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Preface to the Second
Edition

The second edition of Feedback Systems contains a variety of changes that are based
on feedback on the first edition, particularly in its use for introductory courses in
control. One of the primary comments from users of the text was that the use of
control tools for design purposes occurred only after several chapters of analytical
tools, leaving the instructor having to try to convince students that the techniques
would soon be useful. In our own teaching, we find that we often use design
examples in the first few weeks of the class and use this to motivate the various
techniques that follow. This approach has been particularly useful in engineering
courses, where students are often eager to apply the tools to examples as part
of gaining insight into the methods. We also found that universities that have a
laboratory component attached to their controls class need to introduce some basic
design techniques early, so that students can be implementing control laws in the
laboratory in the early weeks of the course.

To help emphasize this more design-oriented flow, we have added a new chapter
on “Feedback Principles” that illustrates some simple design principles and tools
that can be used to show students what types of problems can be solved using feed-
back. This new chapter uses simple models, simulations, and elementary analysis
techniques, so that it should be accessible to students from a variety of engineering
and scientific backgrounds. For courses in which students have already been ex-
posed to the basic ideas of feedback, perhaps in an earlier discipline-specific course,
this new chapter can easily be skipped without any loss of continuity.

We have also rearranged some of the material in the final chapters of the book,
moving material on fundamental limits from the chapters on frequency domain de-
sign (Chapter 11 in the original text, now Chapter 12) and robust performance
(Chapter 12 in the original text, now Chapter 13) into a separate chapter on fun-
damental limits (Chapter 14). This new chapter also contains some additional
material on techniques for robust pole placement as well as on limits imposed by
nonlinearities.

For the electronic versions of the text, we have added a new chapter to the end of
the book, focused on control architectures and design. Our intention in this chapter
is to provide a systems view that describes how control design is integrated into
a larger model-based development framework, motivated in part by our consulting
activities with large companies. In this new chapter we also take the opportunity
to present some overview material on “bottoms up” and “top down” approaches

vii



viii PREFACE

to control architectures, briefly introducing some of the many additional concepts
from the field of control that are in widespread use in applications.

In addition to these relatively large changes, we have made many other smaller
changes based on the feedback we have received from early adopters of the text. We
have added some material on the Routh–Hurwitz criterion and root locus plots, to at
least serve as “hooks” for instructors who wish to cover that material in more detail.
We have also made some notational changes throughout, most notably changing the
symbols for disturbance and noise signals to v and w, respectively. The notation in
the biological examples has also been updated to match the notation used in the
textbook by Del Vecchio and Murray [DM14].

The electronic version of this text also contains a variety of marginal notes
that provide additional information and links to web pages, to enable readers to
access supplementary information that may be useful for those interested in more
detail. The following symbols in the margin may be used to access supplementary
information:

A○ Advanced material with additional details

F○ Frequently asked question; additional details available

H○ Historical information

L○ Link to an external site

Overall, we have tried to maintain the style and organization of the book in a
manner that is consistent with our goals for the first edition. In particular, we have
targeted the material toward a wide range of audiences rather than any specific dis-
cipline. One consequence is that instructors who are teaching department-specific
courses may find there are other texts that are better suited to these audiences.
Books written over the past few years that are tuned to non-traditional audiences,
including Janert [Jan14] (computer science), Del Vecchio and Murray [DM14] (biol-
ogy), and Bechhoefer [Bec20] (physics). In addition, the textbook Feedback Control
for Everyone by Albertos and Mareels [AM10] provides a readable introduction
requiring minimal mathematical background.

Finally, we are indebted to numerous individuals who have taught out of the
text and sent us feedback on changes that would better serve their needs. In addi-
tion to the many individuals listed in the preface to the first edition, we would like
to thank Kalle Åström, Bo Bernhardsson, Karl Berntorp, Constantine Caramanis,
Shuo Han, Björn Olofsson, Noah Olsman, Richard Pates, Jason Rolfe, Clancy Row-
ley, and André Tits for their feedback, insights, and contributions. Vickie Kearn,
our recently-retired editor at Princeton University Press, has continued to serve
as an enthusiastic advocate for our efforts and we particularly appreciate her sup-
port over the years in our vision for the book and for her advocacy of making the
material available for free download.

Karl Johan Åström Richard M. Murray
Lund, Sweden Pasadena, California

http://fbsbook.org/advanced
http://fbsbook.org/faq
http://fbsbook.org/historical
http://fbsbook.org/link


Preface to the First Edition

This book provides an introduction to the basic principles and tools for the design
and analysis of feedback systems. It is intended to serve a diverse audience of
scientists and engineers who are interested in understanding and utilizing feedback
in physical, biological, information and social systems. We have attempted to keep
the mathematical prerequisites to a minimum while being careful not to sacrifice
rigor in the process. We have also attempted to make use of examples from a variety
of disciplines, illustrating the generality of many of the tools while at the same time
showing how they can be applied in specific application domains.

A major goal of this book is to present a concise and insightful view of the
current knowledge in feedback and control systems. The field of control started
by teaching everything that was known at the time and, as new knowledge was
acquired, additional courses were developed to cover new techniques. A consequence
of this evolution is that introductory courses have remained the same for many
years, and it is often necessary to take many individual courses in order to obtain
a good perspective on the field. In developing this book, we have attempted to
condense the current knowledge by emphasizing fundamental concepts. We believe
that it is important to understand why feedback is useful, to know the language
and basic mathematics of control and to grasp the key paradigms that have been
developed over the past half century. It is also important to be able to solve simple
feedback problems using back-of-the-envelope techniques, to recognize fundamental
limitations and difficult control problems and to have a feel for available design
methods.

This book was originally developed for use in an experimental course at Caltech
involving students from a wide set of backgrounds. The course was offered to
undergraduates at the junior and senior levels in traditional engineering disciplines,
as well as first- and second-year graduate students in engineering and science. This
latter group included graduate students in biology, computer science and physics.
Over the course of several years, the text has been classroom tested at Caltech and
at Lund University, and the feedback from many students and colleagues has been
incorporated to help improve the readability and accessibility of the material.

Because of its intended audience, this book is organized in a slightly unusual
fashion compared to many other books on feedback and control. In particular, we
introduce a number of concepts in the text that are normally reserved for second-
year courses on control and hence often not available to students who are not
control systems majors. This has been done at the expense of certain traditional
topics, which we felt that the astute student could learn independently and are often
explored through the exercises. Examples of topics that we have included are non-
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linear dynamics, Lyapunov stability analysis, the matrix exponential, reachability
and observability, and fundamental limits of performance and robustness. Topics
that we have de-emphasized include root locus techniques, lead/lag compensation
and detailed rules for generating Bode and Nyquist plots by hand.

Several features of the book are designed to facilitate its dual function as a basic
engineering text and as an introduction for researchers in natural, information and
social sciences. The bulk of the material is intended to be used regardless of the
audience and covers the core principles and tools in the analysis and design of
feedback systems. Advanced sections, marked by the “dangerous bend” symbol �
shown here, contain material that requires a slightly more technical background,
of the sort that would be expected of senior undergraduates in engineering. A few
sections are marked by two dangerous bend symbols and are intended for readers
with more specialized backgrounds, identified at the beginning of the section. To
limit the length of the text, several standard results and extensions are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here, a companion web site
has been developed:

https://www.fbsbook.org

The web site contains a database of frequently asked questions, supplemental exam-
ples and exercises, and lecture material for courses based on this text. The material
is organized by chapter and includes a summary of the major points in the text
as well as links to external resources. The web site also contains the source code
for many examples in the book, as well as utilities to implement the techniques
described in the text. Most of the code was originally written using MATLAB
M-files but was also tested with LabView MathScript to ensure compatibility with
both packages. Many files can also be run using other scripting languages such as
Octave, SciLab, SysQuake and Xmath.

The first half of the book focuses almost exclusively on state space control sys-
tems. We begin in Chapter 3* with a description of modeling of physical, biological
and information systems using ordinary differential equations and difference equa-
tions. Chapter 4 presents a number of examples in some detail, primarily as a
reference for problems that will be used throughout the text. Following this, Chap-
ter 5 looks at the dynamic behavior of models, including definitions of stability
and more complicated nonlinear behavior. We provide advanced sections in this
chapter on Lyapunov stability analysis because we find that it is useful in a broad
array of applications and is frequently a topic that is not introduced until later in
one’s studies.

The remaining three chapters of the first half of the book focus on linear systems,
beginning with a description of input/output behavior in Chapter 6. In Chapter 7,
we formally introduce feedback systems by demonstrating how state space control
laws can be designed. This is followed in Chapter 8 by material on output feedback
and estimators. Chapters 7 and 8 introduce the key concepts of reachability and
observability, which give tremendous insight into the choice of actuators and sensors,
whether for engineered or natural systems.

*Chapter numbers reflect those in the second edition.
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The second half of the book presents material that is often considered to be
from the field of “classical control.” This includes the transfer function, introduced
in Chapter 9, which is a fundamental tool for understanding feedback systems.
Using transfer functions, one can begin to analyze the stability of feedback systems
using frequency domain analysis, including the ability to reason about the closed
loop behavior of a system from its open loop characteristics. This is the subject of
Chapter 10, which revolves around the Nyquist stability criterion.

In Chapters 11 and 12, we again look at the design problem, focusing first
on proportional-integral-derivative (PID) controllers and then on the more general
process of loop shaping. PID control is by far the most common design technique
in control systems and a useful tool for any student. The chapter on frequency
domain design introduces many of the ideas of modern control theory, including
the sensitivity function. In Chapter 13, we combine the results from the second
half of the book to analyze some of the fundamental trade-offs between robustness
and performance. This is also a key chapter illustrating the power of the techniques
that have been developed and serving as an introduction for more advanced studies.

The book is designed for use in a 10- to 15-week course in feedback systems
that provides many of the key concepts needed in a variety of disciplines. For a
10-week course, Chapters 1–3, 5–7 and 9–12 can each be covered in a week’s time,
with the omission of some topics from the final chapters. A more leisurely course,
spread out over 14–15 weeks, could cover the entire book, with 2 weeks on modeling
(Chapters 3 and 2)—particularly for students without much background in ordinary
differential equations—and 2 weeks on robust performance (Chapter 13).

The mathematical prerequisites for the book are modest and in keeping with
our goal of providing an introduction that serves a broad audience. We assume
familiarity with the basic tools of linear algebra, including matrices, vectors and
eigenvalues. These are typically covered in a sophomore-level course on the sub-
ject, and the textbooks by Apostol [Apo69], Arnold [Arn87] and Strang [Str88]
can serve as good references. Similarly, we assume basic knowledge of differential
equations, including the concepts of homogeneous and particular solutions for lin-
ear ordinary differential equations in one variable. Apostol [Apo69] and Boyce and
DiPrima [BD04] cover this material well. Finally, we also make use of complex
numbers and functions and, in some of the advanced sections, more detailed con-
cepts in complex variables that are typically covered in a junior-level engineering or
physics course in mathematical methods. Apostol [Apo67] or Stewart [Ste02] can
be used for the basic material, with Ahlfors [Ahl66], Marsden and Hoffman [MH98],
or Saff and Snider [SS02] being good references for the more advanced material.
We have chosen not to include appendices summarizing these various topics since
there are a number of good books available.

One additional choice that we felt was important was the decision not to rely
on a knowledge of Laplace transforms in the book. While their use is by far the
most common approach to teaching feedback systems in engineering, many stu-
dents in the natural and information sciences may lack the necessary mathematical
background. Since Laplace transforms are not required in any essential way, we
have included them only in an advanced section intended to tie things together
for students with that background. Of course, we make tremendous use of transfer
functions, which we introduce through the notion of response to exponential inputs,
an approach we feel is more accessible to a broad array of scientists and engineers.
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For classes in which students have already had Laplace transforms, it should be
quite natural to build on this background in the appropriate sections of the text.
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Chapter 1

Introduction

Feedback is a central feature of life. The process of feedback governs how
we grow, respond to stress and challenge, and regulate factors such as
body temperature, blood pressure, and cholesterol level. The mechanisms
operate at every level, from the interaction of proteins in cells to the
interaction of organisms in complex ecologies.

M. B. Hoagland and B. Dodson, The Way Life Works, 1995 [HD95].

In this chapter we provide an introduction to the basic concept of feedback and
the related engineering discipline of control. We focus on both historical and current
examples, with the intention of providing the context for current tools in feedback
and control.

1.1 What Is Feedback?

A dynamical system is a system whose behavior changes over time, often in response
to external stimulation or forcing. The term feedback refers to a situation in which
two (or more) dynamical systems are connected together such that each system
influences the other and their dynamics are thus strongly coupled. Simple causal
reasoning about a feedback system is difficult because the first system influences the
second and the second system influences the first, leading to a circular argument.
A consequence of this is that the behavior of feedback systems is often counter-
intuitive, and it is therefore necessary to resort to formal methods to understand
them.

Figure 1.1 illustrates in block diagram form the idea of feedback. We often use
the terms open loop and closed loop when referring to such systems. A system is
said to be a closed loop system if the systems are interconnected in a cycle, as
shown in Figure 1.1a. If we break the interconnection, we refer to the configuration
as an open loop system, as shown in Figure 1.1b. Note that since the system is in
a feedback loop, the choice of system 1 versus system 2 is somewhat arbitrary. It
just depends where you want to start describing how the system works.

As the quote at the beginning of this chapter illustrates, a major source of ex-
amples of feedback systems is biology. Biological systems make use of feedback

1-1
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Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used
as the input of system 2, and the output of system 2 becomes the input of system
1, creating a closed loop system. (b) The interconnection between system 2 and
system 1 is removed, and the system is said to be open loop.

in an extraordinary number of ways, on scales ranging from molecules to cells to
organisms to ecosystems. One example is the regulation of glucose in the blood-
stream through the production of insulin and glucagon by the pancreas. The body
attempts to maintain a constant concentration of glucose, which is used by the
body’s cells to produce energy. When glucose levels rise (after eating a meal, for
example), the hormone insulin is released and causes the body to store excess glu-
cose in the liver. When glucose levels are low, the pancreas secretes the hormone
glucagon, which has the opposite effect. Referring to Figure 1.1, we can view the
liver as system 1 and the pancreas as system 2. The output from the liver is the
glucose concentration in the blood, and the output from the pancreas is the amount
of insulin or glucagon produced. The interplay between insulin and glucagon secre-
tions throughout the day helps to keep the blood-glucose concentration constant,
at about 90 mg per 100 mL of blood.

An early engineering example of a feedback system is a centrifugal governor, in
which the shaft of a steam engine is connected to a flyball mechanism that is itself
connected to the throttle of the steam engine, as illustrated in Figure 1.2. The
system is designed so that as the speed of the engine increases (perhaps because
of a lessening of the load on the engine), the flyballs spread apart and a linkage
causes the throttle on the steam engine to be closed. This in turn slows down the
engine, which causes the flyballs to come back together. We can model this system
as a closed loop system by taking system 1 as the steam engine and system 2 as
the governor. When properly designed, the flyball governor maintains a constant
speed of the engine, roughly independent of the loading conditions. The centrifugal
governor was an enabler of the successful Watt steam engine, which fueled the
industrial revolution.

The examples given so far all deal with negative feedback, in which we attempt
to react to disturbances in such a way that their effects decrease. Positive feedback
is the opposite, where the increase in some variable or signal leads to a situation in
which that quantity is further increased through feedback. This has a destabilizing
effect and is usually accompanied by a saturation that limits the growth of the
quantity. Although often considered undesirable, this behavior is used in biological
(and engineering) systems to obtain a very fast response to a condition or signal.
Encouragement is a type of positive feedback that is very useful in both industry
and academia. Another common use of positive feedback is in the design of systems
with oscillatory dynamics.

Feedback has many interesting properties that can be exploited in designing
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugal
governor on the left consists of a set of flyballs that spread apart as the speed of
the engine increases. The steam engine on the right uses a centrifugal governor
(above and to the left of the flywheel) to regulate its speed. (Credit: Machine a
Vapeur Horizontale de Philip Taylor [1828].)

systems. As in the case of glucose regulation or the flyball governor, feedback can
make a system resilient to external influences. It can also be used to create linear
behavior out of nonlinear components, a common approach in electronics. More
generally, feedback allows a system to be insensitive both to external disturbances
and to variations in its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabilities
in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

Feedback systems are ubiquitous in both natural and engineered systems. Con-
trol systems maintain the environment, lighting, and power in our buildings and
factories; they regulate the operation of our cars, consumer electronics, and man-
ufacturing processes; they enable our transportation and communications systems;
and they are critical elements in our military and space systems. For the most
part they are hidden from view, buried within the code of embedded microproces-
sors, executing their functions accurately and reliably. Feedback has also made it
possible to increase dramatically the precision of instruments such as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintains thermal, chemical, and
biological conditions through feedback. At the other end of the size scale, global
climate dynamics depend on the feedback interactions between the atmosphere, the
oceans, the land, and the sun. Ecosystems are filled with examples of feedback due
to the complex interactions between animal and plant life. Even the dynamics of
economies are based on the feedback between individuals and corporations through
markets and the exchange of goods and services.
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Figure 1.3: Feedback system versus feedforward system. In both systems we have
a process P and a controller C. The feedback controller (a) measures the output
y to determine the effect of the disturbance v, while the feedforward controller
(b) measures the disturbance directly, but does not directly measure the process
output.

1.2 What is Feedforward?

Feedback is reactive: there must be an error before corrective actions are taken.
However, in some circumstances it is possible to measure a disturbance before it
enters the system, and this information can then be used to take corrective action
before the disturbance has influenced the system. The effect of the disturbance is
thus reduced by measuring it and generating a control signal that counteracts it.
This way of controlling a system is called feedforward. Feedforward is particularly
useful in shaping the response to command signals, which are used as external in-
puts to the control system, because command signals are always available. Since
feedforward attempts to match two signals, it requires good process models; other-
wise the corrections may have the wrong size or may be badly timed.

Figure 1.3 illustrates the difference between feedforward and feedback control.
In both figures there is a reference signal r that describes the desired output of the
process P and a disturbance signal v that represents an external perturbation to
the process. In a feedback system, we measure the output y of the system and the
controller C attempts to adjust the input to the process in a manner that causes the
process output to maintain the desired the reference value. In a feedforward system,
we instead measure the reference r and disturbance v and compute an input to the
process that will create the desired output. Notice that the feedback controller does
not directly measure the disturbance v while the feedforward controller does not
measure the actual output y.

The ideas of feedback and feedforward are very general and appear in many
different fields. In economics, feedback and feedforward are analogous to a market-
based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties, which are summarized in Table 1.1.
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Table 1.1: Properties of feedback and feedforward.

Feedback Feedforward

Closed loop Open loop
Acts on deviations Acts on plans

Robust to model uncertainty Sensitive to model uncertainty
Risk for instability No risk for instability

1.3 What Is Control?

The term control has many meanings and often varies between communities. In
this book, we define control to be the use of algorithms and feedback in engineered
systems. Thus, control includes such examples as feedback loops in electronic am-
plifiers, setpoint controllers in chemical and materials processing, “fly-by-wire” sys-
tems on aircraft, and even router protocols that control traffic flow on the Inter-
net. Emerging applications include high-confidence software systems, autonomous
vehicles and robots, real-time resource management systems, and biologically engi-
neered systems. At its core, control is an information science and includes the use
of information in both analog and digital representations.

A modern controller senses the operation of a system, compares it against the
desired behavior, computes corrective actions based on a model of the system’s
response to external inputs, and actuates the system to effect the desired change.
This basic feedback loop of sensing, computation, and actuation is the central con-
cept in control. The key issues in designing control logic are ensuring that the
dynamics of the closed loop system are stable (bounded disturbances give bounded
errors) and that they have additional desired behavior (good disturbance attenua-
tion, fast responsiveness to changes in operating point, etc.). These properties are
established using a variety of modeling and analysis techniques that capture the
essential dynamics of the system and permit the exploration of possible behaviors
in the presence of uncertainty, noise, and component failure.

A typical example of a control system is shown in Figure 1.4. The basic ele-
ments of sensing, computation, and actuation are clearly seen. In modern control
systems, computation is typically implemented on a digital computer, requiring the
use of analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty
enters the system through noise in sensing and actuation subsystems, external dis-
turbances that affect the underlying system operation, and uncertain dynamics in
the system (parameter errors, unmodeled effects, etc.). The algorithm that com-
putes the control action as a function of the sensor values is often called a control
law. The system can be influenced externally by an operator who introduces com-
mand signals to the system. These command signals can be reference values for
the system output or may be more general descriptions of the task that the control
system is supposed to implement.

Control engineering relies on and shares tools from physics (dynamics and mod-
eling), computer science (information and software), and operations research (op-
timization, probability theory, and game theory), but it is also different from these
subjects in both insights and approach.

Perhaps the strongest area of overlap between control and other disciplines is in
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Figure 1.4: Components of a computer-controlled system. The upper dashed
box represents the process dynamics, which includes the sensors and actuators in
addition to the dynamical system being controlled. Noise and external disturbances
can perturb the dynamics of the process. The controller is shown in the lower
dashed box. It consists of a filter and analog-to-digital (A/D) and digital-to-analog
(D/A) converters, as well as a computer that implements the control algorithm.
A system clock controls the operation of the controller, synchronizing the A/D,
D/A, and computing processes. The operator input is also fed to the computer as
an external input.

the modeling of physical systems, which is common across all areas of engineering
and science. One of the fundamental differences between control-oriented modeling
and modeling in other disciplines is the way in which interactions between sub-
systems are represented. Control relies on a type of input/output modeling that
allows many new insights into the behavior of systems, such as disturbance attenu-
ation and stable interconnection. Model reduction, where a simpler (lower-fidelity)
description of the dynamics is derived from a high-fidelity model, is also naturally
described in an input/output framework. Perhaps most importantly, modeling in
a control context allows the design of robust interconnections between subsystems,
a feature that is crucial in the operation of all large engineered systems.

Control is also closely associated with computer science since virtually all mod-
ern control algorithms for engineering systems are implemented in software. How-
ever, control algorithms and software can be very different from traditional com-
puter software because of the central role of the dynamics of the system and the
real-time nature of the implementation.

1.4 Uses of Feedback and Control

Feedback has many interesting and useful properties. It makes it possible to de-
sign precise systems from imprecise components and to make relevant quantities
in a system change in a prescribed fashion. An unstable system can be stabilized
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Figure 1.5: A small portion of the European power network. In 2016 European
power suppliers operated a single interconnected network covering a region from
the Arctic to the Mediterranean and from the Atlantic to the Urals. The installed
power was more than 800 GW (8×1011 W) serving more than 500 million citizens.
(Source: ENTSO-E http://www.entsoe.eu)

using feedback, and the effects of external disturbances can be reduced. Feedback
also offers new degrees of freedom to a designer by exploiting sensing, actuation,
and computation. In this section we briefly survey some of the important appli-
cations and trends for feedback in the world around us. Considerably more detail
is available in several reports describing advances and directions in the field of
control [LLAE+17, Mur03, MÅB+03, SA14].

Power Generation and Transmission Access to electrical power has been one
of the major drivers of technological progress in modern society. Much of the early
development of control was driven by the generation and distribution of electrical
power. Control is mission critical for power systems, and there are many control
loops in individual power stations. Control is also important for the operation of
the whole power network since it is difficult to store energy and it is thus necessary
to match production to consumption. Power management is a straightforward
regulation problem for a system with one generator and one power consumer, but
it is more difficult in a highly distributed system with many generators and long
distances between consumption and generation. Power demand can change rapidly
in an unpredictable manner, and combining generators and consumers into large
networks makes it possible to share loads among many suppliers and to average
consumption among many customers. Large transcontinental and transnational
power systems have therefore been built, such as the one shown in Figure 1.5.

http://www.entsoe.eu
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Telecommunications When telecommunications emerged in the early 20th cen-
tury there was a strong need to amplify signals to enable telephone communication
over long distances. The only amplifier available at the time was based on vac-
uum tubes. Since the properties of vacuum tubes are nonlinear and time varying,
the amplifiers created a lot of distortion. A major advance was made when Black
invented the negative feedback amplifier [Bla34, Bla77], which made it possible to
obtain stable amplifiers with linear characteristics. Research on feedback amplifiers
also generated fundamental understanding of feedback in the form of Nyquist’s sta-
bility criterion [Nyq32] and Bode’s methods for design of feedback amplifiers and
his theorems on fundamental limits [Bod45]. Feedback is used extensively in cellu-
lar phones and networks, and the future 5G communication networks will permit
execution of real-time control systems over the networks [TFKH16]. L○

Aerospace and Transportation In aerospace, control has been a key techno-
logical capability tracing back to the beginning of the 20th century. Indeed, the
Wright brothers are correctly famous not for demonstrating simply powered flight
but controlled powered flight. Their early Wright Flyer incorporated moving con-
trol surfaces (vertical fins and canards) and warpable wings that allowed the pilot
to regulate the aircraft’s flight. In fact, the aircraft itself was not stable, so contin-
uous pilot corrections were mandatory. This early example of controlled flight was
followed by a fascinating success story of continuous improvements in flight control
technology, culminating in the high-performance, highly reliable automatic flight
control systems we see in modern commercial and military aircraft today.

Materials and Processing The chemical industry is responsible for the remark-
able progress in developing new materials that are key to our modern society. In
addition to the continuing need to improve product quality, several other factors
in the process control industry are drivers for the use of control. Environmen-
tal statutes continue to place stricter limitations on the production of pollutants,
forcing the use of sophisticated pollution control devices. Environmental safety
considerations have led to the design of smaller storage capacities to diminish the
risk of major chemical leakage, requiring tighter control on upstream processes and,
in some cases, supply chains. And large increases in energy costs have encouraged
engineers to design plants that are highly integrated, coupling many processes that
used to operate independently. All of these trends increase the complexity of these
processes and the performance requirements for the control systems, making control
system design increasingly challenging.

Instrumentation The measurement of physical variables is of prime interest in
science and engineering. Consider, for example, an accelerometer, where early
instruments consisted of a mass suspended on a spring with a deflection sensor.
The precision of such an instrument depends critically on accurate calibration of
the spring and the sensor. There is also a design compromise because a weak spring
gives high sensitivity but low bandwidth. A different way of measuring acceleration
is to use force feedback. The spring is replaced by a voice coil that is controlled so
that the mass remains at a constant position. The acceleration is proportional to
the current through the voice coil. In such an instrument, the precision depends

http://fbsbook.org
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Figure 1.6: The voltage clamp method for measuring ion currents in cells using
feedback. A pipette is used to place an electrode in a cell (left) and maintain the
potential of the cell at a fixed level. The internal voltage in the cell is vi, and the
voltage of the external fluid is ve. The feedback system (right) controls the current
I into the cell so that the voltage drop across the cell membrane ∆v = vi − ve is
equal to its reference value ∆vr. The current I is then equal to the ion current.

entirely on the calibration of the voice coil and does not depend on the sensor,
which is used only as the feedback signal. The sensitivity/bandwidth compromise
is also avoided.

Another important application of feedback is in instrumentation for biological
systems. Feedback is widely used to measure ion currents in cells using a device
called a voltage clamp, which is illustrated in Figure 1.6. Hodgkin and Huxley used
the voltage clamp to investigate propagation of action potentials in the giant axon
of the squid. In 1963 they shared the Nobel Prize in Medicine with Eccles for “their
discoveries concerning the ionic mechanisms involved in excitation and inhibition
in the peripheral and central portions of the nerve cell membrane.” A refinement of
the voltage clamp called a patch clamp made it possible to measure exactly when a
single ion channel is opened or closed. This was developed by Neher and Sakmann,
who received the 1991 Nobel Prize in Medicine “for their discoveries concerning the
function of single ion channels in cells.”

Robotics and Intelligent Machines The goal of cybernetic engineering, al-
ready articulated in the 1940s and even before, has been to implement systems
capable of exhibiting highly flexible or “intelligent” responses to changing circum-
stances [ÅK14]. In 1948 the MIT mathematician Norbert Wiener gave a widely
read account of cybernetics [Wie48]. A more mathematical treatment of the ele-
ments of engineering cybernetics was presented by H. S. Tsien in 1954, driven by
problems related to the control of missiles [Tsi54]. Together, these works and others
of that time form much of the intellectual basis for modern work in robotics and
control.

Two recent areas of advancement in robotics and autonomous systems are (con-
sumer) drones and autonomous cars, some examples of which are shown in Fig-
ure 1.7. Quadrocopters such as the DJI Phantom make use of GPS receivers,
accelerometers, magnetometers, and gyros to provide stable flight and also use sta-
bilized camera platforms to provide high quality images and movies. Autonomous
vehicles, such as the Google autonomous car project (now Waymo), make use of a
variety of laser rangefinders, cameras, and radars to perceive their environment and
then use sophisticated decision-making and control algorithms to enable them to
safely drive in a variety of traffic conditions, from high-speed freeways to crowded
city streets.
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Figure 1.7: Autonomous vehicles. The figure on the left is a DJI Phantom 3
drone, which is able to maintain its position using GPS and inertial sensors. The
figure on the right is an autonomous car that was developed by nuTonomy and
is capable of driving on city streets by using sophisticated sensing and decision-
making (control) software (photo courtesy Hyundai-Aptiv Autonomous Driving
Joint Venture, LLC).

Networks and Computing Systems Control of networks is a large research
area spanning many topics, including congestion control, routing, data caching,
and power management. Several features of these control problems make them
very challenging. The dominant feature is the extremely large scale of the system:
the Internet is probably the largest feedback control system humans have ever
built. Another is the decentralized nature of the control problem: decisions must
be made quickly and based only on local information. Stability is complicated by
the presence of varying time lags, as information about the network state can be
observed or relayed to controllers only after a delay, and the effect of a local control
action can be felt throughout the network only after substantial delay.

Related to the control of networks is control of the servers that sit on these
networks. Computers are key components of the systems of routers, web servers,
and database servers used for communication, electronic commerce, advertising,
and information storage. A typical example of a multilayer system for e-commerce
is shown in Figure 1.8a. The system has several tiers of servers. The edge server
accepts incoming requests and routes them to the HTTP server tier where they

The Internet

Request

Reply

Request

Reply

Request

Reply

Tier 1 Tier 2 Tier 3

Clients

(a) Multitiered Internet services (b) Individual server

Figure 1.8: A multitier system for services on the Internet. In the complete
system shown schematically in (a), users request information from a set of com-
puters (tier 1), which in turn collect information from other computers (tiers 2 and
3). The individual server shown in (b) has a set of reference parameters set by
a (human) system operator, with feedback used to maintain the operation of the
system in the presence of uncertainty. (Based on Hellerstein et al. [HDPT04].)
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are parsed and distributed to the application servers. The processing for differ-
ent requests can vary widely, and the application servers may also access exter-
nal servers managed by other organizations. Control of an individual server in a
layer is illustrated in Figure 1.8b. A quantity representing the quality of service
or cost of operation—such as response time, throughput, service rate, or memory
usage—is measured in the computer. The control variables might represent incom-
ing messages accepted, priorities in the operating system, or memory allocation.
The feedback loop then attempts to maintain quality-of-service variables within a
target range of values.

Economics The economy is a large dynamical system with many actors: gov-
ernments, organizations, companies, and individuals. Governments control the
economy through laws and taxes, the central banks by setting interest rates, and
companies by setting prices and making investments. Individuals control the econ-
omy through purchases, savings, and investments. Many efforts have been made to
model and control the system both at the macro level and at the micro level, but
this modeling is difficult because the system is strongly influenced by the behaviors
of the different actors in the system.

The financial system can be viewed as a global controller for the economy.
Unfortunately this important controller does not always function as desired, as
expressed in the following quote by Paul Krugman [Kru09]:

We have magneto trouble, said John Maynard Keynes at the start of
the Great Depression: most of the economic engine was in good shape,
but a crucial component, the financial system, was not working. He
also said this: “We have involved ourselves in a colossal muddle, having
blundered in the control of a delicate machine, the working of which
we do not understand.” Both statements are as true now as they were
then.

One of the reasons why it is difficult to model economic systems is that conserva-
tion laws for important variables are missing. A typical example is that the value of
a company as expressed by its stock can change rapidly and erratically. There are,
however, some areas with conservation laws that permit accurate modeling. One
example is the flow of products from a manufacturer to a retailer, as illustrated
in Figure 1.9. The products are physical quantities that obey a conservation law,
and the system can be modeled by accounting for the number of products in the
different inventories. There are considerable economic benefits in controlling sup-
ply chains so that products are available to customers while minimizing products
that are in storage. Realistic supply chain problems are more complicated than
indicated in the figure because there may be many different products, there may be
different factories that are geographically distributed, and the factories may require
raw material or subassemblies.

Feedback in Nature Many problems in the natural sciences involve understand-
ing aggregate behavior in complex large-scale systems. This behavior emerges from
the interaction of a multitude of simpler systems with intricate patterns of informa-
tion flow. Representative examples can be found in fields ranging from embryology
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Figure 1.9: Supply chain dynamics (after Forrester [For61]). Products flow from
the producer to the customer through distributors and retailers as indicated by
the solid lines. There are typically many factories and warehouses and even more
distributors and retailers. Dashed lines represent feedback and feedforward infor-
mation flowing between the various agents in the chain. Multiple feedback loops
are present as each agent tries to maintain the proper inventory level.

to seismology. Researchers who specialize in the study of specific complex systems
often develop an intuitive emphasis on analyzing the role of feedback (or inter-
connection) in facilitating and stabilizing aggregate behavior. We briefly highlight
three application areas here.

A major theme currently of interest to the biology community is the science of
reverse (and eventually forward) engineering of biological control networks such as
the one shown in Figure 1.10. There are a wide variety of biological phenomena that
provide a rich source of examples of control, including gene regulation and signal
transduction; hormonal, immunological, and cardiovascular feedback mechanisms;
muscular control and locomotion; active sensing, vision, and proprioception; at-
tention and consciousness; and population dynamics and epidemics. Each of these
(and many more) provide opportunities to figure out what works, how it works,
and what we can do to affect it.

In contrast to individual cells and organisms, emergent properties of aggrega-
tions and ecosystems inherently reflect selection mechanisms that act on multiple
levels, and primarily on scales well below that of the system as a whole. Because
ecosystems are complex, multiscale dynamical systems, they provide a broad range
of new challenges for the modeling and analysis of feedback systems. Recent expe-
rience in applying tools from control and dynamical systems to bacterial networks
suggests that much of the complexity of these networks is due to the presence of
multiple layers of feedback loops that provide robust functionality to the individual
cell [Kit04, SSS+04, YHSD00]. Yet in other instances, events at the cell level benefit
the colony at the expense of the individual. Systems level analysis can be applied
to ecosystems with the goal of understanding the robustness of such systems and
the extent to which decisions and events affecting individual species contribute to
the robustness and/or fragility of the ecosystem as a whole.

In nature, development of organisms and their control systems have often de-
veloped in synergy. The development of birds is an interesting example, as noted
by John Maynard Smith in 1952 [Smi52]: . L○

[T]he earliest birds, pterosaurs, and flying insects were stable. This

http://www.vega.org.uk/video/programme/84
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Figure 1.10: The wiring diagram of the growth-signaling circuitry of the mam-
malian cell [HW00]. The major pathways that are thought to play a role in cancer
are indicated in the diagram. Lines represent interactions between genes and pro-
teins in the cell. Lines ending in arrowheads indicate activation of the given gene
or pathway; lines ending in a T-shaped head indicate repression. (Used with per-
mission of Elsevier Ltd. and the authors.)

is believed to be because in the absence of a highly evolved sensory
and nervous system they would have been unable to fly if they were
not. ... To a flying animal there are great advantages to be gained by
instability. The greater manoeuvrability is of equal importance to an
animal which catches its food in the air and to the animals upon which
it preys. ... It appears that in the birds and at least in some insects [...]
the evolution of the sensory and nervous systems rendered the stability
found in earlier forms no longer necessary.

1.5 Feedback Properties

Feedback is a powerful idea which, as we have seen, is used extensively in natural
and technological systems. The principle of feedback is simple: base correcting
actions on the difference between desired and actual performance. In engineer-
ing, feedback has been rediscovered and patented many times in many different
contexts. The use of feedback has often resulted in vast improvements in system
capability, and these improvements have sometimes been revolutionary, as discussed
previously. The reason for this is that feedback has some truly remarkable proper-
ties. In this section we will discuss some of the properties of feedback that can be
understood intuitively. This intuition will be formalized in subsequent chapters.
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Figure 1.11: A feedback system for controlling the velocity of a vehicle. In the
block diagram on the left, the velocity of the vehicle is measured and compared to
the desired velocity within the “Compute” block. Based on the difference in the
actual and desired velocities, the throttle (or brake) is used to modify the force
applied to the vehicle by the engine, drivetrain, and wheels. The figure on the
right shows how the velocity changes when the car travels on a horizontal road
and the slope of the road changes to a constant uphill slope. The three different
curves correspond to differing masses of the vehicle, between 1200 and 2000 kg,
demonstrating that feedback can indeed compensate for the changing slope and
that the closed loop system is robust to a large change in the vehicle characteristics.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness to uncertainty. For example,
by measuring the difference between the sensed value of a regulated signal and its
desired value, we can supply a corrective action to partially compensate for the
effect of disturbances. This is precisely the effect that Watt exploited in his use of
the centrifugal governor on steam engines. Another use of feedback is to provide
robustness to variations in the process dynamics. If the system undergoes some
change that affects the regulated signal, then we sense this change and try to force
the system back to the desired operating point, even if the process parameters are
not directly measured. In this way, a feedback system provides robust performance
in the presence of uncertain dynamics.

As an example, consider the simple feedback system shown in Figure 1.11. In
this system, the velocity of a vehicle is controlled by adjusting the amount of gas
flowing to the engine. Simple proportional-integral (PI) feedback is used to make
the amount of gas depend on both the error between the current and the desired
velocity and the integral of that error. The plot on the right shows the effect of this
feedback when the vehicle travels on a horizontal road and it encounters an uphill
slope. When the slope changes, the car decelerates due to gravity forces and the
velocity initially decreases. The velocity error is sensed by the controller, which acts
to restore the velocity to the desired value by increasing the throttle. The figure
also shows what happens when the same controller is used for different masses of
the car, which might result from having a different number of passengers or towing
a trailer. Notice that the steady-state velocity of the vehicle always approaches the
desired velocity and achieves that velocity within approximately 15 s, independent
of the mass (which varies by a factor of ± 25%), Thus feedback improves both
performance and robustness of the system.

Another early example of the use of feedback to provide robustness is the neg-
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ative feedback amplifier. When telephone communications were developed, am-
plifiers were used to compensate for signal attenuation in long lines. A vacuum
tube was a component that could be used to build amplifiers. Distortion caused
by the nonlinear characteristics of the tube amplifier together with amplifier drift
were obstacles that prevented the development of line amplifiers for a long time. A
major breakthrough was the invention of the feedback amplifier in 1927 by Harold
S. Black, an electrical engineer at Bell Telephone Laboratories. Black used negative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a system. Through feedback,
we can alter the behavior of a system to meet the needs of an application: sys-
tems that are unstable can be stabilized, systems that are sluggish can be made
responsive, and systems that have drifting operating points can be held constant.
Control theory provides a rich collection of techniques to analyze the stability and
dynamic response of complex systems and to place bounds on the behavior of such
systems by analyzing the gains of linear and nonlinear operators that describe their
components.

An example of the use of control in the design of dynamics comes from the area
of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [McF53], illustrates the role of control
in the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of the
engineer as well. Men also know how to build engines and screws of suf-
ficient lightness and power to drive these planes at sustaining speed ...
Inability to balance and steer still confronts students of the flying prob-
lem ... When this one feature has been worked out, the age of flying
will have arrived, for all other difficulties are of minor importance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. The Wright
Brothers were well aware of the compromise between stability and maneuverability
when they designed the Wright Flyer [Dra55] and they made the first successful
flight at Kitty Hawk in 1903. Modern fighter airplanes are also unstable in certain
flight regimes, such as take-off and landing.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
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(a) Sperry autopilot (b) 1912 Curtiss biplane

Figure 1.12: Aircraft autopilot system. The Sperry autopilot (a) contained a set
of four gyros coupled to a set of air valves that controlled the wing surfaces. The
1912 Curtiss used an autopilot to stabilize the roll, pitch, and yaw of the aircraft
and was able to maintain level flight as a mechanic walked on the wing (b) [Hug93].

by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of feedback in aero-
nautical engineering, and Sperry won a prize in a competition for the safest airplane
in Paris in 1914. Figure 1.12 shows the Curtiss seaplane and the Sperry autopi-
lot. The autopilot is a good example of how feedback can be used to stabilize an
unstable system and hence “design the dynamics” of the aircraft.

Creating Modularity

Feedback can be used to create modularity and shape well-defined relations between
inputs and outputs in a structured hierarchical manner. A modular system is one in
which individual components can be replaced without having to modify the entire
system. By using feedback, it is possible to allow components to maintain their
input/output properties in a manner that is robust to changes in its interconnec-
tions. A typical example is the electrical drive system shown in Figure 1.13, which
has an architecture with three cascaded loops. The innermost loop is a current
loop, where the current controller (CC) drives the amplifier so that the current to
the motor tracks a commanded value (often called the “setpoint”). The middle
feedback loop uses a velocity controller (VC) to drive the setpoint of the current
controller so that velocity follows its commanded value. The outer loop drives the
setpoint of the velocity loop to follow the setpoint of the position controller PC.

The control architecture with nested loops shown in Figure 1.13 is common. It
simplifies design, commissioning, and operation. Consider for example the design of
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Figure 1.13: Block diagram of a system for position control. The system has
three cascaded loops for control of current, velocity, and position. Each loop has
an externally supplied reference value (denoted by the subscript ‘r’) that sets the
nominal value of the input to the loop, which is added to output from next outer-
most loop to determine the commanded value for the loop (called the “setpoint”).

the velocity loop. With a well-designed current controller the motor current follows
the setpoint of the controller CC. Since the motor torque is proportional to the
current, the dynamics relating motor velocity to the input of the current controller
is approximately an integrator. This simplified model can be used to design the
velocity loop so that effects of friction and other disturbances are reduced. With
a well-designed velocity loop, the design of the position loop is also simple. The
loops can also be tuned sequentially starting with the inner loop.

This architecture illustrates how feedback can be used to simplify the overall
design of the controller by breaking the problem into stages. This architecture also
provides a level of modularity since each design stage depends only on the closed
loop behavior of the system. If we replace the motor with a new motor, then by
redesigning the current controller (CC) to give the same closed loop performance,
we can leave the outer level loops unchanged. Similarly, if we need to redesign
one of the outer layer controllers for an application with different specifications, we
can often make use of an existing inner loop design (as long as the existing design
provides enough performance to satisfy the outer loop requirements).

Challenges of Feedback

While feedback has many advantages, it also has some potential drawbacks. Chief
among these is the possibility of instability if the system is not designed properly.
We are all familiar with the effects of positive feedback when the amplification on
a microphone is turned up too high in a room. This is an example of feedback
instability, something that we obviously want to avoid. This is tricky because we
must design the system not only to be stable under nominal conditions but also to
remain stable under all possible perturbations of the dynamics.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects measurement
noise into the system. Measurements must be carefully filtered so that the actuation
and process dynamics do not respond to them, while at the same time ensuring
that the measurement signal from the sensor is properly coupled into the closed
loop dynamics (so that the proper levels of performance are achieved).
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Figure 1.14: Input/output characteristics of on-off controllers. Each plot shows
the input on the horizontal axis and the corresponding output on the vertical axis.
Ideal on-off control is shown in (a), with modifications for a dead zone (b) or
hysteresis (c). Note that for on-off control with hysteresis, the output depends on
the value of past inputs.

Another potential drawback of control is the complexity of embedding a control
system into a product. While the cost of sensing, computation, and actuation
has decreased dramatically in the past few decades, the fact remains that control
systems are often complicated, and hence one must carefully balance the costs
and benefits. An early engineering example of this is the use of microprocessor-
based feedback systems in automobiles.The use of microprocessors in automotive
applications began in the early 1970s and was driven by increasingly strict emissions
standards, which could be met only through electronic controls. Early systems
were expensive and failed more often than desired, leading to frequent customer
dissatisfaction. It was only through aggressive improvements in technology that
the performance, reliability, and cost of these systems allowed them to be used in
a transparent fashion. Even today, the complexity of these systems is such that it
is difficult for an individual car owner to fix problems.

1.6 Simple Forms of Feedback

The idea of feedback to make corrective actions based on the difference between the
desired and the actual values of a quantity can be implemented in many different
ways. The benefits of feedback can be obtained by very simple feedback laws such
as on-off control, proportional control, and proportional-integral-derivative control.
In this section we provide a brief preview of some of the topics that will be studied
more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

u =

{
umax if e > 0,

umin if e < 0,
(1.1)

where the control error e = r − y is the difference between the reference (or com-
mand) signal r and the output of the system y, and u is the actuation command.
Figure 1.14a shows the relation between error and control. This control law implies
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that maximum corrective action is always used.

The feedback in equation (1.1) is called on-off control. One of its chief advan-
tages is that it is simple and there are no parameters to choose. On-off control
often succeeds in keeping the process variable close to the reference, such as the use
of a simple thermostat to maintain the temperature of a room. It typically results
in a system where the controlled variables oscillate, which is often acceptable if the
oscillation is sufficiently small.

Notice that in equation (1.1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figures 1.14b and 1.14c).

PID Control

The reason why on-off control often gives rise to oscillations is that the system
overreacts since a small change in the error makes the actuated variable change over
the full range. This effect is avoided in proportional control, where the characteristic
of the controller is proportional to the control error for small errors. This can be
achieved with the control law

u =





umax if e ≥ emax,

kpe if emin < e < emax,

umin if e ≤ emin,

(1.2)

where kp is the controller gain, emin = umin/kp, and emax = umax/kp. The interval
(emin, emax) is called the linear range because the behavior of the controller is linear
when the error is in this interval:

u = kp(r − y) = kpe if emin ≤ e ≤ emax. (1.3)

While a vast improvement over on-off control, proportional control has the draw-
back that the process variable often deviates from its reference value. In particular,
if some level of control signal is required for the system to maintain a desired value,
then we must have e 6= 0 in order to generate the requisite input.

This can be avoided by making the control action proportional to the integral
of the error:

u(t) = ki

∫ t

0

e(τ)dτ. (1.4)

This control form is called integral control, and ki is the integral gain. It can
be shown through simple arguments that a controller with integral action has zero
steady-state error (Exercise 1.5). The catch is that there may not always be a steady
state because the system may be oscillating. In addition, if the control action has
magnitude limits, as in equation (1.2), an effect known as “integrator windup”
can occur and may result in poor performance unless appropriate “anti-windup”
compensation is used. Despite the potential drawbacks, which can be overcome
with careful analysis and design, the benefits of integral feedback in providing zero
error in the presence of constant disturbances have made it one of the most used
forms of feedback.
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Figure 1.15: Action of a PID controller. At time t, the proportional term depends
on the instantaneous value of the error. The integral portion of the feedback is
based on the integral of the error up to time t (shaded portion). The derivative
term provides an estimate of the growth or decay of the error over time by looking
at the rate of change of the error. Td represents the approximate amount of time
in which the error is projected forward (see text).

An additional refinement is to provide the controller with an anticipative ability
by using a prediction of the error. A simple prediction is given by the linear
extrapolation

e(t+ Td) ≈ e(t) + Td
de(t)

dt
,

which predicts the error Td time units ahead. Combining proportional, integral,
and derivative control, we obtain a controller that can be expressed mathematically
as

u(t) = kpe(t) + ki

∫ t

0

e(τ) dτ + kd
de(t)

dt
. (1.5)

The control action is thus a sum of three terms: the present as represented by the
proportional term, the past as represented by the integral of the error, and the
future as represented by a linear extrapolation of the error (the derivative term).
This form of feedback is called a proportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.15.

A PID controller is very useful and is capable of solving a wide range of control
problems. More than 95% of all industrial control problems are solved by PID
control, although many of these controllers are actually proportional-integral (PI)
controllers because derivative action is often not included [DM02a].

1.7 Combining Feedback with Logic

Continuous control is often combined with logic to cope with different operating
conditions. Logic is typically related to changes in operating mode, equipment
protection, manual interaction, and saturating actuators. One situation is when
there is one variable that is of primary interest, but other variables may have to be
controlled for equipment protection. For example, when controlling a compressor
the outflow is the primary variable but it may be necessary to switch to a different
mode to avoid compressor stall, which may damage the compressor. We illustrate
some ways in which logic and feedback are combined by a few examples.
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Figure 1.16: Finite state machine for cruise control system. The figure on the
left shows some typical buttons used to control the system. The controller can
be in one of four modes, corresponding to the nodes in the diagram on the right.
Transition between the modes is controlled by pressing one of the four buttons on
the cruise control interface: on/off, set, resume, or cancel.

Cruise control

The basic control function in a cruise controller, such as the one shown in Fig-
ure 1.11, is to keep the velocity constant. It is typically done with a PI controller.
The controller normally operates in automatic mode but it is necessary to switch it
off when braking, accelerating, or changing gears. The cruise control system has a
human–machine interface that allows the driver to communicate with the system.
There are many different ways to implement this system; one version is illustrated
in Figure 1.16a. The system has four buttons: on/off, coast/set, resume/accelerate,
and cancel. The operation of the system is governed by a finite state machine that
controls the modes of the PI controller and the reference generator, as shown in
Figure 1.16b.

The finite state machine has four modes: off, standby, cruise, and hold. The
state changes depending on actions of the driver who can brake, accelerate, and
operate using the buttons. The on/off switch moves the states between off and
standby. From standby the system can be moved to cruise by pushing the set/coast
button. The velocity reference is set as the velocity of the car when the button is
released. In the cruise state the operator can change the velocity reference; it is
increased using the resume/accelerate button and decreased using the set/coast
button. If the driver accelerates by pushing the gas pedal the speed increases, but
it will go back to the set velocity when the gas pedal is released. If the driver
brakes then the car slows, and the cruise controller goes into hold but it remembers
the setpoint of the controller. It can be brought to the cruise state by pushing the
resume/accelerate button. The system also moves from cruise mode to standby if
the cancel button is pushed. The reference for the velocity controller is remembered.
The system goes into off mode by pushing on/off when the system is engaged.

The PI controller is designed to have good regulation properties and to give
good transient performance when switching between resume and control modes.
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Figure 1.17: Large computer “server farm.” The National Energy Research
Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.
(Figure courtesy U.S. Department of Energy)

Server Farms

Server farms consist of a large number of computers for providing Internet services
(cloud computing). Large server farms, such as the one shown in Figure 1.17, may
have thousands of processors. Power consumption for driving the servers and for
cooling them is a prime concern. The cost for energy can be more than 40% of the
operating cost for data centers [EKR03]. The prime task of the server farm is to
respond to a strongly varying computing demand. There are constraints given by
electricity consumption and the available cooling capacity. The throughput of an
individual server depends on the clock rate, which can be changed by adjusting the
voltage applied to the system. Increasing the supply voltage increases the energy
consumption and more cooling is required.

Control of server farms is often performed using a combination of feedback
and logic. Capacity can be increased rapidly if a server is switched on simply by
increasing the voltage to a server, but a server that is switched on consumes energy
and requires cooling. To save energy it is advantageous to switch off servers that are
not required, but it takes some time to switch on a new server. A control system for
a server farm requires individual control of the voltage and cooling of each server
and a strategy for switching servers on and off. Temperature is also important.
Overheating will reduce the life time of the system and may even destroy it. The
cooling system is complicated because cooling air goes through the servers in series
and parallel. The measured value for the cooling system is therefore the server with
the highest temperature. Temperature control is accomplished by a combination of
feedforward logic to determine when servers are switched on and off and feedback
using PID control.
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Figure 1.18: Air–fuel controller based on selectors. The left figure shows the
system architecture. The letters R and Y in the PI controller denote the input
ports for reference and measured signal respectively. The right figure shows a
simulation where the power reference r is changed stepwise at t = 1 and t = 15.
Notice that the normalized air flow is larger than the normalized fuel flow both for
increasing and decreasing reference steps.

Air–Fuel Control

Air–fuel control is an important problem for ship boilers. The control system con-
sists of two loops for controlling air and oil (fuel) flow and a supervisory controller
that adjusts the air–fuel ratio. The ratio should be adjusted for optimal efficiency
when the ships are on open sea but it is necessary to run the system with air excess
when the ships are in the harbor, since generating black smoke will result in heavy
penalties.

An elegant solution to the problem can be obtained by combining PI controllers
with maximum and minimum selectors, as shown in Figure 1.18a. A selector is
a static system with several inputs and one output: a maximum selector gives
an output that is the largest of the inputs, a minimum selector gives an output
that is the smallest of the inputs. Consider the situation when the power demand
is increased: the reference r to the air controller is selected as the commanded
power level by the maximum selector, and the reference to the oil flow controller
is selected as the measured airflow. The oil flow will lag the air flow and there will
be air excess. When the commanded power level is decreased, the reference of the
oil flow controller is selected as the power demand by the minimum selector and
the reference for the air flow controller is selected as the oil flow by the maximum
selector. The system then operates with air excess when power is decreased.

The resulting response of the system for step changes in the desired power level
is shown in Figure 1.18b, verifying that the system maintains air excess for both
power increases and decreases.

Selectors are commonly used to implement logic in engines and power systems.
They are also used for systems that require very high reliability: by introducing
three sensors and only accepting values where two sensors agree it is possible to
guard for the failure of a single sensor.
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Figure 1.19: Layered decomposition of a control system.

1.8 Control System Architectures

Most of the control systems we are investigating in this book will be relatively
simple feedback loops. In this section we will try to give a glimpse of the fact
that in reality the simple loops combine to form a complex system that often has a
hierarchical structure with controllers, logic, and optimization in different combina-
tions. Figure 1.19 shows one representation of such a hierarchy, exposing different
“layers” of the control system. This class of systems is discussed in more detail
in Chapter 15. We focus here on a few representative examples to illustrate some
basic points.

Freight Train Trip Optimizer

An example of two of the layers represented in Figure 1.19 can be see in the control
of modern locomotives developed by General Electric (GE). Typical requirements
for operating a freight train are to arrive on time and to use as little fuel as possible.
The key issue is to avoid unnecessary braking. Figure 1.20 illustrates a system
developed by GE. At the low layer the train has a speed regulator and simple logic
to avoid entering a zone where there is another train. The key disturbance for
the speed control is the slope of the ground. The speed controller has a model of
the track, a GPS sensor, and an estimator. The setpoint for the speed controller
is obtained from a trip optimizer, which computes a driving plan that minimizes
the fuel consumption while arriving at the desired arrival time. The arrival time
is provided by a dispatch center, which in turn may use its own optimization.
These optimizations represent the second layer in Figure 1.19, with the top layer
(decision-making) provided by the human operator.

Diesel-electric freight locomotives pull massive loads of freight cars, weighing
more than 20,000 tons (US), and may be more than a mile in length. A typical
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Figure 1.20: Freight train trip optimizer. GE’s Trip Optimizer™ takes data about
the train, the terrain, and the propulsion system and computes the best speed for
the train in order to reach the destination on time while burning the least amount
of diesel fuel. (Figure courtesy GE.)

locomotive burns about 35,000 gallons per year and can save an average 10% using
the Trip Optimizer autopilot, representing a substantial savings in cost, natural
resources, and pollution.

Process Control Systems

Process control systems are used to monitor and regulate the manufacturing of
a wide range of chemicals and materials. One example is a paper factory, such
as the one depicted in Figure 1.21. The factory produces paper for a variety of
purposes from logs of wood. There are multiple fiber lines and paper machines,
with a few dozen mechanical and chemical production processes that convert the
logs to a slurry of fibers in different steps, and then paper machines that convert
the fiber slurry to paper. Each production unit has PI(D) controllers that control
flow, temperature, and tank levels. The loops typically operate on time scales from
fractions of seconds to minutes. There is logic to make sure that the process is
safe and there is sequencing for start, stop, and production changes. The setpoints
of the low level control loops are determined from production rates and recipes,
sometimes using optimization. The operation of the system is governed by a su-
pervisory system that measures tank levels and sets the production rates of the
different production units. This system performs optimization based on demanded
production, measurement of tank levels, and flows. The optimization is performed
at the time scale of minutes to hours, and it is constrained by the production rates
of the different production units. Processes for continuous production in the chemi-
cal and pharmaceutical industry are similar to the paper factory but the individual
production units may be very different.

One of the features of modern process control systems is that they operate
across many time and spatial scales. Modern process control systems are also in-
tegrated with supply chains and product distribution chains, leading to the use of
production planning systems and enterprise resource management systems. An ex-
ample of an architecture for a distributed control system (DCS), typical for complex
manufacturing systems, is shown in Figure 1.22.
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Figure 1.21: Schematic diagram for a pulp and paper manufacturing plant. The
input to the plant is wood (upper left), which is then processed through a number
of stages to create paper products.

Figure 1.22: Functional architecture of process control system, implemented as
a distributed control system (DCS). Figure courtesy of ABB, Inc.
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Figure 1.23: DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the
2005 and 2007 competitions and its networked control architecture [CFG+06].

Autonomous Driving

The cruise controller in Figure 1.11 relieves the driver of one task, to keep constant
speed, but a driver still has many tasks to perform: plan the route, avoid colli-
sions, decide the proper speed, perform lane changes, make turns, and keep proper
distance to the car ahead. Car manufacturers are continuously automating more
and more of these functions, going as far as automatic driving. An example of a
control system for an autonomous vehicle is shown in Figure 1.23. This control
system is designed for driving in urban environments. The feedback system fuses
data from road and traffic sensors (cameras, laser range finders, and radar) to cre-
ate a multi-layer “map” of the environment around the vehicle. This map is used
to make decisions about actions that the vehicle should take (drive, stop, change
lanes) and plan a specific path for the vehicle to follow. An optimization-based
planner is used to compute the trajectory for the vehicle to follow, which is passed
to a trajectory tracking (path following) module. A supervisory control module
performs higher-level tasks such as mission planning and contingency management
(if a sensor or actuator fails).

We see that this architecture has the basic features shown in Figure 1.19. The
control layers are shown in the planning and control blocks, with the mission planner
and traffic planner representing two levels of discrete decision-making logic, the path
planner representing a trajectory optimization function, and then the lower layers
of control. Similarly, there are multiple layers of sensing, with low level information,
such as vehicle speed and position in the lane, being sent to the trajectory tracking
controller, while higher level information about other vehicles on the road and their
predicted motions is sent to the trajectory, traffic, and mission planners.

1.9 Further Reading

The material in the first half of this chapter draws from the report of the Panel on
Future Directions on Control, Dynamics and Systems [Mur03]. Several additional
papers and reports have highlighted the successes of control [NS99] and new vistas in
control [Bro00, Kum01, LLAE+17, SA14, Wis07]. The early development of control
is described by Mayr [May70] and in the books by Bennett [Ben79, Ben93], which
cover the period 1800–1955. A fascinating examination of some of the early history
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of control in the United States has been written by Mindell [Min02]. A popular
book that describes many control concepts across a wide range of disciplines is Out
of Control by Kelly [Kel94].

There are many textbooks available that describe control systems in the con-
text of specific disciplines. For engineers, the textbooks by Franklin, Powell, and
Emami-Naeini [FPEN05], Dorf and Bishop [DB04], Kuo and Golnaraghi [KG02],
and Seborg, Edgar, and Mellichamp [SEM04] are widely used. More mathematically
oriented treatments of control theory include Sontag [Son98] and Lewis [Lew03].
At the opposite end of the spectrum, the textbook Feedback Control for Every-
one [AM10] provides a readable introduction with minimal mathematical back-
ground required. The books by Hellerstein et al. [HDPT04] and Janert [Jan14]
provide descriptions of the use of feedback control in computing systems. A num-
ber of books look at the role of dynamics and feedback in biological systems, in-
cluding Milhorn [Mil66] (now out of print), J. D. Murray [Mur04], and Ellner and
Guckenheimer [EG05]. The book by Fradkov [Fra07] and the tutorial article by
Bechhoefer [Bec05] cover many specific topics of interest to the physics community.

Systems that combine continuous feedback with logic and sequencing are called
hybrid systems. The theory required to properly model and analyze such systems is
outside the scope of this text, but a comprehensive description is given by Goebel,
Sanfelice, and Teele [GST12]. It is very common that practical control systems
combine feedback control with logic sequencing and selectors; many examples are
given by Åström and T. Hägglund [ÅH06].

Exercises

1.1 Identify five feedback systems that you encounter in your everyday environ-
ment. For each system, identify the sensing mechanism, actuation mechanism, and
control law. Describe the uncertainty with respect to which the feedback system
provides robustness and/or the dynamics that are changed through the use of feed-
back.

1.2 (Balance systems) Balance yourself on one foot with your eyes closed for 15 s.
Using Figure 1.4 as a guide, describe the control system responsible for keeping you
from falling down. Note that the “controller” will differ from that in the diagram
(unless you are an android reading this in the far future).

1.3 (Eye motion) Perform the following experiment and explain your results: Hold- �
ing your head still, move one of your hands left and right in front of your face,
following it with your eyes. Record how quickly you can move your hand before
you begin to lose track of it. Now hold your hand still and shake your head left to
right, once again recording how quickly you can move before losing track of your
hand. Explain any difference in performance by comparing the control systems
used to implement these behaviors.

1.4 (Cruise control) Download the MATLAB code used to produce simulations for
the cruise control system in Figure 1.11 from the companion web site. Using trial
and error, change the parameters of the control law so that the overshoot in speed is
not more than 1 m/s for a vehicle with massm = 1200 kg. Does the same controller
work if we set m = 2000 kg?
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1.5 (Integral action) We say that a system with a constant input reaches steady
state if all system variables approach constant values as time increases. Show that
a controller with integral action, such as those given in equations (1.4) and (1.5),
gives zero error if the closed loop system reaches steady state. Notice that there is
no saturation in the controller.

1.6 (Combining feedback with logic) Consider a system for cruise control where
the overall function is governed by the state machine in Figure 1.16. Assume that
the system has a continuous input for vehicle velocity, discrete inputs indicating
braking and gear changes, and a PI controller with inputs for the reference and
measured velocities and an output for the control signal. Sketch the actions that
have to be taken in the states of the finite state machine to handle the system
properly. Think about if you have to store some extra variables, and if the PI
controller has to be modified.

1.7 Search the web and pick an article in the popular press about a feedback and
control system. Describe the feedback system using the terminology given in the
article. In particular, identify the control system and describe (a) the underlying
process or system being controlled, along with the (b) sensor, (c) actuator, and
(d) computational element. If the some of the information is not available in the
article, indicate this and take a guess at what might have been used.
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Chapter 2

Feedback Principles

Feedback – it is the fundamental principle that underlies all self-regulating
systems, not only machines but also the processes of life and the tides
of human affairs.

A. Tustin, “Feedback”, Scientific American, 1952 [Tus52].

This chapter presents examples that illustrate fundamental properties of feed-
back: disturbance attenuation, reference signal tracking, robustness to uncertainty,
and shaping of behavior. The analysis is based on simple static and dynamical mod-
els. After reading this chapter, readers should have some insight into the power of
feedback, they should know about transfer functions and block diagrams, and they
should be able to design simple feedback systems. The basic concepts described
in this chapter are explained in more detail in the remainder of the text, and this
chapter can be skipped for readers who prefer to move directly to the more detailed
analysis and design techniques.

2.1 Nonlinear Static Models

We will start by capturing the behavior of a process and a controller using static
models. Although these models are very simple, they give significant insight about
the fundamental properties of feedback: negative feedback increases the range of
linearity, it improves reference signal tracking, and it reduces the gain and the
effects of disturbances and parameter variations. Moderate positive feedback has
the opposite properties: it shrinks the range of linearity and increases the gain of
the system. At a critical value the gain becomes infinite and the system behaves like
a relay; larger values of the gain give hysteretic behavior. Although static models
give some insight, they cannot capture dynamic phenomena like stability. Positive
feedback combined with dynamics often leads to instability and oscillations, as will
be discussed toward the end of the chapter.

Consider the closed loop system whose block diagram is shown in Figure 2.1.
The closed loop system has a reference (or command) signal r that gives the desired
system output. The controller C has an input e that is the difference between the
reference r and the process output y, and the output of the controller is the control

2-1
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y
Σ

C P

k F (x)Σ

v

±1

r e u x

Figure 2.1: Block diagram of simple, static feedback system. The controller is a
constant gain k > 0 and the process is modeled by a nonlinear function F (x). The
process output is y, the control signal is u, the external signals are the reference
r, and the load disturbance v. The sign in the lower block indicates whether the
feedback is positive (+) or negative (−).

signal u. There is also a load disturbance v at the process input that perturbs the
system. Although we will mostly deal with negative feedback, this simple model
also permits analysis of positive feedback.

The process P is modeled as a function that is linear for inputs that are less
than one in magnitude and saturates for inputs of magnitude larger than one. The
controller is modeled by a constant gain k. Formally the process and the controller
are described by the functions

y = F (x) = sat(x) =





−1 if x ≤ −1,

x if |x| < 1,

1 if x ≥ 1,

and u = ke. (2.1)

The process is linear for |x| < 1, which is called the linear range. In this region
we have y = x and the process gain is 1. The controller gain is k because the
controller’s output u is k times its input e.

The open loop system is the combination of the controller and the process when
there is no feedback. Neglecting the disturbance v, it follows from equation (2.1)
that the input/output relation for the open loop system is

y = F (kr) = sat(kr). (2.2)

It has the gain k and linear range |r| < 1/k.

Response to Reference Signals

To explore how well the system output y can follow the reference signal r we assume
that the load disturbance v in Figure 2.1 is zero. We will first consider negative
feedback by setting the gain in the lower block of Figure 2.1 to −1. It follows from
Figure 2.1 and equation (2.1) that the closed loop system is described by

y = sat(u), u = k(r − y). (2.3)

Eliminating u in these equations we obtain

y = sat(k(r − y)). (2.4)

To find the relation between the reference r and the output y we have to solve an
algebraic equation. In the linear range |k(r − y)| < 1 we have y = k

k+1r. When
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Linear
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r

y

(a) Negative feedback k > 1

r

y

(b) Positive feedback k < 1

Hysteresis
region r

y

(c) Positive feedback k > 1

Figure 2.2: Input/output behavior of the system: (a) for large negative feedback
(b) positive feedback k < 1 and (c) large positive feedback. The solid line is the
response of the closed loop system and the dashed line is the response of the open
loop system. Redrawn from [SDF18, Figure 20.5].

|k(r − y)| ≥ 1 the output saturates and we obtain y = ±1 (depending on the sign
of k(r − y)). It can be shown that the overall input/output relationship satisfies

y = sat
( k

k + 1
r
)
=





−1 if r ≤ −k+1
k ,

k
k+1r if |r| < k+1

k ,

1 if r ≥ k+1
k .

(2.5)

The linear range for the closed loop system is |r| < k+1
k . Comparing with equa-

tion (2.2) we find that negative feedback widens the linear range of the system by a
factor of k+1 compared to the open loop system. This is illustrated in Figure 2.2a,
which shows the input/output relations of the open loop system (dashed) and the
closed loop system (solid).

Robustness to Parameter Uncertainty

Next we will investigate the sensitivity of the closed loop system to gain variations.
The sensitivity of a system describes how changes in the system parameters affect
the performance of the system. For the open loop system in the linear range we
have y = kr and it thus follows that

dy

dk
= r =

y

k
=⇒ dy

y
=
dk

k
. (2.6)

The relative change of the output is thus equal to the relative change of the param-
eter and we say that the sensitivity is 1. Thus, for the open loop system, a change
in k of 10% will lead to a change in the output of 10%.

For the closed loop system with an input in the linear range, it follows from
equation (2.5) that

dy

dk
=

r

k + 1
− kr

(k + 1)2
=

r

(k + 1)2
=

y

k(k + 1)
,

and hence
dy

y
=

1

k + 1

dk

k
. (2.7)
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A comparison with equation (2.6) shows that negative feedback with gain k reduces
the sensitivity to gain variations by a factor of k+1. If k is 100, for example, a 10%
change in k would lead to less than a 0.1% change in y, so the closed loop system
is much less sensitive to parameter variation.

This type of analysis can also be used to investigate the effect of positive feed-
back. If the −1 in the feedback loop in Figure 2.1 is replaced by +1, equation (2.5)
becomes

y = sat
( k

−k + 1
r
)
. (2.8)

Notice that the gain of the closed loop system is positive and larger than the open
gain for k < 1, as shown in Figure 2.2b. The linear range is |r| < (1 − k)/k.
A comparison with the open loop system in equation (2.2) shows that positive
feedback with k < 1 shrinks the linear range by a factor of 1−k. As k approaches 1
the closed loop gain approaches infinity, the range shrinks to zero, and the system
behaves like a relay.

For positive feedback with k > 1 it follows from equation (2.8) that the closed
loop gain is negative, as shown in Figure 2.2c, and that it approaches −1 as k
approaches infinity. Positive feedback with large gains creates an input/output
characteristic with multiple output values possible for inputs in the range |r| <
k/(k + 1) and the closed loop system behaves like a switch with hysteresis. This
concept is explored in more detail in Section 2.6, and it is shown that if the process
has dynamics then all points where the input/output characteristics have negative
slope are unstable.

We will mostly deal with negative feedback but there are systems that employ
positive feedback, as illustrated in the following example.

Example 2.1 The Superregenerative Amplifier
Edwin Armstrong constructed a “superregenerative” radio receiver with only one
vacuum tube in 1914, when he was still an undergraduate at Columbia University.
The superregenerative amplifier can be modeled as an amplifier with open loop
gain k and a saturated output, combined with a positive feedback loop, as shown
in Figure 2.1. Using equation (2.8), we can compute the gain of the closed loop
system to be kcl = k/(1 − k). A very large closed loop gain can be obtained by
selecting a feedback gain k that is just below 1. Choosing k = 0.999 gives kcl = 999,
which is a gain increase of almost three orders of magnitude.

The drawback of using positive feedback is that the system is highly sensitive
and the gain has to be adjusted carefully to avoid oscillations. For example, if the
gain k is 0.99 instead of 0.999 (a difference of less than 1%), then the closed loop
gain becomes kcl = 99, a difference of 10X (or 1000%). The oscillatory nature of
this circuit requires the use of a more advanced (dynamic) model for analysis of the
amplifier.

Despite its limitations, this type of amplifier is still used in simple walkie-talkies,
garage door openers, and toys. ∇

Load Disturbance Attenuation

Another use of feedback is to reduce the effects of external disturbances, represented
by the signal v in Figure 2.1. For the open loop system, the output when v 6= 0 is
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given by
y = sat(kr + v).

In the linear region we thus have a gain of 1 between v and y, so that disturbances
are passed through with no attenuation.

To investigate the effect of feedback on load disturbances we consider the system
in Figure 2.1 with negative feedback and, for simplicity, we set the reference signal
r to be zero. The relationship between the load disturbance v and the output y is
given by y = sat(v − ky), which is again an algebraic equation. In the linear range
we get y = v/(k + 1) and more generally it can be shown that

y = sat
( v

k + 1

)
. (2.9)

In the linear region, negative feedback thus reduces the effect of load disturbances
by the factor k + 1.

Combining these three sets of analyses, we see that negative feedback increases the
range of linearity of the system, decreases the sensitivity of the system to parameter
uncertainty, and attenuates load disturbances. The trade-off is that the closed
loop gain is decreased. Positive feedback has the opposite effect: it can increase
the closed loop gain, but at the cost of increased sensitivity and amplification of
disturbances.

2.2 Linear Dynamical Models

The analysis in the previous section was based on static models and the dynamics
of the process were neglected. We will now introduce a set of concepts and tools to
analyze the effects of dynamics. To do this we will introduce block diagrams, linear
differential equations, and transfer functions. The block diagram is an abstraction
that describes a system as an interconnection of blocks, whose input/output behav-
ior is described by differential equations. The transfer function, which is a function
of complex variables, is a convenient representation of the differential equations
describing the dynamics of the system. Transfer functions make it possible for us
to find the relations between the signals of a complex system represented by block
diagrams using simple algebra. The values of the transfer function on the imagi-
nary axis gives the steady-state response to sinusoidal signals, which means that the
transfer function can be determined experimentally from the steady-state response
to sinusoidal signals.

Linear Differential Equations and Transfer Functions

In many practical situations, the input/output behavior of a system can be modeled
by a linear differential equation of the form

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b0

dmu

dtm
+ b1

dm−1u

dtm−1
+ · · ·+ bmu, (2.10)

where u is the input, y is the output, and the coefficients ak and bk are real numbers.
The differential equation (2.10) is characterized by two polynomials

a(s) = sn + a1s
n−1 + · · ·+ an, b(s) = b0s

m + b1s
m−1 + · · ·+ bm, (2.11)
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where a(s) is the characteristic polynomial of the differential equation (2.10). We
assume that the polynomials a(s) and b(s) do not have common roots. (The con-
sequences of having common roots is discussed in Section 8.3.)

Equation (2.10) represents a time-invariant system because if the pair u(t),
y(t) satisfies the equation so does u(t + τ), y(t + τ). The equation is also linear
because if u1(t), y1(t), and u2(t), y2(t) satisfy the equation so does αu1(t)+βu2(t),
αy1(t) + βy2(t), where α and β are real numbers. Systems that are linear and
time-invariant are often called LTI systems. We can visualize these systems as
being characterized by a huge table of corresponding input/output signal pairs. An
interesting property of an LTI system is that it can be characterized by a single
carefully chosen pair, for example the response of the system to a step input.

The solution to equation (2.10) is the sum of two terms: the general solution to
the homogeneous equation, which does not depend on the input, and a particular
solution, which depends on the input. The homogeneous equation associated with
equation (2.10) is

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = 0. (2.12)

Letting sk represent the roots of the characteristic equation a(s) = 0, the solution
to equation (2.12) is of the form

y(t) =

n∑

k=1

Cke
skt (2.13)

if the characteristic polynomial does not have repeated roots. The coefficients
C1, . . . , Cn can be determined from the initial conditions at t = 0.

Since the coefficients ak are real, the roots of the characteristic equation are
either real-valued or occur in complex conjugate pairs. A real root sk of the char-
acteristic polynomial corresponds to the exponential function eskt. This function
decreases over time if sk is negative, is constant if sk = 0, and increases if sk is
positive, as shown in the top row of Figure 2.3. For real roots sk the parameter
T = 1/sk is called the time constant, because it describes how quickly the signal
decays.

A complex root sk = σ ± iω corresponds to the time functions

eσt sin (ωt), eσt cos (ωt),

which have oscillatory behavior, as illustrated in the bottom row of Figure 2.3. The
sine terms are shown as solid lines; they have zero crossings with the spacing π/ω.
The dashed lines show the envelopes, which correspond to the exponential function
±eσt.

When the characteristic equation has repeated roots, the solutions to the ho-
mogeneous equation (2.12) take the form

y(t) =
m∑

k=1

Ck(t)e
skt, (2.14)

where Ck(t) is a polynomial with degree less than the multiplicity of the root
sk. The solution (2.14) has

∑m
k=1(degCk + 1) = n free parameters. This case is

considered in more detail in Section 6.2.
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Figure 2.3: Examples of exponential signals. The top row corresponds to expo-
nential signals with a real exponent, and the bottom row corresponds to those with
complex exponents. The dashed line in the last two cases denotes the bounding
envelope for the oscillatory signals. In each case, if the real part of the exponent
is negative then the signal decays, while if the real part is positive then it grows.

Having explored the solution to the homogeneous equation, we now turn to
the input-dependent part of the solution. The solution to equation (2.10) for an
exponential input is of particular interest, as will be shown in the following. We set
u(t) = est, where s 6= sk is a complex number, and investigate if there is a unique
particular solution of the form y(t) = G(s)est. Assuming this to be the case, we
find

du

dt
= sest,

d2u

dt2
= s2est, · · · dmu

dtm
= smest

dy

dt
= sG(s)est,

d2y

dt2
= s2G(s)est, · · · dny

dtn
= snG(s)est.

(2.15)

Inserting these expressions into the differential equation (2.10) gives

(sn + a1s
n−1 + · · ·+ an)G(s)e

st = (b0s
m + b1s

m−1 + · · ·+ bm)est

and hence

G(s) =
b0s

m + b1s
m−1 + · · ·+ bm

sn + a1sn−1 + · · ·+ an
=
b(s)

a(s)
. (2.16)

This function is called the transfer function of the system. It describes a particular
solution to the differential equation for the input est. Combining this with the
solution to the homogeneous equation, we find that a solution to the differential
equation (2.10) for the exponential input u(t) = est is

y(t) =
m∑

k=1

Ck(t)e
skt +G(s)est. (2.17)
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The relation between the transfer function (2.16) and the differential equa-
tion (2.10) is clear: the transfer function (2.16) can be obtained by inspection
from the differential equation (2.10), and conversely the differential equation can
be obtained from the transfer function if the polynomials a(s) and b(s) do not have
common factors. The transfer function G(s) can thus be regarded as a shorthand
notation for the differential equation (2.10). It is a complete characterization of
the differential equation even if it was derived as the response to a specific input
u(t) = est. We note that the input and the initial conditions must both be given to
obtain the full solution of the differential equation, given by equation (2.17), also
referred to as the response of the system.

To deal with oscillatory signals, like those shown in the bottom row of Figure 2.3,
we allow s to be a complex number. The transfer function G is then a function that
maps complex numbers to complex numbers. We let arg represent the argument
(phase, angle) of a complex number and | · | the magnitude, and note that the
complex response to an input u = eiωt = cosωt + i sinωt is given by G(iω)eiωt.
Using just the imaginary parts of the signals, it follows that the particular solution
for the input u = sin(ωt) = Im eiωt is

y(t) = Im
(
G(iω) eiωt

)
= Im

(
|G(iω)| ei argG(iω) eiωt

)

= |G(iω)| Im ei(argG(iω)+ωt) = |G(iω)| sin(ωt+ argG(iω)).

The input is thus amplified by |G(iω)| and the phase shift between input and output
is argG(iω). The functions G(iω), |G(iω)|, and argG(iω) are called the frequency
response, gain, and phase. Gain and phase are also called magnitude and angle.

When the input and the output are constant, u(t) = u0 and y(t) = y0, the
differential equation (2.10) has the particular solution y(t) = (bm/an)u0 = G(0)u0,
obtained by setting s = 0. The input is thus amplified by the factor G(0), which
is therefore called the zero frequency gain (or sometimes the static gain). If the
differential equation is stable then the solution will converge to G(0)u0 as t goes to
infinity.

The full response to an exponential input is the sum of a particular solution and
a solution to the homogeneous equation that is determined by the initial conditions,
as given in equation (2.17). An illustration is given in Figure 2.4 for the transfer
function G(s) = 1/(s + 1)2. The dashed line, which is a pure sine wave, is the
solution obtained when all Ck in equation (2.17) are zero. The solid line shows the
response obtained when the Ck are chosen so that y(0) and its derivatives y(k)(0),
k = 1, . . . , n − 1 are all zero. Since all roots of the characteristic polynomial have
negative real parts, the solution to the homogeneous equation (2.14) goes to zero
as t→ ∞ and the general solution converges to the particular solution.

The transfer function has many interpretations that can be exploited for insight,
analysis, and design. The roots sk of the characteristic equation a(s) = 0 are called
poles of the transfer function: the transfer function is infinite for s = sk. The poles
sk appear as exponents in the general solution to the homogeneous equation, as
seen in equations (2.13) and (2.14). Systems with poles that are “lightly damped”
(Re(sk) is negative but close to zero) can exhibit resonances when a sinusoidal input
is applied whose frequency is near the imaginary part of sk.

The roots sj of the polynomial b(s) are called zeros of the transfer function.
The reason is that if b(sj) = 0 it follows that G(sj) = 0, and the particular solu-
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Figure 2.4: Two responses of a linear time-invariant system to a sinusoidal input.
The dashed line shows the output when the initial conditions are chosen so that
the output is purely sinusoidal. The solid line shows the response for the initial
conditions y(0) = 0 and y′(0) = 0. The transfer function is G(s) = 1/(s+ 1)2.

tion for the input eskt is then zero. A system theoretic interpretation is that the
transmission of the exponential signal esjt is blocked by the zero s = sj , which is
therefore also called a transmission zero.

The transfer function can also convey a great deal of intuition: G(0) is the zero
frequency gain for constant inputs and the frequency response G(iω) captures the
steady-state response to sinusoidal functions. The frequency response of a stable A○
system can be determined experimentally by exploring the steady-state response of
a system to sinusoidal signals. This is an alternative or a complement to physical
modeling. A more elaborate treatment of transfer functions and the frequency
response will be given in Chapter 9.

Stability: The Routh–Hurwitz Criterion

When using feedback there is always the danger that the system may become
unstable, and it is therefore important to have a stability criterion. The differential
equation (2.10) is called stable if all solutions of the homogeneous equation (2.12)
go to zero for any initial condition. It follows from equation (2.14) that this requires
that all the roots of the characteristic equation

a(s) = sn + a1s
n−1 + · · ·+ an = 0

have negative real parts.
It can often be difficult to analytically compute the roots of a high-order poly-

nomial. The Routh–Hurwitz criterion is a stability criterion that does not require
explicit calculation of the roots, because it gives conditions in terms of the coeffi-
cients of the characteristic polynomial.

We illustrate the Routh–Hurwitz criterion by describing it for low-order differ-
ential equations. A first-order differential equation is stable when the coefficient
a1 of the characteristic polynomial is positive, since the root of the characteristic

http://fbsbook.org
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polynomial will be s = −a1 < 0. A second-order polynomial has the roots

s =
1

2

(
−a1 ±

√
a21 − 4a2

)
,

and it is easy to verify that the real parts of the roots are both negative if and only
if a1 > 0 and a2 > 0. A third order differential equation is more complicated, but
the roots can be shown to have negative real parts if and only if

a1, a2, a3 > 0, and a1a2 > a3. (2.18)

The corresponding conditions for a fourth order differential equation are

a1, a2, a3, a4 > 0, a1a2 > a3, and a1a2a3 > a21 a4 + a23. (2.19)

The Routh–Hurwitz criterion [Gan60] gives similar conditions for arbitrarily high H○
order polynomials. Stability of a linear differential equation can thus be investi-
gated just by analyzing the signs of various combinations of the coefficients of the
characteristic polynomial.

Block Diagrams and Transfer Functions

As we saw already in Chapter 1, control systems are often described using block
diagrams, such as the ones shown in Figures 1.1 and 1.4. If the behavior of the
blocks are represented by transfer functions, the transfer function of a system can
be obtained simply by algebraic manipulations. It follows from equation (2.17) that
the transfer function can be derived from the particular solution for the input est.
To derive the transfer function for a system composed of several blocks, we assume
that the input signal is an exponential u(t) = est and compute the corresponding
particular solutions for all blocks.

Consider for example the system in Figure 2.5a, which is a series connec-
tion of two systems with the transfer functions G1(s) and G2(s). Let the in-
put of the system be u(t) = est and assume the system is stable so that we
focus just on the exponential response. The output of the first block is then
y1(t) = G1(s)e

st, which is also an exponential, and the output of the second system
is y(t) = G2(s)y1(s) = G2(s)G1(s)e

st = G2(s)G1(s)u(t). The transfer function of
the system is thus Gyu(s) = G2(s)G1(s), where we use the convention that the
right subscript is the input and the left subscript is the output, so that y = Gyuu.

Next we will consider parallel connections of systems as shown in Figure 2.5b.
Assuming that the input is u(t) = est, the exponential outputs of the blocks are
y1(t) = G1(s)e

st and y2(t) = Gs(s)e
st. The output of the system is then

y(t) = G1(s)e
st +G2(s)e

st =
(
G1(s) +G2(s)

)
est,

and the transfer function of a parallel connection of systems with the transfer
functions G(s) and G2(s) is thus Gyu(s) = G1(s) +G2(s).

Finally we will consider the feedback connection shown in Figure 2.5c. If the
input u(t) = est is an exponential we find

y(t) = G1(s)e(t) = G1(s)
(
u(t)−G2(s)y(t)

)
= G1(s)

(
est −G2(s)y(t)

)
.

http://fbsbook.org
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(c) Gyu(s) =
G1(s)

1 +G1(s)G2(s)

Figure 2.5: Interconnections of linear systems. Series (a), parallel (b) and feed-
back (c) connections are shown. The transfer functions for the composite systems
can be derived by algebraic manipulations assuming exponential functions for all
signals.

Solving for y(t) gives

y(t) =
G1(s)

1 +G1(s)G2(s)
est.

The transfer function of a feedback connection of systems with the transfer functions
G1(s) and G2(s) is thus

Gyu(s) =
G1(s)

1 +G1(s)G2(s)
. (2.20)

By using polynomials and transfer functions the relations between signals in a
feedback system can thus be obtained by algebra. With some practice the transfer
functions can often be obtained by inspection, as we explore in more detail in
Chapter 9.

Computations Using Transfer Functions

Many software packages for control system analysis and design permit direct ma-
nipulation of transfer functions. In MATLAB the transfer function

G(s) =
s+ 1

(s2 + 5s+ 6)

can be created by the commands s = tf(’s’) and G = (s + 1)/(s^2 + 5*s + 6). Given
two transfer functions G1 and G2, we can form series, parallel, and feedback inter-
connections using the commands Gs = series(G1, G2), Gp = parallel(G1, G2), and
Gf = feedback(G1, G2) (by default, MATLAB’s feedback() command uses nega-
tive feedback).

Software packages can also be used to compute the response of a linear in-
put/output system, represented by its transfer function, to different types of in-
puts. A common input that is used for performance characterization is a signal
that is 0 for t ≤ 0 and then 1 for t > 0. This type of input is called a “step input”
and the response of the system to a step input is called the step response of the
system. A typical step response for a linear system is shown in Figure 2.6. Some
standard features of a step response are the rise time Tr, settling time Ts, overshoot
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Figure 2.6: Sample step response. The rise time Tr, overshoot Mp, settling time
Ts, and steady-state value yss describe important performance properties of the
signal.

Mp, and steady-state value yss, as illustrated in the figure. The step response for
a transfer function G is generated by the MATLAB command y = step(G). If we
want to specify the simulation time interval explicitly, we can instead use the com-
mand y = step(G, T). The response to a specific input signal can be generated by
y = lsim(G, u, t), where u and t are the input and time vectors. Having a transfer
function, it is thus very easy to generate time responses.

A detailed presentation of transfer functions will be given in Chapter 9, where
we will see that transfer functions can also be used to represent systems with time
delays and systems described by partial differential equations.

2.3 Using Feedback to Attenuate Disturbances

Reducing the effects of disturbances is a primary use of feedback. It was used by
James Watt to make steam engines run at constant speed in spite of varying load
and by electrical engineers to make generators driven by water turbines deliver
electricity with constant frequency and voltage. Feedback is commonly used to
alleviate effects of disturbances in the process industry, for machine tools, and for
engine and cruise control in cars. The human body exploits feedback to keep body
temperature, blood pressure, and other important variables constant. For example
the pupillary reflex guarantees that the light intensity of the retina is reasonably
constant in spite of large variations in the ambient light intensity. Keeping vari-
ables close to a desired, constant reference value in spite of disturbances is called a
regulation problem.

To discuss disturbance attenuation we consider the system shown in Figure 2.7.
Since we will focus on the effects of a load disturbance v we will assume for now that
the reference r is zero. To derive the transfer functions from the disturbance input
v to the process output y, which we write as Gyv, we assume that the disturbance
is an exponential function v = est. Applying block diagram algebra to Figure 2.7
gives

y(t) = P (s)est − P (s)C(s)y(t) =⇒ y(t) =
P (s)

1 + P (s)C(s)
est.
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Figure 2.7: Block diagram of a simple feedback system. The controller transfer
function is C(s) and the process transfer function is P (s). The process output is
y, the external signals are the reference r and the load disturbance v.

The transfer function relating the output y to the load disturbance v is thus

Gyv(s) =
P (s)

1 + P (s)C(s)
. (2.21)

To explore the use of feedback to improve disturbance attenuation, we will focus
on a simple process modeled by the first-order differential equation

dy

dt
+ ay = bu, a > 0, b > 0.

The corresponding transfer function is

P (s) =
b

s+ a
. (2.22)

This model is a reasonable approximation for a physical process if the storage of
mass, momentum, or energy can be captured by a single state variable. Typical
examples are the velocity of a car on a road, the angular velocity of a rotating
system, and the fluid level of a tank.

Proportional Control

We will first investigate the case of proportional control, when the control signal
is proportional to the output error: u = kpe, as introduced already in Section 1.6.
The controller transfer function is then C(s) = kp. The process transfer function
is given by equation (2.22) and the effect of the disturbance on the output is then
described by the transfer function (2.21):

Gyv(s) =
P (s)

1 + P (s)C(s)
=

b/(s+ a)

1 + bkp/(s+ a)
=

b

s+ (a+ bkp)
.

The relation between the disturbance v and the output y is thus given by the
differential equation

dy

dt
+ (a+ bkp)y = bv.

The closed loop system is stable if a+ bkp > 0. A constant disturbance v = v0 then
gives an output that exponentially approaches the value

y0 = Gyv(0)v0 =
b

a+ bkp
v0
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Figure 2.8: Step responses for a first-order, closed loop system with proportional
control (a) and PI control (b). The process transfer function is P = 2/(s + 1).
The controller gains for proportional control are kp = 0, 0.5, 1, and 2. The PI
controller is designed using equation (2.28) with ζc = 0.707 and ωc = 0.707, 1, and
2, which gives the controller parameters kp = 0, 0.207, and 0.914 and ki = 0.25,
0.50, and 2.

with the time constant T = 1/(a + bkp). Without feedback, kp = 0 and for a
constant disturbance v0, the output will instead approach bv0/a. The effect of the
disturbance is thus reduced if kp > 0.

We have thus shown that a constant disturbance gives an error that can be
reduced by feedback using a proportional controller. The error decreases with
increasing controller gain. Figure 2.8a shows the responses for a few values of the
controller gain kp.

Proportional-Integral (PI) Control

The PI controller, introduced in Section 1.6, is described by

u(t) = kpe(t) + ki

∫ t

0

e(τ) dτ. (2.23)

To determine the transfer function of the controller we differentiate to obtain

du

dt
= kp

de

dt
+ kie,

and we find that the transfer function is C(s) = kp+ ki/s. To investigate the effect
of the disturbance v on the output we use the block diagram in Figure 2.7, and the
transfer function from v to y is

Gyv(s) =
P (s)

1 + P (s)C(s)
=

bs

s2 + (a+ bkp)s+ bki
. (2.24)
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Using the relationship between transfer functions and differential equations given by
equations (2.10) and (2.16), it follows that the relation between the load disturbance
and the output is given by the differential equation

d2y

dt2
+ (a+ bkp)

dy

dt
+ bkiy = b

dv

dt
. (2.25)

Notice that since the disturbance enters as a derivative on the right hand side,
a constant disturbance gives no steady-state error. The same conclusion can be
drawn from the observation that Gyv(0) = 0. This is consistent with the discussion
of integral action and steady-state error in Section 1.6.

To find suitable values of the controller parameters kp and ki, we consider the
characteristic polynomial of the differential equation (2.25),

acl(s) = s2 + (a+ bkp)s+ bki. (2.26)

We can assign arbitrary roots to the characteristic polynomial by choosing the
controller gains kp and ki. The most common case is that we assign complex roots
that give the characteristic polynomial

(s+ σd + i ωd)(s+ σd − i ωd) = s2 + 2σds+ σ2
d + ω2

d. (2.27)

By construction, this polynomial has roots at s = −σd± i ωd. The general solution
to the homogeneous equation is then a linear combination of the terms

e−σdt sin(ωdt), e−σdt cos(ωdt),

which are damped sine and cosine functions, as shown in the lower middle plot
in Figure 2.3. The coefficient σd determines the decay rate and the parameter
ωd, called the damped frequency, gives the frequency of the decaying oscillation.
Identifying coefficients of equal powers of s in the polynomials (2.26) and (2.27)
gives

kp =
2σd − a

b
, ki =

σ2
d + ω2

d

b
. (2.28)

We can thus choose the controller gains to give a desired closed loop response.
Instead of parameterizing the closed loop system in terms of σd and ωd it is

common practice to use the (undamped) natural frequency ωc =
√
σ2
d + ω2

d and the
damping ratio ζc = σd/ωc. The closed loop characteristic polynomial is then

acl(s) = s2 + 2σds+ σ2
d + ω2

d = s2 + 2ζcωcs+ ω2
c .

This parameterization has the advantage that ζc, which is in the range [−1, 1],
determines the shape of the response and ωc gives the response speed.

Figure 2.8b shows the output y and the control signal u for ζc = 1/
√
2 ≈ 0.707

and different values of the design parameter ωc. Proportional control gives a steady-
state error that decreases with increasing controller gain kp. With PI control the
steady-state error is zero. Both the decay rate and the peak error decrease when
the design parameter ωc is increased. Larger controller gains give smaller errors
and control signals that react more quickly to the disturbance.
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With the controller parameters (2.28), the transfer function (2.24) from distur-
bance v to process output y becomes

Gyv(s) =
P (s)

1 + P (s)C(s)
=

bs

s2 + 2ζcωcs+ ω2
c

.

For efficient attenuation of disturbances, it is desirable that |Gyv(iω)| is small for
all ω. For small values of ω we have |Gyv(iω)| ≈ bω/ω2

c , while for large ω we have
|Gyv(iω)| ≈ b/ω. The largest value of |Gyv(iω)| is b/(2ζcωc) for ω = ωc. It thus
follows that a large value of ωc gives good load disturbance attenuation.

In summary, we find that transfer function analysis gives a simple way to find the
parameters of PI controllers for processes whose dynamics can be approximated by
a first-order system. The technique can be generalized to more complicated systems
but the controller will be more complex. To achieve the benefits of large control
gains the model must be accurate over wide frequency ranges, as will be discussed
next.

Unmodeled Dynamics

The analysis we have made so far indicates that there are no limits to the perfor-
mance that can be achieved. Figure 2.8b shows that arbitrarily fast response can
be obtained simply by making ωc sufficiently large. In reality there are of course
limits on what is achievable. One reason is that the controller gains increase with
ωc: the proportional gain is kp = (2ζcωc − a)/b and the integral gain is ki = ω2

c/b.
A large value of ωc thus gives large controller gains and the control signal may
saturate. Another reason is that the model (2.22) is a simplification: it is only
valid in a given frequency range. If the model is instead

P (s) =
b

(s+ a)(1 + sT )
, (2.29)

where the term 1 + sT represents the dynamics of sensors, actuators, or other
dynamics that were neglected when deriving equation (2.22)—so-called unmodeled
dynamics—the closed loop characteristic polynomial for the closed loop system
becomes

acl = s(s+ a)(1 + sT ) + b(kps+ ki) = s3T + s2(1 + aT ) + 2ζcωcs+ ω2
c .

It follows from the Routh–Hurwitz criterion (2.18) that the closed loop system is
stable if ω2

cT < 2ζcωc(1 + aT ) or if

ωcT < 2ζc(1 + aT ).

The frequency ωc and the achievable response time are thus limited by the unmod-
eled dynamics represented by T , which typically is smaller than the time constant
1/a of the process. When models are developed for control it is therefore important
to also consider the unmodeled dynamics.

The fact that unmodeled dynamics limit the performance of a feedback system
is an important property and must be considered during the system design. It is
common to use simplified models when designing components of complex systems
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and if the unmodeled dynamics of those components (or the other subsystems they
interact with) are not properly taken into account, the implementation of the system
can display poor behavior (of which instability is one extreme example). As we shall
see in later chapters, it is the ability to reason about the effects of uncertainty that
makes control theory a particularly powerful mathematical tool for systems design.

2.4 Using Feedback to Track Reference Signals

Another major application of feedback is to make a system output follow a ref-
erence value, which is called the servo problem. Cruise control, steering of a car,
and tracking a satellite with an antenna or a star with a telescope are some exam-
ples. Other examples are high performance audio amplifiers, machine tools, and
industrial robots.

To illustrate reference signal tracking we will consider the system in Figure 2.7
where the process is a first-order system and the controller is a PI controller with
proportional gain kp and integral gain ki. The transfer functions of the process and
the controller are

P (s) =
b

s+ a
, C(s) =

kps+ ki
s

. (2.30)

Since we will focus on following the reference signal r, we will neglect the load
disturbance and set v = 0. Applying block diagram algebra to the system in
Figure 2.7, we find that the transfer function from the reference signal r to the
output y is

Gyr(s) =
P (s)C(s)

1 + P (s)C(s)
=

bkps+ bki
s2 + (a+ bkp)s+ bki

. (2.31)

Since Gyr(0) = 1 it follows that r = y when r and y are constant, independent of
the values of the parameters a and b, as long as the closed loop system is stable.
The steady-state output is thus equal to the reference, a consequence of the integral
action in the controller.

To determine suitable values of the controller parameters kp and ki, we pro-
ceed as in Section 2.3 by choosing controller parameters that make the closed loop
characteristic polynomial

acl(s) = s2 + (a+ bkp)s+ bki (2.32)

equal to s2 + 2ζcωcs+ ω2
c with ζc > 0 and ωc > 0. Identifying coefficients of equal

powers of s in these polynomials gives

kp =
2ζcωc − a

b
, ki =

ω2
c

b
, (2.33)

which is equivalent to equation (2.28). Notice that integral gain increases with the
square of ωc. Figure 2.9 shows the output signal y and the control signal u for
different values of the design parameters ζc and ωc. The response time decreases
with increasing ωc and the initial value of the control signal also increases because
it takes more effort to move rapidly. The overshoot decreases with increasing ζc.
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Figure 2.9: Responses to a unit step change in the reference signal for different
values of the design parameters ωc and ζc. The left figure shows responses for fixed
ζc = 0.707 and ωc = 1, 2, and 5. The right figure shows responses for ωc = 2 and
ζc = 0.5, 0.707, and 1. The process parameters are a = b = 1. The initial value of
the control signal is kp.

For ωc = 2, the design choice ζc = 1 gives a short settling time and a response
without overshoot.

It is desirable that the output y will track the reference signal r for time-varying
references. This means that we would like the transfer function Gyr(s) to be close
to 1 for large frequency ranges. With the controller parameters (2.33), it follows
from equation (2.31) that

Gyr(s) =
P (s)C(s)

1 + P (s)C(s)
=

(2ζcωc − a)s+ ω2
c

s2 + 2ζcωcs+ ω2
c

.

Since Gyr(0) = 1, tracking of constant inputs is perfect. In addition, if s = iω
is smaller in magnitude than ωc, then using some approximations it can be shown
that Gyr(s) will be close to one. The frequency ωc thus determines the upper bound
of the frequency of reference signals that can be tracked with small error, and this
bound is referred to as the bandwidth of the closed loop system. The frequency
response of Gyr therefore provides a quantitative representation of the tracking
abilities.

Controllers with Two Degrees of Freedom

The control law in Figure 2.7 has error feedback because the control signal u is
generated from the error e = r − y. With proportional control, a step in the
reference signal r gives an immediate step change in the control signal u. This
rapid reaction can be advantageous, but it may give large overshoot, which can be
avoided by a replacing the PI controller in equation (2.23) with a controller of the
form

u(t) = kp
(
βr(t)− y(t)

)
+ ki

∫ t

0

(r(τ)− y(τ)) dτ. (2.34)
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Figure 2.10: Block diagram of a closed loop system with a PI controller having
an architecture with two degrees of freedom.

In this modified PI algorithm, the proportional action only acts on the fraction β
of the reference signal. The signal transmissions from reference r to u and from
output y to u can be represented by the (open loop) transfer functions

Cur(s) = βkp +
ki
s
, −Cuy(s) = kp +

ki
s

= C(s). (2.35)

The controller (2.34) is called a controller with two degrees of freedom since the
transfer functions Cur(s) and Cuy(s) are different.

A block diagram of a closed loop system with a PI controller having two degrees
of freedom is shown in Figure 2.10. Let the process transfer function be P (s) =
b/(s + a). The transfer functions from reference r and disturbance v to output y
are

Gyr(s) =
bβkps+ bki

s2 + (a+ bkp)s+ bki
, Gyv(s) =

bs

s2 + (a+ bkp)s+ bki
. (2.36)

Comparing with the corresponding transfer function for a controller with error
feedback in equations (2.24) and (2.31), we find that the response to the load
disturbances is the same but the response to reference signals is different.

A simulation of the closed loop system for a = 0 and b = 1 is shown in Fig-
ure 2.11. The figure shows that the parameter β has a significant effect on the
responses. Comparing the system with error feedback (β = 1) to the system with
smaller values of β we find that using a system with two degrees of freedom gives
less overshoot and gentler control actions.
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Figure 2.11: Response to a step change in the reference signal for a system with
a PI controller having two degrees of freedom. The process transfer function is
P (s) = 1/s and the controller gains are kp = 1.414, ki = 1, and β = 0, 0.5, and 1.
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The example shows that reference signal response can be improved by using a
controller architecture having two degrees of freedom. In Section 12.4 we will further
show that the responses to reference signals and disturbances can be completely
separated by using a more general system architecture. To use a system with
two degrees of freedom both the reference signal r and the output signal y must
be measured. There are situations where only the error signal e = r − y can
be measured; typical examples are DVD players, optical memories, and atomic
force microscopes. In these cases, only single degree of freedom (error feedback)
controllers can be used.

2.5 Using Feedback to Provide Robustness

Feedback can be used to make good systems from imprecise components. Black’s
invention of the feedback amplifier for the telephone network is an early exam-
ple [Bla77]. Black used negative feedback to design extremely good amplifiers with
linear characteristics from components with nonlinear and time-varying properties.
Since signals are transmitted over long distances they must be amplified. At the
time, the thermionic valve—a type of vacuum tube invented by Lee de Forest in
1906—was the only available technology for amplifying electric signals until the
transistor was in invented in 1947. Vacuum tubes were the key to develop radio,
telephony, and electronics in the first half of the 20th century. They are still used
by some hi-fi aficionados in high quality audio amplifiers.

Vacuum tubes can give high gain but they have nonlinear and time varying
input/output characteristics that distort the transmitted signals. Bode [Bod60]
expressed the problem as follows:

Most of you with hi-fi systems are no doubt proud of the quality of your
amplifiers, but I doubt whether many of you would care to listen to the
sound after the signal had gone in succession through several dozen or
several hundred even of your fine amplifiers.

The effect is illustrated in Exercise 2.9.
Black’s idea to develop a good amplifier was to close a loop with negative feed- H○

back around the tube amplifier. In this way he could obtain a closed loop system
with a linear input/output relation having constant gain. The general recipe is to
localize the nonlinearities and the source of process variations, and to close feedback
loops around them.

Reducing Effects of Parameter Variations and Nonlinearities

Consider an amplifier with a static, nonlinear input/output relation with consider-
able parameter variability, as illustrated in Figure 2.12a. The nominal input/output
characteristic is shown as a dashed bold line and examples of variations as thin lines.
The nonlinearity in the figure is given by

y = F (u) = α(u+ βu3), −3 ≤ u ≤ 3. (2.37)

The nominal values corresponding to the dashed line are α = 0.2 and β = 1. The
variations of the parameters α and β are in the ranges 0.1 ≤ α ≤ 0.5, 0 ≤ β ≤ 2.

http://fbsbook.org


2.5. USING FEEDBACK TO PROVIDE ROBUSTNESS 2-21

-2 0 2
-3

-2

-1

0

1

2

3

O
u
tp

u
t
y

Input u

(a) I/O relationships

0 0.5 1 1.5 2
-1

0

1

2

3

4

5

Time t

O
u
tp

u
t
y

(b) Output signals

Figure 2.12: Responses of a static nonlinear system. The left figure shows the in-
put/output relations of the open loop systems and the right figure shows responses
to the input signal (2.38). The ideal response is shown with solid bold lines. The
nominal response of the nonlinear system is shown using dashed bold lines and
the responses for different parameter values are shown using thin lines. Notice the
large variability in the responses.

The responses of the system to the input

u(t) = sin(t) + sin(πt) + sin(π2t) (2.38)

are shown in Figure 2.12b. The desired response y = u is shown as a solid bold line
and responses for a range of parameters are shown with thin lines. The nominal
response of the nonlinear system is shown as a dashed bold line, and we see that
it is distorted due to the nonlinearity. Notice in particular the heavy distortion for
both small and large signal amplitudes.

The behavior of the system is clearly not satisfactory, but it can be improved
significantly by introducing feedback. A block diagram of a system with a simple
integral controller is shown in Figure 2.13, where the reference input is now taken
as r. Figure 2.14 shows the behavior of the closed loop system with the same pa-
rameter variations as in Figure 2.12. The input/output plot in Figure 2.14a is a
scatter plot of the inputs and the outputs of the feedback system. The input/output
relation is practically linear and close to the desired response. There is some vari-
ability because of the dynamics introduced by the feedback. Figure 2.14b shows
the responses to the reference signal; notice the dramatic improvement compared
with Figure 2.12b. The tracking error is shown in Figure 2.14c.
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P = F (u)

Figure 2.13: Block diagram of a nonlinear system with integral feedback.
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Figure 2.14: Responses of the systems with integral feedback (ki = 1000). The
left figure shows the input/output relationships for the closed loop systems, and
the center figure shows responses to the input signal (2.38) (compare to the corre-
sponding responses in Figure 2.12a and b). The right figure shows the individual
errors (solid lines) and the approximate error given by equation (2.42) (dashed
line).

Nonlinear Analysis and Approximations �

Analysis of a closed loop system with nonlinearities is often difficult. We can,
however, obtain significant insight by using approximations. We illustrate a few
ideas using the nonlinear amplifier example.

We first observe that the system is linear when β = 0. In other situations
we can approximate the nonlinear function by a straight line around an operating
point u = u0. The slope of the nonlinear function at u = u0 is F ′(u0) and we will
approximate the process with a linear system with the gain F ′(u0). The transfer
functions of the process and the controller are

P (s) = F ′(u0) = α(1 + 3βu20) =: b, C(s) =
ki
s
, (2.39)

where u0 denotes the operating condition. It follows from equation (2.21) that the
transfer functions relating the output y and the error e to the reference signal r are

Gyr(s) =
bki

s+ bki
, Ger(s) = 1−Gyr =

s

s+ bki
. (2.40)

The closed loop system is a first-order system with the pole s = −bki. The process
gain b = α(1 + 3βu20) depends on the values of α, β, and u0, and its smallest value
is 0.1. If the integral gain is chosen as ki = 1000, the smallest value of the closed
loop pole is 100 rad/s, which is fast compared to the high-frequency component
π2 rad/s of the input signal. It follows from equation (2.40) that the error e(t) is
given by the differential equation

de

dt
= −bkie+

dr

dt
,

dr

dt
= cos(t) + π cos(πt) + π2 cos(π2t). (2.41)

Neglecting the term de/dt in equation (2.41) gives

e(t) ≈ 1

bki

dr

dt
≈ π2

bki
cos(π2t). (2.42)
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Figure 2.15: Schematic diagram of the neural network that controls swimming
motions in the marine mollusk Tritonia, which has both positive and negative
feedback. An excitatory connection (positive feedback) is denoted with a line
ending with an arrow, an inhibitory interaction (negative feedback) is denoted
with an arrow ending with a circle. (Figure adapted from [Wil99].)

An estimate of the largest error e(t) ≈ 0.1 cos(π2t) is obtained for the smallest value
of b = 0.1. It is shown as a dashed line in Figure 2.14c, and we see that it gives a
good estimate of the maximum error across the uncertain parameter space.

This analysis is based on the assumption that the amplifier can be modeled
by a constant gain. The closed loop system is however a dynamic system because
the controller is an integrator. It follows from equation (2.40) that the closed loop
dynamics have the time constant Tcl = 1/(bki). If the amplifier has dynamics,
its time constant must thus be small compared to Tcl in order to provide good
tracking. It follows that the largest admissible integral gain ki is determined by the
unmodeled dynamics.

This example illustrates that feedback can be used to design an amplifier that
has practically linear input/output relation even if the basic amplifier is nonlinear
with strongly varying characteristics.

2.6 Positive Feedback

Most of this book is focused on negative feedback because of its amazingly good
properties, which have been illustrated in the previous sections. In this section we
will briefly discuss positive feedback, which has complementary properties. In spite
of this, positive feedback has found good use in several contexts.

Systems with negative feedback can be well understood by linear analysis. To
understand systems with positive feedback it is necessary to consider nonlinear ef-
fects, because without the nonlinearities the instability caused by positive feedback
will grow without bound. The nonlinear elements can create interesting and useful
effects by limiting the signals.

Positive feedback is common in many settings. Encouraging a student or a
coworker when they have performed well encourages them do to even better. In
biology, it is standard to distinguish inhibitory connections (negative feedback)
from excitatory feedback (positive feedback) as illustrated in Figure 2.15. Neurons
use a combination of positive and negative feedback to generate spikes.

Positive feedback may cause instabilities. Exponential growth, where the rate
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Figure 2.16: Circuit diagrams of William Hewlett’s oscillator. (a) Original sys-
tem with vacuum tubes. (b) Equivalent realization with an operational amplifier.

of change of a quantity x is proportional to x,

dx

dt
= αx,

is a typical example, which results in an unbounded solution x(t) = eαt. In nature,
exponential growth of a species is limited by the finite amount of food. Another
common example is when a microphone is placed close to a speaker in public address
systems, resulting in a howling noise. Positive feedback can create stampedes in
cattle herds, runs on banks, and boom-bust behavior. In all these cases there is
exponential growth that is finally limited by finite resources.

The notions of positive and negative feedback are clear if the feedback is static,
as we saw for example in Section 2.1. If the feedback is dynamic its action can
change from positive to negative depending on the frequency of the signals and
hence more care is required. Use of positive feedback will be illustrated by a few
examples.

Hewlett’s Oscillator

William Hewlett used positive and negative feedback very cleverly to design a stable
oscillator in his master’s thesis from Stanford University in 1939. The oscillator
was the first product made by Hewlett-Packard, the company that Hewlett founded
with David Packard in 1939 [Pac13].

Electronic circuits in the 1930s and 1940s were based on vacuum tube technol-
ogy. The simplest vacuum tube amplifier has three electrodes: a cathode, grid,
and anode enclosed in a glass tube with vacuum. The cathode, which is heated
with a filament, emits free electrons. A current is created by applying a high pos-
itive voltage between the anode and the cathode. The current can be regulated
by changing the voltage on a grid positioned between the anode and the cathode.
The current depends on the voltage difference between the grid and the cathode,
Vg − Vc. Increasing this voltage difference increases the current. The vacuum tube
amplifier can be regarded as a valve for controlling a current by applying a voltage
to the grid.

A schematic diagram of Hewlett’s oscillator is shown in Figure 2.16a. Signals
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Figure 2.17: Implementation of integral action by positive feedback.

are amplified by two vacuum tubes and there are two feedback loops. One loop
provides positive feedback from the anode of the second tube to the grid of the first
tube via the network R1, C1, R2, C2. The second feedback loop provides negative
feedback from the output of the second tube to the cathode of the first tube via the
resistor Rf and the lamp which has resistance Rb. With a proper gain the positive
feedback loop generates an oscillation with the frequency ω = 1/

√
R1R2C1C2. The

gain is given by the negative feedback loop from the anode of the second loop to
the cathode of the first loop, through the resistor Rf and the lamp Rb. This loop
has nonlinear gain because the resistance Rb of the lamp increases with increasing
temperature. An increase of the amplitude of Vout increases the current through
the lamp, which reduces the gain. The result is that an oscillation with stable
amplitude and frequency is obtained.

The feedback loops are more clearly visible in the implementation of the oscil-
lator based on an operational amplifier, shown in Figure 2.16b.

Implementation of Integral Action by Positive Feedback

Early feedback controllers made use of integral action that was implemented by
using positive feedback around a system with first order dynamics, as shown in the
block diagram of Figure 2.17. Intuitively the system can be explained as follows.
Proportional feedback typically gives a steady-state error. This can be overcome by
adding a bias signal that cancels the steady-state error. In Figure 2.17 the bias is
estimated by low-pass filtering the control signal and adding it back into the signal
path. This serves to compensate for any error that is present.

The circuit can be understood better by a little analysis. Using block diagram
algebra we find that the transfer function of the system is

Gue =
kp

1− 1/(1 + sTi)
= kp +

kp
sTi

,

which is a transfer function of a PI controller. This way of implementing integral
action is still used in many industrial regulators.

Positive Feedback Combined with Saturation

Systems with interesting and useful properties can be obtained by combining linear
and nonlinear components with positive feedback. In this section we consider an
example of a simple form of memory implemented using a feedback circuit.

Consider the system in Figure 2.18, which consists of a linear block with first-
order dynamics and a nonlinear block with positive feedback. Assume that the
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Figure 2.18: Block diagram of system with positive feedback and saturation.
The parameters are a = 1 and b = 4.

nonlinearity is

y = F (x) =
x

1 + |x| , which gives x = F−1(y) =
y

1− |y| .

The system is described by the differential equation F○

dx

dt
= −ax+ b(r + y) = b(r −G(y)), G(y) :=

aF−1(y)

b
− y =

ay

b(1− |y|) − y.

Rewriting the dynamics in terms of the variable y = F (x), we get the following
relation between the input r and the output y:

dy

dt
=
dF (x)

dt
=
dF (x)

dx

∣∣∣∣
F−1(y)

·
dx

dt
= F ′(F−1(y)

)
· b(r −G(y)). (2.43)

The function F is monotone with F ′(x) > 0 for all x and so the equilibrium points
for a constant input r are given by the solutions of r = G(y). The graph of the
function G is shown in Figure 2.19a for a = 1 and b = 4. The function G(y) has
a local maximum rmax = (1 −

√
a/b)2 = 0.25 at y = −1 +

√
a/b = −0.5 and a

local minimum rmin = −0.25 at y = 0.5. The set of possible equilibrium points
for the system can be determined from Figure 2.19a by fixing r and identifying all
values of y that satisfy r = G(y). There is one unique equilibrium if |r| > 0.25, two
equilibrium points if |r| = 0.25, and three equilibrium points if |r| < 0.25.

The differential equation (2.43) is of first order and the equilibrium point ye is
stable if G′(ye) is positive and unstable if G′(ye) is negative. Stable equilibrium
points are shown in solid lines and unstable equilibrium points by dashed lines in
Figure 2.19a. The differential equation thus has two stable equilibrium points when
rmin < r < rmax and one stable equilibrium point when |r| ≥ rmax.

To understand the behavior of the system, we will explore what happens when
the reference is changed. If the reference r is zero there are two stable equilibrium
points, as can be seen in Figure 2.19a by looking at the horizontal line at r = 0
(labeled C). We assume that the system is at the stable left equilibrium point,
where y is negative. If the reference is increased, the equilibrium point moves
slightly to the right. When the reference reaches the value 0.25, which corresponds
an unstable equilibrium, the solution moves towards the right stable equilibrium
point, where y is positive, as indicated by the line marked B in Figure 2.19a. If the
value of r is increased further, the output y also increases. The static input/output
relation is thus given by the “inverse function” y = G†(r), which gives the value(s)
of the stable output values as a function of r. The system has hysteretic behavior

https://fbsbook.org/faq/colonequal.html
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Figure 2.19: System with positive feedback and saturation. (a) For a fixed refer-
ence value r, the intersections with the curve r = G(y) corresponds to equilibrium
points for the system. Equilibrium points at selected values of r are shown by
circles (note that for some reference values there are multiple equilibrium points).
Arrows indicate the sign of the derivative of y away from the equilibrium points,
with the solid portions of r = G(y) representing stable equilibrium points and
dashed portions representing unstable equilibrium points. (b) The hysteretic in-
put/output map given by y = G†(r), showing that some values of r have single
equilibrium points while others have two possible (stable) steady-state output val-
ues. (c) Simulation of the system dynamics showing the reference r (dashed curve)
and the output y (solid curve).

as shown in Figure 2.19b, where the dashed line indicates the switches between the
branches of the solution curves, and they occur at r = ±rmax = ±0.25.

The temporal behavior of the system is illustrated by the simulations in Fig-
ure 2.19c, where the input r is dashed and the output y is solid. The shapes of
the signals depend on the parameters; the values a = 5, b = 50 were used in the
figure to give more distinct switches. The hysteresis width is 2rmax and the param-
eter a gives the sharpness of the corners of the output. The circuit shown in the
Figure 2.18 is commonly used as a trigger to detect changes in a signal (known as
a Schmitt trigger). It is also used as a memory element in solid state memories,
illustrating that feedback can be used to obtain discrete behavior.
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2.7 Further Reading

The books by Bennett [Ben79, Ben93] and Mindel [Min02, Min08] give interesting
perspective on the development of control. Much of the material touched upon in
this chapter is referred to as “classical control”; see [CM51], [JNP47], and [Tru55]
for early texts on this material. A more thorough introduction to the principles
of feedback with minimal mathematical prerequisites is available in the textbook
Feedback Control for Everyone [AM10]. The notion of controllers with two degrees
of freedom was introduced by Horowitz [Hor63].

The analysis introduced here will be elaborated in the rest of the book. Transfer
functions and other descriptions of dynamics are discussed in Chapters 3 and 9,
methods to investigate stability in Chapters 5 and 10. The simple method to
find parameters of controllers based on matching of coefficients of the closed loop
characteristic polynomial is developed further in Chapters 7, 8, and 13. Feedforward
control is discussed in Sections 8.5 and 12.4.

Exercises

2.1 (Transfer functions and differential equations) Let y ∈ R and u ∈ R. Solve the
differential equations

dy

dt
+ ay = bu,

d2y

dt2
+ 2

dy

dt
+ y = 2

du

dt
+ u,

for t > 0. Determine the responses to a unit step u(t) = 1 and the exponential
signal u(t) = est when the initial condition is zero. Derive the transfer functions of
the systems.

2.2 (Effect of zeros on time responses) Let y0(t) be the response of a system with the
transfer functionG0(s) to a given input. The transfer functionG(s) = (1+sT )G0(s)
has the same zero frequency gain but it has an additional zero at z = −1/T . Let
y(t) be the response of the system with the transfer function G(s) and show that

y(t) = y0(t) + T
dy0
dt
. (2.44)

Next consider the system with the transfer function

G(s) =
s+ a

a(s2 + 2s+ 1)
,

which has unit zero-frequency-gain (G(0) = 1). Use the result in equation (2.44)
to explore the effect of a zero at s = −1/T on the step response of a system.

2.3 (PI control) Consider a closed loop system with process dynamics and a PI
controller modeled by

dy

dt
+ ay = bu, u = kp(r − y) + ki

∫ t

0

(
r(τ)− y(τ)) dτ,

where r is the reference, u is the control variable, and y is the process output.
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(a) Derive a differential equation relating the output y to the reference r by direct
manipulation of the equations and compute the transfer function Hyr(s). Make
the derivations both by direct manipulation of the differential equations and by
polynomial algebra.

(b) Draw a block diagram of the system and derive the transfer functions of the
process P (s) and the controller C(s).

(c) Use block diagram algebra to compute the transfer function from reference r
to output y of the closed loop system and verify that your answer matches your
answer in part (a).

2.4 (Zero frequency gain) Consider the system described by the differential equa-
tion (2.10) and the transfer function (2.16). Determine the zero frequency gain of
the system by computing the particular solution of equation (2.10) for a constant
input u(t) = u0. Compare with the value of G(0).

2.5 (Pupil response) The dynamics of the pupillary reflex can be approximated by
a linear system with the transfer function

P (s) =
0.2(1− 0.1s)

(1 + 0.1s)3
.

Assume that the nervous system that controls the pupil opening is modeled as
a proportional controller with the gain k. Use the Routh–Hurwitz criterion to
determine the largest gain that gives a stable closed loop system.

2.6 (Parameter sensitivity) Consider the feedback system in Figure 2.7. Let the
disturbance v = 0, P (s) = 1 and C(s) = ki/s. Determine the transfer function Gyr
from reference r to output y. Also determine how much Gyr is changed when the
process gain changes by 10%.

2.7 (PID control design) The calculations in Section 2.3 can be interpreted as a
design method for a PI controller for a first-order system. A similar calculation can
be made for PID control of a second-order system. Let the transfer functions of the
process and the controller be

P (s) =
b

s2 + a1s+ a2
, C(s) = kp +

ki
s
+ kds.

Show that the controller parameters

kp =
(1 + 2αζc)ω

2
c − a2

b
, ki =

αω3
c

b
, kd =

(α+ 2ζc)ωc − a1
b

give a closed loop system with the characteristic polynomial

(s2 + 2ζcωcs+ ω2
c )(s+ αωc).
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2.8 (Linear behavior via feedback) Consider an open loop system with the nonlin-
ear input/output relation y = F (u). Assume that the system is closed with the
proportional controller u = k(r − y). Show that the input/output relation of the
closed loop system is

y +
1

k
F−1(y) = r.

Estimate the largest deviation from ideal linear response y = r. Illustrate by
plotting the input output responses for a) F (u) =

√
u and b) F (u) = u2 with

0 ≤ u ≤ 1 and k = 5, 10, and 100.

2.9 (Nonlinear distortion) The following MATLAB commands will load and play
Handel’s Messiah:

load handel % Load Handel’s Messiah

sound(y, Fs); pause % Play the original music through speaker

Write a MATLAB function that implements a nonlinear amplifier with static gain

y = 2(z + az(1− z)− 0.5), z = (x+ 1)/2,

where x is the original signal (assumed to take values between −1 and 1) and a
is the amplifier gain. Compare the sound that is obtained when the music is then
sent through two amplifiers with the given nonlinearity and gain a = 1 versus when
the music is sent through the same two amplifiers with feedback k = 10.

2.10 (Queing systems) Consider a queuing system modeled by

dx

dt
= λ− µmax

x

x+ 1
,

where λ is the acceptance rate of jobs and x is the length of the queue. The model
is nonlinear and the dynamics of the system changes significantly with the queuing
length (see Example 3.15 for a more detailed discussion). Investigate the situation
when a PI controller is used for admission control. Let r be the rate of arrival of
job requests and model the (average) arrival intensity λ as

λ = kp(r − x) + ki

∫ t

(r(t)− x(t))dt.

The controller parameters are determined from the approximate model

dx

dt
= λ.

Find controller parameters that give the closed loop characteristic polynomial s2 +
2s+ 1 for the approximate model. Investigate the behavior of the control strategy
for the full nonlinear model by simulation for the input r = 5 + 4 sin(0.1t).



Chapter 3

System Modeling

... I asked Fermi whether he was not impressed by the agreement between
our calculated numbers and his measured numbers. He replied, “How
many arbitrary parameters did you use for your calculations?” I thought
for a moment about our cut-off procedures and said, “Four.” He said,
“I remember my friend Johnny von Neumann used to say, with four
parameters I can fit an elephant, and with five I can make him wiggle
his trunk.”

Freeman Dyson on describing the predictions of his model for meson-
proton scattering to Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamics used to answer ques-
tions via analysis and simulation. The model we choose depends on the questions
we wish to answer, and so there may be multiple models for a single dynamical
system, with different levels of fidelity depending on the phenomena of interest.
In this chapter we provide an introduction to the concept of modeling and present
some basic material on two specific methods commonly used in feedback and control
systems: differential equations and difference equations.

3.1 Modeling Concepts

A model is a mathematical representation of a physical, biological, or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior of systems, and we will
often work in “state space” form. As pointed out already in Chapter 1, when
using models it is important to keep in mind that they are an approximation of
the underlying system. Analysis and design using models must always be done
carefully to ensure that the limits of the model are respected.

Roughly speaking, a dynamical system is one in which the effects of actions
do not occur immediately. For example, the velocity of a car does not change
immediately when the gas pedal is pushed nor does the temperature in a room
rise instantaneously when a heater is switched on. Similarly, a headache does not

3-1
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c(q̇)

q

Figure 3.1: Spring–mass system with nonlinear damping. The position of the
mass is denoted by q, with q = 0 corresponding to the rest position of the spring.
The forces on the mass are generated by a linear spring with spring constant k and
a damper with force dependent on the velocity q̇.

vanish right after an aspirin is taken, requiring time for it to take effect. In business
systems, increased funding for a development project does not increase revenues in
the short term, although it may do so in the long term (if it was a good investment).
All of these are examples of dynamical systems, in which the behavior of the system
evolves with time.

In the remainder of this section we provide an overview of some of the key
concepts in modeling. The mathematical details introduced here are explored more
fully in the remainder of the chapter.

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary motion. The
basis was detailed observations of the planets by Tycho Brahe and the results of
Kepler, who found empirically that the orbits of the planets could be well described
by ellipses. Newton embarked on an ambitious program to try to explain why the
planets move in ellipses, and he found that the motion could be explained by his
law of gravitation and the formula stating that force equals mass times acceleration.
In the process he also invented calculus and differential equations.

One of the triumphs of Newton’s mechanics was the observation that the motion
of the planets could be predicted based on the current positions and velocities of all
planets. It was not necessary to know the past motion. The state of a dynamical
system is a collection of variables that completely captures the past motion of a
system for the purpose of predicting future motion. For a system of planets the
state is simply the positions and the velocities of the planets. We call the set of all
possible states the state space.

A common class of mathematical models for dynamical systems is ordinary
differential equations (ODEs). In mechanics, one of the simplest such differential
equations is that of a spring–mass system with damping:

mq̈ + c(q̇) + kq = 0. (3.1)

This system is illustrated in Figure 3.1. The variable q ∈ R represents the position
of the mass m with respect to its rest position. We use the notation q̇ to denote
the derivative of q with respect to time (i.e., the velocity of the mass) and q̈ to
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Figure 3.2: Illustration of a state model. A state model gives the rate of change
of the state as a function of the state. The plot on the left shows the evolution
of the state as a function of time. The plot on the right, called a phase portrait,
shows the evolution of the states relative to each other, with the velocity of the
state denoted by arrows.

represent the second derivative (acceleration). The spring is assumed to satisfy
Hooke’s law, which says that the force is proportional to the displacement. The
friction element (damper) is taken as a nonlinear function c(q̇), which can model
effects such as Coulomb friction and viscous drag. The position q and velocity
q̇ represent the instantaneous state of the system. We say that this system is a
second-order system since it has two states that we combine in the state vector
x = (q, q̇).

The evolution of the position and velocity can be described using either a time
plot or a phase portrait, both of which are shown in Figure 3.2. The time plot,
on the left, shows the values of the individual states as a function of time. The
phase portrait, on the right, shows the traces of some of the states from different
initial conditions: it illustrates how the states move in the state space. In the
phase portrait we have also shown arrows that represent the velocity ẋ of the state
x in a few points. The phase portrait gives a strong intuitive representation of the
equation as a vector field or a flow. While systems of second order (two states)
can be represented in this way, unfortunately it is difficult to visualize equations of
higher order using this approach.

The differential equation (3.1) is called an autonomous system because there are
no external influences. (Note that this usage of “autonomous” is slightly different
than in the phrase “autonomous vehicle.”) Such a model is natural for use in
celestial mechanics because it is difficult to influence the motion of the planets. In
many examples it is useful to model the effects of external disturbances or controlled
forces on the system. One way to capture this is to replace equation (3.1) by

mq̈ + c(q̇) + kq = u, (3.2)

where u represents the effect of external inputs. The model (3.2) is called a forced
or controlled differential equation. It implies that the rate of change of the state
can be influenced by the input u(t). Adding the input makes the model richer and
allows new questions to be posed. For example, we can examine what influence



3-4 CHAPTER 3. SYSTEM MODELING

7
+v

–v

vos adj

(+)

(–)

Inputs
Output3

2

6

4

Q9

Q1 Q2

Q3 Q4

Q7

Q5

R1 R12

R8

R7 R9

R10

R11R2

Q6
Q22

Q17

Q16

Q18
30pF

Q15

Q14

Q20

Q8

(a) Circuit diagram

System
Input Output

(b) Block diagram

Figure 3.3: Illustration of the input/output view of a dynamical system. The
figure on the left shows a detailed circuit diagram for an electronic amplifier; the
one on the right is its representation as a block diagram.

external disturbances have on the trajectories of a system. Or, in the case where
the input variable is something that can be modulated in a controlled way, we can
analyze whether it is possible to “steer” the system from one point in the state
space to another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where the design
of electronic amplifiers led to a focus on input/output behavior. A system was
considered a device that transforms inputs to outputs, as illustrated in Figure 3.3.
Conceptually an input/output model can be viewed as a giant table of input and
output signals. Given an input signal u(t) over some interval of time, the model
should produce the resulting output y(t).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio
or a television and break it down into manageable pieces such as the receiver,
demodulator, amplifier, and speakers. Each of these pieces has a set of inputs and
outputs and, through proper design, these components can be interconnected to
form the entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully later in this chapter,
but roughly speaking a system is linear if the superposition (addition) of two inputs
yields an output that is the sum of the outputs that would correspond to individual
inputs being applied separately. A system is time-invariant if the output response
for a given input does not depend on when that input is applied.

Many electrical engineering systems can be modeled by linear time-invariant
systems and hence a large number of tools have been developed to analyze them.
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Figure 3.4: Input/output response of a linear system. The step response (a)
shows the output of the system due to an input that changes from 0 to 1 at time
t = 5 s. The frequency response (b) shows the amplitude gain and phase change
due to a sinusoidal input at different frequencies.

One such tool is the step response, which describes the relationship between an
input that changes from zero to a constant value abruptly (a step input) and the
corresponding output. As we shall see later in the text, the step response is very
useful in characterizing the performance of a dynamical system, and it is often used
to specify the desired dynamics. A sample step response is shown in Figure 3.4a.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged.
The results are based on the theory of complex variables and Laplace transforms.
The basic idea behind the frequency response is that we can completely characterize
the behavior of a system by its steady-state response to sinusoidal inputs. Roughly
speaking, this is done by decomposing any arbitrary signal into a linear combina-
tion of sinusoids (e.g., by using the Fourier transform) and then using linearity to
compute the output by combining the response to the individual frequencies. A
sample frequency response is shown in Figure 3.4b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach to dynam-
ics was strongly influenced by the electrical engineering (input/output) view. A
second wave of developments in control, starting in the late 1950s, was inspired by
mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems. In the 1970s the development was
influenced by advances in automation, which emphasized the need to include logic



3-6 CHAPTER 3. SYSTEM MODELING

and sequencing.
The development of state space models involved modifying the models from

mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, the model given by equation (3.2) was replaced by

dx

dt
= f(x, u), y = h(x, u), (3.3)

where x is a vector of state variables, u is a vector of control signals, and y is a vector
of measurements. The term dx/dt represents the derivative of the vector x with
respect to time, and f and h are (possibly nonlinear) mappings of their arguments
to vectors of the appropriate dimension. For mechanical systems, the state consists
of the position and velocity of the system, so that x = (q, q̇) in the case of a damped
spring–mass system. Note that in the control formulation we model dynamics as
first-order differential equations, but we will see that this can capture the dynamics
of higher-order differential equations by appropriate definition of the state and the
maps f and h.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 7 and 8.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output rep-
resentations and state space representations are particularly useful when modeling
systems with uncertainty since state models are convenient to describe a nominal
model but uncertainties are easier to describe using input/output models (often via
a frequency response description). Uncertainty will be a constant theme throughout
the text and will be studied in particular detail in Chapter 13.

An interesting observation in the design of control systems is that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

Multidomain Modeling �

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previous
discussion of mechanical and electrical engineering. A difficulty in systems engi-
neering is that it is frequently necessary to deal with heterogeneous systems from
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many different domains, including chemical, electrical, mechanical, and information
systems.

To model such multidomain systems, we start by partitioning a system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy, and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how
the variables of the subsystem behave when the subsystems are interconnected.
These interfaces act by constraining variables within the individual subsystems to
be equal (such as mass, energy, or momentum fluxes). The complete model is then
obtained by combining the descriptions of the subsystems and the interfaces.

Using this methodology it is possible to build up libraries of subsystems that
correspond to physical, chemical, and informational components. The procedure
mimics the engineering approach where systems are built from subsystems that are
themselves built from smaller components. As experience is gained, the compo-
nents and their interfaces can be standardized and collected in model libraries. In
practice, it takes several iterations to obtain a good library that can be reused for
many applications.

State models or ordinary differential equations are not suitable for component-
based modeling of this form because states may disappear when components are
connected. This implies that the internal description of a component may change
when it is connected to other components. As an illustration we consider two
capacitors in an electrical circuit. Each capacitor has a state corresponding to the
voltage across the capacitors, but one of the states will disappear if the capacitors
are connected in parallel. A similar situation happens with two rotating inertias,
each of which is individually modeled using the angle of rotation and the angular
velocity. Two states will disappear when the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations by differential
algebraic equations, which have the form

F (z, ż) = 0,

where z ∈ Rn. A simple special case is

ẋ = f(x, y), g(x, y) = 0, (3.4)

where z = (x, y) and F = (ẋ − f(x, y), g(x, y)). The key property is that the
derivative ż is not given explicitly and there may be pure algebraic relations between
the components of the vector z. Modeling using differential algebraic equations is
also called equation-based modeling, acausal modeling, or behavioral modeling.

The model (3.4) captures the examples of the parallel capacitors and the linked
rotating inertias. For example, when two capacitors are connected, we simply add
the algebraic equation expressing that the voltages across the capacitors are the
same.

Modelica is a language that has been developed to support component-based
modeling. Differential algebraic equations are used as the basic description, and
object-oriented programming is used to structure the models. Modelica is used to
model the dynamics of technical systems in domains such as mechanical, electrical,
thermal, hydraulic, thermofluid, and control subsystems. Modelica is intended
to serve as a standard format so that models arising in different domains can be



3-8 CHAPTER 3. SYSTEM MODELING

exchanged between tools and users. A large set of free and commercial Modelica
component libraries are available and are used by a growing number of people in
industry, research, and academia. For further information about Modelica, see
http://www.modelica.org or the books by Tiller [Til01] and Fritson [Fri15].

Finite State Machines and Hybrid Systems �

A final type of modeling has been developed within the computer-controlled sys-
tems community. A hybrid system (also called a cyberphysical system) is one that
combines continuous dynamics with discrete logic. The discrete portion of the sys-
tem represents logical variables that reside in a computer, such as the mode of a
system (on, off, degraded, etc.).

Discrete state dynamics are often represented using a finite state machine that
consists of a finite set of discrete states α ∈ Q. We can think of α as the “mode” of
the system. The dynamics of a finite state machine are defined in terms of transi-
tions between the states. One convenient representation is as a guarded transition
system:

gi(α, β) =⇒ α′ = ri(α), i = 1, . . . , N.

Here the function g is a Boolean (true/false) function that depends on the current
system mode α and an input β, which might represent an environmental event
(button press, component failure, etc.). If the guard gi is true then the system
transitions from the current state α to a new state α′, determined by the rule
(transition map) ri. A guarded transition system can have many different rules,
depending on the system state and external input.

It is also possible to combine systems that have continuous states with those
having discrete states, creating a hybrid system. For example, if a system has a
continuous state x and discrete state α, we might write the overall system dynamics
as

dx

dt
= fα(x, u), gi(x, α, β) =⇒ α′ = ri(x, α), i = 1, . . . , N.

In this representation, the continuous dynamics (with state x) are governed by an
ordinary differential equation that may depend on the system mode α (indicated
by the subscript in fα). The discrete transition system is also influenced by the
continuous state, so that the guards gi and rules ri now depend on the continuous
state.

Many other representations are possible for hybrid systems, including models
that allow a non-continuous change in the continuous variables when a change in
the discrete state occurs (so-called reset logic). Computer modeling packages for
hybrid systems include StateFlow (part of the MATLAB suite of tools), Modelica,
and Ptolemy [Pto14].

