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Preface to the Second Edition

The second edition of Feedback Systems contains a variety of changes that are based
on feedback on the first edition, particularly in its use for introductory courses in
control. One of the primary comments from users of the text was that the use of
control tools for design purposes occurred only after several chapters of analytical
tools, leaving the instructor having to try to convince students that the techniques
would soon be useful. In our own teaching, we find that we often use design
examples in the first few weeks of the class and use this to motivate the various
techniques that follow. This approach has been particularly useful in engineering
courses, where students are often eager to apply the tools to examples as part
of gaining insight into the methods. We also found that universities that have a
laboratory component attached to their controls class need to introduce some basic
design techniques early, so that students can be implementing control laws in the
laboratory in the early weeks of the course.

To help emphasize this more design-oriented flow, we have added a new chapter
on “Feedback Principles” that illustrates some simple design principles and tools
that can be used to show students what types of problems can be solved using feed-
back. This new chapter uses simple models, simulations, and elementary analysis
techniques, so that it should be accessible to students from a variety of engineering
and scientific backgrounds. For courses in which students have already been ex-
posed to the basic ideas of feedback, perhaps in an earlier discipline-specific course,
this new chapter can easily be skipped without any loss of continuity.

We have also rearranged some of the material in the final chapters of the book,
moving material on fundamental limits from the chapters on frequency domain de-
sign (Chapter 11 in the original text, now Chapter 12) and robust performance
(Chapter 12 in the original text, now Chapter 13) into a separate chapter on fun-
damental limits (Chapter 14). This new chapter also contains some additional
material on techniques for robust pole placement as well as on limits imposed by
nonlinearities.

For the electronic versions of the text, we have added a new chapter to the end of
the book, focused on control architectures and design. Our intention in this chapter
is to provide a systems view that describes how control design is integrated into
a larger model-based development framework, motivated in part by our consulting
activities with large companies. In this new chapter we also take the opportunity
to present some overview material on “bottoms up” and “top down” approaches
to control architectures, briefly introducing some of the many additional concepts
from the field of control that are in widespread use in applications.

In addition to these relatively large changes, we have made many other smaller
changes based on the feedback we have received from early adopters of the text. We
have added some material on the Routh-Hurwitz criterion and root locus plots, to at
least serve as “hooks” for instructors who wish to cover that material in more detail.
We have also made some notational changes throughout, most notably changing the
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symbols for disturbance and noise signals to v and w, respectively. The notation in
the biological examples has also been updated to match the notation used in the
textbook by Del Vecchio and Murray [DM14].

The electronic version of this text also contains a variety of marginal notes
that provide additional information and links to web pages, to enable readers to
access supplementary information that may be useful for those interested in more
detail. The following symbols in the margin may be used to access supplementary
information:

@) Advanced material with additional details
() Frequently asked question; additional details available
@ Historical information

@O Link to an external site

Overall, we have tried to maintain the style and organization of the book in a
manner that is consistent with our goals for the first edition. In particular, we have
targeted the material toward a wide range of audiences rather than any specific dis-
cipline. One consequence is that instructors who are teaching department-specific
courses many find there are other texts that are better suited to these audiences.
A few books that have been written over the past few years that are tuned to non-
traditional audiences, including Janert [Jan14] (computer science), Del Vecchio and
Murray [DM14] (biology), and Bechhoefer [Bec19] (physics). In addition, the text-
book Feedback Control for Everyone by Albertos and Mareels [AM10] provides a
readable introduction requiring minimal mathematical background.

Finally, we are indebted to numerous individuals who have taught out of the text
and sent us feedback on changes that would better serve their needs. In addition
to the many individuals listed in the preface to the first edition, we would like to
also thank Kalle Astrom, Bo Bernhardsson, Karl Berntorp, Constantine Carama-
nis, Shuo Han, Bjorn Olofsson, Noah Olsman, Richard Pates, Jason Rolfe, Clancy
Rowley, and André Tits for their feedback, insights, and contributions. Vickie
Kearn, our recently-retired editor at Princeton University Press, has continued to
serve as an enthusiastic advocate for our efforts and we particularly appreciate her
support over the years in our vision for the book and for her advocacy of making
the material available for free download.

