laser beam using a photodiode.
The signal from the photodiode is amplified and sent to a controller that drives
the amplifier for the vertical position of the cantilever. By controlling the piezo
element so that the deflection of the cantilever is constant, the signal driving the
vertical deflection of the piezo element is a measure of the atomic forces between
the cantilever tip and the atoms of the sample. An image of the surface is obtained
by scanning the cantilever along the sample. The resolution makes it possible to
see the structure of the sample on the atomic scale, as illustrated in Figure 4.14b,
which shows an AFM image of DNA.

The horizontal motion of an AFM is typically modeled as a spring—mass sys-
tem with low damping. The vertical motion is more complicated. To model the
system, we start with the block diagram shown in Figure 4.15. Signals that are
easily accessible are the input voltage u to the power amplifier that drives the piezo
element, the voltage v applied to the piezo element, and the output voltage y of the
signal amplifier for the photodiode. The controller is a PI controller implemented
by a computer, which is connected to the system by analog-to-digital (A/D) and
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Figure 4.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempts to keep the can-
tilever deflection equal to its reference value. Cantilever deflection is measured, amplified,
and converted to a digital signal, then compared with its reference value. A correcting sig-
nal is generated by the computer, converted to analog form, amplified, and sent to the piezo
element.

digital-to-analog (D/A) converters. The deflection of the cantilever ¢ is also shown
in the figure. The desired reference value for the deflection is an input to the com-
puter.

There are several different configurations that have different dynamics. Here we
will discuss a high-performance system from [SAD+07] where the cantilever base
is positioned vertically using a piezo stack. We begin the modeling with a simple
experiment on the system. Figure 4.16a shows a step response of a scanner from
the power amplifier input voltage u to the output voltage y of the signal amplifier
for the photodiode. This experiment captures the dynamics of the chain of blocks
from u to y in the block diagram in Figure 4.15. Figure 4.16a shows that the system
responds quickly but that there is a poorly damped oscillatory mode with a period
of about 35 us. A primary task of the modeling is to understand the origin of the
oscillatory behavior. To do so we will explore the system in more detail.

The natural frequency of the clamped cantilever is typically several hundred
kilohertz, which is much higher than the observed oscillation of about 30 kHz.
As a first approximation we will model it as a static system. Since the deflections
are small, we can assume that the bending ¢ of the cantilever is proportional to the
difference in height between the cantilever tip at the probe and the piezo scanner. A
more accurate model can be obtained by modeling the cantilever as a spring—mass
system of the type discussed in Chapter 3.

Figure 4.16a also shows that the response of the power amplifier is fast. The
photodiode and the signal amplifier also have fast responses and can thus be mod-
eled as static systems. The remaining block is a piezo system with suspension.
A schematic mechanical representation of the vertical motion of the scanner is
shown in Figure 4.16b. We will model the system as two masses separated by an
ideal piezo element. The mass m is half of the piezo system, and the mass m; is
the other half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crystal generates a force
F between the masses and that there is a damping c in the spring. Let the positions
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Figure 4.16: Modeling of an atomic force microscope. (a) A measured step response. The
top curve shows the voltage u applied to the drive amplifier (50 mV/div), the middle curve
is the output V;, of the power amplifier (500 mV/div) and the bottom curve is the output y
of the signal amplifier (500 mV/div). The time scale is 25 ps/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical positioner and the piezo
crystal.

of the center of the masses be z; and z;. A momentum balance gives the following
model for the system:
2 2
ml%:E mz%z—cz%—kzzz—l*"-
Let the elongation of the piezo element [ = z; — z» be the control variable and the
height z; of the cantilever base be the output. Eliminating the variable F in the
equations above and substituting z; — / for z, gives the model
2 2

%—FCQ% +krz1 ZMQ% —I-ng—i-kzl. 4.24)

Summarizing, we find that a simple model of the system is obtained by mod-
eling the piezo by equation (4.24) and all the other blocks by static models. Intro-
ducing the linear equations / = k3u and y = k4z;, we now have a complete model
relating the output y to the control signal u. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the power amplifier. As in the
previous examples, the concept of the uncertainty lemon in Figure 3.5b provides
a framework for describing the uncertainty: the model will be accurate up to the
frequencies of the fastest modeled modes and over a range of motion in which
linearized stiffness models can be used.

The experimental results in Figure 4.16a can be explained qualitatively as fol-
lows. When a voltage is applied to the piezo, it expands by [y, the mass m; moves
up, and the mass my moves down instantaneously. The system settles after a poorly
damped oscillation.

It is highly desirable to design a control system for the vertical motion so
that it responds quickly with little oscillation. The instrument designer has sev-

(m) +mp)
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eral choices: to accept the oscillation and have a slow response time, to design a
control system that can damp the oscillations, or to redesign the mechanics to give
resonances of higher frequency. The last two alternatives give a faster response and
faster imaging.

Since the dynamic behavior of the system changes with the properties of the
sample, it is necessary to tune the feedback loop. In simple systems this is currently
done manually by adjusting parameters of a PI controller. There are interesting
possibilities for making AFM systems easier to use by introducing automatic tun-
ing and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamental to solid state physics, see
Kittel [Kit95]. The model discussed in this section is based on Schitter [Sch01].

4.6 Drug Administration

The phrase “take two pills three times a day” is a recommendation with which we
are all familiar. Behind this recommendation is a solution of an open loop control
problem. The key issue is to make sure that the concentration of a medicine in
a part of the body is sufficiently high to be effective but not so high that it will
cause undesirable side effects. The control action is quantized, take two pills, and
sampled, every 8 hours. The prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and weight of the patient.

Drug administration is a control problem. To solve it we must understand how
a drug spreads in the body after it is administered. This topic, called pharmacoki-
netics, is now a discipline of its own, and the models used are called compart-
ment models. They go back to the 1920s when Widmark modeled the propagation
of alcohol in the body [WT24]. Compartment models are now important for the
screening of all drugs used by humans. The schematic diagram in Figure 4.17 il-
lustrates the idea of a compartment model. The body is viewed as a number of
compartments like blood plasma, kidney, liver, and tissues that are separated by
membranes. It is assumed that there is perfect mixing so that the drug concentra-
tion is constant in each compartment. The complex transport processes are approx-
imated by assuming that the flow rates between the compartments are proportional
to the concentration differences in the compartments.

To describe the effect of a drug it is necessary to know both its concentration
and how it influences the body. The relation between concentration ¢ and its effect
e is typically nonlinear. A simple model is

=_° 4.25
€= CO+Cemax- (4.25)
The effect is linear for low concentrations, and it saturates at high concentrations.
The relation can also be dynamic, and it is then called pharmacodynamics.



4-22 CHAPTER 4. EXAMPLES

Blood circulation

Tissue boundaries

ke . Chemical
5 inactivation
“fixation”

Dose Ny etc.

Subcutis
etc.

Figure 4.17: Abstraction used to compartmentalize the body for the purpose of describing
drug distribution (based on Teorell [Teo37]). The body is abstracted by a number of com-
partments with perfect mixing, and the complex transport processes are approximated by
assuming that the flow is proportional to the concentration differences in the compartments.
The constants k; parameterize the rates of flow between different compartments.

Compartment Models

The simplest dynamical model for drug administration is obtained by assuming
that the drug is evenly distributed in a single compartment after it has been ad-
ministered and that the drug is removed at a rate proportional to the concentration.
The compartments behave like stirred tanks with perfect mixing. Let ¢ be the con-
centration, V the volume, and ¢ the outflow rate. Converting the description of the
system into differential equations gives the model

e

dt

This equation has the solution ¢(¢) = cope~%/V = cpe*, which shows that the con-
centration decays exponentially with the time constant 7 =V /g after an injection.
The input is introduced implicitly as an initial condition in the model (4.26). More
generally, the way the input enters the model depends on how the drug is adminis-
tered. For example, the input can be represented as a mass flow into the compart-
ment where the drug is injected. A pill that is dissolved can also be interpreted as
an input in terms of a mass flow rate.

The model (4.26) is called a a one-compartment model or a single-pool model.
The parameter ¢/V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasma. By measuring the con-
centration at a few times, the initial concentration can be obtained by extrapolation.
If the total amount of injected substance is known, the volume V can then be de-
termined as V = m/cy.

The simple one-compartment model captures the gross behavior of drug distri-
bution, but it is based on many simplifications. Improved models can be obtained
by considering the body as composed of several compartments. Examples of such
systems are shown in Figure 4.18, where the compartments are represented as cir-
cles and the flows by arrows.

—qc, c>0. (4.26)
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Figure 4.18: Schematic diagrams of compartment models. (a) A simple two-compartment
model. Each compartment is labeled by its volume, and arrows indicate the flow of chemical
into, out of, and between compartments. (b) A system with six compartments used to study
the metabolism of thyroid hormone [God83]. The notation k;; denotes the transport from
compartment j to compartment i.

Modeling will be illustrated using the two-compartment model in Figure 4.18a.
We assume that there is perfect mixing in each compartment and that the transport
between the compartments is driven by concentration differences. We further as-
sume that a drug with concentration ¢y is injected in compartment 1 at a volume
flow rate of u and that the concentration in compartment 2 is the output. Let ¢ and
¢ be the concentrations of the drug in the compartments, and let V; and V, be the
volumes of the compartments. The mass balances for the compartments are

dcy
(o =q(ca—c1) —qoci +cou, ¢ >0,
dcy 4.27
27—61(61—62), 22> 0, 4.27)
t
y=cqCy,

where g represents flow rate between the compartments and gg represents the flow
rate out of compartment 1 that is not going to compartment 2. Introducing the
variables ko = qo/V1, ki1 = q/V1, ko = q/Va, and by = ¢¢/V) and using matrix
notation, the model can be written as

%: [ k(;cz ki _kll(z] c+ [b(;)] u, y= (O 1) c. (4.28)
Comparing this model with its graphical representation in Figure 4.18a, we find
that the mathematical representation (4.28) can be written by inspection.

It should also be emphasized that simple compartment models such as the one
in equation (4.28) have a limited range of validity. Low-frequency limits exist be-
cause the human body changes with time, and since the compartment model uses

average concentrations, they will not accurately represent rapid changes. There are
also nonlinear effects that influence transportation between the compartments.
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Figure 4.19: Insulin—glucose dynamics. (a) Sketch of body parts involved in the control of
glucose. (b) Schematic diagram of the system. (c) Responses of insulin and glucose when
glucose in injected intravenously. From Pacini and Bergman [PB86].

Compartment models are widely used in medicine, engineering, and environ-
mental science. An interesting property of these systems is that variables like con-
centration and mass are always positive. An essential difficulty in compartment
modeling is deciding how to divide a complex system into compartments. Com-
partment models can also be nonlinear, as illustrated in the next section.

Insulin—Glucose Dynamics

It is essential that the blood glucose concentration in the body is kept within a
narrow range (0.7-1.1 g/L). Glucose concentration is influenced by many factors
like food intake, digestion, and exercise. A schematic picture of the relevant parts
of the body is shown in Figures 4.19a and b.

There is a sophisticated mechanism that regulates glucose concentration. Glu-
cose concentration is maintained by the pancreas, which secretes the hormones
insulin and glucagon. Glucagon is released into the bloodstream when the glucose
level is low. It acts on cells in the liver that release glucose. Insulin is secreted
when the glucose level is high, and the glucose level is lowered by causing the
liver and other cells to take up more glucose. In diseases like juvenile diabetes the
pancreas is unable to produce insulin and the patient must inject insulin into the
body to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are complicated; dynamics
with time scales that range from seconds to hours have been observed. Models of
different complexity have been developed. The models are typically tested with
data from experiments where glucose is injected intravenously and insulin and
glucose concentrations are measured at regular time intervals.

A relatively simple model called the minimal model was developed by Bergman
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and coworkers [Ber89]. This models uses two compartments, one representing the
concentration of glucose in the bloodstream and the other representing the concen-
tration of insulin in the interstitial fluid. Insulin in the bloodstream is considered
an input. The reaction of glucose to insulin can be modeled by the equations

dx,

% = —(p1+x2)x1 + P1ge, —==—paxa+p3(u—ic), (4.29)
t dt

where g. and i, represent the equilibrium values of glucose and insulin, x| is the
concentration of glucose, and x; is proportional to the concentration of interstitial
insulin. Notice the presence of the term xpx| in the first equation. Also notice that
the model does not capture the complete feedback loop because it does not describe
how the pancreas reacts to the glucose. Figure 4.19¢ shows a fit of the model to a
test on a normal person where glucose was injected intravenously at time t = 0. The
glucose concentration rises rapidly, and the pancreas responds with a rapid spike-
like injection of insulin. The glucose and insulin levels then gradually approach
the equilibrium values.

Models of the type in equation (4.29) and more complicated models having
many compartments have been developed and fitted to experimental data. A diffi-
culty in modeling is that there are significant variations in model parameters over
time and for different patients. For example, the parameter p; in equation (4.29)
has been reported to vary with an order of magnitude for healthy individuals. The
models have been used for diagnosis and to develop schemes for the treatment
of persons with diseases. Attempts to develop a fully automatic artificial pancreas
have been hampered by the lack of reliable sensors.

The papers by Widmark and Tandberg [WT24] and Teorell [Teo37] are classics
in pharmacokinetics, which is now an established discipline with many textbooks
[Dos68, Jac72, GP82]. Because of its medical importance, pharmacokinetics is
now an essential component of drug development. The book by Riggs [Rig63] is
a good source for the modeling of physiological systems, and a more mathemati-
cal treatment is given in [KS01]. Compartment models are discussed in [God83].
The problem of determining rate coefficients from experimental data is discussed
in [BA70] and [God83]. There are many publications on the insulin—glucose model.
The minimal model is discussed in [CT84, Ber89] and more recent references
are [MLKO06, FCF+06].

4.7 Population Dynamics

Population growth is a complex dynamic process that involves the interaction of
one or more species with their environment and the larger ecosystem. The dynam-
ics of population groups are interesting and important in many different areas of
social and environmental policy. There are examples where new species have been
introduced into new habitats, sometimes with disastrous results. There have also
been attempts to control population growth both through incentives and through
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legislation. In this section we describe some of the models that can be used to un-
derstand how populations evolve with time and as a function of their environments.

Logistic Growth Model

Let x be the population of a species at time ¢. A simple model is to assume that the
birth rates and mortality rates are proportional to the total population. This gives
the linear model

% =bx—dx=(b—d)x=rx, x>0, (4.30)

where birth rate » and mortality rate d are parameters. The model gives an ex-
ponential increase if b > d or an exponential decrease if b < d. A more realistic
model is to assume that the birth rate decreases when the population is large. The
following modification of the model (4.30) has this property:

dx X
— 1=-2 > 4.31
% rx( k), x>0, 4.31)

where k is the carrying capacity of the environment. The model (4.31) is called
the logistic growth model.

Predator—Prey Models

A more sophisticated model of population dynamics includes the effects of com-
peting populations, where one species may feed on another. This situation, referred
to as the predator—prey problem, was introduced in Example 3.4, where we devel-
oped a discrete-time model that captured some of the features of historical records
of lynx and hare populations.

In this section, we replace the difference equation model used there with a more
sophisticated differential equation model. Let H(¢) represent the number of hares
(prey) and let L(¢) represent the number of lynxes (predator). The dynamics of the
system are modeled as

dH H aHL

cT:rH 1_? ¢+ H’ 20,

dtL HL o (4.32)
a

b —dL L>0.

dt c+H ’ -

In the first equation, r represents the growth rate of the hares, k represents the
maximum population of the hares (in the absence of lynxes), a represents the in-
teraction term that describes how the hares are diminished as a function of the lynx
population, and ¢ controls the prey consumption rate for low hare population. In
the second equation, b represents the growth coefficient of the lynxes and d repre-
sents the mortality rate of the lynxes. Note that the hare dynamics include a term
that resembles the logistic growth model (4.31).

Of particular interest are the values at which the population values remain con-
stant, called equilibrium points. The equilibrium points for this system can be de-
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Figure 4.20: Simulation of the predator—prey system. The figure on the left shows a simu-
lation of the two populations as a function of time. The figure on the right shows the pop-
ulations plotted against each other, starting from different values of the population. The
oscillation seen in both figures is an example of a limit cycle. The parameter values used for
the simulations are a = 3.2, b = 0.6, ¢ = 50,d = 0.56, k = 125, and r = 1.6.

termined by setting the right-hand side of the above equations to zero. Letting H.
and L. represent the equilibrium state, from the second equation we have

cd
L.=0 H; = . 4.33
(5] or e ab —d ( )
Substituting this into the first equation, we have that for L, = 0 either H. = 0 or
H. = k. For L, # 0, we obtain

_ rHe(c+H.) ( He> _ ber(abk — cd — dk)

L: 1——
¢ aH, k (ab—d)%*k

Thus, we have three possible equilibrium points xe = (Le, He):

0 k H?
Xe = 0 ) Xe = 0 9 Xe = L* )
(]

where HY and L are given in equations (4.33) and (4.34). Note that the equilib-
rium populations may be negative for some parameter values, corresponding to a
nonachievable equilibrium point.

Figure 4.20 shows a simulation of the dynamics starting from a set of popula-
tion values near the nonzero equilibrium values. We see that for this choice of pa-
rameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 3.7.

4.34)

Volume I of the two-volume set by J. D. Murray [Mur(04] give a broad coverage
of population dynamics.

Exercises

4.1 (Cruise control) Consider the cruise control example described in Section 4.1.
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Build a simulation that re-creates the response to a hill shown in Figure 4.3b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of the hill.

4.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
tion (4.5) can be approximated in state space form as

o (3)- Emg%/f o) () + (i)
y=[1 0]x,

where the input u is the steering angle 6 and the output y is the tilt angle ¢. What
do the states x; and x, represent?

4.3 (Bicycle steering) Combine the bicycle model given by equation (4.5) and the
model for steering kinematics in Example 3.11 to obtain a model that describes the
path of the center of mass of the bicycle.

4.4 (Operational amplifier circuit) Consider the op amp circuit shown below.

O—"MWA—T—WA A
R Ry Ry

Ry
V1 C == V%TO
o
G —|— V3
o, O

Show that the dynamics can be written in state space form as

1 1 1

dx | RCI R.C 0 R\C

7 Ry | | x+ . u, y (O 1] X,
R, Ry, R,

where u = v| and y = v3. (Hint: Use v, and v3 as your state variables.)

4.5 (Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

G Ry C
] wv I

Ry = R3 > Ry >
AV MWV
+ V2 + v3 + V1
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Show that the dynamics can be written in state space form as

R4
0
@ . RiR3Cy X
— . 7
dt 0

_R2C2

where the state variables represent the voltages across the capacitors x| = v; and
X2 = V).

4.6 (Congestion control using RED [LPW+02]) A number of improvements can
be made to the model for Internet congestion control presented in Section 4.4.
To ensure that the router’s buffer size remains positive, we can modify the buffer
dynamics to satisfy

dbl _)si—a bl>07
dr sat(.e)(s1—c1) by =0.

In addition, we can model the drop probability of a packet based on how close we
are to the buffer limits, a mechanism known as random early detection (RED):

0 a (l) < b}ower’
pr=mla) = piri(t) — pib*™" BlOver < gy (1) < BIPP
Muri(e) — (1= 2B3PPSF)  pUPPET < g (1) < DpUPPer
! a(t) > 2B
dal
fa _ _ . b
dt ici(ar = br),

where oy, b, VT, and p;""*" are parameters for the RED protocol. Using the
model above, write a simulation for the system and find a set of parameter values
for which there is a stable equilibrium point and a set for which the system exhibits
oscillatory solutions. The following sets of parameters should be explored:

N =20,30,...,60, bV =40 pkts, pr=0.1,
c=8.,9,...,15 pkts/ms, b;PP" = 540 pks, o =104,
T =155,60,...,100 ms.

4.7 (Atomic force microscope with piezo tube) A schematic diagram of an AFM
where the vertical scanner is a piezo tube with preloading is shown below.
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Show that the dynamics can be written as

d*z dz d’l di
(m1 —i—mz)ﬁ + (Cl +C2)Z + (kl +k2)21 = I’)’QW +C2$ + kpl.

Are there parameter values that make the dynamics particularly simple?

4.8 (Drug administration) The metabolism of alcohol in the body can be modeled
by the nonlinear compartment model
dCb dCl

Cy
Vbﬁ:CI(Cl—Cb)“‘qwa VIE:CI(Cb—Cl)_Qmaxm

where V, =48 L and V; = 0.6 L are the apparent volumes of distribution of body
water and liver water, ¢;, and ¢; are the concentrations of alcohol in the compart-
ments, g;, and g,; are the injection rates for intravenous and gastrointestinal in-
take, ¢ = 1.5 L/min is the total hepatic blood flow, gmax = 2.75 mmol/min and
co = 0.1 mmol/L. Simulate the system and compute the concentration in the blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

+qgi>

4.9 (Population dynamics) Consider the model for logistic growth given by equa-
tion (4.31). Show that the maximum growth rate occurs when the size of the pop-
ulation is half of the steady-state value.

4.10 (Fisheries management) Some features of the dynamics of a commercial fish-
ery can be described by the following simple model:

O )~ hlow), v =bh(u) e

where x is the total biomass, f(x) = rx(1 — x/k) is the growth rate, and r and k
are constant parameters. The harvesting rate is &(x,u) = axu, where a is a constant
parameter and u is the fishing effort. The output y is the rate of revenue, where b,
and c are constants representing the price of fish and the cost of fishing. Find a
sustainable equilibrium where the revenue is as large as possible. Determine the
equilibrium value of the biomass and the fishing effort at the equilbrium. With the
parameters a = 0.1, b =1, c =1, k = 100, and r = 0.2 the sustainable equilibrium
corresponds to xe = 55 and u, = 0.9. For an individual fisherman it is profitable to
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fish as long as the rate of revenue y = (abx — ¢)u is positive. Explore by simulation
what happens if the fishing intensity is much higher than the sustainable fishing
rate u., say u = 3. Use the results to discuss the role of having a fishing quota.






Chapter Five

Dynamic Behavior

It Don’t Mean a Thing If It Ain’t Got That Swing.
Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behavior of dynamical sys-
tems focused on systems modeled by nonlinear differential equations. This allows
us to consider equilibrium points, stability, limit cycles, and other key concepts in
understanding dynamic behavior. We also introduce some methods for analyzing
the global behavior of solutions.

5.1 Solving Differential Equations

In the previous two chapters we saw that one of the methods of modeling dynam-
ical systems is through the use of ordinary differential equations (ODEs). A state
space, input/output system has the form

@
dt

where x = (x1,...,x,) € R" is the state, u € R” is the input, and y € R? is the output.
The smooth maps f: R" x R? — R" and & : R" x R? — RY represent the dynamics
and measurements for the system. In general, they can be nonlinear functions of
their arguments. Systems with many inputs and many outputs are called multi-
input, multi-output systems (MIMO) systems. We will usually focus on single-
input, single-output (SISO) systems, for which p =g = 1.

We begin by investigating systems in which the input has been set to a function
of the state, u = o¢(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equations in this case become

dx
i flx,a(x)) =: F(x). (5.2)

To understand the dynamic behavior of this system, we need to analyze the
features of the solutions of equation (5.2). While in some simple situations we can
write down the solutions in analytical form, often we must rely on computational
approaches. We begin by describing the class of solutions for this problem.

We say that x(z) is a solution of the differential equation (5.2) on the time
interval tp € Rto t; € R if

dx(t)
dt

= f(x,u), y=h(x,u), (5.1)

=F(x(t)) foralltg <t <t.
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A given differential equation may have many solutions. We will most often be
interested in the initial value problem, where x(t) is prescribed at a given time
to € R and we wish to find a solution valid for all future time t > t.
We say that x(¢) is a solution of the differential equation (5.2) with initial value
xo € R"atry € Rif
dx(t)

x(to) =xp and o =F(x(t)) foralltg <t <ty.

For most differential equations we will encounter, there is a unigue solution that
is defined for 79 < ¢ < tr. The solution may be defined for all time 7 > 7y, in which
case we take #f = co. Because we will primarily be interested in solutions of the
initial value problem for differential equations, we will usually refer to this simply
as the solution of a differential equation.

We will typically assume that 7 is equal to 0. In the case when F is independent
of time (as in equation (5.2)), we can do so without loss of generality by choosing
a new independent (time) variable, T = ¢t —ty (Exercise 5.1).

Example 5.1 Damped oscillator
Consider a damped linear oscillator with dynamics of the form

G+2L g+ 0dq =0,

where g is the displacement of the oscillator from its rest position. These dynamics
are equivalent to those of a spring—mass system, as shown in Exercise 3.6. We
assume that { < 1, corresponding to a lightly damped system (the reason for this
particular choice will become clear later). We can rewrite this in state space form
by setting x; = ¢ and x, = ¢/ @y, giving

dx, )

= . -2 .
praiml ” wox; — 28 woxz

In vector form, the right-hand side can be written as
Wpx2
F(x) = .
(x) [—woxl —2<:ﬂ)ox2]

The solution to the initial value problem can be written in a number of different
ways and will be explored in more detail in Chapter 6. Here we simply assert that
the solution can be written as

1
x1(t) = e~ S (xlocos gt + g(a)ogxlo + x20) sin a)dt> ,
d
1
x(t) = e~ S (xzo cos gt — g(nglo + o &x0) sin a)dt> ,
d

where xo = (x10,X20) is the initial condition and @4 = @y+/1 — §2. This solution
can be verified by substituting it into the differential equation. We see that the so-
lution is explicitly dependent on the initial condition, and it can be shown that this
solution is unique. A plot of the initial condition response is shown in Figure 5.1.
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Figure 5.1: Response of the damped oscillator to the initial condition xy = (1,0). The solu-
tion is unique for the given initial conditions and consists of an oscillatory solution for each
state, with an exponentially decaying magnitude.

We note that this form of the solution holds only for 0 < { < 1, corresponding to
an “underdamped” oscillator. \%

Without imposing some mathematical conditions on the function F, the differ-
ential equation (5.2) may not have a solution for all #, and there is no guarantee
that the solution is unique. We illustrate these possibilities with two examples.

Example 5.2 Finite escape time

Let x € R and consider the differential equation
dx 2
E =X

with the initial condition x(0) = 1. By differentiation we can verify that the func-

tion

(5.3)

satisfies the differential equation and that it also satisfies the initial condition. A
graph of the solution is given in Figure 5.2a;s notice that the solution goes to
infinity as ¢ goes to 1. We say that this system has finite escape time. Thus the
solution exists only in the time interval 0 < < 1. \%

Example 5.3 Nonunique solution
Let x € R and consider the differential equation

dx
ooy (5.4)

with initial condition x(0) = 0. We can show that the function

0 if0<tr<a,
(t—a)®> ift>a

x(t) =

satisfies the differential equation for all values of the parameter a > 0. To see this,
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Figure 5.2: Existence and uniqueness of solutions. Equation (5.3) has a solution only for
time ¢ < 1, at which point the solution goes to infinity, as shown in (a). Equation (5.4) is an
example of a system with many solutions, as shown in (b). For each value of a, we get a
different solution starting from the same initial condition.

we differentiate x() to obtain

dx 0 if0<r<a,

dr  |2(t—a) ift>a,

and hence x = 2./x for all + > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 5.2b. Notice that in this case there are many solutions
to the differential equation. \%

These simple examples show that there may be difficulties even with simple
differential equations. Existence and uniqueness can be guaranteed by requiring
that the function F have the property that for some fixed ¢ € R,

[F(x) =F)Il <cllx=yl|  forallx,y,

which is called Lipschitz continuity. A sufficient condition for a function to be
Lipschitz is that the Jacobian dF /dx is uniformly bounded for all x. The difficulty
in Example 5.2 is that the derivative dF /dx becomes large for large x, and the
difficulty in Example 5.3 is that the derivative dF /dx is infinite at the origin.

5.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is important in understanding some
of the key concepts of stability in nonlinear dynamics. We will focus on an im-
portant class of systems known as planar dynamical systems. These systems have
two state variables x € R?, allowing their solutions to be plotted in the (x,x;)
plane. The basic concepts that we describe hold more generally and can be used to
understand dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems with state
x € R? is to plot the phase portrait of the system, briefly introduced in Chapter 3.
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Figure 5.3: Phase portraits. (a) This plot shows the vector field for a planar dynamical sys-
tem. Each arrow shows the velocity at that point in the state space. (b) This plot includes the
solutions (sometimes called streamlines) from different initial conditions, with the vector
field superimposed.

We start by introducing the concept of a vector field. For a system of ordinary

differential equations
dx Fx)
— X
dt ’

the right-hand side of the differential equation defines at every x € R" a velocity
F(x) € R"™. This velocity tells us how x changes and can be represented as a vector
F(x) e R".

For planar dynamical systems, each state corresponds to a point in the plane and
F(x) is a vector representing the velocity of that state. We can plot these vectors
on a grid of points in the plane and obtain a visual image of the dynamics of the
system, as shown in Figure 5.3a. The points where the velocities are zero are of
particular interest since they define stationary points of the flow: if we start at such
a state, we stay at that state.

A phase portrait is constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a set of initial conditions, we
plot the solution of the differential equation in the plane R?. This corresponds to
following the arrows at each point in the phase plane and drawing the resulting tra-
jectory. By plotting the solutions for several different initial conditions, we obtain
a phase portrait, as show in Figure 5.3b. Phase portraits are also sometimes called
phase plane diagrams.

Phase portraits give insight into the dynamics of the system by showing the so-
lutions plotted in the (two-dimensional) state space of the system. For example, we
can see whether all trajectories tend to a single point as time increases or whether
there are more complicated behaviors. In the example in Figure 5.3, corresponding
to a damped oscillator, the solutions approach the origin for all initial conditions.
This is consistent with our simulation in Figure 5.1, but it allows us to infer the
behavior for all initial conditions rather than a single initial condition. However,
the phase portrait does not readily tell us the rate of change of the states (although
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Figure 5.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a model
for a class of balance systems in which we wish to keep a system upright, such as a rocket (a).
Using a simplified model of an inverted pendulum (b), we can develop a phase portrait that
shows the dynamics of the system (c). The system has multiple equilibrium points, marked
by the solid dots along the x, = 0 line.

this can be inferred from the lengths of the arrows in the vector field plot).

Equilibrium Points and Limit Cycles

An equilibrium point of a dynamical system represents a stationary condition for
the dynamics. We say that a state x. is an equilibrium point for a dynamical system

dx

5~

if F(xe) = 0. If a dynamical system has an initial condition x(0) = x, then it will

stay at the equilibrium point: x(7) = x. for all + > 0, where we have taken 7y = 0.
Equilibrium points are one of the most important features of a dynamical sys-

tem since they define the states corresponding to constant operating conditions. A

dynamical system can have zero, one, or more equilibrium points.

Example 5.4 Inverted pendulum
Consider the inverted pendulum in Figure 5.4, which is a part of the balance system
we considered in Chapter 3. The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at the base of the rocket, we
seek to keep the rocket stabilized in the upright position. The state variables are
the angle 6 = x; and the angular velocity d6/dt = x, the control variable is the
acceleration u of the pivot, and the output is the angle 6.

For simplicity we assume that mgl/J; = 1,1/J; = 1 and set ¢ = y/J;, so that the
dynamics (equation (3.10)) become

dx [ 2 ] . (5.5)

dr — |sinx; — cxpr +ucosx;

This is a nonlinear time-invariant system of second order. This same set of equa-
tions can also be obtained by appropriate normalization of the system dynamics as
illustrated in Example 3.10.
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Figure 5.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different initial conditions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) shows a single solution
plotted as a function of time, with the limit cycle corresponding to a steady oscillation of
fixed amplitude.

We consider the open loop dynamics by setting u = 0. The equilibrium points
for the system are given by
= [inn]
(S 0 )

where n =0,1,2,.... The equilibrium points for n even correspond to the pendu-
lum pointing up and those for n odd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inputs) is shown in Figure 5.4c.
The phase portrait shows —27 < x; < 27, so five of the equilibrium points are
shown. \%

Nonlinear systems can exhibit rich behavior. Apart from equilibria they can
also exhibit stationary periodic solutions. This is of great practical value in gen-
erating sinusoidally varying voltages in power systems or in generating periodic
signals for animal locomotion. A simple example is given in Exercise 5.13, which
shows the circuit diagram for an electronic oscillator. A normalized model of the
oscillator is given by the equation

%:xz—l—xl(l—x%—xz), %
The phase portrait and time domain solutions are given in Figure 5.5. The figure
shows that the solutions in the phase plane converge to a circular trajectory. In the
time domain this corresponds to an oscillatory solution. Mathematically the circle
is called a limit cycle. More formally, we call a nonconstant solution x,(¢) a limit
cycle of period T > 0 if x,(t +T) = xp(¢) for all # € R and nearby trajectories
converge to xp (- ) as t — oo (stable limit cycle) or  — —eo (unstable limit cycle).
There are methods for determining limit cycles for second-order systems, but
for general higher-order systems we have to resort to computational analysis. Com-
puter algorithms find limit cycles by searching for periodic trajectories in state

= —x1 +x2(1 —x} —x3). (5.6)
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Figure 5.6: Illustration of Lyapunov’s concept of a stable solution. The solution represented
by the solid line is stable if we can guarantee that all solutions remain within a tube of
diameter € by choosing initial conditions sufficiently close the solution.

space that satisfy the dynamics of the system. In many situations, stable limit cy-
cles can be found by simulating the system with different initial conditions.

5.3 Stability

The stability of a solution determines whether or not solutions nearby the solution
remain close, get closer, or move further away. We now give a formal definition of
stability and describe tests for determining whether a solution is stable.

Definitions

Let x(t;a) be a solution to the differential equation with initial condition a. A
solution is stable if other solutions that start near a stay close to x(¢;a). Formally,
we say that the solution x(z;a) is stable if for all € > 0, there exists a § > 0 such
that

|b—al|<d = |jx(t;b)—x(t;a)|| <€ forallr>0.

Note that this definition does not imply that x(¢;b) approaches x(#;a) as time in-
creases but just that it stays nearby. Furthermore, the value of 8 may depend on
€, so that if we wish to stay very close to the solution, we may have to start very,
very close (6 < €). This type of stability, which is illustrated in Figure 5.6, is also
called stability in the sense of Lyapunov. If a solution is stable in this sense and the
trajectories do not converge, we say that the solution is neutrally stable.

An important special case is when the solution x(¢;a) = x. is an equilibrium
solution. In this case the condition for stability becomes

|x(0) —xe|]| <6 = ||x(tr) —xe|]| <€ forallz >0. (5.7)

Instead of saying that the solution is stable, we simply say that the equilibrium
point is stable. An example of a neutrally stable equilibrium point is shown in
Figure 5.7. From the phase portrait, we see that if we start near the equilibrium
point, then we stay near the equilibrium point. Furthermore, if we choose an initial
condition from within the inner dashed circle (of radius &) then all trajectories will
remain inside the region defined by the outer dashed circle (of radius €). Note,
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Figure 5.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium point x. at the origin is stable since all trajectories that
start near x. stay near xe.

however, that trajectories may not remain confined remain inside the individual
circles (and hence we must choose 6 < €).

A solution x(z; a) is asymptotically stable if it is stable in the sense of Lyapunov
and, in addition, x(¢;b) approaches x(¢;a) as t approaches infinity for b sufficiently
close to a. Hence, the solution x(#;a) is asymptotically stable if for every € > 0
there exists a 0 > 0 such that

|b—a|l<d = ||x(t;b)—x(t;a)|]] <& and tle ||lx(¢;6) —x(t;a)|| = 0.

This corresponds to the case where all nearby trajectories converge to the stable
solution for large time. In the case of an equilibrium solution x., we can write this
condition as

[x(0) —xe]| <6 == ||x(t) —xe|| <€ and }me(t) = Xe. (5.8)

Figure 5.8 shows an example of an asymptotically stable equilibrium point. Indeed,
as seen in the phase portrait, not only do all trajectories stay near the equilibrium
point at the origin, but they also all approach the origin as ¢ gets large (the direc-
tions of the arrows on the phase portrait show the direction in which the trajectories
move).

A solution x(t;a) is unstable if it is not stable. More specifically, we say that a
solution x(#;a) is unstable if given some € > 0, there does not exist a § > 0 such
that if ||b —al| < 8, then ||x(¢;6) — x(t;a)|| < € for all z. An example of an unstable
equilibrium point x. is shown in Figure 5.9. Note that no matter how small we
make 0, there is always an initial condition with ||x(0) — x| < 0 that flows away
from xe.

The definitions above are given without careful description of their domain of
applicability. More formally, we define a solution to be locally stable (or locally
asymptotically stable) if it is stable for all initial conditions x € B,(a), where

By(a)={x:||x—da| <r}
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Figure 5.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium point x. at the origin is asymptotically stable
since the trajectories converge to this point as ¢ — oo.

is a ball of radius r around @ and r > 0. A solution is globally asymptotically stable
if it is asymptotically stable for all r > 0.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if
some trajectories lead to the equilibrium point and others move away (this is the
situation pictured in Figure 5.9). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Figure 5.7) is called
a center.

Example 5.5 Congestion control
The TCP protocol is used to adjust the rate of packet transmission on the Inter-
net. Stability of this system is important to insure smooth and efficient flow of
information across the network.

The model for congestion control in a network consisting of N identical com-
puters connected to a single router, described in more detail in Section 4.4, is given

by
dw ¢ 1+ w? db e
— =—-—pc — —=N——c¢
i b P 2 ) ’
where w is the window size and b is the buffer size of the router. The equilibrium
points are given by

2
w p
b=N h 1+ — ) =—.
w, where w< 2) N

Since w(14w?/2) is monotone, there is only one equilibrium point. Phase portraits
are shown in Figure 5.10 for two different sets of parameter values. In each case we
see that the system converges to an equilibrium point in which the buffer is below
its full capacity of 500 packets. The equilibrium size of the buffer represents a



5.3. STABILITY 5-11

0.5 Xy = —x1+2x

100 T T

<0 —X
-0.5 ~
\
\
~1 /ﬂ\ ~100 LN L
-1 -0.5 0 0.5 1 0 1 2 3
X, Time ¢

Figure 5.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point x. at the origin is unstable since not all trajectories
that start near x. stay near x. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

balance between the transmission rates for the sources and the capacity of the
link. We see from the phase portraits that the equilibrium points are asymptotically
stable since all initial conditions result in trajectories that converge to these points.

\Y%
Stability of Linear Systems
A linear dynamical system has the form
d
d—); =Ax, x(0)=xo, (5.9

where A € R™" is a square matrix, corresponding to the dynamics matrix of a
linear control system (3.6). For a linear system, the stability of the equilibrium at
the origin can be determined from the eigenvalues of the matrix A:

A(A) :={s e C:det(sI —A) =0}.

The polynomial det(s] — A) is the characteristic polynomial and the eigenvalues
are its roots. We use the notation A; for the jth eigenvalue of A, so that 1; € 1 (A).
In general A can be complex-valued, although if A is real-valued, then for any
eigenvalue A, its complex conjugate A* will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stability of a linear system
depends only on the matrix A, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
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Figure 5.10: Phase portraits for a congestion control protocol running with N = 60 identical
source computers. The equilibrium values correspond to a fixed window at the source, which
results in a steady-state buffer size and corresponding transmission rate. A faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

are in diagonal form. In this case, the dynamics have the form

A 0
dx A2
— = X. 5.10
dt - ©-10)
0 An
It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of n individual systems x; = A;x;.
Each of these scalar solutions is of the form

xj(1) = eM'x;(0).

We see that the equilibrium point x. = 0 is stable if A; < 0 and asymptotically
stable if A; < 0.
Another simple case is when the dynamics are in the block diagonal form

(o] (0]} 0 0
—@; O] 0 0
dx _ . . .
ar 0 0 . : S
0 0 On Oy
0 0 —®,; On

In this case, the eigenvalues can be shown to be A; = 0; - i®;. We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2j1(t) = €% (x2j-1(0) cos jt +x2j(0) sinw;t),
x2;(t) = €% (—x2j-1(0) sin@;t +x2,(0) cos w;t),
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where j = 1,2,...,m. We see that this system is asymptotically stable if and only
if 6; =ReA; < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but many systems can
be transformed into these forms via coordinate transformations. One such class of
systems is those for which the dynamics matrix has distinct (nonrepeating) eigen-
values. In this case there is a matrix 7 € R™” such that the matrix TAT ! is
in (block) diagonal form, with the block diagonal elements corresponding to the
eigenvalues of the original matrix A (see Exercise 5.15). If we choose new coordi-

nates z = T'x, then
dz

— =Ti=TAx=TAT 'z
dt

and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as those of the original system
since if v is an eigenvector of A, then w = Tv can be shown to be an eigenvec-
tor of TAT ~!'. We can reason about the stability of the original system by noting
that x(t) = T~ 'z(¢), and so if the transformed system is stable (or asymptotically
stable), then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the sta-
bility of the system can be completely determined by examining the real part of
the eigenvalues of the dynamics matrix. For more general systems, we make use
of the following theorem, proved in the next chapter:

Theorem 5.1 (Stability of a linear system). The system
dx
dr

is asymptotically stable if and only if all eigenvalues of A have a strictly negative

real part and is unstable if any eigenvalue of A has a strictly positive real part.

Ax

Note that it is not enough to have eigenvalues with Re(A1) < 0. As a simple
example, consider the system ¢ = 0, which can be written in state space form as

d (x) _ (01 X1
dt \(x2) 0 0) {x)°
The system has eigenvalues A = 0 but the solutions are not bounded since we have

xi1(t) =x10+x20t, x2(t) =x20.

Example 5.6 Compartment model

Consider the two-compartment module for drug delivery described in Section 4.6.
Using concentrations as state variables and denoting the state vector by x, the sys-
tem dynamics are given by

dx_ —k()—kl k] b() o
dt_[ ky —k» x+ ol y= (0 l]x,
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where the input u is the rate of injection of a drug into compartment 1 and the

concentration of the drug in compartment 2 is the measured output y. We wish to

design a feedback control law that maintains a constant output given by y = yq.
We choose an output feedback control law of the form

u=—k(y—yq)+uq,

where uy is the rate of injection required to maintain the desired concentration
Y = Y4, and k is a feedback gain that should be chosen such that the closed loop
system is stable. Substituting the control law into the system, we obtain

dx_ —ko—k] k[—b()k b()
dt_[ I —k ) o

y:[01]x:xm

] (uq + kyq) =: Ax+ Bue,

The equilibrium concentration x. € R? can be obtained by solving the equation
Axe + Bu. = 0 and some simple algebra yields

Xl,e = X2, = Yd, Ue = Ud = T—Yd-
b
0

To analyze the system around the equilibrium point, we choose new coordi-
nates z = x — x. In these coordinates the equilibrium point is at the origin and the
dynamics become

dz . —ko — k] k] - bok
dr [ ka —ka ] ¢

We can now apply the results of Theorem 5.1 to determine the stability of the
system. The eigenvalues of the system are given by the roots of the characteristic
polynomial

A(s) = s + (ko + ki + ka)s + (kokz + bokok).

While the specific form of the roots is messy, it can be shown using the Routh—
Hurwitz criterion that the roots have negative real part as long as the linear term
and the constant term are both positive (see Section 2.2, page 2-10). Hence the
system is stable for any k > 0. \%

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible to deter-
mine the local stability of an equilibrium point by approximating the system by a
linear system. The following example illustrates the basic idea.

Example 5.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dx X
dt~ |sinx;—cxr )’
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Figure 5.11: Comparison between the phase portraits for the full nonlinear system (a) and
its linear approximation around the origin (b). Notice that near the equilibrium point at the
center of the plots, the phase portraits (and hence the dynamics) are almost identical.

where we have defined the state as x = (0,6). We first consider the equilibrium
point at x = (0,0), corresponding to the straight-up position. If we assume that the
angle 6 = x; remains small, then we can replace sinx; with x; and cosx; with 1,
which gives the approximate system

dx_ X2 . 0 1
“ ()0 ) @

Intuitively, this system should behave similarly to the more complicated model
as long as x; is small. In particular, it can be verified that the equilibrium point
(0,0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (5.11)

We can also approximate the system around the stable equilibrium point at
x=(m,0). In this case we have to expand sinx; and cosx; around x| = 7, according
to the expansions

sin(t+60) =—sinf ~ —0, cos(mr+6)=—cos(0) ~—1.

If we define z; = x| — & and zp = X3, the resulting approximate dynamics are given

by
dz 2 [0 1
i [—Z1—CZ2] = [_1 _C] z. (5.12)

It can be shown that the eigenvalues of the dynamics matrix have negative real
parts, confirming that the downward equilibrium point is asymptotically stable.
Figure 5.11 shows the phase portraits for the original system and the approxi-
mate system around the stable equilibrium point. Note that z = (0,0) is the equi-
librium point for this system and that it has the same basic form as the dynamics
shown in Figure 5.8. The solutions for the original system and the approximate
are very similar, although not exactly the same. It can be shown that if a linear ap-
proximation has either asymptotically stable or unstable equilibrium points, then
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the local stability of the original system must be the same (see Theorem 5.3 on
page 5-26 for the case of asymptotic stability). \%

More generally, suppose that we have a nonlinear system

dx
2 _F
5 =)

that has an equilibrium point at x.. Computing the Taylor series expansion of the
vector field, we can write

dx_

oF
i F(xe)+ =—| (x—xe)+ higher-order terms in (x —xe).

ox

Xe

Since F(x.) = 0, we can approximate the system by choosing a new state variable
Z =X — X and writing

dz JdF

— = Az, h A= —| . 5.13

dt & Where ox | (5.13)
We call the system (5.13) the linear approximation of the original nonlinear system
or the linearization at x.. The following example illustrates the idea.

Example 5.8 Stability a tanker
The normalized steering dynamics of a large ship can be modeled by the following
equations:

d d
d—::a1v+a2r+av\v\—l—b15, d—::a3v+a4r+b26,

where v is the component of the velocity vector that is orthogonal to the ship direc-
tion, r is the turning rate, and § is the rudder angle. The variables are normalized
by using the ship length [ as length unit and the time to travel one ship length as
the time unit. The mass is normalized by pI® /2, where p is the density of water.
The normalized parameters are a; = —0.6, ap = —0.3,a3 = —5,a4 = -2, ¢ = -2,
by =0.1, and b, = —0.8.

Setting the rudder angle 6 = 0, we find that the equilibria are given by the
equations

ayv+axr+ avjv| =0, azv+asr =0.

Elimination of the variable r in these equations give
(ara3 —ajas)v+ aasvly| =0

There are three equilibrium solutions: ve = 0 and v. = 30.075. Linearizing the
equation gives a second order system with dynamics matrices

—14 —-03 -06 —-0.3
AO_[—S —2]’ Al—[—s —2]'
The linearized matrix Ao, for the equilibria ve = £0.75, has the characteristic poly-
nomial s? 4+ 3.4s + 1.3, which has all roots in the left half-plane. The equilibria are
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Figure 5.12: Equilibria for tanker. The trajectories are shown in (a) and the rudder charac-
teristics in (b), where equilibria are marked by circles.

thus stable. The matrix A, for the equilibrium v, = 0, has the characteristic poly-
nomial s> +2.3s — 0.9, which has one root in the right half-plane. This equilibrium
is unstable.

Summarizing, we find that the equilibrium v. = r. = 0, which corresponds to
the ship moving forward at constant speed, is unstable. The other equilibria ve =
—0.075, re = 0.1875, and v, = 0.075, r. = —0.1875 are stable (see Figure 5.12b).
These equilibria correspond to the tanker moving in a circle to the left of to the
right. Hence if the rudder is set to d = 0 and the ship is moving forward it will thus
either turn to the right or to the left and approach one of the stable equilibria, which
way it goes depends on the exact value of the initial condition. The trajectories are
shown in Figure 5.12a. \%

The fact that a linear model can be used to study the behavior of a nonlin-
ear system near an equilibrium point is a powerful one. Indeed, we can take this
even further and use a local linear approximation of a nonlinear system to design
a feedback law that keeps the system near its equilibrium point (design of dy-
namics). Thus, feedback can be used to make sure that solutions remain close to
the equilibrium point, which in turn ensures that the linear approximation used to
stabilize it is valid.

Stability of Limit Cycles

Stability of nonequilibrium solutions can also be investigated as illustrated by the

following example.