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback, and it is there-
fore important to characterize uncertainty. When making measurements, there is
a good tradition to assign both a nominal value and a measure of uncertainty. It is
useful to apply the same principle to modeling, but unfortunately it is often difficult
to express the uncertainty of a model quantitatively.

http://www.modelica.org
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Figure 3.5: Characterization of model uncertainty. Uncertainty of a static sys-
tem is illustrated in (a), where the solid line indicates the nominal input/output
relationship and the dashed lines indicate the range of possible uncertainty. The
uncertainty lemon [GPD59] in (b) is one way to capture uncertainty in dynamical
systems emphasizing that a model is valid only in the amplitude and frequency
ranges within the shaded region. In (c) a model is represented by a nominal model
M and another model ∆ representing the uncertainty analogous to the represen-
tation of parameter uncertainty.

For a static system whose input/output relation can be characterized by a func-
tion, uncertainty can be expressed by an uncertainty band as illustrated in Fig-
ure 3.5a. At low signal levels there are uncertainties due to sensor resolution,
friction, and quantization. For example, some models for queuing systems or cells
are based on averages that exhibit significant variations for small populations. At
large signal levels there are saturations or even system failures. The signal ranges
where a model is reasonably accurate vary dramatically between applications, but
it is rare to find models that are accurate for signal ranges larger than 104.

Characterization of the uncertainty of a dynamical model is much more difficult.
We can try to capture uncertainties by assigning uncertainties to parameters of the
model, but this is often not sufficient. There may be errors due to phenomena that
have been neglected, e.g., small time delays. In control the ultimate test is how well
a control system based on the model performs, and time delays can be important.
There is also a frequency aspect. There are slow phenomena, such as aging, that
can cause changes or drift in the systems. There are also high-frequency effects: a
resistor will no longer be a pure resistance at very high frequencies, and a beam
has stiffness and will exhibit additional dynamics when subject to high-frequency
excitation. The uncertainty lemon [GPD59] shown in Figure 3.5b is one way to
conceptualize the uncertainty of a system. It illustrates that a model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in Chapter 13
using figures such as Figure 3.5c. These tools make use of the concept of a transfer
function, which describes the frequency response of an input/output system. For
now, we simply note that one should always be careful to recognize the limits of
a model and not to make use of models outside their range of applicability. For
example, one can describe the uncertainty lemon and then check to make sure that
signals remain in this region. In early analog computing, a system was simulated
using operational amplifiers, and it was customary to give alarms when certain
signal levels were exceeded. Similar features can be included in digital simulation.
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3.2 State Space Models

In this section we describe the two primary forms of models that we use in this
text: differential equations and difference equations. Both make use of the notions
of state, inputs, outputs, and dynamics to describe the behavior of a system. We
also briefly discuss modeling of finite state systems.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a physical system the state is
composed of the variables required to account for storage of mass, momentum, and
energy. A key issue in modeling is to decide how accurately this information has
to be represented. The state variables are gathered in a vector x ∈ Rn called the
state vector. The control variables are represented by another vector u ∈ Rp, and
the measured signal by the vector y ∈ Rq. A system can then be represented by
the differential equation

dx

dt
= f(x, u), y = h(x, u), (3.5)

where f : Rn × Rp → Rn and h : Rn × Rp → Rq are smooth mappings. We call a
model of this form a state space model.

The dimension of the state vector is called the order of the model. The model
given in equation (3.5) is called time invariant because the functions f and h do
not depend explicitly on time t; there are more general time-varying systems where
the functions do depend on time. The model consists of two functions: the function
f gives the rate of change of the state vector as a function of state x and control u,
and the function h gives the measured values as functions of state x and control u.

A model is called a linear state space model (or often just a “linear system”) if
the functions f and h are linear in x and u. A linear state space model can thus
be represented by

dx

dt
= Ax+Bu, y = Cx+Du, (3.6)

where A, B, C, and D are constant matrices. Such a model is said to be linear and
time-invariant, or LTI for short. (In this text we will usually omit the term time-
invariant and just say the model is linear.) The matrix A is called the dynamics
matrix, the matrix B is called the control matrix, the matrix C is called the sensor
matrix, and the matrix D is called the direct term. Frequently models will not have
a direct term, indicating that the control signal u does not influence the output
directly.

A different form of linear differential equations, generalizing the second-order
dynamics from mechanics, is an equation of the form

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = u, (3.7)
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where t is the independent (time) variable, y(t) is the dependent (output) variable
and u(t) is the input. The notation dky/dtk is used to denote the kth derivative
of y with respect to t, sometimes also written as y(k). The controlled differential
equation (3.7) is said to be an nth-order model. This model can be converted into
state space form by defining

x =




x1

x2
...

xn−1

xn




=




dn−1y/dtn−1

dn−2y/dtn−2

...
dy/dt
y




,

and the state space equations become

d

dt




x1
x2
...

xn−1

xn




=




−a1x1 − · · · − anxn
x1
...

xn−2

xn−1




+




u
0
...
0
0




, y = xn.

With the appropriate definitions of A, B, C, and D, this equation is in linear state
space form.

An even more general model is obtained by letting the output be a linear com-
bination of the states of the model, i.e.,

y = b1x1 + b2x2 + · · ·+ bnxn + du.

This model can be represented in state space as

d

dt




x1
x2
x3
...
xn




=




−a1 −a2 . . . −an−1 −an
1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 1 0




x+




1
0
0
...
0




u,

y =

b1 b2 . . . bn


x+ du.

(3.8)

This particular form of a linear state space model is called reachable canonical form
and will be studied in more detail in later chapters. Many other representations for
a model are possible and we shall see several of these in Chapters 6–8. It is also
possible to expand the form of equation (3.7) to allow derivatives of the input to
appear, as we saw briefly in Chapter 2.

Example 3.1 Spring–mass system
As a simple example of converting a linear differential equation to state space form,
consider the externally-driven spring mass system whose dynamics are given in
equation (3.2):

mq̈ + c(q̇) + kq = u.
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Figure 3.6: Balance systems. (a) Segway® Personal Transporter, (b) Saturn
rocket, and (c) inverted pendulum on a cart. Each of these examples uses forces
at the bottom of the system to keep it upright.

This has the same form as equation (3.7) where the output y is the position q. The
state of the system can then be written as

x =


x1
x2


 =


q̇
q




and the state space equations are

d

dt


x1
x2


 =


−c/m −k/m

1 0




x1
x2


+


1/m

0


u,

where we have further assumed that c(q̇) = cq̇ (corresponding to viscous friction).
∇

Example 3.2 Balance systems
A more complex example of a type of system that can be modeled using ordi-
nary differential equations is the class of balance systems. A balance system is a
mechanical system in which the center of mass is balanced above a pivot point.
Some common examples of balance systems are shown in Figure 3.6. The Segway®

Personal Transporter (Figure 3.6a) uses a motorized platform to stabilize a person
standing on top of it. When the rider leans forward, the transportation device pro-
pels itself along the ground but maintains its upright position. Another example
is a rocket (Figure 3.6b), in which a gimballed nozzle at the bottom of the rocket
is used to stabilize the body of the rocket above it. Other examples of balance
systems include humans or other animals standing upright or a person balancing a
stick on their hand.

Balance systems are a generalization of the spring–mass system we saw earlier.
We can write the dynamics for a mechanical system in the general form

M(q)q̈ + C(q, q̇) +K(q) = B(q)u,

where M(q) is the inertia matrix for the system, C(q, q̇) represents the Coriolis
forces as well as the damping, K(q) gives the forces due to potential energy, and
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B(q) describes how the external applied forces couple into the dynamics. Note
that q may be a vector, rather than just a scalar, and represents the configuration
variables of the system. The specific form of the equations can be derived using
Newtonian mechanics. Each of the terms depends on the configuration of the system
q and these terms are often nonlinear in the configuration variables.

Figure 3.6c shows a simplified diagram for a balance system consisting of an
inverted pendulum on a cart. To model this system, we choose state variables
that represent the position and velocity of the base of the system, q and q̇, and
the angle and angular rate of the structure above the base, θ and θ̇. (Note the
slight abuse of notation in using q to represent the position and (q, θ) for the full
set of configuration variables.) We let F represent the force applied at the base of
the system, assumed to be in the horizontal direction (aligned with q), and choose
the position and angle of the system as outputs. With this set of definitions, the
dynamics of the system can be computed using Newtonian mechanics and have the
form


(M +m) −ml cos θ
−ml cos θ (J +ml2)




q̈
θ̈


+


cq̇ +ml sin θ θ̇2

γθ̇ −mgl sin θ


 =


F

0


 , (3.9)

whereM is the mass of the base, m and J are the mass and moment of inertia of the
system to be balanced, l is the distance from the base to the center of mass of the
balanced body, c and γ are coefficients of viscous friction, and g is the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space form by defining the
state as x = (q, θ, q̇, θ̇), the input as u = F , and the output as y = (q, θ). If we
define the total mass and total inertia as

Mt =M +m, Jt = J +ml2,

the equations of motion then become

d

dt




q
θ
q̇

θ̇




=




q̇

θ̇

−mlsθ θ̇2 +mg(ml2/Jt)sθcθ − cq̇ − (γ/Jt)mlcθ θ̇ + u

Mt −m(ml2/Jt)c2θ
−ml2sθcθ θ̇2 +Mtglsθ − clcθ q̇ − γ(Mt/m)θ̇ + lcθu

Jt(Mt/m)−m(lcθ)2




,

y =


q
θ


 ,

where we have used the shorthand cθ = cos θ and sθ = sin θ.

In many cases, the angle θ will be very close to 0, and hence we can use the
approximations sin θ ≈ θ and cos θ ≈ 1. Furthermore, if θ̇ is small, we can ig-
nore quadratic and higher terms in θ̇. Substituting these approximations into our
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equations, we see that we are left with a linear state space equation

d

dt




q
θ
q̇

θ̇




=




0 0 1 0
0 0 0 1

0 m2l2g/µ −cJt/µ −γlm/µ
0 Mtmgl/µ −clm/µ −γMt/µ







q
θ
q̇

θ̇




+




0
0

Jt/µ

lm/µ



u,

y =


1 0 0 0
0 1 0 0


x,

where µ =MtJt −m2l2. ∇
Example 3.3 Inverted pendulum
A variation of the previous example is one in which the location of the base q does
not need to be controlled. This happens, for example, if we are interested only in
stabilizing a rocket’s upright orientation without worrying about the location of the
base of the rocket. The dynamics of this simplified system are given by

d

dt


θ
θ̇


 =




θ̇
mgl

Jt
sin θ − γ

Jt
θ̇ +

l

Jt
u cos θ


 , y = θ, (3.10)

where γ is the coefficient of rotational friction, Jt = J + ml2, and u is the force
applied at the base. This system is referred to as an inverted pendulum. ∇

Difference Equations

In some circumstances, it is more natural to describe the evolution of a system at
discrete instants of time rather than continuously in time. If we refer to each of
these times by an integer k = 0, 1, 2, . . . , then we can ask how the state of the
system changes for each k. Just as in the case of differential equations, we define
the state to be the set of variables that summarizes the past of the system for the
purpose of predicting its future. Systems described in this manner are referred to
as discrete-time systems.

The evolution of a discrete-time system can be written in the form

x[k + 1] = f(x[k], u[k]), y[k] = h(x[k], u[k]), (3.11)

where x[k] ∈ Rn is the state of the system at time k (an integer), u[k] ∈ Rp is the
input, and y[k] ∈ Rq is the output. As before, f and h are smooth mappings of
the appropriate dimension. We call equation (3.11) a difference equation since it
tells us how x[k + 1] differs from x[k]. The state x[k] can be either a scalar- or a
vector-valued quantity; in the case of the latter we write xj [k] for the value of the
jth state at time k.

Just as in the case of differential equations, it is often the case that the equations
are linear in the state and input, in which case we can describe the system by

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k] +Du[k].

As before, we refer to the matrices A, B, C, and D as the dynamics matrix,
the control matrix, the sensor matrix, and the direct term. The solution of a
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Figure 3.7: Predator versus prey. The photograph on the left shows a Canadian
lynx and a snowshoe hare, the lynx’s primary prey. The graph on the right shows
the populations of hares and lynxes between 1845 and 1935 in a section of the
Canadian Rockies [Mac37]. The data were collected on an annual basis over a
period of 90 years. (Photograph copyright Tom and Pat Leeson.)

linear difference equation with initial condition x[0] and input u[0], . . . , u[T ] can be
computed using repeated substitution and is given by

x[k] = Akx[0] +

k−1∑

j=0

Ak−j−1Bu[j],

y[k] = CAkx[0] +

k−1∑

j=0

CAk−j−1Bu[j] +Du[k],

k > 0. (3.12)

Difference equations are also useful as an approximation of differential equations,
as we will show later.

Example 3.4 Predator–prey
As an example of a discrete-time system, consider a simple model for a predator–
prey system. The predator–prey problem refers to an ecological system in which
we have two species, one of which feeds on the other. This type of system has
been studied for decades and is known to exhibit interesting dynamics. Figure 3.7
shows a historical record taken over 90 years for a population of lynxes versus a
population of hares [Mac37]. As can been seen from the graph, the annual records
of the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-time model
to keep track of the rate of births and deaths of each species. Letting H represent
the population of hares and L represent the population of lynxes, we can describe
the state in terms of the populations at discrete periods of time. Letting k be the
discrete-time index (corresponding here to each day), we can write

H[k + 1] = H[k] + bh(u)H[k]− aL[k]H[k],

L[k + 1] = L[k] + cL[k]H[k]− dlL[k],
(3.13)

where bh(u) is the hare birth rate per unit period and is a function of the food
supply u, dl is the lynx mortality rate, and a and c are the interaction coefficients.
The interaction term aL[k]H[k] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey meet and is hence given
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Figure 3.8: Discrete-time simulation of the predator–prey model (3.13). Using
the parameters a = c = 0.014, bh(u) = 0.6, and dl = 0.7 in equation (3.13), the
period and magnitude of the lynx and hare population cycles approximately match
the data in Figure 3.7.

by the product of the population sizes. The interaction term cL[k]H[k] in the
lynx dynamics has a similar form and represents the rate of growth of the lynx
population. This model makes many simplifying assumptions—such as the fact
that hares decrease in number only through predation by lynxes—but it often is
sufficient to answer basic questions about the system.

To illustrate the use of this system, we can compute the number of lynxes and
hares at each time point from some initial population. This is done by starting
with x[0] = (H0, L0) and then using equation (3.13) to compute the populations in
the following period. By iterating this procedure, we can generate the population
over time. The output of this process for a specific choice of parameters and initial
conditions is shown in Figure 3.8. While the details of the simulation are different
from the experimental data (to be expected given the simplicity of our assumptions),
we see qualitatively similar trends and hence we can use the model to help explore
the dynamics of the system. ∇

Example 3.5 E-mail server
The IBM Lotus (now Domino) server is a collaborative software system that ad-
ministers users’ e-mail, documents, and notes. Client machines interact with end
users to provide access to data and applications. The server also handles other
administrative tasks. In the early development of the system it was observed that
the performance was poor when the central processing unit (CPU) was overloaded
because of too many service requests, and mechanisms to control the load were
therefore introduced.

The interaction between the client and the server is in the form of remote pro-
cedure calls (RPCs). The server maintains a log of statistics of completed requests.
The total number of requests being served, called RIS (RPCs in server), is also
measured. The load on the server is controlled by a parameter called MaxUsers,
which sets the total number of client connections to the server. This parameter is
controlled by the system administrator. The server can be regarded as a dynamical
system with MaxUsers as the input and RIS as the output. The relationship between
input and output was first investigated by exploring the steady-state performance
and was found to be linear.
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In [HDPT04] a dynamical model in the form of a first-order difference equation
is used to capture the dynamic behavior of this system. Using system identification
techniques, they construct a model of the form

y[k + 1] = ay[k] + bu[k],

where u = MaxUsers − MaxUsers and y = RIS − RIS. The parameters a = 0.43
and b = 0.47 are parameters that describe the dynamics of the system around
the operating point, and MaxUsers = 165 and RIS = 135 represent the nominal
operating point of the system. The number of requests was averaged over a sampling
period of 60 s. ∇

Another application of difference equations is in the implementation of control
systems on computers. Early controllers were analog physical systems, which can
be modeled by differential equations. When implementing a controller described
by a differential equation using a computer it is necessary to do approximations. A
simple way is to approximate derivatives by finite differences, as illustrated by the
following example.

Example 3.6 Difference approximation of a PI controller
Consider the proportional-integral (PI) controller

u(t) = kpe(t) + ki

∫ t

0

e(τ) dτ = kpe(t) + x(t), x(t) = ki

∫ t

0

e(τ) dτ,

where the controller state is given by the differential equation

dx

dt
= kie(t). (3.14)

Assume that the error is measured at regular sampling intervals t = h, 2h, 3h, . . ..
Approximating the derivative in equation (3.14) by differences gives

x(jh+ h)− x(jh)

h
= kie(jh),

and the controller is then given by the difference equation

x[j + 1] = x[j] + hkie[j], u[j] = kpe[j] + x[j],

where x[j] = x(jh), e[j] = e(jh), and u[j] = u(jh) represent the discrete-time state,
error, and input sampled at each time interval (and we use j as our discrete time
index here to avoid confusion with the gains kp and ki). This controller is easy to
implement on a computer since it consists of just addition and multiplication. ∇

The approximation in the example works well provided that the sampling in-
terval is so short that the variable e(t) changes very little over a sampling interval.

Finite State Machines
�

In addition to systems that can be modeled by continuous variables (e.g., positions,
velocities, voltages, temperatures), we often encounter systems that have discrete
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Figure 3.9: A simple model for a traffic light. The diagram on the right is a
finite state machine model of the traffic light controller.

states (e.g., on, off, standby, fault). A finite state machine is a model in which
the states of the system are chosen from a finite list of “modes.” The dynamics
of a finite state machine are given by transitions between these modes, possibly in
response to external signals. We illustrate this concept with a simple example.

Example 3.7 Traffic light controller
Consider a finite state machine model of a traffic light control system, as shown
in Figure 3.9. We represent the state of the system in terms of the set of traffic
lights that are turned on (either east–west or north–south). In addition, once a
light is turned on it should stay that way for a certain minimum time, and then
only change when a car comes up to the intersection in the opposite direction. This
gives us two states for each direction of the lights: waiting for a car to arrive and
waiting for the timer to expire. Thus, we have four states for the system, as shown
in Figure 3.9.

The dynamics for the light describe how the system transitions from one state
to another. Starting at the leftmost state, we assume that the lights are set to allow
traffic in the north–south direction. When a car arrives on the east–west street, we
transition to the state at the top of the diagram, where a timer is started. Once
the timer reaches the designated amount of time, we transition to the state on the
right side of the diagram and turn on the lights in the east–west direction. From
here we wait until a car arrives on the north–south street and continue the cycle.

Viewed as a control system, this model has a state space consisting of four
discrete states: north–south waiting, north–south countdown, east–west waiting,
and east–west countdown. The inputs to the controller consist of the signals that
indicate whether a car is present at the roads leading up to the intersection. The
outputs from the controller are the signals that change the colors of the traffic light.
Finally, the dynamics of the controller are the transition diagram that controls how
the states (or modes) of the system change in time. ∇

More formally, a finite state machine can be represented as a finite set of discrete
states α ∈ Qsys, where Qsys is a discrete set. The dynamics of the system are
described by transitions between the discrete states, as in the finite state machine
described in the previous example. These transitions can depend on external inputs
or measurements and can generate output actions on transition into or out of a given
state. If we let β ∈ Qin represent (discrete) input events (button press, component
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failure, etc.) and γ ∈ Qout represent (discrete) output actions (such as turning off a
device), then the dynamics of the finite state machine can be written as a guarded
command system

gi(α, β) =⇒
{
α′ = ri(α, β),

γ = ai(α, β),
i = 1, . . . , N. (3.15)

Here the function gi is a Boolean (true/false) function that depends on the current
system mode α and an external input β. If the guard gi is true then the system
transitions from the current state α to a new state α′, determined by the rule (tran-
sition map) ri and the external input. The output action ai is similarly dependent
on the current state and external input. A guarded transition system can have
many different rules, depending on the system state and external input.

The dynamics of a transition system is similar in many ways to the discrete
time dynamics in equation (3.11). The major difference is that the transitions do
not necessarily occur at regularly spaced intervals of time. Indeed, there is no strict
notion of time in a transition system as we have described it here: it is only the
sequence of events that is kept track of (through the evolution of the discrete state).

Specifications for finite transition systems are often written as logical functions
describing the conditions that should be imposed on the system. For example, we
might wish to say that if a specific sensor is not operating, then the system cannot
transition to a mode that requires the use of that sensor. This could be written as
the logical formula

α ∈ {states with sensor k not functioning} =⇒ α′ 6∈ {states requiring sensor k}.
The formula of the form p =⇒ q where p and q are Boolean propositions can
be written as the logical function (!p) || (p&& q), which asserts that if proposition
p is true then proposition q must be true. In the sensor example, p and q are
represented by whether the system mode α is in some set of states.

Finite state machines are very useful for describing logical operations and are
often combined with continuous state models (differential or difference equations)
to create a hybrid system model. The study of hybrid systems is beyond the scope
of this text, but excellent references include Lee and Seshia [LS15] and Alur [Alu15].

Simulation and Analysis

State space models can be used to answer many questions. One of the most com-
mon, as we have seen in the previous examples, involves predicting the evolution of
the system state from a given initial condition. While for simple models this can be
done in closed form, more often it is accomplished through computer simulation.

Consider again the damped spring–mass system from Section 3.1, but this time
with an external force applied, as shown in Figure 3.10. We wish to predict the
motion of the system for a periodic forcing function, with a given initial condition,
and determine the amplitude, frequency, and decay rate of the resulting motion.

We choose to model the system with a linear ordinary differential equation.
Using Hooke’s law to model the spring and assuming that the damper exerts a
force that is proportional to the velocity of the system, we have

mq̈ + cq̇ + kq = u, (3.16)
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c

Figure 3.10: A driven spring–mass system with damping. Here we use a linear
damping element with coefficient of viscous friction c. The mass is driven with a
sinusoidal force of amplitude A.

where m is the mass, q is the displacement of the mass, c is the coefficient of viscous
friction, k is the spring constant, and u is the applied force. In state space form,
using x = (q, q̇) as the state and choosing y = q as the output, we have

dx

dt
=




x2

− c

m
x2 −

k

m
x1 +

u

m


 , y = x1.

We see that this is a linear second-order differential equation with one input u and
one output y.

We now wish to compute the response of the system to an input of the form
u = A sinωt. Although it is possible to solve for the response analytically, we
instead make use of a computational approach that does not rely on the specific
form of this system. Consider the general state space system

dx

dt
= f(x, u).

Given the state x at time t, we can approximate the value of the state at a short
time h > 0 later by assuming that the rate of change f(x, u) is constant over the
interval t to t+ h. This gives

x(t+ h) = x(t) + hf(x(t), u(t)). (3.17)

Iterating this equation, we can thus solve for x as a function of time. This approx-
imation is known as Euler integration and is in fact a difference equation if we let
h represent the time increment and write x[k] = x(kh), as we saw in Example 3.6.
Although modern simulation tools such as MATLAB and Mathematica use more
accurate methods than Euler integration, they still have some of the same basic
trade-offs.

Returning to our specific example, Figure 3.11 shows the results of computing
x(t) using equation (3.17), along with the analytical computation. We see that as
h gets smaller, the computed solution converges to the exact solution. The form
of the solution is also worth noticing: after an initial transient, the system settles
into a periodic motion. The portion of the response after the transient is called the
steady-state response to the input.
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Figure 3.11: Simulation of the forced spring–mass system with different simula-
tion time constants. The solid line represents the analytical solution. The dashed
lines represent the approximate solution via the method of Euler integration, using
decreasing step sizes.

In addition to generating simulations, models can also be used to answer other types
of questions. Two that are central to the methods described in this text concern
the stability of an equilibrium point and the input/output frequency response. We
illustrate these two computations through the examples below and return to the
general computations in later chapters.

Returning to the damped spring–mass system, the equations of motion with no
input forcing are given by

dx

dt
=




x2

− c

m
x2 −

k

m
x1


 , (3.18)

where x1 is the position of the mass (relative to the rest position) and x2 is its
velocity. We wish to show that if the initial state of the system is away from the
rest position, the system will return to the rest position eventually (we will later
define this situation to mean that the rest position is asymptotically stable). While
we could heuristically show this by simulating many, many initial conditions, we
seek instead to prove that this is true for any initial condition.

To do so, we construct a function V : Rn → R that maps the system state to a
positive real number. For mechanical systems, a convenient choice is the energy of
the system,

V (x) =
1

2
kx21 +

1

2
mx22. (3.19)

If we look at the time derivative of the energy function, we see that

dV

dt
= kx1ẋ1 +mx2ẋ2 = kx1x2 +mx2(−

c

m
x2 −

k

m
x1) = −cx22,

which is always either negative or zero. Hence V (x(t)) is never increasing and,
using a bit of analysis that we will see formally later, the individual states must
remain bounded.

If we wish to show that the states eventually return to the origin, we must use
a slightly more detailed analysis. Intuitively, we can reason as follows: suppose
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that for some period of time, V (x(t)) stops decreasing. Then it must be true that
V̇ (x(t)) = 0, which in turn implies that x2(t) = 0 for that same period. In that
case, ẋ2(t) = 0, and we can substitute into the second line of equation (3.18) to
obtain

0 = ẋ2 = − c

m
x2 −

k

m
x1 = − k

m
x1.

Thus we must have that x1 also equals zero, and so the only time that V (x(t))
can stop decreasing is if the state is at the origin (and hence this system is at its
rest position). Since we know that V (x(t)) is never increasing (because V̇ ≤ 0), we
therefore conclude that the origin is stable (for any initial condition).

This type of analysis, called Lyapunov stability analysis, is considered in detail
in Chapter 5. It shows some of the power of using models for the analysis of system
properties.

Another type of analysis that we can perform with models is to compute the output
of a system to a sinusoidal input, known as the frequency response. We again
consider the spring–mass system, but this time keeping the input and leaving the
system in its original form:

mq̈ + cq̇ + kq = u. (3.20)

We wish to understand how the system responds to a sinusoidal input of the form

u(t) = A sinωt.

We will see how to do this analytically in Chapter 7, but for now we make use of
simulations to compute the answer.

We first begin with the observation that if q(t) is the solution to equation (3.20)
with input u(t), then applying an input 2u(t) will give a solution 2q(t) (this is easily
verified by substitution). Hence it suffices to look at an input with unit magnitude,
A = 1. A second observation, which we will prove in Chapter 6, is that the long-
term response of the system to a sinusoidal input is itself a sinusoid at the same
frequency, and so the output has the form

q(t) = g(ω) sin(ωt+ ϕ(ω)),

where g(ω) is called the gain of the system and ϕ(ω) is called the phase (or phase
offset).

To compute the frequency response numerically, we can simulate the system
at a set of frequencies ω1, . . . , ωN and plot the gain and phase at each of these
frequencies. An example of this type of computation is shown in Figure 3.12. For
linear systems the frequency response does not depend on the amplitude A of the
input signal. Frequency response can also be applied to nonlinear systems but the
gain and phase then depend on the A.

3.3 Modeling Methodology

To deal with large, complex systems, it is useful to have different representations of
the system that capture essential features and hide irrelevant details. In all branches
of science and engineering it is common practice to use some graphical description
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Figure 3.12: A frequency response (gain only) computed by measuring the re-
sponse of individual sinusoids. The figure on the left shows the response of the
system as a function of time to a number of different unit magnitude inputs (at
different frequencies). The figure on the right shows this same data in a different
way, with the magnitude of the response plotted as a function of the input fre-
quency. The filled circles correspond to the particular frequencies shown in the
time responses.

of systems, called schematic diagrams. They can range from stylistic pictures to
drastically simplified standard symbols. These pictures make it possible to get an
overall view of the system and to identify the individual components. Examples
of such diagrams are shown in Figure 3.13. Schematic diagrams are useful because
they give an overall picture of a system, showing different subprocesses and their
interconnection and indicating variables that can be manipulated and signals that
can be measured.

Block Diagrams

A special graphical representation called a block diagram has been developed in
control engineering. The purpose of a block diagram is to emphasize the information
flow and to hide details of the system. In a block diagram, different process elements
are shown as boxes, and each box has inputs denoted by lines with arrows pointing
toward the box and outputs denoted by lines with arrows going out of the box.
The inputs denote the variables that influence a process, and the outputs denote
the signals that we are interested in or signals that influence other subsystems.
Block diagrams can also be organized in hierarchies, where individual blocks may
themselves contain more detailed block diagrams.

Figure 3.14 shows some of the notation that we use for block diagrams. Signals
are represented as lines, with arrows to indicate inputs and outputs. The first
diagram is the representation for a summation of two signals. An input/output
response is represented as a rectangle with the system name (or mathematical
description) in the block. Two special cases are a proportional gain, which scales
the input by a multiplicative factor, and an integrator, which outputs the integral
of the input signal.

Figure 3.15 illustrates the use of a block diagram, in this case for modeling the
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Figure 3.13: Schematic diagrams for different disciplines. Each diagram is used
to illustrate the dynamics of a control system: (a) electrical schematics for a
power system [Kun93]; (b) a biological circuit diagram for a synthetic clock cir-
cuit [ASMN03]; (c) a process diagram for a distillation column [SEM04]; and (d)
a Petri net description of a communication protocol.
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Figure 3.14: Standard block diagram elements. The arrows indicate the the
inputs and outputs of each element, with the mathematical operation correspond-
ing to the block labeled at the output. The system block (f) represents the full
input/output response of a dynamical system.
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Figure 3.15: A block diagram representation of the flight control system for an
insect flying against the wind. The mechanical portion of the model consists of the
rigid-body dynamics of the fly, the drag due to flying through the air, and the forces
generated by the wings. The motion of the body causes the visual environment of
the fly to change, and this information is then used to control the motion of the
wings (through the sensory motor system), closing the loop.

flight response of a fly. The flight dynamics of an insect are incredibly intricate,
involving careful coordination of the muscles within the fly to maintain stable flight
in response to external stimuli. One known characteristic of flies is their ability to
fly upwind by making use of the optical flow in their compound eyes as a feedback
mechanism. Roughly speaking, the fly controls its orientation so that the point of
contraction of the visual field is centered in its visual field [RHD+04].

To understand this complex behavior, we can decompose the overall dynamics
of the system into a series of interconnected subsystems (or blocks). Referring to
Figure 3.15, we can model the insect navigation system through an interconnection
of five blocks. The sensory motor system (a) takes the information from the visual
system (e) and generates muscle commands that attempt to steer the fly so that
the point of contraction is centered. These muscle commands are converted into
forces through the flapping of the wings (b) and the resulting aerodynamic forces
that are produced. The forces from the wings are combined with the drag on the
fly (d) to produce a net force on the body of the fly. The wind velocity enters
through the drag aerodynamics. Finally, the body dynamics (c) describe how the
fly translates and rotates as a function of the net forces that are applied to it. The
insect position, speed, and orientation are fed back to the drag aerodynamics and
vision system blocks as inputs.

Each of the blocks in the diagram can itself be a complicated subsystem. For
example, the visual system of a fruit fly consists of two complicated compound eyes
(with about 700 elements per eye), and the sensory motor system has about 200,000
neurons that are used to process information. A more detailed block diagram of
the insect flight control system would show the interconnections between these
elements, but here we have used one block to represent how the motion of the
fly affects the output of the visual system, and a second block to represent how
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the visual field is processed by the fly’s brain to generate muscle commands. The
choice of the level of detail of the blocks and what elements to separate into different
blocks often depends on experience and on the questions that one wants to answer
using the model. One of the powerful features of block diagrams is their ability to
hide information about the details of a system that may not be needed to gain an
understanding of the essential dynamics of the system.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, we need to
form the differential equations that describe the complete system. In many cases
the equations can be obtained by combining the differential equations that describe
each subsystem and substituting variables. This simple procedure cannot be used
when there are closed loops of subsystems that all have a direct connection between
inputs and outputs, known as an algebraic loop. A direct connection means that a
change in the input u gives an instantaneous change in the output y.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx

dt
= f(x, u), y = h(x), (3.21)

and a proportional controller described by u = −ky. There is no direct connec-
tion since the function h does not depend on u. In that case we can obtain the
equation for the closed loop system simply by replacing u by −ky = −kh(x) in
equation (3.21) to give

dx

dt
= f(x,−kh(x)), y = h(x),

which is an ordinary differential equation.

The situation is more complicated if there is a direct connection. If y = h(x, u),
then replacing u by −ky gives

dx

dt
= f(x,−ky), y = h(x,−ky).

To obtain a differential equation for x, the algebraic equation y = h(x,−ky) must
first be solved to give y = α(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. The resulting model
becomes a set of differential algebraic equations, similar to equation (3.4). Resolving
algebraic loops is a nontrivial problem because it requires the symbolic solution
of algebraic equations. Most block diagram-oriented modeling languages cannot
handle algebraic loops, and they simply give a diagnosis that such loops are present.
In the era of analog computing, algebraic loops were eliminated by introducing fast
dynamics between the loops. This created differential equations with fast and slow
modes that are difficult to solve numerically. Advanced modeling languages like
Modelica use several sophisticated methods to resolve algebraic loops.
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Modeling from Experiments

Since control systems are provided with sensors and actuators, it is also possible to
obtain models of system dynamics from experiments on the process. The models
are restricted to input/output models since only these signals are accessible to
experiments, but modeling from experiments can also be combined with modeling
from physics through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the response to a
step change in the control signal. Such an experiment begins by setting the control
signal to a constant value. When the output settles to a constant value (assuming
the system is stable), the control signal is changed quickly to a new level and the
output is observed. The experiment gives the step response of the system, and the
shape of the response gives useful information about the dynamics. It immediately
gives an indication of the response time, and it tells if the system is oscillatory or
if the response is monotone.

Example 3.8 Spring–mass system
The dynamics of the spring–mass system in Section 3.1 are given by

mq̈ + cq̇ + kq = u. (3.22)

We wish to determine the constants m, c, and k by measuring the response of the
system to a step input of magnitude F0.

We will show in Chapter 7 that when c2 < 4km, the step response for this
system from the rest configuration is given by

q(t) =
F0

k

(
1− 1

ωd

√
k

m
exp
(
− ct

2m

)
sin(ωdt+ ϕ)

)
,

ωd =

√
4km− c2

2m
, ϕ = tan−1

(√
4km− c2

c

)
.

From the form of the solution, we see that the shape of the step response is deter-
mined by the parameters of the system. Hence, by measuring certain features of
the step response we can determine the parameter values.

Figure 3.16 shows the response of the system to a step of magnitude F0 = 20 N,
along with some measurements. We start by noting that the steady-state position
of the mass (after the oscillations die down) is a function of the spring constant k:

q(∞) =
F0

k
, (3.23)

where F0 is the magnitude of the applied force (F0 = 1 for a unit step input). The
parameter 1/k is called the gain of the system. The period of the oscillation can
be measured between two peaks and must satisfy

2π

T
=

√
4km− c2

2m
.

Finally, the rate of decay of the oscillations is given by the exponential factor in
the solution. Measuring the amount of decay between two peaks, we have

log
(
q(t1)−

F0

k

)
− log

(
q(t2)−

F0

k

)
=

c

2m
(t2 − t1). (3.24)
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Figure 3.16: Step response for a spring–mass system. The magnitude of the step
input is F0 = 20 N. The period of oscillation T is determined by looking at the
time between two subsequent local maxima in the response. The period combined
with the steady-state value q(∞) and the relative decrease between local maxima
can be used to estimate the parameters in a model of the system.

Using this set of three equations, we can solve for the parameters and determine
that for the step response in Figure 3.16 we have m ≈ 250 kg, c ≈ 60 N s/m, and
k ≈ 40 N/m. ∇

Modeling from experiments can also be done using many other signals. Sinu-
soidal signals are commonly used (particularly for systems with fast dynamics) and
precise measurements can be obtained by exploiting correlation techniques. An
indication of nonlinearities can be obtained by repeating experiments with input
signals having different amplitudes. Modeling based on sinusoidal signals is very
time consuming for systems with slow dynamics. In such situations it is advanta-
geous to used signals that switch between two different levels. There is a whole
subfield of control called system identification that deals with experimental deter-
mination of models. Questions like optimal inputs, experiments in open and closed
loop, model accuracy, and fundamental limits are dealt with extensively.

Normalization and Scaling

When deriving a model, it is often useful to introduce dimension-free variables.
Such a procedure can often simplify the equations for a system by reducing the
number of parameters. It can also reveal interesting properties of the model. It is
also useful to normalize variables by scaling to improve numerics and allow faster
and more accurate simulations.

The procedure of scaling is straightforward in principle: choose units for each
independent variable and introduce new variables by dividing the variables by the
chosen normalization unit. We illustrate the procedure with two examples.

Example 3.9 Spring–mass system
Consider again the spring–mass system introduced earlier. Neglecting the damping,
the system is described by

mq̈ + kq = u.

The model has two parameters m and k. To normalize the model we introduce
dimension-free variables x = q/l and τ = ω0t, where ω0 =

√
k/m and l is the
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chosen length scale. We scale force by mlω2
0 and introduce v = u/(mlω2

0). The
scaled equation then becomes

d2x

dτ2
=

d2q/l

d(ω0t)2
=

1

mlω2
0

(−kq + u) = −x+ v,

which is the normalized undamped spring–mass system. Notice that the normalized
model has no parameters, while the original model had two parameters m and k.
Introducing the scaled, dimension-free state variables z1 = x = q/l and z2 =
dx/dτ = q̇/(lω0), the model can be written as

d

dτ


z1
z2


 =


 0 1
−1 0




z1
z2


+


0
v


 .

This simple linear equation describes the dynamics of any spring–mass system,
independent of the particular parameters, and hence gives us insight into the fun-
damental dynamics of this oscillatory system. To recover the physical frequency of
oscillation or its magnitude, we must invert the scaling we have applied. ∇

Example 3.10 Balance system
Consider the balance system described in Example 3.2. Neglecting damping by
putting c = 0 and γ = 0 in equation (3.9), the model can be written as

(M +m)
d2q

dt2
−ml cos θ

d2θ

dt2
+ml sin θ

(dθ
dt

)2
= F,

−ml cos θ d
2q

dt2
+ (J +ml2)

d2θ

dt2
−mgl sin θ = 0.

Let ω0 =
√
mgl/(J +ml2), choose the length scale as l, let the time scale be 1/ω0,

choose the force scale as (M +m)lω2
0 , and introduce the scaled variables τ = ω0t,

x = q/l, and u = F/((M +m)lω2
0). The equations then become

d2x

dτ2
− α cos θ

d2θ

dτ2
+ α sin θ

(dθ
dτ

)2
= u, −β cos θ d

2x

dτ2
+
d2θ

dτ2
− sin θ = 0,

where α = m/(M +m) and β = ml2/(J +ml2). Notice that the original model
has five parameters m, M , J , l, and g but the normalized model has only two
parameters α and β. If M ≫ m and ml2 ≫ J , we get α ≈ 0 and β ≈ 1, and the
model can be approximated by

d2x

dτ2
= u,

d2θ

dτ2
− sin θ = u cos θ.

The model can be interpreted as a mass combined with an inverted pendulum
driven by the same input. ∇

For large systems scaling is not so easy: there are many choices and good
selection of variables and normalization units require good understanding of the
physics of the system and the numerical methods that will be used for analysis.
Scaling of large systems is therefore still an art.
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3.4 Modeling Examples

In this section we introduce additional examples that illustrate some of the differ-
ent types of systems for which one can develop differential equation and difference
equation models. These examples are specifically chosen from a range of different
fields to highlight the broad variety of systems to which feedback and control con-
cepts can be applied. A more detailed set of applications that serve as running
examples throughout the text are given in Chapter 4.

Motion Control Systems

Motion control systems involve the use of computation and feedback to control the
movement of a mechanical system. Motion control systems range from nanoposi-
tioning systems (atomic force microscopes, adaptive optics), to control systems for
the read/write heads in a disk drive of a DVD player, to manufacturing systems
(transfer machines and industrial robots), to automotive control systems (antilock
brakes, suspension control, traction control), to air and space flight control systems
(airplanes, satellites, rockets, and planetary rovers).

Example 3.11 Vehicle steering
A common problem in motion control is to control the trajectory of a vehicle
through an actuator that causes a change in the orientation. A steering wheel
on an automobile and the front wheel of a bicycle are two examples, but similar dy-
namics occur in the steering of ships or control of the pitch dynamics of an aircraft.
In many cases, we can understand the basic behavior of these systems through the
use of a simple model that captures the basic kinematics of the system.

Consider a conventional vehicle with a fixed rear axle and a set of front wheels
that can be rotated, as shown in Figure 3.17. For the purpose of steering we are
interested in a model that describes how the velocity of the vehicle depends on the
steering angle δ. To be specific, let b be the wheelbase and consider the velocity v
at the center of mass, a distance a from the rear wheel, as shown in Figure 3.17.
Let x and y be the coordinates of the center of mass, θ the heading angle, and α
the angle between the velocity vector v and the centerline of the vehicle. The point
O is at the intersection of the normals to the front and rear wheels.

Assuming no slipping of the wheels, the motion of the vehicle is given by a
rotation around the point O in the figure. Letting the distance from the center of
rotationO to the contact point of the rear wheel be rr, it the follows from Figure 3.17
that b = rr tan δ and a = rr tanα, which implies that tanα = (a/b) tan δ, and we
obtain the following relation between α and the steering angle δ:

α = arctan
(a tan δ

b

)
. (3.25)

If the vehicle speed at its center of mass is v, the motion of the center of mass is
then given by

dx

dt
= v cos (α+ θ),

dy

dt
= v sin (α+ θ).

(3.26)
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Figure 3.17: Vehicle steering dynamics. The left figure shows an overhead view
of a vehicle with four wheels. The wheelbase is b and the center of mass at a
distance a forward of the rear wheels. By approximating the motion of the front
and rear pairs of wheels by a single front wheel and a single rear wheel, we obtain
an abstraction called the bicycle model, shown on the right. The steering angle is
δ and the velocity at the center of mass has the angle α relative the length axis
of the vehicle. The position of the vehicle is given by (x, y) and the orientation
(heading) by θ.

To see how the heading angle θ is influenced by the steering angle, we observe from
Figure 3.17 that the distance from the center of mass to the center of rotation O
is rc = a/ sinα. The vehicle thus rotates around the point O with the angular
velocity v/rc = (v/a) sinα. Hence

dθ

dt
=

v

rc
=
v sinα

a
=
v

a
sin

(
arctan

(a tan δ
b

))
≈ v

b
δ, (3.27)

where the approximation holds for small δ and α.
Equations (3.25)–(3.27) can be used to model an automobile under the assump-

tions that there is no slip between the wheels and the road and that the two front
wheels can be approximated by a single wheel at the center of the car. This model
is often called the bicycle model. The assumption of no slip can be relaxed by
adding an extra state variable, giving a more realistic model. Such a model also
describes the steering dynamics of ships as well as the pitch dynamics of aircraft
and missiles. It is also possible to choose coordinates so that the reference point is
at the rear wheels (corresponding to setting a = 0), a model often referred to as
the Dubins car [Dub57].

Figure 3.17 represents the situation when the vehicle moves forward and has
front-wheel steering. The figure shows that the model also applies to rear wheel
steering if the sign of the velocity is reversed. ∇

Example 3.12 Vectored thrust aircraft
Consider the motion of vectored thrust aircraft, such as the Harrier “jump jet”
shown Figure 3.18a. The Harrier is capable of vertical takeoff by redirecting its
thrust downward and through the use of smaller maneuvering thrusters located on
its wings. A simplified model of the Harrier is shown in Figure 3.18b, where we
focus on the motion of the vehicle in a vertical plane through the wings of the
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(a) Harrier “jump jet”
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Figure 3.18: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a)
redirects its engine thrust downward so that it can “hover” above the ground.
Some air from the engine is diverted to the wing tips to be used for maneuvering.
As shown in (b), the net thrust on the aircraft can be decomposed into a horizontal
force F1 and a vertical force F2 acting at a distance r from the center of mass.

aircraft. We resolve the forces generated by the main downward thruster and the
maneuvering thrusters as a pair of forces F1 and F2 acting at a distance r below
the aircraft (determined by the geometry of the thrusters).

Let (x, y, θ) denote the position and orientation of the center of mass of the
aircraft. Let m be the mass of the vehicle, J the moment of inertia, g the gravi-
tational constant, and c the damping coefficient. Then the equations of motion for
the vehicle are given by

mẍ = F1 cos θ − F2 sin θ − cẋ,

mÿ = F1 sin θ + F2 cos θ −mg − cẏ,

Jθ̈ = rF1.

(3.28)

It is convenient to redefine the inputs so that the origin is an equilibrium point of
the system with zero input. Letting u1 = F1 and u2 = F2 − mg, the equations
become

mẍ = −mg sin θ − cẋ+ u1 cos θ − u2 sin θ,

mÿ = mg(cos θ − 1)− cẏ + u1 sin θ + u2 cos θ,

Jθ̈ = ru1.

(3.29)

These equations describe the motion of the vehicle as a set of three coupled second-
order differential equations. ∇

Thermofluid Systems

Thermofluid systems are commonly used in process control, power generation, and
for heating ventilation and air conditioning in buildings and cars. The processes
involve motion of fluids and transmission of energy; typical processes include heat



3.4. MODELING EXAMPLES 3-33

(a) Water heater (b) Thermal power generation

Figure 3.19: Two thermofluid systems. A schematic diagram of a simple water
heater, a tank with a submerged electrical heater (a), and schematic diagram of a
drum boiler (b).

exchangers, evaporators, chillers, and compressors. The dynamics are often com-
plicated because of two-phase flows, and accurate modeling often requires partial
differential equations and computational fluid dynamics. Two examples are given
in Figure 3.19.

Example 3.13 Water heater
Consider the water heater in Figure 3.19a, which is a cylindrical tank with cross
section A. The mass of the water is m and its temperature is T . The inflow
and outflow rates are qin and qout, the temperature of the inflow is Tin, and the
temperature of the outflow is T . The total mass is m = ρAh, where ρ is its density,
h is the water level, C is the specific heat capacity for water, and mCT is the total
energy. The system can be modeled by a mass balance and an energy balance, and
we obtain

dm

dt
= qin − qout,

d(mCT )

dt
= P + qin CTin − qout CT, (3.30)

where P is the power from the heater. Energy losses have been neglected and it is
assumed that all water in the tank has the same temperature.

Assuming that C is constant and expanding the derivative for the energy balance
we obtain

d(mCT )

dt
=
dm

dt
CT +mC

dT

dt
= P + qin CTin − qout CT.

Solving this equation for dT/dt and using the mass balance to eliminate dm/dt, we
find that the mass and energy balances expressed by equation (3.30) can be written
as

dm

dt
= qin − qout,

dT

dt
=
qin
m

(Tin − T ) +
1

mC
P. (3.31)

The state variables are the total massm and the temperature T , the control (input)
variables are the input power P and inflow rate qin, and the disturbances are the
temperature of the inflow Tin and the output flow rate qout. ∇
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Example 3.14 Drum Boiler
A drum boiler is a piece of equipment used to produce steam, for example as
part of a power generation system where the steam drives a turbine connected to
a generator. The drum in a drum boiler shares many properties with the water
heater but there are two significant complications: the material constants ρ and
C depend on the state, and there is a mixture of water and steam in both the
riser and the drum. Modeling can still be done by mass and energy balances, but
the two-phase flow leads to significant complications, which we discuss briefly (and
informally) here. A diagram of a drum boiler is shown in Figure 3.19b.

Control of the drum level is a key problem: if the level is too low the tubes will
burn through, and if the level is too high water may enter the turbine and cause
damage to the turbine blades. We will focus on modeling of the drum level. Water
entering the system is controlled by the feedwater valve; water leaves the drum as
steam through the steam valve. Water circulates through the drum-downcomer-
riser loop, and it is heated in the riser tubes. The differences in densities in the
downcomer tubes and the riser tubes creates self-circulation. The figure shows only
one riser tube and one downcomer tube, but in the boiler we discuss there are 22
downcomer tubes and 788 riser tubes, and the drum volume is 40 m3. There is
pure water in the downcomer tubes and at the bottom of the riser tubes. Steam is
generated by heating the tubes and the amount of steam increases along the riser
tubes. There is a mixture of steam and water in the drum.

Consider the situation when the system is in equilibrium and the steam valve
is suddenly opened. More steam then leaves the system, and we may expect the
drum level to decrease. This will not happen because the pressure in the drum
will decrease when steam leaves the system. The air bubbles in the riser and the
drum will then increase, and the water level will initially increase. If we continue
to keep the steam valve open, the level will finally start to decrease. The dynamics
relating drum level to feedwater flow has a similar characteristic. If feedwater flow
is increased then the water temperature in the drum will decrease, bubbles will
collapse, and the drum level will initially decrease. This effect, which is called
shrink and swell or inverse response, makes it difficult to control the drum level.

The effect is illustrated in Figure 3.20, which shows simulated and experimental
data for a medium sized boiler. The inverse response characteristics are clearly
seen in the figure. The model used in the simulation is a fifth-order model based
on mass, energy, and momentum balances; details are given in [ÅB00].

The inverse response character of the dynamics from feedwater to drum level
makes it difficult to control the drum level. For this reason the system is provided
with sensors of steam flow and feedwater flow as indicated in Figure 3.19b. The
extra sensors make it possible to predict whether the mass of water and steam in
the system is decreasing or increasing. We will discuss the consequences of having
dynamics with inverse response in Section 14.4. ∇

Information Systems

Information systems range from communication systems like the Internet to soft-
ware systems that manipulate data or manage enterprise-wide resources. Feedback
is present in all these systems, and designing strategies for routing, flow control, and



3.4. MODELING EXAMPLES 3-35

0 500 1000 1500 2000 2500 3000 3500

−0.1

0

0.1

0 500 1000 1500 2000 2500 3000 3500
50

55

60

65

70

D
ru

m
le
v
el

[m
]

S
te
a
m

fl
o
w

[k
g
/
s]

Time [s]

Figure 3.20: Model (dashed line) and plant data (solid line) for open loop pertur-
bations in steam flow rate at medium load. Notice that the drum level increases
initially when the steam flow is increased. The experiment was performed by
removing all controllers and introducing a perturbation in the steam flow [ÅB00].

buffer management is a typical problem. Many results in queuing theory emerged
from design of telecommunication systems and later from development of the In-
ternet and computer communication systems [BG87, Kle75, Sch87]. Management
of queues to avoid congestion is a central problem and we will therefore start by
discussing the modeling of queuing systems.

Example 3.15 Queuing systems
A schematic picture of a simple queue is shown in Figure 3.21. Requests arrive
and are then queued and processed. There can be large variations in arrival rates
and service rates, and the queue length builds up when the arrival rate is larger
than the service rate. When the queue becomes too large, service is denied using
an admission control policy.

The system can be modeled in many different ways. One way is to model each
incoming request, which leads to an event-based, discrete-state model where the
state is an integer that represents the queue length. The queue changes when a
request arrives or a request is serviced. The statistics of arrival and servicing are
typically modeled as random processes. In many cases it is possible to determine

message queue

incoming outgoing

messages

x

µλ

messages

Figure 3.21: Schematic diagram of a queuing system. Messages arrive at rate λ
and are stored in a queue. Messages are processed and removed from the queue at
rate µ. The average length of the queue is given by x ∈ R.
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statistics of quantities like queue length and service time, but the computations can
be quite complicated.

A significant simplification can be obtained by approximating the discrete queue
length by a continuous variable. Instead of keeping track of each request we instead
view service and requests as continuous flows. The model obtained is called a flow
model because of the analogy with fluid dynamics where motion of molecules are
replace by continuous flows. Hence, if the queue length x is a continuous variable
and the arrivals and services are flows with rates λ and µ, the system can be
modeled by the first-order differential equation

dx

dt
= λ− µ = λ− µmaxf(x), x ≥ 0, (3.32)

as proposed by Agnew [Agn76]. The service rate µ depends on the queue length; if
there are no capacity restrictions we have µ = x/T where T is the time it takes to
serve one customer. The service rate thus increases linearly with the queue length.
In reality the growth will be slower because longer queues require more resources,
and the service rate has an upper limit µmax. These effects are captured by modeling
the service rate as µmaxf(x), where function f(x) is monotone, approximately linear
for small x, and f(∞) = 1.

For a particular queue, the function f(x) can be determined empirically by
measuring the queue length for different arrival and service rates. A simple choice
is f(x) = x/(1 + x), which gives the model

dx

dt
= λ− µmax

x

x+ 1
. (3.33)

It was shown by Tipper [TS90] that if arrival and service processes are Poisson
processes, then average queue length is given by equation (3.33).

To explore the properties of the model (3.33) we will first investigate the equi-
librium value of the queue length when the arrival rate λ is constant. Setting the
derivative dx/dt to zero in equation (3.33) and solving for x, we find that the queue
length x approaches the steady-state value

xe =
λ

µmax − λ
. (3.34)

Figure 3.22a shows the steady-state queue length as a function of λ/µmax, the
effective service rate excess. Notice that the queue length increases rapidly as λ
approaches µmax. To have a queue length less than 20 requires λ/µmax < 0.95. The
average time to service a request can be shown to be Ts = (x + 1)/µmax, and it
increases dramatically as λ approaches µmax.

Figure 3.22b illustrates the behavior of the server in a typical overload situation.
The figure shows that the queue builds up quickly and clears very slowly. Since the
response time is proportional to queue length, it means that the quality of service
is poor for a long period after an overload. This behavior is called the rush-hour
effect and has been observed in web servers and many other queuing systems such
as automobile traffic.

The dashed line in Figure 3.22b shows the behavior of the flow model, which
describes the average queue length. The simple model captures behavior qualita-
tively, but there are variations from sample to sample when the queue length is
short. ∇
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Figure 3.22: Queuing dynamics. (a) The steady-state queue length as a function
of λ/µmax. (b) The behavior of the queue length when there is a temporary over-
load in the system. The solid line shows a realization of an event-based simulation,
and the dashed line shows the behavior of the flow model (3.33). The maximum
service rate is µmax = 1, and the arrival rate starts at λ = 0.5. The arrival rate is
increased to λ = 4 at time 20, and it returns to λ = 0.5 at time 25.

Many complex systems use discrete control actions. Such systems can be mod-
eled by characterizing the situations that correspond to each control action, as
illustrated in the following example.

Example 3.16 Virtual memory paging control
An early example of the use of feedback in computer systems was applied in the
operating system OS/VS for the IBM 370 [BG68, Cro93]. The system used virtual
memory, which allows programs to address more memory than is physically avail-
able as fast memory. Data in current fast memory (random access memory, RAM)
is accessed directly, but data that resides in slower memory (disk) is automatically
loaded into fast memory. The system is implemented in such a way that it appears
to the programmer as a single large section of memory. The system performed
very well in many situations, but very long execution times were encountered in
overload situations, as shown by the open circles in Figure 3.23a. The difficulty was
resolved with a simple discrete feedback system. The load of the central processing
unit (CPU) was measured together with the number of page swaps between fast

0 1 2 3 4
0

500

1000

1500

Number of processes

E
x
ec

u
ti

o
n
 t

im
e 

[s
]

 

 

open loop

closed loop

(a) System performance

Normal

CPU load

Memory swaps

Underload Overload

(b) System state

Figure 3.23: Illustration of feedback in the virtual memory system of the
IBM/370. (a) The effect of feedback on execution times in a simulation, follow-
ing [BG68]. Results with no feedback are shown with o, and results with feedback
with x. Notice the dramatic decrease in execution time for the system with feed-
back. (b) How the three states are obtained based on process measurements.
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memory and slow memory. The operating region was classified as being in one of
three states: normal, underload, or overload. The normal state is characterized by
high CPU activity, the underload state is characterized by low CPU activity and
few page replacements, the overload state has moderate to low CPU load but many
page replacements; see Figure 3.23b. The boundaries between the regions and the
time for measuring the load were determined from simulations using typical loads.
The control strategy was to do nothing in the normal load condition, to exclude
a process from memory in the overload condition and to allow a new process or a
previously excluded process in the underload condition. The crosses in Figure 3.23a
show the effectiveness of the simple feedback system in simulated loads. Similar
principles based on crude quantization of the state and simple heuristic algorithms
are used in many other situations, e.g., in communication systems and in web server
control.

∇
Example 3.17 Consensus protocols in sensor networks
Sensor networks are used in a variety of applications where we want to collect
and aggregate information over a region of space using multiple sensors that are
connected together via a communications network. Examples include monitoring
environmental conditions in a geographical area (or inside a building), monitoring
the movement of animals or vehicles, and monitoring the resource loading across
a group of computers. In many sensor networks the computational resources are
distributed along with the sensors, and it can be important for the set of distributed
agents to reach a consensus about a certain property, such as the average temper-
ature in a region or the average computational load among a set of computers.

To illustrate how such a consensus might be achieved, we consider the problem
of computing the average value of a set of numbers that are locally available to the
individual agents. We wish to design a “protocol” (algorithm) such that all agents
will agree on the average value. We consider the case in which all agents cannot
necessarily communicate with each other directly, although we will assume that the
communications network is connected (meaning that no two groups of agents are
completely isolated from each other). Figure 3.24a shows a simple situation of this
type.

We model the connectivity of the sensor network using a graph, with nodes
corresponding to the sensors and edges corresponding to the existence of a direct
communications link between two nodes. For any such graph, we can build an
adjacency matrix, where each row and column of the matrix corresponds to a node
and a 1 in the respective row and column indicates that the two nodes are connected.
For the network shown in Figure 3.24a, the corresponding adjacency matrix is

A =




0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
0 1 0 0 0



.

We use the notation Ni to represent the set of neighbors of a node i. For example,
in the network shown in Figure 3.24a N2 = {1, 3, 4, 5} and N3 = {2, 4}.

To solve the consensus problem, let xi be the state of the ith sensor, correspond-
ing to that sensor’s estimate of the average value that we are trying to compute. We
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Figure 3.24: Consensus protocols for sensor networks. (a) A simple sensor net-
work with five nodes. In this network, node 1 communicates with node 2 and
node 2 communicates with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating
the convergence of the consensus protocol (3.35) to the average value of the initial
conditions.

initialize the state to the value of the quantity measured by the individual sensor.
The consensus protocol (algorithm) can now be realized as a local update law

xi[k + 1] = xi[k] + γ
∑

j∈Ni

(xj [k]− xi[k]). (3.35)

This protocol attempts to compute the average by updating the local state of each
agent based on the value of its neighbors. The combined dynamics of all agents can
be written in the form

x[k + 1] = x[k]− γ(D −A)x[k], (3.36)

where A is the adjacency matrix and D is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constant γ describes the
rate at which the estimate of the average is updated based on information from
neighboring nodes. The matrix L := D −A is called the Laplacian of the graph.

The equilibrium points of equation (3.36) are the set of states such that xe[k +
1] = xe[k]. It can be shown that if the network is connected, xe = (α, α, . . . , α) is an
equilibrium state for the system, corresponding to each sensor having an identical
estimate α for the average. Furthermore, we can show that α is indeed the average
value of the initial states. Since there can be cycles in the graph, it is possible that
the state of the system could enter into an infinite loop and never converge to the
desired consensus state. A formal analysis requires tools that will be introduced
later in the text, but it can be shown that for any connected graph we can always
find a γ such that the states of the individual agents converge to the average.
A simulation demonstrating this property is shown in Figure 3.24b. Although
we have focused here on consensus to the average value of a set of measurements,
other consensus states can be achieved through choice of appropriate feedback laws.
Examples include finding the maximum or minimum value in a network, counting
the number of nodes in a network, or computing higher-order statistical moments
of a distributed quantity [Cor08, OSFM07]. ∇
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Figure 3.25: Biological circuitry. The cell on the left is a bovine pulmonary
cell, stained so that the nucleus, actin, and chromatin are visible. The figure on
the right gives an overview of the process by which proteins in the cell are made.
RNA is transcribed from DNA by an RNA polymerase enzyme. The RNA is then
translated into a polypeptide chain by a molecular machine called a ribosome, and
then the polypeptide chain folds into a protein molecule.

Biological Systems

Biological systems provide perhaps the richest source of feedback and control exam-
ples. The basic problem of homeostasis, in which a quantity such as temperature or
blood sugar level is regulated to a fixed value, is but one of the many types of com-
plex feedback interactions that can occur in molecular machines, cells, organisms,
and ecosystems.

Example 3.18 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNA) is generated from
a segment of DNA. The promoter region of a gene allows transcription to be con-
trolled by the presence of other proteins, called transcription factors, which bind
to the promoter region and either repress or activate RNA polymerase, the enzyme
that produces an mRNA transcript from DNA. The mRNA is then translated into
a protein according to its nucleotide sequence. This process is illustrated in Fig-
ure 3.25.

A simple model of the transcriptional regulation process is through the use of
a Hill function [DM14, Mur04]. Consider the regulation of a protein A with a
concentration given by pa and a corresponding mRNA concentration ma. Let B be
a second protein with concentration pb that represses the production of protein A
through transcriptional regulation. The resulting dynamics of pa and ma can be
written as

dma

dt
=

αab

1 + kabp
nab

b

+ αa0 − δama,
dpa
dt

= κama − γapa, (3.37)

where αab + αa0 is the unregulated transcription rate, δa represents the rate of
degradation of mRNA, αab, kab, and nab are parameters that describe how B re-
presses A, κa represents the rate of production of the protein from its corresponding
mRNA, and γa represents the rate of degradation of the protein A. The parameter
αa0 describes the “leakiness” of the promoter, and nab is called the Hill coefficient
and relates to the cooperativity of the promoter.
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(b) Repressilator simulation

Figure 3.26: The repressilator genetic regulatory network. (a) A schematic
diagram of the repressilator, showing the layout of the genes in the plasmid that
holds the circuit as well as the circuit diagram (center). (b) A simulation of a
simple model for the repressilator, showing the oscillation of the individual protein
concentrations. (Figure courtesy M. Elowitz.)

A similar model can be used when a protein activates the production of another
protein rather than repressing it. In this case, the equations have the form

dma

dt
=
αabkabp

nab

b

1 + kabp
nab

b

+ αa0 − δama,
dpa
dt

= κama − γapa, (3.38)

where the variables are the same as described previously. Note that in the case of the
activator, if pb is zero, then the production rate is αa0 ≪ αab (versus αab +αa0 for
the repressor). As pb gets large, the first term in the expression for ṁa approaches
1 and the transcription rate becomes αab+αa0 (versus αa0 for the repressor). Thus
we see that the activator and repressor act in opposite fashion from each other.

As an example of how these models can be used, we consider the model of a
“repressilator,” originally due to Elowitz and Leibler [EL00]. The repressilator is
a synthetic circuit in which three proteins each repress another in a cycle. This is
shown schematically in Figure 3.26a, where the three proteins are TetR, λ cI, and
LacI. The basic idea of the repressilator is that if TetR is present, then it represses
the production of λ cI. If λ cI is absent, then LacI is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, then
λ cI is no longer repressed, and so on. If the dynamics of the circuit are designed
properly, the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (3.37), with A and
B replaced by the appropriate combination of TetR, cI, and LacI. The state of
the system is then given by x = (mTetR, pTetR,mcI, pcI,mLacI, pLacI). Figure 3.26b
shows the traces of the three protein concentrations for parameters n = 2, α = 0.5,
k = 6.25× 10−4, α0 = 5× 10−4, δ = 5.8× 10−3, κ = 0.12, and γ = 1.2× 10−3 with
initial conditions x(0) = (1, 200, 0, 0, 0, 0) (following [EL00]). ∇

Example 3.19 Nerve cells
Neurons are key elements of the control systems for all humans and animals. There
are different types of neurons: sensory neurons respond to stimuli; motor neurons
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(a) Small network of neurons (b) Synapse

Figure 3.27: Nerve cell physiology. The left figure shows a neuron and the right
figure illustrates the synaptic gap between an axon terminal and a dendrite.

control muscles and other organs; and interneurons act as intermediaries in passing
signals between other neurons. Neurons are often connected to form networks; a
human brain has close to 100 billion neurons.

A neuron has three parts: the cell body (soma), the axon, and the dendrites, as
shown in Figure 3.27a. The cell body varies in size from 4 to 100 µm and axons have
lengths from one millimeter to a meter. The cell has a membrane that separates it
from the outside environment (extracellular space), with molecular-scale channels
that let ions pass through the membrane, creating a voltage difference across the
cell membrane. An electric pulse (spike) is generated when the voltage difference
reaches a critical level. Pulse rates range from 1 Hz to 1 kHz and the generated
pulse travels along the axon to its terminals.

Neurons receive signals from other neurons through dendrites. There are elec-
trochemical reactions at the interface between an axon and a dendrite of another
cell that allow transmission between two neurons. The axon terminal has vesicles
that contain neurotransmitters, which are released in the synaptic gap when the
axon is stimulated by electrical pulses, as illustrated in Figure 3.27b. The neuro-
transmitters stimulate ion channels in the cell membrane, causing them to open.
There are many types of channels; two common ones are sodium (Na+) channels
and potassium (K+) channels. The potassium channel has a slow excitatory action,
while the sodium channel has a fast excitatory and a slow inhibitory action.

The dynamics of the neuron are a fundamental mechanism for understanding
signaling in cells. The Hodgkin–Huxley equation is a model for neuron dynamics.
It models the cell membrane as a capacitor,

C
dV

dt
= INa+ + IK+ + Ileak + Iinput,

where V is the membrane potential, C is the capacitance, INa+ and IK+ are the
current caused by the transport of sodium and potassium ions across the cell mem-
brane, Ileak is a leakage current, and Iinput is the external stimulation of the cell.
Each current obeys Ohm’s law,

INa+ = gNa(ENa+ − V ), IK+ = gK(EK+ − V ), Ileak = gleak(Eleak − V ).

The conductances gNa, gK, and gleak depend on the voltage V through the variables
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(b) Neuron response

Figure 3.28: Response of a neuron to a current input. The current input is
shown in (a) and the neuron voltage V in (b). The simulation was done using the
FitzHugh–Nagumo model (Exercise 3.11).

m, n, and h, where gNa is proportional to m3h, gK is proportional to n4, and gleak
is a constant. The variables m, n, and h are given by the differential equations

dm

dt
=
ma(V )−m

τm(V )
,

dh

dt
=
ha(V )− h

τh(V )
,

dn

dt
=
na(V )− n

τn(V )
,

where the functions ma, ha, na, τm, τh, and τn are derived from experimental data.
The functions ma and na are monotone and increasing in V , creating excitatory
behavior. The function ha is monotone and decreasing, creating inhibitory behav-
ior. The time constant τm is almost an order of magnitude smaller than the time
constants τh and τn.

The equilibrium voltages ENa+ and EK+ are given by Nernst’s law,

E =
RT

nF
log

ce
ci
,

where R is Boltzmann’s constant, T is the absolute temperature, F is Faraday’s
constant, n is the charge (or valence) of the ion, and ci and ce are the ion concen-
trations inside the cell and in the external fluid. At 20 ◦C we have RT/F = 20 mV,
ENa+ = 55 mV, and EK+ = −92 mV.

The Hodgkin-Huxley equations are complicated and contain many widely dif-
ferent time scales, and many approximations have therefore been proposed. One
approximation is the FitzHugh–Nagumo model (Exercise 3.11). A simulation of
this model is shown in Figure 3.28 to illustrate the behavior of a neuron to an ex-
ternal current stimulation. The system is initially at rest with I = 0 and V = 0. A
short current pulse enters at time t = 5 ms, the neuron is excited, and responds by
sending out a spike. The neuron is then excited at time t = 30 ms and the neuron
then starts spiking. ∇

The Hodgkin–Huxley model was originally developed as a means to predict
the quantitative behavior of the squid giant axon [HH52]. Hodgkin and Huxley
shared the 1963 Nobel Prize in Physiology (along with J. C. Eccles) for analysis
of the electrical and chemical events in nerve cell discharges. The voltage clamp
described in Section 1.4 was used to determine the functions ma(V ), na(V ), and
ha(V ). There are many variations of models for the dynamics of neurons based on
the Hodgkin–Huxley model; a recent reference is [PDS18]. Some models combine
ordinary differential equations with discrete transitions, so–called integrate-and-fire
models or hybrid systems.
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3.5 Further Reading

Modeling is ubiquitous in engineering and science and has a long history in applied
mathematics. For example, the Fourier series was introduced by Fourier when
he modeled heat conduction in solids [Fou07]. A classic book on the modeling
of physical systems, especially mechanical, electrical, and thermofluid systems, is
Cannon [Can03]. The book by Aris [Ari94] is highly original and has a detailed
discussion of the use of dimension-free variables. Models of dynamics have been
developed in many different fields, including mechanics [Arn78, Gol53], heat conduc-
tion [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, Ell94], robotics [MLS94, SV89],
circuits [Gui63], power systems [Kun93], acoustics [Ber54], and micromechanical
systems [Sen01]. The authors’ favorite books on modeling of biological systems
are Keener and Sneyd [KS08, KS09], J. D. Murray [Mur04], and Wilson [Wil99].
Control requires modeling from many different domains, and most control theory
texts contain several chapters on modeling using ordinary differential equations
and difference equations (see, for example, [FPEN05]). A good source for system
identification is Ljung [Lju99b].

Exercises

3.1 (Chain of integrators form) Consider the linear ordinary differential equa-
tion (3.7). Show that by choosing a state space representation with x1 = y, the
dynamics can be written as

A =




0 1 0

0
. . .

. . . 0
0 · · · 0 1

−an −an−1 −a1



, B =




0
0
...
1



, C =


1 . . . 0 0


 .

This canonical form is called the chain of integrators form.

3.2 (Discrete-time dynamics) Consider the following discrete-time system

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k],

where

x =


x1
x2


 , A =


a11 a12

0 a22


 , B =


0
1


 , C =


1 0


 .

In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions, and the inputs.

(a) For the case when a12 = 0 and u = 0, give a closed form expression for the
output of the system.

(b) A discrete system is in equilibrium when x[k + 1] = x[k] for all k. Let u = r
be a constant input and compute the resulting equilibrium point for the system.
Show that if |aii| < 1 for all i, all initial conditions give solutions that converge to
the equilibrium point.
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(c) Write a computer program to plot the output of the system in response to a
unit step input, u[k] = 1, k ≥ 0. Plot the response of your system with x[0] = 0
and A given by a11 = 0.5, a12 = 1, and a22 = 0.25.

3.3 (Keynesian economics) Keynes’ simple model for an economy is given by

Y [k] = C[k] + I[k] +G[k],

where Y , C, I, and G are gross national product (GNP), consumption, investment,
and government expenditure for year k. Consumption and investment are modeled
by difference equations of the form

C[k + 1] = aY [k], I[k + 1] = b(C[k + 1]− C[k]),

where a and b are parameters. The first equation implies that consumption in-
creases with GNP but that the effect is delayed. The second equation implies that
investment is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

Ye =
1

1− a
Ge,

where the parameter 1/(1−a) is the Keynes multiplier (the gain fromG to Y ). With
a = 0.75 an increase of government expenditure will result in a fourfold increase of
GNP. Also show that the model can be written as the following discrete-time state
model: 

C[k + 1]
I[k + 1]


 =


 a a
ab− b ab




C[k]
I[k]


+


 a
ab


G[k],

Y [k] = C[k] + I[k] +G[k].

3.4 (Least squares system identification) Consider a nonlinear differential equation �
that can be written in the form

dx

dt
=

M∑

i=1

αifi(x),

where fi(x) are known nonlinear functions and αi are unknown, but constant,
parameters. Suppose that we have measurements (or estimates) of the full state x
at time instants t1, t2, . . . , tN , with N > M . Show that the parameters αi can be
estimated by finding the least squares solution to a linear equation of the form

Hα = b,

where α ∈ RM is the vector of all parameters and H ∈ RN×M and b ∈ RN are
appropriately defined.

3.5 (Normalized oscillator dynamics) Consider a damped spring–mass system with
dynamics

mq̈ + cq̇ + kq = F.

Let ω0 =
√
k/m be the natural frequency and ζ = c/(2

√
km) be the damping ratio.
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(a) Show that by rescaling the equations, we can write the dynamics in the form

q̈ + 2ζω0q̇ + ω2
0q = ω2

0u, (3.39)

where u = F/k. This form of the dynamics is that of a linear oscillator with natural
frequency ω0 and damping ratio ζ.

(b) Show that the system can be further normalized and written in the form

dz1
dτ

= z2,
dz2
dτ

= −z1 − 2ζz2 + v. (3.40)

The essential dynamics of the system are governed by a single damping parameter
ζ. The Q-value, defined as Q = 1/2ζ, is sometimes used instead of ζ.

3.6 (Dubins car) Show that the trajectory of a vehicle with reference point chosen
as the center of the rear wheels can be modeled by dynamics of the form

dx

dt
= v cos θ,

dy

dt
= v sin θ,

dθ

dt
=
v

b
tan δ,

where the variables and constants are defined as in Example 3.11.

3.7 (Motor drive) Consider a system consisting of a motor driving two masses that
are connected by a torsional spring, as shown in the diagram below.

Motor
I

J1

1

1

J2

ω

ϕ 2ϕ

2ω

This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current I, the dynamics
of the system can be described by the equations

J1
d2ϕ1

dt2
+ c
(dϕ1

dt
− dϕ2

dt

)
+ k(ϕ1 − ϕ2) = kII,

J2
d2ϕ2

dt2
+ c
(dϕ2

dt
− dϕ1

dt

)
+ k(ϕ2 − ϕ1) = Td,

(3.41)

where ϕ1 and ϕ2 are the angles of the two masses, ωi = dϕi/dt are their velocities,
Ji represents moments of inertia, c is the damping coefficient, k represents the shaft
stiffness, kI is the torque constant for the motor, and Td is the disturbance torque
applied at the end of the shaft. Similar equations are obtained for a robot with
flexible arms and for the arms of DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized)
state variables x1 = ϕ1, x2 = ϕ2, x3 = ω1/ω0, and x4 = ω2/ω0, where ω0 =√
k(J1 + J2)/(J1J2) is the undamped natural frequency of the system when the

control signal is zero.
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3.8 (Electric generator) An electric generator connected to a power grid can be
modeled by a momentum balance for the rotor of the generator:

J
d2ϕ

dt2
= Pm − Pe = Pm − EV

X
sinϕ,

where J is the effective moment of inertia of the generator, ϕ is the angle of rotation,
Pm is the mechanical power that drives the generator, Pe is the active electrical
power, E is the generator voltage, V is the grid voltage, and X is the reactance of
the line. Assuming that the line dynamics are much faster than the rotor dynamics,
Pe = V I = (EV/X) sinϕ, where I is the current component in phase with the
voltage E and ϕ is the phase angle between voltages E and V . Show that the
dynamics of the electric generator have a normalized form that is similar to the
dynamics of a pendulum with forcing at the pivot.

3.9 (Admission control for a queue) Consider the queuing system described in
Example 3.15. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx

dt
= λu− µmax

x

x+ 1
, u = sat(0,1)(k(r − x)), (3.42)

where the controller is a simple proportional control with saturation (sat(a,b) is
defined by equation (4.10)) and r is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rush-hour effect and explain how
the choice of r affects the system dynamics.

3.10 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A

B

u2 B

u2

u1

A

Using the models from Example 3.18—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady-state quickly—show
that the dynamics can be written in normalized coordinates as

dz1
dτ

=
µ

1 + zn2
− z1 − u1,

dz2
dτ

=
µ

1 + zn1
− z2 − u2, (3.43)

where z1 and z2 are scaled versions of the protein concentrations and the time scale
has also been changed. Show that µ ≈ 200 using the parameters in Example 3.18,
and use simulations to demonstrate the switch-like behavior of the system.
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3.11 (FitzHugh–Nagumo) The second-order FitzHugh–Nagumo equations

dV

dt
= 10(V − V 3/3−R+ Iin),

dR

dt
= 0.8(1.25V −R+ 1.5)

are a simplified version of the Hodgkin–Huxley equations discussed in Example 3.19.
The variable V is the voltage across the axon membrane and R is an auxiliary
variable that approximates several ion currents that flow across the membrane.
Simulate the equations and reproduce the simulation in Figure 3.28. Explore the
effect of the input current Iin.



Chapter 4

Examples

... Don’t apply any model until you understand the simplifying assump-
tions on which it is based, and you can test their validity. Catch phrase:
Use only as directed. Don’t believe that the model is the reality. Catch
phrase: You will never strike oil by drilling through the map.

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70].

In this chapter we present a collection of examples spanning many different
fields of science and engineering. These examples are used throughout the text
and in exercises to illustrate different concepts. First-time readers may wish to
focus on only a few examples with which they have had the most prior experience
or insight to understand the concepts of state, input, output, and dynamics in a
familiar setting.

4.1 Cruise Control

The cruise control system of a car is a common feedback system encountered in
everyday life. The system attempts to maintain a constant velocity in the presence
of disturbances primarily caused by changes in the slope of a road. The controller
compensates for these unknowns by measuring the speed of the car and adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figure 4.1. Let v be
the speed of the car and vr the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type described briefly in Chapter 1,
receives the signals v and vr and generates a (normalized) control signal u that is
sent to an actuator that controls the throttle position. The throttle in turn controls
the torque T delivered by the engine, which is transmitted through the gears and
the wheels, generating a force F that moves the car. There are disturbance forces
Fd due to variations in the slope of the road, the rolling resistance, and aerodynamic
forces. The cruise controller also has a human–machine interface that allows the
driver to set and modify the desired speed. There are also functions that disconnect
the cruise control when the brake is touched.

4-1
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Interface
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Figure 4.1: Block diagram of a cruise control system for an automobile. The
throttle-controlled engine generates a torque T that is transmitted to the ground
through the gearbox and wheels. Combined with the external forces from the
environment, such as aerodynamic drag and gravitational forces on hills, the net
force causes the car to move. The velocity of the car v is measured by a control
system that adjusts the throttle through an actuation mechanism. A driver inter-
face allows the system to be turned on and off and the reference speed vr to be
established.

The system has many individual components—actuator, engine, transmission,
wheels, and car body—and a detailed model can be very complicated. In spite of
this, the model required to design the cruise controller can be quite simple.

To develop a mathematical model we start with a force balance for the car
body. Letting m be the total mass of the car (including passengers), the equation
of motion of the car is simply

m
dv

dt
= F − Fd. (4.1)

Typical values for the mass of a car are in the range of 1000–2000 kg (we will use
1600 kg here).

The force F is generated by the engine, whose torque is proportional to the
rate of fuel injection, which is itself proportional to a control signal 0 ≤ u ≤ 1
that controls the throttle position. The torque also depends on engine speed ω. A
simple representation of the torque at full throttle is given by the torque curve

T (ω) = Tm

(
1− β

(
ω

ωm
− 1

)2
)
, (4.2)

where the maximum torque Tm is obtained at engine speed ωm. Typical parameters
are Tm = 190 Nm, ωm = 420 rad/s (about 4000 RPM), and β = 0.4. Let n be the
gear ratio and r the wheel radius. The engine speed is related to the velocity
through the expression

ω =
n

r
v =: αnv,

and the driving force can be written as

F =
nu

r
T (ω) = αnuT (αnv).
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(a) Torque versus engine speed
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(b) Torque versus car speed

Figure 4.2: Torque curves for typical car engine. The graph on the left shows the
torque generated by the engine as a function of the angular velocity of the engine,
while the curve on the right shows torque as a function of car speed for different
gears.

Typical values of αn for gears 1 through 5 are α1 = 40, α2 = 25, α3 = 16, α4 = 12,
and α5 = 10. The inverse of αn has a physical interpretation as the effective wheel
radius. Figure 4.2 shows the torque as a function of engine speed and vehicle speed.
The figure shows that the effect of the gear is to “flatten” the torque curve so that
nearly full torque can be obtained over almost the whole speed range.

The disturbance force Fd has three major components: Fg, the forces due to
gravity; Fr, the forces due to rolling friction; and Fa, the aerodynamic drag. Letting
the slope of the road be θ, gravity gives the force Fg = mg sin θ, as illustrated in
Figure 4.3a, where g = 9.8 m/s2 is the gravitational constant. A simple model of
rolling friction is

Fr = mgCr sgn(v),

where Cr is the coefficient of rolling friction and sgn(v) is the sign of v (±1) or zero
if v = 0. A typical value for the coefficient of rolling friction is Cr = 0.01. Finally,
the aerodynamic drag is proportional to the square of the speed:

Fa =
1

2
ρCdA|v|v,

where ρ is the density of air, Cd is the shape-dependent aerodynamic drag coeffi-
cient, and A is the frontal area of the car. Typical parameters are ρ = 1.3 kg/m3,
Cd = 0.32, and A = 2.4 m2.

Summarizing, we find that the car’s speed can be modeled by

m
dv

dt
= αnuT (αnv)−mgCr sgn(v)−

1

2
ρCdA|v|v −mg sin θ, (4.3)

where the function T is given by equation (4.2). The model (4.3) is a dynamical
system of first order. The state is the car velocity v, which is also the output. The
input is the signal u that controls the throttle position, and the disturbance is the
force Fd = mg sin θ, which depends on the slope of the road. The system is nonlinear
because of the torque curve, the gravity term, and the nonlinear character of rolling
friction and aerodynamic drag. There can also be variations in the parameters; e.g.,
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(b) Closed loop response

Figure 4.3: Car with cruise control encountering a sloping road. A schematic
diagram is shown in (a), and (b) shows the response in speed and throttle when a
slope of 4◦ is encountered. The hill is modeled as a net change of 4◦ in hill angle
θ, with a linear change in the angle between t = 5 and t = 6. The PI controller
has proportional gain kp = 0.5 and integral gain ki = 0.1.

the mass of the car depends on the number of passengers and the load being carried
in the car.

We add to this model a feedback controller that attempts to regulate the speed
of the car in the presence of disturbances. We use a proportional-integral controller,
which has the form

u(t) = kpe(t) + ki

∫ t

0

e(τ) dτ.

This controller can itself be realized as an input/output dynamical system by defin-
ing a controller state z and implementing the differential equation

dz

dt
= vr − v, u = kp(vr − v) + kiz, (4.4)

where vr is the desired (reference) speed. As discussed briefly in Section 1.6, the
integrator (represented by the state z) ensures that in steady state the error will be
driven to zero, even when there are disturbances or modeling errors. (The design
of PI controllers is the subject of Chapter 11.) Figure 4.3b shows the response of
the closed loop system, consisting of equations (4.3) and (4.4), when it encounters
a hill. The figure shows that even if the hill is so steep that the throttle changes
from 0.17 to almost full throttle, the largest speed error is less than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (4.3). It may seem
surprising that such a seemingly complicated system can be described by the simple
model (4.3). It is important to make sure that we restrict our use of the model
to the uncertainty lemon conceptualized in Figure 3.5b. The model is not valid
for very rapid changes of the throttle because we have ignored the details of the
engine dynamics, neither is it valid for very slow changes because the properties
of the engine will change over the years. Nevertheless the model is very useful
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(b) Finite state machine

Figure 4.4: Finite state machine for cruise control system. The figure on the
left shows some typical buttons used to control the system. The controller can
be in one of four modes, corresponding to the nodes in the diagram on the right.
Transition between the modes is controlled by pressing one of the five buttons on
the cruise control interface: on, off, set, resume, or cancel.

for the design of a cruise control system. As we shall see in later chapters, the
reason for this is the inherent robustness of feedback systems: even if the model
is not perfectly accurate, we can use it to design a controller and make use of the
feedback in the controller to manage the uncertainty in the system.

The cruise control system also has a human–machine interface that allows the
driver to communicate with the system. There are many different ways to imple-
ment this system; one version is illustrated in Figure 4.4. The system has four
buttons: on-off, set/decelerate, resume/accelerate, and cancel. The operation of
the system is governed by a finite state machine that controls the modes of the PI
controller and the reference generator. Implementation of controllers and reference
generators will be discussed more fully in Chapter 11.

The use of control in automotive systems goes well beyond the simple cruise
control system described here. Applications include emissions control, traction
control, power control (especially in hybrid vehicles), and adaptive cruise control.
Many automotive applications are discussed in detail in the book by Kiencke and
Nielsen [KN00] and in the survey papers by Powers et al. [BP96, PN00]. New
vehicles coming on the market also include many “self-driving” features, which
represent even more complex feedback systems.

4.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the feature that one of its key
properties is due to a feedback mechanism that is created by the design of the front
fork. A detailed model of a bicycle is complex because the system has many degrees
of freedom and the geometry is complicated. However, a great deal of insight can
be obtained from simple models.

To derive the equations of motion we assume that the bicycle rolls on the hor-
izontal xy plane. Introduce a coordinate system that is fixed to the bicycle with
the ξ-axis through the contact points of the wheels with the ground, the η-axis
horizontal, and the ζ-axis vertical, as shown in Figure 4.5. Let v0 be the velocity of
the bicycle at the rear wheel, b the wheelbase, ϕ the tilt angle, and δ the steering
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Figure 4.5: Schematic views of a bicycle. The steering angle is δ, and the roll
angle is ϕ. The center of mass has height h and distance a from a vertical through
the contact point P1 of the rear wheel. The wheelbase b is the distance between
P1 and P2, and the trail c is the distance between P2 and P3.

angle. The coordinate system rotates around the point O with the angular velocity
ω = v0δ/b, and an observer fixed to the bicycle experiences forces due to the motion
of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pendulum, as shown
in the rear view in Figure 4.5b. To model the tilt, consider the rigid body obtained
when the wheels, the rider, and the front fork assembly are fixed to the bicycle
frame. Let m be the total mass of the system, J the moment of inertia of the body
with respect to the ξ-axis, and D the product of inertia with respect to the ξζ
axes. Furthermore, let the ξ and ζ coordinates of the center of mass with respect
to the rear wheel contact point, P1, be a and h, respectively. We have J ≈ mh2

and D = mah. The torques acting on the system are due to gravity and centripetal
action. Assuming that the steering angle δ is small, the equation of motion becomes

J
d2ϕ

dt2
− Dv0

b

dδ

dt
= mgh sinϕ+

mv20h

b
δ. (4.5)

The term mgh sinϕ is the torque generated by gravity. The terms containing δ and
its derivative are the torques generated by steering, with the term (Dv0/b) dδ/dt
due to inertial forces and the term (mv20h/b) δ due to centripetal forces.

The steering angle is influenced by the torque the rider applies to the handle
bar. Because of the tilt of the steering axis and the shape of the front fork, the
contact point of the front wheel with the road P2 is behind the axis of rotation
of the front wheel assembly, as shown in Figure 4.5c. The distance c between the
contact point of the front wheel P2 and the projection of the axis of rotation of the
front fork assembly P3 is called the trail. The steering properties of a bicycle depend
critically on the trail. A large trail increases stability but makes the steering less
agile.

A consequence of the design of the front fork is that the steering angle δ is
influenced both by steering torque T and by the tilt of the frame ϕ. This means
that a bicycle with a front fork is a feedback system as illustrated by the block
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ϕFront

Fork

T
δ

Frame

Figure 4.6: Block diagram of a bicycle with a front fork. The steering torque
applied to the handlebars is T , the roll angle is ϕ, and the steering angle is δ.
Notice that the front fork creates a feedback from the roll angle ϕ to the steering
angle δ that under certain conditions can stabilize the system.

diagram in Figure 4.6. The steering angle δ influences the tilt angle ϕ, and the
tilt angle influences the steering angle, giving rise to the circular causality that is
characteristic of reasoning about feedback. For a front fork with a positive trail,
the bicycle will steer into the lean, creating a centrifugal force that attempts to
diminish the lean.

Under certain conditions, the feedback can actually stabilize the bicycle. A
crude empirical model is obtained by assuming that the front fork can be modeled
as the static system

δ = k1T − k2ϕ. (4.6)

Combining the model of the bicycle frame (4.5) with the model of the front fork (4.6),
we get the following system model:

J
d2ϕ

dt2
+
Dv0k2
b

dϕ

dt
+
(mv20hk2

b
−mgh

)
ϕ =

Dv0k1
b

dT

dt
+
mv20hk1

b
T, (4.7)

where we have approximated sinϕ with ϕ. The left hand side of this equation looks
like the equation for a spring mass system, where the damping term is Dv0k2/b
and the spring term is mv20hk2/b−mgh. Notice that the spring term is negative if
v0 = 0 and that it becomes positive for v >

√
gb/k2. We can thus conclude that

the bicycle is unstable for small velocities but that the feedback provided by the
front fork makes the bicycle stable if the velocity is sufficiently large.

The simple model given by equations (4.5) and (4.6) neglects the dynamics of
the front fork, the tire–road interaction, and the fact that the parameters depend
on the velocity. A more accurate model, called the Whipple model, is obtained using
the rigid-body dynamics of the front fork and the frame. Assuming small angles,
this model becomes

M


ϕ̈
δ̈


+ Cv0


ϕ̇
δ̇


+ (K0 +K2v

2
0)


ϕ
δ


 =


0
T


 , (4.8)

where the elements of the 2×2 matricesM , C, K0, and K2 depend on the geometry
and the mass distribution of the bicycle. Note that this has a form somewhat similar
to that of the spring–mass system introduced in Chapter 3 and the balance system
in Example 3.2. Even this more complex model is inaccurate because the interaction
between the tire and the road is neglected; taking this into account requires two
additional state variables. Again, the uncertainty lemon in Figure 3.5b provides a
framework for understanding the validity of the model under these assumptions.



4-8 CHAPTER 4. EXAMPLES

e−

NC

e+

output

offset null

offset null

inverting input

non-inv. input

(a) Chip pinout

voutv−

v+
e−

e+i+

i−

(b) Full schematic

−

v+

v− vout

+

(c) Simple view

Figure 4.7: An operational amplifier and two schematic diagrams. (a) The
amplifier pin connections on an integrated circuit chip. (b) A schematic with all
connections. (c) Only the signal connections.

Interesting presentations on the development of the bicycle are given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (4.8) was presented in
a paper by Whipple in 1899 [Whi99]. More details on bicycle modeling are given
in the papers [ÅKL05, LS06], which has many additional references.

4.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementation of Black’s feedback
amplifier. It is a universal component that is widely used for instrumentation, con-
trol, and communication. It is also a key element in analog computing. Schematic
diagrams of the operational amplifier are shown in Figure 4.7. The amplifier has one
inverting input (v−), one noninverting input (v+), and one output (vout). There are
also connections for the supply voltages, e− and e+, and a zero adjustment (offset
null). A simple model is obtained by assuming that the input currents i− and i+
are zero and that the output is given by the static relation

vout = sat(vmin,vmax)

(
k(v+ − v−)

)
, (4.9)

where sat denotes the saturation function

sat(a,b)(x) =





a if x < a,

x if a ≤ x ≤ b,

b if x > b.

(4.10)

We assume that the gain k is large, in the range of 106–108, and the voltages vmin

and vmax satisfy
e− ≤ vmin < vmax ≤ e+

and hence are in the range of the supply voltages. More accurate models are
obtained by replacing the saturation function with a smooth function as shown in
Figure 4.8. For small input signals the amplifier characteristic (4.9) is linear:

vout = k(v+ − v−) =: −kv. (4.11)

Since the open loop gain k is very large, the range of input signals where the system
is linear is very small.
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vmin

vout

v+ − v−

vmax

Figure 4.8: Input/output characteristics of an operational amplifier. The differ-
ential input is given by v+ − v−. The output voltage is a linear function of the
input in a small range around 0, with saturation at vmin and vmax. In the linear
regime the op amp has high gain.

A simple amplifier is obtained by arranging feedback around the basic opera-
tional amplifier as shown in Figure 4.9a. To model the feedback amplifier in the
linear range, we assume that the current i0 = i− + i+ is zero and that the gain of
the amplifier is so large that the voltage v = v− − v+ is also zero. It follows from
Ohm’s law that the currents through resistors R1 and R2 are given by

v1
R1

= − v2
R2

,

and hence the closed loop gain of the amplifier is

v2
v1

= −kcl, where kcl =
R2

R1
. (4.12)

A more accurate model is obtained by continuing to neglect the current i0 but
assuming that the voltage v is small but not negligible. The current balance is then

v1 − v

R1
=
v − v2
R2

. (4.13)

Assuming that the amplifier operates in the linear range and using equation (4.11)

v −

+
v1

v2

R1 R2

i0

(a) Amplifier circuit

v2R1

R1 +R2

e vR2

R1

v1
−kΣ

(b) Block diagram

Figure 4.9: Stable amplifier using an op amp. The circuit (a) uses negative
feedback around an operational amplifier and has a corresponding block diagram
(b). The resistors R1 and R2 determine the gain of the amplifier.
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with vout = v2, the gain of the closed loop system becomes

kcl = −v2
v1

=
R2

R1

kR1

R1 +R2 + kR1
≈ R2

R1
. (4.14)

If the open loop gain k of the operational amplifier is large, the closed loop gain
kcl is the same as in the simple model given by equation (4.12). Notice that the
closed loop gain depends only on the passive components and that variations in k
have only a marginal effect on the closed loop gain. For example if k = 106 and
R2/R1 = 100, a variation of k by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nice illustration of how feedback
can be used to make precise systems from uncertain components. In this particular
case, feedback is used to trade high gain and low robustness for low gain and high
robustness. Equation (4.14) was the formula that inspired Black when he invented
the feedback amplifier [Bla34] (see the quote at the beginning of Chapter 13).

It is instructive to develop a block diagram for the feedback amplifier in Fig-
ure 4.9a. To do this we will represent the pure amplifier with input v and output
v2 as one block. To complete the block diagram, we must describe how v depends
on v1 and v2. Solving equation (4.13) for v gives

v =
R2

R1 +R2
v1 +

R1

R1 +R2
v2 =

R1

R1 +R2

(R2

R1
v1 + v2

)
,

and we obtain the block diagram shown in Figure 4.9b. The diagram clearly shows
that the system has feedback and that the gain from v2 to v is R1/(R1+R2), which
can also be read from the circuit diagram in Figure 4.9a. If the loop is stable and
the gain of the amplifier is large, it follows that the error e is small, and we find
that v2 = −(R2/R1)v1. Notice that the resistor R1 appears in two blocks in the
block diagram. This situation is typical in electrical circuits, and it is one reason
why block diagrams are not always well suited for some types of physical modeling.

The simple model of the amplifier given by equation (4.11) provides qualitative
insight, but it neglects the fact that the amplifier is a dynamical system. A more
realistic model is

dvout
dt

= −avout − bv. (4.15)

The parameter b has dimensions of frequency and is called the gain-bandwidth
product of the amplifier. Whether a more complicated model is used depends on
the questions to be answered and the required size of the uncertainty lemon. The
model (4.15) is still not valid for very high or very low frequencies since drift causes
deviations at low frequencies and there are additional dynamics that appear at
frequencies close to b. The model is also not valid for large signals—an upper limit
is given by the voltage of the power supply, typically in the range of 5–10 V—
neither is it valid for very low signals because of electrical noise. These effects can
be added, if needed, but increase the complexity of the analysis.

The operational amplifier is very versatile, and many different systems can be
built by combining it with resistors and capacitors. In fact, any linear system can
be implemented by combining operational amplifiers with resistors and capacitors.
Exercise 4.4 shows how a second-order oscillator is implemented, and Figure 4.10
shows the circuit diagram for an analog proportional-integral controller. To develop
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Figure 4.10: Circuit diagram of a PI controller obtained by feedback around an
operational amplifier. The capacitor C is used to store charge and represents the
integral of the input.

a simple model for the circuit we assume that the current i0 is zero and that the
open loop gain k is so large that the input voltage v is negligible. The current i
through the capacitor is i = Cdvc/dt, where vc is the voltage across the capacitor.
Since the same current goes through the resistor R1, we get

i =
v1
R1

= C
dvc
dt
,

which implies that

vc(t) =
1

C

∫
i(t) dt =

1

R1C

∫ t

0

v1(τ)dτ.

The output voltage is thus given by

v2(t) = −R2i− vc = −R2

R1
v1(t)−

1

R1C

∫ t

0

v1(τ)dτ,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [Lun05,
Phi48], and their usage is described in many textbooks (e.g., [CD75]). Good infor-
mation is also available from suppliers [Jun02, Man02].

4.4 Computing Systems and Networks

The application of feedback to computing systems follows the same principles as the
control of physical systems, but the types of measurements and control inputs that
can be used are somewhat different. Measurements (sensors) are typically related to
resource utilization in the computing system or network and can include quantities
such as the processor load, memory usage, or network bandwidth. Control variables
(actuators) typically involve setting limits on the resources available to a process.
This might be done by controlling the amount of memory, disk space, or time
that a process can consume, turning processes on or off, delaying availability of a
resource, or rejecting incoming requests to a server process. Process modeling for
networked computing systems is also challenging, and empirical models based on
measurements are often used when a first-principles model is not available.
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Figure 4.11: Feedback control of a web server. Connection requests arrive on an
input queue, where they are sent to a server process. A finite state machine keeps
track of the state of the individual server processes and responds to requests. A
control algorithm can modify the server’s operation by controlling parameters that
affect its behavior, such as the maximum number of requests that can be serviced
at a single time (MaxClients) or the amount of time that a connection can remain
idle before it is dropped (KeepAlive).

Web Server Control

Web servers respond to requests from the Internet and provide information in the
form of web pages. Modern web servers start multiple processes to respond to
requests, with each process assigned to a single source until no further requests are
received from that source for a predefined period of time. Processes that are idle
become part of a pool that can be used to respond to new requests. To provide a
fast response to web requests, it is important that the web server processes do not
overload the server’s computational capabilities or exhaust its memory. Since other
processes may be running on the server, the amount of available processing power
and memory is uncertain, and feedback can be used to provide good performance
in the presence of this uncertainty.

Figure 4.11 illustrates the use of feedback to modulate the operation of an
Apache web server. The web server operates by placing incoming connection re-
quests on a queue and then starting a subprocess to handle requests for each ac-
cepted connection. This subprocess responds to requests from a given connection
as they come in, alternating between a Busy state and a Wait state. (Keeping the
subprocess active between requests is known as the persistence of the connection
and provides a substantial reduction in latency to requests for multiple pieces of
information from a single site.) If no requests are received for a sufficiently long
period of time, controlled by the KeepAlive parameter, then the connection is
dropped and the subprocess enters an Idle state, where it can be assigned another
connection. A maximum of MaxClients simultaneous requests will be served, with
the remainder remaining on the incoming request queue.

The parameters that control the server represent a trade-off between perfor-
mance (how quickly requests receive a response) and resource usage (the amount
of processing power and memory used by the server). Increasing the MaxClients

parameter allows connection requests to be pulled off of the queue more quickly
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but increases the amount of processing power and memory usage that is required.
Increasing the KeepAlive timeout means that individual connections can remain
idle for a longer period of time, which decreases the processing load on the machine
but increases the length of the queue (and hence the amount of time required for
a user to initiate a connection). Successful operation of a busy server requires a
proper choice of these parameters, often based on trial and error.

To model the dynamics of this system in more detail, we create a discrete-time
model with states given by the average processor load xcpu and the percentage
memory usage xmem. The inputs to the system are taken as the maximum number
of clients umc and the keep-alive time uka. If we assume a linear model around the
equilibrium point, the dynamics can be written as


 xcpu[k + 1]
xmem[k + 1]


 =


A11 A12

A21 A22




 xcpu[k]
xmem[k]


+


B11 B12

B21 B22




uka[k]
umc[k]


 , (4.16)

where the coefficients of the A and B matrices can be determined based on empirical
measurements or detailed modeling of the web server’s processing and memory
usage. Using system identification, Diao et al. [DGH+02, HDPT04] identified the
linearized dynamics as

A =


 0.54 −0.11
−0.026 0.63


 , B =


−85 4.4
−2.5 2.8


× 10−4,

where the system was linearized about the equilibrium point

xcpu = 0.58, uka = 11 s, xmem = 0.55, umc = 600.

This model shows the basic characteristics that were described above. Looking
first at the B matrix, we see that increasing the KeepAlive timeout (first column
of the B matrix) decreases both the processor usage and the memory usage since
there is more persistence in connections and hence the server spends a longer time
waiting for a connection to close rather than taking on a new active connection. The
MaxClients connection increases both the processing and memory requirements.
Note that the largest effect on the processor load is the KeepAlive timeout. The A
matrix tells us how the processor and memory usage evolve in a region of the state
space near the equilibrium point. The diagonal terms describe how the individual
resources return to equilibrium after a transient increase or decrease. The off-
diagonal terms show that there is coupling between the two resources, so that a
change in one could cause a later change in the other.

Although this model is very simple, we will see in later examples that it can
be used to modify the parameters controlling the server in real time and provide
robustness with respect to uncertainties in the load on the machine. Similar types of
mechanisms have been used for other types of servers. It is important to remember
the assumptions on the model and their role in determining when the model is valid.
In particular, since we have chosen to use average quantities over a given sample
time, the model will not provide an accurate representation for high-frequency
phenomena.
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Figure 4.12: Internet congestion control. (a) Source computers send information
to routers, which forward the information to other routers that eventually connect
to the receiving computer. When a packet is received, an acknowledgment packet is
sent back through the routers (not shown). The routers buffer information received
from the sources and send the data across the outgoing link. (b) The equilibrium
buffer size be for a set of N identical computers sending packets through a single
router with drop probability ρb.

Congestion Control

The Internet was created to provide a large, highly decentralized, efficient, and
expandable communication system. The system consists of a large number of in-
terconnected gateways. A message is split into several packets that are transmitted
over different paths in the network, and the packages are rejoined to recover the
message at the receiver. An acknowledgment (“ack”) message is sent back to the
sender when a packet is received. The operation of the system is governed by a
simple but powerful decentralized control structure that has evolved over time.

The system has two control mechanisms called protocols : the Transmission Con-
trol Protocol (TCP) for end-to-end network communication and the Internet Proto-
col (IP) for routing packets and for host-to-gateway or gateway-to-gateway commu-
nication. The current protocols evolved after some spectacular congestion collapses
occurred in the mid 1980s, when throughput unexpectedly could drop by a factor
of 1000 [Jac95]. The control mechanism in TCP is based on conserving the number
of packets in the loop from the sender to the receiver and back to the sender. The
sending rate is increased when there is no congestion, and it is dropped to a low
level when there is congestion.

To derive an overall model for congestion control, we model three separate
elements of the system: the rate at which packets are sent by individual sources
(computers), the dynamics of the queues in the links (routers), and the admission
control mechanism for the queues. Figure 4.12a is a block diagram of the system.

The current source control mechanism on the Internet is a protocol known as
TCP/Reno [LPD02]. This protocol operates by sending packets to a receiver and
waiting to receive an acknowledgment from the receiver that the packet has ar-
rived. If no acknowledgment is sent within a certain timeout period, the packet is
retransmitted. To avoid waiting for the acknowledgment before sending the next
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packet, Reno transmits multiple packets up to a fixed window around the latest
packet that has been acknowledged. If the window size is chosen properly, packets
at the beginning of the window will be acknowledged before the source transmits
packets at the end of the window, allowing the computer to continuously stream
packets at a high rate.

To determine the size of the window to use, TCP/Reno uses a feedback mech-
anism in which (roughly speaking) the window size is increased at a fixed rate as
long as packets are acknowledged, and the window size is cut in half when packets
are lost. This mechanism allows a dynamic adjustment of the window size in which
each computer acts in a greedy fashion as long as packets are being delivered but
backs off quickly when congestion occurs.

A model for the behavior of the source can be developed by describing the
dynamics of the window size. Suppose we have N computers (sources) and let wi
be the current window size (measured in number of packets) for the ith computer.
Let qi represent the end-to-end probability that a packet will be dropped someplace
between the source and the receiver. We can model the dynamics of the window
size wi by the differential equation

dwi
dt

= (1− qi)
ri(t− τi)

wi
− qi

(wi
2
ri(t− τi)

)
, ri =

wi
τi
, (4.17)

where τi is the round-trip time for a packet to reach its destination and the acknowl-
edgment to be sent back, and ri is the resulting rate at which packets are cleared
from the list of packets that have been received. The first term in the dynamics
represents the increase in window size when a packet is received, and the second
term represents the decrease in window size when a packet is lost. Notice that ri is
evaluated at time t− τi, representing the time required to receive acknowledgments
that a packet has arrived.

The link dynamics are controlled by the dynamics of the router queue and the
admission control mechanism for the queue. Assume that we have L links in the
network and use l to index the individual links. We model the queue in terms of
the current number of packets in the router’s buffer bl and assume that the router
transmits packets at a rate cl, equal to the capacity of the link. The buffer dynamics
can then be written as

dbl
dt

=

{
sl − cl if bl > 0,

0 if bl = 0,
sl =

L∑

i=1

Rli ri(t− τ fli), (4.18)

where Rli = 1 if link l is used by source i and 0 otherwise, τ fli is the time it takes a
packet from source i to reach link l, and sl is the total rate at which packets arrive
at link l. The matrix R ∈ RL×N is called the routing matrix.

The admission control mechanism determines whether a given packet is accepted
by a router. Since our model is based on the average quantities in the network and
not the individual packets, one simple model is to assume that the probability
that a packet is dropped depends on how full the buffer is. If we let bl,max be
the maximum number of packets that the router l can buffer, we write the drop
probability as pl = βl(bl, bl,max), where βl is a function with βl(0, bl,max) = 0 and
βl(bl,max, bl,max) = 1. For simplicity, we will assume for now that pl = ρlbl (see
Exercise 4.5 for a more detailed model). The probability that a packet is dropped
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at a given link can be used to determine the end-to-end probability that a packet
is lost in transmission:

qi = 1−
L∏

l=1

Rli(1− pl) ≈
L∑

l=0

Rli pl(t− τbil), (4.19)

where τbil is the backward delay from link l to source i and the approximation is
valid as long as the individual drop probabilities are small. We use the backward
delay since this represents the time required for the acknowledgment packet to be
received by the source.

Together, equations (4.17), (4.18), and (4.19) represent a model of congestion
control dynamics. We can obtain substantial insight by considering a special case
in which we have N identical sources and one link. In addition, we assume for the
moment that the forward and backward time delays can be ignored and that none
of the routers are saturated or empty, in which case the dynamics can be reduced
to the form

dwi
dt

=
1

τp
− ρc(2 + w2

i )

2
,

db

dt
=

N∑

i=1

wi
τp

− c, τp :=
b

c
, (4.20)

where wi ∈ R, i = 1, . . . , N , is a vector of window sizes for the sources of data,
b ∈ R is the current buffer size of the router, ρ controls the rate at which packets
are dropped, and c is the capacity of the link connecting the router to the com-
puters. The variable τp represents the amount of time required for a packet to be
processed by the router, based on the size of the buffer and the capacity of the link.
Substituting τp into the equations, we write the state space dynamics as

dwi
dt

=
c

b
− ρc

(
1 +

w2
i

2

)
,

db

dt
=

N∑

i=1

cwi
b

− c. (4.21)

More sophisticated models can be found in [Low17, LPD02] and subsequent exer-
cises and examples.

The nominal operating point for the system can be found by setting ẇi = ḃ = 0:

0 =
c

b
− ρc

(
1 +

w2
i

2

)
, 0 =

N∑

i=1

cwi
b

− c.

Exploiting the fact that all of the source dynamics are identical, it follows that all
of the wi should be the same, and it can be shown that there is a unique equilibrium
point satisfying the equations

wi,e =
be
N

=
cτpe
N

,
1

2ρ2N2
(ρbe)

3 + (ρbe)− 1 = 0. (4.22)

The solution for the second equation is a bit messy but can easily be determined nu-
merically. A plot of its solution as a function of 1/(2ρ2N2) is shown in Figure 4.12b.
We also note that at equilibrium we have the following additional equalities:

τpe =
be
c

=
Nwe

c
, qe = Npe = Nρbe, re =

we

τpe
. (4.23)
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Figure 4.13: Internet congestion control for N identical sources across a single
link. As shown on the left, multiple sources attempt to communicate through a
router across a single link. An “ack” packet sent by the receiver acknowledges that
the message was received; otherwise the message packet is resent and the sending
rate is slowed down at the source. The simulation on the right is for 60 sources
starting at random rates (window sizes), with 20 sources dropping out at t = 500
ms. The buffer size is shown at the top, and the individual source rates for 6 of
the sources are shown at the bottom.

Figure 4.13 shows a simulation of 60 sources communicating across a single link,
with 20 sources dropping out at t = 500 ms and the remaining sources increasing
their rates (window sizes) to compensate. Note that the buffer size and window
sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [Tan96]. A good presentation of the ideas behind the control prin-
ciples for the Internet is given by one of its designers, Van Jacobson, in [Jac95].
F. Kelly [Kel85] presents an early effort on the analysis of the system. The books
by Hellerstein et al. [HDPT04] and Janert [Jan14] give many examples of the use
of feedback in computer systems.

4.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Heinrich Rohrer
for their design of the scanning tunneling microscope. The idea of the instrument
is to bring an atomically sharp tip so close to a conducting surface that tunneling
occurs. An image is obtained by traversing the tip across the sample and measuring
the tunneling current as a function of tip position. This invention has stimulated
the development of a family of instruments that permit visualization of surface
structure at the nanometer scale, including the atomic force microscope (AFM),
where a sample is probed by a tip on a cantilever. An AFM can operate in two
modes. In tapping mode the cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. In contact mode the cantilever is in contact with the
sample, and its bending is controlled by feedback. In both cases control is actuated



4-18 CHAPTER 4. EXAMPLES

Amplifier Amplifier

Sample

Cantilever

x,y z

LaserPhoto
diode

Controller

Piezo
drive

Deflection reference

Sweep
generator

(a) Schematic diagram (b) AFM image of DNA

Figure 4.14: Atomic force microscope. (a) A schematic diagram of an atomic
force microscope, consisting of a piezo drive that scans the sample under the AFM
tip. A laser reflects off of the cantilever and is used to measure the detection of the
tip through a feedback controller. (b) An AFM image of strands of DNA. (Image
courtesy of Bruker Corporation.)

by a piezo element that controls the vertical position of the cantilever base (or the
sample). Control design has a direct influence on picture quality and scanning rate.

A schematic picture of an atomic force microscope is shown in Figure 4.14a. A
microcantilever with a tip having a radius of the order of 10 nm is placed close to
the sample. The tip can be moved vertically and horizontally using a piezoelectric
scanner. It is clamped to the sample surface by attractive van der Waals forces and
repulsive Pauli forces. The cantilever tilt depends on the topography of the surface
and the position of the cantilever base, which is controlled by the piezo element.
The tilt is measured by sensing the deflection of the laser beam using a photodiode.
The signal from the photodiode is amplified and sent to a controller that drives
the amplifier for the vertical position of the cantilever (z). By controlling the piezo
element so that the deflection of the cantilever is constant, the signal driving the
vertical deflection of the piezo element is a measure of the atomic forces between
the cantilever tip and the atoms of the sample. An image of the surface is obtained
by scanning the cantilever along the sample. The resolution makes it possible to
see the structure of the sample on the atomic scale, as illustrated in Figure 4.14b,
which shows an AFM image of DNA.

The horizontal motion of an AFM is typically modeled as a spring–mass system
with low damping. The vertical motion is more complicated. To model the system,
we start with the block diagram shown in Figure 4.15. Signals that are easily
accessible are the input voltage u to the power amplifier that drives the piezo
element, the voltage v applied to the piezo element, and the output voltage y of the
signal amplifier for the photodiode. The controller is a PI controller implemented
by a computer, which is connected to the system by analog-to-digital (A/D) and
digital-to-analog (D/A) converters. The deflection of the cantilever ϕ is also shown
in the figure. The desired reference value for the deflection is an input to the
computer.

There are several different configurations that have different dynamics. Here we
will discuss a high-performance system from [SÅD+07] where the cantilever base
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Figure 4.15: Block diagram of the system for vertical positioning of the cantilever
for an atomic force microscope in contact mode. The control system attempts to
keep the cantilever deflection equal to its reference value. Cantilever deflection
is measured, amplified, and converted to a digital signal, then compared with its
reference value. A correcting signal is generated by the computer, converted to
analog form, amplified, and sent to the piezo element.

is positioned vertically using a piezo stack. We begin the modeling with a simple
experiment on the system. Figure 4.16a shows a step response of a scanner from
the power amplifier input voltage u to the output voltage y of the signal amplifier
for the photodiode. This experiment captures the dynamics of the chain of blocks
from u to y in the block diagram in Figure 4.15. Figure 4.16a shows that the system
responds quickly but that there is a poorly damped oscillatory mode with a period
of about 35 µs. A primary task of the modeling is to understand the origin of the
oscillatory behavior. To do so we will explore the system in more detail.

The natural frequency of the clamped cantilever is typically several hundred
kilohertz, which is much higher than the observed oscillation of about 30 kHz. As
a first approximation we will model it as a static system. Since the deflections are
small, we can assume that the bending ϕ of the cantilever is proportional to the
difference in height between the cantilever tip at the probe and the piezo scanner. A
more accurate model can be obtained by modeling the cantilever as a spring–mass
system of the type discussed in Chapter 3.

Figure 4.16a also shows that the response of the power amplifier is fast. The
photodiode and the signal amplifier also have fast responses and can thus be mod-
eled as static systems. The remaining block is a piezo system with suspension. A
schematic mechanical representation of the vertical motion of the scanner is shown
in Figure 4.16b. We will model the system as two masses separated by an ideal
piezo element. The mass m1 is half of the piezo system, and the mass m2 is the
other half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crystal generates a force
F between the masses and that there is a damping c2 in the spring. Let the positions
of the center of the masses be z1 and z2. A momentum balance gives the following
model for the system:

m1
d2z1
dt2

= F, m2
d2z2
dt2

= −c2
dz2
dt

− k2z2 − F.

Let the elongation of the piezo element l = z1 − z2 be the control variable and the
height z1 of the cantilever base be the output. Eliminating the variable F in the
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Figure 4.16: Modeling of an atomic force microscope. (a) A measured step
response. The top curve shows the voltage u applied to the drive amplifier (50
mV/div), the middle curve is the output Vp of the power amplifier (500 mV/div),
and the bottom curve is the output y of the signal amplifier (500 mV/div). The
time scale is 25 µs/div. Data have been supplied by Georg Schitter. (b) A simple
mechanical model for the vertical positioner and the piezo crystal.

equations above and substituting z1 − l for z2 gives the model

(m1 +m2)
d2z1
dt2

+ c2
dz1
dt

+ k2z1 = m2
d2l

dt2
+ c2

dl

dt
+ k2l. (4.24)

Summarizing, we find that a simple model of the system is obtained by modeling
the piezo by equation (4.24) and all the other blocks by static models. Introducing
the linear equations l = k3u and y = k4z1, we now have a complete model relating
the output y to the control signal u. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the power amplifier. As in the
previous examples, the concept of the uncertainty lemon in Figure 3.5b provides
a framework for describing the uncertainty: the model will be accurate up to the
frequencies of the fastest modeled modes and over a range of motion in which
linearized stiffness models can be used.

The experimental results in Figure 4.16a can be explained qualitatively as fol-
lows. When a voltage is applied to the piezo, it expands by l0, the mass m1 moves
up, and the massm2 moves down instantaneously. The system settles after a poorly
damped oscillation.

It is highly desirable to design a control system for the vertical motion so that it
responds quickly with little oscillation. The instrument designer has several choices:
to accept the oscillation and have a slow response time, to design a control system
that can damp the oscillations, or to redesign the mechanics to give resonances
of higher frequency. The last two alternatives give a faster response and faster
imaging.

Since the dynamic behavior of the system changes with the properties of the
sample, it is necessary to tune the feedback loop. In simple systems this is currently
done manually by adjusting parameters of a PI controller. There are interesting
possibilities for making AFM systems easier to use by introducing automatic tuning
and adaptation.
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Figure 4.17: Abstraction used to compartmentalize the body for the purpose of
describing drug distribution (based on Teorell [Teo37]). The body is abstracted
by a number of compartments with perfect mixing, and the complex transport
processes are approximated by assuming that the flow is proportional to the con-
centration differences in the compartments. The constants ki parameterize the
rates of flow between different compartments.

The book by Sarid [Sar91] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamental to solid state physics; see
Kittel [Kit95]. The model discussed in this section is based on Schitter [Sch01].

4.6 Drug Administration

The phrase “take two pills three times a day” is a recommendation with which we
are all familiar. Behind this recommendation is a solution of an open loop control
problem. The key issue is to make sure that the concentration of a medicine in
a part of the body is sufficiently high to be effective but not so high that it will
cause undesirable side effects. The control action is quantized, take two pills, and
sampled, every 8 hours. The prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and weight of the patient.

Drug administration is a control problem. To solve it we must understand how
a drug spreads in the body after it is administered. This topic, called pharmacoki-
netics, is now a discipline of its own, and the models used are called compartment
models. They go back to the 1920s when Widmark modeled the propagation of alco-
hol in the body [WT24]. Compartment models are now important for the screening
of all drugs used by humans. The schematic diagram in Figure 4.17 illustrates the
idea of a compartment model. The body is viewed as a number of compartments
like blood plasma, kidney, liver, and tissues that are separated by membranes.
It is assumed that there is perfect mixing so that the drug concentration is con-
stant in each compartment. The complex transport processes are approximated by
assuming that the flow rates between the compartments are proportional to the
concentration differences in the compartments.

To describe the effect of a drug it is necessary to know both its concentration
and how it influences the body. The relation between concentration c and its effect
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e is typically nonlinear. A simple model is

e =
c

EC50 + c
emax. (4.25)

The effect is linear for low concentrations, and it saturates at high concentrations.
The parameter EC50 represents the concentration of the drug that gives half (50%)
maximal response. The relation can also be dynamic, and it is then called pharma-
codynamics.

Compartment Models

The simplest dynamical model for drug administration is obtained by assuming
that the drug is evenly distributed in a single compartment after it has been ad-
ministered and that the drug is removed at a rate proportional to the concentration.
The compartments behave like stirred tanks with perfect mixing. Let c be the con-
centration, V the volume, and q the outflow rate. Converting the description of the
system into differential equations gives the model

V
dc

dt
= −qc, c ≥ 0. (4.26)

This equation has the solution c(t) = c0e
−qt/V = c0e

−kt, which shows that the
concentration decays exponentially with the time constant T = V/q after an injec-
tion. The input is introduced implicitly as an initial condition in the model (4.26).
More generally, the way the input enters the model depends on how the drug is
administered. For example, the input can be represented as a mass flow into the
compartment where the drug is injected. A pill that is dissolved can also be inter-
preted as an input in terms of a mass flow rate.

The model (4.26) is called a one-compartment model or a single-pool model. The
parameter k = q/V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasma. By measuring the
concentration at a few times, the initial concentration can be obtained by extrap-
olation. If the total amount of injected substance m is known, the volume V can
then be determined as V = m/c0.

The simple one-compartment model captures the gross behavior of drug distri-
bution, but it is based on many simplifications. Improved models can be obtained
by considering the body as composed of several compartments. Examples of such
systems are shown in Figure 4.18, where the compartments are represented as circles
and the flows by arrows.

Modeling will be illustrated using the two-compartment model in Figure 4.18a.
We assume that there is perfect mixing in each compartment and that the trans-
port between the compartments is driven by concentration differences. We further
assume that a drug with concentration c0 is injected in compartment 1 at a volume
flow rate of u and that the concentration in compartment 2 is the output. Let c1
and c2 be the concentrations of the drug in the compartments, and let V1 and V2



4.6. DRUG ADMINISTRATION 4-23

k2

V1

k0

b0

u

V2

k1

(a) Two compartment model

u1

V4V6

k64

k46

V1V3

k31

k13

V5

k54

k45

u4

V2

k21

k12

k03

k06 k05

k02

b4

b1

(b) Thyroid hormone model

Figure 4.18: Schematic diagrams of compartment models. (a) A simple two-
compartment model. Each compartment is labeled by its volume, and arrows
indicate the flow of chemical into, out of, and between compartments. (b) A system
with six compartments used to study the metabolism of thyroid hormone [God83].
The notation kij denotes the transport from compartment j to compartment i.

be the volumes of the compartments. The mass balances for the compartments are

V1
dc1
dt

= q(c2 − c1)− q0c1 + c0u, c1 ≥ 0,

V2
dc2
dt

= q(c1 − c2), c2 ≥ 0,

y = c2,

(4.27)

where q represents flow rate between the compartments and q0 represents the flow
rate out of compartment 1 that is not going to compartment 2. Introducing the
variables k0 = q0/V1, k1 = q/V1, k2 = q/V2, and b0 = c0/V1 and using matrix
notation, the model can be written as

dc

dt
=


−k0 − k1 k1

k2 −k2


 c+


b0

0


u, y =


0 1


 c. (4.28)

Comparing this model with its graphical representation in Figure 4.18a, we find
that the mathematical representation (4.28) can be written by inspection.

It should also be emphasized that simple compartment models such as the one in
equation (4.28) have a limited range of validity. Low-frequency limits exist because
the human body changes with time, and since the compartment model uses average
concentrations, they will not accurately represent rapid changes. There are also
nonlinear effects that influence transportation between the compartments.

Compartment models are widely used in medicine, engineering, and environ-
mental science. An interesting property of these systems is that variables like
concentration and mass are always positive. An essential difficulty in compart-
ment modeling is deciding how to divide a complex system into compartments.
Compartment models can also be nonlinear, as illustrated in the next section.

The papers by Widmark and Tandberg [WT24] and Teorell [Teo37] are classics
in pharmacokinetics, which is now an established discipline with many textbooks
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Figure 4.19: Insulin–glucose dynamics. (a) Sketch of body parts involved in
the control of glucose. (b) Schematic diagram of the system. (c) Responses
of insulin and glucose when glucose in injected intravenously. From Pacini and
Bergman [PB86].

[Dos68, GP82, Jac72]. Because of its medical importance, pharmacokinetics is
now an essential component of drug development. The book by Riggs [Rig63] is a
good source for the modeling of physiological systems, and a more mathematical
treatment is given in Keener and Sneyd [KS08, KS09]. Compartment models are
discussed in Godfrey [God83]. The problem of determining rate coefficients from
experimental data is discussed in Bellman and Åström [BÅ70] and Godfrey [God83].

Insulin–Glucose Dynamics

Glucose provides energy to all cells in the body. It is influenced by many factors:
body constitution, food intake, digestion, stress, and exercise. Healthy individuals
have sophisticated mechanisms that regulate glucose concentration in the blood.
A schematic picture of the relevant parts of the body involved are shown in Fig-
ures 4.19a and 4.19b. The pancreas secretes the hormones insulin and glucagon.
Glucagon is released into the bloodstream when the glucose level is low. It acts on
cells in the liver that release glucose. Insulin is secreted when the glucose level is
high, and the glucose level is lowered by causing the liver and other cells to take up
more glucose. There are also other hormones that influence glucose concentration.
It is important that the blood glucose concentration is regulated to be in the range
70–110 mg/L.

Diabetes is a disease where the body’s ability to produce or respond to insulin
is impaired, resulting in blood sugar levels that are too high. There are several
varieties of diabetes: production of insulin can be impaired (type 1) or the ability
of the body to absorb insulin can be reduced (type 2). Long exposure to high blood
sugar concentration is serious and may result in cardiovascular diseases, stroke,
chronic kidney disease, foot ulcers, and blindness. Low blood sugar is also serious
and can give headaches, fatigue, dizziness, lethargy, and blurred vision. Very low
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blood sugar levels can result in a coma.
The mechanisms that regulate glucose and insulin are complicated. Models of

different complexity have been developed. The models are typically tested with data
from experiments where glucose is injected intravenously and insulin and glucose
concentrations are measured at regular time intervals, as shown in Figure 4.19c.

A simple minimal model was developed by Bergman and coworkers [Ber89,
Ber01]. It is a compartment model with two state variables: concentration of
glucose in the blood plasma G and the variable X representing the effect of insulin
on glucose removal, which is proportional to the concentration of insulin I in the
interstitial fluid. The minimal model is given by the equations

dG

dt
= −p1(G−Ge)−XG+ uG,

dX

dt
= −p2X + p3(I − Ie). (4.29)

The first equation is a compartment model for glucose. The right-hand side has
three terms: a linear clearance term that models glucose removal at a rate propor-
tional to G−Ge, the nonlinear term XG, and the external input uG that represents
injection of glucose. The nonlinear term XG captures the fact that removal rate
of glucose is enhanced by insulin. The second equation represents how the variable
X depends on the insulin concentration I in the interstitial fluid. If the external
input uG is zero and I = Ie there is an equilibrium with G = Ge and X = 0.

A model that is slightly more complicated than the minimal model is given in
Exercise 4.8 and includes a model for insulin dynamics. Figure 4.19c shows a fit of
the model to a test on a normal person where glucose was injected intravenously
at time t = 0 and samples of concentrations of insulin and glucose are taken at
different times. The glucose concentration rises rapidly, and the pancreas responds
with a rapid spike-like injection of insulin. The glucose and insulin levels then
gradually approach the equilibrium values.

There are many more complicated models that capture dynamics of food intake
and measurement dynamics [CRK11, FCF+06, GMGM05, MLK06, DRC07]. The
models are used in many different ways for insight, analysis, and treatment of dia-
betes. A model for type 1 diabetes developed at the University of Virginia [LRS12]
has been approved by the U. S. Food and Drug Administration (FDA) as a replace-
ment for animal testing of closed loop control strategies for regulation of blood
sugar (in silico testing).

A simple way to measure blood sugar is to analyze glucose concentration in a
drop of blood obtained by a fingerstick. Diabetic patients can also be provided with
a continuous glucose monitor (GCM), which is a tiny sensor wire under the skin
with an adhesive patch and a wireless transmitter. The sensor measures glucose
concentration in the interstitial fluid near the sensor wire; calibration is required to
obtain the glucose concentration in the bloodstream. The sensor is often placed in
the upper arm where it can be connected wirelessly to a smartphone. An application
on the phone can then generate advice on how much insulin has to be injected, for
example long-lasting insulin for maintenance of a base level and rapid-acting insulin
taken at meal times. The advice is based on a model of the glucose-insulin system
that is matched to the patient. Devices of this type are increasingly available and
widely used by patients with diabetes.

Patients with type 1 diabetes can also be provided with an artificial pancreas,
a fully automatic system that regulates the blood sugar [CRK11, Kow09]. An arti-
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ficial pancreas consists of a glucose monitor that measures blood sugar, an insulin
infusion pump, and a control algorithm that computes the amount of insulin to be
injected based on the measured blood sugar value. The Medtronic MiniMed 670G
was approved by FDA for use by adults in 2016 and for children over seven years
old in 2018. The system has a sampling period of 5 minutes and a PID algorithm
to control the injection rate [Ste13]. Similar devices with model predictive control
have also been tested [Beq13]. The glucose monitor requires frequent observation,
the wire has to be replaced regularly, and the sensor must be calibrated frequently
using a fingerstick. There are extreme safety requirements on an artificial pan-
creas [Beq12, Kow09], and it is absolutely essential to ensure that the glucose level
does not get too low (hypoglycemia). All these additions make the system more
complicated.

4.7 Population Dynamics

Population growth is a complex dynamic process that involves the interaction of one
or more species with their environment and the larger ecosystem. The dynamics of
population groups are interesting and important in many different areas of social
and environmental policy. There are examples where new species have been intro-
duced into new habitats, sometimes with disastrous results. There have also been
attempts to control population growth both through incentives and through legisla-
tion. In this section we describe some of the models that can be used to understand
how populations evolve with time and as a function of their environments.

Logistic Growth Model

Let x be the population of a species at time t. A simple model is to assume that
the birth rates and mortality rates are proportional to the total population. This
gives the linear model

dx

dt
= bx− dx = (b− d)x = rx, x ≥ 0, (4.30)

where birth rate b and mortality rate d are parameters. The model gives an ex-
ponential increase if b > d or an exponential decrease if b < d. A more realistic
model is to assume that the birth rate decreases when the population is large. The
following modification of the model (4.30) has this property:

dx

dt
= rx

(
1− x

k

)
, x ≥ 0, (4.31)

where k is the carrying capacity of the environment. The model (4.31) is called the
logistic growth model.

Predator–Prey Models

A more sophisticated model of population dynamics includes the effects of compet-
ing populations, where one species may feed on another. This situation, referred to
as the predator–prey problem, was introduced in Example 3.4, where we developed
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a discrete-time model that captured some of the features of historical records of
lynx and hare populations.

In this section, we replace the difference equation model used there with a more
sophisticated differential equation model. Let H(t) represent the number of hares
(prey) and let L(t) represent the number of lynxes (predator). The dynamics of
the system are modeled as

dH

dt
= rH

(
1− H

k

)
− aHL

c+H
, H ≥ 0,

dL

dt
= b

aHL

c+H
− dL, L ≥ 0.

(4.32)

In the first equation, r represents the growth rate of the hares, k represents the
maximum population of the hares (in the absence of lynxes), a represents the
interaction term that describes how the hares are diminished as a function of the
lynx population, and c controls the prey consumption rate for low hare population.
In the second equation, b represents the growth coefficient of the lynxes and d
represents the mortality rate of the lynxes. Note that the hare dynamics include a
term that resembles the logistic growth model (4.31).

Of particular interest are the values at which the population values remain
constant, called equilibrium points. The equilibrium points for this system can be
determined by setting the right-hand side of the above equations to zero. Letting
He and Le represent the equilibrium state, from the second equation we have

Le = 0 or H∗
e =

cd

ab− d
. (4.33)

Substituting this into the first equation, we have that for Le = 0 either He = 0 or
He = k. For Le 6= 0, we obtain

L∗
e =

rHe(c+He)

aHe

(
1− He

k

)
=
bcr(abk − cd− dk)

(ab− d)2k
. (4.34)

Thus, we have three possible equilibrium points xe = (Le, He):

xe =


0
0


 , xe =


k
0


 , xe =


H

∗
e

L∗
e


 ,

where H∗
e and L∗

e are given in equations (4.33) and (4.34). Note that the equilib-
rium populations may be negative for some parameter values, corresponding to a
unachievable equilibrium point.

Figure 4.20 shows a simulation of the dynamics starting from a set of popu-
lation values near the nonzero equilibrium values. We see that for this choice of
parameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 3.7.

Volume I of the two-volume set by J. D. Murray [Mur04] give a broad coverage
of population dynamics.
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Figure 4.20: Simulation of the predator–prey system. The figure on the left
shows a simulation of the two populations as a function of time. The figure on
the right shows the populations plotted against each other, starting from different
values of the population. The oscillation seen in both figures is an example of a
limit cycle. The parameter values used for the simulations are a = 3.2, b = 0.6,
c = 50, d = 0.56, k = 125, and r = 1.6.

Exercises

4.1 (Cruise control) Consider the cruise control example described in Section 4.1.
Build a simulation that re-creates the response to a hill shown in Figure 4.3b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of the hill.

4.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
tion (4.5) can be approximated in state space form as

d

dt


x1
x2


 =


 0 1
mgh/J 0




x1
x2


+


 Dv0/(bJ)
mv20h/(bJ)


u,

y =

1 0


x,

where the input u is the steering angle δ and the output y is the tilt angle ϕ. What
do the states x1 and x2 represent?

4.3 (Operational amplifier circuit) Consider the op amp circuit shown below.

−

+
v1 vo

v3

v2

RaR1

R2

C2

C1

Rb
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Show that the dynamics can be written in state space form as

dx

dt
=




− 1

R1C1
− 1

RaC1
0

−Rb
Ra

1

R2C2
− 1

R2C2



x+




1

R1C1

0



u, y =


0 1


x,

where u = v1 and y = v3. (Hint: Use v2 and v3 as your state variables.)

4.4 (Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

−

+

−

+

−

+ v1v3v2

R1R3R2

R4C2 C1

Show that the dynamics can be written in state space form as

dx

dt
=




0
R4

R1R3C1

− 1

R2C2
0



x,

where the state variables represent the voltages across the capacitors x1 = v1 and
x2 = v2.

4.5 (Congestion control using RED [LPW+02]) A number of improvements can be
made to the congestion control model presented in Section 4.4. To ensure that the
router’s buffer size remains positive, we can modify the buffer dynamics to satisfy

dbl
dt

=

{
sl − cl if 0 < bl < bl,max,

0 otherwise.

In addition, we can model the drop probability of a packet based on how close a
filtered estimate of the buffer size is to the buffer limits, a mechanism known as
random early detection (RED):

pl = βl(al) =





0 if al ≤ blowl ,

ρl(ai − blowl ) if blowl < al < bmid
l ,

ηl(ai − bmid
l ) + ρl(b

mid
l − blowl ) if bmid

l ≤ al < bmax
l ,

1 if al ≥ bmax
l ,

dal
dt

= −αlcl(al − bl),

where αl, ρl, ηl, b
low
l , bmid

l , and bmaxl are parameters for the RED protocol. The
variable al is a smoothed version of the buffer size bl. Using the model above,
write a simulation for the system and find a set of parameter values for which there
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is a stable equilibrium point and a set for which the system exhibits oscillatory
solutions. The following sets of parameters should be explored:

N = 20, 30, . . . , 60, blowl = 40 pkts, αl = 10−4,

c = 8, 9, . . . , 15 pkts/ms, bmid
l = 540 pkts, ρl = 0.0002,

τp = 55, 60, . . . , 100 ms bmax
l = 1080 pkts, ηl = 0.00167.

4.6 (Atomic force microscope with piezo tube) A schematic diagram of an AFM
where the vertical scanner is a piezo tube with preloading is shown below.

Show that the dynamics can be written as

(m1 +m2)
d2z1
dt2

+ (c1 + c2)
dz1
dt

+ (k1 + k2)z1 = m2
d2l

dt2
+ c2

dl

dt
+ k2l,

where z1 is the displacement of the first mass and l = z1 − z2 is the difference in
displacement between the first and second masses. Are there parameter values that
make the dynamics particularly simple?

4.7 (Drug administration) The metabolism of alcohol in the body can be modeled
by the nonlinear compartment model

Vb
dcb
dt

= q(cl − cb) + qiv, Vl
dcl
dt

= q(cb − cl)− qmax
cl

c0 + cl
+ qgi,

where Vb = 48 L and Vl = 0.6 L are the apparent volumes of distribution of body
water and liver water, cb and cl are the concentrations of alcohol in the com-
partments, qiv and qgi are the injection rates for intravenous and gastrointestinal
intake, q = 1.5 L/min is the total hepatic blood flow, qmax = 2.75 mmol/min, and
c0 = 0.1 mmol/L. Simulate the system and compute the concentration in the blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

4.8 (Insulin-glucose dynamics) The following model for insulin glucose dynamics by
Gaetano and colleagues [GMGM05] has three states: glucose concentration in the
blood plasma G [mg/dL], insulin concentration in the interstitial fluid I [µUI/ml],
and X [min−1] that represents the increased removal rate of glucose due to in-
sulin. The state X is proportional to the concentration of interstitial insulin. The
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dynamics are:
dG

dt
= −(p1 +X)G+ p1Gb + uG

dX

dt
= −p2X + p3(I − Ib)

dI

dt
= p4 max(G− p5, 0)− p6(I − Ib) + uI.

Use the parameters

Gb = 87, Ib = 37.9, p1 = 0.05, p2 = 0.5, p3 = 10−4,

p4 = 10−5, p5 = 150, p6 = 0.05, p7 = 199.

Simulate the system with the initial conditions G(0) = 400, I(0) = 200 and X(0) =
0. This corresponds to a person having taken a large initial dose of glucose.

4.9 (Fisheries management) Some features of the dynamics of a commercial fishery
can be described by the following simple model:

dx

dt
= f(x)− h(x, u), y = bh(x, u)− cu,

where x is the total biomass, f(x) = rx(1−x/k) is the growth rate, and r and k are
constant parameters. The harvesting rate is h(x, u) = axu, where a is a constant
parameter and u is the fishing effort. The output y is the rate of revenue, where b
and c are constants representing the price of fish and the cost of fishing.

(a) Find a sustainable equilibrium point where the revenue is as large as possi-
ble. Determine the equilibrium value of the biomass and the fishing effort at the
equilibrium.

(b) With the parameters a = 0.1, b = 1, c = 1, k = 100, and r = 0.2 the sustainable
equilibrium point corresponds to xe = 55 and ue = 0.9. For an individual fisherman
it is profitable to fish as long as the rate of revenue y = (abx − c)u is positive.
Explore by simulation what happens if the fishing intensity is much higher than
the sustainable fishing rate ue, say u = 3. Use the results to discuss the role of
having a fishing quota.
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Chapter 5

Dynamic Behavior

It Don’t Mean a Thing (If It Ain’t Got That Swing).