Karl Johan Astrom Richard M. Murray
Lund, Sweden Pasadena, California


http://fbsbook.org/advanced
http://fbsbook.org/faq
http://fbsbook.org/historical
http://fbsbook.org/link

Preface to the First Edition

This book provides an introduction to the basic principles and tools for the design
and analysis of feedback systems. It is intended to serve a diverse audience of
scientists and engineers who are interested in understanding and utilizing feedback
in physical, biological, information and social systems. We have attempted to keep
the mathematical prerequisites to a minimum while being careful not to sacrifice
rigor in the process. We have also attempted to make use of examples from a variety
of disciplines, illustrating the generality of many of the tools while at the same time
showing how they can be applied in specific application domains.

A major goal of this book is to present a concise and insightful view of the
current knowledge in feedback and control systems. The field of control started
by teaching everything that was known at the time and, as new knowledge was
acquired, additional courses were developed to cover new techniques. A consequence
of this evolution is that introductory courses have remained the same for many
years, and it is often necessary to take many individual courses in order to obtain
a good perspective on the field. In developing this book, we have attempted to
condense the current knowledge by emphasizing fundamental concepts. We believe
that it is important to understand why feedback is useful, to know the language
and basic mathematics of control and to grasp the key paradigms that have been
developed over the past half century. It is also important to be able to solve simple
feedback problems using back-of-the-envelope techniques, to recognize fundamental
limitations and difficult control problems and to have a feel for available design
methods.

This book was originally developed for use in an experimental course at Caltech
involving students from a wide set of backgrounds. The course was offered to
undergraduates at the junior and senior levels in traditional engineering disciplines,
as well as first- and second-year graduate students in engineering and science. This
latter group included graduate students in biology, computer science and physics.
Over the course of several years, the text has been classroom tested at Caltech and
at Lund University, and the feedback from many students and colleagues has been
incorporated to help improve the readability and accessibility of the material.

Because of its intended audience, this book is organized in a slightly unusual
fashion compared to many other books on feedback and control. In particular, we
introduce a number of concepts in the text that are normally reserved for second-
year courses on control and hence often not available to students who are not
control systems majors. This has been done at the expense of certain traditional
topics, which we felt that the astute student could learn independently and are often
explored through the exercises. Examples of topics that we have included are non-
linear dynamics, Lyapunov stability analysis, the matrix exponential, reachability
and observability, and fundamental limits of performance and robustness. Topics
that we have deemphasized include root locus techniques, lead/lag compensation
and detailed rules for generating Bode and Nyquist plots by hand.
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Several features of the book are designed to facilitate its dual function as a basic
engineering text and as an introduction for researchers in natural, information and
social sciences. The bulk of the material is intended to be used regardless of the
audience and covers the core principles and tools in the analysis and design of
feedback systems. Advanced sections, marked by the “dangerous bend” symbol
shown here, contain material that requires a slightly more technical background,
of the sort that would be expected of senior undergraduates in engineering. A few
sections are marked by two dangerous bend symbols and are intended for readers
with more specialized backgrounds, identified at the beginning of the section. To
limit the length of the text, several standard results and extensions are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here, a companion web site
has been developed:

https://www.tbsbook.org

The web site contains a database of frequently asked questions, supplemental exam-
ples and exercises, and lecture material for courses based on this text. The material
is organized by chapter and includes a summary of the major points in the text
as well as links to external resources. The web site also contains the source code
for many examples in the book, as well as utilities to implement the techniques
described in the text. Most of the code was originally written using MATLAB
M-files but was also tested with LabView MathScript to ensure compatibility with
both packages. Many files can also be run using other scripting languages such as
Octave, SciLab, SysQuake and Xmath.

The first half of the book focuses almost exclusively on state space control sys-
tems. We begin in Chapter 3° with a description of modeling of physical, biological
and information systems using ordinary differential equations and difference equa-
tions. Chapter 4 presents a number of examples in some detail, primarily as a
reference for problems that will be used throughout the text. Following this, Chap-
ter 5 looks at the dynamic behavior of models, including definitions of stability
and more complicated nonlinear behavior. We provide advanced sections in this
chapter on Lyapunov stability analysis because we find that it is useful in a broad
array of applications and is frequently a topic that is not introduced until later in
one’s studies.