Example 5.9 Stability of an oscillation

Consider the system given by equation (5.6),
dxy dx;
dt dt

whose phase portrait is shown in Figure 5.5. The differential equation has a peri-

= x +x1(1 —x} —x3), = —x; +x0(1 —x} —x3),
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odic solution

. [xl(O)cost+X2(0)Sinf] , (5.14)

x2(0) cost — x1(0) sint

with x3(0) 4 x3(0) = 1. Notice that the nonlinear terms disappear on the periodic
solution.

To explore the stability of this solution, we introduce polar coordinates r > 0
and ¢, which are related to the state variables x; and x, by

X] =rcosQ, Xp = rsin Q.
Differentiation gives the following linear equations for 7 and ¢:
X] =Fcos@ —r@sinQ, Xy =7sin@ +r@cos Q.
Solving this linear system for 7 and ¢ gives, after some calculation,

dr 2 do

dr r(1=r), dr
Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation for r has two equilibria: r = 0 and r = 1 (notice that r is assumed
to be non-negative). The derivative dr/dt is positive for 0 < r < 1 and negative for
r > 1. The variable r will therefore increase if 0 < r < 1 and decrease if r > 1, and
we find that the equilibrium » = 0 is unstable and the equilibrium » = 1 is stable.
Solutions with initial conditions different from 0 will thus all converge to the stable
equilibrium » = 1 as time increases.

To study the stability of the full system, we must also investigate the behavior
of angle ¢. The equation for ¢ can be integrated analytically to give ¢ (1) = —t +
©(0), which shows that solutions starting at different initial angles ¢(0) will grow
linearly with time, remaining separated by a constant amount. The solution » =1,
¢ = —t is thus stable but not asymptotically stable. The unit circle in the phase
plane is attracting, in the sense that all solutions with r(0) > O converge to the
unit circle, as illustrated in the simulation in Figure 5.13. Notice that the solutions
approach the circle rapidly, but that there is a constant phase shift between the
solutions.

—1. (5.15)

\%

5.4 Lyapunov Stability Analysis

We now return to the study of the full nonlinear system
dx
i

Having defined when a solution for a nonlinear dynamical system is stable, we

can now ask how to prove that a given solution is stable, asymptotically stable,
or unstable. For physical systems, one can often argue about stability based on

F(x), xeR" (5.16)
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Figure 5.13: Solution curves for a stable limit cycle. The phase portrait on the left shows that
the trajectory for the system rapidly converges to the stable limit cycle. The starting points
for the trajectories are marked by circles in the phase portrait. The time domain plots on
the right show that the states do not converge to the solution but instead maintain a constant
phase error.

dissipation of energy. The generalization of that technique to arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.

In this section we will describe techniques for determining the stability of so-
lutions for a nonlinear system (5.16). We will generally be interested in stability
of equilibrium points, and it will be convenient to assume that x. = 0 is the equi-
librium point of interest. (If not, rewrite the equations in a new set of coordinates
Z=X—Xe.)

Lyapunov Functions

A Lyapunov function V : R" — R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, if we can find a nonnegative
function that always decreases along trajectories of the system, we can conclude
that the minimum of the function is a stable equilibrium point (locally).

To describe this more formally, we start with a few definitions. Let B, = B,(0)
be a ball of radius r around the origin. We say that a continuous function V is
positive definite on B, if V(x) > 0 for all x € B,, x # 0 and V(0) = 0. Similarly, a
function is negative definite on B, if V(x) < 0 for all x € B,, x # 0 and V(0) = 0.
We say that a function V is positive semidefinite if V (x) > 0 for all x € B,, but V (x)
can be zero at points other than just x = 0.

To illustrate the difference between a positive definite function and a positive
semidefinite function, suppose that x € R? and let

Vi(x) :x%, Va(x) :x%—kx%.

Both Vi and V; are always nonnegative. However, it is possible for V] to be zero
even if x # 0. Specifically, if we set x = (0, ¢), where ¢ € R is any nonzero number,
then V;(x) = 0. On the other hand, V»2(x) = 0 if and only if x = (0,0). Thus V; is
positive semidefinite and V) is positive definite.
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v
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Figure 5.14: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov function V (x) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system will always cause V (x)
to decrease along the trajectory.

We can now characterize the stability of an equilibrium point x. = O for the
system (5.16).

Theorem 5.2 (Lyapunov stability theorem). Let V be a function on R" and let V
represent the time derivative of 'V along trajectories of the system dynamics (5.16):

dVdx IV

If there exists r > 0 such that V is positive definite and V is negative semidefinite on
By, then x = 0 is (locally) stable in the sense of Lyapunov. If V is positive definite
and V is negative definite in B,, then x = 0 is (locally) asymptotically stable.

If V satisfies one of the conditions above, we say that V is a (local) Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined by V(x) = ¢,
¢ > 0, and for each c this gives a closed contour, as shown in Figure 5.14. The
condition that V(x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories move to smaller and smaller
values of V and if V is negative definite then x must approach 0.

Finding Lyapunov functions is not always easy. For example, consider the lin-

ear system

dx1 de
— =X —= = —Xx] —0x o> 0.
ar 2, dr 1 2,

Since the system is linear, it can be easily verified that the eigenvalues of the cor-
responding dynamics matrix are given by

_ —a*xvai-4
=

These eigenvalues always have negative real part for & > 0 and hence the system is
asymptotically stable. It follows that x() — 0 and  — e and so a natural Lyapunov

A
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function candidate would be the squared magnitude of the state:

1 1
Vix)= Ex% + Ex%

Taking the time derivative of this function and evaluating along the trajectories of
the system we find that

SN 2

V(x) = —ox;.

But this function is not positive definite, as can be seen by evaluating V at the point
x = (1,0), which gives V(x) = 0. Hence even though the system is asymptotically
stable, a Lyapunov function that proves stability is not as simple as the squared
magnitude of the state.

We now consider some additional examples.

Example 5.10 Scalar nonlinear system
Consider the scalar nonlinear system

dx 2
dr 1+x
This system has equilibrium points at x = 1 and x = —2. We consider the equilib-
rium point at x = 1 and rewrite the dynamics using z =x — 1:
dz=_ 2
dt  2+z ’

which has an equilibrium point at z = 0. Now consider the candidate Lyapunov
function

1 2
Vi(z) = =
(z) 5%

which is globally positive definite. The derivative of V along trajectories of the
system is given by

Vi) =z2t=——72—2
(2) 24z

If we restrict our analysis to an interval B,, where r < 2, then 2+ z > 0 and we can
multiply through by 2 + z to obtain

27— (2 +2)(242) = -2 =32 = —72(z+3) <0, ZEB,, r<2.

It follows that V(z) < O for all z € By, z # 0, and hence the equilibrium point x = 1
is locally asymptotically stable. \%

A slightly more complicated situation occurs if V is negative semidefinite. In
this case it is possible that V (x) = 0 when x # 0, and hence x could stop decreasing
in value. The following example illustrates this case.

Example 5.11 Hanging pendulum
A normalized model for a hanging pendulum is
dx| dxs

—=x —= = —sinxg
dt ’ dt ’
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where x; is the angle between the pendulum and the vertical, with positive x|
corresponding to counterclockwise rotation. The equation has an equilibrium x; =
xp = 0, which corresponds to the pendulum hanging straight down. To explore the
stability of this equilibrium we choose the total energy as a Lyapunov function:
1, 1, 1,

V(X) =1- COS X1 =+ 5)(2 ~ Exl + EXZ.
The Taylor series approximation shows that the function is positive definite for
small x. The time derivative of V(x) is

V= X1 8Inxj + Xpxp = xp sinx; — xp sinx; = 0.
Since this function is negative semidefinite, it follows from Lyapunov’s theorem
that the equilibrium is stable but not necessarily asymptotically stable. When per-
turbed, the pendulum actually moves in a trajectory that corresponds to constant
energy. \%

As demonstrated already, Lyapunov functions are not always easy to find, and
they are also not unique. In many cases energy functions can be used as a start-
ing point, as was done in Example 5.11. It turns out that Lyapunov functions can
always be found for any stable system (under certain conditions), and hence one
knows that if a system is stable, a Lyapunov function exists (and vice versa). Re-
cent results using sum-of-squares methods have provided systematic approaches
for finding Lyapunov systems [PPP02]. Sum-of-squares techniques can be applied
to a broad variety of systems, including systems whose dynamics are described by
polynomial equations, as well as hybrid systems, which can have different models
for different regions of state space.

For a linear dynamical system of the form

dx

dr
it is possible to construct Lyapunov functions in a systematic manner. To do so, we
consider quadratic functions of the form

Ax,

V(x) = x" Px,

where P € R™" is a symmetric matrix (P = PT). The condition that V be positive
definite on B, for some r > 0 is equivalent to the condition that P be a positive

definite matrix:
x'Px>0, forallx+0,

which we write as P > 0. It can be shown that if P is symmetric, then P is positive
definite if and only if all of its eigenvalues are real and positive.

Given a candidate Lyapunov function V(x) = x” Px, we can now compute its
derivative along flows of the system:

V—8de—

T AT T
= —— = A"'P+PA)x =: — .
3% r x ( + PA)x x Ox
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The requirement that V be negative definite on B, (for asymptotic stability) be-
comes a condition that the matrix Q be positive definite. Thus, to find a Lyapunov
function for a linear system it is sufficient to choose a Q > 0 and solve the Lya-

punov equation:
ATP+PA=—0Q. (5.17)

This is a linear equation in the entries of P, and hence it can be solved using
linear algebra. It can be shown that the equation always has a solution if all of
the eigenvalues of the matrix A are in the left half-plane. Moreover, the solution
P is positive definite if Q is positive definite. It is thus always possible to find
a quadratic Lyapunov function for a stable linear system. We will defer a proof
of this until Chapter 6, where more tools for analysis of linear systems will be
developed.

Knowing that we have a direct method to find Lyapunov functions for linear
systems, we can now investigate the stability of nonlinear systems. Consider the
system

dx

dr
where F(0) = 0 and F(x) contains terms that are second order and higher in the
elements of x. The function Ax is an approximation of F(x) near the origin, and
we can determine the Lyapunov function for the linear approximation and investi-
gate if it is also a Lyapunov function for the full nonlinear system. The following
examples illustrate the approach.

F(x) =: Ax+ F (x), (5.18)

Example 5.12 Spring—mass system
Consider a simple spring—mass system, whose state space dynamics are given by

%:xz, %:—%xl—%xz, m,b,k > 0.
Note that this is equivalent to the example we used on page 5-20 if k = m and
b/m=q.
To find a Lyapunov function for the system, we choose Q = —I and the equa-

tion (5.17) becomes

0 —k/m) (pu pi2 I P b 0 1 _ (-1 0
1 —=b/m) \pi2 p2 pi2 pn) | —k/m —b/m 0 -1)°
By evaluating each element of this matrix equation, we can obtaining a set of linear
equations for p;;:
2k b k 2b
——pie=-1,  pu——po——pn =0, 2po——pn=-1
m m m m
These equations can be solved for p11, p12, and pr; to obtain
b? + k(k+m) m
2bk 2k
m m(k+m)
2k 2bk
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Figure 5.15: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputs u#; and u; interfere with this
repression, allowing the circuit dynamics to be modified. The equilibrium points for this
circuit can be determined by the intersection of the two curves shown in (b).

Finally, it follows that

b?+k(k+m) , m m(k+m) ,

Vix) = ———— — B S

(x) oTH X+ kx1x2+ T A
Notice that while it can be verified that this function is positive definite, its level
sets are rotated ellipses. \%

Example 5.13 Genetic switch
Consider the dynamics of a set of repressors connected together in a cycle, as
shown in Figure 5.15a. The normalized dynamics for this system were given in

Exercise 3.9:
X dzi U dzz U

v 1+ Y dr T 1+

- 22, (5.19)

where z; and z; are scaled versions of the protein concentrations, n > 0 and pt > 0
are parameters that describe the interconnection between the genes, and we have
set the external inputs u#; and u; to zero.

The equilibrium points for the system are found by equating the time deriva-
tives to zero. We define

_ K oy df _ —pmd!
f(u)_1+un7 f(u)_du_(l_i_un)za
so that our dynamics become
le . de _
E—f(Zz) 21, e = f(z1) — 22,

and the equilibrium points are defined as the solutions of the equations

lef(m), Zzzf(ZI)-

If we plot the curves (z1, f(z1)) and (f(z2),z2) on a graph, then these equations
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will have a solution when the curves intersect, as shown in Figure 5.15b. Because
of the shape of the curves, it can be shown that there will always be three solutions:
one at zj, = 2., one with z1, < 22, and one with z;, > zp.. If 4 > 1, then we can
show that the solutions are given approximately by
1 1
e = U, Zze%ﬁ; Zle = 22e5 Zle%F7 22e ® U (5.20)

To check the stability of the system, we write f(u) in terms of its Taylor series
expansion about u:

fu) = fue)+ f (ue) (u—ue) + %f’/(ue) - (u — ue)? 4 higher-order terms,

where f represents the first derivative of the function, and f” the second. Using
these approximations, the dynamics can then be written as

dw o —1 f’(z e) -
dar [f/(Z]e) _i ] wF(w),

where w = 7 — 7. is the shifted state and F (w) represents quadratic and higher-order
terms.

‘We now use equation (5.17) to search for a Lyapunov function. Choosing Q =1
and letting P € R?*? have elements p; j» we search for a solution of the equation

-1 fi)] (P P12 L [P 2] [ LY _ (-1 0

Lo =) lp p2 p2 p2) Lfi -1 0 —1])°
where f{ = f'(z1.) and f; = f(z2.). Note that we have set py; = p» to force P to
be symmetric. Multiplying out the matrices, we obtain

—2pu+2fipr pufs—2p+pnfi] _ (-1 O
pitfa—2pi2+pnfi —2pn+2fipn 0 -1)”

which is a set of /inear equations for the unknowns p;;. We can solve these linear
equations to obtain

A=A+ = 1S pzz:jﬁz—f{féﬂ
Afif-1) " A(fifs—1) A1)

To check that V (w) = w! Pw is a Lyapunov function, we must verify that V (w) is
positive definite function or equivalently that P > 0. Since P is a 2 X 2 symmetric
matrix, it has two real eigenvalues A; and A, that satisfy

A + Ay = trace(P), A1 - Ay = det(P).

P11 =

In order for P to be positive definite A; and A, must be positive, and we thus require
that

2f i fy 4
4—4f{f2’

_ P28+ 54

trace(P) =
race(P) 16— 16f.1]

> 0.

>0, det(P)
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We see that trace(P) = 4 det(P) and the numerator of the expressions is just (f; —
)2 +4> 0, so it suffices to check the sign of 1 — f] f. In particular, for P to be
positive definite, we require that

f/(zle)f/(ZZe) < 1.

We can now make use of the expressions for f’ defined earlier and evaluate at
the approximate locations of the equilibrium points derived in equation (5.20). For
the equilibrium points where 71, # 2., we can show that

1 —unu™' —un —(n—1)? )
P @) () = £ WF () = ¢ £ +ﬁn)2 o - u“ s =
Using n =2 and u =~ 200 from Exercise 3.9, we see that f"(z1.)f(z2.) < 1 and
hence P is positive definite. This implies that V is a positive definite function and

hence a potential Lyapunov function for the system.
To determine if the equilibria z;, # 75, are stable for the system (5.19), we now
compute V at the equilibrium point. By construction,

V =wl(PA+ATP)w + FT(w)Pw +w!PF (w)
= —wlw 4+ FT(w)Pw +w PF (w).

Since all terms in F are quadratic or higher order in w, it follows that £7(w)Pw
and wI PF (w) consist of terms that are at least third order in w. Therefore if w is
sufficiently close to zero, then the cubic and higher-order terms will be smaller
than the quadratic terms. Hence, sufficiently close to w = 0, V is negative definite,
allowing us to conclude that these equilibrium points are both stable.

Figure 5.16 shows the phase portrait and time traces for a system with u =4,
illustrating the bistable nature of the system. When the initial condition starts with
a concentration of protein B greater than that of A, the solution converges to the
equilibrium point at (approximately) (1/u"~ !, u). If A is greater than B, then it
goes to (i, 1/u"!). The equilibrium point with z;, = z,, is unstable. \%

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.

Theorem 5.3. Consider the dynamical system (5.18) with F(0) = 0 and F such
that lim||F (x)||/||x|| — 0 as ||x|| — 0. If the real parts of all eigenvalues of A are
strictly less than zero, then x, = 0 is a locally asymptotically stable equilibrium
point of equation (5.18).

This theorem implies that asymptotic stability of the linear approximation im-
plies local asymptotic stability of the original nonlinear system. The theorem is
very important for control because it implies that stabilization of a linear approxi-
mation of a nonlinear system results in a stable equilibrium for the nonlinear sys-
tem. The proof of this theorem follows the technique used in Example 5.13. A
formal proof can be found in [KhaO1].
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Figure 5.16: Dynamics of a genetic switch. The phase portrait on the left shows that the
switch has three equilibrium points, corresponding to protein A having a concentration
greater than, equal to, or less than protein B. The equilibrium point with equal protein con-
centrations is unstable, but the other equilibrium points are stable. The simulation on the
right shows the time response of the system starting from two different initial conditions.
The initial portion of the curve corresponds to initial concentrations z(0) = (1,5) and con-
verges to the equilibrium where 7z, < z2.. At time ¢ = 10, the concentrations are perturbed
by 42 in z; and —2 in z5, moving the state into the region of the state space whose solutions
converge to the equilibrium point where 2, < z1,.

It can also be shown that if A has one or more eigenvalues with strictly positive
real part, then x. = 0 is an unstable equilibrium for the nonlinear system.

Krasovski—Lasalle Invariance Principle

KJA Sept 25 Removed one bend

For general nonlinear systems, especially those in symbolic form, it can be
difficult to find a positive definite function V whose derivative is strictly negative
definite. The Krasovski-Lasalle theorem enables us to conclude the asymptotic
stability of an equilibrium point under less restrictive conditions, namely, in the
case where V is negative semidefinite, which is often easier to construct. It only
applies to time-invariant or periodic systems, which are the cases we consider here.
This section makes use of some additional concepts from dynamical systems; see
Hahn [Hah67] or Khalil [KhaO1] for a more detailed description.

We will deal with the time-invariant case and begin by introducing a few more
definitions. We denote the solution trajectories of the time-invariant system

dx

dar
as x(t;a), which is the solution of equation (5.21) at time ¢ starting from a at ) = 0.
The  limit set of a trajectory x(¢;a) is the set of all points z € R” such that there
exists a strictly increasing sequence of times 7, such that x(f,;a) — z as n — oo.
A set M C R”" is said to be an invariant set if for all b € M, we have x(t;b) € M
for all # > 0. It can be proved that the w limit set of every trajectory is closed and

F(x) (521)
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(a) Physical system (b) Phase portrait (c) Manifold view

Figure 5.17: Stabilized inverted pendulum. A control law applies a force u at the bottom
of the pendulum to stabilize the inverted position (a). The phase portrait (b) shows that
the equilibrium point corresponding to the vertical position is stabilized. The shaded region
indicates the set of initial conditions that converge to the origin. The ellipse corresponds to a
level set of a Lyapunov function V (x) for which V (x) > 0 and V (x) < 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction of the equilibrium
point. The actual dynamics of the system evolve on a manifold (c).

invariant. We may now state the Krasovski—Lasalle principle.

Theorem 5.4 (Krasovski—Lasalle principle). Let V : R" — R be a locally positive
definite function such that on the compact set Q, = {x € R" : V(x) < r} we have
V(x) <0. Define

S={xeQ,:V(x)=0}.

As t — oo, the trajectory tends to the largest invariant set inside S; i.e., its ® limit
set is contained inside the largest invariant set in S. In particular, if S contains no
invariant sets other than x = 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].

Lyapunov functions can often be used to design stabilizing controllers, as is
illustrated by the following example, which also illustrates how the Krasovski—
Lasalle principle can be applied.

Example 5.14 Inverted pendulum
Following the analysis in Example 3.10, an inverted pendulum can be described
by the following normalized model:

d d

% =X, % = sinx; +ucosxy, (5.22)
where x| is the angular deviation from the upright position and u is the (scaled)
acceleration of the pivot, as shown in Figure 5.17a. The system has an equilibrium
point at x; = x = 0, which corresponds to the pendulum standing upright. This
equilibrium point is unstable.
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To find a stabilizing controller we consider the following candidate for a Lya-
punov function:
1 1,

1
V(x) = (cosx; — 1) +a(1 —cos®xy) + Ex% ~ (a— 5) %+§xz'

The Taylor series expansion shows that the function is positive definite near the
origin if @ > 0.5. The time derivative of V (x) is

V = —x; sinxy + 2ax sinxj cosxy + X2xp = x3(u+ 2asinxy) cosx;.
Choosing the feedback law
u = —2asinx; — xp Cosx

gives
V = —xjcos’x;.
It follows from Lyapunov’s theorem that the equilibrium is (locally) stable. How-
ever, since the function is only negative semidefinite, we cannot conclude asymp-
totic stability using Theorem 5.2. However, note that V = 0 implies that x, = 0 or
x| =mn/2+nm.

If we restrict our analysis to a small neighborhood of the origin Q,, r < /2,

then we can define
S = {(xl,XQ) EQ,xp = 0}

and we can compute the largest invariant set inside S. For a trajectory to remain
in this set we must have x, = 0 for all # and hence x,(7) = 0 as well. Using the
dynamics of the system (5.22), we see that x, () = 0 and x,(¢) = 0 implies x; (t) =0
as well. Hence the largest invariant set inside S is (x1,x,) = 0, and we can use the
Krasovski—Lasalle principle to conclude that the origin is locally asymptotically
stable. A phase portrait of the closed loop system is shown in Figure 5.17b.

In the analysis and the phase portrait, we have treated the angle of the pendulum
6 = x; as a real number. In fact, 6 is an angle with 8 = 27 equivalent to 6 = 0.
Hence the dynamics of the system actually evolve on a manifold (smooth surface)
as shown in Figure 5.17c. Analysis of nonlinear dynamical systems on manifolds
is more complicated, but uses many of the same basic ideas presented here. \%

5.5 Parametric and Nonlocal Behavior

Most of the tools that we have explored are focused on the local behavior of a
fixed system near an equilibrium point. In this section we briefly introduce some
concepts regarding the global behavior of nonlinear systems and the dependence
of a system’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear system we can start by finding
the equilibrium points. We can then proceed to analyze the local behavior around
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the equilibria. The behavior of a system near an equilibrium point is called the
local behavior of the system.

The solutions of the system can be very different far away from an equilibrium
point. This is seen, for example, in the stabilized pendulum in Example 5.14. The
inverted equilibrium point is stable, with small oscillations that eventually con-
verge to the origin. But far away from this equilibrium point there are trajectories
that converge to other equilibrium points or even cases in which the pendulum
swings around the top multiple times, giving very long oscillations that are topo-
logically different from those near the origin.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figure 5.17b. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibria
that are attracting. This gives partial information about the behavior of the system.

One method for approximating the region of attraction is through the use of
Lyapunov functions. Suppose that V is a local Lyapunov function for a system
around an equilibrium point xg. Let Q, be a set on which V(x) has a value less
than r,

Q = {xeR":V(x) <r},

and suppose that V(x) < 0 for all x € Q,, with equality only at the equilibrium
point xo. Then Q, is inside the region of attraction of the equilibrium point. Since
this approximation depends on the Lyapunov function and the choice of Lyapunov
function is not unique, it can sometimes be a very conservative estimate.

It is sometimes the case that we can find a Lyapunov function V such that V is
positive definite and V is negative (semi-) definite for all x € R”. In many instances
it can then be shown that the region of attraction for the equilibrium point is the
entire state space, and the equilibrium point is globally asymptotically stable. More
detailed conditions for global stability can be found in [KhaO1].

Example 5.15 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Example 5.14. The Lya-
punov function for the system was
2 1,
V(x) = (cosx; —1)+a(l —cos“x;)+ 7%
With a > 0.5, V was negative semidefinite for all x and nonzero when x| # +7/2.
Hence any x such that |x;| < /2 and V (x) > 0 will be inside the invariant set de-

fined by the level curves of V(x). One of these level sets is shown in Figure 5.17b.
\%
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Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context
of models by exploring how the location of equilibrium points, their stability, their
regions of attraction and other dynamic phenomena, such as limit cycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

d
d—: =F(x,u), xeR, pue R, (5.23)

where x is the state and U is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x, 1) =0,

and as u is varied, the corresponding solutions x. (i) can also vary. We say that
the system (5.23) has a bifurcation at 4 = u* if the behavior of the system changes
qualitatively at u*. This can occur either because of a change in stability type or a
change in the number of solutions at a given value of u.

Example 5.16 Predator—prey

Consider the predator—prey system described in Example 3.4 and modeled as a
continuous time system as described in Section 4.7. The dynamics of the system
are given by

dH (1 H)_aHL dL_baHL

—=rH(1—— _— — =
dt k c+H dt c+H

where H and L are the numbers of hares (prey) and lynxes (predators) and a, b,
¢, d, k, and r are parameters that model a given predator—prey system (described
in more detail in Section 4.7). The system has an equilibrium point at H, > 0 and
L > 0 that can be found numerically.

To explore how the parameters of the model affect the behavior of the system,
we choose to focus on two specific parameters of interest: a, the interaction coef-
ficient between the populations and c, a parameter affecting the prey consumption
rate. Figure 5.18a is a numerically computed parametric stability diagram show-
ing the regions in the chosen parameter space for which the equilibrium point is
stable (leaving the other parameters at their nominal values). We see from this fig-
ure that for certain combinations of @ and ¢ we get a stable equilibrium point, while
at other values this equilibrium point is unstable.

Figure 5.18b is a numerically computed bifurcation diagram for the system. In
this plot, we choose one parameter to vary (a) and then plot the equilibrium value
of one of the states (H) on the vertical axis. The remaining parameters are set to
their nominal values. A solid line indicates that the equilibrium point is stable; a
dashed line indicates that the equilibrium point is unstable. Note that the stability
in the bifurcation diagram matches that in the parametric stability diagram for
¢ = 50 (the nominal value) and a varying from 1.35 to 4. For the predator—prey

—dL, (5.24)



5-32 CHAPTER 5. DYNAMIC BEHAVIOR

200 — T 150 T T T
Unstable
150
ooy B
100} Stable H R
1
500\, 1
50 b N
N
Unstable D
S i .
0 Il Il Il Il Il 0 Il =~ s Il
1.5 2 2.5 3 35 4 2 4 6 8
a a
(a) Stability diagram (b) Bifurcation diagram

Figure 5.18: Bifurcation analysis of the predator—prey system. (a) Parametric stability dia-
gram showing the regions in parameter space for which the system is stable. (b) Bifurcation
diagram showing the location and stability of the equilibrium point as a function of a. The
solid line represents a stable equilibrium point, and the dashed line represents an unstable
equilibrium point. The dash-dotted lines indicate the upper and lower bounds for the limit cy-
cle at that parameter value (computed via simulation). The nominal values of the parameters
in the model are a =3.2, b =0.6,¢c=50,d = 0.56, k =125, and r = 1.6.

system, when the equilibrium point is unstable, the solution converges to a stable
limit cycle. The amplitude of this limit cycle is shown by the dash-dotted line in
Figure 5.18b. \%

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
changes as the parameters are varied. In such a case it is revealing to plot the eigen-
values of the system as a function of the parameters. Such plots are called root
locus diagrams because they give the locus of the eigenvalues when parameters
change. Bifurcations occur when parameter values are such that there are eigen-
values with zero real part. Computing environments such LabVIEW, MATLAB,
and Mathematica have tools for plotting root loci. A more detailed discussion of
the root locus is given in Section 12.5.

Example 5.17 Root locus diagram for a bicycle model
Consider the linear bicycle model given by equation (4.8) in Section 4.2. Introduc-
ing the state variables x; = @, x, = J, x3 = @, and x4 = § and setting the steering
torque T = 0, the equations can be written as

dx [ 0 I

— = x =: Ax,
dt —Mﬁl(Ko-i-sz%) —M~1Cv

where [ is a 2 X 2 identity matrix and vy is the velocity of the bicycle. Figure 5.19a
shows the real parts of the eigenvalues as a function of velocity. Figure 5.19b
shows the dependence of the eigenvalues of A on the velocity vo. The figures show
that the bicycle is unstable for low velocities because two eigenvalues are in the
right half-plane. As the velocity increases, these eigenvalues move into the left
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Figure 5.19: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle velocity vg. The system
is stable when all eigenvalues have negative real part (shaded region). The plot in (b) shows
the locus of eigenvalues on the complex plane as the velocity v is varied and gives a different
view of the stability of the system. This type of plot is called a root locus diagram.

half-plane, indicating that the bicycle becomes self-stabilizing. As the velocity is
increased further, there is an eigenvalue close to the origin that moves into the right
half-plane, making the bicycle unstable again. However, this eigenvalue is small
and so it can easily be stabilized by a rider. Figure 5.19a shows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. \%

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters
of the system to eliminate extra parameters when possible. Computer programs
such as AUTO, LOCBIF, and XPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations to design feedback laws
that stabilize an equilibrium point and provide a desired level of performance.
However, for some classes of problems the feedback controller must be nonlinear
to accomplish its function. By making use of Lyapunov functions we can often
design a nonlinear control law that provides stable behavior, as we saw in Exam-
ple 5.14.

One way to systematically design a nonlinear controller is to begin with a can-
didate Lyapunov function V (x) and a control system x = f(x,u). We say that V (x)
is a control Lyapunov function if for every x there exists a u such that V(x) =
%—‘; f(x,u) < 0. In this case, it may be possible to find a function a(x) such that
u = a(x) stabilizes the system. The following example illustrates the approach.

Example 5.18 Noise cancellation
Noise cancellation is used in consumer electronics and in industrial systems to re-
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Figure 5.20: Headphones with noise cancellation. Noise is sensed by the exterior micro-
phone (a) and sent to a filter in such a way that it cancels the noise that penetrates the
headphone (b). The filter parameters a and b are adjusted by the controller. S represents the
input signal to the headphones.

duce the effects of noise and vibrations. The idea is to locally reduce the effect
of noise by generating opposing signals. A pair of headphones with noise can-
cellation such as those shown in Figure 5.20a is a typical example. A schematic
diagram of the system is shown in Figure 5.20b. The system has two microphones,
one outside the headphones that picks up exterior noise n and another inside the
headphones that picks up the signal e, which is a combination of the desired signal
S and the external noise that penetrates the headphone. The signal from the exterior
microphone is filtered and sent to the headphones in such a way that it cancels the
external noise that penetrates into the headphones. The parameters of the filter are
adjusted by a feedback mechanism to make the noise signal in the internal micro-
phone as small as possible. The feedback is inherently nonlinear because it acts by
changing the parameters of the filter.

To analyze the system we assume for simplicity that the propagation of external
noise into the headphones is modeled by the first-order dynamical system

% = apz+ bon, (5.25)
where n is the external noise signal, z is the sound level inside the headphones, and
the parameters ap < 0 and b are not known. Assume that the filter is a dynamical
system of the same type:
w J—

i aw +bn,

where the parameters a and b are adjustable. We wish to find a controller that
updates a and b so that they converge to the (unknown) parameters ag and bg. If
a = ag and b = by we have e = § and the noise effect of the noise is eliminated.
Assuming for simplicity that S = 0, introduce x; = e¢ =z —w, X, = a — ag, and
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Figure 5.21: Simulation of noise cancellation. The upper left figure shows the headphone
signal without noise cancellation, and the lower left figure shows the signal with noise can-
cellation. The right figures show the parameters a and b of the filter.

X3 = b—bo. Then

dx
d—tl =ap(z—w)+ (a—ag)w+ (b—bo)n = apx; +x2w + x3n. (5.26)
We will achieve noise cancellation if we can find a feedback law for changing the

parameters a and b so that the error e goes to zero. To do this we choose
1
V(x1,x2,x3) = 5 (oxf +x3 +13)
as a candidate Lyapunov function for equation (5.26). The derivative of V is
V = axyx) +x200 + x3%3 = (Xa()x% +X2()€2 + OCWX]) +Xx3 (X3 + anx )

Choosing
a=3X = —owx; = —Uwe, b=1x;=—onx; = —Qane, (5.27)

we find that V = Ocaox% < 0, and it follows that the quadratic function will decrease
as long as e = x; = w —z # 0. The nonlinear feedback (5.27) thus attempts to
change the parameters so that the error between the signal and the noise is small.
Notice that feedback law (5.27) does not use the model (5.25) explicitly.

A simulation of the system is shown in Figure 5.21. In the simulation we have
represented the signal as a pure sinusoid and the noise as broad band noise. The fig-
ure shows the dramatic improvement with noise cancellation. The sinusoidal signal
is not visible without noise cancellation. The filter parameters change quickly from

their initial values a = b = 0. Filters of higher order with more coefficients are used

in practice. \
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5.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [Str94] and the highly illustrated text
by Abraham and Shaw [AS82]. More technical treatments include Andronov, Vitt,
and Khaikin [AVKS87], Guckenheimer and Holmes [GH83], and Wiggins [Wig90].
For students with a strong interest in mechanics, the texts by Arnold [Arn87] and
Marsden and Ratiu [MR94] provide an elegant approach using tools from differ-
ential geometry. Finally, good treatments of dynamical systems methods in biol-
ogy are given by Wilson [Wil99] and Ellner and Guckenheimer [EG05]. There
is a large literature on Lyapunov stability theory, including the classic texts by
Malkin [Mal59], Hahn [Hah67], and Krasovski [Kra63]. We highly recommend
the comprehensive treatment by Khalil [Kha01].

Exercises

5.1 (Time-invariant systems) Show that if we have a solution of the differential
equation (5.1) given by x(¢) with initial condition x(zp) = xo, then X(7) = x(t — o)
is a solution of the differential equation
s
yrh
with initial condition ¥(0) = xp, where T =1 — 1.

F(5)

5.2 (Flow in a tank) A cylindrical tank has cross section A m?, effective outlet
area a m? and inflow g;, m?/s. An energy balance shows that the outlet velocity
is v = 1/2gh m/s, where g m/s? is the acceleration of gravity and 4 is the distance
between the outlet and the water level in the tank (in meters). Show that the system
can be modeled by

dh a 1
— = ——4/2 —{in, out = 2gh.
7 1V gh+Aq Gour = ar/2gh

Use the parameters A = 0.2, a = 0.01. Simulate the system when the inflow is zero
and the initial level is 7 = 0.2. Do you expect any difficulties in the simulation?

5.3 (Cruise control) Consider the cruise control system described in Section 4.1.
Generate a phase portrait for the closed loop system on flat ground (6 = 0), in third
gear, using a PI controller (with k, = 0.5 and k; = 0.1), m = 1000 kg, and desired
speed 20 m/s. Your system model should include the effects of saturating the input
between 0 and 1.

5.4 (Lyapunov functions) Consider the second-order system

dx; dx, b
— = —ax — = —bx; —cx»
dt ’ ’
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where a, b, c > 0. Investigate whether the functions

1 1 1 1
Vl(x):ix%—i-ix%, Vz(x):ix%+§(x2+c—a

are Lyapunov functions for the system and give any conditions that must hold.

x1)2

5.5 (Damped spring—mass system) Consider a damped spring—mass system with
dynamics
mg+cq+kq=0.

A natural candidate for a Lyapunov function is the total energy of the system, given
by

I TR
V—qu+2kq.

Use the Krasovski—Lasalle theorem to show that the system is asymptotically sta-
ble.

5.6 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise 3.7:

d? EV |
JF(ZP :Pm—Pe:Pm—Ysln(P.
The parameter P £V
a = max = —_— (5.28)
P XPn

is the ratio between the maximum deliverable power Ppax = EV /X and the me-
chanical power Py,.

(a) Consider a as a bifurcation parameter and discuss how the equilibria depend
on a.

(b) For a > 1, show that there is a center at ¢y = arcsin(1/a) and a saddle at

¢ =7 — o
(c) Show that if Py, /J = 1 there is a solution through the saddle that satisfies
1 /dp\2
5(%’) o+ @y—acos@+ @ —1=0. (5.29)

Use simulation to show that the stability region is the interior of the area en-
closed by this solution. Investigate what happens if the system is in equilib-
rium with a value of a that is slightly larger than 1 and a suddenly decreases,
corresponding to the reactance of the line suddenly increasing.

5.7 (Lyapunov equation) Show that Lyapunov equation (5.17) always has a solu-
tion if all of the eigenvalues of A are in the left half-plane. (Hint: Use the fact that
the Lyapunov equation is linear in P and start with the case where A has distinct
eigenvalues.)
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5.8 (Congestion control) Consider the congestion control problem described in
Section 4.4. Confirm that the equilibrium point for the system is given by equa-
tion (4.22) and compute the stability of this equilibrium point using a linear ap-
proximation.

5.9 (Shaping behavior by feedback) An inverted pendulum can be modeled by the

differential equation
dx
dt

X2
= X3, W = SInxj + ucosxy,
where x; is the angle of the pendulum clockwise), and x; is its angular velocity
(see Example 5.14). Qualitatively discuss the behavior of the open loop system
and how the behavior changes when the feedback u = —2sin(x) is introduced.
(Hint: use phase portraits.)

5.10 (Swinging up a pendulum) Consider the inverted pendulum, discussed in Ex-
ample 5.4, that is described by

0 =sin6 +ucos 0,

where 0 is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function

. 1.
V(6,6) :cose—1+§92,

show that the state feedback u = k(Vy — V)8 cos 6 causes the pendulum to “swing
up” to the upright position.

5.11 (Root locus diagram) Consider the linear system

dr (01 (] = [ 1 0)

dt - 0 _3 X 4 I/l, y - X,
with the feedback u = —ky. Plot the location of the eigenvalues as a function the
parameter k.

5.12 (Discrete-time Lyapunov function) Consider a nonlinear discrete-time sys-
tem with dynamics x[k+ 1] = f(x[k]) and equilibrium point x, = 0. Suppose there
exists a smooth, positive definite function V : R* — R such that V(f(x)) =V (x) <0
for x # 0 and V(0) = 0. Show that x, = 0 is (locally) asymptotically stable.

5.13 (Operational amplifier oscillator) An op amp circuit for an oscillator was
shown in Exercise 4.5. The oscillatory solution for that linear circuit was stable
but not asymptotically stable. A schematic of a modified circuit that has nonlinear
elements is shown in the figure below.
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The modification is obtained by making a feedback around each of the operational
amplifiers that has capacitors and making use of multipliers. The signal a. = v% +
Ocv% — v% is the amplitude error. Show that the system is modeled by

dv 1 I
1(vg = vi — av3),

o +
dt RC; "2 R11C1V

——=- —vi—ow3).
” R2C2v1 + R va(vg—vi v3)

Determine « so that the circuit gives an oscillation with a stable limit cycle with
amplitude vg. (Hint: Use the results of Example 5.9.)

5.14 (Self-activating genetic circuit) Consider the dynamics of a genetic circuit that
implements self-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example 3.18, the dynamics for the system can be written as

dm op dp
_ SN - _ — 5.30
dt  1+kp? + 0o —om, ar TP (>-30)

for p,m > 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

5.15 (Diagonal systems) Let A € R"*" be a square matrix with real eigenvalues
Al,..., A, and corresponding eigenvectors vy,...,v,. Assume that the eigenvalues
are distinct (A; # A for i # j).

(a) Show that v; # v; for i # j.

(b) Show that the eigenvectors form a basis for R” so that any vector x can be
written as x = Y oyv; for o € R.

(c) LetT = (vl vy oL vn] and show that T~ !AT is a diagonal matrix of
the form (5.10).
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(d) Show that if some of the A; are complex numbers, then A can be written as
Aq 0
A= , where A;j=A€R or Ai:[o a)]‘
- o
0 Ay
in an appropriate set of coordinates.

This form of the dynamics of a linear system is often referred to as block diagonal
form.

5.16 (Furuta pendulum) The Furuta pendulum, an inverted pendulum on a rotating
arm, is shown to the left in the figure below.

Pendulum angle 6 /7
=

Angular velocity @

Consider the situation when the pendulum arm is spinning with constant rate. The
system has multiple equilibrium points that depend on the angular velocity ®, as
shown in the bifurcation diagram on the right. The equations of motion for the
system are given by

Jpé —Jpa)(% sin @ cos 6 —mpglsin® = 0,

where J, is the moment of inertia of the pendulum with respect to its pivot, m,, is
the pendulum mass, [ is the distance between the pivot and the center of mass of
the pendulum, and @y is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the condition(s) for stability of
each equilibrium point (in terms of @y).

(b) Consider the angular velocity as a bifurcation parameter and verify the bi-
furcation diagram given above. This is an example of a pitchfork bifurcation.



Chapter Six

Linear Systems

Few physical elements display truly linear characteristics. For example the relation between
force on a spring and displacement of the spring is always nonlinear to some degree. The
relation between current through a resistor and voltage drop across it also deviates from a
straight-line relation. However, if in each case the relation is reasonably linear, then it will
be found that the system behavior will be very close to that obtained by assuming an ideal,
linear physical element, and the analytical simplification is so enormous that we make linear
assumptions wherever we can possibly do so in good conscience.

Robert H. Cannon, Dynamics of Physical Systems, 1967 [Can03].

In Chapters 3-5 we considered the construction and analysis of differential
equation models for dynamical systems. In this chapter we specialize our results
to the case of linear, time-invariant input/output systems. Two central concepts
are the matrix exponential and the convolution equation, through which we can
completely characterize the behavior of a linear system. We also describe some
properties of the input/output response and show how to approximate a nonlinear
system by a linear one.

6.1 Basic Definitions

We have seen several instances of linear differential equations in the examples in
the previous chapters, including the spring—mass system (damped oscillator) and
the operational amplifier in the presence of small (nonsaturating) input signals.
More generally, many dynamical systems can be modeled accurately by linear dif-
ferential equations. Electrical circuits are one example of a broad class of systems
for which linear models can be used effectively. Linear models are also broadly
applicable in mechanical engineering, for example, as models of small deviations
from equilibria in solid and fluid mechanics. Signal-processing systems, includ-
ing digital filters of the sort used in MP3 players and streaming audio, are another
source of good examples, although these are often best modeled in discrete time
(as described in more detail in the exercises).

In many cases, we create systems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linear behavior that led Harold
S. Black to the invention of the negative feedback amplifier. Almost all modern
signal processing systems, whether analog or digital, use feedback to produce lin-
ear or near-linear input/output characteristics. For these systems, it is often useful
to represent the input/output characteristics as linear, ignoring the internal details
required to get that linear response.
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For other systems, nonlinearities cannot be ignored, especially if one cares
about the global behavior of the system. The predator—prey problem is one exam-
ple of this: to capture the oscillatory behavior of the interdependent populations
we must include the nonlinear coupling terms. Other examples include switch-
ing behavior and generating periodic motion for locomotion. However, if we care
about what happens near an equilibrium point, it often suffices to approximate
the nonlinear dynamics by their local linearization, as we already explored briefly
in Section 5.3. The linearization is essentially an approximation of the nonlinear
dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systems more formally. Con-
sider a state space system of the form

@:f(x,u), y = h(x,u), (6.1)
dt
where x € R", u € R?, and y € R9. As in the previous chapters, we will usually
restrict ourselves to the single-input, single-output case by taking p =g = 1. We
also assume that all functions are smooth and that for a reasonable class of inputs
(e.g., piecewise continuous functions of time) the solutions of equation (6.1) exist
for all time.

It will be convenient to assume that the origin x = 0, u = 0 is an equilibrium
point for this system (X = 0) and that £(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose that (xe,u.) # (0,0) is an equilibrium point
of the system with output y. = /(xe,u.). Then we can define a new set of states,
inputs and outputs,

j:-x_xea I/~£:M—Me, i:y_yea
and rewrite the equations of motion in terms of these variables:

L= fatxe,itue) = F(5,0),

dt
V= h(T+xe,d+ue) — ye =: h(X, ).

Iyl

In the new set of variables, the origin is an equilibrium point with output 0, and
hence we can carry out our analysis in this set of variables. Once we have obtained
our answers in this new set of variables, we simply “translate” them back to the
original coordinates using x = X+ Xe, 4 = ii + e, and y = y+ ye.

Returning to the original equations (6.1), now assuming without loss of gen-
erality that the origin is the equilibrium point of interest, we write the output y(r)
corresponding to the initial condition x(0) = x¢ and input u(t) as y(¢;xo,u). Using
this notation, a system is said to be a linear input/output system if the following
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conditions are satisfied:

(i) y(t;oxy +Bx2,0) = ay(t;x1,0) + By(t;x2,0),
(ii) y(t; 0xo, Su) = oty (t3x0,0) + Sy(1;0,u), (6.2)
(iii) y(#;0,0u; +yuz) = 8y(t;0,u1) +yy(t;0,uz).

Thus, we define a system to be linear if the outputs are jointly linear in the initial
condition response (u = 0) and the forced response (x(0) = 0). Property (iii) is a
statement of the principle of superposition: the response of a linear system to the
sum of two inputs #; and uy is the sum of the outputs y; and y, corresponding to
the individual inputs.

The general form of a linear state space system is

dx
o = Ax+ Bu, y =Cx+ Du, (6.3)
where A € R"", Be R"P,C € R7*" and D € R?7*?. In the special case of a single-
input, single-output system, B is a column vector, C is a row vector, and D is scalar.
Equation (6.3) is a system of linear first-order differential equations with input u,
state x, and output y. It is easy to show that given solutions x; (¢) and x,(¢) for this
set of equations, the corresponding outputs satisfy the linearity conditions (6.2).
We define xp(7) to be the solution with zero input (the general solution to the

homogeneous system),

dx,

Z :Axh, xh(O) = X0,
and the solution x,(¢) to be the input dependent solution with zero initial condition
(the particular solution or forced solution),

dxp
dt

Figure 6.1 illustrates how these two individual solutions can be superimposed to
form the complete solution.

It is also possible to show that if a dynamical system with a finite number of
states is input/output linear in the sense we have described, it can always be repre-
sented by a state space equation of the form (6.3) through an appropriate choice of
state variables. In Section 6.2 we will give an explicit solution of equation (6.3),
but we illustrate the basic form through a simple example.

= Axp + Bu, xp(0) =0.

Example 6.1 Scalar system
Consider the first-order differential equation

dx .
— =ax+u =x
dt ) y M

with x(0) = x¢. Let u; = Asin @, and uy = Bcos myt. The solution to the homoge-
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Input u State x1, x2 Output y
z 2 ‘ ‘ 2 ‘ ‘ 2 : ‘
8
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2 ; ; 2 ; ; 2 . :
L
2 /\
g 0 ol 0 \/\/\
3
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Time ¢ [s] Time 7 [s] Time ¢ [s]

Figure 6.1: Superposition of homogeneous and particular solutions. The first row shows
the input, state, and output corresponding to the initial condition response. The second row
shows the same variables corresponding to zero initial condition but nonzero input. The third
row is the complete solution, which is the sum of the two individual solutions.

neous system is x, () = e*xp, and two particular solutions with x(0) = 0 are
—me™ + ) cos w1t +asin ot
a?+ o}
ae® — acos wht + @, sin ot
a>+ o2 '

Xp1 (l) =-A

I

xpz(l) =B

Suppose that we now choose x(0) = oxp and u = u; + uy. Then the resulting solu-
tion is the weighted sum of the individual solutions:

A(O] i Ba
c+0}  d+o3

x(t) =e" <ch0 +

, . 6.4)
@] COS W1t + asin Wyt B—acoswzt—i-a)zsma)zt
a2+ o? a2+ w3 )
To see this, substitute equation (6.4) into the differential equation. Thus, the prop-
erties of a linear system are satisfied. \%

Time Invariance

Time invariance is an important concept that is used to describe a system whose
properties do not change with time. More precisely, for a time-invariant system
if the input u(r) gives output y(z), then if we shift the time at which the input
is applied by a constant amount a, u(t + a) gives the output y(r + a). Systems
that are linear and time-invariant, often called LTI systems, have the interesting
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(a) Piecewise constant input (b) Output response

Figure 6.2: Response to piecewise constant inputs. A piecewise constant signal can be rep-
resented as a sum of step signals (a), and the resulting output is the sum of the individual
outputs (b).

property that their response to an arbitrary input is completely characterized by
their response to step inputs or their response to short “impulses”.

To explore the consequences of time invariance, we first compute the response
to a piecewise constant input. Assume that the system has zero initial condition and
consider the piecewise constant input shown in Figure 6.2a. The input has jumps
at times f;, and its values after the jumps are u(#;). The input can be viewed as a
combination of steps: the first step at time 7y has amplitude u(f), the second step
at time #; has amplitude u(t;) — u(ty), etc.