Duke Ellington (1899–1974).

In this chapter we present a broad discussion of the behavior of dynamical
systems focused on systems modeled by nonlinear differential equations. This allows
us to consider equilibrium points, stability, limit cycles, and other key concepts in
understanding dynamic behavior. We also introduce some methods for analyzing
the global behavior of solutions.

5.1 Solving Differential Equations

In the previous two chapters we saw that one of the methods of modeling dynamical
systems is through the use of ordinary differential equations (ODEs). A state space,
input/output system has the form

dx

dt
= f(x, u), y = h(x, u), (5.1)

where x = (x1, . . . , xn) ∈ Rn is the state, u ∈ Rp is the input, and y ∈ Rq is the
output. The smooth maps f : Rn × Rp → Rn and h : Rn × Rp → Rq represent
the dynamics and measurements for the system. In general, they can be nonlinear
functions of their arguments. Systems with many inputs and many outputs are
called multi-input, multi-output systems (MIMO) systems. We will usually focus
on single-input, single-output (SISO) systems, for which p = q = 1.

We begin by investigating systems in which the input has been set to a function
of the state, u = α(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equations in this case become

dx

dt
= f(x, α(x)) =: F (x). (5.2)

To understand the dynamic behavior of this system, we need to analyze the
features of the solutions of equation (5.2). While in some simple situations we can

5-1
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write down the solutions in analytical form, often we must rely on computational
approaches. We begin by describing the class of solutions for this problem.

We say that x(t) is a solution of the differential equation (5.2) on the time
interval t0 ∈ R to tf ∈ R if

dx(t)

dt
= F (x(t)) for all t0 < t < tf.

A given differential equation may have many solutions. We will most often be
interested in the initial value problem, where x(t) is prescribed at a given time
t0 ∈ R and we wish to find a solution valid for all future time t > t0.

We say that x(t) is a solution of the differential equation (5.2) with initial value
x0 ∈ Rn at t0 ∈ R if

x(t0) = x0 and
dx(t)

dt
= F (x(t)) for all t0 < t < tf.

For most differential equations we will encounter, there is a unique solution that is
defined for t0 ≤ t < tf. The solution may be defined for all time t > t0, in which
case we take tf = ∞. Because we will primarily be interested in solutions of the
initial value problem for differential equations, we will usually refer to this simply
as the solution of a differential equation.

We will typically assume that t0 is equal to 0. In the case when F is independent
of time (as in equation (5.2)), we can do so without loss of generality by choosing
a new independent (time) variable, τ = t− t0 (Exercise 5.1).

Example 5.1 Damped oscillator
Consider a damped linear oscillator with dynamics of the form

q̈ + 2ζω0q̇ + ω2
0q = 0,

where q is the displacement of the oscillator from its rest position. These dynamics
are equivalent to those of a spring–mass system, as shown in Exercise 3.5. We
assume that ζ < 1, corresponding to a lightly damped system (the reason for this
particular choice will become clear later). We can rewrite this in state space form
by setting x1 = q and x2 = q̇/ω0, giving

dx1
dt

= ω0x2,
dx2
dt

= −ω0x1 − 2ζω0x2.

In vector form, the right-hand side can be written as

F (x) =


 ω0x2
−ω0x1 − 2ζω0x2


 .

The solution to the initial value problem can be written in a number of different
ways and will be explored in more detail in Chapter 6. Here we simply assert that
the solution can be written as

x1(t) = e−ζω0t

(
x10 cosωdt+

1

ωd
(ω0ζx10 + x20) sinωdt

)
,

x2(t) = e−ζω0t

(
x20 cosωdt−

1

ωd
(ω2

0x10 + ω0ζx20) sinωdt

)
,



5.1. SOLVING DIFFERENTIAL EQUATIONS 5-3

0 2 4 6 8 10 12 14 16 18 20

Time t [s]

-1

-0.5

0

0.5

1

S
ta

te
s 

x
1
, 

x
2

x1 x2

Figure 5.1: Response of the damped oscillator to the initial condition x0 = (1, 0).
The solution is unique for the given initial conditions and consists of an oscillatory
solution for each state, with an exponentially decaying magnitude.

where x0 = (x10, x20) is the initial condition and ωd = ω0

√
1− ζ2. This solution

can be verified by substituting it into the differential equation. We see that the so-
lution is explicitly dependent on the initial condition, and it can be shown that this
solution is unique. A plot of the initial condition response is shown in Figure 5.1.
We note that this form of the solution holds only for 0 < ζ < 1, corresponding to
an “underdamped” oscillator. ∇

�
Without imposing some mathematical conditions on the function F , the differ-

ential equation (5.2) may not have a solution for all t, and there is no guarantee
that the solution is unique. We illustrate these possibilities with two examples.

Example 5.2 Finite escape time
Let x ∈ R and consider the differential equation

dx

dt
= x2 (5.3)

with the initial condition x(0) = 1. By differentiation we can verify that the
function

x(t) =
1

1− t

satisfies the differential equation and that it also satisfies the initial condition. A
graph of the solution is given in Figure 5.2a; notice that the solution goes to infinity
as t goes to 1. We say that this system has finite escape time. Thus the solution
exists only in the time interval 0 ≤ t < 1. ∇
Example 5.3 Nonunique solution
Let x ∈ R and consider the differential equation

dx

dt
= 2

√
x (5.4)

with initial condition x(0) = 0. We can show that the function

x(t) =

{
0 if 0 ≤ t ≤ a,

(t− a)2 if t > a



5-4 CHAPTER 5. DYNAMIC BEHAVIOR

0 0.5 1 1.5
0

50

100

Time t

S
ta
te
x

(a) Finite escape time

0 2 4 6 8 10
0

50

100

Time t

S
ta
te
x a

(b) Nonunique solutions

Figure 5.2: Existence and uniqueness of solutions. Equation (5.3) has a solution
only for time t < 1, at which point the solution goes to infinity, as shown in (a).
Equation (5.4) is an example of a system with many solutions, as shown in (b). For
each value of a, we get a different solution starting from the same initial condition.

satisfies the differential equation for all values of the parameter a ≥ 0. To see this,
we differentiate x(t) to obtain

dx

dt
=

{
0 if 0 ≤ t ≤ a,

2(t− a) if t > a,

and hence ẋ = 2
√
x for all t ≥ 0 with x(0) = 0. A graph of some of the possible

solutions is given in Figure 5.2b. Notice that in this case there are many solutions
to the differential equation. ∇

These simple examples show that there may be difficulties even with simple
differential equations. Existence and uniqueness can be guaranteed by requiring
that the function F have the property that for some fixed c ∈ R,

‖F (x)− F (y)‖ < c‖x− y‖ for all x, y,

which is called Lipschitz continuity. A sufficient condition for a function to be
Lipschitz is that the Jacobian ∂F/∂x is uniformly bounded for all x. The difficulty
in Example 5.2 is that the derivative ∂F/∂x becomes large for large x, and the
difficulty in Example 5.3 is that the derivative ∂F/∂x is infinite at the origin.

5.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is important in understanding some of
the key concepts of stability in nonlinear dynamics. We will focus on an important
class of systems known as planar dynamical systems. These systems have two state
variables x ∈ R2, allowing their solutions to be plotted in the (x1, x2) plane. The
basic concepts that we describe hold more generally and can be used to understand
dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems with state
x ∈ R2 is to plot the phase portrait of the system, briefly introduced in Chapter 3.
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Figure 5.3: Phase portraits. (a) This plot shows the vector field for a planar
dynamical system. Each arrow shows the velocity at that point in the state space.
(b) This plot includes the solutions (sometimes called streamlines) from different
initial conditions, with the vector field superimposed.

We start by introducing the concept of a vector field. For a system of ordinary
differential equations

dx

dt
= F (x),

the right-hand side of the differential equation defines at every x ∈ Rn a velocity
F (x) ∈ Rn. This velocity tells us how x changes and can be represented as a vector
F (x) ∈ Rn.

For planar dynamical systems, each state corresponds to a point in the plane
and F (x) is a vector representing the velocity of that state. We can plot these
vectors on a grid of points in the plane and obtain a visual image of the dynamics
of the system, as shown in Figure 5.3a. The points where the velocities are zero
are of particular interest since they define stationary points of the flow: if we start
at such a state, we stay at that state.

A phase portrait is constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a set of initial conditions,
we plot the solution of the differential equation in the plane R2. This corresponds
to following the arrows at each point in the phase plane and drawing the resulting
trajectory. By plotting the solutions for several different initial conditions, we ob-
tain a phase portrait, as shown in Figure 5.3b. Phase portraits are also sometimes
called phase plane diagrams.

Phase portraits give insight into the dynamics of the system by showing the
solutions plotted in the (two-dimensional) state space of the system. For example,
we can see whether all trajectories tend to a single point as time increases or whether
there are more complicated behaviors. In the example in Figure 5.3, corresponding
to a damped oscillator, the solutions approach the origin for all initial conditions.
This is consistent with our simulation in Figure 5.1, but it allows us to infer the
behavior for all initial conditions rather than a single initial condition. However,
the phase portrait does not readily tell us the rate of change of the states (although
this can be inferred from the lengths of the arrows in the vector field plot).
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Figure 5.4: Equilibrium points for an inverted pendulum. An inverted pendulum
is a model for a class of balance systems in which we wish to keep a system upright,
such as a rocket (a). Using a simplified model of an inverted pendulum (b), we can
develop a phase portrait that shows the dynamics of the system (c). The system
has multiple equilibrium points, marked by the solid dots along the x2 = 0 line.

Equilibrium Points and Limit Cycles

An equilibrium point of a dynamical system represents a stationary condition for
the dynamics. We say that a state xe is an equilibrium point for a dynamical system

dx

dt
= F (x)

if F (xe) = 0. If a dynamical system has an initial condition x(0) = xe, then it will
stay at the equilibrium point: x(t) = xe for all t ≥ 0, where we have taken t0 = 0.

Equilibrium points are one of the most important features of a dynamical system
since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one, or more equilibrium points.

Example 5.4 Inverted pendulum
Consider the inverted pendulum in Figure 5.4, which is a part of the balance system
we considered in Chapter 3. The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at the base of the rocket, we
seek to keep the rocket stabilized in the upright position. The state variables are
the angle θ = x1 and the angular velocity dθ/dt = x2, the control variable is the
acceleration u of the pivot, and the output is the angle θ.

For simplicity we assume that mgl/Jt = 1, l/Jt = 1 and set c = γ/Jt, so that
the dynamics (equation (3.10)) become

dx

dt
=


 x2
sinx1 − cx2 + u cosx1


 . (5.5)

This is a nonlinear time-invariant system of second order. This same set of equations
can also be obtained by appropriate normalization of the system dynamics, as
illustrated in Example 3.10.

We consider the open loop dynamics by setting u = 0. The equilibrium points
for the system are given by

xe =


±nπ

0


 ,
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Figure 5.5: Phase portrait and time domain simulation for a system with a limit
cycle. The phase portrait (a) shows the states of the solution plotted for different
initial conditions. The limit cycle corresponds to a closed loop trajectory. The
simulation (b) shows a single solution plotted as a function of time, with the limit
cycle corresponding to a steady oscillation of fixed amplitude.

where n = 0, 1, 2, . . . . The equilibrium points for n even correspond to the pendu-
lum pointing up and those for n odd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inputs) is shown in Figure 5.4c.
The phase portrait shows −2π ≤ x1 ≤ 2π, so five of the equilibrium points are
shown. ∇

Nonlinear systems can exhibit rich behavior. Apart from equilibrium points they
can also exhibit stationary periodic solutions. This is of great practical value in
generating sinusoidally varying voltages in power systems or in generating periodic
signals for animal locomotion. A simple example is given in Exercise 5.11, which
shows the circuit diagram for an electronic oscillator. A normalized model of the
oscillator is given by the equation

dx1
dt

= x2 + x1(1− x21 − x22),
dx2
dt

= −x1 + x2(1− x21 − x22). (5.6)

The phase portrait and time domain solutions are given in Figure 5.5. The figure
shows that the solutions in the phase plane converge to a circular trajectory. In the
time domain this corresponds to an oscillatory solution. Mathematically the circle
is called a limit cycle. More formally, we call a nonconstant solution xp(t) a limit
cycle of period T > 0 if xp(t + T ) = xp(t) for all t ∈ R and nearby trajectories
converge to xp( · ) as t→ ∞ (stable limit cycle) or t→ −∞ (unstable limit cycle).

There are methods for determining limit cycles for second-order systems, but for
general higher-order systems we have to resort to computational analysis. Com-
puter algorithms find limit cycles by searching for periodic trajectories in state
space that satisfy the dynamics of the system. In many situations, stable limit
cycles can be found by simulating the system with different initial conditions.
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Figure 5.6: Illustration of Lyapunov’s concept of a stable solution. The solution
represented by the solid line is stable if we can guarantee that all solutions remain
within a tube of diameter ǫ by choosing initial conditions sufficiently close the
solution.

5.3 Stability

The stability of a solution determines whether or not solutions nearby the solution
remain close, get closer, or move further away. We now give a formal definition of
stability and describe tests for determining whether a solution is stable.

Definitions

Let x(t; a) be a solution to the differential equation with initial condition a. A
solution is stable if other solutions that start near a stay close to x(t; a). Formally,
we say that the solution x(t; a) is stable if for all ǫ > 0, there exists a δ > 0 such
that

‖b− a‖ < δ =⇒ ‖x(t; b)− x(t; a)‖ < ǫ for all t > 0.

Note that this definition does not imply that x(t; b) approaches x(t; a) as time
increases but just that it stays nearby. Furthermore, the value of δ may depend on
ǫ, so that if we wish to stay very close to the solution, we may have to start very,
very close (δ ≪ ǫ). This type of stability, which is illustrated in Figure 5.6, is also
called stability in the sense of Lyapunov. If a solution is stable in this sense and
the trajectories do not converge, we say that the solution is neutrally stable.

An important special case is when the solution x(t; a) = xe is an equilibrium
solution. In this case the condition for stability becomes

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ǫ for all t > 0. (5.7)

Instead of saying that the solution is stable, we simply say that the equilibrium
point is stable. An example of a neutrally stable equilibrium point is shown in
Figure 5.7. From the phase portrait, we see that if we start near the equilibrium
point, then we stay near the equilibrium point. Furthermore, if we choose an initial
condition from within the inner dashed circle (of radius δ) then all trajectories will
remain inside the region defined by the outer dashed circle (of radius ǫ). Note,
however, that trajectories may not remain confined inside the individual circles
(and hence we must choose δ < ǫ).
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Figure 5.7: Phase portrait and time domain simulation for a system with a single
stable equilibrium point. The equilibrium point xe at the origin is stable since all
trajectories that start near xe stay near xe.

A solution x(t; a) is asymptotically stable if it is stable in the sense of Lyapunov
and, in addition, x(t; b) approaches x(t; a) as t approaches infinity for b sufficiently
close to a. Hence, the solution x(t; a) is asymptotically stable if for every ǫ > 0
there exists a δ > 0 such that

‖b− a‖ < δ =⇒ ‖x(t; b)− x(t; a)‖ < ǫ and lim
t→∞

‖x(t; b)− x(t; a)‖ = 0.

This corresponds to the case where all nearby trajectories converge to the stable
solution for large time. In the case of an equilibrium solution xe, we can write this
condition as

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ǫ and lim
t→∞

x(t) = xe. (5.8)

Figure 5.8 shows an example of an asymptotically stable equilibrium point. Indeed,
as seen in the phase portrait, not only do all trajectories stay near the equilibrium
point at the origin, but they also all approach the origin as t gets large (the direc-
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Figure 5.8: Phase portrait and time domain simulation for a system with a single
asymptotically stable equilibrium point. The equilibrium point xe at the origin is
asymptotically stable since the trajectories converge to this point as t → ∞.
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Figure 5.9: Phase portrait and time domain simulation for a system with a single
unstable equilibrium point. The equilibrium point xe at the origin is unstable since
not all trajectories that start near xe stay near xe. The sample trajectory on the
right shows that the trajectories very quickly depart from zero.

tions of the arrows on the phase portrait show the direction in which the trajectories
move).

A solution x(t; a) is unstable if it is not stable. More specifically, we say that a
solution x(t; a) is unstable if given some ǫ > 0, there does not exist a δ > 0 such
that if ‖b− a‖ < δ, then ‖x(t; b)− x(t; a)‖ < ǫ for all t. An example of an unstable
equilibrium point xe is shown in Figure 5.9. Note that no matter how small we
make δ, there is always an initial condition with ‖x(0) − xe‖ < δ that flows away
from xe.

The definitions above are given without careful description of their domain of
applicability. More formally, we define a solution to be locally stable (or locally
asymptotically stable) if it is stable for all initial conditions x ∈ Br(a), where

Br(a) = {x : ‖x− a‖ < r}

is a ball of radius r around a and r > 0. A solution is globally asymptotically stable
if it is asymptotically stable for all r > 0.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either
a source, if all trajectories lead away from the equilibrium point, or a saddle, if
some trajectories lead to the equilibrium point and others move away (this is the
situation pictured in Figure 5.9). Finally, an equilibrium point that is stable but
not asymptotically stable (i.e., neutrally stable, such as the one in Figure 5.7) is
called a center.

Example 5.5 Congestion control
The TCP protocol is used to adjust the rate of packet transmission on the Inter-
net. Stability of this system is important to insure smooth and efficient flow of
information across the network.

The model for congestion control in a network consisting of N identical com-
puters connected to a single router, described in more detail in Section 4.4, is given
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(a) ρ = 2× 10−4, c = 10 pkts/ms
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(b) ρ = 4× 10−4, c = 20 pkts/ms

Figure 5.10: Phase portraits for a congestion control protocol running with
N = 60 identical source computers. The equilibrium values correspond to a fixed
window at the source, which results in a steady-state buffer size and corresponding
transmission rate. A faster link (b) uses a smaller buffer size since it can handle
packets at a higher rate.

by
dw

dt
=
c

b
− ρc

(
1 +

w2

2

)
,

db

dt
= N

wc

b
− c,

where w is the window size and b is the buffer size of the router. The equilibrium
points are given by

be = Nwe, where we

(
1 +

w2
e

2

)
=

1

Nρ
.

Since w(1+w2/2) is monotone, there is only one equilibrium point. Phase portraits
are shown in Figure 5.10 for two different sets of parameter values. In each case we
see that the system converges to an equilibrium point in which the buffer is below its
full capacity of 500 packets. The equilibrium size of the buffer represents a balance
between the transmission rates for the sources and the capacity of the link. We
see from the phase portraits that the equilibrium points are asymptotically stable
since all initial conditions result in trajectories that converge to these points. ∇

Stability of Linear Systems

A linear dynamical system has the form

dx

dt
= Ax, x(0) = x0, (5.9)

where A ∈ Rn×n is a square matrix, corresponding to the dynamics matrix of a
linear control system (3.6). For a linear system, the stability of the equilibrium
point at the origin can be determined from the eigenvalues of the matrix A:

λ(A) := {s ∈ C : det(sI −A) = 0}.
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The polynomial det(sI−A) is the characteristic polynomial and the eigenvalues are
its roots. We use the notation λj for the jth eigenvalue of A, so that λj ∈ λ(A).
In general λ can be complex-valued, although if A is real-valued, then for any
eigenvalue λ, its complex conjugate λ∗ will also be an eigenvalue. The origin is
always an equilibrium point for a linear system. Since the stability of a linear
system depends only on the matrix A, we find that stability is a property of the
system. For a linear system we can therefore talk about the stability of the system
rather than the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
are in diagonal form. In this case, the dynamics have the form

dx

dt
=




λ1
λ2

0

0
. . .

λn



x. (5.10)

It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of n individual systems ẋj = λjxj .
Each of these scalar solutions is of the form

xj(t) = eλjtxj(0).

We see that the equilibrium point xe = 0 is stable if λj ≤ 0 and asymptotically
stable if λj < 0.

Another simple case is when the dynamics are in the block diagonal form

dx

dt
=




σ1 ω1

−ω1 σ1
0

. . .

0
σm ωm
−ωm σm




x.

In this case, the eigenvalues can be shown to be λj = σj ± iωj . We once again can
separate the state trajectories into independent solutions for each pair of states,
and the solutions are of the form

x2j−1(t) = eσjt
(
x2j−1(0) cosωjt+ x2j(0) sinωjt

)
,

x2j(t) = eσjt
(
−x2j−1(0) sinωjt+ x2j(0) cosωjt

)
,

where j = 1, 2, . . . ,m. We see that this system is asymptotically stable if and only
if σj = Reλj < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but many systems
can be transformed into these forms via coordinate transformations. One such
class of systems is those for which the dynamics matrix has distinct (nonrepeating)
eigenvalues. In this case there is a matrix T ∈ Rn×n such that the matrix TAT−1

is in (block) diagonal form, with the block diagonal elements corresponding to
the eigenvalues of the original matrix A (see Exercise 5.14). If we choose new
coordinates z = Tx, then

dz

dt
= T ẋ = TAx = TAT−1z
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and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as those of the original system
since if v is an eigenvector of A, then w = Tv can be shown to be an eigenvector
of TAT−1. We can reason about the stability of the original system by noting
that x(t) = T−1z(t), and so if the transformed system is stable (or asymptotically
stable), then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stabil-
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:

Theorem 5.1 (Stability of a linear system). The system

dx

dt
= Ax

is asymptotically stable if and only if all eigenvalues of A have a strictly negative
real part and is unstable if any eigenvalue of A has a strictly positive real part.

Note that it is not enough to have eigenvalues with Re(λ) ≤ 0. As a simple
example, consider the system q̈ = 0, which can be written in state space form as

d

dt


x1
x2


 =


0 1
0 0




x1
x2


 .

The system has eigenvalues λ = 0 but the solutions are not bounded since we have

x1(t) = x1,0 + x2,0t, x2(t) = x2,0.

Example 5.6 Compartment model
Consider the two-compartment module for drug delivery described in Section 4.6.
Using concentrations as state variables and denoting the state vector by x, the
system dynamics are given by

dx

dt
=


−k0 − k1 k1

k2 −k2


x+


b0

0


u, y =


0 1


x,

where the input u is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measured output y. We wish to
design a feedback control law that maintains a constant output given by y = yd.

We choose an output feedback control law of the form

u = −k(y − yd) + ud,

where ud is the rate of injection required to maintain the desired concentration
y = yd, and k is a feedback gain that should be chosen such that the closed loop
system is stable. Substituting the control law into the system, we obtain

dx

dt
=


−k0 − k1 k1 − b0k

k2 −k2


x+


b0

0


 (ud + kyd) =: Ax+Bue,

y =

0 1


x =: Cx.
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The equilibrium concentration xe ∈ R2 can be obtained by solving the equation
Axe +Bue = 0 and some simple algebra yields

x1,e = x2,e = yd, ue = ud =
k0
b0
yd.

To analyze the system around the equilibrium point, we choose new coordinates
z = x − xe. In these coordinates the equilibrium point is at the origin and the
dynamics become

dz

dt
=


−k0 − k1 k1 − b0k

k2 −k2


 z.

We can now apply the results of Theorem 5.1 to determine the stability of the
system. The eigenvalues of the system are given by the roots of the characteristic
polynomial

λ(s) = s2 + (k0 + k1 + k2)s+ (k0k2 + b0k2k).

While the specific form of the roots is messy, it can be shown using the Routh–
Hurwitz criterion that the roots have negative real part as long as the linear term
and the constant term are both positive (see Section 2.2, page 2-9). Hence the
system is stable for any k > 0. ∇

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible to determine
the local stability of an equilibrium point by approximating the system by a linear
system. The following example illustrates the basic idea.

Example 5.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dx

dt
=


 x2
sinx1 − cx2


 ,

where we have defined the state as x = (θ, θ̇). We first consider the equilibrium
point at x = (0, 0), corresponding to the straight-up position. If we assume that
the angle θ = x1 remains small, then we can replace sinx1 with x1 and cosx1 with
1, which gives the approximate system

dx

dt
=


 x2
x1 − cx2


 =


0 1
1 −c


x. (5.11)

Intuitively, this system should behave similarly to the more complicated model as
long as x1 is small. In particular, it can be verified that the equilibrium point
(0, 0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (5.11).

We can also approximate the system around the stable equilibrium point at
x = (π, 0). In this case we have to expand sinx1 and cosx1 around x1 = π,
according to the expansions

sin(π + θ) = − sin θ ≈ −θ, cos(π + θ) = − cos(θ) ≈ −1.
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Figure 5.11: Comparison between the phase portraits for the full nonlinear sys-
tem (a) and its linear approximation around the origin (b). Notice that near the
equilibrium point at the center of the plots, the phase portraits (and hence the
dynamics) are almost identical.

If we define z1 = x1−π and z2 = x2, the resulting approximate dynamics are given
by

dz

dt
=


 z2
−z1 − c z2


 =


 0 1
−1 −c


 z. (5.12)

It can be shown that the eigenvalues of the dynamics matrix have negative real
parts, confirming that the downward equilibrium point is asymptotically stable.

Figure 5.11 shows the phase portraits for the original system and the approxi-
mate system around the stable equilibrium point. Note that z = (0, 0) is the equi-
librium point for this system and that it has the same basic form as the dynamics
shown in Figure 5.8. The solutions for the original system and the approximate are
very similar, although not exactly the same. It can be shown that if a linear ap-
proximation has either asymptotically stable or unstable equilibrium points, then
the local stability of the original system must be the same (see Theorem 5.3 on
page 5-26 for the case of asymptotic stability). ∇

More generally, suppose that we have a nonlinear system

dx

dt
= F (x)

that has an equilibrium point at xe. Computing the Taylor series expansion of the
vector field, we can write

dx

dt
= F (xe) +

∂F

∂x

∣∣∣∣
xe

(x− xe) + higher-order terms in (x− xe).

Since F (xe) = 0, we can approximate the system by choosing a new state variable
z = x− xe and writing

dz

dt
= Az, where A =

∂F

∂x

∣∣∣∣
xe

. (5.13)
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We call the system (5.13) the linear approximation of the original nonlinear system
or the linearization at xe. The following example illustrates the idea.

Example 5.8 Stability a tanker
The normalized steering dynamics of a large ship can be modeled by the following
equations:

dv

dt
= a1v + a2r + αv|v|+ b1δ,

dr

dt
= a3v + a4r + b2δ,

where v is the component of the velocity vector that is orthogonal to the ship direc-
tion, r is the turning rate, and δ is the rudder angle. The variables are normalized
by using the ship length l as the length unit and the time to travel one ship length
as the time unit. The mass is normalized by ρl3/2, where ρ is the density of water.
The normalized parameters are a1 = −0.6, a2 = −0.3, a3 = −5, a4 = −2, α = −2,
b1 = 0.1, and b2 = −0.8.

Setting the rudder angle δ = 0, we find that the equilibrium points are given by
the equations

a1v + a2r + αv|v| = 0, a3v + a4r = 0.

Elimination of the variable r in these equations gives

(a1a4 − a2a3)v + αa4v|v| = 0

There are three equilibrium solutions: ve = 0 and ve = ±0.075. Linearizing the
equation gives a second-order system with dynamics matrices

A0 =


−0.6 −0.3

−5 −2


 , A1 =


−0.9 −0.3

−5 −2


 .

The linearized matrix A0, for the equilibrium point ve = 0, has the characteristic
polynomial s2 +2.6s− 0.3, which has one root in the right half-plane. The equilib-
rium point is thus unstable. The matrix A1, for the equilibrium points ve = ±0.075,
has the characteristic polynomial s2+2.9s+0.3, which has all roots in the left half-
plane. These equilibrium points are stable.

Summarizing, we find that the equilibrium point ve = re = 0, which corresponds
to the ship moving forward at constant speed, is unstable. The other equilibrium
points, ve = −0.075, re = 0.1875 and ve = 0.075, re = −0.1875, are stable (see
Figure 5.12a). These equilibrium points correspond to the tanker moving in a
circle to the left or to the right. Hence if the rudder is set to δ = 0 and the ship is
moving forward it will either turn to the right or to the left and approach one of
the stable equilibrium points. Which way it goes depends on the exact value of the
initial condition. The trajectories are shown in Figure 5.12b. ∇

The fact that a linear model can be used to study the behavior of a nonlinear
system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equilib-
rium point, which in turn ensures that the linear approximation used to stabilize
it is valid.
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Figure 5.12: Stability analysis for a tanker. The rudder characteristics are shown
in (a), where the equilibrium points are marked by circles, and the tanker trajec-
tories are shown in (b).

Stability of Limit Cycles

Stability of nonequilibrium solutions can also be investigated, as illustrated by the
following example.

Example 5.9 Stability of an oscillation
Consider the system given by equation (5.6),

dx1
dt

= x2 + x1(1− x21 − x22),
dx2
dt

= −x1 + x2(1− x21 − x22),

whose phase portrait is shown in Figure 5.5. The differential equation has a periodic
solution

xp =


x1(0) cos t+ x2(0) sin t
x2(0) cos t− x1(0) sin t


 , (5.14)

with x21(0) + x22(0) = 1. Notice that the nonlinear terms disappear on the periodic
solution.

To explore the stability of this solution, we introduce polar coordinates r ≥ 0
and ϕ, which are related to the state variables x1 and x2 by

x1 = r cosϕ, x2 = r sinϕ.

Differentiation gives the following linear equations for ṙ and ϕ̇:

ẋ1 = ṙ cosϕ− rϕ̇ sinϕ, ẋ2 = ṙ sinϕ+ rϕ̇ cosϕ.

Solving this linear system for ṙ and ϕ̇ gives, after some calculation,

dr

dt
= r(1− r2),

dϕ

dt
= −1. (5.15)

Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation for r has two equilibrium points: r = 0 and r = 1 (notice that
r is assumed to be nonnegative). The derivative dr/dt is positive for 0 < r < 1
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Figure 5.13: Solution curves for a stable limit cycle. The phase portrait on the
left shows that the trajectory for the system rapidly converges to the stable limit
cycle. The starting points for the trajectories are marked by circles in the phase
portrait. The time domain plots on the right show that the states do not converge
to the solution but instead maintain a constant phase error.

and negative for r > 1. The variable r will therefore increase if 0 < r < 1 and
decrease if r > 1, and we find that the equilibrium point r = 0 is unstable and the
equilibrium point r = 1 is stable. Solutions with initial conditions different from 0
will thus all converge to the stable equilibrium point r = 1 as time increases.

To study the stability of the full system, we must also investigate the behavior of
angle ϕ. The equation for ϕ̇ can be integrated analytically to give ϕ(t) = −t+ϕ(0),
which shows that solutions starting at different initial angles ϕ(0) will grow linearly
with time, remaining separated by a constant amount. The solution r = 1, ϕ = −t
is thus stable but not asymptotically stable. The unit circle in the phase plane is
attracting, in the sense that all solutions with r(0) > 0 converge to the unit circle,
as illustrated in the simulation in Figure 5.13. Notice that the solutions approach
the circle rapidly, but that there is a constant phase shift between the solutions.

∇

5.4 Lyapunov Stability Analysis �

We now return to the study of the full nonlinear system

dx

dt
= F (x), x ∈ Rn. (5.16)

Having defined when a solution for a nonlinear dynamical system is stable, we
can now ask how to prove that a given solution is stable, asymptotically stable,
or unstable. For physical systems, one can often argue about stability based on
dissipation of energy. The generalization of that technique to arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.

In this section we will describe techniques for determining the stability of solu-
tions for a nonlinear system (5.16). We will generally be interested in stability of
equilibrium points, and it will be convenient to assume that xe = 0 is the equilib-
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rium point of interest. (If not, rewrite the equations in a new set of coordinates
z = x− xe.)

Lyapunov Functions

A Lyapunov function V : Rn → R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, if we can find a nonnegative
function that always decreases along trajectories of the system, we can conclude
that the minimum of the function is a stable equilibrium point (locally).

To describe this more formally, we start with a few definitions. Let Br = Br(0)
be a ball of radius r around the origin. We say that a continuous function V is
positive definite on Br if V (x) > 0 for all x ∈ Br, x 6= 0 and V (0) = 0. Similarly, a
function is negative definite on Br if V (x) < 0 for all x ∈ Br, x 6= 0 and V (0) = 0.
We say that a function V is positive semidefinite if V (x) ≥ 0 for all x ∈ Br, but
V (x) can be zero at points other than just x = 0.

To illustrate the difference between a positive definite function and a positive
semidefinite function, suppose that x ∈ R2 and let

V1(x) = x21, V2(x) = x21 + x22.

Both V1 and V2 are always nonnegative. However, it is possible for V1 to be zero
even if x 6= 0. Specifically, if we set x = (0, c), where c ∈ R is any nonzero number,
then V1(x) = 0. On the other hand, V2(x) = 0 if and only if x = (0, 0). Thus V1 is
positive semidefinite and V2 is positive definite.

We can now characterize the stability of an equilibrium point xe = 0 for the
system (5.16).

Theorem 5.2 (Lyapunov stability theorem). Let V be a function on Rn and let V̇
represent the time derivative of V along trajectories of the system dynamics (5.16):

V̇ =
∂V

∂x

dx

dt
=
∂V

∂x
F (x).

If there exists r > 0 such that V is positive definite and V̇ is negative semidefinite
on Br, then x = 0 is (locally) stable in the sense of Lyapunov. If V is positive
definite and V̇ is negative definite in Br, then x = 0 is (locally) asymptotically
stable.

If V satisfies one of the conditions above, we say that V is a (local) Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined by V (x) = c,
c > 0, and for each c this gives a closed contour, as shown in Figure 5.14. The
condition that V̇ (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories move to smaller and smaller
values of V and if V̇ is negative definite then x must approach 0.

Finding Lyapunov functions is not always easy. For example, consider the linear
system

dx1
dt

= x2,
dx2
dt

= −x1 − αx2, α > 0.
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V (x) = c1 < c2
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∂x

V (x) = c2
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Figure 5.14: Geometric illustration of Lyapunov’s stability theorem. The closed
contours represent the level sets of the Lyapunov function V (x) = c. If dx/dt
points inward to these sets at all points along the contour, then the trajectories of
the system will always cause V (x) to decrease along the trajectory.

Since the system is linear, it can be easily verified that the eigenvalues of the
corresponding dynamics matrix are given by

λ =
−α±

√
α2 − 4

2
.

These eigenvalues always have negative real part for α > 0 and hence the system
is asymptotically stable. It follows that x(t) → 0 and t → ∞ and so a natural
Lyapunov function candidate would be the squared magnitude of the state:

V (x) =
1

2
x21 +

1

2
x22.

Taking the time derivative of this function and evaluating along the trajectories of
the system we find that

V̇ (x) = −αx22.
But this function is not positive definite, as can be seen by evaluating V̇ at the point
x = (1, 0), which gives V̇ (x) = 0. Hence even though the system is asymptotically
stable, a Lyapunov function that proves stability is not as simple as the squared
magnitude of the state.

We now consider some additional examples.

Example 5.10 Scalar nonlinear system
Consider the scalar nonlinear system

dx

dt
=

2

1 + x
− x.

This system has equilibrium points at x = 1 and x = −2. We consider the equilib-
rium point at x = 1 and rewrite the dynamics using z = x− 1:

dz

dt
=

2

2 + z
− z − 1,

which has an equilibrium point at z = 0. Now consider the candidate Lyapunov
function

V (z) =
1

2
z2,
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which is globally positive definite. The derivative of V along trajectories of the
system is given by

V̇ (z) = zż =
2z

2 + z
− z2 − z.

If we restrict our analysis to an interval Br, where r < 2, then 2 + z > 0 and we
can multiply through by 2 + z to obtain

2z − (z2 + z)(2 + z) = −z3 − 3z2 = −z2(z + 3) < 0, z ∈ Br, r < 2.

It follows that V̇ (z) < 0 for all z ∈ Br, z 6= 0, and hence the equilibrium point
x = 1 is locally asymptotically stable. ∇

A slightly more complicated situation occurs if V̇ is negative semidefinite. In
this case it is possible that V̇ (x) = 0 when x 6= 0, and hence x could stop decreasing
in value. The following example illustrates this case.

Example 5.11 Hanging pendulum
A normalized model for a hanging pendulum is

dx1
dt

= x2,
dx2
dt

= − sinx1,

where x1 is the angle between the pendulum and the vertical, with positive x1
corresponding to counterclockwise rotation. The equation has an equilibrium point
x1 = x2 = 0, which corresponds to the pendulum hanging straight down. To explore
the stability of this equilibrium point we choose the total energy as a Lyapunov
function:

V (x) = 1− cosx1 +
1

2
x22 ≈ 1

2
x21 +

1

2
x22.

The Taylor series approximation shows that the function is positive definite for
small x. The time derivative of V (x) is

V̇ = ẋ1 sinx1 + ẋ2x2 = x2 sinx1 − x2 sinx1 = 0.

Since this function is negative semidefinite, it follows from Lyapunov’s theorem that
the equilibrium point is stable but not necessarily asymptotically stable. When per-
turbed, the pendulum actually moves in a trajectory that corresponds to constant
energy. ∇

As demonstrated already, Lyapunov functions are not always easy to find, and
they are also not unique. In many cases energy functions can be used as a starting
point, as was done in Example 5.11. It turns out that Lyapunov functions can
always be found for any stable system (under certain conditions), and hence one
knows that if a system is stable, a Lyapunov function exists (and vice versa).
Recent results using sum-of-squares methods have provided systematic approaches
for finding Lyapunov systems [PPP02]. Sum-of-squares techniques can be applied
to a broad variety of systems, including systems whose dynamics are described by
polynomial equations, as well as hybrid systems, which can have different models
for different regions of state space.

For a linear dynamical system of the form

dx

dt
= Ax,
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it is possible to construct Lyapunov functions in a systematic manner. To do so,
we consider quadratic functions of the form

V (x) = xTPx,

where P ∈ Rn×n is a symmetric matrix (P = PT ). The condition that V be
positive definite on Br for some r > 0 is equivalent to the condition that P be a
positive definite matrix:

xTPx > 0, for all x 6= 0,

which we write as P ≻ 0. It can be shown that if P is symmetric, then P is positive
definite if and only if all of its eigenvalues are real and positive.

Given a candidate Lyapunov function V (x) = xTPx, we can now compute its
derivative along flows of the system:

V̇ =
∂V

∂x

dx

dt
= xT (ATP + PA)x =: −xTQx.

The requirement that V̇ be negative definite on Br (for asymptotic stability) be-
comes a condition that the matrix Q be positive definite. Thus, to find a Lyapunov
function for a linear system it is sufficient to choose a Q ≻ 0 and solve the Lyapunov
equation:

ATP + PA = −Q. (5.17)

This is a linear equation in the entries of P , and hence it can be solved using
linear algebra. It can be shown that the equation always has a solution if all of
the eigenvalues of the matrix A are in the left half-plane. Moreover, the solution
P is positive definite if Q is positive definite. It is thus always possible to find a
quadratic Lyapunov function for a stable linear system. We will defer a proof of this
until Chapter 6, where more tools for analysis of linear systems will be developed.

Example 5.12 Spring–mass system
Consider a simple spring–mass system, whose state space dynamics are given by

dx1
dt

= x2,
dx2
dt

= − k

m
x1 −

b

m
x2, m, b, k > 0.

Note that this is equivalent to the example we used on page 5-19 if k = m and
b/m = α.

To find a Lyapunov function for the system, we chooseQ = I and equation (5.17)
becomes

0 −k/m
1 −b/m




p11 p12
p12 p22


+


p11 p12
p12 p22




 0 1
−k/m −b/m


 =


−1 0

0 −1


 .

By evaluating each element of this matrix equation, we can obtain a set of linear
equations for pij :

−2k

m
p12 = −1, p11 −

b

m
p12 −

k

m
p22 = 0, 2p12 −

2b

m
p22 = −1.
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Figure 5.15: Stability of a genetic switch. The circuit diagram in (a) represents
two proteins that are each repressing the production of the other. The inputs u1

and u2 interfere with this repression, allowing the circuit dynamics to be modified.
The equilibrium points for this circuit can be determined by the intersection of the
two curves shown in (b).

These equations can be solved for p11, p12, and p22 to obtain

P =




b2 + k(k +m)

2bk

m

2k

m

2k

m(k +m)

2bk



.

Finally, it follows that

V (x) =
b2 + k(k +m)

2bk
x21 +

m

k
x1x2 +

m(k +m)

2bk
x22.

Notice that while it can be verified that this function is positive definite, its level
sets are rotated ellipses. ∇

Knowing that we have a direct method to find Lyapunov functions for linear sys-
tems, we can now investigate the stability of nonlinear systems. Consider the
system

dx

dt
= F (x) =: Ax+ F̃ (x), (5.18)

where F (0) = 0 and F̃ (x) contains terms that are second order and higher in the
elements of x. The function Ax is an approximation of F (x) near the origin, and we
can determine the Lyapunov function for the linear approximation and investigate if
it is also a Lyapunov function for the full nonlinear system. The following example
illustrates the approach.

Example 5.13 Genetic switch
Consider the dynamics of a set of repressors connected together in a cycle, as
shown in Figure 5.15a. The normalized dynamics for this system were given in
Exercise 3.10:

dz1
dτ

=
µ

1 + zn2
− z1,

dz2
dτ

=
µ

1 + zn1
− z2, (5.19)
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where z1 and z2 are scaled versions of the protein concentrations, n > 0 and µ > 0
are parameters that describe the interconnection between the genes, and we have
set the external inputs u1 and u2 to zero.

The equilibrium points for the system are found by equating the time derivatives
to zero. We define

f(u) =
µ

1 + un
, f ′(u) =

df

du
=

−µnun−1

(1 + un)2
,

so that our dynamics become

dz1
dτ

= f(z2)− z1,
dz2
dτ

= f(z1)− z2,

and the equilibrium points are defined as the solutions of the equations

z1 = f(z2), z2 = f(z1).

If we plot the curves (z1, f(z1)) and (f(z2), z2) on a graph, then these equations
will have a solution when the curves intersect, as shown in Figure 5.15b. Because
of the shape of the curves, it can be shown that there will always be three solutions:
one at z1e = z2e, one with z1e < z2e, and one with z1e > z2e. If µ ≫ 1, then we
can show that the solutions are given approximately by

z1e ≈ µ, z2e ≈
1

µn−1
; z1e = z2e; z1e ≈

1

µn−1
, z2e ≈ µ. (5.20)

To check the stability of the system, we write f(u) in terms of its Taylor series
expansion about ue:

f(u) = f(ue) + f ′(ue) · (u− ue) +
1

2
f ′′(ue) · (u− ue)

2 + higher-order terms,

where f ′ represents the first derivative of the function, and f ′′ the second. Using
these approximations, the dynamics can then be written as

dw

dt
=


 −1 f ′(z2e)
f ′(z1e) −1


w + F̃ (w),

where w = z−ze is the shifted state and F̃ (w) represents quadratic and higher-order
terms.

We now use equation (5.17) to search for a Lyapunov function. Choosing Q = I
and letting P ∈ R2×2 have elements pij , we search for a solution of the equation


−1 f ′1
f ′2 −1




p11 p12
p12 p22


+


p11 p12
p12 p22




−1 f ′2
f ′1 −1


 =


−1 0

0 −1


 ,

where f ′1 = f ′(z1e) and f ′2 = f ′(z2e). Note that we have set p21 = p12 to force P to
be symmetric. Multiplying out the matrices, we obtain


 −2p11 + 2f ′1p12 p11f

′
2 − 2p12 + p22f

′
1

p11f
′
2 − 2p12 + p22f

′
1 −2p22 + 2f ′2p12


 =


−1 0

0 −1


 ,



5.4. LYAPUNOV STABILITY ANALYSIS 5-25

which is a set of linear equations for the unknowns pij . We can solve these linear
equations to obtain

p11 = −f
′
1
2 − f ′2f

′
1 + 2

4(f ′1f
′
2 − 1)

, p12 = − f ′1 + f ′2
4(f ′1f

′
2 − 1)

, p22 = −f
′
2
2 − f ′1f

′
2 + 2

4(f ′1f
′
2 − 1)

.

To check that V (w) = wTPw is a Lyapunov function, we must verify that V (w) is
a positive definite function or equivalently that P ≻ 0. Since P is a 2×2 symmetric
matrix, it has two real eigenvalues λ1 and λ2 that satisfy

λ1 + λ2 = trace(P ), λ1 ·λ2 = det(P ).

In order for P to be positive definite λ1 and λ2 must be positive, and we thus
require that

trace(P ) =
f ′1

2−2f ′2f
′
1+f

′
2
2
+ 4

4−4f ′1f
′
2

> 0, det(P ) =
f ′1

2−2f ′2f
′
1+f

′
2
2
+4

16− 16f ′1f
′
2

> 0.

We see that trace(P ) = 4 det(P ) and the numerator of the expressions is just
(f1 − f2)

2 + 4 > 0, so it suffices to check the sign of 1− f ′1f
′
2. In particular, for P

to be positive definite, we require that

f ′(z1e)f
′(z2e) < 1.

We can now make use of the expressions for f ′ defined earlier and evaluate at
the approximate locations of the equilibrium points derived in equation (5.20). For
the equilibrium points where z1e 6= z2e, we can show that

f ′(z1e)f
′(z2e) ≈ f ′(µ)f ′(

1

µn−1
) =

−µnµn−1

(1 + µn)2
·

−µnµ−(n−1)2

(1 + µ−n(n−1))2
≈ n2µ−n2+n.

Using n = 2 and µ ≈ 200 from Exercise 3.10, we see that f ′(z1e)f ′(z2e) ≪ 1 and
hence P is positive definite. This implies that V is a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the equilibrium points z1e 6= z2e are stable for the system (5.19),
we now compute V̇ at the equilibrium point. By construction,

V̇ = wT(PA+ATP )w + F̃T(w)Pw + wTPF̃ (w)

= −wTw + F̃T(w)Pw + wTPF̃ (w).

Since all terms in F̃ are quadratic or higher order in w, it follows that F̃T(w)Pw
and wTPF̃ (w) consist of terms that are at least third order in w. Therefore if w
is sufficiently close to zero, then the cubic and higher-order terms will be smaller
than the quadratic terms. Hence, sufficiently close to w = 0, V̇ is negative definite,
allowing us to conclude that these equilibrium points are both stable.

Figure 5.16 shows the phase portrait and time traces for a system with µ = 4,
illustrating the bistable nature of the system. When the initial condition starts
with a concentration of protein B greater than that of A, the solution converges to
the equilibrium point at (approximately) (1/µn−1, µ). If A is greater than B, then
it goes to (µ, 1/µn−1). The equilibrium point with z1e = z2e is unstable. ∇
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Figure 5.16: Dynamics of a genetic switch. The phase portrait on the left shows
that the switch has three equilibrium points, corresponding to protein A having a
concentration greater than, equal to, or less than protein B. The equilibrium point
with equal protein concentrations is unstable, but the other equilibrium points are
stable. The simulation on the right shows the time response of the system starting
from two different initial conditions. The initial portion of the curve corresponds
to initial concentrations z(0) = (1, 5) and converges to the equilibrium point where
z1e < z2e. At time t = 10, the concentrations are perturbed by +2 in z1 and −2
in z2, moving the state into the region of the state space whose solutions converge
to the equilibrium point where z2e < z1e.

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.

Theorem 5.3. Consider the dynamical system (5.18) with F (0) = 0 and F̃ such
that lim ‖F̃ (x)‖/‖x‖ → 0 as ‖x‖ → 0. If the real parts of all eigenvalues of A are
strictly less than zero, then xe = 0 is a locally asymptotically stable equilibrium
point of equation (5.18).

This theorem implies that asymptotic stability of the linear approximation im-
plies local asymptotic stability of the original nonlinear system. The theorem is very
important for control because it implies that stabilization of a linear approximation
of a nonlinear system results in a stable equilibrium point for the nonlinear system.
The proof of this theorem follows the technique used in Example 5.13. A formal
proof can be found in [Kha01].

It can also be shown that if A has one or more eigenvalues with strictly positive
real part, then xe = 0 is an unstable equilibrium point for the nonlinear system.

Krasovski–Lasalle Invariance Principle
��For general nonlinear systems, especially those in symbolic form, it can be difficult

to find a positive definite function V whose derivative is strictly negative definite.
The Krasovski–Lasalle theorem enables us to conclude the asymptotic stability of
an equilibrium point under less restrictive conditions, namely, in the case where V̇
is negative semidefinite, which is often easier to construct. It only applies to time-
invariant or periodic systems, which are the cases we consider here. This section
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makes use of some additional concepts from dynamical systems; see Hahn [Hah67]
or Khalil [Kha01] for a more detailed description.

We will deal with the time-invariant case and begin by introducing a few more
definitions. We denote the solution trajectories of the time-invariant system

dx

dt
= F (x) (5.21)

as x(t; a), which is the solution of equation (5.21) at time t starting from a at t0 = 0.
The ω limit set of a trajectory x(t; a) is the set of all points z ∈ Rn such that there
exists a strictly increasing sequence of times tn such that x(tn; a) → z as n → ∞.
A set M ⊂ Rn is said to be an invariant set if for all b ∈ M , we have x(t; b) ∈ M
for all t ≥ 0. It can be proved that the ω limit set of every trajectory is closed and
invariant. We may now state the Krasovski–Lasalle principle.

Theorem 5.4 (Krasovski–Lasalle principle). Let V : Rn → R be a locally positive
definite function such that on the compact set Ωr = {x ∈ Rn : V (x) ≤ r} we have
V̇ (x) ≤ 0. Define

S = {x ∈ Ωr : V̇ (x) = 0}.
As t→ ∞, the trajectory tends to the largest invariant set inside S; i.e., its ω limit
set is contained inside the largest invariant set in S. In particular, if S contains no
invariant sets other than x = 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].

Lyapunov functions can often be used to design stabilizing controllers, as is
illustrated by the following example, which also illustrates how the Krasovski–
Lasalle principle can be applied.

Example 5.14 Inverted pendulum
Following the analysis in Example 3.10, an inverted pendulum can be described by
the following normalized model:

dx1
dt

= x2,
dx2
dt

= sinx1 + u cosx1, (5.22)

where x1 is the angular deviation from the upright position and u is the (scaled)
acceleration of the pivot, as shown in Figure 5.17a. The system has an equilibrium
point at x1 = x2 = 0, which corresponds to the pendulum standing upright. This
equilibrium point is unstable.

To find a stabilizing controller we consider the following candidate for a Lya-
punov function:

V (x) = (cosx1 − 1) + a(1− cos2 x1) +
1

2
x22 ≈

(
a− 1

2

)
x21 +

1

2
x22.

The Taylor series expansion shows that the function is positive definite near the
origin if a > 0.5. The time derivative of V (x) is

V̇ = −ẋ1 sinx1 + 2aẋ1 sinx1 cosx1 + ẋ2x2 = x2(u+ 2a sinx1) cosx1.

Choosing the feedback law

u = −2a sinx1 − x2 cosx1
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Figure 5.17: Stabilized inverted pendulum. A control law applies a force u
at the bottom of the pendulum to stabilize the inverted position (a). The phase
portrait (b) shows that the equilibrium point corresponding to the vertical position
is stabilized. The shaded region indicates the set of initial conditions that converge
to the origin. The ellipse corresponds to a level set of a Lyapunov function V (x)
for which V (x) > 0 and V̇ (x) < 0 for all points inside the ellipse. This can be
used as an estimate of the region of attraction of the equilibrium point. The actual
dynamics of the system evolve on a manifold (c).

gives

V̇ = −x22 cos2 x1.

It follows from Lyapunov’s theorem that the equilibrium point is (locally) sta-
ble. However, since the function is only negative semidefinite, we cannot conclude
asymptotic stability using Theorem 5.2. However, note that V̇ = 0 implies that
x2 = 0 or x1 = π/2± nπ.

If we restrict our analysis to a small neighborhood of the origin Ωr, r ≪ π/2,
then we can define

S = {(x1, x2) ∈ Ωr : x2 = 0}

and we can compute the largest invariant set inside S. For a trajectory to remain
in this set we must have x2 = 0 for all t and hence ẋ2(t) = 0 as well. Using the
dynamics of the system (5.22), we see that x2(t) = 0 and ẋ2(t) = 0 implies x1(t) = 0
as well. Hence the largest invariant set inside S is (x1, x2) = 0, and we can use
the Krasovski–Lasalle principle to conclude that the origin is locally asymptotically
stable. A phase portrait of the closed loop system is shown in Figure 5.17b.

In the analysis and the phase portrait, we have treated the angle of the pendulum
θ = x1 as a real number. In fact, θ is an angle with θ = 2π equivalent to θ = 0.
Hence the dynamics of the system actually evolve on a manifold (smooth surface)
as shown in Figure 5.17c. Analysis of nonlinear dynamical systems on manifolds is
more complicated, but uses many of the same basic ideas presented here. ∇
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5.5 Parametric and Nonlocal Behavior �

Most of the tools that we have explored are focused on the local behavior of a
fixed system near an equilibrium point. In this section we briefly introduce some
concepts regarding the global behavior of nonlinear systems and the dependence of
a system’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear system we can start by finding
the equilibrium points. We can then proceed to analyze the local behavior around
the equilibrium points. The behavior of a system near an equilibrium point is called
the local behavior of the system.

The solutions of the system can be very different far away from an equilibrium
point. This is seen, for example, in the stabilized pendulum in Example 5.14. The
inverted equilibrium point is stable, with small oscillations that eventually converge
to the origin. But far away from this equilibrium point there are trajectories that
converge to other equilibrium points or even cases in which the pendulum swings
around the top multiple times, giving very long oscillations that are topologically
different from those near the origin.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figure 5.17b. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibrium
points that are attracting. This gives partial information about the behavior of the
system.

One method for approximating the region of attraction is through the use of
Lyapunov functions. Suppose that V is a local Lyapunov function for a system
around an equilibrium point x0. Let Ωr be a set on which V (x) has a value less
than r,

Ωr = {x ∈ Rn : V (x) ≤ r},

and suppose that V̇ (x) ≤ 0 for all x ∈ Ωr, with equality only at the equilibrium
point x0. Then Ωr is inside the region of attraction of the equilibrium point. Since
this approximation depends on the Lyapunov function and the choice of Lyapunov
function is not unique, it can sometimes be a very conservative estimate.

It is sometimes the case that we can find a Lyapunov function V such that
V is positive definite and V̇ is negative (semi-) definite for all x ∈ Rn. In many
instances it can then be shown that the region of attraction for the equilibrium
point is the entire state space, and the equilibrium point is globally asymptotically
stable. More detailed conditions for global stability can be found in [Kha01] and
other textbooks.

Example 5.15 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Example 5.14. The Lyapunov
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function for the system was

V (x) = (cosx1 − 1) + a(1− cos2 x1) +
1

2
x22.

With a > 0.5, V̇ was negative semidefinite for all x and nonzero when x1 6= ±π/2.
Hence any x such that |x1| < π/2 and V (x) > 0 will be inside the invariant set
defined by the level curves of V (x). One of these level sets is shown in Figure 5.17b.

∇

Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context
of models by exploring how the location of equilibrium points, their stability, their
regions of attraction, and other dynamic phenomena, such as limit cycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

dx

dt
= F (x, µ), x ∈ Rn, µ ∈ Rk, (5.23)

where x is the state and µ is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F (x, µ) = 0,

and as µ is varied, the corresponding solutions xe(µ) can also vary. We say that
the system (5.23) has a bifurcation at µ = µ∗ if the behavior of the system changes
qualitatively at µ∗. This can occur either because of a change in stability type or
a change in the number of solutions at a given value of µ.

Example 5.16 Predator–prey
Consider the predator–prey system described in Example 3.4 and modeled as a
continuous time system as described in Section 4.7. The dynamics of the system
are given by

dH

dt
= rH

(
1− H

k

)
− aHL

c+H
,

dL

dt
= b

aHL

c+H
− dL, (5.24)

where H and L are the numbers of hares (prey) and lynxes (predators) and a, b,
c, d, k, and r are parameters that model a given predator–prey system (described
in more detail in Section 4.7). The system has an equilibrium point at He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behavior of the system, we
choose to focus on two specific parameters of interest: a, the interaction coefficient
between the populations and c, a parameter affecting the prey consumption rate.
Figure 5.18a is a numerically computed parametric stability diagram showing the
regions in the chosen parameter space for which the equilibrium point is stable
(leaving the other parameters at their nominal values). We see from this figure
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Figure 5.18: Bifurcation analysis of the predator–prey system. (a) Parametric
stability diagram showing the regions in parameter space for which the system is
stable. (b) Bifurcation diagram showing the location and stability of the equilib-
rium point as a function of a. The solid line represents a stable equilibrium point,
and the dashed line represents an unstable equilibrium point. The dash-dotted
lines indicate the upper and lower bounds for the limit cycle at that parameter
value (computed via simulation). The nominal values of the parameters in the
model are a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125, and r = 1.6.

that for certain combinations of a and c we get a stable equilibrium point, while at
other values this equilibrium point is unstable.

Figure 5.18b is a numerically computed bifurcation diagram for the system. In
this plot, we choose one parameter to vary (a) and then plot the equilibrium value
of one of the states (H) on the vertical axis. The remaining parameters are set to
their nominal values. A solid line indicates that the equilibrium point is stable; a
dashed line indicates that the equilibrium point is unstable. Note that the stability
in the bifurcation diagram matches that in the parametric stability diagram for
c = 50 (the nominal value) and a varying from 1.35 to 4. For the predator–prey
system, when the equilibrium point is unstable, the solution converges to a stable
limit cycle. The amplitude of this limit cycle is shown by the dash-dotted line in
Figure 5.18b. ∇

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium point remains fixed but the stability of the equilib-
rium point changes as the parameters are varied. In such a case it is revealing to
plot the eigenvalues of the system as a function of the parameters. Such plots are
called root locus diagrams because they give the locus of the eigenvalues when pa-
rameters change. Bifurcations occur when parameter values are such that there are
eigenvalues with zero real part. Computing environments such LABVIEW, MAT-
LAB, Mathematica, and Python have tools for plotting root loci. A more detailed
discussion of the root locus is given in Section 12.5.

Example 5.17 Root locus diagram for a bicycle model
Consider the linear bicycle model given by equation (4.8) in Section 4.2. Introducing
the state variables x1 = ϕ, x2 = δ, x3 = ϕ̇, and x4 = δ̇ and setting the steering
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Figure 5.19: Stability plots for a bicycle moving at constant velocity. The plot
in (a) shows the real part of the system eigenvalues as a function of the bicycle
velocity v0. The system is stable when all eigenvalues have negative real part
(shaded region). The plot in (b) shows the locus of eigenvalues on the complex
plane as the velocity v is varied and gives a different view of the stability of the
system. This type of plot is called a root locus diagram.

torque T = 0, the equations can be written as

dx

dt
=




0 I

−M−1(K0 +K2v
2
0) −M−1Cv0


x =: Ax,

where I is a 2×2 identity matrix and v0 is the velocity of the bicycle. Figure 5.19a
shows the real parts of the eigenvalues as a function of velocity. Figure 5.19b shows
the dependence of the eigenvalues of A on the velocity v0. The figures show that the
bicycle is unstable for low velocities because two eigenvalues are in the right half-
plane. As the velocity increases, these eigenvalues move into the left half-plane,
indicating that the bicycle becomes self-stabilizing. As the velocity is increased
further, there is an eigenvalue close to the origin that moves into the right half-
plane, making the bicycle unstable again. However, this eigenvalue is small and
so it can easily be stabilized by a rider. Figure 5.19a shows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. ∇

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters of
the system to eliminate extra parameters when possible. Computer programs such
as AUTO, LOCBIF, and XPPAUT provide numerical algorithms for producing stability
and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations to design feedback laws
that stabilize an equilibrium point and provide a desired level of performance.
However, for some classes of problems the feedback controller must be nonlinear to
accomplish its function. By making use of Lyapunov functions we can often design
a nonlinear control law that provides stable behavior, as we saw in Example 5.14.
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Figure 5.20: Headphones with noise cancellation. Noise is sensed by the exterior
microphone (a) and sent to a filter in such a way that it cancels the noise that
penetrates the headphone (b). The filter parameters a and b are adjusted by the
controller. S represents the input signal to the headphones.

One way to systematically design a nonlinear controller is to begin with a can-
didate Lyapunov function V (x) and a control system ẋ = f(x, u). We say that
V (x) is a control Lyapunov function if for every x there exists a u such that
V̇ (x) = ∂V

∂x f(x, u) < 0. In this case, it may be possible to find a function α(x)
such that u = α(x) stabilizes the system. The following example illustrates the
approach.

Example 5.18 Noise cancellation
Noise cancellation is used in consumer electronics and in industrial systems to
reduce the effects of noise and vibrations. The idea is to locally reduce the effect of
noise by generating opposing signals. A pair of headphones with noise cancellation
such as those shown in Figure 5.20a is a typical example. A schematic diagram of
the system is shown in Figure 5.20b. The system has two microphones, one outside
the headphones that picks up exterior noise n and another inside the headphones
that picks up the signal e, which is a combination of the desired signal S and
the external noise that penetrates the headphone. The signal from the exterior
microphone is filtered and sent to the headphones in such a way that it cancels
the external noise that penetrates into the headphones. The parameters of the
filter are adjusted by a feedback mechanism to make the noise signal in the internal
microphone as small as possible. The feedback is inherently nonlinear because it
acts by changing the parameters of the filter.

To analyze the system we assume for simplicity that the propagation of external
noise into the headphones is modeled by the first-order dynamical system

dz

dt
= a0z + b0n, (5.25)

where n is the external noise signal, z is the sound level inside the headphones, and
the parameters a0 < 0 and b0 are not known. Assume that the filter is a dynamical
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system of the same type:
dw

dt
= aw + bn,

where the parameters a and b are adjustable. We wish to find a controller that
updates a and b so that they converge to the (unknown) parameters a0 and b0. If
a = a0 and b = b0 we have e = S and the noise effect of the noise is eliminated.
Assuming for simplicity that S = 0, introduce x1 = e = z − w, x2 = a − a0, and
x3 = b− b0. Then

dx1
dt

= a0(z − w) + (a− a0)w + (b− b0)n = a0x1 + x2w + x3n. (5.26)

We will achieve noise cancellation if we can find a feedback law for changing the
parameters a and b so that the error e goes to zero. To do this we choose

V (x1, x2, x3) =
1

2

(
αx21 + x22 + x23

)

as a candidate Lyapunov function for equation (5.26). The derivative of V is

V̇ = αx1ẋ1 + x2ẋ2 + x3ẋ3 = αa0x
2
1 + x2(ẋ2 + αwx1) + x3(ẋ3 + αnx1).

Choosing

ȧ = ẋ2 = −αwx1 = −αwe, ḃ = ẋ3 = −αnx1 = −αne, (5.27)

we find that V̇ = αa0x
2
1 < 0, and it follows that the quadratic function will decrease

as long as e = x1 = w − z 6= 0. The nonlinear feedback (5.27) thus attempts to
change the parameters so that the error between the signal and the noise is small.
Notice that feedback law (5.27) does not use the model (5.25) explicitly.

A simulation of the system is shown in Figure 5.21. In the simulation we have
represented the signal as a pure sinusoid and the noise as broad band noise. The
figure shows the dramatic improvement with noise cancellation. The sinusoidal
signal is not visible without noise cancellation. The filter parameters change quickly
from their initial values a = b = 0. Filters of higher order with more coefficients
are used in practice. ∇

5.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [Str94] and the highly illustrated text by
Abraham and Shaw [AS82]. More technical treatments include Andronov, Vitt,
and Khaikin [AVK87], Guckenheimer and Holmes [GH83], and Wiggins [Wig90].
For students with a strong interest in mechanics, the texts by Arnold [Arn87] and
Marsden and Ratiu [MR94] provide an elegant approach using tools from differential
geometry. Finally, good treatments of dynamical systems methods in biology are
given by Wilson [Wil99] and Ellner and Guckenheimer [EG05]. There is a large lit-
erature on Lyapunov stability theory, including the classic texts by Malkin [Mal59],
Hahn [Hah67], and Krasovski [Kra63]. We highly recommend the comprehensive
treatment by Khalil [Kha01].
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Figure 5.21: Simulation of noise cancellation. The upper left figure shows the
headphone signal without noise cancellation, and the lower left figure shows the
signal with noise cancellation. The right figures show the parameters a and b of
the filter.

Exercises

5.1 (Time-invariant systems) Show that if we have a solution of the differential
equation (5.2) given by x(t) with initial condition x(t0) = x0, then x̃(τ) = x(t− t0)
is a solution of the differential equation

dx̃

dτ
= F (x̃)

with initial condition x̃(0) = x0, where τ = t− t0.

5.2 (Flow in a tank) Consider a cylindrical tank with cross sectional area A m2,
effective outlet area a m2, and inflow qin m3/s. An energy balance shows that the
outlet velocity is v =

√
2gh m/s, where g m/s2 is the acceleration of gravity and h

is the distance between the outlet and the water level in the tank (in meters). Show
that the system can be modeled by

dh

dt
= − a

A

√
2gh+

1

A
qin, qout = a

√
2gh.

Use the parameters A = 0.2, a = 0.01. Simulate the system when the inflow is zero
and the initial level is h = 0.2. Do you expect any difficulties in the simulation?

5.3 (Lyapunov functions) Consider the second-order system

dx1
dt

= −ax1,
dx2
dt

= −bx1 − cx2,

where a, b, c > 0. Investigate whether the functions

V1(x) =
1

2
x21 +

1

2
x22, V2(x) =

1

2
x21 +

1

2
(x2 +

b

c− a
x1)

2

are Lyapunov functions for the system and give any conditions that must hold.
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5.4 (Damped spring–mass system) Consider a damped spring–mass system with �
dynamics

mq̈ + cq̇ + kq = 0.

A natural candidate for a Lyapunov function is the total energy of the system,
given by

V =
1

2
mq̇2 +

1

2
kq2.

Use the Krasovski–Lasalle theorem to show that the system is asymptotically stable.

5.5 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise 3.8:

J
d2ϕ

dt2
= Pm − Pe = Pm − EV

X
sinϕ.

The parameter

a =
Pmax

Pm
=

EV

XPm

is the ratio between the maximum deliverable power Pmax = EV/X and the me-
chanical power Pm.

(a) Consider a as a bifurcation parameter and discuss how the equilibrium points
depend on a.

(b) For a > 1, show that there is a center at ϕ0 = arcsin(1/a) and a saddle at
ϕ = π − ϕ0.

(c) Assume a > 1 and show that there is a solution through the saddle that satisfies

J

2

(dϕ
dt

)2
− Pm(ϕ− ϕ0)−

EV

X
(cosϕ− cosϕ0) = 0. (5.28)

Set J/Pm = 1 and use simulation to show that the stability region is the interior
of the area enclosed by this solution. Investigate what happens if the system is in
equilibrium with a value of a that is slightly larger than 1 and a suddenly decreases,
corresponding to the reactance of the line suddenly increasing.

5.6 (Lyapunov equation) Show that Lyapunov equation (5.17) always has a solution
if all of the eigenvalues of A are in the left half-plane. (Hint: Use the fact that the
Lyapunov equation is linear in P and start with the case where A has distinct
eigenvalues.)

5.7 (Shaping behavior by feedback) An inverted pendulum can be modeled by the
differential equation

dx1
dt

= x2,
dx2
dt

= sinx1 + u cosx1,

where x1 is the angle of the pendulum clockwise), and x2 is its angular velocity
(see Example 5.14). Qualitatively discuss the behavior of the open loop system and
how the behavior changes when the feedback u = −2 sin(x) is introduced. (Hint:
Use phase portraits.)
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5.8 (Swinging up a pendulum) Consider the inverted pendulum, discussed in Ex-
ample 5.4, that is described by

θ̈ = sin θ + u cos θ,

where θ is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function

V (θ, θ̇) = cos θ − 1 +
1

2
θ̇2,

show that the state feedback u = k(V0 − V )θ̇ cos θ causes the pendulum to “swing
up” to the upright position.

5.9 (Root locus diagram) Consider the linear system

dx

dt
=


0 1
0 −3


x+


−1

4


u, y =


1 0


x,

with the feedback u = −ky. Plot the location of the eigenvalues as a function the
parameter k.

5.10 (Discrete-time Lyapunov function) Consider a nonlinear discrete-time system �
with dynamics x[k+1] = f(x[k]) and equilibrium point xe = 0. Suppose there exists
a smooth, positive definite function V : Rn → R such that V (f(x))− V (x) < 0 for
x 6= 0 and V(0) = 0. Show that xe = 0 is (locally) asymptotically stable.

5.11 (Operational amplifier oscillator) An op amp circuit for an oscillator was
shown in Exercise 4.4. The oscillatory solution for that linear circuit was stable
but not asymptotically stable. A schematic of a modified circuit that has nonlinear
elements is shown in the figure below.

v1

v3v2 v1

v2

v1

v2

2
v0

2

2

R1R

R

R/α R

R R R

R2

R22 RC2

a e

R11

a e

a e

C1

−

+

−

+

−

+

−

+

−

+

The modification is obtained by making a feedback around each of the operational
amplifiers that has capacitors and making use of multipliers. The signal ae =
v21 + αv22 − v20 is the amplitude error. Show that the system is modeled by

dv1
dt

=
1

R1C1
v2 +

1

R11C1
v1(v

2
0 − v21 − αv22),

dv2
dt

= − 1

R2C2
v1 +

1

R22C2
v2(v

2
0 − v21 − αv22).
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Determine α so that the circuit gives an oscillation with a stable limit cycle with
amplitude v0. (Hint: Use the results of Example 5.9.)

5.12 (Congestion control) Consider the congestion control problem described in
Section 4.4. Confirm that the equilibrium point for the system is given by equa-
tion (4.22) and compute the stability of this equilibrium point using a linear ap-
proximation.

5.13 (Self-activating genetic circuit) Consider the dynamics of a genetic circuit that
implements self-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example 3.18, the dynamics for the system can be written as

dm

dt
=

αp2

1 + kp2
+ α0 − δm,

dp

dt
= κm− γp, (5.29)

for p,m ≥ 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

5.14 (Diagonal systems) Let A ∈ Rn×n be a square matrix with real eigenvalues
λ1, . . . , λn and corresponding eigenvectors v1, . . . , vn. Assume that the eigenvalues
are distinct (λi 6= λj for i 6= j).

(a) Show that vi 6= vj for i 6= j.

(b) Show that the eigenvectors form a basis for Rn so that any vector x can be
written as x =

∑
αivi for αi ∈ R.

(c) Let T =

v1 v2 . . . vn


 and show that T−1AT is a diagonal matrix of

the form (5.10).

(d) Show that if some of the λi are complex numbers, then A can be written as

A =




Λ1 0
. . .

0 Λk



, where Λi = λ ∈ R or Λi =


 σ ω
−ω σ




in an appropriate set of coordinates.

This form of the dynamics of a linear system is often referred to as block diagonal
form.



Chapter 6

Linear Systems

Few physical elements display truly linear characteristics. For example
the relation between force on a spring and displacement of the spring is
always nonlinear to some degree. The relation between current through
a resistor and voltage drop across it also deviates from a straight-line
relation. However, if in each case the relation is reasonably linear, then
it will be found that the system behavior will be very close to that ob-
tained by assuming an ideal, linear physical element, and the analytical
simplification is so enormous that we make linear assumptions wherever
we can possibly do so in good conscience.

Robert H. Cannon, Dynamics of Physical Systems, 1967 [Can03].

In Chapters 3–5 we considered the construction and analysis of differential equa-
tion models for dynamical systems. In this chapter we specialize our results to the
case of linear, time-invariant input/output systems. Two central concepts are the
matrix exponential and the convolution equation, through which we can completely
characterize the behavior of a linear system. We also describe some properties of
the input/output response and show how to approximate a nonlinear system by a
linear one.

6.1 Basic Definitions

We have seen several instances of linear differential equations in the examples in the
previous chapters, including the spring–mass system (damped oscillator) and the
operational amplifier in the presence of small (nonsaturating) input signals. More
generally, many dynamical systems can be modeled accurately by linear differential
equations. Electrical circuits are one example of a broad class of systems for which
linear models can be used effectively. Linear models are also broadly applicable in
mechanical engineering, for example, as models of small deviations from equilibrium
points in solid and fluid mechanics. Signal-processing systems, including digital
filters of the sort used in MP3 players and streaming audio, are another source of
good examples, although these are often best modeled in discrete time (as described
in more detail in the exercises).

6-1
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In many cases, we create systems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linear behavior that led Harold
S. Black to the invention of the negative feedback amplifier. Almost all modern
signal processing systems, whether analog or digital, use feedback to produce linear
or near-linear input/output characteristics. For these systems, it is often useful to
represent the input/output characteristics as linear, ignoring the internal details
required to get that linear response.

For other systems, nonlinearities cannot be ignored, especially if one cares about
the global behavior of the system. The predator–prey problem is one example of
this: to capture the oscillatory behavior of the interdependent populations we must
include the nonlinear coupling terms. Other examples include switching behavior
and generating periodic motion for locomotion. However, if we care about what
happens near an equilibrium point, it often suffices to approximate the nonlinear
dynamics by their local linearization, as we already explored briefly in Section 5.3.
The linearization is essentially an approximation of the nonlinear dynamics around
the desired operating point.

Linearity

We now proceed to define linearity of input/output systems more formally. Consider
a state space system of the form

dx

dt
= f(x, u), y = h(x, u), (6.1)

where x ∈ Rn, u ∈ Rp, and y ∈ Rq. As in the previous chapters, we will usually
restrict ourselves to the single-input, single-output case by taking p = q = 1. We
also assume that all functions are smooth and that for a reasonable class of inputs
(e.g., piecewise continuous functions of time) the solutions of equation (6.1) exist
for all time.

It will be convenient to assume that the origin x = 0, u = 0 is an equilibrium
point for this system (ẋ = 0) and that h(0, 0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose that (xe, ue) 6= (0, 0) is an equilibrium point
of the system with output ye = h(xe, ue). Then we can define a new set of states,
inputs, and outputs,

x̃ = x− xe, ũ = u− ue, ỹ = y − ye,

and rewrite the equations of motion in terms of these variables:

d

dt
x̃ = f(x̃+ xe, ũ+ ue) =: f̃(x̃, ũ),

ỹ = h(x̃+ xe, ũ+ ue)− ye =: h̃(x̃, ũ).

In the new set of variables, the origin is an equilibrium point with output 0, and
hence we can carry out our analysis in this set of variables. Once we have obtained
our answers in this new set of variables, we simply “translate” them back to the
original coordinates using x = x̃+ xe, u = ũ+ ue, and y = ỹ + ye.

Returning to the original equations (6.1), now assuming without loss of gener-
ality that the origin is the equilibrium point of interest, we write the output y(t)
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corresponding to the initial condition x(0) = x0 and input u(t) as y(t;x0, u). Using
this notation, a system is said to be a linear input/output system if the following
conditions are satisfied:

(i) y(t;αx1 + βx2, 0) = αy(t;x1, 0) + βy(t;x2, 0),

(ii) y(t;αx0, δu) = αy(t;x0, 0) + δy(t; 0, u),

(iii) y(t; 0, δu1 + γu2) = δy(t; 0, u1) + γy(t; 0, u2).

(6.2)

Thus, we define a system to be linear if the outputs are jointly linear in the initial
condition response (u = 0) and the forced response (x(0) = 0). Property (iii) is a
statement of the principle of superposition: the response of a linear system to the
sum of two inputs u1 and u2 is the sum of the outputs y1 and y2 corresponding to
the individual inputs.

The general form of a linear state space system is

dx

dt
= Ax+Bu, y = Cx+Du, (6.3)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p. In the special case of a
single-input, single-output system, B is a column vector, C is a row vector, and
D is scalar. Equation (6.3) is a system of linear first-order differential equations
with input u, state x, and output y. It is easy to show that given solutions x1(t)
and x2(t) for this set of equations, the corresponding outputs satisfy the linearity
conditions (6.2).

We define xh(t) to be the solution with zero input (the general solution to the
homogeneous system),

dxh
dt

= Axh, xh(0) = x0,

and the solution xp(t) to be the input dependent solution with zero initial condition
(the particular solution or forced solution),

dxp
dt

= Axp +Bu, xp(0) = 0.

Figure 6.1 illustrates how these two individual solutions can be superimposed to
form the complete solution.

It is also possible to show that if a dynamical system with a finite number of
states is input/output linear in the sense we have described, it can always be rep-
resented by a state space equation of the form (6.3) through an appropriate choice
of state variables. In Section 6.2 we will give an explicit solution of equation (6.3),
but we illustrate the basic form through a simple example.

Example 6.1 Linearity of solutions for a scalar system
Consider the first-order differential equation

dx

dt
= ax+ u, y = x,

with x(0) = x0. Let u1 = A sinω1t and u2 = B cosω2t. The solution to the
homogeneous system is xh(t) = eatx0, and two particular solutions with x(0) = 0
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Figure 6.1: Superposition of homogeneous and particular solutions. The first row
shows the input, state, and output corresponding to the initial condition response.
The second row shows the same variables corresponding to zero initial condition
but nonzero input. The third row is the complete solution, which is the sum of
the two individual solutions.

are

xp1(t) = −A−ω1e
at + ω1 cosω1t+ a sinω1t

a2 + ω2
1

,

xp2(t) = B
aeat − a cosω2t+ ω2 sinω2t

a2 + ω2
2

.

Suppose that we now choose x(0) = αx0 and u = u1 + u2. Then the resulting
solution is the weighted sum of the individual solutions:

x(t) = eat
(
αx0 +

Aω1

a2 + ω2
1

+
Ba

a2 + ω2
2

)

−A
ω1 cosω1t+ a sinω1t

a2 + ω2
1

+B
−a cosω2t+ ω2 sinω2t

a2 + ω2
2

.

(6.4)

To see this, substitute equation (6.4) into the differential equation. Thus, the
properties of a linear system are satisfied. ∇

Time Invariance

Time invariance is an important concept that is used to describe a system whose
properties do not change with time. More precisely, for a time-invariant system
if the input u(t) gives output y(t), then if we shift the time at which the input
is applied by a constant amount a, u(t + a) gives the output y(t + a). Systems
that are linear and time-invariant, often called LTI systems, have the interesting
property that their response to an arbitrary input is completely characterized by
their response to step inputs or their response to short “impulses.”
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Figure 6.2: Response to piecewise constant inputs. A piecewise constant signal
can be represented as a sum of step signals (a), and the resulting output is the
sum of the individual outputs (b).

To explore the consequences of time invariance, we first compute the response to
a piecewise constant input. Assume that the system has zero initial condition and
consider the piecewise constant input shown in Figure 6.2a. The input has jumps
at times tk, and its values after the jumps are u(tk). The input can be viewed as a
combination of steps: the first step at time t0 has amplitude u(t0), the second step
at time t1 has amplitude u(t1)− u(t0), etc.

Assuming that the system is initially at an equilibrium point (so that the initial
condition response is zero), the response to the input can be obtained by superim-
posing the responses to a combination of step inputs. Let H(t) be the response to
a unit step applied at time 0, and assume that H(0) = 0. The response to the first
step is thenH(t−t0)u(t0), the response to the second step isH(t−t1)

(
u(t1)−u(t0)

)
,

and we find that the complete response is given by

y(t) = H(t− t0)u(t0) +H(t− t1)
(
u(t1)− u(t0)

)
+ · · ·

=
(
H(t− t0)−H(t− t1)

)
u(t0) +

(
H(t− t1)−H(t− t2)

)
u(t1) + · · ·

=
n∑

k=1

(
H(t− tk−1)−H(t− tk)

)
u(tk−1) +H(t− tn)u(tn)

=

n∑

k=1

H(t− tk−1)−H(t− tk)

tk − tk−1
u(tk−1)

(
tk − tk−1

)
+H(t− tn)u(tn),

where n is such that tn ≤ t. An example of this computation is shown in Figure 6.2b.
The response to a continuous input signal is obtained by taking the limit n→ ∞

in such a way that tk − tk−1 → 0 and tn → t, which gives

y(t) =

∫ t

0

H ′(t− τ)u(τ)dτ, (6.5)

where H ′ is the derivative of the step response, also called the impulse response.
The response of a linear time-invariant system to any input can thus be computed



6-6 CHAPTER 6. LINEAR SYSTEMS

from the step response. Notice that the output depends only on the input since we
assumed the system was initially at rest, x(0) = 0. We will derive equation (6.5) in
a slightly different way in Section 6.3.

6.2 The Matrix Exponential

Equation (6.5) shows that the output of a linear system with zero initial state can
be written as an integral over the inputs u(t). In this section and the next we derive
a more general version of this formula, which includes nonzero initial conditions.
We begin by exploring the initial condition response using the matrix exponential.

Initial Condition Response

We will now explicitly show that the output of a linear system depends linearly on
the input and the initial conditions. We begin by considering the general solution
to the homogeneous system corresponding to the dynamics

dx

dt
= Ax. (6.6)

For the scalar differential equation

dx

dt
= ax, x ∈ R, a ∈ R,

the solution is given by the exponential

x(t) = eatx(0).

We wish to generalize this to the vector case, where A becomes a matrix. We define
the matrix exponential as the infinite series

eX = I +X +
1

2
X2 +

1

3!
X3 + · · · =

∞∑

k=0

1

k!
Xk, (6.7)

where X ∈ Rn×n is a square matrix and I is the n × n identity matrix. We make
use of the notation

X0 = I, X2 = XX, Xn = Xn−1X,

which defines what we mean by the “power” of a matrix. Equation (6.7) is easy
to remember since it is just the Taylor series for the scalar exponential, applied to
the matrix X. It can be shown that the series in equation (6.7) converges for any
matrix X ∈ Rn×n in the same way that the normal exponential is defined for any
scalar a ∈ R.

Replacing X in equation (6.7) by At, where t ∈ R, we find that

eAt = I +At+
1

2
A2t2 +

1

3!
A3t3 + · · · =

∞∑

k=0

1

k!
Aktk,
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and differentiating this expression with respect to t gives

d

dt
eAt = A+A2t+

1

2
A3t2 + · · · = A

∞∑

k=0

1

k!
Aktk = AeAt. (6.8)

Multiplying by x(0) from the right, we find that x(t) = eAtx(0) is the solution
to the differential equation (6.6) with initial condition x(0). We summarize this
important result as a proposition.

Proposition 6.1. The solution to the homogeneous system of differential equa-
tions (6.6) is given by

x(t) = eAtx(0).

Notice that the form of the solution is exactly the same as for scalar equations,
but we must be sure to put the vector x(0) on the right of the matrix eAt.

The form of the solution immediately allows us to see that the solution is linear
in the initial condition. In particular, if xh1(t) is the solution to equation (6.6) with
initial condition x(0) = x01 and xh2(t) with initial condition x(0) = x02, then the
solution with initial condition x(0) = αx01 + βx02 is given by

x(t) = eAt
(
αx01 + βx02

)
=
(
αeAtx01 + βeAtx02) = αxh1(t) + βxh2(t).

Similarly, we see that the corresponding output is given by

y(t) = Cx(t) = αyh1(t) + βyh2(t),

where yh1(t) and yh2(t) are the outputs corresponding to xh1(t) and xh2(t).
We illustrate computation of the matrix exponential by two examples.

Example 6.2 Double integrator
A very simple linear system that is useful in understanding basic concepts is the
second-order system given by

q̈ = u, y = q.

This system is called a double integrator because the input u is integrated twice to
determine the output y.

In state space form, we write x = (q, q̇) and

dx

dt
=


0 1
0 0


x+


0
1


u.

The dynamics matrix of a double integrator is

A =


0 1
0 0


 ,

and we find by direct calculation that A2 = 0 and hence

eAt = I +At =


1 t
0 1


 .
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Thus the solution of the homogeneous system (u = 0) for the double integrator is
given by

x(t) =


1 t
0 1




x1(0)
x2(0)


 =


x1(0) + tx2(0)

x2(0)


 ,

y(t) = x1(0) + tx2(0). ∇
Example 6.3 Undamped oscillator
A model for an oscillator, such as the spring–mass system with zero damping, is

q̈ + ω2
0q = u.

Putting the system into state space form using x1 = q, x2 = q̇/ω0, the dynamics
matrix for this system can be written as

A =


 0 ω0

−ω0 0


 and eAt =


 cosω0t sinω0t
− sinω0t cosω0t


 .

This expression for eAt can be verified by differentiation:

d

dt
eAt =


−ω0 sinω0t ω0 cosω0t
−ω0 cosω0t −ω0 sinω0t




=


 0 ω0

−ω0 0




 cosω0t sinω0t
− sinω0t cosω0t


 = AeAt.

The solution to the initial value problem is then given by

x(t) = eAtx(0) =


 cosω0t sinω0t
− sinω0t cosω0t




x1(0)
x2(0)


 .

The solution is more complicated if the system has damping:

q̈ + 2ζω0q̇ + ω2
0q = u.

If ζ < 1 we have

exp


−ζω0 ωd

−ωd −ζω0


 t = e−ζω0t


 cosωdt sinωdt
− sinωdt cosωdt


 ,

where ωd = ω0

√
1− ζ2. The result can be proven by differentiating the exponential

matrix. The corresponding results for ζ ≥ 1 are given in Exercise 6.4. ∇
An important class of linear systems are those that can be converted into diag-

onal form by a linear change of coordinates. Suppose that we are given a system

dx

dt
= Ax

such that all the eigenvalues of A are distinct. It can be shown (Exercise 5.14) that
there exists an invertible matrix T such that TAT−1 is diagonal. If we choose a set
of coordinates z = Tx, then in the new coordinates the dynamics become

dz

dt
= T

dx

dt
= TAx = TAT−1z.
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By definition of T , this system will be diagonal.
Now consider a diagonal matrix A and the corresponding kth power of At, which

is also diagonal:

A =




λ1
λ2

0

0
. . .

λn



, (At)k =




λk1t
k

λk2t
k 0

0
. . .

λknt
k



.

It follows from the series expansion that the matrix exponential is given by

eAt =




eλ1t

eλ2t 0

0
. . .

eλnt



.

A similar expansion can be done in the case where the eigenvalues are complex,
using a block diagonal matrix, similar to what was done in Section 5.3.

Given the solution to the dynamics in the z coordinates, the solution in the
original x coordinates can be obtained using the expression x = T−1z. We can
thus obtain an explicit solution for a linear system whose dynamics matrix is diag-
onalizable.

Jordan Form
�

Some matrices with repeated eigenvalues cannot be transformed to diagonal form.
They can, however, be transformed to a closely related form, called the Jordan form,
in which the dynamics matrix has the eigenvalues along the diagonal. When there
are equal eigenvalues, there may be 1’s appearing in the superdiagonal indicating
that there is coupling between the states.

Specifically, we define a matrix to be in Jordan form if it can be written as

J =




J1
J2

0

0
. . .

Jk



, where Ji =




λi 1
. . .

0
. . .

0
. . . 1

λi



, (6.9)

and λi is an eigenvalue of Ji. Each matrix Ji is called a Jordan block. A first-
order Jordan block can be represented as a system consisting of an integrator with
feedback λ. A Jordan block of higher order can be represented as series connections
of such systems, as illustrated in Figure 6.3.

Theorem 6.2 (Jordan decomposition). Any matrix A ∈ Rn×n can be transformed
into Jordan form with the eigenvalues of A determining λi in the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Str88]. The special
case where the eigenvalues are distinct is examined in Exercise 5.14.
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x1∫

λ

(a) 1× 1 block

x1
Σ

∫

λ

x2 ∫

λ

(b) 2× 2 block

λ

Σ Σ
∫

λ

x2 x1∫

λ

x3 ∫

(c) 3× 3 block

Figure 6.3: Representations of linear systems where the dynamics matrices are
Jordan blocks. A 1 × 1 Jordan block corresponds to an integrator with feedback
λ, as shown on the left. 2 × 2 and 3 × 3 Jordan blocks correspond to cascade
connections of integrators with identical feedback, as shown in the middle and
right diagrams.

Converting a matrix into Jordan form can be complicated, although MATLAB
can do this conversion for numerical matrices using the jordan function. There is
no requirement that the individual λi’s be distinct, and hence for a given eigenvalue
we can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the matrix can be computed
in terms of the Jordan blocks:

e Jt =




e J1t

e J2t
0

0
. . .

e Jkt



. (6.10)

This follows from the block diagonal form of J . The exponentials of the Jordan
blocks can in turn be written as

e Jit =




1 t t2

2!

1 t

. . .

. . . tn−1

(n−1)!

. . . tn−2

(n−2)!

. . .
...

0
. . . t

1




eλit. (6.11)

As before, we can express the solution to a linear system that can be converted into
this form by making use of the transformations z = Tx and x = T−1z.

When there are multiple eigenvalues, the invariant subspaces associated with
each eigenvalue correspond to the Jordan blocks of the matrix A. Note that some
eigenvalues of A may be complex, in which case the transformation T that converts
a matrix into Jordan form will also be complex. When λ has a nonzero imaginary
component, the solutions will have oscillatory components since

e(σ+iω)t = eσt(cosωt+ i sinωt).

We can now use these results to prove Theorem 5.1, which states that the equilib-
rium point xe = 0 of a linear system is asymptotically stable if and only if Reλi < 0
for all i.
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Proof of Theorem 5.1. Let T ∈ Cn×n be an invertible matrix that transforms A
into Jordan form, J = TAT−1. Using coordinates z = Tx, we can write the
solution z(t) as

z(t) = e Jtz(0),

where z(0) = Tx(0), so that x(t) = T−1e Jtz(0).
The solution z(t) can be written in terms of the elements of the matrix expo-

nential. From equation (6.11) these elements all decay to zero for arbitrary z(0) if
and only if Reλi < 0 for all i. Furthermore, if any λi has positive real part, then
there exists an initial condition z(0) such that the corresponding solution increases
without bound. Since we can scale this initial condition to be arbitrarily small,
it follows that the equilibrium point is unstable if any eigenvalue has positive real
part.

The existence of a canonical form allows us to prove many properties of linear
systems by changing to a set of coordinates in which the A matrix is in Jordan
form. We illustrate this in the following proposition, which follows along the same
lines as the proof of Theorem 5.1.

Proposition 6.3. Suppose that the system

dx

dt
= Ax

has no eigenvalues with strictly positive real part and one or more eigenvalues with
zero real part. Then the system is stable (in the sense of Lyapunov) if and only
if the Jordan blocks corresponding to each eigenvalue with zero real part are scalar
(1× 1) blocks.

Proof. See Exercise 6.6b.

The following example illustrates the use of the Jordan form.

Example 6.4 Linear model of a vectored thrust aircraft
Consider the dynamics of a vectored thrust aircraft such as that described in Ex-
ample 3.12. Suppose that we choose u1 = u2 = 0 so that the dynamics of the
system become

dz

dt
=




z4
z5
z6

−g sin z3 − c
m z4

g(cos z3 − 1)− c
m z5

0




, (6.12)

where z = (x, y, θ, ẋ, ẏ, θ̇). The equilibrium points for the system are given by
setting the velocities ẋ, ẏ, and θ̇ to zero and choosing the remaining variables to
satisfy

−g sin z3,e = 0

g(cos z3,e − 1) = 0
=⇒ z3,e = θe = 0.

This corresponds to the upright orientation for the aircraft. Note that xe and ye
are not specified. This is because we can translate the system to a new (upright)
position and still obtain an equilibrium point.
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(a) Mode 1 (b) Mode 2

Figure 6.4: Modes of vibration for a system consisting of two masses connected
by springs. In (a) the masses move left and right in synchronization in (b) they
move toward or against each other.

To compute the stability of the equilibrium point, we compute the linearization
using equation (5.13):

A =
∂F

∂z

∣∣∣∣
ze

=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g −c/m 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 0




.

The eigenvalues of the system can be computed as

λ(A) = {0, 0, 0, 0,−c/m,−c/m}.

We see that the linearized system is not asymptotically stable since not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense of Lyapunov, we must
make use of the Jordan form. It can be shown that the Jordan form of A is given
by

J =




0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 −c/m




.

Since the second Jordan block has eigenvalue 0 and is not a simple eigenvalue, the
linearization is unstable (Exercise 6.6). ∇

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a description of the types of
behavior the system can exhibit. For oscillatory systems, the term mode is often
used to describe the vibration patterns that can occur. Figure 6.4 illustrates the
modes for a system consisting of two masses connected by springs. One pattern is
when both masses oscillate left and right in unison, and another is when the masses
move toward and away from each other.
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The initial condition response of a linear system can be written in terms of
a matrix exponential involving the dynamics matrix A. The properties of the
matrix A therefore determine the resulting behavior of the system. Given a matrix
A ∈ Rn×n, recall that v is an eigenvector of A with eigenvalue λ if

Av = λv.

In general λ and v may be complex-valued, although if A is real-valued, then for
any eigenvalue λ its complex conjugate λ∗ will also be an eigenvalue (with v∗ as
the corresponding eigenvector).

Suppose first that λ and v are a real-valued eigenvalue/eigenvector pair for A.
If we look at the solution of the differential equation for x(0) = v, it follows from
the definition of the matrix exponential that

eAtv =
(
I +At+

1

2
A2t2 + · · ·

)
v = v + λtv +

λ2t2

2
v + · · · = eλtv.

The solution thus lies in the subspace spanned by the eigenvector. The eigenvalue
λ describes how the solution varies in time, and this solution is often called a mode
of the system. (In the literature, the term “mode” is also often used to refer to the
eigenvalue rather than the solution.)

If we look at the individual elements of the vectors x and v, it follows that

xi(t)

xj(t)
=
eλtvi
eλtvj

=
vi
vj
,

and hence the ratios of the components of the state x are constants for a (real)
mode. The eigenvector thus gives the “shape” of the solution and is also called
a mode shape of the system. Figure 6.5 illustrates the modes for a second-order
system consisting of a fast mode and a slow mode. Notice that the state variables
have the same sign for the slow mode and different signs for the fast mode.

The situation is more complicated when the eigenvalues of A are complex. Since
A has real elements, the eigenvalues and the eigenvectors are complex conjugates
λ = σ ± iω and v = u± iw, which implies that

u =
v + v∗

2
, w =

v − v∗

2i
.

Making use of the matrix exponential, we have

eAtv = eλt(u+ iw) = eσt
(
(u cosωt− w sinωt) + i(u sinωt+ w cosωt)

)
,

from which it follows that

eAtu =
1

2

(
eAtv + eAtv∗

)
= ueσt cosωt− weσt sinωt,

eAtw =
1

2i

(
eAtv − eAtv∗

)
= ueσt sinωt+ weσt cosωt.

A solution with initial conditions in the subspace spanned by the real part u and
imaginary part w of the eigenvector will thus remain in that subspace. The solution
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Figure 6.5: The notion of modes for a second-order system with real eigenvalues.
The left figure shows the phase portrait and the modes corresponding to solutions
that start on the eigenvectors (bold lines). The corresponding time functions are
shown on the right.

will be a logarithmic spiral characterized by σ and ω. We again call the solution
corresponding to λ a mode of the system and v the mode shape.

If a matrix A has n distinct eigenvalues λ1, . . . , λn, then the initial condition
response can be written as a linear combination of the modes. To see this, suppose
for simplicity that we have all real eigenvalues with corresponding unit eigenvectors
v1, . . . , vn. From linear algebra, these eigenvectors are linearly independent, and
we can write the initial condition x(0) as

x(0) = α1v1 + α2v2 + · · ·+ αnvn.

Using linearity, the initial condition response can be written as

x(t) = α1e
λ1tv1 + α2e

λ2tv2 + · · ·+ αne
λntvn.

Thus, the response is a linear combination of the modes of the system, with the
amplitude of the individual modes growing or decaying as eλit. The case for distinct
complex eigenvalues follows similarly (the case for nondistinct eigenvalues is more
subtle and requires making use of the Jordan form discussed in the previous section).

Example 6.5 Coupled spring–mass system
Consider the spring–mass system shown in Figure 6.4, but with the addition of
dampers on each mass. The equations of motion of the system are

mq̈1 = −2kq1 − cq̇1 + kq2, mq̈2 = kq1 − 2kq2 − cq̇2.

In state space form, we define the state to be x = (q1, q2, q̇1, q̇2), and we can rewrite
the equations as

dx

dt
=




0 0 1 0
0 0 0 1

−2k

m

k

m
− c

m
0

k

m
−2k

m
0 − c

m




x.
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We now define a transformation z = Tx that puts this system into a simpler form.
Let z1 = 1

2 (q1 + q2), z2 = ż1, z3 = 1
2 (q1 − q2) and z4 = ż3, so that

z = Tx =
1

2




1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1



x.

In the new coordinates, the dynamics become

dz

dt
=




0 1 0 0

− k

m
− c

m
0 0

0 0 0 1

0 0 −3k

m
− c

m




z,

and we see that the model is now in block diagonal form.
In the z coordinates, the states z1 and z2 parameterize one mode with eigen-

values λ ≈ −c/(2m) ± i
√
k/m, and the states z3 and z4 another mode with

λ ≈ −c/(2m) ± i
√
3k/m. From the form of the transformation T we see that

these modes correspond exactly to the modes in Figure 6.4, in which q1 and q2
move either toward or against each other. The real and imaginary parts of the
eigenvalues give the decay rates σ and frequencies ω for each mode. ∇

6.3 Input/Output Response

In the previous section we saw how to compute the initial condition response using
the matrix exponential. In this section we derive the convolution equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (6.3), repeated here:

dx

dt
= Ax+Bu, y = Cx+Du. (6.13)

Using the matrix exponential, the solution to equation (6.13) can be written as
follows.

Theorem 6.4. The solution to the linear differential equation (6.13) is given by

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ. (6.14)

Proof. To prove this, we differentiate both sides and use the property (6.8) of the
matrix exponential. This gives

dx

dt
= AeAtx(0) +

∫ t

0

AeA(t−τ)Bu(τ)dτ +Bu(t) = Ax+Bu,
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Figure 6.6: Pulse response and impulse response. (a) The rectangles show pulses
of width 5, 2.5, and 0.8, each with total area equal to 1. The arrow denotes an
impulse δ(t) defined by equation (6.17). The corresponding pulse responses for
a linear system with eigenvalues λ = {−0.08,−0.62} are shown in (b) as dashed
lines. The solid line is the true impulse response, which is well approximated by a
pulse of duration 0.8.

which proves the result since the initial conditions are also met. Notice that the
calculation is essentially the same as for proving the result for a first-order equation.

It follows from equations (6.13) and (6.14) that the input/output relation for a
linear system is given by

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t). (6.15)

It is easy to see from this equation that the output is jointly linear in both the
initial conditions and the input, which follows from the linearity of matrix/vector
multiplication and integration.

Equation (6.15) is called the convolution equation, and it represents the general
form of the solution of a system of coupled linear differential equations. We see
immediately that the dynamics of the system, as characterized by the matrix A,
play a critical role in both the stability and performance of the system. Indeed,
the matrix exponential describes both what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can be given using the concept �
of the impulse response of a system. Consider the application of an input signal
u(t) given by the following equation:

u(t) = pǫ(t) =





0 if t < 0,

1/ǫ if 0 ≤ t < ǫ,

0 if t ≥ ǫ.

(6.16)

This signal is a pulse of duration ǫ and amplitude 1/ǫ, as illustrated in Figure 6.6a.
We define an impulse δ(t) to be the limit of this signal as ǫ→ 0:

δ(t) = lim
ǫ→0

pǫ(t). (6.17)



6.3. INPUT/OUTPUT RESPONSE 6-17

This signal, sometimes called a delta function, is not physically achievable but
provides a convenient abstraction in understanding the response of a system. Note
that the integral of an impulse is 1:

∫ t

0

δ(τ) dτ =

∫ t

0

lim
ǫ→0

pǫ(t) dτ = lim
ǫ→0

∫ t

0

pǫ(t) dτ

= lim
ǫ→0

∫ ǫ

0

1/ǫ dτ = 1, t > 0.

In particular, the integral of an impulse over an arbitrarily short period of time
that includes the origin is identically 1.

We define the impulse response h(t) for a system as the output of the system
with zero initial condition and having an impulse as its input:

h(t) =

∫ t

0

CeA(t−τ)Bδ(τ) dτ +Dδ(t) = CeAtB +Dδ(t), (6.18)

where the second equality follows from the fact that δ(t) is zero everywhere except
the origin and its integral is identically 1. We can now write the convolution equa-
tion in terms of the initial condition response and the convolution of the impulse
response and the input signal:

y(t) = CeAtx(0) +

∫ t

0

h(t− τ)u(τ) dτ. (6.19)

One interpretation of this equation, explored in Exercise 6.2, is that the response
of the linear system is the superposition of the response to an infinite set of shifted
impulses whose magnitudes are given by the input u(t). This is essentially the
argument used in analyzing Figure 6.2 and deriving equation (6.5). Note that the
second term in equation (6.19) is identical to equation (6.5), and it can be shown
that the impulse response is the derivative of the step response.

The use of pulses pǫ(t) as approximations of the impulse function δ(t) also
provides a mechanism for identifying the dynamics of a system from experiments.
Figure 6.6b shows the pulse responses of a system for different pulse widths. Notice
that the pulse responses approach the impulse response as the pulse width goes to
zero. As a general rule, if the fastest eigenvalue of a stable system has real part
−σmax, then a pulse of length ǫ will provide a good estimate of the impulse response
if ǫσmax ≪ 1. Note that for Figure 6.6, a pulse width of ǫ = 1 s gives ǫσmax = 0.62
and the pulse response is already close to the impulse response.

Coordinate Invariance

The components of the input vector u and the output vector y are determined by
the chosen inputs and outputs of a model, but the state variables depend on the
coordinate frame chosen to represent the state. This choice of coordinates affects
the values of the matrices A, B, and C that are used in the model. (The direct
term D is not affected since it maps inputs to outputs.) We now investigate some
of the consequences of changing coordinate systems.
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m m
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u(t) = sin    tω
k

c c

q1 q2

Figure 6.7: Coupled spring mass system. Each mass is connected to two springs
with stiffness k and a viscous damper with damping coefficient c. The mass on the
right is driven through a spring connected to a sinusoidally varying attachment.

Introduce new coordinates z by the transformation z = Tx, where T is an
invertible matrix. It follows from equation (6.3) that

dz

dt
= T (Ax+Bu) = TAT−1z + TBu =: Ãz + B̃u,

y = Cx+Du = CT−1z +Du =: C̃z +Du.

The transformed system has the same form as equation (6.3), but the matrices A,
B, and C are different:

Ã = TAT−1, B̃ = TB, C̃ = CT−1. (6.20)

There are often special choices of coordinate systems that allow us to see a particular
property of the system, hence coordinate transformations can be used to gain new
insight into the dynamics. The eigenvalues of Ã are the same as those of A, so
stability is not affected.

We can also compare the solution of the system in transformed coordinates to
that in the original state coordinates. We make use of an important property of
the exponential map,

eTST
−1

= TeST−1,

which can be verified by substitution in the definition of the matrix exponential.
Using this property, it is easy to show that

x(t) = T−1z(t) = T−1eÃtTx(0) + T−1

∫ t

0

eÃ(t−τ)B̃u(τ) dτ.

From this form of the equation, we see that if it is possible to transform A into
a form Ã for which the matrix exponential is easy to compute, we can use that
computation to solve the general convolution equation for the untransformed state
x by simple matrix multiplications. This technique is illustrated in the following
example.

Example 6.6 Coupled spring–mass system
Consider the coupled spring–mass system shown in Figure 6.7. The input to this
system is the sinusoidal motion of the position of the rightmost spring, and the
output is the position of each mass, q1 and q2. The equations of motion are given
by

mq̈1 = −2kq1 − cq̇1 + kq2, mq̈2 = kq1 − 2kq2 − cq̇2 + ku.
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In state space form, we define the state to be x = (q1, q2, q̇1, q̇2), and we can rewrite
the equations as

dx

dt
=




0 0 1 0
0 0 0 1

−2k

m

k

m
− c

m
0

k

m
−2k

m
0 − c

m




x+




0
0

0

k

m



u.

This is a coupled set of four differential equations and is quite complicated to solve
in analytical form.

The dynamics matrix is the same as in Example 6.5, and we can use the coor-
dinate transformation defined there to put the system in block diagonal form:

dz

dt
=




0 1 0 0

− k

m
− c

m
0 0

0 0 0 1

0 0 −3k

m
− c

m




z +




0
k

2m

0

− k

2m




u.

Note that the resulting matrix equations are decoupled, and we can solve for the
solutions by computing the solutions of two sets of second-order systems repre-
sented by the states (z1, z2) and (z3, z4). Indeed, the functional form of each set of
equations is identical to that of a single spring–mass system. (The explicit solution
is derived in Section 7.3.)

Once we have solved the two sets of independent second-order equations, we can
recover the dynamics in the original coordinates by inverting the state transforma-
tion and writing x = T−1z. We can also determine the stability of the system by
looking at the stability of the independent second-order systems. ∇

Steady-State Response

A common practice in evaluating the response of a linear system is to separate out
the short-term response from the long-term response. Given a linear input/output
system

dx

dt
= Ax+Bu, y = Cx+Du, (6.21)

the general form of the solution to equation (6.21) is given by the convolution
equation:

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t).

We see from the form of this equation that the solution consists of an initial condi-
tion response and an input response.

The input response, corresponding to the last two terms in the equation above,
itself consists of two components—the transient response and the steady-state re-
sponse. The transient response occurs in the first period of time after the input
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Figure 6.8: Transient versus steady-state response. The input to a linear system
is shown in (a), and the corresponding output with x(0) = 0 is shown in (b). The
output signal initially undergoes a transient before settling into its steady-state
behavior.

is applied and reflects the mismatch between the initial condition and the steady-
state solution. The steady-state response is the portion of the output response that
reflects the long-term behavior of the system under the given inputs. For inputs
that are periodic the steady-state response will often be periodic, and for constant
inputs the response will often be constant. An example of the transient and the
steady-state response for a periodic input is shown in Figure 6.8.

A particularly common form of input is a step input, which represents an abrupt
change in input from one value to another. A unit step (sometimes called the
Heaviside step function) is defined as

u(t) = S(t) =

{
0 if t = 0,

1 if t > 0.

The step response of the system (6.21) is defined as the output y(t) starting from
zero initial condition (or the appropriate equilibrium point) and given a step input.
We note that the step input is discontinuous and hence is not practically imple-
mentable. However, it is a convenient abstraction that is widely used in studying
input/output systems.

We can compute the step response to a linear system using the convolution
equation. Setting x(0) = 0 and using the definition of the step input above, we
have

y(t) =

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t) = C

∫ t

0

eA(t−τ)Bdτ +D

= C

∫ t

0

eAσBdσ +D = C
(
A−1eAσB

)∣∣σ=t
σ=0

+D

= CA−1eAtB − CA−1B +D.

We can rewrite the solution as

y(t) = CA−1eAtB︸ ︷︷ ︸
transient

+D − CA−1B︸ ︷︷ ︸
steady-state

, t > 0. (6.22)

The first term is the transient response and it decays to zero as t→ ∞ if all eigen-
values of A have negative real parts (implying that the origin is a stable equilibrium
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Figure 6.9: Sample step response. The rise time, overshoot, settling time, and
steady-state value give the key performance properties of the signal.

point in the absence of any input). The second term, computed under the assump-
tion that the matrix A is invertible, is the steady-state step response and represents
the value of the output for large time.

A sample step response is shown in Figure 6.9. Several key properties are used
when describing a step response. The steady-state value yss of a step response is
the final level of the output, assuming it converges. The rise time Tr is the amount
of time required for the signal to first go from 10% of its final value to 90% of
its final value. (It is possible to define other limits as well, but in this book we
shall use these percentages unless otherwise indicated.) The overshoot Mp is the
percentage of the final value by which the signal initially rises above the final value.
This usually assumes that future values of the signal do not overshoot the final
value by more than this initial transient, otherwise the term can be ambiguous.
Finally, the settling time Ts is the amount of time required for the signal to stay
within 2% of its final value for all future times. The settling time is also sometimes
defined as reaching 1% or 5% of the final value (see Exercise 6.7). In general these
performance measures can depend on the amplitude of the input step, but for linear
systems the last three quantities defined above are independent of the size of the
step.

Example 6.7 Compartment model
Consider the compartment model illustrated in Figure 6.10 and described in more
detail in Section 4.6. Assume that a drug is administered by constant infusion in
compartment V1 and that the drug has its effect in compartment V2. To assess how
quickly the concentration in the compartment reaches steady state we compute the
step response, which is shown in Figure 6.10b. The step response is quite slow, with
a settling time of 39 min. It is possible to obtain the steady-state concentration
much faster by having a faster injection rate initially, as shown in Figure 6.10c.
The response of the system in this case can be computed by combining two step
responses (Exercise 6.3). ∇

Frequency Response

Another common input signal to a linear system is a sinusoid (or a combination of
sinusoids). The frequency response of an input/output system measures the way
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(c) Pulse input

Figure 6.10: Response of a compartment model to a constant drug infusion. A
simple diagram of the system is shown in (a). The step response (b) shows the rate
of concentration buildup in compartment 2. In (c) a pulse of initial concentration
is used to speed up the response.

in which the system responds to a sinusoidal excitation on one of its inputs. As
we have already seen for scalar systems, the particular solution associated with
a sinusoidal excitation is itself a sinusoid at the same frequency. Hence we can
compare the magnitude and phase of the output sinusoid to the input.

To see this in more detail, we must evaluate the convolution equation (6.15) for
u = cosωt. This turns out to be a very messy calculation, but we can make use of
the fact that the system is linear to simplify the derivation. It follows from Euler’s
formula that

cosωt =
1

2

(
eiωt + e−iωt

)
.

Since the system is linear, it suffices to compute the response of the system to the
complex input u(t) = est and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding to s = iω and s = −iω.

Applying the convolution equation to the input u = est we have

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Besτdτ +Dest

= CeAtx(0) + CeAt
∫ t

0

e(sI−A)τBdτ +Dest.

If we assume that none of the eigenvalues of A are equal to ±iω, then the matrix
sI −A is invertible, and we can write

y(t) = CeAtx(0) + CeAt
(
(sI −A)−1e(sI−A)τB

)∣∣∣
t

0
+Dest

= CeAtx(0) + CeAt(sI −A)−1
(
e(sI−A)t − I

)
B +Dest

= CeAtx(0) + C(sI −A)−1estB − CeAt(sI −A)−1B +Dest,
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and we obtain

y(t) = CeAt
(
x(0)− (sI −A)−1B

)

︸ ︷︷ ︸
transient

+
(
C(sI −A)−1B +D

)
est

︸ ︷︷ ︸
steady-state

. (6.23)

Notice that once again the solution consists of both a transient component and
a steady-state component. The transient component decays to zero if the system
is asymptotically stable and the steady-state component is proportional to the
(complex) input u = est.

We can simplify the form of the solution slightly further by rewriting the steady-
state response as

yss(t) =Meiθest =Me(st+iθ),

where
Meiθ = G(s) = C(sI −A)−1B +D, (6.24)

and M and θ represent the magnitude and phase of the complex number G(s).
When s = iω, we say that M = |G(iω)| is the gain and θ = argG(iω) is the
phase of the system at a given forcing frequency ω. Using linearity and combining
the solutions for s = +iω and s = −iω, we can show that if we have an input
u = Au sin(ωt+ ψ) and an output y = Ay sin(ωt+ ϕ), then

gain(ω) =
Ay
Au

=M, phase(ω) = ϕ− ψ = θ.

The steady-state solution for a sinusoid u = cosωt = sin(ωt+ π/2) is now given by

yss(t) = Re
(
G(iω)eiωt

)
=M cos(ωt+ θ). (6.25)

If the phase θ is positive, we say that the output leads the input, otherwise we say
it lags the input.

A sample steady-state sinusoidal response is illustrated in Figure 6.11a. The
dashed line shows the input sinusoid, which has amplitude 1. The output sinusoid
is shown as a solid line and has a different amplitude plus a shifted phase. The
gain is the ratio of the amplitudes of the sinusoids, which can be determined by
measuring the height of the peaks. The phase is determined by comparing the ratio
of the time between zero crossings of the input and output to the overall period of
the sinusoid:

θ = −2π ·
∆T

T
.

A convenient way to view the frequency response is to plot how the gain and
phase in equation (6.24) depend on ω (through s = iω). Figure 6.11b shows an
example of this type of representation (called a Bode plot and discussed in more
detail in Section 9.6).

Example 6.8 Active band-pass filter
Consider the op amp circuit shown in Figure 6.12a. We can derive the dynamics of
the system by writing the nodal equations, which state that the sum of the currents
at any node must be zero. Assuming that v− = v+ = 0, as we did in Section 4.3,
we have

0 =
v1 − v2
R1

− C1
dv2
dt
, 0 = C1

dv2
dt

+
v3
R2

+ C2
dv3
dt
.
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Figure 6.11: Steady-state response of an asymptotically stable linear system to
a sinusoid. (a) A sinusoidal input of magnitude Au (dashed) gives a sinusoidal
output of magnitude Ay (solid), delayed by ∆T seconds. (b) Frequency response,
showing gain and phase. The gain is given by the ratio of the output amplitude
to the input amplitude, M = Ay/Au. The phase lag is given by θ = −2π∆T/T ; it
is negative for the case shown because the output lags the input.

Choosing v2 and v3 as our states and using these equations, we obtain

dv2
dt

=
v1 − v2
R1C1

,
dv3
dt

=
−v3
R2C2

− v1 − v2
R1C2

.

Rewriting these in linear state space form, we obtain

dx

dt
=




− 1

R1C1
0

1

R1C2
− 1

R2C2



x+




1

R1C1

−1

R1C2



u, y =


0 1


x, (6.26)

where x = (v2, v3), u = v1, and y = v3.
The frequency response for the system can be computed using equation (6.24):

Meiθ = C(sI −A)−1B +D = −R2

R1

R1C1s

(1 +R1C1s)(1 +R2C2s)
, s = iω.

The magnitude and phase are plotted in Figure 6.12b for R1 = 100 Ω, R2 = 5 kΩ,
and C1 = C2 = 100 µF. We see that signals with frequencies around 15 rad/s pass
through the circuit with small attenuation but that signals below 2 rad/s or above
100 rad/s are attenuated. At 0.1 rad/s the input signal is attenuated by a factor of
20. This type of circuit is called a band-pass filter since it passes through signals in
the band of frequencies between 5 and 50 rad/s (approximately). ∇

As in the case of the step response, a number of standard properties are defined
for frequency responses. The gain of a system at ω = 0 is called the zero frequency
gain and corresponds to the ratio between a constant input and the steady output:

M0 = G(0) = −CA−1B +D
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(b) Frequency response

Figure 6.12: Active band-pass filter. The circuit diagram (a) shows an op amp
with two RC filters arranged to provide a band-pass filter. The plot in (b) shows
the gain and phase of the filter as a function of frequency. Note that the phase
starts at -90◦ due to the negative gain of the operational amplifier.

(compare to equation (6.24)). The zero frequency gain is well defined only if A is
invertible (i.e., if it does not have eigenvalues at 0). It is also important to note that
the zero frequency gain is a relevant quantity only when a system is stable about
the corresponding equilibrium point. So, if we apply a constant input u = r, then
the corresponding equilibrium point xe = −A−1Br must be stable in order to talk
about the zero frequency gain. (In electrical engineering, the zero frequency gain
is often called the DC gain. DC stands for direct current and reflects the common
separation of signals in electrical engineering into a direct current [zero frequency]
term and an alternating current [AC] term.)

The bandwidth ωb of a system is the frequency range over which the gain has
decreased by no more than a factor of 1/

√
2 from its reference value. For systems

with nonzero, finite zero frequency gain, the reference value is taken as the zero
frequency gain. For systems that attenuate low frequencies but pass through high
frequencies, the reference gain is taken as the high-frequency gain. For a system
such as the band-pass filter in Example 6.8, bandwidth is defined as the range of
frequencies where the gain is larger than 1/

√
2 of the gain at the center of the band.

(For Example 6.8 this would give a bandwidth of approximately 2 to 100 rad/s.)

Other important properties of the frequency response are the resonant peak
Mr, the largest value of the frequency response, and the peak frequency ωmr, the
frequency where the maximum occurs. These two properties describe the frequency
of the sinusoidal input that produce the largest possible output and the gain at the
frequency.

Example 6.9 Atomic force microscope in contact mode
Consider the model for the vertical dynamics of the atomic force microscope in
contact mode, discussed in Section 4.5. The basic dynamics are given by equa-
tion (4.24). The piezo stack can be modeled by a second-order system with un-
damped natural frequency ω3 and damping ratio ζ3. The dynamics are then de-
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Figure 6.13: AFM frequency response. (a) A block diagram for the vertical
dynamics of an atomic force microscope in contact mode. The plot in (b) shows
the gain and phase for the piezo stack. The response contains two frequency
peaks at resonances of the system, along with an antiresonance at ω = 268 krad/s.
The combination of a resonant peak followed by an antiresonance is common for
systems with multiple lightly damped modes. The dashed horizontal line represents
the gain equal to the zero frequency gain divided by

√
2.

scribed by the linear system

dx

dt
=




0 1 0 0
−k2/(m1 +m2) −c2/(m1 +m2) 1/m2 0

0 0 0 ω3

0 0 −ω3 −2ζ3ω3



x+




0
0
0
ω3



u,

y =
m2

m1 +m2


 m1k2
m1 +m2

m1c2
m1 +m2

1 0


x,

where the input is the drive signal to the amplifier and the output is the elongation
of the piezo. The frequency response of the system is shown in Figure 6.13b. The
zero frequency gain of the system is M0 = 1. There are two resonant poles with
peaks Mr1 = 2.12 at ωmr1 = 238 krad/s and Mr2 = 4.29 at ωmr2 = 746 krad/s.
There is also a dip in the gain Md = 0.556 for ωmd = 268 krad/s. This dip, called
an antiresonance, is associated with a dip in the phase and limits the performance
when the system is controlled by simple controllers, as we will see in Chapter 11.
The bandwidth is the frequency range over which the gain has decreased by no
more than a factor of 1/

√
2 from its reference value, which in this case is the

zero frequency gain. Neglecting the slight dip at the antiresonance, the bandwidth
becomes ωb = 1.12 Mrad/s.

∇

So far we have used the frequency response to compute the output for a single
sinusoid. The transfer function can also be used to compute the output for any
periodic signal. Consider a system with the frequency response G(iω). Let the
input signal u(t) be periodic and decompose it into a sum of a set of sines and
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cosines,

u(t) =

∞∑

k=0

ak sin(kω f t) + bk cos(kω f t),

where ω f is the fundamental frequency of the periodic input. Using equation (6.25)
and superposition, we find that the input u(t) generates the steady-state output

y(t) =

∞∑

k=0

|G(ikω f)|
(
ak sin

(
kω f t+ argG(ikω f)

)
+ bk cos

(
kω f t+ argG(ikω f)

))
.

The gain and phase at each frequency are determined by the frequency response
G(iω), as given in equation (6.24). If we know the steady-state frequency response
G(iω), we can thus compute the response to any (periodic) signal using superposi-
tion.

We can go even further to approximate the response to a transient signal. Consider �
a system with the transfer function G(s) and the input u. Approximate the initial
part of the function u(t) by the periodic signal

up(t) =

{
u(t) if 0 ≤ t < T/2,

0 if T/2 ≤ t < T ,

with period T . Since up is periodic it has a Fourier transform uF(iω), and it follows
from equation (6.25) that the Fourier transform of yp is yF(iω) = G(iω)uF(iω),
where uF and yF represent the Fourier transforms of up and yp, respectively. Tak-
ing the inverse Fourier transform then gives the time response yp(t). Efficient
algorithms can be obtained using fast Fourier transforms (Exercise 6.12).

Sampling

It is often convenient to use both differential and difference equations in modeling
and control. For linear systems it is straightforward to transform from one to the
other. Consider the general linear system described by equation (6.13) and assume
that the control signal is constant over a sampling interval of constant length h. It
follows from equation (6.14) of Theorem 6.4 that

x(t+ h) = eAhx(t) +

∫ t+h

t

eA(t+h−τ)Bu(τ) dτ =: Φx(t) + Γu(t), (6.27)

where we have assumed that the discontinuous control signal is continuous from
the right. The behavior of the system at the sampling times t = kh is described by
the difference equation

x[k + 1] = Φx[k] + Γu[k], y[k] = Cx[k] +Du[k], (6.28)

where

Φ = eAh, Γ =
(∫ h

0

eAs ds
)
B.
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Notice that the difference equation (6.28) is an exact representation of the behavior
of the system at the sampling instants. Similar expressions can also be obtained if
the control signal is linear over the sampling interval.

The transformation from equation (6.27) to equation (6.28) is called sampling.
The relations between the system matrices in the continuous and sampled repre-
sentations are as follows:

A =
1

h
log Φ, B =

(∫ h

0

eAs ds
)−1

Γ. (6.29)

Notice that if A is invertible, we have

Γ = A−1
(
eAh − I

)
B.

All continuous-time systems can be sampled to obtain a discrete-time version,
but there are discrete-time systems that do not have a continuous-time equivalent.
The issue is related to logarithms of matrices and there are several subtleties; for
example, there may be many solutions. A necessary but not sufficient condition is �
that the matrix Φ is nonsingular [Gan60]. A key result is that a real matrix has a
real logarithm if and only if it is invertible and if each Jordan block associated with
a negative eigenvalue occurs an even number of times [Cul66]. This implies that
the matrix Φ cannot have isolated eigenvalues on the negative real axis. A detailed
discussion of sampling is given in [SÅH84].

Example 6.10 IBM Lotus server
In Example 3.5 we described how the dynamics of an IBM Lotus server were ob-
tained as the discrete-time system

x[k + 1] = ax[k] + bu[k],

where a = 0.43, b = 0.47, the sampling period is h = 60 s, and x denotes the total
requests being served. A differential equation model is needed if we would like to
design control systems based on continuous-time theory. Such a model is obtained
by applying equation (6.29); hence

A =
log a

h
= −0.0141, B =

(∫ h

0

eAt dt
)−1

b = 0.0116,

and we find that the difference equation can be interpreted as a sampled version of
the ordinary differential equation

dx

dt
= −0.0141x+ 0.0116u.

∇

6.4 Linearization

As described at the beginning of the chapter, a common source of linear system
models is through the approximation of a nonlinear system by a linear one. It is
common practice in control engineering to design controllers based on an approx-
imate linear model and to verify the results by simulating the closed loop system
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using a nonlinear model. In this section we describe how to locally approximate
a nonlinear system by a linear one, and discuss what can be inferred about the
stability of the original system. We begin with an illustration that controllers can
successfully be designed from approximate linear models using the cruise control
example, which is described in more detail in Chapter 4.

Example 6.11 Cruise control
The dynamics for the cruise control system are derived in Section 4.1 and have the
form

m
dv

dt
= αnuT (αnv)−mgCr sgn(v)−

1

2
ρCdAv|v| −mg sin θ, (6.30)

where the first term on the right-hand side of the equation is the force generated
by the engine and the remaining three terms are the rolling friction, aerodynamic
drag, and gravitational disturbance force. There is an equilibrium point (ve, ue)
when the force applied by the engine balances the disturbance forces.

To explore the behavior of the system near the equilibrium point we will linearize
the system. A Taylor series expansion of equation (6.30) around the equilibrium
point gives

d(v − ve)

dt
= −a(v − ve)− bg(θ − θe) + b(u− ue) + higher-order terms, (6.31)

where

a =
ρCdA|ve| − ueα

2
nT

′(αnve)
m

, bg = g cos θe, b =
αnT (αnve)

m
. (6.32)

Notice that the term corresponding to rolling friction disappears if v > 0. For a
car in fourth gear with ve = 20 m/s, θe = 0, and the numerical values for the
car from Section 4.1, the equilibrium value for the throttle is ue = 0.1687 and the
parameters are a = 0.01, b = 1.32, and bg = 9.8. This linear model describes how
small perturbations in the velocity about the nominal speed evolve in time.

We will later describe how to design a proportional-integral (PI) controller for
the system. Here we will simply assume that we have obtained a good controller
and we will compare the behaviors when the closed loop system is simulated using
the nonlinear model and the linear approximation. The simulation scenario is
that the car is running with constant speed on a horizontal road and the system
has stabilized so that the vehicle speed and the controller output are constant.
Figure 6.14 shows what happens when the car encounters a hill with a slope of 4◦

and a hill with a slope of 6◦ at time t =5 s. The results for the nonlinear model
are solid curves and those for the linear model are dashed curves. The differences
between the curves are very small (especially for θ = 4◦), and control design based
on the linearized model is thus validated. ∇

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, single-output nonlinear system

dx

dt
= f(x, u), x ∈ Rn, u ∈ R,

y = h(x, u), y ∈ R,
(6.33)
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Figure 6.14: Simulated response of a vehicle with PI cruise control as it climbs a
hill with a slope of 4◦ (smaller velocity deviation/throttle) and a slope of 6◦ (larger
velocity deviation/throttle). The solid line is the simulation based on a nonlinear
model, and the dashed line shows the corresponding simulation using a linear
model. The controller gains are kp = 0.5 and ki = 0.1 and include anti-windup
compensation (described in more detail in Example 11.6).

with an equilibrium point at x = xe, u = ue. Without loss of generality we can
assume that xe = 0 and ue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study the local behavior of the system around the equilibrium point (xe, ue),
we suppose that x− xe and u− ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with the (lower-order) linear
terms. This is roughly the same type of argument that is used when we do small-
angle approximations, replacing sin θ with θ and cos θ with 1 for θ near zero.

We define a new set of state variables z, as well as inputs v and outputs w:

z = x− xe, v = u− ue, w = y − h(xe, ue).

These variables are all close to zero when we are near the equilibrium point, and so
in these variables the nonlinear terms can be thought of as the higher-order terms
in a Taylor series expansion of the relevant vector fields (assuming for now that
these exist).

Formally, the Jacobian linearization of the nonlinear system (6.33) is

dz

dt
= Az +Bv, w = Cz +Dv, (6.34)

where

A =
∂f

∂x

∣∣∣∣
(xe,ue)

, B =
∂f

∂u

∣∣∣∣
(xe,ue)

, C =
∂h

∂x

∣∣∣∣
(xe,ue)

, D =
∂h

∂u

∣∣∣∣
(xe,ue)

. (6.35)

The system (6.34) approximates the original system (6.33) when we are near the
equilibrium point about which the system was linearized. It follows from Theo-
rem 5.3 that if the linearization is asymptotically stable, then the equilibrium point
xe is locally asymptotically stable for the full nonlinear system.
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Example 6.12 Cruise control using Jacobian linearization
Consider again the cruise control system from Example 6.11 with θ taken as a
constant θe. We can write the dynamics as a first-order, nonlinear differential
equation:

dx

dt
= f(x, u) =

αn
m
uT (αnx)− gCr sgn(x)−

1

2

ρCdA

m
x|x| − g sin θe,

y = h(x, u) = x,

where x = v is the velocity of the vehicle and u is the throttle. We use the velocity
as the output of the system (since this is what we are trying to control).

If we linearize the dynamics of the system about an equilibrium point x = ve > 0,
u = ue, using equation (6.35) and the previous formula we obtain

A =
∂f

∂x

∣∣∣∣
(xe,ue)

=
ueα

2
nT

′(αnxe)− ρCdA|xe|
m

, B =
∂f

∂u

∣∣∣∣
(xe,ue)

=
αnT (αnxe)

m
,

C =
∂h

∂x

∣∣∣∣
(xe,ue)

= 1 D =
∂h

∂u

∣∣∣∣
(xe,ue)

= 0,

where we have used the fact that sgn(x) = 1 for x > 0. This matches the results
in Example 6.11, remembering that we have used x as the system state (vehicle
velocity). ∇

It is important to note that we can define the linearization of a system only
near a solution of the differential equations for the system, of which an equilibrium
point is a particularly common case. To see this, consider a polynomial system

dx

dt
= a0 + a1x+ a2x

2 + a3x
3 + u,

where a0 6= 0. A set of equilibrium points for this system is given by (xe, ue) =
(xe,−a0 − a1xe − a2x

2
e − a3x

3
e), and we can linearize around any of them. Suppose

that we try to linearize around the origin of the system x = 0, u = 0 (which does
not correspond to a solution of the differential equation if a0 6= 0). If we drop the
higher-order terms in x, then we get

dx

dt
= a0 + a1x+ u,

which is not the Jacobian linearization if a0 6= 0. The constant term must be kept,
and it is not present in equation (6.34). Furthermore, even if we kept the constant
term in the approximate model, the system would quickly move away from this
point (since it is “driven” by the constant term a0), and hence the approximation
could soon fail to hold.

Software for modeling and simulation frequently has facilities for performing
linearization symbolically or numerically. The MATLAB command trim finds the
equilibrium point, and linmod extracts linear state space models from a SIMULINK
system around an equilibrium point. The more general case of linearizing around
a trajectory leads to a time-varying linear system.
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Example 6.13 Vehicle steering
Consider the vehicle steering system introduced in Example 3.11. The nonlinear
equations of motion for the system are given by equations (3.25)–(3.27) and can be
written as

d

dt



x
y
θ


 =




v cos (α(δ) + θ)
v sin (α(δ) + θ)

v sinα(δ)

a



, α(δ) = arctan

(a tan δ
b

)
.

The state of the system is the position x, y of the center of mass and the orientation
θ of the vehicle. The control variable is the steering angle δ. Furthermore b is the
wheelbase and a is the distance between the center of mass and the rear wheel.

We are interested in the motion of the vehicle about a straight-line path (θ = θ0)
with constant velocity v0 6= 0. To find the relevant equilibrium point, we first set
θ̇ = 0 and we see that we must have δ = 0, corresponding to the steering wheel
being straight. This also yields α = 0. Looking at the first two equations in the
dynamics, we see that the motion in the xy plane is by definition not at equilibrium
since ẋ2 + ẏ2 = v2 6= 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral deviation of the vehicle
from a straight line. For simplicity, we let θe = 0, which corresponds to driving
along the x axis. We can then focus on the equations of motion in the y and θ
directions. With some abuse of notation we introduce the state x = (y, θ) and
u = δ. The system is then in standard form with

f(x, u) =



v0 sin (α(u) + x2)

v0 sinα(u)

a


 , α(u) = arctan

(a tanu
b

)
, h(x, u) = x1.

The equilibrium point of interest is given by x = (0, 0) and u = 0. To compute the
linearized model around this equilibrium point, we make use of the formulas (6.35).
A straightforward calculation yields

A =
∂f

∂x

∣∣∣∣
x=0
u=0

=


0 v0
0 0


 , B =

∂f

∂u

∣∣∣∣
x=0
u=0

=


av0/b
v0/b


 ,

C =
∂h

∂x

∣∣∣∣
x=0
u=0

=

1 0


 , D =

∂h

∂u

∣∣∣∣
x=0
u=0

= 0,

and the linearized system

dx

dt
= Ax+Bu, y = Cx+Du (6.36)

thus provides an approximation to the original nonlinear dynamics.
The linearized model can be simplified further by introducing normalized vari-

ables, as discussed in Section 3.3. For this system, we choose the wheelbase b as
the length unit and the time unit as the time required to travel a wheelbase. The
normalized state is thus z = (x1/b, x2), and the new time variable is τ = v0t/b.
The model (6.36) then becomes

dz

dτ
=


z2 + γu

u


 =


0 1
0 0


 z +


γ
1


u, y =


1 0


 z, (6.37)
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where γ = a/b. The normalized linear model for vehicle steering with nonslipping
wheels is thus a linear system with only one parameter γ. ∇

Feedback Linearization

Another type of linearization is the use of feedback to convert the dynamics of a
nonlinear system into those of a linear one. We illustrate the basic idea with an
example.

Example 6.14 Cruise control
Consider again the cruise control system from Example 6.11, whose dynamics are
given in equation (6.30):

m
dv

dt
= αnuT (αnv)−mgCr sgn(v)−

1

2
ρCdAv|v| −mg sin θ.

If we choose u as a feedback law of the form

u =
1

αnT (αnv)

(
ũ+mgCr sgn(v) +

1

2
ρCdAv|v|

)
, (6.38)

then the resulting dynamics become

m
dv

dt
= ũ+ d, (6.39)

where d(t) = −mg sin θ(t) is the disturbance force due the slope of the road (which
may be changing as we drive). If we now define a feedback law for ũ (such as
a proportional-integral-derivative [PID] controller), we can use equation (6.38) to
compute the final input that should be commanded.

Equation (6.39) is a linear differential equation. We have essentially “inverted”
the nonlinearity through the use of the feedback law (6.38). This requires that
we have an accurate measurement of the vehicle velocity v as well as an accurate
model of the torque characteristics of the engine, gear ratios, drag and friction
characteristics, and mass of the car. While such a model is not generally available
(remembering that the parameter values can change), if we design a good feedback
law for ũ, then we can achieve robustness to these uncertainties. ∇

More generally, we say that a system of the form

dx

dt
= f(x, u), y = h(x),

is feedback linearizable if there exists a control law u = α(x, v) such that the resulting
closed loop system is input/output linear with input v and output y, as shown in
Figure 6.15. To fully characterize such systems is beyond the scope of this text, but
we note that in addition to changes in the input, the general theory also allows for
(nonlinear) changes in the states that are used to describe the system, keeping only
the input and output variables fixed. More details of this process can be found in
the textbooks by Isidori [Isi95] and Khalil [Kha01].

One case that comes up relatively frequently, and is hence worth special mention, �
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Figure 6.15: Feedback linearization. A nonlinear feedback of the form u = α(x, v)
is used to modify the dynamics of a nonlinear process so that the response from the
input v to the output y is linear. A linear controller can then be used to regulate
the system’s dynamics.

is the set of mechanical systems of the form

M(q)q̈ + C(q, q̇) = B(q)u.

Here q ∈ Rn is the configuration of the mechanical system, M(q) ∈ Rn×n is the
configuration-dependent inertia matrix, C(q, q̇) ∈ Rn represents the Coriolis forces
and additional nonlinear forces (such as stiffness and friction), and B(q) ∈ Rn×p

is the input matrix. If p = n, then we have the same number of inputs and
configuration variables, and if we further have that B(q) is an invertible matrix for
all configurations q, then we can choose

u = B−1(q)
(
M(q)v + C(q, q̇)

)
. (6.40)

The resulting dynamics become

M(q)q̈ =M(q)v =⇒ q̈ = v,

which is a linear system. We can now use the tools of linear system theory to
analyze and design control laws for the linearized system, remembering to apply
equation (6.40) to obtain the actual input that will be applied to the system.

This type of control is common in robotics, where it goes by the name of com-
puted torque, and in aircraft flight control, where it is called dynamic inversion.
Some modeling tools like Modelica can generate the code for the inverse model
automatically. One caution is that feedback linearization can often cancel out
beneficial terms in the natural dynamics, and hence it must be used with care.
Extensions that do not require complete cancellation of nonlinearities are discussed
in Khalil [Kha01] and Krstić et al. [KKK95].

6.5 Further Reading

The majority of the material in this chapter is classical and can be found in most
books on dynamics and control theory, including early works on control such as
James, Nichols, and Phillips [JNP47] and more recent textbooks such as Dorf and
Bishop [DB04], Franklin, Powell, and Emami-Naeini [FPEN05], and Ogata [Oga01].
An excellent presentation of linear systems based on the matrix exponential is
given in the book by Brockett [Bro70], a more comprehensive treatment is given by
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Rugh [Rug95], and an elegant mathematical treatment is given in Sontag [Son98].
Material on feedback linearization can be found in books on nonlinear control theory
such as Isidori [Isi95] and Khalil [Kha01]. The idea of characterizing dynamics by
considering the responses to step inputs is due to Heaviside, who also introduced an
operator calculus to analyze linear systems. The unit step is therefore also called
the Heaviside step function. Analysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of lack of mathematical rigor,
as described in the biography by Nahin [Nah88]. The difficulties were cleared up
later by the mathematician Laurent Schwartz who developed distribution theory
in the late 1940s. In engineering, linear systems have traditionally been analyzed
using Laplace transforms as described in Gardner and Barnes [GB42]. Use of
the matrix exponential started with developments of control theory in the 1960s,
strongly stimulated by a textbook by Zadeh and Desoer [ZD63]. Use of matrix
techniques expanded rapidly when the powerful methods of numeric linear algebra
were packaged in programs like LABVIEW, MATLAB, and Mathematica. The
books by Gantmacher [Gan60] are good sources for matrix theory.