The remaining three chapters of the first half of the book focus on linear systems,
beginning with a description of input/output behavior in Chapter 6. In Chapter 7,
we formally introduce feedback systems by demonstrating how state space control
laws can be designed. This is followed in Chapter 8 by material on output feedback
and estimators. Chapters 7 and 8 introduce the key concepts of reachability and
observability, which give tremendous insight into the choice of actuators and sensors,
whether for engineered or natural systems.

The second half of the book presents material that is often considered to be
from the field of “classical control.” This includes the transfer function, introduced
in Chapter 9, which is a fundamental tool for understanding feedback systems.
Using transfer functions, one can begin to analyze the stability of feedback systems
using frequency domain analysis, including the ability to reason about the closed
loop behavior of a system from its open loop characteristics. This is the subject of

*Chapter numbers reflect those in the second edition.
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Chapter 10, which revolves around the Nyquist stability criterion.

In Chapters 11 and 12, we again look at the design problem, focusing first
on proportional-integral-derivative (PID) controllers and then on the more general
process of loop shaping. PID control is by far the most common design technique
in control systems and a useful tool for any student. The chapter on frequency
domain design introduces many of the ideas of modern control theory, including
the sensitivity function. In Chapter 13, we combine the results from the second
half of the book to analyze some of the fundamental trade-offs between robustness
and performance. This is also a key chapter illustrating the power of the techniques
that have been developed and serving as an introduction for more advanced studies.

The book is designed for use in a 10- to 15-week course in feedback systems
that provides many of the key concepts needed in a variety of disciplines. For a
10-week course, Chapters 1-3, 5-7 and 9-12 can each be covered in a week’s time,
with the omission of some topics from the final chapters. A more leisurely course,
spread out over 14-15 weeks, could cover the entire book, with 2 weeks on modeling
(Chapters 3 and 2)—particularly for students without much background in ordinary
differential equations—and 2 weeks on robust performance (Chapter 13).

The mathematical prerequisites for the book are modest and in keeping with
our goal of providing an introduction that serves a broad audience. We assume
familiarity with the basic tools of linear algebra, including matrices, vectors and
eigenvalues. These are typically covered in a sophomore-level course on the sub-
ject, and the textbooks by Apostol [Apo69], Arnold [Arn87] and Strang [Str88]
can serve as good references. Similarly, we assume basic knowledge of differential
equations, including the concepts of homogeneous and particular solutions for lin-
ear ordinary differential equations in one variable. Apostol [Apo69] and Boyce and
DiPrima [BDO04] cover this material well. Finally, we also make use of complex
numbers and functions and, in some of the advanced sections, more detailed con-
cepts in complex variables that are typically covered in a junior-level engineering or
physics course in mathematical methods. Apostol [Apo67] or Stewart [Ste02] can
be used for the basic material, with Ahlfors [Ahl66], Marsden and Hoffman [MH98],
or Saff and Snider [SS02] being good references for the more advanced material.
We have chosen not to include appendices summarizing these various topics since
there are a number of good books available.

One additional choice that we felt was important was the decision not to rely
on a knowledge of Laplace transforms in the book. While their use is by far the
most common approach to teaching feedback systems in engineering, many stu-
dents in the natural and information sciences may lack the necessary mathematical
background. Since Laplace transforms are not required in any essential way, we
have included them only in an advanced section intended to tie things together
for students with that background. Of course, we make tremendous use of transfer
functions, which we introduce through the notion of response to exponential inputs,
an approach we feel is more accessible to a broad array of scientists and engineers.
For classes in which students have already had Laplace transforms, it should be
quite natural to build on this background in the appropriate sections of the text.

Acknowledgments

The authors would like to thank the many people who helped during the prepara-
tion of this book. The idea for writing this book came in part from a report on
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback governs how
we grow, respond to stress and challenge, and requlate factors such as body
temperature, blood pressure, and cholesterol level. The mechanisms operate
at every level, from the interaction of proteins in cells to the interaction of
organisms in complex ecologies.