Assuming that the system is initially at an equilibrium point (so that the initial
condition response is zero), the response to the input can be obtained by superim-
posing the responses to a combination of step inputs. Let H(¢) be the response to a
unit step applied at time 0, and assume that H(0) = 0. The response to the first step
is then H(t —1o)u(to), the response to the second step is H(r — 1) (u(t1) — u(f9)),
and we find that the complete response is given by

y(t) = H(t —to)u(to) + H(r —11) (u(tr) — u(to)) +---
= (H(t—10)—H(t—1))u(to) + (H{t —t1) —H(t — 1) )u(ty) + - -~

Y (H(t—t—1) —H(t — 1) )ulty—y) + H(t — tn)u(tn)

i (t—t—1) —H(t — 1)
=1 Ik — Tk—1

=~
—_

u(te—1) (ke —ti1) +H( —1,)u(ty),

where n is such that £, <¢. An example of this computation is shown in Figure 6.2b.
The response to a continuous input signal is obtained by taking the limit n — oo
in such a way that t; —t;_; — 0 and ¢, — ¢, which gives

_ /0 "H (1 — Du(t)dr, (6.5)
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where H' is the derivative of the step response, also called the impulse response.
The response of a linear time-invariant system to any input can thus be computed
from the step response. Notice that the output depends only on the input since we
assumed the system was initially at rest, x(0) = 0. We will derive equation (6.5) in
a slightly different way in the Section 6.3.

6.2 The Matrix Exponential

Equation (6.5) shows that the output of a linear system with zero initial state can
be written as an integral over the inputs u(#). In this section and the next we derive
a more general version of this formula, which includes nonzero initial conditions.
We begin by exploring the initial condition response using the matrix exponential.

Initial Condition Response

We will now explicitly show that the output of a linear system depends linearly on
the input and the initial conditions. We begin by considering the general solution
to the homogeneous system corresponding to the dynamics
dx
— = Ax. 6.6
A (6.6)

For the scalar differential equation
dx
dt

the solution is given by the exponential

x(t) = e“x(0).

We wish to generalize this to the vector case, where A becomes a matrix. We define
the matrix exponential as the infinite series

= ax, xeR,aeR,

Iyve  Iys k
_I—|—X+2X +3 X Zk'x, (6.7)
where X € R™*" is a square matrix and / is the n X n identity matrix. We make use
of the notation
x'=1, Xx’=xx, X'=x""Xx,
which defines what we mean by the “power” of a matrix. Equation (6.7) is easy
to remember since it is just the Taylor series for the scalar exponential, applied to
the matrix X. It can be shown that the series in equation (6.7) converges for any
matrix X € R"*" in the same way that the normal exponential is defined for any
scalar a € R.
Replacing X in equation (6.7) by At, where ¢ € R, we find that

1 1 > 1
A =T +At+ A2+ AP ... =) AR
FAE QAT AT e = Y AT
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and differentiating this expression with respect to ¢ gives

d 1 o 1
— N = A+ A+ AP+ =AY — AN =AM, 6.8
yr +A% DA k;o 4 (6.8)
Multiplying by x(0) from the right, we find that x(¢) = ¢*'x(0) is the solution to the
differential equation (6.6) with initial condition x(0). We summarize this important
result as a proposition.

Proposition 6.1. The solution to the homogeneous system of differential equa-
tions (6.6) is given by
x(t) = Yx(0).

Notice that the form of the solution is exactly the same as for scalar equations,
but we must be sure to put the vector x(0) on the right of the matrix e*’.

The form of the solution immediately allows us to see that the solution is linear
in the initial condition. In particular, if xp; (7) is the solution to equation (6.6) with
initial condition x(0) = xp; and xuy(¢) with initial condition x(0) = xqp, then the
solution with initial condition x(0) = oxg; + Bxop is given by

x(t) = eAt(OCX()l +BX02) = (OCeAtX()l +BeAtX()2) = OXp1 (l‘) +Bxh2(t).
Similarly, we see that the corresponding output is given by

y(#) = Cx(t) = otyni (1) + Byna (1),
where yh () and yp,(¢) are the outputs corresponding to xp; (7) and xp (7).

We illustrate computation of the matrix exponential by two examples.

Example 6.2 Double integrator
A very simple linear system that is useful in understanding basic concepts is the
second-order system given by

q=u, y=4q.

This system is called a double integrator because the input u is integrated twice to
determine the output y.
In state space form, we write x = (¢,¢) and

dx _ (0 1) . (0
a _loo]* 1"

The dynamics matrix of a double integrator is

0 1
=[50

and we find by direct calculation that A> = 0 and hence

. (1 ¢
eA:[o 1]'
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Thus the solution of the homogeneous system (# = 0) for the double integrator is

given by
- (31 (28) - ("5
y(t) = x1(0) + 1x,(0).

Example 6.3 Undamped oscillator
A model for an oscillator, such as the spring—mass system with zero damping, is

éj+a)02q:u.

Putting the system into state space form using x; = ¢, x» = ¢/ @y, the dynamics
matrix for this system can be written as

A:[ 0 a)o] and A — [co.scogt smwgt].
—awy O —sinwyt cos Wyt

This expression for ¢4’ can be verified by differentiation:

d
ap

[—a)osinwot Wy COS Wyt ]
dt

—@pCcos Wyt  — Wy Sin Wyt

0 o cosyt  sinwyt ‘
— . = AeA .
—wy O —sinwyt cos wyt

The solution is then given by

=0 (o e (6],

The solution is more complicated if the system has damping:
G+28ang + o0fq = u.
If £ < 1 we have

exp —Cwy  ay ;Lo [ COS wqt  sin wgt '
—wg —Cay —singt cos gt

where @y = @y+/1 — §2. The result can be proven by differentiating the exponen-
tial matrix. The corresponding results for { > 1 are given in Exercise 6.4. \%

An important class of linear systems are those that can be converted into diag-
onal form by a linear change of coordinates. Suppose that we are given a system

dx

dt

such that all the eigenvalues of A are distinct. It can be shown (Exercise 5.15) that

there exists an invertible matrix 7 such that TAT ! is diagonal. If we choose a set

Ax
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of coordinates z = T'x, then in the new coordinates the dynamics become

dz dx 1
— =T —=TAx=TAT .
di di * ¢

By definition of 7', this system will be diagonal.
Now consider a diagonal matrix A and the corresponding kth power of Az,
which is also diagonal:

M 0 l{c tk 0
)Lz kt k
A= . ’ (At )k = lz . )
0 A 0 Afek
It follows from the series expansion that the matrix exponential is given by
et 0
Aot
e
0 ' et

A similar expansion can be done in the case where the eigenvalues are complex,
using a block diagonal matrix, similar to what was done in Section 5.3.

Given the solution to the dynamics in the z coordinates, the solution in the
original x coordinates can be obtained using the expression x = T~ !z. We can thus
obtain an explicit solution for a linear system whose dynamics matrix is diagonal-
izable.

Jordan Form @

Some matrices with repeated eigenvalues cannot be transformed to diagonal form.
They can, however, be transformed to a closely related form, called the Jordan
form, in which the dynamics matrix has the eigenvalues along the diagonal. When
there are equal eigenvalues, there may be 1’s appearing in the superdiagonal indi-
cating that there is coupling between the states.

Specifically, we define a matrix to be in Jordan form if it can be written as

J 0 ... 0 0 A1 0 ... 0

J= : .|, where Ji=]: AU , (6.9)
0O O Jie1 O 0 O Ao 1
o 0 ... 0 Jr 0 0 ... 0 N

and A; is an eigenvalue of J;. Each matrix J; is called a Jordan block. A first-order
Jordan block can be represented as a system consisting of an integrator with feed-
back A. A Jordan block of higher order can be represented as series connections
of such systems, as illustrated in Figure 6.3.
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X1 X2 X1 X3 X2 X1
f / / [ / /
A A A A A A
(a) 1 x 1 block (b) 2 x 2 block (c) 3 x 3 block

Figure 6.3: Representations of linear systems where the dynamics matrices are Jordan
blocks. A 1 x 1 Jordan block corresponds to an integrator with feedback A, as shown on
the left. 2 x 2 and 3 x 3 Jordan blocks correspond to cascade connections of integrators with
identical feedback, as shown in the middle and right diagrams.

Theorem 6.2 (Jordan decomposition). Any matrix A € R"*" can be transformed
into Jordan form with the eigenvalues of A determining A; in the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Str88]. The special
case where the eigenvalues are distinct is examined in Exercise 5.15. O

Converting a matrix into Jordan form can be complicated, although MATLAB
can do this conversion for numerical matrices using the jordan function. There is
no requirement that the individual A;’s be distinct, and hence for a given eigenvalue
we can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the matrix can be computed
in terms of the Jordan blocks:

e 0 ... 0
Jot .
=] 0 e . (6.10)
: 0
0 .0 el

This follows from the block diagonal form of J. The exponentials of the Jordan
blocks can in turn be written as

¢ 2 n—1
1t 5 .. ﬁ
n—2
0o 1 r .. (;_2)!
et =|. Lo M (6.11)
Ly
0 ... 0 1

As before, we can express the solution to a linear system that can be converted into
this form by making use of the transformations 7 = Tx and x = 7~ 'z.

When there are multiple eigenvalues, the invariant subspaces associated with
each eigenvalue correspond to the Jordan blocks of the matrix A. Note that some
eigenvalues of A may be complex, in which case the transformation 7 that converts
a matrix into Jordan form will also be complex. When A has a nonzero imaginary
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component, the solutions will have oscillatory components since

OO — 697 (cos f +isin F).

We can now use these results to prove Theorem 5.1, which states that the equilib-
rium point x, = 0 of a linear system is asymptotically stable if and only if Re A; < 0
for all 7.

Proof of Theorem 5.1. Let T € C"*" be an invertible matrix that transforms A into
Jordan form, J = TAT ~!. Using coordinates z = Tx, we can write the solution z(#)

* z(t) = e”'7(0),

where z(0) = Tx(0), so that x(t) = T~'e’'z(0).

The solution z(¢) can be written in terms of the elements of the matrix expo-
nential. From equation (6.11) these elements all decay to zero for arbitrary z(0) if
and only if ReA; < O for all i. Furthermore, if any A; has positive real part, then
there exists an initial condition z(0) such that the corresponding solution increases
without bound. Since we can scale this initial condition to be arbitrarily small, it
follows that the equilibrium point is unstable if any eigenvalue has positive real
part. O

The existence of a canonical form allows us to prove many properties of linear
systems by changing to a set of coordinates in which the A matrix is in Jordan
form. We illustrate this in the following proposition, which follows along the same
lines as the proof of Theorem 5.1.

Proposition 6.3. Suppose that the system
dx
=

has no eigenvalues with strictly positive real part and one or more eigenvalues

with zero real part. Then the system is stable (in the sense of Lyapunov) if and

only if the Jordan blocks corresponding to each eigenvalue with zero real part are
scalar (1 x 1) blocks.

Proof. See Exercise 6.6b. U

Ax

The following example illustrates the use of the Jordan form.

Example 6.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft such as that described in Exam-
ple 3.12. Suppose that we choose u; = up = 0 so that the dynamics of the system
become

Z4
Z5
dz 26
— = . 6.12
dt —gsinzz— -z |’ (©.12)
g(coszz —1) — < z5
0

/
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where z = (x,y, 0,%,y, ). The equilibrium points for the system are given by set-
ting the velocities x, y, and 6 to zero and choosing the remaining variables to
satisfy
gsmze=0 " —6—0.

g(coszz,—1)=0 ’
This corresponds to the upright orientation for the aircraft. Note that x. and ye
are not specified. This is because we can translate the system to a new (upright)
position and still obtain an equilibrium point.

To compute the stability of the equilibrium point, we compute the linearization
using equation (5.13):

00 O 1 0 0
0 0 O 0 1 0
L_9F] _ oo 0 0 0 1
T 0z Ze_ 0 0 —g —c/m 0 0
00 O 0 —¢/m 0
0 0 O 0 0 0

The eigenvalues of the system can be computed as
A(A) ={0,0,0,0,—c/m,—c/m}.

We see that the linearized system is not asymptotically stable since not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense of Lyapunov, we must
make use of the Jordan form. It can be shown that the Jordan form of A is given by

(0|0 O O] O 0
0(0 1 O 0 0
~loloo 1] o 0
I= 00 0 O 0 0
0(0 0 O|—c/m| O
0/0 0 0| O —c/m

Since the second Jordan block has eigenvalue 0 and is not a simple eigenvalue, the

linearization is unstable (Exercise ).
\%

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a description of the types of
behavior the system can exhibit. For oscillatory systems, the term mode is often
used to describe the vibration patterns that can occur. Figure 6.4 illustrates the
modes for a system consisting of two masses connected by springs. One pattern is
when both masses oscillate left and right in unison, and another is when the masses
move toward and away from each other.
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— —_—  —— -~
(a) Mode 1 (b) Mode 2

Figure 6.4: Modes of vibration for a system consisting of two masses connected by springs.
In (a) the masses move left and right in synchronization in (b) they move toward or against
each other.

The initial condition response of a linear system can be written in terms of a
matrix exponential involving the dynamics matrix A. The properties of the matrix A
therefore determine the resulting behavior of the system. Given a matrix A € R"*",
recall that v is an eigenvector of A with eigenvalue A if

Av = Av.

In general A and v may be complex-valued, although if A is real-valued, then for
any eigenvalue A its complex conjugate A* will also be an eigenvalue (with v* as
the corresponding eigenvector).

Suppose first that A and v are a real-valued eigenvalue/eigenvector pair for A.
If we look at the solution of the differential equation for x(0) = v, it follows from
the definition of the matrix exponential that

t 1 2.2 A% At
eAv:(I+At+§At +-~-)v:v+ltv+TV—l—-~-:e V.

The solution thus lies in the subspace spanned by the eigenvector. The eigenvalue
A describes how the solution varies in time, and this solution is often called a mode
of the system. (In the literature, the term “mode” is also often used to refer to the
eigenvalue rather than the solution.)

If we look at the individual elements of the vectors x and v, it follows that

x[(t) el’v,- Vi

x;(t) - eMy; VT"

and hence the ratios of the components of the state x are constants for a (real)
mode. The eigenvector thus gives the “shape” of the solution and is also called
a mode shape of the system. Figure 6.5 illustrates the modes for a second-order
system consisting of a fast mode and a slow mode. Notice that the state variables
have the same sign for the slow mode and different signs for the fast mode.

The situation is more complicated when the eigenvalues of A are complex.
Since A has real elements, the eigenvalues and the eigenvectors are complex con-
jugates A = 0 +iw and v = u =+ iw, which implies that

v+v* y—v*

=T e
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Figure 6.5: The notion of modes for a second-order system with real eigenvalues. The left
figure shows the phase portrait and the modes corresponding to solutions that start on the
eigenvectors (bold lines). The corresponding time functions are shown on the right.

Making use of the matrix exponential, we have
My = M (utiw) = % ((ucos r — wsinor) +i(usin or +wcos or)),

from which it follows that

1 .
ANy = 3 (eA’v—l— eA’v*> = ue® cos wt — we®’ sin wt,

1 .
Aty = % (eA’v — eAtv*> = ue®' sin ot + we®’ cos wr.
i

A solution with initial conditions in the subspace spanned by the real part # and
imaginary part w of the eigenvector will thus remain in that subspace. The solution
will be a logarithmic spiral characterized by ¢ and w. We again call the solution
corresponding to A a mode of the system, and v the mode shape.

If a matrix A has n distinct eigenvalues Ay, ..., A,, then the initial condition re-
sponse can be written as a linear combination of the modes. To see this, suppose
for simplicity that we have all real eigenvalues with corresponding unit eigenvec-
tors vi,...,v,. From linear algebra, these eigenvectors are linearly independent,
and we can write the initial condition x(0) as

x(0) = avi + vy + -+ ayvy.
Using linearity, the initial condition response can be written as
x(t) = Otle/htvl + Oﬂzebtvz 4t OCne)L"tvn.

Thus, the response is a linear combination of the modes of the system, with the
amplitude of the individual modes growing or decaying as e, The case for dis-
tinct complex eigenvalues follows similarly (the case for nondistinct eigenvalues is
more subtle and requires making use of the Jordan form discussed in the previous
section).
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Example 6.5 Coupled spring-mass system
Consider the spring—mass system shown in Figure 6.4, but with the addition of
dampers on each mass. The equations of motion of the system are

mgy = —2kq1 — cq1 +kqa, mgr = kqi —2kqr — cqo.

In state space form, we define the state to be x = (¢1,92,41,¢2), and we can rewrite
the equations as

(0 0 1 )
0 0 0 1
dx 2k k c
i | "m om m Y|
k2%, _c
m m m

We now define a transformation z = 7T'x that puts this system into a simpler form.
Letz; = %(ch +q).0=21,3= %(6]1 —q2) and z4 = 3, so that

1 1 0 O
Lfo o 1 1
=Tx=311 -1 0 o|"
0 0 1 -1
In the new coordinates, the dynamics become
0 1 0 0
k c
-— — 0 0
dz m m
a o o o 1 |°
0o o X _c¢
m m’

and we see that the model is now in block diagonal form.

In the z coordinates, the states z; and zp parameterize one mode with eigen-
values A ~ —c/(2m) +i\/k/m, and the states z3 and z4 another mode with A ~
—c/(2m) £ iy/3k/m. From the form of the transformation 7 we see that these
modes correspond exactly to the modes in Figure 6.4, in which ¢g; and g, move ei-
ther toward or against each other. The real and imaginary parts of the eigenvalues
give the decay rates ¢ and frequencies @ for each mode. \%

6.3 Input/Output Response

In the previous section we saw how to compute the initial condition response using
the matrix exponential. In this section we derive the convolution equation, which
includes the inputs and outputs as well.
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The Convolution Equation

We return to the general input/output case in equation (6.3), repeated here:

d
d—f:ijLBu, y=Cx+Du. (6.13)

Using the matrix exponential, the solution to equation (6.13) can be written as
follows.

Theorem 6.4. The solution to the linear differential equation (6.13) is given by
t
X(1) = x(0) + / A Bu()dr. (6.14)
0

Proof. To prove this, we differentiate both sides and use the property (6.8) of the
matrix exponential. This gives

d t
= AMx(0) + / A= Bu(t)dt + Bu(t) = Ax+ Bu,
0
which proves the result since the initial conditions are also met. Notice that the
calculation is essentially the same as for proving the result for a first-order equa-

tion. O

It follows from equations (6.13) and (6.14) that the input/output relation for a
linear system is given by

(1) = CeMx(0) + /0 t e Bu(t)dt + Du(r). (6.15)

It is easy to see from this equation that the output is jointly linear in both the
initial conditions and the input, which follows from the linearity of matrix/vector
multiplication and integration.

Equation (6.15) is called the convolution equation, and it represents the general
form of the solution of a system of coupled linear differential equations. We see
immediately that the dynamics of the system, as characterized by the matrix A,
plays a critical role in both the stability and performance of the system. Indeed,
the matrix exponential describes both what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can be given using the concept
of the impulse response of a system. Consider the application of an input signal
u(t) given by the following equation:

0 t <0,
ult)=pe(t)=q1/e 0<r<e, (6.16)
0 t>E.

This signal is a pulse of duration € and amplitude 1/¢, as illustrated in Figure 6.6a.
We define an impulse §(t) to be the limit of this signal as € — 0:

4
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Figure 6.6: Pulse response and impulse response. (a) The rectangles show pulses of width
5, 2.5, and 0.8, each with total area equal to 1. The arrow denotes an impulse §(¢) defined
by equation (6.17). The corresponding pulse responses for a linear system with eigenvalues
A = {-0.08,—0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of duration 0.8.

0(t) = lim pe(t). (6.17)

£—0

This signal, sometimes called a delta function, is not physically achievable but
provides a convenient abstraction in understanding the response of a system. Note
that the integral of an impulse is 1

/5 dr_/hmpg r_hm/pe

= lim l/edrzl, t>0.
e—=0J0
In particular, the integral of an impulse over an arbitrarily short period of time that
includes the origin is identically 1.
We define the impulse response h(t) for a system as the output of the system
with zero initial condition and having an impulse as its input:

t
/= / CAIBE (1) dt+ D8 () = Cé'B+DS(1), 6.18)
0

where the second equality follows from the fact that §(¢) is zero everywhere except
the origin and its integral is identically 1. We can now write the convolution equa-
tion in terms of the initial condition response and the convolution of the impulse
response and the input signal:

3(t) = CeMx(0) + /0 "Wt — yu(t)dr 6.19)

One interpretation of this equation, explored in Exercise 6.2, is that the response
of the linear system is the superposition of the response to an infinite set of shifted
impulses whose magnitudes are given by the input u(r). This is essentially the
argument used in analyzing Figure 6.2 and deriving equation (6.5). Note that the
second term in equation (6.19) is identical to equation (6.5), and it can be shown
that the impulse response is the derivative of the step response.
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The use of pulses pg(f) as approximations of the impulse function §(¢) also
provides a mechanism for identifying the dynamics of a system from experiments.
Figure 6.6b shows the pulse responses of a system for different pulse widths. No-
tice that the pulse responses approach the impulse response as the pulse width
goes to zero. As a general rule, if the fastest eigenvalue of a stable system has real
part —Omax, then a pulse of length € will provide a good estimate of the impulse
response if €0 < 1. Note that for Figure 6.6, a pulse width of € =1 s gives
€0max = 0.62 and the pulse response is already close to the impulse response.

Coordinate Invariance

The components of the input vector u and the output vector y are determined by
the chosen inputs and outputs of a model, but the state variables depend on the
coordinate frame chosen to represent the state. This choice of coordinates affects
the values of the matrices A, B, and C that are used in the model. (The direct term
D is not affected since it maps inputs to outputs.) We now investigate some of the
consequences of changing coordinate systems.

Introduce new coordinates z by the transformation z = T'x, where T is an in-
vertible matrix. It follows from equation (6.3) that

d o
Zj = T(Ax+Bu) = TAT 'z + TBu =: Az + Bu,

y=Cx+Du= CT 'z4+Du=: Cz+ Du.

The transformed system has the same form as equation (6.3), but the matrices A,
B, and C are different:

A=TAT"', B=TB, C=cr ' (6.20)

There are often special choices of coordinate systems that allow us to see a partic-
ular property of the system, hence coordinate transformations can be used to gain
new insight into the dynamics. The eigenvalues of A are the same as those of A, so
stability is not affected.

We can also compare the solution of the system in transformed coordinates to
that in the original state coordinates. We make use of an important property of the
exponential map,

oTST TST,

which can be verified by substitution in the definition of the matrix exponential.
Using this property, it is easy to show that

- .
x(t)=T""2(t) =T """ Tx(0) + T~ / AP Bu(t)dr.
0

From this form of the equation, we see that if it is possible to transform A into
a form A for which the matrix exponential is easy to compute, we can use that
computation to solve the general convolution equation for the untransformed state
x by simple matrix multiplications. This technique is illustrated in the following
example.
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Figure 6.7: Coupled spring mass system. Each mass is connected to two springs with stiff-
ness k and a viscous damper with damping coefficient ¢. The mass on the right is driven
through a spring connected to a sinusoidally varying attachment.

Example 6.6 Coupled spring-mass system

Consider the coupled spring—mass system shown in Figure 6.7. The input to this
system is the sinusoidal motion of the position of the rightmost spring, and the
output is the position of each mass, ¢; and ¢;. The equations of motion are given
by

mégy = —2kqy —cq1 +kqo, méo = kqy — 2kgz — cqo + ku.

In state space form, we define the state to be x = (g1, 92,41, 42), and we can rewrite
the equations as

0 1
0
0 0 0 1 0
d
dt m m m
k 2% ¢ k
- = 0 = m
m m m 7/

This is a coupled set of four differential equations and is quite complicated to solve

in analytical form.

The dynamics matrix is the same as in Example 6.5, and we can use the coor-

dinate transformation defined there to put the system in block diagonal form:

0 1 0 0 (O
k c k
= |Tm w00 o
a_ o o o 1|° 0
0 3k ¢ _k
m m 2m /

Note that the resulting matrix equations are block diagonal and hence decoupled.
We can solve for the solutions by computing the solutions of two sets of second-
order systems represented by the states (z;,z2) and (z3,z4). Indeed, the functional
form of each set of equations is identical to that of a single spring—mass system.
(The explicit solution is derived in Section 7.3.)

Once we have solved the two sets of independent second-order equations, we
can recover the dynamics in the original coordinates by inverting the state trans-
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Figure 6.8: Transient versus steady-state response. The input to a linear system is shown in
(a), and the corresponding output with x(0) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

formation and writing x = 7~ !z. We can also determine the stability of the system
by looking at the stability of the independent second-order systems. \%

Steady-State Response

Given a linear input/output system

d
d—); = Ax+ Bu, y =Cx+ Du, (6.21)
the general form of the solution to equation (6.21) is given by the convolution

equation: .
W(t) = CeMx(0) + /O CeM ) Bu(t)dT+ Dult).

We see from the form of this equation that the solution consists of an initial condi-
tion response and an input response.

The input response, corresponding to the last two terms in the equation above,
itself consists of two components—the transient response and the steady-state re-
sponse. The transient response occurs in the first period of time after the input
is applied and reflects the mismatch between the initial condition and the steady-
state solution. The steady-state response is the portion of the output response that
reflects the long-term behavior of the system under the given inputs. For inputs
that are periodic the steady-state response will often be periodic, and for constant
inputs the response will often be constant. An example of the transient and the
steady-state response for a periodic input is shown in Figure 6.8.

A particularly common form of input is a step input, which represents an abrupt
change in input from one value to another. A unit step (sometimes called the Heav-
iside step function) is defined as

0 r=0,
1 ¢t>0.

The step response of the system (6.21) is defined as the output y(z) starting from
zero initial condition (or the appropriate equilibrium point) and given a step input.
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Figure 6.9: Sample step response. The rise time, overshoot, settling time, and steady-state
value give the key performance properties of the signal.

We note that the step input is discontinuous and hence is not practically imple-
mentable. However, it is a convenient abstraction that is widely used in studying
input/output systems.

We can compute the step response to a linear system using the convolution
equation. Setting x(0) = 0 and using the definition of the step input above, we
have

! t
y(0) = [ €A Bu(@)dr+Dulr) =C [ A-IBdr+D
0 0

= C/OteAGBdG—i—D =C (A7'A°B)|0_ +D
=CA 'MB—CA 'B+D.
We can rewrite the solution as
y(it)=CA 'e¥B+D—-CA"'B, 1>0. (6.22)

transient steady-state

The first term is the transient response and it decays to zero as ¢ — oo if all eigen-
values of A have negative real parts (implying that the origin is a stable equilibrium
point in the absence of any input). The second term, computed under the assump-
tion that the matrix A is invertible, is the steady-state step response and represents
the value of the output for large time.

A sample step response is shown in Figure 6.9. Several key properties are used
when describing a step response. The steady-state value yss of a step response is
the final level of the output, assuming it converges. The rise time T; is the amount
of time required for the signal to first go from 10% of its final value to 90% of
its final value. (It is possible to define other limits as well, but in this book we
shall use these percentages unless otherwise indicated.) The overshoot M, is the
percentage of the final value by which the signal initially rises above the final
value. This usually assumes that future values of the signal do not overshoot the
final value by more than this initial transient, otherwise the term can be ambiguous.
Finally, the settling time Ty is the amount of time required for the signal to stay
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Figure 6.10: Response of a compartment model to a constant drug infusion. A simple dia-
gram of the system is shown in (a). The step response (b) shows the rate of concentration
buildup in compartment 2. In (c) a pulse of initial concentration is used to speed up the
response.

within 2% of its final value for all future times. The settling time is also sometimes
defined as reaching 1% or 5% of the final value (see Exercise 6.7). In general these
performance measures can depend on the amplitude of the input step, but for linear
systems the last three quantities defined above are independent of the size of the
step.

Example 6.7 Compartment model

Consider the compartment model illustrated in Figure 6.10 and described in more
detail in Section 4.6. Assume that a drug is administered by constant infusion in
compartment V; and that the drug has its effect in compartment V,. To assess how
quickly the concentration in the compartment reaches steady state we compute
the step response, which is shown in Figure 6.10b. The step response is quite slow,
with a settling time of 39 min. It is possible to obtain the steady-state concentration
much faster by having a faster injection rate initially, as shown in Figure 6.10c.
The response of the system in this case can be computed by combining two step
responses (Exercise 6.3). \Y%

Frequency Response

Another common input signal to a linear system is a sinusoid (or a combination
of sinusoids). The frequency response of an input/output system measures the way
in which the system responds to a sinusoidal excitation on one of its inputs. As
we have already seen for scalar systems, the particular solution associated with
a sinusoidal excitation is itself a sinusoid at the same frequency. Hence we can
compare the magnitude and phase of the output sinusoid to the input.

To see this in more detail, we must evaluate the convolution equation (6.15) for
u = cos t. This turns out to be a very messy calculation, but we can make use of
the fact that the system is linear to simplify the derivation. It follows from Euler’s
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formula that |
CoS @t = 3 <e’w’ + e*”‘”> )

Since the system is linear, it suffices to compute the response of the system to the
complex input u(t) = ¢ and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding to s = i@ and s = —i.

Applying the convolution equation to the input u = ¢* we have

!
y(t) = Ce'x(0) +/ CA VBT dT + De”
0

t
= CeMx(0) +CeAt/ eI BAT 4+ De".
0

If we assume that none of the eigenvalues of A are equal to +i®, then the matrix
sl — A is invertible, and we can write

t
y(t) = CeM'x(0) + Ce ((sI—A)_le(SI_A)TB> ‘0 + De*
= CeMx(0) +CeM (sI —A) 7! (e(”_A)’ —I)B+Des’
= CeMx(0)4+C(sI —A)"'e"B—Ce (sI —A) !B+ De*,
and we obtain

y(1) = CeM (x(O) - (sl—A)—‘B) + (C(sI—A)_lB—i—D) o (6.23)

transient steady-state

Notice that once again the solution consists of both a transient component and a
steady-state component. The transient component decays to zero if the system is
asymptotically stable and the steady-state component is proportional to the (com-
plex) input u = e*.
We can simplify the form of the solution slightly further by rewriting the steady-
state response as
yss(t) _ Meieest _ A/We(sH—iG)7

where _
Me® = G(s) =C(sI —A)"'B+D, (6.24)

and M and 6 represent the magnitude and phase of the complex number G(s).
When s = i@, we say that M = |G(i®)| is the gain and 6 = arg G(i®) is the phase
of the system at a given forcing frequency ®. Using linearity and combining the
solutions for s = +i® and s = —i®, we can show that if we have an input u =
Aysin(@t + y) and an output y = Ay sin(@? + @), then

A
gain(®) = A—y =M, phase(®) = ¢ —y = 0.

The steady-state solution for a sinusoid u = cos @t = sin(@t + 7/2) is now given
by .
yss(t) = Re(G(iw)e'™) = M cos(wr + ). (6.25)
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Figure 6.11: Steady-state response of an asymptotically stable linear system to a sinusoid.
(a) A sinusoidal input of magnitude A, (dashed) gives a sinusoidal output of magnitude A,
(solid), delayed by AT seconds. (b) Frequency response, showing gain and phase. The gain
is given by the ratio of the output amplitude to the input amplitude, M = A, /A,,. The phase
lag is given by 6 = —27AT /T it is negative for the case shown because the output lags the
input.

If the phase 6 is positive, we say that the output leads the input, otherwise we say
it lags the input.

A sample steady-state sinusoidal response is illustrated in Figure 6.11a. The
dashed line shows the input sinusoid, which has amplitude 1. The output sinusoid
is shown as a solid line and has a different amplitude plus a shifted phase. The
gain is the ratio of the amplitudes of the sinusoids, which can be determined by
measuring the height of the peaks. The phase is determined by comparing the ratio
of the time between zero crossings of the input and output to the overall period of

the sinusoid: AT
0=-2m —.
T
A convenient way to view the frequency response is to plot how the gain and
phase in equation (6.24) depend on @ (through s = i®). Figure 6.11b shows an
example of this type of representation (called a Bode plot and discussed in more

detail in Section 9.6).

Example 6.8 Active band-pass filter

Consider the op amp circuit shown in Figure 6.12a. We can derive the dynamics of
the system by writing the nodal equations, which state that the sum of the currents
at any node must be zero. Assuming that v_ = v, = 0, as we did in Section 4.3,

we have 4 i 4
Vi —W2 V2 V2 V3 V3
0= —Ci—=, 0=Ci—+=4+C—.

R, Var 1a’thszLZdt

Choosing v, and v3 as our states and using these equations, we obtain

@_vl—vz @_ R )
dt RCy ’ dt _R2C2 R G, '
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(a) Circuit diagram (b) Frequency response
Figure 6.12: Active band-pass filter. The circuit diagram (a) shows an op amp with two RC
filters arranged to provide a band-pass filter. The plot in (b) shows the gain and phase of the

filter as a function of frequency. Note that the phase starts at -90° due to the negative gain of
the operational amplifier.

Rewriting these in linear state space form, we obtain

1 1
dx " R,C 0 R.C
ax _ 1C 1C _
I ) ) | X+ 1| y (O 1] X, (6.26)
R R, R C,

where x = (v2,v3), u = v, and y = v3.

The frequency response for the system can be computed using equation (6.24):

j - Ry RiCis .
Me® =C(s1—A)'B+D=—— . s=io.
( ) R (1—|—R1C1S)(1+R2C2S)

The magnitude and phase are plotted in Figure 6.12b for Ry = 100 Q, R, = 5 kQ,
and C; = C; = 100 pF. We see that signals with frequencies around 15 rad/s pass
through the circuit with small attenuation but that signals below 2 rad/s or above
100 rad/s are attenuated. At 0.1 rad/s the input signal is attenuated by a factor of
20. This type of circuit is called a band-pass filter since it passes through signals
in the band of frequencies between 5 and 50 rad/s (approximately). \%

As in the case of the step response, a number of standard properties are defined
for frequency responses. The gain of a system at @ = 0 is called the zero frequency
gain and corresponds to the ratio between a constant input and the steady output:

My=G(0)=—CA™'B+D

(compare to equation (6.24)). The zero frequency gain is well defined only if A is
invertible (i.e., if it does not have eigenvalues at 0). It is also important to note that
the zero frequency gain is a relevant quantity only when a system is stable about
the corresponding equilibrium point. So, if we apply a constant input u = r, then
the corresponding equilibrium point x. = —A~!Br must be stable in order to talk
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about the zero frequency gain. (In electrical engineering, the zero frequency gain
is often called the DC gain. DC stands for direct current and reflects the common
separation of signals in electrical engineering into a direct current (zero frequency)
term and an alternating current (AC) term.)

The bandwidth ay, of a system is the frequency range over which the gain has
decreased by no more than a factor of 1/1/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the reference value is taken as the zero
frequency gain. For systems that attenuate low frequencies but pass through high
frequencies, the reference gain is taken as the high-frequency gain. For a system
such as the band-pass filter in Example 6.8, bandwidth is defined as the range of
frequencies where the gain is larger than 1/+/2 of the gain at the center of the band.
(For Example 6.8 this would give a bandwidth of approximately 2 to 100 rad/s.)

Other important properties of the frequency response are the resonant peak M,
the largest value of the frequency response, and the peak frequency @y, the fre-
quency where the maximum occurs. These two properties describe the frequency
of the sinusoidal input that produces the largest possible output and the gain at the
frequency.

Example 6.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomic force microscope in
contact mode, discussed in Section 4.5. The basic dynamics are given by equa-
tion (4.24). The piezo stack can be modeled by a second-order system with un-
damped natural frequency @; and damping ratio {3. The dynamics are then de-
scribed by the linear system

0 1 0 0 0
dx | —ko/(m1+m2) —caf(my+mz) 1/my 0 ot 0 y
dr 0 0 0 W3 0 ’
0 0 —w3 28303 3

nip m1k2 micy
y = 1 0 x,
my+my \my+my  mp+my

where the input is the drive signal to the amplifier and the output is the elongation
of the piezo. The frequency response of the system is shown in Figure 6.13b. The
zero frequency gain of the system is My = 1. There are two resonant poles with
peaks M;; = 2.12 at @y = 238 krad/s and My, = 4.29 at @np = 746 krad/s.
There is also a dip in the gain My = 0.556 for wy,g = 268 krad/s. This dip, called
an antiresonance, is associated with a dip in the phase and limits the performance
when the system is controlled by simple controllers, as we will see in Chapter 11.
The bandwidth is the frequency range over which the gain has decreased by no
more than a factor of 1/ /2 from its reference value, which in this case is the
zero frequency gain. Neglecting the slight dip at the antiresonance, the bandwidth
becomes @, = 1.12 Mrad/s.

\%

So far we have used the frequency response to compute the output for a single
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(a) AFM block diagram (b) Frequency response

Figure 6.13: AFM frequency response. (a) A block diagram for the vertical dynamics of an
atomic force microscope in contact mode. The plot in (b) shows the gain and phase for the
piezo stack. The response contains two frequency peaks at resonances of the system, along
with an antiresonance at @ = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes. The dashed
horizontal line represents the gain equal to the zero frequency gain divided by v/2.

sinusoid. The transfer function can also be used to compute the output for any
periodic signal. Consider a system with the frequency response G(i®). Let the
input signal u(¢) be periodic and decompose it into a sum of a set of sines and
cosines,
u(t) = Z aisin(kwy t) + by cos(kwy 1),
k=0

where oy is the fundamental frequency of the periodic input. Using equation (6.25)
and superposition, we find that the input u(¢) generates the steady state output

y(t) = Z |G(ikoy)| (ak sin (k¢ t + arg G(ikwy)) + by cos (ks 1 + arg G(ika)f))) .
k=0

The gain and phase at each frequency are determined by the frequency response
G(im), as given in equation (6.24). If we know the steady-state frequency response
G(im), we can thus compute the response to any (periodic) signal using superpo-
sition.

We can go even further to approximate the response to a transient signal. Consider
a system with the transfer function G(s) and the input u. Approximate the initial
part of the function u(r) by the periodic signal

u(t) if 0<r<T)/2,

up(t) =
p(?) 0 if T/2<t<T,

with period T'. Since u;, is periodic it has a Fourier transform ug(i®), and it follows

from equation (6.25) that the Fourier transform of y, is yr(i®w) = G(io)up(i),

where up and yr represent the Fourier transforms of u, and y,, respectively. Tak-

4
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ing the inverse Fourier transform then gives the time response y,(¢). Efficient al-
gorithms can be obtained using fast Fourier transforms (Exercise ??).

Sampling

It is often convenient to use both differential and difference equations in modeling
and control. For linear systems it is straightforward to transform from one to the
other. Consider the general linear system described by equation (6.13) and assume
that the control signal is constant over a sampling interval of constant length 4. It
follows from equation (6.14) of Theorem 6.4 that

t+h
x(t+h) = Ahx(r) + / A DB (D dT = Bx(t) +Tu(t),  (627)

where we have assumed that the discontinuous control signal is continuous from
the right. The behavior of the system at the sampling times # = kh is described by
the difference equation

x[k+ 1] = ®x[k] 4 Tulk], y[k] = Cx[k] + Dulk], (6.28)

where

=M, r:(ﬁ&wga

Notice that the difference equation (6.28) is an exact representation of the behavior
of the system at the sampling instants. Similar expressions can also be obtained if
the control signal is linear over the sampling interval.

The transformation from equation (6.27) to equation (6.28) is called sampling.
The relations between the system matrices in the continuous and sampled repre-
sentations are as follows:

| h 1
A=—log®, B:(/&wg . (6.29)
h 0

Notice that if A is invertible, we have
r=A"'(M-1)B.

All continuous-time systems can be sampled to obtain a discrete-time version,
but there are discrete-time systems that do not have a continuous-time equivalent.
The issue is related to logarithms of matrices and there are several subtleties; for
example, there may be many solutions. A necessary but not sufficient condition is
that the matrix & is nonsingular, see [Gan60]. A key result is that a real matrix has
a real logarithm if and only if it is invertible and if each Jordan block associated
with a negative eigenvalue occurs an even number of times [Cul66]. This implies
that the matrix @ cannot have isolated eigenvalues on the negative real axis. A
detailed discussion of sampling is given in [SAHS84].

Example 6.10 IBM Lotus server
In Example 3.5 we described how the dynamics of an IBM Lotus server were
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obtained as the discrete-time system
x[k+ 1] = ax[k] + bulk],

where a = 0.43, b = 0.47, the sampling period is &# = 60 s, and x denotes the total
requests being served . A differential equation model is needed if we would like to
design control systems based on continuous-time theory. Such a model is obtained
by applying equation (6.29); hence

loga

h At -1
A==24—_o0141, Bz(/oe dt) b=0.0116,

and we find that the difference equation can be interpreted as a sampled version of
the ordinary differential equation

% — —0.0141x+0.0116u.

6.4 Linearization \%

As described at the beginning of the chapter, a common source of linear system
models is through the approximation of a nonlinear system by a linear one. It is
common practice in control engineering to design controllers based on an approx-
imate linear model and to verify the results by simulating the closed loop system
using a nonlinear model. In this section we describe how to locally approximate
a nonlinear system by a linear one, and discuss what can be inferred about the
stability of the original system. We begin with an illustration that controllers can
successfully be designed from approximate linear models using the cruise control
example, which is described in more detail in Chapter 4.

Example 6.11 Cruise control
The dynamics for the cruise control system are derived in Section 4.1 and have the
form dv

1
mo = 0,,uT (04,v) —mgCrsgn(v) — EpCdsz —mgsin@, (6.30)

where the first term on the right-hand side of the equation is the force generated
by the engine and the remaining three terms are the rolling friction, aerodynamic
drag, and gravitational disturbance force. There is an equilibrium (v, u.) when the
force applied by the engine balances the disturbance forces.

To explore the behavior of the system near the equilibrium we will linearize the
system. A Taylor series expansion of equation (6.30) around the equilibrium gives

d(v—rve)
dt
where

271
o T (o C/A
a:_ue n ( nve)+p d Ve7 bg:gcosee, b
m

=a(ve —v) —bg(0 — 6;) + b(u — ue) +higher-order terms, ~ (6.31)

_ 06, T (0ve)

. (6.32)

Notice that the term corresponding to rolling friction disappears if v = 0. For a
car in fourth gear with ve = 20 m/s, 6. = 0 and the numerical values for the car
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Figure 6.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4°. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controller gains are k, = 0.5
and k; =0.1.

from Section 4.1, the equilibrium value for the throttle is . = 0.1687 and the
parameters are a = 0.0101, b = 1.32, and b, = 9.8. This linear model describes
how small perturbations in the velocity about the nominal speed evolve in time.
We will later describe how to design a proportional-integral (PI) controller for
the system. Here we will simply assume that we have obtained a good controller
and we will compare the behaviors when the closed loop system is simulated us-
ing the nonlinear model and the linear approximation. The simulation scenario is
that the car is running with constant speed on a horizontal road and the system
has stabilized so that the vehicle speed and the controller output are constant. Fig-
ure 6.14 shows what happens when the car encounters a hill with a slope of 4° at
time ¢ =5 s. The results for the nonlinear model are solid curves and those for the
linear model are dashed curves. The differences between the curves are very small,
and control design based on the linearized model is thus validated. \%

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, single-output nonlinear system

d
d—:: (x,u), xeR"uek,

y:h(xvu)7 )’GR

(6.33)

with an equilibrium point at x = x., u = u.. Without loss of generality we can
assume that x. = 0 and u, = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study the local behavior of the system around the equilibrium point (xe, ue),
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we suppose that x — x. and u — u, are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with the (lower-order) lin-
ear terms. This is roughly the same type of argument that is used when we do
small-angle approximations, replacing sin @ with 6 and cos @ with 1 for 0 near
Zero.

We define a new set of state variables z, as well as inputs v and outputs w:

7= X—Xe, V=1U— U, w=y—h(Xe,Ue).

These variables are all close to zero when we are near the equilibrium point, and so
in these variables the nonlinear terms can be thought of as the higher-order terms
in a Taylor series expansion of the relevant vector fields (assuming for now that
these exist).

Formally, the Jacobian linearization of the nonlinear system (6.33) is

% _Az+Bv,  w=CziDv, (6.34)
where
h h
:3f , Bzgf , ng , ng (6.35)
X (Xe tte) u (e, tte) X (e tte) u (e tte)

The system (6.34) approximates the original system (6.33) when we are near the
equilibrium point about which the system was linearized. It follows from Theo-
rem 5.3 that if the linearization is asymptotically stable, then the equilibrium point
Xe 1s locally asymptotically stable for the full nonlinear system.

Example 6.12 Cruise control using Jacobian linearization
Consider again the cruise control system from Example 6.11 with 6 taken as a con-
stant 0.. We can write the dynamics as a first-order, nonlinear differential equation:

dx Q 1 pC A )
i flou) = ;nuT(anx) —gCpsgn(x) — EPdeZ — gsin 6.,
y = h(x,u) = x,

where x = v is the velocity of the vehicle and u is the throttle. We use the velocity
as the output of the system (since this is what we are trying to control).

If we linearize the dynamics of the system about an equilibrium point x = v, |,
0, u = u. we obtain Using the formulas above, we obtain

- af B _uea,%T/(anxe)erCdAxe B af 0T (e
© ox - m ’ "~ Ju - m ’
(xestte) (xestte)
x (Xestte) u (Xestte)

where we have used the fact that sgn(x) = 1 for x > 0. This matches the results
in Example 6.11, remembering that we have used x as the system state (vehicle
velocity). \%
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It is important to note that we can define the linearization of a system only near

an equilibrium point. To see this, consider a polynomial system
dx 5 3

I =ag+a1x+axyx”+azx” +u,
where ap # 0. A set of equilibrium points for this system is given by (xe,ue) =
(Xe, —a0 — a1 xe — azxg — agxg), and we can linearize around any of them. Suppose
that we try to linearize around the origin of the system x = 0, u = 0 (which does not
correspond to an equilibrium point for this example). If we drop the higher-order

terms in x, then we get

dx

I ap+ayx+u,
which is not the Jacobian linearization if ag # 0. The constant term must be kept,
and it is not present in equation (6.34). Furthermore, even if we kept the constant
term in the approximate model, the system would quickly move away from this
point (since it is “driven” by the constant term ag), and hence the approximation
could soon fail to hold.

Software for modeling and simulation frequently has facilities for performing
linearization symbolically or numerically. The MATLAB command trim finds
the equilibrium, and 1 i nmod extracts linear state space models from a SIMULINK
system around an operating point.

Example 6.13 Vehicle steering

Consider the vehicle steering system introduced in Example 3.11. The nonlinear
equations of motion for the system are given by equations (3.25)—(3.27) and can
be written as

. veos(o(6)+0)
d | vsin(a(0)+6) B atand
- z =  sina(6) , a(d) = arctan< )
a

The state of the system is the position x,y of the center of mass and the orientation
0 of the vehicle. The control variable is the steering angle &. Furthermore b is the
wheelbase and a is the distance between the center of mass and the rear wheel.
We are interested in the motion of the vehicle about a straight-line path (6 = 6p)
with constant velocity vo # 0. To find the relevant equilibrium point, we first set
6 = 0 and we see that we must have § = 0, corresponding to the steering wheel
being straight. This also yields & = 0. Looking at the first two equations in the
dynamics, we see that the motion in the xy plane is by definition not at equilibrium
since X2 + y*> = v2 # 0. Therefore we cannot formally linearize the full model.
Suppose instead that we are concerned with the lateral deviation of the vehicle
from a straight line. For simplicity, we let 6. = 0, which corresponds to driving
along the x axis. We can then focus on the equations of motion in the y and 6
directions. With some abuse of notation we introduce the state x = (y,0) and u = 0.
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The system is then in standard form with

vosin (ot (u) +x7)
flx,u) = [ vosina(u) ] , oa(u)= arctan<

a

t
a anu>, h(x,u) = xj.

The equilibrium point of interest is given by x = (0,0) and u = 0. To compute
the linearized model around this equilibrium point, we make use of the formu-
las (6.35). A straightforward calculation yields

A= af _ [0 wo B— af _ (avo/b
~ Ox xi(())_ 0 0)~ - Ju =0 ~ Lw/b )’
dh dh
c=2" :[1 o], p=2" o,
0x | x=0 Ju|x=0
u=0 u=0
and the linearized system
dx
- Ax—+ Bu, y=Cx+Du (6.36)

thus provides an approximation to the original nonlinear dynamics.