Exercises

6.1 (Response to the derivative of a signal) Show that if y(t) is the output of a linear
time-invariant system corresponding to input u(t), then the output corresponding
to an input u̇(t) is given by ẏ(t). (Hint: Use the definition of the derivative:
ż(t) = limǫ→0

(
z(t+ ǫ)− z(t)

)
/ǫ.)

6.2 (Impulse response and convolution) Show that a signal u(t) can be decomposed �
in terms of the impulse function δ(t) as

u(t) =

∫ t

0

δ(t− τ)u(τ) dτ

and use this decomposition plus the principle of superposition to show that the
response of a linear, time-invariant system to an input u(t) (assuming a zero initial
condition) can be written as a convolution equation

y(t) =

∫ t

0

h(t− τ)u(τ) dτ,

where h(t) is the impulse response of the system. (Hint: Use the definition of the
Riemann integral.)

6.3 (Pulse response for a compartment model) Consider the compartment model
given in Example 6.7. Compute the step response for the system and compare it
with Figure 6.10b. Use the principle of superposition to compute the response to
the 5 s pulse input shown in Figure 6.10c. Use the parameter values k0 = 0.1,
k1 = 0.1, k2 = 0.5, and b0 = 1.5.

6.4 (Matrix exponential for second-order system) Assume that ζ < 1 and let ωd =

ω0

√
1− ζ2. Show that

exp


−ζω0 ωd

−ωd −ζω0


 t = e−ζω0t


 cosωdt sinωdt
− sinωdt cosωdt


 .



6-36 CHAPTER 6. LINEAR SYSTEMS

Also show that

exp

(
−ω0 ω0

0 −ω0


 t

)
= e−ω0t


1 ω0t
0 1


 .

6.5 (Lyapunov function for a linear system) Consider a linear system ẋ = Ax with
Reλj < 0 for all eigenvalues λj of the matrix A. Show that the matrix

P =

∫ ∞

0

eA
T τQeAτ dτ

defines a Lyapunov function of the form V (x) = xTPx with Q ≻ 0 (positive
definite).

6.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan form that
is non-diagonal.

(a) Prove Proposition 6.3 by showing that if the system contains a real eigenvalue
λ = 0 with a nontrivial Jordan block, then there exists an initial condition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvalues with Reλ = 0 by �
using the block Jordan form

Ji =




0 ω 1 0
−ω 0 0 1
0 0 0 ω
0 0 −ω 0



.

6.7 (Rise time and settling time for a first-order system) Consider a first-order
system of the form

τ
dx

dt
= −x+ u, y = x.

We say that the parameter τ is the time constant for the system since the zero
input system approaches the origin as e−t/τ . For a first-order system of this form,
show that the rise time for a step response of the system is approximately 2τ , and
that 1%, 2%, and 5% settling times approximately corresponds to 4.6τ , 4τ , and
3τ .

6.8 (Discrete-time systems) Consider a linear discrete-time system of the form

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k] +Du[k].

(a) Show that the general form of the output of a discrete-time linear system is
given by the discrete-time convolution equation:

y[k] = CAkx[0] +

k−1∑

j=0

CAk−j−1Bu[j] +Du[k].
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(b) Show that a discrete-time linear system is asymptotically stable if and only if
all the eigenvalues of A have a magnitude strictly less than 1.

(c) Show that a discrete-time linear system is unstable if any of the eigenvalues of
A have magnitude greater than 1.

(d) Derive conditions for stability of a discrete-time linear system having one or
more eigenvalues with magnitude identically equal to 1. (Hint: Use Jordan form.)

6.9 (Keynesian economics) Consider the following simple Keynesian macroeco-
nomic model in the form of a linear discrete-time system discussed in Exercise 6.8:


C[t+ 1]
I[t+ 1]


 =


 a a
ab− b ab




C[t]
I[t]


+


 a
ab


G[t],

Y [t] = C[t] + I[t] +G[t].

Determine the eigenvalues of the dynamics matrix. When are the magnitudes of
the eigenvalues less than 1? Assume that the system is in equilibrium with constant
values capital spending C, investment I, and government expenditure G. Explore
what happens when government expenditure increases by 10%. Use the values
a = 0.25 and b = 0.5.

6.10 (Keynes model in continuous time) A continuous version of the Keynes model
is given by the equations

Y = C + I +G, T
dC

dt
+ C = ay, T

dI

dt
+ I = b

dc

dt
.

Write the equations in state space form, and give the conditions for stability.

6.11 (State variables in compartment models) Consider the compartment model
described by equation (4.28). Let x1 and x2 be the total mass of the drug in the
compartments. Show that the system can be described by the equation

dx

dt
=


−k0 − k1 k2

k1 −k2


x+


c0

0


u, y =


0 1/V2


x. (6.41)

Compare the this equation with equation (4.28), where the state variables were
concentrations. Mass is called an extensive variable, and concentration is called an
intensive variable.

6.12 (Time responses from frequency responses) Consider the following MAT- �
LAB program, which computes the approximate step response from the frequency
response. Explain how it works and explore the effects of the parameter tmax.

P = ’1./(s+1).^2’; % process dynamics

tmax = 20; % simulation time

N = 2^(12); % number of points for simulation

dt = tmax/N; % time interval

dw = 2*pi/tmax; % frequency interval

% Compute the time and frequency vectors

t = dt*(0:N-1);
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omega = -pi/dt:dw:(pi/dt-dw);

s = i*omega;

% Evaluate the frequency response

pv=eval(P);

% Compute the input and output signals using the frequency response

u = [ones(1,N/2) zeros(1,N/2)]; U = fft(u);

y = ifft(fftshift(pv) .* U); y = real(y);

% Analytic solution in the time domain

ye = 1 - exp(-t) - t .* exp(-t);

% Plot analytic and approximate step responses

subplot(211); plot(t, y, ’b-’, t, ye, ’r--’);

% Zoom in on the first half of the response

tp = t(1:N/2); yp = y(1:N/2); ye = 1-exp(-t) - t .* exp(-t);

subplot(212); plot(tp, yp, ’b-’, t, ye, ’r--’);

6.13 Consider a scalar system

dx

dt
= 1− x3 + u.

Compute the equilibrium points for the unforced system (u = 0) and use a Taylor
series expansion around the equilibrium point to compute the linearization. Verify
that this agrees with the linearization in equation (6.34).

6.14 Consider the model for queuing dynamics in Example 3.15. Let the admission
rate λ be the control variable. Linearize the system around an equilibrium point,
compute the time constant of the system and determine how it depends on the
queue length.

6.15 (Transcriptional regulation) Consider the dynamics of a genetic circuit that
implements self-repression: the protein produced by a gene is a repressor for that
gene, thus restricting its own production. Using the models presented in Exam-
ple 3.18, the dynamics for the system can be written as

dm

dt
=

α

1 + kp2
+ α0 − δm− u,

dp

dt
= κm− γp, (6.42)

where u is a disturbance term that affects RNA transcription and m, p ≥ 0. Find
the equilibrium points for the system and use the linearized dynamics around each
equilibrium point to determine the local stability of the equilibrium point and the
step response of the system to a disturbance.

6.16 (Monotone step response) Consider a stable linear system with monotone
step response S(t). Let the input signal be bounded: |u(t)| ≤ umax. Assuming
that the initial conditions are zero, show that |y(t)| ≤ S(∞)umax. (Hint: Use the
convolution integral.)



Chapter 7

State Feedback

Intuitively, the state may be regarded as a kind of information storage
or memory or accumulation of past causes. We must, of course, de-
mand that the set of internal states Σ be sufficiently rich to carry all
information about the past history of Σ to predict the effect of the past
upon the future. We do not insist, however, that the state is the least
such information although this is often a convenient assumption.

R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical
System Theory, 1969 [KFA69].

This chapter describes how the feedback of a system’s state can be used to
shape the local behavior of a system. The concept of reachability is introduced and
used to investigate how to design the dynamics of a system through assignment of
its eigenvalues. In particular, we show that under certain conditions it is possible
to assign the system eigenvalues arbitrarily by appropriate feedback of the system
state.

7.1 Reachability

One of the fundamental properties of a control system is what set of points in the
state space can be reached through the choice of a control input. It turns out
that the property of reachability is also fundamental in understanding the extent
to which feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of the system and focusing on
the evolution of the state, given by

dx

dt
= Ax+Bu, (7.1)

where x ∈ Rn, u ∈ R, A is an n×n matrix, and B a column vector. A fundamental
question is whether it is possible to find control signals so that any point in the

7-1
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x(T )

x0
R(x0,≤ T )

(a) Reachable set

Req

(b) Reachability through control

Figure 7.1: The reachable set for a control system. The set R(x0,≤ T ) shown in
(a) is the set of points reachable from x0 in time less than T . The phase portrait in
(b) shows the dynamics for a double integrator, with the natural dynamics drawn
as horizontal arrows and the control inputs drawn as vertical arrows. The set of
achievable equilibrium points is the x axis. By setting the control inputs as a
function of the state, it is possible to steer the system to the origin, as shown on
the sample path.

state space can be reached through some choice of input. To study this, we define
the reachable set R(x0,≤ T ) as the set of all points xf such that there exists an
input u(t), 0 ≤ t ≤ T that steers the system from x(0) = x0 to x(T ) = xf, as
illustrated in Figure 7.1a.

Definition 7.1 (Reachability). A linear system is reachable if for any x0, xf ∈ Rn

there exists a T > 0 and u : [0, T ] → R such that if x(0) = x0 then the corresponding
solution satisfies x(T ) = xf.

The definition of reachability addresses whether it is possible to reach all points
in the state space in a transient fashion. In many applications, the set of points
that we are most interested in reaching is the set of equilibrium points of the system
(since we can remain at those points with constant input u). The set of all possible
equilibrium points for constant controls is given by

Req = {xe : Axe +Bue = 0 for some ue ∈ R}.

This means that possible equilibrium points lie in a one- (or possibly higher) di-
mensional subspace. If the matrix A is invertible, this subspace is one-dimensional
and is spanned by A−1B.

The following example provides some insight into the possibilities.

Example 7.1 Double integrator
Consider a linear system consisting of a double integrator whose dynamics are given
by

dx1
dt

= x2,
dx2
dt

= u.

Figure 7.1b shows a phase portrait of the system. The open loop dynamics (u = 0)
are shown as horizontal arrows pointed to the right for x2 > 0 and to the left for
x2 < 0. The control input is represented by a double-headed arrow in the vertical
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direction, corresponding to our ability to set the value of ẋ2. The set of equilibrium
points E corresponds to the x1 axis, with ue = 0.

Suppose first that we wish to reach the origin from an initial condition (a, 0).
We can directly move the state up and down in the phase plane, but we must rely
on the natural dynamics to control the motion to the left and right. If a > 0, we
can move toward the origin by first setting u < 0, which will cause x2 to become
negative. Once x2 < 0, the value of x1 will begin to decrease and we will move to
the left. After a while, we can set u to be positive, moving x2 back toward zero
and slowing the motion in the x1 direction. If we bring x2 to a positive value, we
can move the system state in the opposite direction.

Figure 7.1b shows a sample trajectory bringing the system to the origin. Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since ẋ1 = 0 when x2 = 0), but if we go to a point in the state space
with x2 6= 0, we can pass through the point only in a transient fashion. ∇

To find general conditions under which a linear system is reachable, we will first
give a heuristic argument based on formal calculations with impulse functions. We
note that if we can reach all points in the state space through some choice of input,
then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system (7.1) to an input u(t) is
given by

x(t) =

∫ t

0

eA(t−τ)Bu(τ) dτ. (7.2)

If we choose the input to be a impulse function δ(t) as defined in Section 6.3, the
state becomes

xδ(t) =

∫ t

0

eA(t−τ)Bδ(τ) dτ = eAtB.

(Note that the state changes instantaneously in response to the impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise 6.1):

xδ̇(t) =
dxδ
dt

= AeAtB.

Continuing this process and using the linearity of the system, the input

u(t) = α1δ(t) + α2δ̇(t) + α3δ̈(t) + · · ·+ αnδ
(n−1)(t)

gives the state

x(t) = α1e
AtB + α2Ae

AtB + α3A
2eAtB + · · ·+ αnA

n−1eAtB.

Taking the limit as t goes to zero through positive values, we get

lim
t→0+

x(t) = α1B + α2AB + α3A
2B + · · ·+ αnA

n−1B.
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On the right is a linear combination of the columns of the matrix

Wr =

B AB · · · An−1B


 . (7.3)

To reach an arbitrary point in the state space, we thus require that Wr has n
independent columns (full rank). The matrix Wr is called the reachability matrix
and it is full rank if and only if its determinant is nonzero.

Although we have only considered the scalar input case, it turns out that this
same test works in the multi-input case, where we require that Wr be full column
rank (have n linearly independent columns). In addition, it can be shown that only
the terms up to An−1B must be computed; additional terms add no new directions
to Wr (see Exercise 7.3).

An input consisting of a sum of impulse functions and their derivatives is a very
violent signal. To see that an arbitrary point can be reached with smoother signals
we can make use of the convolution equation. Assuming that the initial condition
is zero, the state of a linear system is given by

x(t) =

∫ t

0

eA(t−τ)Bu(τ)dτ =

∫ t

0

eAτBu(t− τ)dτ.

It follows from the theory of matrix functions, specifically the Cayley–Hamilton
theorem (Exercise 7.3), that

eAτ = Iα0(τ) +Aα1(τ) + · · ·+An−1αn−1(τ),

where αi(τ) are scalar functions, and we find that

x(t) = B

∫ t

0

α0(τ)u(t− τ) dτ +AB

∫ t

0

α1(τ)u(t− τ) dτ

+ · · ·+An−1B

∫ t

0

αn−1(τ)u(t− τ) dτ.

Again we observe that the right-hand side is a linear combination of the columns
of the reachability matrix Wr given by equation (7.3). This basic approach leads
to the following theorem.

Theorem 7.1 (Reachability rank condition). A linear system of the form (7.1) is
reachable if and only if the reachability matrix Wr is invertible (full column rank).

The formal proof of this theorem is beyond the scope of this text but follows
along the lines of the previous sketch and can be found in most books on linear
control theory, such as Callier and Desoer [CD91] or Lewis [Lew03]. It is also
interesting to note that Theorem 7.1 makes no mention of the time T that was in
our definition of reachability. For a linear system, it turns out that we can find an
input taking x0 to xf for any T > 0, though the size of the input required can be
very large when T is very small.

We illustrate the concept of reachability with the following example.

Example 7.2 Balance system
Consider the balance system introduced in Example 3.2 and shown in Figure 7.2.



7.1. REACHABILITY 7-5

(a) Segway

M
F

θ

m

l

q

(b) Cart–pendulum system

Figure 7.2: Balance system. The Segway® Personal Transporter shown in (a)
is an example of a balance system that uses torque applied to the wheels to keep
the rider upright. A simplified diagram for a balance system is shown in (b). The
system consists of a mass m on a rod of length l connected by a pivot to a cart
with mass M .

Recall that this system is a model for a class of examples in which the center of mass
is balanced above a pivot point. One example is the Segway® Personal Transporter
shown in Figure 7.2a, about which a natural question to ask is whether we can move
from one stationary point to another by appropriate application of forces through
the wheels.

The nonlinear equations of motion for the system are given in equation (3.9)
and repeated here:

(M +m)q̈ −ml cos θ θ̈ = −cq̇ −ml sin θ θ̇2 + F,

(J +ml2)θ̈ −ml cos θ q̈ = −γθ̇ +mgl sin θ.
(7.4)

For simplicity, we take c = γ = 0. Linearizing around the equilibrium point xe =
(0, 0, 0, 0), the dynamics matrix and the control matrix are

A =




0 0 1 0
0 0 0 1

0 m2l2g/µ 0 0

0 Mtmgl/µ 0 0



, B =




0
0

Jt/µ

lm/µ



,

where µ =MtJt −m2l2, Mt =M +m, and Jt = J +ml2. The reachability matrix
is

Wr =




0 Jt/µ 0 gl3m3/µ2

0 lm/µ 0 gl2m2Mt/µ
2

Jt/µ 0 gl3m3/µ2 0

lm/µ 0 gl2m2Mt/µ
2 0



. (7.5)

To compute the determinant we permute the first and the last columns of the
matrix Wr and use the fact that such a permutation changes the determinant by a
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M
F

1θ 2θ
m m

l l

q

S

S

Figure 7.3: An unreachable system. The cart–pendulum system shown on the
left has a single input that affects two pendula of equal length and mass. Since
the forces affecting the two pendula are the same and their dynamics are identical,
it is not possible to arbitrarily control the state of the system. The figure on the
right is a block diagram representation of this situation.

factor of −1. This gives a block diagonal matrix with two identical blocks and the
determinant becomes

det(Wr) = −
(gl4m4

µ3
− gl2m2JtMt

µ3

)2
= −g

2l4m4

µ6
(MJ +mJ +Mml2)2,

and we can conclude that the system is reachable. This implies that we can move
the system from any initial state to any final state and, in particular, that we can
always find an input to bring the system from an initial state to an equilibrium
point. ∇

It is useful to have an intuitive understanding of the mechanisms that make
a system unreachable. An example of such a system is given in Figure 7.3. The
system consists of two identical systems with the same input. We cannot separately
cause the first and the second systems to do something different since they have
the same input. Hence we cannot reach arbitrary states, and so the system is not
reachable (Exercise 7.4).

More subtle mechanisms for nonreachability can also occur. For example, if
there is a linear combination of states that always remains constant, then the system
is not reachable. To see this, suppose that there exists a row vector H such that

0 =
d

dt
Hx = H(Ax+Bu), for all x and u.

Then H is in the left null space of both A and B and it follows that

HWr = H

B AB · · · An−1B


 = 0.

Hence the reachability matrix is not full rank. In this case, if we have an initial
condition x0 and we wish to reach a state xf for which Hx0 6= Hxf, then since
Hx(t) is constant, no input u can move the state from x0 to xf.
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y

∫

a1

Σ

Σ

b1

−1

∫

u

Σ

a2

Σ

. . .

. . .

. . .

b2

∫z1 z2

Σ

d

Σ

Σ

an−1 an

bnbn−1

∫

Σ

znzn−1

Figure 7.4: Block diagram for a system in reachable canonical form. The indi-
vidual states of the system are represented by a chain of integrators whose input
depends on the weighted values of the states. The output is given by an appropriate
combination of the system input and other states.

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient to change
coordinates and write the dynamics of the system in the transformed coordinates
z = Tx. One application of a change of coordinates is to convert a system into a
canonical form in which it is easy to perform certain types of analysis.

A linear state space system is in reachable canonical form if its dynamics are
given by

dz

dt
=




−a1 −a2 −a3 . . . −an
1 0

01 0
. . .

. . .0
1 0




z +




1
0
0
...
0




u,

y =

b1 b2 b3 . . . bn


 z + du.

(7.6)

A block diagram for a system in reachable canonical form is shown in Figure 7.4.
We see that the coefficients that appear in the A and B matrices show up directly
in the block diagram. Furthermore, the output of the system is a simple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable canonical form is given
by

λ(s) = sn + a1s
n−1 + · · ·+ an−1s+ an. (7.7)

The reachability matrix also has a relatively simple structure:

W̃r =

B̃ ÃB̃ . . . Ãn−1B̃


 =




1 −a1 a21 − a2
0 1 −a1 *

. . .
. . .

1 −a10
1




,
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where ∗ indicates a possibly nonzero term and we use a tilde to remind us that A
and B are in a special form. The matrix Wr is full rank since no column can be
written as a linear combination of the others because of the triangular structure of
the matrix.

We now consider the problem of finding a change of coordinates such that the
dynamics of a system can be written in reachable canonical form. Let A,B represent
the dynamics of a given system and Ã, B̃ be the dynamics in reachable canonical
form. Suppose that we wish to transform the original system into reachable canon-
ical form using a coordinate transformation z = Tx. As shown in the previous
chapter, the dynamics matrix and the control matrix for the transformed system
are

Ã = TAT−1, B̃ = TB.

The reachability matrix for the transformed system then becomes

W̃r =

B̃ ÃB̃ · · · Ãn−1B̃


 .

Transforming each element individually, we have

ÃB̃ = TAT−1TB = TAB,

Ã2B̃ = (TAT−1)2TB = TAT−1TAT−1TB = TA2B,

...

ÃnB̃ = TAnB,

and hence the reachability matrix for the transformed system is

W̃r = T

B AB · · · An−1B


 = TWr. (7.8)

IfWr is invertible, we can thus solve for the transformation T that takes the system
into reachable canonical form:

T = W̃rW
−1
r .

The following example illustrates the approach.

Example 7.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx

dt
=


 α ω
−ω α


x+


0
1


u.

We wish to find the transformation that converts the system into reachable canon-
ical form:

Ã =


−a1 −a2

1 0


 , B̃ =


1
0


 .

The coefficients a1 and a2 can be determined from the characteristic polynomial
for the original system:

λ(s) = det(sI −A) = s2 − 2αs+ (α2 + ω2) =⇒
a1 = −2α,

a2 = α2 + ω2.
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The reachability matrix for each system is

Wr =


0 ω
1 α


 , W̃r =


1 −a1
0 1


 .

The transformation T becomes

T = W̃rW
−1
r =



−(a1 + α)/ω 1

1/ω 0


 =



α/ω 1

1/ω 0


 ,

and hence the coordinates

z1
z2


 = Tx =


αx1/ω + x2

x1/ω




put the system in reachable canonical form. ∇

We summarize the results of this section in the following theorem.

Theorem 7.2 (Reachable canonical form). Let A and B be the dynamics and con-
trol matrices for a reachable system and suppose that the characteristic polynomial
for A is given by

det(sI −A) = sn + a1s
n−1 + · · ·+ an−1s+ an.

Then there exists a transformation z = Tx such that in the transformed coordinates
the dynamics and control matrices are in reachable canonical form (7.6).

One important implication of this theorem is that for any reachable system, we
can assume without loss of generality that the coordinates are chosen such that the
system is in reachable canonical form. This is particularly useful for proofs, as we
shall see later in this chapter. However, for high-order systems, small changes in
the coefficients ai can give large changes in the eigenvalues. Hence, the reachable
canonical form is not always well conditioned and must be used with some care.

7.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variables that permits prediction
of the future evolution of a system given its future inputs. We now explore the
idea of designing the dynamics of a system through feedback of the state. We will
assume that the system to be controlled is described by a linear state model and
has a single input (for simplicity). The feedback control law will be developed step
by step using a single idea: the positioning of closed loop eigenvalues in desired
locations.

State Space Controller Structure

Figure 7.5 is a diagram of a typical control system using state feedback. The full
system consists of the process dynamics, which we take to be linear, the controller
elements K and kf, the reference input (or command signal) r, and process dis-
turbances v. The goal of the feedback controller is to regulate the output of the
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Controller

y
u

Σ Σkfr
ẋ = Ax+Bu

y = Cx+Du

Process
v

−K
x

Figure 7.5: A feedback control system with state feedback. The controller uses
the system state x and the reference input r to command the process through its
input u. We model disturbances via the additive input v.

system y such that it tracks the reference input in the presence of disturbances and
also uncertainty in the process dynamics.

An important element of the control design is the performance specification. The
simplest performance specification is that of stability: given a constant reference r
and in the absence of any disturbances, we would like the equilibrium point of the
system to be asymptotically stable. More sophisticated performance specifications
typically involve giving desired properties of the step or frequency response of the
system, such as specifying the desired rise time, overshoot, and settling time of the
step response. Finally, we are often concerned with the disturbance attenuation
properties of the system: to what extent can we experience disturbance inputs v
and still hold the output y near the desired value?

Consider a system described by the linear differential equation

dx

dt
= Ax+Bu, y = Cx+Du, (7.9)

where we have ignored the disturbance signal v for now. Our goal is to drive the
output y to a given reference value r and hold it there.

We begin by assuming that all components of the state vector are measured.
Since the state at time t contains all the information necessary to predict the future
behavior of the system, the most general time-invariant control law is a function of
the state and the reference input:

u = α(x, r).

If the control law is restricted to be linear, it can be written as

u = −Kx+ kfr, (7.10)

where r is the reference value, assumed for now to be a constant.
This control law corresponds to the structure shown in Figure 7.5. The negative

sign is a convention to indicate that negative feedback is the normal situation. The
term kfr represents a feedforward signal from the reference to the control. The
closed loop system obtained when the feedback (7.10) is applied to the system (7.9)
is given by

dx

dt
= (A−BK)x+Bkfr. (7.11)
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We attempt to determine the feedback gain K so that the closed loop system has
the characteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn. (7.12)

This control problem is called the eigenvalue assignment problem or pole placement
problem (we will define poles more formally in Chapter 9).

Note that kf does not affect the stability of the system (which is determined by
the eigenvalues of A−BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the closed loop system are given
by

xe = −(A−BK)−1Bkfr, ye = Cxe +Due,

and hence kf should be chosen such that ye = r (the desired output value). Since
kf is a scalar, we can easily solve to show that if D = 0 (the most common case),

kf = −1/
(
C(A−BK)−1B

)
. (7.13)

Notice that kf is exactly the inverse of the zero frequency gain of the closed loop
system. The solution for D 6= 0 is left as an exercise.

Using the gains K and kf, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to construct such a state feedback
control law, we begin with a few examples that provide some basic intuition and
insights.

Example 7.4 Vehicle steering
In Example 6.13 we derived a normalized linear model for vehicle steering. The
dynamics describing the lateral deviation were given by the normalized dynamics

A =


0 1
0 0


 , B =


γ
1


 ,

C =

1 0


 , D = 0,

where γ = a/b is the ratio of the distance between the center of mass and the rear
wheel, a, and the wheelbase b. We want to design a controller that stabilizes the
dynamics and tracks a given reference value r of the lateral position of the vehicle.
To do this we introduce the feedback

u = −Kx+ kfr = −k1x1 − k2x2 + kfr,

and the closed loop system becomes

dx

dt
= (A−BK)x+Bkfr =


−γk1 1− γk2

−k1 −k2


x+


γkf
kf


 r,

y = Cx+Du =

1 0


x.

(7.14)

The closed loop system has the characteristic polynomial

det (sI −A+BK) = det


s+ γk1 γk2 − 1

k1 s+ k2


 = s2 + (γk1 + k2)s+ k1.
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(b) Unit step response for varying ζc

Figure 7.6: State feedback control of a steering system. Unit step responses
(from zero initial condition) obtained with controllers designed with ζc = 0.7 and
ωc = 0.5, 0.7, and 1 [rad/s] are shown in (a). The dashed lines indicate ±5%
deviations from the setpoint. Notice that response speed increases with increasing
ωc, but that large ωc also give large initial control actions. Unit step responses
obtained with a controller designed with ωc = 0.7 and ζc = 0.5, 0.7, and 1 are
shown in (b).

Suppose that we would like to use feedback to design the dynamics of the system
to have the characteristic polynomial

p(s) = s2 + 2ζcωcs+ ω2
c .

Comparing this polynomial with the characteristic polynomial of the closed loop
system, we see that the feedback gains should be chosen as

k1 = ω2
c , k2 = 2ζcωc − γω2

c .

Equation (7.13) gives kf = k1 = ω2
c , and the control law can be written as

u = k1(r − x1)− k2x2 = ω2
c (r − x1)− (2ζcωc − γω2

c )x2.

To find reasonable values of ωc we have to balance the speed of response with
the available control authority. The unit step responses for the closed loop system
for different values of the design parameters are shown in Figure 7.6. The effect
of ωc is shown in Figure 7.6a, which shows that the response speed increases with
increasing ωc. All responses have overshoot less than 5%, as indicated by the
dashed lines, which corresponds to 15 cm assuming a wheelbase b = 3 m. The
settling times range from 3 to 6 normalized time units, which corresponds to about
2–4 s at v0 = 15 m/s. The effect of ζc is shown in Figure 7.6b. The response speed
and the overshoot increase with decreasing damping.

To select the specific gains to use, we can evaluate how the choice of parameters
affects vehicle handling characteristics. For example, a lateral error of 20% of the
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wheelbase is relatively large and we might choose ωc to exert a relatively large
steering angle to correct for such an error. For ωc = 0.7 and a step input of size 0.2
(in normalized units), Figure 7.6a indicates that the initial steering angle will be
0.1 rad, which is aggressive but not unreasonable at moderate speeds. The value
for ζc can be also be chosen as 0.7, which gives a fast response with approximately
5% overshoot. ∇

The example of the vehicle steering system illustrates how state feedback can
be used to set the eigenvalues of a closed loop system to arbitrary values. We see
that for this example we can set the eigenvalues to any location. We now show that
this is a general property for reachable systems.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system are
the coefficients of the characteristic polynomial. It is therefore natural to consider
systems in this form when solving the eigenvalue assignment problem.

Consider a system in reachable canonical form, i.e.,

dz

dt
= Ãz + B̃u =




−a1 −a2 −a3 . . . −an
1 0

01 0
. . .

. . .0
1 0




z +




1
0
0
...
0




u

y = C̃z =

b1 b2 · · · bn


 z.

(7.15)

It follows from equation (7.7) that the open loop system has the characteristic
polynomial

det(sI −A) = sn + a1s
n−1 + · · ·+ an−1s+ an.

Before making a formal analysis we can gain some insight by investigating the block
diagram of the system shown in Figure 7.4. The characteristic polynomial is given
by the parameters ak in the figure. Notice that the parameter ak can be changed
by feedback from state zk to the input u. It is thus straightforward to change the
coefficients of the characteristic polynomial by state feedback.

Returning to equations, introducing the control law

u = −K̃z + kfr = −k̃1z1 − k̃2z2 − · · · − k̃nzn + kfr, (7.16)

the closed loop system becomes

dz

dt
=




−a1 − k̃1 −a2 − k̃2 −a3 − k̃3 . . . −an − k̃n
1 0

01 0
. . .

. . .0
1 0




z +




kf
0
0
...
0




r,

y =

b1 b2 · · · bn


 z.

(7.17)
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The feedback changes the elements of the first row of the A matrix, which corre-
sponds to the parameters of the characteristic polynomial. The closed loop system
thus has the characteristic polynomial

sn + (a1 + k̃1)s
n−1 + (a2 + k̃2)s

n−2 + · · ·+ (an−1 + k̃n−1)s+ an + k̃n.

Requiring this polynomial to be equal to the desired closed loop polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn,

we find that the controller gains should be chosen as

k̃1 = p1 − a1, k̃2 = p2 − a2, · · · k̃n = pn − an.

This feedback simply replaces the parameters ai in the system (7.15) by pi. The
feedback gain for a system in reachable canonical form is thus

K̃ =

p1 − a1 p2 − a2 · · · pn − an


 . (7.18)

To have zero frequency gain equal to unity, we compute the equilibrium point
ze by setting the right hand side of equation (7.17) to zero and then compute the
corresponding output. It can be seen that ze,1, . . . , ze,n−1 must all be zero and we
are left with

(−an − k̃n)ze,n + kfr = 0 and ye = bnze,n.

It follows that in order for ye to be equal to r then the parameter kf should be
chosen as

kf =
an + k̃n
bn

=
pn
bn
. (7.19)

Notice that it is essential to know the precise values of parameters an and bn in
order to obtain the correct zero frequency gain. The zero frequency gain is thus
obtained by precise calibration. This is very different from obtaining the correct
steady-state value by integral action, which we shall see in later sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. To solve the problem in
the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

dx

dt
= Ax+Bu, y = Cx+Du. (7.20)

We can change the coordinates by a linear transformation z = Tx so that the trans-
formed system is in reachable canonical form (7.15). For such a system the feed-
back is given by equation (7.16), where the coefficients are given by equation (7.18).
Transforming back to the original coordinates gives the control law

u = −K̃z + kfr = −K̃Tx+ kfr.

The form of the controller is a feedback term −Kx and a feedforward term kfr.

The results obtained can be summarized as follows.
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Theorem 7.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation (7.20), with one input and one output. Let λ(s) = sn+ a1s

n−1 +
· · · + an−1s + an be the characteristic polynomial of A. If the system is reachable,
then there exists a control law

u = −Kx+ kfr

that gives a closed loop system with the characteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn

and unity zero frequency gain between r and y. The feedback gain is given by

K = K̃T =

p1 − a1 p2 − a2 · · · pn − an


 W̃rW

−1
r , (7.21)

where ai are the coefficients of the characteristic polynomial of the matrix A and
the matrices Wr and W̃r are given by

Wr =

B AB · · · An−1B


 , W̃r =




1 a1 a2 · · · an−1

1 a1 · · · an−2

. . .
. . .

...
0 1 a1

1




−1

.

The feedforward gain is given by

kf = −1/
(
C(A−BK)−1B

)
.

For simple problems, the eigenvalue assignment problem can be solved by in-
troducing the elements ki of K as unknown variables. We then compute the char-
acteristic polynomial

λ(s) = det(sI −A+BK)

and equate coefficients of equal powers of s to the coefficients of the desired char-
acteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn.

This gives a system of linear equations to determine ki. The equations can always
be solved if the system is reachable, exactly as we did in Example 7.4.

Equation (7.21), which is called Ackermann’s formula [Ack72, Ack85], can be
used for numeric computations. It is implemented in the MATLAB function acker.
The MATLAB function place is preferable for systems of high order because it is
better conditioned numerically.

Example 7.5 Predator–prey
Consider the problem of regulating the population of an ecosystem by modulating
the food supply. We use the predator–prey model introduced in Example 5.16 and
described in more detail in Section 4.7. The dynamics for the system are given by

dH

dt
= (r + u)H

(
1− H

k

)
− aHL

c+H
, H ≥ 0,

dL

dt
= b

aHL

c+H
− dL, L ≥ 0.
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We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a = 3.2, b = 0.6, c = 50,

d = 0.56, k = 125 r = 1.6.

We take the parameter r, corresponding to the growth rate for hares, as the input
to the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term (r + u) in the first equation, where here
r represents a constant parameter (not the reference signal) and u represents the
controlled modulation. We choose the number of lynxes L as the output of our
system.

To control this system, we first linearize the system around the equilibrium point
of the system (He, Le), which can be determined numerically to be xe ≈ (20.6, 29.5).
This yields a linear dynamical system

d

dt


z1
z2


 =


0.13 −0.93
0.57 0




z1
z2


+


17.2

0


 v, w =


0 1




z1
z2


 ,

where z1 = H −He, z2 = L− Le, and v = u. It is easy to check that the system is
reachable around the equilibrium point (z, v) = (0, 0), and hence we can assign the
eigenvalues of the system using state feedback.

Selecting the eigenvalues of the closed loop system requires balancing the ability
to modulate the input against the natural dynamics of the system. This can be
done by the process of trial and error or by using some of the more systematic
techniques discussed in the remainder of the text. For now, we simply choose the
desired closed loop eigenvalues to be at λ = {−0.1,−0.2}. We can then solve for
the feedback gains using the techniques described earlier, which results in

K =

0.025 −0.052


 .

Finally, we solve for the feedforward gain kf, using equation (7.13) to obtain kf =
0.002.

Putting these steps together, our control law becomes

v = −Kz + kfLd,

where Ld is the desired number of lynxes. In order to implement the control law,
we must rewrite it using the original coordinates for the system, yielding

u = ue −K(x− xe) + kf(Ld − ye)

= −

0.025 −0.052




H − 20.6
L− 29.5


+ 0.002 (Ld − 29.5).

This rule tells us how much we should modulate u as a function of the current
number of lynxes and hares in the ecosystem. Figure 7.7a shows a simulation of
the resulting closed loop system using the parameters defined above and starting
with an initial population of 15 hares and 20 lynxes. Note that the system stabilizes
the population of lynxes at the reference value (Ld = 30). A phase portrait of the
system is given in Figure 7.7b, showing how other initial conditions converge to the
stabilized equilibrium population. Notice that the dynamics are very different from
the natural dynamics (shown in Figure 4.20). ∇
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Figure 7.7: Simulation results for the controlled predator–prey system. The
population of lynxes and hares as a function of time is shown in (a), and a phase
portrait for the controlled system is shown in (b). Feedback is used to make the
population stable at He = 20.6 and Le = 30.

The results of this section show that we can use state feedback to design the
dynamics of a reachable system, under the strong assumption that we can mea-
sure all of the states. We shall address the availability of the states in the next
chapter, when we consider output feedback and state estimation. In addition, The-
orem 7.3, which states that the eigenvalues can be assigned to arbitrary locations,
is also highly idealized and assumes that the dynamics of the process are known to
high precision. The robustness of state feedback combined with state estimators is
considered in Chapter 13 after we have developed the requisite tools.

7.3 Design Considerations

The location of the eigenvalues determines the behavior of the closed loop dynamics,
and hence where we place the eigenvalues is the main design decision to be made. As
with all other feedback design problems, there are trade-offs among the magnitude
of the control inputs, the robustness of the system to perturbations, and the closed
loop performance of the system. In this section we examine some of these trade-offs
starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class
of systems and build more intuition about the relationship between stability and
performance.

A canonical second-order system is a differential equation of the form

q̈ + 2ζω0q̇ + ω2
0q = kω2

0u, y = q. (7.22)
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In state space form, this system can be represented as

dx

dt
=


 0 ω0

−ω0 −2ζω0


x+


 0
kω0


u, y =


1 0


x, (7.23)

where x = (q, q̇/ω0) represents a normalized choice of states. The eigenvalues of
this system are given by

λ = −ζω0 ± ω0

√
(ζ2 − 1),

and we see that the system is stable if ω0 > 0 and ζ > 0. Note that the eigenvalues
are complex if ζ < 1 and real otherwise. Equations (7.22) and (7.23) can be used
to describe many second-order systems, including damped oscillators, active filters,
and flexible structures, as shown in the examples below.

The form of the solution depends on the value of ζ, which is referred to as the
damping ratio for the system. If ζ > 1, we say that the system is overdamped, and
the natural response (u = 0) of the system is given by

y(t) =
βx10 + x20
β − α

e−αt − αx10 + x20
β − α

e−βt,

where α = ω0(ζ +
√
ζ2 − 1) and β = ω0(ζ −

√
ζ2 − 1). We see that the response

consists of the sum of two exponentially decaying signals. If ζ = 1, then the system
is critically damped and solution becomes

y(t) = e−ζω0t
(
x10 + (x20 + ζω0x10)t

)
.

Note that this is still asymptotically stable as long as ω0 > 0, although the second
term within the outer parentheses is increasing with time (but more slowly than
the decaying exponential that is multiplying it).

Finally, if 0 < ζ < 1, then the solution is oscillatory and equation (7.22) is said
to be underdamped. The natural response of the system is given by

y(t) = e−ζω0t

(
x10 cosωdt+

(ζω0

ωd
x10 +

1

ωd
x20

)
sinωdt

)
,

where ωd = ω0

√
1− ζ2 is called the damped frequency. For ζ ≪ 1, ωd ≈ ω0 defines

the oscillation frequency of the solution and ζ gives the damping rate relative to ω0.
The parameter ω0 is referred to as the natural frequency of the system, stemming
from the fact that for ζ = 0 the oscillation frequency is given by ω0.

Because of the simple form of a second-order system, it is possible to solve for
the step and frequency responses in analytical form. The solution for the step
response depends on the magnitude of ζ:

y(t) =





k

(
1− e−ζω0t cosωdt− ζ√

1−ζ2
e−ζω0t sinωdt

)
, if ζ < 1;

k (1− e−ω0t(1 + ω0t)) , if ζ = 1;

k

(
1− 1

2

(
ζ√
ζ2−1

+ 1
)
e−ω0t(ζ−

√
ζ2−1)

+ 1
2

(
ζ√
ζ2−1

− 1
)
e−ω0t(ζ+

√
ζ2−1)

)
, if ζ > 1,

(7.24)
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Figure 7.8: Step response for a second-order system. Normalized step responses
for the system (7.23) for ζ = 0, 0.4, 0.7 (thicker), 1, and 1.2. As the damping ratio
is increased, the rise time of the system gets longer, but there is less overshoot.
The horizontal axis is in scaled units ω0t; higher values of ω0 result in a faster
response (rise time and settling time).

where we have taken x(0) = 0. Note that for the lightly damped case (ζ < 1) we
have an oscillatory solution at frequency ωd.

Step responses of systems with k = 1 and different values of ζ are shown in
Figure 7.8. The shape of the response is determined by ζ, and the speed of the
response is determined by ω0 (included in the time axis scaling): the response is
faster if ω0 is larger.

In addition to the explicit form of the solution, we can also compute the proper-
ties of the step response that were defined in Section 6.3. For example, to compute
the maximum overshoot for an underdamped system, we rewrite the output as

y(t) = k

(
1− 1√

1− ζ2
e−ζω0t sin(ωdt+ ϕ)

)
, (7.25)

where ϕ = arccos ζ. The maximum overshoot will occur at the first time in which
the derivative of y is zero, at which time the fraction of the final value can be shown
to be

Mp = e−πζ/
√

1−ζ2 .

The rise time is normally defined as the time for the step response to go from
p% of its final value to (100−p)%. Typical values are p = 5 or 10%. An alternative
definition is the inverse of the steepest slope: by differentiating equation (7.25) we
find after straightforward but tedious calculations that

Tr =
1

ω0
eϕ/ tanϕ, ϕ = arccos ζ.

Similar computations can be done for the other characteristics of a step response.
Table 7.1 summarizes these calculations.

The frequency response for a second-order system can also be computed explic-
itly and is given by

Meiθ =
kω2

0

(iω)2 + 2ζω0(iω) + ω2
0

=
kω2

0

ω2
0 − ω2 + 2iζω0ω

.
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Table 7.1: Properties of the step response for a second-order system q̈+2ζω0q̇+
ω2
0q = kω2

0u with 0 < ζ ≤ 1.

Property Value ζ = 0.5 ζ = 1/
√
2 ζ = 1

Steady-state value k k k k

Rise time (inverse slope) Tr = eϕ/ tanϕ /ω0 1.8/ω0 2.2/ω0 2.7/ω0

Overshoot Mp = e−πζ/
√

1−ζ2 16% 4% 0%

Settling time (2%) Ts ≈ 4/ζω0 8.0/ω0 5.6/ω0 4.0/ω0

A graphical illustration of the frequency response is given in Figure 7.9. Notice the
resonant peak that increases with decreasing ζ. The peak is often characterized by
its Q-value, defined as Q = 1/2ζ. The properties of the frequency response for a
second-order system are summarized in Table 7.2.

Example 7.6 Drug administration
To illustrate the use of these formulas, consider the two-compartment model for
drug administration, described in Section 4.6. The dynamics of the system are

dc

dt
=


−k0 − k1 k1

k2 −k2


 c+


b0

0


u, y =


0 1


 c,

where c1 and c2 are the concentrations of the drug in each compartment, k0, k1, k2,
and b0 are parameters of the system, u is the flow rate of the drug into compart-
ment 1, and y is the concentration of the drug in compartment 2. We assume that
we can measure the concentrations of the drug in each compartment, and we would
like to design a feedback law to maintain the output at a given reference value r.

We choose ζ = 1/
√
2 to minimize the overshoot and additionally require the

rise time to be Tr = 10 min. Using the formulas in Table 7.1, this gives a value for
ω0 = 0.22. We can now compute the gains to place the eigenvalues at this location.
Setting u = −Kx+ kfr, the closed loop eigenvalues for the system satisfy

λ(s) = −0.2± 0.096i.

Table 7.2: Properties of the frequency response for a second-order system q̈ +
2ζω0q̇ + ω2

0q = kω2
0u with 0 < ζ ≤ 1.

Property Value ζ=0.1 ζ=0.5 ζ=1/
√
2

Zero frequency
gain

M0 k k k

Bandwidth ωb = ω0

√

1− 2ζ2 +
√

(1− 2ζ2)2 + 1 1.54ω0 1.27ω0 ω0

Resonant peak
gain

Mr =

{

k/(2ζ
√

1− ζ2) ζ ≤
√
2/2,

N/A ζ >
√
2/2

5 k 1.15 k k

Resonant
frequency

ωmr =

{

ω0

√

1− 2ζ2 ζ ≤
√
2/2,

0 ζ >
√
2/2

ω0 0.707ω0 0
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Figure 7.9: Frequency response of a second-order system (7.23). (a) Eigenvalues
as a function of ζ. (b) Frequency response as a function of ζ. The upper curve
shows the gain ratio M , and the lower curve shows the phase shift θ. For small
ζ there is a large peak in the magnitude of the frequency response and a rapid
change in phase centered at ω = ω0. As ζ is increased, the magnitude of the peak
drops and the phase changes more smoothly between 0◦ and -180◦.

Choosing k̃1 = −0.2 and k̃2 = 0.2, with K = (k̃1, k̃2) to avoid confusion with the
rates ki in the dynamics matrix, gives the desired closed loop behavior. Equa-
tion (7.13) gives the feedforward gain kf = 0.065. The response of the controller is
shown in Figure 7.10 and compared with an open loop strategy involving adminis-
tering periodic doses of the drug. ∇

Higher-Order Systems

Our emphasis so far has considered only second-order systems. For higher-order
systems, eigenvalue assignment is considerably more difficult, especially when trying
to account for the many trade-offs that are present in a feedback design.

One of the other reasons why second-order systems play such an important
role in feedback systems is that even for more complicated systems the response is
often characterized by the dominant eigenvalues. To define these more precisely,
consider a stable system with eigenvalues λj , j = 1, . . . , n. We say that a complex
conjugate pair of eigenvalues λ, λ∗ is a dominant pair if they are the closest pair
to the imaginary axis. In the case when multiple eigenvalues pairs are the same
distance to the imaginary axis, a second criterion is to look at the relative damping
of the system modes. We define the damping ratio for a complex eigenvalue λ as

ζ =
−Reλ

|λ| .

Given multiple complex conjugate pairs with the same real part, the dominant pair
will be the set with the lowest damping ratio.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be
the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
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Figure 7.10: Open loop versus closed loop drug administration. Comparison
between drug administration using a sequence of doses versus continuously moni-
toring the concentrations and adjusting the dosage continuously. In each case, the
concentration is (approximately) maintained at the desired level, but the closed
loop system has substantially less variability in drug concentration.

pair of eigenvalues:

dz

dt
=




λ
λ∗

J2
. . .

Jk




z +Bu, y = Cz.

(Note that the state z may be complex because of the Jordan transformation.)
The response of the system will be a linear combination of the responses from each
of the individual Jordan subsystems. As we see from Figure 7.8, for ζ < 1 the
subsystem with the slowest response is precisely the one with eigenvalues closest to
the imaginary axis. Hence, when we add the responses from each of the individual
subsystems, it is the dominant pair of eigenvalues that will be the primary factor
after the initial transients due to the other terms in the solution die out. While
this simple analysis does not always hold (e.g., if some non-dominant terms have
larger coefficients because of the particular form of the system), it is often the case
that the dominant eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment is that the system be
reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will be
discussed in depth in Chapters 12–14.

We illustrate some of the main ideas using the balance system as an example.
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Example 7.7 Balance system
Consider the problem of stabilizing a balance system, whose dynamics were given
in Example 7.2. The dynamics are given by

A =




0 0 1 0
0 0 0 1

0 m2l2g/µ −cJt/µ −γlm/µ
0 Mtmgl/µ −clm/µ −γMt/µ



, B =




0
0

Jt/µ

lm/µ



,

where Mt = M + m, Jt = J + ml2, µ = MtJt − m2l2 and we have left c and γ
nonzero. We use the following parameters for the system (corresponding roughly
to a human being balanced on a stabilizing cart):

M = 10 kg, m = 80 kg, c = 0.1 N s/m,

J = 100 kg m2/s2, l = 1 m, γ = 0.01 N m s,
g = 9.8 m/s2.

The eigenvalues of the open loop dynamics are given by λ ≈ 0,−0.0011,±2.68.
We have verified already in Example 7.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and provide a desired level of
performance.

To decide where to place the closed loop eigenvalues, we note that the closed
loop dynamics will roughly consist of two components: a set of fast dynamics that
stabilize the pendulum in the inverted position and a set of slower dynamics that
control the position of the cart. For the fast dynamics, we look to the natural
period of the pendulum (in the hanging-down position), which is given by ω0 =√
mgl/(J +ml2) ≈ 2.1 rad/s. To provide a fast response we choose a damping

ratio of ζ = 0.5 and try to place the first pair of eigenvalues at λ1,2 ≈ −ζω0± iω0 ≈
−1 ± 2i, where we have used the approximation that

√
1− ζ2 ≈ 1. For the slow

dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s. This
gives eigenvalues λ3,4 = −0.35± 0.35i.

The controller consists of feedback on the state and a feedforward gain for the
reference input. The feedback gain is given by

K =

−15.6 1730 −50.1 443


 ,

which can be computed using Theorem 7.3 or using the MATLAB place command.
The feedforward gain is kf = −1/(C(A−BK)−1B) = −15.6. The step response for
the resulting controller (applied to the linearized system) is given in Figure 7.11a.
While the step response gives the desired characteristics, the input required (lower
left) is excessively large, almost three times the force of gravity at its peak.

To provide a more realistic response, we can redesign the controller to have
slower dynamics. We see that the peak of the input force occurs on the fast time
scale, and hence we choose to slow this down by approximately a factor of 3, leaving
the damping ratio unchanged. We also slow down the second set of eigenvalues,
with the intuition that we should move the position of the cart more slowly than we
stabilize the pendulum dynamics. Leaving the damping ratio for the slow dynamics
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(b) λ1,2 = −0.33± 0.66i

Figure 7.11: State feedback control of a balance system. The step response of a
controller designed to give fast performance is shown in (a). Although the response
characteristics (upper left) look very good, the input magnitude (lower left) is very
large. Also note that the force is negative initially. A less aggressive controller is
shown in (b). Here the response time is slowed down, but the input magnitude is
much more reasonable. Both step responses are applied to the linearized dynamics.

unchanged at 0.7 and changing the frequency to 1 (corresponding to a rise time of
approximately 10 s), the desired eigenvalues become

λ = {−0.33± 0.66i, −0.18± 0.18i}.

The performance of the resulting controller is shown in Figure 7.11b. ∇
As we see from this example, it can be difficult to decide where to place the

eigenvalues using state feedback. This is one of the principal limitations of this
approach, especially for systems of higher dimension. Optimal control, such as the
linear quadratic regulator problem discussed in Section 7.5, is one approach that is
available. One can also focus on the frequency response for performing the design,
which is the subject of Chapters 9–13.

7.4 Integral Action

Controllers based on state feedback achieve the correct steady-state response to
command signals by careful calibration of the gain kf. However, one of the primary
uses of feedback is to allow good performance in the presence of uncertainty and
hence requiring that we have an exact model of the process is undesirable. An
alternative to calibration is to make use of integral feedback, in which the controller
uses an integrator to provide zero steady-state error. The basic concept of integral
feedback was introduced in Section 1.6 and discussed briefly in Sections 2.3 and 2.4;
here we provide a more complete description and analysis.
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System Augmentation

The basic approach in integral feedback is to create a state within the controller
that computes the integral of the error signal, which is then used as a feedback
term. We do this by augmenting the description of the system with a new state z,
which is the integral of the difference between the the actual output y and desired
output r. The augmented state equations become

d

dt


x
z


 =


Ax+Bu

y − r


 =


Ax+Bu

Cx− r


 . (7.26)

Note that if we find a controller that stabilizes the system, then we will necessarily
have ż = 0 in steady state and hence y = r in steady state.

Given the augmented system, we design a state space controller in the usual
fashion, with a control law of the form

u = −Kx− kiz + kfr, (7.27)

where K is the usual state feedback term, ki is the integral term, and kf is used to
set the nominal input for the desired steady state. The resulting equilibrium point
for the system is given by

xe = −(A−BK)−1B(kfr − kize), Cxe = r,

which comes from setting the right hand side of equation (7.26) to zero and substi-
tuting u from equation (7.27). Note that the value of ze is not specified but rather
will automatically settle to the value that makes ż = y − r = 0, which implies that
at equilibrium the output will equal the reference value. This holds independently
of the specific values of A, B, and K as long as the system is stable (which can be
done through appropriate choice of K and ki).

The final control law is given by

u = −Kx− kiz + kfr,
dz

dt
= y − r,

where we have now included the dynamics of the integrator as part of the specifica-
tion of the controller. This type of control law is known as a dynamic compensator
since it has its own internal dynamics. The following example illustrates the basic
approach.

Example 7.8 Cruise control
Consider the cruise control example introduced in Section 1.5 and considered further
in Example 6.11 (see also Section 4.1). The linearized dynamics of the process
around an equilibrium point ve, ue are given by

dx

dt
= −ax− bgθ + bw, y = v = x+ ve,

where x = v − ve, w = u − ue, m is the mass of the car, and θ is the angle of the
road. The constants a, b, and bg depend on the properties of the car and are given
in Example 6.11.
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If we augment the system with an integrator, the system dynamics become

dx

dt
= −ax− bgθ + bw,

dz

dt
= y − vr = ve + x− vr,

or, in state space form,

d

dt


x
z


 =


−a 0

1 0




x
z


+


b
0


w +


−bg

0


 θ +


 0
ve − vr


 .

Note that when the system is at equilibrium, we have that ż = 0, which implies
that the vehicle speed v = ve + x should be equal to the desired reference speed vr.
Our controller will be of the form

dz

dt
= y − vr, w = −kpx− kiz + kfvr,

and the gains kp, ki, and kf will be chosen to stabilize the system and provide the
correct input for the reference speed.

Assume that we wish to design the closed loop system to have the characteristic
polynomial

λ(s) = s2 + a1s+ a2.

Setting the disturbance θ = 0, the characteristic polynomial of the closed loop
system is given by

det
(
sI − (A−BK)

)
= s2 + (bkp + a)s+ bki,

and hence we set

kp =
a1 − a

b
, ki =

a2
b
, kf = −1/

(
C(A−BK)−1B

)
=
a1
b
.

The resulting controller stabilizes the system and hence brings ż = y − vr to zero,
resulting in perfect tracking. Notice that even if we have a small error in the values
of the parameters defining the system, as long as the closed loop eigenvalues are
still stable, then the tracking error will approach zero. Thus the exact calibration
required in our previous approach (using kf) is not needed here. Indeed, we can
even choose kf = 0 and let the feedback controller do all of the work. However,
kf does influence the transient response to reference signals and setting it properly
will generally give a more favorable response.

Integral feedback can also be used to compensate for constant disturbances.
Figure 7.12 shows the results of a simulation in which the car encounters a hill
with angle θ = 4◦ at t = 5 s. The steady-state values of the throttle for a state
feedback controller and a controller with integral action are very close, but the
corresponding values of the car velocity are quite different. The reason for this
is that the zero frequency gain from throttle to velocity is −b/a = 130 is high.
The stability of the system is not affected by this external disturbance, and so we
once again see that the car’s velocity converges to the reference speed. This ability
to handle constant disturbances is a general property of controllers with integral
feedback (see Exercise 7.15). ∇
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Figure 7.12: Velocity and throttle for a car with cruise control based on state
feedback (dashed) and state feedback with integral action (solid). The controller
with integral action is able to adjust the throttle to compensate for the effect of the
hill and maintain the speed at the reference value of vr = 20 m/s. The controller
gains are kp = 0.5 and ki = 0.1.

Reachability of the Augmented System

Eigenvalue assignment requires that the augmented system (7.26) is reachable. To
explore this we compute the reachability matrix of the augmented system:

Wr =


B AB . . . AnB

0 CB . . . CAn−1B


 .

To find the conditions for Wr to be of full rank, the matrix will be transformed by
making column operations. Let ak be the coefficients of the characteristic polyno-
mial of the matrix A:

λA(s) = sn + a1s
n−1 + · · ·+ an−1s+ an.

Multiplying the first column by an, the second by an−1, through multiplication of
the (n-1)th column by a1 and then adding these to the last column of the matrixWr,
it follows from the Cayley–Hamilton theorem (Exercise 7.3) that the transformed
matrix becomes

Wr =


B AB · · · An−1B 0

0 CB · · · CAn−2B bn


 ,

where
bn = C(An−1B + a1A

n−2B + . . .+ an−1B). (7.28)

If the matrix A is invertible, implying that there are no eigenvalues at the origin,
then we can rewrite the formula for bn as

bn = CA−1(An + a1A
n−1 + . . .+ an−1A)B = −anCA−1B,

where the final equality follows from a second application of the Cayley–Hamilton
theorem. As long as the coefficient bn 6= 0, then the system is reachable and it is
possible to assign the eigenvalues of the augmented system to arbitrary values.

We will see in Chapter 9 that the coefficient bn can be identified with a coefficient
of the transfer function

G(s) =
b1s

n−1 + b2s
n−2 + . . .+ bn

sn + a1sn−1 + . . .+ an
.

The condition for reachability is thus that the original system does not contain a
pure derivative in the input/output response.
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7.5 Linear Quadratic Regulators �

As an alternative to selecting the closed loop eigenvalue locations to accomplish a
certain objective, the gains for a state feedback controller can instead be chosen by
attempting to optimize a cost function. This can be particularly useful in helping
balance the performance of the system with the magnitude of the inputs required
to achieve that level of performance.

The linear quadratic regulator (LQR) problem is one of the most common op-
timal control problems. Given a multi-input linear system

dx

dt
= Ax+Bu, x ∈ Rn, u ∈ Rp

with initial condition x(0) = x0, we attempt to minimize the quadratic cost function

J(x0) =

∫ tf

0

(
xTQxx+ uTQuu

)
dt+ xT (tf)Qfx(tf), (7.29)

where Qx � 0, Qu ≻ 0 and Qf � 0 are symmetric, positive (semi-) definite matrices
of the appropriate dimensions. This cost function represents a trade-off between
the deviation of the state from the origin and the cost of the control input. By
choosing the matrices Qx, Qu, and Qf we can balance the rate of convergence of
the solutions with the cost of the control.

The solution to the LQR problem is given by a linear control law of the form

u = −Kx, K = Q−1
u BTS, (7.30)

where S ∈ Rn×n is a positive definite, symmetric matrix given by

− dS

dt
= ATS + SA− SBQ−1

u BTS +Qx, S(tf) = Qf. (7.31)

This differential equation, called the Riccati differential equation, is integrated back-
wards in time starting with S(tf) = Qf. The minimal cost function, representing
the optimal cost, is given by

min
u

∫ tf

0

(
xTQxx+ uTQuu

)
dt+ xT (tf)Qfx(tf) = xT (0)S(0)x(0). (7.32)

The matrices A, B, Qx, Qu, and K may depend on time. A solution to the optimal
control problem exists if the Riccati equation has a unique positive solution. The
LQR approach is particularly well suited when linearizing around a trajectory, as
will be done later in Section 8.5.

The LQR problem is simplified significantly if the time horizon is infinite and
all matrices are constants, in which case S is a constant matrix given by the steady-
state solution of (7.31):

ATS + SA− SBQ−1
u BTS +Qx = 0. (7.33)

This equation is called the algebraic Riccati equation. If the system is reach-
able, it can be shown that there is a unique positive definite matrix S satisfy-
ing equation (7.33) that makes the closed loop system stable. The feedback gain
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K = Q−1
u BTS is then also a constant matrix. The MATLAB command lqr returns

K, S, and the dynamics matrix E = A−BK of the closed loop system.
A key question in LQR design is how to choose the weights Qx, Qu, and Qf. To

guarantee that a solution exists, we must have Qx � 0 and Qu ≻ 0. In addition,
there are certain “observability” conditions on Qx that limit its choice. Here we
assume Qx ≻ 0 to ensure that solutions to the algebraic Riccati equation always
exist. To choose specific values for the cost function weights Qx and Qu, we must
use our knowledge of the system we are trying to control. A particularly simple
choice is to use diagonal weights

Qx =




q1
0. . .

0 qn



, Qu =




ρ1
0. . .

0 ρn



.

For this choice of Qx and Qu, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we
can take states that should remain small and attach higher weight values to them.
Similarly, we can penalize an input versus the states and other inputs through
choice of the corresponding input weight ρ.

Example 7.9 Vectored thrust aircraft
Consider the original dynamics of the system (3.28), written in state space form as

dz

dt
=




z4
z5
z6

− c
m z4

−g − c
m z5

0




+




0
0
0

F1

m cos θ − F2

m sin θ

F1

m sin θ + F2

m cos θ
r
J F1




(see also Example 6.4). The system parameters are m = 4 kg, J = 0.0475 kg m2,
r = 0.25 m, g = 9.8 m/s2, and c = 0.05 N s/m, which correspond to a scaled model
of the system. The equilibrium point for the system is given by F1 = 0, F2 = mg,
and ze = (xe, ye, 0, 0, 0, 0). To derive the linearized model near an equilibrium point,
we compute the linearization according to equation (6.35):

A =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g −c/m 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 0




, B =




0 0
0 0
0 0

1/m 0
0 1/m
r/J 0




,

C =


1 0 0 0 0 0
0 1 0 0 0 0


 , D =


0 0
0 0


 .

Letting ξ = z − ze and v = F − Fe, the linearized system is given by

dξ

dt
= Aξ +Bv, y = Cξ.
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Figure 7.13: Step response for a vectored thrust aircraft with an LQR controller.
The plot in (a) shows the x and y positions of the aircraft when it is commanded
to move 1 m in each direction. In (b) the x motion is shown for control weights
ρ = 1, 102, 104. A higher weight of the input term in the cost function causes a
more sluggish response.

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, we write the cost func-

tion as

J =

∫ ∞

0

(ξTQξξ + vTQvv) dt,

where ξ = z − ze and v = F − Fe again represent the local coordinates around the
desired equilibrium point (ze, Fe). We begin with diagonal matrices for the state
and input costs:

Qξ =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, Qv =


ρ 0
0 ρ


 .

This gives a control law of the form v = −Kξ, which can then be used to derive
the control law in terms of the original variables:

F = v + Fe = −K(z − ze) + Fe.

As computed in Example 6.4, the equilibrium points have Fe = (0,mg) and ze =
(xe, ye, 0, 0, 0, 0). The response of the controller to a step change in the desired
position is shown in Figure 7.13a for ρ = 1. The response can be tuned by adjusting
the weights in the LQR cost. Figure 7.13b shows the response in the x direction
for different choices of the weight ρ. ∇

Linear quadratic regulators can also be designed for discrete-time systems, as
illustrated by the following example.

Example 7.10 Web server control
Consider the web server example given in Section 4.4, where a discrete-time model
for the system was given. We wish to design a control law that sets the server
parameters so that the average server processor load is maintained at a desired
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Σ
rcpu u Σ

dcpu

ycpu

−K

kf P

Precompensation Server xcpu

xmem

Figure 7.14: Feedback control of a web server. The controller sets the values of
the web server parameters based on the difference between the nominal parameters
(determined by kfrcpu) and the current load ycpu. The disturbance dcpu represents
the load due to other processes running on the server. Note that the measurement
is taken after the disturbance so that we measure the total load on the server.

level. Since other processes may be running on the server, the web server must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 7.14. We focus on
the special case where we wish to control only the processor load using both the
KeepAlive and MaxClients parameters. We also include a “disturbance” on the
measured load that represents the use of the processing cycles by other processes
running on the server. The system has the same basic structure as the generic
control system in Figure 7.5, with the variation that the disturbance enters after
the process dynamics.

The dynamics of the system are given by a set of difference equations of the
form

x[k + 1] = Ax[k] +Bu[k], ycpu[k] = xcpu[k] + dcpu[k],

where x = (xcpu, xmem) is the state of the web server, u = (uka, umc) is the input,
dcpu is the processing load from other processes on the computer, and ycpu is the
total processor load. The matrices A ∈ R2×2 and B ∈ R2×2 are described in
Section 4.4.

We choose our controller to be a feedback controller of the form

u = −K

 ycpu
xmem


+ kfrcpu,

where rcpu is the desired processor load. Note that we have used the measured
processor load ycpu instead of the CPU state xcpu to ensure that we adjust the
system operation based on the actual load. (This modification is necessary because
of the nonstandard way in which the disturbance enters the process dynamics.)

The feedback gain matrix K can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, with the cost function given
by

Qx =


5 0
0 1


 , Qu =


1/502 0

0 1/10002


 .

The cost function for the state Qx is chosen so that we place more emphasis on the
processor load versus the memory usage. The cost function for the inputs Qu is
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Figure 7.15: Web server with LQR control. The plot in (a) shows the state of the
system under a change in external load applied at k = 10 ms. The corresponding
web server parameters (system inputs) are shown in (b). The controller is able to
reduce the effect of the disturbance by approximately 40%.

chosen so as to normalize the two inputs, with a KeepAlive timeout of 50 s having
the same weight as a MaxClients value of 1000. These values are squared since
the cost associated with the inputs is given by uTQuu. Using the dynamics in
Section 4.4 and the dlqr command in MATLAB, the resulting gains become

K =


−22.3 10.1

382.7 77.7


 .

As in the case of a continuous-time control system, the feedforward gain kf is
chosen to yield the desired operating point for the system. Setting x[k+1] = x[k] =
xe, the steady-state equilibrium point and output for a given reference input r are
given by

xe = (A−BK)xe +Bkfr, ye = Cxe.

This is a matrix equation in which kf is a column vector that sets the two input
values based on the desired reference. Since we have two inputs, we can set both
the desired CPU load ycpu,e and the desired memory usage xmem,e. If we take the
desired equilibrium state to be of the form xe = (r, 0), where we choose the desired
value of memory usage to be zero to make as much memory as possible available
for other tasks, then we must solve


r
0


 = (A−BK − I)−1Bkf r.

Solving this equation for kf, we obtain

kf =
((

(A−BK − I)−1B
))−1


1
0


 =


 49.3
539.5


 .

The dynamics of the closed loop system are illustrated in Figure 7.15. We apply
a change in load of dcpu = 0.3 at time t = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desired load at 0.57. Note that
both the KeepAlive and MaxClients parameters are adjusted. Although the load
is decreased, it remains approximately 0.2 above the desired steady state. ∇
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7.6 Further Reading

The importance of state models and state feedback was discussed in the seminal
paper by Kalman [Kal60], where the state feedback gain was obtained by solving
an optimization problem that minimized a quadratic loss function. The notions of
reachability and observability (Chapter 8) are also due to Kalman [Kal61b] (see
also [Gil63, KHN63]). Kalman defines controllability and reachability as the ability
to reach the origin and an arbitrary state, respectively [KFA69]. Reachability is
also used in graph theory as the ability to get from one vertex to another. We note
that in most textbooks the term “controllability” is used instead of “reachability,”
but we prefer the latter term because it is more descriptive of the fundamental
property of being able to reach arbitrary states. The result that the eigenvalues of
a reachable linear system could be placed in arbitrary positions was first realized
by J. Bertram in 1959 [KFA69], who worked in a control group at IBM Research
led by Kalman. Bertram’s results were based on root-locus analysis; an analyt-
ical proof was given in 1960 [Ris60]. Most undergraduate textbooks on control
contain material on state space systems, including, for example, Franklin, Powell,
and Emami-Naeini [FPEN05] and Ogata [Oga01]. Friedland’s textbook [Fri04] cov-
ers the material in the previous, current, and next chapter in considerable detail,
including the topic of optimal control.

Exercises

7.1 (Double integrator) Consider the double integrator. Find a piecewise constant
control strategy that drives the system from the origin to the state x = (1, 1).

7.2 (Reachability from nonzero initial state) Extend the argument in Section 7.1
to show that if a system is reachable from an initial state of zero, it is reachable
from a nonzero initial state.

7.3 (Cayley–Hamilton theorem) Let A ∈ Rn×n be a matrix with characteristic
polynomial λ(s) = det(sI − A) = sn + a1s

n−1 + · · · + an−1s + an. Show that the
matrix A satisfies

λ(A) = An + a1A
n−1 + · · ·+ an−1A+ anI = 0,

where the zero on the right hand side represents a matrix of elements with all zeros.
Use this result to show that An can be written in terms of lower order powers of
A and hence any matrix polynomial in A can be rewritten using terms of order at
most n− 1.

7.4 (Unreachable systems) Consider a system with the state x and z described by
the equations

dx

dt
= Ax+Bu,

dz

dt
= Az +Bu.

If x(0) = z(0) it follows that x(t) = z(t) for all t regardless of the input that is
applied. Show that this violates the definition of reachability and further show that
the reachability matrix Wr is not full rank.
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7.5 (Rear-steered bicycle) A simple model for a bicycle was given by equation (4.5)
in Section 4.2. A model for a bicycle with rear-wheel steering is obtained by revers-
ing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.

7.6 (Characteristic polynomial for reachable canonical form) Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (7.7) and that

dnzk
dtn

+ a1
dn−1zk
dtn−1

+ · · ·+ an−1
dzk
dt

+ anzk =
dn−ku
dtn−k

,

where zk is the kth state.

7.7 (Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

W̃−1
r =




1 a1
1

a2 · · · an−1

a1 · · · an−2

0
1

. . .
...

. . . a1
1




.

7.8 (Non-maintainable equilibrium points) Consider the normalized model of a
pendulum on a cart

d2x

dt2
= u,

d2θ

dt2
= −θ + u,

where x is cart position and θ is pendulum angle. Can the angle θ = θ0 for θ0 6= 0
be maintained?

7.9 (Eigenvalue assignment) Consider the system

dx

dt
= Ax+Bu =


−1 0

1 0


x+


a− 1

1


u,

with a = 1.25. Design a state feedback that gives det(sI−BK) = s2+2ζcωcs+ω
2
c ,

where ωc = 5, and ζc = 0.6.

7.10 (Eigenvalue assignment for unreachable system) Consider the system

dx

dt
=


0 1
0 0


x+


1
0


u, y =


1 0


x,

with the control law
u = −k1x1 − k2x2 + kfr.

Compute the rank of the reachability matrix for the system and show that eigen-
values of the system cannot be assigned to arbitrary values.
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7.11 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise 3.7. Using the following normalized parameters,

J1 = 10/9, J2 = 10, c = 0.1, k = 1, kI = 1,

verify that the eigenvalues of the open loop system are 0, 0,−0.05 ± i. Design a
state feedback that gives a closed loop system with eigenvalues −2, −1, and −1± i.
This choice implies that the oscillatory eigenvalues will be well damped and that
the eigenvalues at the origin are replaced by eigenvalues on the negative real axis.
Simulate the responses of the closed loop system to step changes in the reference
signal for θ2 and a step change in a disturbance torque on the second rotor.

7.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (4.8) in Section 4.2. Using the parameters from the companion web site, the
model is unstable at the velocity v0 = 5 m/s and the open loop eigenvalues are
−1.84, −14.29, and 1.30 ± 4.60i. Find the gains of a controller that stabilizes the
bicycle and gives closed loop eigenvalues at −2, −10, and −1 ± i. Simulate the
response of the system to a step change in the steering reference of 0.002 rad.

7.13 (Dominant eigenvalues) Consider the following two linear systems:

Σ1 :

dx

dt
=


−1.1 −0.1

1 0


x+


1
0


u,

y =

1.01 0.11


x,

Σ2 :

dx

dt
=


−1.1 −0.1

1 0


x+


1
0


u,

y =

1.1 1.01


x.

Show that although both systems have the same eigenvalues, the step responses of
the two systems are dominated by different sets of eigenvalues.

7.14 Consider the second-order system

d2y

dt2
+ 0.5

dy

dt
+ y = a

du

dt
+ u.

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response is a. Discuss what it means
when a < 0.

(b) Show that there are points on the unit step response that are invariant with a.
Discuss qualitatively the effect of the parameter a on the solution.

(c) Simulate the system and explore the effect of a on the rise time and overshoot.

7.15 (Integral feedback for rejecting constant disturbances) Consider a linear sys-
tem of the form

dx

dt
= Ax+Bu+ Fd, y = Cx,

where u is a scalar and v is a disturbance that enters the system through a distur-
bance vector F ∈ Rn. Assume that the matrix A is invertible and the zero frequency
gain CA−1B is nonzero. Show that integral feedback can be used to compensate for
a constant disturbance by giving zero steady-state output error even when d 6= 0.
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7.16 (Bryson’s rule) Bryson and Ho [BH75] have suggested the following method
for choosing the matrices Qx and Qu in equation (7.29). Start by choosing Qx
and Qu as diagonal matrices whose elements are the inverses of the squares of the
maxima of the corresponding variables. Then modify the elements to obtain a
compromise among response time, damping, and control effort. Apply this method
to the motor drive in Exercise 7.11. Assume that the largest values of the ϕ1 and
ϕ2 are 1, the largest values of ϕ̇1 and ϕ̇2 are 2, and the largest control signal is 10.
Simulate the closed loop system for ϕ2(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonal elements for Qx and Qu.

7.17 (LQR proof) Use the Riccati equation (7.31) and the relation

xT (tf)Qfx(tf)− xT (0)S(0)x(0) =
∫ tf

0

(
ẋT (t)S(t)x(t) + xT Ṡ(t)x(t) + xT (t)S(t)ẋ(t)

)
dt

to show that the cost function for the linear quadratic regulator problem can be
written as

∫ tf

0

(
xT (t)Qxx(t) + uT (t)Quu(t)

)
dt+ xT (tf)Qfx(tf)

= xT (0)S(0)x(0)+

∫ tf

0

(
u(t)+Q−1

u BTS(t)x(t)
)T
Qu

(
u(t)+Q−1

u BTS(t)x(t)
)
dt,

from which it follows that the control law u(t) = −Kx(t) = −Q−1
u BTS(t)x(t) is

optimal. Does the proof hold when all matrices depend on time?



Chapter 8

Output Feedback

One may separate the problem of physical realization into two stages:
computation of the “best approximation” x̂(t1) of the state from knowl-
edge of y(t) for t ≤ t1 and computation of u(t1) given x̂(t1).

R. E. Kalman, “Contributions to the Theory of Optimal Control,”
1960 [Kal60].

In this chapter we show how to use output feedback to modify the dynamics of
the system through the use of observers. We introduce the concept of observability
and show that if a system is observable, it is possible to recover the state from
measurements of the inputs and outputs to the system. We then show how to
design a controller with feedback from the observer state. A general controller
with two degrees of freedom is obtained by adding feedforward. We illustrate by
outlining a controller for a nonlinear system that also employs gain scheduling.

8.1 Observability

In Section 7.2 of the previous chapter it was shown that it is possible to find a state
feedback law that gives desired closed loop eigenvalues provided that the system is
reachable and that all the states are measured by sensors. For many situations, it
is highly unrealistic to assume that all the states are measured. In this section we
investigate how the state can be estimated by using a mathematical model and a
few measurements. It will be shown that computation of the states can be carried
out by a dynamical system called an observer.

Definition of Observability

Consider a system described by a set of differential equations

dx

dt
= Ax+Bu, y = Cx+Du, (8.1)

where x ∈ Rn is the state, u ∈ Rp the input, and y ∈ Rq the measured output. We
wish to estimate the state of the system from its inputs and outputs, as illustrated

8-1
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x̂

Process

ẋ = Ax+Bu

y = Cx+Du

y

Figure 8.1: Block diagram for an observer. The observer uses the process mea-
surement y (possibly corrupted by noise w) and the input u to estimate the current
state of the process, denoted x̂.

in Figure 8.1. In some situations we will assume that there is only one measured
signal, i.e., that the signal y is a scalar and that C is a (row) vector. This signal
may be corrupted by noise w, although we shall start by considering the noise-free
case. We write x̂ for the state estimate given by the observer.

Definition 8.1 (Observability). A linear system is observable if for every T > 0 it
is possible to determine the state of the system x(T ) through measurements of y(t)
and u(t) on the interval [0, T ].

The definition above holds for nonlinear systems as well, and the results dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many important applications, even
outside feedback systems. If a system is observable, then there are no “hidden” dy-
namics inside it; we can understand everything that is going on through observation
(over time) of the inputs and outputs. As we shall see, the problem of observability
is of significant practical interest because it will determine if a set of sensors is
sufficient for controlling a system. Sensors combined with a mathematical model
of the system can also be viewed as a “virtual sensor” that gives information about
variables that are not measured directly. The process of reconciling signals from
many sensors using mathematical models is also called sensor fusion.

Testing for Observability

When discussing reachability in the previous chapter, we neglected the output and
focused on the state. Similarly, it is convenient here to initially neglect the input
and focus on the autonomous system

dx

dt
= Ax, y = Cx, (8.2)

where x ∈ Rn and y ∈ Rq. We wish to understand when it is possible to determine
the state from observations of the output.

The output itself gives the projection of the state onto vectors that are rows
of the matrix C. The observability problem can immediately be solved if n = q
(number of outputs equals number of states) and the matrix C is invertible. If the
matrix is not square and invertible, we can take derivatives of the output to obtain

dy

dt
= C

dx

dt
= CAx.
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From the derivative of the output we thus get the projection of the state on vectors
that are rows of the matrix CA. Proceeding in this way, we get at every time t




y(t)

ẏ(t)

ÿ(t)
...

y(n−1)(t)




=




C
CA
CA2

...
CAn−1




x(t). (8.3)

We thus find that the state at time t can be determined from the output and its
derivatives at time t if the observability matrix

Wo =




C
CA
CA2

...
CAn−1




(8.4)

has full row rank (n independent rows). As in the case of reachability, it turns out
that we need not consider any derivatives higher than n− 1 (this is an application
of the Cayley–Hamilton theorem [Exercise 7.3]).

The calculation can easily be extended to systems with inputs and many mea-
sured signals. The state is then given by a linear combination of inputs and outputs
and their higher derivatives. The observability criterion is unchanged. We leave
this case as an exercise for the reader.

In practice, differentiation of the output can give large errors when there is
measurement noise, and therefore the method sketched above is not particularly
practical. We will address this issue in more detail in the next section, but for now
we have the following basic result.

Theorem 8.1 (Observability rank condition). A linear system of the form (8.1)
is observable if and only if the observability matrix Wo is full row rank.

Proof. The sufficiency of the observability rank condition follows from the previous �
analysis. To prove necessity, suppose that the system is observable but Wo is not
full row rank. Let v ∈ Rn, v 6= 0, be a vector in the null space of Wo, so that
Wov = 0. (Such a v exists using the fact that the row and column rank of a matrix
are always equal.) If we let x(0) = v be the initial condition for the system and
choose u = 0, then the output is given by y(t) = CeAtv. Since eAt can be written
as a power series in A and since An and higher powers can be rewritten in terms of
lower powers of A (by the Cayley–Hamilton theorem), it follows that y(t) will be
identically zero (the reader should fill in the missing steps). However, if both the
input and output of the system are zero, then a valid estimate of the state is x̂ = 0
for all time, which is clearly incorrect since x(0) = v 6= 0. Hence by contradiction
we must have that Wo is full row rank if the system is observable.

Example 8.1 Compartment model
Consider the two-compartment model in Figure 4.18a, but assume that only the
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Figure 8.2: An unobservable system. Two identical subsystems have outputs
that add together to form the overall system output. The individual states of
the subsystem cannot be determined since the contributions of each to the output
are not distinguishable. The circuit diagram on the right is an example of such a
system.

concentration in the first compartment can be measured. The system is described
by the linear system

dc

dt
=


−k0 − k1 k1

k2 −k2


 c+


b0

0


u, y =


1 0


 c.

The first compartment represents the drug concentration in the blood plasma, and
the second compartment the drug concentration in the tissue where it is active. To
determine if it is possible to find the concentration in the tissue compartment from
a measurement of blood plasma, we investigate the observability of the system by
forming the observability matrix

Wo =


 C
CA


 =


 1 0
−k0 − k1 k1


 .

The rows are linearly independent if k1 6= 0, and under this condition it is thus
possible to determine the concentration of the drug in the active compartment from
measurements of the drug concentration in the blood. ∇

It is useful to have an understanding of the mechanisms that make a system
unobservable. Such a system is shown in Figure 8.2. The system is composed of
two identical systems whose outputs are subtracted. It seems intuitively clear that
it is not possible to deduce the states from the output since we cannot deduce the
individual output contributions from the difference. This can also be seen formally
(Exercise 8.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms will be useful in studying
observability. A linear single-input, single-output state space system is in observable
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Figure 8.3: Block diagram of a system in observable canonical form. The states
of the system are represented by individual integrators whose inputs are a weighted
combination of the next integrator in the chain, the first state (rightmost integra-
tor), and the system input. The output is a combination of the first state and
the input. Compare with the block diagram of the system in reachable form in
Figure 7.4.

canonical form if its dynamics are given by

dz

dt
=




−a1 1 0

−a2 0
. . .

...
. . . 1

−an 0 0



z +




b1

b2
...
bn



u,

y =

 1 0 · · · 0


 z + d0 u.

This definition can be extended to systems with many inputs; the only difference
is that the vector multiplying u is replaced by a matrix.

Figure 8.3 is a block diagram for a system in observable canonical form. As
in the case of reachable canonical form, we see that the coefficients in the system
description appear directly in the block diagram. The characteristic polynomial for
a system in observable canonical form is

λ(s) = sn + a1s
n−1 + · · ·+ an−1s+ an. (8.5)

It is possible to reason about the observability of a system in observable canonical
form by studying the block diagram. If the input u and the output y are available,
the state z1 can clearly be computed. Differentiating z1, we obtain the input to
the integrator that generates z1, and we can now obtain z2 = ż1 + a1z1 − b1u.
Proceeding in this way, we can compute all states. The computation will, however,
require that the signals be differentiated.

To check observability more formally, we compute the observability matrix for
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a system in observable canonical form, which is given by

W̃o =




1
−a1 1

0

−a21 − a2
...
∗

−a1
...
∗

1
. . .

· · · 1




,

where * represents an entry whose exact value is not important. The columns of
this matrix are linearly independent (since it is lower triangular), and hence Wo is
invertible. A straightforward but tedious calculation shows that the inverse of the
observability matrix has a simple form given by

W̃−1
o =




1
a1 1 0
a2

...

an−1

a1

...

an−2

1
. . .

1
· · · a1 1




.

As in the case of reachability, it turns out that a system is observable if and
only if there exists a transformation T that converts the system into observable
canonical form. This is useful for proofs since it lets us assume that a system is in
observable canonical form without any loss of generality. The observable canonical
form may be poorly conditioned numerically.

8.2 State Estimation

Having defined the concept of observability, we now return to the question of how
to construct an observer for a system. We will look for observers that can be
represented as a linear dynamical system that takes the inputs and outputs of the
system we are observing and produces an estimate of the system’s state. That is,
we wish to construct a dynamical system of the form

dx̂

dt
= F x̂+Gu+Hy,

where u and y are the input and output of the original system and x̂ ∈ Rn is an
estimate of the state with the property that x̂(t) → x(t) as t→ ∞.

The Observer

We consider the system in equation (8.1) with D set to zero to simplify the expo-
sition:

dx

dt
= Ax+Bu, y = Cx. (8.6)

We can attempt to determine the state simply by simulating the equations with
the correct input. An estimate of the state is then given by

dx̂

dt
= Ax̂+Bu. (8.7)
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To find the properties of this estimate, introduce the estimation error x̃ = x − x̂.
It follows from equations (8.6) and (8.7) that

dx̃

dt
= Ax̃.

If the dynamics matrix A has all its eigenvalues in the left half-plane, the error
x̃ will go to zero, and hence equation (8.7) is a dynamical system whose output
converges to the state of the system (8.6). However, the convergence might be
slower than desired.

The observer given by equation (8.7) uses only the process input u; the measured
signal does not appear in the equation. We must also require that the system be
stable, and essentially our estimator converges because the transient dynamics of
both the observer and the estimator are going to zero. This is not very useful in
a control design context since we want to have our estimate converge quickly to a
nonzero state so that we can make use of it in our controller. We will therefore
attempt to modify the observer so that the output is used and its convergence
properties can be designed to be fast relative to the system’s dynamics. This
version will also work for unstable systems.

Consider the observer

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂). (8.8)

This can be considered as a generalization of equation (8.7). Feedback from the
measured output is provided by adding the term L(y −Cx̂), which is proportional
to the difference between the observed output and the output predicted by the
observer. It follows from equations (8.6) and (8.8) that

dx̃

dt
= (A− LC)x̃.

If the matrix L can be chosen in such a way that the matrix A−LC has eigenvalues
with negative real parts, the error x̃ will go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a state feedback and find-
ing the observer. State feedback design by eigenvalue assignment is equivalent to
finding a matrix K so that A − BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrix L so that A−LC has
given eigenvalues. Since the eigenvalues of a matrix and its transpose are the same
we can establish the following equivalences:

A↔ AT , B ↔ CT , K ↔ LT , Wr ↔WT
o . (8.9)

The observer design problem is the dual of the state feedback design problem. Using
the results of Theorem 7.3, we get the following theorem on observer design.

Theorem 8.2 (Observer design by eigenvalue assignment). Consider the system
given by

dx

dt
= Ax+Bu, y = Cx, (8.10)
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with one input and one output. Let λ(s) = sn + a1s
n−1 + · · · + an−1s + an be the

characteristic polynomial for A. If the system is observable, then the dynamical
system

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂) (8.11)

is an observer for the system, with L chosen as

L =W−1
o W̃o




p1 − a1
p2 − a2

...
pn − an




(8.12)

and the matrices Wo and W̃o given by

Wo =




C
CA
...

CAn−1



, W̃o =




1
a1 1 0
a2

...

an−1

a1

...

an−2

1
. . .

1
· · · a1 1




−1

.

The resulting observer error x̃ = x− x̂ is governed by a differential equation having
the characteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn.

The dynamical system (8.11) is called an observer for (the states of) the sys-
tem (8.10) because it will generate an approximation of the states of the system
from its inputs and outputs. This form of an observer is a much more useful form
than the one given by pure differentiation in equation (8.3).

Example 8.2 Compartment model
Consider the compartment model in Example 8.1, which is characterized by the
matrices

A =


−k0 − k1 k1

k2 −k2


 , B =


b0

0


 , C =


1 0


 .

The observability matrix was computed in Example 8.1, where we concluded that
the system was observable if k1 6= 0. The dynamics matrix has the characteristic
polynomial

λ(s) = det


s+ k0 + k1 −k1

−k2 s+ k2


 = s2 + (k0 + k1 + k2)s+ k0k2.

Letting the desired characteristic polynomial of the observer be s2 + p1s + p2,
equation (8.12) gives the observer gain

L =


 1 0
−k0 − k1 k1




−1 1 0
k0 + k1 + k2 1




−1p1 − k0 − k1 − k2
p2 − k0k2




=


 p1 − k0 − k1 − k2
(p2 − p1k2 + k1k2 + k22)/k1


 .
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Figure 8.4: Observer for a two compartment system. A two compartment model
is shown on the left. The observer measures the input concentration u and output
concentration y = c1 to determine the compartment concentrations, shown on the
right. The true concentrations are shown by solid lines and the estimates generated
by the observer by dashed lines.

Notice that the observability condition k1 6= 0 is essential. The behavior of the
observer is illustrated by the simulation in Figure 8.4b. Notice how the observed
concentrations approach the true concentrations. ∇

The observer is a dynamical system whose inputs are the process input u and the
process output y. The rate of change of the estimate is composed of two terms. One
term, Ax̂+Bu, is the rate of change computed from the model with x̂ substituted
for x. The other term, L(y− ŷ), is proportional to the difference e = y− ŷ between
measured output y and its estimate ŷ = Cx̂. The observer gain L is a matrix that
determines how the error e is weighted and distributed among the state estimates.
The observer thus combines measurements with a dynamical model of the system.
A block diagram of the observer is shown in Figure 8.5.

Observer

Σ

Σ

x̂

x̂

ŷ

y

u

L −1

B
∫

C

A

˙̂x

Figure 8.5: Block diagram of an observer. The observer takes the signals y and
u as inputs and produces an estimate x. Notice that the observer contains a copy
of the process model that is driven by y − ŷ through the observer gain L.
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Computing the Observer Gain

For simple low-order problems it is convenient to introduce the elements of the
observer gain L as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.

Example 8.3 Vehicle steering
The normalized linear model for vehicle steering derived in Examples 6.13 and 7.4
gives the following state space model dynamics relating lateral path deviation y to
steering angle u:

dx

dt
=


0 1
0 0


x+


γ
1


u, y =


1 0


x. (8.13)

Recall that the state x1 represents the lateral path deviation and that x2 represents
the turning rate. We will now derive an observer that uses the system model to
determine the turning rate from the measured path deviation.

The observability matrix is

Wo =


1 0
0 1


 ,

i.e., the identity matrix. The system is thus observable, and the eigenvalue assign-
ment problem can be solved. We have

A− LC =


−l1 1
−l2 0


 ,

which has the characteristic polynomial

det (sI −A+ LC) = det


s+ l1 −1

l2 s


 = s2 + l1s+ l2.

Assuming that we want to have an observer with the characteristic polynomial

s2 + p1s+ p2 = s2 + 2ζoωos+ ω2
o ,

the observer gains should be chosen as

l1 = p1 = 2ζoωo, l2 = p2 = ω2
o .

The observer is then

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂) =


0 1
0 0


 x̂+


γ
1


u+


l1
l2


 (y − x̂1).

A simulation of the observer for a vehicle driving on a curvy road is shown in
Figure 8.6. Figure 8.6a shows the trajectory of the vehicle on the road, as viewed
from above. The response of the observer is shown in Figure 8.6b, where time is
normalized to the vehicle length. We see that the observer error settles in about 4
vehicle lengths. ∇
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Figure 8.6: Simulation of an observer for a vehicle driving on a curvy road. (a)
The vehicle trajectory, as viewed from above, with the lane boundaries shown as
dashed lines. (b) The response of the observer with an initial position error. The
plots on the left show the lateral deviation x1 and the lateral velocity x2 with solid
lines and their estimates x̂1 and x̂2 with dashed lines. The plots on the right show
the estimation errors. The parameters used to design the estimator were ωo = 1
and ζo = 0.7.

To compute the observer gains for systems of high order we have to use numerical
calculations. The duality between the design of a state feedback and the design of
an observer means that the computer algorithms for state feedback can also be used
for the observer design; we simply use the transpose of the dynamics matrix and
the output matrix. The MATLAB command acker, which essentially is a direct
implementation of the calculations given in Theorem 8.2, can be used for systems
with one output. The MATLAB command place can be used for systems with
many outputs. It is also better conditioned numerically.

Requirements on a control system typically involve fast response to reference
inputs and disturbances at the same time as avoiding amplification of noise. Choos-
ing a fast observer gives fast convergence but the observer gains will be high and the
estimated state will be sensitive to measurement noise. If noise characteristics are
known it is possible to find the best compromise, as will be discussed in Section 8.4,
the observer is then called a Kalman filter.

8.3 Control Using Estimated State

In this section we will consider a state space system of the form

dx

dt
= Ax+Bu, y = Cx. (8.14)

We wish to design a feedback controller for the system where only the output is
measured. Notice that we have assumed that there is no direct term in the system
(D = 0), which is often a realistic assumption. The presence of a direct term in
combination with a controller having proportional action creates an algebraic loop,
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which will be discussed in Section 9.4. The problem can still be solved even if there
is a direct term, but the calculations are more complicated.

As before, we will assume that u and y are scalars. We also assume that the
system is reachable and observable. In Chapter 7 we found a feedback of the form

u = −Kx+ kfr

for the case that all states could be measured, and in Section 8.2 we developed an
observer that can generate estimates of the state x̂ based on inputs and outputs.
In this section we will combine the ideas of these sections to find a feedback that
gives desired closed loop eigenvalues for systems where only outputs are available
for feedback.

If all states are not measurable, it seems reasonable to try the feedback

u = −Kx̂+ kfr, (8.15)

where x̂ is the output of an observer of the state, i.e.,

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂). (8.16)

It is not clear that such a combination will have the desired effect. To explore this,
note that since the system (8.14) and the observer (8.16) are both of state dimension
n, the closed loop system has state dimension 2n with state (x, x̂). The evolution
of the states is described by equations (8.14)–(8.16). To analyze the closed loop
system, we change coordinates and replace the estimated state variable x̂ by the
estimation error

x̃ = x− x̂. (8.17)

Subtraction of equation (8.16) from equation (8.14) gives

dx̃

dt
= Ax−Ax̂− L(Cx− Cx̂) = Ax̃− LCx̃ = (A− LC)x̃.

Returning to the process dynamics, introducing u from equation (8.15) into
equation (8.14) and using equation (8.17) to eliminate x̂ gives

dx

dt
= Ax+Bu = Ax−BKx̂+Bkfr = Ax−BK(x− x̃) +Bkfr

= (A−BK)x+BKx̃+Bkfr.

The closed loop system is thus governed by

d

dt


x
x̃


 =


A−BK BK

0 A− LC




x
x̃


+


Bkf

0


 r. (8.18)

Notice that the state x̃, representing the observer error, is not affected by the
reference signal r. This is desirable since we do not want the reference signal to
generate observer errors.

Since the dynamics matrix is block diagonal, we find that the characteristic
polynomial of the closed loop system is

λ(s) = det (sI −A+BK) det (sI −A+ LC).
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This polynomial is a product of two terms: the characteristic polynomial of the
closed loop system obtained with state feedback det (sI −A+BK) and the char-
acteristic polynomial of the observer det (sI −A+ LC). The design procedure thus
separates into two subproblems: design of a state feedback and design of an ob-
server. The feedback (8.15) that was motivated heuristically therefore provides an
elegant solution to the eigenvalue assignment problem for output feedback. The
result is summarized as follows.

Theorem 8.3 (Eigenvalue assignment by output feedback). Consider the system

dx

dt
= Ax+Bu, y = Cx.

The controller described by

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂) = (A−BK − LC)x̂+Bkf r + Ly,

u = −Kx̂+ kf r

gives a closed loop system with the characteristic polynomial

λ(s) = det (sI −A+BK) det (sI −A+ LC).

This polynomial can be assigned arbitrary roots if the system is reachable and ob-
servable.

The controller has a strong intuitive appeal: it can be thought of as being
composed of two parts: state feedback and an observer. The controller is now a
dynamic compensator with internal state dynamics generated by the observer. The
control action makes use of feedback from the estimated states x̂. The feedback
gain K can be computed as if all state variables can be measured, and it depends
only on A and B. The observer gain L depends only on A and C. The property that
the eigenvalue assignment for output feedback can be separated into an eigenvalue
assignment for a state feedback and an observer is called the separation principle.

A block diagram of the controller is shown in Figure 8.7. Notice that the
controller contains a dynamical model of the plant. This is called the internal
model principle: the controller contains a model of the process being controlled.

Design of control systems involves a balance between achieving high performance
while maintaining adequate robustness in the presence of uncertainties. It is not
obvious how such properties are reflected in the closed loop eigenvalues. It is
therefore important to evaluate the design for example by plotting time responses to
get more insight into the properties of the design. Additional discussion is presented
in Section 14.5, where we consider the robustness of eigenvalue assignment (pole
placement) design and also give some design rules.

Example 8.4 Vehicle steering
Consider again the normalized linear model for vehicle steering in Example 7.4. The
dynamics relating the steering angle u to the lateral path deviation y are given by
the state space model (8.13). Combining the state feedback derived in Example 7.4
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Figure 8.7: Block diagram of an observer-based control system. The observer
uses the measured output y and the input u to construct an estimate of the state.
This estimate is used by a state feedback controller to generate the corrective
input. The controller consists of the observer and the state feedback; the observer
is identical to that in Figure 8.5.

with the observer determined in Example 8.3, we find that the controller is given
by

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂) =


0 1
0 0


 x̂+


γ
1


u+


l1
l2


 (y − x̂1),

u = −Kx̂+ kfr = k1(r − x̂1)− k2x̂2.

Elimination of the variable u gives

dx̂

dt
= (A−BK − LC)x̂+ Ly +Bkfr

=


−l1 − γk1 1− γk2

−k1 − l2 −k2


 x̂+


l1
l2


 y +


γ
1


 k1r,

where we have set kf = k1 as described in Example 7.4. The controller is a dynam-
ical system of second order, with two inputs y and r and one output u. Figure 8.8
shows a simulation of the system when the vehicle is driven along a curvy road.
Since we are using a normalized model, the length unit is the vehicle length and
the time unit is the time it takes to travel one vehicle length. The estimator is
initialized with all states equal to zero but the real system has an initial lateral
position of 0.8. The figures show that the estimates converge quickly to their true
values. The vehicle roughly tracks the desired path, but there are errors because
the road is curving. The tracking error can be improved by introducing feedforward
(Section 8.5). ∇
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Figure 8.8: Simulation of a vehicle driving on a curvy road with a controller
based on state feedback and an observer. The left plot shows the lane boundaries
(dotted), the vehicle position (solid), and its estimate (dashed), the upper right
plot shows the velocity (solid) and its estimate (dashed), and the lower right plot
shows the control signal using state feedback (solid) and the control signal using
the estimated state (dashed).

Kalman’s Decomposition of a Linear System �

In this chapter and the previous one we have seen that two fundamental properties
of a linear input/output system are reachability and observability. It turns out
that these two properties can be used to classify the dynamics of a system. The
key result is Kalman’s decomposition theorem, which says that a linear system can
be divided into four subsystems: Σro which is reachable and observable, Σro which
is reachable but not observable, Σro which is not reachable but is observable, and
Σro which is neither reachable nor observable.

We will first consider this in the special case of systems with one input and one
output, and where the matrix A has distinct eigenvalues. In this case we can find
a set of coordinates such that the A matrix is diagonal and, with some additional
reordering of the states, the system can be written as

dx

dt
=




Aro 0 0 0
0 Aro 0 0
0 0 Aro 0
0 0 0 Aro



x+




Bro

Bro

0
0



u,

y =

Cro 0 Cro 0


x+Du.

(8.19)

All states xk such that Bk 6= 0 are reachable, and all states such that Ck 6= 0 are
observable. If we set the initial state to zero (or equivalently look at the steady-
state response if A is stable), the states given by xr̄o and xro will be zero and xrō
does not affect the output. Hence the output y can be determined from the system

dxro
dt

= Aroxro +Brou, y = Croxro +Du.

Thus from the input/output point of view, it is only the reachable and observable
dynamics that matter. A block diagram of the system illustrating this property is
given in Figure 8.9a.
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Figure 8.9: Kalman’s decomposition of a linear system. The decomposition in
(a) is for a system with distinct eigenvalues and the one in (b) is the general case.
The system is broken into four subsystems, representing the various combinations
of reachable and observable states. The input/output relationship only depends
on the subset of states that are both reachable and observable.

The general case of the Kalman decomposition is more complicated and requires
some additional linear algebra; see the original paper by Kalman, Ho, and Naren-
dra [KHN63]. The key result is that the state space can still be decomposed into
four parts, but there will be additional coupling so that the equations have the form

dx

dt
=




Aro 0 ∗ 0
∗ Aro ∗ ∗
0 0 Aro 0
0 0 ∗ Aro



x+




Bro

Bro

0
0



u,

y =

Cro 0 Cro 0


x,

(8.20)

where ∗ denotes block matrices of appropriate dimensions. If xro(0) = 0 then the
input/output response of the system is given by

dxro
dt

= Aroxro +Brou, y = Croxro +Du, (8.21)

which are the dynamics of the reachable and observable subsystem Σro. A block
diagram of the system is shown in Figure 8.9b.

The following example illustrates Kalman’s decomposition.

Example 8.5 System and controller with feedback from observer states
Consider the system

dx

dt
= Ax+Bu, y = Cx.

The following controller, based on feedback from the observer state, was given in
Theorem 8.3:

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂), u = −Kx̂+ kfr.

Introducing the states x and x̃ = x− x̂, the closed loop system can be written as

d

dt


x
x̃


 =


A−BK BK

0 A− LC




x
x̃


+


Bkf

0


 r, y =


C 0




x
x̃


 ,
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which is a Kalman decomposition like the one shown in Figure 8.9b with only
two subsystems Σro and Σro. The subsystem Σro, with state x, is reachable and
observable, and the subsystem Σro, with state x̃, is not reachable but observable.
It is natural that the state x̃ is not reachable from the reference signal r because
it would not make sense to design a system where changes in the reference signal
could generate observer errors. The relationship between the reference r and the
output y is given by

dx

dt
= (A−BK)x+Bkfr, y = Cx,

which is the same relationship as for a system with full state feedback. ∇

8.4 Kalman Filtering ��

One of the principal uses of observers in practice is to estimate the state of a
system in the presence of noisy measurements. We have not yet treated noise
in our analysis, and a full treatment of stochastic dynamical systems is beyond
the scope of this text. In this section, we present a brief introduction to the use
of stochastic systems analysis for constructing observers. We work primarily in
discrete time to avoid some of the complications associated with continuous-time
random processes and to keep the mathematical prerequisites to a minimum. This
section assumes basic knowledge of random variables and stochastic processes; see
Kumar and Varaiya [KV86] or Åström [Åst06] for the required material.

Discrete-Time Systems

Consider a discrete-time linear system with dynamics

x[k + 1] = Ax[k] +Bu[k] + v[k], y[k] = Cx[k] + w[k], (8.22)

where v[k] and w[k] are Gaussian white noise processes satisfying

E(v[k]) = 0, E(w[k]) = 0,

E(v[k]vT [j]) =

{
0 if k 6= j,

Rv if k = j,
E(w[k]wT [j]) =

{
0 if k 6= j,

Rw if k = j,

E(v[k]wT [j]) = 0.

(8.23)

E(v[k]) represents the expected value of v[k] and E(v[k]vT [j]) is the covariance ma-
trix. The matrices Rv and Rw are the covariance matrices for the process distur-
bance v and measurement noise w. (Rv is allowed to be singular if the disturbances
do not affect all states.) We assume that the initial condition is also modeled as a
Gaussian random variable with

E(x[0]) = x0, E
(
(x[0]− x0)(x[0]− x0)

T
)
= P0. (8.24)

We would like to find an estimate x̂[k] that minimizes the mean square error

P [k] = E
(
(x[k]− x̂[k])(x[k]− x̂[k])T

)
(8.25)
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given the measurements {y(κ) : 0 ≤ κ ≤ k}. We consider an observer in the same
basic form as derived previously:

x̂[k + 1] = Ax̂[k] +Bu[k] + L[k](y[k]− Cx̂[k]). (8.26)

The following theorem summarizes the main result.

Theorem 8.4 (Kalman, 1961). Consider a random process x[k] with dynamics
given by equation (8.22) and noise processes and initial conditions described by
equations (8.23) and (8.24). The observer gain L that minimizes the mean square
error is given by

L[k] = AP [k]CT (Rw + CP [k]CT )−1,

where
P [k + 1] = (A− LC)P [k](A− LC)T +Rv + LRwL

T ,

P [0] = E
(
(x[0] = x0)(x[0]− x0)

T
)
.

(8.27)

Before we prove this result, we reflect on its form and function. First, note that
the Kalman filter has the form of a recursive filter: given the mean square error
P [k] = E((x[k]− x̂[k])(x[k]− x̂[k])T ) at time k, we can compute how the estimate
and error change. Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate x̂[k] and the error covariance
P [k], so we can see how reliable the estimate is. It can also be shown that the
Kalman filter extracts the maximum possible information about output data. If we
form the residual between the measured output and the estimated output,

e[k] = y[k]− Cx̂[k],

we can show that for the Kalman filter the covariance matrix is

Re(j, k) = E(e[j]eT [k]) =W [k]δjk, δjk =

{
1 if j = k,

0 if j 6= k.

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used even if the process,
noise, or disturbances are time-varying. When the system is time-invariant and if
P [k] converges, then the observer gain is constant:

L = APCT (Rw + CPCT ),

where P satisfies

P = APAT +Rv −APCT
(
Rw + CPCT

)−1
CPAT .

We see that the optimal gain depends on both the process noise and the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choose state feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is solved
by the dlqe command in MATLAB.
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Proof of theorem. We wish to minimize the mean square of the error E((x[k] −
x̂[k])(x[k] − x̂[k])T ). We will define this quantity as P [k] and then show that it
satisfies the recursion given in equation (8.27). By definition,

P [k + 1] = E
(
(x[k + 1]− x̂[k + 1])(x[k + 1]− x̂[k + 1])T

)

= (A− LC)P [k](A− LC)T +Rv + LRwL
T

= AP [k]AT +Rv −AP [k]CTLT − LCP [k]AT

+ L(Rw + CP [k]CT )LT .

Letting Rǫ = (Rw + CP [k]CT ), we have

P [k + 1] = AP [k]AT +Rv −AP [k]CTLT − LCP [k]AT + LRǫL
T

= AP [k]AT +Rv +
(
L−AP [k]CTR−1

ǫ

)
Rǫ
(
L−AP [k]CTR−1

ǫ

)T

−AP [k]CTR−1
ǫ CPT [k]AT .

To minimize this expression, we choose L = AP [k]CTR−1
ǫ , and the theorem is

proved.

Continuous-Time Systems

The Kalman filter can also be applied to continuous-time stochastic processes. The
mathematical derivation of this result requires more sophisticated tools, but the
final form of the estimator is relatively straightforward.

Consider a continuous stochastic system

dx

dt
= Ax+Bu+ v, E(v(s)vT (t)) = Rvδ(t− s),

y = Cx+ w, E(w(s)wT (t)) = Rwδ(t− s),
(8.28)

where δ(τ) is the unit impulse function, and the initial value is Gaussian with mean
x0 and covariance P0 = E((x(0) − x0)(x(0) − x0)

T ). Assume that the disturbance
v and noise w are zero mean and Gaussian (but not necessarily time-invariant):

pdf(v) =
1

n
√
2π

√
detRv

e−
1
2
vTR−1

v v, pdf(w) =
1

q
√
2π

√
detRw

e−
1
2
wTR−1

w w.

(8.29)
The model (8.28) is very general. We can model the dynamics both of the process
and disturbances, as illustrated by the following example.

Example 8.6 Modeling a noisy sinusoidal disturbance
Consider a process whose dynamics are described by

dx

dt
= x+ u+ v, y = x+ w.

The disturbance v is a noisy sinusoidal disturbance with frequency ω0 and w is
white measurement noise. We model the oscillatory load disturbance as v = z1,
where

d

dt


z1
z2


 =


−0.01ω0 ω0

−ω0 −0.01ω0




z1
z2


+


 0
ω0


 e,
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and e is zero mean white noise with covariance function rδ(t).
Augmenting the system state with the states of the noise model by introducing

the new state ξ = (x, z1, z2), we obtain the model

dξ

dt
=



1 1 0
0 −0.01ω0 ω0

0 −ω0 −0.01ω0


 ξ +



1
0
0


u+ v, y =


1 0 0


 ξ + w,

where v is white Gaussian noise with zero mean and the covariance Rvδ(t) with

Rv =



0 0 0
0 0 0
0 0 ω2

0r


 .

The model is in the standard form given by equations (8.28) and (8.29). ∇

We will now return to the filtering problem. Specifically, we wish to find the
estimate x̂(t) that minimizes the mean square error P (t) = E((x(t) − x̂(t))(x(t) −
x̂(t))T ) given {y(τ) : 0 ≤ τ ≤ t}.

Theorem 8.5 (Kalman–Bucy, 1961). The optimal estimator has the form of a
linear observer

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂), x̂(0) = E(x(0)),

where L = PCTR−1
w and P = E((x(t)− x̂(t))(x(t)− x̂(t))T ) and satisfies

dP

dt
= AP + PAT − PCTR−1

w CP +Rv, P (0) = E
(
(x(0)− x0)(x(0)− x0)

T
)
.

(8.30)

All matrices A, B, C, Rv, Rw, P , and L can be time varying. The essential
condition is that the Riccati equation (8.30) has a unique positive solution.

As in the discrete case, when the system is time-invariant and if P (t) converges,
the observer gain L = PCTR−1

w is constant and P is the solution to

AP + PAT − PCTR−1
w CP +Rv = 0, (8.31)

which is called the algebraic Riccati equation.
Notice that there are a strong similarities between the Riccati equations (8.30)

and (8.31) for the Kalman filtering problem and the corresponding equations (7.31)
and (7.33) for the linear quadratic regulator (LQR). We have the equivalences

A↔ AT , B ↔ CT , K ↔ LT , P ↔ S, Qx ↔ Rv, Qu ↔ Rw, (8.32)

which we can compare with equation (8.9). The MATLAB command kalman can
be used to compute optimal filter gains.

Example 8.7 Vectored thrust aircraft
The dynamics for a vectored thrust aircraft were considered in Examples 3.12
and 7.9. We consider the (linearized) lateral dynamics of the system, consisting
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of the subsystems whose states are given by z = (x, θ, ẋ, θ̇). The dynamics of the
linearized system can be obtained from Example 7.9 by extracting only the relevant
states and outputs, giving

A =




0 0 1 0
0 0 0 1
0 −g −c/m 0
0 0 0 0



, B =




0
0
0
r/J



, C =


0 0 0 1


 ,

where the linearized state ξ = z − ze represents the system state linearized around
the equilibrium point ze. To design a Kalman filter for the system, we must include
a description of the process disturbances and the sensor noise. We thus augment
the system to have the form

dξ

dt
= Aξ +Bu+ Fv, y = Cξ + w,

where F represents the structure of the disturbances (including the effects of non-
linearities that we have ignored in the linearization), v represents the disturbance
source (modeled as zero mean, Gaussian white noise), and w represents that mea-
surement noise (also zero mean, Gaussian, and white).

For this example, we choose F as the identity matrix and choose disturbances v,
i = 1, . . . , n, to be independent random variables with covariance matrix elements
given by Rii = 0.1, Rij = 0, i 6= j. The sensor noise is a single random variable that
we model as white noise having covariance Rw = 10−4. Using the same parameters
as before, the resulting Kalman gain is given by

L = PCTR−1
w =




37.0
−46.9
185

−31.6




where AP + PAT − PCTR−1
w CP +Rv = 0.

The performance of the estimator is shown in Figure 8.10a. We see that while the
estimator roughly tracks the system state, it contains significant overshoot in the
state estimate and has significant error in the estimate for θ even after 2 seconds,
which can lead to poor performance in a closed loop setting.

To improve the performance of the estimator, we explore the impact of adding
a new output measurement. Suppose that instead of measuring just the output
position x, we also measure the orientation of the aircraft θ. The output becomes

y =


1 0 0 0
0 1 0 0


 ξ +


w1

w2


 ,

and if we assume that w1 and w2 are independent white noise sources each with
covariance Rwi

= 10−4, then the optimal estimator gain matrix becomes

L =




32.6 −0.150
−0.150 32.6
32.7 −9.79

−0.0033 31.6



.

These gains provide good immunity to noise and high performance, as illustrated
in Figure 8.10b. ∇
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Figure 8.10: Kalman filter response for a (linearized) vectored thrust aircraft
with disturbances and noise during the initial portion of a step response. In the
first design (a) only the lateral position of the aircraft is measured. Adding a direct
measurement of the roll angle produces a much better observer (b). The initial
estimator state for both simulations is (0.1, 0.0175, 0.01, 0) and the controller gains
are K = (−1, 7.9,−1.6, 2.1) and kf = −1.

Linear Quadratic Gaussian Control (LQG)

In Section 7.5 we considered optimization of the criterion (7.29) when the control
u(t) could be a function of the state x(t). We will now explore the same problem
for the stochastic system (8.28) where the control u(t) is a function of the output
y(t).

Consider the system given by equation (8.28) where the initial state is Gaussian
with mean x0 and covariance P0 and the disturbances v and w are characterized by
equation (8.29). Assume that the requirement can be captured by the cost function

J = min
u

E

(∫ tf

0

(xTQxx+ uTQuu) dt+ xT (tf)Qfx(tf)

)
, (8.33)

where we minimize over all controls such that u(t) is a function of all measurements
y(τ), 0 ≤ τ ≤ t obtained up to time t.

The optimal control law is simply u(t) = −Kx̂(t) where K = SBQ−1
u and S

is the solution of the Riccati equation (7.31) (for the linear quadratic regulator)
and x̂(t) is given by the Kalman filter (Theorem 8.5). The solution of the problem
can thus be separated into a deterministic control problem (LQR) and an optimal
filtering problem. This remarkable result is also known as the separation principle,
as mentioned briefly in Section 8.3.

The minimum cost function is

min J = xT0 S(0)x0 +Tr (S(0)P0) +

∫ tf

0

Tr (RvS) dt+

∫ tf

0

Tr (LTQuLP ) dt,

where Tr is the trace of a matrix. The first two terms represent the cost of the
mean x0 and covariance P0 of the initial state, the third term represents the cost
due to the load disturbance, and the last term represents the cost of prediction.
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Figure 8.11: Block diagram of a controller based on a structure with two degrees
of freedom that combines feedback and feedforward. The controller consists of a
trajectory generator, state feedback, and an observer. The trajectory generation
subsystem computes a feedforward command uff along with the desired state xd.
The state feedback controller uses the estimated state and desired state to compute
a corrective input ufb.

Notice that the models we have used do not have a direct term in the output. The
separation theorem does not hold in this case because the nature of the disturbances
is then influenced by the feedback.

8.5 State Space Controller Design

State estimators and state feedback are important components of a controller. In
this section, we will add feedforward to arrive at a general controller structure that
appears in many places in control theory and is the heart of most modern control
systems. We will also briefly sketch how computers can be used to implement a
controller based on output feedback.

Two Degree-of-Freedom Controller Architecture

In this chapter and the previous one we have emphasized feedback as a mechanism
for minimizing tracking error; reference values were introduced simply by adding
them to the state feedback through a gain kf. A more sophisticated way of doing
this is shown by the block diagram in Figure 8.11, where the controller consists of
three parts: an observer that computes estimates of the states based on a model and
measured process inputs and outputs, a state feedback, and a trajectory generator
that computes the desired behavior of all states xd and a feedforward signal uff.
Under the ideal conditions of no disturbances and no modeling errors the signal uff
generates the desired behavior xd when applied to the process. The signals xd and
uff are generated from the task description Td, which can represent different types of
command signals depending on the application. In simple cases the task description
is simply the reference signal r, and xd and uff are generated by sending r through
linear systems. For motion control problems, such as vehicle steering and robotics,
the task description consists of the coordinates of a number of points (waypoints)
that the vehicle should pass. In other situations the task description could be to
transition from one state to another while optimizing some criterion.

To get some insight into the behavior of the system, consider the case when
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there are no disturbances and the system is in equilibrium with a constant reference
signal and with the observer state x̂ equal to the process state x. When the reference
signal is changed, the signals uff and xd will change. The observer tracks the state
perfectly because the initial state was correct. The estimated state x̂ is thus equal
to the desired state xd, and the feedback signal ufb = K(xd − x̂) will also be zero.
All action is thus created by the signals from the trajectory generator. If there
are some disturbances or some modeling errors, the feedback signal will attempt to
correct the situation.

This controller is said to have two degrees of freedom because the responses
to reference signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).

Feedforward Design and Trajectory Generation

We will now discuss design of controllers with the architecture shown in Figure 8.11.
For an analytic description we start with the full nonlinear dynamics of the process

dx

dt
= f(x, u), y = h(x, u). (8.34)

A feasible trajectory for the system (8.34) is a pair (xd(t), uff(t)) that satisfies the
differential equation and generates the desired trajectory:

dxd(t)

dt
= f

(
xd(t), uff(t)

)
, r(t) = h

(
xd(t), uff(t)

)
.

The problem of finding a feasible trajectory for a system is called the trajectory
generation problem, with xd representing the desired state for the (nominal) system
and uff representing the desired input or the feedforward control. If we can find
a feasible trajectory for the system, we can search for controllers of the form u =
α(x, xd, uff) that track the desired reference trajectory.

In many applications, it is possible to attach a cost function to trajectories that
describe how well they balance trajectory tracking with other factors, such as the
magnitude of the inputs required. In such applications, it is natural to ask that we
find the optimal controller with respect to some cost function:

min
u( · )

∫ T

0

L(x, u) dt+ V
(
x(T )

)
,

subject to the constraint

ẋ = f(x, u), x ∈ Rn, u ∈ Rp.

Abstractly, this is a constrained optimization problem where we seek a feasible
trajectory (xd(t), uff(t)) that minimizes the cost function. Depending on the form
of the dynamics, this problem can be quite complex to solve, but there are good
numerical packages for solving such problems, including handling constraints on
the range of inputs as well as the allowable values of the state.

In some situations we can simplify the approach of generating feasible trajec-
tories by exploiting the structure of the system. The next example illustrates one
such approach.
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Figure 8.12: Trajectory generation for changing lanes. We wish to change from
the right lane to the left lane over a distance of 90 m in 6 s. The planned trajectory
in the xy plane is shown in (a) and the lateral position y and the steering angle δ
over the maneuver time interval are shown in (b).

.

Example 8.8 Vehicle steering
To illustrate how we can use a two degree-of-freedom design to improve the perfor-
mance of the system, consider the problem of steering a car to change lanes on a
road, as illustrated in Figure 8.12a.

We use the non-normalized form of the dynamics, which were derived in Ex-
ample 3.11. As shown in Exercise 3.6, using the center of the rear wheels as the
reference (α = 0) the dynamics can be written as

dx

dt
= v cos θ,

dy

dt
= v sin θ,

dθ

dt
=
v

b
tan δ,

where v is the forward velocity of the vehicle, θ is the heading angle, and δ is the
steering angle. To generate a trajectory for the system, we note that we can solve
for the states and inputs of the system given x(t), y(t) by solving the following sets
of equations:

ẋ = v cos θ, ẍ = v̇ cos θ − vθ̇ sin θ,

ẏ = v sin θ, ÿ = v̇ sin θ + vθ̇ cos θ,

θ̇ = (v/b) tan δ.

(8.35)

This set of five equations has five unknowns (θ, θ̇, v, v̇ and δ) that can be solved
using trigonometry and linear algebra given the path variables x(t), y(t) and their
time derivatives. It follows that we can compute a feasible state trajectory for the
system given any path x(t), y(t). (This special property of a system is known as
differential flatness and is described in more detail below.)

To find a trajectory from an initial state (x0, y0, θ0) to a final state (xf, yf, θf) at
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a time T , we look for a path x(t), y(t) that satisfies

x(0) = x0, x(T ) = xf,

y(0) = y0, y(T ) = yf,

ẋ(0) sin θ0 − ẏ(0) cos θ0 = 0, ẋ(T ) sin θf − ẏ(T ) cos θf = 0,

ẏ(0) sin θ0 + ẋ(0) cos θ0 = v0, ẏ(T ) sin θf + ẋ(T ) cos θf = vf,

(8.36)

where v0 is the initial velocity and vf is the final velocity along the trajectory. One
such trajectory can be found by choosing x(t) and y(t) to have the form

xd(t) = α0 + α1t+ α2t
2 + α3t

3, yd(t) = β0 + β1t+ β2t
2 + β3t

3.

Substituting these equations into equation (8.36), we are left with a set of linear
equations that can be solved for αi, βi, i = 0, 1, 2, 3. This gives a feasible trajectory
for the system by using equation (8.35) to solve for θd, vd, and δd.

Figure 8.12b shows a sample trajectory generated by a set of higher-order equa-
tions that also set the initial and final steering angle to zero. Notice that the feed-
forward input is different from zero, allowing the controller to command a steering
angle that executes the turn in the absence of errors. ∇

The concept of differential flatness that we exploited in the previous example is
a fairly general one and can be applied to many interesting trajectory generation
problems. A nonlinear system (8.34) is differentially flat if there exists a flat output
z such that the state x and the input u can be expressed as functions of the flat
output z and a finite number of its derivatives:

x = β(z, ż, . . . , z(m)), u = γ(z, ż, . . . , z(m)). (8.37)

The number of flat outputs is always equal to the number of system inputs. The
vehicle steering model is differentially flat with the position of the rear wheels as
the flat output.

A broad class of systems that is differentially flat is the class of reachable lin-
ear systems. For the linear system given in equation (7.6), which is in reachable
canonical form, we have

z1 = z(n−1)
n , z2 = z(n−2)

n , . . . , zn−1 = żn,

u = z(n)n + a1z
(n−1)
n + a2z

(n−2)
n + · · ·+ anzn,

and the nth component zn of the state vector is thus a flat output. Since any
reachable system can be transformed to reachable canonical form, it follows that
every reachable linear system is differentially flat.

Note that no differential equations need to be integrated in order to compute
the feasible trajectories for a differentially flat system (unlike optimal control meth-
ods, which often involve parameterizing the input and then solving the differential
equations). The practical implication is that nominal trajectories and inputs that
satisfy the equations of motion for a differentially flat system can be computed
efficiently. The concept of differential flatness is described in more detail in the
review article by Fliess et al. [FLMR95].
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Disturbance Modeling and State Augmentation

We often have some information about load disturbances: they can be unknown con-
stants, drifting with unknown rates, sinusoidal with known or unknown frequency,
or stochastic signals. This information can be used by modeling the disturbances
by differential equations and augmenting the process state with the disturbance
states as was done in Section 7.4 and Example 8.6. We illustrate with a simple
example.

Example 8.9 Integral action by state augmentation
Consider the system (8.1) and assume that there is a constant but unknown dis-
turbance z acting additively on the process input. The system and the disturbance
can then be modeled by augmenting the state x with z. An unknown constant
can be modeled by the differential equation dz/dt = 0 and we obtain the following
model for the process and its environment:

d

dt


x
z


 =


A B

0 0




x
z


+


B

0


u, y =


C 0




x
z


 .

Notice that the disturbance state z is not reachable from u, but because the dis-
turbance enters at the process input it can be attenuated by the control law

u = −Kx̂− ẑ, (8.38)

where x̂ and ẑ are estimates of the state x and the disturbance z. The estimated
disturbance can be obtained from the observer:

dx̂

dt
= Ax̂+Bẑ +Bu+ Lx(y − Cx̂),

dẑ

dt
= Lz(y − Cx̂).

Integrating the last equation and inserting the expression for ẑ in the control
law (8.38) gives

u = −Kx̂− Lz

∫ t

0

(y(τ)− Cx̂(τ))dτ,

which is a state feedback controller with integral action. Notice that the integral
action is created through estimation of a disturbance state. ∇

The idea of the example can be extended to many types of disturbances and we
emphasized that much can be gained from modeling a process and its environment
(disturbances acting on the process and measurement noise).

Feedback Design and Gain Scheduling

We now assume that the trajectory generator is able to compute a desired trajectory
(xd, uff) that satisfies the dynamics (8.34) and satisfies r = h(xd, uff). To design the
feedback controller, we construct the error system. Let ξ = x−xd and ufb = u−uff
and compute the dynamics for the error:

ξ̇ = ẋ− ẋd = f(x, u)− f(xd, uff)

= f(ξ + xd, v + uff)− f(xd, uff) =: F (ξ, v, xd(t), uff(t)).
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For trajectory tracking, we can assume that ξ is small (if our controller is doing
a good job), and so we can linearize around ξ = 0:

dξ

dt
≈ A(t)ξ +B(t)v, h(x, u) ≈ C(t)x(t)

A(t) =
∂F

∂ξ

∣∣∣∣
(xd(t),uff(t))

, B(t) =
∂F

∂v

∣∣∣∣
(xd(t),uff(t))

, C(t) =
∂h

∂ξ

∣∣∣∣
(xd(t),uff(t))

.

In general, this system is time-varying. Note that ξ corresponds to −e in
Figure 8.11 due to the convention of using negative feedback in the block dia-
gram. We can now proceed to use LQR to compute the time-varying feedback gain
K(t) = Q−1

u (t)BT (t)S(t) by solving the Riccati differential equation (7.31) and the
Kalman filter gain L(t) = P (t)CT (t)R−1

w (t), where P (t) is obtained by solving the
Riccati equation (8.30).

Assume now that xd and uff are either constant or slowly varying (with respect
to the process dynamics). It is often the case that A(t), B(t), and C(t) depend
only on xd, in which case it is convenient to write A(t) = A(xd), B(t) = B(xd), and
C(t) = C(xd). This allows us to consider just the linear system given by A(xd),
B(xd), and C(xd). If we design a state feedback controller K(xd) for each xd, then
we can regulate the system using the feedback

ufb = −K(xd)ξ.

Substituting back the definitions of ξ and ufb, our controller becomes

u = ufb + uff = −K(xd)(x− xd) + uff.

This form of controller is called a gain scheduled linear controller with feedforward
uff.

Example 8.10 Steering control with velocity scheduling
Consider the problem of controlling the motion of a automobile so that it follows
a given trajectory on the ground, as shown in Figure 8.13a. We use the model
derived in Example 8.8. A simple feasible trajectory for the system is to follow
a straight line in the x direction at lateral position yr and fixed velocity vr. This
corresponds to a desired state xd = (vrt, yr, 0) and nominal input uff = (vr, 0). Note
that (xd, uff) is not an equilibrium point for the full system, but it does satisfy the
equations of motion.

Linearizing the system about the desired trajectory, we obtain

Ad =
∂f

∂x

∣∣∣∣
(xd,uff)

=



0 0 − sin θ
0 0 cos θ
0 0 0




∣∣∣∣∣∣
(xd,uff)

=



0 0 0
0 0 1
0 0 0


 ,

Bd =
∂f

∂u

∣∣∣∣
(xd,uff)

=



1 0
0 0
0 vr/l


 .

We form the error dynamics by setting e = x− xd and w = u− uff:

dex
dt

= w1,
dey
dt

= eθ,
deθ
dt

=
vr
l
w2.
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ẋ
[m

/
s]
,
y
[m

]

ẋ
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Figure 8.13: Vehicle steering using gain scheduling. (a) Vehicle configuration
consists of the x, y position of the vehicle, its angle with respect to the road,
and the steering wheel angle. (b) Step responses for the vehicle lateral position
(solid) and forward velocity (dashed). Gain scheduling is used to set the feedback
controller gains for the different forward velocities.

We see that the first state is decoupled from the second two states and hence we
can design a controller by treating these two subsystems separately. Suppose that
we wish to place the closed loop eigenvalues of the longitudinal dynamics (ex) at λ1
and place the closed loop eigenvalues of the lateral dynamics (ey, eθ) at the roots
of the polynomial equation s2 + a1s+ a2 = 0. This can be accomplished by setting

w1 = −λ1ex, w2 =
l

vr
(a1ey + a2eθ).

Note that the gain l/vr depends on the velocity vr (or equivalently on the nominal
input uff), giving us a gain scheduled controller.

In the original inputs and state coordinates, the controller has the form


v
δ


 = −



λ1 0 0

0
a1l

vr

a2l

vr




︸ ︷︷ ︸
Kd



x− vrt
y − yr
θ




︸ ︷︷ ︸
e

+


vr

0




︸ ︷︷ ︸
uff

.

The form of the controller shows that at low speeds the gains in the steering angle
will be high, meaning that we must turn the wheel harder to achieve the same
effect. As the speed increases, the gains become smaller. This matches the usual
experience that at high speed a very small amount of actuation is required to control
the lateral position of a car. Note that the gains go to infinity when the vehicle is
stopped (vr = 0), corresponding to the fact that the system is not reachable at this
point.

Figure 8.13b shows the response of the controller to a step change in lateral
position at three different reference speeds. Notice that the rate of the response
is constant, independent of the reference speed, reflecting the fact that the gain
scheduled controllers each set the closed loop eigenvalues to the same values. ∇
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Nonlinear Estimation

Finally, we briefly comment on the observer represented in Figure 8.11 for the case
where the process dynamics are not necessarily linear. Since we are now considering
a nonlinear system that operates over a wide range of the state space, it is desirable
to use full nonlinear dynamics for the prediction portion of the observer. This can
then be combined with a linear correction term, so that the observer has the form:

dx̂

dt
= f(x̂, u) + L(x̂)(y − h(x̂)).

The estimator gain L(x̂) is the observer gain obtained by linearizing the system
around the currently estimated state. This form of the observer is known as an
extended Kalman filter and has proved to be a very effective means of estimating
the state of a nonlinear system.

The combination of trajectory generation, trajectory tracking, and nonlinear
estimation provides a means for state space control of nonlinear systems. There are
many ways to generate the feedforward signal, and there are also many different
ways to compute the feedback gain K and the observer gain L. Note that once
again the internal model principle applies: the overall controller contains a model
of the system to be controlled and its environment through the observer.

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves, or other physical devices. Since in modern en-
gineering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by an analog-to-
digital (A/D) converter, the control signal is computed and the resulting output is
converted to analog form for the actuators, as shown in Figure 8.14. To illustrate
the main principles of how to implement feedback in this environment, we consider
the controller described by equations (8.15) and (8.16), i.e.,

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂), u = −Kx̂+ kfr.

The second equation consists only of additions and multiplications and can thus
be implemented directly on a computer. The first equation can be implemented by
approximating the derivative by a difference

dx̂

dt
≈ x̂(tk+1)− x̂(tk)

h
= Ax̂(tk) +Bu(tk) + L

(
y(tk)− Cx̂(tk)

)
,

where tk are the sampling instants and h = tk+1 − tk is the sampling period.
Rewriting the equation to isolate x̂(tk+1), we get the difference equation

x̂(tk+1) = x̂(tk) + h
(
Ax̂(tk) +Bu(tk) + L

(
y(tk)− Cx̂(tk)

))
. (8.39)

The calculation of the estimated state at time tk+1 requires only addition and
multiplication and can easily be done by a computer. A section of pseudocode for
the program that performs this calculation is as follows.
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Figure 8.14: Components of a computer-controlled system. The controller con-
sists of analog-to-digital (A/D) and digital-to-analog (D/A) converters, as well as
a computer that implements the control algorithm. A system clock controls the
operation of the controller, synchronizing the A/D, D/A, and computing processes.
The operator input is also fed to the computer as an external input.

% Control algorithm - main loop

r = adin(ch1) % read reference

y = adin(ch2) % get process output

(xd, uff) = trajgen(r, t) % generate feedforward

u = K*(xd - xhat) + uff % compute control variable

daout(ch1, u) % set analog output

xhat = xhat + h*(A*x+B*u+L*(y-C*x)) % update state estimate

The program runs periodically at a fixed sampling period h. Notice that the
number of computations between reading the analog input and setting the analog
output has been minimized by updating the state after the analog output has been
set. The program has an array of states xhat that represents the state estimate.
The choice of sampling period requires some care.

There are more sophisticated ways of approximating a differential equation by a
difference equation. If the control signal is constant between the sampling instants,
it is possible to obtain exact equations; see [ÅW97].

There are several practical issues that also must be dealt with. For example, it
is necessary to filter measured signals before they are sampled so that the filtered
signal has little frequency content above fs/2 (the Nyquist frequency), where fs =
1/h is the sampling frequency. This avoids a phenomenon known as aliasing. If
controllers with integral action are used, it is also necessary to provide protection
so that the integral does not become too large when the actuator saturates. This
issue, called integrator windup, is studied in more detail in Chapter 11. Care must
also be taken so that parameter changes do not cause disturbances.
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8.6 Further Reading

The notion of observability is due to Kalman [Kal61b] and, combined with the dual
notion of reachability, it was a major stepping stone toward establishing state space
control theory beginning in the 1960s. The observer first appeared as the Kalman
filter in the paper by Kalman [Kal61a] for the discrete-time case and Kalman and
Bucy [KB61] for the continuous-time case. Kalman also conjectured that the con-
troller for output feedback could be obtained by combining a state feedback with a
Kalman filter; see the quote in the beginning of this chapter. This result, which is
known as the separation theorem, is mathematically subtle. Attempts of proof were
made by Josep and Tou [JT61] and Gunckel and Franklin [GF71], but a rigorous
proof was given by Georgiou and Lindquist [GL13] in 2013. The combined result
is known as the linear quadratic Gaussian control theory; a compact treatment is
given in the books by Anderson and Moore [AM90], Åström [Åst06], and Lindquist
and Picci [LP15]. It was also shown that solutions to robust control problems had a
similar structure but with different ways of computing observer and state feedback
gains [DGKF89]. The importance of systems with two degrees of freedom that com-
bine feedback and feedforward was emphasized by Horowitz [Hor63]. The controller
structure discussed in Section 8.5 is based on these ideas. The particular form in
Figure 8.11 appeared in [ÅW97], where computer implementation of the controller
was discussed in detail. The hypothesis that motion control in humans is based
on a combination of feedback and feedforward was proposed by Ito in 1970 [Ito70].
Differentially flat systems were originally studied by Fliess et al. [FLMR92]; they
are very useful for trajectory generation.

Exercises

8.1 (Coordinate transformations) Consider a system under a coordinate transfor-
mation z = Tx, where T ∈ Rn×n is an invertible matrix. Show that the observ-
ability matrix for the transformed system is given by W̃o = WoT

−1 and hence
observability is independent of the choice of coordinates.

8.2 Show that the system depicted in Figure 8.2 is not observable.

8.3 (Multi-input, multi-output observability) Consider the multi-input, multi-output
system given by

dx

dt
= Ax+Bu, y = Cx,

where x ∈ Rn, u ∈ Rp, and y ∈ Rq. Show that the states can be determined from
the input u and the output y and their derivatives if the observability matrix Wo

given by equation (8.4) has n independent rows.

8.4 (Observable canonical form) Show that if a system is observable, then there
exists a change of coordinates z = Tx that puts the transformed system into ob-
servable canonical form.

8.5 (Bicycle dynamics) The linearized model for a bicycle is given in equation (4.5),
which has the form

J
d2ϕ

dt2
− Dv0

b

dδ

dt
= mghϕ+

mv20h

b
δ,
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where ϕ is the tilt of the bicycle and δ is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.

8.6 (Observer design by eigenvalue assignment) Consider the system

dx

dt
= Ax =


−1 0

1 0


x+


a− 1

1


u, y = Cx =


0 1


x.

Design an observer such that det(sI −LC) = s2+2ζoωos+ω2
o with values ωo = 10

and ζo = 0.6.

8.7 (Vectored thrust aircraft) The lateral dynamics of the vectored thrust air- �
craft example described in Example 7.9 can be obtained by considering the mo-
tion described by the states z = (x, θ, ẋ, θ̇). Construct an estimator for these
dynamics by setting the eigenvalues of the observer into a Butterworth pattern with
λbw = −3.83± 9.24i, −9.24± 3.83i. Using this estimator combined with the state
space controller computed in Example 7.9, plot the step response of the closed loop
system.

8.8 (Observer for Teorell’s compartment model) Teorell’s compartment model,
shown in Figure 4.17, has the following state space representation:

dx

dt
=




−k1 0 0 0 0
k1 −k2 − k4 0 k3 0
0 k4 0 0 0
0 k2 0 −k3 − k5 0
0 0 0 k5 0



x+




1
0
0
0
0



u,

where representative parameters are k1 = 0.02, k2 = 0.1, k3 = 0.05, k4 = k5 =
0.005. The concentration of a drug that is active in compartment 5 is measured in
the bloodstream (compartment 2). Determine the compartments that are observ-
able from measurement of concentration in the bloodstream and design an estima-
tor for these concentrations base on eigenvalue assignment. Choose the closed loop
eigenvalues −0.03, −0.05, and −0.1. Simulate the system when the input is a pulse
injection.

8.9 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (4.8) in Section 4.2. A state feedback for the system was designed in Exer-
cise 7.12. Design an observer and an output feedback for the system.

8.10 (Kalman decomposition) Consider a linear system characterized by the ma-
trices

A =




−2 1 −1 2
1 −3 0 2
1 1 −4 2
0 1 −1 −1



, B =




2
2
2
1



, C =


0 1 −1 0


 , D = 0.

Construct a Kalman decomposition for the system. (Hint: Try to diagonalize.)
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8.11 (Kalman filtering for a first-order system) Consider the system

dx

dt
= ax+ v, y = cx+ w

where all variables are scalar. The signals v and w are uncorrelated white noise
disturbances with zero mean values and covariance functions

E(v(s)vT (t)) = rvδ(t− s), E(w(s)wT (t)) = rwδ(t− s).

The initial condition is Gaussian with mean value x0 and covariance P0. Determine
the Kalman filter for the system and analyze what happens for large t.