M. B. Hoagland and B. Dodson, The Way Life Works, 1995 [HD95].

In this chapter we provide an introduction to the basic concept of feedback and
the related engineering discipline of control. We focus on both historical and current
examples, with the intention of providing the context for current tools in feedback
and control.

1.1 WHAT IS FEEDBACK?

A dynamical system is a system whose behavior changes over time, often in response
to external stimulation or forcing. The term feedback refers to a situation in which
two (or more) dynamical systems are connected together such that each system
influences the other and their dynamics are thus strongly coupled. Simple causal
reasoning about a feedback system is difficult because the first system influences the
second and the second system influences the first, leading to a circular argument.
A consequence of this is that the behavior of feedback systems is often counter-
intuitive, and it is therefore necessary to resort to formal methods to understand
them.

Figure 1.1 illustrates in block diagram form the idea of feedback. We often use
the terms open loop and closed loop when referring to such systems. A system is
said to be a closed loop system if the systems are interconnected in a cycle, as
shown in Figure 1.1a. If we break the interconnection, we refer to the configuration

Y

System 1 » System 2 > — System 1 > System 2 —»

(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used
as the input of system 2, and the output of system 2 becomes the input of system
1, creating a closed loop system. (b) The interconnection between system 2 and
system 1 is removed, and the system is said to be open loop.
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugal
governor on the left consists of a set of flyballs that spread apart as the speed of
the engine increases. The steam engine on the right uses a centrifugal governor
(above and to the left of the flywheel) to regulate its speed. (Credit: Machine a
Vapeur Horizontale de Philip Taylor [1828].)

as an open loop system, as shown in Figure 1.1b. Note that since the system is in
a feedback loop, the choice of system 1 versus system 2 is somewhat arbitrary. It
just depends where you want to start describing how the system works.

As the quote at the beginning of this chapter illustrates, a major source of ex-
amples of feedback systems is biology. Biological systems make use of feedback
in an extraordinary number of ways, on scales ranging from molecules to cells to
organisms to ecosystems. One example is the regulation of glucose in the blood-
stream through the production of insulin and glucagon by the pancreas. The body
attempts to maintain a constant concentration of glucose, which is used by the
body’s cells to produce energy. When glucose levels rise (after eating a meal, for
example), the hormone insulin is released and causes the body to store excess glu-
cose in the liver. When glucose levels are low, the pancreas secretes the hormone
glucagon, which has the opposite effect. Referring to Figure 1.1, we can view the
liver as system 1 and the pancreas as system 2. The output from the liver is the
glucose concentration in the blood, and the output from the pancreas is the amount
of insulin or glucagon produced. The interplay between insulin and glucagon secre-
tions throughout the day helps to keep the blood-glucose concentration constant,
at about 90 mg per 100 mL of blood.

An early engineering example of a feedback system is a centrifugal governor, in
which the shaft of a steam engine is connected to a flyball mechanism that is itself
connected to the throttle of the steam engine, as illustrated in Figure 1.2. The
system is designed so that as the speed of the engine increases (perhaps because
of a lessening of the load on the engine), the flyballs spread apart and a linkage
causes the throttle on the steam engine to be closed. This in turn slows down the
engine, which causes the flyballs to come back together. We can model this system
as a closed loop system by taking system 1 as the steam engine and system 2 as
the governor. When properly designed, the flyball governor maintains a constant
speed of the engine, roughly independent of the loading conditions. The centrifugal
governor was an enabler of the successful Watt steam engine, which fueled the
industrial revolution.
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The examples given so far all deal with negative feedback, in which we attempt
to react to disturbances in such a way that their effects decrease. Positive feedback
is the opposite, where the increase in some variable or signal leads to a situation in
which that quantity is further increased through feedback. This has a destabilizing
effect and is usually accompanied by a saturation that limits the growth of the
quantity. Although often considered undesirable, this behavior is used in biological
(and engineering) systems to obtain a very fast response to a condition or signal.
Encouragement is a type of positive feedback that is often used in education. An-
other common use of positive feedback is in the design of systems with oscillatory
dynamics.