The linearized model can be simplified further by introducing normalized vari-
ables, as discussed in Section 3.3. For this system, we choose the wheelbase b as
the length unit and the time unit as the time required to travel a wheelbase. The
normalized state is thus z = (x; /b, x; ), and the new time variable is T = vyt /b. The
model (6.36) then becomes

dz _ (z+y) _ (0 1 Y B

dT_[ R I PO EE S A 1 y_(l o]z, (6.37)
where Y = a/b. The normalized linear model for vehicle steering with nonslipping
wheels is thus a linear system with only one parameter 7. \%

Feedback Linearization

Another type of linearization is the use of feedback to convert the dynamics of a
nonlinear system into those of a linear one. We illustrate the basic idea with an
example.

Example 6.14 Cruise control
Consider again the cruise control system from Example 6.11, whose dynamics are
given in equation (6.30):

d 1
me = 0, uT (04,v) —mgCrsgn(v) — EpCdsz —mgsin6.

dt
If we choose u as a feedback law of the form
1 1 )
_ 7 , — A , 6.38
u T (@) <u+mgC sgn(v) + 2pCd v ) (6.38)
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Figure 6.15: Feedback linearization. A nonlinear feedback of the form u = a(x,v) is used
to modify the dynamics of a nonlinear process so that the response from the input v to the
output y is linear. A linear controller can then be used to regulate the system’s dynamics.

then the resulting dynamics become

dv
— =da+d 6.39
mdt i+d, ( )

where d(1) = —mgsin 0(¢) is the disturbance force due the slope of the road (which
may be changing as we drive). If we now define a feedback law for i (such as a
proportional-integral-derivative [PID] controller), we can use equation (6.38) to
compute the final input that should be commanded.

Equation (6.39) is a linear differential equation. We have essentially “inverted”
the nonlinearity through the use of the feedback law (6.38). This requires that we
have an accurate measurement of the vehicle velocity v as well as an accurate
model of the torque characteristics of the engine, gear ratios, drag and friction
characteristics, and mass of the car. While such a model is not generally available
(remembering that the parameter values can change), if we design a good feedback
law for i, then we can achieve robustness to these uncertainties. \%

More generally, we say that a system of the form

e, y=h),
is feedback linearizable if there exists a control law u = o¢(x,v) such that the result-
ing closed loop system is input/output linear with input v and output y, as shown
in Figure 6.15. To fully characterize such systems is beyond the scope of this text,
but we note that in addition to changes in the input, the general theory also allows
for (nonlinear) changes in the states that are used to describe the system, keeping
only the input and output variables fixed. More details of this process can be found
in the textbooks by Isidori [Isi95] and Khalil [KhaO1].

One case that comes up relatively frequently, and is hence worth special mention,
is the set of mechanical systems of the form

M(q)G+C(q,q) = B(q)u.

Here g € R” is the configuration of the mechanical system, M(g) € R"™*" is the
configuration-dependent inertia matrix, C(g,q) € R" represents the Coriolis forces
and additional nonlinear forces (such as stiffness and friction), and B(g) € R"*?
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is the input matrix. If p = n, then we have the same number of inputs and con-
figuration variables, and if we further have that B(g) is an invertible matrix for all
configurations ¢, then we can choose

u=B"(q)(M(q)v+C(q,9)). (6.40)
The resulting dynamics become
M(q)g=M(q)y =  §=v

which is a linear system. We can now use the tools of linear system theory to
analyze and design control laws for the linearized system, remembering to apply
equation (6.40) to obtain the actual input that will be applied to the system.

This type of control is common in robotics, where it goes by the name of com-
puted torque, and in aircraft flight control, where it is called dynamic inversion.
Some modeling tools like Modelica can generate the code for the inverse model
automatically. One caution is that feedback linearization can often cancel out ben-
eficial terms in the natural dynamics, and hence it must be used with care. Exten-
sions that do not require complete cancellation of nonlinearities are discussed in
Khalil [KhaO1] and Krsti¢ et al. [KKK95].

6.5 Further Reading

The majority of the material in this chapter is classical and can be found in most
books on dynamics and control theory, including early works on control such as
James, Nichols and Phillips [JNP47] and more recent textbooks such as Dorf and
Bishop [DB04], Franklin, Powell, and Emami-Naeini [FPENO05], and Ogata [Oga01].
An excellent presentation of linear systems based on the matrix exponential is
given in the book by Brockett [Bro70], a more comprehensive treatment is given by
Rugh [Rug95], and an elegant mathematical treatment is given in Sontag [Son98].
Material on feedback linearization can be found in books on nonlinear control
theory such as Isidori [Isi95] and Khalil [KhaO1]. The idea of characterizing dy-
namics by considering the responses to step inputs is due to Heaviside, who also
introduced an operator calculus to analyze linear systems. The unit step is there-
fore also called the Heaviside step function. Analysis of linear systems was sim-
plified significantly, but Heaviside’s work was heavily criticized because of lack
of mathematical rigor, as described in the biography by Nahin [Nah88]. The dif-
ficulties were cleared up later by the mathematician Laurent Schwartz who de-
veloped distribution theory in the late 1940s. In engineering, linear systems have
traditionally been analyzed using Laplace transforms as described in Gardner and
Barnes [GB42]. Use of the matrix exponential started with developments of con-
trol theory in the 1960s, strongly stimulated by a textbook by Zadeh and Des-
oer [ZD63]. Use of matrix techniques expanded rapidly when the powerful meth-
ods of numeric linear algebra were packaged in programs like LabVIEW, MAT-
LAB, and Mathematica. The books by Gantmacher [Gan60] are good sources for
matrix theory.
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Exercises

6.1 (Response to the derivative of a signal) Show that if y(¢) is the output of a linear
system corresponding to input u(z), then the output corresponding to an input u(z)
is given by y(¢). (Hint: Use the definition of the derivative: z(r) = limg_, (z(t +

£)—z(t))/€.)

6.2 (Impulse response and convolution) Show that a signal u(¢) can be decom-
posed in terms of the impulse function 6(¢) as

u(t) = /Otﬁ(t—‘c)u(f)df

and use this decomposition plus the principle of superposition to show that the
response of a linear, time-invariant system to an input «(¢) (assuming a zero initial
condition) can be written as

o) = [ o= Duw)dr,

where A(t) is the impulse response of the system. (Hint: Use the definition of the
Riemann integral.)

6.3 (Pulse response for a compartment model) Consider the compartment model
given in Example 6.7. Compute the step response for the system and compare
it with Figure 6.10b. Use the principle of superposition to compute the response
to the 5 s pulse input shown in Figure 6.10c. Use the parameter values kg = 0.1,
k1 =0.1,ky = 0.5, and by = 1.5.

6.4 (Matrix exponential for second-order system) Assume that { < 1 and let @g =

wp+/1— £2. Show that

exp —Can oy ¢ oot [ cOS@at  sin@ql |
—wg —Cay —singt cos gt

ol ()6 %)

6.5 (Lyapunov function for a linear system) Consider a linear system x = Ax with
ReA; < 0 for all eigenvalues A; of the matrix A. Show that the matrix

P= /OmeATerAfdr

Also show that

defines a Lyapunov function of the form V (x) = x Px with Q = 0 (positive defi-
nite).

6.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan form that
is non-diagonal.
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(a) Prove Proposition 6.3 by showing that if the system contains a real eigen-
value A = 0 with a nontrivial Jordan block, then there exists an initial con-
dition with a solution that grows in time.

(b) Extend this argument to the case of complex eigenvalues with ReA = 0 by
using the block Jordan form

0 o 1 0
—0o 0 0 1
=10 0 0 o
0 0 —-» 0

6.7 (Rise time for a first-order system) Consider a first-order system of the form

de +
—_— = —X u = X.
dr ) y

We say that the parameter 7 is the time constant for the system since the zero input
system approaches the origin as e~"/%. For a first-order system of this form, show
that the rise time for a step response of the system is approximately 27, and that
1%, 2%, and 5% settling times approximately corresponds to 4.67, 47, and 37.

6.8 (Discrete-time systems) Consider a linear discrete-time system of the form

x[k+ 1] = Ax[k] + Bulk], y|k] = Cx[k] + Dulk].

(a) Show that the general form of the output of a discrete-time linear system is
given by the discrete-time convolution equation:

k=1 A

ylk] = CA*x[0] + Y CA*~/~"Bulj] + Dulk].

j=0

(b) Show that a discrete-time linear system is asymptotically stable if and only
if all the eigenvalues of A have a magnitude strictly less than 1.

6.9 (Keynesian economics) Consider the following simple Keynesian macroeco-
nomic model in the form of a linear discrete-time system discussed in Exercise 6.8:

[f[[ttill]]] N [aba—b aab] [(I:[[tt]]] + [aab] G,
Y[t] = C[t] +1]t] + Glt].

Determine the eigenvalues of the dynamics matrix. When are the magnitudes of
the eigenvalues less than 1?7 Assume that the system is in equilibrium with constant
values capital spending C, investment /, and government expenditure G. Explore
what happens when government expenditure increases by 10%. Use the values
a=0.25and b=0.5.
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6.10 Consider a scalar system

d
d—le—x3+u.

Compute the equilibrium points for the unforced system (x = 0) and use a Taylor
series expansion around the equilibrium point to compute the linearization. Verify
that this agrees with the linearization in equation (6.34).

6.11 (Transcriptional regulation) Consider the dynamics of a genetic circuit that
implements self-repression: the protein produced by a gene is a repressor for that
gene, thus restricting its own production. Using the models presented in Exam-
ple 3.18, the dynamics for the system can be written as

dm « dp

where u is a disturbance term that affects RNA transcription and m, p > 0. Find
the equilibrium points for the system and use the linearized dynamics around each
equilibrium point to determine the local stability of the equilibrium point and the
step response of the system to a disturbance.



Chapter Seven
State Feedback

Intuitively, the state may be regarded as a kind of information storage or memory or ac-
cumulation of past causes. We must, of course, demand that the set of internal states ¥ be
sufficiently rich to carry all information about the past history of ¥ to predict the effect of the
past upon the future. We do not insist, however, that the state is the least such information
although this is often a convenient assumption.

R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory, 1969 [KFA69].

This chapter describes how the feedback of a system’s state can be used to
shape the local behavior of a system. The concept of reachability is introduced and
used to investigate how to design the dynamics of a system through assignment
of its eigenvalues. In particular, it will be shown that under certain conditions it
is possible to assign the system eigenvalues arbitrarily by appropriate feedback of
the system state.

7.1 Reachability

One of the fundamental properties of a control system is what set of points in the
state space can be reached through the choice of a control input. It turns out that the
property of reachability is also fundamental in understanding the extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of the system and focusing on
the evolution of the state, given by

d
di; — Ax+ Bu, 7.1)

where x € R", u € R, A is an n X n matrix, and B a column vector. A fundamental
question is whether it is possible to find control signals so that any point in the state
space can be reached through some choice of input. To study this, we define the
reachable set #(xo,< T) as the set of all points x¢ such that there exists an input
u(t), 0 <t < T that steers the system from x(0) = xq to x(7') = xy, as illustrated in
Figure 7.1a.

Definition 7.1 (Reachability). A linear system is reachable if for any xp,x; € R"
there existsa 7 >0 and u: [0,7] — R such that if x(0) = x¢ then the corresponding
solution satisfies x(7") = xy.
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C
4«/—-——'-—_4 -+ H\ixﬂyﬁﬂt

R(x0,<T)

(a) Reachable set (b) Reachability through control

Figure 7.1: The reachable set for a control system. The set % (xg, < T') shown in (a) is the set
of points reachable from xq in time less than 7. The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontal arrows and the control
inputs drawn as vertical arrows. The set of achievable equilibrium points is the x axis. By
setting the control inputs as a function of the state, it is possible to steer the system to the
origin, as shown on the sample path.

The definition of reachability addresses whether it is possible to reach all points
in the state space in a transient fashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrium points of the system
(since we can remain at those points with constant input ). The set of all possible
equilibria for constant controls is given by

& = {xe : Axe + Bue = 0 for some u, € R}.

This means that possible equilibria lie in a one- (or possibly higher) dimensional
subspace. If the matrix A is invertible, this subspace is one-dimensional and is
spanned by A~!B.

The following example provides some insight into the possibilities.

Example 7.1 Double integrator
Consider a linear system consisting of a double integrator whose dynamics are
given by

dx dxy

— =X =u
dt ’ dt

Figure 7.1b shows a phase portrait of the system. The open loop dynamics (u = 0)
are shown as horizontal arrows pointed to the right for x, > 0 and to the left for
x2 < 0. The control input is represented by a double-headed arrow in the vertical
direction, corresponding to our ability to set the value of x;. The set of equilibrium
points & corresponds to the x| axis, with u. = 0.

Suppose first that we wish to reach the origin from an initial condition (a,0).
We can directly move the state up and down in the phase plane, but we must rely
on the natural dynamics to control the motion to the left and right. If a > 0, we
can move toward the origin by first setting u# < 0, which will cause x, to become
negative. Once x, < 0, the value of x; will begin to decrease and we will move to
the left. After a while, we can set u to be positive, moving x; back toward zero and
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slowing the motion in the x; direction. If we bring x, to a positive value, we can
move the system state in the opposite direction.

Figure 7.1b shows a sample trajectory bringing the system to the origin. Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since x; = 0 when x, = 0), but if we go to a point in the state space
with x, # 0, we can pass through the point only in a transient fashion. \%

To find general conditions under which a linear system is reachable, we will
first give a heuristic argument based on formal calculations with impulse functions.
We note that if we can reach all points in the state space through some choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system (7.1) to an input u(z) is
given by

x(t) = /0 t AUYBu(1)dr. (7.2)

If we choose the input to be a impulse function d(¢) as defined in Section 6.3, the
state becomes

t
X5 = / AR (1) dT = €VB.
0

(Note that the state changes instantaneously in response to the impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise 6.1):

dX5
XS = W :AeAtB

Continuing this process and using the linearity of the system, the input

u(t) = a1 8(1) + b (t) + 038 (1) + -+ 0, 8" V()
gives the state
x(t) = a1 B+ oA B+ oz A2 B+ - -+ 0, AV LM B.
Taking the limit as ¢ goes to zero through positive values, we get

lim x(t) = ouB+ AB+ 0zA*B+ -+ 0, A" ' B.

t—0+

On the right is a linear combination of the columns of the matrix
W, = [B AB - A"—’B) . (1.3)

To reach an arbitrary point in the state space, we thus require that W; has n inde-
pendent columns (full rank). The matrix W; is called the reachability matrix.
Although we have only considered the scalar input case, it turns out that this
same test works in the multi-input case, where we require that W; be full column
rank (have n linearly independent columns). In addition, it can be shown that only
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the terms up to A"~ !B must be computed; additional terms add no new directions
to W; (see Exercise 7.10).

An input consisting of a sum of impulse functions and their derivatives is a very
violent signal. To see that an arbitrary point can be reached with smoother signals
we can make use of the convolution equation. Assuming that the initial condition
is zero, the state of a linear system is given by

X(t) = /O " A gy(1)dr /0 "ABu(t — t)dr.

It follows from the theory of matrix functions, specifically the Cayley—Hamilton
theorem (see Exercise 7.10), that

AT — Jap(T) + Ay (T) + -+ A" Lo, (1),

where ;(7) are scalar functions, and we find that
B/ao u(t—1 dr+AB/ o (T)u(t—1)dt

+~--+A”’1B/ 1 (T)ult — ) dr.
0

Again we observe that the right-hand side is a linear combination of the columns
of the reachability matrix W; given by equation (7.3). This basic approach leads to
the following theorem.

Theorem 7.1 (Reachability rank condition). A linear system of the form (7.1) is
reachable if and only if the reachability matrix W, is invertible (full column rank).

The formal proof of this theorem is beyond the scope of this text but follows
along the lines of the sketch above and can be found in most books on linear control
theory, such as Callier and Desoer [CD91] or Lewis [Lew03]. It is also interesting
to note that Theorem 7.1 makes no mention of the time 7 that was in our definition
of reachability. For a linear system, it turns out that we can find an input taking xg
to x¢ for any T > 0, though the size of the input required can be very large when T
is very small.

We illustrate the concept of reachability with the following example.

Example 7.2 Balance system
Consider the balance system introduced in Example 3.2 and shown in Figure 7.2.
Recall that this system is a model for a class of examples in which the center
of mass is balanced above a pivot point. One example is the Segway Personal
Transporter shown in Figure 7.2a, about which a natural question to ask is whether
we can move from one stationary point to another by appropriate application of
forces through the wheels.

The nonlinear equations of motion for the system are given in equation (3.9)
and repeated here:

(M+m)j—mlcos® 8 = —cp—mlsin® 6> +F,

i} . (7.4)
(J+mi*)0 —micos@ j = —y0 +mglsin 6.
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(a) Segway (b) Cart-pendulum system

Figure 7.2: Balance system. The Segway Personal Transporter shown in (a) is an example of
a balance system that uses torque applied to the wheels to keep the rider upright. A simplified
diagram for a balance system is shown in (b). The system consists of a mass m on a rod of
length / connected by a pivot to a cart with mass M.

For simplicity, we take ¢ = ¥ = 0. Linearizing around the equilibrium point x, =
(0,0,0,0), the dynamics matrix and the control matrix are

0 0 1 0 0
A 0 0 0 1 0
“lo meu 0 0 BT |am|
0 Mmgl/u 0 0 Im/u
where U = MJ; — m?2, My = M +m, and J, = J +ml?. The reachability matrix is
0 Ji/u 0 glPm’ /u?
0 Im 0 gl’m* M,/ u?
W, = & 3 3,0 vh (1.5)
J/w 0 gPm’/u 0
Im/u 0  glPm’M,/u? 0

To compute the determinant we permute the first and the last columns of the matrix
W; and use the fact that such a permutation changes the determinant by a factor of
—1. This gives a block diagonal matrix with two identical blocks and the determi-
nant becomes

l4 4 12 2JM 2 214 4
g”T _8 "L3‘ Y= S (M  Mml),

16
and we can conclude that the system is reachable. This implies that we can move
the system from any initial state to any final state and, in particular, that we can
always find an input to bring the system from an initial state to an equilibrium
point.

det(W,) = —(

\%

It is useful to have an intuitive understanding of the mechanisms that make
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Figure 7.3: An unreachable system. The cart—pendulum system shown on the left has a
single input that affects two pendula of equal length and mass. Since the forces affecting the
two pendula are the same and their dynamics are identical, it is not possible to arbitrarily
control the state of the system. The figure on the right is a block diagram representation of
this situation.

a system unreachable. An example of such a system is given in Figure 7.3. The
system consists of two identical systems with the same input. We cannot separately
cause the first and the second systems to do something different since they have
the same input. Hence we cannot reach arbitrary states, and so the system is not
reachable (Exercise 7.3).

More subtle mechanisms for nonreachability can also occur. For example, if
there is a linear combination of states that always remains constant, then the system
is not reachable. To see this, suppose that there exists a row vector H such that

d
0= EHX = H(Ax+Bu), forall x and u.
Then H is in the left null space of both A and B and it follows that
HW,=H (B AB - A"'B) =0,

Hence the reachability matrix is not full rank. In this case, if we have an initial
condition xo and we wish to reach a state x for which Hxy # Hxg, then since Hx(t)
is constant, no input # can move the state from xg to x¢.

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient to change
coordinates and write the dynamics of the system in the transformed coordinates
z = Tx. One application of a change of coordinates is to convert a system into a
canonical form in which it is easy to perform certain types of analysis.

A linear state space system is in reachable canonical form if its dynamics are
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d bl b2 bn—l bn
u ) f 21 f 22 L f n—1 f Zn
—1 ap ap an—1 ap
IS :
® z ®

Figure 7.4: Block diagram for a system in reachable canonical form. The individual states
of the system are represented by a chain of integrators whose input depends on the weighted
values of the states. The output is given by an appropriate combination of the system input
and other states.

given by
—a; —a; —a 1
1 0 0 0
= _ o 1 o0 0

dt

z+ u,
‘ : (7.6)

A block diagram for a system in reachable canonical form is shown in Figure 7.4.
We see that the coefficients that appear in the A and B matrices show up directly
in the block diagram. Furthermore, the output of the system is a simple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable canonical form is given
by

o

3 .
y= (b] b2 b3 bn z+du.

.. —dy
.. 0
.0

0 Lo ]
)

A(s) =s"+a1s" '+ 4 a,_15+ay. (7.7

The reachability matrix also has a relatively simple structure:
1 —a a%—az S
0 1 —a; -+ %
W= (B AB .. AB)=|: L
0 O 0 1 =
0 0 0 T |
where * indicates a possibly nonzero term and we use a tilde to remind us that A
and B are in a special form. The matrix W; is full rank since no column can be
written as a linear combination of the others because of the triangular structure of
the matrix.
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We now consider the problem of finding a change of coordinates such that
the dynamics of a system can be written in reachable canonical form. Let A, B
represent the dynamics of a given system and A, B be the dynamics in reachable
canonical form. Suppose that we wish to transform the original system into reach-
able canonical form using a coordinate transformation z = Tx. As shown in the
previous chapter, the dynamics matrix and the control matrix for the transformed
system are

A=TAT™', B=TB.

The reachability matrix for the transformed system then becomes
W= (B 4B - A'B).
Transforming each element individually, we have

AB=TAT 'TB = TAB,
A’B = (TAT Y)*TB=TAT 'TAT'TB = TA’B,

A"B=TA"B,
and hence the reachability matrix for the transformed system is
W=7 (B AB - A™B) =TW, (7.8)

If W; is invertible, we can thus solve for the transformation 7 that takes the system
into reachable canonical form:

T=ww !
The following example illustrates the approach.

Example 7.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx (o +0
i |l-o o T 1"

We wish to find the transformation that converts the system into reachable canon-

ical form:
;a1 —a s 1
- ) =)

The coefficients a; and a, can be determined from the characteristic polynomial
for the original system:

5 5 5 a; =-2a,
A(s) =det(sI —A) =s" 205+ (0" +0°) = s
a = 0"+ w".
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The reachability matrix for each system is

N 0 w 5 1 —a
Ul f B O
The transformation 7 becomes

T:WrWr’lz —(a1+a)/o 1] _ [a/w 1]7

L /o 0 /o 0

and hence the coordinates

[Z1 e [ocxl/a)+x2]

22 X1 / w
put the system in reachable canonical form. \%
We summarize the results of this section in the following theorem.

Theorem 7.2 (Reachable canonical form). Let A and B be the dynamics and con-
trol matrices for a reachable system and suppose that the characteristic polyno-
mial for A is given by

det(sl —A) =s"+a1s" '+ 4 a,_15+a,.

Then there exists a transformation z = Tx such that in the transformed coordinates
the dynamics and control matrices are in reachable canonical form (7.6).

One important implication of this theorem is that for any reachable system, we
can assume without loss of generality that the coordinates are chosen such that the
system is in reachable canonical form. This is particularly useful for proofs, as we
shall see later in this chapter. However, for high-order systems, small changes in
the coefficients a; can give large changes in the eigenvalues. Hence, the reachable
canonical form is not always well conditioned and must be used with some care.

7.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variables that permits prediction
of the future evolution of a system given its future inputs. We now explore the
idea of designing the dynamics of a system through feedback of the state. We will
assume that the system to be controlled is described by a linear state model and
has a single input (for simplicity). The feedback control law will be developed step
by step using a single idea: the positioning of closed loop eigenvalues in desired
locations.

State Space Controller Structure

Figure 7.5 is a diagram of a typical control system using state feedback. The full
system consists of the process dynamics, which we take to be linear, the controller
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Controller Process
X=Ax+Bu
r —
y=Cx+Du

Figure 7.5: A feedback control system with state feedback. The controller uses the system
state x and the reference input r to command the process through its input u. We model
disturbances via the additive input v.

elements K and kg, the reference input (or command signal) r, and process dis-
turbances v. The goal of the feedback controller is to regulate the output of the
system y such that it tracks the reference input in the presence of disturbances and
also uncertainty in the process dynamics.

An important element of the control design is the performance specification.
The simplest performance specification is that of stability: given a constant ref-
erence r and in the absence of any disturbances, we would like the equilibrium
point of the system to be asymptotically stable. More sophisticated performance
specifications typically involve giving desired properties of the step or frequency
response of the system, such as specifying the desired rise time, overshoot, and
settling time of the step response. Finally, we are often concerned with the dis-
turbance attenuation properties of the system: to what extent can we experience
disturbance inputs v and still hold the output y near the desired value?

Consider a system described by the linear differential equation

d
di; — Ax+ Bu, y = Cx+Du, (7.9)

where we have ignored the disturbance signal v for now. Our goal is to drive the
output y to a given reference value r and hold it there.

We begin by assuming that all components of the state vector are measured.
Since the state at time ¢ contains all the information necessary to predict the future
behavior of the system, the most general time-invariant control law is a function
of the state and the reference input:

u=ox,r).
If the control law is restricted to be linear, it can be written as
u = —Kx+ k¢r, (7.10)

where r is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figure 7.5. The nega-
tive sign is a convention to indicate that negative feedback is the normal situation.
The term kgr represents a feedforward signal from the reference to the control.
The closed loop system obtained when the feedback (7.10) is applied to the sys-
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tem (7.9) is given by p
di; = (A — BK)x + Bkyr. (7.11)

We attempt to determine the feedback gain K so that the closed loop system has
the characteristic polynomial

p(s) =s5"+p1s" 4+ + pu_is+ pa. (7.12)

This control problem is called the eigenvalue assignment problem or pole place-
ment problem (we will define poles more formally in Chapter 9).

Note that k; does not affect the stability of the system (which is determined by
the eigenvalues of A — BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the closed loop system are given
b

’ Xe = —(A—BK) 'Bkir,  ye = Cxe + Due,

hence k¢ should be chosen such that y. = r (the desired output value). Since kg is a
scalar, we can easily solve to show that if D = 0 (the most common case),

ki=—1/(C(A—BK)"'B). (7.13)

Notice that k¢ is exactly the inverse of the zero frequency gain of the closed loop
system. The solution for D # 0 is left as an exercise.

Using the gains K and k¢, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to construct such a state feedback
control law, we begin with a few examples that provide some basic intuition and
insights.

Example 7.4 Vehicle steering
In Example 6.13 we derived a normalized linear model for vehicle steering. The
dynamics describing the lateral deviation were given by the normalized dynamics

_ (o1 _[7
o) o= ()
C— (1 o] , D=0,
where ¥ = a/b is the ratio of the distance between the center of mass and the rear
wheel, a, and the wheelbase . We want to design a controller that stabilizes the

dynamics and tracks a given reference value r of the lateral position of the vehicle.
To do this we introduce the feedback

u=—Kx-+kir = —kix1 — koxo + kg,

and the closed loop system becomes

dx _ _ Y 1=7Yk Y
dt—(A—BK)x—l—kar—[_k1 ks x+ ke | "

y=Cx+Du= (1 O] X.

(7.14)
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The closed loop system has the characteristic polynomial

s+vkt Yko—1

det(sI —A + BK) = det [ K s 4k

] = 5% 4 (Yk1 +ka)s +ki.
Suppose that we would like to use feedback to design the dynamics of the
system to have the characteristic polynomial

p(s) =5+ 28 05+ 0.

Comparing this polynomial with the characteristic polynomial of the closed loop
system, we see that the feedback gains should be chosen as

ki = 2, ky =280, — yw?.
Equation (7.13) gives k, = k; = a)cz, and the control law can be written as
u=ki(r—xy) —kaxy = 02 (r —x;) — (240 — y0?)x2.

To find reasonable values of @, we observe that the initial response of the
steering angle to a unit step change in the steering command is ®?r, where r is
the commanded lateral transition. Recall that the model is normalized so that the
length unit is the wheelbase b and the time unit is the time b/vy to travel one
wheelbase. A typical car has a wheelbase of about 3 m and, assuming a speed of
30 m/s, a normalized time unit corresponds to 0.1 s. To determine a reasonable
steering angle when making a gentle lane change, we assume that the turning ra-
dius is R = 600 m. For a wheelbase of 3 m this corresponds to a steering angle
8 ~3/600 = 0.005 rad and a lateral acceleration of v?/R = 302/600 = 1.5 m/s.
Assuming that a lane change corresponds to a translation of one wheelbase we find
. = v/0.005 = 0.07 rad/s.

The unit step responses for the closed loop system for different values of the de-
sign parameters are shown in Figure 7.6. The effect of @, is shown in Figure 7.6a,
which shows that the response speed increases with increasing @.. All responses
have overshoot less than 5% (15 cm), as indicated by the dashed lines. The set-
tling times range from 30 to 60 normalized time units, which corresponds to about
3-6 s, and are limited by the acceptable lateral acceleration of the vehicle. The ef-
fect of . is shown in Figure 7.6b. The response speed and the overshoot increase
with decreasing damping. Using these plots, we conclude that a reasonable design
choice is @, = 0.07 and {. = 0.7. \%

The example of the vehicle steering system illustrates how state feedback can
be used to set the eigenvalues of a closed loop system to arbitrary values. We see
that for this example we can set the eigenvalues to any location. We now show that
this is a general property for reachable systems.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system
are the coefficients of the characteristic polynomial. It is therefore natural to con-
sider systems in this form when solving the eigenvalue assignment problem.
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Figure 7.6: State feedback control of a steering system. Unit step responses (from zero
initial condition) obtained with controllers designed with {; = 0.7 and @, = 0.05, 0.07,
and 0.1 [rad/s] are shown in (a). The dashed lines indicate 5% deviations from the set
point. Notice that response speed increases with increasing @, but that large @, also give
large initial control actions. Unit step responses obtained with a controller designed with

@, =0.07 and {. =0.5,0.7, and 1 are shown in (b).

Consider a system in reachable canonical form, i.e,

—ay —apy —aj —ay, 1

4 1 0 0 0 0
L Az+Bu= 0 1 0 0 z+ | lu

dt . 0

(@)
—_
(@)

y=Cz= (b1 by

bn] Z.

(7.15)

It follows from equation (7.7) that the open loop system has the characteristic

polynomial

det(sl —A) =s"+as" '+ a5+ ap.

Before making a formal analysis we can gain some insight by investigating the
block diagram of the system shown in Figure 7.4. The characteristic polynomial
is given by the parameters a; in the figure. Notice that the parameter a; can be
changed by feedback from state z; to the input u. It is thus straightforward to

change the coefficients of the characteristic polynomial by state feedback.
Returning to equations, introducing the control law

u= —kz+kfr = —l~€1Z1 —/~€2Z2 — _I}nzn + ker,

(7.16)
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the closed loop system becomes

—a1—ky —ar—ky —az—ks ... —a,—ky k¢
4 0 0 0 0
4
Z=| o 1 0 .. 0 | t|o],
! : : : (7.17)
0 1 0 0
y= (bl by -- bn] z.

The feedback changes the elements of the first row of the A matrix, which corre-
sponds to the parameters of the characteristic polynomial. The closed loop system
thus has the characteristic polynomial

S (a4 kp)s" T (ap F o)A A (ap 1 F R 1)s + a4 K.
Requiring this polynomial to be equal to the desired closed loop polynomial
p()=5"4+p1s" V-4 P15+ P,

we find that the controller gains should be chosen as

ki=pi—a;, lk=p-a, ... |ki=pi—a.
This feedback simply replaces the parameters g; in the system (7.15) by p;. The
feedback gain for a system in reachable canonical form is thus

K= [pn—an pr—ay - pn—an]. (7.18)

To have zero frequency gain equal to unity, we compute the equilibrium point
Ze by setting the right hand side of equation (7.17) to zero and then compute the
corresponding output. It can be seen that z¢ 1,...,Z ,—1 must all be zero and we
are left with

(—an —kn)zen+ker =0 and  ye = bpzep.

It follows that in order for y. to be equal to r then the parameter k¢ should be chosen
as .
by, by

Notice that it is essential to know the precise values of parameters a, and b, in
order to obtain the correct zero frequency gain. The zero frequency gain is thus
obtained by precise calibration. This is very different from obtaining the correct
steady-state value by integral action, which we shall see in later sections.

ke (7.19)

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. To solve the problem in
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the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

d
di; — Ax+ Bu, y=Cx+Du. (7.20)

We can change the coordinates by a linear transformation z = Tx so that the
transformed system is in reachable canonical form (7.15). For such a system the
feedback is given by equation (7.16), where the coefficients are given by equa-
tion (7.18). Transforming back to the original coordinates gives the control law

u=—Kz+kir = —KTx+ ker.
The form of the controller is a feedback term —Kx and a feedforward term k;r.
The results obtained can be summarized as follows.

Theorem 7.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation (7.20), with one input and one output. Let A(s) = s" +a;s"~' +
-+ +ay_15+ ay, be the characteristic polynomial of A. If the system is reachable,
then there exists a control law

u=—Kx+ksr
that gives a closed loop system with the characteristic polynomial
p(s)=5"+p1s" " 4 4 puo1S+pa
and unity zero frequency gain between r and y. The feedback gain is given by
K=RT=(p—ar p—ar - pi—an) WW, ", (7.21)

where a; are the coefficients of the characteristic polynomial of the matrix A and
the matrices W, and W, are given by

-1

Il ap ay -+ ap
O 1 a - ay
W, = (B AB - A"—‘B], W, = :
o o0 - 1 ap
0O 0 O 1

The feedforward gain is given by
kr=—1/(C(A—BK) 'B).
For simple problems, the eigenvalue assignment problem can be solved by in-

troducing the elements k; of K as unknown variables. We then compute the char-

acteristic polynomial
A(s) = det(s] —A+ BK)

and equate coefficients of equal powers of s to the coefficients of the desired char-
acteristic polynomial

p(s) =s" —i—pls"*l 4+ 4 pu_15+ pa.
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This gives a system of linear equations to determine k;. The equations can always
be solved if the system is reachable, exactly as we did in Example 7.4.

Equation (7.21), which is called Ackermann’s formula [Ack72, Ack85], can
be used for numeric computations. It is implemented in the MATLAB function
acker. The MATLAB function place is preferable for systems of high order
because it is better conditioned numerically.

Example 7.5 Predator—prey

Consider the problem of regulating the population of an ecosystem by modulating
the food supply. We use the predator—prey model introduced in Example 5.16 and
described in more detail in Section 4.7. The dynamics for the system are given by

aH (r+u)H (1 H AL H>0
=(r+u —— | =

dt k c+H’ -7

dL HL

oy L>0.

dt c+H

We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a=32, b=06, c=50,
d=056, k=125 r=16.

We take the parameter r, corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term (r+ u) in the first equation, where here
r represents a constant parameter (not the reference signal) and u represents the
controlled modulation. We choose the number of lynxes L as the output of our
system.

To control this system, we first linearize the system around the equilibrium
point of the system (He,Le), which can be determined numerically to be xe ~
(20.6,29.5). This yields a linear dynamical system

d (z] _ (0.13 —0.93 al | 17.2 B (0 1] 71

i =) ~ 057 o 2 o) "= n)’
where z1 = H — H., zo0 = L — L., and v = u. It is easy to check that the system
is reachable around the equilibrium (z,v) = (0,0), and hence we can assign the
eigenvalues of the system using state feedback.

Selecting the eigenvalues of the closed loop system requires balancing the abil-
ity to modulate the input against the natural dynamics of the system. This can be
done by the process of trial and error or by using some of the more systematic
techniques discussed in the remainder of the text. For now, we simply choose the

desired closed loop eigenvalues to be at A = {—0.1,—0.2}. We can then solve for
the feedback gains using the techniques described earlier, which results in

K= [0.025 —0.052] .
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Figure 7.7: Simulation results for the controlled predator—prey system. The population of
lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled
system is shown in (b). Feedback is used to make the population stable at H. = 20.6 and
L. =30.

Finally, we solve for the feedforward gain k¢, using equation (7.13) to obtain kf =
0.002.
Putting these steps together, our control law becomes

v=—Kz+ kad,

where Lq is the desired number of lynxes. In order to implement the control law,
we must rewrite it using the original coordinates for the system, yielding

u=ue—K(x—xe) +ke(Lg— ye)

H—20.6

—— (0.025 —0.052) [L—29.5

] +0.002 (Lg —29.5).

This rule tells us how much we should modulate u as a function of the current
number of lynxes and hares in the ecosystem. Figure 7.7a shows a simulation of
the resulting closed loop system using the parameters defined above and starting
with an initial population of 15 hares and 20 lynxes. Note that the system stabilizes
the population of lynxes at the reference value (Lq = 30). A phase portrait of the
system is given in Figure 7.7b, showing how other initial conditions converge to
the stabilized equilibrium population. Notice that the dynamics are very different
from the natural dynamics (shown in Figure 4.20). \%

The results of this section show that we can use state feedback to design the dy-
namics of a reachable system, under the strong assumption that we can measure all
of the states. We shall address the availability of the states in the next chapter, when
we consider output feedback and state estimation. In addition, Theorem 7.3, which
states that the eigenvalues can be assigned to arbitrary locations, is also highly ide-
alized and assumes that the dynamics of the process are known to high precision.
The robustness of state feedback combined with state estimators is considered in
Chapter 13 after we have developed the requisite tools.
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7.3 Design Considerations

The location of the eigenvalues determines the behavior of the closed loop dynam-
ics, and hence where we place the eigenvalues is the main design decision to be
made. As with all other feedback design problems, there are trade-offs among the
magnitude of the control inputs, the robustness of the system to perturbations, and
the closed loop performance of the system. In this section we examine some of
these trade-offs starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class of
systems and build more intuition about the relationship between stability and per-
formance.

A canonical second-order system is a differential equation of the form

G+28wng + oyq = kagu, y=gq. (7.22)
In state space form, this system can be represented as
dx 0 Y 0
dx _ , - (1 o] : 7.23
dt [—wo —2Ca>o]x+ [kwo]” = ¥ (7.23)

where x = (g,q/ ) represents a normalized choice of states. The eigenvalues of
this system are given by

A =—Captmp/(52—1),

and we see that the system is stable if @y > 0 and { > 0. Note that the eigenvalues
are complex if { < 1 and real otherwise. Equations (7.22) and (7.23) can be used to
describe many second-order systems, including damped oscillators, active filters,
and flexible structures, as shown in the examples below.

The form of the solution depends on the value of {, which is referred to as the
damping ratio for the system. If { > 1, we say that the system is overdamped, and
the natural response (« = 0) of the system is given by

(1) = Bxio +X20€_m _axyo +x206_ﬁ;
B—o B—o ’
where o0 = @y (§ ++/8%— 1) and B = wp(§ — 1/ §% — 1). We see that the response

consists of the sum of two exponentially decaying signals. If { = 1, then the system
is critically damped and solution becomes

y(t) = e (x10 + (x20 + S wox10)1).

Note that this is still asymptotically stable as long as @y > 0, although the second
term within the outer parentheses is increasing with time (but more slowly than the
decaying exponential that is multiplying it).
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Figure 7.8: Step response for a second-order system. Normalized step responses for the
system (7.23) for { = 0, 0.4, 0.7 (thicker), 1, and 1.2. As the damping ratio is increased,
the rise time of the system gets longer, but there is less overshoot. The horizontal axis is in
scaled units wyz; higher values of @y result in a faster response (rise time and settling time).

Finally, if 0 < { < 1, then the solution is oscillatory and equation (7.22) is said
to be underdamped. The natural response of the system is given by

1
y(t) = e~ St (xm cos gt + (C—woxm + —x20> sin (odt> ,
(O] (0%

where @g = wy+/1 — {2 is called the damped frequency. For §{ < 1, ®g ~ @y de-
fines the oscillation frequency of the solution and { gives the damping rate relative
to @y. The parameter @y is referred to as the natural frequency of the system,
stemming from the fact that for { = 0 the oscillation frequency is given by ay.

Because of the simple form of a second-order system, it is possible to solve
for the step and frequency responses in analytical form. The solution for the step
response depends on the magnitude of {:

v
k(1 — e (1+ ar)), £=1;
y(t): 1 ¢
_1 —wpr(§—/¢2-1)
k(l Z(WH e v
L1k _1)e—wor<f:+w—l>>, (1,

k (1 — e 59 cos @yt — £ oS sina)dt> , <1,

(7.24)

Vo

where we have taken x(0) = 0. Note that for the lightly damped case ({ < 1) we
have an oscillatory solution at frequency @q.

Step responses of systems with k = 1 and different values of { are shown in
Figure 7.8. The shape of the response is determined by {, and the speed of the
response is determined by @y (included in the time axis scaling): the response is
faster if @y is larger.

In addition to the explicit form of the solution, we can also compute the proper-
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Table 7.1: Properties of the step response for a second-order system with 0 < § < 1.

Property Value (=05 ¢=1/vV2 (=1

Steady-state value k k k k

Rise time (inverse slope) Ty = e®/@n® /g 1.8/wy 2.2/ 2.7/
Overshoot My =e ™5/ VI8 6% 4% 0%
Settling time (2%) Ty ~ 4/ 8.0/wy 5.6/ay 4.0/ay

ties of the step response that were defined in Section 6.3. For example, to compute
the maximum overshoot for an underdamped system, we rewrite the output as

e St sin( @yt + (p)) , (7.25)

1
y(t)zk(l—l_c2

where @ = arccos {. The maximum overshoot will occur at the first time in which
the derivative of y is zero, at which time the fraction of the final value can be shown

to be
My = e FVTT

The rise time is normally defined as the time for the step response to go from
p% of its final value to (100 — p)%. Typical values are p =5 or 10%. An alternative
definition is the inverse of the steepest slope: by differentiating equation (7.25) we
find after straightforward but tedious calculations that

T, = S ?/ e ¢ = arccos §
r— ) - .
Wo
Similar computations can be done for the other characteristics of a step response.
Table 7.1 summarizes these calculations.

The frequency response for a second-order system can also be computed ex-

plicitly and is given by

2 2
kayy kay

Meje - = .
(iw)2+20my(io) + 0 @f — w*+2ilwyw

A graphical illustration of the frequency response is given in Figure 7.9. Notice the
resonant peak that increases with decreasing {. The peak is often characterized by
its Q-value, defined as Q = 1/2{. The properties of the frequency response for a
second-order system are summarized in Table 7.2.

Example 7.6 Drug administration
To illustrate the use of these formulas, consider the two-compartment model for



7.3. DESIGN CONSIDERATIONS 7-21

6 =008 Im {~0 10° 1
§=02 e .
=05 \\x» - B 4
T~x © 10 1
=1 ~_ R 107
=e _ 0
= N, C
=
g 901 7
X xx £
. 180
10" 10° 10'
Normalized frequency @/ @y
(a) Eigenvalues (b) Frequency responses

Figure 7.9: Frequency response of a second-order system (7.23). (a) Eigenvalues as a func-
tion of £. (b) Frequency response as a function of §. The upper curve shows the gain ratio
M, and the lower curve shows the phase shift 6. For small { there is a large peak in the
magnitude of the frequency response and a rapid change in phase centered at @ = @y. As §
is increased, the magnitude of the peak drops and the phase changes more smoothly between

0° and -180°.

drug administration, described in Section 4.6. The dynamics of the system are

%: [ k(;Q ky —kllcz] c+ [%)] u, y= [0 l]c,
where ¢ and c; are the concentrations of the drug in each compartment, kg, k1, k>,
and by are parameters of the system, u is the flow rate of the drug into compart-
ment 1 and y is the concentration of the drug in compartment 2. We assume that we
can measure the concentrations of the drug in each compartment, and we would
like to design a feedback law to maintain the output at a given reference value r.

We choose ¢ = 1/4/2 to minimize the overshoot and additionally require the
rise time to be 7. = 10 min. Using the formulas in Table 7.1, this gives a value for

Table 7.2: Properties of the frequency response for a second-order system with 0 < § < 1.

Property Value (=01 (=05 ¢=1/V2
Zero frequency gain My k k k
Bandwidth wb:a)o\/l—ZCZ—i- (1-282)2+1 154wy 12709 @y

KQO/T=0Y) it S <V3)2
N/A if§>ﬁ/2 5k 1.15k k

V12282 i <\2)2
wmr_{“’o ¢ iff<v2, @ 0.707ay 0

Resonant peak gain M, = {

Resonant frequency

0 if ¢ >+/2/2
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Figure 7.10: Open loop versus closed loop drug administration. Comparison between drug
administration using a sequence of doses versus continuously monitoring the concentrations
and adjusting the dosage continuously. In each case, the concentration is (approximately)
maintained at the desired level, but the closed loop system has substantially less variability
in drug concentration.

@ = 0.22. We can now compute the gains to place the eigenvalues at this location.
Setting u = —Kx + k¢r, the closed loop eigenvalues for the system satisfy

A(s) = —0.240.096i.

Choosing k; = —0.2 and k; = 0.2, with K = (k;, k) to avoid confusion with the
rates ki in the dynamics matrix, gives the desired closed loop behavior. Equa-
tion (7.13) gives the feedforward gain kf = 0.065. The response of the controller is
shown in Figure 7.10 and compared with an open loop strategy involving admin-
istering periodic doses of the drug. \%

Higher-Order Systems

Our emphasis so far has considered only second-order systems. For higher-order
systems, eigenvalue assignment is considerably more difficult, especially when
trying to account for the many trade-offs that are present in a feedback design.
One of the other reasons why second-order systems play such an important
role in feedback systems is that even for more complicated systems the response is
often characterized by the dominant eigenvalues. To define these more precisely,
consider a stable system with eigenvalues A;, j = 1,...,n. We say that a complex
conjugate pair of eigenvalues A, A* is a dominant pair if they are the closest pair
to the imaginary axis. In the case when multiple eigenvalues pairs are the same
distance to the imaginary axis, a second criterion is to look at the relative damping
of the system modes. We define the damping ratio for a complex eigenvalue A as

—ReA
SN
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Given multiple complex conjugate pairs with the same real part, the dominant pair
will the set with the lowest damping ratio.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be
the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
pair of eigenvalues:

7+ Bu, y=Cz.

Ji

(Note that the state z may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of the responses from each of
the individual Jordan subsystems. As we see from Figure 7.8, for { < 1 the sub-
system with the slowest response is precisely the one with the whose eigenvalues
are closest to the imaginary axis. Hence, when we add the responses from each of
the individual subsystems, it is the dominant pair of eigenvalues that will be the
primary factor after the initial transients due to the other terms in the solution die
out. While this simple analysis does not always hold (e.g., if some non-dominant
terms have larger coefficients because of the particular form of the system), it is
often the case that the dominant eigenvalues determine the (step) response of the
system.

The only formal requirement for eigenvalue assignment is that the system be
reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will
be discussed in depth in Chapters 12 and 13.

We illustrate some of the main ideas using the balance system as an example.

Example 7.7 Balance system
Consider the problem of stabilizing a balance system, whose dynamics were given
in Example 7.2. The dynamics are given by

0 0 1 0 0
0 0 0 1 0
A= 22 .,  B= :
0 milg/u  —cl/u  —yim/u Ji/u
0 Mmmgl/u —clm/u —yM,/u Im/u

where My =M +m, J; = J +ml?, u=MJ— m?1? and we have left ¢ and ¥ nonzero.
We use the following parameters for the system (corresponding roughly to a human
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being balanced on a stabilizing cart):
M =10kg, m = 80 kg, ¢ =0.1 Ns/m,

- g=9.8m/s’.
J =100 kgm~/s~, [=1m, Y=0.01 Nms,

The eigenvalues of the open loop dynamics are given by A ~0,—0.0011, +2.68.
We have verified already in Example 7.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and provide a desired level of
performance.

To decide where to place the closed loop eigenvalues, we note that the closed
loop dynamics will roughly consist of two components: a set of fast dynamics
that stabilize the pendulum in the inverted position and a set of slower dynamics
that control the position of the cart. For the fast dynamics, we look to the natural
period of the pendulum (in the hanging-down position), which is given by @y =

mgl /(J +ml?) ~ 2.1 rad/s. To provide a fast response we choose a damping ratio
of { = 0.5 and try to place the first pair of eigenvalues at A; » ~ —Cay L iwy ~
—1 +2i, where we have used the approximation that /1 — {2 ~ 1. For the slow
dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s.
This gives eigenvalues A3 4 = —0.35+0.35i.