8.12 (Vertical alignment) In navigation systems it is important to align a system
to the vertical. This can be accomplished by measuring the vertical acceleration
and controlling the platform so that the measured acceleration is zero. A simplified
one-dimensional version of the problem can be modeled by

dϕ

dt
= u, u = −ky, y = ϕ+ w,

where ϕ is the alignment error, u the control signal, y the measured signal, and w
the measurement noise, which is assumed to be white noise with zero mean and
covariance function E(w(s)wT (t)) = rwδ(t−s). The initial misalignment is assumed
to be a random variable with zero mean and the covariance P0. Determine a time-
varying gain k(t) such that the error goes to zero as fast as possible. Compare this
with a constant gain.



Chapter 9

Transfer Functions

The typical regulator system can frequently be described, in essentials,
by differential equations of no more than perhaps the second, third, or
fourth order. . . . In contrast, the order of the set of differential equations
describing the typical negative feedback amplifier used in telephony is
likely to be very much greater. As a matter of idle curiosity, I once
counted to find out what the order of the set of equations in an amplifier
I had just designed would have been, if I had worked with the differential
equations directly. It turned out to be 55.

Hendrik Bode, 1960 [Bod60].

This chapter introduces the concept of the transfer function, which is a com-
pact description of the input/output relation for a linear time-invariant system. We
show how to obtain transfer functions analytically and experimentally. Combining
transfer functions with block diagrams gives a powerful algebraic method to analyze
linear systems with many blocks. The transfer function allows new interpretations
of system dynamics. We also introduce the Bode plot, a powerful graphical rep-
resentation of the transfer function that was introduced by Bode to analyze and
design feedback amplifiers.

9.1 Frequency Domain Modeling

Figure 9.1 is a block diagram for a typical control system, consisting of a process to
be controlled and a controller that combines feedback and feedforward. We saw in
the previous two chapters how to analyze and design such systems using state space
descriptions of the blocks. As mentioned in Chapter 3, an alternative approach is to
focus on the input/output characteristics of the system. Since it is the inputs and
outputs that are used to connect the systems, one could expect that this point of
view would allow an understanding of the overall behavior of the system. Transfer
functions are the main tool in implementing this approach for linear systems.

The basic idea of the transfer function comes from looking at the frequency
response of a system. Suppose that we have an input signal that is periodic. Then

9-1
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Figure 9.1: A block diagram for a feedback control system. The reference signal r
is fed through a reference shaping block, which generates a signal that is compared
with the output y to form the error e. The control signal u is generated by the
controller, which has the error as the input. The load disturbance v and the
measurement noise w are external signals.

we can decompose this signal into the sum of a set of sines and cosines,

u(t) =

∞∑

k=0

ak sin(kωft) + bk cos(kωft),

where ωf is the fundamental frequency of the periodic input. As we saw in Sec-
tion 6.3, the input u(t) generates corresponding sine and cosine outputs (in steady
state), with possibly shifted magnitude and phase. The gain and phase at each
frequency are determined by the frequency response given in equation (6.24):

G(iω) = C(iωI −A)−1B +D, (9.1)

where we set ω = kωf for each k = 1, . . . ,∞. We can thus use the steady-state
frequency response G(iω) and superposition to compute the steady-state response
any periodic signal.

The transfer function generalizes this notion to allow a broader class of input
signals besides periodic ones. As we shall see in the next section, the transfer
function represents the response of the system to an exponential input, u = est. It
turns out that the form of the transfer function is precisely the same as that of
equation (9.1). This should not be surprising since we derived equation (9.1) by
writing sinusoids as sums of complex exponentials. The transfer function can also
be introduced as the ratio of the Laplace transforms of the output and the input
when the initial state is zero, although one does not have to understand the details
of Laplace transforms in order to make use of transfer functions.

Modeling a system through its response to sinusoidal and exponential signals is
known as frequency domain modeling. This terminology stems from the fact that
we represent the dynamics of the system in terms of the generalized frequency s
rather than the time domain variable t. The transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a particularly convenient
representation in manipulating and analyzing complex linear feedback systems.
As we shall see, there are graphical representations of transfer functions (Bode
and Nyquist plots) that capture interesting properties of the underlying dynamics.
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Transfer functions also make it possible to express the changes in a system because
of modeling error, which is essential when considering sensitivity to process varia-
tions of the sort discussed in Chapter 13. More specifically, using transfer functions
it is possible to analyze what happens when dynamical models are approximated
by static models or when high-order models are approximated by low-order mod-
els. One consequence is that we can introduce concepts that express the degree of
stability of a system.

While many of the concepts for state space modeling and analysis apply directly
to nonlinear systems, frequency domain analysis applies primarily to linear systems.
The notions of gain and phase can, however, be generalized to nonlinear systems
and, in particular, propagation of sinusoidal signals through a nonlinear system
can approximately be captured by an analog of the frequency response called the
describing function. These extensions of frequency response will be discussed in
Section 10.5.

9.2 Determining the Transfer Function

As we have seen in previous chapters, the input/output dynamics of a linear system
have two components: the initial condition response and the forced response, which
depends on the system input. The forced response can be characterized by the
transfer function. In this section we will compute transfer functions for general
linear time-invariant systems. Transfer functions will also be determined for systems
with time delays and systems described by partial differential equations, for which
the transfer functions obtained are then transcendental functions of a complex
variable.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we will make use of a special
type of signal, called an exponential signal, of the form est, where s = σ + iω is
a complex number. Exponential signals play an important role in linear systems.
They appear in the solution of differential equations and in the impulse response
of linear systems, and many signals can be represented as exponentials or sums
of exponentials. For example, a constant signal is simply eαt with α = 0. Using
Euler’s formula, damped sine and cosine signals can be represented by

e(σ+iω)t = eσteiωt = eσt(cosωt+ i sinωt),

where σ < 0 determines the decay rate. Figure 9.2 gives examples of signals that
can be represented by complex exponentials; many other signals can be represented
by linear combinations of these signals.

As in the case of the sinusoidal signals we considered in Section 6.3, we will
allow complex-valued signals in the derivation that follows, although in practice we
always add together combinations of signals that result in real-valued functions. F○

To find the transfer function for the state space system

dx

dt
= Ax+Bu, y = Cx+Du, (9.2)

http://fbsbook.org
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Figure 9.2: Examples of exponential signals. The top row corresponds to expo-
nential signals with a real exponent, and the bottom row corresponds to those with
complex exponents. The dashed line in the last two cases denotes the bounding
envelope for the oscillatory signals. In each case, if the real part of the exponent
is negative then the signal decays, while if the real part is positive then it grows.

we let the input be the exponential signal u(t) = est and assume that s 6∈ λ(A).
The state is then given by

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Besτ dτ = eAtx(0) + eAt(sI −A)−1
(
e(sI−A)t − I

)
B.

The output y of equation (9.2) then becomes

y(t) = Cx(t) +Du(t)

= CeAtx(0)︸ ︷︷ ︸
initial condition

response

+
(
C(sI −A)−1B +D

)
est − CeAt(sI −A)−1B

︸ ︷︷ ︸
input response

= CeAt
(
x(0)− (sI −A)−1B

)

︸ ︷︷ ︸
transient response

+
(
C(sI −A)−1B +D

)
est

︸ ︷︷ ︸
pure exponential response yp

,

(9.3)

and the transfer function from u to y of the system (9.2) is the coefficient of the
term est, hence

G(s) = C(sI −A)−1B +D. (9.4)

Compare this with the definition of frequency response given by equations (6.23)
and (6.24).

An important point in the derivation of the transfer function is the fact that
we have restricted s so that s 6= λj(A), the eigenvalues of A. At those values of s,
we see that the response (9.3) of the system is singular (since sI − A then is not
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invertible). The transfer function can, however, be extended to all values of s by
analytic continuation.

To give some insight we will now discuss the structure of equation (9.3). We
first notice that the output y(t) can be separated into two terms in two different
ways, as is indicated by braces in the equation.

The response of the system to initial conditions is CeAtx(0). Recall that eAt

can be written in terms of the eigenvalues of A (using the Jordan form in the case of
repeated eigenvalues), and hence the transient response is a linear combination of
terms of the form pj(t)e

λjt, where λj are eigenvalues of A and pj(t) is a polynomial
whose degree is less than the multiplicity of the eigenvalue (Exercise 9.1).

The response to the input u(t) = est contains a mixture of terms pj(t)e
λjt and

the exponential function

yp(t) =
(
C(sI −A)−1B +D

)
est = G(s)est, (9.5)

which is a particular solution to the differential equation (9.2). We call equa-
tion (9.5) the pure exponential solution because it has only one exponential est. It
follows from equation (9.3) that the output y(t) is equal to the pure exponential
solution yp(t) if the initial condition is chosen as

x(0) = (sI −A)−1B. (9.6)

If the system (9.2) is asymptotically stable, then eAt → 0 as t → ∞. If in
addition the input u(t) is a constant u(t) = e0 · t or a sinusoid u(t) = eiωt then the
response converges to a constant or sinusoidal steady-state solution (as shown in
equation (6.23)).

To simplify manipulation of the equations describing linear time-invariant sys-
tems, we introduce E as the class of time functions that can be created from combi-
nations of signals of the form X(s)est, where the parameter s is a complex variable
and X(s) is a complex function (vector valued if needed). It follows from equa-
tions (9.3) and (9.4) that if a system with transfer function G(s) has the input
u ∈ E then there is a particular solution y ∈ E that satisfies the dynamics of the
system. This solution is the actual response of the system if the initial condition
is chosen as equation (9.6). Since the transfer function of a system is given by
the pure exponential response, we can derive transfer functions using exponential
signals, and we will use the notation

y = Gyu u, (9.7)

where Gyu is the transfer function for the linear input/output system taking u to
y. Mathematically, it is important to remember that this notation assumes the use
of combinations of exponential signals. We will also often drop the subscripts on G
and just write y = Gu when the meaning is clear from context.

Example 9.1 Damped oscillator
Consider the response of a damped linear oscillator, whose state space dynamics
were studied in Section 7.3:

dx

dt
=


 0 ω0

−ω0 −2ζω0


x+


 0
kω0


u, y =


1 0


x. (9.8)
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This system is asymptotically stable if ζ > 0, and so we can look at the steady-state
response to an input u = est:

Gyu(s) = C(sI −A)−1B =

1 0




 s −ω0

ω0 s+ 2ζω0




−1 0
kω0




=

1 0



(

1

s2 + 2ζω0s+ ω2
0


s+ 2ζω0 −ω0

ω0 s



)
 0
kω0




=
kω2

0

s2 + 2ζω0s+ ω2
0

.

(9.9)

The steady-state response to a step input is obtained by setting s = 0, which gives

u = 1 =⇒ y = Gyu(0)u = k.

If we wish to compute the steady-state response to a sinusoid, we write

u = sinωt =
1

2

(
ie−iωt − ieiωt

)
=⇒ y =

1

2

(
iGyu(−iω)e−iωt − iGyu(iω)e

iωt
)
.

We can now write G(iω) in terms of its magnitude and phase,

G(iω) =
kω2

0

−ω2 + (2ζω0ω)i+ ω2
0

=Meiθ,

where the magnitude (or gain) M and phase θ are given by

M =
kω2

0√
(ω2

0 − ω2)2 + (2ζω0ω)2
,

sin θ

cos θ
=

−2ζω0ω

ω2
0 − ω2

.

We can also make use of the fact that G(−iω) is given by its complex conjugate
G∗(iω), and it follows that G(−iω) = Me−iθ. Substituting these expressions into
our output equation, we obtain

y =
1

2

(
i(Me−iθ)e−iωt − i(Meiθ)eiωt

)

=M ·
1

2

(
ie−i(ωt+θ) − iei(ωt+θ)

)
=M sin(ωt+ θ).

The responses to other signals can be computed by writing the input as an appro-
priate combination of exponential responses and using linearity. ∇

Example 9.2 Operational amplifier circuit
To further illustrate the use of exponential signals, we consider the operational am-
plifier circuit described in Section 4.3 and reproduced in Figure 9.3a. The model in
Section 4.3 is a simplification because the linear behavior of the amplifier is mod-
eled as a constant gain. In reality there are significant dynamics in the amplifier,
and the static model vout = −kv (equation (4.11)) should therefore be replaced by
a dynamical model vout = −Gv. A simple transfer function is

G(s) =
ak

s+ a
. (9.10)
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(a) Circuit diagram
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(b) Frequency response

Figure 9.3: Stable amplifier based on negative feedback around an operational
amplifier. The circuit diagram on the left shows a typical amplifier with low-
frequency gain R2/R1. If we model the dynamic response of the op amp as G(s) =
ak/(s+ a), then the gain falls off at frequency ω = aR1k/R2, as shown in the gain
curves on the right. The frequency response is computed for k = 107, a = 10 rad/s,
R2 =106 Ω, and R1 = 1, 102, 104, and 106 Ω.

These dynamics correspond to a first-order system with time constant 1/a. The
parameter k is called the open loop gain, and the product ak is called the gain-
bandwidth product; typical values for these parameters are k = 107 and ak = 107–
109 rad/s.

If the input v1 is an exponential signal est, then there are solutions where all
signals in the circuit are exponentials, v, v1, v2 ∈ E , since all of the elements of the
circuit are modeled as being linear. The equations describing the system can then
be manipulated algebraically.

Assuming that the current into the amplifier is zero, as is done in Section 4.3,
the currents through the resistors R1 and R2 are the same, hence

v1 − v

R1
=
v − v2
R2

, or (R1 +R2)v = R2v1 +R1v2.

Combining the above equation with the open loop dynamics of the operational
amplifier (9.10), which can be written as v2 = −Gv in the simplified notation (9.7),
gives the following model for the closed loop system:

(R1 +R2)v = R2v1 +R1v2, v2 = −Gv, v, v1, v2 ∈ E . (9.11)

Eliminating v between these equations yields

v2 =
−R2G

R1 +R2 +R1G
v1 =

−R2ak

R1ak + (R1 +R2)(s+ a)
v1,

and the transfer function of the closed loop system is

Gv2v1 =
−R2ak

R1ak + (R1 +R2)(s+ a)
. (9.12)

The low-frequency gain is obtained by setting s = 0, hence

Gv2v1(0) =
−kR2

(k + 1)R1 +R2
≈ −R2

R1
,
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which is the result given by equation (4.12) in Section 4.3. The bandwidth of the
amplifier circuit is

ωb = a
R1(k + 1) +R2

R1 +R2
≈ a

R1k

R2
for k ≫ 1,

where the approximation holds for R2/R1 ≫ 1. The gain of the closed loop system
drops off at high frequencies as R2ak/(ω(R1+R2)). The frequency response of the
transfer function is shown in Figure 9.3b for k = 107, a = 10 rad/s, R2 = 106 Ω,
and R1 = 1, 102, 104, and 106 Ω.

Note that in solving this example, we bypassed explicitly writing the signals as
v = V (s)est and instead worked directly with v, assuming it was an exponential.
This shortcut is handy in solving problems of this sort and when manipulating block
diagrams. A comparison with Section 4.3, where we make the same calculation
when G(s) is a constant, shows analysis of systems using transfer functions is as
easy as using static systems. The calculations are the same if the resistances R1

and R2 are replaced by impedances, as discussed further in Example 9.3. ∇

Transfer Functions for Linear Differential Equations

Consider a linear system described by the controlled differential equation

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b0

dmu

dtm
+ b1

dm−1u

dtm−1
+ · · ·+ bmu, (9.13)

where u is the input and y is the output. Notice that here we have generalized our
system description from Section 3.2 to allow both the input and its derivatives to
appear. This type of description arises in many applications, as described briefly
in Chapter 2 and Section 3.2; bicycle dynamics and AFM modeling are two specific
examples.

To determine the transfer function of the system (9.13), let the input be u(t) =
est. Since the system is linear, there is an output of the system that is also an
exponential function y(t) = y0e

st. Inserting the signals into equation (9.13), we
find

(sn + a1s
n−1 + · · ·+ an)y0e

st = (b0s
m + b1s

m−1 · · ·+ bm)est,

and the response of the system can be completely described by two polynomials

a(s) = sn + a1s
n−1 + · · ·+ an, b(s) = b0s

m + b1s
m−1 + · · ·+ bm. (9.14)

The polynomial a(s) is the characteristic polynomial of the ordinary differential
equation. If a(s) 6= 0, it follows that

y(t) = y0e
st =

b(s)

a(s)
est. (9.15)

The transfer function of the system (9.13) is thus the rational function

G(s) =
b(s)

a(s)
=
b0s

m + b1s
m−1 + · · ·+ bm

sn + a1sn−1 + · · ·+ an
, (9.16)
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where the polynomials a(s) and b(s) are given by equation (9.14). Notice that
the transfer function for the system (9.13) can be obtained by inspection since the
coefficients of a(s) and b(s) are precisely the coefficients of the derivatives of u and
y. The poles and the zeros of the transfer function are the roots of the polynomials
a(s) and b(s). The properties of the system are determined by the poles and zeros
of the transfer function, as we shall see in the examples that follow and shall explore
in more detail in Section 9.5.

Example 9.3 Electrical circuit elements
Modeling of electrical circuits is a common use of transfer functions. Consider, for
example, a resistor modeled by Ohm’s law V = IR, where V is the voltage across
the resistor, I is the current through the resistor, and R is the resistance value. If
we consider current to be the input and voltage to be the output, the resistor has
the transfer function Z(s) = R, which is also called the generalized impedance of
the circuit element.

Next we consider an inductor whose input/output characteristic is given by

L
dI

dt
= V.

Letting the current be I(t) = est, we find that the voltage is V (t) = Lsest and the
transfer function of an inductor is thus Z(s) = Ls. A capacitor is characterized by

C
dV

dt
= I,

and a similar analysis gives a transfer function from current to voltage of Z(s) =
1/(Cs). Using transfer functions, complex electrical circuits can be analyzed al-
gebraically by using the generalized impedance Z(s) just as one would use the
resistance value in a resistor network. ∇

Example 9.4 Vibration damper
Damping vibrations is a common engineering problem. A schematic diagram of a
vibration damper is shown in Figure 9.4. To analyze the system we use Newton’s
equations for the two masses:

m1q̈1 + c1q̇1 + k1q1 + k2(q1 − q2) = F, m2q̈2 + k2(q2 − q1) = 0.

To determine the transfer function from the force F to the position q1 of the mass
m1 we first find particular exponential solutions:

(m1s
2 + c1s+ k1)q1 + k2(q1 − q2) = F, m2s

2q2 + k2(q2 − q1) = 0. (9.17)

We solve q2 from the second expression,

q2 =
k2

m2s2 + k2
q1,

and insert this into the first expression to obtain

(m1s
2 + c1s+ k1)q1 + k2

(
1− k2

m2s2 + k2

)
q1 = F,
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m1

k1
m2

c1

k2

F

q1

q2

Figure 9.4: A vibration damper. Vibrations of the mass m1 can be damped by
providing it with an auxiliary mass m2, attached to m1 by a spring with stiffness
k2. The parameters m2 and k2 are chosen so that the frequency

√

k2/m2 matches
the frequency of the vibration.

and hence

(
(m1s

2 + c1s+ k1 + k2)(m2s
2 + k2)− k22

)
q1 = (m2s

2 + k2)F.

Expanding the expression gives the transfer function

Gq1F (s) =
m2s

2 + k2
m1m2s4 +m2c1s3 + (m1k2 +m2(k1 + k2))s2 + k2c1s+ k1k2

from the disturbance force F to the position q1 of the mass m1. The transfer
function has a zero at s = ±i

√
k2/m2, which means that transmission of sinusoidal

signals with this frequency are blocked (this blocking property will be discussed in
Section 9.5). ∇

As the examples above illustrate, transfer functions provide a simple represen-
tation for linear input/output systems. Transfer functions for some common linear
time-invariant systems are given in Table 9.1. Transfer functions of a form similar
to equation (9.13) can also be constructed for systems with many inputs and many
outputs.

Time Delays and Partial Differential Equations

Although we have focused thus far on ordinary differential equations, transfer func-
tions can also be used for other types of linear systems. We illustrate this using
time delays and systems described by partial differential equations.

Example 9.5 Time delay
Time delays appear in many systems: typical examples are delays in nerve propa-
gation, communication systems, and mass transport. A system with a time delay
has the input/output relation

y(t) = u(t− τ). (9.18)
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Table 9.1: Transfer functions for some common linear time-invariant systems.

Type System Transfer Function

Integrator ẏ = u
1

s

Differentiator y = u̇ s

First-order system ẏ + ay = u
1

s+ a

Double integrator ÿ = u
1

s2

Damped oscillator ÿ + 2ζω0ẏ + ω2
0y = u

1

s2 + 2ζω0s+ ω2
0

State space system ẋ = Ax+Bu, y = Cx+Du C(sI −A)−1B +D

PID controller y = kpu+ kdu̇+ ki
∫

u kp + kds+
ki
s

Time delay y(t) = u(t− τ) e−τs

To obtain the corresponding transfer function we let the input be u(t) = est, and
the output is then

y(t) = u(t− τ) = es(t−τ) = e−sτest = e−sτu(t).

We find that the transfer function of a time delay is thus G(s) = e−sτ , which is not
a rational function. ∇

�
Example 9.6 Heat propagation
Consider the problem of one-dimensional heat propagation in a semi-infinite metal
rod. Assume that the input is the temperature at one end and that the output is
the temperature at a point along the rod. Let θ(x, t) be the temperature at position
x and time t. With a proper choice of length scales and units, heat propagation is
described by the partial differential equation

∂θ

∂t
=
∂2θ

∂2x
, y(t) = θ(1, t), (9.19)

and the point of interest can be assumed to have x = 1. The boundary condition
for the partial differential equation is

θ(0, t) = u(t).

To determine the transfer function we choose the input as u(t) = est. Assume that
there is a solution to the partial differential equation of the form θ(x, t) = ψ(x)est

and insert this into equation (9.19) to obtain

sψ(x) =
d2ψ

dx2
,
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with boundary condition ψ(0) = 1. This ordinary differential equation (with inde-
pendent variable x) has the solution

ψ(x) = Aex
√
s +Be−x

√
s.

Since the temperature of the rod is bounded we have A = 0, the boundary condition
gives B = 1, and the solution is then

y(t) = θ(1, t) = ψ(1)est = e−
√
sest = e−

√
su(t).

The system thus has the transfer function G(s) = e−
√
s. As in the case of a time

delay, the transfer function is not a rational function. ∇

State Space Realizations of Transfer Functions

We have seen in equation (9.4) how to compute the transfer function for a given
state space control system. The inverse problem, computing a state space control
system for a given transfer function, is known as the realization problem. Given a
transfer function G(s), we say that a state space system with matrices A, B, C, and
D is a (state space) realization of G(s) if G(s) = C(sI − A)−1B +D. We explore
here some of the properties of realizations of transfer functions, starting with the
question of uniqueness.

As we saw in Section 6.3, it is possible to choose a different set of coordinates for
the state space of a linear system and still preserve the input/output response. In
other words, the matrices A, B, C, and D in the state space equations (9.2) depend
on the choice of coordinate system used for the states, but since the transfer function
relates input to outputs, it should be invariant to coordinate changes in the state
space. Repeating the analysis in Chapter 6, consider a model (9.2) and introduce
new coordinates z by the transformation z = Tx, where T is a nonsingular matrix.
The system is then described by

dz

dt
= T (Ax+Bu) = TAT−1z + TBu =: Ãz + B̃u,

y = Cx+Du = CT−1z +Du =: C̃z +Du.

This system has the same form as equation (9.2), but the matrices A, B, and C
are different:

Ã = TAT−1, B̃ = TB, C̃ = CT−1. (9.20)

Computing the transfer function of the transformed model, we get

G̃(s) = C̃(sI − Ã)−1B̃ +D = CT−1(sI − TAT−1)−1TB +D

= C
(
T−1(sI − TAT−1)T

)−1
B +D = C(sI −A)−1B +D = G(s),

which is identical to the transfer function (9.4) computed from the system descrip-
tion (9.2). The transfer function is thus invariant to changes of the coordinates in
the state space.

One consequence of this coordinate invariance is that it is not possible for there
to be a unique state space realization for a given transfer function. Given any one
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realization, we can compute another realization by simply changing coordinates
using any invertible matrix T . Note, however, that the dimension of the state
space realization is not changed by this transformation. It therefore makes sense
to talk about a minimal realization, in which the number of states is as small as
possible. For a transfer function G(s) = b(s)/a(s) with denominator a(s) of degree
n, it can be shown that there is always a realization with n states, given by a state
space system in reachable canonical form (7.6). In general, a minimal realization
will always have at most n states. However, the degree may be lower if there are
pole/zero cancellations, as illustrated by the following example.

Example 9.7 Cancellation of poles and zeros
Consider the system

dx

dt
=


−3 1
−2 0


x+


1
1


u, y =


1 0


x.

Equation (9.4) gives the following transfer function

G(s) =

1 0




s+ 3 −1

2 s




−11
1


 =

1

s2 + 3s+ 2


1 0




 s 1
−2 s+ 3




1
1




=
s+ 1

s2 + 3s+ 2
=

s+ 1

(s+ 1)(s+ 2)
=

1

s+ 2
.

Even though the original state space system was of second order, the transfer
function is a first-order rational function. The reason is that the factor s + 1
has been canceled when computing the transfer function. Cancellation of poles and
zeros is related to lack of reachability and observability. In this particular case the
reachability matrix

Wr =

B AB


 =


1 −2
1 −2




has rank 1 and the system is not reachable. Notice that it was shown in Section 8.3
that the transfer function is given by the reachable and observable subsystem Σro in
the Kalman decomposition of a linear system, which in this case is of first order. ∇

The general approach to understand realizations (and minimal realizations) is to �
make use of the Kalman decomposition in Section 8.3. We see from the structure
of equation (8.20) that the input/output response of a linear control system is
determined solely by the reachable and observable subsystem Σro. When a system
lacks reachability and observability, this shows up as cancellation of poles and zeros
in the transfer function computed from the full system matrices.

Cancellation of poles and zeros was controversial for a long time, which was
manifested in rules for manipulating transfer functions: do not cancel factors with
roots in the right half-plane. Special algebraic methods were also developed to do
block diagram algebra. Kalman’s decomposition, which clarifies that the trans-
fer function only represents part of the dynamics, gives clear insight into what is
happening. These issues are discussed in more detail in Section 9.5.

The results of this section can also be extended to the case of multi-input, multi-
output (MIMO) systems. The transfer function G(s) for a single-input, single-
output given by equation (9.4) is a function of complex variables, G : C → C.
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Table 9.2: Laplace transforms for some common signals.

Signal u(t) Laplace transform U(s)

S(t) [unit step]
1

s

sin(at)
a

s2 + a2

e−αt sin(at)
a

(s+ α)2 + a2

Signal u(t) Laplace transform U(s)

δ(t) [impulse] 1

cos(at)
s

s2 + a2

e−αt cos(at)
s+ α

(s+ α)2 + a2

For systems with p inputs and q outputs the transfer function is matrix-valued,
G : C → Cq×p. The techniques described above can be generalized to this case, but
the notion of a (minimal) realization becomes substantially more complicated.

9.3 Laplace Transforms �

The traditional way to derive the transfer function for a linear, time-invariant, in-
put/output system is to make use of Laplace transforms. The Laplace transform
method was particularly important before the advent of computers, since it pro-
vided a practical way to compute the response of a system to a given input. Today,
we compute the response of a linear (or nonlinear) system to complex inputs us-
ing numerical simulation, and the Laplace transform is no longer needed for this
purpose. It is however, still useful to gain insight into the response of linear systems.

In this section, we provide a brief introduction to the use of Laplace trans-
forms and their connections with transfer functions. Only a few elementary prop-
erties of Laplace transforms are needed for basic control applications; students who
are not familiar with them can safely skip this section. A good reference for the
mathematical material in this section is the classic book by Widder [Wid41] or
the more modern treatments available in standard textbooks on signals and sys-
tems [LV11, OWN96].

Consider a function f(t), f : R+ → R, that is integrable and grows no faster
than es0t for some finite s0 ∈ R and large t. The Laplace transform maps f to a
function F = Lf : C → C of a complex variable. It is defined by

F (s) =

∫ ∞

0

e−stf(t) dt, Re s > s0. (9.21)

Using this formula, it is possible to compute the Laplace transform of some common
functions; see Table 9.2.

The Laplace transform has some properties that makes it well suited to deal
with linear systems. First we observe that the transform itself is linear because

L(af + bg) =

∫ ∞

0

e−st(af(t) + bg(t)) dt

= a

∫ ∞

0

e−stf(t) dt+ b

∫ ∞

0

e−stg(t) dt = aLf + bLg.
(9.22)
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Using linearity we can compute the Laplace transform of combinations of simple
inputs, such as those that make up the set of exponential signals E introduced
earlier.

Next we will calculate the Laplace transform of the integral of a function. Using
integration by parts, we get

L
∫ t

0

f(τ) dτ =

∫ ∞

0

(
e−st

∫ t

0

f(τ) dτ
)
dt

= −e
−st

s

∫ t

0

f(τ) dτ
∣∣∣
∞

0
+

∫ ∞

0

e−sτ

s
f(τ) dτ =

1

s

∫ ∞

0

e−sτf(τ) dτ,

hence F○

L
∫ t

0

f(τ) dτ =
1

s
Lf =

1

s
F (s). (9.23)

Integration of a time function thus corresponds to division of the corresponding
Laplace transform by s.

Since integration corresponds to division by s, we can expect that differentia-
tion corresponds to multiplication by s. This is not quite true as we will see by
calculating the Laplace transform of the derivative of a function. We have

Ldf
dt

=

∫ ∞

0

e−stf ′(t) dt = e−stf(t)
∣∣∣
∞

0
+ s

∫ ∞

0

e−stf(t) dt = −f(0) + sLf,

where the second equality is obtained using integration by parts. We thus obtain

Ldf
dt

= sLf − f(0) = sF (s)− f(0). (9.24)

Notice the appearance of the initial value f(0) of the function. The formula (9.24)
is particularly simple if the initial conditions are zero, because if f(0) = 0 it follows
that differentiation of a function corresponds to multiplication of the transform by
s.

Using Laplace transforms the transfer function for a linear time-invariant system
can be defined as the ratio of the transform of the input and the output, when the
transforms are computed under the assumption that all initial conditions are zero.
We will now illustrate how Laplace transforms can be used to compute transfer
functions.

Example 9.8 Transfer function of state space model
Consider the state space system described by equation (9.2). Taking Laplace trans-
forms gives

sX(s)− x(0) = AX(s) +BU(s), Y (s) = CX(s) +DU(s).

Elimination of X(s) gives

X(s) = (sI −A)−1x(0) + (sI −A)−1BU(s). (9.25)

When the initial condition x(0) is zero we have

X(s) = (sI −A)−1BU(s), Y (s) =
(
C(sI −A)−1B +D

)
U(s),

and the transfer function is given by G(s) = C(sI − A)−1B + D (compare with
equation (9.4)). ∇

http://fbsbook.org
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Example 9.9 Transfer functions and impulse response
Consider a linear time-invariant system with zero initial state. We saw in Section 6.3
that the relation between the input u and the output y is given by the convolution
integral

y(t) =

∫ ∞

0

h(t− τ)u(τ) dτ,

where h(t) is the impulse response for the system (assumed causal). Taking the
Laplace transform of this expression and using the fact that h(t′) = 0 for t′ =
t− τ < 0 gives

Y (s) =

∫ ∞

0

e−sty(t) dt =
∫ ∞

0

e−st
∫ ∞

0

h(t− τ)u(τ) dτ dt

=

∫ ∞

0

∫ t

0

e−s(t−τ)e−sτh(t− τ)u(τ) dτ dt

=

∫ ∞

0

∫ ∞

0

e−st
′

h(t′)e−sτu(τ) dτ dt′

=

∫ ∞

0

e−sth(t) dt
∫ ∞

0

e−sτu(τ) dτ = H(s)U(s).

Thus, the input/output response is given by Y (s) = H(s)U(s), where H, U , and
Y are the Laplace transforms of h, u, and y.

The system theoretic interpretation is that the Laplace transform of the output
of a linear system is a product of two terms, the Laplace transform of the input
U(s) and the Laplace transform of the impulse response of the system H(s). A
mathematical interpretation is that the Laplace transform of a convolution is the
product of the transforms of the functions that are convolved. The fact that the
formula Y (s) = H(s)U(s) is much simpler than a convolution is one reason why
Laplace transforms have traditionally been popular in engineering. ∇

A variety of theorems are available using Laplace transforms that are useful in
a control systems setting. The initial value theorem states that

lim
t→0

f(t) = lim
s→∞

sF (s).

Using this theorem and the fact that a step input has Laplace transform 1/s, we
can compute the initial value of signals in a control system in response to step
inputs. For example, if Gur represents that transfer function between the reference
r and control input u, then the step response will have the property that

u(0) = lim
t→0

u(t) = lim
s→∞

sU(s) = lim
s→∞

s ·Gur(s) ·
1

s
= Gur(∞).

Similarly, the final value theorem states that

lim
t→∞

f(t) = lim
s→0

sF (s),

and this can be used to show that for a step input r(t) we have limt→∞ y(t) =
Gyr(0).
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1 +G1G2

Figure 9.5: Interconnections of linear systems. Series (a), parallel (b), and feed-
back (c) connections are shown. The transfer functions for the composite systems
can be derived by algebraic manipulations assuming exponential functions for all
signals.

9.4 Block Diagrams and Transfer Functions

The combination of block diagrams and transfer functions is a powerful way to
represent control systems. Transfer functions relating different signals in the system
can be derived by purely algebraic manipulations of the transfer functions of the
blocks using block diagram algebra. Outputs resulting from several input signals can
be derived using superposition. To show how this can be done, we will begin with
simple combinations of systems. We will assume that all signals are exponential
signals E and we will use the compact notation y = Gu for the output y ∈ E of a
linear time-invariant system with the input u ∈ E and the transfer function G (see
equation (9.7) and recall its interpretation).

Consider a system that is a cascade combination of systems with the transfer
functions G1(s) and G2(s), as shown in Figure 9.5a. Let the input of the system
be u ∈ E . The output of the first block is then G1u ∈ E , which is also the input to
the second system. The output of the second system is then

y = G2(G1u) = (G2G1)u. (9.26)

The transfer function of the series connection is thus G = G2G1, i.e., the product
of the transfer functions. The order of the individual transfer functions is due to
the fact that we place the input signal on the right-hand side of this expression,
hence we first multiply by G1 and then by G2. Unfortunately, this has the opposite
ordering from the diagrams that we use, where we typically have the signal flow
from left to right, so one needs to be careful. The ordering is important if either H○
G1 or G2 is a vector-valued transfer function, as we shall see in some examples.

Consider next a parallel connection of systems with the transfer functions G1

and G2, as shown in Figure 9.5b, and assume that all signals are exponential signals.
The outputs of the first and second systems are simply G1u and G2u and the output
of the parallel connection is

y = G1u+G2u = (G1 +G2)u.

The transfer function for a parallel connection is thus G = G1 +G2.

http://fbsbook.org
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µ
Σ Σ

v

Σ

w

ye u η
F (s)

r
C(s) P (s)

−1

Figure 9.6: Block diagram of a feedback system. The inputs to the system are
the reference signal r, the process disturbance v, and the measurement noise w.
The remaining signals in the system can all be chosen as possible outputs, and
transfer functions can be used to relate the system inputs to the other labeled
signals.

Finally, consider a feedback connection of systems with the transfer functions
G1 and G2, as shown in Figure 9.5c. Writing the relations between the signals for
the different blocks and the summation unit, we find

y = G1e, e = u−G2y. (9.27)

Elimination of e gives

y = G1(u−G2y) =⇒ (1 +G1G2)y = G1u =⇒ y =
G1

1 +G1G2
u.

The transfer function of the feedback connection is thus

G =
G1

1 +G1G2
. (9.28)

These three basic interconnections can be used as the basis for computing transfer
functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figure 9.6, which was given at the beginning of the chapter.
The system has three blocks representing a process P , a feedback controller C,
and a feedforward controller F . Together, C and F define the control law for the
system. There are three external signals: the reference (or command) signal r,
the load disturbance v, and the measurement noise w. A typical problem is to
determine how the error e is related to the signals r, v, and w.

To derive the transfer functions we are interested in, we assume that all signals
are exponential signals E and we write the relations between the signals for each
block in the system block diagram. Assume for example that we are interested in
the control error e. The summation point and the block F (s) gives

e = Fr − y.

The signal y is the sum of w and η, where η is the output of the process P (s):

y = w + η, η = P (v + u), u = Ce.
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Figure 9.7: Example of block diagram algebra. The results from multiplying
the process and controller transfer functions (from Figure 9.6) are shown in (a).
Replacing the feedback loop with its transfer function equivalent yields (b), and
finally multiplying the two remaining blocks gives the reference to output repre-
sentation in (c).

Combining these equations gives

e = Fr − y = Fr − (w + η) = Fr −
(
w + P (v + u)

)

= Fr −
(
w + P (v + Ce)

)
,

and hence
e = Fr − w − Pv − PCe.

Finally, solving this equation for e gives

e =
F

1 + PC
r − 1

1 + PC
w − P

1 + PC
v = Gerr +Geww +Gevv, (9.29)

and the error is thus the sum of three terms, depending on the reference r, the
measurement noise w, and the load disturbance v. The functions

Ger =
F

1 + PC
, Gew =

−1

1 + PC
, Gev =

−P
1 + PC

(9.30)

are transfer functions from reference r, noise w, and disturbance v to the error e.
Equation (9.29) can also be obtained by computing the outputs for each input and
using superposition.

We can also derive transfer functions by manipulating the block diagrams di-
rectly, as illustrated in Figure 9.7. Suppose we wish to compute the transfer func-
tion between the reference r and the output y. We begin by combining the process
and controller blocks in Figure 9.6 to obtain the diagram in Figure 9.7a. We can
now eliminate the feedback loop using the algebra for a feedback interconnection
(Figure 9.7b) and then use the series interconnection rule to obtain

Gyr =
PCF

1 + PC
. (9.31)

Similar manipulations can be used to obtain the other transfer functions (Exer-
cise 9.10).

The above analysis illustrates an effective way to manipulate the equations to
obtain the relations between inputs and outputs in a feedback system. The general
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idea is to start with the variable of interest and to trace variables backwards around
the feedback loop. With some practice, equations (9.29) and (9.30) can be written
directly by inspection of the block diagram. Notice, for example, that all terms
in equation (9.30) have the same denominator and that the numerators are the
products of the blocks that one passes through when going directly from input to
output (ignoring the feedback). This type of rule can be used to compute transfer
functions by inspection, although for systems with multiple feedback loops it can
be tricky to compute them without writing down the algebra explicitly.

We can also use block diagram algebra to obtain insights about state space con-
trollers. Consider a state space controller that uses an observer, such as the one
shown in Figure 8.7. The process model is

dx

dt
= Ax+Bu, y = Cx,

and the controller (8.15) is given by

u = −Kx̂+ kfr, (9.32)

where x̂ is the output of a state observer (8.16) given by

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂). (9.33)

The controller is a system with one output u and two inputs, the reference r and
the measured signal y. Using transfer functions and exponential signals it can be
represented as

u = Gurr +Guyy. (9.34)

The transfer function Guy from y to u describes the feedback action and Gur from
r to u describes the feedforward action. We call these open loop transfer functions
because they represent the relationships between the signals without considering the
dynamics of the process (e.g., removing P from the system description or cutting
the loop at the process input or output).

To derive the controller transfer functions we rewrite equation (9.33) as

dx̂

dt
= (A−BK − LC)x̂+Bkfr + Ly. (9.35)

Letting x̂, r, and y be exponential signals, the above equations give

u = −Kx̂+ kfr, (sI − (A−BK − LC))x̂ = Bkfr + Ly,

and we find that the controller transfer functions in equation (9.34) are

Gur = kf −K(sI −A+BK + LC)−1Bkf,

Guy = −K(sI −A+BK + LC)−1L.
(9.36)

We illustrate with an example.
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r(t)

Controller
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Gx̂u Gx̂y

−1 Σ
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u yr

kf
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x̂

Figure 9.8: Block diagram for a steering control system. The control system
is designed to maintain the lateral position of the vehicle along a reference curve
(left). The structure of the control system is shown on the right as a block diagram
of transfer functions. The estimator consists of two components that compute the
estimated state x̂ from the combination of the input u and output y of the process.
The estimated state is fed through a state feedback controller and combined with
a feedforward gain obtain the commanded steering angle u.

Example 9.10 Vehicle steering
Consider the linearized model for vehicle steering introduced in Example 6.13. In
Examples 7.4 and 8.3 we designed a state feedback controller and state estimator for
the system. A block diagram for the resulting control system is given in Figure 9.8.
Note that we have split the estimator into two components, Gx̂u(s) and Gx̂y(s),
corresponding to its inputs u and y. To compute these transfer functions we use
equation (9.33) and the expressions for A, B, C, and L from Example 8.3, hence

Gx̂u(s) =




γs+ 1

s2 + l1s+ l2

s+ l1 − γl2
s2 + l1s+ l2



, Gx̂y(s) =




l1s+ l2
s2 + l1s+ l2

l2s

s2 + l1s+ l2



,

where l1 and l2 are the observer gains and γ is the scaled position of the center
of mass from the rear wheels. Applying block diagram algebra to the controller in
Figure 9.8 we obtain

Gur(s) =
kf

1 +KGx̂u(s)
=

kf(s
2 + l1s+ l2)

s2 + s(γk1 + k2 + l1) + k1 + l2 + k2l1 − γk2l2
,

and

Guy(s) =
−KGx̂y(s)
1 +KGx̂u(s)

=
s(k1l1 + k2l2) + k1l2

s2 + s(γk1 + k2 + l1) + k1 + l2 + k2l1 − γk2l2
,

where k1 and k2 are the state feedback gains and kf is the feedforward gain. The
last equalities are obtained applying block diagram algebra to Figure 9.8, but can
also be obtained by applying equation (9.36).

To compute the closed loop transfer function Gyr from reference r to output y,
we begin by deriving the transfer function for the process P (s). We can compute
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this directly from the state space description, which was given in Example 6.13.
Using that description, we have

P (s) = Gyu(s) = C(sI −A)−1B +D =

1 0




s −1
0 s




−1γ
1


 =

γs+ 1

s2
.

The transfer function for the full closed loop system between the input r and the
output y is then given by

Gyr =
P (s)Gur(s)

1− P (s)Guy(s)
=

kf(γs+ 1)

s2 + (k1γ + k2)s+ k1
.

(The unusual sign in the denominator of the middle expression occurs because Gur
is in the feedback path and incorporates the −1 gain element.) ∇

Note that in the previous example the observer gains l1 and l2 do not appear
in the transfer function Gyr. This is true in general, as follows from Figure 8.9b in
Section 8.3.

We also note that a control system using an observer should be implemented as
the multivariable system (9.35), which is of order n. It should not be implemented
using two separate transfer functions, as described in equation (9.34), because the
controller would then be of order 2n, and there will be unobservable modes.

Algebraic Loops �

When analyzing or simulating a system described by a block diagram, it is necessary
to form the differential equations that describe the complete system. In many cases
the equations can be obtained by combining the differential equations that describe
each subsystem and substituting variables. This simple procedure cannot be used
when there are closed loops of subsystems that all have a direct connection between
inputs and outputs, known as an algebraic loop.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx

dt
= f(x, u), y = h(x), (9.37)

and a proportional controller described by u = −ky. There is no direct term since
the function h does not depend on u. In that case we can obtain the equation for
the closed loop system simply by replacing u by −ky in equation (9.37) to give

dx

dt
= f(x,−ky), y = h(x).

Such a procedure can easily be automated using simple formula manipulation.
The situation is more complicated if there is a direct term. If y = h(x, u), then

replacing u by −ky gives

dx

dt
= f(x,−ky), y = h(x,−ky).

To obtain a differential equation for x, the algebraic equation y = h(x,−ky) must
be solved to give y = α(x), which in general is a complicated task.
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When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. Resolving algebraic
loops is a nontrivial problem because it requires the symbolic solution of algebraic
equations. Most block diagram-oriented modeling languages cannot handle alge-
braic loops, and they simply give a diagnosis that such loops are present. In the era
of analog computing, algebraic loops were eliminated by introducing fast dynamics
between the loops. This created differential equations with fast and slow modes
that are difficult to solve numerically. Advanced modeling languages like Modelica
use several sophisticated methods to resolve algebraic loops.

9.5 Zero Frequency Gain, Poles, and Zeros

The transfer function has many useful interpretations and the features of a transfer
function are often associated with important system properties. Three of the most
important features are the gain and the locations of the poles and zeros.

Zero Frequency Gain

The zero frequency gain of a system is given by the magnitude of the transfer
function at s = 0. It represents the ratio of the steady-state value of the output
with respect to a step input (which can be represented as u = est with s = 0). For
a state space system, we computed the zero frequency gain in equation (6.22):

G(0) = D − CA−1B.

For a system modeled as the linear differential equation

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b0

dmu

dtm
+ b1

dm−1u

dtm−1
+ · · ·+ bmu,

if we assume that the input u and output y are constants y0 and u0, then we find
that any0 = bmu0, and the zero frequency gain is

G(0) =
y0
u0

=
bm
an
. (9.38)

Poles and Zeros

Next consider a linear system with the rational transfer function

G(s) =
b(s)

a(s)
.

The roots of the polynomial a(s) are called the poles of the system, and the roots of
b(s) are called the zeros of the system. If p is a pole, it follows that y(t) = ept is a
solution of equation (9.13) with u = 0 (the solution to the homogeneous equation).
A pole p corresponds to a mode of the system with corresponding modal solution
ept. The unforced motion of the system after an arbitrary excitation is a weighted
sum of modes.
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Zeros have a different interpretation. Since the pure exponential output corre-
sponding to the input u(t) = est with a(s) 6= 0 is G(s)est, it follows that the pure
exponential output is zero if b(s) = 0. Zeros of the transfer function thus block
transmission of the corresponding exponential signals.

The difference between the number of poles and zeros npe = n−m is called the
pole excess (also sometimes referred to as the relative degree). A rational transfer
function is called proper if npe ≥ 0 and strictly proper if npe > 0.

Effective use of zeros can be seen in integral control. To obtain a closed loop
system where a constant disturbance does not create a steady-state error, the con-
troller is designed so that the transfer function from disturbance to control error
has a zero at the origin. Vibration dampers are another example where the system
is designed so that the transfer function from disturbance force to motion has a
zero at the frequency we want to damp (Example 9.4).

For a state space system with transfer function G(s) = C(sI −A)−1B +D, the
poles of the transfer function are the eigenvalues of the matrix A in the state space
model. One easy way to see this is to notice that the value of G(s) is unbounded
when s is an eigenvalue of a system since this is precisely the set of points where the
characteristic polynomial λ(s) = det(sI−A) = 0 (and hence sI−A is noninvertible).
It follows that the poles of a state space system depend only on the matrix A, which
represents the intrinsic dynamics of the system. We say that a transfer function is
stable if all of its poles have negative real part.

To find the zeros of a state space system, we observe that the zeros are complex
numbers s such that the input u(t) = U0e

st gives zero output. Inserting the pure
exponential response x(t) = X0e

st and setting y(t) = 0 in equation (9.2) gives

sestx0 = AX0e
st +BU0e

st 0 = CestX0 +DestU0,

which can be written as

A− sI B

C D




X0

U0


 est = 0.

This equation has a solution with nonzero X0, U0 only if the matrix on the left does
not have full column rank. The zeros are thus the values s such that the matrix


A− sI B

C D


 (9.39)

loses rank.
Since the zeros depend on A, B, C, and D, they therefore depend on how the

inputs and outputs are coupled to the states. Notice in particular that if the matrix
B has full row rank, then the matrix in equation (9.39) has n linearly independent
rows for all values of s. Similarly there are n linearly independent columns if the
matrix C has full column rank. This implies that systems where the matrix B or
C is square and full rank do not have zeros. In particular it means that a system
has no zeros if it is fully actuated (each state can be controlled independently) or
if the full state is measured.

A convenient way to view the poles and zeros of a transfer function is through
a pole zero diagram, as shown in Figure 9.9. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are multiple poles or zeros at
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Figure 9.9: A pole zero diagram for a transfer function with zeros at −5 and −1
and poles at −3 and −2± 2j. The circles represent the locations of the zeros, and
the crosses the locations of the poles.

a fixed location, these are often indicated with overlapping crosses or circles (or
other annotations). Poles in the left half-plane correspond to stable modes of the
system, and poles in the right half-plane correspond to unstable modes. We thus
call a pole in the left half-plane a stable pole and a pole in the right half-plane an
unstable pole. A similar terminology is used for zeros, even though the zeros do not
directly relate to stability or instability of the system. Notice that the gain must
also be given to have a complete description of the transfer function.

Example 9.11 Balance system
Consider the dynamics for a balance system, shown in Figure 9.10. The trans-
fer function for a balance system can be derived directly from the second-order
equations, given in Example 3.2:

Mt
d2q

dt2
−ml

d2θ

dt2
cos θ + c

dq

dt
+ml sin θ

(dθ
dt

)2
= F,

−ml cos θ d
2q

dt2
+ Jt

d2θ

dt2
+ γ

dθ

dt
−mgl sin θ = 0.

If we assume that θ and θ̇ are small, we can approximate this nonlinear system by
a set of linear second-order differential equations,

Mt
d2q

dt2
−ml

d2θ

dt2
+ c

dq

dt
= F,

−mld
2q

dt2
+ Jt

d2θ

dt2
+ γ

dθ

dt
−mglθ = 0.

If we let F be an exponential signal, the resulting response satisfies

Mts
2 q −mls2 θ + cs q = F,

Jts
2 θ −mls2 q + γs θ −mgl θ = 0,

where all signals are exponential signals. The resulting transfer functions for the
position of the cart and the orientation of the pendulum are given by solving for q
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(a) Cart–pendulum system
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(c) Pole zero diagram for HqF

Figure 9.10: Poles and zeros for a balance system. The balance system (a) can
be modeled around its vertical equilibrium point by a fourth order linear system.
The poles and zeros for the transfer functions HθF and HqF are shown in (b) and
(c), respectively.

and θ in terms of F to obtain

HθF (s) =
mls

(MtJt −m2l2)s3 + (γMt + cJt)s2 + (cγ −Mtmgl)s−mglc
,

HqF (s) =
Jts

2 + γs−mgl

(MtJt −m2l2)s4 + (γMt + cJt)s3 + (cγ −Mtmgl)s2 −mglcs
,

where each of the coefficients is positive. The pole zero diagrams for these two
transfer functions are shown in Figure 9.10 using the parameters from Example 7.7.

If we assume the damping is small and set c = 0 and γ = 0, we obtain

HθF (s) =
ml

(MtJt −m2l2)s2 −Mtmgl
,

HqF (s) =
Jts

2 −mgl

s2
(
(MtJt −m2l2)s2 −Mtmgl

) .

This gives nonzero poles and zeros at

p = ±
√

mglMt

MtJt −m2l2
≈ ±2.68, z = ±

√
mgl

Jt
≈ ±2.09.

We see that these are quite close to the pole and zero locations in Figure 9.10. ∇

Pole/Zero Cancellations

Because transfer functions are often polynomials in s, it can sometimes happen
that the numerator and denominator have a common factor, which can be can-
celed. Sometimes these cancellations are simply algebraic simplifications, but in
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other situations they can mask potential fragilities in the model. In particular, if a
pole/zero cancellation occurs because terms in separate blocks just happen to coin-
cide, the cancellation may not occur if one of the systems is slightly perturbed. In
some situations this can result in severe differences between the expected behavior
and the actual behavior.

Consider the block diagram in Figure 9.6 with F = 1 (no feedforward compen-
sation) and let C and P be given by

C(s) =
nc(s)

dc(s)
, P (s) =

np(s)

dp(s)
.

The transfer function from r to e is then given by

Ger(s) =
1

1 + PC
=

dc(s)dp(s)

dc(s)dp(s) + nc(s)np(s)
.

If there are common factors in the numerator and denominator polynomials, then
these terms can be factored out and eliminated from both the numerator and de-
nominator. For example, if the controller has a zero at s = −a and the process has
a pole at s = −a, then we will have

Ger(s) =
(s+ a)dc(s)d

′
p(s)

(s+ a)dc(s)d′p(s) + (s+ a)n′c(s)np(s)
=

dc(s)d
′
p(s)

dc(s)d′p(s) + n′c(s)np(s)
,

where n′c(s) and d′p(s) represent the relevant polynomials with the term s + a
factored out. We see that the s + a term does not appear in the transfer function
Ger.

Suppose instead that we compute the transfer function from v to e, which
represents the effect of a disturbance on the error between the reference and the
output. This transfer function is given by

Gev(s) = − dc(s)np(s)

(s+ a)dc(s)d′p(s) + (s+ a)n′c(s)np(s)
.

Notice that if a < 0, then the pole is in the right half-plane and the transfer function
Gev is unstable. Hence, even though the transfer function from r to e appears to be
okay (assuming a perfect pole/zero cancellation), the transfer function from v to e
can exhibit unbounded behavior. This unwanted behavior is typical of an unstable
pole/zero cancellation.

As noted at the end of Section 9.2, the cancellation of a pole with a zero can be �
understood in terms of the state space representation of the systems. Reachability
or observability is lost when there are cancellations of poles and zeros (Example 9.7
and Exercise 9.14) and the transfer function depends only on the dynamics in the
reachable and observable subsystem Σro.

Example 9.12 Cruise control
A cruise control system can be modeled by the block diagram in Figure 9.6, where
y is the vehicle velocity, r the desired velocity, v the slope of the road, and u the
throttle. Furthermore F (s) = 1, and the input/output response from throttle to
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(b) Throttle commands

Figure 9.11: Car with PI cruise control encountering a sloping road. The velocity
error is shown on the left and the throttle is shown on the right. Results for a
PI controller with kp = 0.5 and ki = 0.005 are shown by solid lines, and for a
controller with kp = 0.5 and ki = 0.1 are shown by dashed lines. Compare with
Figure 4.3b.

velocity for the linearized model for a car has the transfer function P (s) = b/(s+a).
A simple (but not necessarily good) way to design a PI controller is to choose the
parameters of the PI controller as ki = akp. The controller transfer function is then
C(s) = kp + ki/s = kp(s+ a)/s. It has a zero at s = −ki/kp = −a that cancels the
process pole at s = −a. We have P (s)C(s) = bkp/s giving the transfer function
from reference to vehicle velocity as Gyr(s) = bkp/(s + bkp), and control design is
then simply a matter of choosing the gain kp. The closed loop system dynamics
are of first order with the time constant 1/(bkp). Notice that the canceled pole 1/a
is much slower than the other pole.

Figure 9.11 shows the velocity error when the car encounters an increase in the
road slope. A comparison with the controller used in Figure 4.3b (reproduced in
dashed curves) shows that the controller based on pole/zero cancellation has very
poor performance. The velocity error is larger, and it takes a long time to settle.

Notice that the control signal remains practically constant after t = 15 even
if the error is large after that time. To understand what happens we will analyze
the system. The parameters of the system are a = 0.01 and b = 1.32, and the
controller parameters are kp = 0.5 and ki = 0.005. The closed loop time constant
is 1/(bkp) = 1.5 s, and we would expect that the error would settle in about 6 s
(4 time constants). The transfer functions from road slope to velocity and control
signals are

Gyv(s) =
bgs

(s+ a)(s+ bkp)
, Guv(s) =

bkp
s+ bkp

.

Notice that the slow canceled mode s = −a = −0.01 appears in Gyv but not in
Guv. The reason why the control signal remains constant is that the controller has
a zero at s = −0.01, which cancels the slowly decaying process mode. Note also
that the error would diverge if the canceled pole was unstable. ∇

The lesson we can learn from this example is that it is a bad idea to try to
cancel unstable or slow process poles. A more detailed discussion of pole/zero
cancellations and their impact on robustness is given in Section 14.5.
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9.6 The Bode Plot

The frequency response of a linear system can be computed from its transfer func-
tion by setting s = iω, corresponding to a complex exponential

u(t) = eiωt = cos(ωt) + i sin(ωt).

The resulting output has the form

y(t) = G(iω)eiωt =Mei(ωt+θ) =M cos(ωt+ θ) + iM sin(ωt+ θ),

where M and θ are the gain and phase of G:

M = |G(iω)|, θ = arctan
ImG(iω)

ReG(iω)
.

The gain and phase of G are also called the magnitude and argument of G, terms
that come from the theory of complex variables.

It follows from linearity that the response to a single sinusoid (sin(ωt) or cos(ωt))
is amplified by M and phase-shifted by θ. It will often be convenient to represent
the phase in degrees rather than radians. We will use the notation ∠G(iω) for
the phase in degrees and argG(iω) for the phase in radians. In addition, while
we always take argG(iω) to be in the range (−π, π], we will take ∠G(iω) to be
continuous, so that it can take on values outside the range of −180◦ to 180◦.

The frequency response G(iω) can thus be represented by two curves: the gain
curve and the phase curve. The gain curve gives |G(iω)| as a function of frequency
ω and the phase curve gives ∠G(iω). One particularly useful way of drawing these
curves is to use a log/log scale for the gain curve and a log/linear scale for the
phase curve. This type of plot is called a Bode plot and is shown in Figure 9.12.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy to sketch and interpret.
Since the frequency scale is logarithmic, they cover the behavior of a linear system
over a wide frequency range.

Consider a transfer function that is a rational function of the form

G(s) =
b1(s)b2(s)

a1(s)a2(s)
.

We have

log |G(s)| = log |b1(s)|+ log |b2(s)| − log |a1(s)| − log |a2(s)|,

and hence we can compute the gain curve by simply adding and subtracting gains
corresponding to terms in the numerator and denominator. Similarly,

∠G(s) = ∠b1(s) + ∠b2(s)− ∠a1(s)− ∠a2(s),

and so the phase curve can be determined in an analogous fashion. Since a poly-
nomial can be written as a product of terms of the type

k, s, s+ a, s2 + 2ζω0s+ ω2
0 ,
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Figure 9.12: Bode plot of the transfer function C(s) = 20+ 10
s
+10s = 10 (s+1)2

s
,

corresponding to an ideal PID controller. The upper plot is the gain curve and the
lower plot is the phase curve. The dashed lines show straight-line approximations
of the gain curve and the corresponding phase curve.

it suffices to be able to sketch Bode diagrams for these terms. The Bode plot of a
complex system is then obtained by adding the gains and phases of the terms.

The function G(s) = sk is a simple transfer function, with the important special
cases of k = 1 corresponding to a differentiator and k = −1 to an integrator. The
gain and phase of the term are given by

log |G(iω)| = k × logω, ∠G(iω) = k × 90◦.

The gain curve is thus a straight line with slope k, and the phase curve is a constant
at k×90◦. The case when k = 1 corresponds to a differentiator and has slope 1 with
phase 90◦. The case when k = −1 corresponds to an integrator and has slope −1
with phase −90◦. Bode plots of the various powers of k are shown in Figure 9.13.

Consider next the transfer function of a first-order system, given by

G(s) =
a

s+ a
, a > 0.

We have

|G(s)| = |a|
|s+ a| , ∠G(s) = ∠(a)− ∠(s+ a),

and hence

log |G(iω)| = log a− 1

2
log (ω2 + a2), ∠G(iω) = −180

π
arctan

ω

a
.

The Bode plot is shown in Figure 9.14a, with the magnitude normalized by the zero
frequency gain. Both the gain curve and the phase curve can be approximated by
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Figure 9.13: Bode plots of the transfer functions G(s) = sk for k = −2,−1, 0, 1, 2.
On a log-log scale, the gain curve is a straight line with slope k. The phase curves
for the transfer functions are constants, with phase equal to k × 90◦.
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Figure 9.14: Bode plots for first- and second-order systems. (a) The first-order
system G(s) = a/(s + a) can be approximated by asymptotic curves (dashed) in
both the gain and the frequency, with the breakpoint in the gain curve at ω = a
and the phase decreasing by 90◦ over a factor of 100 in frequency. (b) The second-
order system G(s) = ω2

0/(s
2 + 2ζω0s+ ω2

0) has a peak at frequency ω0 and then a
slope of −2 beyond the peak; the phase decreases from 0◦ to −180◦. The height
of the peak and the rate of change of phase depending on the damping ratio ζ
(ζ = 0.02, 0.1, 0.2, 0.5, and 1.0 shown).
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the following straight lines

log |G(iω)| ≈
{
0 if ω < a,

log a− logω if ω > a,

∠G(iω) ≈





0 if ω < a/10,

−45− 45(logω − log a, ) if a/10 < ω < 10a,

−90 if ω > 10a.

The approximate gain curve consists of a horizontal line up to frequency ω = a,
called the breakpoint or corner frequency, after which the curve is a line of slope
−1 (on a log-log scale). The phase curve is zero up to frequency a/10 and then
decreases linearly by 45◦/decade up to frequency 10a, at which point it remains
constant at −90◦. Notice that a first-order system behaves like a constant for low
frequencies and like an integrator for high frequencies; compare with the Bode plot
in Figure 9.13.

Finally, consider the transfer function for a second-order system,

G(s) =
ω2
0

s2 + 2ω0ζs+ ω2
0

,

with 0 < ζ < 1, for which we have

log |G(iω)| = 2 logω0 −
1

2
log
(
ω4 + 2ω2

0ω
2(2ζ2 − 1) + ω4

0

)
,

∠G(iω) = −180

π
arctan

2ζω0ω

ω2
0 − ω2

.

The gain curve has an asymptote with zero slope for ω ≪ ω0. For large val-
ues of ω the gain curve has an asymptote with slope −2. The largest gain Q =
maxω |G(iω)| ≈ 1/(2ζ), called the Q-value, is obtained for ω ≈ ω0. The phase is
zero for low frequencies and approaches −180◦ for large frequencies. The curves
can be approximated with the following piecewise linear expressions

log |G(iω)| ≈
{
0 if ω ≪ ω0,

2 logω0 − 2 logω if ω ≫ ω0,

∠G(iω) ≈
{
0 if ω ≪ ω0,

−180 if ω ≫ ω0.

The Bode plot is shown in Figure 9.14b. Note that the asymptotic approximation is
poor near ω = ω0 and that the Bode plot depends strongly on ζ near this frequency.

Given the Bode plots of the basic functions, we can now sketch the frequency
response for a more general system. The following example illustrates the basic
idea.

Example 9.13 Asymptotic approximation for a transfer function
Consider the transfer function given by

G(s) =
k(s+ b)

(s+ a)(s2 + 2ζω0s+ ω2
0)
, a≪ b≪ ω0.
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Figure 9.15: Asymptotic approximation to a Bode plot. The solid curve is the
Bode plot for the transfer function G(s) = k(s+b)/(s+a)(s2+2ζω0s+ω2

0), where
a ≪ b ≪ ω0. Each segment in the gain and phase curves represents a separate
portion of the approximation, where either a pole or a zero begins to have effect.
Each segment of the approximation is a straight line between these points at a
slope given by the rules for computing the effects of poles and zeros.

The Bode plot for this transfer function appears in Figure 9.15, with the complete
transfer function shown as a solid curve and the asymptotic approximation shown
as a dashed curve.

We begin with the gain curve. At low frequency, the magnitude is given by

G(0) =
kb

aω2
0

.

When we reach ω = a, the effect of the pole begins and the gain decreases with
slope −1. At ω = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used until the effect of the
second-order pole is seen at ω = ω0, at which point the asymptote changes to slope
−2. We see that the gain curve is fairly accurate except in the region of the peak
due to the second-order pole (indicating that for this case ζ is reasonably small).

The phase curve is more complicated since the effect of the phase stretches out
much further. The effect of the pole begins at ω = a/10, at which point we change
from phase 0 to a slope of −45◦/decade. The zero begins to affect the phase at
ω = b/10, producing a flat section in the phase. At ω = 10a the phase contribution
from the pole ends, and we are left with a slope of +45◦/decade (from the zero).
At the location of the second-order pole, s ≈ iω0, we get a jump in phase of −180◦.
Finally, at ω = 10b the phase contribution of the zero ends, and we are left with a
phase of −180 degrees. We see that the straight-line approximation for the phase
is not quite as accurate as it was for the gain curve, but it does capture the basic
features of the phase changes as a function of frequency. ∇
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(b) Right half-plane zero

Figure 9.16: Effect of a right half-plane pole and a right half-plane zero on the
Bode plot. The curves for G, which has all poles and zeros in the right half-plane,
are shown in solid lines and the curves for Grhpp and Grhpz are shown as dashed
curves. (a) Bode plots for the transfer functions G and Grhpp, which have a pole
at s = −10 and a zero at s = −1, but G has a pole at s = −0.1 while Grhpp has
a corresponding pole at s = 0.1. (b) Bode plots for the transfer functions G and
Grhpz, which have the same poles at s− = 0.1 and s = −10, while G has a zero at
s = −1 and Grhpz has a zero s = 1.

Poles and Zeros in the Right Half-Plane

The gain curve of a transfer function remains the same if a pole or a zero of a
transfer function is shifted from the left half-plane to the right half-plane by mirror
imaging in the imaginary axis. The phase will, however, change significantly as is
illustrated by the following example.

Example 9.14 Transfer function with a zero in the right half-plane
Consider the transfer functions

G(s) =
s+ 1

(s+ 0.1)(s+ 10)
, Grhpp(s) =

s+ 1

(s− 0.1)(s+ 10)
,

and

Grhpz(s) =
−s+ 1

(s+ 0.1)(s+ 10)
.

The transfer functions G and Grhpp have the zero at s = −1 and the pole at s = −10
in common, while G has the pole at s = −0.1 but Grhpp has the pole at s = 0.1.
Similarly, the transfer functions G and Grhpz have the same poles, but G has the
zero at s = −1 while Grhpz has the zero at s = 1. Notice that all transfer functions
have the same gain curves but that the phase curves differ significantly, as shown in
Figure 9.16. Notice in particular that the transfer functions Grhpp and Grhpz have
much larger phase lags than G. ∇
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Figure 9.17: Bode plots for low-pass, band-pass, and high-pass filters. The upper
plots are the gain curves and the lower plots are the phase curves. Each system
passes frequencies in a different range and attenuates frequencies outside of that
range.

A time delay, which has the transfer function G(s) = e−sτ , is an even more
striking example of a change in phase than a right half-plane zero. Since |G(iωτ)| =
|e−iωτ | = 1 the gain curve is constant but the phase is ∠G(iωτ) = −180ωτ/π, which
has a large negative value for large ω. Time delays are in this respect similar to
right half-plane zeros. Intuitively it seems reasonable that extra phase will cause
difficulties for control since there is a delay between applying an input and seeing
its effect. Poles and zeros in the right half-plane and time delay will indeed limit
the achievable control performance, as will be discussed in detail in Section 10.4
and Chapter 14.

System Insights from the Bode Plot

The Bode plot gives a quick overview of a system. The plot covers wide ranges
in amplitude and frequency because of the logarithmic scales. Since many useful
signals can be decomposed into a sum of sinusoids, it is possible to visualize the
behavior of a system for different frequency ranges. The system can be viewed as a
filter that can change the amplitude (and phase) of the input signals according to
the frequency response. For example, if there are frequency ranges where the gain
curve has constant slope and the phase is close to zero, the action of the system
for signals with these frequencies can be interpreted as a pure gain. Similarly, for
frequencies where the slope is +1 and the phase close to 90◦, the action of the
system can be interpreted as a differentiator.

Three common types of frequency responses are shown in Figure 9.17. The
system in Figure 9.17a is called a low-pass filter because the gain is constant for
low frequencies and drops for high frequencies. Notice that the phase is zero for low
frequencies and −180◦ for high frequencies. The systems in Figures 9.17b and 9.17c
are called a band-pass filter and a high-pass filter for similar reasons.

To illustrate how different system behaviors can be read from the Bode plots



9-36 CHAPTER 9. TRANSFER FUNCTIONS

10
-5

10
-3

10
-1

G
ai

n

10
-2

10
-1

10
0

10
1

Frequency [rad/s]

-180

-90

0

P
h

as
e 

[d
eg

]

G(s) ≈ 1

k

G(s) ≈ 1

ms2

Figure 9.18: Bode plot for a spring–mass system. At low frequency the system
behaves like a spring with G(s) ≈ 1/k and at high frequency the system behaves
like a pure mass with G(s) ≈ 1/(ms2).

we consider the band-pass filter in Figure 9.17b. For frequencies around ω = ω0,
the signal is passed through with no change in gain. However, for frequencies well
below or well above ω0, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frequencies below ω0/100
there is a phase lead of 90◦, and for frequencies above 100ω0 there is a phase lag
of 90◦. These actions correspond to differentiation and integration of the signal in
these frequency ranges.

The intuition captured in the Bode plot can also be related to the transfer
function: the approximations of G(s) for small and large s capture the propagation
of slow and fast signals, respectively, as illustrated in the following examples.

Example 9.15 Spring–mass system
Consider a spring–mass system with input u (force) and output q (position), whose
dynamics satisfy the second-order differential equation

mq̈ + cq̇ + kq = u.

The system has the transfer function

G(s) =
1

ms2 + cs+ k
,

and the Bode plot is shown in Figure 9.18. For small s we have G(s) ≈ 1/k. The
corresponding input/output relation is q = (1/k)u, which implies that for low-
frequency inputs, the system behaves like a spring driven by a force. For large s
we have G(s) ≈ 1/(ms2). The corresponding differential equation is mq̈ = u and
the system thus behaves like mass driven by a force (a double integrator). ∇
Example 9.16 Transcriptional regulation
Consider a genetic circuit consisting of a single gene. We wish to study the response
of the protein concentration to fluctuations in the mRNA dynamics. We consider
two cases: a “constitutive” promoter (no regulation) and self-repression (negative
feedback), illustrated in Figure 9.19. The dynamics of the system are given by

dm

dt
= α(p)− δm+ v,

dp

dt
= κm− γp,
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Figure 9.19: Noise attenuation in a genetic circuit. The open loop system (a)
consists of a constitutive promoter, while the closed loop circuit (b) is self-regulated
with negative feedback (repressor). The frequency response for each circuit is
shown in (c).

where v is a disturbance term that affects mRNA transcription.
For the case of no feedback we have α(p) = α0, and when v = 0 the system

has an equilibrium point at me = α0/δ, pe = κα0/(γδ). The open loop transfer
function from v to p is given by

Gol
pv(s) =

κ

(s+ δ)(s+ γ)
.

For the case of negative regulation, we have

α(p) =
α1

1 + kpn
+ α0,

and the equilibrium points satisfy

me =
γ

κ
pe,

α1

1 + kpne
+ α0 = δme =

δγ

κ
pe.

The transfer function can be obtained by linearization around the equilibrium point
and can be shown to be

Gcl
pv(s) =

κ

(s+ δ)(s+ γ) + κσ
, σ =

nα1kp
n−1
e

(1 + kpne )
2
.

Figure 9.19c shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). ∇

Determining Transfer Functions Experimentally

The transfer function of a system provides a summary of the input/output response
and is very useful for analysis and design. We can often build an input/output
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Figure 9.20: Frequency response of a preloaded piezoelectric drive for an atomic
force microscope. The Bode plot shows the response of the measured transfer
function (solid) and the fitted transfer function (dashed).

model for a given application by directly measuring the frequency response and
fitting a transfer function to it. To do so, we perturb the input to the system
using a sinusoidal signal at a fixed frequency. When steady state is reached, the
amplitude ratio and the phase lag give the frequency response for the excitation
frequency. The complete frequency response is obtained by sweeping over a range
of frequencies.

By using correlation techniques it is possible to determine the frequency re-
sponse very accurately, and an analytic transfer function can be obtained from the
frequency response by curve fitting. The success of this approach has led to in-
struments and software that automate this process, called spectrum analyzers. We
illustrate the basic concept through two examples.

Example 9.17 Atomic force microscope
To illustrate the utility of spectrum analysis, we consider the dynamics of the atomic
force microscope, described in Section 4.5. Experimental determination of the
frequency response is particularly attractive for this system because its dynamics
are very fast and hence experiments can be done quickly. A typical example is given
in Figure 9.20, which shows an experimentally determined frequency response (solid
line). In this case the frequency response was obtained in less than a second. The
transfer function

G(s) =
kω2

2ω
2
3ω

2
5(s

2 + 2ζ1ω1s+ ω2
1)(s

2 + 2ζ4ω4s+ ω2
4)e

−sτ

ω2
1ω

2
4(s

2 + 2ζ2ω2s+ ω2
2)(s

2 + 2ζ3ω3s+ ω2
3)(s

2 + 2ζ5ω5s+ ω2
5)
,

with ωi = 2πfi, k = 5,

f1 = 2.4 kHz, f2 = 2.6 kHz, f3 = 6.5 kHz, f4 = 8.3 kHz, f5 = 9.3 kHz,

ζ1 = 0.03, ζ2 = 0.03, ζ3 = 0.042, ζ4 = 0.025, ζ5 = 0.032,

and τ = 10−4 s, was fitted to the data (dashed line). The frequencies ω1 and ω4

associated with the zeros are located where the gain curve has minima, and the
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(a) Closed loop (b) Open loop (c) High gain

Figure 9.21: Light stimulation of the eye. In (a) the light beam is so large that
it always covers the whole pupil, giving closed loop dynamics. In (b) the light
is focused into a beam which is so narrow that it is not influenced by the pupil
opening, giving open loop dynamics. In (c) the light beam is focused on the edge
of the pupil opening, which has the effect of increasing the gain of the system
since small changes in the pupil opening have a large effect on the amount of light
entering the eye. From Stark [Sta68].

frequencies ω2, ω3, and ω5 associated with the poles are located where the gain
curve has local maxima. The relative damping ratios are adjusted to give a good
fit to maxima and minima. When a good fit to the gain curve is obtained, the time
delay is adjusted to give a good fit to the phase curve. The piezo drive is preloaded,
and a simple model of its dynamics is derived in Exercise 4.6. The pole at 2.55 kHz
corresponds to a “trampoline” mode; the other resonances are higher modes.

∇
Example 9.18 Pupillary light reflex dynamics
The human eye is an organ that is easily accessible for experiments. It has a control
system that adjusts the pupil opening to regulate the light intensity at the retina.

This control system was explored extensively by Stark in the 1960s [Sta68]. To
determine the dynamics, light intensity on the eye was varied sinusoidally and the
pupil opening was measured. A fundamental difficulty is that the closed loop system
is insensitive to internal system parameters, so analysis of a closed loop system thus
gives little information about the internal properties of the system. Stark used a
clever experimental technique that allowed him to investigate both open and closed
loop dynamics. He excited the system by varying the intensity of a light beam
focused on the eye and measured pupil area, as illustrated in Figure 9.21. By using
a wide light beam that covers the whole pupil, the measurement gives the closed
loop dynamics. The open loop dynamics were obtained by using a narrow beam,
which is small enough that it is not influenced by the pupil opening. The result of
one experiment for determining open loop dynamics is given in Figure 9.22. Fitting
a transfer function to the gain curve gives a good fit for G(s) = 0.17/(1 + 0.08s)3.
This curve gives a poor fit to the phase curve as shown by the dashed curve in
Figure 9.22. The fit to the phase curve is improved by adding a 0.2 s time delay,
which leaves the gain curve unchanged while substantially modifying the phase
curve. The final fit gives the model

G(s) =
0.17

(1 + 0.08s)3
e−0.2s.

The Bode plot of this is shown with solid curves in Figure 9.22. Modeling of the
pupillary reflex from first principles is discussed in detail in [KS09]. ∇
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Figure 9.22: Sample curves from an open loop frequency response of the eye (left)
and a Bode plot for the open loop dynamics (right). The solid curve shows a fit of
the data using a third-order transfer function with 0.2 s time delay. The dashed
curve in the Bode plot is the phase of the system without time delay, showing that
the delay is needed to properly capture the phase. (Figure redrawn from the data
of Stark [Sta68].)

Notice that for both the AFM drive and pupillary dynamics it is not easy to
derive appropriate models from first principles. In practice, it is often fruitful to use
a combination of analytical modeling and experimental identification of parameters.
Experimental determination of frequency response is less attractive for systems with
slow dynamics because the experiment takes a long time.

9.7 Further Reading

The idea of characterizing a linear system by its steady-state response to sinusoids
was introduced by Fourier in his investigation of heat conduction in solids [Fou07].
Much later, it was used by the electrical engineer Steinmetz who introduced the iω
method for analyzing electrical circuits. Transfer functions were introduced via the
Laplace transform by Gardner and Barnes [GB42], who also used them to calcu-
late the response of linear systems. The Laplace transform was very important in
the early phase of control because it made it possible to find transients via tables
(see, e.g., [JNP47]). Combined with block diagrams and transfer functions, Laplace
transforms provided powerful techniques for dealing with complex systems. Cal-
culation of responses based on Laplace transforms is less important today, when
responses of linear systems can easily be generated using computers. The frequency
response of a system can also be measured directly using a frequency response an-
alyzer. There are many excellent books on the use of Laplace transforms and
transfer functions for modeling and analysis of linear input/output systems. Tra-
ditional texts on control such as [DB04], [FPEN05] and [Oga01] are representative
examples. Pole/zero cancellation was one of the mysteries of early control theory.
It is clear that common factors can be canceled in a rational function, but can-
cellations have system theoretical consequences that were not clearly understood
until Kalman’s decomposition of a linear system was introduced [KHN63]. In the
following chapters, we will use transfer functions extensively to analyze stability
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and to describe model uncertainty.

Exercises

9.1 Consider the system
dx

dt
= ax+ u.

Compute the exponential response of the system and use this to derive the transfer
function from u to x. Show that when s = a, a pole of the transfer function, the
response to the exponential input u(t) = est is x(t) = eatx(0) + teat.

9.2 Let G(s) be the transfer function for a linear system. Show that if we ap-
ply an input u(t) = A sin(ωt), then the steady-state output is given by y(t) =
|G(iω)|A sin(ωt+ argG(iω)). (Hint: Start by showing that the real part of a com-
plex number is a linear operation and then use this fact.)

9.3 (Inverted pendulum) A model for an inverted pendulum was introduced in
Example 3.3. Neglecting damping and linearizing the pendulum around the upright
position gives a linear system characterized by the matrices

A =


 0 1
mgl/Jt 0


 , B =


 0
1/Jt


 , C =


1 0


 , D = 0.

Determine the transfer function of the system.

9.4 (Operational amplifier) Consider the operational amplifier described in Sec-
tion 4.3 and analyzed in Example 9.2. An analog implementation of a PI controller
can be constructed using an op amp by replacing the resistor R2 with a resistor
and capacitor in series, as shown in Figure 4.10. The resulting transfer function of
the circuit is given by

H(s) = −
(
R2 +

1

Cs

)
·

(
kCs(

(k + 1)R1C +R2C
)
s+ 1

)
,

where k is the gain of the op amp, R1 and R2 are the resistances in the compensation
network and C is the capacitance.

(a) Sketch the Bode plot for the system under the assumption that k ≫ R2 > R1.
You should label the key features in your plot, including the gain and phase at low
frequency, the slopes of the gain curve, the frequencies at which the gain changes
slope, etc.

(b) Suppose now that we include some dynamics in the amplifier, as outlined in
Example 9.2. This would involve replacing the gain k with the transfer function

G(s) =
ak

s+ a
.

Compute the resulting transfer function for the system (i.e., replace k with G(s))
and find the poles and zeros assuming the following parameter values

R2

R1
= 100, k = 106, R2C = 1, a = 100.
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(c) Sketch the Bode plot for the transfer function in part (b) using straight line
approximations and compare this to the exact plot of the transfer function (using
MATLAB). Make sure to label the important features in your plot.

9.5 (Delay differential equation) Consider a system described by

dx

dt
= −x(t) + u(t− τ).

Derive the transfer function for the system.

9.6 (Congestion control) Consider the congestion control model described in Sec-
tion 4.4. Let w represent the individual window size for a set of N identical sources,
q represent the end-to-end probability of a dropped packet, b represent the number
of packets in the router’s buffer, and p represent the probability that a packet is
dropped by the router. We write w̄ = Nw to represent the total number of packets
being received from all N sources. Show that the linearized model can be described
by the transfer functions

Gbw̄(s) =
e−τ

fs

τpe s+ e−τ fs
, Gw̄q(s) =

N

qe(τ
p
e s+ qewe)

,

Gqp(s) = e−τ
bs, Gpb(s) = ρe−τ

p
e s,

where (we, be) is the equilibrium point for the system, τpe is the router processing
time, and τ f and τb are the forward and backward propagation times.

9.7 (Transfer function for state space system) Consider the linear state space sys-
tem

dx

dt
= Ax+Bu, y = Cx.

(a) Show that the transfer function is

G(s) =
b1s

n−1 + b2s
n−2 + · · ·+ bn

sn + a1sn−1 + · · ·+ an
,

where the coefficients for the numerator polynomial are linear combinations of the
Markov parameters CAiB, i = 0, . . . , n− 1:

b1=CB, b2=CAB + a1CB, . . . , bn=CA
n−1B + a1CA

n−2B + · · ·+ an−1CB

and λ(s) = sn + a1s
n−1 + · · ·+ an is the characteristic polynomial for A.

(b) Compute the transfer function for a linear system in reachable canonical form
and show that it matches the transfer function given above.

9.8 Consider linear time-invariant systems with the control matrices

(a) A =


−1 0

0 −2


 , B =


2
1


 , C =


1 −1


 , D = 0,

(b) A =


−3 1
−2 0


 , B =


1
3


 , C =


1 0


 , D = 0,

(c) A =


−3 −2

1 0


 , B =


1
0


 , C =


1 3


 , D = 0.
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Show that all systems have the transfer function G(s) =
s+ 3

(s+ 1)(s+ 2)
.

9.9 (Kalman decomposition) Show that the transfer function of a system depends �
only on the dynamics in the reachable and observable subspace of the Kalman
decomposition. (Hint: Consider the representation given by equation (8.20).)

9.10 Using block diagram algebra, show that the transfer functions from v to y and
w to y in Figure 9.6 are given by

Gyv =
P

1 + PC
, Gyw =

1

1 + PC
.

9.11 (Vectored thrust aircraft) Consider the lateral dynamics of a vectored thrust
aircraft as described in Example 3.12. Show that the dynamics can be described
using the following block diagram:

1

ms2 + cs

θ
−mg Σ

ν
u1

r

Js2
x

Use this block diagram to compute the transfer functions from u1 to θ and x and
show that they satisfy

Hθu1
=

r

Js2
, Hxu1

=
Js2 −mgr

Js2(ms2 + cs)
.

9.12 (Vehicle suspension [HB90]) Active and passive damping are used in cars to
give a smooth ride on a bumpy road. A schematic diagram of a car with a damping
system in shown in the following figure.

(Porter Class I race car driven by Todd Cuffaro)

qb

qw

qr

F +

-

Σ

F

Body

Actuator

Wheel

This model is called a quarter car model, and the car is approximated with two
masses, one representing one fourth of the car body and the other a wheel. The
actuator exerts a force F between the wheel and the body based on feedback from
the distance between the body and the center of the wheel (the rattle space).
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Let qb, qw, and qr represent the heights of body, wheel, and road measured
from their equilibrium points. A simple model of the system is given by Newton’s
equations for the body and the wheel,

mbq̈b = F, mwq̈w = −F + kt(qr − qw),

where mb is a quarter of the body mass, mw is the effective mass of the wheel
including brakes and part of the suspension system (the unsprung mass) and kt is
the tire stiffness. For a conventional damper consisting of a spring and a damper,
we have F = k(qw − qb) + c(q̇w − q̇b). For an active damper the force F can
be more general and can also depend on riding conditions. Rider comfort can be
characterized by the transfer function Gaqr from road height qr to body acceleration
a = q̈b. Show that this transfer function has the property Gaqr(iωt) = kt/mb,

where ωt =
√
kt/mw (the tire hop frequency). The equation implies that there are

fundamental limits to the comfort that can be achieved with any damper.

9.13 (Solutions corresponding to poles and zeros) Consider the differential equation

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b1

dn−1u

dtn−1
+ b2

dn−2u

dtn−2
+ · · ·+ bnu.

(a) Let λ be a root of the characteristic equation

sn + a1s
n−1 + · · ·+ an = 0.

Show that if u(t) = 0, the differential equation has the solution y(t) = eλt.

(b) Let κ be a zero of the polynomial

b(s) = b1s
n−1 + b2s

n−2 + · · ·+ bn.

Show that if the input is u(t) = eκt, then there is a solution to the differential
equation that is identically zero.

9.14 (Pole/zero cancellation) Consider a closed loop system of the form of Fig- �
ure 9.6, with F = 1 and P and C having a pole/zero cancellation. Show that if
each system is written in state space form, the resulting closed loop system is not
reachable and not observable.

9.15 (Inverted pendulum with PD control) Consider the normalized inverted pen-
dulum system, whose transfer function is given by P (s) = 1/(s2 − 1) (Exer-
cise 9.3). A proportional-derivative control law for this system has transfer function
C(s) = kp+kds (see Table 9.1). Suppose that we choose C(s) = α(s−1). Compute
the closed loop dynamics and show that the system has good tracking of reference
signals but does not have good disturbance rejection properties.



Chapter 10

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tests that
it possessed the advantages which he had predicted for it. In particular,
its gain was constant to a high degree, and it was linear enough so that
spurious signals caused by the interaction of the various channels could
be kept within permissible limits. For best results the feedback factor µβ
had to be numerically much larger than unity. The possibility of stability
with a feedback factor larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 1956 [Nyq56].

In this chapter we study how the stability and robustness of closed loop systems
can be determined by investigating how sinusoidal signals of different frequencies
propagate around the feedback loop. This technique allows us to reason about the
closed loop behavior of a system through the frequency domain properties of the
open loop transfer function. The Nyquist stability theorem is a key result that
provides a way to analyze stability and introduce measures of degrees of stability.

10.1 The Loop Transfer Function

Understanding how the behavior of a closed loop system is influenced by the prop-
erties of its open loop dynamics is tricky. Indeed, as the quote from Nyquist above
illustrates, the behavior of feedback systems can often be puzzling. However, using
the mathematical framework of transfer functions provides an elegant way to reason
about such systems, which we call loop analysis.

The basic idea of loop analysis is to trace how a sinusoidal signal propagates in
the feedback loop and explore the resulting stability by investigating if the prop-
agated signal grows or decays. This is easy to do because the transmission of
sinusoidal signals through a linear dynamical system is characterized by the fre-
quency response of the system. The key result is the Nyquist stability theorem,
which provides a great deal of insight regarding the stability of a system. Unlike
proving stability with Lyapunov functions, studied in Chapter 5, the Nyquist crite-
rion allows us to determine more than just whether a system is stable or unstable.
It provides a measure of the degree of stability through the definition of stability

10-1
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Σ
r e u

P (s)
y

C(s)

(a) Closed loop system

L(s)

−1

AB

(b) Open loop system

Figure 10.1: The loop transfer function. The stability of the feedback system (a)
can be determined by tracing signals around the loop. Letting L = PC represent
the loop transfer function, we break the loop in (b) and ask whether a signal
injected at the point A has the same magnitude and phase when it reaches point
B.

margins. The Nyquist criterion also indicates how an unstable system should be
changed to make it stable, which we shall study in detail in Chapters 11–13.

Consider the system in Figure 10.1a. The traditional way to determine if the
closed loop system is stable is to investigate if the closed loop characteristic poly-
nomial has all its roots in the left half-plane. If the process and the controller have
rational transfer functions P (s) = np(s)/dp(s) and C(s) = nc(s)/dc(s), then the
closed loop system has the transfer function

Gyr(s) =
PC

1 + PC
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)
,

and the characteristic polynomial is

λ(s) = dp(s)dc(s) + np(s)nc(s).

To check stability, we simply compute the roots of the characteristic polynomial
and verify that they each have negative real part. This approach is straightforward
but it gives little guidance for design: it is not easy to tell how the controller should
be modified to make an unstable system stable.

Nyquist’s idea was to first investigate conditions under which oscillations can
occur in a feedback loop. To study this, we introduce the loop transfer function
L(s) = P (s)C(s), which is the transfer function obtained by breaking the feedback
loop, as shown in Figure 10.1b. The loop transfer function is simply the transfer
function from the input at position A to the output at position B multiplied by −1
(to account for the usual convention of negative feedback).

Assume that a sinusoid of frequency ω0 is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequency ω0. It seems reasonable
that an oscillation can be maintained if the signal at B has the same amplitude and
phase as the injected signal because we can then disconnect the injected signal and
connect A to B. Tracing signals around the loop, we find that the signals at A and
B are identical if there is a frequency ω0 such that

L(iω0) = −1, (10.1)

which then provides a condition for maintaining an oscillation. The condition
in equation (10.1) implies that the frequency response goes through the value
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Figure 10.2: Block diagram of a DC motor control system with a short delay in
the sensed position of the motor.

−1, which is called the critical point. Letting ωc represent a frequency at which
∠L(iωc) = 180◦, we can further reason that the system is stable if |L(iωc)| < 1,
since the signal at point B will have smaller amplitude than the injected signal.
This is essentially true, but there are several subtleties that require a proper math-
ematical analysis, leading to Nyquist’s stability criterion. Before discussing the
details we give an example of calculating the loop transfer function.

Example 10.1 Electric motor with proportional controller and delay
Consider a simple direct current electric motor with inertia J and damping (or back
EMF) c. We wish to control the position of the motor using a feedback controller,
and we consider the case where there is a small delay in the measurement of the
motor position (a common case for controllers implemented on a computer with
a fixed sampling rate). A block diagram for the motor with a controller C(s) is
shown in Figure 10.2. Using block diagram algebra, the process dynamics can be
shown to be

P (s) =
kI

Js2 + cs
.

We now use a proportional controller of the form

C(s) = kp.

The loop transfer function for the control system is given by

L(s) = P (s)C(s)e−τs =
kIkp

Js2 + cs
e−τs,

where τ is the delay in sensing of the motor position. We wish to understand under
which conditions the closed loop system is stable.

The condition for oscillation is given by equation (10.1), which requires that the
phase of the loop transfer function must be 180◦ at some frequency ω0. Examining
the loop transfer function we see that if τ = 0 (no delay) then for s near 0 the phase
of L(s) will be 90◦ while for large s the phase of L(s) will approach 180◦. Since
the gain of the system decreases as s increases, it is not possible for the condition
of oscillation to be met in the case of no delay (the gain will always be less than 1
at arbitrarily high frequency).

When there is a small delay in the system, however, it is possible that we might
get oscillations in the closed loop system. Suppose that ω0 represents the frequency
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Figure 10.3: Loop transfer function and step response for the DC motor control
system. The system parameters are kI = 1, J = 2, c = 1 and the controller
parameters are kp = 1 and τ = 0, 1, and 3.

at which the magnitude of L(iω) is equal to 1 (the specific value of ω0 will depend
on the parameters of the motor and the controller). Notice that the magnitude
of the loop transfer function is not affected by the delay, but the phase increases
as τ increases. In particular, if we let θ0 be the phase of the undelayed system at
frequency ω0, then a time delay of τc = (π + θ0)/ω0 will cause L(iω0) to be equal
to −1. This means that as signals traverse the feedback loop, they can return in
phase with the original signal and an oscillation may result.

Figure 10.3 shows three controllers that result in stable, oscillatory, and unstable
closed loop performance, depending on the amount of delay in the system. The
instability is caused by the fact that the disturbance signals that propagate around
the feedback loop can be in phase with the original disturbance due to the delay. If
the gain around the loop is greater than or equal to one, this can lead to instability.

∇

One of the powerful concepts embedded in Nyquist’s approach to stability anal-
ysis is that it allows us to study the stability of the feedback system by looking at
properties of the loop transfer function L = PC. The advantage of doing this is
that it is easy to see how the controller should be chosen to obtain a desired loop
transfer function. For example, if we change the gain of the controller, the loop
transfer function will be scaled accordingly and the critical point can be avoided. A
simple way to stabilize an unstable system is thus to reduce the gain or to otherwise
modify the controller so that the critical point −1 is avoided. Different ways to do
this, called loop shaping, will be developed and discussed in Chapter 12.

10.2 The Nyquist Criterion

In this section we present Nyquist’s criterion for determining the stability of a
feedback system through analysis of the loop transfer function. We begin by intro-
ducing a convenient graphical tool, the Nyquist plot, and show how it can be used
to ascertain stability.
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Figure 10.4: The Nyquist contour and the Nyquist plot. (a) The Nyquist contour
Γ encloses the right half-plane, with a small semicircle around any poles of L(s)
at the origin or on the imaginary axis (illustrated here at the origin) and an arc
whose radius R extends towards infinity. (b) The Nyquist plot is the image of the
loop transfer function L(s) when s traverses Γ in the clockwise direction. The solid
curve corresponds to ω > 0, and the dashed curve to ω < 0. The gain and phase
at the frequency ω are g = |L(iω)| and ϕ = ∠L(iω). The curve is generated for
L(s) = 1.4 e−s/(s+ 1)2.

The Nyquist Plot

We saw in the previous chapter that the dynamics of a linear system can be rep-
resented by its frequency response and graphically illustrated by a Bode plot. To
study the stability of a system, we will make use of a different representation of
the frequency response called a Nyquist plot. The Nyquist plot of the loop transfer
function L(s) is formed by tracing s ∈ C around the Nyquist contour, consisting of
the imaginary axis combined with an arc at infinity connecting the endpoints of the
imaginary axis. This contour, sometimes called the “Nyquist D contour” is denoted
as Γ ⊂ C and is illustrated in Figure 10.4a. The image of L(s) when s traverses Γ
gives a closed curve in the complex plane and is referred to as the Nyquist plot for
L(s), as shown in Figure 10.4b. Note that if the transfer function L(s) goes to zero
as s gets large (the usual case), then the portion of the contour “at infinity” maps
to the origin. Furthermore, the portion of the plot corresponding to ω < 0, shown
in dashed lines in Figure 10.4b, is the mirror image of the portion with ω > 0.

There is a subtlety in the Nyquist plot when the loop transfer function has
poles on the imaginary axis because the gain is infinite at the poles. To solve this
problem, we modify the contour Γ to include small deviations that avoid any poles
on the imaginary axis, as illustrated in Figure 10.4a (assuming a pole of L(s) at the
origin). The deviation consists of a small semicircle to the right of the imaginary
axis pole location. Formally the contour Γ is defined as

Γ = lim
r→0
R→∞

(
−iR,−ir

)
∪ {reiθ : θ ∈

[
−π

2 ,
π
2

]
} ∪

(
ir, iR

)
∪ {Re−iθ : θ ∈

[
−π

2 ,
π
2

]
}

(10.2)
for the case with a pole at the origin.

We now state the Nyquist criterion for the special case where the loop transfer
function L(s) has no poles in the right half-plane and no poles on the imaginary
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Figure 10.5: Nyquist plot for a third-order transfer function L(s). The Nyquist
plot consists of a trace of the loop transfer function L(s) = 1/(s+a)3 with a = 0.6.
The solid line represents the portion of the transfer function along the positive
imaginary axis, and the dashed line the negative imaginary axis. The outer arc of
the Nyquist contour Γ maps to the origin.

axis except possibly at the origin.

Theorem 10.1 (Simplified Nyquist criterion). Let L(s) be the loop transfer func-
tion for a negative feedback system (as shown in Figure 10.1a) and assume that L
has no poles in the closed right half-plane (Re s ≥ 0) except possibly at the ori-
gin. Then the closed loop system Gcl(s) = L(s)/(1 + L(s)) is stable if and only
if the image of L along the closed contour Γ given by equation (10.2) has no net
encirclements of the critical point s = −1.

The following conceptual procedure can be used to determine that there are no
net encirclements. Fix a pin at the critical point s = −1, orthogonal to the plane.
Attach a string with one end at the critical point and the other on the Nyquist
plot. Let the end of the string attached to the Nyquist curve traverse the whole
curve. There are no encirclements if the string does not wind up on the pin when
the curve is encircled. The number of encirclements is called the winding number.

Example 10.2 Nyquist plot for a third-order system
Consider a third-order transfer function

L(s) =
1

(s+ a)3
.

To compute the Nyquist plot we start by evaluating points on the imaginary axis
s = iω, which yields

L(iω) =
1

(iω + a)3
=

(a− iω)3

(a2 + ω2)3
=
a3 − 3aω2

(a2 + ω2)3
+ i

ω3 − 3a2ω

(a2 + ω2)3
.

This is plotted in the complex plane in Figure 10.5, with the points corresponding
to ω > 0 drawn as a solid line and ω < 0 as a dashed line. Notice that these curves
are mirror images of each other.

To complete the Nyquist plot, we compute L(s) for s on the outer arc of the
Nyquist contour. This arc has the form s = Re−iθ for θ ∈ [−π/2, π/2] and R→ ∞.
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Figure 10.6: Sketching Nyquist and Bode plots. The loop transfer function is
L(s) = 1/(s(s + 1)2). The frequency response (a) can be used to construct the
Nyquist plot (b). The large semicircle is the map of the small semicircle of the
Nyquist contour around the pole at the origin. The closed loop is stable because
the Nyquist curve does not encircle the critical point. The point where the phase
is −180◦ is marked with a circle in the Bode plot.

This gives

L
(
Re−iθ

)
=

1

(Re−iθ + a)3
→ 0 as R→ ∞.

Thus the outer arc of the Nyquist contour Γ maps to the origin on the Nyquist
plot. ∇

An alternative to computing the Nyquist plot explicitly is to determine the plot
from the frequency response (Bode plot), which gives the Nyquist curve for s = iω,
ω > 0. We start by plotting L(iω) from ω = 0 to ω = ∞, which can be read off
from the magnitude and phase of the transfer function. We then plot L(Reiθ) with
θ ∈ [π/2, 0] and R→ ∞, which goes to zero if the high-frequency gain of L(iω) goes
to zero (if and only if L(s) is strictly proper). The remaining parts of the plot can
be determined by taking the mirror image of the curve thus far (normally plotted
using a dashed line). The plot can then be labeled with arrows corresponding to
a clockwise traversal around the Nyquist contour (the same direction in which the
first portion of the curve was plotted).

Example 10.3 Nyquist criterion for a third-order system with a pole at
the origin
Consider the transfer function

L(s) =
k

s(s+ 1)2
,

where the gain has the nominal value k = 1. The Bode plot is shown in Figure 10.6a.
The system has a single pole at s = 0 and a double pole at s = −1. The gain curve
of the Bode plot thus has the slope −1 for low frequencies, and at the double pole
s = 1 the slope changes to −3. For small s we have L ≈ k/s, which means that the
low-frequency asymptote intersects the unit gain line at ω = k. The phase curve
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Figure 10.7: Internet congestion control. A set of N sources using TCP/Reno
send messages through a single router with admission control (a). Link delays are
included for the forward and backward directions. The Nyquist plot for the loop
transfer function is shown in (b).

starts at −90◦ for low frequencies, it is −180◦ at the breakpoint ω = 1, and it is
−270◦ at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquist plot, shown
in Figure 10.6b. It starts with a phase of −90◦ for low frequencies, intersects
the negative real axis at the breakpoint ω = 1 where L(i) = −0.5 and goes to
zero along the imaginary axis for high frequencies. The small half-circle of the
Nyquist contour at the origin is mapped onto a large circle enclosing the right
half-plane. The Nyquist curve does not encircle the critical point s = −1, and it
follows from the simplified Nyquist criterion that the closed loop system is stable.
Since L(i) = −k/2, we find the closed loop system becomes unstable if the gain is
increased to k = 2 or beyond. ∇

The Nyquist criterion does not require that |L(iωc)| < 1 for all ωc corresponding
to a crossing of the negative real axis. Rather, it says that the number of encir-
clements must be zero, allowing for the possibility that the Nyquist curve could
cross the negative real axis and cross back at magnitudes greater than 1. The fact
that it was possible to have high feedback gains surprised the early designers of
feedback amplifiers, as mentioned in the quote in the beginning of this chapter.

One advantage of the Nyquist criterion is that it tells us how a system is in-
fluenced by changes of the controller parameters. For example, it is very easy to
visualize what happens when the gain is changed since this just scales the Nyquist
curve.

Example 10.4 Congestion control
Consider the Internet congestion control system described in Section 4.4. Suppose
we have N identical sources and a disturbance d representing an external data
source, as shown in Figure 10.7a. We let w represent the individual window size for
a source, q represent the end-to-end probability of a dropped packet, b represent
the number of packets in the router’s buffer, and p represent the probability that a
packet is dropped by the router. We write w̄ for the total number of packets being
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received from all N sources. We also include forward and backward propagation
delays between the router and the senders.

To analyze the stability of the system, we use the transfer functions computed
in Exercise 9.6:

G̃bw̄(s) =
1

τpe s+ e−τ fs
, Gwq(s) = − 1

qe(τ
p
e s+ qewe)

, G̃pb(s) = ρ,

where (we, be) is the equilibrium point for the system, N is the number of sources,
τpe is the steady-state round-trip time, and τ f and τb are the forward and backward
propagation times. We use G̃bw̄ and G̃qp to represent the transfer functions with the
forward and backward time delays removed since this is accounted for as separate
blocks in Figure 10.7a. Similarly, Gwq = Gw̄q/N since we have pulled out the
multiplier N as a separate block as well.

The loop transfer function is given by

L(s) = ρ ·
N

τpe s+ e−τ fs
·

1

qe(τ
p
e s+ qewe)

e−τ
t
es,

where τ t = τp+ τ f+ τb is the total round trip delay time. Using the fact that we =
be/N = τpe c/N and qe = 2/(2 + w2

e ) ≈ 2/w2
e = 2N3/(τpe c)

2 from equation (4.17),
we can show that

L(s) = ρ ·
N

τpe s+ e−τ fs
·

c3(τpe )
3

2N2(c(τpe )2s+ 2N)
e−τ

t
es.

Note that we have chosen the sign of L(s) to use the same sign convention as in
Figure 10.1b.

The Nyquist plot for the loop transfer function is shown in Figure 10.7b. To
obtain an analytic stability criterion we can approximate the transfer function close
to the intersection with the negative real axis, which occurs at the “phase crossover”
frequency ωpc. The second factor is stable if τpe > τ f and has fast dynamics, so we
approximate it by its zero frequency gain N . The third factor has slow dynamics (it
can be shown that 2N ≪ c(τpe )

2ωpc), and we can approximate it by an integrator.
We thus obtain the following approximation of the loop transfer function around
the frequency ωpc:

L(s) ≈ ρ ·N ·
c3(τpe )

3

2N2c(τpe )2s
e−τ

t
es =

ρc2τpe
2Ns

e−τ
t
es.

The integrator has a phase lag of π/2 and the transfer function L(s) has the phase
crossover frequency ωpc = π/(2τpe ). A necessary condition for stability is thus
|L(iωpc)| < 1, which gives the condition

ρc2(τpe )
2

πN
< 1.

Using the Nyquist criterion, the closed loop system will be unstable if this quantity
is greater than 1. In particular, for a fixed processing time τpe , the system will
become unstable as the link capacity c increases. This indicates that the TCP
protocol may not be scalable to high-capacity networks, as pointed out by Low et
al. [LPD02]. Exercise 10.3 provides some ideas of how this might be overcome. ∇
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Figure 10.8: Graphical proof of the principle of the variation of the argument.

The General Nyquist Criterion �

Theorem 10.1 requires that L(s) has no poles in the closed right half-plane, except
possibly at the origin. In some situations this is not the case and we need a more
general result. This requires some results from the theory of complex variables,
for which the reader can consult Ahlfors [Ahl66]. Since some precision is needed
in stating Nyquist’s criterion properly, we will use a more mathematical style of
presentation. We also follow the mathematical convention of counting encirclements
in the counterclockwise direction for the remainder of this section. The key result
is the following theorem about functions of complex variables.

Theorem 10.2 (Principle of variation of the argument). Let Γ be a closed contour
in the complex plane and let D represent the interior of Γ. Assume the function
f : C → C is analytic on Γ and D except at a finite number of poles and zeros
in D. Then the winding number nw,Γ(f(s)) of the function f(s) as s traverses the
contour Γ in the counterclockwise direction is given by

nw,Γ(f(s)) =
1

2π
∆argΓ f(s) =

1

2πi

∫

Γ

f ′(s)
f(s)

ds = nz,D − np,D,

where ∆argΓ is the net variation in the angle when s traverses the contour Γ in
the counterclockwise direction, nz,D is the number of zeros of f(s) in D, and np,D
is the number of poles of f(s) in D. Poles and zeros of multiplicity m are counted
m times.

To understand why the principle of variation of the argument is true, we keep
track of how the argument (angle) of a function varies as we traverse a closed
contour. Figure 10.8 illustrates the basic idea. Consider a function f : C → C of
the form

f(s) =
(s− z1) · · · (s− zm)

(s− p1) · · · (s− pn)
, (10.3)

where zi are zeros and pi are poles. We can rewrite the factors in this function by
keeping track of the distance and angle to each pole and zero:

f(s) =
r1e

iψ1 · · · rmeiψm

ρ1eiθ1 · · · ρmeiθn
.
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The argument (angle) of f(s) at any given value of s can be computed by adding
the contributions for the zeros and subtracting the contributions from the poles,

arg(f(s)) =

m∑

i=1

ψi −
n∑

i=1

θi.

We now consider what happens if we traverse a closed loop contour Γ. If all of
the poles and zeros in f(s) are outside of the contour, then the net contribution to
the angle from terms in the numerator and denominator will be zero since there is
no way for the angle to “accumulate.” Thus the contribution from each individual
zero and pole will integrate to zero as we traverse the contour. If, however, the
zero or pole is inside the contour Γ, then the net change in angle as we transverse
the contour will be 2π for terms in the numerator (zeros) or −2π for terms in the
denominator (poles). Thus the net change in the angle as we traverse the contour
is given by 2π(nz,D − np,D), where nz,D is the number of zeros inside the contour
and np,D is the number of poles inside the contour.

��Formal proof. Assume that s = a is a zero of multiplicity m. In the neighborhood
of s = a we have

f(s) = (s− a)mg(s),

where the function g is analytic and different from zero. The ratio of the derivative
of f to itself is then given by

f ′(s)
f(s)

=
m

s− a
+
g′(s)
g(s)

,

and the second term is analytic at s = a. The function f ′/f thus has a single pole
at s = a with the residue m. The sum of the residues at the zeros of this function
is nz,D. Similarly, we find that the sum of the residues for the poles is −np,D, and
hence

nz,D − np,D =
1

2πi

∫

Γ

f ′(s)
f(s)

ds =
1

2πi

∫

Γ

d

ds
log f(s) ds =

1

2πi
∆argΓ log f(s),

where ∆argΓ again denotes the variation along the contour Γ. We have

log f(s) = log |f(s)|+ i arg f(s),

and since the variation of |f(s)| around a closed contour is zero it follows that

∆argΓ log f(s) = i∆argΓ arg f(s),

and the theorem is proved.

This theorem is useful in determining the number of poles and zeros of a function
of a complex variable in a given region. By choosing an appropriate closed region
D with boundary Γ, we can determine the difference between the number of zeros
and poles through computation of the winding number.

Theorem 10.2 can be used to obtain a general version of Nyquist’s stability
theorem by choosing Γ as the Nyquist contour shown in Figure 10.4a, which encloses
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the right half-plane. To construct the contour, we start with part of the imaginary
axis −iR ≤ s ≤ iR and a semicircle to the right with radius R. If the function f
has poles on the imaginary axis, we introduce small semicircles with radii r to the
right of the poles as shown in the figure to avoid crossing through a singularity.
The Nyquist contour is obtained by selecting R large enough and r small enough F○
so that all open loop right half-plane poles are enclosed.

Note that Γ has orientation opposite that shown in Figure 10.4a. The convention
in engineering is to traverse the Nyquist contour in the clockwise direction since
this corresponds to increasing frequency moving upwards along the imaginary axis,
which makes it easy to sketch the Nyquist contour from a Bode plot. In mathe-
matics it is customary to define the winding number for a curve with respect to a
point so that it is positive when the contour is traversed counterclockwise. This
difference does not matter as long as we use the same convention for orientation
when traversing the Nyquist contour and computing the winding number.

To use the principle of variation of the argument (Theorem 10.2) to obtain an
improved stability criterion we apply it to the function f(s) = 1+L(s), where L(s)
is the loop transfer function of a closed loop system with negative feedback. The
generalized Nyquist criterion is given by the following theorem.

Theorem 10.3 (General Nyquist criterion). Consider a closed loop system with
loop transfer function L(s) that has np,rhp poles in the region enclosed by the Nyquist
contour Γ. Let nw,Γ(1 + L(s)) be the winding number of f(s) = 1 + L(s) when s
traverses Γ in the counterclockwise direction. Assume that 1 + L(iω) 6= 0 for all
ω on Γ and that nw,Γ(1 + L(s)) + np,rhp = 0. Then the closed loop system has no
poles in the closed right half-plane and it is thus stable.

Proof. The proof follows directly from the principle of variation of the argument,
Theorem 10.2. The closed loop poles of the system are the zeros of the function
f(s) = 1 + L(s). It follows from the assumptions that the function f(s) has no
zeros on the contour Γ. To find the zeros in the right half-plane, we investigate
the winding number of the function f(s) = 1 + L(s) as s moves along the Nyquist
contour Γ in the counterclockwise direction. The winding number nw can be de-
termined from the Nyquist plot. A direct application of Theorem 10.2 shows that
since nw,Γ(1 + L(s)) + np,rhp(L(s)) = 0, then f(s) has no zeros in the right half-
plane. Since the image of 1 + L(s) is a shifted version of L(s), we usually express
the Nyquist criterion as net encirclements of the −1 point by the image of L(s).

The condition that 1 +L(iω) 6= 0 on Γ implies that the Nyquist curve does not
go through the critical point −1 for any frequency. The condition that nw,Γ(1 +
L(s))+np,rhp(L(s)) = 0, which is called the winding number condition, implies that
the Nyquist curve encircles the critical point as many times as the loop transfer
function L(s) has poles in the right half-plane.

As noted above, in practice the Nyquist criterion is most often applied by
traversing the Nyquist contour in the clockwise direction, since this corresponds
to tracing out the Nyquist curve from ω = 0 to ∞, which can be read off from the
Bode plot. In this case, the number of net encirclements of the −1 point must also
be counted in the clockwise direction. If we let P be the number of unstable poles
in the loop transfer function, N be the number of clockwise encirclements of the

http://fbsbook.org
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Figure 10.9: PD control of an inverted pendulum. (a) The system consists of
a mass that is balanced by applying a force at the pivot point. A proportional-
derivative controller with transfer function C(s) = k(s+ 2) is used to command u
based on θ. (b) A Nyquist plot of the loop transfer function for gain k = 1. There
is one counterclockwise encirclement of the critical point, giving N = −1 clockwise
encirclements.

point −1, and Z be the number of unstable stable zeros of 1 + L (and hence the
number of unstable poles of the closed loop) then the following relation holds:

Z = N + P.

Note also than when using small semicircles of radius r to avoid poles on the
imaginary axis, these generate a section of the Nyquist curve with large magnitude,
requiring care in computing the winding number.

Example 10.5 Stabilized inverted pendulum
The linearized dynamics of a normalized inverted pendulum can be represented by
the transfer function P (s) = 1/(s2−1), where the input is acceleration of the pivot
and the output is the pendulum angle θ, as shown in Figure 10.9 (Exercise 9.3). We
attempt to stabilize the pendulum with a proportional-derivative (PD) controller
having the transfer function C(s) = k(s+ 2). The loop transfer function is

L(s) =
k(s+ 2)

s2 − 1
.

The Nyquist plot of the loop transfer function is shown in Figure 10.9b. We have
L(0) = −2k and L(∞) = 0. If k > 0.5, the Nyquist curve encircles the critical point
s = −1 in the counterclockwise direction when the Nyquist contour γ is encircled
in the clockwise direction. The number of encirclements is thus N = −1. Since the
loop transfer function has one pole in the right half-plane (P = 1), we find that
Z = N + P = 0 and the system is thus stable for k > 0.5. If k < 0.5, there is no
encirclement and the closed loop will have one pole in the right half-plane. Notice
that the system is unstable for small gains but stable for high gains. ∇

Conditional Stability

An unstable system can often be stabilized simply by reducing the loop gain. How-
ever, as Example 10.5 illustrates, there are situations where a system can be stabi-
lized by increasing the gain. This was first encountered by electrical engineers in
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Figure 10.10: Nyquist curve for the loop transfer function L(s) =
(

3(s +
6)2

)

/
(

s(s + 1)2
)

. The plot in (b) is an enlargement of the box around the ori-
gin of the plot in (a). The Nyquist curve intersects the negative real axis twice
but has no net encirclements of −1.

the design of feedback amplifiers, who coined the term conditional stability. The
problem was actually a strong motivation for Nyquist to develop his theory. The
following example further illustrates this concept.

Example 10.6 Conditional stability for a third-order system
Consider a feedback system with the loop transfer function

L(s) =
3k(s+ 6)2

s(s+ 1)2
. (10.4)

The Nyquist plot of the loop transfer function is shown in Figure 10.10 for k = 1.
Notice that the Nyquist curve intersects the negative real axis twice. The first
intersection occurs at L = −12 for ω = 2 and the second at L = −4.5 for ω = 3.
The intuitive argument based on signal tracing around the loop in Figure 10.1b is
misleading in this case. Injection of a sinusoid with frequency 2 rad/s and amplitude
1 at A gives, in steady state, an oscillation at B that is in phase with the input
and has amplitude 12. Intuitively it seems unlikely that closing of the loop will
result in a stable system. Evaluating the winding number for the Nyquist plot in
Figure 10.10 shows that the winding number is zero and the system is thus shown
to be stable by using the version of Nyquist’s stability criterion in Theorem 10.3.
More specifically, the closed loop system is stable for any k > 2/9. It becomes
unstable if the gain is reduced to 1/12 < k < 2/9, and it will be stable again for
gains less than 1/12. ∇

10.3 Stability Margins

In practice it is not enough that a system is stable. There must also be some margins
of stability that describe how far from instability the system is and its robustness
to perturbations. Stability is captured by Nyquist’s criterion, which says that the
loop transfer L(s) function should avoid the critical point −1, while satisfying a
winding number condition. Stability margins express how well the Nyquist curve of
the loop transfer avoids the critical point. The shortest distance sm of the Nyquist
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Figure 10.11: Stability margins for a third-order loop transfer function L(s). The
Nyquist plot (a) shows the stability margin, sm, the gain margin gm, and the phase
margin ϕm. The stability margin sm is the shortest distance to the critical point
−1. The gain margin corresponds to the smallest increase in gain that creates an
encirclement, and the phase margin is the smallest change in phase that creates
an encirclement. The Bode plot (b) shows the gain and phase margins.

curve to the critical point is a natural criterion, which is called the stability margin.
It is illustrated in Figure 10.11a, where we have plotted the portion of the curve
corresponding to ω > 0. A stability margin sm means that the Nyquist curve of
the loop transfer function is outside a circle around the critical point with radius
sm.

Other margins are based the influence of the controller on the Nyquist curve.
An increase in controller gain expands the Nyquist plot radially. An increase in the
phase of the controller turns the Nyquist plot clockwise. Hence from the Nyquist
plot we can easily pick off the amount of gain or phase that can be added without
causing the system to become unstable.

The gain margin gm of a closed loop system is defined as the smallest multiplier
of the loop gain that makes the system unstable. It is also the inverse of the distance
between the origin and the point between −1 and 0 where the loop transfer function
crosses the negative real axis. If there are several crossings the gain margin is defined
by the intersection that is closest to the critical point. Let this point be L(iωpc),
where ωpc represents this frequency, called the phase crossover frequency. The gain
margin for the system is then

gm =
1

|L(iωpc)|
. (10.5)

This number can be obtained directly from the Nyquist plots as shown in Fig-
ure 10.11a.

The phase margin is the amount of phase lag required to reach the stability
limit. Let ωgc be the gain crossover frequency, the frequency where the loop transfer
function L(iωpc) intersects the unit half-circle below the real axis. The phase margin
is then

ϕm = 180◦ + ∠L(iωgc). (10.6)
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As with the gain margin, this number can be obtained from the Nyquist plots as
shown in Figure 10.11a. If the Nyquist curve intersects the half-circle many times,
the phase margin is defined by the intersection that is closest to the critical point.

The gain and phase margins can also be determined from the Bode plot of the
loop transfer function, as illustrated in Figure 10.11b. To find the gain margin we
first find the phase crossover frequency ωpc where the phase is −180◦. The gain
margin is the inverse of the gain at that frequency. To determine the phase margin
we first determine the gain crossover frequency ωgc, i.e., the frequency where the
gain of the loop transfer function is 1. The phase margin is the phase of the loop
transfer function at that frequency plus 180◦. Figure 10.11b illustrates how the
margins are found in the Bode plot of the loop transfer function. The margins
are not always easy to determine from the Bode plot if the loop transfer function
intersects the lines |G(iω)| = 1 or ∠G(iω) = −180◦ ±n · 360◦ many times. In these
cases, the Nyquist plot should be used instead.

The gain and phase margins are classical robustness measures that have been
used for a long time in control system design. They were particularly attractive
because design was often based on the Bode plot of the loop transfer function. The
gain and phase margins are related to the stability margin through the inequalities

gm ≥ 1

1− sm
, ϕm ≥ 2 arcsin(sm/2), (10.7)

which follow from Figure 10.12 and the fact that sm is less than the distance
d = 2 sin(ϕm/2) from the critical point −1 to the point defining the gain crossover
frequency.

A drawback with the stability margin sm is that it does not have a natural
representation in the Bode plot of the loop transfer function. It can be shown that
the peak magnitude Ms of the closed loop transfer function 1/(1 + P (s)C(s)) is
related to the stability margin through the formula sm = 1/Ms, as will be discussed
in Chapter 13 together with more general robustness measures. A drawback with
gain and phase margins is that both have to be given to guarantee that the Nyquist
curve is not close to the critical point. It is also difficult to represent the winding
number in the Bode plot. In general, it is best to use the Nyquist plot to check
stability since this provides more complete information than the Bode plot.

Example 10.7 Stability margins for a third-order system
Consider a loop transfer function L(s) = 3/(s + 1)3. The Nyquist and Bode plots
are shown in Figure 10.12. To compute the gain, phase, and stability margins, we
can use the Nyquist plot shown in Figure 10.12a. This yields the following values:

gm = 2.67, ϕm = 41.7◦, sm = 0.464.

The gain and phase margins can also be determined from the Bode plot. ∇
Even if both the gain and phase margins are reasonable, the system may still

not be robust, as is illustrated by the following example.

Example 10.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function

L(s) =
0.38(s2 + 0.1s+ 0.55)

s(s+ 1)(s2 + 0.06s+ 0.5)
.
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Figure 10.12: Stability margins for a third-order transfer function. The Nyquist
plot (a) allows the gain, phase, and stability margins to be determined by mea-
suring the distances of relevant features. The gain and phase margins can also be
read off of the Bode plot (b).

A numerical calculation gives the gain margin as gm = 266, and the phase margin
is 70◦. These values indicate that the system is robust, but the Nyquist curve is
still close to the critical point, as shown in Figure 10.13a. The stability margin is
sm = 0.27, which is very low. The closed loop system has two resonant modes, one
with damping ratio ζ = 0.81 and the other with ζ = 0.014. The step response of
the system is highly oscillatory, as shown in Figure 10.13c. ∇

When designing feedback systems, it will often be useful to define the robustness
of the system using gain, phase, and stability margins. These numbers tell us how
much the system can vary from our nominal model and still be stable. Reasonable
values of the margins are phase margin ϕm = 30◦–60◦, gain margin gm = 2–5, and
stability margin sm = 0.5–0.8.

There are also other stability measures, such as the delay margin, which is
the smallest time delay required to make the system unstable. For loop transfer
functions that decay quickly, the delay margin is closely related to the phase margin,
but for systems where the gain curve of the loop transfer function has several peaks
at high frequencies, the delay margin is a more relevant measure.

Example 10.9 Nanopositioning system for an atomic force microscope
Consider the system for horizontal positioning of the sample in an atomic force
microscope, described in more detail in Section 4.5. The system has oscillatory
dynamics, and a simple model is a spring–mass system with low damping. The
normalized transfer function is given by

P (s) =
ω2
0

s2 + 2ζω0s+ ω2
0

, (10.8)

where the damping ratio typically is a very small number, e.g., ζ = 0.1.
We will start with a controller that has only integral action. The resulting loop

transfer function is

L(s) =
kiω

2
0

s(s2 + 2ζω0s+ ω2
0)
,
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Figure 10.13: System with good gain and phase margins but a poor stability
margin. The Nyquist plot (a) and Bode plot (b) of the loop transfer function
and step response (c) for a system with good gain and phase margins but with
a poor stability margin. The Nyquist plot shows only the portion of the curve
corresponding to ω > 0.

where ki is the gain of the controller. Nyquist and Bode plots of the loop transfer
function are shown in Figure 10.14. Notice that the part of the Nyquist curve that
is close to the critical point −1 is approximately circular.

From the Bode plot in Figure 10.14b, we see that the phase crossover frequency
is ωpc = ω0, which will be independent of the gain ki. Evaluating the loop transfer
function at this frequency, we have L(iω0) = −ki/(2ζω0), which means that the
stability margin is sm = 1 − ki/(2ζω0). To have a desired stability margin of sm
the integral gain should be chosen as

ki = 2ζω0(1− sm).

Figure 10.14 shows Nyquist and Bode plots for the system with gain margin gm =
2.5 and stability margin sm = 0.6. The gain curve in the Bode plot is almost a
straight line for low frequencies and has a resonant peak at ω = ω0. The gain
crossover frequency is approximately equal to ki and the phase decreases monoton-
ically from −90◦ to −270◦: it is equal to −180◦ at ω = ω0. The gain curve can
be shifted vertically by changing ki: increasing ki shifts the gain curve upward and
increases the gain crossover frequency. ∇

10.4 Bode’s Relations and Minimum Phase Sys-
tems

An analysis of Bode plots reveals that there appears to be a relation between the
gain curve and the phase curve. Consider, for example, the Bode plots for the
differentiator and the integrator (shown in Figure 9.13). For the differentiator the
slope is +1 and the phase is a constant π/2 radians. For the integrator the slope is
−1 and the phase is −π/2. For the first-order system G(s) = s+ a, the amplitude
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Figure 10.14: Nyquist and Bode plots of the loop transfer function for the AFM
system (10.8) with an integral controller. The frequency in the Bode plot is nor-
malized by ω0. The parameters are ζ = 0.01 and ki = 0.008.

curve has the slope 0 for small frequencies and the slope +1 for high frequencies,
and the phase is 0 for low frequencies and π/2 for high frequencies.

Bode investigated the relations between the gain and phase curves in his plot
and he found that for a special class of systems there was indeed a relation between
gain and phase. These systems do not have time delays or poles and zeros in the
right half-plane, and in addition they have the property that log |G(s)|/s goes to
zero as s → ∞ for Re s ≥ 0. Bode called these systems minimum phase systems
because they have the smallest phase lag of all systems with the same gain curve.
For minimum phase systems the phase is uniquely given by the shape of the gain
curve and vice versa:

argG(iω0) =
π

2

∫ ∞

0

f(ω)
d log |G(iω)|
d logω

dω

ω
≈ π

2

d log |G(iω)|
d logω

∣∣∣∣∣
ω=ω0

, (10.9)

where f is the weighting kernel

f(ω) =
2

π2
log
∣∣∣ω + ω0

ω − ω0

∣∣∣ and

∫ ∞

0

f(ω)
dω

ω
= 1. (10.10)

The phase curve for a minimum phase system is thus a weighted average of the
derivative of the gain curve. Notice that since |G(s)| = |−G(s)| and ∠(−G(s)) =
∠G(s) − 180◦, the sign of the minimum phase G(s) must also be chosen properly.
We assume that the sign is always chosen so that ∠G(s) > ∠(−G(s)).

We illustrate Bode’s relation (10.9) with an example.

Example 10.10 Phase of G(s) = s
n

For the transfer function G(s) = sn we have that logG(s) = n log s and hence
d logG(s)/d log s = n. Equation (10.9) then gives

argG(iω0) =
π

2

∫ ∞

0

f(ω)
d log |G(iω)|
d logω

dω

ω
=
π

2

∫ ∞

0

nf(ω)
dω

ω
= n

π

2
,

where the last equality follows from equation (10.10). If the gain curve has constant
slope n, the phase curve is a horizontal line argG(iω) = nπ/2. ∇
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Figure 10.15: Bode plots of systems that are not minimum phase. (a) Time delay

G(s) = e−sT , (b) system with a right half-plane (RHP) zero G(s) = (a−s)/(a+s),
and (c) system with right half-plane pole G(s) = (s+a)/(s−a). The corresponding
minimum phase system has the transfer function G(s) = 1 in all cases; the phase
curves for that system are shown as dashed lines.

We will now give a few examples of transfer functions that are not minimum
phase transfer functions. The transfer function of a time delay of τ units is G(s) =
e−sτ . This transfer function has unit gain |G(iω)| = 1, and the phase is argG(iω) =
−ωτ . The corresponding minimum phase system with unit gain has the transfer
function G(s) = 1. The time delay thus has an additional phase lag of ωτ . Notice
that the phase lag increases linearly with frequency. Figure 10.15a shows the Bode
plot of the transfer function. (Because we use a log scale for frequency, the phase
falls off exponentially in the plot.)

Consider a system with the transfer function G(s) = (a− s)/(a+ s) with a > 0,
which has a zero s = a in the right half-plane. The transfer function has unit gain
|G(iω)| = 1, and the phase is argG(iω) = −2 arctan (ω/a). The corresponding
minimum phase system with unit gain has the transfer function G(s) = 1. Fig-
ure 10.15b shows the Bode plot of the transfer function. A similar analysis of the
transfer function G(s) = (s + a)/(s − a) with a > 0, which has a pole in the right
half-plane, shows that its phase is argG(iω) = −2 arctan(a/ω). The Bode plot is
shown in Figure 10.15c.

The presence of poles and zeros in the right half-plane imposes severe limits
on the achievable performance as will be discussed in Chapter 14. Dynamics of
this type should be avoided by redesign of the system. While the poles are intrinsic
properties of the system and they do not depend on sensors and actuators, the zeros
depend on how inputs and outputs of a system are coupled to the states. Zeros can
thus be changed by moving sensors and actuators or by introducing new sensors
and actuators. Non-minimum phase systems are unfortunately quite common in
practice.

The following example shows that difficulties can arise in the response of non-
minimum phase systems.

Example 10.11 Vehicle steering
The vehicle steering model considered in Examples 6.13 and 9.10 has different
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Figure 10.16: Vehicle steering for driving in reverse. (a) Step responses from
steering angle to lateral translation for a simple kinematics model when driving
forward (dashed) and reverse (solid). With rear-wheel steering the center of mass
first moves in the wrong direction and the overall response with rear-wheel steering
is significantly delayed compared with that for front-wheel steering. (b) Frequency
response for driving forward (dashed) and reverse (solid). Notice that the gain
curves are identical, but the phase curve for driving in reverse has non-minimum
phase.

properties depending on whether we are driving forward or in reverse. The non-
normalized transfer function from steering angle to lateral position for the simple
vehicle model is

P (s) =
av0s+ v20

bs2
,

where v0 is the velocity of the vehicle and a, b > 0 (see Example 6.13). The transfer
function has a zero at s = v0/a. In normal (forward) driving this zero is in the left
half-plane, but it is in the right half-plane when driving in reverse, v0 < 0. The
unit step response is

y(t) =
av0t

b
+
v20t

2

2b
.

The lateral position thus begins to respond immediately to a steering command as
an integrator. For reverse steering v0 is negative and the initial response is in the
wrong direction, a behavior that is representative for non-minimum phase systems
(called an inverse response).

Figure 10.16 shows the step response for forward and reverse driving. The
parameters are a = 1.5 m, b = 3 m, v0 = 2 m/s for forward driving, and v0 =
−2 m/s for reverse driving. Thus when driving in reverse there is an initial motion
of the center of mass in the opposite direction and there is a delay before the car
begins to move in the desired manner.

The position of the zero v0/a depends on the location of the sensor. In our
calculation we have assumed that the sensor is at the center of mass. The zero in
the transfer function disappears if the sensor is located at the rear wheel. Thus if
we look at the center of the rear wheels instead of the center of mass, the inverse
response is not present and the resulting input/output behavior is simplified.
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The formulas for the unit step response y(t) and the transfer P (s) give an
interesting insight between the time and frequency domains. The behavior of the
step response for small t, y(t) ≈ av0t/b is related to the high frequency property of
the transfer function P (s) ≈ av0/(bs) and the behavior of the step response for large
t is related to the low frequency properties of the transfer function. This linkage
can be made more formal through the use of the initial value theorem, discussed at
the end of Section 9.3 ∇

10.5 Generalized Notions of Gain and Phase �

A key idea in frequency domain analysis is to trace the behavior of sinusoidal signals
through a system. The concepts of gain and phase represented by the transfer
function are strongly intuitive because they describe amplitude and phase relations
between input and output. In this section we will see how to extend the concepts
of gain and phase to more general systems, including some nonlinear systems. We
will also show that there are analogs of Nyquist’s stability criterion if signals are
approximately sinusoidal.

System Gain and Passivity

We begin by considering the case of a static linear system y = Au, where A is
a matrix whose elements are complex numbers. The matrix does not have to be
square. Let the inputs and outputs be vectors whose elements are complex numbers
and use the Euclidean norm

‖u‖ =
√

Σ|ui|2. (10.11)

The norm of the output is
‖y‖2 = u∗A∗Au,

where ∗ denotes the complex conjugate transpose. The matrix A∗A is symmetric
and positive semidefinite, and the right-hand side is a quadratic form. The square
roots of the eigenvalues of the matrix A∗A are all real, and we have

‖y‖2 ≤ λ̄(A∗A)‖u‖2,

where λ̄ denotes the largest eigenvalue. The gain of the system can then be defined
as the maximum ratio of the output to the input over all possible inputs:

γ = max
u

‖y‖
‖u‖ =

√
λ̄(A∗A). (10.12)

The square roots of the eigenvalues of the matrix A∗A are called the singular values
of the matrix A, and the largest singular value is denoted by σ̄(A).

To generalize this to the case of an input/output dynamical system, we need
to think of the inputs and outputs not as vectors of real numbers but as vectors
of signals. For simplicity, consider first the case of scalar signals and let the signal
space L2 be square-integrable functions with the norm

‖u‖2 =

√∫ ∞

0

|u|2(τ) dτ .
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This definition can be generalized to vector signals by replacing the absolute value
with the vector norm (10.11). We can now formally define the gain of a system
taking inputs u ∈ L2 and producing outputs y ∈ L2 as

γ = sup
u∈L2

‖y‖2
‖u‖2

, (10.13)

where sup is the supremum, defined as the smallest number that is larger or equal
to its argument. The reason for using the supremum is that the maximum may not
be defined for u ∈ L2. This definition of the system gain is quite general and can
even be used for some classes of nonlinear systems, though one needs to be careful
about how initial conditions and global nonlinearities are handled.

This generalized notion of gain can be used to define the concept of input/output
stability for a system. Roughly speaking, a system is called bounded input/bounded
output (BIBO) stable if a bounded input gives a bounded output for all initial
states. A system is called input to state stable (ISS) if ‖x(t)‖ ≤ β(‖x(0)‖)+γ(‖u‖)
where β and γ are monotonically increasing functions that vanish at the origin.

The norm (10.13) has some nice properties in the case of linear systems. In partic-
ular, given a single-input, single-output stable linear system with transfer function
G(s), it can be shown that the norm of the system is given by

γ = sup
ω

|G(iω)| =: ‖G‖∞. (10.14)

In other words, the gain of the system corresponds to the peak value of the frequency
response. This corresponds to our intuition that an input produces the largest
output when we are at the resonant frequencies of the system. ‖G‖∞ is called the
infinity norm of the transfer function G(s).

This notion of gain can be generalized to the multi-input, multi-output case as
well. For a linear multivariable system with a transfer function matrix G(s) we can
define the gain as

γ = ‖G‖∞ = sup
ω
σ̄(G(iω)). (10.15)

Thus we can combine the idea of the gain of a matrix with the idea of the gain of
a linear system by looking at the maximum singular value over all frequencies.

In addition to generalizing the system gain, it is also possible to make generaliza-
tions of the concept of phase. The angle between two vectors can be defined by the
equation

〈u, y〉 = ‖u‖‖y‖ cos(ϕ), (10.16)

where the left argument denotes the scalar product. If systems are defined in such
a way that we have norms of signals and a scalar product between signals we can
use equation (10.16) to define the phase between two signals. For square-integrable
inputs and outputs we have the scalar product

〈u, y〉 =
∫ ∞

0

u(τ)y(τ) dτ,

and the phase ϕ between the signals u and y can now be defined through equa-
tion (10.16).
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−H2

Σ H1

Figure 10.17: Block diagram of feedback connection of two general nonlinear
systems H1 and H2.

Systems where the phase between inputs and outputs is 90◦ or less for all inputs
are called passive systems. Systems where the phase is strictly less than 90◦ are
called strictly passive.

Extensions of the Nyquist Criterion

There are many extensions of the Nyquist’s criterion, and we briefly sketch a few of
them here. For linear systems it follows from Nyquist’s theorem that the closed loop
is stable if the gain of the loop transfer function is less than 1 for all frequencies.
Since we have a notion of gain for nonlinear systems given by equation (10.13), we
can extend this case of the Nyquist criterion to nonlinear systems:

Theorem 10.4 (Small gain theorem). Consider the closed loop system shown in
Figure 10.17, where H1 and H2 are input/output stable systems and the signal
spaces and initial conditions are properly defined. Let the gains of the systems H1

and H2 be γ1 and γ2. Then the closed loop system is input/output stable if γ1γ2 < 1,
and the gain of the closed loop system is

γ =
γ1

1− γ1γ2
.

Another extension of the Nyquist criterion to nonlinear systems can be obtained by
investigating the phase shift of the nonlinear systems. Consider again the system
in Figure 10.17. It follows from the Nyquist criterion that if the blocks H1 and H2

are linear transfer functions, then the closed loop system is stable if the phase of
H1H2 is always less than 180◦. A generalization of this to nonlinear systems is that
the closed loop system is stable if both H1 and H2 are passive and if one of them
is strictly passive. This result is called the passivity theorem.

A final useful extension of the Nyquist criterion applies to the system in Figure 10.18
where H1 is a linear system with transfer function H(s) and the nonlinear block
H2 is a static nonlinearity described by a function F (x) that is sector-bounded

klow x ≤ F (x) ≤ khigh x. (10.17)

The following theorem allows us to reason about the stability of such a system.

Theorem 10.5 (Circle criterion). Consider a negative feedback system consisting
of a linear system with transfer function H(s) and a static nonlinearity defined by a
function F (x) satisfying the sector bound (10.17). The closed loop system is stable
if the Nyquist curve of H(iω) is outside a circle with diameter −1/klow ≤ x ≤
−1/khigh and the encirclement condition is satisfied.
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Figure 10.18: Stability using the circle criterion. For a feedback system with a
sector-bounded nonlinearity (a), the Nyquist plot (b) must stay outside of a circle
defined by −1/klow ≤ x ≤ −1/khigh.

The extensions of Nyquist’s criterion that we have discussed are powerful and
easy to apply, and we will use them later to in Chapter 13. Details, proofs, and
applications are found in [Kha01].

Describing Functions

For special nonlinear systems like the one shown in Figure 10.19a, which consists
of a feedback connection between a linear system and a static nonlinearity, it is
possible to obtain a generalization of Nyquist’s stability criterion based on the idea
of describing functions. Following the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that corresponds to the first harmonic.