Feedback has many interesting properties that can be exploited in designing
systems. As in the case of glucose regulation or the flyball governor, feedback can
make a system resilient to external influences. It can also be used to create linear
behavior out of nonlinear components, a common approach in electronics. More
generally, feedback allows a system to be insensitive both to external disturbances
and to variations in its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabilities
in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

Feedback systems are ubiquitous in both natural and engineered systems. Con-
trol systems maintain the environment, lighting, and power in our buildings and
factories; they regulate the operation of our cars, consumer electronics, and man-
ufacturing processes; they enable our transportation and communications systems;
and they are critical elements in our military and space systems. For the most
part they are hidden from view, buried within the code of embedded microproces-
sors, executing their functions accurately and reliably. Feedback has also made it
possible to increase dramatically the precision of instruments such as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintains thermal, chemical, and
biological conditions through feedback. At the other end of the size scale, global
climate dynamics depend on the feedback interactions between the atmosphere, the
oceans, the land, and the sun. Ecosystems are filled with examples of feedback due
to the complex interactions between animal and plant life. Even the dynamics of
economies are based on the feedback between individuals and corporations through
markets and the exchange of goods and services.

1.2 WHAT IS FEEDFORWARD?

Feedback is reactive: there must be an error before corrective actions are taken.
However, in some circumstances it is possible to measure a disturbance before it
enters the system, and this information can then be used to take corrective action
before the disturbance has influenced the system. The effect of the disturbance is
thus reduced by measuring it and generating a control signal that counteracts it.
This way of controlling a system is called feedforward. Feedforward is particularly
useful in shaping the response to command signals because command signals are
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— C P -

? — P |—

(a) Feedback system (b) Feedforward system

Figure 1.3: Feedback system versus feedforward system. In both systems we have
a process P and a controller C. The feedback controller (a) measures the output
y to determine the effect of the disturbance v, while the feedforward controller
(b) measures the disturbance directly, but does not directly measure the process
output.

always available. Since feedforward attempts to match two signals, it requires good
process models; otherwise the corrections may have the wrong size or may be badly
timed.

Figure 1.3 illustrates the difference between feedforward and feedback control.
In both figures there is a reference signal r that describes the desired output of the
process P and a disturbance signal v that represents an external perturbation to
the process. In a feedback system, we measure the output y of the system and the
controller C' attempts to adjust the input to the process in a manner that causes the
process output to maintain the desired the reference value. In a feedforward system,
we instead measure the reference r and disturbance v and compute an input to the
process that will create the desired output. Notice that the feedback controller does
not directly measure the disturbance v while the feedforward controller does not
measure the actual output y.

The ideas of feedback and feedforward are very general and appear in many
different fields. In economics, feedback and feedforward are analogous to a market-
based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties, which are summarized in Table 1.1.

Table 1.1: Properties of feedback and feedforward

Feedback Feedforward
Closed loop Open loop
Acts on deviations Acts on plans

Robust to model uncertainty  Sensitive to model uncertainty
Risk for instability No risk for instability
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Figure 1.4: Components of a computer-controlled system. The upper dashed
box represents the process dynamics, which include the sensors and actuators in
addition to the dynamical system being controlled. Noise and external disturbances
can perturb the dynamics of the process. The controller is shown in the lower
dashed box. It consists of a filter and analog-to-digital (A/D) and digital-to-analog
(D/A) converters, as well as a computer that implements the control algorithm.
A system clock controls the operation of the controller, synchronizing the A/D,
D/A, and computing processes. The operator input is also fed to the computer as
an external input.

1.3 WHAT IS CONTROL?

The term control has many meanings and often varies between communities. In
this book, we define control to be the use of algorithms and feedback in engineered
systems. Thus, control includes such examples as feedback loops in electronic am-
plifiers, setpoint controllers in chemical and materials processing, “fly-by-wire” sys-
tems on aircraft, and even router protocols that control traffic flow on the Inter-
net. Emerging applications include high-confidence software systems, autonomous
vehicles and robots, real-time resource management systems, and biologically engi-
neered systems. At its core, control is an information science and includes the use
of information in both analog and digital representations.