The controller consists of a feedback on the state and a feedforward gain for
the reference input. The feedback gain is given by

K= [—15.6 1730 —50.1 443],

which can be computed using Theorem 7.3 or using the MATLAB place com-
mand. The feedforward gain is kf = —1/(C(A — BK)~!B) = —15.6. The step re-
sponse for the resulting controller (applied to the linearized system) is given in
Figure 7.11a. While the step response gives the desired characteristics, the input
required (lower left) is excessively large, almost three times the force of gravity at
its peak.

To provide a more realistic response, we can redesign the controller to have
slower dynamics. We see that the peak of the input force occurs on the fast time
scale, and hence we choose to slow this down by approximately a factor of 3,
leaving the damping ratio unchanged. We also slow down the second set of eigen-
values, with the intuition that we should move the position of the cart more slowly
than we stabilize the pendulum dynamics. Leaving the damping ratio for the slow
dynamics unchanged at 0.7 and changing the frequency to 1 (corresponding to a
rise time of approximately 10 s), the desired eigenvalues become

A ={-0.33+0.66i, —0.18 £0.18i}.

The performance of the resulting controller is shown in Figure 7.11b. \%

As we see from this example, it can be difficult to decide where to place the
eigenvalues using state feedback. This is one of the principal limitations of this
approach, especially for systems of higher dimension. Optimal control, such as the
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Figure 7.11: State feedback control of a balance system. The step response of a controller
designed to give fast performance is shown in (a). Although the response characteristics
(upper left) look very good, the input magnitude (lower left) is very large. Also note that
the force is negative initially. A less aggressive controller is shown in (b). Here the response
time is slowed down, but the input magnitude is much more reasonable. Both step responses
are applied to the linearized dynamics.

linear quadratic regulator problem discussed in Section 7.5, is one approach that is
available. One can also focus on the frequency response for performing the design,
which is the subject of Chapters 9-13.

7.4 Integral Action

Controllers based on state feedback achieve the correct steady-state response to
command signals by careful calibration of the gain k¢. However, one of the primary
uses of feedback is to allow good performance in the presence of uncertainty, and
hence requiring that we have an exact model of the process is undesirable. An al-
ternative to calibration is to make use of integral feedback, in which the controller
uses an integrator to provide zero steady-state error. The basic concept of inte-
gral feedback was introduced in Section 1.6 and discussed briefly in Sections 2.3
and 2.4; here we provide a more complete description and analysis.

System Augmentation

The basic approach in integral feedback is to create a state within the controller
that computes the integral of the error signal, which is then used as a feedback
term. We do this by augmenting the description of the system with a new state z,
which is the integral of the difference between the the actual output y and desired
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output . The augmented state equations become

d (x)  (Ax+Bu) (Ax+Bu

e B e
Note that if we find a controller that stabilizes the system, then we will necessarily
have 7z = 0 in steady state and hence y = r in steady state.

Given the augmented system, we design a state space controller in the usual
fashion, with a control law of the form

u=—Kx—kiz+ k¢r, (7.27)

where K is the usual state feedback term, k; is the integral term, and k¢ is used to
set the nominal input for the desired steady state. The resulting equilibrium point
for the system is given by

Xe = —(A—BK)ilB(kfr—kiZe), Cxe =,

which comes from setting the right hand side of equation (7.26) to zero and sub-
stituting u from equation (7.27). Note that the value of z. is not specified but rather
will automatically settle to the value that makes Z =y —r = 0, which implies that
at equilibrium the output will equal the reference value. This holds independently
of the specific values of A, B, and K as long as the system is stable (which can be
done through appropriate choice of K and k;).
The final control law is given by
dz

u = —Kx— kiz+ ki, pimbintt

where we have now included the dynamics of the integrator as part of the specifica-
tion of the controller. This type of control law is known as a dynamic compensator
since it has its own internal dynamics. The following example illustrates the basic
approach.

Example 7.8 Cruise control

Consider the cruise control example introduced in Section 1.5 and considered fur-
ther in Example 6.11 (see also Section 4.1). The linearized dynamics of the process
around an equilibrium point ve, u. are given by

d
d—f:ax—bg9+bw, Y=V=X-+V,

where x = v —ve, W = u — ue, m is the mass of the car and 0 is the angle of the road.
The constant a depends on the throttle characteristic and is given in Example 6.11.

If we augment the system with an integrator, the process dynamics become
dx dz

— =ax—b,0 + bw, — =YV =Ve+X— V),

dt g dt y—Vr e r

or, in state space form,

=60 @) () e (0]
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Figure 7.12: Velocity and throttle for a car with cruise control based on proportional
(dashed) and PI control (solid). The PI controller is able to adjust the throttle to compen-
sate for the effect of the hill and maintain the speed at the reference value of v, = 20 m/s.
The controller gains are kp = 0.5 and k; = 0.1.

Note that when the system is at equilibrium, we have that z = 0, which implies that
the vehicle speed v = v, + x should be equal to the desired reference speed v,. Our
controller will be of the form

dz
E:y—v” w=— px—kiz—i—kfvr,

and the gains kp, k;, and k¢ will be chosen to stabilize the system and provide the
correct input for the reference speed.
Assume that we wish to design the closed loop system to have the characteristic
polynomial
A(s) = s> +ays+ao.

Setting the disturbance 6 = 0, the characteristic polynomial of the closed loop
system is given by

det(sl — (A—BK)) = s>+ (bk, — a)s + bk,

and hence we set
ar+a a ay

b’ N b
The resulting controller stabilizes the system and hence brings z = y — v, to zero,
resulting in perfect tracking. Notice that even if we have a small error in the values
of the parameters defining the system, as long as the closed loop eigenvalues are
still stable, then the tracking error will approach zero. Thus the exact calibration
required in our previous approach (using kf) is not needed here. Indeed, we can
even choose k¢ = 0 and let the feedback controller do all of the work. However, k¢
does influence the transient response to command signals and setting it properly
will generally give a more favorable response.

Integral feedback can also be used to compensate for constant disturbances.
Figure 7.12 shows the results of a simulation in which the car encounters a hill
with angle 6 = 4° at t = 8 s. The steady state values of the throttle for P and PI
control are very close but the corresponding values of the car velocity are quite dif-
ferent. The reason for this is that the zero frequency gain from throttle to velocity
is —b/a = 130 is high. The stability of the system is not affected by this external

ky = ki=—1/(C(A—BK)'B)
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disturbance, and so we once again see that the car’s velocity converges to the ref-
erence speed. This ability to handle constant disturbances is a general property of
controllers with integral feedback (see Exercise 7.4). \%

Reachability of the Augmented System

Eigenvalue assignment requires that the augmented system (7.26) is reachable. To
explore this we compute the reachability matrix of the augmented system.

W — B AB ... A"B
1o ¢cB ... cA'B

To find the conditions for W; to be of full rank, the matrix will be transformed by
making column operations. Let a; be the coefficients of the characteristic polyno-
mial of the matrix A:

da(s)=s"+ais" "+ +an_1s+ay

Multiplying the first column by a,, the second by a,,_, through multiplication of
the (n-1)th column by a; and then adding these to the last column of the matrix W,
it follows from the Cayley—Hamilton theorem (Exercise 7.10) that the transformed
matrix becomes

B AB ... 0
W= [o CB ... bn]’
where
by =C(A" 'B+a1A" B +...+a, B). (7.28)

If the matrix A is invertible, implying that there are no eigenvalues at the origin,
then we can rewrite the formula for b,, as

b,=CA ' (A" +a;A" '+ ...+ a, |A)B= —a,CA™'B,

where the final equality follows from a second application of the Cayley—Hamilton
theorem. As long as the coefficient b,, # 0, then the system is reachable and it is
possible to assign the eigenvalues of the augmented system to arbitrary values.

We will see in Chapter 9 that the coefficient b, can be identified with a coeffi-
cient of the transfer function

bis" V4 bas" 2. +b,
s"tasm 4+ 4a,

The condition for reachability is thus that the original system does not contain a
pure derivative.

G(s) =

7.5 Linear Quadratic Regulators

As an alternative to selecting the closed loop eigenvalue locations to accomplish a
certain objective, the gains for a state feedback controller can instead be chosen by
attempting to optimize a cost function. This can be particularly useful in helping
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balance the performance of the system with the magnitude of the inputs required
to achieve that level of performance.

The linear quadratic regulator (LQR) problem is one of the most common op-
timal control problems. Given a multi-input linear system

d
d—f:Ax—i-Bu, xeR" uecRP,

with initial condition x(0) = xp, we attempt to minimize the quadratic cost function

J(x0) = /0 ' (x" Qux+u” Quu) dt +x" (1) Qex (), (7.29)

where Q. > 0, @, > 0 and Q¢ > 0 are symmetric, positive (semi-) definite matrices
of the appropriate dimensions. This cost function represents a trade-off between
the deviation of the state from the origin and the cost of the control input. By
choosing the matrices Q,, Q,, and Qf we can balance the rate of convergence of the
solutions with the cost of the control.

The solution to the LQR problem is given by a linear control law of the form

u=—Kx, K=Q,'B’S, (7.30)
where S € R"*" is a positive definite, symmetric matrix given by

das
i =ATS+SA—SBQ,'BTS+0,, S(tr) = 0. (731)

This differential equation, called the Riccati differential equation, is integrated
backwards in time starting with S(#) = Qr. The minimal cost function, represent-
ing the optimal cost, is given by

min /O " (x" Qux + u” Quu) dt +x" (1) Qex(tr) = x" (0)S(0)x(0) (7.32)

The matrices A, B, Oy, Q,, and K may depend on time. A solution to the optimal
control problem exists if the Riccati equation has a unique positive solution. The
LQR approach is particularly well suited when linearizing around a trajectory as
will be done later in Section 8.5.

The LQR problem is simplified significantly if the time horizon is infinite and
all matrices are constants, in which case S is a constant matrix given by the steady
state solution of (7.31):

ATS+SA—SBQ,'B"S+ 0, =0. (7.33)

This equation is called the algebraic Riccati equation. If the system is reach-
able, it can be shown that there is a unique positive definite matrix S satisfy-
ing equation (7.33) that makes the closed loop system stable. The feedback gain
K=0, IBT'S is then also a constant matrix. The MATLAB command 1qr returns
K, S, and the dynamics matrix £ = A — BK of the closed loop system.

A key question in LQR design is how to choose the weights O, Q, and Or.
To guarantee that a solution exists, we must have O, >~ 0 and Q,, > 0. In addition,
there are certain “observability” conditions on Q, that limit its choice. Here we
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assume Q, > 0 to ensure that solutions to the algebraic Riccati equation always
exist. To choose specific values for the cost function weights O, and Q,, we must
use our knowledge of the system we are trying to control. A particularly simple
choice is to use diagonal weights

0 qn 0 Pn

For this choice of O, and Q,, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we can
take states that should remain small and attach higher weight values to them. Sim-
ilarly, we can penalize an input versus the states and other inputs through choice
of the corresponding input weight p.

Example 7.9 Vectored thrust aircraft
Consider the original dynamics of the system (3.28), written in state space form as

0 3
Z
+ 0
25 0
dz <6 £ B o
7 _cg, + | 5rcos6 —-2sin6
m
_g_ ¢ B o 1)
8 Omzs Sy sin6 + -2 cos 6
§Fl /

(see also Example 6.4). The system parameters are m = 4 kg, J = 0.0475 kgm?,
r=0.25m,g=9.8 m/s2, ¢ = 0.05 N s/m, which corresponds to a scaled model of
the system. The equilibrium point for the system is given by F; =0, F, = mg, and
Ze = (%e,¥e,0,0,0,0). To derive the linearized model near an equilibrium point, we
compute the linearization according to equation (6.35):

00 0 1 0 0 0 0)
00 0 0 1 0 0 0
00 0 0 0 1 0 0
A=lo 0 —g —e/m 0 o0 B=11m o
00 O 0 —c¢/m 0 0 1/m
00 0 0 0 0 G
(100000 (0 0
“=lo 1000 0} =10 o)

Letting £ = z—z. and v = F — F,, the linearized system is given by

It can be verified that the system is reachable.

d§

dt

= A& + By,

y=C¢.
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Figure 7.13: Step response for a vectored thrust aircraft. The plot in (a) shows the x and y
positions of the aircraft when it is commanded to move 1 m in each direction. In (b) the x
motion is shown for control weights p = 1, 102, 10*. A higher weight of the input term in
the cost function causes a more sluggish response.

To compute a linear quadratic regulator for the system, we write the cost func-
tion as

I= [ (€T 0zE+v Q.

where & = 7 — z. and v = F — F; again represent the local coordinates around the
desired equilibrium point (ze, Fz). We begin with diagonal matrices for the state
and input costs:

(1 0 0 0 0O
01 0000
10 01 0 0O _[p O
%=1000 10 of Q”_[Op]'
000O0T10
000 O0O0°1
This gives a control law of the form v = —K¢&, which can then be used to derive

the control law in terms of the original variables:
F=v+F=—-K(z—2z)+F.

As computed in Example 6.4, the equilibrium points have F, = (0,mg) and z. =
(Xe,¥e,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure 7.13a for p = 1. The response can be tuned by adjusting
the weights in the LQR cost. Figure 7.13b shows the response in the x direction
for different choices of the weight p.

\%

Linear quadratic regulators can also be designed for discrete-time systems, as
illustrated by the following example.

Example 7.10 Web server control

Consider the web server example given in Section 4.4, where a discrete-time model
for the system was given. We wish to design a control law that sets the server
parameters so that the average server processor load is maintained at a desired
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Figure 7.14: Feedback control of a web server. The controller sets the values of the web
server parameters based on the difference between the nominal parameters (determined by
kerepu) and the current load ycpy. The disturbance v represents the load due to other processes
running on the server. Note that the measurement is taken after the disturbance so that we
measure the total load on the server.

level. Since other processes may be running on the server, the web server must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 7.14. We focus
on the special case where we wish to control only the processor load using both
the KeepAlive and MaxClients parameters. We also include a “disturbance”
on the measured load that represents the use of the processing cycles by other
processes running on the server. The system has the same basic structure as the
generic control system in Figure 7.5, with the variation that the disturbance enters
after the process dynamics.

The dynamics of the system are given by a set of difference equations of the

form
x4 1] = Axk] + Bulk],  yepulk] = epu K] + depu 4]

where x = (Xcpu, Xmem ) is the state of the web server, u = (uk,, tmc) is the input, depy

is the processing load from other processes on the computer, and ycpy is the total

processor load. The matrices A € R**? and B € R?*? are described in Section 4.4.
We choose our controller to be a feedback controller of the form

u=-K [ Yepu ] +kf”cpu;
Xmem

where repy is the desired processor load. Note that we have used the measured
processor load y.py instead of the CPU state x¢py to ensure that we adjust the system
operation based on the actual load. (This modification is necessary because of the
nonstandard way in which the disturbance enters the process dynamics.)

The feedback gain matrix K can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, with the cost function given

by 5
(50 _(1/50 0
Or = [0 1]7 Q"_[ 0 1/10002]'

The cost function for the state O, is chosen so that we place more emphasis on
the processor load versus the memory usage. The cost function for the inputs Q,, is
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Figure 7.15: Web server with LQR control. The plot in (a) shows the state of the system un-
der a change in external load applied at k = 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce the effect of the disturbance
by approximately 40%.

chosen so as to normalize the two inputs, with a KeepAlive timeout of 50 s hav-
ing the same weight as a MaxClients value of 1000. These values are squared
since the cost associated with the inputs is given by u’ Q,u. Using the dynamics in
Section 4.4 and the d1gqr command in MATLAB, the resulting gains become

~22.3 10.1
k= [382.7 77.7] '

As in the case of a continuous-time control system, the feedforward gain ks is
chosen to yield the desired operating point for the system. Setting x[k+ 1] = x[k] =
Xe, the steady-state equilibrium point and output for a given reference input r are
given by

Xe = (A — BK)x. + Bkir, Ve = Cxe.
This is a matrix equation in which k¢ is a column vector that sets the two input
values based on the desired reference. Since we have two inputs, we can set both
the desired CPU load ycpue and the desired memory usage xmeme. If we take the
desired equilibrium state to be of the form x. = (r, 0), where we choose the desired
value of memory usage to be zero to make as much memory as possible available
for other tasks, then we must solve

[6] = (A—BK —1)"'Bkr.

Solving this equation for k¢, we obtain

= ((a-sx-n7m) " () = (553)

The dynamics of the closed loop system are illustrated in Figure 7.15. We apply
a change in load of d,, = 0.3 at time ¢ = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desired load at 0.57. Note that
both the KeepAlive and MaxClients parameters are adjusted. Although the
load is decreased, it remains approximately 0.2 above the desired steady state. V
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7.6 Further Reading

The importance of state models and state feedback was discussed in the seminal
paper by Kalman [Kal60], where the state feedback gain was obtained by solving
an optimization problem that minimized a quadratic loss function. The notions
of reachability and observability (Chapter 8) are also due to Kalman [Kal61b]
(see also [Gil63, KHN63]). Kalman defines controllability and reachability as the
ability to reach the origin and an arbitrary state, respectively [KFA69]. We note that
in most textbooks the term “controllability” is used instead of “reachability,” but
we prefer the latter term because it is more descriptive of the fundamental property
of being able to reach arbitrary states. Most undergraduate textbooks on control
contain material on state space systems, including, for example, Franklin, Powell,
and Emami-Naeini [FPENOS5] and Ogata [OgaOl1]. Friedland’s textbook [Fri04]
covers the material in the previous, current, and next chapter in considerable detail,
including the topic of optimal control.

Exercises

7.1 (Double integrator) Consider the double integrator. Find a piecewise constant
control strategy that drives the system from the origin to the state x = (1, 1).

7.2 (Reachability from nonzero initial state) Extend the argument in Section 7.1 to
show that if a system is reachable from an initial state of zero, it is reachable from
a nonzero initial state.

7.3 (Unreachable systems) Consider a system with the state x and z described by

the equations

dx dz
7 X+ Bu, 0t 7+ DBu

If x(0) = z(0) it follows that x(¢#) = z(¢) for all 7 regardless of the input that is
applied. Show that this violates the definition of reachability and further show that
the reachability matrix W; is not full rank.

7.4 (Integral feedback for rejecting constant disturbances) Consider a linear system
of the form dx

E:Ax—i—Bu—i—Fd, y=Cx

where u is a scalar and v is a disturbance that enters the system through a distur-
bance vector F € R". Assume that the matrix A is invertible and the zero frequency
gain CA~!B is nonzero. Show that integral feedback can be used to compensate for
a constant disturbance by giving zero steady-state output error even when d # 0.

7.5 (Rear-steered bicycle) A simple model for a bicycle was given by equation (4.5)
in Section 4.2. A model for a bicycle with rear-wheel steering is obtained by revers-
ing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.
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7.6 (Characteristic polynomial for reachable canonical form) Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (7.7) and that

d"z; d" 'z dzy d"*y

dr +a dtnfl + - +an71E +aniy = —

dtn—k ’
where z; is the kth state.

7.7 (Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

1 a a -+ a,

0O 1 a - ay
Wl = 0 1

0O --- 0 ai

0 0 O 1

7.8 (Non-maintainable equilibria) Consider the normalized model of a pendulum
on a cart

d’x B d’e _ 0

=t gp T
where x is cart position and 0 is pendulum angle. Can the angle 6 = 6, for 6y # 0
be maintained?

7.9 (Eigenvalue assignment for unreachable system) Consider the system

dx 0 1 1
e () -
with the control law
u= —kix; —koxp + ksr.

Compute the rank of the reachability matrix for the system and show that eigen-
values of the system cannot be assigned to arbitrary values.

7.10 (Cayley—Hamilton theorem) Let A € R™*" be a matrix with characteristic
polynomial A(s) = det(s] —A) = s" +ays" ' +---+a,_1s+a, Assume that the
matrix A can be diagonalized and show that it satisfies

AA)=A"+aq A"+ a1 Ata,d =0,

where the zero on the right hand side represents a matrix of elements with all zeros.
Use this result to show that A¥, k > n, can be rewritten in terms of powers of A of
order less than n.
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7.11 (Dominant pairs) Consider the following two linear systems:

dx _ [—1.1 —0.1]x+[1]u dx _ [—1.1 —0.1]x+[1]u
5. di 1 0 0) " y, . di 1 0 0)™
y= (1.01 0.11]x, y= [1.1 1.01) x.

Show that although both systems have the same eigenvalues, the step responses of
the two systems are dominated by different sets of eigenvalues.

7.12 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise 3.10. Using the following normalized parameters,

L =10/9, J5=10, ¢=0.1, k=1, k=1,

verify that the eigenvalues of the open loop system are 0,0,—0.05 £ i. Design
a state feedback that gives a closed loop system with eigenvalues —2, —1, and
—1 4. This choice implies that the oscillatory eigenvalues will be well damped
and that the eigenvalues at the origin are replaced by eigenvalues on the negative
real axis. Simulate the responses of the closed loop system to step changes in the
command signal for 8, and a step change in a disturbance torque on the second
rotor.

7.13 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (4.8) in Section 4.2. Using the parameters from the companion web site, the
model is unstable at the velocity v = 5m/s and the open loop eigenvalues are
—1.84, —14.29, and 1.30 £ 4.60i. Find the gains of a controller that stabilizes the
bicycle and gives closed loop eigenvalues at —2, —10, and —1 =+ i. Simulate the
response of the system to a step change in the steering reference of 0.002 rad.

7.14 (Atomic force microscope) Consider the model of an AFM in contact mode
given in Example 6.9:

0 1 0 0 0
dx | —ko/(m1+ma) —caf(mi+mz) 1/my 0 ot 0 y
dr 0 0 0 03] 0 ’
0 0 —03 28303 3

my miky micy
y= 1 0]=x.
my+my \my+my my+mp
Use the MATLAB script afm_data . m from the companion web site to generate
the system matrices.

(a) Compute the reachability matrix of the system and numerically determine
its rank. Scale the model by using milliseconds instead of seconds as time
units. Repeat the calculation of the reachability matrix and its rank.

(b) Find a state feedback controller that gives a closed loop system with com-
plex poles having damping ratio 0.707. Use the scaled model for the com-
putations.
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(c) Compute state feedback gains using linear quadratic control. Experiment by
using different weights. Compute the gains for g = ¢» = 0,93 = g4 =1 and
p1 = 0.1 and explain the result. Choose ¢; = g» = g3 = g4 = 1 and explore
what happens to the feedback gains and closed loop eigenvalues when you
change p;. Use the scaled system for this computation.

7.15 Consider the second-order system

d?y dy du
—+0.5— =a—+u.
a0 T T gt

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response is a. Discuss what it
means when a < 0.

(b) Show that there are points on the unit step response that are invariant with
a. Discuss qualitatively the effect of the parameter a on the solution.

(c) Simulate the system and explore the effect of a on the rise time and over-
shoot.

7.16 (Requirements and transfer functions) Find the transfer function of a second
order system that satisfies the following closed loop requirements: (a) zero steady
state error, (b) 2% settling time less than 2 s, (c¢) rise time less than 0.8 s and (d)
overshoot less than 3%.

7.17 (Bryson’s rule) Bryson and Ho [BH75] have suggested the following method
for choosing the matrices Q. and @, in equation (7.29). Start by choosing QO
and Q, as diagonal matrices whose elements are the inverses of the squares of
the maxima of the corresponding variables. Then modify the elements to obtain a
compromise among response time, damping, and control effort. Apply this method
to the motor drive in Exercise 7.12. Assume that the largest values of the ¢; and
¢, are 1, the largest values of ¢ and ¢, are 2 and the largest control signal is 10.
Simulate the closed loop system for ¢,(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonal elements for Q, and Q,,.

7.18 (Linear quadratic regulator) Consider the first order system

d
d—); = ax+ bu, x(0) = xo,

where all variables are scalar. Find a control law that minimizes the criterion
2 L 2
I(x0) = min(go (1) + [ (9?0 + qui (1)) ).

where gr, g, and g, are all positive.
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7.19 (LQR proof) Use the Riccati equation (7.31) and the relation
2 (1) Qpx(tr) —x (0)S(0)x(0) =
/O ' (xT (0)S(0)x(r) +xT S(1)x(t) +x7 (t)S(t)x(t))dt.

to show that the cost function for the linear quadratic regulator problem can be
written as

[ (7 00u@) 44" 000 di-+ 5" (1) 05x()
=TSO+ [ (ul) +0, B 50)x(0)) Qu(ule) +0, B s(0)x(0) )t

from which we can deduce that the control strategy u(t) = —Kx(t) = —Q;, ' BT S(t)x(t)
is optimal. Does the proof hold when all matrices depend on time?
7.20 (Riccati and Euler equations) Consider the Riccati equation

ds

dr =A"S+SA—-SBQ,'B"S+0Q.,  S(15) =0

Show that the solution is
S(1) = P21 (t) + P (1) Q) [¥11 (1) + Wr2(1) Qe 1,
where the matrix W satisfies the differential equation
avy _d [‘Pu lIJ12] _ [ A —BQulBT] [‘1’11 lI’12]
dt — dt Y21 ¥22) (-0« —AT W Yn

with initial conditions

_(Pulty) Yi@tp)) (I O
)= (wnl) 2] = (0 )

7.21 (Proportional navigation) The figure below is a schematic representation of a
two-dimensional pursuit problem. The pursuer is attempting to reach the target as

quickly as possible. Develop a linear model and use linear optimal control theory
to derive a control law. You can use the model ¢, = u as a model for the pursuer.
Express the control law in terms of the line of sight y ~ y/r to the pursuer.



Chapter Eight
Output Feedback

One may separate the problem of physical realization into two stages: computation of the
“best approximation” X(t1) of the state from knowledge of y(t) for t <t and computation of
u(y) given (ty).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 1960 [Kal60].

In this chapter we show how to use output feedback to modify the dynamics of
the system through the use of observers. We introduce the concept of observability
and show that if a system is observable, it is possible to recover the state from
measurements of the inputs and outputs to the system. We then show how to design
a controller with feedback from the observer state. A general controller with two
degrees of freedom is obtained by adding feedforward. We illustrate by outlining
a controller for a nonlinear system that also employs gain scheduling.

8.1 Observability

In Section 7.2 of the previous chapter it was shown that it is possible to find a state
feedback law that gives desired closed loop eigenvalues provided that the system
is reachable and that all the states are measured by sensors. For many situations, it
is highly unrealistic to assume that all the states are measured. In this section we
investigate how the state can be estimated by using a mathematical model and a
few measurements. It will be shown that computation of the states can be carried
out by a dynamical system called an observer.

Definition of Observability

Consider a system described by a set of differential equations

d
d—f:Ax—l—Bu, y=Cx+ Du, (8.1

where x € R” is the state, u € R? the input, and y € R? the measured output. We
wish to estimate the state of the system from its inputs and outputs, as illustrated
in Figure 8.1. In some situations we will assume that there is only one measured
signal, i.e., that the signal y is a scalar and that C is a (row) vector. This signal may
be corrupted by noise w, although we shall start by considering the noise-free case.
We write X for the state estimate given by the observer.

Definition 8.1 (Observability). A linear system is observable if for every T > 0 it
is possible to determine the state of the system x(7') through measurements of y(r)
and u(r) on the interval [0, T].
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w
Process
u X =Ax+Bu y £
> Observer —
y=Cx+Du

Figure 8.1: Block diagram for an observer. The observer uses the process measurement y
(possibly corrupted by noise w) and the input u to estimate the current state of the process,
denoted x.

The definition above holds for nonlinear systems as well, and the results dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many important applications, even
outside feedback systems. If a system is observable, then there are no “hidden” dy-
namics inside it; we can understand everything that is going on through observation
(over time) of the inputs and outputs. As we shall see, the problem of observability
is of significant practical interest because it will determine if a set of sensors is
sufficient for controlling a system. Sensors combined with a mathematical model
of the system can also be viewed as a “virtual sensor” that gives information about
variables that are not measured directly. The process of reconciling signals from
many sensors using mathematical models is also called sensor fusion.

Testing for Observability

When discussing reachability in the previous chapter, we neglected the output and
focused on the state. Similarly, it is convenient here to initially neglect the input
and focus on the autonomous system

% = Ax, y=_Cx, (8.2)
where x € R" and y € R. We wish to understand when it is possible to determine
the state from observations of the output.

The output itself gives the projection of the state onto vectors that are rows
of the matrix C. The observability problem can immediately be solved if n = ¢
(number of outputs equals number of states) and the matrix C is invertible. If the
matrix is not square and invertible, we can take derivatives of the output to obtain

dy dx
2= % = cax.
di  dri *

From the derivative of the output we thus get the projection of the state on vectors
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that are rows of the matrix CA. Proceeding in this way, we get at every time ¢

y(t) C

y(t) CA

i@y | = | A | ). (8.3)
y(n—:l)(t) can-!

We thus find that the state at time ¢ can be determined from the output and its
derivatives at time ¢ if the observability matrix

C
CA

w,= | CA® (8.4)

CA;Z_I

has full row rank (n independent rows). As in the case of reachability, it turns out
that we need not consider any derivatives higher than n — 1 (this is an application
of the Cayley—Hamilton theorem [Exercise 7.10]).

The calculation can easily be extended to systems with inputs and many mea-
sured signals. The state is then given by a linear combination of inputs and outputs
and their higher derivatives. The observability criterion is unchanged. We leave
this case as an exercise for the reader.

In practice, differentiation of the output can give large errors when there is
measurement noise, and therefore the method sketched above is not particularly
practical. We will address this issue in more detail in the next section, but for now
we have the following basic result.

Theorem 8.1 (Observability rank condition). A linear system of the form (8.1) is
observable if and only if the observability matrix W, is full row rank.

Proof. The sufficiency of the observability rank condition follows from the analy-
sis above. To prove necessity, suppose that the system is observable but W, is not
full row rank. Let v € R", v # 0, be a vector in the null space of W, so that Wov = 0.
(Such a v exists using the fact that the row and column rank of a matrix are always
equal.) If we let x(0) = v be the initial condition for the system and choose u = 0,
then the output is given by y(¢) = Ce?’v. Since ¢’ can be written as a power series
in A and since A" and higher powers can be rewritten in terms of lower powers of
A (by the Cayley—Hamilton theorem), it follows that y(7) will be identically zero
(the reader should fill in the missing steps). However, if both the input and output
of the system are zero, then a valid estimate of the state is £ = 0O for all time, which
is clearly incorrect since x(0) = v # 0. Hence by contradiction we must have that
W, is full row rank if the system is observable. 0
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Figure 8.2: An unobservable system. Two identical subsystems have outputs that add to-
gether to form the overall system output. The individual states of the subsystem cannot be
determined since the contributions of each to the output are not distinguishable. The circuit
diagram on the right is an example of such a system.

Example 8.1 Compartment model

Consider the two-compartment model in Figure 4.18a, but assume that only the
concentration in the first compartment can be measured. The system is described
by the linear system

dC_ —ko—k] k1 bo o
dt_[ ko “ky c+ o | y= {l 0] c.

The first compartment represents the drug concentration in the blood plasma, and
the second compartment the drug concentration in the tissue where it is active. To
determine if it is possible to find the concentration in the tissue compartment from
a measurement of blood plasma, we investigate the observability of the system by
forming the observability matrix

c 10
Wo = [CA] = [—ko—lq kl] '

The rows are linearly independent if k; # 0, and under this condition it is thus
possible to determine the concentration of the drug in the active compartment from
measurements of the drug concentration in the blood. \%

It is useful to have an understanding of the mechanisms that make a system
unobservable. Such a system is shown in Figure 8.2. The system is composed of
two identical systems whose outputs are subtracted. It seems intuitively clear that
it is not possible to deduce the states from the output since we cannot deduce the
individual output contributions from the difference. This can also be seen formally
(Exercise 8.3).



8.1. OBSERVABILITY 8-5

22 21

Figure 8.3: Block diagram of a system in observable canonical form. The states of the
system are represented by individual integrators whose inputs are a weighted combination
of the next integrator in the chain, the first state (rightmost integrator), and the system input.
The output is a combination of the first state and the input.

Observable Canonical Form

As in the case of reachability, certain canonical forms will be useful in studying
observability. A linear single-input, single-output state space system is in observ-
able canonical form if its dynamics are given by

—da] 1 0 --- 0 b]
—a 0 1 0 b
e S I e
a | R o
a1 00 1 b1
@, 00 - 0 by
y— [1 00 - 0]z+dou.

This definition can be extended to systems with many inputs; the only difference
is that the vector multiplying u is replaced by a matrix.

Figure 8.3 is a block diagram for a system in observable canonical form. As
in the case of reachable canonical form, we see that the coefficients in the system
description appear directly in the block diagram. The characteristic polynomial for
a system in observable canonical form is

A(s) =s"+ais" '+ Fa,_15+ay. (8.5)

It is possible to reason about the observability of a system in observable canonical
form by studying the block diagram. If the input u and the output y are available,
the state z; can clearly be computed. Differentiating z;, we obtain the input to the
integrator that generates z;, and we can now obtain z; = 7| +a;z; — bju. Proceed-
ing in this way, we can compute all states. The computation will, however, require
that the signals be differentiated.

To check observability more formally, we compute the observability matrix for
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a system in observable canonical form, which is given by

1 0 0 ... 0
—ay 1 0 ... 0

W, = —at—ay —a 1 0],
* * o1

where * represents an entry whose exact value is not important. The columns of
this matrix are linearly independent (since it is lower triangular), and hence W, is
invertible. A straightforward but tedious calculation shows that the inverse of the
observability matrix has a simple form given by

1 0 0 0

ai 1 0 0

Wo—l — a aj 1 0
Ap1 Ap2 ap3 -+ 1

As in the case of reachability, it turns out that a system is observable if and only
if there exists a transformation 7" that converts the system into observable canonical
form. This is useful for proofs since it lets us assume that a system is in observable
canonical form without any loss of generality. The observable canonical form may
be poorly conditioned numerically.

8.2 State Estimation

Having defined the concept of observability, we now return to the question of how
to construct an observer for a system. We will look for observers that can be repre-
sented as a linear dynamical system that takes the inputs and outputs of the system
we are observing and produces an estimate of the system’s state. That is, we wish
to construct a dynamical system of the form

di FX+Gu+H

— =FX+Gu

di Y
where u and y are the input and output of the original system and £ € R" is an
estimate of the state with the property that £(¢) — x(¢) as t — co.

The Observer

We consider the system in equation (8.1) with D set to zero to simplify the expo-
sition:
dx

% = Ax+ Bu, y==Cx. (8.6)
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We can attempt to determine the state simply by simulating the equations with the
correct input. An estimate of the state is then given by
dx .
I =A%+ Bu. (8.7)
To find the properties of this estimate, introduce the estimation error ¥ = x — £. It
follows from equations (8.6) and (8.7) that
dx
dt
If the dynamics matrix A has all its eigenvalues in the left half-plane, the error
X will go to zero, and hence equation (8.7) is a dynamical system whose output
converges to the state of the system (8.6). However, the convergence might be
slower than desired.

The observer given by equation (8.7) uses only the process input u; the mea-
sured signal does not appear in the equation. We must also require that the system
be stable, and essentially our estimator converges because the transient dynamics
of both the observer and the estimator are going to zero. This is not very useful in
a control design context since we want to have our estimate converge quickly to
a nonzero state so that we can make use of it in our controller. We will therefore
attempt to modify the observer so that the output is used and its convergence prop-
erties can be designed to be fast relative to the system’s dynamics. This version
will also work for unstable systems.

Consider the observer

% =A%+ Bu+L(y —Cx). (8.8)
This can be considered as a generalization of equation (8.7). Feedback from the
measured output is provided by adding the term L(y — C%), which is proportional
to the difference between the observed output and the output predicted by the ob-
server. It follows from equations (8.6) and (8.8) that

dx
i (A—-LCO)x.
If the matrix L can be chosen in such a way that the matrix A — LC has eigenval-
ues with negative real parts, the error X will go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a state feedback and
finding the observer. State feedback design by eigenvalue assignment is equivalent
to finding a matrix K so that A — BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrix L so that A — LC has
given eigenvalues. Since the eigenvalues of a matrix and its transpose are the same
we can establish the following equivalences:

A AT, B« CT, K« LT, W, < WI. (8.9)
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The observer design problem is the dual of the state feedback design problem.
Using the results of Theorem 7.3, we get the following theorem on observer design.

Theorem 8.2 (Observer design by eigenvalue assignment). Consider the system

given by
dx
o, = Ax+ Bu, y=Cx, (8.10)

with one input and one output. Let A(s) = s" +a;s" ' +--- +a,_15 +a, be the

characteristic polynomial for A. If the system is observable, then the dynamical

system
i
d—);:A)H—BquL(y—C)E) (8.11)

is an observer for the system, with L chosen as

p1—ai
~ | P2—a2
L=W,'W, _ (8.12)
Pn—dan
and the matrices W,, and W, given by
(10 0 0o oy
C ai 1 0 0 0
CA - ar ap 1 0 0
Wo == y W() = . .
CA™! An_2 Qn_3 Qa4 1

ap—1 ap2 ap-3 ... ap 1

The resulting observer error X = x — X is governed by a differential equation having
the characteristic polynomial

p(s) =s"+p1s"" 4+ p.

The dynamical system (8.11) is called an observer for (the states of) the sys-
tem (8.10) because it will generate an approximation of the states of the system
from its inputs and outputs. This form of an observer is a much more useful form
than the one given by pure differentiation in equation (8.3).

Example 8.2 Compartment model
Consider the compartment model in Example 8.1, which is characterized by the

matrices
. —ko—k] k1 o bO _
A_[ " _kz], B_[O], c_(l o].

The observability matrix was computed in Example 8.1, where we concluded that
the system was observable if k; # 0. The dynamics matrix has the characteristic
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Figure 8.4: Observer for a two compartment system. A two compartment model is shown
on the left. The observer measures the input concentration u and output concentration y = ¢
to determine the compartment concentrations, shown on the right. The true concentrations
are shown by solid lines and the estimates generated by the observer by dashed lines.

polynomial

s+ko+k —k

l(s):det[ A

] = 5% + (ko + k1 + ka)s -+ koka.
Let the desired characteristic polynomial of the observer be s> + pis + p», and
equation (8.12) gives the observer gain

L 1 0) " 1 0 ' (pi—ko—ki—ka
N\ —ko—ki K ko+ki+ky 1 P2 — koka
_ p1—ko—ki —ka

(p2—prika+kika +k3) Jky )

Notice that the observability condition k| # O is essential. The behavior of the
observer is illustrated by the simulation in Figure 8.4b. Notice how the observed
concentrations approach the true concentrations. \%

The observer is a dynamical system whose inputs are the process input u# and the
process output y. The rate of change of the estimate is composed of two terms. One
term, AX -+ Bu, is the rate of change computed from the model with £ substituted
for x. The other term, L(y — ), is proportional to the difference e = y — J between
measured output y and its estimate § = CX. The observer gain L is a matrix that
determines how the error e is weighted and distributed among the state estimates.
The observer thus combines measurements with a dynamical model of the system.
A block diagram of the observer is shown in Figure 8.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introduce the elements of the
observer gain L as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.
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Figure 8.5: Block diagram of the observer. The observer takes the signals y and u as inputs
and produces an estimate x. Notice that the observer contains a copy of the process model
that is driven by y — ¥ through the observer gain L.

Example 8.3 Vehicle steering

The normalized linear model for vehicle steering derived in Examples 6.13 and 7.4
gives the following state space model dynamics relating lateral path deviation y to
steering angle u:

dx 0 1 Y

dt_[o 0]x+[1]u, y_(l O]x. (8.13)
Recall that the state x; represents the lateral path deviation and that x;, represents
the turning rate. We will now derive an observer that uses the system model to

determine the turning rate from the measured path deviation.
The observability matrix is
1 0
(1)

i.e., the identity matrix. The system is thus observable, and the eigenvalue assign-
ment problem can be solved. We have

_(—h 1
a-1e= (7} o).
which has the characteristic polynomial

S—|—ll

det(sI —A+LC) = det [ p
2

_Sl] :S2+115+12.

Assuming that we want to have an observer with the characteristic polynomial
2+ p1s+pr = s+ 28 @0s + @,

the observer gains should be chosen as

I
e

I = p1 =28w,, I, =p>
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Figure 8.6: Simulation of an observer for a vehicle driving on a curvy road. (a) The vehicle
trajectory, as viewed from above, with the lane boundaries shown as dashed lines. (b) The
response of the observer with an initial velocity error. The plots on the left show the lateral
deviation x| and the lateral velocity x, with solid lines and their estimates £; and £, with
dashed lines. The plots on the right show the estimation errors. The parameters used to
design the estimator were @, = 1 and §, = 0.7.

The observer is then

x| ~_ (0 1) ., (v L .
E—A)H—BIH-L(y—Cx)— [0 0] £+ [1] u+ [lz] (y—%1).

A simulation of the observer for a vehicle driving on a curvy road is shown in
Figure 8.6. Figure 8.6a shows the trajectory of the vehicle on the road, as viewed
from above. The response of the observer is shown in Figure 8.6a, where time is
normalized to the vehicle length. We see that the observer error settles in about 3
vehicle lengths. \%

To compute the observer gains for systems of high order we have to use nu-
merical calculations. The duality between the design of a state feedback and the
design of an observer means that the computer algorithms for state feedback can
also be used for the observer design; we simply use the transpose of the dynamics
matrix and the output matrix. The MATLAB command acker, which essentially
is a direct implementation of the calculations given in Theorem 8.2, can be used
for systems with one output. The MATLAB command place can be used for
systems with many outputs. It is also better conditioned numerically.

Requirements on a control system typically involve performance and robust-
ness. Choosing a fast observer gives fast convergence but the observer gains will
be high and the estimated state will be sensitive to measurement noise. If noise
characteristics are known it is possible to find the best compromise, as will be
discussed in Section 8.4, the observer is then called a Kalman filter.
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8.3 Control Using Estimated State

In this section we will consider a state space system of the form

d
d—); = Ax+ Bu, y=Cx. (8.14)

We wish to design a feedback controller for the system where only the output is
measured. Notice that we have assumed that there is no direct term in the system
(D = 0), which is often a realistic assumption. The presence of a direct term in
combination with a controller having proportional action creates an algebraic loop,
which will be discussed in Section 9.4. The problem can still be solved even if there
is a direct term, but the calculations are more complicated.

As before, we will assume that u and y are scalars. We also assume that the
system is reachable and observable. In Chapter 7 we found a feedback of the form

u=—Kx—+k¢r

for the case that all states could be measured, and in Section 8.2 we developed
an observer that can generate estimates of the state X based on inputs and outputs.
In this section we will combine the ideas of these sections to find a feedback that
gives desired closed loop eigenvalues for systems where only outputs are available
for feedback.

If all states are not measurable, it seems reasonable to try the feedback

u = —KX+ k¢r, (8.15)

where £ is the output of an observer of the state, i.e.,

d—f:A)E—i—Bu—i—L(y—C)?). (8.16)
It is not clear that such a combination will have the desired effect. To explore this,
note that since the system (8.14) and the observer (8.16) are both of state dimension
n, the closed loop system has state dimension 2n with state (x, X). The evolution
of the states is described by equations (8.14)—(8.16). To analyze the closed loop
system, we change coordinates and replace the estimated state variable £ by the
estimation error

I=x—2% (8.17)
Subtraction of equation (8.16) from equation (8.14) gives
% =Ax—A%—L(Cx—C%) =AX— LCi = (A— LC)X.

Returning to the process dynamics, introducing # from equation (8.15) into
equation (8.14) and using equation (8.17) to eliminate £ gives
d
di; = Ax+ Bu = Ax — BKZ+ Bkgr = Ax — BK (x — ) + Bker
= (A — BK)x+ BKX + Bkir.
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The closed loop system is thus governed by

d (x A—BK BK X Bk

i ()= B B (6 e
Notice that the state X, representing the observer error, is not affected by the ref-
erence signal r. This is desirable since we do not want the reference signal to
generate observer errors.

Since the dynamics matrix is block diagonal, we find that the characteristic
polynomial of the closed loop system is

A(s) =det(sI —A+BK)det (s —A+ LC).

This polynomial is a product of two terms: the characteristic polynomial of the
closed loop system obtained with state feedback and the characteristic polynomial
of the observer error. The feedback (8.15) that was motivated heuristically thus
provides an elegant solution to the eigenvalue assignment problem. The result is
summarized as follows.

Theorem 8.3 (Eigenvalue assignment by output feedback). Consider the system

d
—X:Ax—i—Bu, y=Cx.

dt
The controller described by
ik
di; = A%+ Bu+ L(y—C£) = (A— BK — LC)% + Bkgr + Ly,
u=—Kx+ ke

gives a closed loop system with the characteristic polynomial
A(s) =det(sI —A+BK)det(sI —A+LC).

This polynomial can be assigned arbitrary roots if the system is reachable and
observable.

The controller has a strong intuitive appeal: it can be thought of as being com-
posed of two parts: state feedback and an observer. The controller is now a dynam-
ical system with internal state dynamics generated by the observer. The control
action makes use of feedback from the estimated states X. The feedback gain K
can be computed as if all state variables can be measured, and it depends only
on A and B. The observer gain L depends only on A and C. The property that the
eigenvalue assignment for output feedback can be separated into an eigenvalue
assignment for a state feedback and an observer is called the separation principle.

A block diagram of the controller is shown in Figure 8.7. Notice that the con-
troller contains a dynamical model of the plant. This is called the internal model
principle: the controller contains a model of the process being controlled.

Requirements on a control system typically involve performance and robust-
ness. It is not obvious how such properties are reflected in the closed loop eigen-
values. It is therefore important to evaluate the design for example by plotting time
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Figure 8.7: Block diagram of an observer-based control system. The observer uses the mea-
sured output y and the input u to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. The controller consists of the
observer and the state feedback; the observer is identical to that in Figure 8.5.

responses to get more insight into the properties of the design. Additional discus-
sion is presented in Section 14.6, where we consider the robustness of eigenvalue
assignment (pole placement) design and also give some design rules.

Example 8.4 Vehicle steering
Consider again the normalized linear model for vehicle steering in Example 7.4.
The dynamics relating the steering angle u to the lateral path deviation y is given by
the state space model (8.13). Combining the state feedback derived in Example 7.4
with the observer determined in Example 8.3, we find that the controller is given

by

i

dt

Af+Bu+L(y—C#) = [

01
00

u—= —K)?—i—kfr:kl(r—)fl) —kzxAz.

Elimination of the variable u gives

@
dt

—k1 =1

1 — Yko
—ky

= (A— BK — LC)& + Ly + Bkgr
_ [—ll — Yki

|

o () ()

) 7)o
2

where we have set ks = k; as described in Example 7.4. The controller is a dynam-
ical system of second order, with two inputs y and r and one output u. Figure 8.8
shows a simulation of the system when the vehicle is driven along a curvy road.
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Figure 8.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane boundaries (dotted), the vehicle
position (solid), and its estimate (dashed), the upper right plot shows the velocity (solid) and
its estimate (dashed), and the lower right plot shows the control signal using state feedback
(solid) and the control signal using the estimated state (dashed).

Since we are using a normalized model, the length unit is the vehicle length and the
time unit is the time it takes to travel one vehicle length. The estimator is initialized
with all states equal to zero but the real system has an initial velocity of 0.5. The
figures show that the estimates converge quickly to their true values. The vehicle
tracks the desired path, which is in the middle of the road, but there are errors
because the road is irregular. The tracking error can be improved by introducing
feedforward (Section 8.5). \Y

Kalman’s Decomposition of a Linear System

In this chapter and the previous one we have seen that two fundamental properties
of a linear input/output system are reachability and observability. It turns out that
these two properties can be used to classify the dynamics of a system. The key
result is Kalman’s decomposition theorem, which says that a linear system can be
divided into four subsystems: X, which is reachable and observable, X5 which is
reachable but not observable, Xz, which is not reachable but is observable, and X5
which is neither reachable nor observable.

We will first consider this in the special case of systems with one input and one
output, and where the matrix A has distinct eigenvalues. In this case we can find
a set of coordinates such that the A matrix is diagonal and, with some additional
reordering of the states, the system can be written as

Aw O 0 0 Bro

dx |0 As 0 0 Bis

o o A, of*|o|® (5.19)
0 0 0 A 0 '

y= (Cm 0 Gy 0] x+ Du.
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Figure 8.9: Kalman’s decomposition of a linear system. The decomposition in (a) is for a
system with distinct eigenvalues and the one in (b) is the general case. The system is bro-
ken into four subsystems, representing the various combinations of reachable and observable
states. The input/output relationship only depends on the subset of states that are both reach-
able and observable.