To carry out this analysis, we have to analyze how a sinusoidal signal propagates
through a static nonlinear system. In particular we investigate how the first har-
monic of the output of the nonlinearity is related to its (sinusoidal) input. Letting
F (x) represent the nonlinear function, we expand F (eiωt) in terms of its harmonics:

F (aeiωt) =
∞∑

n=0

Mn(a)e
i(nωt+ϕn(a)),

where Mn(a) and ϕn(a) represent the gain and phase of the nth harmonic, which
depend on the input amplitude since the function F (x) is nonlinear. We define the
describing function to be the complex gain of the first harmonic:

N(a) =M1(a)e
iϕ1(a). (10.18)

The function can also be computed by assuming that the input is a sinusoid and
using the first term in the Fourier series of the resulting output.

Neglecting higher harmonics and arguing as we did when deriving Nyquist’s
stability criterion, we find that an oscillation can be maintained if

H(iω)N(a) = −1. (10.19)
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Figure 10.19: Describing function analysis. A feedback connection between
a static nonlinearity and a linear system is shown in (a). The linear system is
characterized by its transfer function H(s), which depends on frequency, and the
nonlinearity by its describing function N(a), which depends on the amplitude a of
its input. The Nyquist plot of H(iω) and the plot of the −1/N(a) are shown in
(b). The intersection of the curves represents a possible limit cycle.

This equation means that if we inject a sinusoid of amplitude a at A in Fig-
ure 10.19a, the same signal will appear at B and an oscillation can be maintained
by connecting the points. Equation (10.19) gives two conditions for finding the
frequency ω of the oscillation and its amplitude a: the phase of H(iω)N(a) must
be 180◦ and its magnitude must be unity. A convenient way to solve the equation
is to plot H(iω) and −1/N(a) on the same diagram as shown in Figure 10.19b.
The diagram is similar to the Nyquist plot where the critical point −1 is replaced
by the curve −1/N(a) and a ranges from 0 to ∞. The intersection of the curves
gives the amplitude a and frequency ω of the predicted oscillation.

It is possible to define describing functions for types of inputs other than si-
nusoids. Describing function analysis is a simple method, but it is approximate
because it assumes that higher harmonics can be neglected. Excellent treatments
of describing function techniques can be found in the texts by Atherton [Ath75]
and Graham and McRuer [GM61]. The following example illustrates its use.

Example 10.12 Relay with hysteresis
Consider a linear system with a nonlinearity consisting of a relay with hysteresis.
The output has amplitude b and the relay switches when the input is ±c, as shown in
Figure 10.20a. Assuming that the input is u = a sin(ωt), we find that the output is
zero if a ≤ c, and if a > c the output is a square wave with amplitude b that switches
at times ωt = arcsin(c/a)+nπ. The first harmonic is then y(t) = (4b/π) sin(ωt−α),
where sinα = c/a. For a > c the describing function and its inverse are

N(a) =
4b

aπ

(√
1− c2

a2
− i

c

a

)
,

1

N(a)
=
π
√
a2 − c2

4b
+ i

πc

4b
,

where the inverse is obtained after simple calculations. Figure 10.20b shows the
response of the relay to a sinusoidal input with the first harmonic of the output
shown as a dashed line. Describing function analysis is illustrated in Figure 10.20c,
which shows the Nyquist plot of the transfer function H(s) = 2/(s + 1)4 (dashed
line) and the negative inverse describing function of a relay with b = 1 and c = 0.5
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Figure 10.20: Describing function analysis for a relay with hysteresis. The
input/output relation of the hysteresis is shown in (a) and the input with amplitude
a = 2, the output and its first harmonic are shown in (b). The Nyquist plots of
the transfer function H(s) = (s + 1)−4 and the negative of the inverse describing
function for the relay with b = 3 and c = 1 are shown in (c).

(solid line). The curves intersect for a = 1 and ω = 0.77 rad/s, indicating the
amplitude and frequency for a possible oscillation if the process and the relay are
connected in a a feedback loop. ∇

It follows from the example that the describing function for a relay without
hysteresis is N(a) = 4b/(aπ) and −1/N(a) is thus the negative real axis. For a
saturation function, −1/N(a) is the part of the negative real axis from −∞ to −1.

10.6 Further Reading

Nyquist’s original paper giving his now famous stability criterion was published
in the Bell Systems Technical Journal in 1932 [Nyq32]. More accessible versions
are found in the book [BK64], which also includes other interesting early papers on
control. Nyquist’s paper is also reprinted in an IEEE collection of seminal papers on
control [Bas01]. Nyquist used +1 as the critical point, but Bode changed it to −1,
which is now the standard notation. Interesting perspectives on early developments
are given by Black [Bla77], Bode [Bod60], and Bennett [Ben93]. Nyquist did a direct
calculation based on his insight into the propagation of sinusoidal signals through
systems; he did not use results from the theory of complex functions. The idea
that a short proof can be given by using the principle of variation of the argument
is presented in the delightful book by MacColl [Mac45]. Bode made extensive
use of complex function theory in his book [Bod45], which laid the foundation for
frequency response analysis where the notion of minimum phase was treated in
detail. A good source for complex function theory is the classic by Ahlfors [Ahl66].

The extensions of Nyquist’s criterion to a closed loop system that is composed of
a linear system and a static nonlinearity has received significant attention. An ex-
tensive treatment of the passivity and small gain theorems and describing functions
is given in the book by Khalil [Kha01]. Describing functions for many nonlinearities
are given in the books by Atherton [Ath75] and Graham and McRuer [GM61]. Fre-
quency response analysis was a key element in the emergence of control theory as
described in the early texts by James et al. [JNP47], Brown and Campbell [BC48],
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and Oldenburger [Old56], and it became one of the cornerstones of early control
theory. Frequency response methods underwent a resurgence when robust control
emerged in the 1980s, as will be discussed in Chapter 13.

Exercises

10.1 (Operational amplifier loop transfer function) Consider the operational am-
plifier circuit shown here, where Z1 and Z2 are generalized impedances and the
open loop amplifier is modeled by the transfer function G(s).

v −

+
v1

v2

Z1 Z2

i0
v2Z1

Z1 + Z2

e vZ2

Z1

v1
−G(s)Σ

Show that the system can be modeled as the block diagram on the right, with
loop transfer function L = Z1G/(Z1 + Z2) and feedforward transfer function F =
Z1/(Z1 + Z2).

10.2 (Atomic force microscope) The dynamics of the tapping mode of an atomic
force microscope are dominated by the damping of the cantilever vibrations and
the system that averages the vibrations. Modeling the cantilever as a spring–mass
system with low damping, we find that the amplitude of the vibrations decays
as exp(−ζω0t), where ζ is the damping ratio and ω0 is the undamped natural
frequency of the cantilever. The cantilever dynamics can thus be modeled by the
transfer function

G(s) =
a

s+ a
,

where a = ζω0. The averaging process can be modeled by the input/output relation

y(t) =
1

τ

∫ t

t−τ
u(v) dv,

where the averaging time is a multiple n of the period of the oscillation 2π/ω. The
dynamics of the piezo scanner can be neglected in the first approximation because
they are typically much faster than a. A simple model for the complete system is
thus given by the transfer function

P (s) =
a(1− e−sτ )
sτ(s+ a)

.

Plot the Nyquist curve of the system and determine the gain of a proportional
controller that brings the system to the boundary of stability.

10.3 (Congestion control in overload conditions) A strongly simplified flow model
of a TCP loop under overload conditions is given by the loop transfer function

L(s) =
k

s
e−sτ ,
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where the queuing dynamics are modeled by an integrator, the TCP window control
is a time delay τ , and the controller is simply a proportional controller. A major
difficulty is that the time delay may change significantly during the operation of
the system. Show that if we can measure the time delay, it is possible to choose a
gain that gives a stability margin of sm ≥ 0.6 for all time delays τ .

10.4 (Heat conduction) A simple model for heat conduction in a solid is given by
the transfer function

P (s) = ke−
√
s.

Sketch the Nyquist plot of the system. Determine the frequency where the phase of
the process is −180◦ and copmute the gain at that frequency. Show that the gain
required to bring the system to the stability boundary is k = eπ.

10.5 (Stability margins for second-order systems) A process whose dynamics is
described by a double integrator is controlled by an ideal PD controller with the
transfer function C(s) = kds + kp, where the gains are kd = 2ζω0 and kp = ω2

0 .
Calculate and plot the gain, phase, and stability margins as a function ζ.

10.6 (Unity gain operational amplifier) Consider an op amp circuit with Z1 = Z2

that gives a closed loop system with nominally unit gain. Let the transfer function
of the operational amplifier be

G(s) =
ka1a2

(s+ a)(s+ a1)(s+ a2)
,

where a1, a2 ≫ a. Show that the condition for oscillation is k < a1 + a2 and
compute the gain margin of the system. Hint: Assume a = 0.

10.7 (Vehicle steering) Consider the linearized model for vehicle steering with a
controller based on state feedback discussed in Example 8.4. The transfer functions
for the process and controller are given by

P (s) =
γs+ 1

s2
, C(s) =

s(k1l1 + k2l2) + k1l2
s2 + s(γk1 + k2 + l1) + k1 + l2 + k2l1 − γk2l2

,

as computed in Example 9.10. Let the process parameter be γ = 0.5 and assume
that the state feedback gains are k1 = 0.5 and k2 = 0.75 and that the observer
gains are l1 = 1.4 and l2 = 1. Compute the stability margins numerically.

10.8 (Vectored thrust aircraft) Consider the state space controller designed for �
the vectored thrust aircraft in Examples 7.9 and 8.7. The controller consists of
two components: an optimal estimator to compute the state of the system from
the output and a state feedback compensator that computes the input given the
(estimated) state. Compute the loop transfer function for the system and determine
the gain, phase, and stability margins for the closed loop dynamics.

10.9 (Kalman’s inequality) Consider the linear system (7.20). Let u = −Kx be
a state feedback control law obtained by solving the linear quadratic regulator
problem. Prove the inequality

(
I + L(−iω)

)T
Qu
(
I + L(iω)

)
≥ Qu,
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where

K = Q−1
u BTS, L(s) = K(sI −A)−1B.

(Hint: Use the Riccati equation (7.33), add and subtract the terms sS, multiply
with BT (sI +A)−T from the left and (sI −A)−1B from the right.)

For single-input single-output systems this result implies that the Nyquist plot
of the loop transfer function has the property |1+L(iω)| ≥ 1, from which it follows
that the phase margin for a linear quadratic regulator is always greater than 60◦.

10.10 (Bode’s formula) Consider Bode’s formula (10.9) for the relation between
gain and phase for a transfer function that has all its singularities in the left half-
plane. Plot the weighting function and make an assessment of the frequencies where
the approximation argG ≈ (π/2)d log |G|/d logω is valid.

10.11 (Padé approximation to a time delay) Consider the transfer functions

G(s) = e−sτ , G1(s) =
1− sτ/2

1 + sτ/2
. (10.20)

Show that the minimum phase properties of the transfer functions are similar for
frequencies ω < 1/τ . A long time delay τ is thus equivalent to a small right half-
plane zero. The approximation G1(s) in equation (10.20) is called a first-order Padé
approximation.

10.12 (Inverse response) Consider a system whose input/output response is mod-
eled by G(s) = 6(−s+ 1)/(s2 + 5s+ 6), which has a zero in the right half-plane.
Compute the step response for the system, and show that the output goes in the
wrong direction initially, which is also referred to as an inverse response. Compare
the response to a minimum phase system by replacing the zero at s = 1 with a zero
at s = −1.

10.13 (Circle criterion) Consider the system in Figure 10.17, where H1 is a linear
system with the transfer function H(s) and H2 is a static nonlinearity F (x) with
the property xF (x) ≥ 0. Use the circle criterion to prove that the closed loop
system is stable if H(s) is strictly passive.

10.14 (Describing function analysis) Consider the system with the block diagram
shown on the left.

−1

Σ
r e u

P (s)
y

R( · )

y

u

c

b

The block R is a relay with hysteresis whose input/output response is shown on the
right and the process transfer function is P (s) = e−sτ/s. Use describing function
analysis to determine frequency and amplitude of possible limit cycles. Simulate
the system and compare with the results of the describing function analysis.
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10.15 (Describing functions) Consider the saturation function

y = sat(x) =





−1 if x ≤ 1,

x if −1 < x ≤ 1,

1 if x > 1.

Show that the describing function is

N(a) =





x if |x| ≤ 1,

2

π

(
arcsin

1

x
+

1

x

√
1− 1

x2

)
if |x| > 1.
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Chapter 11

PID Control

Based on a survey of over eleven thousand controllers in the refining,
chemicals and pulp and paper industries, 97% of regulatory controllers
utilize a PID feedback control algorithm.

L. Desborough and R. Miller, 2002 [DM02a].

Proportional-integral-derivative (PID) control is by far the most common way
of using feedback in engineering systems. In this chapter we present the basic
properties of PID control and the methods for choosing the parameters of the
controllers. We also analyze the effects of actuator saturation, an important feature
of many feedback systems, and describe methods for compensating for it. Finally,
we discuss the implementation of PID controllers as an example of how to implement
feedback control systems using analog or digital computation.

11.1 Basic Control Functions

The PID controller was introduced in Section 1.6, where Figure 1.15 illustrates
that control action is composed of three terms: the proportional term (P), which
depends on the present error; the integral term (I), which depends on past errors;
and the derivative term (D), which depends on anticipated future errors. A major
difference between a PID controller and an advanced controller based on feedback
from estimated states (see Section 8.5) is that the observer-based controller predicts
the future state of the system using a mathematical model, while the PID controller
makes use of linear extrapolation of the measured output. A PI controller does not
make use of any prediction of the future state of the system.

A survey of controllers for more than 100 boiler-turbine units in the Guangdong
Province in China is a typical illustration of the prevalence of PID-based control:
94.4% of all controllers were PI, 3.7% PID, and 1.9% used advanced control [SLL16].
The reasons why derivative action is used in only 4% of all controllers are that
the benefits of prediction are significant primarily for processes that permit large
controller gains. For many systems, prediction by linear extrapolation can generate
large undesired control signals because measurement noise is amplified. In addition
care must be taken to find a proper prediction horizon. Temperature control is a

11-1
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Controller
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kds

ki/s

Σ
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e
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r u
P (s)

y

(a) PID using error feedback

Controller

kp

kds

ki/sΣ

Σ
u

r

y
P (s)

−1

(b) PID using two degrees of freedom

Figure 11.1: Block diagrams of closed loop systems with ideal PID controllers.
Both controllers have one output, the control signal u. The controller in (a), which
is based on error feedback, has one input, the control error e = r − y. For this
controller proportional, integral, and derivative action acts on the error e = r− y.
The two degree-of-freedom controller in (b) has two inputs, the reference r and the
process output y. Integral action acts on the error, but proportional and derivative
action act on only the process output y.

typical case where derivative action can be beneficial: sensors have low noise levels
and controllers can have high gain.

PID control appears in simple dedicated systems and in large factories with
thousands of controllers: as stand-alone controllers, as elements of hierarchical,
distributed control systems, and as components of embedded systems. Advanced
control systems are implemented as hierarchical systems, where high-level con-
trollers give setpoints to PID controllers in a lower layer. The PID controllers are
directly connected to the sensors and actuators of the process. The importance
of PID controllers thus has not decreased with the adoption of advanced control
methods, because the performance of the system depends critically on the behavior
of the PID controllers [DM02a]. There is also growing evidence that PID control
appears in biological systems [YHSD00].

Block diagrams of closed loop systems with PID controllers are shown in Fig-
ure 11.1. The command signal r is called the reference signal in regulation problems
or the setpoint in the literature of PID control. The control signal u for the system
in Figure 11.1a is formed entirely from the error e; there is no feedforward term
(which would correspond to kfr in the state feedback case). A common alternative
in which proportional and derivative action do not act on the reference is shown in
Figure 11.1b; combinations of the schemes will be discussed in Section 11.5.

The input/output relation for an ideal PID controller with error feedback is

u = kpe+ ki

∫ t

0

e(τ) dτ + kd
de

dt
= kp

(
e+

1

Ti

∫ t

0

e(τ) dτ + Td
de

dt

)
. (11.1)

The control action is thus the sum of three terms: proportional feedback, the
integral term, and derivative action. For this reason PID controllers were originally
called three-term controllers.

The controller parameters are the proportional gain kp, the integral gain ki,
and the derivative gain kd. The gain kp is sometimes expressed in terms of the
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(c) PID control

Figure 11.2: Responses to step changes in the reference value for a system with
a proportional controller (a), PI controller (b), and PID controller (c). The pro-
cess has the transfer function P (s) = 1/(s + 1)3, the proportional controller has
parameters kp = 1, 2, and 5, the PI controller has parameters kp = 1, ki = 0, 0.2,
0.5, and 1, and the PID controller has parameters kp = 2.5, ki = 1.5, and kd = 0,
1, 2, and 4.

proportional band, defined as PB = 100/kp. A proportional band of 10% thus
implies that the controller operates linearly for only 10% of the span of the measured
signal. The controller can also be parameterized with the time constants Ti =
kp/ki and Td = kd/kp, called the integral time (constant) and the derivative time
(constant). The parameters Ti and Td have dimensions of time and can naturally
be related to the time constants of the controller.

The controller (11.1) is an idealized representation. It is a useful abstraction
for understanding the PID controller, but several modifications must be made to
obtain a controller that is practically useful. Before discussing these practical issues
we will develop some intuition about PID control.

We start by considering pure proportional feedback. Figure 11.2a shows the re-
sponses of the process output to a unit step in the reference value for a system with
pure proportional control at different gain settings. In the absence of a feedforward
term, the output never reaches the reference, and hence we are left with nonzero
steady-state error. Letting the process transfer function be P (s), with proportional
feedback we have C(s) = kp and the transfer function from reference to error is

Ger(s) =
1

1 + C(s)P (s)
=

1

1 + kpP (s)
. (11.2)

Assuming that the closed loop is stable, the steady-state error for a unit step is

Ger(0) =
1

1 + C(0)P (0)
=

1

1 + kpP (0)
.

For the system in Figure 11.2a with gains kp = 1, 2, and 5, the steady-state error
is 0.5, 0.33, and 0.17. The error decreases with increasing gain, but the system also
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becomes more oscillatory. The system becomes unstable for kp = 8. Notice in the
figure that the initial value of the control signal equals the controller gain.

To avoid having a steady-state error, the proportional term can be changed to

u(t) = kpe(t) + uff, (11.3)

where uff is a feedforward term that is adjusted to give the desired steady-state
value. If the reference value r is constant and we choose uff = r/P (0) = kfr,
then the steady-state output will be exactly equal to the reference value, as it was
in the state space case, provided that there are no disturbances. However, this
requires exact knowledge of the zero frequency gain P (0), which is usually not
available. The parameter uff, called the reset value, was adjusted manually in early
controllers. Another alternative to avoid a steady-state error is to multiply the
reference by 1 + kpP (0), but this also requires precise knowledge of P (0).

As we saw in Section 7.4, integral action guarantees that the process output agrees
with the reference in steady state and provides an alternative to the feedforward
term. Since this result is so important, we will provide a general proof. Consider the
controller given by equation (11.1) with ki 6= 0. Assume that u(t) and e(t) converge
to steady-state values u = u0 and e = e0. It then follows from equation (11.1) that

u0 = kpe0 + ki lim
t→∞

∫ t

0

e(t)dt.

The limit of the right hand side is not finite unless e(t) goes to zero, which implies
that e0 = 0. We can thus conclude that integral control has the property that if a
steady state exists, the error will always be zero. This property is sometimes called
the magic of integral action. Notice that we have not assumed that the process is
linear or time-invariant. We have, however, assumed that there is an equilibrium
point. It is much better to achieve zero steady-state error by integral action than
by feedforward, which requires a precise knowledge of process parameters.

The effect of integral action can also be understood from frequency domain
analysis. The transfer function of the PID controller is

C(s) = kp +
ki
s
+ kds. (11.4)

The controller has infinite gain at zero frequency (C(0) = ∞), and it then follows
from equation (11.2) that Ger(0) = 0, which implies that there is no steady-state
error for a step input.

Integral action can also be viewed as a method for generating the feedforward
term uff in the proportional controller (11.3) automatically. This is shown in Fig-
ure 11.3a, where the controller output is low-pass filtered and fed back with positive
gain. This implementation, called automatic reset, was one of the early inventions
of integral control (it was much easier to implement a low-pass filter than to imple-
ment an integrator). The transfer function of the system in Figure 11.3a is obtained
by block diagram algebra: we have

Gue = kp
1 + sTi
sTi

= kp +
kp
sTi

,
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1 + sTi

Σkp

e u

(a) Integral action (automatic reset)

u
Σkp

e

−1

1 + sTd

(b) Derivative action

Figure 11.3: Implementation of integral and derivative action. The block dia-
gram in (a) shows how integral action is implemented using positive feedback with
a first-order system, sometimes called automatic reset. The block diagram in (b)
shows how derivative action can be implemented by taking differences between a
static system and a first-order system.

which is the transfer function for a PI controller.

The properties of integral action are illustrated in Figure 11.2b for a step input.
The proportional gain is constant, kp = 1, and the integral gains are ki = 0, 0.2,
0.5, and 1. The case ki = 0 corresponds to pure proportional control, with a steady-
state error of 50%. The steady-state error is eliminated when integral gain action
is used. The response creeps slowly toward the reference for small values of ki and
converges more quickly for larger integral gains, but the system also becomes more
oscillatory.

The integral gain ki is a useful measure for attenuation of load disturbances.
Consider a closed loop system under PID control, like the one in Figure 11.1. As-
sume that the system is stable and initially at rest with all signals being zero. Apply
a unit step load disturbance at the process input. After a transient, the process
output goes to zero and the controller output settles at a value that compensates for
the disturbance. Since e(t) goes to zero as t → ∞, it follows from equation (11.1)
that

u(∞) = ki

∫ ∞

0

e(t)dt.

The integrated error, IE, for a unit step load disturbance IE =
∫∞
0
e(t)dt is thus

inversely proportional to the integral gain ki and hence serves as a measure of the
effectiveness of disturbance attenuation. A large gain ki attenuates disturbances
effectively, but too large a gain gives oscillatory behavior, poor robustness, and
possibly instability.

We now return to the general PID controller and consider the effect of derivative
action. Recall that the original motivation for derivative feedback was to provide
predictive or anticipatory action. Notice that the combination of the proportional
and the derivative terms can be written as

u = kpe+ kd
de

dt
= kp

(
e+ Td

de

dt

)
=: kpep,

where ep(t) can be interpreted as a prediction of the error at time t+ Td by linear
extrapolation. The prediction time Td = kd/kp is the derivative time constant.

Derivative action can be implemented by taking the difference between the signal
and its low-pass filtered version as shown in Figure 11.3b. The transfer function
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Figure 11.4: Schematic diagram of cone photoreceptors (C) and horizontal cells
(H) in the retina. In the schematic diagram in (a), excitatory feedback is indicated
by arrows and inhibitory feedback by circles. A block diagram is shown in (b) and
the step response in (c).

for the system is

Gue(s) = kp

(
1− 1

1 + sTd

)
= kp

sTd
1 + sTd

=
kds

1 + sTd
. (11.5)

The transfer function Gue(s) approximates a derivative for low frequencies because
for |s| ≪ 1/Td we have G(s) ≈ kpTds = kds. The transfer function Gue acts
like a differentiator for signals with low frequencies and as a constant gain kp for
high-frequency signals, so we can regard this as a filtered derivative.

Figure 11.2c illustrates the effect of derivative action: the system is oscillatory
when no derivative action is used, and it becomes more damped as the derivative
gain is increased. When the input is a step, the controller output generated by
the derivative term will be an impulse. This is clearly visible in Figure 11.2c. The
impulse can be avoided by using the controller configuration shown in Figure 11.1b.

Although PID control was developed in the context of engineering applications,
it also appears in nature. Disturbance attenuation by feedback in biological sys-
tems is often called adaptation. A typical example is the pupillary reflex discussed
in Example 9.18, where it is said that the eye adapts to changing light intensity.
Analogously, feedback with integral action is called perfect adaptation [YHSD00].
In biological systems proportional, integral, and derivative action are generated by
combining subsystems with dynamical behavior, similar to what is done in engi-
neering systems. For example, PI action can be generated by the interaction of
several hormones [ESGK02].

Example 11.1 PD action in the retina
The response of cone photoreceptors in the retina is an example where proportional
and derivative action is generated by a combination of cones and horizontal cells.
The cones are the primary receptors stimulated by light, which in turn stimulate
the horizontal cells, and the horizontal cells give inhibitory (negative) feedback to
the cones. A schematic diagram of the system is shown in Figure 11.4a. The system
can be modeled by ordinary differential equations by representing neuron signals
as continuous variables representing the average pulse rate. In [Wil99] it is shown
that the system can be represented by the differential equations

dx1
dt

=
1

Tc
(−x1 − kx2 + u),

dx2
dt

=
1

Th
(x1 − x2),
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where u is the light intensity and x1 and x2 are the average pulse rates from
the cones and the horizontal cells. A block diagram of the system is shown in
Figure 11.4b. The step response of the system given in Figure 11.4c shows that
the system has a large initial response followed by a lower, constant steady-state
response typical of proportional and derivative action. The parameters used in the
simulation are k = 4, Tc = 0.025, and Th = 0.08. ∇

11.2 Simple Controllers for Complex Systems

Many of the design methods discussed in previous chapters have the property that
the complexity of the controller is a direct reflection of the complexity of the model.
When designing controllers by output feedback in Chapter 8, we found for single-
input, single-output systems that the order of the controller was the same as the
order of the model, possibly one order higher if integral action was required. Ap-
plying these design methods to PID control requires that the models must be of
first or second order.

Low-order models can be obtained from first principles. Any stable system
can be modeled by a static system if its inputs are sufficiently slow. Similarly
a first-order model is sufficient if the storage of mass, momentum, or energy can
be captured by only one variable; typical examples are the velocity of a car on
a road, the angular velocity of a stiff rotational system, the level in a tank, and
the concentration in a volume with good mixing. System dynamics are of second
order if the storage of mass, energy, and momentum can be captured by two state
variables; typical examples are the position and velocity of a car on the road, the
orientation and angular velocity of satellites, the levels in two connected tanks,
and the concentrations in two-compartment models. A wide range of techniques
for model reduction are also available. In this section we will focus on design
techniques where we simplify the models to capture the essential properties that
are needed for PID design.

We begin by analyzing the case of integral control. Any stable system can be
controlled by an integral controller provided that the requirements on the closed
loop system are modest. To design a controller we approximate the transfer function
of the process by a constant K = P (0), which will be reasonable for any stable
system at sufficiently low frequencies. The loop transfer function under integral
control then becomesKki/s, and the closed loop characteristic polynomial is simply
s+Kki. Specifying performance by the desired time constant Tcl of the closed loop
system, we find that the integral gain can be chosen as ki = 1/(TclP (0)).

This simplified analysis requires that Tcl be sufficiently large that the process
transfer function can indeed be approximated by a constant. A reasonable criterion
is that Tcl > Tar, where Tar = −P ′(0)/P (0) is known as the average residence time
of the open loop system.

To obtain controllers with higher performance we approximate the process dy-
namics by a first-order system (rather than a constant):

P (s) ≈ P (0)

1 + sTar
.

A reasonable design criterion is to obtain a step response with small overshoot and
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reasonable response time. An integral controller with gain

ki =
1

2P (0)Tar
, (11.6)

gives the loop transfer function

L(s) = P (s)C(s) ≈ P (0)

1 + sTar

ki
s

=
1

2sTar(1 + sTar)
,

and the closed loop poles become s = (−0.5± 0.5i)/Tar. Using the approximations
in Table 7.1 on page 7-20, we see that this controller has ω0 = 1/(Tar

√
2), which

gives a rise time of 3.1Tar, a settling time of 7.9Tar, and overshoot of 4%.

Example 11.2 Integral control of AFM in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force mi-
croscope in tapping mode was discussed in Exercise 10.2. The transfer function for
the system dynamics is

P (s) =
a(1− e−sτ )
sτ(s+ a)

,

where a = ζω0, τ = 2πn/ω0, and the gain has been normalized to 1. This transfer
function is unusual since there is a time-delay term in the numerator.

To design a controller, we focus on the low-frequency dynamics of the system.
We have P (0) = 1 and P ′(0) = −τ/2− 1/a = −(2 + aτ)/(2a). For low frequencies
the loop transfer function can then be approximated by

L(s) ≈ ki(P (0) + sP ′(0))
s

= kiP
′(0) +

kiP (0)

s
.

Using the design rule (11.6) we set ki = −1/(2P ′(0)), Nyquist and Bode plots
for the resulting loop transfer function are shown in Figure 11.5. We see that
the controller provides good performance at low frequency and has good stability
margins. Note that even though the system dynamics include a time-delay term,
we were able to obtain good performance using a simple integral controller and a
simple set of calculations. ∇

Another approach to designing simple controllers is to use the gains of the
controller to set the location of the closed loop poles. PI controllers give two gains
with which to tune the closed loop dynamics, and for simple models the closed loop
poles can be set using these gains.

Consider a first-order system with the transfer function

P (s) =
b

s+ a
.

With a PI controller the closed loop system has the characteristic polynomial

s(s+ a) + bkps+ bki = s2 + (a+ bkp)s+ bki.

The closed loop poles can thus be assigned arbitrary values by proper choice of
the controller gains kp and ki. Requiring that the closed loop system have the
characteristic polynomial

p(s) = s2 + a1s+ a2,
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Figure 11.5: Nyquist and Bode plots of the loop transfer function for integral
control of an AFM in tapping mode. The integrating controller gives good ro-
bustness properties based on a simple analysis. At high frequencies the Nyquist
plot has an infinite number of small loops with decreasing amplitude in the left
half-plane. These loops are not visible in the Nyquist plot but they show up clearly
in the Bode plot.

we find that the controller parameters are

kp =
a1 − a

b
, ki =

a2
b
. (11.7)

If we require a response of the closed loop system that is slower than that of the
open loop system, a reasonable choice is a1 = a + α and a2 = αa, where α < a
determines the closed loop response. If a response faster than that of the open loop
system is required, a possible choice is a1 = 2ζcωc and a2 = ω2

c , where ωc and ζc
are the undamped natural frequency and damping ratio of the dominant mode.

The choice of ωc has a significant impact on the robustness of the system and
will be discussed in Section 14.5. An upper limit to ωc is given by highest frequency
where the model is valid. Large values of ωc will require fast control actions, and
actuators may saturate if the value is too large. A first-order model is unlikely to
represent the true dynamics for high frequencies.

Example 11.3 Cruise control using PI feedback
Consider the problem of maintaining the speed of a car as it goes up a hill. In Exam-
ple 6.11 we found that there was little difference between the linear and nonlinear
models when investigating PI control, provided that the throttle did not reach the
saturation limits. A simple linear model of a car was given in Example 6.11:

d(v − ve)

dt
= −a(v − ve)− bg(θ − θe) + b(u− ue), (11.8)

where v is the velocity of the car, u is the input to the engine (throttle), and θ is
the slope of the hill. The parameters were a = 0.01, b = 1.32, bg = 9.8, ve = 20,
θe = 0, and ue = 0.1687. This model will be used to find suitable parameters
of a vehicle speed controller. The transfer function from throttle to velocity is a



11-10 CHAPTER 11. PID CONTROL

0 10 20 30 40
-2

-1

0

0 10 20 30 40

Time t [s]

0

0.2

0.4

0.6

0.8

v
−
v
e
[m

/
s]

u
−
u
e

ζc

ζc

(a) ωc = 0.5, ζc = 0.5, 1, 2

0 10 20 30 40
-2

-1

0

0 10 20 30 40

Time t [s]

0

0.2

0.4

0.6

0.8

v
−
v
e
[m

/
s]

u
−
u
e

ωc

ωc

(b) ζc = 1, ωc = 0.2, 0.5, 1

Figure 11.6: Cruise control using PI feedback. The step responses for the error
and input illustrate the effect of parameters ζc and ωc on the response of a car
with cruise control. The slope of the road changes linearly from 0◦ to 4◦ between
t = 5 and 6 s. (a) Responses for ωc = 0.5 and ζc = 0.5, 1, and 2. Choosing ζc ≥ 1
gives no overshoot in the velocity v. (b) Responses for ζc = 1 and ωc = 0.2, 0.5,
and 1.0.

first-order system. Since the open loop dynamics are quite slow (1/a ≈ 100 s), it
is natural to specify a faster closed loop system by requiring that the closed loop
system be of second order with damping ratio ζc and undamped natural frequency
ωc. The controller gains are given by equation (11.7).

Figure 11.6 shows the velocity and the throttle for a car that initially moves
on a horizontal road and encounters a hill with a slope of 4◦ at time t = 5 s. To
design a PI controller we choose ζc = 1 to obtain a response without overshoot,
as shown in Figure 11.6a. The choice of ωc is a compromise between response
speed and control actions: a large value gives a fast response, but it requires fast
control action. The trade-off is illustrated in Figure 11.6b. The largest velocity
error decreases with increasing ωc, but the control signal also changes more rapidly.
In the simple model (11.8) it was assumed that the force responds instantaneously
to throttle commands. For rapid changes there may be additional dynamics that
have to be accounted for. There are also physical limits to the rate of change of
the force, which also restricts the admissible value of ωc. A reasonable choice of ωc

is in the range 0.5–1.0. Notice in Figure 11.6 that even with ωc = 0.2 the largest
velocity error is only about 1.3 m/s. ∇

A PI controller can also be used for a process with second-order dynamics, but
there will be restrictions on the possible locations of the closed loop poles. Using a
PID controller, it is possible to control a system of second order in such a way that
the closed loop poles have arbitrary locations (Exercise 11.2).

Instead of finding a low-order model and designing controllers for them, we can
also use a high-order model and attempt to place only a few dominant poles. An
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Figure 11.7: Ziegler–Nichols step and frequency response experiments. The open
loop unit step response in (a) is characterized by the parameters a and τ . The
frequency response method (b) characterizes process dynamics by the point where
the Nyquist curve of the process transfer function first intersects the negative real
axis and the frequency ωc where this occurs.

integral controller has one parameter, and it is possible to position one pole. To
see this, consider a process with the transfer function P (s). The loop transfer
function with an integral controller is L(s) = kiP (s)/s. The roots of the closed
loop characteristic polynomial are the roots of s + kiP (s) = 0. Requiring that
s = −a be a root, the controller gain should be chosen as ki = a/P (−a). The pole
s = −a will be a dominant closed loop pole if a is smaller than the magnitude of
the other closed loop process poles. A similar approach can be applied to PI and
PID controllers (Exercise 11.3).

11.3 PID Tuning

Users of control systems are frequently faced with the task of adjusting the con-
troller parameters to obtain a desired behavior. There are many different ways to
do this. One approach is to go through the conventional steps of modeling and
control design as described in the previous section. A typical process may have
thousands of PID controllers. Since the PID controller has so few parameters a
number of special empirical methods have been developed for direct adjustment of
the controller parameters.

Ziegler–Nichols’ Tuning

The first tuning rules were developed by Ziegler and Nichols [ZN42] in the 1940s.
Their idea was to perform a simple experiment on the process and extract features
of process dynamics in the time and frequency domains.

The time domain method is based on a measurement of part of the open loop
unit step response of the process, as shown in Figure 11.7a. The step response is
measured by a bump test. The process is first brought to steady state, the input is
then changed by a suitable amount, and finally the output is measured and scaled
to correspond to a unit step input. Ziegler and Nichols characterized the step
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Table 11.1: Original Ziegler–Nichols tuning rules. (a) The step response method
gives the parameters in terms of the intercept a and the apparent time delay τ .
(b) The frequency response method gives controller parameters in terms of critical
gain kc and critical period Tc.

Type kp Ti Td

P 1/a

PI 0.9/a τ/0.3

PID 1.2/a τ/0.5 0.5τ

(a) Step response method

Type kp Ti Td

P 0.5kc

PI 0.45kc Tc/1.2

PID 0.6kc Tc/2 Tc/8

(b) Frequency response method

response by only two parameters a and τ , which are the intercepts of the steepest
tangent of the step response with the coordinate axes. The parameter τ is an
approximation of the time delay of the system and a/τ is the steepest slope of the
step response. Notice that it is not necessary to wait until steady state is reached to
be able to determine the parameters; it suffices to wait until the response has had
an inflection point. The suggested controller parameters are given in Table 11.1.
They were obtained by extensive simulation of a range of representative processes.
A controller was tuned manually for each process, and an attempt was then made
to correlate the controller parameters with a and τ .

In the frequency domain method, a controller is connected to the process, the
integral and derivative gains are set to zero, and the proportional gain is increased
until the system starts to oscillate. The critical value kc of the proportional gain is
observed together with the period of oscillation Tc. It follows from Nyquist’s sta-
bility criterion that the Nyquist contour for the loop transfer function L = kcP (s)
passes through the critical point at the frequency ωc = 2π/Tc. The experiment thus
gives the point on the Nyquist curve of the process transfer function P (s) where the
phase lag is 180◦, as shown in Figure 11.7b. The suggested controller parameters
are then given by Table 11.1b.

The Ziegler–Nichols methods had a huge impact when they were introduced
in the 1940s. The rules were simple to use and gave initial conditions for manual
tuning. The ideas were adopted by manufacturers of controllers for routine use.
The Ziegler–Nichols tuning rules unfortunately have two severe drawbacks: too
little process information is used, and the closed loop systems that are obtained
lack robustness.

Tuning Based on the FOTD Model

The Ziegler–Nichols methods use only two parameters to characterize process dy-
namics, a and τ for the step response method and kc and Tc for the frequency
domain method. Tuning of PID controllers can be improved if we characterize the
process by more parameters. The first-order and time-delay (FOTD) model

P (s) =
K

1 + sT
e−τs, τn =

τ

T + τ
, (11.9)
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is commonly used to approximate the step response of systems with essentially
monotone step responses. The parameter τn, which has values between 0 and 1,
is called the relative time delay or the normalized time delay. The dynamics are
characterized as being lag dominated if τn is close to zero, delay dominated if τn is
close to one, and balanced for intermediate values.

The parameters of the FOTD model can be determined from a bump test as
indicated in Figure 11.7a. The zero frequency gain K is the steady-state value of
the unit step response. The time delay τ is the intercept of the steepest tangent
with the time axis, as in the Ziegler–Nichols method. The time T63 is the time
where the output has reached 63% of its steady-state value and T is then given
by T = T63 − τ . Notice that it takes a longer time to find an FOTD model than
the Ziegler–Nichols model (a and τ) because to determine K it is necessary to wait
until the steady state has been reached.

There are many versions of improved tuning rules for the model (11.9). As an
illustration we give the following rules for PI control, based on [ÅH06]:

kp =
0.15τ + 0.35T

Kτ

(0.9T
Kτ

)
, ki =

0.46τ + 0.02T

Kτ2

(0.27T
Kτ2

)
, (11.10a)

kp = 0.16kc

(
0.45kc

)
, ki =

0.16kc + 0.72/K

Tc

(0.54kc
Tc

)
. (11.10b)

The values for the Ziegler–Nichols rule from Table 11.1 are given in parentheses.
Notice that the improved formulas typically give lower controller gains than the
original Ziegler–Nichols method.

Example 11.4 Atomic force microscope in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force mi-
croscope in tapping mode was discussed in Example 11.2. The transfer function is
normalized by choosing 1/a as the time unit, yielding

P (s) =
1− e−sTn

sTn(s+ 1)
,

where Tn = 2nπa/ω0 = 2nπζ. The Nyquist plot of P (s) is shown as a dotted line
in Figure 11.8a for ζ = 0.002 and n = 20. The first intersection with the real axis
occurs at Re s = −0.0461 for ωc = 13.1. The critical gain is thus kc = 21.7 and
the critical period is Tc = 0.48. Using the Ziegler–Nichols tuning rule, we find the
parameters kp = 8.67 and ki = 22.6 (Ti = 0.384) for a PI controller. With this
controller the stability margin is sm = 0.31, which is quite small. The step response
of the controller is shown using dashed lines in Figure 11.8. Notice in particular
that there is a large overshoot in the control signal.

The modified Ziegler–Nichols rule (11.10b) gives the controller parameters kp =
3.47 and ki = 8.73 (Ti = 0.397) and the stability margin becomes sm = 0.61.
The step response with this controller is shown using solid lines in Figure 11.8. A
comparison of the responses obtained with the original Ziegler–Nichols rule shows
that the overshoot has been reduced. Notice that the control signal reaches its
steady-state value almost instantaneously. It follows from Example 11.2 that a
pure integral controller has the normalized gain ki = 1/(2 + Tn) = 0.44, which is
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Figure 11.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step
responses (b) for PI control of the vertical motion of an atomic force microscope
in tapping mode. Results with Ziegler–Nichols tuning are shown by dashed lines,
and modified Ziegler–Nichols tuning is shown by solid lines. The Nyquist plot of
the process transfer function is shown by dotted lines.

more than an order of magnitude smaller than the integral gain of the PI controller.
∇

The tuning rules based on the FOTD model work well for PI controllers. Deriva-
tive action has little effect on processes with delay-dominated dynamics, but can
give substantial performance for processes with lag-dominated dynamics. Tuning
of PID controllers for processes with lag-dominated dynamics cannot, however, be
based on the FOTD model; see [ÅH06].

Relay Feedback

The Ziegler–Nichols frequency response method increases the gain of a proportional
controller until oscillation to determine the critical gain kc and the corresponding
critical period Tc or, equivalently, the point where the Nyquist curve intersects the
negative real axis. One way to obtain this information automatically is to connect
the process in a feedback loop with a nonlinear element having a relay function
as shown in Figure 11.9a. For many systems there will then be an oscillation, as
shown in Figure 11.9b, where the relay output u is a square wave and the process
output y is close to a sinusoid. Moreover, the fundamental sinusoidal components
of the input and the output are 180◦ out of phase, which means that the system
oscillates with the critical period Tc. Notice that an oscillation with constant period
is established quickly.

To determine the critical gain kc we expand the square wave relay output in a
Fourier series. Notice in the figure that the process output is practically sinusoidal
because the process attenuates higher harmonics. It is then sufficient to consider
only the first harmonic component of the input. Letting d be the relay amplitude,
this component has amplitude 4d/π. If a is the amplitude of the process output,
the process gain at the critical frequency ωc = 2π/Tc is |P (iωc)| = πa/(4d) and the
critical gain is kc = 4d/(πa). Having obtained the critical gain kc and the critical
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Figure 11.9: Block diagram of a process with relay feedback (a) and typical
signals (b). The process output y is a solid line, and the relay output u is a dashed
line. Notice that the signals u and y have opposite phases.

period Tc, the controller parameters can then be determined using the Ziegler–
Nichols rules. Improved tuning can be obtained by fitting a model to the data
obtained from the relay experiment.

The relay experiment can be automated. Since the amplitude of the oscillation
is proportional to the relay output, it is easy to control it by adjusting the relay
output. Automatic tuning based on relay feedback is used in many commercial PID
controllers. Tuning is accomplished simply by pushing a button that activates relay
feedback. The relay amplitude is automatically adjusted to keep the oscillations
sufficiently small, and the relay feedback is replaced by a PID controller when the
tuning is finished. The main advantage of relay tuning is that a short experiment
for identification of process dynamics is generated automatically. The original relay
autotuner can be improved significantly by using an asymmetric relay, which admits
determination of more parameters [BHÅ16].

11.4 Integral Windup

Many aspects of a control system can be understood from linear models. However,
there are some nonlinear phenomena that must be taken into account. These are
typically limitations in the actuators: a motor has limited speed, a valve cannot be
more than fully opened or fully closed, etc. For a system that operates over a wide
range of conditions, it may happen that the control variable reaches the actuator
limits. When this happens, the feedback loop is broken and the system runs in
open loop because the actuator remains at its limit independently of the process
output as long as the actuator remains saturated. The integral term will also build
up since the error is typically nonzero. The integral term and the controller output
may then become very large. The control signal will then remain saturated even
when the error changes, and it may take a long time before the integrator and the
controller output come inside the saturation range. The consequence is that there
are large transients. This situation is referred to as integrator windup, illustrated
in the following example.

Example 11.5 Cruise control
The windup effect is illustrated in Figure 11.10a, which shows what happens when a
car encounters a hill that is so steep (6◦) that the throttle saturates when the cruise
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Figure 11.10: Simulation of PI cruise control with windup (a) and anti-windup
(b). The figure shows the speed v and the throttle u for a car that encounters
a slope that is so steep that the throttle saturates. The controller output is a
dashed line. The controller parameters are kp = 0.5, ki = 0.1 and kaw = 2.0. The
anti-windup compensator eliminates the overshoot by preventing the error from
building up in the integral term of the controller.

controller attempts to maintain speed. When encountering the slope at time t = 5,
the velocity decreases and the throttle increases to generate more torque. However,
the torque required is so large that the throttle saturates. The error decreases slowly
because the torque generated by the engine is just a little larger than the torque
required to compensate for gravity. The error is large and the integral continues to
build up until the error reaches zero at time 25, but the controller output is still
larger than the saturation limit and the actuator remains saturated. The integral
term starts to decrease and the velocity settles to the desired value at time t = 40.
Also notice the large overshoot. ∇

Avoiding Windup

Windup can occur in any controller with integral action. There are many methods
to avoid windup. One method for PID control is illustrated in Figure 11.11: the
system has an extra feedback path that is generated from a mathematical model
of the saturating actuator. The signal es is the difference between the outputs of
the controller ua and the actuator model u. It is fed to the input of the integrator
through the gain kaw. The signal es is zero when there is no saturation and the
extra feedback loop has no effect on the system. When the actuator saturates, the
signal es is fed back to the integrator in such a way that es goes toward zero. This
implies that controller output is kept close to the saturation limit. The controller
output will then change as soon as the error changes sign and integral windup is
avoided.

The rate at which the controller output is reset is governed by the feedback gain
kaw; a large value of kaw gives a short reset time. The parameter kaw cannot be too
large because measurement noise can then cause an undesirable reset. A reasonable
choice is to choose kaw as a multiple of the integral gain ki.
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−ẏf
um

Figure 11.11: PID controller with filtering, anti-windup, and manual control.
The controller has filtering of the measured signal, an input uff for feedforward
signal, and another input um for direct control of the output. The switch is in
position A for normal operation; if it is set to M the control variable is manipulated
directly. The input to the integrator (1/s) has a “reset” term that avoids integrator
windup in addition to the normal P, I, and D terms. Notice that the reference r
only enters in the integral term.

The controller also has an input uff for feedforward control. By entering the
feedforward signal as shown in Figure 11.11, the basic anti-windup scheme also
deals with saturation caused by the feedforward signal.

We illustrate how integral windup can be avoided by investigating the cruise
control system.

Example 11.6 Cruise control with anti-windup
Figure 11.10b shows what happens when a controller with anti-windup is applied to
the system simulated in Figure 11.10a. Because of the feedback from the actuator
model, the output of the integrator is quickly reset to a value such that the controller
output is at the saturation limit. The behavior is drastically different from that in
Figure 11.10a and the large overshoot is avoided. The tracking gain used in the
simulation is kaw = 2 which is an order of magnitude larger than the integral gain
ki = 0.2. ∇

To explore if windup protection improves stability, we can redraw the block
diagram so that the nonlinearity is isolated. The closed loop system then consists
of a linear block and a static nonlinearity. With an ideal saturation, the nonlinearity
is a sector-bounded nonlinearity modeled by equation (10.17) with klow = 0 and
khigh = 1, and the linear part has the transfer function

H(s) =
sP (s)C(s)− kaw

s+ kaw
(11.11)

(Exercise 11.12). We can use the circle criterion in Section 10.5 to check stability
of the closed loop system. We first observe that the special form of the nonlinearity
implies that the circle reduces to the line Re s = −1. Applying the circle criterion,
we find that the system with windup protection is stable if the Nyquist curve of the
transfer function H(s) is to the right of the line Re s = −1. If we use describing
functions we find that oscillations may occur if the Nyquist curve H(iω) intersects
the negative real axis to the left of the critical point −1.
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Manual Control and Tracking

Automatic control is often combined with manual control, where the operation
modes are selected by a switch as illustrated in Figure 11.11. The switch is normally
in the position A (automatic). Manual control is selected by moving the switch to
position M (manual) and the control variable is then manipulated directly, often by
buttons for increasing and decreasing the control signal. For example, in a cruise
control system such as that shown in Figure 1.16a, the control signal increases at
constant rate when pushing the increase speed (accel) button and it decreases at
constant rate when the decrease speed (decel) button is pushed. In Figure 11.11
the manipulated variable is denoted by um.

Care has to be taken to avoid transients when switching modes. This can be
accomplished by the arrangement shown in Figure 11.11. When the controller
is in manual mode the feedback through the gain kaw adjusts the input to the
integrator so that the controller output ua tracks the manual input um, resulting
in no transient when switching to automatic control.

To see how the controller in Figure 11.11 is implemented, let the integrator
output be z. The controller is then described by

dx

dt
= ki(r− yf) + kaw(u− ua), ua = z − kpyf − kdẏf, u =

{
F (ua) automatic,

F (um) manual,

where F (u) is the function that represents the actuator model. The parameter kaw
is typically larger than ki and it then follows that the controller output u tracks
um in manual mode (tracking would be ideal if the term ki(r − yf) is zero).

Anti-Windup for General Controllers

Anti-windup can also be extended to general control architectures such as the state
space-based designs studied in Chapters 7 and 8. For the case of an output feedback
controller with integral action via state augmentation (see Example 8.9), we modify
the anti-windup compensation to adjust the entire controller state instead of just
the integrator state. The approach is particularly easy to understand for controllers
based on state feedback and an observer, like the one shown in Figure 8.11. Without
modification, when a saturation occurs then the wrong information is sent to the
observer (the commanded input instead of the saturated input). To address this,
we simply introduce a model for the saturating actuator and feed its output to the
observer, as illustrated in Figure 11.12.

To investigate the stability of the controller with anti-windup, we observe that
if the observer model is designed so that the process actuator never saturates, the
block diagram of the closed loop system can be redrawn so that it consists of a
nonlinear static block representing the actuator model F (x) and a linear block
representing the observer and the process. We can again make use of the circle
criterion described in Section 10.5 to provide conditions for stability. The linear
block has the transfer function

H(s) = K
(
sI −A+ LC

)−1(
B + LC[sI −A]−1B

)
, (11.12)

where A, B, and C are the matrices of the state space model, K is the feedback
gain matrix, and L is the gain matrix of the Kalman filter. With a simple satu-
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Figure 11.12: Anti-windup for a general controller architecture. Compare with
the corresponding controller without anti-windup in Figure 8.11.

rating actuator, the nonlinearity is sector-bounded with klow = 0 and khigh = 1 in
equation (10.17). It then follows from the circle criterion that the closed loop is
stable if the Nyquist plot of L(iω) is to the right of the line Re z = −1/khigh = −1,
and the winding number condition is satisfied.

Facilities for manual control and tracking with observers and state augmentation
can be done in the same way as for the PID controller in Figure 11.11.

11.5 Implementation

There are many practical issues that have to be considered when implementing PID
controllers. They have been developed over time based on practical experience. In
this section we consider some of the most common. Similar considerations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivative has high gain for
high-frequency signals. This means that high-frequency measurement noise will
generate large variations in the control signal. The effect of measurement noise
may be reduced by replacing the term kds by kds/(1 + sTf), which can be inter-
preted as an ideal derivative of a low-pass filtered signal. The time constant of the
filter is typically chosen as Tf = (kd/kp)/N = Td/N , with N in the range 5–20.
Filtering is obtained automatically if the derivative is implemented by taking the
difference between the signal and its filtered version as shown in Figure 11.3b; see
also equation (11.5). Note that in the implementation in Figure 11.3b, the filter
time constant Tf is equal to the derivative time constant Td (N = 1).

Instead of filtering just the derivative, it is also possible to use an ideal controller
and filter the measured signal. Choosing a second-order filter, the transfer function
of the controller with the filter becomes

C(s) = kp

(
1 +

1

sTi
+ sTd

)
1

1 + sTf + (sTf)2/2
. (11.13)

For the system in Figure 11.11, filtering is done in the box marked Gf(s), which
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 0
2T−2

f


 y. (11.14)

The states are x1 = yf and x2 = dyf/dt. The filter thus gives filtered versions of
the measured signal and its derivative. The second-order filter also provides good
high-frequency roll-off, which improves robustness.

Setpoint Weighting

Figure 11.1 shows two configurations of a PID controller. The system in Fig-
ure 11.1a has a controller with error feedback where proportional, integral, and
derivative action acts on the error. In the simulation of PID controllers in Fig-
ure 11.2c there is a large initial peak in the control signal, which is caused by the
derivative of the reference signal. The peak can be avoided by using the controller
in Figure 11.1b, where proportional and derivative action acts only on the process
output. An intermediate form is given by

u = kp
(
βr − y

)
+ ki

∫ t

0

(
r(τ)− y(τ)

)
dτ + kd

(
γ
dr

dt
− dy

dt

)
, (11.15)

where the proportional and derivative actions act on fractions β and γ of the ref-
erence. Integral action has to act on the error to make sure that the error goes
to zero in steady state. The closed loop systems obtained for different values of β
and γ respond to load disturbances and measurement noise in the same way. The
response to reference signals is different because it depends on the values of β and
γ, which are called reference weights or setpoint weights. Setpoint weighting is a
simple way to obtain two degree-of-freedom action in a PID controller. A controller
with β = γ = 0 is sometimes called an I-PD controller, as seen Figure 11.1b. We
illustrate the effect of setpoint weighting by an example.

Example 11.7 Cruise control with setpoint weighting
Consider the PI controller for the cruise control system derived in Example 11.3.
Figure 11.13 shows the effect of setpoint weighting on the response of the system
to a reference signal. With β = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to the saturation limit. There is no
overshoot with β = 0 and the control signal is much smaller, clearly a much better
drive comfort. The frequency responses gives another view of the same effect. The
parameter β is typically in the range 0–1, and γ is normally zero to avoid large
transients in the control signal when the reference is changed. ∇

The controller given by equation (11.15) is a special case of the general controller
structure having two degrees of freedom, which was discussed in Section 8.5.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different technologies. Figure 11.14 shows
how PI and PID controllers can be implemented by feedback around operational
amplifiers.
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Figure 11.13: Step and frequency responses for PI cruise control with setpoint
weighting. Step responses are shown in (a) and the gain curves of the frequency
responses in (b). The controller gains are kp = 0.74 and ki = 0.19. The setpoint
weights are β = 0, 0.5, and 1, and γ = 0.

To show that the circuit in Figure 11.14b is a PID controller we will use the
approximate relation given by equation (4.14), which is valid when resistances Ri
are replaced by impedances Zi (Exercise 10.1). This gives the transfer function
−Z2/Z1 for the closed loop op amp circuit, noting that the gain of the operational
amplifier is negative. For the PI control in Figure 11.14a the impedances are

Z1 = R1, Z2 = R2 +
1

sC2
=

1 +R2C2s

sC2
,

Z2

Z1
=

1 +R2C2s

sR1C2
=
R2

R1
+

1

R1C2s
,

which shows that the circuit is an implementation of a PI controller with gains
kp = R2/R1 and ki = 1/(R1C2).

−

+

R1 R C2 2

e

u

(a) PI controller

−

+

R1 R C2 2

C1

e

u

(b) PID controller

Figure 11.14: Schematic diagrams for PI and PID controllers using op amps.
The circuit in (a) uses a capacitor in the feedback path to store the integral of the
error. The circuit in (b) adds a filter on the input to provide derivative action.
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A similar calculation for the PID controller in Figure 11.14b gives

Z1(s) =
R1

1 +R1C1s
, Z2(s) = R2 +

1

C2s
,

Z2

Z1
=

(1 +R1C1s)(1 +R2C2s)

R1C2s
,

which shows that the circuit is an implementation of a PID controller with the
parameters

kp =
R1C1 +R2C2

R1C2
, Ti = R1C1 +R2C2, Td =

R1R2C1C2

R1C1 +R2C2
.

Computer Implementation

In this section we briefly describe how a PID controller may be implemented using
a computer. The computer typically operates periodically, with signals from the
sensors sampled and converted to digital form by the A/D converter, and the control
signal computed and then converted to analog form for the actuators. The sequence
of operation is as follows:

1. Wait for clock interrupt

2. Read input from sensor

3. Compute control output

4. Send output to the actuator

5. Update controller state

6. Repeat

Notice that an output is sent to the actuators as soon as it is available. The time
delay is minimized by making the calculations in step 3 as short as possible and
performing all updates after the output is commanded. This simple way of reducing
the latency is, unfortunately, seldom used in commercial systems.

As an illustration we consider the PID controller in Figure 11.11, which has a
filtered derivative, setpoint weighting, and protection against integral windup (anti-
windup). The controller is a continuous-time dynamical system. To implement
it using a computer, the continuous-time system has to be approximated by a
discrete-time system.

In Figure 11.11, the signal ua is the sum of the proportional, integral, and
derivative terms, and the controller output is u = sat(ua), where sat is the satu-
ration function that models the actuator. The proportional term P = kp(βr − y)
is implemented simply by replacing the continuous variables with their sampled
versions. Hence

P (tk) = kp
(
βr(tk)− y(tk)

)
, (11.16)

where {tk} denotes the sampling instants, i.e., the times when the computer reads
its input. We let h represent the sampling time, so that tk+1 = tk+h. The integral
term is obtained by approximating the integral with a sum,

I(tk+1) = I(tk) + kih e(tk) +
h

Taw

(
sat(ua)− ua

)
, (11.17)

where Taw = h/kaw represents the anti-windup term. The filtered derivative term
D is given by the differential equation

Tf
dD

dt
+D = −kdẏ.



11.5. IMPLEMENTATION 11-23

Approximating the derivative with a backward difference gives

Tf
D(tk)−D(tk−1)

h
+D(tk) = −kd

y(tk)− y(tk−1)

h
,

which can be rewritten as

D(tk) =
Tf

Tf + h
D(tk−1)−

kd
Tf + h

(y(tk)− y(tk−1)) . (11.18)

The advantage of using a backward difference is that the parameter Tf/(Tf + h)
is nonnegative and less than 1 for all h > 0, which guarantees that the difference
equation is stable. Reorganizing equations (11.16)–(11.18), the PID controller can
be described by the following pseudocode:

% Precompute controller coefficients

bi = ki*h

ad = Tf/(Tf+h)

bd = kd/(Tf+h)

br = h/Taw

% Initalize variables

I = 0, yold = adin(ch2)

% Control algorithm - main loop

while (running) {

r = adin(ch1) % read setpoint from ch1

y = adin(ch2) % read process variable from ch2

P = kp*(b*r - y) % compute proportional part

D = ad*D - bd*(y-yold) % compute derivative part

ua = P + I + D % compute temporary output

u = sat(ua, ulow, uhigh) % simulate actuator saturation

daout(ch1) % set analog output ch1

I = I + bi*(r-y) + br*(u-ua) % update integral state

yold = y % update derivative state

sleep(h) % wait until next update interval

}

Precomputation of the coefficients bi, ad, bd, and br saves computer time in
the main loop. These calculations have to be done only when controller parameters
are changed. The main loop is executed once every sampling period. The program
has three states: yold, I, and D. One state variable can be eliminated at the cost
of less readable code. The latency between reading the analog input and setting
the analog output consists of four multiplications, four additions, and evaluation
of the sat function. All computations can be done using fixed-point calculations
if necessary and implemented on a programmable logical controller (PLC). Notice
that the code computes the filtered derivative of the process output and that it
has setpoint weighting and anti-windup protection. Note also that in this code
we apply the actuator saturation inside the controller, rather than measuring the
actuator output as in Figure 11.11.
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11.6 Further Reading

The history of PID control is very rich and stretches back to the early uses of feed-
back. Good presentations are given by Bennett [Ben79, Ben93] and Mindel [Min02].
Industrial perspectives on PID control are given in [Bia95], [Shi96], and [YH91],
which all mention that a significant fraction of PID controllers are poorly tuned.
PID algorithms have been used in many fields; an unconventional application is
to explain popular monetary policy rules [HSH15]. The Ziegler–Nichols rules for
tuning PID controllers, first presented in 1942 [ZN42], were developed based on
extensive experiments with pneumatic simulators and Vannevar Bush’s differential
analyzer at MIT. An interesting view of the development of the Ziegler–Nichols
rules is given in an interview with Ziegler [Bli90]. The book [O’D06] lists more
than 1730 tuning rules. A detailed discussion of methods for avoiding windup is
given in [ZT11], and a comprehensive treatment of PID control is given in Åström
and Hägglund [ÅH06]. Advanced relay autotuners are presented in Berner et
al. [BSÅH17]. Interactive learning tools for PID control can be downloaded from
http://www.calerga.com/contrib.

Exercises

11.1 (Ideal PID controllers) Consider the systems represented by the block dia-
grams in Figure 11.1. Assume that the process has the transfer function P (s) =
b/(s+ a) and show that the transfer functions from r to y are

(a) Gyr(s) =
bkds

2 + bkps+ bki
(1 + bkd)s2 + (a+ bkp)s+ bki

,

(b) Gyr(s) =
bki

(1 + bkd)s2 + (a+ bkp)s+ bki
.

Pick some parameters and compare the step responses of the systems.

11.2 Consider a second-order process with the transfer function

P (s) =
b

s2 + a1s+ a2
.

The closed loop system with a PI controller is a third-order system. Show that
it is possible to position the closed loop poles as long as the sum of the poles is
−a1. Give equations for the parameters that give the closed loop characteristic
polynomial

(s+ αc)(s
2 + 2ζcωcs+ ω2

c ).

11.3 Consider a system with the transfer function P (s) = (s + 1)−2. Find an
integral controller that gives a closed loop pole at s = −a and determine the value
of a that maximizes the integral gain. Determine the other poles of the system
and judge if the pole can be considered dominant. Compare with the value of the
integral gain given by equation (11.6).

http://www.calerga.com/contrib
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11.4 (Tuning rules) Apply the Ziegler–Nichols and the modified tuning rules to
design PI controllers for systems with the transfer functions

P1 =
e−s

s
, P2 =

e−s

s+ 1
, P3 = e−s.

Compute the stability margins and explore any patterns.

11.5 (Ziegler–Nichols tuning) Consider a system with transfer function P (s) =
e−s/s. Determine the parameters of P, PI, and PID controllers using Ziegler–
Nichols step and frequency response methods. Compare the parameter values ob-
tained by the different rules and discuss the results.

11.6 (Vehicle steering) Design a proportional-integral controller for the vehicle
steering system that gives the closed loop characteristic polynomial

s3 + 2ωcs
2 + 2ω2

cs+ ω3
c .

11.7 (Average residence time with PID control) The average residence time is a
measure of the response time of the system. For a stable system with impulse
response h(t) and transfer function P (s) it can be defined as

Tar =

∫ ∞

0

th(t) dt = −P
′(0)
P (0)

.

Consider a stable system with P (0) 6= 0 and a PID controller having integral gain
ki = kp/Ti. Show that the average residence time of the closed loop system is given
by Tar = Ti/(P (0)kp).

11.8 (Web server control) Web servers can be controlled using a method known
as dynamic voltage frequency scaling in which the processor speed is regulated by
changing its supply voltage. A typical control goal is to maintain a given service
rate, which is approximately equal to maintaining a specified queue length. The
queue length x can be modeled by equation (3.32),

dx

dt
= λ− µ,

where λ is the arrival rate and µ is the service rate, which is manipulated by
changing the processor voltage. A PI controller for keeping queue length close to
xr is given by

µ = kp(x− βxr) + ki

∫ t

0

(x− xr) dt.

Choose the controller parameters kp and ki so that the closed loop system has the
characteristic polynomial s2 + 1.6s + 1, then adjust the setpoint weight β so that
the response to a step in the reference signal has 2% overshoot.

11.9 (Motor drive) Consider the model of the motor drive in Exercise 3.7 with
the parameter values given in Exercise 7.11. Develop an approximate second-order
model of the system and use it to design an ideal PD controller that gives a closed
loop system with eigenvalues −ζω0 ± iω0

√
1− ζ2. Add low-pass filtering as shown

in equation (11.13) and explore how large ω0 can be made while maintaining a good
stability margin. Simulate the closed loop system with the chosen controller and
compare the results with the controller based on state feedback in Exercise 7.11.
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11.10 (Windup and anti-windup) Consider a PI controller of the form C(s) =
1 + 1/s for a process with input that saturates when |u| > 1, and whose linear
dynamics are given by the transfer function P (s) = 1/s. Simulate the response of
the system to step changes in the reference signal of magnitude 1, 2, and 10. Repeat
the simulation when the windup protection scheme in Figure 11.11 is used.

11.11 (Windup protection by conditional integration) Many methods have been
proposed to avoid integrator windup. One method called conditional integration is
to update the integral only when the error is sufficiently small. To illustrate this
method we consider a system with PI control described by

dx1
dt

= u, u = satu0
(kpe+ kix2),

dx2
dt

=

{
e if |e| < e0,

0 if |e| ≥ e0,

where e = r − x. Plot the phase portrait of the system for the parameter values
kp = 1, ki = 1, u0 = 1, and e0 = 1 and discuss the properties of the system.
The example illustrates the difficulties of introducing ad hoc nonlinearities without
careful analysis.

11.12 (Windup stability) Consider a closed loop system with controller transfer
function C(s) and process transfer function P (s). Let the controller have windup
protection with the tracking constant kaw. Assume that the actuator model in the
anti-windup scheme is chosen so that the process never saturates.

(a) Use block diagram transformations to show that the closed loop system with
anti-windup can be represented as a connection of a linear block with transfer
function (11.11) and a nonlinear block representing the actuator model.

(b) Show that the closed loop system is stable if the Nyquist plot of the transfer
function (11.11) has the property ReH(iω) > −1.

(c) Assume that P (s) = kv/s and C(s) = kp + ki/s. Show that the system with
windup protection is stable if kaw > ki/kp.

(d) Use describing function analysis to show that without the anti-windup protec-
tion, the system may not be stable and estimate the amplitude and frequency of
the resulting oscillation.

(e) Build a simple simulation that verifies the results from part (d).

11.13 Consider the system in Exercise 11.9 and investigate what happens if the
second-order filtering of the derivative is replaced by a first-order filter.



Chapter 12

Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with
sensitivity deteriorations in another frequency range, and the price is
higher if the plant is open loop unstable. This applies to every controller,
no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [Ste03].

In this chapter we continue to explore the use of frequency domain techniques
with a focus on the design of feedback systems. We begin with a more thorough
description of the performance specifications for control systems and then introduce
the concept of “loop shaping” as a mechanism for designing controllers in the fre-
quency domain. Additional techniques discussed in this chapter include feedforward
compensation, the root locus method, and nested controller design.

12.1 Sensitivity Functions

In the previous chapter, we used proportional-integral-derivative (PID) feedback as
a mechanism for designing a feedback controller for a given process. In this chapter
we will expand our approach to include a richer repertoire of controllers and tools
for shaping the frequency response of the closed loop system.

One of the key ideas in this chapter is that we can design the behavior of the
closed loop system by focusing on the open loop transfer function. This same
approach was used in studying stability using the Nyquist criterion: we plotted the
Nyquist plot for the open loop transfer function to determine the stability of the
closed loop system. From a design perspective, the use of loop analysis tools is very
powerful: since the loop transfer function is L = PC, if we can specify the desired
performance in terms of properties of L, we can directly see the impact of changes
in the controller C. This is much easier, for example, than trying to reason directly
about the tracking response of the closed loop system, whose transfer function is
given by Gyr = PC/(1 + PC).

We will start by investigating some key properties of a closed loop control sys-
tem. A block diagram of a basic two degree-of-freedom control system is shown in
Figure 12.1. The system loop is composed of two components: the process and the

12-1
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Figure 12.1: Block diagram of a control system with two degrees of freedom.
The controller has a feedback block C and a feedforward block F . The external
signals are the reference signal r, the load disturbance v, and the measurement
noise w. The measured output is y, and the control signal is u.

controller. The two degree-of-freedom controller itself has two blocks: the feedback
block C and the feedforward block F . There are two disturbances acting on the
process, the load disturbance v and the measurement noise w. The load disturbance
represents disturbances that drive the process away from its desired behavior, while
the measurement noise represents disturbances that corrupt information about the
process given by the sensors. For example, in a cruise control system the major
load disturbances are changes in the slope of the road, and measurement noise is
caused by the electronics that convert pulses measured on a rotating shaft to a
velocity signal. The load disturbances typically have low frequencies, lower than
the controller bandwidth, while measurement noise typically has higher frequen-
cies. It is assumed that load disturbances enter at the process input and that the
measurement noise acts at the process output. This is a simplification since distur-
bances may enter the process in many different ways and there may be dynamics
in the sensors. These assumptions allow us to streamline the presentation without
significant loss of generality.

The process output η is the variable that we want to control, and our ultimate
goal is to make η track a reference signal r. To shape the response to reference
signals, it is common to use a feedforward block to generate a desired (or model)
reference signal ym that represents the actual signal we attempt to track. Control
is based on the difference between the model reference ym and the measured signal
y, where the measurements are corrupted by measurement noise w. The process
is influenced by the controller via the control variable u. The process is thus a
system with three inputs (the control variable u, the load disturbance v, and the
measurement noise w) and one output (the measured signal y). The controller is
a system with two inputs (the measured signal y and the reference signal r) and
one output (the control signal u). Note that the control signal u is an input to
the process and the output of the controller, and that the measured signal y is the
output of the process and an input to the controller.

Since the control system in Figure 12.1 is composed of linear elements, the
relations between the signals in the diagram can be expressed in terms of the transfer
functions. The overall system has three external inputs: the reference r, the load
disturbance v, and the measurement noise w. Any of the remaining signals can be
relevant for design, but the most common ones are the error e, the control input
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Table 12.1: Transfer functions relating the signals of the control system in Fig-
ure 12.1. The external inputs are the reference signal r, load disturbance v, and
measurement noise w, represented by each row. The columns represent the mea-
sured signal y, control input u, error e, process input µ, and process output η that
are most relevant for system performance.

y u e µ η

PCF

1 + PC

CF

1 + PC

F

1 + PC

CF

1 + PC

PCF

1 + PC
r

P

1 + PC

−PC

1 + PC

−P

1 + PC

1

1 + PC

P

1 + PC
v

1

1 + PC

−C

1 + PC

−1

1 + PC

−C

1 + PC

−PC

1 + PC
w

u, and the output y. In addition, the process input and output, µ and η, are also
useful. Table 12.1 summarizes the transfer functions between the external inputs
(rows) and remaining signals (columns).

Although there are 15 entries in the table, many transfer functions appear more
than once. For most control designs we focus on the following subset, which we call
the Gang of Six:

Gyr =
PCF

1 + PC
, −Guv =

PC

1 + PC
, Gyv =

P

1 + PC
,

Gur =
CF

1 + PC
, −Guw =

C

1 + PC
, Gyw =

1

1 + PC
.

(12.1)

The transfer functions in the first column of equation (12.1) give the responses of
the process output y and the control signal u to the reference signal r. The second
column gives the responses of the control variable u to the load disturbance v and
the measurement noise w, and the final column gives the responses of the measured
signal y to those two inputs. (Note that the sign convention in equation (12.1) is
chosen for later convenience and does not affect the magnitude of the Gang of Six
transfer functions.)

The response of the system to load disturbances and measurement noise is of
particular importance and these transfer functions are referred to as sensitivity
functions. They represent the sensitivity of the system to the various inputs, and
they have specific names:

S =
1

1 + PC
sensitivity
function

PS =
P

1 + PC

load (or input)
sensitivity
function

T =
PC

1 + PC

complementary
sensitivity
function

CS =
C

1 + PC

noise (or output)
sensitivity
function

(12.2)

Because these transfer functions are particularly important in feedback control
design, they are called the Gang of Four, and they have many interesting properties
that will be discussed in detail in the rest of the chapter. Good insight into these
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properties is essential in understanding the performance of feedback systems for the
purposes of both analysis and design.

While the Gang of Four capture the response to disturbances, we are also in-
terested in the response of the system to the reference signal r. The remaining
two elements in the full Gang of Six capture the relationship between the reference
signal and the measured output y plus the control input u:

Gyr =
PCF

1 + PC
, Gur =

CF

1 + PC
.

We see that F can be used to design these responses and provides a second degree of
freedom in addition to the feedback controller C. In practice, it is common to first
design the feedback controller C using the Gang of Four to provide good response
with respect to load disturbances and measurement noise, and then use F and the
remaining transfer functions as part of the full Gang of Six to obtain good reference
tracking.

In addition to the Gang of Six, one other signal that can be important is the
error between the reference r and the process output η (prior to the addition of
measurement noise), which satisfies

ǫ = r − η =

(
1− PCF

1 + PC

)
r − P

1 + PC
v − PC

1 + PC
w

= (1− TF )r − PSv − Tw.

The signal ǫ is not actually present in our diagram, but is the true error that
represents the tracking deviation. We see that it consists of a particular combination
of transfer functions chosen from the Gang of Six.

The special case of F = 1 is called a system with (pure) error feedback because
all control actions are based on feedback from the error. In this case the transfer
functions given by equations (12.1) and (12.2) are the same and the system is
completely characterized by the Gang of Four. In addition, the true tracking error
becomes

ǫ = Sr − PSv − Tw.

Notice that we have less freedom in design of a system with error feedback be-
cause the feedback controller C must now deal with both disturbance attenuation,
robustness, and reference signal tracking.

The transfer functions in equation (12.2) have many interesting properties. For
example, it follows from equation (12.2) that S + T = 1, which explains why T is
called the complementary sensitivity function. The loop transfer function PC will
typically go to zero for large s, which implies that T goes to zero and S goes to
one as s goes to infinity. Thus, it will not be possible to track very high-frequency
reference signals (|Gyr| = |FT | → 0) and any high-frequency noise will propagate
unfiltered to the error (|Gew| = |S| → 1). For controllers with integral action and
processes with non-vanishing zero frequency gain, the loop transfer function PC
goes to infinity for small s, which implies that S goes to zero and T goes to one
as s goes to zero. Low-frequency signals are thus tracked well (|Gyr| = |FT | → 0),
and low-frequency disturbances can be completely attenuated (|Gev| = |PS| → 0).
Many more properties of the sensitivity functions will be discussed in detail later
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in this chapter and in Chapters 13 and 14. Good insight into these properties is
essential in understanding the performance of feedback systems for the purposes
of both analysis and design. The transfer functions are also used to formulate
specifications on control systems.

In Chapter 10 we focused on the loop transfer function, and we found that its
properties gave useful insights into the properties of a system. The loop transfer
function does not, however, always give a complete characterization of the closed
loop system. In particular, it can happen that there are pole/zero cancellations in
the product of P and C such that 1 + PC has no unstable poles, but one of the
other Gang of Four transfer functions might be unstable. The following example
illustrates this difficulty.

Example 12.1 The loop transfer function gives only limited insight
Consider a process with the transfer function P (s) = 1/(s − a) controlled by a PI
controller with error feedback having the transfer function C(s) = k(s− a)/s. The
loop transfer function is L = k/s, and the sensitivity functions are

S =
1

1 + PC
=

s

s+ k
, PS =

P

1 + PC
=

s

(s− a)(s+ k)
,

CS =
C

1 + PC
=
k(s− a)

s+ k
, T =

PC

1 + PC
=

k

s+ k
.

Notice that the factor s − a is canceled when computing the loop transfer func-
tion and that this factor also does not appear in the sensitivity functions S and
T . However, cancellation of the factor is very serious if a > 0 since the transfer
function PS relating load disturbances to process output is then unstable. A small
disturbance v then leads to an unbounded output, which is clearly not desirable.

∇
If all four of the transfer functions in equation (12.2) are stable we say that the

feedback system is internally stable. In addition, if there is a feedforward controller
F then it should also be stable in order for the full system to be internally stable.
For more general systems, which may contain additional transfer functions and
feedback loops, the system is internally stable if all possible input/output transfer
functions are stable. For simplicity we will often say that a closed loop system is
stable when we mean that it is internally stable.

As mentioned previously, the system in Figure 12.1 represents a special case because �
it is assumed that the load disturbance enters at the process input and that the
measured output is the sum of the process variable and the measurement noise.
Disturbances can enter in many different ways, and the sensors may have dynamics.
A more abstract way to capture the general case is shown in Figure 12.2, which has
only two blocks representing the process (P) and the controller (C). The process has
two inputs, the control signal u and a vector of disturbances χ, and three outputs,
the measured signal y, the reference signal r, and a vector of signals ξ that is used
to specify performance. The system in Figure 12.1 can be captured by choosing
χ = (r, v, w) and ξ = (e, µ, η, ǫ). The process transfer function P describes the
effect of χ and u on ξ, y, and r, and the controller transfer function C describes
how u is related to y and r (see Exercise 12.2). Restricting the signal ξ to contain
the errors e and ǫ, the control problem can be formulated as finding a controller
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χ

C

u

P

y, r

ξ

Figure 12.2: A more general representation of a feedback system. The process
input u represents the control signal, which can be manipulated, and the process
input χ represents the other signals that influence the process. The process output
consists of the measured variable(s) y, the reference signal r, and the signal vector
ξ representing the other signals of interest in the control design.

C so that the gain of the transfer function from the disturbance χ = (r, v, w) to
the generalized control error ξ = (e, ǫ) is as small as possible (discussed further in
Section 13.4).

Processes with multiple inputs and outputs can be handled by regarding u and
y as vectors. Representations at these higher levels of abstraction are useful for the
development of theory because they make it possible to focus on fundamentals and
to solve general problems with a wide range of applications. However, care must
be exercised to maintain the coupling to the real-world control problems we intend
to solve and we must keep in mind that matrix multiplication is not commutative.

12.2 Performance Specifications

A key element of the control design process is how we specify the desired perfor-
mance of a system. Specifications capture robustness to process variations as well
performance in terms of the ability to follow reference signals and attenuate load
disturbances without injecting too much measurement noise. The specifications
are expressed in terms of transfer functions such as the Gang of Six and the loop
transfer function, and are often represented by features of the transfer functions or
their time and frequency responses.

Robustness to process variations was discussed extensively in Section 10.3, where
we introduced gain margin gm, phase margin ϕm, and stability margin sm, as shown
in Figure 10.11. The largest value of the sensitivity function Ms = 1/sm is another
robustness measure, as illustrated in Figure 12.3a.

To provide specifications it is desirable to capture the characteristic properties
of a system with a few parameters. Features of step responses that we have already
seen are overshoot, rise time, and settling time, as shown in Figure 6.9. Com-
mon features of frequency responses include peak value(s), peak frequency, gain
crossover frequency, and bandwidth. Other features of the frequency response in-
clude the maximum value of sensitivity function Ms (occurring at frequency ωms)
and the maximum value of the complementary sensitivity functionMt (occurring at
frequency ωmt). The sensitivity crossover frequency ωsc is defined as the frequency
where the magnitude of the sensitivity function S(jω) is 1. The various crossover
frequencies and the bandwidth are only well defined if the curves are monotone; if
this is not the case the lowest such frequency is typically used.
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Figure 12.3: Illustration of specifications in frequency domain. (a) Gain curve
of sensitivity function; the maximum sensitivity Ms is a robustness measure. (b)
Gain curve of the transfer function Gyr with peak value Mr, peak frequency ωmr,
and bandwidth ωb.

There are interesting relationships between specifications in the time and fre-
quency domains. Roughly speaking, the behavior of time responses for short times
is related to the behavior of frequency responses at high frequencies, and vice versa.
The precise relations are given by the Laplace transform. There are also useful re-
lationships between features in the time and frequency domain; typical examples
are given in Tables 7.1 and 7.2 in Section 7.3.

In the remainder of this section we consider the different types of responses that
are commonly used in control design and describe the types of specifications that
are relevant for each.

Response to Reference Signals

Consider the basic feedback loop in Figure 12.1. The responses of the output y
and the control signal u to the reference r are described by the transfer functions
Gyr = PCF/(1 + PC) and Gur = CF/(1 + PC) (F = 1 for systems with pure
error feedback). Specifications can be expressed in terms of features of the transfer
function Gyr, such as the peak (or resonant) value Mr, the peak frequency ωmr,
and the bandwidth ωb, as shown in Figure 12.3b.

In the special case where F = 1, the transfer function Gyr is equal to the
complementary sensitivity function T . However, in many cases it is useful to retain
the ability to shape the input/output response by using F 6= 1. This distinction is
captured in the use of the full Gang of Six rather than just the Gang of Four.

The transfer function Gyr typically has unit zero frequency gain because we
want to design the system so that the response to a step input has zero steady-
state error. The behavior of the transfer function at low frequencies determines
the tracking error for slow reference signals. We can capture this analytically by
making the following series expansion of the transfer function from reference r to
output e for small s:

Ger(s) ≈ e1s+ e2s
2 + · · · ,

where the coefficients ek are called error coefficients. If the reference signal is r(t),
the tracking error is then

e(t) = r(t)− y(t) = Gerr = e1
dr

dt
+ e2

d2r

d2t
+ · · · .
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Figure 12.4: Reference signal responses for Example 12.2. The responses in
process output y and control signal u to a unit step in the reference signal r are
shown in (a), and the gain curves of Gyr and Gur are shown in (b). Results for
PI control with error feedback are shown by solid lines, and the dashed lines show
results for a controller with a feedforward compensator. The bandwidth of the
closed loop systems is marked in the plot of Gyr with open circles (◦).

It follows that a ramp input r(t) = v0t gives a steady-state tracking error v0e1, and
we can conclude that the steady-state tracking error is zero if e1 = 0. A system
with e1 = 0 has the steady-state error e(t) = 2ae2 for the input r(t) = a0t

2. The
equation also supports the insight that the behavior at low frequencies (small s)
corresponds to the behavior at large times, a consequence of the final value theorem
(discussed briefly at the end of Section 9.3).

It has long been a practice to focus on the output when we give specifications.
However, it is useful to also consider the response of the control signal because this
allows us to judge the magnitude and rate of the control signal required to obtain
the output response. This is illustrated in the following example.

Example 12.2 Reference signal tracking for a third-order system
Consider a process with the transfer function P (s) = (s+ 1)−3 and a PI controller
with error feedback having the gains kp = 0.6 and ki = 0.5. The responses are
illustrated in Figure 12.4. The solid lines show results for a proportional-integral
(PI) controller with error feedback. The dashed lines show results for a controller
with feedforward controller

F =
Gyr(1 + PC)

PC
=

2s4 + 6s3 + 6s2 + 3.2s+ 1

0.15s4 + 1.025s3 + 2.55s2 + 2.7s+ 1
,

designed to give the closed loop transfer function Gyr = (0.5s+1)−3. Looking at the
time responses, we find that the controller with feedforward gives a faster response
with no overshoot. However, much larger control signals are required to obtain
the fast response. The initial value of the control signal for the controller with
feedforward is 13.3, compared to 0.6 for the regular PI controller. The controller
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with feedforward has a larger bandwidth (marked with ◦) and no resonant peak.
The transfer function Gur also has higher gain at high frequencies. ∇

We can get some insight into the relationship between time and frequency re-
sponses from Figure 12.4. The figures in the top row show the unit step response
and the frequency response for the transfer function Gyr, and the lower plots show
the same quantities for Gur. The dashed time and frequency responses have no
peaks while the solid responses have peaks. The peaks are related in the sense
that a large overshoot in the time response corresponds to a large resonant peak
in the frequency response. The time responses in the bottom plot of Figure 12.4
have the initial values 8 (dashed) and 6 (solid), and the frequency responses have
the same final values. In general, it can be shown using the Laplace transform (or
appropriate exponential responses) and the initial and final value theorems that for
a unit reference signal r(t) we have that u(t) → Gur(0) as t → ∞ and if x(0) = 0
then u(0) = Gur(∞).

The dashed time response is faster than the solid time response and the dashed
frequency response has larger bandwidth than the solid frequency response. The
product of the rise time of the unit step response and the bandwidth of a transfer
function (the rise time-bandwidth product) is a dimension-free variable that is a
useful characteristic. The time responses in Figure 12.4 have rise times of Tr = 1.7
(dashed) and 3.0 (solid), and the corresponding bandwidths are ωb = 1.9 (dashed)
and 0.8 (solid), which gives the products Tr ωb = 3.2 (dashed) and 2.4 (solid). A
similar observation can be made from Tables 7.1 and 7.2 in Section 7.3, which
gives Tr ωb ≈ 2.7–2.8. It thus appears that the product of the rise time of the step
response and the bandwidth of the frequency response is approximately constant
(Tr ωb ≈ 3). It can be shown that the rise time-bandwidth product increases if
the frequency response has a faster roll-off (see Exercise 12.5, which uses a slightly
different definition of bandwidth).

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to compare the output of the closed
loop system in Figure 12.1 with the output of the corresponding open loop system,
which can be obtained by setting C = 0 in the figure. With identical disturbances
for the open and closed loop systems, the output of the closed loop system can
be obtained simply by sending the open loop output through a system with the
transfer function S (Exercise 12.6). The sensitivity S function thus directly shows
how feedback influences the response of the output to disturbances both in the
form of load disturbances and measurement noise. Disturbances with frequencies
such that |S(iω)| < 1 are attenuated, but disturbances with frequencies such that
|S(iω)| > 1 are amplified by feedback. The sensitivity crossover frequency ωsc is
the (lowest) frequency where |S(iω)| = 1, as shown in Figure 12.5a.

Since the sensitivity function is related to the loop transfer function by S =
1/(1 + L), disturbance attenuation can be visualized graphically by the Nyquist
plot of the loop transfer function, as shown in Figure 12.5b. The complex number
1+L(iω), which is the inverse of the sensitivity function S(iω), can be represented
as the vector from the point −1 to the point L(iω) on the Nyquist curve. The
sensitivity is thus less than 1 for all points outside a circle with radius 1 and center
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Figure 12.5: Illustration of sensitivity to disturbances. The gain curves of the
sensitivity function S and the loop transfer function L are shown in (a). The
Nyquist plot of the loop transfer function L is shown in (b). Disturbances with
frequencies less than the sensitivity crossover frequency, to the left of ωsc in (a)
and inside the dashed circle in (b), are attenuated by feedback. Disturbances with
frequencies higher than ωsc are amplified. The largest amplification occurs for the
frequency ωms, where the sensitivity has its largest value Ms, the point where the
Nyquist curve is closest to the critical point −1 in (b).

at −1. Disturbances with frequencies in this range are attenuated by the feedback,
while disturbances with frequencies corresponding to points inside the circle are
amplified.

The maximum sensitivity Ms, which occurs at the frequency ωms, is a measure
of the largest amplification of the disturbances. The sensitivity crossover frequency
ωsc and the maximum sensitivity Ms are two parameters that give a gross char-
acterization of load disturbance attenuation. For systems where the phase margin
is ϕm = 60◦, it can be shown that the sensitivity crossover frequency ωsc is equal
to the gain crossover frequency ωgc and the complementary sensitivity function
crossover frequency ωtc. Notice that the maximum magnitude of 1/(1+L(iω)) cor-
responds to the minimum of |1 + L(iω)|, which is the stability margin sm defined
in Section 10.3, so that Ms = 1/sm. The maximum sensitivity is therefore also a
robustness measure.

The transfer function Gyv from load disturbance v to process output y for the
system in Figure 12.1 is

Gyv =
P

1 + PC
= PS =

T

C
. (12.3)

Load disturbances typically have low frequencies. For small s (low frequencies)
we have T ≈ 1 which gives Gyv ≈ 1/C. For processes with P (0) 6= 0 and con-
trollers with integral action we have C(s) ≈ ki/s for small s and Gyv ≈ s/ki. A
controller with integral action thus attenuates disturbances with low frequencies
effectively, and the integral gain ki is a measure of disturbance attenuation. For
high frequencies we have S ≈ 1 which implies that Gyv ≈ P for large s.

Measurement noise, which typically has high frequencies, generates rapid vari-
ations in the control variable that are detrimental because they cause wear in the
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Figure 12.6: Closed loop disturbance responses for Example 12.3. The closed
loop unit step response and frequency response for the transfer function Gyv from
load disturbance v to process output y are shown in (a) and the corresponding
responses for the transfer function Guw from measurement noise w to the control
signal u are shown in (b).

actuators and can even saturate an actuator. It is thus important to keep varia-
tions in the control signal due to measurement noise at reasonable levels—a typical
requirement is that the variations are only a fraction of the allowable range of
the control signal. The effects of measurement noise are captured by the transfer
function from the measurement noise to the control signal,

−Guw =
C

1 + PC
=
T

P
= CS. (12.4)

Under the assumption that S ≈ 1 for large s (high frequencies, which is appropriate
for measurement noise), we have −Guw ≈ C. The formula clearly shows it is useful
to filter the derivative so that the transfer function C(s) goes to zero for large s
(high-frequency roll-off).

Example 12.3 Disturbance attenuation for a third-order system
Consider a process with the transfer function P (s) = (s+1)−3 and a proportional-
integral-derivative (PID) controller with gains kp = 2, ki = 1.5, and kd = 2.0. We
augment the controller with a second-order noise filter with damping ratio 1/

√
2

and Tf = 0.1. The controller transfer function then becomes

C(s) =
kds

2 + kps+ ki
s(s2T 2

f /2 + sTf + 1)
. (12.5)

The closed loop system responses are illustrated in Figure 12.6. The closed loop
response of the output y to a unit step in the load disturbance v in the upper part
of Figure 12.6a has a peak of 0.28 at time t = 2.73 s. The frequency response in
Figure 12.6a shows that the gain has a maximum of 0.58 at ω = 0.7 rad/s.

The closed loop response of the control signal u to a step in measurement noise
w is shown in Figure 12.6b. The high-frequency roll-off of the transfer function
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Figure 12.7: Specifications can be tested by injecting signals at test points δk
and measuring responses at sij . Compare with Figure 12.1.

Guw(iω) is due to filtering; without it the gain curve in Figure 12.6b would continue
to rise after 20 rad/s. The step response has a valley of −14 at t = 0.08 s. The
frequency response has a peak of 20 at ω = 14 rad/s. Notice that the peak occurs
at a frequency far above the peak of the response to load disturbances and far
above the gain crossover frequency ωgc = 0.78 rad/s. An approximation derived in
Exercise 12.7 gives max |CS(iω)| ≈ kd/Tf = 20 for ω =

√
2/Td = 14.1 rad/s. ∇

Figure 12.6 also gives insight into the relationship between the time and fre-
quency responses. The frequency response of the transfer functions Gyv and Guw
have band-pass characteristics and their gains go to zero for high and low frequen-
cies. A consequence is that the corresponding step responses are zero both for small
and large times. The frequency response Gyv in Figure 12.6a has a peak of 0.6 for
ωp = 0.7 and the time response has a peak of 0.3 for tp = 2.7, hence ωptp = 1.9.
Figure 12.6b shows that the low-frequency gain of the transfer function Guw and
steady-state time response are both 1, and the time response starts at zero because
the frequency response goes to zero at high frequencies. The frequency response has
a peak of 20 for ωp = 14 and the time response has a peak of 14 for tp = 0.08, hence
ωptp = 1.1. These observations support the simple rules for transfer functions with
a band-pass character: the product of the peak time of the step response and the
resonant peak of the frequency response is in the range of 1 to 2 (Exercise 12.8).

Measuring Specifications

Many specifications are expressed in terms of properties of the transfer functions in
the Gang of Six and they can easily be checked simply by computing the transfer
functions numerically. To test a real system it is necessary to provide the controller
with test points for injecting and measuring signals. Some possible test points are
shown in Figure 12.7. As an example, the transfer function Gyv, which characterizes
response of process output to load a disturbance, can be found by injecting a
signal at δ1 and measuring the output s21. A frequency analyzer that measures
the transfer function directly is very convenient for such a test. By measuring the
transfer functions we can ensure that robustness and performance are maintained
during the design phase and operation of a system.
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Figure 12.8: Gain plots of the loop transfer function (a) and the sensitivity
functions (b) for typical loop transfer functions. The plot on the left shows the gain
curve and the plots on the right show the sensitivity function and complementary
sensitivity function. The crossover frequency ωgc determines the attenuation of
load disturbances, bandwidth, and response time of the closed loop system. The
slope ngc of the gain curve of L(s) at the gain crossover frequency ωgc determines
the robustness of the closed loop systems (equation (12.6)). At low frequencies,
a large magnitude of L provides good load disturbance rejection and reference
tracking, while at high frequencies a small loop gain avoids injecting too much
measurement noise.

12.3 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that it is based on the loop
transfer function L = PC, which is the product of the transfer functions of the
process and the controller. It is thus easy to see how the controller influences the
loop transfer function. For example, to make an unstable system stable we simply
have to bend the Nyquist curve away from the critical point. This simple idea is
the basis of several different design methods collectively called loop shaping. These
methods are based on choosing a compensator that gives a loop transfer function
with a desired shape. One possibility is to determine a loop transfer function that
gives a closed loop system with the desired properties and to compute the controller
as C = L/P . This approach may lead to controllers of high order and there are
limits if the process transfer function has poles and zeros in the right half-plane,
as discussed briefly in Section 12.4 and in more detail in Section 14.3. Another
possibility is to start with the process transfer function, change its gain to obtain
the desired bandwidth, and then add poles and zeros until the desired shape is
obtained. In this section we will explore different loop-shaping methods for control
law design.

Design Considerations

We will first discuss a suitable shape for the loop transfer function that gives good
performance and good stability margins. Figure 12.8 shows a typical loop transfer
function. Good performance requires that the loop transfer function is large for
frequencies where we desire good tracking of reference signals and good attenua-
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tion of low-frequency load disturbances. Since S = 1/(1 + L), it follows that for
frequencies where |L| > 100 disturbances will be attenuated by approximately a
factor of 100 or more and the tracking error is less than 1%. The transfer function
from measurement noise to control action is CS = C/(1 + L). To avoid injecting
too much measurement noise, which can create undesirable control actions, the
controller transfer function should have low gain at high frequencies, a property
called high-frequency roll-off. The loop transfer function should thus have roughly
the shape shown in Figure 12.8. It has unit gain at the gain crossover frequency
(|L(iωgc)| = 1), large gain for lower frequencies, and small gain for higher frequen-
cies.

Robustness is determined by the shape of the loop transfer function around
the crossover frequency. Good robustness requires good stability margins, which
imposes requirements on the loop transfer function around the gain crossover fre-
quency ωgc. It would be desirable to transition from high loop gain |L(iω))| at low
frequencies to low loop gain as quickly as possible, but robustness requirements
expressed via Bode’s relations (Section 10.4) impose restrictions on how fast the
gain can decrease. Equation (10.9) implies that the slope of the gain curve at ωgc

cannot be too steep. If the gain curve has a constant slope around ωgc, we have
the following relationship between slope ngc and phase margin ϕm (in degrees):

ngc ≈ −2 +
ϕm

90
, (12.6)

for a minimum-phase system. A steeper slope thus gives a smaller phase margin.
The equation is a reasonable approximation when the gain curve does not deviate
too much from a straight line. It follows from equation (12.6) that the phase
margins 30◦, 45◦, and 60◦ correspond to the slopes −5/3, −3/2, and −4/3, with a
steeper slope giving smaller phase margin. Time delays and poles and zeros in the
right half-plane impose further restrictions as will be discussed in Chapter 14.

Loop shaping is a trial-and-error procedure. We typically start with a Bode
plot of the process transfer function. Choosing the gain crossover frequency ωgc is a
major design decision and is a compromise between attenuation of load disturbances
and injection of measurement noise. Notice that the gain crossover frequency and
the sensitivity crossover frequencies are the same if the phase margin is ϕm = 60◦,
while for smaller phase margins we have ωgc < ωsc. Having determined the gain
crossover frequency we then attempt to shape the loop transfer function by changing
the controller gain and adding poles and zeros to the controller transfer function.
As we shall see, the controller gain at low frequencies can be increased by so-
called “lag compensation,” and the behavior around the crossover frequency can be
changed by so-called “lead compensation.” Different performance specifications are
evaluated for each controller as we attempt to balance many different requirements
by adjusting controller parameters and complexity.

Loop shaping is straightforward to apply to single-input, single-output systems.
It can also be applied to systems with one input and many outputs by closing
the loops one at a time. The only limitation for minimum phase systems is that
large phase leads and high controller gains may be required to obtain closed loop
systems with a fast response. Many specific procedures are available: they all
require experience, but they also give good insight into the conflicting specifications.
There are fundamental limits to what can be achieved for systems that are not
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Figure 12.9: Frequency response for lead and lag compensators C(s) = k(s +
a)/(s + b). Lead compensation (a) occurs when a < b and provides phase lead
between ω = a and ω = b. Lag compensation (b) corresponds to a > b and
provides low-frequency gain. PI control is a special case of lag compensation and
PD control is a special case of lead compensation. PI/PD frequency responses are
shown by dashed curves. The parameters are a = 0.25, b = 4, k = 16 in (a) and
a = 4, b = 0.25, k = 1 in (b).

minimum phase; they will be discussed in Section 14.3.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfer function of the process
and add simple compensators with transfer function

C(s) = k
s+ a

s+ b
, a > 0, b > 0. (12.7)

The compensator is called a lead compensator if a < b, and a lag compensator if
a > b. The PI controller is a special case of a lag compensator with b = 0. A lead
compensator is essentially the same as a PD controller with filtering. As described
in Section 11.5, we often use a filter for the derivative action of a PID controller
to limit the high-frequency gain. This same effect is present in a lead compensator
through the pole at s = b. Equation (12.7) is a first-order compensator and can
provide up to 90◦ of phase lead. Larger phase lead can be obtained by using a
higher-order lead compensator (Exercise 12.17):

C(s) = k
(s+ a)n

(s+ b)n
, a < b.

Bode plots of lead and lag compensators are shown in Figure 12.9. Lag com-
pensation, which increases the gain at low frequencies, is typically used to improve
tracking performance and disturbance attenuation at low frequencies. Lead com-
pensation is typically used to improve phase margin. If we set a < b in equa-
tion (12.7), we add phase lead in the frequency range between the pole/zero pair
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(and extending approximately 10× in frequency in each direction). By appropri-
ately choosing the location of this phase lead, we can provide additional phase
margin at the gain crossover frequency.

Lead compensation is associated with an increase of the high-frequency gain.
Let G(s) be a transfer function with G(0) > 0, with no poles and zeros in the right
half plane, and assume that lims→∞G(s) = G(∞) > 0. Then

log
G(∞)

G(0)
=

2

π

∫ ∞

0

argG(iω) d logω =
2

π

∫ ∞

−∞
argG(ieu) du. (12.8)

This formula, which we call Bode’s phase area formula, implies that the logarithm
of the gain ratio G(∞)/G(0) for a transfer function is proportional to the area of
the phase curve in the Bode plot. The equation was derived by Bode [Bod45, page
286] using the theory of complex variables. Lead compensation thus requires high
gain at high frequencies and increases the sensitivity to measurement noise.

Lead and lag compensators can also be combined to form a lead-lag compensator
(Exercise 12.11). Compensators that are tailored to specific disturbances can be
also designed, as shown in Exercise 12.12. The following examples illustrate the
use of lag compensation (via PI control) and lead compensation (to increase phase
margin).

Example 12.4 Atomic force microscope in tapping mode
A simple model of the dynamics of the vertical motion of an atomic force microscope
in tapping mode was given in Exercise 10.2. The transfer function for the system
dynamics is

P (s) =
a(1− e−sτ )
sτ(s+ a)

,

and the parameters a = ζω0, τ = 2πn/ω0 are explained in Example 11.2. The gain
has been normalized to 1. A Bode plot of this transfer function for the parameters
a = 1 and τ = 0.25 is shown using dashed curves in Figure 12.10a. To improve the
attenuation of load disturbances we increase the low-frequency gain by introducing
an integral controller. The loop transfer function then becomes L = kiP (s)/s, and
we start by adjusting the gain ki so that the closed loop system is marginally stable,
giving ki = 8.3. The Bode plot is shown by the dash-dotted line in Figure 12.10a,
where the critical point is indicated by ◦. Notice the increase of the gain at low
frequencies. To obtain a reasonable phase margin we introduce proportional action
and we increase the proportional gain kp gradually until reasonable values of the
sensitivities are obtained. The value kp = 3.5 gives maximum sensitivity Ms = 1.6
and maximum complementary sensitivity Mt = 1.3. The loop transfer function is
shown in solid lines in Figure 12.10a. Notice the significant increase of the phase
margin compared with the purely integral controller (dash-dotted line).

To evaluate the design we also compute the gain curves of the transfer functions
in the Gang of Four. They are shown in Figure 12.10b. The peaks of the sensitivity
curves are reasonable, and the plot of PS shows that the largest value of PS is 0.3,
which implies that the load disturbances are well attenuated. The plot of CS shows
that the largest noise gain |C(iω)S(iω)| is 6. The controller has a gain kp = 3.5
at high frequencies, and hence we may consider adding high-frequency roll-off to
make CS smaller at high frequencies. ∇
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Figure 12.10: Loop-shaping design of a controller for an atomic force microscope
in tapping mode. (a) Bode plots of the process (dashed), the loop transfer function
for an integral controller with critical gain (dash-dotted), and a PI controller (solid)
adjusted to give reasonable robustness. (b) Gain curves for the Gang of Four for
the system.

Example 12.5 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust aircraft such as the one il-
lustrated in Figure 12.11. Following Exercise 9.11, we model the system with a
second-order transfer function of the form

P (s) =
r

Js2
,

with the parameters given in Figure 12.11b. We take as our performance speci-
fication that we would like less than 1% error in steady state and less than 10%
tracking error up to 10 rad/s.

The open loop transfer function from F1 to θ is shown in Figure 12.12a. To
achieve our performance specification, we would like to have a gain of at least 10
at a frequency of 10 rad/s, requiring the gain crossover frequency to be at a higher
frequency. We see from the loop shape that in order to achieve the desired perfor-
mance we cannot simply increase the gain since this would give a very low phase
margin. Instead, we must increase the phase at the desired crossover frequency.

To accomplish this, we use a lead compensator (12.7) with a = 2, b = 50, and
k = 200. We then set the gain of the system to provide a large loop gain up to the
desired bandwidth, as shown in Figure 12.12b. We see that this system has a gain
of greater than 10 at all frequencies up to 10 rad/s and that it has more than 60◦

of phase margin. ∇
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(a) Simplified model

Symbol Description Value

m Vehicle mass 4.0 kg

J Vehicle inertia, ϕ3 axis 0.0475 kg m2

r Force moment arm 25.0 cm

c Damping coefficient 0.05 kg m/s

g Gravitational constant 9.8 m/s2

(b) Parameter values

Figure 12.11: Roll control of a vectored thrust aircraft. (a) The roll angle θ is
controlled by applying maneuvering thrusters, resulting in a moment generated by
F1. (b) The table lists the parameter values for a laboratory version of the system.

12.4 Feedforward Design

Feedforward is a simple and powerful technique that complements feedback. It can
be used both to improve the response to reference signals and to reduce the effect
of measurable disturbances. Design of feedforward for controllers based on state
feedback and observers was developed in Section 8.5 (Figure 8.11). Section 11.5 pre-
sented setpoint weighting as simple form of feedforward for PID controllers (equa-
tion (11.15)). In this section we will use transfer functions to develop more advanced
methods for feedforward design.

Combining Feedforward and Feedback

Figure 12.13 shows a block diagram of a system with feedback and feedforward
control. The process dynamics are separated into two blocks P1(s) and P2(s), where
the measured disturbance v enters at the input of the block P2, and we define P (s) =
P1(s)P2(s). The transfer function Fm represents the desired (model) response to
reference signals. There are two feedforward blocks with transfer functions Fr and
Fv to deal with the reference signal r and the measured disturbances v.

A major advantage of controllers with two degrees of freedom that combine
feedback and feedforward is that the control design problem can be split in two
parts. The feedback transfer function C can be designed to give good robustness
and effective disturbance attenuation, and the feedforward transfer functions Fr
and Fv can be designed independently to give the desired responses to reference
signals and to reduce effects of measured disturbances.

We will first explore the response to reference signals. The transfer function
Gyr(s) from reference input r to process output y in Figure 12.13 is

Gyr(s) =
P (CFm + Fr)

1 + PC
= TFm + SPFr = Fm + S(PFr − Fm) (12.9)
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(b) Lead compensator

Figure 12.12: Control design for a vectored thrust aircraft using lead compen-
sation. The Bode plot for the open loop process P is shown in (a) and (b) shows
the Bode plot for the loop transfer function L = PC, where C is the lead given
by equation (12.7) with a = 2, b = 50, and k = 200. Note the phase lead in the
crossover region near ω = 20 rad/s.

where S is the sensitivity function and T the complementary sensitivity function
(equation (12.2)) and we use the fact that T = 1 − S. We can make Gyr close to
the desired transfer function Fm in two different ways: by choosing the feedforward
transfer function Fr so that PFr−Fm is small, or by choosing the feedback transfer
function C so that the sensitivity S = 1/(1 + PC) is small. Perfect feedforward
compensation is obtained by choosing

Fr =
Fm

P1P2
=
Fm

P
, (12.10)

which gives Gyr = Fm. Notice that the feedforward compensator Fr contains an
inverse model of the process dynamics.

Next we will consider attenuation of disturbances that can be measured. The
transfer function from load disturbance v to process output y is given by

Gyv =
P2(1− P1Fv)

1 + PC
= P2S(1− P1Fv). (12.11)

The transfer function Gyv can be made small in two different ways: by choosing
the feedforward transfer function Fv so that 1− P1Fv is small, or by choosing the
feedback transfer function C so that the sensitivity S = 1/(1+PC) is small. Perfect
compensation is obtained by choosing

Fv =
1

P1
. (12.12)

Design of feedforward to improve responses to reference signals and disturbances
using transfer functions is thus a simple task, but it requires inversion of process
models. We illustrate with an example.

Example 12.6 Vehicle steering
A linearized model for vehicle steering was given in Example 7.4. The normalized
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Figure 12.13: Block diagram of a system with feedforward compensation for
improved response to reference signals and measured disturbances (2 degree-of-
freedom system). Three feedforward elements are present: Fm(s) sets the desired
output value, Fr(s) generates the feedforward command uff,r to improve reference
signal response and Fv(s) generates the feedforward signal uff,v that reduces the
effect of the measured disturbance v.

transfer function from steering angle δ to lateral deviation y is P (s) = (γs+1)/s2.
For a lane transfer system we would like to have a nice response without overshoot,
and we therefore choose the desired response as Fm(s) = ω2

c/(s + ωc)
2, where the

response speed or aggressiveness of the steering is governed by the parameter ωc.
Equation (12.10) gives

Fr =
Fm

P
=

ω2
cs

2

(γs+ 1)(s+ ωc)2
,

which is a stable transfer function as long as γ > 0. Figure 12.14 shows the responses
of the system for ωc = 0.2. The figure shows that a lane change is accomplished
in about 20 vehicle lengths with smooth steering angles. The largest steering angle
is slightly larger than 0.2 rad (12◦). Using the scaled variables, the curve showing
lateral deviations (y as a function of t) can also be interpreted as the vehicle path
(y as a function of x) with the vehicle length as the length unit. ∇

Difficulties with Feedforward

The ideal feedforward compensators for Figure 12.13 are given by

Fr =
Fm

P1P2
, Fv =

1

P1
. (12.13)

Both transfer functions require inversion of process transfer functions and there can
be problems with inversion if the process transfer function has time delays, right
half-plane zeros, or high pole excess. Inversion of time delays requires prediction,
which cannot be done perfectly except in the situation when the command signal is
known in advance. If the process transfer function has zeros in the right half-plane,
the inverse process transfer function is unstable and approximate inverses may have
to be used. Finally, if the pole excess of the process transfer function is greater
than zero, then the inverse requires differentiation. In this case the reference signal
must then be sufficiently smooth and there may also be problems with noise.
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Figure 12.14: Feedforward control for vehicle steering. The plot in (a) shows the
trajectory generated by the controller for changing lanes. The plots in (b) show
the lateral deviation y (top) and the steering angle δ (bottom) for a smooth lane
change control using feedforward (based on the linearized model).

There is some extra freedom when finding the transfer function Fr because it
also contains the transfer function Fm, which specifies the ideal behavior. A stable
feedforward transfer function can be obtained if Fm has the same time delays and
right half-plane zeros as the process. We illustrate with an example.

Example 12.7 Feedforward for a process with a right half-plane zero
Let the process and the desired response have the transfer functions

P (s) =
1− s

(s+ 1)2
, Fm(s) =

ω2
m(1− s)

s2 + 2ζcωms+ ω2
m

.

Since the process has a right half-plane zero at s = 1, the desired transfer function
Fm(s) must have the same zeros to avoid having an unstable feedforward transfer
function Fr. Equation (12.10) gives the feedforward transfer function:

Fr(s) =
ω2
m(s+ 1)2

s2 + 2ζcωms+ ω2
m

. (12.14)

Figure 12.15 shows the outputs y and the feedforward signals uff for different values
of ωm. The response to the reference signal goes in the wrong direction initially
because of the right half-plane zero at s = 1. This effect, called inverse response, is
barely noticeable if the response is slow (ωm = 1) but it increases with increasing
response speed. For ωm = 5 the undershoot is more than 200%. The large under-
shoot is an indication that a right half-plane zero limits the achievable bandwidth,
as will be discussed in depth in Chapter 14. A reasonable choice of ωm is in the
range 0.2 to 0.5. Notice that the same feedforward transfer function (12.14) is
obtained if the process and the desired model have the transfer functions

P (s) =
1

(s+ 1)2
, Fm(s) =

ω2
m

s2 + 2ζcωms+ ω2
m

.
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(c) ωm = 5

Figure 12.15: Feedforward control for a process with a right half-plane zero
(Example 12.7). Outputs y (upper plots) and feedforward signals uff (lower plots)
for a unit step command signal. The design parameter has the values ωm = 0.2, 1,
and 0.5 for a unit step command in the reference signal. The dashed curve shows
the response that could be achieved if the process did not have the right half-plane
zero.

The corresponding responses are shown as dashed lines in Figure 12.15. When there
is no right half-plane zero it is thus possible to obtain well-behaved, fast responses.

The control signals for different values of ωm differ significantly, as shown in the
bottom row of plots in Figure 12.15. Since r = 1 and the zero frequency gain of the
feedforward transfer function is Fr(0) = 1, the control signal goes to 1 as time goes
to infinity in all cases. The feedforward transfer function also has constant gain
Fr(∞) = ω2

m for high frequencies, which means that gain for high-frequency signals
is ω2

m and this can be undesirable if ωm is large. The initial response to a unit step
signal is then uff(0) = Fr(∞) = ω2

m (using the initial value theorem). For ωm = 0.2
the control signal grows from 0.04 to the final value 1 with a small overshoot. For
ωm = 1 the control signal starts from 1, has an overshoot, and then settles on the
final value 1. For ωm = 5 the control signal starts at 25 and decays towards the
final value 1 with an undershoot. ∇

Approximate Inverses

Processes with right half-plane zeros do not have stable inverses. To design feedfor-
ward compensators for such systems we need to use approximate inverses that are
stable. The following theorem, which is presented without proof, provides a means
of constructing such approximate inverses.

Theorem 12.1 (Approximate inverse). Let the rational transfer function G(s)
have all its poles in the left half-plane and no zeros on the imaginary axis. Factor
the transfer function as G(s) = G+(s)G−(s), where G+(s) has all its zeros in the
left half-plane and G−(s) has all its zeros in the right half-plane. An approximate
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stable inverse of G(s) that minimizes the mean square error for a step input is

G†(s) =
1

G+(s)G−(−s) . (12.15)

We illustrate the theorem with an example.

Example 12.8 Approximate inverse for a system with a right half-plane
zero
Let the transfer functions of the process and the reference model (desired response)
be

P (s) =
1− s

(s+ 1)2
, Fm(s) =

ω2
m

s2 + 2ζcωms+ ω2
m

.

Note that in comparison to Example 12.7, we do not include the right half-plane
zero in Fm. The process transfer function can be factored as

P−(s) = 1− s, P+(s) =
1

(s+ 1)2
.

Theorem 12.1 then gives the following approximate inverse:

P †(s) =
1

P+(s)P−(−s) =
(s+ 1)2

1 + s
= s+ 1.

The feedforward transfer function is then

Fr(s) = Fm(s)P
†(s) =

ω2
m(s+ 1)

s2 + 2ζcωms+ ω2
m

,

which is similar to equation (12.14) but no longer relies on cancellation of the
right half-plane zero to obtain a stable feedforward transfer function. The transfer
function from reference r to output y is then

Gyr(s) = P (s)Fr(s) =
1− s

(s2 + 2ζcωms+ ω2
m)(s+ 1)

.

Figure 12.16 shows the step responses for different values of ωm.
Comparing Figures 12.15 and 12.16 we find that there are small differences for

ωm = 0.2, but large differences for ωm = 5. Notice in particular the shapes of the
feedforward signals uff. The design based on the approximate inverse has smaller
undershoot but the time responses have somewhat longer settling times. ∇

In summary, we see that feedforward can be used to improve the response to
reference signals and to reduce the effects of load disturbances that can be measured.
There are limits if the process has time delays, right half-plane zeros, or high pole
excess. The zeros depend on the sensors and we can change them by moving or
adding sensors. In addition, we will see in Chapter 13 that feedforward controllers
can be sensitive to model uncertainty (Section 13.3 and Exercise 13.5), and hence
feedforward control is usually combined with feedback control to obtain robust
performance.
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Figure 12.16: Feedforward design based on an approximate inverse. Outputs
y (upper plots) and feedforward signals uff (lower plots) for a unit step reference
signal. The design parameter has the values ωm = 0.2, 1, and 0.5 for a unit step
command in the reference signal. The dashed curves show the responses for a
process without the right half-plane zero.

12.5 The Root Locus Method

In design methods such as eigenvalue assignment, discussed in Sections 7.2 and 8.3,
we designed controllers that give desired closed loop poles. The controllers were
sufficiently complex so that all closed loop poles could be specified. The complex-
ity of the controller is thus directly related to the complexity of the process. In
practice we may have to use a simple controller for a complex process, and it is
then not possible to find a controller that gives all closed poles their desired values.
It is interesting to explore what can be done with a controller having restricted
complexity as was the case for PID control in Chapter 11 and loop shaping in Sec-
tion 12.3. The simplest case with only one selectable controller parameter can be
investigated with the root locus method. The root locus is a graph of the roots of
the characteristic polynomial as a function of a parameter, and the method gives
insight into the effects of the controller parameter. It is straightforward to obtain
the root locus by finding the roots of the closed loop characteristic polynomial for
different values of the parameter. There are also good computer tools for generat-
ing the root locus. Of greater interest is the fact that the general shape of the root
locus can be obtained with very little effort, and that it often gives considerable
insight.

To illustrate the root locus method we consider a process with the transfer
function

P (s) =
b(s)

a(s)
=
b0s

m + b1s
m−1 + · · · bm

sn + a1sn−1 + · · · an
= b0

(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) · · · (s− pn)
.

The polynomial a(s) has degree n and the polynomial b(s) has degree m. We
assume that pole excess npe = n−m is positive or zero. The controller is assumed
to be a proportional controller with the transfer function C(s) = k. We will explore
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the poles of the closed loop system when the gain k of the proportional controller
ranges from 0 to ∞.

The closed loop characteristic polynomial is

acl(s) = a(s) + kb(s) (12.16)

and the closed loop poles are the roots of acl(s). The root locus is a graph of the
roots of acl(s) as the gain k is varied from 0 to ∞. Since the polynomial acl(s) has
degree n, the plot will have n branches.

When the gain k is zero we have acl(s) = a(s) and the closed loop poles are equal
to the open loop poles. When there are open loop poles at s = pl with multiplicity
m, the characteristic equation can be written as

(s− pl)
mã(s) + kb(s) ≈ (s− pl)

mã(pl) + kb(pl) = 0,

where ã(s) represents the polynomial a(s) with the poles at s = pl factored out. For
small values of k the roots of this equation are given by s = pl +

m
√
−kb(pl)/ã(pl).

The root locus thus has a star pattern with m branches emanating from the open
loop pole s = pl. The angle between two neighboring branches is 2π/m.

To explore what happens for large gain we approximate the characteristic poly-
nomial (12.16) for large s and k, which gives

acl(s) = b(s)
(a(s)
b(s)

+ k
)
≈ b(s)

(snpe

b0
+ k
)
. (12.17)

For large k the closed loop poles are approximately the roots of b(s) and
npe
√
−b0k.

A better approximation of the roots of equation (12.17) is

s = s0 +
npe
√

−kb0, s0 =
1

npe

(
n∑

k=1

pk −
m∑

k=1

zk

)
(12.18)

(Exercise 12.15). The asymptotes are thus npe lines that radiate from s = s0,
the center of mass of poles and zeros. When b0k > 0 the lines have the angles
(π + 2lπ)/npe, l = 1, . . . , npe with respect to the real line. Figure 12.17 shows the
asymptotes of the root locus for large gain for different values of the pole excess
npe.

Summarizing, we find that the root locus plot with the loop gain as the varied
parameter has n branches that start at the open loop poles and end either at the
open loop zeros or at infinity. The branches that end at infinity have star-patterned
asymptotes given by equation (12.18). An immediate consequence is that open loop
systems with right half-plane zeros or a pole excess larger than 2 will always be
unstable for sufficiently large gains.

There are simple rules for sketching the root locus. We describe here a few of
them. As discussed already, the root locus has a (locally) symmetric star pattern
at points where there are multiple roots; the number of branches depends on the
multiplicity of the roots. For systems with kb0 > 0 the root locus has segments on
the real line where there are odd numbers of real poles and zeros to the right of
the segment (Exercise 12.16). It is also straightforward to find directions where a
branch of the root locus leaves a pole, as discussed in Exercise 12.19.
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Figure 12.17: Asymptotes of the root locus for systems with pole excess npe = 2,
3, and 4. There are npe asymptotes that radiate from the point s = s0 given by
equation (12.18), and the angles between the asymptotes are 360◦/npe.

Figure 12.18 shows root loci for systems with k > 0 and the transfer functions

Pa(s) = k
s+ 1

s2
, Pb(s) = k

s+ 1

s(s+ 2)(s2 + 2s+ 4)
,

Pc(s) = k
s+ 1

s(s2 + 1)
, Pd(s) = k

s2 + 2s+ 2

s(s2 + 1)
.

(12.19)

The locus of Pa(s) in Figure 12.18a starts with two roots at the origin and the
pattern locally has the star configuration with m = 2. As the gain increases the
locus bends because of the attraction of the zero. In this particular case the locus
is actually a circle around the zero s = −1. Two roots meet at the real axis and
depart forming a star pattern. One root goes towards the zero and the other one
goes to infinity along the negative real axis as the gain k increases. The root locus
thus has the segment (−∞,−1] on the real axis. The locus in Figure 12.18b starts
at the open loop poles s = −2, 0, and −1 ± i

√
3. The pole excess is npe = 3 and

the asymptotes that originate from s0 = −1 have the corresponding pattern. The
locus in Figure 12.18c has vertical asymptotes since npe = 2 (see Figure 12.17).
The asymptotes originate from s0 = 0.5. The root locus has the segment [−1, 0] on
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Figure 12.18: Examples of root loci for processes with the transfer functions
Pa(s), Pb(s), Pc(s), and Pd(s) given by equation (12.19).
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the real line. The locus in Figure 12.18d has three branches: one is the segment
(−∞, 0] on the real line and the other two originate on the complex open loop poles
and end at the open loop zeros.

The root locus can also be used for design. Consider for example the system in
Figure 12.18c, which can represent PI control of a system with the transfer functions

P (s) =
1

s2 + 1
, C(s) = k

s+ 2

s
.

The root locus in Figure 12.18c shows that the system is unstable for all values
of the controller gain and we can immediately conclude that the process cannot
be stabilized with a PI controller. To obtain a stable closed loop system we can
attempt to choose a PID controller with zeros to the left of the undamped poles,
for example

C(s) = k
s2 + 2s+ 2

s
.

The root locus obtained with this controller is shown in Figure 12.18d. We see that
this system is stable for k > 0 and we can choose k to place the poles in reasonable
locations.

We have illustrated the root locus with a closed loop system with a proportional
controller where the parameter is the gain. The root locus can also be used to find
the effects of other parameters, as was illustrated in Example 5.17.

12.6 Design Example

In this final section we present a detailed example that illustrates some of the design
techniques described in this chapter.

Example 12.9 Lateral control of a vectored thrust aircraft
The problem of controlling the motion of a vertical takeoff and landing (VTOL)
aircraft was introduced in Example 3.12 and in Example 12.5, where we designed a
controller for the roll dynamics. We now wish to control the position of the aircraft,
a problem that requires stabilization of the attitude.

To control the lateral dynamics of the vectored thrust aircraft, we make use of an
“inner/outer” loop design methodology, as illustrated in Figure 12.19. This diagram
shows the process dynamics and controller divided into two components: an inner
loop consisting of the roll dynamics and controller and an outer loop consisting of
the lateral position dynamics and controller. This decomposition follows the block
diagram representation of the dynamics given in Exercise 9.11.

The approach that we take is to design a controller Ci for the inner loop so
that the resulting closed loop system Hi assures that the roll angle θ follows its
reference θr quickly and accurately. We then design a controller for the lateral
position y that uses the approximation that we can directly control the roll angle
as an input θ to the dynamics controlling the position. Under the assumption that
the dynamics of the roll controller are fast relative to the desired bandwidth of the
lateral position control, we can then combine the inner and outer loop controllers to
get a single controller for the entire system. As a performance specification for the
entire system, we would like to have zero steady-state error in the lateral position,
a bandwidth of approximately 1 rad/s, and a phase margin of 45◦.
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Figure 12.19: Inner/outer control design for a vectored thrust aircraft. The
inner loop Hi controls the roll angle of the aircraft using the vectored thrust. The
outer loop controller Co commands the roll angle to regulate the lateral position.
The process dynamics are decomposed into inner loop (Pi) and outer loop (Po)
dynamics, which combine to form the full dynamics for the aircraft.

.

For the inner loop, we choose our design specification to provide the outer loop
with accurate and fast control of the roll. The inner loop dynamics are given by

Pi(s) = Hθu1
(s) =

r

Js2
.

We choose the desired bandwidth to be 10 rad/s (10 times that of the outer loop)
and the low-frequency error to be no more than 5%. This specification is satisfied
using the lead compensator of Example 12.5 designed previously, so we choose

Ci(s) = k
s+ a

s+ b
, a = 2, b = 50, k = 200.

The closed loop dynamics for the system satisfy

Hi =
Ci

1 + CiPi
−mg

CiPi

1 + CiPi
=
Ci(1−mgPi)

1 + CiPi
.

A plot of the magnitude of this transfer function is shown in Figure 12.20b, and we
see that Hi ≈ −mg = −39.2 is a good approximation up to 10 rad/s.

To design the outer loop controller, we assume the inner loop roll control is
perfect, so that we can take θr as the input to our lateral dynamics. Following the
diagram shown in Exercise 9.11, the outer loop dynamics can be written as

P (s) = Hi(0)Po(s) =
Hi(0)

ms2 + cs
,

where we replace Hi(s) with Hi(0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, this approximation may not
be valid, and so we must verify this when we complete our design.

Our control goal is now to design a controller that gives zero steady-state error
in y for a step input and has a bandwidth of 1 rad/s. The outer loop process
dynamics are given by a double integrator, and we can again use a simple lead
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Figure 12.20: Outer loop control design for a vectored thrust aircraft. (a) The
outer loop approximates the roll dynamics as a state gain −mg. (b) The Bode
plot for the roll dynamics, indicating that this approximation is accurate up to
approximately 10 rad/s.

compensator to satisfy the specifications. We also choose the design such that the
loop transfer function for the outer loop has |Lo| < 0.1 for ω > 10 rad/s, so that
the Hi high-frequency dynamics can be neglected. We choose the controller to be
of the form

Co(s) = −ko
s+ ao
s+ bo

,

with the negative sign to cancel the negative sign in the process dynamics. To find
the location of the poles, we note that the phase lead flattens out at approximately
bo/10. We desire phase lead at crossover, and we desire the crossover at ωgc =
1 rad/s, so this gives bo = 10. To ensure that we have adequate phase lead, we
must choose ao such that bo/10 < 10ao < bo, which implies that ao should be
between 0.1 and 1. We choose ao = 0.3. Finally, we need to set the gain of the
system such that at the desired crossover frequency the loop gain has magnitude 1
or more. A simple calculation shows that ko = 2 satisfies this objective. Thus, the
final outer loop controller becomes

Co(s) = −2
s+ 0.3

s+ 10
.

Finally, we can combine the inner and outer loop controllers and verify that
the system has the desired closed loop performance. The Bode and Nyquist plots
corresponding to Figure 12.19 with inner and outer loop controllers are shown in
Figure 12.21, and we see that the specifications are satisfied. In addition, we show
the gain curves of the Gang of Four in Figure 12.22, and we see that the transfer
functions between all inputs and outputs are reasonable. The sensitivity to load
disturbances PS is large at low frequency because the controller does not have
integral action.

The approach of splitting the dynamics into an inner and an outer loop is com-
mon in many control applications and can lead to simpler designs for complex
systems. Indeed, for the aircraft dynamics studied in this example, it is very chal-
lenging to directly design a controller from the lateral position y to the input u1.
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Figure 12.21: Inner/outer loop controller for a vectored thrust aircraft. Bode
plot (a) and Nyquist plot (b) for the loop transfer function cut at θr, for the
complete system. The system has a phase margin of 68◦ and a gain margin of 6.2.

The use of the additional measurement of θ greatly simplifies the design because it
can be broken up into simpler pieces. ∇

12.7 Further Reading

Loop shaping design emerged at Bell Labs in connection with the development of
Black’s [Bla34] electronic amplifier with negative feedback. Nyquist [Nyq32] de-
rived his stability criterion to understand and avoid instabilities or “singing,” as
it was called at the time. Bode [Bod40] used the theory of complex variables to
establish important fundamental results such as the relation between amplitude
and phase for a minimum phase system, the ideal loop transfer functions, and the
phase area formula. His results are nicely summarized in the book [Bod45]. Design
by loop shaping became a key element in the early development of control, and
many design methods were developed; see James, Nichols, and Phillips [JNP47],
Chestnut and Mayer [CM51], Truxal [Tru55], and Thaler [Tha89]. Loop shap-
ing is also treated in standard textbooks such as Franklin, Powell, and Emami-
Naeini [FPEN05], Dorf and Bishop [DB04], Kuo and Golnaraghi [KG02], and
Ogata [Oga01]. Horowitz [Hor63] developed the notion of systems with two de-
grees of freedom. Much of the early work was based on the loop transfer function;
the importance of the sensitivity functions appeared in connection with develop-
ments in the 1980s that resulted in H∞ design methods. A compact presentation is
given in the texts by Doyle, Francis, and Tannenbaum [DFT92] and Zhou, Doyle,
and Glover [ZDG96]. Loop shaping was integrated with robust control theory in
McFarlane and Glover [MG90] and Vinnicombe [Vin01]. Comprehensive treatments
of control system design are given in Maciejowski [Mac89] and Goodwin, Graebe,
and Salgado [GGS01]. There are fundamental limits to what can be achieved given
by nonlinearities of the process and the poles and zeros. These will be discussed in
Chapter 14.
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Figure 12.22: Gain curves for the Gang of Four for the vectored thrust aircraft
system.

Exercises

12.1 Consider the system in Example 12.1, where the process and controller transfer
functions are given by

P (s) = 1/(s− a), C(s) = k(s− a)/s.

Choose the parameter a = −1 and compute the time (step) and frequency responses
for all the transfer functions in the Gang of Four for controllers with k = 0.2 and
k = 5.

12.2 (Equivalence of Figures 12.1 and 12.2) Consider the system in Figure 12.1 and
let the outputs of interest be ξ = (µ, η) and the major disturbances be χ = (w, v).
Show that the system can be represented by Figure 12.2 and give the matrix transfer
functions P and C. Verify that the elements of the closed loop transfer function
Hξχ are the Gang of Four.

12.3 (Equivalence of controllers with two degrees of freedom) Show that the sys-
tems in Figures 12.1 and 12.13 give the same responses to command signals if
FmC + Fu = CF .

12.4 (Web server control) Feedback and feedforward are increasingly used for com-
plex computer systems such as web servers. Control of a single server is an example.
A model for a virtual server is given by equation (3.32),

dx

dt
= λ− µ,

where x is the queue length, λ is the arrival rate, and µ is the server rate. The
objective of control is to maintain a given queue length. The service rate µ can
be changed by dynamic voltage and frequency scaling (DVFS). Determine a PI
controller that gives a closed loop system with the characteristic polynomial s2 +
4s+ 4. Use feedforward in the form of setpoint weighting to reduce the overshoot
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for step changes in reference signals; simulate the closed loop system to determine
the setpoint weighting.

12.5 (Rise time-bandwidth product) Consider a stable system with the transfer �
function G(s) whose frequency response is an ideal low-pass filter with |G(iω)| = 1
for ω ≤ ωb and |G(iω)| = 0 for ω > ωb and which has low-pass character. Define
the rise time Tr as the inverse of the largest slope of the unit step response and
the bandwidth as ω̃b =

∫∞
0

|G(iω)|/G(0) dω. Show that with this definition of the
bandwidth the rise time-bandwidth product satisfies Tr ω̃b ≥ π.

12.6 (Disturbance attenuation) Consider the feedback system shown in Figure 12.1.
Assume that the reference signal is constant. Let yol be the measured output when
there is no feedback and ycl be the output with feedback. Show that ycl = S(s)yol,
where ycl and yol are exponential signals and S is the sensitivity function.

12.7 (Approximate expression for noise sensitivity) Show that the effect of high-
frequency measurement noise on the control signal for the system in Example 12.3
can be approximated by

CS ≈ C =
kds

(sTf)2 /2 + sTf + 1
,

and that the largest value of |CS(iω)| is kd/Tf which occurs for ω =
√
2/Tf.

12.8 (Peak frequency-peak time product) Consider the transfer function for a
second-order system

G(s) =
ω0s

s2 + 2ζω0s+ ω2
0

,

which has the unit step response

y(t) =
1√

1− ζ2
e−ζω0t sinω0t

√
1− ζ2.

Let Mr = maxω |G(iω)| be the largest gain of G(s), which is assumed to occur at
ωmr, and let yp = maxt y(t) be the largest value of y(t), which is assumed to occur
at tp. Show that

tpωmr =
arccos ζ√
1− ζ2

,
yp
Mr

= 2ζe−ζϕ,

and evaluate the right-hand sides of the above equations for ζ = 0.5, 0.707, and
1.0.

12.9 (Disturbance reduction through feedback) Consider a problem in which an
output variable has been measured to estimate the potential for disturbance atten-
uation by feedback. Suppose an analysis shows that it is possible to design a closed
loop system with the sensitivity function

S(s) =
s

s2 + s+ 1
.

Estimate the possible disturbance reduction when the measured disturbance re-
sponse is

y(t) = 5 sin (0.1 t) + 3 sin (0.17 t) + 0.5 cos (0.9 t) + 0.1 t.
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12.10 (Bode’s formula) Consider the lead compensator

G(s) = 16
s+ 0.25

s+ 4
.

Verify Bode’s phase area formula (12.8) and show that G(∞) = 16G(0) by numer-
ical integration.

12.11 (Lead-lag compensation) Lead and lag compensators can be combined into
a lead-lag compensator that has the transfer function

C(s) = k
(s+ a1)(s+ a2)

(s+ b1)(s+ b2)
.

Show that the controller reduces to a PID controller with special choice of param-
eters and give the relations between the parameters.

12.12 (Attenuation of low-frequency sinusoidal disturbances) Integral action elim-
inates constant disturbances and reduces low-frequency disturbances because the
controller gain is infinite at zero frequency. A similar idea can be used to reduce
the effects of sinusoidal disturbances of known frequency ω0 by using the controller

C(s) = kp +
kss

s2 + 2ζω0s+ ω2
0

.

This controller has the gain Cs(iω0) = kp+ks/(2ζ) for the frequency ω0, which can
be large by choosing a small value of ζ. Assume that the process has the transfer
function P (s) = 1/s. Determine the Bode plot of the loop transfer function and
simulate the system. Compare the results with PI control.

12.13 (Performance specifications and transfer functions) Find the transfer func-
tion of a second-order system that satisfies the following closed loop specifications:
zero steady-state error, 2% settling time less than 2 s, rise time less than 0.8 s, and
overshoot less than 3%.

12.14 Consider the spring–mass system given by equation (3.16), which has the
transfer function

P (s) =
1

ms2 + cs+ k
.

Design a feedforward compensator that gives a response with critical damping (ζ =
1).

12.15 (Asymptotes of root locus) Consider proportional control of a system with
the transfer function

P (s) =
b(s)

a(s)
=
b0s

m + b1s
m−1 + · · · bm

sn + a1sn−1 + · · · an
= b0

(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) · · · (s− pn)
.

Show that the root locus has asymptotes that are straight lines that emerge from
the point

s0 =
1

ne

( n∑

k=1

pk −
m∑

k=1

zk

)
,

where ne = n−m is the pole excess of the transfer function.
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12.16 (Real line segments of root locus) Consider proportional control of a process
with a rational transfer function. Assuming that b0k > 0, show that the root locus
has segments on the real line where there are an odd number of real poles and zeros
to the right of the segment.

12.17 Consider a lead compensator with the transfer function

Cn(s) =
(s n

√
k + a

s+ a

)n
,

which has zero frequency gain C(0) = 1 and high-frequency gain C(∞) = k. Show
that the gain required to provide a given phase lead ϕ is

k =
(
1 + 2 tan2(ϕ/n) + 2 tan(ϕ/n)

√
1 + tan2(ϕ/n)

)n
,

and that lim
n→∞

k = e2ϕ.

12.18 (Phase margin formulas) Show that the relationship between the phase mar-
gin and the values of the sensitivity functions at gain crossover is given by

|S(iωgc)| = |T (iωgc)| =
1

2 sin(ϕm/2)
.

12.19 (Initial direction of root locus) Consider proportional control of a system
with the transfer function

P (s) =
b(s)

a(s)
=
b0s

m + b1s
m−1 + · · · bm

sn + a1sn−1 + · · · an
= b0

(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) · · · (s− pn)
.

Let pj be an isolated pole and assume that kb0 > 0. Show that the root locus
starting at pj has the initial direction.

∠(s− pj) = π +Σmk=1∠(pj − sk)− Σk 6=j∠(pj − pk).

Give a geometric interpretation of the result.



Chapter 13

Robust Performance

However, by building an amplifier whose gain is deliberately made, say
40 decibels higher than necessary (10000 fold excess on energy basis),
and then feeding the output back on the input in such a way as to
throw away the excess gain, it has been found possible to effect extraordi-
nary improvement in constancy of amplification and freedom from non-
linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1934 [Bla34].

This chapter focuses on the analysis of robustness of feedback systems, a vast
topic for which we provide only an introduction to some of the key concepts. We
consider the stability and performance of systems whose process dynamics are un-
certain. We make use of generalizations of Nyquist’s stability criterion as a mech-
anism to characterize robust stability and performance. To do this we develop
ways to describe uncertainty, both in the form of parameter variations and in the
form of neglected dynamics. We also briefly mention some methods for designing
controllers to achieve robust performance.

13.1 Modeling Uncertainty

Harold Black’s quote illustrates that one of the key uses of feedback is to provide
robustness to uncertainty (“constancy of amplification”). It is one of the most
useful properties of feedback and is what makes it possible to design feedback
systems based on strongly simplified models. In this section we explore different
types of uncertainty in our knowledge of the dynamics of the system, including the
important problem of determining when two systems are similar from a controls
perspective.

Parametric Uncertainty

One form of uncertainty in dynamical systems is parametric uncertainty in which
the parameters describing the system are not precisely known. A typical example is
the variation of the mass of a car, which changes with the number of passengers and

13-1
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Figure 13.1: Responses of the cruise control system to a slope increase of 4◦ (a)
and the eigenvalues of the closed loop system (b). Model parameters are swept
over a wide range. The closed loop system is of second order.

the weight of the baggage. When linearizing a nonlinear system, the parameters
of the linearized model also depend on the operating conditions. It is straight-
forward to investigate the effects of parametric uncertainty simply by evaluating
the performance criteria for a range of parameters. Such a calculation reveals the
consequences of parameter variations. We illustrate by an example.