A modern controller senses the operation of a system, compares it against the
desired behavior, computes corrective actions based on a model of the system’s
response to external inputs, and actuates the system to effect the desired change.
This basic feedback loop of sensing, computation, and actuation is the central con-
cept in control. The key issues in designing control logic are ensuring that the
dynamics of the closed loop system are stable (bounded disturbances give bounded
errors) and that they have additional desired behavior (good disturbance attenua-
tion, fast responsiveness to changes in operating point, etc). These properties are
established using a variety of modeling and analysis techniques that capture the
essential dynamics of the system and permit the exploration of possible behaviors
in the presence of uncertainty, noise, and component failure.

A typical example of a control system is shown in Figure 1.4. The basic ele-
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ments of sensing, computation, and actuation are clearly seen. In modern control
systems, computation is typically implemented on a digital computer, requiring the
use of analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty
enters the system through noise in sensing and actuation subsystems, external dis-
turbances that affect the underlying system operation, and uncertain dynamics in
the system (parameter errors, unmodeled effects, etc). The algorithm that com-
putes the control action as a function of the sensor values is often called a control
law. The system can be influenced externally by an operator who introduces com-
mand signals to the system.

Control engineering relies on and shares tools from physics (dynamics and mod-
eling), computer science (information and software), and operations research (op-
timization, probability theory, and game theory), but it is also different from these
subjects in both insights and approach.

Perhaps the strongest area of overlap between control and other disciplines is in
the modeling of physical systems, which is common across all areas of engineering
and science. One of the fundamental differences between control-oriented modeling
and modeling in other disciplines is the way in which interactions between sub-
systems are represented. Control relies on a type of input/output modeling that
allows many new insights into the behavior of systems, such as disturbance attenu-
ation and stable interconnection. Model reduction, where a simpler (lower-fidelity)
description of the dynamics is derived from a high-fidelity model, is also naturally
described in an input/output framework. Perhaps most importantly, modeling in
a control context allows the design of robust interconnections between subsystems,
a feature that is crucial in the operation of all large engineered systems.

Control is also closely associated with computer science since virtually all mod-
ern control algorithms for engineering systems are implemented in software. How-
ever, control algorithms and software can be very different from traditional com-
puter software because of the central role of the dynamics of the system and the
real-time nature of the implementation.

1.4 USE OF FEEDBACK AND CONTROL

Feedback has many interesting and useful properties. It makes it possible to de-
sign precise systems from imprecise components and to make relevant quantities
in a system change in a prescribed fashion. An unstable system can be stabilized
using feedback, and the effects of external disturbances can be reduced. Feedback
also offers new degrees of freedom to a designer by exploiting sensing, actuation,
and computation. In this section we briefly survey some of the important appli-
cations and trends for feedback in the world around us. Considerably more detail
is available in several reports describing advances and directions in the field of
control [LLAE*17, Mur03, MAB103, SA14].

POWER GENERATION AND TRANSMISSION

Access to electrical power has been one of the major drivers of technological progress
in modern society. Much of the early development of control was driven by the gen-
eration and distribution of electrical power. Control is mission critical for power
systems, and there are many control loops in individual power stations. Control
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Figure 1.5: A small portion of the European power network. In 2016 European
power suppliers operated a single interconnected network covering a region from
the Arctic to the Mediterranean and from the Atlantic to the Urals. The installed
power was more than 800 GW (8 x 10'* W) serving more than 500 million citizens.
(Source: ENTSO-E http://www.entsoe.eu)

is also important for the operation of the whole power network since it is diffi-
cult to store energy and it is thus necessary to match production to consumption.
Power management is a straightforward regulation problem for a system with one
generator and one power consumer, but it is more difficult in a highly distributed
system with many generators and long distances between consumption and gener-
ation. Power demand can change rapidly in an unpredictable manner, and combin-
ing generators and consumers into large networks makes it possible to share loads
among many suppliers and to average consumption among many customers. Large
transcontinental and transnational power systems have therefore been built, such
as the one show in Figure 1.5.