All states x; such that By # 0 are reachable, and all states such that C; # 0 are
observable. If we set the initial state to zero (or equivalently look at the steady-
state response if A is stable), the states given by xz, and x5 will be zero and x5
does not affect the output. Hence the output y can be determined from the system

dxro
dt

Thus from the input/output point of view, it is only the reachable and observable
dynamics that matter. A block diagram of the system illustrating this property is
given in Figure 8.9a.

The general case of the Kalman decomposition is more complicated and re-
quires some additional linear algebra; see the original paper by Kalman, Ho, and
Narendra [KHNG63]. The key result is that the state space can still be decomposed
into four parts, but there will be additional coupling so that the equations have the
form

= AroXro + Brolt, y = CroXro +Du.

Am 0 * 0 By,
dx | = As *  x Brs
- lo o0 A, oo | (5.20)
0 0 *  Ap 0 )

y= [Cro 0 G 0] X,

where * denotes block matrices of appropriate dimensions. If xz(0) = O then the
input/output response of the system is given by

dxro
dt

which are the dynamics of the reachable and observable subsystem X;,. A block
diagram of the system is shown in Figure 8.9b.
The following example illustrates Kalman’s decomposition.

= AroXro + Brolt, y = CyoXro + Du, (8.21)
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Example 8.5 System and controller with feedback from observer states
Consider the system
dx
ar X+ Bu y X
The following controller, based on feedback from the observer state, was given in
Theorem 8.3:

dx

E:A)H-Bu—i-L(y—C)?), u=—KxX+ker.

Introducing the states x and ¥ = x — X, the closed loop system can be written as

d (x A—BK  BK X Bk¢ by

i (= (072 () () o= e )
which is a Kalman decomposition like the one shown in Figure 8.9b with only
two subsystems X, and Xg,. The subsystem Y,,, with state x, is reachable and
observable, and the subsystem Xz, with state %, is not reachable but observable.
It is natural that the state ¥ is not reachable from the reference signal r because it
would not make sense to design a system where changes in the command signal

could generate observer errors. The relationship between the reference r and the
output y is given by

d
di; — (A—BK)x+Bkr,  y=Cr,
which is the same relationship as for a system with full state feedback. \%

8.4 Kalman Filtering %

One of the principal uses of observers in practice is to estimate the state of a sys-
tem in the presence of noisy measurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamical systems is beyond the scope
of this text. In this section, we present a brief introduction to the use of stochastic
systems analysis for constructing observers. We work primarily in discrete time
to avoid some of the complications associated with continuous-time random pro-
cesses and to keep the mathematical prerequisites to a minimum. This section as-
sumes basic knowledge of random variables and stochastic processes; see Kumar
and Varaiya [KV86] or Astrom [Ast06] for the required material.

Discrete-Time Systems

Consider a discrete-time linear system with dynamics

x[k+ 1] = Ax[k] + Bu[k] + v[k], y[k] = Cx[k] +wlk], (8.22)
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where v[k| and wk| are Gaussian white noise processes satisfying

B =0, B(wlK]) =0,
E(v[k]vT[m:{i o E(W[k]wT[j])={2v e
B[ ) =0

E(v[k]) represents the expected value of v[k] and E(v[k]v[j]) is the covariance
matrix. The matrices R, and R,, are the covariance matrices for the process distur-
bance v and measurement noise w. (R, is allowed to be singular if the disturbances
do not affect all states.) We assume that the initial condition is also modeled as a
Gaussian random variable with

E(x]0]) = xo, E((x[0] — x0) (x[0] — x0)7) = Py. (8.24)
We would like to find an estimate £[k] that minimizes the mean square error
Plk] = E((x[k] — £[K]) (x[K] - £[k])"), (8.25)

given the measurements {y(x) : 0 < x < k}. We consider an observer in the same
basic form as derived previously:

X[k + 1] = AX[k] + Bulk] + L[k](y[k] — Cx[k]). (8.26)
The following theorem summarizes the main result.

Theorem 8.4 (Kalman, 1961). Consider a random process x[k] with dynamics
given by equation (8.22) and noise processes and initial conditions described by
equations (8.23) and (8.24). The observer gain L that minimizes the mean square
error is given by

L[k] = APIKICT (R,, +CPK]CT) ™",

where
Plk+1] = (A—LC)P[k](A—LC)T + R, + LR, L",

(8.27)
P[0] = E((x[0] = x0) (x[0] — x0)").
Before we prove this result, we reflect on its form and function. First, note
that the Kalman filter has the form of a recursive filter: given mean square error
P[k] = E((x[k] — £[k]) (x[k] — £[k])T) at time k, we can compute how the estimate
and error change. Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate £[k| and the error covariance
P[k], so we can see how reliable the estimate is. It can also be shown that the
Kalman filter extracts the maximum possible information about output data. If we
form the residual between the measured output and the estimated output,
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we can show that for the Kalman filter the covariance matrix is

0 j#k

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used even if the process,
noise, or disturbances are time-varying. When the system is time-invariant and if
Plk| converges, then the observer gain is constant:

Re(]vk):E(e[]]eT[k]):W[k]Sjk’ ajk: {1 J=k,

L=APCT (R, +cCPCT),
where P satisfies
P=APA" +R,—APCT (R, +CPCT) 'CPA”.

We see that the optimal gain depends on both the process noise and the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choose state feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is
solved by the d1ge command in MATLAB.

Proof of theorem. We wish to minimize the mean square of the error E((x[k] —
£[k]) (x[k] — £[k])T). We will define this quantity as P[k] and then show that it sat-
isfies the recursion given in equation (8.27). By definition,

Plk+1) = E((x[k+ 1] — £[k + 1]) (x[k + 1] — £[k +1])7)
= (A—LC)P[k](A—LC)T + R, + LR, LT
= AP[K|AT +R, — AP[K|CTLT — LCP[K]AT
+L(R,, +CP[k]CTLT.
Letting R = (R, + CP[k]CT), we have
Plk+1] = AP[K|AT + R, — AP[K]CTL" — LCP[K|AT + LR.L"
— AP[KJAT + R, + (L—AP[KIC" R, R: (L—APKICTR; )"
— AP[K]CTR;'CPT[K]AT.

To minimize this expression, we choose L = AP[k|CTR;!, and the theorem is
proved. O

Continuous-Time Systems

The Kalman filter can also be applied to continuous-time stochastic processes.
The mathematical derivation of this result requires more sophisticated tools, but
the final form of the estimator is relatively straightforward.
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Consider a continuous stochastic system

dx _ T _ _
o =AxtButy, E(v(s)v" (1)) =Rv6(t —s), (8.28)

y=Cx+w, E(W(S)WT(I)) =R,6(t—ys),

where 6(7) is the unit impulse function, and the initial value is Gaussian with mean
xo and covariance Py = E((x(0) — xo)(x(0) —xp)) Assume that the disturbance v
and noise w are zero mean and Gaussian (but not necessarily time-invariant):
1 1T I 1 1T p—1

= ¢ "RV pdf(w) = ————e 2 R (829

V2my/detR, pdf(w) /2m+\/detR,, ( )
The model (8.28) is very general. We can model the dynamics both of the process
and the disturbances, as illustrated by the following example.

pdf(v)

Example 8.6 Modeling of process and disturbances
Consider a process whose dynamics are described by
dx

E:x+u+v, y=x-+w.

The disturbance v is noisy sinusoidal disturbance with frequency wy and w is white
measurement noise. We model the oscillatory load disturbance as v = z;, where

i a) _ —0.01ay wy 7] n 0 .
dt |z —awp  —00lay) |z W)
and e is zero mean white noise with covariance function ro(z).
Augmenting the state with the states of the noise model by introducing the new
T
state & = (x 21 Zz] we obtain the model
d& 1 1 0 ) 1
Z=l0 —00tey @ |&+|0|utn y:[l 0 0]§+w,
lo —a —0.0lay 0
where v is white Gaussian noise with zero mean and the covariance R, 6 () with
00 O
R,=]|0 0 0 |.

0 0 wir

The model is in the standard form given by equations (8.28) and (8.29). \%

We will now return to the filtering problem. Specifically, we wish to find the
estimate £(¢) that minimizes the mean square error P(t) = E((x(¢) — £(¢))(x(¢) —
£(1)7T) given {y(17): 0 < 7 <1t}.

Theorem 8.5 (Kalman—Bucy, 1961). The optimal estimator has the form of a lin-
ear observer
dx

o =ATEButLy—CH),  2(0)=E(x(0)),
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where L = PCTR;," and P = E((x(t) — £(¢))(x(t) — £(¢))7) and satisfies

dP
o =AP+PAT —PCTR;'CP+R,, P(0)=E((x(0)—x0)(x(0) —x0)7). (8.30)
All matrices A, B, C, R,, R,,, P and L can be time varying. The essential condi-
tion is that the Riccati equation (8.30) has a unique positive solution.
As in the discrete case, when the system is time-invariant and if P(f) converges,
the observer gain L = PCT R,! is constant and P is the solution to

AP+ PAT —PCTR;'CP+R, =0, (8.31)

which is called the algebraic Riccati equation.

Notice that there are a strong similarities between the Riccati equations (8.30)
and (8.31) for the Kalman filtering problem and the corresponding equations (7.31)
and (7.33) for the linear quadratic regulator (LQR). We have the equivalences

A< AT, BoCl, KoL, PoS, 0. R, Qu<R, (832

which we can compare with equation (8.9). The MATLAB command kalman can
be used to compute optimal filter gains.

Example 8.7 Vectored thrust aircraft

The dynamics for a vectored thrust aircraft were considered in Examples 3.12
and 7.9. We consider the (linearized) lateral dynamics of the system, consisting
of the subsystems whose states are given by z = (x, 0,%, 8). The dynamics of the
linearized system can be obtained from Example 7.9 by extracting only the relevant
states and outputs, giving

00 1 0 0
00 0 1 0
A=1o S —emolr B=|o| c_(0001],
00 0 0 r/J

where the linearized state & = z — z, represents the system state linearized around
the equilibrium point z,.. To design a Kalman filter for the system, we must include
a description of the process disturbances and the sensor noise. We thus augment
the system to have the form

dg

E:Aé—i-Bu—i-Fv, y=C&+w,

where F represents the structure of the disturbances (including the effects of non-
linearities that we have ignored in the linearization), v represents the disturbance
source (modeled as zero mean, Gaussian white noise), and w represents that mea-
surement noise (also zero mean, Gaussian, and white).

For this example, we choose F' as the identity matrix and choose disturbances v,
i=1,...,n,tobeindependent random variables with covariance given by R;; = 0.1,
R;j =0, i # j. The sensor noise is a single random variable that we model as white
noise having covariance R,, = 10™*. Using the same parameters as before, the
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Figure 8.10: Kalman filter response for a (linearized) vectored thrust aircraft with distur-
bances and noise during the initial portion of a step response. In the first design (a) only
the lateral position of the aircraft is measured. Adding a direct measurement of the roll an-
gle produces a much better observer (b). The initial estimator state for both simulations is
(0.1,0.0175,0.01,0) and the controller gains are K = (—1,7.9,—1.6,2.1) and ks = —1.

resulting Kalman gain is given by

37.0
—46.9
185
-31.6

L=

The performance of the estimator is shown in Figure 8.10a. We see that while the
estimator roughly tracks the system state, it contains significant overshoot in the
state estimate and has significant error in the estimate for 0 even after 2 seconds,
which can lead to poor performance in a closed loop setting.

To improve the performance of the estimator, we explore the impact of adding
a new output measurement. Suppose that instead of measuring just the output po-
sition x, we also measure the orientation of the aircraft 8. The output becomes

B 1 00O Wi
y‘[o 10 0]5+[wz]’

and if we assume that w; and w; are independent white noise sources each with
covariance R,,, = 10~*, then the optimal estimator gain matrix becomes

32.6 —0.150
I — —0.150  32.6
32.7 -9.79
—0.0033  31.6

These gains provide good immunity to noise and high performance, as illustrated
in Figure 8.10b. \%
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Linear Quadratic Gaussian Control (LQG)

In Section 7.5 we considered optimization of the criterion (7.29) when the the
control u(t) could be a function of the state x(r). We will now explore the same
problem for the stochastic system (8.28) where the control u(z) is a function of the
output y(t).

Consider the system given by equation (8.28) where the initial state is Gaussian
with mean xp and covariance Py and the disturbances v and w are characterized by
(8.29). Assume that the requirement can be captured by the cost function

J=minE ( /0 tf(xTQx)H- ul Quu)dt +x" (1) Qfx(rf),> (8.33)

where we minimize over all controls such that u(t) is a function of all measure-
ments y(7),0 < 7 <t obtained up to time ¢.

The optimal control law is simply u(¢) = —K#(t) where K = SBQ; ! and S
is the solution of the Riccati equation (7.31) (for the linear quadratic regulator)
and £(¢) is given by the Kalman filter (Theorem 8.5). The solution of the problem
can thus be separated into a deterministic control problem (LQR) and an optimal
filtering problem. This remarkable result is also known as the separation principle,
as mentioned briefly in Section 8.3.

The minimum cost function is

e ¢
minJ = x} S(0)xo + Tr (S(0)Py) + / Tr (R,S)dt + / Tr (LT Q,LP)dt,
0 0

where Tr is the trace of a matrix, the first two terms represent the cost of the mean
xo and covariance Py of the initial state, the third term represents the cost due to
the load disturbance, and the last term represents the cost of prediction. Notice that
the models we have used do not have a direct term in the output. The separation
theorem does not hold in this case because the nature of the disturbances is then
influenced by the feedback.

8.5 State Space Controller Design

State estimators and state feedback are important components of a controller. In
this section, we will add feedforward to arrive at a general controller structure that
appears in many places in control theory and is the heart of most modern control
systems. We will also briefly sketch how computers can be used to implement a
controller based on output feedback.

Two Degree-of-Freedom Controller Architecture

In this chapter and the previous one we have emphasized feedback as a mechanism
for minimizing tracking error; reference values were introduced simply by adding
them to the state feedback through a gain k¢. A more sophisticated way of doing
this is shown by the block diagram in Figure 8.11, where the controller consists of
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Figure 8.11: Block diagram of a controller based on a structure with two degrees of freedom
that combines feedback and feedforward. The controller consists of a trajectory generator,
state feedback, and an observer. The trajectory generation subsystem computes a feedfor-
ward command ug along with the desired state xq. The state feedback controller uses the
estimated state and desired state to compute a corrective input ug,.

three parts: an observer that computes estimates of the states based on a model and
measured process inputs and outputs, a state feedback, and a trajectory generator
that computes the desired behavior of all states x4 and a feedforward signal ug.
Under the ideal conditions of no disturbances and no modeling errors the signal ug
generates the desired behavior x4 when applied to the process. The signals x4 and
ugr are generated from the task description 4. In simple cases the task description
is simply the reference signal r, and x4 and ug are generated by sending r through
linear systems. For motion control problems, such as vehicle steering and robotics,
the task description consists of the coordinates of a number of points (waypoints)
that the vehicle should pass. In other situations the task description could be to
transition from one state to another while optimizing some criterion.

To get some insight into the behavior of the system, consider the case when
there are no disturbances and the system is in equilibrium with a constant reference
signal and with the observer state £ equal to the process state x. When the reference
signal is changed, the signals ug and xg4 will change. The observer tracks the state
perfectly because the initial state was correct. The estimated state X is thus equal to
the desired state x4, and the feedback signal ugm, = K(xq — £) will also be zero. All
action is thus created by the signals from the trajectory generator. If there are some
disturbances or some modeling errors, the feedback signal will attempt to correct
the situation.

This controller is said to have two degrees of freedom because the responses
to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).

Feedforward Design and Trajectory Generation

We will now discuss design of controllers with the architecture shown in Fig-
ure 8.11. For an analytic description we start with the full nonlinear dynamics

of the process
dx

i flx,u), y = h(x,u). (8.34)
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A feasible trajectory for the system (8.34) is a pair (xq(¢),us(¢)) that satisfies the
differential equation and generates the desired trajectory:

xq(t) = f(xa(t),uie(t)),  r(t) = h(xa(t), ug(r)).

The problem of finding a feasible trajectory for a system is called the trajectory
generation problem, with x4 representing the desired state for the (nominal) system
and ug representing the desired input or the feedforward control. If we can find a
feasible trajectory for the system, we can search for controllers of the form u =
ot(x,xq,us) that track the desired reference trajectory.

In many applications, it is possible to attach a cost function to trajectories that
describe how well they balance trajectory tracking with other factors, such as the
magnitude of the inputs required. In such applications, it is natural to ask that we
find the optimal controller with respect to some cost function:

T
g%u)l/o L(x,u)dt+V (x(T)),

subject to the constraint
x= f(x,u), xeR" uecRP.

Abstractly, this is a constrained optimization problem where we seek a feasible
trajectory (xq(¢),us(7)) that minimizes the cost function. Depending on the form
of the dynamics, this problem can be quite complex to solve, but there are good
numerical packages for solving such problems, including handling constraints on
the range of inputs as well as the allowable values of the state.

In some situations we can simplify the approach of generating feasible trajec-
tories by exploiting the structure of the system. The next example illustrates one
such approach.

Example 8.8 Vehicle steering
To illustrate how we can use a two degree-of-freedom design to improve the per-
formance of the system, consider the problem of steering a car to change lanes on
aroad, as illustrated in Figure 8.12a.

We use the non-normalized form of the dynamics, which were derived in Exam-
ple 3.11. Using the center of the rear wheels as the reference (o = 0), the dynamics
can be written as

dx dy . de v
E—vcose, E—vsme, E—Etanﬁ,

where v is the forward velocity of the vehicle, 0 is the heading angle, and § is the
steering angle. To generate a trajectory for the system, we note that we can solve
for the states and inputs of the system given x(z), y(¢) by solving the following sets
of equations: )

X=vcos9, X¥=vcosO —vOsin0,

y=vsin0, j =vsin@ 4 vBOcosh, (8.35)

6 = (v/b)tand.
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Figure 8.12: Trajectory generation for changing lanes. We wish to change from the right
lane to the left lane over a distance of 30 m in 4 s. The planned trajectory in the xy plane
is shown in (a) and the lateral position y and the steering angle § over the maneuver time
interval are shown in (b).

This set of five equations has five unknowns (6, 0, v, v and 8) that can be solved
using trigonometry and linear algebra given the path variables x(z), y(¢) and their
time derivatives. It follows that we can compute a feasible state trajectory for the
system given any path x(¢), y(z). (This special property of a system is known as
differential flatness and is described in more detail below.)

To find a trajectory from an initial state (xo,yo, 6p) to a final state (x¢,yf, 6¢) at
a time T, we look for a path x(¢),y(¢) that satisfies

x(0) = x x(T) = xt,

¥(0) = o, ¥(T) =, (8.36)

%(0)sin 6y — y(0) cos 6y = 0, %(T) sin 6 — y(T) cos 6 = '
¥(0) sin By +%(0) cos By = vy, y(T)sin 6+ x(T) cos 6 = vy,

where vy is the initial velocity and vt is the final velocity along the trajectory. One
such trajectory can be found by choosing x(¢) and y(¢) to have the form

xa(t) = oo+ ot + opt* + oat?, va(t) = Bo+ But + Pot* + Bt

Substituting these equations into equation (8.36), we are left with a set of linear
equations that can be solved for o, B;, i = 0, 1,2, 3. This gives a feasible trajectory
for the system by using equation (8.35) to solve for 64, vq, and dq.

Figure 8.12b shows a sample trajectory generated by a set of higher-order equa-
tions that also set the initial and final steering angle to zero. Notice that the feed-
forward input is different from zero, allowing the controller to command a steering
angle that executes the turn in the absence of errors. \%

The concept of differential flatness that we exploited in the previous example
is a fairly general one and can be applied to many interesting trajectory generation
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problems. A nonlinear system (8.34) is differentially flat if there exists a flat output
z such that the state x and the input u can be expressed as functions of the flat output
z and a finite number of its derivatives:

x=B(z,2....,29), u=1y(zz...,79). (8.37)

The number of flat outputs is always equal to the number of system inputs. The
vehicle steering model is differentially flat with the position of the rear wheels as
the flat output.

A broad class of systems that is differentially flat is the class of reachable lin-
ear systems. For the linear system given in equation (7.6), which is in reachable
canonical form, we have

(n—1) (n—2) .
21 =2Zn y 2 =1Z2n )y eeey Zn—1 = Zn,

u= zS,n) + alzﬁ,nfl) + azzﬁ,"ﬁz) + -4 anzy,

and the nth component z,, of the state vector is thus a flat output. Since any reach-
able system can be transformed to reachable canonical form, it follows that every
reachable linear system is differentially flat.

Note that no differential equations need to be integrated in order to compute the
feasible trajectories for a differentially flat system (unlike optimal control meth-
ods, which often involve parameterizing the input and then solving the differential
equations). The practical implication is that nominal trajectories and inputs that
satisfy the equations of motion for a differentially flat system can be computed
efficiently.

Disturbance Modeling and State Augmentation

We often have some information about load disturbances: they can be unknown
constants, drifting with unknown rates, sinusoidal with known or unknown fre-
quency, or stochastic signals. This information can be used by modeling the dis-
turbances by differential equations and augmenting the process state with the dis-
turbance states as was done in Section 7.4. We illustrate with a simple example.

Example 8.9 Integral action by state augmentation

Consider the system (8.1) and assume that there is a constant but unknown distur-
bance z acting additively on the process input. The system and the disturbance can
then be modeled by augmenting the state x with z. An unknown constant can be
modeled by the differential equation dz/dt = 0 and we obtain the following model
for the process and its environment:

d (x Ax+ Bu A O B X
i ()= =(08) =+ () = (e o) (i)
Notice that the disturbance state z is not reachable from u, but because the distur-

bance enters at the process input it can be attenuated by the control law

u=—Ki—32, (8.38)
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where X and Z are estimates of the state x and the disturbance z. The estimated
disturbance can be obtained from the observer:
dx N R dz R
E:Ax—i—Bu—f—Lx(y—Cx), E:Lz(y—Cx).
Integrating the last equation and inserting the expression for Z in the control law (8.38)

gives .
W= —Ki—L, / (3(7) = CE(2))dx,
0

which is a state feedback controller with integral action. Notice that the integral
action is created through estimation of a disturbance state. \%

The idea of the example can be extended to many types of disturbances and we
emphasized that much can be gained from modeling a process and its environment
(disturbances acting on the process and measurement noise).

Feedback Design and Gain Scheduling

We now assume that the trajectory generator is able to compute a desired trajectory
(xq,ugr) that satisfies the dynamics (8.34) and satisfies r = h(xq, ug). To design the
feedback controller, we construct the error system. Let & = x — xq and ug, = u — ugt
and compute the dynamics for the error:

& =% —Xq = f(x,u) — f(xq,us)
= (& +xa,v+use) — f(xa,use) =: F (&, v, xa(t), uge(t)).

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around & = 0:

ilif ~AM)E+B(t)v, h(x,u)~C(t)x(t)
A(t) = 3F , B(t)= gF , Ct)= gh .
& | a0 (1) V| (eg 0. 0)) & (eal0)urr))

In general, this system is time-varying. Note that £ corresponds to —e in Fig-
ure 8.11 due to the convention of using negative feedback in the block diagram.
We can now proceed to using LQR to compute the time-varying feedback gain
K(t) = 0, '(t)BT (t)S(¢) by solving the Riccati differential equation (7.31) and the
Kalman filter gain L(t) = P(¢)CT (t)R,,' (t), where P(t) is obtained by solving the
Riccati equation (8.30).

Assume now that x4 and uy are either constant or slowly varying (with respect
to the process dynamics). It is often the case that A(z), B(¢) and C(r) depend only
on xq, in which case it is convenient to write A(r) = A(xq), B(t) = B(xq) and C(t) =
C(xq4). This allows us to consider just the linear system given by A(xq), B(xq), and
C(xq). If we design a state feedback controller K(xq) for each x4, then we can
regulate the system using the feedback

up = —K(xq)&.
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Figure 8.13: Vehicle steering using gain scheduling. (a) Vehicle configuration consists of the
X, y position of the vehicle, its angle with respect to the road, and the steering wheel angle.
(b) Step responses for the vehicle lateral position (solid) and forward velocity (dashed). Gain
scheduling is used to set the feedback controller gains for the different forward velocities.

Substituting back the definitions of & and ug,, our controller becomes
u = up +ug = —K(xq)(x — xq) + ug.

This form of controller is called a gain scheduled linear controller with feedfor-
ward ugs.

Example 8.10 Steering control with velocity scheduling

Consider the problem of controlling the motion of a automobile so that it follows a
given trajectory on the ground, as shown in Figure 8.13a. We use the model derived
in Example 8.8. A simple feasible trajectory for the system is to follow a straight
line in the x direction at lateral position y; and fixed velocity v;. This corresponds to
a desired state xg = (v, yr,0) and nominal input ug = (v;,0). Note that (xq, ug) is
not an equilibrium point for the system, but it does satisfy the equations of motion.

Linearizing the system about the desired trajectory, we obtain

Y (0 0 —sind 00 0
Ag= = =10 0 cosB =10 0 11,
) o 0 0 vauyy L0000

10
Ba= Y —lo o
Il gur) (0wt

We form the error dynamics by setting e = x —xq and w = u — uy:
. . . Vr
éx = wi, éy = eg, ég = —wn.

l
We see that the first state is decoupled from the second two states and hence we can
design a controller by treating these two subsystems separately. Suppose that we
wish to place the closed loop eigenvalues of the longitudinal dynamics (e,) at A;



8-30 CHAPTER 8. OUTPUT FEEDBACK

and place the closed loop eigenvalues of the lateral dynamics (ey, eg) at the roots
of the polynomial equation 5% +a;s 4 a, = 0. This can accomplished by setting

w1 = —Aey, Wy = v—(aley +azep).
T
Note that the gain //v; depends on the velocity v, (or equivalently on the nominal
input ug), giving us a gain scheduled controller.
In the original inputs and state coordinates, the controller has the form

Al 0 0 X — vt
| ail  aol y—y | + Ve
0 0o — — 0 ' 0)-
Vr Vr

The form of the controller shows that at low speeds the gains in the steering an-
gle will be high, meaning that we must turn the wheel harder to achieve the same
effect. As the speed increases, the gains become smaller. This matches the usual
experience that at high speed a very small amount of actuation is required to con-
trol the lateral position of a car. Note that the gains go to infinity when the vehicle
is stopped (v; = 0), corresponding to the fact that the system is not reachable at
this point.

Figure 8.13b shows the response of the controller to a step change in lateral
position at three different reference speeds. Notice that the rate of the response
is constant, independent of the reference speed, reflecting the fact that the gain
scheduled controllers each set the closed loop eigenvalues to the same values. V

Nonlinear Estimation

Finally, we briefly comment on the observer represented in Figure 8.11. Since we
are now considering a nonlinear system that operate over a wide range of a state
space, it is desirable to use full nonlinear dynamics for the prediction portion of
the observer. This can then be combined with a linear correction term, so that the
observer has the form:
= i) + L)~ ().
t

The estimator gain L(£) is the observer gain obtained by linearizing the system
around the currently estimated state. This form of the observer is known as an
extended Kalman filter and has proved to be a very effective means of estimating
the state of a nonlinear system.

The combination of trajectory generation, trajectory tracking, and nonlinear
estimation provides a means for state space control of nonlinear systems. There are
many ways to generate the feedforward signal, and there are also many different
ways to compute the feedback gain K and the observer gain L. Note that once again
the internal model principle applies: the overall controller contains a model of the
system to be controlled and its environment through the observer.
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external disturbances

—{ System = Sensors

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

! Clock
3 Y y v |
i D/A |« Computer (- AD (= Filter |« :
! I
| ‘
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operator input

Figure 8.14: Components of a computer-controlled system. The controller consists of
analog-to-digital (A/D) and digital-to-analog (D/A) converters, as well as a computer that
implements the control algorithm. A system clock controls the operation of the controller,
synchronizing the A/D, D/A, and computing processes. The operator input is also fed to the
computer as an external input.

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves, or other physical devices. Since in modern engi-
neering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by the A/D con-
verter, the control signal is computed and the resulting output is converted to ana-
log form for the actuators, as shown in Figure 8.14. To illustrate the main princi-
ples of how to implement feedback in this environment, we consider the controller
described by equations (8.15) and (8.16), i.e.,

dx

E:Aﬁ—l—Bu—i—L(y—C)?), u=—Kx+kr.

The second equation consists only of additions and multiplications and can thus
be implemented directly on a computer. The first equation can be implemented by
approximating the derivative by a difference
i X(tirr) —X(0)
dt ~ h
where #; are the sampling instants and & = f;.; | —#; is the sampling period. Rewrit-
ing the equation to isolate £(f; 1), we get the difference equation

R(tx1) = £(tx) + h(AR(tr) + Bu(ti) + L(y(te) — C2(%0))) - (8.39)

= A%(ty) + Bu(t) + L(y(1ne) — C2(t)),
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The calculation of the estimated state at time #;1 requires only addition and mul-
tiplication and can easily be done by a computer. A section of pseudocode for the
program that performs this calculation is

% Control algorithm - main loop

r = adin(chl) % read reference
y = adin(ch2) % get process output
(xd, uff) = trajgen(r) % generate feedforward

o\

u = Kx(xd - xhat) + uff
daout (chl, u)
xhat = xhat + h#* (Axx+B*xu+Lx (y-C*x))

compute control variable
set analog output
update state estimate

o°

oe

The program runs periodically at a fixed sampling period /. Notice that the
number of computations between reading the analog input and setting the analog
output has been minimized by updating the state after the analog output has been
set. The program has an array of states xhat that represents the state estimate.
The choice of sampling period requires some care.

There are more sophisticated ways of approximating a differential equation
by a difference equation. If the control signal is constant between the sampling
instants, it is possible to obtain exact equations; see [AW97].

There are several practical issues that also must be dealt with. For example, it
is necessary to filter measured signals before they are sampled so that the filtered
signal has little frequency content above f;/2 (the Nyquist frequency), where f; =
1/h is the sampling frequency. This avoids a phenomenon known as aliasing. If
controllers with integral action are used, it is also necessary to provide protection
so that the integral does not become too large when the actuator saturates. This
issue, called integrator windup, is studied in more detail in Chapter 11. Care must
also be taken so that parameter changes do not cause disturbances.

8.6 Further Reading

The notion of observability is due to Kalman [Kal61b] and, combined with the
dual notion of reachability, it was a major stepping stone toward establishing state
space control theory beginning in the 1960s. The observer first appeared as the
Kalman filter, in the paper by Kalman [Kal61a] for the discrete-time case and
Kalman and Bucy [KB61] for the continuous-time case. The fact that all eigen-
values can be placed by state feedback for a reachable system was first obtained
by Bertram in 1959 [KFA69, p. 49], and a formal proof was given by Rissa-
nen [Ris60]. Kalman also conjectured that the controller for output feedback could
be obtained by combining a state feedback with a Kalman filter; see the quote in the
beginning of this chapter. This result, which is known as the separation theorem is
mathematically subtle. Attempts of proof were made by Josep and Tou [JT61] and
Gunckel and Franklin [GF71], but a rigorous proof was given by Georgiou and
Lindquist [GL13] in 2013. The combined result is known as the linear quadratic
Gaussian control theory; a compact treatment is given in the books by Anderson
and Moore [AM90], Astrom [Ast06], and Lindquist and Picci [LP15]. It was also
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shown that solutions to robust control problems had a similar structure but with
different ways of computing observer and state feedback gains [DGKF89]. The
importance of systems with two degrees of freedom that combine feedback and
feedforward was emphasized by Horowitz [Hor63]. The controller structure dis-
cussed in Section 8.5 is based on these ideas. The particular form in Figure 8.11
appeared in [AW97], where computer implementation of the controller was dis-
cussed in detail. The hypothesis that motion control in humans is based on a com-
bination of feedback and feedforward was proposed by Ito in 1970 [Ito70]. Dif-
ferentially flat systems were originally studied by Fliess et al. [FLMR92]; they are
very useful for trajectory generation.

Exercises

8.1 (Observability) Consider the system given by

dx
— =Ax+B =C
df X+ M, y X,

where x € R", u € R?, and y € R?. Show that the states can be determined from the
input u and the output y and their derivatives if the observability matrix W,, given
by equation (8.4) has n independent rows.

8.2 (Coordinate transformations) Consider a system under a coordinate transfor-
mation z = Tx, where T € R"*" is an invertible matrix. Show that the observability
matrix for the transformed system is given by W, = W, T ! and hence observability
is independent of the choice of coordinates.

8.3 Show that the system depicted in Figure 8.2 is not observable.

8.4 (Observable canonical form) Show that if a system is observable, then there
exists a change of coordinates z = T'x that puts the transformed system into ob-
servable canonical form.

8.5 (Bicycle dynamics) The linearized model for a bicycle is given in equation (4.5),
which has the form
2 2
d (2p Dvy dé (p+mv0h
dt b dt b
where @ is the tilt of the bicycle and 9 is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.

S,

8.6 (Integral action) The model (8.1) assumes that the input u = 0 corresponds
to x = 0. In practice, it is very difficult to know the value of the control signal
that gives a precise value of the state or the output because this would require a
perfectly calibrated system. One way to avoid this assumption is to assume that the
model is given by

d
di; —Ax+B(u+uo), y=Cx+Du,
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where u is an unknown constant that can be modeled as dug/dt = 0. Consider
up as an additional state variable and derive a controller based on feedback from
the observed state. Show that the controller has integral action and that it does not
require a perfectly calibrated system.

8.7 (Vectored thrust aircraft) The lateral dynamics of the vectored thrust aircraft
example described in Example 7.9 can be obtained by considering the motion
described by the states z = (x, 0, X, 9). Construct an estimator for these dynam-
ics by setting the eigenvalues of the observer into a Butterworth pattern with
Abw = —3.83£9.24i, —9.24 1+ 3.83i. Using this estimator combined with the state
space controller computed in Example 7.9, plot the step response of the closed
loop system.

8.8 (Uniqueness of observers) Show that the design of an observer by eigenvalue
assignment is unique for single-output systems. Construct examples that show that
the problem is not necessarily unique for systems with many outputs.

8.9 (Observers using differentiation) Consider the linear system (8.2), and assume
that the observability matrix W, is invertible. Show that

f=Wl (v v 5 e )

is an observer. Show that it has the advantage of giving the state instantaneously
but that it also has some severe practical drawbacks.

T

8.10 (Observer for Teorell’s compartment model) Teorell’s compartment model,
shown in Figure 4.17, has the following state space representation:

& 0 0 0 0 |
R I P R O O 0
“_1o kk 0 0  oflx+|o]u
dt 0 ky 0 —ki—ks O 0

0 0O 0 ks 0 0

where representative parameters are k; = 0.02, kp = 0.1, k3 = 0.05, kg = ks =
0.005. The concentration of a drug that is active in compartment 5 is measured in
the bloodstream (compartment 2). Determine the compartments that are observable
from measurement of concentration in the bloodstream and design an estimator
for these concentrations base on eigenvalue assignment. Choose the closed loop
eigenvalues —0.03, —0.05, and —0.1. Simulate the system when the input is a
pulse injection.

8.11 (Observer design for motor drive) Consider the normalized model of the
motor drive in Exercise 3.10 where the open loop system has the eigenvalues
0,0,—0.05 £i. A state feedback that gave a closed loop system with eigenval-
ues in —2, —1, and —1 £ i was designed in Exercise 7.12. Design an observer for
the system that has eigenvalues —4, —2, and —2 =+ 2i. Combine the observer with
the state feedback from Exercise 7.12 to obtain an output feedback and simulate
the complete system.
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8.12 (Feedforward design for motor drive) Consider the normalized model of the
motor drive in Exercise 3.10. Design the dynamics of the block labeled “trajec-
tory generation” in Figure 8.11 so that the dynamics relating the output 1 to the
reference signal r has the dynamics

d’y d?y dy

3 a2~ sy = (8.40)
with parameters a,;;; = 2.50y,, a2 = 2.5(0,%[, and a3 = a),fl. Discuss how the
largest value of the feedforward signal for a unit step in the command signal de-
pends on @,.

8.13 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (4.8) in Section 4.2. A state feedback for the system was designed in Exer-
cise 7.13. Design an observer and an output feedback for the system.

8.14 (Discrete-time random walk) Suppose that we wish to estimate the position
of a particle that is undergoing a random walk in one dimension (i.e., along a line).
We model the position of the particle as

x[k+ 1] = x[k] + ulk],

where x is the position of the particle and « is a white noise processes with E{u[i]} =
0 and E{u[i]u[j]} = R,6(i — j). We assume that we can measure x subject to ad-
ditive, zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the particle as a function of
k.

(b) Construct a Kalman filter to estimate the position of the particle given the
noisy measurements of its position. Compute the steady-state expected value
and covariance of the error of your estimate.

(c) Suppose that E{u[0]} = u # 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

8.15 (Kalman decomposition) Consider a linear system characterized by the ma-
trices

21 -1 2 2
1 -3 0 2 2

e T F:E by c_[o 1 -1 0], D=0.
0 1 -1 —1I 1

Construct a Kalman decomposition for the system. (Hint: Try to diagonalize.)

8.16 (Kalman filtering first order) Consider the system

X
— = dax V. =CX w
dt Ty +

4
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where all variables are scalar. The signals v and w are uncorrelated white noise
disturbances with zero mean values and covariance functions

Ew(s©! (2)) =r8(t—s), E(w(s)w! (1)) =r,8(t—ys).

The initial condition is Gaussian with mean value xy and covariance Fy. Determine
the Kalman filter for the system and analyze what happens for large ¢.

8.17 (LQG first order) Consider the system

dx
E:ax—i-bu—i-v, y=cx+w

where all variables are scalar and w are uncorrelated white noise disturbances with
zero mean values and covariance functions

Ew(s©! (1) =r6(t—s), E(w(s)wl (1)) =r,8(t—ys).

The initial condition is Gaussian with mean value xy and covariance Fy. Determine
a controller that minimizes the cost function

J =min (qoxz(tf) + /Otf (qxxz(t) +quu2(t))dt),

where g, gx and g, are all positive. Explore the different contributions to the min-
imal loss and Investigate what happens when 7 goes to infinity.

8.18 (Vertical alignment) In navigation systems it is important to align a system to
the vertical. This can be accomplished by measuring the vertical acceleration and
controlling the platform so that the measured acceleration is zero. A simplified
one-dimensional version of the problem can be modeled by

%:uv u:_kya y:(P+W7
where ¢ is the alignment error, u the control signal, y the measured signal, and w
the measurement noise, which is assumed to be white noise with zero mean and
covariance function E(w(s)w’ (¢)) = r,,6(t — s). The initial misalignment is as-
sumed to be a random variable with zero mean and the covariance Py. Determine a
time-varying gain k(¢) such that the error goes to zero as fast as possible. Compare
this with a constant gain.



Chapter Nine

Transfer Functions

The typical regulator system can frequently be described, in essentials, by differential equa-
tions of no more than perhaps the second, third, or fourth order. ...In contrast, the order
of the set of differential equations describing the typical negative feedback amplifier used in
telephony is likely to be very much greater. As a matter of idle curiosity, I once counted to
find out what the order of the set of equations in an amplifier I had just designed would have
been, if I had worked with the differential equations directly. It turned out to be 55.

Hendrik Bode, 1960 [Bod60].

This chapter introduces the concept of the transfer function, which is a compact
description of the input/output relation for a linear time-invariant system. We will
show how to obtain transfer functions analytically and experimentally. Combin-
ing transfer functions with block diagrams gives a powerful algebraic method to
analyze linear systems with many blocks. The transfer function allows new inter-
pretations of system dynamics. We will also introduce the Bode plot, a powerful
graphical representation of the transfer function that was introduced by Bode to
analyze and design feedback amplifiers.

9.1 Frequency Domain Modeling

Figure 9.1 is a block diagram for a typical control system, consisting of a process
to be controlled and a controller that combines feedback and feedforward. We
saw in the previous two chapters how to analyze and design such systems using
state space descriptions of the blocks. As mentioned in Chapter 3, an alternative

| Reference Feedback , v Process w
' shaping controller | dynamics
ro e Lu u n y
— F C P —
‘ |
‘ |
| |
l —1 |
! Controller |
|

Figure 9.1: A block diagram for a feedback control system. The reference signal r is fed
through a reference shaping block, which generates a signal which is compared with the
output y to form the error e. The control signal u is generated by the controller, which has
the error as the input. The load disturbance v and the measurement noise w are external
signals.
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approach is to focus on the input/output characteristics of the system. Since it is
the inputs and outputs that are used to connect the systems, one could expect that
this point of view would allow an understanding of the overall behavior of the
system. Transfer functions are the main tool in implementing this approach for
linear systems.

The basic idea of the transfer function comes from looking at the frequency
response of a system. Suppose that we have an input signal that is periodic. Then
we can decompose this signal into the sum of a set of sines and cosines,

u(t) =Y agsin(kaxt) + by.cos(kayt),
k=0
where @y is the fundamental frequency of the periodic input. As we saw in Sec-
tion 6.3, the input u(¢) generates corresponding sine and cosine outputs (in steady
state), with possibly shifted magnitude and phase. The gain and phase at each fre-
quency are determined by the frequency response given in equation (6.24):

G(iw) = C(iol —A)"'B+D, 9.1)

where we set @ = kwy for each k = 1,...,00. We can thus use the steady-state
frequency response G(i®) and superposition to compute the steady-state response
any periodic signal.

The transfer function generalizes this notion to allow a broader class of input
signals besides periodic ones. As we shall see in the next section, the transfer
function represents the response of the system to an exponential input, u = e*'.
It turns out that the form of the transfer function is precisely the same as that of
equation (9.1). This should not be surprising since we derived equation (9.1) by
writing sinusoids as sums of complex exponentials. The transfer function can also
be introduced as the ratio of the Laplace transforms of output and input when the
initial state is zero, although one does not have to understand the details of Laplace
transforms in order to make use of transfer functions.

Modeling a system through its response to sinusoidal and exponential signals
is known as frequency domain modeling. This terminology stems from the fact that
we represent the dynamics of the system in terms of the generalized frequency s
rather than the time domain variable ¢. The transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a particularly convenient
representation in manipulating and analyzing complex linear feedback systems.
As we shall see, there are graphical representations of transfer functions (Bode
and Nyquist plots) that capture interesting properties of the underlying dynamics.
Transfer functions also make it possible to express the changes in a system because
of modeling error, which is essential when considering sensitivity to process varia-
tions of the sort discussed in Chapter 13. More specifically, using transfer functions
it is possible to analyze what happens when dynamical models are approximated
by static models or when high-order models are approximated by low-order mod-
els. One consequence is that we can introduce concepts that express the degree of
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stability of a system.

While many of the concepts for state space modeling and analysis apply di-
rectly to nonlinear systems, frequency domain analysis applies primarily to linear
systems. The notions of gain and phase can, however, be generalized to nonlinear
systems and, in particular, propagation of sinusoidal signals through a nonlinear
system can approximately be captured by an analog of the frequency response
called the describing function. These extensions of frequency response will be dis-
cussed in Section 10.5.

9.2 Determining the Transfer Function

As we have seen in previous chapters, the input/output dynamics of a linear sys-
tem have two components: the initial condition response and the forced response,
which depends on the system input. The forced response can be characterized by
the transfer function. In this section we will compute transfer functions for gen-
eral linear time-invariant systems. Transfer functions will also be determined for
systems with time delays and systems described by partial differential equations,
for which the transfer functions obtained are then transcendental functions of a
complex variable.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we will make use of a
special type of signal, called an exponential signal, of the form e*, where s =
0 +im is a complex number. Exponential signals play an important role in linear
systems. They appear in the solution of differential equations and in the impulse
response of linear systems, and many signals can be represented as exponentials
or sums of exponentials. For example, a constant signal is simply e* with o = 0.
Using Euler’s formula, damped sine and cosine signals can be represented by

o+io)t ot jior __

el =% ' = ¢ (cos wt +isin wt),

where o < 0 determines the decay rate. Figure 9.2 gives examples of signals that
can be represented by complex exponentials; many other signals can be repre-
sented by linear combinations of these signals.

As in the case of the sinusoidal signals we considered in Section 6.3, we will
allow complex-valued signals in the derivation that follows, although in practice
we always add together combinations of signals that result in real-valued functions.

To find the transfer function for the state space system

d
d—); = Ax+ Bu, y =Cx+ Du, 9.2)

we let the input be the exponential signal u(z) = ¢ and assume that s ¢ A (A). The
state is then given by

t
x(1) = eMx(0) +/ AR dr = M x(0) + &M (s —A) ! (e(SI*A)’ —I)B.
0

FAQ


http://www.cds.caltech.edu/~murray/amwiki/index.php/FAQ:_Why_is_the_exponential_response_complex_valued:_Shouldn't_the_inputs_and_outputs_of_a_linear_system_always_be_real-valued?
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Figure 9.2: Examples of exponential signals. The top row corresponds to exponential signals
with a real exponent, and the bottom row corresponds to those with complex exponents. The
dashed line in the last two cases denotes the bounding envelope for the oscillatory signals.
In each case, if the real part of the exponent is negative then the signal decays, while if the
real part is positive then it grows.

The output y of equation (9.2) then becomes
y(t) = Cx(t) 4 Du(t)
= CeMx(0) +(C@I—Ay*B+D)éﬂ—cf%u—Ay4B
~——

initial state response

input response 9.3)
—ceM <x(0) - (sI—A)’1B> + (C(sI—A)*lB—i—D)e”,

transient response pure exponential response y,
and the transfer function from u to y of the system (9.2) is the coefficient of the

term e*, hence
G(s)=C(sI—A)'B+D. (9.4)

Compare this with the definition of frequency response given by equations (6.23)
and (6.24).

An important point in the derivation of the transfer function is the fact that
we have restricted s so that s # 4;(A), the eigenvalues of A. At those values of s,
we see that the response (9.3) of the system is singular (since s/ — A then is not
invertible). The transfer function can, however, be extended to all values of s by
analytic continuation.

To give some insight we will now discuss the structure of equation (9.3). We
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first notice that the output y(f) can be separated into two terms in two different
ways, as is indicated by braces in the equation.

The response of the system to initial conditions is Ce?’x(0). Recall that 4’ can
be written in terms of the eigenvalues of A (using the Jordan form in the case of
repeated eigenvalues), and hence the transient response is a linear combination of
terms of the form p(r)e’, where A; are eigenvalues of A and p;(t) is a polynomial
whose degree is less than the multiplicity of the eigenvalue (Exercise 9.1).

The transient response to the input u(f) = ¢ contains a mixture of terms
pj(t)eM" and the exponential function

yp(t) = (C(sI—A)"'B+D)e" = G(s)e", 9.5)

which is a particular solution to the differential equation (9.2). We call equa-
tion (9.5) the pure exponential solution because it has only one exponential e*.
It follows from equation (9.3) that the output y(¢) is equal to the pure exponential
solution yj(¢) if the initial condition is chosen as

x(0) = (sI—A)"'B. (9.6)

If the system (9.2) is asymptotically stable, then eA’ — 0 as t — oo, If in ad-
dition the input u(¢) is a constant u(t) = €°'' or a sinusoid u(t) = ¢'® then the
response converges to a constant or sinusoidal steady state solution (as shown in
equation (6.23)).

To simplify manipulation of the equations describing linear time invariant sys-
tems, we introduce & as the class of time functions that can be created from combi-
nations of signals of the form X (s)e*, where the parameter s is a complex variable
and X (s) is a complex function (vector valued if needed). It follows from equa-
tions (9.3) and (9.4) that if a system with transfer function G(s) has the input
u € & then there is a particular solution y € & that satisfies the dynamics of the
system. This solution is the actual response of the system if the initial condition
is chosen as equation (9.6). Since the transfer function of a system is given by
the pure exponential response, we can derive transfer functions using exponential
signals, and we will use the notation

y= Gyu u, 9.7)

where Gy, is the transfer function for the linear input/output system taking u to y.
Mathematically, it is important to remember that this notation assumes the use of
combinations of exponential signals. We will also often drop the subscripts on G
and just write y = Gu when the meaning is clear from context.