Example 13.1 Cruise control
The cruise control problem is described in Section 4.1, and a PI controller was
designed in Example 11.3. To investigate the effect of parameter variations, we
will choose a controller designed for a nominal operating condition corresponding
to mass m = 1600 kg, fourth gear (α = 12), and speed ve = 20 m/s; the controller
gains are kp = 0.5 and ki = 0.1. Figure 13.1a shows the velocity error e and
the throttle u when encountering a hill with a 4◦ slope with masses in the range
1600 < m < 2000 kg, gear ratios 3–5 (α = 10, 12, and 16), and velocity 10 ≤ v ≤ 40
m/s. The simulations were done using models that were linearized around the
different operating conditions. The figure shows that there are variations in the
response but that they are all quite reasonable. The largest velocity error is in
the range of 0.5–1.2 m/s, and the settling time is about 15 s. The control signal
is larger than 1 in some cases, which implies that the throttle is fully open. (A
full nonlinear simulation using a controller with windup protection is required if
we want to explore these cases in more detail.) The closed loop system has two
eigenvalues, shown in Figure 13.1b for the different operating conditions. We see
that the closed loop system is well damped in all cases. ∇

This example indicates that at least as far as parametric variations are con-
cerned, a design based on a simple nominal model will give satisfactory control.
The example also indicates that a controller with fixed parameters can be used in
all cases. Notice that we have not considered operating conditions in low gear and
at low speed, but cruise controllers are not typically used in these cases.
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Figure 13.2: Unmodeled dynamics in linear systems. Uncertainty can be repre-
sented using additive perturbations (a), multiplicative perturbations (b), or feed-
back perturbations (c). The nominal system is P , and ∆, δ, and ∆fb represent
unmodeled dynamics.

Unmodeled Dynamics

It is generally easy to investigate the effects of parametric variations. However,
there are other uncertainties that also are important, as discussed at the end of
Section 3.1. The simple model of the cruise control system captures only the dy-
namics of the forward motion of the vehicle and the torque characteristics of the
engine and transmission. It does not, for example, include a detailed model of the
engine dynamics (whose combustion processes are extremely complex) or the slight
delays that can occur in modern electronically-controlled engines (as a result of
the processing time of the embedded computers). These neglected mechanisms are
called unmodeled dynamics.

One way to account for unmodeled dynamics is by developing a more complex
model that includes additional details that are deemed important for control design.
Such models are commonly used for controller development, but substantial effort
is required to generate them. In addition, these models are themselves likely to
be uncertain, since the parameter values may vary over time or between units.
Performing parametric analysis on complex models can be very time-consuming,
especially if the parameter space is large.

An alternative is to investigate whether the closed loop system can be made
insensitive to generic forms of unmodeled dynamics. The basic idea is to augment
the nominal model with a bounded input/output transfer function that captures
the gross features of the unmodeled dynamics. For example, in the cruise control
example the model of the engine can be a static model that provides the torque
instantaneously and the augmented model can include a time delay with an un-
known but bounded value. Describing unmodeled dynamics with transfer functions
permits us to handle infinite-dimensional systems like time delays.

Figure 13.2 illustrates some ways in which unmodeled dynamics can be captured.
The transfer functions ∆, δ, ∆fb are taken as bounded input/output operators that
represent the unmodeled dynamics. For example, in Figure 13.2a we assume that
the transfer function of the process is P̃ (s) = P (s) + ∆(s), where P (s) is the
nominal simplified transfer function and ∆(s) is a transfer function that represents
the unmodeled dynamics in terms of additive uncertainty. If we can show that the
closed loop system is stable for all ∆(s) satisfying a given bound (e.g., |∆(s)| < ǫ),
then the system is said to be robustly stable.

Different representations are possible in addition to additive uncertainty. Fig-
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ure 13.2b shows a representation for multiplicative uncertainty and Figure 13.2c
represents feedback uncertainty. The specific form that is used depends on what
provides the best representation of the unmodeled dynamics. The different types
of uncertainty can also be related to each other:

δ =
∆

P
, ∆fb =

∆

P (P +∆)
=

δ

P (1 + δ)
.

We will return to these representations in the next section, where we develop con-
ditions for robust stability in the presence of unmodeled dynamics.

When Are Two Systems Similar?

A fundamental issue in describing robustness is to determine when two systems are
close. Given such a characterization, we can then attempt to describe robustness
according to how close the actual system must be to the model in order to still
achieve the desired levels of performance. This seemingly innocent problem is not
as simple as it may appear. A naive approach is to say that two systems are
close if their open loop responses are close. Even if this appears natural, there are
complications, as illustrated by the following examples.

Example 13.2 Systems similar in open loop but different in closed loop
The systems with the transfer functions

P1(s) =
k

s+ 1
, P2(s) =

k

(s+ 1)(sT + 1)2
(13.1)

have very similar open loop step responses for small values of T , as illustrated in
the upper plot in Figure 13.3a, which corresponds to T = 0.025 and k = 100.

The differences between the open loop step responses are barely noticeable in
the figure. Closing a feedback loop with unit gain (C = 1) around the systems gives
closed loop systems with the transfer functions

T1(s) =
k

s+ 1 + k
, T2(s) =

k

s3T 2 + (T 2 + 2T )s2T + (1 + 2T )s+ 1 + k
. (13.2)

We find that T1 is stable for k > −1 and T2 is stable for −1 < k < 2T + 4 + 2/T .
With the numerical values k = 100 and T = 0.025 the transfer function T1 is stable
and T2 is unstable, which is clearly seen in the closed loop step responses in the
lower plot in Figure 13.3a. ∇
Example 13.3 Systems different in open loop but similar in closed loop
Consider the systems

P1(s) =
k

s+ 1
, P2(s) =

k

s− 1
. (13.3)

The open loop responses are different because P1 is stable and P2 is unstable, as
shown in the upper plot in Figure 13.3b. Closing a feedback loop with unit gain
(C = 1) around the systems, we find that the closed loop transfer functions are

T1(s) =
k

s+ k + 1
, T2(s) =

k

s+ k − 1
, (13.4)

which are very close for large k, as shown in the lower plot in Figure 13.3b. ∇
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Figure 13.3: Determining when two systems are close. The plots in (a) show
a situation when the open loop responses are almost identical, but the closed
loop responses are very different. The processes are given by equation (13.1) with
k = 100 and T = 0.025. The plots in (b) show the opposite situation: the systems
are different in open loop but similar in closed loop. The processes are given by
equation (13.3) with k = 100.

The examples we have just discussed indicate that comparing time responses
may not be a good way to compare systems. We will next compare frequency
responses.

Example 13.4 Comparison of systems via frequency responses
Consider the systems

P1(s) =
2

(1 + 5s)3(1− 0.05s)
, P2(s) =

2

(1 + 5s)3(1 + 0.05s)
. (13.5)

Bode and Nyquist plots of these transfer functions are shown in Figure 13.4. The
figure shows that both systems have very similar Bode and Nyquist plots. In spite of
this, the closed loop systems obtained with unit feedback are very different. Neither
system has any zeros, but P1 has two poles in the left half-plane and one pole in
the right half-plane while P2 has all its poles in the left half-plane. Both 1 + P1

and 1 + P2 have winding number nw = 0. Since P1 has a pole in the right half-
plane it follows from the Nyquist criterion (Theorem 10.3) that the characteristic
polynomial of the closed loop system obtained with unit feedback has one zero in
the right half-plane (f = 1 + P1, nz,D = nw,Γ + np,D in the principle of variation
of the argument, Theorem 10.2). Thus the closed loop system using P1 is unstable
while the closed loop system using P2 is stable. ∇

The important lesson to learn from this example is that two systems may not be
close from the point of view of feedback even if their open loop frequency responses
are similar. It is also necessary that both systems satisfy the winding number
condition.
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Figure 13.4: Comparison of frequency response of P1(s) (solid) and P2(s)
(dashed). (a) Bode plot and (b) Nyquist plot.

The Vinnicombe Metric
�

Examples 13.2 and 13.3 show that comparing open loop time responses is not a
good way to judge closed loop behavior. Example 13.4 shows that it is necessary
to have a winding number condition if frequency responses are compared. We will
now introduce the Vinnicombe metric, which is the proper way to compare open
loop systems in a way that reflects their closed loop behavior. The metric is closely
related to the Nyquist plot; more information is available in [Vin93, Vin01].

We start by introducing the chordal metric, which is a function C × C → [0 1]
that maps two complex numbers to a real variable in the range 0 ≤ x ≤ 1. Applied
to the transfer functions P1(s) and P2(s) the chordal metric is defined as

dP1P2
(ω) :=

|P1(iω)− P2(iω)|√
1 + |P1(iω)|2

√
1 + |P2(iω)|2

. (13.6)

The chordal metric dP1P2
has a nice geometric interpretation, illustrated in Fig-

ure 13.5. The points P1(iω) and P2(iω) are projected onto a sphere with diameter
1 positioned at the origin of the complex plane (the Riemann sphere). The pro-
jection is the intersection of the sphere with a straight line from the point to the
north pole of the sphere (inverse stereographic projection). The chordal distance is
then the Euclidean distance between the two points on the sphere.

To define a metric between two transfer functions, Vinnicombe introduced the
following set C of rational transfer functions P1 and P2:

C =
{
P1, P2 : 1 + P1(iω)P2(−iω) 6= 0∀ω,

nw,Γ(1 + P1(s)P2(−s)) + np,rhp(P1(s))− np,rhp(P2(−s)) = 0
}
,

(13.7)
where nw,Γ(f) is the winding number for the function f(s) around the Nyquist
contour Γ and np,rhp(f) is the number of poles of the f(s) in the open right half-
plane. (Compare with the corresponding conditions in Nyquist’s criterion in The-
orem 10.3.) The metric is then defined as follows.

Definition 13.1 (The ν-gap metric). Let P1(s) and P2(s) be rational transfer
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Figure 13.5: Geometric interpretation of the chordal metric d(P1, P2) on a
Nyquist plot with a Riemann sphere. At each frequency, the points on the Nyquist
curve for P1 (solid, starting at A) and P2 (dashed, starting at B) are projected
onto the sphere of diameter 1 positioned at the origin of the complex plane. The
projection of the point 1 − i is shown in the figure. The distance between the
two systems is defined as the maximum distance between the projections of P1(iω)
and P2(iω) over all frequencies ω. The figure is plotted for the transfer functions
P1(s) = 2/(s+ 1) and P2(s) = 2/(s− 1). (Diagram courtesy G. Vinnicombe.)

functions. The ν-gap metric is

δν(P1, P2) =

{
supω dP1P2

(ω), if (P1, P2) ∈ C,
1, otherwise,

(13.8)

where dP1P2
(ω) is given by equation (13.6).

We will also call this metric the Vinnicombe metric after its inventor. Vinni-
combe showed that δν(P1, P2) is indeed a metric. He extended it to multivariable
and infinite-dimensional systems, and he gave strong robustness results that will
be discussed later. There is a MATLAB command gapmetric for computing the
Vinnicombe metric.

Vinnicombe gave several interpretations of the winding number condition that
determines if (P1, P2) belong to C. He showed that the condition implies that
the closed loop system obtained when P1(s) is connected in a feedback loop with
P1(−s) has the same number of right half-plane poles as when P1(s) is connected
with P2(−s). A necessary condition is that the rational functions 1 + P1(s)P1(−s)
and 1 + P1(s)P2(−s) have the same number of zeros in the right half-plane. This
condition can be interpreted as a continuity condition: the transfer function P can
be continuously perturbed from P1 to P2 in such a way that there is no intermediate
transfer function P where dP1P (ω) = 1.

We illustrate the Vinnicombe metric by computing it for the systems in Exam-
ples 13.2 and 13.3.

Example 13.5 Vinnicombe metric for Example 13.2
The transfer functions P1 and P2 for the systems in Example 13.2 are given by
equation (13.1). We have

f(s) = 1 + P1(s)P2(−s) = 1 +
k2

(1− s2)(1− sT )2
, k = 100.



13-8 CHAPTER 13. ROBUST PERFORMANCE

0 5000 10000
-300

-200

-100

0

100

200

300

Re f(iω)

Im
f
(i
ω
)

(a) Example 13.2

0 1 2
-3

-2

-1

0

1

2

3

Re f(iω)

Im
f
(i
ω
)

(b) Expansion of (a) near (0,0)

-1 0 1

-1

-0.5

0

0.5

1

Re f(iω)

Im
f
(i
ω
)

(c) Example 13.3

Figure 13.6: Graphs of the function f(iω) = 1 + P1(iω)P2(−iω) for −∞ ≤
ω ≤ ∞. The plots for Example 13.2 with P1(s) = 100/(s + 1) and P2(s) =
100/((s+ 1)(0.025s+ 1)2 are shown in (a), with an enlargement in the area close
to the origin in (b). The plots for Example 13.3 with P1(s) = k/(s + 1) and
P2(s) = k/(−s + 1) are shown in (c), with gains k = 1.25 (outer), k = 1, and
k = 0.8 (inner). Values for positive ω are shown as solid lines and negative values
are shown as dashed lines.

The graph of f(iω) for −∞ ≤ ω ≤ ∞ is a closed contour in the right half-plane
that does not encircle the origin (see Figure 13.6a and 13.6b for an enlargement
of the region around the origin), hence nw,Γ(1 + P1(s)P2(−s)) = 0. In addition,
the transfer functions P1 and P2 have no poles in the right half-plane and we can
conclude that (P1, P2) ∈ C (equation (13.7)). An alternative to verify the winding
number condition is to compute the number of right half-plane zeros of the transfer
functions 1 + P1(s)P1(−s) and 1 + P1(s)P2(−s). A direct computation shows that
both transfer functions have one zero in the open right half-plane. It follows from
equation (13.8) that the Vinnicombe metric is δν(P1, P2) = 0.89, which is large
since 1.0 is as big as it can get, confirming that P1 and P2 are quite different. ∇
Example 13.6 Vinnicombe metric for Example 13.3
The transfer functions P1 and P2 for the systems in Example 13.3 are given by
equation (13.3). We have

1 + P1(iω)P2(−iω) = 1− k2

(1 + iω)2
= 1− k2(1− ω2)

(1 + ω2)2
+

2k2iω

(1 + ω2)2
.

The imaginary part of the function 1+P1(iω)P2(−iω) is zero for ω = 0 and ω = ∞
and the corresponding values of the real part are 1−k2 and 1. The function is thus
zero only for ω = 0 and k = 1. Furthermore

f(s) = 1 + P1(s)P2(−s) = 1− k2

(s+ 1)2
=
s2 + 2s+ 1− k2

(s+ 1)2
.

The function f(s) has a zero in the open right half-plane if k > 1. The winding
number of 1+P1(s)P2(−s) is 0 if k ≤ 1 and 1 if k > 1, as seen in Figure 13.6c. Since
P1 has no poles in the right half-plane and P2 has one pole in the right half-plane,
equation (13.8) implies that δν(P1, P2) = 1 if k ≤ 1.
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Figure 13.7: Illustrations of robust stability in Nyquist plots. The plot (a) shows
the stability margin sm = 1/Ms. The plot (b) shows the Nyquist curve and the
circle shows uncertainty due to stable additive process variations ∆.

We have thus found that (P1, P2) ∈ C if k > 1, and equation (13.6) implies that

dP1P2
(ω) =

2k

1 + k2 + ω2
.

The largest value occurs for ω = 0, and the Vinnicombe metric, equation (13.8),
becomes

δν(P1, P2) =




1 if k ≤ 1,
2k

1 + k2
if k > 1.

With k = 100 we get δν(P1, P2) = 0.02, indicating that the closed loop transfer
functions are very close, as illustrated in Figure 13.3b. ∇

13.2 Stability in the Presence of Uncertainty

Having discussed how to describe uncertainty and the similarity between two sys-
tems, we now consider the problem of robust stability: when can we show that
the stability of a system is robust with respect to process variations? This is an
important question since the potential for instability is one of the main drawbacks
of feedback. Hence we want to ensure that even if we have small inaccuracies in our
model, we can still guarantee stability and performance of the closed loop system.

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant way to study the effects of
uncertainty for linear systems. A simple criterion for a stable system is that the
Nyquist curve be sufficiently far from the critical point −1. Recall that the shortest
distance from the Nyquist curve to the critical point is sm = 1/Ms, where Ms is
the maximum of the sensitivity function and sm is the stability margin introduced
in Section 10.3. The maximum sensitivity Ms or the stability margin sm is thus a
good robustness measure, as illustrated in Figure 13.7a.
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We will now derive explicit conditions on the controller C such that stability is
guaranteed for process perturbations where |∆| is less than a given bound. Consider
a stable feedback system with a process P and a controller C. If the process is
changed from P to P+∆, the loop transfer function changes from PC to PC+C∆,
as illustrated in Figure 13.7b. The additive perturbation ∆ must be a stable transfer
function to satisfy the winding number condition in the Nyquist criterion. If we have
a bound on the size of ∆ (represented by the dashed circle in the figure), then the
system remains stable as long as the perturbed loop transfer function |1+(P+∆)C|
never reaches the critical point −1, since the number of encirclements of −1 remains
unchanged.

We will now compute an analytical bound on the allowable process disturbances.
The distance from the critical point −1 to the loop transfer function L = PC is
|1 + L|. This means that the perturbed Nyquist curve will not reach the critical
point −1 provided that |C∆| < |1 + L|, which is guaranteed if

|∆| <
∣∣∣1 + PC

C

∣∣∣ =
∣∣∣1 + L

C

∣∣∣ or |δ| < 1

|T | , where δ :=
∆

P
. (13.9)

This condition must be valid for all points on the Nyquist curve, i.e. pointwise
for all frequencies. The condition for robust stability can thus be written as

|δ(iω)| =
∣∣∣∆(iω)

P (iω)

∣∣∣ <
∣∣∣1 + L(iω)

L(iω)

∣∣∣ = 1

|T (iω)| for all ω ≥ 0. (13.10)

Notice that the condition is conservative in the sense that the critical perturbation is
in the direction toward the critical point −1. Larger perturbations can be permitted
in the other directions.

Robustness is normally defined as the margin to maintain stability. It is easy to
modify the criterion and obtain a robustness condition that guarantees a specified
stability margin (Exercise 13.6).

The condition in equation (13.10) allows us to reason about uncertainty without
exact knowledge of the process perturbations. Namely, we can verify stability for
any uncertainty ∆ that satisfies the given bound. From an analysis perspective,
this gives us a measure of the robustness for a given design. Conversely, if we
require robustness of a given level, we can attempt to choose our controller C such
that the desired level of robustness is available (by asking that T be small) in the
appropriate frequency bands.

Equation (13.10) is one of the reasons why feedback systems work so well in prac-
tice. The mathematical models used to design control systems are often simplified,
and the properties of a process may change during operation. Equation (13.10)
implies that the closed loop system will at least be stable for substantial variations
in the process dynamics.

It follows from equation (13.10) that the variations can be large for those fre-
quencies where T is small and that smaller variations are allowed for frequencies
where T is large. A conservative estimate of permissible process variations that will
not cause instability is given by

|δ(iω)| =
∣∣∣∆(iω)

P (iω)

∣∣∣ < 1

|T (iω)| ≤
1

Mt
, (13.11)



13.2. STABILITY IN THE PRESENCE OF UNCERTAINTY 13-11

10
-1

10
0

10
1

10
0

10
1

G
ai

n

Frequency ω [rad/s]

1

T

P

T

(a) Bounds on process uncertainty

-1 ReL(iω)

ImL(iω)

(b) Nyquist plot representation of bounds

Figure 13.8: Robustness for a cruise controller. (a) The maximum relative error
1/|T | (solid) and the absolute error |P |/|T | (dashed) for the process uncertainty
∆. (b) The Nyquist plot of the loop transfer function L (zoomed in to the region
around the critical point) is shown as a solid line. The dashed circles show allowable
perturbations in the process dynamics, |C∆| = |CP |/|T |, at the frequencies ω =
0.2, 0.4, and 2, which are marked with small circles.

where Mt is the largest value of the complementary sensitivity

Mt = sup
ω

|T (iω)| =
∥∥∥ PC

1 + PC

∥∥∥
∞
. (13.12)

Reasonable values of Mt are in the range of 1.2 to 2. It is shown in Exercise 13.7
that if Mt = 2 then pure gain variations of 50% or pure phase variations of 30◦ are
permitted without making the closed loop system unstable.

Example 13.7 Cruise control
Consider the cruise control system discussed in Section 4.1. Using the parameters
from Example 6.11, the model of the car in fourth gear at speed 20 m/s is

P (s) =
1.32

s+ 0.01
,

and the controller is a PI controller with gains kp = 0.5 and ki = 0.1. Fig-
ure 13.8 plots the allowable size of the process uncertainty using the bound in
equation (13.10).

At low frequencies T → 1 and so the perturbations can be as large as the orig-
inal process (|δ| = |∆/P | < 1). The complementary sensitivity has its maximum
Mt = 1.17 at ωmt = 0.26, and hence this gives the lowest allowable process un-
certainty, with |δ| < 0.86 or |∆| < 4.36. Finally, at high frequencies, T → 0 and
hence the relative error can get very large. For example, at ω = 5 rad/s we have
|T (iω)| = 0.264, which means that the stability requirement is |δ| < 3.8. The
analysis clearly indicates that the system has good robustness and that the high-
frequency properties of the transmission system are not important for the design
of the cruise controller.

Another illustration of the robustness of the system is given in Figure 13.8b,
which shows the Nyquist curve of the loop transfer function L along with the
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Figure 13.9: Illustration of robustness to process perturbations. A system with
additive uncertainty (a) can be manipulated via block diagram algebra to one
with multiplicative uncertainty δ = ∆/P (b). Additional manipulations isolate
the uncertainty in a manner that allows application of the small gain theorem (c).

allowable perturbations. We see that the system can tolerate large amounts of
uncertainty and still maintain stability of the closed loop. ∇

The situation illustrated in the previous example is typical of many processes:
moderately small uncertainties are required only around the gain crossover frequen-
cies, but large uncertainties can be permitted at higher and lower frequencies. A
consequence of this is that a simple model that describes the process dynamics well
around the crossover frequency is often sufficient for design. Systems with many
resonant peaks are an exception to this rule because the process transfer function
for such systems may also have large gains for higher frequencies, as shown for
instance in Example 10.9.

The robustness condition given by equation (13.10) can be given another inter-
pretation by using the small gain theorem (Theorem 10.4). To apply the theorem
we start with block diagrams of a closed loop system with a perturbed process and
make a sequence of transformations of the block diagram that isolate the block
representing the uncertainty, as shown in Figure 13.9. The result is the two-block
interconnection shown in Figure 13.9c, which has the loop transfer function

L =
PC

1 + PC

∆

P
= Tδ.

Equation (13.10) implies that the largest loop gain is less than 1 and hence the
system is stable via the small gain theorem.

The small gain theorem can be used to check robust stability for uncertainty in
a variety of other situations. Table 13.1 summarizes a few of the common cases;
the proofs (all via the small gain theorem) are left as exercises.

The circle criterion can also be used to understand robustness to nonlinear gain
variations, as illustrated by the following example.

Example 13.8 Robustness for sector-bounded nonlinearities
Consider a system with a nonlinear gain F (x) that can be isolated through appro-
priate manipulation of the block diagram, resulting in a system that is a feedback
composition of the nonlinear block F (x) and a linear part with the transfer function
H(s). If the nonlinearity is sector bounded,

klow x < F (x) < khigh x,
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Table 13.1: Conditions for robust stability for different types of uncertainty.

Process Uncertainty Type Robust Stability

P +∆ Additive ‖CS∆‖∞ < 1

P (1 + δ) Multiplicative ‖Tδ‖∞ < 1

P/(1 + ∆fb ·P ) Feedback ‖PS∆fb‖∞ < 1

and the nominal system has been designed to have maximum sensitivities Ms and
Mt, we can use the circle criterion to verify stability of the closed loop system. In
particular, the system can be shown to be stable for sector-bounded nonlinearities
with

klow =
Ms

Ms + 1
or

Mt − 1

Mt
, khigh =

Ms

Ms − 1
or

Mt + 1

Mt
.

With Ms = Mt = 1.4 we can thus permit gain variations from 0.3 to 3.5, and for
a design with Ms = Mt = 2 we can allow gain variations of 0.5 to 2 without the
system becoming unstable. ∇

The following example illustrates that it is possible to design systems that are
robust to parameter variations.

Example 13.9 Bode’s ideal loop transfer function
A major problem in the design of electronic amplifiers is to obtain a closed loop
system that is insensitive to changes in the gain of the electronic components. Bode
found that the loop transfer function

L(s) = ks−n, 1 ≤ n ≤ 5/3 (13.13)

had very useful robustness properties. The gain curve of the Bode plot is a straight
line with slope −n and the phase is constant argL(iω) = −nπ/2. The phase mar-
gin is thus ϕm = 90(2− n)◦ for all values of the gain k and the stability margin
is sm = sinπ(1− n/2). Bode called the transfer function the “ideal cut-off charac-
teristic” [Bod60, pp. 454–458]; we will call it Bode’s ideal loop transfer function in
honor of Bode. The transfer function cannot be realized with lumped physical com-
ponents unless n is an integer, but it can be approximated over a given frequency
range with a proper rational function for any n (Exercise 13.8). An operational
amplifier circuit that has the approximate transfer function G(s) = k/(s + a) is a
realization of Bode’s ideal transfer function with n = 1, as described in Example 9.2.
Designers of operational amplifiers go to great efforts to make the approximation
valid over a wide frequency range. ∇

Youla Parameterization
�

Since stability is such an essential property, it is useful to characterize all controllers
that stabilize a given process. Such a representation, which is called a Youla pa-
rameterization, is also very useful when solving design problems because it makes
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Figure 13.10: Block diagrams of Youla parameterizations for a stable process
(a) and an unstable process (b). Notice that the signal z is zero in steady state in
both cases.

it possible to search over all stabilizing controllers without the need to test stability
explicitly.

We will first derive Youla’s parameterization for a stable process with a rational
transfer function P . A system with a given complementary sensitivity function T
can be obtained by feedforward control with the stable transfer function Q where
T = PQ. Assume that we want to implement the transfer function T by feedback
with the controller C. Since T = PC/(1 + PC) = PQ, the controller transfer
function and its input-output relation are

C =
Q

1− PQ
, u = Q(r − y + Py). (13.14)

A straightforward calculation gives the transfer functions for the Gang of Four as

S = 1− PQ, PS = P (1− PQ), CS = Q, T = PQ.

These transfer functions are all stable if P and Q are stable and the controller given
by equation (13.14) is thus stabilizing. Indeed, it can be shown that all stabilizing
controllers for a stable process are in the form given by equation (13.14) for some
choice of Q.

The closed loop system with the controller (13.14) can be represented by the
block diagram in Figure 13.10a. Notice that the signal z is always zero in steady
state, because it is a subtraction of identical signals. Using block diagram algebra
we find from the figure that the transfer function of the closed loop system is PQ.
The fact that there are two blocks with transfer function P in parallel in the block
diagram implies that there are modes, corresponding to the poles of P , that are
not reachable and observable. These modes are stable because we assumed that P
was stable. Architectures similar to Figure 13.10a appear in the Smith predictor
and the internal model controller that will be discussed later in Section 15.4.

The scheme in Figure 13.10a cannot be used when the process is unstable but
we can make a similar construct. Consider a closed loop system where the process
is a rational transfer function P = np/dp, where dp and np are polynomials with
no common factors. Assume that the controller C = nc/dc, where dc and nc are
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polynomials without common factors, stabilizes the system in the sense that all
sensitivity functions are stable. By introducing stable polynomials fp and fc we
obtain

P =
np
dp

=
Np

Dp
, C =

nc
dc

=
Nc

Dc
, (13.15)

where Np = dp/fp, Dp = np/fp, Nc = nc/fc, and Dc = dc/fc are rational functions
with no zeros in the right half-plane (stable rational functions). The sensitivity
functions are

S =
1

1 + PC
=

DpDc

DpDc +NpNc
, PS =

P

1 + PC
=

NpDc

DpDc +NpNc
,

CS =
C

1 + PC
=

DpNc

DpDc +NpNc
, T =

PC

1 + PC
=

NpNc

DpDc +NpNc
.

The controller C is stabilizing if and only if the rational function DpDc+NpNc does
not have any zeros in the right half-plane. Letting Q be a stable rational function,
we observe that the closed loop poles do not change if the controller C is changed
by adding NpQ to Dc and subtracting DpQ from Nc, resulting in the controller

C =
Nc −DpQ

Dc +NpQ
, Dcu = Nc(r − y) +Q(Dpy −Npu). (13.16)

A block diagram of the closed loop system is shown in Figure 13.10b.
Figure 13.10b and 13.10a share the same basic structure, despite their difference

in appearance. In both cases we form a signal z that is zero in steady state and feed
it back into the system via the stable transfer function Q. The sensitivity functions
of the closed loop system are

S =
1

1 + PC
=
Dp(Dc +NpQ)

DpDc +NpNc
, PS =

P

1 + PC
=
Np(Dc +NpQ)

DpDc +NpNc
,

CS =
C

1 + PC
=
Dp(Nc −DpQ)

DpDc +NpNc
, T =

PC

1 + PC
=
Np(Nc −DpQ)

DpDc +NpNc
.

(13.17)

These transfer functions are all stable and equation (13.16) is therefore a parameter-
ization of controllers that stabilize the process P . Conversely it can be shown that
all stabilizing controllers can be represented by the controller (13.16); see [Vid85,
Section 3.1]. The controller C is a called a Youla parameterization of the controller
C.

The Youla parameterization is very useful for controller design because it charac-
terizes all controllers that stabilize a given process. The fact that the transfer func-
tion Q appears affinely in the expressions for the Gang of Four in equation (13.17)
is very useful if we want to use optimization techniques to find a transfer function
Q that yields desired closed loop properties.

13.3 Performance in the Presence of Uncertainty

So far we have investigated the risk for instability and robustness to process un-
certainty. We will now explore how responses to load disturbances, measurement
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Figure 13.11: Block diagram of a basic feedback loop. The external signals
are the reference signal r, the load disturbance v, and the measurement noise w.
The process output is y, and the control signal is u. The process P may include
unmodeled dynamics, such as additive perturbations.

noise, and reference signals are influenced by process variations. To do this we will
analyze the system in Figure 13.11, which is identical to the basic feedback loop
analyzed in Chapter 12.

Disturbance Attenuation

The sensitivity function S gives a rough characterization of the effect of feedback
on disturbances, as was discussed in Section 12.2. A more detailed characterization
is given by the transfer function from load disturbances to process output:

Gyv =
P

1 + PC
= PS. (13.18)

Load disturbances typically have low frequencies, and it is therefore important
that the transfer function Gyv is small for low frequencies. For processes P with
constant low-frequency gain and a controller with integral action it follows from
equation (13.18) that Gyv ≈ s/ki. The integral gain ki is thus a simple measure of
the attenuation of low-frequency load disturbances.

To find out how the transfer function Gyv is influenced by small variations in
the process transfer function we differentiate equation (13.18) with respect to P ,
yielding

dGyv
dP

=
1

(1 + PC)2
=

SP

P (1 + PC)
= S

Gyv
P

,

and it follows that
dGyv
Gyv

= S
dP

P
, (13.19)

where we write dG and dP as a reminder that this expression holds for small
variations.

In this form, we see that the relative error in the transfer function Gyu is deter-
mined by the relative error in the process transfer function, scaled by the sensitivity
function S. The response to load disturbances is thus insensitive to process varia-
tions for frequencies where |S(iω)| is small.

A drawback with feedback is that the controller feeds measurement noise into the
system. It is thus also important that the control actions generated by measurement
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noise are not too large. It follows from Figure 13.11 that the transfer function Guw
from measurement noise to controller output is given by

Guw = − C

1 + PC
= −T

P
. (13.20)

Since measurement noise typically has high frequencies, the transfer function Guw
should not be too large for high frequencies. The loop transfer function PC is typ-
ically small for high frequencies, which implies that Guw ≈ C for large s. To avoid
injecting too much measurement noise the high-frequency gain of the controller
transfer function C(s) should thus be small. This property is called high-frequency
roll-off. Low-pass filtering of the measured signal is a simple way to achieve this
property, and this is common practice in PID control; see Section 11.5.

To determine how the transfer function Guw is influenced by small variations in
the process transfer function, we differentiate equation (13.20) with respect to P :

dGuw
dP

=
d

dP

(
− C

1 + PC

)
=

C

(1 + PC)2
C = −T Guw

P
.

Rearranging the terms gives
dGuw
Guw

= −T dP
P
. (13.21)

If PC is small for high frequencies the complementary sensitivity function is also
small, and we find that process uncertainty has little influence on the transfer
function Guw for those frequencies.

Response to Reference Signals

The transfer function from reference to output is given by

Gyr =
PCF

1 + PC
= TF, (13.22)

which contains the complementary sensitivity function. To see how variations in P
affect the performance of the system, we differentiate equation (13.22) with respect
to the process transfer function:

dGyr
dP

=
CF

1 + PC
− PCFC

(1 + PC)2
=

CF

(1 + PC)2
= S

Gyr
P

,

and it follows that
dGyr
Gyr

= S
dP

P
. (13.23)

The relative error in the closed loop transfer function thus equals the product of the
sensitivity function and the relative error in the process. In particular, it follows
from equation (13.23) that the relative error in the closed loop transfer function is
small when the sensitivity is small. This is one of the useful properties of feedback.

As in the previous section, there are some mathematical assumptions that are
required for the analysis presented here to hold. As already stated, we require that
the perturbations ∆ be small (as indicated by writing dP ). Second, we require that
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Figure 13.12: Operational amplifier with uncertain dynamics. The circuit in (a)
is modeled using the transfer function G(s) to capture its dynamic properties and
it has a load at the output. The block diagram in (b) shows the input/output
relationships. The load is represented as a disturbance d applied at the output of
G(s).

the perturbations be stable, so that we do not introduce any new right half-plane
poles that would require additional encirclements in the Nyquist criterion. Also, as
before, this condition is conservative: it allows for any perturbation that satisfies
the given bounds, while in practice the perturbations may be more restricted.

Example 13.10 Operational amplifier circuit
To illustrate the use of these tools, consider the performance of an op amp-based
amplifier, as shown in Figure 13.12a. We wish to analyze the performance of the
amplifier in the presence of uncertainty in the dynamic response of the op amp
and changes in the loading on the output. We model the system using the block
diagram in Figure 13.12b, which is based on the derivation in Exercise 10.1.

Consider first the effect of unknown dynamics for the operational amplifier.
Letting the dynamics of the op amp be modeled as v2 = −G(s)v, it follows from
the block diagram in Figure 13.12b that the transfer function for the overall circuit
is

Gv2v1 = −R2

R1

G(s)

G(s) +R2/R1 + 1
.

We see that if G(s) is large over the desired frequency range, then the closed
loop system is very close to the ideal response α := R2/R1. Assuming G(s) =
b/(s+a), where b = ak is the gain-bandwidth product of the amplifier (as discussed
in Example 9.2), the sensitivity function and the complementary sensitivity function
become

S =
s+ a

s+ a+ αb
, T =

αb

s+ a+ αb
.

The sensitivity function around the nominal values tells us how the tracking re-
sponse varies as a function of process perturbations:

dGv2v1
Gv2v1

= S
dP

P
.

We see that for low frequencies, where S is small, variations in the bandwidth a or
the gain-bandwidth product b will have relatively little effect on the performance
of the amplifier (under the assumption that b is sufficiently large).

To model the effects of an unknown load, we consider the addition of a distur-
bance d at the output of the system, as shown in Figure 13.12b. This disturbance
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represents changes in the output voltage due to loading effects. The transfer func-
tion Gv2d = S gives the response of the output to the load disturbance, and we
see that if S is small, then we are able to reject such disturbances. The sensitivity
of Gv2d to perturbations in the process dynamics can be computed by taking the
derivative of Gv2d with respect to P :

dGv2d
dP

=
−C

(1 + PC)2
= −T

P
Gv2d =⇒ dGv2d

Gv2d
= −T dP

P
.

Thus we see that the relative changes in disturbance rejection are roughly the same
as the process perturbations at low frequencies (when T is approximately 1) and
drop off at higher frequencies. However, it is important to remember that Gv2d
itself is small at low frequency, and so these variations in relative performance may
not be an issue in many applications. ∇

Analysis of the sensitivity to small process perturbations can performed for
many other system configurations. The analysis for the system in Figure 12.13,
where the reference signal response is improved by feedforward and the load dis-
turbance response is improved by feedforward from measured disturbances, is pre-
sented in Exercise 13.11.

13.4 Design for Robust Performance �

Control design is a rich problem where many factors have to be taken into account.
Typical requirements are that load disturbances should be attenuated, the controller
should inject only a moderate amount of measurement noise, the output should
follow variations in the command signal well, and the closed loop system should be
insensitive to process variations. For the system in Figure 13.11 these requirements
can be captured by specifications on the sensitivity functions S and T and the
transfer functions Gyv, Guw, Gyr, and Gur. Notice that it is necessary to consider
at least six transfer functions, as discussed in Section 12.1. The requirements are
mutually conflicting, and we have to make trade-offs. The attenuation of load
disturbances will be improved if the bandwidth is increased, but the noise injection
will be worse. The following example is an illustration.

Example 13.11 Nanopositioning system for an atomic force microscope
A simple nanopositioner with the process transfer function

P (s) =
ω2
0

s2 + 2ζω0s+ ω2
0

was explored in Example 10.9. It was shown that the system could be controlled
using an integral controller. The closed loop performance was poor because the gain
crossover frequency was limited to ωgc < 2ζω0(1−sm) to have good robustness with
the integral controller. It can be shown that little improvement is obtained by using
a PI controller. We will explore if better performance can be obtained with PID
control. As justified in Example 14.11 in the next chapter, we trying choosing a
controller zero that is near the fast stable process pole. The controller transfer
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Figure 13.13: Nanopositioning system control via cancellation of the fast pro-
cess pole. Gain curves for the Gang of Four for PID control with second-order
filtering (13.25) are shown by solid lines, and the dashed lines show results for an
PID controller without filtering (13.24).

function should thus be chosen as

C(s) =
kds

2 + kps+ ki
s

=
ki
s

s2 + 2ζω0s+ ω2
0

ω2
0

, (13.24)

which gives kp = 2ζki/ω0 and kd = ki/ω
2
0 . The loop transfer function becomes

L(s) = ki/s.

Figure 13.13 shows, in dashed lines, the gain curves for the Gang of Four for
a system designed with ki = 0.5. A comparison with Figure 10.14 shows that the
bandwidth is increased significantly from ωgc = 0.01 to ωgc = ki = 0.5. How-
ever, since the process pole is canceled, the system will be very sensitive to load
disturbances with frequencies close to the resonant frequency, as seen by the peak
in PS at ω/ω0 = 1. The gain curve of CS has a dip or a notch at the resonant
frequency ω0, which implies that the controller gain is very low for frequencies
around the resonance. The gain curve also shows that the system is very sensitive
to high-frequency noise. The system will likely be unusable because the gain goes
to infinity for high frequencies.

The sensitivity to high-frequency noise can be reduced by modifying the con-
troller to be

C(s) =
ki
s

s2 + 2ζω0s+ ω2
0

ω2
0(1 + sTf + (sTf)2/2)

, (13.25)

which has high-frequency roll-off. Selection of the constant Tf for the filter is a com-
promise between attenuation of high-frequency measurement noise and robustness.
A large value of Tf reduces the effects of sensor noise significantly, but it also reduces
the stability margin. Since the gain crossover frequency without filtering is ki, a
reasonable choice is Tf = 0.2/ki, as shown by the solid curves in Figure 13.13. The
plots of |CS(iω)| and |S(iω)| show that the sensitivity to high-frequency measure-
ment noise is reduced dramatically at the cost of a marginal increase of sensitivity.
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Notice that the poor attenuation of disturbances with frequencies close to the res-
onance is not visible in the sensitivity function because of the cancellation of the
resonant poles (but it can be seen in PS).

The designs thus far have the drawback that load disturbances with frequencies
close to the resonance are not attenuated, since |S(iω0)| is close to one. We will
now consider a design that actively attenuates the poorly damped modes. We start
with an ideal PID controller where the design can be done analytically, and we add
high-frequency roll-off. The loop transfer function obtained with this controller is

L(s) =
ω2
0(kds

2 + kps+ ki)

s(s2 + 2ζω0s+ ω2
0)
. (13.26)

The closed loop system is of third order, and its characteristic polynomial is

s3 + (kdω
2
0 + 2ζω0)s

2 + (kp + 1)ω2
0s+ kiω

2
0 . (13.27)

A general third-order polynomial can be parameterized as

s3 + (αc + 2ζc)ωcs
2 + (1 + 2αcζc)ω

2
cs+ αcω

3
c . (13.28)

The parameters αc and ζc give the relative configuration of the poles, and the pa-
rameter ωc gives their magnitudes, and therefore also the bandwidth of the system.

The identification of coefficients of equal powers of s with equation (13.27) gives
a linear equation for the controller parameters, which has the solution

kp =
(1 + 2αcζc)ω

2
c

ω2
0

− 1, ki =
αcω

3
c

ω2
0

, kd =
(αc + 2ζc)ωc

ω2
0

− 2ζc
ω0

. (13.29)

Adding high-frequency roll-off, the controller becomes

C(s) =
kds

2 + kps+ k

s(1 + sTf + (sTf)2/2)
. (13.30)

If the PID controller is designed without the filter, the filter time constant must
be significantly smaller than Td to avoid introducing extra phase lag; a reasonable
value is Tf = Td/10 = 0.1 kd/k . If more filtering is desired it is necessary to account
for the filter dynamics in the design.

Figure 13.14 shows the gain curves of the Gang of Four for designs with ζc =
0.707, αc = 1, and ωc = ω0, 2ω0, and 4ω0. The figure shows that the largest values
of the sensitivity functions S and T are small. The gain curve for PS shows that
the load disturbances are now well attenuated over the whole frequency range, and
attenuation increases with increasing ω0. The gain curve for CS shows that large
control signals are required to provide active damping. The high gain of CS for
high frequencies also shows that low-noise sensors and actuators with a wide range
are required. The largest gains for CS are 19, 103, and 434 for ωc = ω0, 2ω0, and
4ω0, respectively. There is clearly a trade-off between disturbance attenuation and
controller gain. A comparison of Figures 13.13 and 13.14 illustrates the trade-offs
between control action and disturbance attenuation for the designs with cancellation
of the fast process pole and active damping. ∇
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Figure 13.14: Nanopositioner control using active damping. Gain curves for the
Gang of Four for PID control of the nanopositioner designed for ωc = ω0 (dash-
dotted), 2ω0 (dashed), and 4ω0 (solid). The controller has high-frequency roll-off
and has been designed to give active damping of the oscillatory mode. The different
curves correspond to different choices of magnitudes of the poles, parameterized
by ωc in equation (13.27).

It is highly desirable to have design methods that can guarantee robust perfor-
mance. Such design methods did not appear until the late 1980s. Many of these
design methods result in controllers having the same structure as the controller
based on state feedback and an observer. In the remainder of this section we pro-
vide a brief review of some of the techniques as a preview for those interested in
more specialized study.

Quantitative Feedback Theory

Quantitative feedback theory (QFT) is a graphical design method for robust loop
shaping that was developed by I. M. Horowitz [Hor91]. The idea is to first determine
a controller that gives a complementary sensitivity that is robust to process varia-
tions and then to shape the response to reference signals by feedforward. The idea
is illustrated in Figure 13.15a, which shows the level curves of the gain |T (iω)| of the
complementary sensitivity function on a Nyquist plot (this type of Nyquist plot is
also called a Hall chart). The complementary sensitivity function has unit gain on
the line ReL(iω) = −0.5. In the neighborhood of this line, significant variations in
process dynamics only give moderate changes in the complementary transfer func-
tion. The shaded part of the figure corresponds to the region 0.9 < |T (iω)| < 1.1.
To use the design method, we represent the uncertainty for each frequency by a
region and attempt to shape the loop transfer function so that the variation in T is
as small as possible. The design is often performed using the Nichols chart shown
in Figure 13.15b.
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Figure 13.15: Hall and Nichols charts. The Hall chart (a) is a Nyquist plot with
curves for constant gain (solid) and phase (dotted) of the complementary sensitivity
function T . The Nichols chart (b) is the conformal map of the Hall chart under the
transformation N = logL (with the scale flipped). The dashed curve is the line
where |T (iω)| = 1, and the shaded region corresponds to loop transfer functions
whose complementary sensitivity changes by no more than ±10%.

Linear Quadratic Control

One way to make the trade-off between the attenuation of load disturbances and
the injection of measurement noise is to design a controller that minimizes the cost
function

J =

∫ ∞

0

(
y2(t) + ρu2(t)

)
dt,

where ρ is a weighting parameter as discussed in Section 8.4. This cost function
gives a compromise between load disturbance attenuation and disturbance injection
because it balances control actions against deviations in the output. If all state
variables are measured, the controller is a state feedback u = −Kx as described in
Section 7.5. It has been shown that this controller is very robust: it has a phase
margin of at least 60◦ and an infinite gain margin. This controller is called a linear
quadratic regulator or LQR controller because the process model is linear and the
criterion is quadratic.

When all state variables are not measured, the state can be reconstructed using
an observer, as discussed in Section 8.3. It is also possible to introduce process
disturbances and measurement noise explicitly in the model and to reconstruct
the states using a Kalman filter, as discussed briefly in Section 8.4. The Kalman
filter has the same structure as the observer designed by eigenvalue assignment in
Section 8.3, but the observer gains L are now obtained by solving an optimization
problem.

The control law obtained by combining linear quadratic control with a Kalman
filter is called linear quadratic Gaussian control or LQG control. The Kalman filter
is optimal when the models for load disturbances and measurement noise are Gaus-
sian. There are efficient programs to compute these feedback and observer gains.
The basic task is to solve algebraic Riccati equations. For numerical calculations
we can use the MATLAB commands care for continuous time systems and dare

for discrete time systems. The are also MATLAB commands lqg, lqi, and kalman
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Figure 13.16: H∞ robust control formulation. (a) General representation of a
control problem used in robust control. The input u represents the control signal,
the input χ represents the external influences on the system, the output ξ is the
generalized error, and the output y is the measured signal. (b) Special case of the
basic feedback loop in Figure 13.11 where the reference signal is zero.

that perform the complete design.
It is interesting that the solution to the optimization problem leads to a con-

troller having the structure of a state feedback and an observer. The state feedback
gains depend on the parameter ρ, and the filter gains depend on the parameters in
the model that characterize process noise and measurement noise (see Section 8.4).

The nice robustness properties of state feedback are unfortunately lost when
the observer is added [Doy78]. There are parameters that give closed loop systems
with poor robustness, and hence there is a fundamental difference between directly
measuring the states of a system and reconstructing the states using an observer.

H∞ Control �

An elegant method for robust control design is called H∞ control because it can
be formulated as minimization of the H∞ norm of a matrix of transfer functions,
defined in equation (10.15). The basic ideas are simple, but the details are com-
plicated and we will therefore just give the flavor of the results. A key idea is
illustrated in Figure 13.16a, where the closed loop system is represented by two
blocks, the process P and the controller C as discussed in Section 12.1. The process
P has two inputs, the control signal u, which can be manipulated by the controller,
and the generalized disturbance χ, which represents all external influences, e.g.,
command signals, load disturbances, and measurement noise. The process has two
outputs, the generalized error ξ, which is a vector of error signals representing the
deviation of signals from their desired values, and the measured signal y, which can
be used by the controller to compute u. For a linear system and a linear controller
the closed loop system can be represented by a linear system

ξ = G(P (s), C(s))χ, (13.31)

which tells how the generalized error ξ depends on the generalized disturbances
χ. The control design problem is to find a controller C such that the gain of the
transfer function G is small even when the process has uncertainties. There are
many different ways to specify uncertainty and gain, giving rise to different designs
depending on the chosen norms.

To illustrate the ideas we will consider a regulation problem for a system where
the reference signal is assumed to be zero and the external signals are the load
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disturbance v and the measurement noise w, as shown in Figure 13.16b. The
generalized error is defined as ξ = (µ, η), where µ = v − u is the part of the load
disturbance that is not compensated by the controller and η is the process output.
The generalized input is χ = (v,−w) (the negative sign of w is not essential but
is chosen to obtain somewhat nicer equations). The closed loop system is thus
modeled by

ξ =


µ
η


 =




1

1 + PC

C

1 + PC
P

1 + PC

PC

1 + PC





 v
−w


 =: G(P,C)χ, (13.32)

which is a special case of equation (13.31). If C is stabilizing we have

‖G(P,C))‖∞ = sup
ω
σ̄(G) = sup

ω

√
(1 + |P (iω)|2)(1 + |C(iω)|2)

|1 + P (iω)C(iω)| , (13.33)

where σ̄ is the largest singular value. Notice that the elements of G are the Gang
of Four. The diagonal elements of G are the sensitivity functions S = 1/(1 + PC)
and T = PC/(1 + PC), which capture robustness. The off-diagonal elements
P/(1+PC) = Gyv and C/(1+PC) = −Guw represent the responses of the output
to load disturbances and of the control signal to measurement noise, and they
capture performance. If we minimize ‖G(P,C)‖∞, we thus balance performance
and robustness.

There are numerical methods for finding a stabilizing controller C that mini-
mizes ‖G(P,C)‖∞, if such a controller exists. This controller has the same structure
as the controller based on state feedback and an observer; see Figure 8.7 and The-
orem 8.3. The controller gains are given by algebraic Riccati equations. They can
be computed numerically by the MATLAB command hinfsyn.

The Generalized Stability Margin

In Section 13.2 we introduced the stability margin as sm = infω |1 + P (iω)C(iω)|
for systems such that C stabilizes P . The margin can be interpreted as the shortest
distance between the Nyquist plot of the loop transfer function PC and the critical
point −1, as shown in Figure 13.7a. We also found that sm = 1/Ms where Ms is
the maximum sensitivity. We now define the generalized stability margin

σm =




infω

|1 + P (iω)C(iω)|√
(1 + |P (iω)|2)(1 + |C(iω)|2)

if C stabilizes P ,

0 otherwise.

(13.34)

It can be shown that

inf
ω

|1 + P (iω)C(iω)|√
(1 + |P (iω)|2)(1 + |C(iω)|2)

= inf
ω

|P (iω) + 1/C(iω)|√
(1 + |P (iω)|2)(1 + |1/C(iω)|2)

,

and it follows that σm can be interpreted as the shortest chordal distance between
P (iω) and −1/C(iω). Furthermore equations (13.6) and (13.33) imply that

σm(P,C) =





1

‖G(P,C)‖∞
if C stabilizes P ,

0 otherwise.
(13.35)
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Using the generalized stability margin we have the following fundamental robustness
theorem, which is proved in [Vin01].

Theorem 13.1 (Vinnicombe’s robustness theorem). Consider a process with trans-
fer function P . Assume that the controller C is designed to give the generalized
stability margin σm. Then the controller C will stabilize all processes P1 such that
δν(P, P1) < σm(P,C), where δν is the Vinnicombe metric.

The theorem is a generalization of equation (13.11). The generalized stability
margins can be related to the classical gain and phase margins. It follows from
equation (13.34) that

|1 + P (iω)C(iω)|2 ≥ σ2
m(1 + |P (iω)|2)(1 + |C(iω)|2). (13.36)

If the Nyquist curve of the loop transfer function PC intersects the negative real
axis for some ω we have P (iω)C(iω) = −k for some 0 < k < 1 and equation (13.36)
becomes

|1− k|2 ≥ σ2
m(1 + |P (iω)|2 + |C(iω)|2 + k2) ≥ σ2

m(1 + k)2,

which implies that

k ≤ 1− σm
1 + σm

, gm =
1

k
≥ 1 + σm

1− σm
. (13.37)

If the loop transfer function intersects the unit circle so that the phase margin
is ϕm we have P (iω)C(iω) = ei(π+ϕm) = −eiϕm and equation (13.36) becomes

|1− eiϕm |2 ≥ σ2
m(1 + |P (iω)|2 + 1/|P (iω)|2 + 1) ≥ 4σ2

m,

where the last inequality follows from the fact that |x|+1/|x| ≥ 2. Since |1−eiϕm | =
2 sin(ϕm/2) (think geometrically) it follows that the above inequality can be written
as

4 sin(ϕm/2) ≥ 4σ2
m, ϕm ≥ 2 arcsinσm (13.38)

(compare with equation 10.7). For σm = 1/3, 1/2, 2/3 we have gm ≥ 2, 3, 5 and
ϕm ≥ 39◦, 60◦, 84◦.

Disturbance Weighting

H∞ control attempts to find a controller that minimizes the effect of external
signals (χ in Figure 13.16a or ν and w in Figure 13.16b) on the generalized error ξ,
in the sense that the largest singular value of the matrix ‖G(P,C)‖∞ is as small as
possible. The solution of the problem can be changed by introducing weights W ,
which is illustrated in Figure 13.17a.

Figures 13.17b and 13.17c show how the problem with a weight W can be
transformed into a problem of the same form as in Figure 13.17a. This allows the
weighted problem to be solved using the same tools as the unweighted problem. In
the transformed problem the process transfer function P is replaced by P = PW
and the controller transfer function is replaced by C =W−1C. The relation between
the transformed signals then becomes

ξ̄ =


µ̄
η̄







1

1 + P C

P

1 + P C

C

1 + P C

P C

1 + P C





 v̄
−w


 = G(P ,C)χ̄.
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Figure 13.17: Block diagrams that illustrate frequency weighting of load dis-
turbances. A frequency weight W is introduced on the load disturbance in (a).
Block diagram transformations are used in (b) to obtain a system in standard
form, which is redrawn in (c) using P = PW and C = W−1C.

Notice that PC = PC, which means that only the off diagonal block elements in
the matrix G(P ,C) are different from those in G(P,C). Weighting thus does not
change the sensitivity and complementary sensitivity functions. The matrix element
corresponding to load disturbances changes from P/(1+PC) to PW/(1+PC) and
the matrix element corresponding to measurement noise changes from C/(1+PC)
to CW−1/(1 + PC).

Having chosen the desired weight W , the solution to the weighted H∞ problem
gives the controller C. Transforming back then gives the real controller C = WC.
Choosing proper weights allows the designer to obtain a controller that reflects the
design specifications. IfW is a scalar greater than one it means that we are increas-
ing the effect of the load disturbances and reducing the effect of the measurement
noise. The weighting can also be made frequency dependent. For example, choos-
ing the weight as W = k/s will automatically give a controller with integral action.
Similarly a weighting that emphasizes high frequencies will give a controller with
high-frequency roll-off. Frequency weighting allows the designer to modify the so-
lution to reflect the many different design specifications, making H∞ loop shaping
a very powerful design method.

Limits of Robust Design

There is a limit to what can be achieved by robust design. In spite of the nice
properties of feedback, there are situations where the process variations are so large
that it is not possible to find a linear controller that gives a robust system with
good performance. It is then necessary to use other types of controllers. In some
cases it is possible to measure a variable that is well correlated with the process
variations. Controllers for different parameter values can then be designed and the
corresponding controller can be chosen based on the measured signal. This type of
control design is called gain scheduling and it was discussed briefly in Section 8.5.
The cruise controller is a typical example where the measured signal could be gear
position and velocity. Gain scheduling is the common solution for high-performance
aircraft where scheduling is done based on Mach number and dynamic pressure.
When using gain scheduling, it is important to make sure that switches between
the controllers do not create undesirable transients (often referred to as the bumpless
transfer problem).

It is often not possible to measure variables related to the parameters, in which
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case automatic tuning and adaptive control can be used. In automatic tuning the
process dynamics are measured by perturbing the system, and a controller is then
designed automatically. Automatic tuning requires that parameters remain con-
stant, and it has been widely applied for PID control. It is a reasonable guess that
in the future many controllers will have features for automatic tuning. If param-
eters are changing, it is possible to use adaptive methods where process dynamics
are measured online.

13.5 Further Reading

The topic of robust control is a large one, with many articles and textbooks de-
voted to the subject. Robustness was a central issue in classical control as de-
scribed in the books by Bode [Bod45], James, Nichols, and Phillips [JNP47], and
Horowitz [Hor63]. Quantitative feedback theory (QFT) [Hor93] can be regarded
as an extension of Bode’s work. The interesting properties of Bode’s ideal loop
transfer function were rediscovered in the late 1990s, creating an interest in frac-
tional transfer functions [MCV+10]. It took a long time before the fundamental
question of when two systems are similar was clearly formulated. The gap metric
was introduced by Zames and El-Sakkary [ZES80], and Vidyasagar introduced the
graph metric a few year later [Vid84, Vid85].

The ν-gap metric, which is the proper notion, is due to Vinnicombe [Vin93,
Vin01]. Robustness was de-emphasized in the euphoria of the development of de-
sign methods based on optimization. The strong robustness of controllers based
on state feedback, shown by Anderson and Moore [AM90], contributed to the
optimism. The poor robustness of output feedback was pointed out by Rosen-
brock [RM71], Horowitz [Hor75], and Doyle [Doy78] and resulted in a renewed
interest in robustness. A major step forward was the development of design meth-
ods where robustness was explicitly taken into account, such as the seminal work
of Zames [Zam81].

Robust control was originally developed using powerful results from the theory of
complex variables, which gave controllers of high order. A major breakthrough was
made by Doyle, Glover, Khargonekar, and Francis [DGKF89], who showed that the
solution to the problem could be obtained using Riccati equations and that a con-
troller of low order could be found. This paper led to an extensive treatment of H∞
control, including books by Francis [Fra87], McFarlane and Glover [MG90], Doyle,
Francis, and Tannenbaum [DFT92], Green and Limebeer [GL95], Zhou, Doyle, and
Glover [ZDG96], Skogestad and Postlethwaite [SP05], and Vinnicombe [Vin01]. A
major advantage of the theory is that it combines much of the intuition from ser-
vomechanism theory with sound numerical algorithms based on numerical linear
algebra and optimization. The results have been extended to nonlinear systems by
treating the design problem as a game where the disturbances are generated by an
adversary, as described in the book by Basar and Bernhard [BB91]. Gain scheduling
and adaptation are discussed in the book by Åström and Wittenmark [ÅW08a].

Exercises

13.1 Consider systems with the transfer functions P1 = 1/(s+1) and P2 = 1/(s+
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a). Show that P1 can be changed continuously to P2 with bounded additive and
multiplicative uncertainty if a > 0 but not if a < 0. Also show that no restriction
on a is required for feedback uncertainty.

13.2 Consider systems with the transfer functions P1 = (s+ 1)/(s+ 1)2 and P2 =
(s + a)/(s + 1)2. Show that P1 can be changed continuously to P2 with bounded
feedback uncertainty if a > 0 but not if a < 0. Also show that no restriction on a
is required for additive and multiplicative uncertainties.

13.3 (Difference in sensitivity functions) Let T (P,C) be the complementary sensi-
tivity function for a system with process P and controller C. Show that

T (P1, C)− T (P2, C) =
(P1 − P2)C

(1 + P1C)(1 + P2C)
,

and compare with equation (13.6). Derive a similar formula for the sensitivity
function.

13.4 (Vinnicombe metrics) Consider the transfer functions

P1(s) =
k

4s+ 1
, P2(s) =

k

(2s+ 1)2
, P3(s) =

k

(s+ 1)4
.

Compute the Vinnicombe metric for all combinations of the transfer functions when
k = 1 and k = 2. Discuss the results.

13.5 (Sensitivity of feedback and feedforward) Consider the system in Figure 13.11
and let Gyr be the transfer function relating the measured signal y to the reference
r. Show that the sensitivities of Gyr with respect to the feedforward and feedback
transfer functions F and C are given by dGyr/dF = CP/(1+PC) and dGyr/dC =
FP/(1 + PC)2 = GyrS/C.

13.6 (Guaranteed stability margin) The inequality given by equation (13.10) guar-
antees that the closed loop system is stable for process uncertainties. Let s0m =
1/M0

s be a specified stability margin. Show that the inequality

|δ(iω)| < 1− s0m|S(iω)|
|T (iω)| =

1− |S(iω)|/M0
s

|T (iω)| , for all ω ≥ 0,

guarantees that the closed loop system has a stability margin greater than s0m for
all perturbations (compare with equation (13.10)).

13.7 (Stability margins) Consider a feedback loop with the process and the con-
troller having transfer functions P and C. Assume that the maximum sensitivity
is Ms = 2. Show that the phase margin is at least 30◦ and that the closed loop
system will be stable if the gain is changed by 50%.

13.8 Consider a process with the transfer function P (s) = k/(s(s+ 1)), where the
gain can vary between 0.1 and 10. A controller that has a phase margin close to
ϕm = 45◦ for the gain variations can be obtained by finding a controller that gives
the loop transfer function L(s) = 1/(s

√
s). Suggest how the transfer function can

be implemented by approximating it by a rational function.
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13.9 (Bode’s ideal loop transfer function) Bode’s ideal loop transfer function is
given in Example 13.9. Show that the phase margin is ϕm =180◦–90◦n and that
the stability margin is sm = sinπ(1− n/2). Make Bode and Nyquist plots of the
transfer function for n = 5/3.

13.10 (Ideal delay compensator) Consider a process whose dynamics are a pure
time delay with transfer function P (s) = e−s. The ideal delay compensator is a
controller with the transfer function C(s) = 1/(1− e−s). Show that the sensitivity
functions are T (s) = e−s and S(s) = 1− e−s and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

13.11 (Sensitivity of two degree-of-freedom controllers to process variations) Con-
sider the two degree-of-freedom controller shown in Figure 12.13, which uses feedfor-
ward compensation to provide improved response to reference signals and measured
disturbances. Show that the input/output transfer functions and the correspond-
ing sensitivities to process variations for the feedforward, feedback, and combined
controllers are given by

Controller Gyr
dGyr

Gyr
Gyv

dGyv

dP1

Feedforward (C = 0) Fm
dP

P
0 −P2

P1

Feedback (Fr, Fv = 0 ) TFm S
dP

P
S P2 −S

P2

P1

Feedforward and Feedback Fm S
dP

P
0 S

P2

P1

13.12 (H∞ control) Consider the matrix G(P,C) in equation (13.32). Show that
it has the singular values

σ1 = 0, σ2 = σ̄ = sup
ω

√
(1 + |P (iω)|2)(1 + |C(iω)|2)

|1 + P (iω)C(iω)| = ‖G(P,C)‖∞.

Also show that σ̄ = 1/δν(P,−1/C), which implies that 1/σ̄ is a generalization of
the closest distance of the Nyquist plot to the critical point and hence also serves
as a measure of the stability margin.

13.13 (Disturbance weighting) Consider an H∞ control problem with the distur-
bance weight W (P = PW and C =W−1C). Show that

‖G(P ,C)‖∞ ≥ sup
ω

(
|S(iω)|+ |T (iω)|

)
.



Chapter 14

Fundamental Limits

Many people have seen theoretical advantages in the facts that front-
drive rear-steering recumbent bicycles would have simpler transmissions
than rear-drive recumbents and could have the center of mass nearer to
the front wheel than the rear. The U.S. Department of Transportation
commissioned the construction of a safe motorcycle with this configura-
tion. It turned out to be safe in an unexpected way: No one could ride
it.

F. R. Whitt and D. G. Wilson, Bicycling Science, 1997 [WW97].

In this chapter we discuss properties that limit performance and robustness of
control systems. Non-minimum phase dynamics, due to time delays and right half-
plane poles and zeros impose severe limits. There are also nonlinear behaviors that
appear at large and small signal levels. Large signal limits can be caused by limited
rate and power of actuators, or by constraints required to protect the process.
Small signal limits can be caused by measurement noise, friction, and quantization
in converters. We also discuss consequences of the limits for loop shaping, and give
rules for pole placement design.

14.1 System Design Considerations

The initial design of a system can have a significant impact on the ability to use
feedback to provide robustness and performance improvements. It is particularly
important to recognize fundamental limits in the performance of feedback systems
early in the design process. For example, we may expect that a system with time
delays cannot admit fast control because control actions are delayed. Similarly
it seems reasonable that unstable systems will require fast controllers, which will
depend on the bandwidth of sensors and actuators. These limits are caused by
properties of the system dynamics and can often be captured by conditions on the
poles and zeros of the process.

The freedom for the control designer depends very much on the situation. The
designer can be faced with a process with given sensors and actuators and his or
her task is to design a suitable controller. The designer then has limited freedom.

14-1
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In other cases he or she may be able to choose sensors, and in yet other cases
the location and characteristics of sensors, actuators, and controller are designed
simultaneously. The designer then has significant freedom. The typical case is
somewhere in between these extremes.

In any case, design engineers should be aware of the fundamental limits of
feedback systems and be able to deal with them as early as possible in the design
process. Awareness of the limits and co-design of the process and the controller
are good ways to avoid potential difficulties both for system and control designers.
The limits alluded to in the chapter quote are due to process dynamics and limits
on actuation power and actuation rate. The dynamics limitations can be captured
by time delays and poles and zeros in the right half-plane. It seems intuitively clear
that a time delay in the process limits the achievable response speed. A less obvious
case is that a process with a right half-plane pole/zero pair cannot be controlled
robustly if the pole is close to the zero. Restriction in actuation can be captured by
actuation power and actuation rates. These are all examples of fundamental limits
whose potential impacts should be taken into account during initial system design.

Stabilizability and Strong Stabilizability

One of the most fundamental properties of a control system is the ability to design
the dynamics of the (closed loop) system to meet a set of performance specifications.
Often this can be captured by the location of poles and zeros in the relevant transfer
functions, such as the Gang of Four. In Section 7.2 we found that a system must
be reachable in order to find a state feedback that places closed loop eigenvalues
in arbitrary positions. The corresponding condition for output feedback is that the
system is be both reachable and observable (Section 8.3). There are also trade-offs
that are captured by the stability margin, bandwidth, peak values and locations
of sensitivity functions, and many other features that we have encountered in the
previous chapters.

One question of particular interest for systems whose natural dynamics are
unstable is when a system can be stabilized using feedback and whether it can
be stabilized using a stable controller (a condition known as strong stabilizability).
The question of stabilizability is slightly different than reachability since it may
turn out that there are stable eigenvalues that cannot be modified by feedback,
but we can still modify all unstable eigenvalues. Strong stabilizability is important
for system-level design since we may not want to implement an unstable controller
unless it is necessary to do so. (Note that just having the controller be unstable
does not mean that the closed loop system is unstable.)

A linear system with state feedback is always stabilizable if it is reachable. If
a linear system is not reachable, it follows from Kalman’s decomposition theorem
(Section 8.3) that the system dynamics can be written as

dx

dt
=

d

dt


xr
xr


 =


Ar 0

∗ Ar




xr
xr


+


Br

0


u, (14.1)

where the states have been decomposed into two parts: the reachable states xr and
the unreachable states xr. The dynamics in the invariant subspace represented by
xr are reachable and it follows that we can always find a state feedback Kr such
that Ar − KrBr has arbitrary eigenvalues. The system (14.1) is then stabilizable
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if and only if the eigenvalues of Ar are in the left half-plane. A system with state
feedback is thus stabilizable if the unreachable part of the system is stable.

Reachability and stabilizability for systems with state feedback can also be
stated as a rank condition. A system with dynamics and control matrices A, B
having n state variables is reachable if and only if

rank

A− sI B


 = n (14.2)

for all values of λ ∈ C. This test is known as the Popov-Belevitch-Hautus (PBH)
test. The system is stabilizable if the condition holds for all λ in the right half-plane
Re s ≥ 0 (Re s > 0 for strict stabilizability). Stabilizabilty for systems with state
feedback is thus a weaker condition than reachability.

For a linear system with output feedback a controller can be constructed using
an estimator and linear feedback on the state estimate, and the resulting controller
has the input/output dynamics given in equation (8.16), repeated here:

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂), u = −Kx̂. (14.3)

The controller poles are the eigenvalues of the matrix A − BK − LC, and the
controller zeros are the values of s where the matrix


A−BK − LC − sI L

K 0


 (14.4)

loses rank. If a system is stabilizable and observable, it is always possible to con-
struct a stabilizing controller. However, the question about whether this controller
is stable (corresponding to strong stabilizability) is more subtle. Strong stabiliz-
ability can be expressed as conditions on the transfer function, as described in the
following theorem.

Theorem 14.1 (Strong stabilizability). Consider a linear system with the rational
transfer function P (s) = n(s)/d(s), where the polynomials n(s) and d(s) do not
have a factor in common. The system can be strongly stabilized if and only if all
d(zk) have the same sign for all zk such that n(zk) = 0.

This theorem is proven in Vidyasagar [Vid85, Theorem 3.1 and Corollary 3.3]
(see also Youla [YBL74]). For a system with a single pole at p and zero at z,
this result implies that a process with p > z requires a controller with a pole in
the right half-plane, hence an unstable controller. This situation is illustrated in
Figure 14.1. An example is given in Exercise 14.1. The root locus method gives
significant insight into these cases.

Another characterization of strong stabilizability is given in Doyle, Frances, and
Tannenbaum [DFT92, Theorem 3, Chapter 5]:

Theorem 14.2. A linear system P is strongly stabilizable if and only if it has an
even number of real poles between every pair of real zeros in Re s ≥ 0.

These two results show that strong stabilizability depends on the patterns of
poles and zeros, which are often determined in the early stages of system design.
Note that this does not imply that unstable systems should always be avoided,
because instability may ctually have advantages. A typical example is when high
maneuverability is desired, such as in high-performance aircraft.
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Re

Im

(a) Strongly stabilizable

Re

Im

(b) Not strongly stabilizable

Figure 14.1: Pole zero diagrams for strongly stabilizable and non-strongly sta-
bilizable systems. The system in (a) can be stabilized with a stable controller,
but stabilization of the system in (b) requires a controller with a pole in the right
half-plane.

Right Half-Plane Zeros and Time Delays

In addition to questions related to stabilizability, we will see throughout this chapter
that there can be significant limitations on closed loop performance when a system
has zeros in the right half-plane or time delays in the loop transfer function. A
natural question to ask is whether these features can be avoided at the time of
system design.

The poles of a system depend on the intrinsic dynamics of the system. They
represent the modes of the system and they are given by the eigenvalues of the
dynamics matrix A of the linearized model. Sensors and actuators have no effect
on the poles: the only way to change poles is by feedback or by redesign of the
process. However, the zeros of a system depend on how the sensors and actuators
are connected to the process. Zeros can thus be changed by moving or adding
sensors and actuators, which is often simpler than redesigning the process dynamics.

The following example illustrates how the location of zeros can be determined
through placement of sensors.

Example 14.1 Vehicle steering
Consider the vehicle steering system introduced in Example 3.11. The linearized
(but non-normalized) model of the dynamics of the system relating lateral velocity
to steering angle was given in Example 10.11 and has the form

P (s) =
av0s+ v20

bs
,

where v0 is the velocity of the vehicle, a is the offset to the reference point for
the vehicle position, and b is the wheelbase. We observed that the system has a
right half-plane zero when the velocity of the vehicle is negative and this can lead
to limits in the closed loop performance of the system, such as those described in
Example 10.11.

The existence of the right half-plane zero can be removed if we choose to measure
the location of the vehicle by the position of the center of the rear wheels instead
of the center of mass. This gives a = 0 and our dynamics become

G(s) =
v20
bs
,
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which no longer has a right half-plane zero. Choosing this output can simplify the
design constraints and is easily implemented by calibrating the position sensor for
the vehicle so that it returns the position of the center of the rear wheels.

We note that this choice of “sensor” is subject to calibration errors and this
can lead to a zero of the process transfer function at v0/ǫ, where ǫ represents the
calibration error and the sign of the zero depends on the sign of the calibration error
and the direction of travel. We will see later in the chapter that this corresponds
that what we call a “fast” zero and its impact on fundamental limits is relatively
minor. Thus it can be advantageous to choose the system output to be at a different
point in order to simplify the feedback controller design. ∇

Another source of limitations is due to time delays, which can add significant
phase lag to the loop transfer function, making it difficult to maintain sufficient
phase margin. Time delays may appear in the process, in communication channels,
and in computations. Time delays have effects similar to right half-plane zeros.
One way to see this is to consider the Padé approximation for a time delay, which
provides a unity gain, rational transfer function whose phase approximates that of
a time delay. The first- and second-order Padé approximations are given by

G1(s) =
1− sτ/2

1 + sτ/2
, G(s) =

1− τs/2 + (τs)2/12

1 + τs/2 + (τs)2/12
.

The first-order Padé approximation has a right half-plane zero at 2/τ and the
second-order Padé approximation has a complex conjugate pair of right half-plane
zeros at s = (3± i

√
3)/τ .

Unlike zeros, time delays cannot generally be avoided by choice of sensor or
actuator location, and hence they should be avoided by proper design of the system’s
computing and communications architecture. Minimizing time delays whenever
possible is usually a good design guideline for feedback control systems.

14.2 Bode’s Integral Formula

One of the most important limits in feedback control design was obtained by Bode,
who showed that it was not possible to uniformly improve the performance of certain
closed loop performance characteristics. Bode’s result makes use of the sensitivity
function S introduced in Section 12.1, which gives an overview of performance
and robustness of a closed loop system. Specifically, it describes how disturbances
are attenuated by feedback and allows comparison of disturbance attenuation of
open and closed loop systems. We recall that disturbances with frequency ω are
attenuated by feedback if |S(iω)| < 1, and disturbances with frequencies such that
|S(iω)| > 1 are amplified. The maximum sensitivity Ms = maxω |S(iω)| gives the
largest amplification and is also a robustness measure, since 1/Ms is equal to the
stability margin sm (see Figure 10.12).

A key observation is that the sensitivity function cannot be made small over
a wide frequency range. There is an invariant (conserved quantity) called Bode’s
integral formula that implies that reducing the sensitivity at one frequency increases
it at another, and the situation is worse if the process has right half-plane poles.
Control design is thus always a compromise. The following theorem captures limits
of performance under feedback.
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Figure 14.2: Interpretation of the waterbed effect. The function log |S(iω)| is
plotted versus ω using a linear scale in (a). According to Bode’s integral for-
mula (14.5), the area of log |S(iω)| above zero must be equal to the area below
zero. Gunter Stein’s interpretation of design as a trade-off of sensitivities at dif-
ferent frequencies is shown in (b) (from [Ste03]).

Theorem 14.3 (Bode’s integral formula). Let S(s) be the sensitivity function of
an internally stable closed loop system with loop transfer function L(s). Assume
that the loop transfer function L(s) is such that sL(s) goes to zero as s→ ∞. Then
the sensitivity function has the property

∫ ∞

0

log |S(iω)| dω =

∫ ∞

0

log
1

|1 + L(iω)| dω = π
∑

pk, (14.5)

where the sum is over the right half-plane poles pk of L(s).

Equation (14.5) implies that if we design a controller that decreases the effect
of disturbances for some frequencies it will increase the effect for other frequencies
because the integral of log |S(iω)| remains constant. This property is sometimes
referred to as the waterbed effect. It also follows that systems with open loop poles
in the right half-plane have larger overall sensitivity than stable systems.

Equation (14.5) can be regarded as a conservation law: if the loop transfer
function has no poles in the right half-plane, the equation simplifies to

∫ ∞

0

log |S(iω)|dω = 0.

This formula can be given a nice geometric interpretation as illustrated in Fig-
ure 14.2, which shows log |S(iω)| as a function of ω. The area over the horizontal
axis must be equal to the area under the axis when the frequency is plotted on a
linear scale. Thus if we wish to make the sensitivity smaller up to some frequency
ωsc, we must balance this by increased sensitivity above ωsc. Control system de-
sign can be viewed as trading the disturbance attenuation at some frequencies
for disturbance amplification at other frequencies. Notice that the assumption
lims→∞ sL(s) = 0 is essential. Exercise 14.2 shows that without this assump-
tion the sensitivity can be made arbitrarily small. A modification that covers
lims→∞ sL(s) = k is given in Exercise 14.3.
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(a) X-29 aircraft

1
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ω1 ωa
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ω
)|

Frequency ω [rad/s]

(b) Sensitivity analysis

Figure 14.3: X-29 flight control system. The aircraft makes use of forward swept
wings and a set of canards on the fuselage to achieve high maneuverability (a).
The desired sensitivity for the closed loop system is shown in (b). We seek to use
our control authority to shape the sensitivity curve so that we have low sensitivity
(good performance) up to frequency ω1 by creating higher sensitivity up to our
actuator bandwidth ωa.

An equation similar to equation (14.5) holds for the complementary sensitivity
function: ∫ ∞

0

log |T (iω)|
ω2

dω = π
∑ 1

zi
, T (s) =

L(s)

1 + L(s)
, (14.6)

where the summation is over all right half-plane zeros of the loop transfer function
L(s) = P (s)C(s) (Exercise 14.4). It follows from equation (14.6) that slow right
half-plane zeros are worse than fast ones, just as equation (14.5) implies that fast
right half-plane poles are worse than slow ones.

Example 14.2 The X-29 aircraft
As an illustration of Bode’s integral formula, we present an analysis of the control
system for the X-29 aircraft (see Figure 14.3a), which has an unusual configuration
of aerodynamic surfaces that is designed to enhance its maneuverability. This
analysis was originally carried out by Gunter Stein in his inaugural IEEE Bode
lecture “Respect the Unstable” [Ste03].

To analyze the system, we make use of a small set of parameters that describe the
key properties of the system. A typical robustness requirement in aerospace systems
is that the phase margins should be at least ϕm = 45◦. The X-29 has longitudinal
dynamics that are similar to inverted pendulum dynamics (Exercise 9.3). It has a
right half-plane pole at approximately p = 6 rad/s and a right half-plane zero at
z = 26 rad/s. The actuators that stabilize the pitch have a bandwidth of ωa =
40 rad/s and the desired bandwidth of the pitch control loop is ω1 = 3 rad/s.

To evaluate the achievable performance, we search for a control law such that
the sensitivity function is small up to the desired bandwidth and not greater than
Ms beyond that frequency. Because of Bode’s integral formula, we know that
Ms must be greater than 1 at high frequencies to balance the small sensitivity at
low frequency. We thus ask if we can find a controller that has the shape shown in
Figure 14.3b with the smallest possible value ofMs. Note that the sensitivity above
the frequency ωa is 1 since we have no actuator authority above those frequencies.
Thus, we desire to design a closed loop system that has low sensitivity at frequencies
below ω1 and sensitivity that is not too large between ω1 and ωa.
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From Bode’s integral formula, we know that whatever controller we choose,
equation (14.5) must hold. We will assume that the sensitivity function is given by

|S(iω)| =





ω
ω1
Ms if ω < ω1,

Ms if ω1 ≤ ω < ωa,

1 if ωa ≤ ω <∞,

corresponding to Figure 14.3b. Bode’s integral becomes
∫ ∞

0

log |S(iω)| dω =

∫ ωa

0

log |S(iω)| dω

=

∫ ω1

0

log
ωMs

ω1
dω + (ωa − ω1) logMs = πp.

Integration by parts gives, after some calculation, −ω1 + ωa logMs = πp or

Ms = e(πp+ω1)/ωa .

This formula tells us what the achievable value of Ms will be for the given control
specifications. In particular, using p = 6 rad/s, ω1 = 3 rad/s and ωa = 40 rad/s,
we find that Ms = 1.75, which means that in the range of frequencies between ω1

and ωa, disturbances at the input to the process dynamics (such as wind) will be
amplified by a factor of 1.75 in terms of their effect on the aircraft. WithMs = 1.75
we can also obtain an estimate of the phase margin as ϕm ≥ 2 arcsin 1/(2Ms) = 33◦

(equation (10.7)), which indicates that the requirement ϕm = 45◦ may not be
achievable. ∇

Derivation of Bode’s Integral Formula �

Bode’s integral formula (Theorem 14.3) can be derived by contour integration. We
assume that the loop transfer function has distinct poles at s = pk in the right half-
plane and that L(s) goes to zero faster than 1/s for large values of s. Consider the
integral of the logarithm of the sensitivity function S(s) = 1/(1 + L(s)) along the
Nyquist contour Γ shown in Figure 14.4. The contour encloses the right half-plane
except for the points s = pk where the loop transfer function L(s) = P (s)C(s) has
poles and the sensitivity function S(s) therefore has singularities (only one pk is
shown in the figure). The direction of the contour is counterclockwise. The integral
of the logarithm of the sensitivity function around the contour Γ is given by

I =

∫

Γ

log(S(s)) ds = I1 + I2 + I3 = 0.

The integral I is zero because the function logS(s) is analytic with no poles or
zeros inside the contour. The term I1 is the integral along the imaginary axis, the
term I2 is the integral along a large semicircle to the right with a radius R that we
will make infinitely large. The term I3 is the integral along two parallel horizontal
lines and a small circle enclosing pk as shown in Figure 14.4.

We now compute each of the terms in the contour integration. We have

I1 = −i
∫ R

−R
log(S(iω))dω = −2i

∫ R

0

log(|S(iω)|)dω
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(b) Open loop pole

Figure 14.4: Contour used to prove Bode’s theorem. For each right half-plane
pole pk of the loop transfer function L(s), which is also a singularity of logS(s),
we create a path from the imaginary axis that encircles the pole. To avoid clutter
only one of the paths is shown.

because the real part of logS(iω) is an even function and the imaginary part is an
odd function. Furthermore we have

I2 =

∫

⊃
log(S(s)) ds = −

∫

⊃
log(1 + L(s)) ds ≈ −

∫

⊃
L(s) ds,

where ⊃ represents the semicircular portion of Γ at radius R. Since L(s) goes to
zero faster than 1/s for large s, the integral goes to zero when the radius of the
semicircle goes to infinity.

Next we consider the integral I3. We split the contour into three parts: X+, γ,
and X−, where X+ and X− are horizontal lines from the imaginary axis to pk, and
γ is a small circle with radius r around the point pk (see Figure 14.4b). We can
write the contour integral as

I3 =

∫

X+

logS(s) ds+

∫

γ

logS(s) ds+

∫

X−
logS(s) ds.

The point pk is a pole of L(s) and hence a zero of S(s), which causes logS(s) to
become singular at pk. The magnitude of the integrand for the middle integral
(along γ) is of the order log r and the length of the path is 2πr, and it can be
shown that the magnitude of the integral goes to zero as the radius r goes to zero.
At the same time, S(s) ≈ k(s− pk) near pk, so the argument of logS(s) decreases
by 2π as the contour encircles pk (in the clockwise direction). On the contours X+

and X− we thus have

|SX+
| = |SX−

|, argSX−
= argSX+

− 2π.

Hence

log(SX+
)− log(SX−

) = log(|SX+
|) + i arg(SX+

)− log(|SX−
|)− i arg(SX−

) = 2πi.
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Using the fact that the path X+ is traversed in the opposite direction from X−,
the first and third terms can be combined to give

∫

X+

logS(s) ds+

∫

X−

logS(s) ds =

∫

X+

(
logSX+

(s)− logSX−
(s)
)
ds.

The length of the path from the imaginary axis to pk is Re pk and we get
∫

X+

logS(s) ds+

∫

X−

logS(s) ds = 2πi ·Re pk.

Repeating the argument for all pk in the right half-plane, and letting the small
circles go to zero gives

I1 + I2 + I3 = −2i

∫ ∞

0

log |S(iω)| dω + i
∑

k

2πRe pk = 0.

Since the pk’s appear as complex conjugate pairs, we have
∑
k Re pk =

∑
k pk,

which gives Bode’s formula (14.5).

14.3 Gain Crossover Frequency Inequality

We will now investigate the effect of non-minimum phase process dynamics for
loop shaping design. The key idea of loop shaping design is to shape the loop
transfer function L(iω) = P (iω)C(iω) so that the closed loop system has good
performance and robustness. Good performance is obtained by making |L(iω)|
large for frequencies where we want disturbance attenuation and small for high
frequencies where measurement noise dominates. Recall from Figure 12.8 that
good robustness is obtained by shaping the loop transfer function around the gain
crossover frequency ωgc. The performance limits show up very clearly in the design.

To explore the limits due to right half-plane poles and zeros, we factor the
process transfer function as

P (s) = Pmp(s)Pap(s), (14.7)

where Pmp is the minimum phase factor and Pap is the non-minimum phase factor.
We do the factorization so that Pmp has all its poles and zeros in the open left
half-plane. The factorization is normalized so that |Pap(iω)| = 1, and the sign
is chosen so that Pap has negative phase. The transfer function Pap is called an
all-pass system because it has unit gain for all frequencies. For example

P (s) =
s− 2

(s+ 1)(s− 1)
=

s+ 2

(s+ 1)2
·
(s− 2)(s+ 1)

(s+ 2)(s− 1)
= Pmp(s) ·Pap(s). (14.8)

Since |Pap(iω)| = 1, the transfer functions P (s) and Pmp(s) have the same gain
curves but the transfer function P (s) has larger phase lag than Pmp(s).

Consider the closed loop system obtained with a controller with the transfer
function C(s). Requiring that the phase margin be ϕm, we get the inequality

argL(iωgc) = argPap(iωgc) + argPmp(iωgc) + argC(iωgc) ≥ −π + ϕm, (14.9)
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Figure 14.5: Illustration of the gain crossover frequency inequality. (a) Gain
curve of the transfer function, with the slope of the curve at the gain crossover
frequency ngc marked. (b) Phase of the transfer function (solid) and its minimum
phase component (dashed). The phase margin ϕm, the phase lags ϕmp and ϕap

of the minimum phase component, and the all-pass component are shown in the
figure.

where ωgc is the gain crossover frequency. Let ngc be the slope of the gain curve
of the loop transfer function L(s) = P (s)C(s) at the crossover frequency. Since
|Pap(iω)| = 1 it follows that

ngc =
d log |L(iω)|
d logω

∣∣∣∣∣
ω=ωgc

=
d log |Pmp(iω)C(iω)|

d logω

∣∣∣∣∣
ω=ωgc

.

Assuming that the controller C(s) has neither poles nor zeros in the right half-plane,
it then follows from Bode’s relations (equation (10.9)) that

argPmp(iω) + argC(iω) ≈ ngc
π

2
.

Combining this with equation (14.9) gives the following inequality for the allowable
phase lag of the all-pass part at the gain crossover frequency, which we state as a
theorem.

Theorem 14.4 (Gain crossover frequency inequality). Let P (s) = Pmp(s)Pap(s),
where Pap is an all-pass transfer function containing the non-minimum phase por-
tion of P (s). If C(s) is a stabilizing compensator for the closed loop system with no
right half-plane poles and zeros and with phase margin ϕm, gain crossover frequency
ωgc, and gain crossover slope ngc, then the allowable phase lag for the all-pass trans-
fer function must satisfy the inequality

ϕap := − argPap(iωgc) ≤ π − ϕm + ngc
π

2
:= ϕap. (14.10)

The gain crossover frequency inequality is illustrated in Figure 14.5. The condi-
tion (14.10) requires that the gain crossover frequency must be chosen so that the
phase lag of the all-pass factor is not too large. For systems with high robustness
requirements we may choose a phase margin of 60◦ (ϕm = π/3). To have a reason-
able flexibility in choosing the gain crossover frequency we choose ngc = −1, which
gives an admissible phase lag ϕap = π/6 ≈ 0.52 rad (30◦) for the all-pass compo-
nent. For systems where we can accept a lower robustness we might choose a phase
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margin of 45◦ (ϕm = π/4) and the slope ngc = −1/2, which gives an admissible
phase lag ϕap = π/2 ≈ 1.57 rad (90◦).

The gain crossover frequency inequality (14.10) shows that non-minimum phase
components impose severe restrictions on possible crossover frequencies and that
there are systems that cannot be controlled with sufficient stability margins. We
illustrate the limits in a number of commonly encountered situations.

Example 14.3 Crossover frequency limits for a process with a zero in the
right half-plane
The non-minimum phase part of the process transfer function for a system with a
right half-plane zero is

Pap(s) =
z − s

z + s
,

where z > 0. Notice that we have z− s in the numerator instead of s− z to satisfy
the condition that Pap should have negative phase. The phase lag of the all-pass
factor is

ϕap = − argPap(iω) = 2 arctan
ω

z
.

Let the admissible phase lag of the all-pass factor be ϕap. The inequality (14.10)
then gives the following bound on the crossover frequency:

ωgc ≤ z tan (ϕap/2). (14.11)

With ϕap = π/3 we get ωgc < 0.6 z. We can thus conclude that a right half-plane
zero limits the achievable gain crossover frequency ωgc, and slow right half-plane
zeros (z small) give lower crossover frequency than fast right half-plane zeros. ∇

Processes with zeros in the right half-plane are not uncommon, and they are
often due to inherent consequences of the physics, as in Exercise 14.5, which mod-
els hydroelectric power generation. Another example is the shrink and swell phe-
nomenon in drum level control discussed in Example 3.14. In that example the zero
in the right half-plane is associated with the inverse response characteristic, where
the step response initially moves in the wrong direction. The effect also appears in
product development projects where the cost initially increases during the develop-
ment phase and then hopefully decreases to give profit when the product appears
on the market.

We next consider the case of right half-plane poles.

Example 14.4 Crossover frequency limits for a process with a pole in the
right half-plane
The non-minimum phase part of the transfer function for a system with a pole in
the right half-plane is

Pap(s) =
s+ p

s− p
,

where p > 0. The sign of Pap is dictated by the condition that it should have
negative phase. The phase lag of the non-minimum phase part is

ϕap = − argPap(iω) = 2 arctan
p

ω
,
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Figure 14.6: Illustration of the gain crossover frequency inequality for systems
with a zero and a pole in the right half-plane (a) and systems with a time delay and
a right half-plane pole (b). The figures show the phase lag ϕap of the all-pass factor
Pap as a function of frequency for the systems using equations (14.14) and (14.15).
All systems have a right half-plane pole at p = 1. The systems in (a) have zeros
at z = 2, 5, 20, and 100, and the systems in (b) have time delays τ = 0.02, 0.1,
0.5, and 1.

and the inequality (14.10) gives the following bound on the crossover frequency:

ωgc ≥
p

tan(ϕap/2)
, (14.12)

where ϕap is the maximum admissible phase lag of the all-pass factor Pap. Right
half-plane poles thus require that the closed loop system has a sufficiently high gain
crossover frequency. With ϕap = π/3 we get ωgc > 1.7p. Fast right half-plane poles
(p large) therefore require a larger gain crossover frequency than slower right half-
plane poles. Robust control of unstable systems thus requires that the bandwidths
of the process, the actuators, and the sensors are sufficiently high. ∇
Example 14.5 Phase lag for processes with a right half-plane pole/zero
pair
Consider a system with a right half-plane zero z and a right half-plane pole p. The
transfer function of the process and its all-pass factor are given by

P (s) =
a− z

s− p
, Pap(s) =

(z − s)(s+ p)

(z + s)(s− p)
. (14.13)

The all-pass factor has the phase lag

ϕap = − argPap(iω) = 2 arctan(ω/z) + 2 arctan(p/ω), (14.14)

which is plotted in Figure 14.6a for z/p = 2, 5, 20, and 100.
We will illustrate with some numerical values. If we require that the phase lag

ϕap of the non-minimum phase factor be less than 90◦, we must require that the
ratio z/p be larger than 6 (from Figure 14.6). The pole and the zero must thus be
sufficiently separated (Exercise 14.6). The values of the gain crossover frequency
ωgc are also quite restricted.
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Notice that we cannot apply Theorem 14.4 if p > z because a stabilizing con-
troller must then have a pole in the right half-plane (see Figure 14.1). ∇

Time delays also impose limits similar to those given by zeros in the right half-plane.
For a process with time delay, Pap(s) = eτs. Using the gain crossover frequency
inequality (14.10) we get ωgcτ ≤ ϕap, where τ is the time delay. Time delays are
thus similar to right half-plane zeros because they require that the bandwidth and
the crossover frequencies be sufficiently small.

Example 14.6 Phase lag for processes with a right half-plane pole and
time delay
Consider a system with all-pass factor and phase lag given by

Pap(s) =
s+ p

s− p
e−τs, ϕap = − argPpτ (iω) = ωτ + 2arctan(p/ω). (14.15)

A plot of the phase lag of the all-pass factor is given in Figure 14.6b. The figure
shows that the behavior is similar to a system with a right half-plane pole/zero
pair. The phase lag ϕap has a minimum

√
τ(2− pτ) + 2 arctan

√
pτ/(2− pτ) for

ωτ =
√
pτ(2− pτ) (Exercise 14.7). It follows from equation (14.9) that a system

with a right half-plane pole p and a time delay τ cannot be stabilized by a controller
with no poles and zeros in the right half-plane if pτ ≥ 2. ∇

Systems with a pole/zero pair in the right half-plane are not common. In
Example 14.2 we encountered the X-29 aircraft (Exercise 14.8). The next example
is another illustration.

Example 14.7 Balance system
As an example of a system with both right half-plane poles and zeros, consider the
balance system with zero damping introduced in Example 3.2. The transfer func-
tions from force F to output angle θ and position q were derived in Example 9.11:

HθF (s) =
ml

(MtJt −m2l2)s2 −mglMt
,

HqF (s) =
Jts

2 −mgl

s2
(
(MtJt −m2l2)s2 −mglMt

) .

Assume that we want to stabilize the pendulum by using the cart position as the
measured signal. The transfer function HqF from the input force F to the cart

position q has poles {0, 0,±
√
mglMt/(MtJt −m2l2)} and zeros {±

√
mgl/Jt}. Us-

ing the parameters in Example 7.7, the right half-plane pole is at p = 2.68 and
the zero is at z = 2.09. With the best choice of the gain crossover frequency, it
follows from equation (14.14) that the phase lag of the all-pass component Pap is
166◦, which implies that it is impossible to obtain a reasonable phase margin. The
pole/zero ratio is 1.28, which is far from the value 6 required to control the system
robustly. Using Figure 14.6, we see that the amount of achievable phase margin for
the system is very small if we desire a bandwidth in the range of 2–4 rad/s.

The right half-plane zero of the system can be eliminated by changing the output
of the system. For example, if we choose the output to correspond to a position at
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a distance r along the pendulum, we have y = q − r sin θ and the transfer function
for the linearized output becomes

HyF (s) = HqF (s)− rHθF (s) =
(Jt −mlr)s2 −mgl2

s2
(
(MtJt −m2l2)s2 −mglMt

) .

If we choose r sufficiently large, then mlr − Jt > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary zeros. The gain crossover
frequency is determined by the right half-plane pole p =

√
mglMt/(MtJt −m2l2)

(Example 14.4). If our admissible phase lag for the non-minimum phase part is
ϕl = 45◦, then our gain crossover must satisfy

ωgc ≥
p

tan(ϕl/2)
= 6.48 rad/s.

If the actuators have sufficiently high bandwidth, e.g., a factor of 10 above ωgc or
roughly 10 Hz, then we can provide robust tracking up to this frequency. ∇

14.4 The Maximum Modulus Principle

Significant insight into the fundamental limits imposed by poles and zeros in the
right half-plane and time delays can be obtained with simple calculations by using
the maximum modulus principle.

Theorem 14.5 (Maximummodulus principle). Let Ω ⊂ C be a nonempty, bounded,
open, and connected set in the complex plane and let G : Ω → C be continuous on
the closure of Ω and analytic on Ω. Then

sup
s∈Ω

|G(s)| = sup
s∈∂Ω

|G(s)|.

This theorem can be used to give bounds on transfer functions, such as the
sensitivity functions, by using the Nyquist contour as the boundary of the open
right half-plane. We state this result as a corollary.

Corollary. Let G(s) be a bounded analytic transfer function on the closed, right
half-plane. Then |G(s)| assumes its largest value on the imaginary axis:

max
ω∈R

|G(iω)| = max
Re s≥0

|G(s)|.

To see how this result can be applied, consider the transfer functions

S(s) =
1

1 + P (s)C(s)
, T (s) =

P (s)C(s)

1 + P (s)C(s)
,

and note that S(s) + T (s) = 1. The zeros of the sensitivity function S(s) are
the poles of the process and the controller, and the zeros of the complementary
sensitivity function are the zeros of the process and the controller. We find from
the above equation that S(z) = 1 for zeros z of the process or the controller.
Similarly we have T (p) = 1 for poles p of the poles of the process or the controller.
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Figure 14.7: Gain curves for the transfer functions (a) Sr(s) = Ms s/(s+ a) and
(b) Tr(s) = Mt b/(s+ b), which give requirements for sensitivity and complemen-
tary sensitivity. The dashed curves represent the piecewise linear approximations
to the first-order sensitivity requirements. The plots are drawn for Ms = Mt = 2,
the gain crossover frequencies are denoted by ◦, and the bandwidth defined by
T (ωb) = 1/

√
2 by +.

We can use the maximum modulus principle to obtain requirements on dis-
turbance attenuation and robustness, formulated as conditions on the sensitivity
functions. We will use the following nominal transfer functions to capture our
desired sensitivity requirements:

Sr(s) =
Ms s

s+ a
, Tr(s) =

Mt b

s+ b
. (14.16)

Bode plots of the gain curves of the transfer functions Sr(s) and Tr(s) are shown
in Figure 14.7. We will consider requirements defined by

|S(iω)| ≤ |Sr(iω)|, |T (iω)| ≤ |Tr(iω)|, (14.17)

which guarantee that the maximum sensitivities are less than Ms or Mt. The
sensitivity crossover frequencies of the transfer functions (14.16) and the bandwidth
are given by

ωsc =
a√

M2
s − 1

, ωtc = b
√
M2

t − 1, ωb = b
√

2M2
t − 1. (14.18)

We will now use the maximum modulus principle to investigate the effects of
poles and zeros in the right half-plane, and to establish limits on achievable perfor-
mance.

Example 14.8 Sensitivity limits for a system with a zero in the right
half-plane
Assume that the process P (s) has a zero s = z in the right half-plane and no other
poles and zeros in the right half-plane. The sensitivity function is analytic in the
right half-plane for all controllers that stabilize the system, and equation (14.17)
implies that

max
ω

∣∣∣ S(iω)
Sr(iω)

∣∣∣ ≤ 1. (14.19)

The function S(s)/Sr(s) is analytic in the right half-plane and on the imaginary
axis. If the process has a zero s = z in the right half-plane the sensitivity function
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has the property that S(z) = 1. Applying the maximum modulus principle to the
function S(s)/Sr(s) then gives

max
ω

∣∣∣ S(iω)
Sr(iω)

∣∣∣ ≥
∣∣∣ S(z)
Sr(z)

∣∣∣ = S(z)
z + a

Msz
=
z + a

Msz
.

This inequality is compatible with equation (14.19) only if z + a ≤Msz, hence

a ≤ z (Ms − 1), ωsc ≤ z

√
Ms − 1

Ms + 1
, (14.20)

where the bound on ωsc follows after some algebra. We see that a right half-plane
zero z limits the sensitivity crossover frequency ωsc of the closed loop system and
thus also the range of frequencies over which the sensitivity can be kept small
(compare with Example 14.3). ∇

If we make the calculations for a system with complex zeros s = zre ± i zim, we
obtain the following conditions (Exercise 14.9):

a ≤
√
M2

s z
2
re + (M2

s − 1)z2im − zre,

ωsc =
a√

M2
s − 1

≤
√
M2

s z
2
re + (M2

s − 1)z2im − zre√
M2

s − 1
,

(14.21)

which are equal to equation (14.20) for zim = 0. Robust control of a process with
right half-plane zeros therefore requires that the sensitivity crossover frequency ωsc

is not too high (equations (14.20) and (14.21)). If there are several right half-plane
zeros the limit is given by the smallest bound.

A similar analysis based on the complementary sensitivity function gives the
consequences of right half-plane poles (see Exercise 14.10). We conclude that robust
control in the presence of right half-plane poles requires that the complementary
sensitivity crossover frequency ωtc and the bandwidth ωb are sufficiently large.

Next we will consider the effect of both poles and zeros in the right half-plane. Since
robust control of a process with a right half-plane zero z requires that the sensitivity
crossover frequency (or the bandwidth) is sufficiently low and a right half-plane pole
requires that the sensitivity crossover frequency is sufficiently high, we may expect
that systems with a right half-plane pole/zero pair cannot be controlled robustly if
the poles and zeros are close and we may expect that a system cannot be controlled
at all if p > z. Indeed, it can be shown (Exercise 12.16) that a process cannot be
stabilized by a stable controller if p > z. We will analyze the situation in the next
example.

Example 14.9 Sensitivity limits for processes with poles and zeros in the
right half-plane
Consider a process P (s) with right half-plane zeros zk and right half-plane poles
pk. Introduce the polynomial n(s) with zeros s = zk and the polynomial d(s) with
zeros s = pk. The process transfer function can then be written as

P (s) =
n(s)

d(s)
P̃ (s), (14.22)
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where P̃ (s) has no poles or zeros in the right half-plane. Furthermore we consider
controllers that stabilize the process. The sensitivity function

S(s) =
1

1 + P (s)C(s)
=

d(s)

d(s) + n(s)P̃ (s)C(s)
,

has the zeros s = pk in the right half-plane, and we have S(zk) = 1 for all zeros zk
of the polynomial n(s). Introduce the weighting function

Wp(s) =
d(−s)
d(s)

.

The poles and zeros of this function are symmetric with respect to the imaginary
axis, which implies that |Wp(iω)| = 1. The function Wp(s)S(s) is analytic in the
right half-plane, since the polynomial d(s) is canceled and d(−s) has all its roots in
the left half-plane. Since S(zk) = 1, it follows from the maximum modulus principle
that

Ms = max
ω

|S(iω)| = max
ω

|Wp(iω)S(iω)| ≥ |Wp(zk)S(zk)| =
∣∣∣d(−zk)
d(zk)

∣∣∣, (14.23)

which implies

Ms ≥ max
k

∣∣∣d(−zk)
d(zk)

∣∣∣. (14.24)

For a system with a pole/zero pair in the right half-plane we have n(s) = s− z and
d(s) = s− p. Since there is only one zero equation (14.24) becomes

Ms ≥
∣∣∣z + p

z − p

∣∣∣, (14.25)

which implies that

z

p
≥ Ms + 1

Ms − 1
if z > p or

z

p
≤ Ms − 1

Ms + 1
if z < p. (14.26)

∇
To find controllers with a maximum sensitivity less than Ms for a process with

a right half-plane pole/zero pair, it follows from equation (14.26) that the pole and
zero must be sufficiently separated. The zero/pole ratio must either be smaller than
(Ms − 1)/(Ms +1) or larger than (Ms +1)/(Ms − 1). For Ms = 3 the critical ratios
are 0.5 and 2 and for Ms = 1.4 they are 1/6 and 6.

A calculation similar to the one in Example 14.9 for the complementary sensi-
tivity gives (Exercise 14.11)

Mt ≥ max
k

∣∣∣n(−pk)
n(pk)

∣∣∣. (14.27)

In the special case of a single pole/zero pair the condition becomes

Mt ≥
∣∣∣z + p

z − p

∣∣∣ =⇒ z

p
≥ Mt + 1

Mt − 1
or

z

p
≤ Mt − 1

Mt + 1
. (14.28)

We illustrate the results with an example.
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(a) Unrideable bicycle (b) Rideable bicycle

Figure 14.8: Two bicycles with rear wheel steering: (a) is unrideable and (b) is

rideable. Figures courtesy of Richard Klein [ÅKL05].

Example 14.10 Bicycle with rear-wheel steering
Figure 14.8 shows two bicycles with rear wheel steering. Bicycle dynamics were
discussed in Section 4.2, where the following model was obtained:

J
d2ϕ

dt2
− Dv0

b

dδ

dt
= mgh sinϕ+

mv20h

b
δ.

The wheelbase is b, the mass of the bicycle and the driver is m, and the distance
from the center of mass to ground is h. Furthermore, J is the moment of inertia with
respect to the line through the contact points of the wheels with the ground and
D is the inertia product. We have J ≈ mh2 and D ≈ mah, where a is the distance
between the projection of the center of mass on the ground and the contact point
of the driving wheel. The model for a bicycle with rear wheel steering is obtained
simply by reversing the sign of the velocity and we get

mh2
d2ϕ

dt2
+
mhav0
b

dδ

dt
= mgh sinϕ+

mv20h

b
δ.

The transfer function from steering angle δ to tilt angle ϕ is

Pϕδ =
−av0s+ v20
b(hs2 − g)

=
av0
bh

−s+ v0/a

s2 − g/h
.

The transfer function has a right half-plane pole p =
√
g/h and a right half-plane

zero at z = v0/a. The condition (14.26) then gives

z

p
=
v0
a

√
h

g
≥ Ms + 1

Ms − 1
=⇒ v0 ≥ a

√
g

h

Ms + 1

Ms − 1
.

The unstable pole p =
√
g/h does not depend on the velocity but the right half-

plane zero z = v0/a is proportional to the velocity. To ride the bicycle comfortably
the velocity must therefore be sufficiently large. Evaluating the parameters for the
bicycles in Figure 14.8 with Ms = 2 we find v0 ≥ 9.4 m/s (34 km/h) for the bicycle
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Table 14.1: Summary of limits by time delays and right half-plane (RHP) poles
and zeros; ωsc and ωtc are the crossover frequencies for the sensitivity function and
the complementary sensitivity function.

Process feature Limits

Real RHP zero z ωsc ≤ z

√

Ms − 1

Ms + 1

Complex RHP zeros z = zre ± izim ωsc ≤
√

M2
s z2re + (M2

s − 1)z2im − zre√
M2

s − 1

Real RHP pole p ωtc ≥ p

√

Mt + 1

Mt − 1

Complex RHP poles p = pre ± ipim ωtc ≥
√

M2
t p

2
re + (M2

t − 1)p2im + pre
√

M2
t − 1

RHP pole/zero pair p, z Ms ≥
∣

∣

∣

p+ z

p− z

∣

∣

∣
, Mt ≥

∣

∣

∣

p+ z

p− z

∣

∣

∣

RHP poles and zeros d(s), n(s) Ms ≥ maxk

∣

∣

∣

d(−zk)

d(zk)

∣

∣

∣
, Mt ≥ maxk

∣

∣

∣

n(−pk)

n(pk)

∣

∣

∣

RHP pole p and time delay τ Mt ≥ epτ , Ms ≥ epτ − 1

in Figure 14.8a and v0 ≥ 1.2 m/s (3.8 km/h) for the bicycle in Figure 14.8b. The
bicycle in Figure 14.8a has indeed proven to be unrideable, while the bicycle in
Figure 14.8b is rideable [Kle89]. ∇

In view of the robustness results for systems with a single right half-plane pole
or single right half-plane zero, it is perhaps surprising that processes with p > z
can actually be controlled robustly. This is in fact possible, though it requires
more clever design techniques. A detailed discussion of stabilizability is given by
Youla [YBL74], where it is proven that a system with right half-plane poles and
zeros can be stabilized with a stable controller if and only if the number of poles
between every pair of right half-plane zeros is even (Theorem 14.2).

We have focused here on the effects of right half-plane poles and zeros. Another
common source of limits is the existence of time delays. The limits imposed by a
time delay and a right half-plane pole are similar to the limits by a right half-plane
pole/zero pair. A list of various limits are summarized in Table 14.1.

14.5 Robust Pole Placement

When using any design method that does not include requirements on robustness
it is necessary to check the robustness of the design. In Section 7.2 we used state
feedback to assign the eigenvalues of the closed loop system and showed that if a
system is reachable then the eigenvalues of the closed loop system can be set to
arbitrary values. This design technique is also called “pole placement” and in this
section we will show that the insights into the roles of poles and zeros can give
us a deeper understanding of how to design such controllers. In particular we will
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show that it is necessary to take the process zeros into account when choosing the
desired closed loop poles. We will first analyze examples where seemingly reasonable
designs lead to closed loop systems that are not robust. We will then present design
rules for pole (eigenvalue) placement that guarantee that the closed loop system is
robust.

Fast Stable Process Poles

A pole is stable if it is in the left half-plane and unstable if it is in the right
half-plane. We call it “fast” if its magnitude is larger than the intended closed
loop bandwidth. We will explore the effects of fast stable process poles on pole
placement design through a simple example that illustrates the basic design rule.

Example 14.11 Robust pole placement for fast process poles
Consider a PI controller for a first-order system, where the process and the controller
have the transfer functions P (s) = b/(s + a), with a > 0, and C(s) = kp + ki/s.
The loop transfer function is

L(s) =
b(kps+ ki)

s(s+ a)
,

and the closed loop characteristic polynomial is

s(s+ a) + b(kps+ ki) = s2 + (a+ bkp)s+ kib.

If we specify that the desired closed loop poles should be −p1 and −p2, we find
that the controller parameters are given by

kp =
p1 + p2 − a

b
, ki =

p1p2
b
.

The sensitivity functions are then

S(s) =
s(s+ a)

(s+ p1)(s+ p2)
, T (s) =

(p1 + p2 − a)s+ p1p2
(s+ p1)(s+ p2)

.

Assume that the process pole a is faster than the closed loop poles p1 < p2 < a. The
proportional gain kp is then negative and the controller has a zero in the right half-
plane, an indication that the system may have bad properties. Consider the gain
|S(iω)| of the sensitivity function plotted in Figure 14.9a for a = b = 1, p1 = 0.05,
and p2 = 0.2. We have S(iω) ≈ 1 for high frequencies. Moving backwards in
frequency we find that the sensitivity increases around ω = a corresponding to the
fast process pole. The sensitivity continues to increase with decreasing frequency
and it does not decrease until the frequency is below the closed loop pole p2. The
net effect is a large sensitivity peak, approximately ω = a/

√
p1p2 ≈ 10.

The problem with poor robustness can be avoided by choosing one closed loop
pole equal to the process pole, i.e., p2 = a. The controller gains then become

kp =
p1
b
, ki =

ap1
b
,
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Figure 14.9: Gain curves of the sensitivity function S for designs in Exam-
ple 14.11. The solid lines are the true sensitivities, and the dashed lines are the
asymptotes. Notice the high peak of the sensitivity function in (a) and that there
is no peak in (b).

which means that the fast process pole is canceled by a controller zero at s = −a.
The loop transfer function and the sensitivity functions are

L(s) =
bkp
s
, S(s) =

s

s+ bkp
, T (s) =

bkp
s+ bkp

.

Figure 14.9b shows the gain curve of the sensitivity function for the case when the
closed loop poles (p1 = 5, p2 = 20) are faster than the process pole (a = 1). There
is no peak of the sensitivity function in this case. ∇

Slow Stable Process Zeros

We call a zero “stable” if it is in the left half-plane and “unstable” if it is in the
right half-plane. Furthermore a zero is said to be “slow” if its magnitude is smaller
than the intended closed loop bandwidth. We will explore the effects of slow stable
process zeros in pole placement design, and we begin with a simple example.

Example 14.12 Vehicle steering
Consider the model for vehicle steering in Example 9.10, where the transfer function
from steering angle to lateral position is

P (s) =
γs+ 1

s2
= γ

s+ 1/γ

s2
.

A controller based on state feedback was designed in Example 7.4, and state feed-
back was combined with an observer in Example 8.4. The system simulated in
Figure 8.8 has closed loop poles specified by ωc = 0.7, ζc = 0.707, ωo = 1, and
ζo = 0.707. Assume that we want a faster closed loop system and choose ωc = 10,
ζc = 0.707, ωo = 20, and ζo = 0.707. Using the state representation in Example 8.3,
a pole placement design gives state feedback gains k1 = 100 and k2 = −35.86 and
observer gains l1 = 28.28 and l2 = 400. The controller transfer function is

C(s) =
−11516s+ 40000

s2 + 42.4s+ 6657.9
. (14.29)

Figure 14.10 shows Nyquist and Bode plots of the loop transfer function.
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Figure 14.10: Observer-based control of vehicle steering. Nyquist and Bode plots
of the loop transfer function for vehicle steering with a controller based on state
feedback and an observer. The controller provides stable operation, but with very
poor robustness.

The Nyquist plot indicates that the robustness is poor since the loop transfer
function is very close to the critical point −1. The phase margin is 7◦ and the
gain margin is gm = 1.08, which means that the system becomes unstable if the
gain is increased by 8%. The poor robustness also shows up in the Bode plot,
where the gain curve hovers around the value 1 while the phase curve is close
to −180◦ for a wide frequency range (3-40 rad/s). Additional insight is obtained
by analyzing the sensitivity functions, shown as solid lines in Figure 14.11. The
maximum sensitivities are Ms = 13 and Mt = 12.

It is surprising that the closed loop is so sensitive to process variations when we
have designed a controller so that the closed loop system has well-damped closed
loop poles. We have an indication that something is unusual because the design
gives a controller that has a zero in the right half-plane at s = 3.5, while the
observer and controller have complex poles with ωc = 10 and ωo = 20. Recall the
results from Example 14.3, which indicate that robust control of a process with a
zero at s = 3.5 cannot have a gain crossover frequency larger than ωgc = 2.

To understand what happens, we will investigate the reason for the peaks of the
sensitivity functions. Let the transfer functions of the process and the controller be

P (s) =
np(s)

dp(s)
, C(s) =

nc(s)

dc(s)
, (14.30)

where np(s), nc(s), dp(s), and dc(s) are the numerator and denominator polyno-
mials. The complementary sensitivity function is

T (s) =
P (s)C(s)

1 + P (s)C(s)
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)
.

The poles of T (s) are the poles of the closed loop system and the zeros of T (s) are
the zeros of the process and the controller transfer functions. A plot of the gain
curve of T (s) for the original controller is shown as the solid line in the lower right
plot in Figure 14.11. We have T (0) = 1, because L(0) = P (0)C(0) = ∞ due to
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Figure 14.11: Gain curves of the sensitivity functions for systems with observer-
based control of vehicle steering. The original controller with ωc = 10, ζc = 0.707,
ωo = 20, ζo = 0.707 is shown as solid lines and the improved controller with
ωc = 10, ζc = 2.6 is shown as dashed lines.

the double integrator of P . The gain |T (iω)| increases for increasing ω due to the
process zero at ω = 2. It increases further at the controller zero at ω = 3.5, and it
does not start to decrease until the closed loop poles appear at ω = 10 and ω = 20.
The net result is a high peak of the gain of the complementary sensitivity function.

The peak in the complementary sensitivity function can be avoided by assigning
a closed loop pole at the slow process zero or close to it. We can achieve this by
choosing ωc = 10 and ζc = 2.6, which gives closed loop poles at s = −2 and
s = −50. The controller transfer function then becomes

C(s) =
3628s+ 40000

s2 + 80.28s+ 156.56
= 3628

s+ 11.02

(s+ 2)(s+ 78.28)
. (14.31)

Notice that the new controller has a pole at s = −2 that cancels the process
zero. Also notice the large differences in the zero frequency gains of the controllers
C(0) = 6.0 for the controller (14.29) and C(0) = 255 for the controller (14.31).
Cancellation of the slow zero gives a dramatic increase of the low-frequency gain
of the controller. The gain curves for the sensitivity function of the improved
controller are shown with dashed lines in Figure 14.11. The closed loop system
has the maximum sensitivities Ms = 1.34 and Mt = 1.41, which indicate good
robustness.

This example shows that a robust design can be obtained by first canceling
the slow stable process zero, designing the controller for the system without the
zero, and then adding the pole to the controller. Notice that the plot of |PS(iω)|
shows that the improved system has much better disturbance attenuation and the
plot of |CS(iω)| shows that it is not as sensitive to measurement noise. The large
differences in low-frequency gains of the controllers are clearly visible in the gain
curves for S and PS. ∇

We can learn several things from this example. First, it is essential to evaluate
the closed loop system carefully, for example by plotting the gain curves of the
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Gang of Four. We have also seen that seemingly reasonable design methods do not
necessarily give robust closed loop systems. For designs based on pole placement it
is necessary to consider the open loop poles and zeros when specifying the desired
closed loop dynamics, and in particular robustness requires that there must be
closed loop poles that are equal to or close to slow stable process zeros. Another
lesson is that slow unstable process zeros impose limits on the achievable bandwidth,
as already noted in Section 14.4.

One potential issue with the choice of controller poles and zeros that exactly
cancel the open loop poles and zeros is that they may lead to undesirable dynamics
or lack of robustness (if there are model uncertainties). We address this important
issue in more detail below.

Design Rules for Robust Pole Placement

Based on the insight gained from the previous examples, we can now formulate
design rules that give controllers with good robustness for pole placement design.
Consider the expression (13.12) for maximum complementary sensitivity, repeated
here:

Mt = sup
ω

|T (iω)| =
∥∥∥ PC

1 + PC

∥∥∥
∞
.

Let ωgc be the desired gain crossover frequency, and assume that the process has
zeros that are slower than ωgc. The complementary sensitivity function is 1 for low
frequencies, and it increases for frequencies close to the process zeros unless there
is a closed loop pole in the neighborhood (as seen, for instance, in Figure 14.11
of the previous example). To avoid large values of the complementary sensitivity
function we find that the closed loop system should therefore have poles close to or
equal to the slow stable zeros. This means that slow stable zeros should be canceled
by controller poles. Since unstable zeros cannot be canceled, the presence of slow
unstable zeros means that achievable gain crossover frequency must be smaller than
the slowest unstable process zero.

Now consider process poles that are faster than the desired gain crossover fre-
quency. Consider the expression for the maximum of the sensitivity function:

Ms = sup
ω

|S(iω)| =
∥∥∥ 1

1 + PC

∥∥∥
∞
.

The sensitivity function is 1 for high frequencies. Moving from high to low frequen-
cies, the sensitivity function increases at the fast process poles. The sensitivity
function will have large peaks unless there are closed loop poles that are close to
the fast process poles. To avoid large peaks in the sensitivity, the closed loop system
should therefore have poles close the fast process poles. One way to achieve this is
to have controller zeros close to the fast process pole. Since unstable modes cannot
be canceled, the presence of a fast unstable pole implies that the gain crossover fre-
quency must be sufficiently large, as was discussed in Section 14.3 (Example 14.4).

To summarize, we obtain the following simple rules for choosing closed loop
poles: slow stable process zeros should be matched by slow closed loop poles, and
fast stable process poles should be matched by fast closed loop poles. Slow unstable
process zeros and fast unstable process poles impose severe limits.
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14.6 Nonlinear Effects

Although we focus primarily on linear systems in this chapter, there are some
nonlinearities that must be considered when designing a control system. Limits
on actuation power set bounds on response speed. Nonlinearities due to friction,
round-off error in A/D and D/A converters, and numerical representations in com-
putation bound the precision that can be obtained in regulation and tracking. We
briefly describe some of the effects of these limits here, illustrated primarily through
examples.

Actuation Limits

Many limits are associated with constraints on how large signals and variables can
be. Motors have limited torque, amplifiers have limits on currents, and pumps have
limited flow. There are also limits due to equipment protection: the temperature
of a component must not be too high and compressor stall must be avoided, for
example. Limits may appear as restrictions on the amplitude and the rate of change
of the control signal. There may also be restrictions on internal process variables
and their rates.

A real-world example of the consequences of actuator limits is the grounding
of a Swedish passenger ferry in 2004. The ferry was grounded while entering the
port of Ume̊a due to high winds (20 m/s). The incident analysis revealed that the
wind forces of 600 kN and higher were much larger than the forces generated by
the ship’s propellers and rudder, and even assistance from a tugboat capable of
applying 260 kN of thrust could not have helped. In the setting of control systems,
this example illustrates a situation where actuators do not have the sufficient power
to counteract the load disturbances.

The following simple analytical example demonstrates how these types of con-
siderations can be taken into account in the design stage of a project.

Example 14.13 Current limits in servo systems
Response time is a common requirement for motor drives. The achievable response
time depends critically on actuation power and physical limits of the process. To
determine the response time we can compute the minimum time to make transitions
from one state to the other, subject to the physical constraints on the process and
the actuator.

Consider a simple servo system where the actuator is a current-driven voice coil.
The system can be modeled by

m
d2x

dt2
= F = kII, (14.32)

where m is the mass of the system, x is the position of the mass, F is the force, I
is the current through the voice coil, and kI is the motor constant. The maximum
acceleration amax = Fmax/m = kIImax/m is given by the maximum current Imax.
There is also a limit on the maximum velocity: for a voice coil drive the maximum
velocity is vmax = Vmax/kI , where Vmax is the largest supply voltage.

If there is no limit on the velocity, the problem of moving the mass from one
position to another in minimum time is simply to apply maximum acceleration until
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Figure 14.12: Minimum time transition for a servo system. (a) The case of short
movements when the velocity does not reach the saturation limit. The control
is of the “bang-bang” type where maximum current is applied to accelerate or
brake. (b) Illustration of what happens for large motions. Full acceleration amax =
500 m/s2 is applied until t = 5 ms when maximum velocity vmax = 2 m/s is reached
and the drive circuit saturates. The current is then zero until time t = 10 ms
when full braking current is applied. The parameter values are m = 2.5× 10−3 kg,
kI = 2.5 N/A = 2.5 Vs/m, Imax = 0.5 A, and Vmax = 5 V.

the mid position is reached and then apply maximum deceleration, so-called “bang-
bang” control. If there is a velocity limit, the maximum acceleration is only applied
until the maximum velocity is reached. The minimum time solutions are illustrated
in Figure 14.12. When the acceleration a is constant, the velocity increases as v(t) =
at and the position is x(t) = at2/2 = v2(t)/(2a). A straightforward calculation
shows that the minimum time for a transition over a distance ℓ with zero velocity
at start and end is

t =

{
2
√
ℓ/amax if ℓ ≤ v2max/amax,

ℓ/vmax + vmax/amax if ℓ > v2max/amax.
(14.33)

We can derive requirements on the actuator from this equation. ∇

This simple example can be solved analytically. Software for computing mini-
mum time control is readily available for more complex systems.

Saturation limits can also affect the stability of a feedback system. We saw in
Section 10.5 two different methods for reasoning about the effects of (static) non-
linearities in a feedback system: the circle criterion and describing functions. Both
of these techniques use the Nyquist plot as a means of analyzing the effects of the
nonlinearity on closed loop stability. In the particular case of actuation limits, the
circle criterion allows the saturation to be modeled as a sector-bounded nonlinear-
ity with klow = 0 and khigh = 1, which implies that the system is stable if the
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Nyquist curve for the linear dynamics has ReH(s) > −1. The describing function
method is slightly less constraining, since the image of the describing function for a
saturation nonlinearity is given by the negative real axis from −∞ to −1, and hence
the Nyquist curve for H(s) should not cross the negative real axis at a gain greater
than one. (Note that the describing function method is only an approximation,
although it is often a very useful for preliminary design.)

Measurement Noise and Friction

There are many sources of measurement noise: the physics of the sensor, the elec-
tronics, the transmission equipment, and the A/D and D/A converters. The con-
troller in a closed loop system feeds measurement noise into the system, creating
fluctuations in all variables. Fluctuations in the output limits regulation and track-
ing performance. Fluctuations in the control signal causes wear or even saturation
of the actuator, and cannot be permitted to be too large. Since measurement noise
is typically dominated by high frequencies, it limits the high-frequency gain of the
controller, the bandwidth, and thus the response time of the closed loop system.

The effects of measurement noise and quantization can be estimated using linear
methods by calculating the transfer function from the noise sources to the control
signal and the process variables, and they can be alleviated by filtering and a
controller with high-frequency roll-off. Quantization can be approximated as noise
with a variance of δ2/12, where δ is the quantization level.

Friction typically generates oscillations that limit regulation and tracking per-
formance. Similar oscillations can be caused by quantization. Oscillations can
be reduced by nonlinear friction compensation. Friction is inherently a nonlinear
phenomenon, and accurate analysis requires nonlinear methods. Some insight can
be obtained using the describing function method discussed in Section 10.5. We
illustrate with an example.

Example 14.14 Effect of friction in a cart–pendulum system
The cart-pendulum or balance system was introduced in Example 3.2 and we de-
signed a state feedback for it in Example 7.7. Experiments with cart–pendulum
systems have shown that friction on the cart creates oscillations. To explore this
we will investigate the effects of friction by simulation and analysis.

A block diagram of a balance system with friction is shown in Figure 14.13a. To
simulate the system we use Coulomb’s model for friction, where the friction force
is F is given by

F = −µfMtg sgn(v), (14.34)

where µf = 0.001 is the coefficient for rolling friction, Mt is the total mass, g is the
acceleration due to gravity, and v is the cart velocity. We use the parameter values
from Example 3.2, and the controller is the state space feedback in Example 7.7
with the slower closed loop poles. Results of a simulation of the system are shown
in Figure 14.14a. The upper plots in the figure show the cart position q (left) and
the pendulum angle θ (right), and the lower plots show the cart velocity v = q̇ (left)
and the angular velocity of the pendulum θ̇ (right). The plots show clearly that
there are oscillations with period Tp = 37 s. The oscillation of the cart velocity has
amplitude A ≈ 0.52 m/s. The waveforms of the oscillations are far from sinusoidal,
as can be seen in the plots on the right in Figure 14.14a.



14.6. NONLINEAR EFFECTS 14-29

u
Σ

q, θ, θ̇

F

Friction

Balance

System

v = q̇

State

Feedback

(a) Balance system with state feedback

v

G(s)

F

Friction

(b) Transformed diagram

Figure 14.13: Block diagrams of a balance system with state feedback and fric-
tion. (a) Detailed block diagram showing the balance system with inputs u and
F and outputs q, θ, v = q̇, θ̇. (b) Block diagram obtained after transformations.
It has two blocks: the nonlinear friction block a linear block with the transfer
function G(s) from friction force F to velocity v.

We can make a simple physical argument to understand how friction may cause
oscillation. The pendulum is unstable and will start to fall for any perturbation.
The control law then attempts to stabilize the system by applying a force to the
cart, but the cart will remain stationary until the pendulum has fallen so much
that the control signal is large enough to generate a force that is larger than the
friction force. The cart then moves, causing the pendulum to move towards the
upright position. The process will repeat itself creating an oscillation.

We will now use the describing function method, introduced in Section 10.5,
to understand the behavior of the system. To do this we first use block diagram
algebra to reduce Figure 14.13a to the two-block system in Figure 14.13b. One block
represents the nonlinear friction model (14.34), which has the describing function

N(a) =
4µfMtg

aπ
, (14.35)

where a is the amplitude of the input (cart velocity). The other block in Fig-
ure 14.13b represents the linear closed loop dynamics from friction force F to cart
velocity v, when friction is not present. The transfer function can be computed
from the state space representation of the closed loop dynamics

d

dt
x = (A−BK)x+BF, v =


0 0 1 0


x,

where x = (q, θ, q̇, θ̇), A, B, and K are given in Example 7.7. The resulting transfer
function is given by

G(s) =
0.01837s3 − 0.08s

s4 + 1.046s3 + 0.9109s2 + 0.2552s+ 0.03781
, (14.36)

where the numerical values are based on the parameter values from Example 7.7.
Figure 14.14b shows a Nyquist plot of the transfer function G (solid line) and the

negative inverse −1/N(a) of the describing function (dashed line). Recall that the
condition for oscillation is G(iω)N(a) = −1, which corresponds to an intersection
of the solid and dashed lines in the figure. The intersection occurs for ω = 0.21, and
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Figure 14.14: Time and frequency responses of the cart-pendulum system. (a)
Time responses when the pendulum has an initial misalignment. (b) Frequency
response of the transfer function G(s) (solid line), given by (14.36), and the locus
of the negative inverse −1/N(a) (dashed line) of the describing function N(a) for
friction, given by equation (14.35).

1/N(a) = 0.39. The describing function method then indicates that there may be an
oscillation with period Tp = 2π/0.21 = 30 s and amplitude a = 4×0.39µfMt g/π =
0.43 m/s. Notice that the describing function method assumes that the velocity
variation is sinusoidal, which explains the difference from the values T = 37 s and
a = 0.52 m/s obtained by simulation. ∇

14.7 Further Reading

The limitations caused by right half-plane poles and zeros were well known by
Bode, who coined the term non-minimum phase to emphasize that such systems
had much more phase lag than the equivalent minimum phase systems [Bod45].
The paper [Ste03], which is based on the inaugural IEEE Bode Lecture gives im-
portant insights into the effects of unstable poles and is strongly recommended.
Horowitz [Hor63] also discussed the limits caused by poles and zeros in the right
half-plane. The section on the maximum modulus theorem is based on [RÅ15];
more details are found in [GGS01, SP05]. The section on loop shaping design
is based on [Åst00]. The design rules for pole placement are not widely known.
The effects of actuator limits are conveniently explored using optimal control the-
ory [AF66, BH75], which permits solution of problems that are much more compli-
cated than the one in Figure 14.12.

Exercises

14.1 (Right half-plane pole/zero pair PI control) Consider a process with the trans-
fer function

P (s) =
s− z

s− p
.
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(a) Show that the system can be controlled by a PI controller and design a PI

controller that gives a closed loop system with poles at s = −ζω0 ± ω0

√
1− ζ2.

(b) Calculate the maximum sensitivity of the closed loop system as a function of
ω0 and compare with the bound imposed by the right half-plane poles and zeros of
the system. Discuss the differences between the cases z > p and z < p.

(c) Plot the root locus of the process with the PI controller and qualitatively de-
scribe how it changes with the process pole and the process zero. Use the numerical
values ω0 = 1, ζ = 1; p = 1, z = 5; and p = 5, z = 1.

14.2 (Effect of roll-off) Consider a closed loop system consisting of a first-order
process and a proportional controller. Let the loop transfer function be

L(s) = P (s)C(s) =
k

s+ 1
,

where parameter k > 0 is the controller gain. Show that the magnitude of the
sensitivity function is bounded above by 1 and can be made arbitrarily small up to
any frequency ω.

14.3 (Bode’s integral formula) In Theorem 14.3 it was assumed that sL(s) goes to
zero as s→ ∞. Assume instead that lim sL(s) = a and show that

∫ ∞

0

log |S(iω)| dω =

∫ ∞

0

log
1

|1 + L(iω)| dω = π
∑

pk − a
π

2
,

where pk are the poles of the loop transfer function L(s) in the right half-plane.

14.4 (Integral formula for complementary sensitivity) Prove the formula (14.6) for �
the complementary sensitivity.

14.5 (Water turbine dynamics) Consider the problem of power generation in a
hydroelectric power station. Let the control signal be the opening area a at the
turbine entrance and ℓ be the length of the tube, which has area A. Formulate
a mathematical model for the system, then linearize the model around a nominal
valve opening u0 = a/A and a nominal power P0. Show that the linearization is
non-minimum phase, with transfer function

G(s) =
P0

a0

1− 2u0sτ

1 + u0sτ
,

where τ = ℓ/
√
2gh and g is the acceleration due to gravity.

14.6 (The pole/zero ratio) Consider a process with the loop transfer function

L(s) = k
z − s

s− p
,

with positive z and p. Show that the system is stable if p/z < k < 1 or 1 < k < p/z
and that the largest stability margin is sm = |p − z|/(p + z), which is obtained
for k = 2p/(p + z). Determine the pole/zero ratios that give the stability margin
sm = 2/3.
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14.7 (Phase lag of systems with right half-plane pole/zero pair and delay and right
half-plane pole) Consider the transfer functions for a process with a right half-plane
pole and right half-plane zero as in Example 14.5 and a right half-plane pole and a
time delay as in Example 14.6. The phase lags of their all-pass factors are given in
equations (14.14) and (14.15). Show that the largest phase lags are

ϕap1 = − argPpz(iω) ≤ 2 arctan
(
2
√
pz/|z − p|

)
,

ϕap2 = − argPpτ (iω) ≤
√
pτ(2− pτ) + 2 arctan

√
pτ/(2p− pτ)

and that they occur for ω1 =
√
pz and ω2 =

√
2p/τ − p2 respectively.

14.8 (X-29) A simplified model of the X-29 aircraft in a certain flight condition
has a right-hand pole/zero pair with p = 6 rad/s and z = 26 rad/s. Estimate the
achievable stability margins and compare with the results in Example 14.2.

14.9 (Sensitivity inequalities) Prove the inequalities given by equation (14.21). �
(Hint: Use the maximum modulus theorem.)

14.10 (Sensitivity limits due to poles in the right half-plane) Let Tr = Mt b/(s +
b) represent an upper bound on the desired sensitivity and let ωtc represent the
complementary sensitivity crossover frequency. Show that for a process P (s) with
a right half-plane pole s = p but no other singularities in the right half-plane, the
following inequalities hold:

b ≥ pre +
√
M2

t p
2
re + (M2

t − 1)p2im
M2

t − 1
, ωtc ≤

pre +
√
M2

t p
2
re + (M2

t − 1)p2im√
M2

t − 1
,

(14.37)
where p = pre + ipim.

14.11 (Maximum complementary sensitivity for multiple right half-plane poles and
zeros) Consider a process P (s) with the right half-plane zeros zk and right half- �
plane poles pk. Introduce the polynomial n(s) with zeros s = zk and the polynomial
d(s) with zeros s = pk. Show that the complementary sensitivity function has the
property

Mt ≥ max
k

∣∣∣n(−pk)
n(pk)

∣∣∣.

Also show that the equations (14.28) hold.

14.12 (Vehicle steering) Consider the Nyquist curve in Figure 14.10. Explain why
part of the curve is approximately a circle. Derive a formula for the center and the
radius and compare with the actual Nyquist curve.

14.13 Consider a process with the transfer function

P (s) =
(s+ 3)(s+ 200)

(s+ 1)(s2 + 10s+ 40)(s+ 40)
.

Discuss suitable choices of closed loop poles for a design that gives dominant poles
with undamped natural frequency 1 and 10.

14.14 (Large signals) Verify Figure 14.12 by hand calculation.
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14.15 (Noise limits bandwidth) Consider PI control of an integrator, where the
transfer functions of the process and the controller are

P (s) =
1

s
, C(s) = kp +

ki
s
,

with kp = 2ζω0, ki = ω2
0 , and ζ = 0.707. Assume that the inputs and outputs

range from 0 to 10, that there is measurement noise with a standard deviation of
0.01, and that the largest permissible variation in the control signal due to noise is
2. Show that the bandwidth, defined as ωbw = 2ω0, cannot be larger than 283.
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Chapter 15

Architecture and System
Design

The architect’s two most important tools are the eraser in the drafting
room and the wrecking bar on the site.

Frank Lloyd Wright [Jac65].

In this chapter we place the relatively simple feedback loops that have been
the focus of the previous chapters in the context of overall system design. We
outline a typical design process and discuss the role of architecture and how it
can be approached from top-down and bottom-up perspectives. Interaction and
adaptation are then reviewed and the chapter ends with a brief overview of control
design in some major industrial fields.

15.1 Introduction

So far we have dealt with relatively simple feedback systems. We will now give a
glimpse of how they appear as components in real-world systems and how they are
designed. All control systems have sensors, actuators, communications, computers,
and operator interfaces, but they can have dramatically different sizes and shapes
and very different user communities. It is surprising that such a variety of systems
can be analyzed and designed using the same engineering framework.

The system to be controlled is often designed before control is considered. There
are, however, significant advantages to designing a process and its control system
jointly, so-called co-design. Care can be taken to ensure that the system is easy to
control, for example by avoiding non-minimum phase dynamics. Time delays can
be avoided by proper positioning of sensing and actuation. Use of feedback gives
an extra degree of freedom to the designer; an extreme example is that a system
can be made more maneuverable by making it unstable and then stabilizing it with
a controller. The system itself and its physical and operational environment are
key elements together with requirements, analysis, and testing.

Architecture, from the Greek word αρχιτǫκτων (αρχι chief and τǫκτων builder,
carpenter, mason), is the process of planning, designing, and constructing buildings

15-1
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and other objects. It is also used to describe the structure of practically anything.
In the context of control systems, the elements consist of the process, sensors, actu-
ators, computers, communication devices, human machine interfaces, algorithms,
and software. The control system interacts with the operational environment, it
observes the process by sensors, and it interacts with the process through actua-
tors and with the users through a range of interfaces. Architecture describes how
the system components are connected and how they interact. There is a growing
awareness that architecture is important in all engineering fields and today we have
software, hardware, and systems architects.