Example 9.1 Damped oscillator
Consider the response of a damped linear oscillator, whose state space dynamics
were studied in Section 7.3:

d
== [_(()00 _2“20%] X+ [kg)o] o y=(10)x 9.8)

This system is asymptotically stable if { > 0, and so we can look at the steady-state
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response to an input u = e*:

Gyu(s) =C(sI—A)'B= [1 0] [S —ay ]1 [ko ]

Wy s+28ay @p
1 s+20ay —my 0
=(10 .
( ] <s2+2§wos+a>§ [ Q) s kax ©9)
ke
2420 aps+

The steady-state response to a step input is obtained by setting s = 0, which gives
u=1 = y=Gyu(0)u=k.
If we wish to compute the steady-state response to a sinusoid, we write

1, . , 1 . .
u=sinot = 5 (ie7' " —ie”) = y= 5 (iGyu(—iw)e™ " — iGy,(iw)e') .

We can now write G(i®) in terms of its magnitude and phase,

kaw?
—0?+ (28 oyw)i+ o}

Gliw) = =M,

where the magnitude (or gain) M and phase 0 are given by
ke sind 20w

M= ’ cos®  wF—w?’
V(@ - 022+ 2L apo)? 0

We can also make use of the fact that G(—iw) is given by its complex conjugate
G*(iw), and it follows that G(—i®m) = Me~"®. Substituting these expressions into
our output equation, we obtain

1 . . o
5 (i(Me—ze)e—za)t o l-(MezO)eza)t>

= M% (ie*““”*@) - ie"(“”“’)) = Msin(ot +6).

The responses to other signals can be computed by writing the input as an appro-
priate combination of exponential responses and using linearity. \%

Example 9.2 Operational amplifier circuit

To further illustrate the use of exponential signals, we consider the operational am-
plifier circuit described in Section 4.3 and reproduced in Figure 9.3a. The model in
Section 4.3 is a simplification because the linear behavior of the amplifier is mod-
eled as a constant gain. In reality there are significant dynamics in the amplifier,
and the static model vy = —kv (equation (4.11)) should therefore be replaced by
a dynamical model voy = —Gv. A simple transfer function is

k
G(s) = sia. (9.10)
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Vi —0 - e \

o o 10° 100 10" 10° 10

Frequency o [rad/s]

8

(a) Circuit diagram (b) Frequency response

Figure 9.3: Stable amplifier based on negative feedback around an operational amplifier.
The circuit diagram on the left shows a typical amplifier with low-frequency gain R, /R;. If
we model the dynamic response of the op amp as G(s) = ak/(s+a), then the gain falls off at
frequency @ = aR1k/R;, as shown in the gain curves on the right. The frequency response
is computed for k = 107, a = 10 rad/s, Ry =10° Q, and R =1, 102, 10%, and 10° Q.

These dynamics correspond to a first-order system with time constant 1/a. The
parameter k is called the open loop gain, and the product ak is called the gain-
bandwidth product; typical values for these parameters are k = 107 and ak = 107—
10° rad/s.

If the input v; is an exponential signal ¢, then there are solutions where all
signals in the circuit are exponentials, v, vy, v, € &, since all of the elements of the
circuit are modeled as being linear. The equations describing the system can then
be manipulated algebraically.

Assuming that the current into the amplifier is zero, as is done in Section 4.3,
the current through the resistors R and R, are the same, hence

vVi—V  v—W

R TR or (Ri+Ry)v=Ryvi+Riv

Combining the above equation with the open loop dynamics of the operational
amplifier (9.10), which can be written as v, = —Gv in the simplified notation (9.7),
gives the following model for the closed loop system:

(R1 +Ry)v=Ryvi +Ryvs, vy = —Gv, v, V1,2 € &. 9.11)
Eliminating v between these equations yields

—R,G —Ryak
= Vv =
Ri+R,+R G ' Riak+ (R +R:)(s+a)

V2 Vi,

and the transfer function of the closed loop system is
—Ryak

Riak+ (Ri +Ry)(s+a)’

The low-frequency gain is obtained by setting s = 0, hence

kR R

(k+1)Ry + R, Ry’

Gy, = (9.12)

GVZVI (0) =
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which is the result given by equation (4.12) in Section 4.3. The bandwidth of the
amplifier circuit is

Ri(k+1)+R  Rik
Ri1+Ry R>

where the approximation holds for R, /R > 1. The gain of the closed loop system
drops off at high frequencies as Ryak/(®(R; +R3)). The frequency response of the
transfer function is shown in Figure 9.3b for k = 107, a = 10 rad/s, R, = 10° Q,
and Ry = 1, 102, 10%, and 10° Q.

Note that in solving this example, we bypassed explicitly writing the signals
as v="V(s)e" and instead worked directly with v, assuming it was an exponen-
tial. This shortcut is handy in solving problems of this sort and when manipulating
block diagrams. A comparison with Section 4.3, where we make the same calcu-
lation when G(s) is a constant, shows analysis of systems using transfer functions
is as easy as using static systems. The calculations are the same if the resistances
Ry and R, are replaced by impedances, as discussed in Example 9.3. \%

Wy = for k> 1,

Transfer Functions for Linear Differential Equations
Consider a linear system described by the controlled differential equation

n n—1 m m—1
Z;%—aljtn_?}—i—'--—i—anyzbo%+bl%+---+bmu, (9.13)
where u is the input and y is the output. Notice that here we have generalized our
system description from Section 3.2 to allow both the input and its derivatives to
appear. This type of description arises in many applications, as described briefly in
Chapter 2 and Section 3.2; bicycle dynamics and AFM modeling are two specific
examples.

To determine the transfer function of the system (9.13), let the input be u(r) =
e*". Since the system is linear, there is an output of the system that is also an
exponential function y(r) = ype*. Inserting the signals into equation (9.13), we
find

(s"+ars" 4 Fan)yoe” = (bos" +bys" - £ by)et,
and the response of the system can be completely described by two polynomials
a(s) =s"+as" - +ay, b(s) = bos"+bis" 4+ by (9.14)

The polynomial a(s) is the characteristic polynomial of the ordinary differential
equation. If a(s) # 0, it follows that

y(t) = yoe' = zgge‘“. (9.15)

The transfer function of the system (9.13) is thus the rational function

b(s)  bos" +bys" '+ 4 by

Gls) — _
(5) a(s) s"+ars" M4 tay

, (9.16)
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where the polynomials a(s) and b(s) are given by equation (9.14). Notice that
the transfer function for the system (9.13) can be obtained by inspection since
the coefficients of a(s) and b(s) are precisely the coefficients of the derivatives
of u and y. The zeros and the poles of the transfer functions are the zeros of the
polynomials a(s) and b(s). The properties of the system are determined by the
poles and zeros of the transfer function, as we shall see in the examples that follow
and shall explore in more detail in Section 9.5.

Example 9.3 Electrical circuit elements

Modeling of electrical circuits is a common use of transfer functions. Consider, for
example, a resistor modeled by Ohm’s law V = IR, where V is the voltage across
the resistor, [ is the current through the resistor and R is the resistance value. If we
consider current to be the input and voltage to be the output, the resistor has the
transfer function Z(s) = R, which is also called the generalized impedance of the
circuit element.

Next we consider an inductor whose input/output characteristic is given by

LE =V
Letting the current be 1(z) = ¢*, we find that the voltage is V (¢) = Lse* and the
transfer function of an inductor is thus Z(s) = Ls. A capacitor is characterized by
dv
CE =
and a similar analysis gives a transfer function from current to voltage of Z(s) =
1/(Cs). Using transfer functions, complex electrical circuits can be analyzed al-

gebraically by using the generalized impedance Z(s) just as one would use the
resistance value in a resistor network. \%

I

Example 9.4 Vibration damper
Damping vibrations is a common engineering problem. A schematic diagram of a
vibration damper is shown in Figure 9.4. To analyze the system we use Newton’s
equations for the two masses:
mx; +c1x) +kixy + ko (x) —xp) = F, moiy +ky(xy —x1) = 0.

To determine the transfer function from the force F to the position x; of the mass
m we first find particular exponential solutions:

(m1S2+C1SX1+k1)X1+k2(X1 —JCZ) :F, m2s2—|—k2(x2—x1) :0, (9.17)
We solve x; from the second expression,

ka
= —X 5
m2s2 + k2 !

and insert this into the first expression to obtain

X2

k

2
(m1s”+cis+ki)x +k2(1 — m

)xl :F,
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—

X1

ko

el k1%
(7)

T

Figure 9.4: A vibration damper. Vibrations of the mass m; can be damped by providing it
with an auxiliary mass mj, attached to m; by a spring with stiffness k,. The parameters m;
and k; are chosen so that the frequency +/k;/m, matches the frequency of the vibration.

and hence
[(m1s2 +c15+ky 4 ko) (mas® +ky) — k%] x1 = (mys® + ko) F.
Expanding the expression gives the the transfer function
_ mas +ky
B mimays* + mact$3 + (miky +ma (ki + k2 ))s2 + kacys + kika

from the disturbance force F to the position x| of the mass m;. The transfer func-
tion has a zero at s = +iy/ky/my, which means that transmission of sinusoidal
signals with this frequency are blocked (this blocking property will be discussed
in Section 9.5). \Y%

Gy,

As the examples above illustrate, transfer functions provide a simple represen-
tation for linear input/output systems. Transfer functions for some common linear
time-invariant systems are given in Table 9.1. Transfer functions of a form similar
to equation (9.13) can also be constructed for systems with many inputs and many
outputs (Exercise 9.3).

Time Delays and Partial Differential Equations

Although we have focused thus far on ordinary differential equations, transfer
functions can also be used for other types of linear systems. We illustrate this
using time delays and systems described by a partial differential equation.

Example 9.5 Time delay
Time delays appear in many systems: typical examples are delays in nerve prop-
agation, communication systems, and mass transport. A system with a time delay
has the input/output relation

() =u(t—1). (9.18)

St

To obtain the corresponding transfer function we let the input be u(t) = e, and
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Table 9.1: Transfer functions for some common linear time-invariant systems.

Type System Transfer Function
. 1
Integrator y=u -
s
Differentiator y=1u s

1
s+a

1

52

First-order system  y+ay=u

Double integrator

<
Il
<

1

Damped oscillator  y+2 b+ 02y = u _—
P S 20wy + @y s2+28wps + of

State space system %= Ax+Bu,y=Cx+Du C(sI —A)"'B+D

k.
PID controller y = kpu+kqii+ ki [u kp +kgs+ =
S

Time delay y(#) =u(t—1) e

the output is then
y(t) =u(t—1) =) = %" = e u(t).

We find that the transfer function of a time delay is thus G(s) = ¢™*%, which is not
a rational function. \%

Example 9.6 Heat propagation
Consider the problem of one-dimensional heat propagation in a semi-infinite metal
rod. Assume that the input is the temperature at one end and that the output is the
temperature at a point along the rod. Let 6(x,#) be the temperature at position x
and time 7. With a proper choice of length scales and units, heat propagation is
described by the partial differential equation
2

aa?:gzz, y(t) =06(1,1), (9.19)
and the point of interest can be assumed to have x = 1. The boundary condition for
the partial differential equation is

0(0,7) = u(r).
To determine the transfer function we choose the input as u(t) = ¢*. Assume that
there is a solution to the partial differential equation of the form 6 (x,7) = y(x)e*
and insert this into equation (9.19) to obtain

d2
Sl[/(X) = T;g?
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with boundary condition y(0) = 1. This ordinary differential equation (with inde-
pendent variable x) has the solution

y(x) = Ae*YS + Be V5.

Since the temperature of the rod is bounded we have A = 0, the boundary condition
gives B = 1, and the solution is then

y(t)=0(1,1) = w(1)e" = e Vi = e Vou(r).

The system thus has the transfer function G(s) = e~ V5. As in the case of a time
delay, the transfer function is not a rational function. \%

State Space Realizations of Transfer Functions

We have seen in equation (9.4) how to compute the transfer function for a given
state space control system. The inverse problem, computing a state space control
system for a given transfer function, is known as the realization problem. Given a
transfer function G(s), we say that a state space system with matrices A, B, C, and
D is a (state space) realization of G(s) if G(s) = C(sI —A)~'B+ D. We explore
here some of the properties of realizations of transfer functions, starting with the
question of uniqueness.

As we saw in Section 6.3, it is possible to choose a different set of coordinates
for the state space of a linear system and still preserve the input/output response.
In other words, the matrices A, B, C, and D in the state space equations (9.2)
depend on the choice of coordinate system used for the states, but since the transfer
function relates input to outputs, it should be invariant to coordinate changes in
the state space. Repeating the analysis in Chapter 6, consider a model (9.2) and
introduce new coordinates z by the transformation z = T'x, where T is a nonsingular
matrix. The system is then described by

dz _1 -
i T(Ax+Bu) = TAT "z+TBu =: Az+ Bu,
y=Cx+Du=CT 'z+Du=:Cz+Du.

This system has the same form as equation (9.2), but the matrices A, B, and C are
different: _ B _
A=TAT™', B=TB, C=cr ! (9.20)

Computing the transfer function of the transformed model, we get
G(s)=C(sI—A) 'B+D=cT ' (sI —TAT"")"'TB+D
— (T~ (sI—=TAT"")T) 'B+D=C(sI —A)"'B+D = G(s),

which is identical to the transfer function (9.4) computed from the system descrip-
tion (9.2). The transfer function is thus invariant to changes of the coordinates in
the state space.
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One consequence of this coordinate invariance is that it is not possible for there
to be a unique state space realization for a given transfer function. Given any one
realization, we can compute another realization by simply changing coordinates
using any invertible matrix 7. Note, however, that the dimension of the state space
realization is not changed by this transformation. It therefore makes sense to talk
about a minimal realization, in which the number of states is as small as possible.
For a transfer function G(s) = b(s) /a(s) with denominator a(s) of degree n, it can
be shown that there is always a realization with n states, given by a state space sys-
tem in reachable canonical form (Exercise 9.4). In general, a minimal realization
will always have at most n states. However, the degree may be lower if there are
pole/zero cancellations, as illustrated by the following example.

Example 9.7 Cancellation of poles and zeros
Consider the system

£ (28 () o0 0

Equation (9.4) gives the following transfer function

(o) (36 () e 0 ) ()

s+1 s+1 1

s243s+2 (s+1)(s+3) T 513

Even though the original state space system was of second order, the transfer func-
tion is a first-order rational function. The reason is that the factor s 4 1 has been
canceled when computing the transfer function. Cancellation of poles and zeros is
related to lack of reachability and observability. In this particular case the reacha-

bility matrix
1 -2
W = [B AB] - [1 —2]

has rank 1 and the system is not reachable. Notice that it was shown in Section 8.3
that the transfer function is given by the reachable and observable subsystem X,
in the Kalman decomposition of a linear system, which in this case is of first order.

\%

G(s)

The general approach to understand realizations (and minimal realizations) is to
make use of the Kalman decomposition in Section 8.3. We see from the structure
of equation (8.20) that the input/output response of a linear control system is deter-
mined solely by the reachable and observable subsystem X,,. When a system lacks
reachability and observability, this shows up as cancellation of poles and zeros in
the transfer function computed from the full system matrices.

Cancellation of poles and zeros was controversial for a long time, which was
manifested in rules for manipulating transfer functions: do not cancel factors with
roots in the right half-plane. Special algebraic methods were also developed to
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do block diagram algebra. Kalman’s decomposition, which clarifies that the trans-
fer function only represents part of the dynamics, gives clear insight into what is
happening. These issues are discussed in more detail in Section 9.5.

The results of this section can also be extended to the case of multi-input, multi-
output (MIMO) systems. The transfer function G(s) for a single-input, single-
output given by equation (9.4) is a function of complex variables, G : C — C.
For systems with p inputs and g outputs the transfer function is matrix-valued,
G : C — C?*P_ The techniques described above can be generalized to this case, but
the notion of a (minimal) realization becomes substantially more complicated.

9.3 Laplace Transforms

The traditional way to derive the transfer function for a linear, time-invariant, in-
put/output system is to make use of Laplace transforms. The Laplace transform
method was particularly important before the advent of computers, since it pro-
vided a practical way to compute the response of a system to a given input. Today,
we compute the response of a linear (or nonlinear) system to complex inputs using
numerical simulation, and the Laplace transform is no longer needed for this pur-
pose. It is however, still useful to gain insight into the response of linear systems.

In this section, we provide a brief introduction to the use of Laplace trans-
forms and their connections with transfer functions. Only a few elementary prop-
erties of Laplace transforms are needed for basic control applications; students
who are not familiar with them can safely skip this section. A good reference for
the mathematical material in this section is the classic book by Widder [Wid41]
or the more modern treatments available in standard textbooks on signals and sys-
tems [LV11, OWN96].

Consider a function f(r), f : R™ — R, that is integrable and grows no faster
than €%’ for some finite sy € R and large 7. The Laplace transform maps f to a
function F = £ f : C — C of a complex variable. It is defined by

F(s)= /Owe_“f(t)dt, Res > 5. (9.21)

Using this formula, it is possible to compute the Laplace transform of some com-
mon functions; see Table 9.2.

The Laplace transform has some properties that makes it well suited to deal
with linear systems. First we observe that the transform itself is linear because

Zlaf+bg) = [ e af(e) +bg(0)dr

:a/ e_“f(t)dt—i—b/ e g(t)dt =a L f+bYLg.
0 0

Using linearity we can compute the Laplace transform of combinations of simple
inputs, such as those that make up the set of exponential signals & introduced
earlier.

(9.22)

¢
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Table 9.2: Laplace transforms for some common signals.

Signal u(r) Laplace transform U (s) Signal u(r) Laplace transform U (s)
1
S(¢) [unit step] N 6(¢) [impulse] 1
. a s
sm(al) m cos(at) m
—at .. a —at s+a
e * sm(at) (S+(X)2+a2 e ™ cos(at) m

Next we will calculate the Laplace transform of the integral of a function. Using
integration by parts, we get

.Z/Otf(f)dr - /Ow (e*“ /Otf(r) dr) dr
1

= e /()tf(r)df):+/()m e_”f(f)dr = f/ooe_”f(r)dr,

K K s Jo

hence
.i”/tf(r)dr Lo Lr 9.23)
0 L= LE(s) .

Integration of a time function thus corresponds to division of the corresponding
Laplace transform by s.

Since integration corresponds to division by s, we can expect that differenti-
ation corresponds to multiplication by s. This is not quite true as we will see by
calculating the Laplace transform of the derivative of a function. We have

d °° ; * g
.zdi; = [Cerpwan=e | s [T wan=—10) +525,
0 0
where the second equality is obtained using integration by parts. We thus obtain
d
zdi; L f— F(0) = sF(s)— £(0). 9.24)

Notice the appearance of the initial value f(0) of the function. The formula (9.24)
is particularly simple if the initial conditions are zero, because if f(0) = 0 it follows
that differentiation of a function corresponds to multiplication of the transform by
s, compare with the differentiation of exponential signals.

Using Laplace transforms the transfer function for a linear time invariant sys-
tem can be defined as the ratio of the transform of the input and the output, when
the transforms are computed under the assumption that all initial conditions are
zero. We will now illustrate how Laplace transforms can be used to compute trans-
fer functions.
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Example 9.8 Transfer function of state space model
Consider the state space system described by equation (9.2). Taking Laplace trans-
forms gives

sX(s) —x(0) =AX(s)+BU(s), Y(s) =CX(s)+DU(s).
Elimination of X (s) gives
X(s) = (sI —A)"'x(0) + (sI —A)"'BU(s). (9.25)
When the initial condition x(0) is zero we have

X(s) = (sI—A)'BU(s),  Y(s)= (C(sI—A)*lB—l—D)U(s).

and the transfer function is given by G(s) = C(sI — A)~'B+ D (compare with
equation (9.4)). \Y

Example 9.9 Transfer functions and impulse response

Consider a linear time-invariant system with zero initial state. We saw in Sec-
tion 6.3 that the relation between the input # and the output y is given by the
convolution integral

(0 = [ e = wu(e)dz,

where h(t) is the impulse response for the system (assumed causal). Taking the
Laplace transform of this expression gives

Y(s) = /0 e ty()di = /0 o /0 " h(t = 1)u(t) drdt
= /Ow/otes(lT)e”h(t—r)u(f) dtdt
_ /O e u(t)dr / Tty dr = H(s)U s).

0
Thus, the input/output response is given by Y (s) = H(s)U (s), where H, U, and Y
are the Laplace transforms of 4, u, and y.

The system theoretic interpretation is that the Laplace transform of the output
of a linear system is a product of two terms, the Laplace transform of the input
U (s) and the Laplace transform of the impulse response of the system H(s). A
mathematical interpretation is that the Laplace transform of a convolution is the
product of the transforms of the functions that are convolved. The fact that the
formula Y (s) = H(s)U(s) is much simpler than a convolution is one reason why
Laplace transforms have traditionally been popular in engineering. \%

A variety of theorems are available using Laplace transforms that are useful in
a control systems setting. The initial value theorem states that

lim £(¢) = lim sF (s).
lim £(¢) = lim sF (s)

Using this theorem and the fact that a step input has Laplace transform 1/s, we can
compute the initial value of signals in a control system in response to step inputs.
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(a) Gyu = GG, (b) Gyu =G1+G = L
(©) Gyu 14 G,G,

Figure 9.5: Interconnections of linear systems. Series (a), parallel (b) and feedback (c) con-
nections are shown. The transfer functions for the composite systems can be derived by
algebraic manipulations assuming exponential functions for all signals.

For example, if G, represents that transfer function between the reference r and
control input u, then the step response will have the property that

u(0) =limu(r) = lim sU (s) = lim s- G,r(s) % = Gyr(o0).

t—0 §—oo §—oo

Similarly, the final value theorem states that

lim f(t) = 1irr(1)sF(s)7

t—ro0

and this can be used to show that for a step input r(¢) we have lim; .. y(¢) = G,,(0).

9.4 Block Diagrams and Transfer Functions

The combination of block diagrams and transfer functions is a powerful way to
represent control systems. Transfer functions relating different signals in the sys-
tem can be derived by purely algebraic manipulations of the transfer functions of
the blocks using block diagram algebra. Outputs resulting from several input sig-
nals can be derived using superposition. To show how this can be done, we will
begin with simple combinations of systems. We will assume that all signals are
exponential signals & and we will use the compact notation y = Gu for the out-
put y € & of a linear time-invariant system with the input # € & and the transfer
function G (see equation (9.7) and recall its interpretation).

Consider a system that is a cascade combination of systems with the transfer
functions G| (s) and G;(s), as shown in Figure 9.5a. Let the input of the system be
u € &. The output of the first block is then G u € &, which is also the input to the
second system. The output of the second system is then

y = G2(Gu) = (G2Gy)u. (9.26)

The transfer function of the series connection is thus G = G, Gy, i.e., the product
of the transfer functions. The order of the individual transfer functions is due to
the fact that we place the input signal on the right-hand side of this expression,
hence we first multiply by G and then by G,. Unfortunately, this has the opposite
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Vv w

y
— = F(s) C(s) P(s) =

—] |-

Figure 9.6: Block diagram of a feedback system. The inputs to the system are the reference
signal r, the process disturbance v and the measurement noise w. The remaining signals in
the system can all be chosen as possible outputs, and transfer functions can be used to relate
the system inputs to the other labeled signals.

ordering from the diagrams that we use, where we typically have the signal flow
from left to right, so one needs to be careful. The ordering is important if either G
or G is a vector-valued transfer function, as we shall see in some examples.

Consider next a parallel connection of systems with the transfer functions G
and G, as shown in Figure 9.5b, and assume that all signals are exponential sig-
nals. The outputs of the first and second systems are simply Gju and G,u and the
output of the parallel connection is

y = Giu+ Gyu= (G + Gy)u.

The transfer function for a parallel connection is thus G = G| + G».

Finally, consider a feedback connection of systems with the transfer functions
G and G», as shown in Figure 9.5c. Writing the relations between the signals for
the different blocks and the summation unit, we find

y=Gie, e=u—Gyy. (9.27)
Elimination of e gives
Gy
=Gi(u—G — 1+G1G)y=G — -
y=Gi(u—Gyy) (1+G1G2)y=Gu Y=176,6,"
The transfer function of the feedback connection is thus
Gy
G=——. 9.28
1+Gi1Gy ( )

These three basic interconnections can be used as the basis for computing transfer
functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figure 9.6, which was given at the beginning of the chapter.
The system has three blocks representing a process P, a feedback controller C, and
afeedforward controller F'. Together, C and F define the control law for the system.
There are three external signals: the reference (or command signal) r, the load



9.4. BLOCK DIAGRAMS AND TRANSFER FUNCTIONS 9-19

r e y r PC y
— F PC - —= F = TrPC [ "
(b)
—1 |-
" PCF Y
TTlispc [T

() (c)

Figure 9.7: Example of block diagram algebra. The results from multiplying the process and
controller transfer functions (from Figure 9.6) are shown in (a). Replacing the feedback loop
with its transfer function equivalent yields (b), and finally multiplying the two remaining
blocks gives the reference to output representation in (c).

disturbance v, and the measurement noise w. A typical problem is to determine
how the error e is related to the signals r, v, and w.

To derive the transfer functions we are interested in, we assume that all signals
are exponential signals & and we write the relations between the signals for each
block in the system block diagram. Assume for example that we are interested in
the control error e. The summation point and the block F'(s) gives

e=Fr—y.
The signal y is the sum of w and 1, where 7 is the output of the process P(s):
y=w+1, n=Pv+u), u=_Ce,
Combining these equations gives
e=Fr—y=Fr—(w+n)=Fr—(w+P(v+u))
=Fr— (w+P(v+Ce)),
and hence
e=Fr—w—Pv—PCe,

Finally, solving this equation for e gives

F 1 P
— r— w— v

14+PC 14+PC 1+ PC

and the error is thus the sum of three terms, depending on the reference r, the

measurement noise w, and the load disturbance v. The functions
F -1 —P

Gor=——, Gow=—=, Go=——

“1+PC " 1+PC Y 1+PC

are transfer functions from reference r, noise w, and disturbance v to the error e.

Equation (9.29) can also be obtained by computing the outputs for each input and

using superposition.

We can also derive transfer functions by manipulating the block diagrams di-

rectly, as illustrated in Figure 9.7. Suppose we wish to compute the transfer func-

tion between the reference r and the output y. We begin by combining the process

e = GV + Geyw + GV, (9.29)

(9.30)
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and controller blocks in Figure 9.6 to obtain the diagram in Figure 9.7a. We can
now eliminate the feedback loop using the algebra for a feedback interconnection
(Figure 9.7b) and then use the series interconnection rule to obtain

PCF
14+PC’

Similar manipulations can be used to obtain the other transfer functions (Exer-
cise 9.11).

The above analysis illustrates an effective way to manipulate the equations to
obtain the relations between inputs and outputs in a feedback system. The general
idea is to start with the variable of interest and to trace variables backwards around
the feedback loop. With some practice, equations (9.29) and (9.30) can be written
directly by inspection of the block diagram. Notice, for example, that all terms in
equation (9.30) have the same denominator and that the numerators are the blocks
that one passes through when going directly from input to output (ignoring the
feedback). This type of rule can be used to compute transfer functions by inspec-
tion, although for systems with multiple feedback loops it can be tricky to compute
them without writing down the algebra explicitly.

Gyr = (9.31)

We can also use block diagram algebra to obtain insights about state space con-
trollers. Consider a state space controller that uses an observer, such as the one
shown in Figure 8.7. The process model is

dx

E:Ax—l—Bu, y =Cx,

and the controller (8.15) is given by
u = —Kx+ ker, (9.32)
where X is the output of a state observer (8.16) given by

di
di; — AL+ Bu+L(y—CR), u=—Ki+kr (9.33)
The controller is a system with one output # and two inputs, the reference r and
the measured signal y. Using transfer functions and exponential signals it can be
represented as

u= Gyr—Gyy, (9.34)

The transfer function G,y from y to u describes the feedback action and G, from
r to u describes the feedforward action. We call these open loop transfer func-
tions because they represent the relationships between the signals without consid-
ering the dynamics of the process (e.g., removing P from the system description
or cutting the loop at the process input or output). To derive the controller transfer
functions we rewrite equation (9.33) as

dx

o = (A-BK—LOR+Blir+Ly,  u=—Ki+kr (9.35)
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Figure 9.8: Block diagram for a steering control system. The control system is designed to
maintain the lateral position of the vehicle along a reference curve (left). The structure of the
control system is shown on the right as a block diagram of transfer functions. The estimator
consists of two components that compute the estimated state £ from the combination of the
input u and output y of the process. The estimated state is fed through a state feedback
controller and combined with a feedforward gain obtain the commanded steering angle u.

Letting £, r, and y be exponential signals, the above equation gives
(s —(A—BK —LC))X = Bkg+ Ly, u = —Kx+ ker,
and we find that the controller transfer functions in equation (9.34) are

Gur = ky — K(sI — A+ BK + LC) ™' Bk,

1 (9.36)
Guy=K(sI—A+BK+LC)"'L

We illustrate with an example.

Example 9.10 Vehicle steering

Consider the linearized model for vehicle steering introduced in Example 6.13. In
Examples 7.4 and 8.3 we designed a state feedback controller and state estimator
for the system. A block diagram for the resulting control system is given in Fig-
ure 9.8. Note that we have split the estimator into two components, Gy, (s) and
Gyy(s), corresponding to its inputs u and y. To compute these transfer functions
we use equation (9.33) and the expressions for A, B, C, and L from Example 8.3,
hence

Ys+1 his+1
Gauls) s+ his+ b 5 s2+lis+1
aul(s) = , a(s) = ,
xu s+ —vh * bs
s2+hLis+1h s2+lis+1h

where [; and [, are the observer gains and ¥ is the scaled position of the center
of mass from the rear wheels. Applying block diagram algebra to the controller in
Figure 9.8 we obtain

ke ke(s®> +1is+ 1)

Gur = = )
() 1+KGu(s)  s2+s(Yki+ky+1)+ ki + b +kaly — vholp
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and
_ KGy(s) s(kily +kalo) +kilp
1+KG(s)  s*+s(vki+hka+0)+ki +h+kli — Ykl

where k; and k, are the state feedback gains and k¢ is the feedforward gain. The
last equalities are obtained applying block diagram algebra to Figure 9.8.

To compute the closed loop transfer function Gy, from reference r to output y,
we begin by deriving the transfer function for the process P(s). We can compute
this directly from the state space description, which was given in Example 6.13.
Using that description, we have

P(s) = Gyu(s) = C(sI—A) "B+ D = [1 o] [8 SIJ B [i’] :”ssjl.

The transfer function for the full closed loop system between the input » and the
output y is then given by

Guy(s)

P(5)Gyr(s) _ ke(ys+1)
1—P(s)Guy(s) s>+ (kiy+k)s+ki
(Note the unusual sign in the denominator of the middle term, which occurs be-
cause G, is in the feedback path and incorporates the —1 gain element.) \%

Gyr =

Note that in the previous example the observer gains /; and /; do not appear
in the transfer function Gy,. This is true in general, as follows from Figure 8.9b in
Section 8.3.

We also note that a control system using an observer should be implemented as
the multivariable system (9.35), which is of order n. It should not be implemented
using two separate transfer functions, as described in equation (9.34), because the
controller would then be of order 2n, and there will be unobservable modes.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, it is neces-
sary to form the differential equations that describe the complete system. In many
cases the equations can be obtained by combining the differential equations that
describe each subsystem and substituting variables. This simple procedure cannot
be used when there are closed loops of subsystems that all have a direct connection
between inputs and outputs, known as an algebraic loop.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx
E = f(xa M)> y= h(x)a 9.37)
and a proportional controller described by u = —ky. There is no direct term since

the function /. does not depend on u. In that case we can obtain the equation for
the closed loop system simply by replacing u by —ky in equation (9.37) to give

dx
E:f(x7_ky)7 y:/’l(X)
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Such a procedure can easily be automated using simple formula manipulation.
The situation is more complicated if there is a direct term. If y = h(x,u), then
replacing u by —ky gives

?:f(xviky)v y:h(xviky)'

t

To obtain a differential equation for x, the algebraic equation y = h(x, —ky) must
be solved to give y = a(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. Resolving algebraic
loops is a nontrivial problem because it requires the symbolic solution of alge-
braic equations. Most block diagram-oriented modeling languages cannot handle
algebraic loops, and they simply give a diagnosis that such loops are present. In
the era of analog computing, algebraic loops were eliminated by introducing fast
dynamics between the loops. This created differential equations with fast and slow
modes that are difficult to solve numerically. Advanced modeling languages like
Modelica use several sophisticated methods to resolve algebraic loops.

9.5 Zero Frequency Gain, Poles, and Zeros

The transfer function has many useful interpretations and the features of a transfer
function are often associated with important system properties. Three of the most
important features are the gain and the locations of the poles and zeros.

Zero Frequency Gain

The zero frequency gain of a system is given by the magnitude of the transfer
function at s = 0. It represents the ratio of the steady-state value of the output with
respect to a step input (which can be represented as u = ¢* with s = 0). For a state
space system, we computed the zero frequency gain in equation (6.22):

G(0)=D—CA™'B.
For a system modeled as the linear differential equation

dy  drly A" dm
dr +aldtn_1 ++Clny:b()dt7m+blw++bmu,

if we assume that the input u and output y are constants yg and ug, then we find
that a,,yo = b,,u0, and the zero frequency gain is

G(0) = 20 = om. (9.38)

up dn
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Poles and Zeros

Next consider a linear system with the rational transfer function

G(s) = @
a(s)

The roots of the polynomial a(s) are called the poles of the system, and the roots of
b(s) are called the zeros of the system. If p is a pole, it follows that y(r) = e/’ is a
solution of equation (9.13) with u = O (the solution to the homogeneous equation).
A pole p corresponds to a mode of the system with corresponding modal solution
e”. The unforced motion of the system after an arbitrary excitation is a weighted
sum of modes. Zeros have a different interpretation. Since the pure exponential
output corresponding to the input u(t) = e* with a(s) # 0 is G(s)e", it follows that
the pure exponential output is zero if b(s) = 0. Zeros of the transfer function thus
block transmission of the corresponding exponential signals.

The difference between the number of poles and zeros npe = n —m is called the
pole excess (also sometimes referred to as the relative degree). A rational transfer
function is called proper if nye > 0 and strictly proper if nye > 0.

Effective use of zeros is made in integral control. To obtain a closed loop system
where a constant disturbance does not create a steady state error, the controller is
designed so that the transfer function from disturbance to control error has a zero
at the origin. Vibration dampers are another example where the system is designed
so that the transfer function from disturbance force to motion has a zero at the
frequency we want to damp (Example 9.4).

For a state space system with transfer function G(s) = C(sI —A)~'B+ D, the
poles of the transfer function are the eigenvalues of the matrix A in the state space
model. One easy way to see this is to notice that the value of G(s) is unbounded
when s is an eigenvalue of a system since this is precisely the set of points where
the characteristic polynomial A(s) = det(s/ —A) = 0 (and hence s/ — A is non-
invertible). It follows that the poles of a state space system depend only on the
matrix A, which represents the intrinsic dynamics of the system. We say that a
transfer function is stable if all of its poles have negative real part.

To find the zeros of a state space system, we observe that the zeros are complex
numbers s such that the input u(r) = Upe™ gives zero output. Inserting the pure
exponential response x(¢) = Xpe*' and setting y(¢) = 0 in equation (9.2) gives

se’ xog = AXpe* + BUpe" 0 = Ce"Xo + De*" Uy,

A—sl B Xo) o
" 5) (&) -0
This equation has a solution with nonzero Xy, Uy only if the matrix on the left does
not have full column rank. The zeros are thus the values s such that the matrix

[A—s[ B] 9.39)

which can be written as

C D
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Figure 9.9: A pole zero diagram for a transfer function with zeros at —5 and —1 and poles at
—3 and —242. The circles represent the locations of the zeros, and the crosses the locations
of the poles. A complete characterization requires we also specify the gain of the system.

loses rank.

Since the zeros depend on A, B, C, and D, they therefore depend on how the
inputs and outputs are coupled to the states. Notice in particular that if the matrix
B has full row rank, then the matrix in equation (9.39) has n linearly independent
rows for all values of s. Similarly there are n linearly independent columns if the
matrix C has full column rank. This implies that systems where the matrix B or C
is square and full rank do not have zeros. In particular it means that a system has
no zeros if it is fully actuated (each state can be controlled independently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfer function is through
a pole zero diagram, as shown in Figure 9.9. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are multiple poles or zeros at
a fixed location, these are often indicated with overlapping crosses or circles (or
other annotations). Poles in the left half-plane correspond to stable modes of the
system, and poles in the right half-plane correspond to unstable modes. We thus
call a pole in the left half-plane a stable pole and a pole in the right half-plane an
unstable pole. A similar terminology is used for zeros, even though the zeros do
not directly relate to stability or instability of the system. Notice that the gain must
also be given to have a complete description of the transfer function.

Example 9.11 Balance system

Consider the dynamics for a balance system, shown in Figure 9.10. The transfer
function for a balance system can be derived directly from the second-order equa-
tions, given in Example 3.2:

d? d*e d . do
Mtd—tf —mlWCOSO%—cd—]: +mls1n9(E)2 =F,

d? d’e 0 _
—mlcosed—tf +Jtﬁ —H/E —mglsin@ = 0.

If we assume that 6 and 6 are small, we can approximate this nonlinear system by
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(a) Cart—pendulum system (c) Pole zero diagram for Hyp

Figure 9.10: Poles and zeros for a balance system. The balance system (a) can be modeled
around its vertical equilibrium point by a fourth order linear system. The poles and zeros for
the transfer functions Hgr and H,r are shown in (b) and (c), respectively.

a set of linear second-order differential equations,

d’p d*e dp

Y AL L
Car T T T
d’p d*6 46
—ml—= +Ji—— — —mgll = 0.
Mgz g T g M8

If we let F be an exponential signal, the resulting response satisfies

Ms®p—mls?’ 0 +csp=F,
Jis* 0 —mlszp—i—}/se —mglo =0,
where all signals are exponential signals. The resulting transfer functions for the

position of the cart and the orientation of the pendulum are given by solving for p
and 0 in terms of F to obtain

mls
H —
o) = e~ 2P+ (g T eh)s? + ey — Mamgl)s — mgle’
Jis +ys —mgl
Hoe(s) = t Y g

(MyJy — m212)s* + (YM, + cJy)s® + (cy — Mmgl) s> — mglcs’

where each of the coefficients is positive. The pole zero diagrams for these two
transfer functions are shown in Figure 9.10 using the parameters from Exam-
ple 7.7.
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If we assume the damping is small and set ¢ = 0 and ¥ = 0, we obtain

Hor (s) ml
S) =
or (MpJy — m212)s? — Myngl’
Jis? —mgl
HPF(S) = : 8

52 ((MtJt —m?1%)s? — thgl) '
This gives nonzero poles and zeros at

M,
melM h68, iy ) "™~ a0.00.

I L L S
p M, — m2 2 7,

We see that these are quite close to the pole and zero locations in Figure 9.10. V

Pole/Zero Cancellations

Because transfer functions are often polynomials in s, it can sometimes happen
that the numerator and denominator have a common factor, which can be can-
celed. Sometimes these cancellations are simply algebraic simplifications, but in
other situations they can mask potential fragilities in the model. In particular, if a
pole/zero cancellation occurs because terms in separate blocks just happen to coin-
cide, the cancellation may not occur if one of the systems is slightly perturbed. In
some situations this can result in severe differences between the expected behavior
and the actual behavior.

Consider the block diagram in Figure 9.6 with F' = 1 (no feedforward compen-
sation) and let C and P be given by

ne(s) np(s)
C(s)= , P(s) = .
©=i PO
The transfer function from r to e is then given by
_ dc(s)dp(s)
1+PC  dc(s)dp(s)+ne(s)np(s)”

If there are common factors in the numerator and denominator polynomials, then
these terms can be factored out and eliminated from both the numerator and de-

Ger(5)

nominator. For example, if the controller has a zero at s = —a and the process has
a pole at s = —a, then we will have
s+a)d.(s)d) (s d.(s)d (s
Gl (5 +a)de(s)dy () )

(s+a)dc(s)d)(s) + (s +a)np(s)np(s)  de(s)d)(s) +ni(s)np(s)’

where n(s) and dj(s) represent the relevant polynomials with the term s+ a fac-

tored out. We see that the s 4 a term does not appear in the transfer function G,
Suppose instead that we compute the transfer function from v to e, which repre-

sents the effect of a disturbance on the error between the reference and the output.
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(a) Velocity error (b) Throttle commands

Figure 9.11: Car with PI cruise control encountering a sloping road. The velocity error is
shown on the left and the throttle is shown on the right. Results for a PI controller with
kp = 0.5 and k; = 0.005 are shown by solid lines, and for a controller with k, = 0.5 and
ki = 0.5 are shown by dashed lines. Compare with Figure 4.3b.

This transfer function is given by

dC(S)”p(S)
(s +a)dc(s)d)(s) + (s +a)ni(s)np(s)

Notice that if a < 0, then the pole is in the right half-plane and the transfer function
G, is unstable. Hence, even though the transfer function from r to e appears to be
okay (assuming a perfect pole/zero cancellation), the transfer function from v to e
can exhibit unbounded behavior. This unwanted behavior is typical of an unstable
pole/zero cancellation.

Gey(s) = —

As noted at the end of Section 9.2, the cancellation of a pole with a zero can be un-
derstood in terms of the state space representation of the systems. Reachability or
observability is lost when there are cancellations of poles and zeros (Example 9.7
and Exercise 9.15) and the transfer function depends only on the dynamics in the
reachable and observable subsystem X,,.

Example 9.12 Cruise control

A cruise control system can be modeled by Figure 9.6, where y = v is the vehicle
velocity, r the desired velocity, and u the throttle. Furthermore F(s) = 1, and the
input/output response from throttle to velocity for the linearized model for a car
has the transfer function P(s) = b/(s+ a). A simple (but not necessarily good)
way to design a PI controller is to choose the parameters of the PI controller as
ki = aky. The controller transfer function is then C(s) =k, +k;/s = ki(s +a)/s. It
has a zero at s = —k;/k, = —a that cancels the process pole at s = —a. We have
P(s)C(s) = ki/s giving the transfer function from reference to vehicle velocity as
Gyr(s) = bkp /(s + bky), and control design is then simply a matter of choosing the
gain kp. The closed loop system dynamics are of first order with the time constant
1/ (bhy).

Figure 9.11 shows the velocity error when the car encounters an increase in the
road slope. A comparison with the controller used in Figure 4.3b (reproduced in
dashed curves) shows that the controller based on pole/zero cancellation has very
poor performance. The velocity error is larger, and it takes a long time to settle.

¢
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Notice that the control signal remains practically constant after + = 15 even
if the error is large after that time. To understand what happens we will analyze
the system. The parameters of the system are a = 0.0101 and b = 1.32, and the
controller parameters are k, = 0.5 and k; = 0.005. The closed loop time constant
is 1/(bky,) = 2.5 s, and we would expect that the error would settle in about 10's
(4 time constants). The transfer functions from road slope to velocity and control
signals are

b,s
m, Guo(s)

Notice that the canceled mode s = —a = —0.0101 appears in G,g but not in Gg.
The reason why the control signal remains constant is that the controller has a zero
at s = —0.0101, which cancels the slowly decaying process mode. Notice that the
error would diverge if the canceled pole was unstable. \%

bk,

G, = = .
0(5) s+ bk

The lesson we can learn from this example is that it is a bad idea to try to
cancel unstable or slow process poles. A more detailed discussion of pole/zero
cancellations and their impact on robustness is given in Section 14.6.

9.6 The Bode Plot

The frequency response of a linear system can be computed from its transfer func-
tion by setting s = i®, corresponding to a complex exponential

u(t) = €' = cos(wt) + isin(r).
The resulting output has the form
¥(t) = G(iw)e'® = M9 = Mcos(wt + @) + iM sin(ot + @),
where M and ¢ are the gain and phase of G:

_ ImG(iw)
M=|G(io)], ¢ = arctan ReGia)’
The gain and phase of G are also called the magnitude and argument of G, terms
that come from the theory of complex variables.

It follows from linearity that the response to a single sinusoid (sin(w?) or
cos(@t)) is amplified by M and phase-shifted by ¢. It will often be convenient to
represent the phase in degrees rather than radians. We will use the notation ZG(i®)
for the phase in degrees and arg G(i®) for the phase in radians. In addition, while
we always take arg G(i®) to be in the range (—m, 7|, we will take ZG(i®) to be
continuous, so that it can take on values outside the range of —180° to 180°.

The frequency response G(iw) can thus be represented by two curves: the gain
curve and the phase curve. The gain curve gives |G(iw)| as a function of frequency
o, and the phase curve gives ZG(iw). One particularly useful way of drawing
these curves is to use a log/log scale for the gain curve and a log/linear scale for



9-30 CHAPTER 9. TRANSFER FUNCTIONS

Actual

-90 — - T =T 1 1 ---Approx*
107 10" 10" 10’ 10°
Frequency w [rad/s]
2
Figure 9.12: Bode plot of the transfer function C(s) = 20 + % +10s = 10@ corre-

sponding to an ideal PID controller. The upper plot is the gain curve and the lower plot is the
phase curve. The dashed lines show straight-line approximations of the gain curve and the
corresponding phase curve.

the phase curve. This type of plot is called a Bode plot and is shown in Figure 9.12.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy to sketch and interpret.
Since the frequency scale is logarithmic, they cover the behavior of a linear system
over a wide frequency range.

Consider a transfer function that is a rational function of the form
bi(s)b

G(s) = 1()ba(s)
ai(s)ax(s)

We have
log|G(s)| = log|b1(s)| +log|ba(s)| —log|ai (s)| — log|az(s)|,

and hence we can compute the gain curve by simply adding and subtracting gains
corresponding to terms in the numerator and denominator. Similarly,

ZG(s) = £Lbi(s)+ £Lby(s) — Lai(s) — Lax(s),

and so the phase curve can be determined in an analogous fashion. Since a poly-
nomial can be written as a product of terms of the type

k, s, s+a, s*+2{wys+of,

it suffices to be able to sketch Bode diagrams for these terms. The Bode plot of a
complex system is then obtained by adding the gains and phases of the terms.
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Figure 9.13: Bode plots of the transfer functions G(s) = s& for k = —2,—1,0,1,2. On a
log-log scale, the gain curve is a straight line with slope k. The phase curves for the transfer
functions are constants, with phase equal to k£ x 90°.

The function G(s) = s* is a simple transfer function, with the important special
cases of k = 1 corresponding to a differentiator and k = —1 to an integrator. The
gain and phase of the term are given by

log|G(im)| =k x log o, ZG(im) =k x90°.

The gain curve is thus a straight line with slope k, and the phase curve is a constant

at k x 90°. The case when k = 1 corresponds to a differentiator and has slope 1 with

phase 90°. The case when k = —1 corresponds to an integrator and has slope —1

with phase —90°. Bode plots of the various powers of k are shown in Figure 9.13.
Consider next the transfer function of a first-order system, given by

a

G(s) = , a>0.
s+a
We have
|al
G(s)| = , ZG(s) = L(a)— ZL(s+a),
GO = (5) = £(a) ~ Z(s+a)
and hence

1 180 w
log|G(iw)| =loga — 3 log (®* +d?), /ZG(iw) = ——arctan—.
a

The Bode plot is shown in Figure 9.14a, with the magnitude normalized by the
zero frequency gain. Both the gain curve and the phase curve can be approximated
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Figure 9.14: Bode plots for first- and second-order systems. (a) The first-order system
G(s) = a/(s+ a) can be approximated by asymptotic curves (dashed) in both the gain and
the frequency, with the breakpoint in the gain curve at @ = a and the phase decreasing by 90°
over a factor of 100 in frequency. (b) The second-order system G(s) = &2 /(s> +2{ wps + &)
has a peak at frequency @y and then a slope of —2 beyond the peak; the phase decreases from
0° to —180°. The height of the peak and the rate of change of phase depending on the damp-
ing ratio § (§ =0.02, 0.1, 0.2, 0.5, and 1.0 shown).

by the following straight lines

ifw<a,

log|G(iw)| ~
glGlio)] loga—logw if > a,

0 if 0 < a/10,
ZG(iw) = { —45—45(logw —loga,) a/10 < w < 10a,
-90 if ® > 10a,

which intersect at @ = a. The approximate gain curve consists of a horizontal line
up to frequency @ = a, called the breakpoint or corner frequency, after which the
curve is a line of slope —1 (on a log-log scale). The phase curve is zero up to
frequency /10 and then decreases linearly by 45°/decade up to frequency 10a, at
which point it remains constant at 90°. Notice that a first-order system behaves like
a constant for low frequencies and like an integrator for high frequencies; compare
with the Bode plot in Figure 9.13.
Finally, consider the transfer function for a second-order system,

_ @
24285+ @]

G(s)
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with 0 < § < 1, for which we have

1
log|G(im)| =2logmy — Elog (a)4 +2050* (282 - 1)+ a)é’),

180 2 0]
ZG(iw) = —— arctan %
v/ Wy —

The gain curve has an asymptote with zero slope for @ < @y. For large val-
ues of  the gain curve has an asymptote with slope —2. The largest gain Q =
maxq |G(io)| ~ 1/(2§), called the Q-value, is obtained for @ ~ ay. The phase is
zero for low frequencies and approaches 180° for large frequencies. The curves
can be approximated with the following piecewise linear expressions

log|G(i)| 0 if 0 < ay,
0 i0)|~
8 2logwy —2logw if @ > wy,

0 if 0 < @y,
—180 if 0> ay.