15.2 System and Control Design

System design starts by developing an understanding of the system and its environ-
ment. It includes analysis of static and dynamic properties of the physical system
and its sensors and actuators, bounds for safe operation, and characterization of
the nature of the disturbances and the users of the system. There are a wide range
of problems. Sometimes the process is given a priori and the task is to design
a controller for a given process. In other cases the process and the controller are
designed jointly. Co-design has many advantages because performance could be op-
timized. Sometimes it is an enabler, as was illustrated by the Wright Flyer, which
was discussed in Section 1.5. We quote from the 43rd Wilbur Wright Memorial
Lecture by Charles Stark Draper [Dra55]:

The Wright Brothers rejected the principle that aircraft should be made
inherently so stable that the human pilot would only have to steer the
vehicle, playing no part in stabilization. Instead they deliberately made
their airplane with negative stability and depended on the human pilot
to operate the movable surface controls so that the flying system—pilot
and machine—would be stable. This resulted in increased maneuver-
ability and controllability.

If the stabilization of an unstable airframe is done by an automatic control system,
there are very strong requirements on the reliability of the control system. Design
of the X-29, which was discussed in Example 14.2, is a similar case. A more recent
example, which deals with difficulties caused by insufficient actuator authority, is
presented in [EHBM08]. It was attempted to reduce the risk for rotating stall in a jet
engine by feedback, but actuators with the required bandwidth were not available.
Analysis showed that the problem could instead be alleviated by introducing small
asymmetries in the turbine.

Figure 15.1 shows a typical design process and the costs of correcting faults
at different stages in the process. Notice the significant value in correcting faults
early. Design of complex systems is a major effort where many people and groups
are involved. A variety to methods have been developed for efficient design. The
so-called V-model, dating back to NASA’s Apollo program, is a design pattern for
both hardware and software [SC92]. It appears in many different forms: one version
is part of the official project management methodology of software for the German
government [Ano92].

One example of the design V is shown at the top of Figure 15.2. The left
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(a) Design Flow (b) Costs

Figure 15.1: Engineering design process. A typical design cycle is shown in
(a) and (b) illustrates the costs of correcting faults or making design changes at
different stages in the design process.

leg of the V illustrates the design process starting with requirements and ending
with system, module and component design. The right leg of the V represents the
implementation starting with the components and ending with the finished process
and its validation. There are many substeps in the design, they include functional
requirements, architecture generation and exploration, analysis and optimization.
Notice that validation is made only on the finished product.

The cost of faults or changes increase dramatically if they are discovered late in
the development process or even worse when systems are in operation, as illustrated
in Figure 15.1. Model-based systems engineering can reduce the costs because
models allow partial validation using models as virtual hardware at many steps in
the development process as illustrated in the bottom part of Figure 15.2. When
hardware and subsystems are built they can replace the corresponding models in
hardware-in-the-loop simulation.

To perform verification efficiently it is necessary that requirements are expressed
mathematically and checked automatically against requirements using models of
the system and its environment and a variety of tools for analysis. Regression
analysis can be used to avoid that changes in one part of a system do not create
unexpected errors in other parts of the system. Efficient regression analysis requires
robust system-level models and good scripting software that allows analyses to be
performed automatically over many operating conditions with little to no human
intervention. System-level models are also useful for root cause analysis by allowing
errors to be reproduced, which is helpful to ensure that the real cause has been
found.

There are strong interactions between the models and the analysis tools that
are used; therefore, the models must satisfy the requirements of the algorithms
for analysis and design. For example, when using Newton’s method for solution
of nonlinear equations and optimization, the models must be continuous and have
continuous first (and sometimes second) derivatives. This property, which is called
smoothness, is essential for algorithms to work well. Lack of smoothness can be due
to: if-then-else statements, an actuator that saturates or by careless modeling of
fluid systems with reversing flows. Having tools that check if a given system model
has functions with continuous first and second derivatives is valuable.

An alternative to the use of the traditional design V is the agile development model,
which has been driven by software developers for products with short time to mar-
ket, where requirements change and close interaction with customers is required.
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(a) Classical Design V (b) Design V for Model Based Design

Figure 15.2: The top figure (a) shows a traditional design V. The left side
of the V represents the decomposition of requirements, and creation of system
specifications. The right side represents the activities in implementation including
validation (building the right thing) and verification (building it right). Notice
that validation and verification are performed late in the design process when all
hardware is available. The bottom figure (b) shows a model-based design process
where virtual validation is be made at many stages in the design process, shortening
the feedback for validation.

The method is characterized by the Agile Manifesto [BBvB+01], which values in-
dividuals and interactions over processes and tool, working software over com-
prehensive documentation, customer collaboration over contract negotiation, and
responding to change over following a plan. When choosing a design methodology
it is also important to keep in mind that products involving hardware are more
difficult to change than software.

Control system design is a subpart of system design that includes many ac-
tivities, starting with requirements and system modeling and ending with imple-
mentation, testing, commissioning, operation, and upgrading. In between are the
important steps of detailed modeling, architecture selection, analysis, design, and
simulation. The V-model used in an iterative fashion is well suited to control de-
sign, particular if it is supported by a tool chain that admits a combination of
modeling, control design, and simulation. Testing is done iteratively at every step
of the design using models of different granularity as virtual systems. Hardware in
the loop simulations are also used when they are available. A scripting language is
helpful to execute the design.

Control system specifications are typically given by large and small signal be-
havior of the closed loop system. Large signal behavior is characterized by limits in
actuation power and its rate, small signal behavior is typically caused by measure-
ment noise, friction, and resolution of A/D and D/A converters. Requirements for
control systems include the ability to deal with disturbances, robustness to process
variations and uncertainty, and the ability to follow reference signals.

Many control system specifications can be captured by linear models and they
can be expressed in terms of properties of the Gangs of Four and Six, discussed
in Section 12.1. Referring to the block diagram in Figure 15.3, load disturbance
attenuation can be characterized by the transfer function Gyv from load disturbance
v to process output y. Measurement noise w generates undesired control actions, the
effect of which can be captured by transfer function Guw from measurement noise w
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Figure 15.3: Specifications can be tested by injecting signals at test points δk
and measuring responses at sij . Compare with Figure 12.1

.

to control action u. Robustness to parameter variations and process uncertainty can
be captured by the sensitivity functions S and T . Reference signal response can be
shaped independently of response to disturbances and robustness for systems with
two degrees of freedom. It is characterized by the transfer functions TF and CSF .
Systems with error feedback are more restricted because the response to reference
signals is characterized by the complementary transfer function T and a compromise
must be made between command signal response and the other requirements.

Since many specifications are expressed in terms of properties of the transfer
functions in the Gang of Six, it is important to measure these transfer functions on
simulated models and on real hardware. To do this the system must be provided
with test points for injecting and measure signals, as indicated by the dashed arrows
in Figure 15.3. The transfer function Gyv, which characterizes response to load
disturbances, can be found by injecting a signal at δ1 and measuring the output
s21. Chirp signals are convenient for measuring frequency responses.

Models of the process and its environment can be obtained from physics, from
experiments, or from a combination. Experiments are typically done by changing
the control signal and measuring the response. The signals can range from simple
step tests to signals that are designed to give optimal information with limited
process perturbations. System identification methods and software provide useful
tools. The models used at different stages typically have different fidelity, cruder
in the beginning and more accurate as the design progresses.

A few standard design methods have been discussed in Chapters 7, 8, 11, and
12, but there are many more methods in the literature [Fri04, GGS01]. Many de-
sign methods are based on linear models, however, when environmental conditions
change significantly it it necessary to use gain scheduling, nonlinear control, or
adaptation. Receding horizon control (also called model predictive control) is an-
other common approach, especially useful when there are constraints on the inputs
or states.

Today most control systems are implemented using computer control. Imple-
mentation then involves selection of hardware for signal conversion, communication,
and computing. A block diagram of a system with computer control is shown in
Figure 15.4. The overall system consists of sensors, actuators, analog-to-digital and
digital-to-analog converters, and computing elements. The filter before the A/D
converter is necessary to ensure that high-frequency disturbances do not appear as
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Figure 15.4: Schematic diagram of a control system with sensors, actuators,
communications, computer, and interfaces.

low-frequency disturbances after sampling because of aliasing. The operations of
the system are synchronized by a clock.

Real-time operating systems that coordinate sensing, actuation, and comput-
ing have to be selected, and algorithms that implement the control laws must be
generated. The sampling period and the anti-alias filter must be chosen carefully.
Since a computer can only do basic arithmetic, the control algorithms have to be
represented as difference equations. They can be obtained by approximating differ-
ential equations, as was illustrated in Section 8.5, but there are also design methods
that automatically give controllers in the form of difference equations. Code can
be generated automatically. It must also be ensured that computational delays and
synchronization of algorithms do not create problems.

When the design is implemented and tested the system must be commissioned.
This step may involve adjustment of controller parameters, and automatic tuning
(discussed in Section 11.3) can be very beneficial at this stage. During operation
it is important to monitor the behavior of the system to ensure that specifications
are still satisfied. It may be necessary to upgrade the system when it has been
operating. Specifications may also be modified due to operational experiences.

It is highly desirable to have a suite of test programs that can be used throughout
the design and operation stages to ensure that requirements are satisfied.

15.3 Top-Down Architectures

When system design is approached systematically using the design V as described
in Section 15.2, it is natural to use a top-down procedure for control design starting
with the desired properties of the system and decomposing the overall control design
problem into an interlinked set of control problems at different layers of abstraction.
At each layer of abstraction, we make assumptions about the interactions with the
higher and lower layers in order to simplify the control design problem. In this
section we give a brief introduction to some of the organizing principles of top-down
architectures for control and its connections to some of the techniques described
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Figure 15.5: Layered decomposition of a control system.

in the text, along with references to the literature for those interested in further
details.

There are many other aspects of control architectures that are part of control
systems design. These include such topics as cooperative control [Par93, Mur07],
diagnostics and health monitoring [DM02b, GQH16], fault recovery and system
reconfiguration [HC03, BKLS16], and game-theoretic approaches to control [MS15].
We focus here on a small subset of the problem, with an emphasis on multi-layer
approaches to control.

Layered Architectures for Control

For complex control systems, it is often useful to break down the control problem
into a hierarchy of control problems, each solved at a different layer of abstraction,
as illustrated in Figure 15.5. Different types of specifications are used at each layer
to determine the control functionality that will be implemented.

The specific abstraction layers in a control architecture depend on the problem
domain. In Figure 15.5, we have used a decomposition that is common in many
motion control problems, including robotics, self-driving cars, and flight control.
Similar decompositons also appear in application domains such as manufacturing,
process control, and computing systems. At the top layer of abstraction, we care
about discrete modes of behavior, which could correspond to different phases of
operation (takeoff, cruise, landing) or different environment assumptions (highway
driving, city streets, parking lot). The next layer of abstraction reasons about
trajectories of the system, often using an optimization-based approach. At this
layer, we often take into account the constraints on the system operating state and
inputs, as well as system-level descriptions of performance. Finally, at the lowest
layer of the abstraction hierarchy we have the feedback control design that has been
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the main topic in this text thus far, where we may use a linearized model based on
the current operating point (along a trajectory).

Note that at each abstraction level we must consider not only the control design
but also the way that sensory information is processed and represented. At the
lowest levels of abstraction we may use individual sensor signals, perhaps with
some filtering. As we move up the abstraction hierarchy, it will be necessary to fuse
multiple measurements to obtain a more integrated view of the system state, with
the highest level of abstraction often requiring sophisticated methods of reasoning
about the state of the environment and the predicted interactions with other entities
in that environment.

The architecture in Figure 15.5 is suitable for systems of moderate complex-
ity where the users interact with the system by changing modes and references.
More layers are used for complex systems with complicated user interaction. Batch
control is a typical example, where a complex manufacturing system is used to
control different batches of chemicals and where the material flow through the fac-
tory changes. In this case there are two additional layers—procedural control and
coordination control—on top of those shown in Figure 15.5. Procedural control ex-
ecutes the sequence of actions necessary to carry out a process oriented task, such
as charging a reactor with a specific amount and type of raw material and report-
ing the result. Coordination control directs, initiates, or modifies the execution of
procedural control and the utilization of equipment entities.

In addition to these additional layers, a production facility typically operates
in different modes: normal, maintenance, and manual. The maintenance mode has
its own control algorithms and safety procedures to ensure that the system does
not react in an unsafe manner during maintenance. The manual mode is typically
used for equipment maintenance and debugging. Different parts of a manufacturing
system can be in different modes. An example of an architecture for distributed
control system (DCS), typical for complex manufacturing systems, is shown in
Figure 15.6.

An important feature of many control systems architectures is the modularity of
the control software, enabling parallel development of components and the ability
to upgrade components without having to redesign the entire system. Figure 15.7
shows two types of features that are common in architectures: a “bowtie” pattern
and an “hourglass” pattern.

The “bowtie” pattern refers to the use of a common interface within a layer of
abstraction that enables many different subsystems to connect together across the
interface. As an example, in the context of the sensing system for an autonomous
vehicle, a common representation of map data allows many types of sensors to
feed information into the map and different layers of controller to extract (fused)
information from the map. Through this common interface, new sensors or control
functionality can be added on either side of the interface without having to redesign
the rest of the system.

The “hourglass” pattern represents a hierarchy of control functions that uses a
common interface to enable changes above and below that interface to be changed
independently of each other. The Open Systems Interconnection model (OSI model)
uses seven standardized layers—applications at the top and the physical layer at the
bottom—and has been a key to obtain interoperability in communication systems.
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Figure 15.6: Functional architecture of process control system, implemented as
a distributed control system (DCS). Figure courtesy of ABB, Inc.

Another example of an hourglass pattern is used for the planning system in an
autonomous vehicle. Trajectories are used to connect higher and lower levels of the
navigation system. Any high-level function that eventually leads to a trajectory is
completely compatible with the lower level controllers that will track that trajectory,
allowing the higher levels of decision making to be changed without having to
modify the trajectory tracking code. Similarly, the lower level controllers can be
changed without having to redesign the high level decision-making, as long as they
properly perform the function of tracking a given trajectory.

The bowtie and hourglass patterns shown here can be appear multiple times in
a given architecture, so that we obtain appropriate “stacks” of sensing and control
functionality. The following example, given already in the introduction, illustrates
some of these concepts.

Example 15.1 Autonomous driving
As an example of a top-down architecture for control, we consider a control system
for an autonomous vehicle, shown in Figure 15.8. This control system is designed
for driving in urban environments. The feedback system fuses data from road
and traffic sensors (cameras, laser range finders, and radar) to create a multi-layer
“map” of the environment around the vehicle. This map is used to make decisions
about actions that the vehicle should take (drive, stop, change lanes) and plan a
specific path for the vehicle to follow. An optimization-based planner is used to
compute the trajectory for the vehicle to follow, which is passed to a trajectory
tracking module. A supervisory control module performs higher-level tasks such as
mission planning and contingency management (if a sensor or actuator fails).

We see that this architecture has the basic features shown in Figure 15.5. The
control layers are shown in the navigation block, with the mission planner and
traffic planner representing two levels of discrete decision-making logic, the path
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(a) Bowtie pattern (b) Hourglass pattern

Figure 15.7: Architectural patterns that support modularity. The bowtie pattern
is used to connect subsystems at the same level. Proper interface design supports
independence of the subsystems. The hourglass pattern is used to connect subsys-
tem at different levels using protocols. Proper protocols supports independence of
the subsystems at different levels.

planner representing a trajectory optimization function and then the lower layers of
control. Similarly, there are multiple layers of sensing, with low level information,
such as vehicle speed and position in the lane, being sent to the trajectory tracking
controller, while higher level information about other vehicles on the road and their
predicted motions is sent to the trajectory, traffic, and mission planners. ∇

Online Optimization

The use of real-time trajectory generation techniques enables a much more so-
phisticated approach to the design of control systems, especially those in which
constraints must be taken into account. The fact that such trajectories can be
computed quickly enables us to use a receding horizon control technique: a (opti-
mal) feasible trajectory is computed from the current state to the desired state over
a finite time T horizon, used for a short period of time δ < T , and then recomputed
based on the new system state starting at time t+δ until time t+T +δ, as shown in
Figure 15.9. Development and application of receding horizon control (also called
model predictive control, or MPC) originated in process control industries where

Figure 15.8: DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the
2005 and 2007 competitions and its networked control architecture [CFG+06].
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Figure 15.9: The idea of receding horizon control.

the processes being controlled are often sufficiently slow to permit its implementa-
tion. An overview of the evolution of commercially available MPC technology is
given in [QB97] and a survey of the state of stability theory of MPC is given in
[MRRS00].

Figure 15.10 shows a typical setup for a receding horizon control problem. In
this formulation, the trajectory generation block solves the following constrained
trajectory generation problem at each time step:

min
(x,u)

=

∫ t+T

t

L(x, u) dτ+V (x(t+T )) subject to





x(t) = current state

ẋ = f(x) + g(x)u,

lb ≤ c(x, u) ≤ ub.

(15.1)

One of the challenges of properly implementing receding horizon control is that in-
stabilities can result if the problem is not specified correctly. In particular, because
we optimize the system dynamics over a finite horizon T , it can happen that choos-
ing the optimal short term behavior can lead us away from the long term solution
(see [MR96] for an example). To address this problem, the terminal cost V (x(T ))
must have certain properties to ensure stability (see [MRRS00] for details).

One of the chief challenges in implementing receding horizon control is the need
for fast computation of feasible trajectories. One class of systems for which this is
easier are differentially flat systems, defined briefly in Section 8.5.

Discrete-decision making and supervisory control

Design of control systems involves the analysis and synthesis of feedback controllers
at multiple levels of abstraction, from fast feedback loops around actuators and
subsystems, to higher level decision-making logic in supervisory controllers and au-
tonomous systems. One of the major challenges in design of complex networked
control systems—such as those arising in aerospace, computing, robotics, and crit-
ical infrastructure—is insuring that the combination of dynamical behavior and
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Figure 15.10: Two degree-of-freedom controller design for a process P with
uncertainty ∆. The controller consists of a trajectory generator and feedback con-
troller. The trajectory generation subsystem computes a feedforward command ud

along with the desired state xd. The state feedback controller uses the measured
(or estimated) state and desired state to compute a corrective input ufb. Uncer-
tainty is represented by the block ∆, representing unmodeled dynamics, as well as
disturbances and noise.

logical decision-making satisfies safety and performance specifications. In many of
these areas, verification and validation are now dominant drivers of schedule and
cost, and the tools available for design of such systems are falling behind the needs
of systems and control engineers, particularly in the area of systematic design of
the mixed continuous and discrete control laws for networked systems.

We consider systems consisting of subsystems/agents whose dynamics are de-
scribed by ordinary differential equations of the form

ẋi = f i(xi, αi, ui), yi = h(xi, αi),

where xi ∈ Rni is the continuous state of the ith subsystem, α ∈ A is the discrete
state, ui ∈ Rmi is a control input and yi ∈ Rpi is the measured output of subsystem.
The discrete state evolves according to a set of “guarded commands,” in which the
discrete state α is updated to a new value only if a guard gp(x, α) is true:

gpj (x, α) =⇒ α′ = rpj (x, α).

This specification allows the discrete state to evolve in an asynchronous way (e.g. for
modeling failures) or to depend on the system state (e.g. to model nonlinearities
or changes in connectivity). A model of this type is called a discrete transition
system. The overall system, consisting of both continuous dynamics and discrete
(state) dynamics, is called a hybrid system.

A controller for the system is a combination of a continuous control law and a
discrete control protocol:

u = k(x, α), gcj(x, α) =⇒ α′ = rcj(x, α). (15.2)

The control protocol (sometimes called a supervisory controller) is in the form of
discrete transition system, which controls some subset of the discrete states. The



15.3. TOP-DOWN ARCHITECTURES 15-13

discrete state is assumed to be updated by a periodically controlled process that
examines the guards and updates appropriate rules. This model for the control
allows for the possibility of distributed computation in which different systems (or
subsystems) execute on loosely regulated clocks.

The system specification for a hybrid system is often composed of both a con-
tinuous performance specification and a discrete performance specification. For the
continuous portion of the specification, a typical form is to use a cost function J
that is written as a finite horizon cost

J =

∫ T

0

L(x, α, u)dt+ V (x(T )). (15.3)

This function, a variant of which we have just seen in the context of receding
horizon control, uses an integral cost over a fixed horizon T along with a terminal
cost V (x(T )), where V is an appropriate positive function.

For the discrete performance specification, we make use of temporal logic formu-
las. For a discrete transition system, a temporal logic formula describes conditions
on the sequence of events. One mathematical language that is widely used is linear
temporal logic (LTL), which makes use of two temporal operators: always (�) and
eventually (♦). Given a logical formula ϕ(α) that evaluates to true or false for a
given (discrete) state α, we can define a temporal logic formula �ϕ, which is inter-
preted as meaning that ϕ(α) should be true at all times in the future. Similarly,
the formula ♦ϕ represents the temporal logic statement that the logical formula ϕ
is true at some future state. By combining these temporal operators with standard
logical operators, we can obtain more complex formulas. For example, the formula

�(ϕ =⇒ ♦ψ)

can be interpreted as saying that at all times, if the formula ϕ is satisfied (evaluates
to true), then eventually (at some time in the future) the formula ψ is true. This
formula is a typical form for specifying that a system should respond to a certain
event (captured by ϕ becoming true) by taking a certain action (captured by ψ
becoming true). The always (�) operator at the outer level of the formula describes
the specification that this condition should be satisfied at all times, which means
that the system should respond over and over again if the event condition occurs
repeatedly.

A typical LTL formula for a supervisory control system has the form

ϕinit ∧ �ϕenv =⇒ �ϕsafe ∧ ♦ϕgoal, (15.4)

where ϕinit represents a proposition describing the initial state of the system, ϕenv

describes the possible actions of the environment, ϕsafe is a safety requirement,
and ϕgoal is a progress requirement. The environmental description ϕenv, safety
requirement ϕsafe, and progress requirement ϕgoal are typically described using
LTL or other temporal logics (including computational tree logic, CTL, or one of
its variants, TCTL, pCTL, etc.). These languages allow various specifications on
sequences of actions, such as requiring that a certain condition hold until another
condition is satisfied, or requiring that a certain condition occurs on a regular basis.

The control design problem for a supervisory system consists of finding a control
law of the form in equation (15.2) that satisfies the system specification (15.4) while
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minimizing the cost function (15.3). Traditional approaches to this problem involve
synthesis of the continuous control law using optimization-based approaches, as
described earlier in this section, and manual design of the discrete control protocols.
The system is then checked against the specification by running (many) repeated
simulations and checking that in each case the system specification is satisfied.

Linking Continuous and Discrete Controllers

In Section 15.3 we saw techniques for finding (optimal) controllers for continuous
systems and in the previous section we have talked about techniques for design of
discrete controllers. Going back to our initial top-down architecture in Figure 15.5,
we now consider the problem of how to link these two different layers of the control
system.

One approach to linking the two layers is to develop control techniques that
can handle both the continuous and discrete dynamics in a common framework.
One such approach is to make use of the notion of mixed logical dynamical (MLD)
systems, introduced by Bemporad and Morari [BM99]. In this formulation, we
extend the trajectory generation and receding horizon frameworks to handle discrete
variables in the underlying constrained optimization problem. This requires the
use of so-called mixed integer solvers, which allow optimization for problems with
both continuous and discrete (integer valued) variables. As computers become
increasingly powerful, the size and complexity of problems that we can handle with
these tools have increased and these techniques are more and more commonly used.

An alternative is to solve the supervisory control problem and the trajectory
generation problem separately, with an appropriate simplified representation of the
dynamics of the layers above and below the one that for which we are doing the
design.

For example, a common approach in doing trajectory generation is to assume
that the discrete state (which might represent an operational mode or an environ-
mental context) transitions from one state to another and then remains fixed for a
sufficiently long period of time. Under this assumption, we can focus our attention
on the problem of trajectory generation with an initial condition that may represent
the state of the system just prior to transition to the new mode and the assume
that the mode stays constant for the duration of our planning horizon. We are then
required to make sure that our supervisory controller imposes this restriction on
the time between mode switches as part of its specification.

This type of linkage between two layers in our abstraction is called a vertical
contract and can often be written in assume-guarantee form. The supervisory layer
will assume that the trajectory generation layer maintains the system specification
in a given mode given enough “settling” time, and then guarantees that it does
not switch the system mode more quickly than the settling time. Similarly, the
trajectory generation layer will assume that the switching is sufficiently long, but
must then guarantee that it satisfies the system specification within the prescribed
settling time.

Similar to the simplified model of the supervisory controller used at the trajec-
tory generation layer (the mode is essentially constant), the supervisory controller
must have an appropriate representation of the trajectory generation dynamics.
Since the supervisory controller design is done using discrete transition system
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(a) Discretization (b) Simulation relation

Figure 15.11: Representation of continuous dynamics as a discrete transition
system

. .

models, our representation of the dynamics of the lower layers of abstraction must
be in terms of a discrete transition system model. One simple approach to such a
representation is to break the continuous state space into a collection of discrete
regions, such that each continuous state is contained in one discrete region. The
dynamics of the trajectory generation layer can then be represented as a set of
transitions between adjacent regions in the discretized state space, as illustrated
in Figure 15.11a. In setting up the discrete representation, it is important that
any trajectory in the discretized state space correspond to a feasible trajectory in
the original continuous state space, and vice versa. This is required so that when
the supervisory controller layer commands the system to move from one region to
another then the trajectory generation layer is able to do so, and conversely when
the continuous system executes a command and moves from one (continuous) state
to another, it corresponds to a valid transition between the regions.

Model Checking and Program Synthesis

Given a system model, a controller design and performance specifications, we must
verify that the controller satisfies the specifications. This is typically done by
running many simulations. A problem in using simulation to try to check whether
the design satisfies the specification is that it can be prohibitively time-consuming
to simulate every possible sequence of events. For purely discrete state systems, in
which the dynamics are completely specified by a set of discrete variables α, it turns
out that there are more efficient techniques for verifying that a system is specified
by making use of the structure of the logical formula and the discrete dynamics of
the system. These verification techniques are referred to as model checking.

A block diagram that describes how model checking is performed is shown in
Figure 15.12. The main idea of model checking is to make use of a model of
the (discrete) system dynamics and the temporal logic specification to create a
discrete transition system, known as the product transition system, where finding a
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Figure 15.12: Model checking.

path through this transition system represents a possible system execution (set of
allowable state transitions) that violates the system specification. If no such path
can be found, then the system specification is satisfied. But if a path is found, it
represents a counter-example that can be used to update the controller design.

Model checking tools, such as nuSMV [CCG+02], PRISM [KNP11], SPIN [Hol03],
and TLC [Lam03] are capable of handling relatively large discrete state systems
with quite general classes of specifications (beyond simple LTL formulas). They
are now widely used in industry and are increasingly being applied in mission and
safety critical applications, such as planetary exploration and aviation.

Despite their increasing power and applicability, a limitation in the use of model
checking is that it does not necessarily provide any insight into how to redesign
the system if the specification is not met. Rather, it provides a counterexample
indicating what can go wrong, and leaves it to the designer to understand why the
controller is not correct and then redesign the system. The updated design can
be re-verified using the model checker, and this process is iterated until a correct
design is obtained.

An alternative to iterative manual design is to make use of results in program
synthesis or correct-by-construction synthesis [MW80]. The basic idea in synthesis
is to create an algorithm that takes a model of the discrete system dynamics along
with a temporal logic specification and then synthesize a control protocol such
that the resulting closed loop system satisfies the specification. This approach is
conceptually similar to the LQR design technique outlined in Section 7.5: given
a system specification (cost function to minimize) and system model (A, B, C
matrices), create a controller (u = −Kx) that by construction stabilizes the system
and optimizes the performance specification.

Model checking and program synthesis make use of a common set of information
(system model and system specification), but solve different problems, as illustrated
in Figure 15.13. The advantage of using synthesis is that it provides a control
protocol that is guaranteed to satisfy the specification. That is, no matter what
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Figure 15.13: Verification versus synthesis.

sequence of environmental events occur, the system will always respond in a manner
that satisfies the specification.

Of course, correct-by-construction synthesis is not a panacea. It can only be used
for certain types of specifications and it too can be overwhelmed by complexity. But
it is an increasingly important tool in the systematic synthesis of control protocols,
especially safety-critical systems. A practical way to obtain a safe system is to
design the system in layers with algorithms and guards. The algorithms perform
their ordinary tasks and the guards determine if the system is functioning properly.
The innermost layer, which for flight control is called flying home mode,, consists
of a simple robust controller that provides the basic properties. If the loop is
simple enough it can be designed to be correct-by-construction. The algorithms at
the higher layers deliver better performance, and they have guards that move the
system to a lower, safer layer if the system does not perform properly. The safety
of the guards must of course also be guaranteed. Systems of this type have been
designed by Sha [Sha01], and examples of guards for adaptive control are found
in [THÅ00].

15.4 Bottom-Up Architectures

An alternative to the approaches described in the previous section is to design
controllers by interconnecting low-level control systems to create more sophisticated
capabilities. This approach is referred to as “bottom up” design. The idea of
building complex systems from standard parts has emerged in many branches of
engineering. In design of mechanical devices it was very efficient to standardize
nuts and bolts. In electronics, standards emerged for components, circuits, boards,
and patterns for VLSI design.

To use bottom-up design of control systems, we must find the appropriate com-
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Figure 15.14: Block diagram of a system with cascade control. The dashed
controller block has two controllers Cp and Cs in series. Both controllers have two
degrees of freedom with two inputs: the reference (top) and the measured variable
(bottom). The process has two blocks P1 and P2 in cascade. There are two loops:
an inner or secondary loop and an outer or primary loop.

ponents or building blocks and the rules for interconnecting them. The building
blocks are controllers (often PID), nonlinear functions, filters, logic, and finite state
machines. They can either be separate pieces of hardware or function blocks im-
plemented in software. The systems are built loop by loop by using structures or
control principles such as feedback, feedforward, and gain scheduling, which have
been discussed extensively in previous chapters. In this section we will introduce
other architectural structures: cascade control, mid-range control, selector control,
internal model control (IMC), Smith predictors, extremum seeking, and comple-
mentary filtering.

Bottom-up architectures can deal with systems having many inputs, many out-
puts, and constraints. An advantage is that the system can be designed, commis-
sioned, and tuned loop by loop. The disadvantages are that it is not easy to judge
the consequences of adding loops and that there may be difficulties when loops are
interacting. Bottom-up architectures are easy to use for simple systems, but for
complicated systems it may be better to use a top-down approach.

Cascade Control – Several Sensors

Cascade control is a scheme for using one actuator and two or more sensors. Ver-
sions of it were previously encountered in Figure 1.13 and in Example 12.9, where
it was called inner-outer loop design. A block diagram of a closed loop system with
cascade control is shown in Figure 15.14. The dashed process block has one con-
trol variable u and two measured signals: the primary output y and the secondary
output ys. The process is modeled by the blocks with transfer functions P1 and
P2, which capture how the measured signals are related to the control variable.
The dashed controller block in the figure has two controllers Cp and Cs, which are
connected in cascade. It has three inputs: the reference r and the measured signals
y and ys. The primary controller Cp attempts to keep the output y close to the
reference r by manipulating the reference input rs of the secondary controller Cs.
The secondary controller Cs attempts to keep the secondary output ys close to its
reference rs manipulating the control variable u.

The controllers Cp and Cs can be of any type, but PID controllers are most
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Figure 15.15: Block diagram of a closed loop system with mid-range control.
The process has one output y and two inputs uf and uc. The input uf provides
fine control with limited range, the input uc provides coarse control with wide
range. The controller Cf attempts to keep the output y close to its reference r.
The controller Cc controls uc so that the variable uf is in the middle of this range.

common. Design is done loop by loop starting with the inner loop. If integral action
is used, it is necessary to have a scheme to avoid integral windup. Anti-windup for
the secondary controller can be done in the conventional way, since the controller
drives the actuator directly. To provide anti-windup for the primary controller it
must be told when the secondary controller goes into anti-windup mode.

Cascade control is a convenient way to use extra sensors to improve control
performance. It can be used with more than two sensors: the ultimate case is state
feedback when all states are measured. Cascade control is particularly useful when
there is significant time delay or dynamics between the input u and the primary
output y, but significantly less dynamics between u and the secondary output ys.
A tight feedback in the inner loop reduces effects of disturbances and uncertainties
in the block P1, and simplifies the design of the outer loop.

Mid-Range Control – Many Actuators

Midranging is a control scheme that can be used when several control signals in-
fluence the same measured output. A typical example is a CD player with a fast
actuator having a small actuation range and a slower actuator with a wide actua-
tion range. The block diagram in Figure 15.15 shows an example. The process has
two control signals uf for fine control and uc for coarse control. They influence the
output y through dynamics described by the transfer functions Pf and Pc.

The controller Cf drives uf and is the primary controller that attempts to keep
the output y close to its reference r. The second controller Cc drives the subsystem
Pc, which has wide actuation range. The measured signal for Cc is the output uf
of the controller Cf, and the reference is the middle range of uf. The controller
Cc manipulates the control variable uc so that uf is in the middle of its operating
range and can handle moderately large disturbances. Both controller will act for
large disturbances.

The controllers are tuned loop by loop, starting with the Cf. Anti-windup is
handled in the standard manner if controllers have integral action.
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Figure 15.16: Block diagram of a system with selector control. The primary
controller C is designed to keep y close to its reference r. The controllers Cmax

and Cmin are controllers that ensures that the intermediary variable z is in its
permissible range zmin < z < zmax. The block marked < is a minimum selector,
whose output equals the smallest input. The block marked > is a maximum
selector, whose output equals the largest input.

Selector Control – Equipment Protection

Selector control is used to control a primary variable while keeping auxiliary vari-
ables within given constraints for safety or for equipment protection. A selector is
a function with many inputs and one output. The output of a maximum selector is
the largest of the inputs and the output of a minimum is the smallest of the inputs.

Selector control is illustrated in Figure 15.16. The primary controlled variable
is the process output y. The primary controller C, with output un, attempts to
keep y close to its reference r. To guarantee safe operation the auxiliary variable z
should be kept in the range zmin < z < zmax. This is accomplished by the secondary
controllers Cmax and Cmin, which have reference signals zmax and zmin.

The control signal u is generated by sending un, uh and ul through maximum and
minimum selectors as shown in the figure. Under normal conditions the auxiliary
variable z is larger than zmin and smaller than zmax. The system then acts as
if the maximum and minimum controllers were not present and the input to the
control system is u = un. If the variable z goes above its upper limit zmax the
error of the controller Cmax becomes negative and the minimum selector chooses
uh instead of un. Control is then executed by the controller Cmax, which attempts
to drive z towards zmax. A similar situation occurs if the variable z becomes smaller
than zmin. The switches between the controllers are determined by the limits zmin
and zmax and the gains of the secondary controllers, which often are proportional
controllers.

Selector control is commonly used to provide safety, for example to maintain
temperature while ensuring that a pressure does not exceed certain limits or to
avoid stall in compressor control. We have only discussed maximum and minimum
selectors, but there are also median selectors and two-out-of-three selectors that are
used for high integrity systems with multiple sensors. Selector control is related
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Figure 15.17: Block diagram of a closed loop system with a controller based on
the internal model control structure.

to manual control, described briefly in Section 11.4, where the control variable is
manipulated directly.

Design of the controllers can be made loop-by-loop since only one of the con-
trollers is in operation at each time. There may, however, be complications when
switching between the controllers. With controllers having integral action, it is
necessary to track the integral states of those controllers that are not in operation.
Windup protections therefore requires care. Selector control will be complicated
when there are many constraints. It is then safer to use multivariable architectures
and design methods such as model predictive control.

Internal Model Control – Disturbance Observer

Figure 15.17 shows a controller architecture that is called internal model control
(IMC) or inferential control. The basic idea is to create an estimate of the effect of
the disturbances v and w on the output of the system.

If P̂ = P it follows from the block diagram that the control signal u has no
effect on the signal ǫ, hence ǫ = w + Pv. The signal ǫ is thus the net effect of the
disturbances reduced to the process output, which explains the name disturbance
observer. If Gf = 1 the block P̂−1 generates a control signal that eliminates the
disturbance. In reality, ideal disturbance rejection cannot be accomplished because
the inverse P−1 is normally not realizable. Good disturbance attenuation can,
however, be achieved by using an approximate inverse and a proper design of Gf.

To investigate the response to reference signals, we neglect the disturbances v
and w. If P̂ = P we have ǫ = 0 and the transfer function from reference to output
becomes Gyr = P P̂−1Gf = Gf. In reality the inverse has to be substituted with an
approximate inverse P † because P normally cannot be inverted. The response to
reference signals can be shaped by the transfer function P †Gf.

The block diagram in Figure 15.17 can be also be represented as a standard
feedback loop with a process P and a controller C where

C =
P−1Gf

1−Gf
. (15.5)

If P̂ = P , then the controller C cancels all process poles and zeros, which im-
plies that it cannot be used for processes with unstable poles or zeros. The same
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Figure 15.18: Block diagram of a closed loop system with a Smith predictor.

observation can be made from the fact that the system has a parallel paths with
two identical systems, which is a prototype for a system lacking observability and
reachability.

The Smith Predictor – Phase Advance

The Smith predictor is a special controller architecture for systems with time delays.
A block diagram of the controller is shown in Figure 15.18. The controller is
provided with a model P̂ = P̂0 e

−sτ , in parallel with the process P = P0 e
−sτ . The

parallel model provides the signal yp, which is a proxy for the undelayed process
output. Notice the similarity with the internal model controller architecture in
Figure 15.17. Assuming that P̂0 = P0 then the signal ǫ is zero for all u. Applying
block diagram algebra then gives the following transfer function for the closed loop
system:

Gyr(s) =
P0(s)C0(s)

1 + P0(s)C0(s)
e−sτ . (15.6)

To obtain a desired response to reference signals we can design a controller C0 for
a process with the delay-free dynamics P0. Notice that the architecture has two
parallel paths with identical dynamics, which is particularly serious if the transfer
function P0 has unstable poles. The Smith predictor cannot be used for processes
with integrators without modifications [ÅHL94].

To get additional insight into the properties of the Smith predictor, we observe
that if P̂ = P = P0 e

−sτ the block diagram Figure 15.18 can be redrawn as a
conventional feedback loop with the controller

C =
C0

1 + C0 P0(1− e−sτ )
= C0 Cpred, Cpred =

1

1 + C0 P0(1− e−sτ )
. (15.7)

The controller can thus be viewed as a cascade connection of the conventional
controller C0 with the predictor Cpred. Notice that near the gain crossover frequency
for P0 C0 we have P0 C0 ≈ −1 and Cpred ≈ esL, indicating that the transfer function
Cpred has a significant phase advance.
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Figure 15.19: Bode plots of the predictor transfer function Cpred (solid curve)
given by equation (15.7) and the ideal predictor esτ (dashed curves) for the transfer
functions given in equation (15.8).

An example is shown in Figure 15.19 for the case where

P0 =
1

s+ 1
, C0 =

(
1 +

1

0.45s

)
, L = 8. (15.8)

The phase curve of Cpred shows that the phase lead is very close to that of an ideal
predictor esτ for the frequencies ω = 0.76 and ω = 1.3, where the phase lead is
360◦ and 720◦. Also notice that the gain curve of the Bode plot has resonances at
ω = 0.76 and ω = 1.3 and that the phase increases approximately 180◦ at those
frequencies. This implies that the transfer function Cpred has two complex pole
pairs in the right half-plane.

The Smith predictor gives closed loop systems with good responses to reference
signals but the response to load disturbance responses are not much better than
with PI control because the gain crossover frequency is limited by the time delay
(around 0.1 for the system in Figure 15.19). This gain crossover frequency can also
be obtained using a PI controller. The predictor Cpred is, however, a useful transfer
function to provide large phase advance.

Complementary Filtering – Sensor Fusion

Complementary filtering is a technique that can be used to combine the information
from different sensors, typically one sensor that is slow but accurate and another
that is fast but drifting. One example is to fuse signals from a GPS with signals
from gyroscopes and accelerometers to provide good estimates of position, velocity,
and acceleration.

Consider the situation when we want to give a good estimate of the variable x
and we have two sensors available that give the signals y1 and y2 where

y1 = x+ w1, y2 = x+ w2.

The disturbance w1 has zero mean but the disturbance w2 may drift. Using expo-
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nential signals the complementary filter for recovering the signal x is given by

yf =
1

s+ 1
y1 +

s

s+ 1
y2 = G1(s) y1 +G2(s) y2. (15.9)

Notice that G1(s) +G2(s) = 1, which explains the name complementary filtering.

Both complementary filtering and Kalman filtering can provide improved esti-
mates by fusing information from several sensors, and they can also be optimized if
information about the noise characteristics are available. Complementary filtering
requires only a model of the sensor system but the Kalman filter requires a model
of the complete system dynamics. The Kalman filter can, however, also exploit
the control actions. Both methods are widely used both in simple and advanced
systems.

Extremum Seeking or Self-Optimization

Another set of useful control structures are extremum seeking or self-optimizing
controllers. Instead of keeping the process output close to a constant reference value,
self-optimizing controllers attempt to change the reference so that an objective
function is minimized. The idea of extremum seeking is to adjust the reference of
a closed loop system so that a performance criterion is optimized. This concept
is illustrated in Figure 15.20a. The reference value r of the controller is changed
sinusoidally and the performance j is observed. The performance changes very little
close to the optimum, see B in the figure. They are in phase with the changes of the
reference if the reference is to the left of the maximum (A in the figure), and they
are out of phase if the reference is to the right of the maximum (C in the figure).
The phase difference can be used to find the how the reference should be changed
to optimize the performance. A block diagram of an extremal seeker is shown in
Figure 15.20b. The self-optimizer has a block PC that calculates the perfjormance
J from the process input u and output y. The signal generator SG generates a
sinusoidal signal which is sent to the reference value of the closed loop system. The
signal is correlated with the output J from the performance calculator and a low-
pass filtered version is sent to the reference value. The perturbation signal should be
chosen sufficiently slow so that process dynamics can be neglected. There are many
other more sophisticated schemes based on optimization and estimation [Krs03].
They differ in how probing, analysis, and action are performed.

15.5 Interaction

A drawback with building a system loop by loop is that there may be unintended
interactions. It is therefore important to investigate when interactions arise and
what can be done to reduce potential drawbacks. We will start by introducing
the relative gain array (RGA), which is a simple measure of interaction. We will
then discuss parallel systems, which is a special form of interaction that occurs
when several subsystems produce the same effect. A typical example is an electric
car with motors on each wheel or a power system with many generators that are
synchronized for frequency control.
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Figure 15.20: Self-optimizing control or extremum seeking. The steady state
response of the performance J is shown as a function of the reference r in (a),
together with the effects of sinusoidal variations in r. A block diagram of the
system is shown in (b).

The Relative Gain Array

To explore the effects of interactions we will investigate control of a system loop by
loop. The first problem, which is a prototype for a system that lacks reachability
and observability, is to decide if yi should be controlled by uj or by some other
control signal. This is called the pairing problem (relative gain array). The second
problem is to investigate if there will be interactions between the loops. It turns
out that an understanding of the second problem also solves the first problem.

Consider a system with p inputs and p outputs. Let the transfer function matrix
of the system be P . The open loop transfer function from input j to output i is
(i, j)th element of the transfer function matrix, which we denote Pij . This transfer
function will change when the other loops are controlled. The change depends on
the controllers in the other loops in a complicated way. A simple situation is when
all other loops are perfectly controlled in the sense that all outputs yk are zero for
k 6= i. To find the transfer function from uj to ui in this case we use exponential
signals, which gives

uj = (P−1)ji yi.

The closed loop transfer function from uj to yj is thus 1/(P
−1)ji. The relative gain

for the loop ij is defined as the ratio of the transfer functions from uj to yi under
open loop and ideal closed loop control, hence

λij = Pij(P
−1)ji = Pij(P

−T )ij ,

where P−T denotes the transpose of P−1. The transfer functions λij can be com-
bined into the matrix

Λ = P ◦ P−T . (15.10)

where ◦ denotes element by element multiplication of the matrices (the Hadamard
product denoted .∗ in MATLAB). The matrix Λ is called the relative gain array
(RGA) or Bristol’s RGA after its inventor [Bri66]. It was originally derived for the
steady-state case (s = 0), which explains the name relative gain and it was later
extended to dynamics. We illustrate with an example.
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Example 15.2 Relative gain array for 2× 2 systems
Consider a static system with two inputs and two outputs. The transfer function
and its inverse are

P =


p11 p12
p21 p22


 , P−1 =

1

p11p22 − p12p21


 p22 −p12
−p21 p11


 ,

and the relative gain array (15.10) then becomes

Λ =


1− λ λ

λ 1− λ


 , λ =

p11p22
p11p22 − p12p21

.

In this case the interaction can thus be characterized by a single number λ. Notice
that the relative gain array Λ has a special structure: the diagonal elements are
equal to 1− λ and all row and column sums are one. ∇

The matrix Λ given by equation (15.10) has special properties. Since P−1 is the
inverse of P we have

n∑

k=1

Pik(P
−1)kj = δij ,

and hence
n∑

i=1

Pij(P
−1)ji = δii = 1.

The row and column sums of Λ are thus all equal to one, which implies that the
interactions can be characterized by (n − 1)2 elements: one element for m = 2 as
in Example 15.2 and four elements for m = 3.

The relative gain has a good physical interpretation in the static case. If λij = 1
there is no interaction because the open and closed loop gains are the same. The
interaction increases the gain if λij < 1 and decreases the gain if λij > 0. The
interaction changes the sign of the gain if λij is negative. The relative gain can also
be used for pairing inputs and outputs as illustrated by the example.

Example 15.3 RGA and pairing
Consider a system where the static gain matrix and the RGA are

P =



2.662 8.351 8.351
0.382 −0.559 −0.559
0 11.896 −0.351


 , Λ =




0.32 0.02 0.66
0.68 0.01 0.31
0 0.97 0.03


 ,

where the bold entries are the maximum entries in each row. In this case the pairing
is straightforward because there is one largest relative gain in each row and each
column, which gives the pairing y1:u3, y2:u1, and y3:u2. The relative gains are
also reasonably large. ∇

The relative gain array is a simple measure of interaction, it is dimension free,
easy to compute and it gives insight into interactions and pairing of variables. It
was originally derived for static systems but analysis of the frequency response
Λ(iω) gives insight into the frequency dependence of the interactions. The RGA
also gives information about the variables that should be grouped for multivariable
control. Since it was derived under the special assumption of perfect control, it
does not capture all aspects of interaction.
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Parallel Systems

There are situations when several subsystems are used to control the same variable.
Typical examples include temperature control using several cooling or heating de-
vices and control of an electric car with one motor on each wheel. An extreme
example is control of a power grid, which may have hundreds of energy sources
that all contribute to maintain frequency and voltage of the net. Designing a sys-
tem loop by loop requires care as is illustrated by the following example.

Example 15.4 Cruise control for electric car
Consider speed control of an electrical car with motors on each wheel. For simplicity
we will consider linear motion with only two motors, and we will use the simple
model (4.1) in Section 4.1. Neglecting all disturbance forces except the force due
to gravity, Fd = mgθ, the model (4.3) becomes

m
dv

dt
= F1 + F2 −mgθ, (15.11)

where v is the speed of the car, θ is the slope of the road, and F1 and F2 are the
forces generated by each tire.

For simplicity we will neglect the dynamics of motors and wheels, so that the
forces are simply the output of the wheel controllers. When both wheels have
proportional controllers we have

F1 = kp1(r − v), F2 = kp2(r − v), (15.12)

where r is the speed reference. Combining equations (15.11) and (15.12) gives the
following equation for the closed loop system:

m
dv

dt
= (kp1 + kp2)(r − v)−mgθ = kp(r − v)−mgθ,

where kp = kp1 + kp2. If the slope θ is constant there will be a steady-state error
ess = r − vss = mgθ/kp and the steady-state forces are then

F1,ss =
kp1

kp1 + kp2
mgθ, F2,ss =

kp2
kp1 + kp2

mgθ.

The proportional gains kp1 and kp2 of the controllers thus determine how the com-
pensation for the disturbance is distributed among the motors.

Next we will consider the case when each motor drive is provided with a PI
controller. The closed loop system is then described by the equations

m
dv

dt
= (kp1 + kp2)(r − v) + ki1I1 + ki2I2 −mgθ,

dI1
dt

= r − v,
dI2
dt

= r − v.

(15.13)

Assuming that r and θ are constant, the equilibrium point is given by v = r and
constant I1 and I2. The variables I1 and I2 are not unique, however, and they can
have any values as long as

kpI1 + ki2I2 = mgθ.
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(a) Drive system with two PI controllers
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(b) Drive system with one PI controller

Figure 15.21: Transient behavior of car with two controlled wheels. The system
in (a) has a PI controller for each wheel drive. The system in (b) has one PI
controller whose output is distributed to the wheel drives. The top plots show the
velocity error e = r − v, the middle plots show the forces F1 and F2 generated by
the wheels and the bottom plots show the total force F1 + F2.

The fact that the closed loop system has infinitely many equilibrium points is an
indication that there may be difficulties. To explore this we will analyze the closed
loop system. The transfer functions from r and θ to v are

Gvr =
kps+ ki

ms2 + kps+ ki
, Gvθ =

mgs

ms2 + kps+ ki
, (15.14)

where ki = ki1 + ki2. The velocity v follows reference signals without steady-state
error since Gvr(0) = 1 and there will be no steady-state error when encountering a
slope since Gvθ(0) = 0.

The system (15.13) is of third order but the transfer functions (15.14) are of
second order, which means that there is a pole/zero cancellation. The canceled
mode is governed by the equation d(I1− I2)/dt = 0, which has an eigenvalue at the
origin. The system has a Kalman decomposition (Figure 8.9a) with a first-order
subsystem Σro with integrator dynamics that is neither reachable from the forces
F1 and F2 nor observable from v. Recall that a system with two parallel systems
having the same mode is a prototype for a system that is neither reachable nor
observable.

The fact that the closed loop system has an unstable mode that is neither
reachable nor observable is seen in the simulation in Figure 15.21a. The simulation
shows what happens when a pulse like perturbation is introduced at the input of
the PI controller for wheel 1. The velocity error e = r−v is quite well behaved and
the error settles in about 10 time units. The force F1 (solid curves) reacts quickly
to reduce the effect of the disturbance but the force F2 (dashed curves) goes in the
opposite direction. In steady state the force F1 settles to a constant value as does
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F2. The steady-state forces have different signs, however, which means that one
wheel is driving and the other is braking: clearly not a satisfactory behavior.

The irregular behavior is caused by an unreachable and unobservable mode in
the closed loop system, which caused by two PI controllers in parallel. Having un-
derstood what happens, it is straightforward to find a remedy: use one PI controller
and distribute its output to the two wheels. The controller is then

F1 = α
(
kp(r − v) + kiI

)
, F2 = (1− α)

(
kp(r − v) + kiI

)
,

dI

dt
= r − v, (15.15)

where the parameter 0 < α < 1 tells how the forces are distributed between the
wheels. The closed loop system is described by

dv

dt
= kp(r − v) + kiI −mgθ,

dI

dt
= r − v, (15.16)

and the forces are given by equation (15.15). This system is of second order and
the transfer functions Gvr and Gvθ from reference r and slope θ to velocity v are
given by equation (15.14).

A simulation of the system is shown in Figure 15.21b. The behavior of the
forces are now much more reasonable because they both collaborate to reduce the
disturbance. The behavior of the error e and the total force F are, however, the
same as for the system with two PI controllers. ∇

The conclusion from the example can be generalized. If parallel systems are
controlled by proportional controllers, then the controller gains determine how dis-
turbance attenuation is divided among the subsystems. However, integral control
cannot be used in the individual subsystems. Instead we can use a central integrator
and distribute its output to the separate controllers for the subsystems.

15.6 Adaptation and Learning

In this section we will briefly discuss control systems with abilities to adapt, learn,
and reason. Adaptation is used to adjust to a specified use or situation, learning is
used to acquire knowledge or skill by study, instruction, or experience, and reason-
ing is the intellectual process of seeking truth or knowledge by inferring from either
fact or logic. Cars and air vehicles with autonomy are areas where adaptation,
learning, and reasoning are essential, but it should be recognized that the abilities
of humans are still far ahead of what is achievable using human-engineered systems.

Adaptive Control

Adaptive control is a technique that can be used when there are significant varia-
tions in the process and its environment and where neither robust control nor gain
scheduling is applicable. Model reference control and the self-tuning regulator are
two common adaptive systems: their block diagrams are shown in Figure 15.22.
Notice that in both cases there are two feedback loops: one conventional feedback
loop involving the process P and the controller C and a slower loop that adjusts
the parameters θ of the controller.
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Figure 15.22: Block diagrams of systems with (a) a model reference adaptive
controller (MRAC) and (b) a self-tuning regulator (STR). The block P is the
process, C is a controller with adjustable parameters. For the model reference
system the requirements R are given in terms of the model Fm, which gives the
ideal response to reference signals. The controller parameters θ are adjusted by the
parameter adjustment mechanism PA. In the self-tuning regulator the controller
parameters θ are adjusted indirectly based on a control design calculation CDC,
where the process model is obtained by a recursive parameter estimator RPE.

Model reference adaptive control (MRAC) is primarily used for reference sig-
nal tracking. A block diagram of the controller is shown in Figure 15.22a. The
controller consists of three blocks Fm, C, and PA. The desired response to com-
mand signals is given by the transfer function Fm, which is shaped to satisfy the
requirements R. The controller C has adjustable parameters θ. The parameter
adjustment mechanism PA, receives the process input u, the process output y,
and the desired response ym, and it generates the process parameters θ. A simple
parameter adjustment mechanism is given by the “MIT rule” [ÅW08b, Section 5.2]:

dθ

dt
= −γ e ∂e

∂θ
, (15.17)

where γ is a parameter, e = ym− y, and ∂e/∂θ is a sensitivity derivative. The MIT
rule is a very simple way to adjust the parameters. There are many other rules,
some of them are derived from Lyapunov theory [ÅW08b].

The self-tuning regulator (STR) is used both for reference signal tracking and
for regulation. The controller is based on the idea of developing a process model
automatically and applying some design method to find a suitable controller. A
block diagram of a system is shown in Figure 15.22b. The controller has three
blocks: a controller C with adjustable parameters θ, a recursive parameter estima-
tor RPE and a controller design calculation CDC. The parameter estimator RPE
estimates the process parameters θ recursively from the process input u and output
y. The controller design block CDC determines the controller parameters from the
process parameters using some design method. In this calculation it is common to
treat the estimates as the true parameters, a principle from decision making under
uncertainty called the certainty equivalence principle [Sim56]. Uncertainties in the
estimates can be taken into account because many estimation schemes provide es-
timates of parameter uncertainty. The self-tuning regulator is very flexible because
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many different methods can be used for parameter estimation and control design.

Recursive least squares is a common method for estimating parameters in the
model

yt+1 = −a1yt − a2yt−1 + · · ·+ b1ut + · · ·+ et+1 = ϕtθ + et+1,

ϕt = [−yt − yt−1 · · · ut ut−1 · · · ], θ = [a1 a2 · · · b1 b2 · · · ]T
(15.18)

by minimizing the mean square error
∑
e2k. The estimates are given by

θ̂t = θ̂t−1 +Kt(yt − ϕtθ̂
T
t−1), Kt = Ptϕ

T
t ,

Pt = Pt−1ϕ
T
t (λ+ ϕtPt−1ϕ

T
t )

−1,
(15.19)

which is a special case of the Kalman filter: see equation (8.8) in Section 8.2. The
parameter λ controls how quickly old data is forgotten. There are many variations of
the parameter estimator: directional forgetting and square root algorithms, where
the square root of P is updated instead of P itself [ÅW08b], are of particular
interest.

Applications of adaptive control are found in flight control, process control,
and wheel-slip control and other automotive applications. We illustrate by a ship
steering application.

Example 15.5 Adaptive ship steering
A conventional autopilot for ship steering is typically based on PID control. The
major disturbances are due to wind and waves, which can change significantly. An
adaptive controller can model wave generated forces and counteract them efficiently.
Ship dynamics and wave forces can be captured by a model of the form (15.18) with
4 a-parameters, constrained to contain an integrator, and 2 b-parameters. Exten-
sive sea trials have shown that the adaptive autopilot has better performance than
the conventional autopilot in normal whether conditions and substantially better
performance in bad weather conditions. Figure 15.23 shows results from evaluation
of the Steermaster autopilot developed by Kockums and now marketed by Northrop
Grumman. In the experiments, the conventional and adaptive autopilots were run
repeatedly for about an hour each during normal operation. The figure shows that
the adaptive autopilot has significantly smaller variations in heading than the con-
ventional autopilot. The difference corresponds to about 3% less fuel consumption.

∇

A difficulty with adaptive control is that parameter estimation is performed
when the system is in closed loop. It is then important where the excitation signals
occur. Consider for example the standard feedback loop in Figure 15.3. If the only
perturbation on the system is the injected signal δ1 and we assume r = 0, v = 0
and w = 0, we get

y =
P (s)

1 + P (s)C(s)
δ1, u = − C(s)P (s)

1 + P (s)C(s)
δ1.

It then follows that y = − 1
C(s) u and any attempt to find a model relating u and y

will thus result in the negative inverse of the controller transfer function. However,
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(a) Conventional autopilot
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(b) Self-tuning autopilot

Figure 15.23: Heading deviation (top) and rudder motion (bottom) for ship
steering for (a) a conventional autopilot and (b) an adaptive autopilot. The ex-
periments were performed on a 225000 ton tanker Seascape, wind velocity around
10 knots, from [KÅT+79].

if we inject disturbances through the reference r and set all other inputs to zero we
have instead

y =
P (s)C(s)

1 + P (s)C(s)
F (s)r, u =

C(s)

1 + P (s)C(s)
F (s)r.

Hence, y = P (s)u and the process model can indeed be estimated.
To obtain reliable estimates of the process parameters, there must be sufficient

variations in the control signal. This can be captured by the notion of persistent
excitation. A signal u(t) is persistently exciting of order n if

U = lim
t→∞

1

T

∫ T

0

(A(p)u(k))
2
> 0

for all nonzero polynomials A of the differential operator p = d/dt with degree
less than or equal to n − 1. Persistency of excitation determines the number of
parameters that can be estimated reliably. A constant is persistently exciting of
order 1 and permits estimation of one parameter. A sinusoid is persistently exciting
of order two.

To have a reliable parameter estimation it is important to be aware of where
disturbances enter and to monitor the excitation. Load disturbances of the pro-
cess are particularly harmful. A scheme for detecting harmful load disturbances
is presented in [THÅ00]. To obtain reliable estimates it is necessary to monitor
the excitation of the process and only update parameters when there is sufficient
excitation of the process.

An interesting approach to control of uncertain systems was proposed by Feld-
baum [Fel65], who emphasized that control should be investigating as well as direct-
ing, and he coined the term dual control for this property. Feldbaum used optimal
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stochastic control to obtain a controller that was actively introducing perturbations
in the process when the process was not properly excited by natural disturbances.
The hyper state of a dual controller is the conditional probability distribution of
the regular states of the process and the parameters. The computations of a dual
controller can only be performed in simple cases because the state of the system
is a conditional probability distribution over states and parameters [ÅH86]. Many
heuristic schemes to monitor excitation and to introduce perturbations when needed
have therefore been developed. In the field of machine learning this approach is
called reinforcement learning.

Learning

A nonlinear function with a learning mechanism is a simple example of a learning
system. Learning can be done in two different ways. In supervised learning, the
function is created automatically by providing it with a large number of arguments
and corresponding function values. In reinforcement learning a criterion for good fit
is provided and learning is executed by selecting random arguments and changing
the function until a good fit is provided. Representation of the learning mechanism
is a central issue. A simple way to represent a function of several variables is to
quantize the variables, which we illustrate by an example of unsupervised learning.

Example 15.6 Michie’s BOXES method
Michie and Chambers developed a simple learning program called BOXES [MC68]
for game playing. An early connection between learning and control was established
when the program was applied to the classical control problem of stabilizing an
inverted pendulum. Consider a cart–pendulum system such as that in Figure 7.2b
on page 7-5, where cart position and velocity and pendulum angle and angular
velocity are measured. The control signal is a function: f : R4 → R. BOXES
was used to learn an approximation of this function. To implement the system the
states were quantized crudely: 5 levels for position and angle, 3 levels for velocities,
and 2 levels left (L) or right (R) for the control signal. The control law is then
represented by a table with 5× 5× 3× 3 = 225 entries. Each entry in the table has
five numbers: LL (left life), RL (right life), LU (left usage), RU (right usage), which
capture features of past experiments, and T (target), which is related to the current
mean time for stabilization. The life (L) is a weighted average of the number of
times the entry was used before failure. The usage (U) is a weighted number of
times the entry was used before failure. The control actions taken upon entering a
box is a heuristic function of the values of LL, RL, LU, RU, and T. The system is
initialized by introducing random numbers in the table. Experiments are run and
the table is updated. In a typical experiment the system was able to stabilize the
pendulum in 25 minutes after a 60 hour training period. ∇

Pendulum stabilization is perhaps not the best case to demonstrate learning,
since a student could design a stabilizing controller in less than an hour. Control
performance will also be better because a conventional design can avoid the crude
quantization used in BOXES. There have, however, been significant developments
in machine learning since the late 1960s when BOXES was developed.
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Figure 15.24: Schematic diagram of a feedforward neural network with an input
layer, a hidden layer, and an output layer.

Neural Networks

A severe drawback of schemes like BOXES is that the nonlinear function is repre-
sented by gridding the state variables, which requires very large tables. To have
efficient learning schemes it is necessary to find more efficient ways to represent
nonlinear functions and to find efficient learning mechanisms. An artificial neural
network is such a representation.

Artificial neural networks were inspired by neuroscience although their current
implementation is far from their biological origin. A neuron has many synapses
which receives inhibitory or excitatory signals from other neurons. The neuron
emits a pulse to other neurons if the net excitation over a short time interval is
above a certain level. An artificial neuron mimics a real neuron but it operates
continuously. A very simple model is

y = g
( n∑

k=1

wiui

)
, (15.20)

where the parameters wi are weights. The function g was originally a sigmoid
shaped function, for example g(x) = tanhx or g(x) = (1+ e−x)−1, but many other

functions are currently used, such as max(0, x), e−x
TQx, and (1 + xTQx)−1.

An artifical neural network (ANN) is a combination of neurons in a layered
network as shown in Figure 15.24, which represents the function f : R3 → R2 as

f(u) = g
(
W (3)g

(
W (2)g(W (1)u)

))
, (15.21)

where W (k) is a matrix of the weights to the layer k, and g is a monotone function
of the type discussed above (when x is a vector, g(x) is a vector obtained when the
function is applied to each element of the vector). The neural network may appear
very restricted, but Kolmogorov proved that any continuous function on a finite
cube can be represented by a neural network with only one hidden layer [Kol57].
The strong advantage of having many layers was clarified by H̊astad [H̊as87].

Neural networks have weights w
(k)
ij , which are determined experimentally by

matching a large number of arguments and corresponding function values. A useful
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Figure 15.25: Illustration of feature detection based on deep learning. Objects
are detected and classified as car, bicycle, or person, their position and spatial
extent are also determined. The images typically have low-resolution to prevent
identification of license plates and humans. The particular network which gener-
ated this figure has 13 layers and more than 25 million parameters [AJÅ+17].

feature is that both the function and its inverse can be generated from data. The
weights in a simple neuron can be determined by the gradient algorithm

wi(k + 1) = wi(k) + γu0i (k)
(
y0(k)− y(k)

)
, (15.22)

where u0i and y0 are training data and y is computed from equation (15.20) with
u = u0. This rule can be interpreted as an approximation of a gradient scheme for
minimizing the mean square error. It is similar to the MIT rule (15.17) for model
reference adaptive control. In neurophysiology the algorithm (15.22) is known as
Hebb’s rule [Heb49]. Parameters of multi-layer neural networks can be updated by
gradient descent, where the gradient is computed by back propagation..

Deep Learning

Neural networks with many layers, so-called deep learning, have proven very use-
ful in many fields. Preprocessing of data from information-rich sensors, such as
spectrometers and cameras, is particularly useful for control. For example, in au-
tonomous driving it is useful to recognize objects such as houses, road markings,
traffic lights, cars, bicycles, and pedestrians, and to track these objects in real time.

A typical scene is illustrated in Figure 15.25, where object recognition is made
by a convolutional neural network (CNN). An image is represented as an m × n
array and an additional index k is used to represent images of different colors (red,
green, and blue) or different features (lines, corners, wheels, cars, bicycles, etc.).
Artificial neural networks have only two operations—a weighted summation and
a monotone function of a scalar variable—while the convolutional neural networks
have more operations.
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The convolution (C) function acts on a three-dimensional array and generates
a three-dimensional array. The function can be written y = C(x), where

y(i, j, k) = wo(k) +
∑

u

∑

v

∑

l

x(i− u, j − v, l)w(u, v, l, k).

The function depends on the bias term wo and the weights w. Convolution is used
to detect features, such as edges, corners, wheels, cars, bicycles, etc.

The rectified linear unit (ReLU) R operates on an array and generates an array
of the same size. The function can be written y = R(x), where

y(i, j, k) = max
(
x(i, j, k), 0

)
.

It operates element-wise on the image. The function is analogous to the monotone
function used in conventional neural networks.

The max-pooling function (P ) operates on an array x of size m × n × k and
generates an array y of size m/2 ×n/2×k. The function can be written y = P (x),
where

y(i, j, k) = max
(
x(2i, 2j, k), x(2i− 1, 2j, k), x(2i, 2j − 1, k), x(2i− 1, 2j − 1, k)

)
.

Max-pooling is also called down sampling or subsampling, reduces the dimension
of an array but retains the most important features of the image. There are also
other pooling operators such as minimum and average pooling.

The function Softmax (S) operates on an array and generates an array of the
same size. The function can be written y = S(x), where

y(i, j, k) =
ex(i,j,k)∑
l e
x(i,j,l)

,
∑

k

y(i, j, k) = 1.

The entries of the output are in the range [0, 1], they indicate the subjective prob-
ability of finding the object k in position ij. The function is typically used in the
final layer to assign a subjective probability to a detected feature.

A convolutional neural network can be large with many parameters, but pa-
rameters appear only in the convolution layer. The parameters are determined by
optimization based on large training sets.

Determination of the sizes of the arrays, the number of layers and the order of
the operators is an art that requires experience. In computer vision it is inspired
by earlier efforts based on detection of lines, objects, corners, and blobs.

Figure 15.26 shows a simplified representation of the network used to generate
Figure 15.25. The input to the network is a box with 3 RGB planes with 300× 300
pixels and the output is a box of three images of size 20×20 pixels each representing
a recognized object. The network has 25 million parameters which have to be
estimated. The network can be described by the function

Q = S ◦ C ◦R ◦ C ◦ (P ◦R ◦ C)3,

where f ◦ g denotes function composition, i.e. f ◦ g(x) = f(g(x)). The function
is a composition of 13 functions. The first operations creates a wide range of
patterns using a combination of convolution (C), ReLU (R), and max-pooling (P ).
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Figure 15.26: A simplified version of the convolutional neural network used for
the object detection in Figure 15.25. The input is a color image. The output is
three layers of images representing the subjective probability of finding car, bicycle,
or person at a given position in the image.

Recognition of the final objects car, bicycle, and pedestian is done by S ◦C ◦R ◦C.
The final result three images with numbers that indicate the subjective probability
of finding an object at a particular location.

The arrays are illustrated by boxes in the figure. The first layer consists of
three arrays of red, blue, and green pixels of the object. The convolution operates
sequentially on part of the picture, the kernel is typically a fraction of the image
size. Different convolution kernels are applied to detection edges, corners, and other
features. The result of for each kernel is stored in a separate layer. Convolution is
followed by a rectified linear operator. The size of the image is then reduced using
max-pooling (P ). The operations C, R, and P are repeated several times to create
more features. The final part consists of three layers generated by C, R, and C.
The final result, a classification as car, bicycle, pedestrian, or no object, is obtained
by applying the softmax operator. The final result can be mapped on the original
image as shown in Figure 15.26. There are several ways to improve the position of
the objects and their sizes.

A camera with a convolutional neural network can be regarded as a trainable
sensor that will detect, classify, and position objects such as cars, bicycles, and
people in real time. It is clearly a useful component for autonomous driving and
for other applications in which vision-based sensors are used. From the data it is
easy to generate warnings, zones where a vehicle can safely enter, and other useful
information. The computations are fast, since they only require evaluation of simple
functions; computations can also be parallellized. The network used to generate
Figure 15.25 has more than 12 million parameters and it estimates 11 objects. The
final trained network can be executed in 60 Hz on a standard PC with an NVIDIA
Titan X graphics card.

15.7 Control Design in Common Application Fields

Control is sometimes called the hidden technology because it is successfully used
practically everywhere without being noticed [Åst99]. In this section we will present
the role of control in four different applications fields, which provides a flavor of the
commercial landscape of controls, the systems, the controllers, and the users.
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Aerospace – High Performance Systems and Highly Skilled
Users

The aerospace industry was an early user of control. The Wright brothers flew in
1905 because they had a good insight into dynamics and control. The first autopi-
lot was designed by Sperry in 1914 and autonomous flight was demonstrated in
1947. Today aerospace is a flourishing application area for control, dominated by
large companies for civil and military markets. The industry produces airplanes,
helicopters, drones, satellites, rockets, missiles, and quadrocopters as well as infras-
tructure for flight control, which includes air traffic control and automatic landing
systems. An indication of the size of the business is that about 2500 aircraft were
produced in 2015, generating revenues over 20 billion dollars, and that is only one
part of the industry. Aerospace companies typically have large central groups for
systems and control.

Typical aerospace systems are operated by highly selected, skilled pilots and
astronauts, who are well-trained in simulators and interact with the system by direct
manipulation of actuators and reference signals or by changing operating modes. A
consequence is that the systems are designed so that the user can directly influence
the system in many different ways. Sometimes users have taken over operation of
the system and saved the mission, as was done in Apollo 13 [Min08].

The aerospace industry has been a technology driver with new hardware and
control techniques emerging from the industry. There are extreme requirements on
safety, which has led to the practice of redundant systems and components, since
adopted by the automotive industry. The industry pioneered the use of simulation
and model-based systems engineering, development of high precision accelerometers
and gyroscopes, and anti-lock braking (used on aircraft as early as 1929). Extremal
control was first applied to control of aircraft engines already in 1951. Wide vari-
ations of operating conditions stimulated the development of gain scheduling and
adaptive control. Optimal control and Kalman filtering were used in the early space
efforts. Nonlinear control was used extensively in control of satellites. Unmanned
air vehicles were used operationally already in 1970.

Automotive – Complex Systems Used by Ordinary People

The automotive industry is a multi-trillion dollar business. It is dominated by
six large companies and many subcontractors. Control is used extensively both in
the cars themselves and in the manufacturing of cars. Automobiles are used by
ordinary people who interact with the system by changing modes and setpoints
and by direct actuation. Control is executed using electronic control units (ECUs),
microprocessors with input/output interfaces. Modern cars have more than 100
electronic control units.

Servo-assisted power braking was used in racing cars in 1914 and became com-
monly used in the 1920s. Computer control was introduced in the late 1970s to
cope with the stringent emission requirements. Once computers were introduced
they were applied to more functions: suspension control, anti-lock braking systems
(ABS), electronic braking systems (EBS) and electronic stability control (ESC).
These systems used accelerometers and gyroscopes to control the brakes individ-
ually to improve stability and steering. Adaptive cruise control, based on radar
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sensors, maintains a constant distance to the car in front. The excellent experience
with these systems inspired car manufacturers to introduce more sophisticated sys-
tems such as collision avoidance and parking assist. Autonomous driving is well
on its way. Control is a key element both on its own but also in combination with
computer vision.

Model-based systems engineering is used extensively to improve the efficiency of
engineering. The design of the Toyota Prius is an example where modeling and sim-
ulation replaced much of the traditional testing using hardware prototypes. Another
example is design of climate control systems. The major European car manufactur-
ers and their component suppliers have created an infrastructure for model-based
design where the suppliers deliver components with validated dynamical models
enabling the car manufacturers to simulate complete systems (e.g. [LBSP05]).

A worldwide development partnership of vehicle manufacturers, suppliers, and
software companies called AUTOSAR (AUTomotive Open System Architecture)
was formed in 2003 (see http://www.autosar.org). Standards that enable mod-
ularity, scalability, transferability, and reusability of functions have been created,
providing a standardized platform for automotive software systems. The standard
enables system-wide configuration and optimization to meet run-time requirements
of automotive devices.

The large size of the automotive industry provides a mass market for a wide
range of industries to develop components and subsystems. The industry stimulated
the development of inexpensive emission sensors, accelerometers, and gyroscopes,
and even more importantly the microcontroller and the programmable logic con-
troller (PLC).

Early manufacturing systems were automation systems controlled by relays for
logic and sequencing. General Motors challenged the electronics industry with re-
quirements for a standard machine controller that could replace the relays resulting
in the PLC. The system architecture is based on round robin schedulers with dif-
ferent cycle rates. PLCs were originally programmed in a graphical language called
ladder diagrams (LD), which emulated the ladder logic used to describe relay cir-
cuits. Several different programming styles were later standardized: function block
diagrams (FBD), sequential function charts (SFC), and structured text (ST). PLCs
developed rapidly and became a standard tool for automation in many industries.

Process Industry – Complex Systems with Many Different
Users

Process control provides automation for a variety of industries such as chemicals,
oil refining, pulp and paper, pharmaceuticals power plants and many others. A
characteristic feature of the industry is that control and automation is typically
delivered by special companies. This began with instrument companies that devel-
oped sensors, recorders, and controllers, including Taylor Instruments, founded in
1851, and Foxboro, founded in 1908. By the mid 1930s there were many companies
who supplied sensors, actuators, and controllers to the process industry.

It is normally difficult to find out how much of the turnover of a business is
related to control. In process control this data is available, since automation is
done by special companies. Control and automation is a 100 billion dollar industry.
Distributed control systems account for about 20% of the market, the rest is sensors,

http://www.autosar.org
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actuators, software, and other components. Five dominating suppliers have more
than 50% of the market.

Functions of control and logic and sequencing are essential for process operation.
Early process control systems had cabinets with analog controllers for regulation
and cabinets with relays for logic and sequencing governing startup, shut down,
and equipment protection. As technology developed the relays were replaced by
programmable logic controllers (PLCs), originating in the automotive industry,
and the analog controllers were replaced by distributed control systems (DCS).

DCS is now the standard tool to provide control in the process industry, as
illustrated in Figure 15.6. It has facilities for connecting sensors, actuators, and
algorithms and can be viewed as a toolbox for implementing control systems. It is
interesting to note that ExxonMobil has recently contracted Lockheed Martin to
specify the next generation of distributed control system for process control. The
system will be open, secure, and based on standards, leveraging experiences from
the Future Airborne Capability Environment (FACE) consortium in the aerospace
industry [Ope14].

Process control systems typically have thousands of sensors and actuators, and
the systems are also widely distributed geographically. Sensors and actuators are
connected to the DCS system by standardized networks (IEC 61784).

Valves are commonly used for actuation in process control. It is customary to
have cascade control with inner analog loops with valve positioners to reduce effects
of friction and nonlinearities at the lowest level of the hierarchy, and feedback loops
for control of pressure and temperature and quality variables at the higher levels.

There are several different types of users of the DCS: the plant managers who
set production schedules and directs equipment maintenance, the process engineers
who select, configure, and modify the system, the instrument engineers who tune
controllers and maintain sensors and actuators and the operators who supervise the
operation of the system (see Figure 15.6).

Distributed control systems have many control algorithms that easily can be
configured using graphical interfaces. The control algorithms are implemented by
process and instrument engineers both by company personnel and by consultants.
Controllers are tuned during operation and the system is occasionally reconfigured.
Algorithms and languages are standardized by international committees. A wide
range of standards for control and automation are set by the International Society
of Automation (ISA) and the International Electrical Commission (IEC). There are
also some standards for communication organized by special groups.

Although PID control was used in many fields, the major development of the
controller and its tuning procedure occurred in the process industries. Most of the
controllers (typically 97% [DM02b]) are PID controllers, only a small fraction of
them using derivative action. A recent investigation of 100 boiler-turbine units in
the Guangdong Province in China showed 94.4% PI, 3.7% PID, and 1.9% advanced
controllers [SLL16] .

Control paradigms such as cascade, selector, and midrange control are common,
as are gain scheduling, automatic tuning, and model predictive control. Model
predictive control emerged from efforts at the Shell oil company to develop effective
techniques for control of multi-variable processes. It was originally called dynamic
matrix control [CR80, JBRM99].
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Telecommunication – Billions of Systems

Black’s invention of the negative feedback amplifier was inspired by the needs to
make phone calls over long distances. Intellectual giants like Bode, Nyquist, and
Shannon developed theoretical foundations of control and communications.

Today the global telecommunication system is said to be the world’s largest
man-made artifact, with the total number of mobile subscriptions in the beginning
of 2016 at around 7.4 billion. In many countries the number of mobile subscrip-
tions exceeds the population. The Internet of Things (IoT) is of particular interest
because it enables simple ways of using feedback, and combined with the cloud it
offers many interesting opportunities for novel control applications. It is expected
that the number of IoT devices will surpass mobile subscriptions by 2018. Telecom-
munications is a high pace industry where the consumer preferences change quickly,
making it hard to predict what products will be like 2–3 years from now and the
rules of the game change continuously.

The development of camera modules, GPS modules, accelerometers, and gyros
for the mobile phone industry has decreased the cost for such sensors by several
orders of magnitude because of the large volumes involved. Reduction in size and
improvements in power efficiency have been required to fit sensors into hand held
devices with reasonable battery life times. The inexpensive components have then
found several uses in other fields, for example virtual reality.

Cost efficiency is vital for production in large volumes, making it economical
to put large engineering efforts into cost optimization even for minute details. The
requirements from the communication field lead the development of smaller and
more energy efficient solutions.

There is extensive standardization in the telecommunication markets, forced by
the fact that the technologies share the common radio frequency spectrum and a
carefully controlled use of this limited resource has been needed. It is also highly
beneficial for the consumer if devices from different manufacturers can function
together. The development of technology is coordinated in different groups. The
3GPP consortium develops the standards for mobile communication using GSM
(2G), WCDMA (3G), LTE (4G) as well as future communication standards such
as 5G and beyond. Similarly, IEEE working groups develop standards, for example
802.11 for wireless routers. Competing operators, vendors, and mobile equipment
manufacturers meet in standardization meetings to discuss and decide on new func-
tionality and performance specifications for future devices. New inventions and
intellectual property rights are very important for competitive reasons which leads
to both portfolio agreements and patent battles.

Control enters on many levels, from analog electronics where it is used to im-
prove performance such as linearity and power efficiency of power amplifiers, to
higher functional levels where control is used to continuously choose suitable sys-
tem parameters such as transmission power and coding schemes depending on ex-
isting communication conditions. PID control is often used together with and gain
scheduling and simple adaptive schemes.
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15.8 Further Reading

A comprehensive treatment of architecture and design of complex systems is given
in [CCS15]. Much of the development of PID controllers occurred in the power
and process industries, where also many of the associated bottom-up control ar-
chitectures like cascade, selector, and midranging control appeared. A detailed
treatment is given in [ÅH06]. Complementary filtering is well described in []. The
internal model control architecture is described in [BT78]. The internal model
principle which says that a good controller should contain a model of the process
is formulated in [FW76]. The Smith predictor [Smi57a, Hun07] is closely related
to internal model control because it also uses a parallel model. It was invented by
Otto J. M. Smith, a legendary professor from University of California, Berkeley who
also invented posicast control [Smi57b], a scheme for controlling highly oscillatory
systems.

Decoupling has long been used in many areas of control, the architecture with in-
verted decoupling is introduced in [Wad97], a state space version is given in [HK83].
The relative gain array, a simple way to quickly estimate the interaction, was in-
troduced in [Bri66]. A detailed treatment is found in [McA83].

Gain scheduling is widely used in practice, overviews are presented in [LWE00,
SA92, Rug91]. Adaptive control emerged from the desire to avoid gain scheduling
in flight control and the dream of having a controller that can automatically ad-
just itself to good performance in the process industry. Early pioneering work is
found in [Gre59]. Current knowledge is found in [ÅW08a, CS08, LW13]. System
identification is a key element of adaptive control; the book [Lju99a] is an excellent
reference. In spite of advances in adaptive control, gain scheduling is still the dom-
inant control scheme for flight control [Ste80], with one reason being the significant
developments in air-data sensors. The process engineers dream of having a simple
universal controller that self-adjusts to provide good robust performance; the relay
auto-tuner for PID control is a partial answer.

Rosenblatt’s perceptron [Ros62] was the first neural network, which was used to
separate hyperplanes in pictures. An analog version, the Adaline [WS85], invented
by Widrow, was used in simple adaptive systems and for noise cancellation. A se-
vere and partially unfair criticism was given by Minsky and Papert [MP69] who did
not realize the advantage with many layers. There was a revival when backpropa-
gation was introduced to find parameters in networks with many layers [RHW86].
Backpropagation is closely related to dynamic programming [Bel57]. The disad-
vantage of networks with few layers was clarified in [H̊as87]. An early application
to picture classification is given in [LBD+89], using deep structures and convolu-
tional networks. There have lately been significant advances in object recognition,
driven by improved algorithms and good test bases. The ImageNet Large Scale
Visual Recognition Challenge is a benchmark with millions of images and hundreds
of objects. Competitions have been run since 2010. The classification error was
brought down from around 30% in 2010 to 3% in 2016 [KSH12, SZ14, SHM+16a].
The usefulness of deep convolutional networks has been proven in many domains:
character recognition, computer vision, and game-playing. AlphaGo’s algorithm
uses a Monte Carlo tree search to find its moves based on knowledge previously
obtained by machine learning based on extensive training, both from playing with
humans and computers [SHM+16b].
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lund. Improving a real-time object detector with compact temporal infor-
mation. In International Conference on Computer Vision Workshops, 2017,
page 190, 2017.
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see also vectored thrust aircraft;
X-29 aircraft
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aircraft, see flight control
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algebraic loops, 3-26, 9-22–9-23
aliasing, 8-31
all-pass transfer function, 14-10
alternating current (AC), 6-25
amplifier, see operational amplifier
amplitude ratio, see gain
analog computing, 3-9, 3-26, 4-8, 9-23,

11-20
analog implementation, of controllers, 4-10,

9-41, 11-20–11-22
analog-to-digital converters, 1-5, 1-6, 4-18,

8-30, 8-31, 11-22
angle, of frequency response, see phase
anticipation, in controllers, 1-20, 11-5,

see also derivative action
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anti-windup compensation, 1-19, 11-16–

11-18, 11-22, 11-23, 11-26
stability analysis, 11-26

Apache web server, 4-12, see also web
server control

Arbib, M. A., 7-1
architectures, for control systems, 1-16,

1-23–1-27, 2-19, 8-23–8-24, 13-14,
15-39, 15-42

bottom up, 15-17–15-24
top down, 15-6–15-17

argument, of a complex number, 9-29
arrival rate (queuing systems), 3-36
artifical neural network (ANN), 15-34
artificial pancreas, 4-25
asymptotes, in Bode plot, 9-32
asymptotic stability, 3-21, 5-8, 5-10, 5-12,

5-13, 5-18, 5-19, 5-22, 5-26, 5-27,
5-29, 6-10

discrete-time systems, 6-37
atmospheric dynamics, see environmen-

tal science
atomic force microscopes, 1-3, 3-30, 4-17–

4-21
contact mode, 4-17, 6-25
horizontal positioning, 10-17–10-18,

13-19–13-21
system identification, 9-38–9-39
tapping mode, 4-17, 10-28, 11-8, 11-13–

11-14, 12-16
with preloading, 4-30

attractor (equilibrium point), 5-10
automatic reset, in PID control, 11-4,
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automatic tuning, 11-15, 13-28

automotive control systems, 1-18, 3-30,
4-5, 15-38–15-39, see also cruise
control; vehicle steering

autonomous differential equation, 3-3, see
also time-invariant systems

autonomous vehicles, 1-9, 1-10, 1-27, 15-8–
15-10, 15-29, 15-35, 15-38, 15-39,
see also robotics

autopilot, 1-15, 1-16

AUTOSAR, 15-39

average residence time, 11-7, 11-25

balance systems, 3-12–3-14, 3-29, 7-4–
7-6, 7-23–7-24, 9-25–9-26, 14-14–
14-15, see also cart-pendulum
system; inverted pendulum

band-pass filter, 6-23–6-25, 9-35

bandwidth, 2-18, 6-25, 12-6, 12-7, 12-32,
14-13

for second-order systems, 7-20

behavioral modeling, 3-7

Bell Labs, 1-15, 10-27, 12-30

Bennett, S., 1-27, 10-27, 11-24

Bertram, J., 7-33

bicycle dynamics, 4-5–4-8, 4-28, 5-31–5-32,
14-1, 14-19–14-20

Whipple model, 4-7

bicycle model, for vehicle steering, 3-30–
3-31

bifurcations, 5-30–5-32, see also root lo-
cus plots

biological circuits, 1-13, 3-24, 3-40–3-41,
5-38, 6-38, 9-36–9-37

genetic switch, 3-47, 5-23

repressilator, 3-41

biological systems, 1-1, 1-3, 1-9, 1-12,
1-28, 3-40–3-44, 5-34, 11-2, 11-6,
see also biological circuits; drug
administration; neural systems;
population dynamics

bistability, 5-25

Black, H. S., 1-8, 1-15, 4-8, 4-10, 6-2,
10-1, 10-27, 13-1

block diagonal form, 5-38

block diagonal systems, 5-12, 5-13, 5-38,
6-9, 6-15, 6-19, 8-12

block diagram algebra, 2-11, 9-17, 9-19,
13-12

block diagrams, 1-1, 2-10, 3-23–3-26, 9-8,
9-17–9-23

control system, 1-6, 2-13, 2-21, 2-26,
9-1, 9-2, 9-18

Kalman decomposition, 8-16
observable canonical form, 8-5
observer, 8-2, 8-9
observer-based control system, 8-14
PID controllers, 11-2, 11-5, 11-22
reachable canonical form, 7-7
two degree-of-freedom control, 8-23,

12-2, 13-16
Youla parameterization, 13-14

Bode, H., 1-8, 9-1, 10-27, 13-28, 14-30
Bode plots, 9-29–9-37, 10-18

asymptotic approximation, 9-32
low-, band-, high-pass filters, 9-35
of rational function, 9-29
sketching, 9-32

Bode’s ideal loop transfer function, 13-13,
13-30

Bode’s integral formula, 14-5–14-10, 14-31
Bode’s phase area formula, 12-16
Bode’s relations, 10-18, 10-19, 12-14
BOXES, 15-33
Brahe, T., 3-2
breakpoint, 9-32, 10-8
Bristol’s RGA, 15-25
Brockett, R. W., xii, 6-34
Bryson, A. E., 7-36
bump test, 11-11, 11-13
bumpless transfer, 13-27
Bush, V., 11-24

calibration, versus feedback, 1-8, 7-14,
7-24, 7-26

cancellation, see pole/zero cancellations
Cannon, R. H., 3-44, 6-1
capacitor, transfer function for, 9-9
car, see automotive control systems; cruise

control; vehicle steering
carrying capacity, in population models,

4-26, 4-27
cart-pendulum system, 3-12, 3-13, 7-5,

7-6, 14-28–14-30, 15-33, see also
balance systems

cascade control, 15-18–15-19
causal reasoning, 1-1, 4-7
Cayley-Hamilton theorem, 7-33, 8-3
center (equilibrium point), 5-10
centrifugal governor, 1-2, 1-3, 1-14
certainty equivalence principle, 15-30
chain of integrators (normal form), 3-44,
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characteristic polynomial, 2-6, 2-9, 5-12,
7-33, 9-8, 9-24

for closed loop transfer function, 10-2
observable canonical form, 8-5
output feedback controller, 8-12, 8-13
reachable canonical form, 7-7, 7-9,

7-13, 7-34
chemical systems, 1-8, 11-1, see also pro-

cess control; compartment mod-
els

chordal metric, 13-6
circle criterion, 10-24–10-25, 10-30, 11-17,

11-18, 13-13, 14-27
circuits, see biological circuits; electrical

circuits
class of signals E , see exponential signals
classical control, xi, 13-28
closed loop, 1-1, 1-2, 1-5, 6-33, 7-10, 7-17,

10-2, 10-24, 12-1
versus open loop, 1-1, 10-4, 12-1

co-design, 15-1
command signal, 1-4, 1-5, 2-1, 7-9, 8-23,

11-2, see also reference signal;
setpoint

communication systems, 15-41
compartment models, 4-21–4-26, 5-13–

5-14, 6-21, 6-37, 7-20, 8-3–8-4,
8-8–8-9

compensator, see control law
complementary filtering, 15-23, 15-24
complementary sensitivity function, 12-3,

13-11, 13-14, 13-17, 13-22, 13-29,
14-7, 14-25, 14-32

complexity, of control systems, 1-8, 1-18,
11-7

computed torque, 6-34
computer implementation, of controllers,

3-17, 8-30–8-31, 11-22–11-23
computer science, relationship to control,

1-6
computer systems, control of, 1-10–1-11,

1-22, 1-28, 3-16, 3-37, 3-38, 4-11–
4-17, 6-28, see also queuing sys-
tems

conditional stability, 10-14
configuration variables, 3-13
congestion control, 1-10, 4-14–4-17, 5-10–

5-11, 10-8–10-9, 10-28, see also
queuing systems

router dynamics, 4-29
consensus, 3-38
contracts (specifications), 15-14

control
definition of, 1-5–1-6
early examples, 1-2, 1-7, 1-8, 1-14,

1-18, 1-27, 11-4
fundamental limits, 13-27–13-28, 14-1–

14-30, 14-32
history of, 1-28, 11-24
modeling for, 1-6, 3-5–3-6, 3-44, 13-1
successes of, 1-8, 1-27
system, 1-5, 7-9, 8-14, 8-23, 8-30,

9-1, 12-2, 12-6, 13-16
using estimated state, 8-11–8-14, 13-23

control error, 1-18, 9-18, 11-2
control law, 1-5, 1-18, 1-19, 6-33, 7-10,

7-13, 9-18
control Lyapunov function, 5-33
control matrix, 3-10, 3-14
control protocol, 15-12
control signal, 1-4, 1-19, 2-2, 2-18, 2-25,

3-6, 3-10, 3-27, 6-27, 7-1, 7-22,
8-30, 9-2, 11-2, 11-4, 11-15, 11-18–
11-20, 11-22, 12-2, 12-5–12-8,
12-11, 12-22, 13-24, 14-26, 14-28,
15-19–15-21, 15-32

controllability, 7-33, see also reachability
controlled differential equation, 3-3, 3-11,

9-8
convolution equation, 6-15–6-17, 6-19, 6-20,

6-22, 6-35, 7-4, 9-16
discrete-time, 6-36

convolutional neural network, 15-37
convolutional neural network (CNN), 15-35
convolutional neural networks, 15-35
coordinate transformations, 5-12, 6-17–

6-19, 7-8, 8-32, 9-12
to Jordan form, 6-9
to observable canonical form, 8-6
to reachable canonical form, 7-8, 7-9

Coriolis forces, 3-12, 6-34
corner frequency, 9-32
correct-by-construction, 15-16
cost function, 7-28
coupled spring-mass system, 6-12, 6-14–

6-15, 6-18–6-19
covariance matrix, 8-17, 8-18
critical gain, 11-12, 11-14
critical period, 11-12, 11-14
critical point, 10-3, 10-6, 10-7, 10-15, 10-16,

10-26, 10-27, 11-12, 13-9, 13-10
critically damped oscillator, 7-18
crossover frequency, see gain crossover

frequency; phase crossover fre-
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quency
crossover frequency inequality, see gain

crossover frequency inequality
cruise control, 1-14, 1-21, 4-1–4-5

control design, 7-25–7-26, 11-9–11-10,
11-20

electric car, 15-27–15-29
feedback linearization, 6-33
integrator windup, 11-15–11-17
linearization, 6-29, 6-31
pole/zero cancellation, 9-27–9-28
robustness, 1-14, 13-2–13-3, 13-11–

13-12
Curtiss seaplane, 1-16
cybernetics, 1-9, see also robotics
cyberphysical system, 3-8, see also hy-

brid system

D contour, see Nyquist contour
D/A converters, see digital-to-analog con-

verters
damped frequency, 2-15, 7-18
damping, 3-3, 3-12, 3-19, 5-2
damping ratio, 2-15, 7-18, 7-19, 7-21, 11-9
DARPA Grand Challenge, 1-27, 15-10
DC gain, 6-25, see also zero frequency

gain
dead zone, 1-18, 1-19
decision making, higher levels of, 1-9, 15-9
deep learning, 15-35
delay, see time delay
delay margin, 10-17
delay-dominated dynamics, 11-14
delta function, see impulse function
derivative action, 1-20, 11-2, 11-5–11-7,

11-21
filtering, 11-6, 11-19–11-20, 11-22,

11-23, 12-11
setpoint weighting, 11-20, 11-23
time constant, 11-3

derivative gain, 11-2
derivative time constant, 11-5
describing functions, 10-25–10-27, 10-31,

14-28, 14-29
design of dynamics, 1-15–1-16, 5-16, 5-32–

5-34, 6-1, 7-1, 7-11, 7-17
design V, 15-2
diabetes, see insulin-glucose dynamics
diagonal systems, 5-12, 6-9, see also block

diagonal systems
Kalman decomposition for, 8-15
transforming to, 5-12, 5-38, 6-8

difference equations, 3-10, 3-14–3-17, 3-20,
3-44, 6-27, 8-30, 11-23

differential algebraic equations, 3-7, see
also algebraic loops

differential equations, 2-5, 3-2, 3-10–3-14,
5-1–5-4

controlled, 3-3, 6-3, 9-8
equilibrium points, 5-6–5-7
existence and uniqueness of solutions,

5-2–5-4
first-order, 3-6, 11-7
periodic solutions, 5-7, 5-17
qualitative analysis, 5-4–5-7
second-order, 5-5, 7-17, 11-7
solutions, 2-8, 5-2, 6-3, 6-7, 6-15,

9-44
stability, see stability
transfer functions for, 9-11

differential flatness, 8-25, 8-26, 15-11
digital control systems, see computer im-

plementation, controllers
digital-to-analog converters, 1-5, 1-6, 4-18,

8-30, 8-31, 11-22
dimension-free variables, 3-28, 3-44
direct connection, 3-26
direct term, 3-10, 3-14, 3-26, 6-17, 8-11,

9-22
discrete control, 3-37
discrete transition system, 15-12
discrete-time systems, 3-14, 3-44, 5-37,

6-27, 6-36, 11-22
Kalman filter for, 8-17
linear quadratic control for, 7-30

distributed control system (DCS), 1-25,
11-2, 15-9, 15-39–15-40

disturbance attenuation, 1-5, 2-4–2-5, 2-12–
2-16, 7-10, 12-9–12-10, 13-16

design of controllers for, 12-14, 12-19,
12-33, 13-23, 14-6

in biological systems, 9-37, 11-6
integral gain as a measure of, 11-5,

13-16
relationship to sensitivity function,

12-9, 12-32, 13-16, 14-6
disturbance modeling, 8-19, 8-27
disturbance weighting, 13-26, see H∞ con-

trol
disturbances, 1-5, 3-3, 3-6, 9-18, 9-27,

12-2, 12-5
generalized, 13-24
random, 8-17

Dodson, B., 1-1
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dominant eigenvalues (poles), 7-21, 11-9,
11-10

double integrator, 6-7, 7-2, 9-11, 9-36

Doyle, J. C., xii, 12-30, 13-28

drag, 4-3

drug administration, 4-21–4-26, 4-30, 6-21,
7-20–7-21, see also compartment
models

drum boiler, 3-34

dual control, 15-32

duality, 8-7, 8-11

Dubins car model, 3-31, 3-46

dynamic compensator, 7-25, 8-13

dynamic inversion, 6-34

dynamic voltage frequency scaling, 11-25

dynamical systems, 1-1, 3-1, 5-1, 5-4, 5-34

linear, 5-11, 6-1

observer as a, 8-1

state of, 7-9

stochastic, 8-17

see also differential equations

dynamics matrix, 3-10, 3-14, 5-11, 6-13

Dyson, F., 3-1

E , see exponential signals

e-commerce, 1-10

e-mail server, control of, 3-16, 6-28

economic systems, 1-4, 1-11, 3-45

ecosystems, 1-12, 4-26, 7-15, see also predator-
prey system

eigenvalue assignment, 7-11, 7-13–7-17,
7-22, 11-8, 14-20–14-25

by output feedback, 8-13

for observer design, 8-7

eigenvalues, 5-11, 5-22, 5-31, 6-12, 9-5

and Jordan form, 6-9–6-11, 6-36

distinct, 6-8, 6-14, 8-15

dominant, 7-21

effect on dynamic behavior, 7-17–
7-19, 7-21, 9-4, 9-5

for discrete-time systems, 6-37

invariance under coordinate trans-
formation, 5-13

relationship to modes, 6-12–6-15

relationship to poles, 9-24

relationship to stability, 5-26, 6-10,
6-11

repeated, 6-9

eigenvectors, 5-13, 6-12, 6-13

relationship to mode shape, 6-13

electric car, 15-27

electric power, see power systems (elec-
tric)

electrical circuits, 3-7, 3-24, 4-10, 6-1,
9-9, see also operational am-
plifier

electrical engineering, 1-7–1-8, 3-4–3-5,
6-25, 10-13

elephant, modeling of an, 3-1
Elowitz, M. B., 3-41
encirclement, 10-6, see also Nyquist cri-

terion
environmental science, 1-3, 1-8
equation-based modeling, 3-7
equilibrium points, 3-39, 4-27, 5-6, 5-12,

6-2, 6-30, 7-2
bifurcations of, 5-30
discrete time, 3-39, 3-44
for closed loop system, 7-11, 7-25
for planar systems, 5-10
region of attraction, 5-28–5-30
stability, 5-8

equipment protection, 15-20
error coefficients, 12-7
error feedback, 2-18, 11-2, 11-20, 12-4
estimators, see observers
Euler integration, 3-20, 3-21
exponential growth, in population mod-

els, 2-24, 4-26
exponential response, 9-4, 9-5, see also

transfer functions
exponential signals, 2-7, 9-2–9-12, 9-24,

9-29
extended Kalman filter, 8-30
extremum seeking, 15-24

Falb, P. L., 7-1
feedback, 1-1–1-3, 2-1

as technology enabler, 1-3
drawbacks of, 1-3, 1-17–1-18, 2-4,

11-19, 13-9, 13-16
generation of discrete behavior, 2-27
in biological systems, 1-1, 1-3, 1-12,

1-28, 11-6, see also biological
circuits

in engineered systems, see control
in financial systems, 1-3
in nature, 1-3, 1-11–1-13, 4-26
positive, see positive feedback
properties, 1-2, 1-6, 1-13–1-18, 13-1
robustness through, 1-14
versus feedforward, 1-4, 11-4, 12-19

feedback amplifier, 1-7
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feedback connection, 2-10, 2-11, 9-17, 9-18,
10-24, 10-25

feedback controller, 9-18, 12-2
feedback linearization, 6-33–6-34
feedback loop, 1-5, 10-1
feedback uncertainty, 13-3, 13-4, 13-13
feedforward, 1-4, 3-6, 8-24, 8-28, 9-18,

11-17, 12-2, 12-18, see also two
degree-of-freedom control

design, 12-18–12-23
difficulties with, 12-20–12-23
sensitivity to process variations, 13-30

Fermi, E., 3-1
filters

active, 6-23
complementary filtering, 15-23
for measurement signals, 1-17, 8-31,

13-17
see also band-pass filters; high-pass

filters; low-pass filters
final value theorem, 9-16
financial systems, see economic systems
finite escape time, 5-3
finite state machine, 1-21, 3-8, 3-17–3-19,

4-5, 4-12
first-order and time-delay (FOTD) model,

11-12–11-14
first-order systems, 6-3, 6-36, 9-11, 9-30,

9-31
fisheries management, 4-31
FitzHugh-Nagumo equations, 3-43, 3-47,

3-48, see also Hodgkin-Huxley
equations

flatness, see differential flatness
flight control, 1-8, 1-15, 3-31, 6-34

X-29 aircraft, 14-7
see also vectored thrust aircraft

flow, of a vector field, 3-3, 5-5
flow in a tank, 5-35
flow model (queuing systems), 3-36, 10-28
flyball governor, see centrifugal governor
flying home mode, 15-17
force feedback, 1-8
forced response, 6-3, 9-3
Forrester, J. W., 1-12
Fourier, J. B. J., 3-44, 9-40
fractional transfer functions, 13-28
frequency domain, 9-1–9-3, 10-1, 10-22,

12-1
frequency response, 2-8, 2-9, 3-5, 3-22,

3-23, 6-21–6-27, 9-1, 9-2, 10-27
relationship to Bode plot, 9-29

relationship to Nyquist plot, 10-5,
10-7

relationship to step response, 10-21,
12-8, 12-9, 12-12, 12-32

second-order systems, 7-19, 9-35
system identification using, 9-38

frequency response analyzer, 9-40
friction, 3-12, 3-13, 3-20, 4-3, 14-28–14-30
fully actuated systems, 9-24
fundamental limits, see control: funda-

mental limits

gain, 1-19, 2-2, 2-8, 3-22, 3-27, 4-8, 6-23,
6-24, 7-21, 9-3, 9-6, 9-23, 9-29,
10-15, 10-22–10-25, 13-1

feedback, 7-25
generalized, 10-22
H∞, 10-23
observer, see observer gain
state feedback, 7-11, 7-15, 7-25, 7-33
zero frequency, see zero frequency

gain
see also integral gain

gain crossover frequency, 10-15, 10-16,
12-6, 12-14, 12-34, 14-11, 14-25

gain crossover frequency inequality, 14-10–
14-15

gain curve (Bode plot), 9-29–9-33, 10-18,
12-13

gain margin, 10-15–10-17
from Bode plot, 10-16
reasonable values, 10-17

gain scheduling, 8-27–8-29, 13-27
gain-bandwidth product, 4-10, 9-7, 13-18
Gang of Four, 12-3, 12-31, 13-15
Gang of Six, 12-3
gene regulation, 1-12, 3-40, 6-38, 9-36
generalized impedance, 9-9
genetic switch, 3-47, 5-23–5-25
global behavior, 5-10, 5-29–5-32
Glover, K., 12-30, 13-28
glucose regulation, see insulin-glucose dy-

namics
Golomb, S., 4-1
governor, see centrifugal governor

H∞ control, 13-24–13-28, 13-30
disturbance weighting, 13-30

Hall chart, 13-22
hardware-in-the-loop simulation (HIL), 15-3
Harrier AV-8B aircraft, 3-31, 3-32
heat propagation, 9-11, 10-29
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Heaviside, O., 6-35
Heaviside step function, 6-20, 6-35
Hellerstein, J. L., 1-28, 4-17
Hewlett’s oscillator, 2-24
Hewlett-Packard, 2-24
hidden technology, 15-37
high-frequency roll-off, 11-20, 12-11, 12-14,

13-17, 13-20, 14-28
high-pass filter, 9-35
Hill function, 3-40
Hoagland, M. B., 1-1
Hodgkin-Huxley equations, 3-41–3-43, 3-48,

see also FitzHugh-Nagumo equa-
tions

homeostasis, 1-3, 3-40
homogeneous equation, 2-6, 9-23
homogeneous system, 6-3, 6-6, 6-7
Horowitz, I. M., 2-28, 8-32, 12-30, 13-22,

13-28, 14-30
human-machine interface, 1-21, 4-1, 4-5
hybrid system, 1-28, 3-8, 3-19, 3-43, 15-12
hyper state, 15-33
hysteresis, 1-18, 1-19, 2-4, 2-26, 2-27, 10-26,

10-27

I-PD controller, 11-20
identification, see system identification
impedance, 9-8, 9-9, 11-21
implementation, controllers, see analog

implementation; computer im-
plementation

impulse function, 6-16, 7-4
impulse response, 6-5, 6-16, 6-17, 6-35,

7-3, 9-16
inductor, transfer function for, 9-9
inertia matrix, 3-12, 6-34
inferential control, see internal model con-

trol
infinity norm, 10-23, 13-25
information systems, 1-10, 3-34–3-39, see

also congestion control; web server
control

initial condition, 5-2, 5-5, 5-8, 6-3, 6-7,
6-14, 8-17

initial condition response, 6-3, 6-4, 6-6–
6-9, 6-13, 6-14, 6-17, 9-3–9-5

initial value problem, 5-2
initial value theorem, 9-16
inner loop control, 12-27, 12-29
input sensitivity function, see load sen-

sitivity function
input signal, see control signal

input/output models, 1-5, 2-5, 3-4, 3-5,
6-3, 6-15–6-28, 9-1, 9-4, 10-22,
see also frequency response; steady-
state response; step response

and transfer functions, 9-16
from experiments, 9-37
relationship to state space models,

3-6, 5-1, 6-16
steady-state response, 6-19
transfer function for, 9-8

input/output stability, 10-24
inputs, 3-3, 3-6
insect flight control, 3-23–3-26
instrumentation, 1-8–1-9, 4-8
insulin-glucose dynamics, 1-2, 4-24–4-26,

4-30
minimal model, 4-25

integral action, 1-19, 1-20, 1-29, 2-17,
2-25, 7-24–7-27, 7-35, 8-27, 11-2,
11-4–11-5, 11-7

by positive feedback, 2-25
setpoint weighting, 11-20, 11-23
time constant, 11-3

integral gain, 1-19, 11-2, 11-5, 11-7
integrated error, 11-5
integrator, 3-23, 3-24, 7-24–7-26, 8-5, 9-11,

9-30, 10-18, see also double in-
tegrator

integrator windup, 1-19, 8-31, 11-15–11-17
conditional integration, 11-26

intelligent machines, see robotics
interaction, 15-24
internal model control, 15-21
internal model principle, 8-13, 8-30, 15-42
internal stability, 12-5
Internet, 1-10, 4-12, 4-14, 4-17, see also

congestion control
Internet of Things (IoT), 15-41
Internet Protocol (IP), 4-14
invariant set, 5-27, 5-30
inverse model, 6-33, 6-34, 12-19, 12-20

approximate, 12-22
inverse response, 3-34, 10-21, 12-21
inverted pendulum, 3-14, 4-6, 5-6–5-7,

5-14–5-15, 5-27–5-30, 5-36, 5-37,
10-13, 14-7, see also balance
systems

Jacobian linearization, 6-29–6-33
Janert, P. K., 1-28
Jordan block, 6-9
Jordan form, 6-9–6-12, 6-36, 7-21
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Kalman, R. E., 7-1, 7-33, 8-1, 8-16, 8-32

Kalman decomposition, 8-15–8-17, 9-40,
9-43

Kalman filter, 8-11, 8-17–8-21, 8-32, 13-23

extended, 8-30

Kalman’s inequality, 10-29

Kalman-Bucy filter, 8-20

Kelly, F. P., 4-17

Kepler, J., 3-2

Keynesian economic model, 3-45, 6-37

Krasovski-Lasalle principle, 5-26–5-27

LabVIEW, 5-31, 6-35

ladder diagrams, LD, 15-39

lag, see phase lag

lag compensation, 12-15

lag-dominated dynamics, 11-13, 11-14

Laplace transforms, xi, 9-14–9-16

Laplacian matrix, 3-39

Lasalle’s invariance principle, see Krasovski-
Lasalle principle

lead, see phase lead

lead compensation, 12-15, 12-17, 12-28,
12-34

lead-lag compensation, 12-33

learning, 15-29

limit cycle, 4-28, 5-7, 5-17–5-18, 5-31,
10-25, 10-26

linear quadratic control, 7-28–7-32, 8-18,
8-22–8-23, 8-32, 13-23–13-24

proof of optimality, 7-36

using optimal estimator, 8-22

linear range, 1-19, 2-2–2-5

linear systems, 2-5–2-9, 3-4, 3-10, 4-10,
5-11, 6-1–6-35, 8-15, 9-3, 9-8,
9-40, 10-23

linear temporal logic, 15-13

linear time-invariant systems, 2-6, 3-4,
3-5, 3-10, 6-4

linearity, 6-3, 9-29

linearization, 5-16, 5-26, 6-2, 6-28–6-34,
8-28, 13-2

Lipschitz continuity, 5-4

load disturbances, 2-2, 2-4, 12-2, 13-16,
see also disturbances, distur-
bance attentuation

load sensitivity function, 12-3

local behavior, 5-10, 5-16, 5-26, 5-29, 6-30

locally asymptotically stable, 5-10

logic, combining feedback with, 1-20–1-25,
1-27, 1-28, 3-6, 3-8, 15-11, 15-39,

15-40, see also finite state ma-
chine; supervisory control

logistic growth model, 4-26, 4-27
loop analysis, 10-1, 12-1
loop shaping, 10-4, 12-13–12-17, 12-30,

13-22
design rules, 12-14
see also Bode’s loop transfer func-

tion
loop transfer function, 10-1–10-4, 10-16,

10-24, 12-1, 12-5, 12-13, 12-14,
12-30, 14-6, see also Bode’s loop
transfer function

Lotus Notes server, see e-mail server
low-order models, 11-7
low-pass filter, 9-35, 11-19, see also high-

frequency roll-off
LQ control, see linear quadratic control
LTI systems, see linear time-invariant sys-

tems
Lyapunov equation, 5-22, 5-36
Lyapunov functions, 5-19, 5-21–5-23, 5-29,

6-36
design of controllers using, 5-27, 5-32
existence of, 5-21

Lyapunov stability analysis, 3-22, 5-18–
5-28, 5-34

discrete time, 5-37

magnitude, of frequency response, see gain
manifold, 5-28
manual control, 11-18
margins, see stability margins
Markov parameters, 9-42
materials science, 1-8
Mathematica, 3-20, 5-31, 6-35
MATLAB, 2-11, 3-20, 5-31, 6-35, 6-37,

13-23, 15-25
acker, 7-15, 8-11
dlqe, 8-18
dlqr, 7-32
feedback, 2-11
gapmetric, 13-7
hinfsyn, 13-25
jordan, 6-10
kalman, 8-20
linmod, 6-31
lqr, 7-29
lsim, 2-12
parallel, 2-11
place, 7-15, 7-23, 8-11
series, 2-11
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step, 2-12
trim, 6-31

matrix exponential, 6-6–6-15, 6-34, 6-35
coordinate transformations, 6-18
Jordan form, 6-10
second-order systems, 6-35

maximum complementary sensitivity, 12-6,
13-11, 14-25

maximum modulus principle, 14-15
maximum selector, 1-23, 15-20
maximum sensitivity, 12-6, 12-10, 13-9,

13-13, 14-25
measured signals, 3-6, 3-10, 5-1, 8-1, 8-2,

8-14, 8-31, 12-2, 12-5, 13-24
measurement noise, 1-5, 1-17, 8-2, 8-3,

8-17, 8-19, 9-18, 11-19, 12-2,
12-14, 13-16, 14-28

response to, 12-10–12-12, 13-16–13-17
mechanical systems, 3-6, 3-12, 3-21, 3-30,

3-44, 6-34
mechanics, 3-2–3-5, 5-34, 6-1
median selectors, 15-20
mid-range control, 15-19
minimal model (insulin-glucose), 4-25, see

also insulin-glucose dynamics
minimum phase, 10-19, 10-27, 14-10
minimum selector, 1-23, 15-20
mixed integer solvers, 15-14
mixed logical dynamical, 15-14
modal form, see diagonal systems
model checking, 15-15
model predictive control, 4-26
model reference, 12-2
Modelica, 3-7, 3-26, 6-34, 9-23
modeling, 1-5, 3-1–3-10, 3-44, 4-1

control perspective, 3-5
discrete control, 3-37
discrete-time, 3-14–3-15, 6-27–6-28
frequency domain, 9-1–9-3
from experiments, 3-27–3-28
model reduction, 1-6
multidomain, 3-6
normalization and scaling, 3-28
simplified models, use of, 3-6, 11-7,

13-2, 13-10, 13-12
software for, 3-7, 6-31, 6-34
state space, 3-10–3-22
uncertainty, see uncertainty

modes, 6-12–6-14, 9-23
relationship to poles, 9-25

modularity, 1-16–1-17, 15-8, 15-10, 15-39
motion control systems, 3-30–3-32, 8-32

motors, electric, 3-46, 10-3, 14-26
multi-input, multi-output systems, 5-1,

10-23, 12-6, 12-14, see also in-
put/output models

multiplicative uncertainty, 13-3, 13-4, 13-12,
13-13

nanopositioner (AFM), 10-17, 13-19
natural frequency, 2-15, 7-18, 11-9

damped, 2-15, 7-18
negative definite function, 5-19
negative feedback, 1-2, 1-15, 2-2, 4-9, 7-10,

10-1, 11-6
Nernst’s law, 3-43
networking, 1-10, 3-24, 4-17, see also con-

gestion control
neural systems, 1-9, 2-23, 3-25, 3-41–3-43,

11-6
neutral stability, 5-8–5-10
Newton, I., 3-2
Nichols, N. B., 6-34, 11-11, 12-30, 13-28
Nichols chart, 13-22, 13-23
Nobel Prize, 1-9, 3-43, 4-17
noise, see disturbances; measurement noise
noise attenuation, 9-37, 12-10–12-12
noise cancellation, 5-33
noise sensitivity function, 12-3
non-minimum phase, 10-20, 14-10, 14-12,

see also inverse response
nonlinear systems, 2-1–2-2, 2-22, 3-6, 5-1,

5-4, 5-7, 5-15, 5-18, 5-23, 5-29–
5-34, 8-2, 8-24, 8-30, 10-23–10-25,
13-12, 14-26–14-30

linear approximation, 5-26, 6-30, 13-2
system identification, 3-45

nonunique solutions (ODEs), 5-3
normalized coordinates, 3-28–3-29, 3-45,

6-32
norms, 10-22–10-23
Nyquist, H., 1-8, 10-1, 10-27
Nyquist contour, 10-5, 14-8
Nyquist criterion, 10-4–10-13, 10-25, 11-12

extension to nonlinear systems, 10-24–
10-25

for robust stability, 13-9
general, 10-10

Nyquist plot, 10-5–10-6, 10-15, 11-12, 12-9,
12-10, 13-23

observability, 8-1–8-2, 8-15, 8-32
rank condition, 8-3
tests for, 8-2–8-3
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unobservable systems, 8-4, 8-15–8-17,
9-44

observability matrix, 8-3, 8-5

observable canonical form, 8-5, 8-32

observer gain, 8-7, 8-9–8-11, 8-13, 8-18,
8-20

observers, 8-1, 8-6–8-9, 8-13, 8-20, 8-30

block diagram, 8-2, 8-9

see also Kalman filter

ODEs, see differential equations

Ohm’s law, 3-42, 4-9, 9-9

on-off control, 1-18, 1-19

open loop, 1-1, 1-2, 2-2, 4-8, 7-2, 9-20,
10-1, 11-15, 12-1, 12-9, 13-4

operational amplifier, 2-24, 2-25, 4-8–4-11,
9-6–9-8, 10-28, 11-20, 13-13

circuits, 4-28, 6-23, 13-18–13-19

dynamical model, 4-10, 9-6

input/output characteristics, 4-9

oscillator using, 4-29, 5-37

static model, 4-8, 9-6

optimal control, 7-28, 8-17, 8-20, 13-23

order, of a model, 3-10, 3-11

ordinary differential equations, see dif-
ferential equations

oscillator dynamics, 2-24–2-25, 4-29, 5-2,
5-3, 5-17–5-18, 5-37, 6-8, 7-18,
9-5, 9-11

normal form, 3-45

repressilator (biological circuit), 3-41

see also nanopositioner (AFM); spring-
mass system

outer loop control, 12-27–12-29

output feedback, 8-11, 8-13, 8-32, see also
control: using estimated state;
loop shaping; PID control

output sensitivity function, see noise sen-
sitivity function

outputs, see measured signals

overdamped oscillator, 7-18

overshoot, 2-12, 6-21, 7-10, 7-19, 12-6

for second-order systems, 7-20

Padé approximation, 10-30, 14-5

pairing problem (relative gain array), 15-25,
15-26

parallel connection, 2-10, 2-11, 9-17

parallel systems, 15-27–15-29

parametric stability diagram, 5-30–5-32

parametric uncertainty, 2-20, 3-9, 13-1–
13-2

partial differential equation, see heat prop-
agation

particular solution, 2-6, 6-3, 6-22, 9-5,
see also forced response

transfer function, 2-7
passive systems, 10-24, 10-30
passivity theorem, 10-24
patch clamp, 1-9
PD control, 11-5, 12-15
peak frequency, 6-25, 12-6, 12-7
peak frequency-peak time product, 12-32
peak value, 12-6, 12-7
pendulum dynamics, 5-21, see also in-

verted pendulum
perfect adaptation, 11-6
performance limits, 13-27, 14-6, 14-10,

14-25
due to right half-plane poles and ze-

ros, 10-20
see also control: fundamental limits

performance specifications, 2-12, 4-12, 6-21,
7-10, 12-1, 12-6–12-12, 12-14,
12-33, 13-15, see also overshoot;
maximum sensitivity; resonant
peak; rise time; settling time

test points, 12-12, 15-5
time domain versus frequency do-

main, 12-6
periodic solutions, see differential equa-

tions; limit cycles
persistence, of a web connection, 4-12,

4-13
persistent excitation, 15-32
Petri net, 3-24
pharmacokinetics, 4-21–4-24, see also drug

administration
phase, 2-8, 3-22, 6-23, 6-24, 7-21, 9-3,

9-6, 9-29, 10-22–10-25, see also
minimum phase; non-minimum
phase

phase area formula, see Bode’s phase area
formula

phase crossover frequency, 10-15, 10-16
phase curve (Bode plot), 9-29–9-31, 9-33

relationship to gain curve, 10-18, 12-14
phase lag, 6-23, 6-24, 9-36, 10-19, 10-20,

14-11, 14-13
phase lead, 6-23, 9-36, 12-15, 12-34
phase margin, 10-15, 10-16, 12-14, 12-34,

13-29, 14-11
for Bode’s ideal transfer function,

13-30
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from Bode plot, 10-16
reasonable values, 10-17
relationship to stability margin, 13-26

phase portrait, 3-3, 5-4–5-5, 5-29
Philbrick, G. A., 4-11
photoreceptors, 11-6
physics, relationship to control, 1-5
PI control, 1-14, 1-20, 2-14–2-16, 3-17,

4-1, 4-4, 11-5, 11-10, 12-15
first-order system, 11-8, 14-21

PID control, 1-19–1-20, 2-29, 9-11, 11-1–
11-24

block diagram, 2-2, 11-2, 11-5, 11-17
computer implementation, 11-22
ideal form, 11-2
implementation, 11-5, 11-19–11-23
in biological systems, 11-6
op amp implementation, 11-20–11-22
proportional action, 11-3
tuning, 11-11–11-15
see also derivative action; integral

action
planar dynamical systems, 5-5, 5-10, see

also second-order systems
pole excess, 9-24, 12-20, 12-24
pole placement, 7-11, 14-25, see also eigen-

value assignment
pole zero diagram, 9-24
pole/zero cancellations, 9-13, 9-26–9-28,

9-40, 9-44, 14-25, 15-28
unstable, 9-27, 12-5

pole/zero pair, right half-plane, 14-3, 14-13–
14-14, 14-17, 14-18, 14-20, 14-31,
14-32

poles, 2-8, 9-9, 9-23, 9-25, 14-4
dominant, see dominant eigenvalues

(poles)
fast stable, 14-21, 14-25
pure imaginary, 10-5, 10-13
relationship to eigenvalues, 9-24
right half-plane (unstable), 9-25, 9-34,

10-20, 14-3, 14-6, 14-10, 14-12–
14-14, 14-17, 14-20, 14-21, 14-25,
14-31, 14-32

Popov-Belevitch-Hautus (PBH) test, 14-3
population dynamics, 4-26–4-27, 4-31, see

also predator-prey system
positive definite function, 5-19, 5-22, 5-26
positive definite matrix, 5-22, 7-28
positive feedback, 1-2, 1-17, 2-4, 2-23–

2-27, 11-4
power of a matrix, 6-6

power systems (electric), 1-7, 3-47, 5-7,
5-36

predator-prey system, 3-15–3-16, 4-26–
4-27, 5-30–5-31, 7-15–7-16

prediction, in controllers, 1-20, 8-30, 11-5,
see also derivative action

prediction time, 11-5
principle of the argument, see variation

of the argument, principle of
process control, 1-8, 1-25, 3-24, 3-32, 15-9,

15-39–15-40
program synthesis, 15-16
programmable logic controller, 11-23
programmable logic controller (PLC), 15-39,

15-40
proper transfer function, 9-24
proportional band, 11-3
proportional control, 1-19, 2-13, 2-14, 11-2–

11-4, see also PID control
proportional-derivative control, see PD

control
proportional-integral control, see PI con-

trol
proportional-integral-derivative control, see

PID control
protocol, see congestion control; consen-

sus
pulse signal, 6-16, 6-17, 7-22, see also im-

pulse function
pupil response, 2-29, 9-39, 11-6
pure exponential response, see exponen-

tial response

Q-value, 3-46, 7-20, 9-32
quantitative feedback theory (QFT), 13-22
quantization, 14-28
quarter car model, 9-43
queuing systems, 3-35–3-36, 3-47

ramp input, 12-8
random process, 3-35, 8-17, 8-18
reachability, 7-1–7-9, 7-33, 8-15, 14-2, 14-3

rank condition, 7-4
tests for, 7-3
unreachable systems, 7-6, 7-33, 7-34,

8-15–8-17, 9-44
with integral action, 7-27

reachability matrix, 7-4, 7-8
reachable canonical form, 3-11, 7-7–7-9,

7-13, 7-14, 7-34, 9-13
reachable set, 7-2
real-time systems, 1-6
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realization, 9-12
minimal, 9-13

reasoning, 15-29
receding horizon control, 15-10
rectified linear unit (ReLu), 15-36
reference signal, 1-18, 2-1, 7-9, 7-10, 8-24,

9-2, 9-18, 11-2, 11-20, see also
command signal; setpoint

effect on observer error, 8-12, 8-17,
8-24

response to, 2-19, 12-7, 13-29
tracking, 2-2, 2-17, 7-10, 8-23, 8-28,

12-13, 13-17–13-18
reference weighting, see setpoint weight-

ing
region of attraction, see equilibrium points:

regions of attraction
regression analysis, 15-3
regulation problem, 2-12
regulator, see control law
reinforcement learning, 15-33
relative degree, 9-24
relative gain array (RGA), 15-25–15-26
relay feedback, 10-26, 11-14
Reno (protocol), see Internet; congestion

control
repressilator, 3-41
repressor, 1-13, 3-41, 3-47, 5-23, 6-38,

9-37, see also biological circuits
requirements, see performance specifica-

tions
reset logic, 3-8
reset, in PID control, 11-4, 11-5
resonant frequency, 10-23

for second-order systems, 7-20
resonant peak, 6-25, 13-12

for second-order systems, 7-20
resource usage, in computing systems, 3-36,

3-38, 4-11, 4-12
response, see input/output models
retina, 11-6, see also pupil response
Riccati differential equation, 7-28
Riccati equation, 7-28, 8-20, 13-25, 13-28
Riemann sphere, 13-6
right half-plane poles and zeros, see poles:

right half-plane; zeros: right
half-plane

rise time, 2-12, 6-21, 6-36, 7-10, 7-19,
12-6, 12-32

for second-order systems, 7-20
rise time-bandwidth product, 12-9, 12-32
robotics, 1-9, 6-34

robust stability, 13-3
robustness, 1-12, 1-14–1-15, 2-3, 2-20–

2-23, 11-20, 12-6, 13-4, 13-28
nonlinear gain variations, 2-20, 13-12
performance, 13-15–13-28
stability, 13-9–13-15, 13-26
using gain and phase margin, 10-17,

12-13
using maximum sensitivity, 12-10,

12-13, 13-9, 13-29
using Vinnicombe metric, 13-26
via gain and phase margin, 10-16
see also uncertainty

roll-off, see high-frequency roll-off
root locus diagram, 5-31, 5-32, 12-24–

12-27
asymptotes, 12-33
initial direction, 12-34
real line segments, 12-34

Routh-Hurwitz criterion, 2-9
routing matrix, 4-15
rush-hour effect, 3-36

saddle (equilibrium point), 5-10
safety, 15-20
sampling, 6-27–6-28, 8-30, 8-31, 11-22
saturation function, 2-2, 2-26, 3-24, 4-8,

11-22, see also actuators: sat-
uration

scaling, see normalized coordinates
scanning tunneling microscope, 4-17
schematic diagrams, 3-23, 3-24, 4-8
Schitter, G., 4-20, 4-21
Schmitt trigger, 2-27
second-order systems, 2-29, 3-3, 6-35, 7-17–

7-21, 7-35, 9-31, 9-32, 11-10,
12-32

sector-bounded nonlinearities, 10-24, 11-17,
11-19, 13-12–13-13, 14-27

Segway Personal Transporter, 3-12, 7-5
selector control, 1-23, 15-20–15-21
self-activation, 5-38
self-optimizing controllers, 15-24
self-repression, 6-38, 9-36
semidefinite function, 5-19
sensitivity crossover frequency, 12-6, 12-9,

12-10
sensitivity function, 2-3, 12-3, 12-13, 12-34,

13-9, 13-17, 13-29, 14-25
and disturbance attenuation, 12-9,

12-32, 14-6
sensor fusion, 15-23



INDEX I-13

sensor matrix, 3-10, 3-14
sensor networks, 3-38
sensors, 1-5, 8-2, 8-30, 10-20, 11-22, 12-2,

12-5, 14-4, 14-13
effect on zeros, 10-20, 14-4
in computing systems, 4-11
see also measured signals

separation principle, 8-13, 8-22, 8-32
series connection, 2-10, 2-11, 9-17
service rate (queuing systems), 3-36
servo problem, 2-17
setpoint, 1-16, 11-2
setpoint weighting, 11-20, 11-23
settling time, 2-12, 6-21, 6-36, 7-10, 12-6

for second-order systems, 7-20
sgn (function), 4-3
ship dynamics, 5-16, 15-31
signal blocking, see zeros: signal block-

ing property
similarity of two systems, 13-4–13-9
simulation, 3-9, 3-19–3-20
SIMULINK, 6-31
single-input, single-output (SISO) systems,

5-1, 6-2, 6-3, 6-29, 8-4, 10-23
singular values, 10-22, 10-23
sink (equilibrium point), 5-10
small gain theorem, 10-24, 13-12
Smith predictor, 15-22
smoothness, 15-3
software tools for control, x
solution (ODE), see differential equations:

solutions
source (equilibrium point), 5-10
specifications, see performance specifica-

tions
spectrum analyzer, 9-38
Sperry autopilot, 1-16
spring-mass system, 3-2, 3-11–3-12, 3-19–

3-22, 3-45, 4-18, 5-22, 5-36, 6-12,
9-36

generalized, 3-12, 4-7
identification, 3-27
normalization, 3-28, 3-45
see also atomic force microscopes;

coupled spring-mass system; os-
cillator dynamics; vehicle sus-
pension; vibration damper

stability, 1-5, 1-15, 2-9, 3-21, 5-4, 5-8–
5-28

asymptotic stability, 5-8, 5-13, 5-18
conditional, 10-13–10-14
in the sense of Lyapunov, 5-8

internal, 12-5
local versus global, 5-10, 5-29
Lyapunov analysis, see Lyapunov sta-

bility analysis
neutral, 5-8, 5-10
of a system, 5-12
of equilibrium points, 3-21, 5-8, 5-10,

5-19, 5-26, 5-27
of feedback loop, see Nyquist crite-

rion
of limit cycles, 5-17–5-18
of linear systems, 5-11–5-14, 5-21,

6-10
of solutions, 5-8, 5-9, 5-18
of transfer functions, 9-24
robust, see robust stability
Routh-Hurwitz criterion, 2-9
unstable solutions, 5-10
using eigenvalues, 5-26, 6-10, 6-11
using linear approximation, 5-14, 5-26,

6-30
using state feedback, 7-9–7-32
see also bifurcations; equilibrium points

stability diagram, see parametric stabil-
ity diagram

stability margin (quantity), 10-15, 10-17,
12-10, 13-9, 13-29, 14-31

for Bode’s ideal transfer function,
13-30

generalized, 13-25, 13-26
reasonable values, 10-17

stability margins (concept), 10-14–10-18,
12-14, 13-30

stabilizability, 14-2–14-3
Stark, L., 9-39
state, of a dynamical system, 3-2, 3-6,

3-10
state estimators, see observers
state feedback, 7-1–7-32, 8-7, 8-13, 13-24,

15-19, see also eigenvalue as-
signment; linear quadratic con-
trol

state space, 3-2, 3-10–3-22, 7-9
state vector, 3-3, 3-10
state, of a dynamical system, 7-1
static gain, see gain, zero frequency
steady-state gain, see zero frequency gain
steady-state response, 1-29, 2-12, 3-20,

6-19–6-21, 6-23, 6-27, 7-11, 9-2,
9-38, 9-40

for second-order systems, 7-20
steady-state solution, 9-5
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steam engines, 1-2, 1-3, 1-14
steering, see vehicle steering
Stein, G., xii, 12-1, 14-6, 14-7
step input, 3-5, 6-5, 6-20, 9-23
step response, 2-11, 2-12, 3-5, 3-27, 3-28,

6-5, 6-17, 6-20, 6-21, 7-10, 7-18–
7-20, 11-11, 12-32

relationship to frequency response,
10-21, 12-8, 12-9, 12-12, 12-32

stereographic projection, 13-6
stochastic systems, 8-17, 8-19
strictly proper, 9-24
strong stabilizability, 14-2, 14-3
summing junction, 3-24
superposition, 3-4, 6-3, 6-4, 6-17, 6-27,

6-35, 9-2, 9-17
superregenerative amplifier, 2-4
supervised learning, 15-33
supervisory control, 1-23, 1-25, 1-27, 15-9,

15-12–15-14, see also decision
making: higher levels of

supply chains, 1-11, 1-12, 1-25
supremum (sup), 10-23
switching behavior, 5-25, 5-26, 13-27
system design, 14-1, 15-2
system identification, 3-27, 3-28, 3-45,

9-38
system inversion, see inverse model

tapping mode, see atomic force micro-
scopes

task description, 8-23
TCP/IP, see Internet; congestion control
temporal logic, 15-13
Teorell, T., 4-21, 4-23
test points, 12-12, 15-5
thermofluid systems, 3-32–3-34, 5-35, 9-11,

10-29
drum boiler, 3-34
water heater, 3-33

three-term controllers, 11-2, see also PID
control

thrust vectored aircraft, see vectored thrust
aircraft

time constant, 2-6, 6-36
time delay, 1-10, 9-10, 9-11, 10-3, 10-17,

10-20, 11-12, 11-13, 11-22, 12-20,
14-5, 14-13, 14-14, 14-20, 14-32

Padé approximation, 10-30, 14-5
time plot, 3-3
time-invariant systems, 2-6, 3-4, 3-10, 5-35,

6-4–6-6

tracking, see reference signal: tracking
tracking mode, 11-18
traffic light controller, 3-18
trail (bicycle dynamics), 4-6, 4-7
transcription factors, 3-40
transcriptional regulation, see gene reg-

ulation
transfer functions, 2-6–2-9, 9-1–9-40

and frequency response, 9-2, 9-29
and impulse response, 9-16
by inspection, 9-9, 9-20
derivation using exponential signals,

9-3
for control systems, 9-18, 9-43
for differentiator, 9-11
for electrical circuits, 9-9
for integrator, 9-11
for linear input/output systems, 2-8,

9-8, 9-10, 9-11, 9-43
for state space systems, 9-3, 9-11,

9-15, 9-42
for time delay, 9-10, 9-11
from experiments, 9-37
irrational, 9-11, 9-12
qualitative insight, 9-36

transient response, 3-20, 6-19, 6-20, 6-23,
6-27, 7-2, 7-22, 9-4–9-5

Transmission Control Protocol (TCP), 4-14
transmission zero, see zeros, blocking prop-

erty
transportation systems, 1-24–1-25
Tsien, H. S., 1-9
tuning rules, see Ziegler-Nichols tuning
Tustin, A., 2-1
two degree-of-freedom control, 2-2, 2-18–

2-20, 8-23, 8-24, 11-2, 11-20,
12-1, 12-18, 12-30, 12-31, 13-30

two-out-of-three selectors, 15-20

uncertainty, 1-5, 1-14–1-15, 3-6, 3-8–3-10,
7-24, 13-1–13-9

component or parameter variation,
1-5, 2-3, 13-1

disturbances and noise, 1-5, 3-6, 7-9,
9-18, 12-2

static uncertainty, 3-9
unmodeled dynamics, 1-5, 2-16–2-17,

3-9, 13-3, 13-10
see also additive uncertainty; feed-

back uncertainty; multiplicative
uncertainty; parametric uncer-
tainty
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uncertainty band, 3-9
uncertainty lemon, 3-9, 4-4, 4-10, 4-20
underdamped oscillator, 5-3, 7-18, 7-19
unit step, 6-20
unmodeled dynamics, see uncertainty: un-

modeled dynamics
unstable pole, see poles: right half-plane
unstable solution, for a dynamical sys-

tem, 5-10, 5-13, 6-11, 9-25
unstable zero, see zeros: right half-plane

V-model, 15-2
variation of the argument, principle of,

10-10, 10-27
vector field, 3-3, 5-5
vectored thrust aircraft, 3-31–3-32, 6-11–

6-12, 7-29–7-30, 8-20–8-21, 9-43,
12-17, 12-27–12-30

vehicle steering, 3-30–3-31, 3-46, 6-32–
6-33, 7-11–7-13, 8-10, 8-13–8-14,
8-25–8-26, 8-28–8-29, 9-21–9-22,
10-20–10-22, 12-19–12-20, 14-4–
14-5, 14-22–14-24, see also ship
dynamics

vehicle suspension, 9-43, see also coupled
spring-mass system

vertical takeoff and landing, see vectored
thrust aircraft

vibration damper, 9-9–9-10
Vidyasagar, M., 13-28
Vinnicombe, G., 12-30, 13-6, 13-7, 13-28
Vinnicombe metric, 13-6–13-9, 13-26

numerical computation, 13-7
voltage clamp, 1-9, 3-43
Volterra equations, see Lotka-Volterra equa-

tions

water heater, 3-33
waterbed effect, 14-6
Watt governor, see centrifugal governor
Watt steam engine, 1-2, 1-14
web server control, 4-12–4-13, 7-30–7-32,

11-25
web site, companion, x
Whipple, F. J. W., 4-8
Wiener, N., 1-9
winding number, 10-6, 10-10, 10-12, 13-6,

13-7
window size (TCP), 4-15–4-17, 5-11
windup, see integrator windup

selector control, 15-21
Wright, F. L., 15-1

Wright, W., 1-15
Wright Flyer, 1-8, 1-15

X-29 aircraft, 14-7–14-8

Youla parameterization, 13-13–13-15

zero frequency gain, 2-8, 6-24, 7-11, 7-14,
9-23, 11-13

for second-order systems, 7-20
zeros, 2-8, 9-9, 9-23, 9-24

blocking property, 2-9
effect of sensors and actuators on,

10-20, 10-21, 14-4
for a state space system, 9-24
right half-plane, 9-25, 9-34, 10-20,

12-20, 14-7, 14-10, 14-12–14-14,
14-16, 14-17, 14-20, 14-25, 14-31

signal-blocking property, 9-24
slow, 14-22, 14-24, 14-25
stable/unstable, 14-22

Ziegler, J. G., 11-11, 11-24
Ziegler-Nichols tuning, 11-11–11-14, 11-24
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