/G(io) ~ {

The Bode plot is shown in Figure 9.14b. Note that the asymptotic approximation is
poor near ® = @y and that the Bode plot depends strongly on § near this frequency.

Given the Bode plots of the basic functions, we can now sketch the frequency
response for a more general system. The following example illustrates the basic
idea.

Example 9.13 Asymptotic approximation for a transfer function
Consider the transfer function given by

G(s) = k(s+Db) ,
(s+a)(s2+28wps + &)
The Bode plot for this transfer function appears in Figure 9.15, with the complete
transfer function shown as a solid curve and the asymptotic approximation shown
as a dashed curve.
We begin with the gain curve. At low frequency, the magnitude is given by

kb
G(0)=—.
0)= g0

a<<b<< .

When we reach @ = a, the effect of the pole begins and the gain decreases with
slope —1. At w = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used until the effect of the
second-order pole is seen at @ = @y, at which point the asymptote changes to slope
—2. We see that the gain curve is fairly accurate except in the region of the peak
due to the second-order pole (indicating that for this case { is reasonably small).
The phase curve is more complicated since the effect of the phase stretches
out much further. The effect of the pole begins at @ = a/10, at which point we
change from phase O to a slope of —45°/decade. The zero begins to affect the
phase at @ = b/10, producing a flat section in the phase. At @ = 10a the phase
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Figure 9.15: Asymptotic approximation to a Bode plot. The thin curve is the Bode plot for
the transfer function G(s) = k(s +b) /(s +a)(s*> + 2{ wos + @7 ), where a < b < . Each
segment in the gain and phase curves represents a separate portion of the approximation,
where either a pole or a zero begins to have effect. Each segment of the approximation is a
straight line between these points at a slope given by the rules for computing the effects of
poles and zeros.

contributions from the pole end, and we are left with a slope of +45°/decade (from
the zero). At the location of the second-order pole, s ~ iy, we get a jump in phase
of —180°. Finally, at @ = 10b the phase contributions of the zero end, and we are
left with a phase of —180 degrees. We see that the straight-line approximation for
the phase is not as accurate as it was for the gain curve, but it does capture the
basic features of the phase changes as a function of frequency. \%

Poles and Zeros in the Right Half-Plane

The gain curve of a transfer function remains the same if a pole or a zero of a
transfer function is shifted from the left half-plane to the right half-plane by mirror
imaging in the imaginary axis. The phase will, however, change significantly as is
illustrated by the following example.

Example 9.14 Transfer function with a zero in the right half-plane
Consider the transfer functions

s+1 s+1
G — G e
()= Gronmei0) () = 0D 55 10)
and G s sl
s)= .
rhpz (s+0.1)(s+ 10)
The transfer functions G and Gyppp have the zero at s = —1 and the pole at s = —10
in common, while G has the pole at s = —0.1 but Gypp has the pole at s = 0.1.

Similarly, the transfer functions G and Gypp, have the same poles, but G has the
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Figure 9.16: Effect of a right half-plane pole and a right half-plane zero on the Bode plot.
The curves for G, which has all poles and zeros in the right half-plane, are shown in solid
lines and the curves for Gypp and Gy, are shown as dashed curves. The left plot shows
Bode plots for the transfer functions G and Gyppp, which have a pole at s = —10 and a zero
ats = —1, but G has a pole at s = —0.1 while Gy,p;, has a corresponding pole at s = 0.1. The
right plot shows the Bode plots for the transfer functions G and Gyy,p,, which have the same
poles at s— = 0.1 and s = — 10, while G has a zero at s = —1 and Gy, has a zero s = —1.

zero at s = —1 while Gy, has the zero at s = 1. Notice that all transfer functions
have the same gain curves but that the phase curves differ significantly, as shown
in Figure 9.16. Notice in particular that the transfer functions Gyypp and Gy, have
much larger phase lags than G. \%

A time delay, which has the transfer function G(s) = ¢, is an even more

striking example than a right half-plane zero. Since |G(iwt)| = |e7'??| = 1 the
gain curve is constant but the phase is ZG(iwt) = —180w7/m, which has a large
negative value for large w. Time delays are in this respect similar to right half-plane
zeros; see Figure 9.16b. Intuitively it seems reasonable that extra phase will cause
difficulties for control since there is a delay between applying an input and seeing
its effect. Poles and zeros in the right half-plane and time delay will indeed limit
the achievable control performance, as will be discussed in detail in Section 10.4
and Chapter 14.

Insight and Overview from the Bode Plot

The Bode plot gives a quick overview of a system. The plot covers wide ranges
in amplitude and frequency because of the logarithmic scales. Since many useful
signals can be decomposed into a sum of sinusoids, it is possible to visualize the
behavior of a system for different frequency ranges. The system can be viewed as
a filter that can change the amplitude (and phase) of the input signals according to
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Figure 9.17: Bode plots for low-pass, band-pass, and high-pass filters. The upper plots are
the gain curves and the lower plots are the phase curves. Each system passes frequencies in
a different range and attenuates frequencies outside of that range.

the frequency response. For example, if there are frequency ranges where the gain
curve has constant slope and the phase is close to zero, the action of the system
for signals with these frequencies can be interpreted as a pure gain. Similarly, for
frequencies where the slope is +1 and the phase close to 90°, the action of the
system can be interpreted as a differentiator, as shown in Figure 9.13.

Three common types of frequency responses are shown in Figure 9.17. The
system in Figure 9.17a is called a low-pass filter because the gain is constant for
low frequencies and drops for high frequencies. Notice that the phase is zero for
low frequencies and —180° for high frequencies. The systems in Figures 9.17b
and 9.17c are called a band-pass filter and high-pass filter for similar reasons.

To illustrate how different system behaviors can be read from the Bode plots
we consider the band-pass filter in Figure 9.17b. For frequencies around w = y,
the signal is passed through with no change in gain. However, for frequencies well
below or well above @y, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frequencies below /100
there is a phase lead of 90°, and for frequencies above 100y there is a phase lag
of 90°. These actions correspond to differentiation and integration of the signal in
these frequency ranges.

The intuition captured in the Bode plot can also be related to the transfer func-
tion: the approximations of G(s) for small and large s capture the propagation of
slow and fast signals respectively as is illustrated by the example.

Example 9.15 Qualitative insight from the transfer function
Consider a spring—mass system with input « (force) and output g (position), whose
dynamics satisfy the second-order differential equation

mg+cq+kq=u.
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Figure 9.18: Noise attenuation in a genetic circuit. The open loop system (a) consists of a
constitutive promoter, while the closed loop circuit (b) is self-regulated with negative feed-
back (repressor). The frequency response for each circuit is shown in (c).

The system has the transfer function

G(s)

For small s we have G(s) ~ 1/k. The corresponding input/output relation is ¢ =
(1/k)u, which implies that for low frequency inputs, the system behaves like a
spring driven by a force. For large s we have G(s) ~ 1/(ms?). The corresponding
differential equation is m§ = u and the system thus behaves like mass driven by a
force (a double integrator).

1
 ms2+es+k

\%

Example 9.16 Transcriptional regulation
Consider a genetic circuit consisting of a single gene. We wish to study the re-
sponse of the protein concentration to fluctuations in the mRNA dynamics. We
consider two cases: a constitutive promoter (no regulation) and self-repression
(negative feedback), illustrated in Figure 9.18. The dynamics of the system are
given by

d7m — —&m — dl = Km —

dt —(X(p) m—=yv, dt - ypa
where v is a disturbance term that affects mRNA transcription.

For the case of no feedback we have a(p) = &, and when v = 0 the system

has an equilibrium point at m. = 0 /0, pe = K0/(y5). The open loop transfer
function from v to p is given by

—K
GA(s) = ——.
M= a6
For the case of negative regulation, we have
(04
a(p) — +ap,

T 1+kpt
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and the equilibrium points satisfy

m:Zp
(S K_e7

:5 = — .
T ipn G0 = Ome = e

The resulting transfer function is given by

K nokpl~!
G (s) = , o=t
A PN TP (1t kpt)?

Figure 9.18c shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). \%

Determining Transfer Functions Experimentally

The transfer function of a system provides a summary of the input/output response
and is very useful for analysis and design. We can often build an input/output
model for a given application by directly measuring the frequency response and
fitting a transfer function to it. To do so, we perturb the input to the system using a
sinusoidal signal at a fixed frequency. When steady state is reached, the amplitude
ratio and the phase lag give the frequency response for the excitation frequency.
The complete frequency response is obtained by sweeping over a range of frequen-
cies.

By using correlation techniques it is possible to determine the frequency re-
sponse very accurately, and an analytic transfer function can be obtained from the
frequency response by curve fitting. The success of this approach has led to in-
struments and software that automate this process, called spectrum analyzers. We
illustrate the basic concept through two examples.

Example 9.17 Atomic force microscope

To illustrate the utility of spectrum analysis, we consider the dynamics of the
atomic force microscope, described in Section 4.5. Experimental determination of
the frequency response is particularly attractive for this system because its dynam-
ics are very fast and hence experiments can be done quickly. A typical example
is given in Figure 9.19, which shows an experimentally determined frequency re-
sponse (solid line). In this case the frequency response was obtained in less than a
second. The transfer function

Gls) = — kazz%z%z(sz +2g’21w1s+ o?)(s? +2§;w4s+ ®7)e™s" .
0?0} (52 + 25005 + 02) (2 + 283035 + 03) (52 + 285 055 + 0F)
with @; = 27 fi, k = 5,
fi=24KkHz, f,=26kHz, f;=65kHz, fi=83kHz, fs=9.3kHz,
£i=0.025, (=0042, &=003, (=003, & =0.032,
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Figure 9.19: Frequency response of a preloaded piezoelectric drive for an atomic force mi-
croscope. The Bode plot shows the response of the measured transfer function (solid) and
the fitted transfer function (dashed).

and T =10"%s, was fitted to the data (dashed line). The frequencies @; and @y
associated with the zeros are located where the gain curve has minima, and the
frequencies @,, @3, and s associated with the poles are located where the gain
curve has local maxima. The relative damping ratios are adjusted to give a good
fit to maxima and minima. When a good fit to the gain curve is obtained, the time
delay is adjusted to give a good fit to the phase curve. The piezo drive is preloaded,
and a simple model of its dynamics is derived in Exercise 4.7. The pole at 2.55 kHz
corresponds to the trampoline mode derived in the exercise; the other resonances

are higher modes.
\%

Example 9.18 Pupillary light reflex dynamics
The human eye is an organ that is easily accessible for experiments. It has a control
system that adjusts the pupil opening to regulate the light intensity at the retina.
This control system was explored extensively by Stark in the 1960s [Sta68].
To determine the dynamics, light intensity on the eye was varied sinusoidally and
the pupil opening was measured. A fundamental difficulty is that the closed loop
system is insensitive to internal system parameters, so analysis of a closed loop
system thus gives little information about the internal properties of the system.
Stark used a clever experimental technique that allowed him to investigate both
open and closed loop dynamics. He excited the system by varying the intensity
of a light beam focused on the eye and measured pupil area, as illustrated in Fig-
ure 9.20. By using a wide light beam that covers the whole pupil, the measurement
gives the closed loop dynamics. The open loop dynamics were obtained by using
a narrow beam, which is small enough that it is not influenced by the pupil open-
ing. The result of one experiment for determining open loop dynamics is given
in Figure 9.21. Fitting a transfer function to the gain curve gives a good fit for
G(s) =0.17/(1+0.08s)>. This curve gives a poor fit to the phase curve as shown
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(a) Closed loop (b) Open loop (c) High gain

Figure 9.20: Light stimulation of the eye. In (a) the light beam is so large that it always
covers the whole pupil, giving closed loop dynamics. In (b) the light is focused into a beam
which is so narrow that it is not influenced by the pupil opening, giving open loop dynamics.
In (c) the light beam is focused on the edge of the pupil opening, which has the effect of
increasing the gain of the system since small changes in the pupil opening have a large effect
on the amount of light entering the eye. From Stark [Sta68].

by the dashed curve in Figure 9.21. The fit to the phase curve is improved by
adding a 0.2 s time delay, which leaves the gain curve unchanged while substan-
tially modifying the phase curve. The final fit gives the model

0.17
G — —0.2s
() = T3 0.08575¢
The Bode plot of this is shown with solid curves in Figure 9.21. Modeling of the
pupillary reflex from first principles is discussed in detail in [KSO1]. \%

Notice that for both the AFM drive and pupillary dynamics it is not easy to de-
rive appropriate models from first principles. In practice, it is often fruitful to use a
combination of analytical modeling and experimental identification of parameters.
Experimental determination of frequency response is less attractive for systems
with slow dynamics because the experiment takes a long time.

9.7 Further Reading

The idea of characterizing a linear system by its steady-state response to sinusoids
was introduced by Fourier in his investigation of heat conduction in solids [FouO7].
Much later, it was used by the electrical engineer Steinmetz who introduced the i@
method for analyzing electrical circuits. Transfer functions were introduced via the
Laplace transform by Gardner and Barnes [GB42], who also used them to calculate
the response of linear systems. The Laplace transform was very important in the
early phase of control because it made it possible to find transients via tables (see,
e.g., [JNP47]). Combined with block diagrams and transfer functions, Laplace
transforms provided powerful techniques for dealing with complex systems. Cal-
culation of responses based on Laplace transforms is less important today, when re-
sponses of linear systems can easily be generated using computers. The frequency
response of a system can also be measured directly using a frequency response
analyzer. There are many excellent books on the use of Laplace transforms and
transfer functions for modeling and analysis of linear input/output systems. Tradi-
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Figure 9.21: Sample curves from an open loop frequency response of the eye (left) and a
Bode plot for the open loop dynamics (right). The solid curve shows a fit of the data using a
third-order transfer function with 0.2 s time delay. The dashed curve in the Bode plot is the
phase of the system without time delay, showing that the delay is needed to properly capture
the phase. (Figure redrawn from the data of Stark [Sta68].)

tional texts on control such as [DB04], [FPENOS] and [Oga01] are representative
examples. Pole/zero cancellation was one of the mysteries of early control theory.
It is clear that common factors can be canceled in a rational function, but cancella-
tions have system theoretical consequences that were not clearly understood until
Kalman’s decomposition of a linear system was introduced [KHN63]. In the fol-
lowing chapters, we will use transfer functions extensively to analyze stability and
to describe model uncertainty.

Exercises

9.1 Consider the system
dx .
— =ax+u.
dt

Compute the exponential response of the system and use this to derive the transfer
function from u to x. Show that when s = a, a pole of the transfer function, the
response to the exponential input u(r) = e* is x(t) = e®x(0) + re®.

9.2 Let G(s) be the transfer function for a linear system. Show that if we ap-
ply an input u(¢t) = Asin(wr), then the steady-state output is given by y(z) =
|G(iw)|Asin(wt + arg G(iw)). (Hint: Start by showing that the real part of a com-
plex number is a linear operation and then use this fact.)

9.3 (Water heater) Consider the water heater in Example 3.13, which is modeled

by d d 1
m T ;
27 = din— dou, E:%(ﬂn_T)+%R

see (3.31). Linearize the equations and derive the transfer functions from the inflow
gin and the heating power P to the level /& and the temperature T of the tank.



9-42 CHAPTER 9. TRANSFER FUNCTIONS

9.4 Consider linear time invariant systems with the control matrices

(@) A= '_01 _02], B = ﬁ , c:[l —1], D =0,

(b) A:::; (1)],3 :é,C:[l o],D —0,

() A= _13 _02], B = (1) , C:[l 3], D =o.
Show that all systems have the transfer function G(s) = (s—i—slj_(sg'—i—Z)

9.5 (Kalman decomposition) Show that the transfer function of a system depends @
only on the dynamics in the reachable and observable subspace of the Kalman
decomposition. (Hint: Consider the representation given by equation (8.20).)

9.6 (Inverted pendulum) A model for an inverted pendulum was introduced in
Example 3.3. Neglecting damping and linearizing the pendulum around the upright
position gives a linear system characterized by the matrices

A:[mg(l)/Jt (1)] B:[I?Jt], cz[l 0], D=0.

Determine the transfer function of the system.

9.7 (Operational amplifier) Consider the operational amplifier described in Sec-
tion 4.3 and analyzed in Example 9.2. A PI controller can be constructed using
an op amp by replacing the resistor R, with a resistor and capacitor in series, as
shown in Figure 4.10. The resulting transfer function of the circuit is given by

1 kCs
Gls) =~ <R2+CS) ' <((k+ 1)RiC+RyC)s + 1) ’

where £ is the gain of the op amp, R and R; are the resistances in the compensation
network and C is the capacitance.

(a) Sketch the Bode plot for the system under the assumption that k > R, > R;.
You should label the key features in your plot, including the gain and phase
at low frequency, the slopes of the gain curve, the frequencies at which the
gain changes slope, etc.

(b) Suppose now that we include some dynamics in the amplifier, as outlined
in Example 8.1. This would involve replacing the gain k with the transfer

function
k

H(s) = ThsT

Compute the resulting transfer function for the system (i.e., replace k with
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H(s)) and find the poles and zeros assuming the following parameter values

R

2100, k=105  R,C=1, T=0.0lI.

Ry

(c) Sketch the Bode plot for the transfer function in part (b) using straight line
approximations and compare this to the exact plot of the transfer function
(using MATLAB). Make sure to label the important features in your plot.

9.8 (Transfer function for state space system) Consider the linear state space sys-
tem
dx

E:Ax—i—Bu, y=~Cx.

(a) Show that the transfer function is
bis" ' £ bys" I 4+ by
s"+ais" 4+ ay

G(s) =

)

where
by=CB, by=CAB+aCB, ..., b,=CA" 'B+a;CA" ?B+---+a,_CB
and A(s) = 5" +a;s"~' +--- +a, is the characteristic polynomial for A.

(b) Compute the transfer function for a linear system in reachable canonical
form and show that it matches the transfer function given above.
9.9 (Delay differential equation) Consider a system described by
dx
i
Derive the transfer function for the system.

—x(t)+u(t—1)

9.10 (Congestion control) Consider the congestion control model described in Sec-
tion 4.4. Let w represent the individual window size for a set of N identical sources,
q represent the end-to-end probability of a dropped packet, b represent the number
of packets in the router’s buffer and p represent the probability that a packet is
dropped by the router. We write w = Nw to represent the total number of packets
being received from all N sources. Show that the linearized model can be described
by the transfer functions
e TS N
Gin(5) qu(S) Qe(Tes‘i‘CIeWe)’

B TS + e s’
where (we, be ) is the equilibrium point for the system, 7. is the steady-state round-
trip time and 7! is the forward propagation time.

pr(s) =p,

9.11 Using block diagram algebra, show that the transfer functions from v to y and
w to y in Figure 9.6 are given by
P 1
Gy =—— Gyy = .
Y1+ PC ™1+ PC
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9.12 (Vectored thrust aircraft) Consider the lateral dynamics of a vectored thrust
aircraft as described in Example 3.12. Show that the dynamics can be described
using the following block diagram:

r 6 v 1
u - — - —m — =X
! Js? g ms? +cs

Use this block diagram to compute the transfer functions from u; to 6 and x and
show that they satisfy

Ho — r oo Js? — mgr
Ou; — Js2’ Xup — JSZ(mSZ—i—CS)'
9.13 (Vehicle suspension [HB90]) Active and passive damping are used in cars to

give a smooth ride on a bumpy road. A schematic diagram of a car with a damping
system in shown in the figure below.

(Porter Class I race car driven by Todd Cuffaro)

This model is called a quarter car model, and the car is approximated with two
masses, one representing one fourth of the car body and the other a wheel. The
actuator exerts a force F' between the wheel and the body based on feedback from
the distance between the body and the center of the wheel (the rattle space).

Let xp, x,, and x, represent the heights of body, wheel, and road measured from
their equilibria. A simple model of the system is given by Newton’s equations for
the body and the wheel,

mb)'c'b = F, mw)'c'w =-F —I—k,(xr —xw),

where my, is a quarter of the body mass, m,, is the effective mass of the wheel
including brakes and part of the suspension system (the unsprung mass) and k; is
the tire stiffness. For a conventional damper consisting of a spring and a damper,
we have F = k(x,, —xp) + ¢(X,, — Xp). For an active damper the force F can be
more general and can also depend on riding conditions. Rider comfort can be
characterized by the transfer function G, from road height x, to body acceler-
ation a = X,. Show that this transfer function has the property Gy, (i) = k; /mp,
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where @, = \/k;/m,, (the tire hop frequency). The equation implies that there are
fundamental limits to the comfort that can be achieved with any damper.

9.14 (Solutions corresponding to poles and zeros) Consider the differential equa-
tion
d”y dn—ly dn—lu dn—ZM

T g T Ay = by g b

(a) Let A be a root of the characteristic polynomial

s"+ars" 4 4a, =0.

+ -+ byu.

Show that if u(t) = 0, the differential equation has the solution y(r) = e*.

(b) Let k be a zero of the polynomial
b(s) =b1s" L+ bys" 24+ by,

Show that if the input is u(r) = e*’, then there is a solution to the differential
equation that is identically zero.

9.15 (Pole-zero cancellation) Consider a closed loop system of the form of Fig- @
ure 9.6, with F =1 and P and C having a pole/zero cancellation. Show that if
each system is written in state space form, the resulting closed loop system is not
reachable and not observable.

9.16 (Inverted pendulum with PD control) Consider the normalized inverted pen-
dulum system, whose transfer function is given by P(s) = 1/(s> — 1) (Exercise 9.6).
A proportional-derivative control law for this system has transfer function C(s) =
kp + kqs (see Table 9.1). Suppose that we choose C(s) = a(s — 1). Compute the
closed loop dynamics and show that the system has good tracking of reference
signals but does not have good disturbance rejection properties.

9.17 (Bode plot for a simple zero) Show that the Bode plot for transfer function
G(s) = (s+a)/a can be approximated by

log |G(ie)| 0 if o < a,
o)~
g logw —loga if ® > a,

0 if @ < a/10,
ZG(iw) = < 45+45(logw —loga) a/10 < @ < 10a,
90 if ® > 10a.






Chapter Ten

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tests that it possessed the
advantages which he had predicted for it. In particular, its gain was constant to a high degree,
and it was linear enough so that spurious signals caused by the interaction of the various
channels could be kept within permissible limits. For best results the feedback factor up had
to be numerically much larger than unity. The possibility of stability with a feedback factor
larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 1956 [Nyq56].

In this chapter we study how the stability and robustness of closed loop systems
can be determined by investigating how sinusoidal signals of different frequencies
propagate around the feedback loop. This technique allows us to reason about
the closed loop behavior of a system through the frequency domain properties of
the open loop transfer function. The Nyquist stability theorem is a key result that
provides a way to analyze stability and introduce measures of degrees of stability.

10.1 The Loop Transfer Function

Understanding how the behavior of a closed loop system is influenced by the prop-
erties of its open loop dynamics is tricky. Indeed, as the quote from Nyquist above
illustrates, the behavior of feedback systems can often be puzzling. However, us-
ing the mathematical framework of transfer functions provides an elegant way to
reason about such systems, which we call loop analysis.

The basic idea of loop analysis is to trace how a sinusoidal signal propagates in
the feedback loop and explore the resulting stability by investigating if the propa-
gated signal grows or decays. This is easy to do because the transmission of sinu-
soidal signals through a linear dynamical system is characterized by the frequency
response of the system. The key result is the Nyquist stability theorem, which pro-
vides a great deal of insight regarding the stability of a system. Unlike proving sta-
bility with Lyapunov functions, studied in Chapter 5, the Nyquist criterion allows
us to determine more than just whether a system is stable or unstable. It provides a
measure of the degree of stability through the definition of stability margins. The
Nyquist theorem also indicates how an unstable system should be changed to make
it stable, which we shall study in detail in Chapters 11-13.

Consider the system in Figure 10.1a. The traditional way to determine if the
closed loop system is stable is to investigate if the closed loop characteristic poly-
nomial has all its roots in the left half-plane. If the process and the controller have
rational transfer functions P(s) = ny(s)/dp(s) and C(s) = nc(s)/dc(s), then the
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C(s) = P(s) - —= —= L(s)
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(a) Closed loop system (b) Open loop system

Figure 10.1: The loop transfer function. The stability of the feedback system (a) can be
determined by tracing signals around the loop. Letting L = PC represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected at the point A has the
same magnitude and phase when it reaches point B.

closed loop system has the transfer function
_ PC np(s)ne(s)
1+PC  dy(s)de(s) +np(s)nc(s)’
and the characteristic polynomial is
A(s) = dp(s)dc(s) +np(s)ne(s).

To check stability, we simply compute the roots of the characteristic polynomial
and verify that they each have negative real part. This approach is straightforward
but it gives little guidance for design: it is not easy to tell how the controller should
be modified to make an unstable system stable.

Nyquist’s idea was to first investigate conditions under which oscillations can
occur in a feedback loop. To study this, we introduce the loop transfer function
L(s) = P(s)C(s), which is the transfer function obtained by breaking the feedback
loop, as shown in Figure 10.1b. The loop transfer function is simply the transfer
function from the input at position A to the output at position B multiplied by —1
(to account for the usual convention of negative feedback).

Assume that a sinusoid of frequency @y is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequency @y. It seems reasonable
that an oscillation can be maintained if the signal at B has the same amplitude and
phase as the injected signal because we can then disconnect the injected signal and
connect A to B. Tracing signals around the loop, we find that the signals at A and
B are identical if there is a frequency @y such that

Lioy) = —1, (10.1)

which then provides a condition for maintaining an oscillation. The condition in
equation (10.1) implies that the Nyquist plot of the loop transfer function goes
through the point —1, which is called the critical point. Letting @. represent a fre-
quency at which ZL(iw.) = 180°, we can further reason that the system is stable
if |[L(io.)| < 1, since the signal at point B will have smaller amplitude than the
injected signal. This is essentially true, but there are several subtleties that require
a proper mathematical analysis, leading to Nyquist’s stability criterion. Before dis-
cussing the details we give an example of calculating the loop transfer function.

Gy (s)
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Figure 10.2: Block diagram of a DC motor control system with a short delay in the sensed
position of the motor.

Example 10.1 Electric motor with proportional controller and delay

Consider a simple direct current electric motor with inertia J and damping (or back
EMF) c. We wish to control the position of the motor using a feedback controller,
and we consider the case where there is a small delay in the measurement of the
motor position (a common case for controllers implemented on a computer with
a fixed sampling rate). A block diagram for the motor with a controller C(s) is
shown in Figure 10.2. Using block diagram algebra, the process dynamics can be

shown to be
K

P(s) = T tes
We now use a proportional controller of the form
C(s) = kp.
The loop transfer function for the system control system is given by

ko
e
Js2 +cs

where 7 is the delay in sensing of the motor position. We wish to understand under
which conditions the closed loop system is stable.

The condition for oscillation is given by equation (10.1), which requires that the
phase of the loop transfer function must be 180° at some frequency @y. Examining
the loop transfer function we see that if T =0 (no delay) then for s near O the phase
of L(s) will be 90° while for large s the phase of L(s) will approach 180°. Since
the gain of the system decreases as s increases, it is not possible for the condition
of oscillation to be met in the case of no delay (the gain will always be less than 1
at arbitrarily high frequency).

When there is a small delay in the system, however, it is possible that we might
get oscillations in the closed loop system. Suppose that ay represents the frequency
at which the magnitude of L(jw) is equal to 1 (the specific value of awy will depend
on the parameters of the motor and the controller). Notice that the magnitude of
the loop transfer function is not affected by the delay, but the phase increases as
T increases. In particular, if we let 6y be the phase of the undelayed system at

—Ts

L(s) =P(s)C(s)e ™ =
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Figure 10.3: Loop transfer function and step response for the DC motor control system. The
system parameters are Ky = 50, J = 2, ¢ = 1 and the controller parameters are kp = 1 and
7=0,0.1,and 1.

frequency @y, then a time delay of 7. = (mw+ 6) /@y will cause L(jay) to be equal
to —1. This means that as signals traverse the feedback loop, they can return in
phase with the original signal and an oscillation may result.

Figure 10.3 shows three controllers that result in stable, oscillatory, and unsta-
ble closed loop performance, depending on the amount of delay in the system. The
instability is caused by the fact that the disturbance signals that propagate around
the feedback loop can be in phase with the original disturbance due to the delay. If

the gain around the loop is greater than or equal to one, this can lead to instability.
\%

One of the powerful concepts embedded in Nyquist’s approach to stability anal-
ysis is that it allows us to study the stability of the feedback system by looking at
properties of the loop transfer function L = PC. The advantage of doing this is that
it is easy to see how the controller should be chosen to obtain a desired loop trans-
fer function. For example, if we change the gain of the controller, the loop transfer
function will be scaled accordingly and the critical point is avoided. A simple way
to stabilize an unstable system is to reduce the gain or to modify the controller so
that the critical point —1 is avoided. Different ways to do this, called loop shaping,
will be developed and discussed in Chapter 12.

10.2 The Nyquist Criterion

In this section we present Nyquist’s criterion for determining the stability of a
feedback system through analysis of the loop transfer function. We begin by intro-
ducing a convenient graphical tool, the Nyquist plot, and show how it can be used
to ascertain stability.
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Figure 10.4: The Nyquist contour I" and the Nyquist plot. The Nyquist contour (a) encloses
the right half-plane, with a small semicircle around any poles of L(s) at the origin or on the
imaginary axis (illustrated here at the origin) and an arc whose radius R extends towards
infinity. The Nyquist plot (b) is the image of the loop transfer function L(s) when s traverses
I" in the clockwise direction. The solid curve corresponds to @ > 0, and the dashed curve to
@ < 0. The gain and phase at the frequency @ are g = |L(iw)| and ¢ = ZL(i®). The curve
is generated for L(s) = L.4e ™5 /(s + 1).

The Nyquist Plot

We saw in the previous chapter that the dynamics of a linear system can be rep-
resented by its frequency response and graphically illustrated by a Bode plot. To
study the stability of a system, we will make use of a different representation of
the frequency response called a Nyquist plot. The Nyquist plot of the loop transfer
function L(s) is formed by tracing s € C around the Nyquist “D contour,” consist-
ing of the imaginary axis combined with an arc at infinity connecting the endpoints
of the imaginary axis. This contour, denoted as I" C C, is illustrated in Figure 10.4a.
The image of L(s) when s traverses I gives a closed curve in the complex plane
and is referred to as the Nyquist plot for L(s), as shown in Figure 10.4b. Note that
if the transfer function L(s) goes to zero as s gets large (the usual case), then the
portion of the contour “at infinity” maps to the origin. Furthermore, the portion of
the plot corresponding to @ < 0 is the mirror image of the portion with @ > 0.

There is a subtlety in the Nyquist plot when the loop transfer function has
poles on the imaginary axis because the gain is infinite at the poles. To solve this
problem, we modify the contour I to include small deviations that avoid any poles
on the imaginary axis, as illustrated in Figure 10.4a (assuming a pole of L(s) at the
origin). The deviation consists of a small semicircle to the right of the imaginary
axis pole location.

We now state the Nyquist condition for the special case where the loop transfer
function L(s) has no poles in the right half-plane.

Theorem 10.1 (Simplified Nyquist criterion). Let L(s) be the loop transfer func-
tion for a negative feedback system (as shown in Figure 10.1a) and assume that L
has no poles in the open right half-plane (Res > 0). Then the closed loop system is
stable if and only if the closed contour given by Q = {L(i®) : —c0o < @ < oo} C C
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Figure 10.5: Nyquist plot for a third-order transfer function L(s). The Nyquist plot consists
of a trace of the loop transfer function L(s) = 1/(s +a)3 with a = 0.6. The solid line repre-
sents the portion of the transfer function along the positive imaginary axis, and the dashed
line the negative imaginary axis. The outer arc of the D contour maps to the origin.

has no net encirclements of the critical point s = —1.

The following conceptual procedure can be used to determine that there are
no encirclements. Fix a pin at the critical point s = —1, orthogonal to the plane.
Attach a string with one end at the critical point and the other on the Nyquist plot.
Let the end of the string attached to the Nyquist curve traverse the whole curve.
There are no encirclements if the string does not wind up on the pin when the curve
is encircled. The number of encirclements is called the winding number.

Example 10.2 Nyquist plot for a third-order system
Consider a third-order transfer function
L(s)=—.
(s) (s+a)?

To compute the Nyquist plot we start by evaluating points on the imaginary axis
s = i®, which yields

1

L(io) 1 (a—ia))3 @ —3a0* | © —3d*w
1 = = = l .

This is plotted in the complex plane in Figure 10.5, with the points corresponding
to @ > 0 drawn as a solid line and @ < 0 as a dashed line. Notice that these curves
are mirror images of each other.

To complete the Nyquist plot, we compute L(s) for s on the outer arc of the
Nyquist D contour. This arc has the form s = Re’® for R — oo. This gives

L(Reie): ;70 as R— oo

(Re® +a)
Thus the outer arc of the D contour maps to the origin on the Nyquist plot. \%

An alternative to computing the Nyquist plot explicitly is to determine the plot
from the frequency response (Bode plot), which gives the Nyquist curve for s = i®,
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Figure 10.6: Sketching Nyquist and Bode plots. The loop transfer function is L(s) =
1/(s(s 4+ 1)?). The large semicircle is the map of the small semicircle of the D contour
around the pole at the origin. The closed loop is stable because the Nyquist curve does not
encircle the critical point. The point where the phase is —180° is marked with a circle in the
Bode plot.

® > 0. We start by plotting L(i®) from ® = 0 to @ = o, which can be read off
from the magnitude and phase of the transfer function. We then plot L(Re'®) with
0 € [—n/2,m/2] and R — o, which goes to zero if the high frequency gain of
L(iw) goes to zero (if and only if L(s) is strictly proper). The remaining parts
of the plot can be determined by taking the mirror image of the curve thus far
(normally plotted using a dashed line). The plot can then be labeled with arrows
corresponding to a clockwise traversal around the D contour (the same direction
in which the first portion of the curve was plotted).

Example 10.3 Third-order system with a pole at the origin
Consider the transfer function

k
L(s)=——
(s) s(s+1)2’
where the gain has the nominal value kK = 1. The Bode plot is shown in Fig-
ure 10.6a. The system has a single pole at s = 0 and a double pole at s = —1.

The gain curve of the Bode plot thus has the slope —1 for low frequencies, and at
the double pole s = 1 the slope changes to —3. For small s we have L = k/s, which
means that the low-frequency asymptote intersects the unit gain line at @ = k. The
phase curve starts at —90° for low frequencies, it is —180° at the breakpoint @ = 1
and it is —270° at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquist plot, shown
in Figure 10.6b. It starts with a phase of —90° for low frequencies, intersects the
negative real axis at the breakpoint @ = 1 where L(i) = —0.5 and goes to zero along
the imaginary axis for high frequencies. The small half-circle of the D contour at
the origin is mapped on a large circle enclosing the right half-plane. The Nyquist
curve does not encircle the critical point, and it follows from the simplified Nyquist
theorem that the closed loop system is stable. Since L(i) = —k/2, we find the
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Figure 10.7: Internet congestion control. A set of N sources using TCP/Reno send messages
through a single router with admission control (left). Link delays are included for the forward
and backward directions. The Nyquist plot for the loop transfer function is shown on the
right.

closed loop system becomes unstable if the gain is increased to k = 2 or beyond.
\%

The Nyquist criterion does not require that |L(i®.)| < 1 for all @, correspond-
ing to a crossing of the negative real axis. Rather, it says that the number of en-
circlements must be zero, allowing for the possibility that the Nyquist curve could
cross the negative real axis and cross back at magnitudes greater than 1. The fact
that it was possible to have high feedback gains surprised the early designers of
feedback amplifiers, as mentioned in the quote in the beginning of this chapter.

One advantage of the Nyquist criterion is that it tells us how a system is in-
fluenced by changes of the controller parameters. For example, it is very easy to
visualize what happens when the gain is changed since this just scales the Nyquist
curve.

Example 10.4 Congestion control
Consider the Internet congestion control system described in Section 4.4. Suppose
we have N identical sources and a disturbance d representing an external data
source, as shown in Figure 10.7a. We let w represent the individual window size
for a source, g represent the end-to-end probability of a dropped packet, b represent
the number of packets in the router’s buffer, and p represent the probability that a
packet is dropped by the router. We write w for the total number of packets being
received from all N sources. We also include a time delay between the router and
the senders, representing the time delays between the sender and receiver.

To analyze the stability of the system, we use the transfer functions computed
in Exercise 9.10:

- 1 1
Gpi(s) = ———— Gpp(s) = p, Guy(s) = T ge (s qeme)’

B TeS + e’
where (we, be) is the equilibrium point for the system, N is the number of sources,
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Te is the steady-state round-trip time, and 1! is the forward propagation time. We
use Gy,;; to represent the transfer function with the forward time delay removed
since this is accounted for as a separate block in Figure 10.7a. Similarly, G,,, =
Gyg/N since we have pulled out the multiplier N as a separate block as well.
The loop transfer function is given by
N 1
L(s)=p- —- e ™.
Tes+e TS Ge(Tes + Qewe)

Using the fact that we = b /N = T.c/N and ge ~ 2N /w? = 2N3 /(tec)? from equa-
tion (4.23), we can show that

N Al
. . e
Tes+ e~ ™5 2N3(ct2s+2N?)

—Tes

L(s)=p

Note that we have chosen the sign of L(s) to use the same sign convention as
in Figure 10.1b. We show the Nyquist plot of the loop transfer function in Fig-
ure 10.7b. To obtain an analytic stability criterion we can approximate the transfer
function close to the intersection with the negative real axis, which occurs at the
phase crossover frequency @p.. The second factor is stable if 7. > ¥ and has fast
dynamics, so we approximate it by its zero frequency gain N. The third factor has
slow dynamics (it can be shown that 2N? < ¢7?2 ®yc), and we can approximate it
by an integrator. We thus obtain the following approximation of the loop transfer
function around the phase crossover frequency:

3.3 2

cle - PCcTe o
L ~p-N - —¢% Tes _ F7 "C ,—Tes
(s)~p 2N3c7:62se IN2s

The integrator has a phase lag of 7/2 and the transfer function L(s) has the phase

crossover frequency @y = 7/(27). A necessary condition for stability is thus
|L(iwpe)| < 1, which gives the condition

pe;

TN?
Using the Nyquist criterion, the closed loop system will be unstable if this quantity
is greater than 1. In particular, for a fixed time delay, the system will become
unstable as the link capacity ¢ or the time delay is increased. This indicates that
the TCP protocol may not be scalable to high-capacity networks, as pointed out
by Low et al. [LPD02]. Exercise 10.9 provides some ideas of how this might be
overcome.

<1.

\%

Conditional Stability

An unstable system can often be stabilized simply by reducing the loop gain. There
are, however, situations where a system can be stabilized by increasing the gain.
This was first encountered by electrical engineers in the design of feedback ampli-
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Figure 10.8: Nyquist curve for the loop transfer function L(s) = (3(s+6)?)/(s(s+ 1)?).
The plot on the right is an enlargement of the box around the origin of the plot on the left.
The Nyquist curve intersects the negative real axis twice but has no net encirclements of —1.

fiers, who coined the term conditional stability. The problem was actually a strong
motivation for Nyquist to develop his theory. We will illustrate this by an example.

Example 10.5 Conditional stability for a third-order system
Consider a feedback system with the loop transfer function
3(s+6)?

L(s) = G (10.2)
The Nyquist plot of the loop transfer function is shown in Figure 10.8. Notice
that the Nyquist curve intersects the negative real axis twice. The first intersection
occurs at L = —12 for @ = 2, and the second at L = —4.5 for @ = 3. The intuitive
argument based on signal tracing around the loop in Figure 10.1b is misleading in
this case. Injection of a sinusoid with frequency 2 rad/s and amplitude 1 at A gives,
in steady state, an oscillation at B that is in phase with the input and has amplitude
12. Intuitively it seems unlikely that closing of the loop will result in a stable
system. However, it follows from Nyquist’s stability criterion that the system is
stable because there are no net encirclements of the critical point. Note, however,
that if we decrease the gain then we can get an encirclement, implying that the
gain must be sufficiently large for stability. \%

General Nyquist Criterion

Theorem 10.1 requires that L(s) have no poles in the closed right half-plane. In
some situations this is not the case and a more general result is required. Nyquist
originally considered this general case, which we summarize as a theorem.

Theorem 10.2 (Nyquist’s stability theorem). Consider a closed loop system with
the loop transfer function L(s) that has P poles in the region enclosed by the
Nyquist contour. Let N be the net number of clockwise encirclements of —1 by
L(s) when s encircles the Nyquist contour I in the clockwise direction. The closed
loop system then has Z = N + P poles in the right half-plane.
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Figure 10.9: PD control of an inverted pendulum. (a) The system consists of a mass that
is balanced by applying a force at the pivot point. A proportional-derivative controller with
transfer function C(s) = k(s + 2) is used to command u based on 8. (b) A Nyquist plot of
the loop transfer function for gain k = 1. There is one counterclockwise encirclement of the
critical point, giving N = —1 clockwise encirclements.

The full Nyquist criterion states that if L(s) has P poles in the right half-plane,
then the Nyquist curve for L(s) should have P counterclockwise encirclements
of —1 (so that N = —P). In particular, this requires that |L(i®.)| > 1 for some ®.
corresponding to a crossing of the negative real axis. Care has to be taken to get the
right sign of the encirclements. The Nyquist contour has to be traversed clockwise,
which means that @ moves from —oo to co and N is positive if the Nyquist curve
winds clockwise. If the Nyquist curve winds counterclockwise, then N will be
negative (the desired case if P # 0).

As in the case of the simplified Nyquist criterion, we use small semicircles
of radius r to avoid any poles on the imaginary axis. By letting » — 0, we can use
Theorem 10.2 to reason about stability. Note that the image of the small semicircles
generates a section of the Nyquist curve with large magnitude, requiring care in
computing the winding number.

Example 10.6 Stabilized inverted pendulum

The linearized dynamics of a normalized inverted pendulum can be represented by
the transfer function P(s) = 1/(s> — 1), where the input is acceleration of the pivot
and the output is the pendulum angle 0, as shown in Figure 10.9 (Exercise 9.6). We
attempt to stabilize the pendulum with a proportional-derivative (PD) controller
having the transfer function C(s) = k(s+2). The loop transfer function is

k(s+2)
L(s) = 21

The Nyquist plot of the loop transfer function is shown in Figure 10.9b. We have
L(0) = —2k and L(e0) = 0. If k > 0.5, the Nyquist curve encircles the critical point
s = —1 in the counterclockwise direction when the Nyquist contour 7 is encircled
in the clockwise direction. The number of encirclements is thus N = —1. Since
the loop transfer function has one pole in the right half-plane (P = 1), we find that
Z =N+ P =0 and the system is thus stable for £k > 0.5. If k < 0.5, there is no
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Figure 10.10: Graphical proof of the principle of the variation of the argument.

encirclement and the closed loop will have one pole in the right half-plane. \%

Derivation of Nyquist’s Stability Theorem @

We will now prove the Nyquist stability theorem for a general loop transfer func-
tion L(s). This requires some results from the theory of complex variables, for
which the reader can consult Ahlfors [Ahl66]. Since some precision is needed in
stating Nyquist’s criterion properly, we will use a more mathematical style of pre-
sentation. We also follow the mathematical convention of counting encirclements
in the counterclockwise direction for the remainder of this section. The key result
is the following theorem about functions of complex variables.

Theorem 10.3 (Principle of variation of the argument). Let D be a closed and
bounded region in the complex plane and let T" be the boundary of the region.
Assume the function f : C — C is analytic in D and on T, except at a finite number
of poles and zeros. Then the winding number w,, is given by

fl
Wy —A / =Z—-P
7 argr f 27” )
where Aargr is the net variation in the angle when z traverses the contour I in the
counterclockwise direction, Z is the number of zeros in D, and P is the number of
poles in D. Poles and zeros of multiplicity m are counted m times.

To understand why the principle of variation of the argument is true, we keep
track of how the argument (angle) of a function varies as we traverse a closed
contour. Figure 10.10 illustrates the basic idea. Consider a function f : C — C of
the form (5—21) (5= 2m)
(s=p1)---(s=pa)’
where z; are zeros and p; are poles. We can rewrite the terms in this function by
keeping track of the distance and angle to each pole and zero:

f(s) = (10.3)

rlej‘l/i ... rmej‘//m

fs)=

plejei .. .pmejen '
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The argument (angle) of f(s) at any given value of s can be computed by adding
the contributions for the zeros and subtracting the contributions from the poles,

a@ﬂmzi%iw

We now consider what happens if we traverse a closed loop contour I'. If all of
the poles and zeros in f(s) are outside of the contour, then the net contribution to
the angle from terms in the numerator and denominator will be zero since there is
no way for the angle to “accumulate”. Thus the contribution from each individual
zero and pole will integrate to zero as we traverse the contour. If, however, the
zero or pole is inside the contour I, then the net change in angle as we transverse
the contour will be 27 for terms in the numerator (zeros) or —27m for terms in the
denominator (poles). Thus the net change in the angle as we traverse the contour
is given by 27(Z — P), where Z is the number of zeros inside the contour and P is
the number of poles inside the contour.

Proof. Assume that z = a is a zero of multiplicity m. In the neighborhood of z =a

we have
f2) =(z—a)"g(z),

where the function g is analytic and different from zero. The ratio of the derivative
of f to itself is then given by

1@ _ m g
f@)  z—a g@)’
and the second term is analytic at z = a. The function f’/f thus has a single pole

at z = a with the residue m. The sum of the residues at the zeros of this function is
Z. Similarly, we find that the sum of the residues for the poles is —P, and hence

L fR@), 1 d _
Z_P_27ri/rf(z) dz_%/Fd—zlogf(z)dz—%Aargrlogf(z),

where Aargr again denotes the variation along the contour I'. We have

log f(z) = log|f(z)| +iarg f(z),

and since the variation of | f(z)| around a closed contour is zero it follows that

Aargrlog f(z) = iAargrarg f(2),

and the theorem is proved. O

This theorem is useful in determining the number of poles and zeros of a func-
tion of complex variables in a given region. By choosing an appropriate closed
region D with boundary I', we can determine the difference between the number
of poles and zeros through computation of the winding number.

Theorem 10.3 can be used to prove Nyquist’s stability theorem by choosing I
as the Nyquist contour shown in Figure 10.4a, which encloses the right half-plane.
To construct the contour, we start with part of the imaginary axis —jR < s < jR and
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a semicircle to the right with radius R. If the function f has poles on the imaginary
axis, we introduce small semicircles with radii r to the right of the poles as shown
in the figure. The Nyquist contour is obtained by selecting R large enough and r
small enough so that all open-loop right half-plane poles are enclosed. Note that I
has orientation opposite that shown in Figure 10.4a.

The convention in engineering is to traverse the Nyquist contour in the clock-
wise direction since this corresponds to increasing frequency moving upwards
along the imaginary axis, which makes it easy to sketch the Nyquist contour from a
Bode plot. In mathematics it is customary to define the winding number for a curve
with respect to a point so that it is positive when the contour is traversed counter-
clockwise. In spite of the differences it does not matter as long as we use the same
convention for orientation when traversing the Nyquist contour and computing the
winding number.

To see how we use the principle of variation of the argument to compute stabil-
ity, consider a closed loop system with the loop transfer function L(s). The closed
loop poles of the system are the zeros of the function f(s) = 1+ L(s). To find the
number of zeros in the right half-plane, we investigate the winding number of the
function f(s) = 14 L(s) as s moves along the Nyquist contour I" in the counter-
clockwise direction. The winding number can conveniently be determined from
the Nyquist plot. A direct application