TELECOMMUNICATIONS

When telecommunications emerged in the early 20th century there was a strong
need to amplify signals to enable telephone communication over long distances.
The only amplifier available at the time was based on vacuum tubes. Since the
properties of vacuum tubes are nonlinear and time varying, the amplifiers created
a lot of distortion. A major advance was made when Black invented the negative
feedback amplifier [Bla34, Bla77], which made it possible to obtain stable ampli-
fiers with linear characteristics. Research on feedback amplifiers also generated
fundamental understanding of feedback in the form of Nyquist’s stability criterion
and Bode’s methods for design of feedback amplifiers and his theorems on fun-
damental limits [Bod45, Nyq56]. Feedback is used extensively in cellular phones
and networks, and the future 5G communication networks will permit execution of
real-time control systems over the networks [TFKHI6).


http://www.entsoe.eu
http://fbsbook.org
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AEROSPACE AND TRANSPORTATION

In aerospace, control has been a key technological capability tracing back to the
beginning of the 20th century. Indeed, the Wright brothers are correctly famous
not for demonstrating simply powered flight but controlled powered flight. Their
early Wright Flyer incorporated moving control surfaces (vertical fins and canards)
and warpable wings that allowed the pilot to regulate the aircraft’s flight. In fact,
the aircraft itself was not stable, so continuous pilot corrections were mandatory.
This early example of controlled flight was followed by a fascinating success story
of continuous improvements in flight control technology, culminating in the high-
performance, highly reliable automatic flight control systems we see in modern
commercial and military aircraft today.

MATERIALS AND PROCESSING

The chemical industry is responsible for the remarkable progress in developing new
materials that are key to our modern society. In addition to the continuing need
to improve product quality, several other factors in the process control industry
are drivers for the use of control. Environmental statutes continue to place stricter
limitations on the production of pollutants, forcing the use of sophisticated pollution
control devices. Environmental safety considerations have led to the design of
smaller storage capacities to diminish the risk of major chemical leakage, requiring
tighter control on upstream processes and, in some cases, supply chains. And large
increases in energy costs have encouraged engineers to design plants that are highly
integrated, coupling many processes that used to operate independently. All of these
trends increase the complexity of these processes and the performance requirements
for the control systems, making control system design increasingly challenging.

INSTRUMENTATION

The measurement of physical variables is of prime interest in science and engineer-
ing. Consider, for example, an accelerometer, where early instruments consisted of
a mass suspended on a spring with a deflection sensor. The precision of such an
instrument depends critically on accurate calibration of the spring and the sensor.
There is also a design compromise because a weak spring gives high sensitivity but
low bandwidth. A different way of measuring acceleration is to use force feedback.
The spring is replaced by a voice coil that is controlled so that the mass remains
at a constant position. The acceleration is proportional to the current through the
voice coil. In such an instrument, the precision depends entirely on the calibration
of the voice coil and does not depend on the sensor, which is used only as the
feedback signal. The sensitivity /bandwidth compromise is also avoided.

Another important application of feedback is in instrumentation for biological
systems. Feedback is widely used to measure ion currents in cells using a device
called a wvoltage clamp, which is illustrated in Figure 1.6. Hodgkin and Huxley used
the voltage clamp to investigate propagation of action potentials in the giant axon
of the squid. In 1963 they shared the Nobel Prize in Medicine with Eccles for “their
discoveries concerning the ionic mechanisms involved in excitation and inhibition
in the peripheral and central portions of the nerve cell membrane.” A refinement of
the voltage clamp called a patch clamp made it possible to measure exactly when a
single ion channel is opened or closed. This was developed by Neher and Sakmann,
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Figure 1.6: The voltage clamp method for measuring ion currents in cells using
feedback. A pipette is used to place an electrode in a cell (left) and maintain the
potential of the cell at a fixed level. The internal voltage in the cell is vi, and the
voltage of the external fluid is ve. The feedback system (right) controls the current
I into the cell so that the voltage drop across the cell membrane Av = v; — ve is
equal to its reference value Av,. The current I is then equal to the ion current.

who received the 1991 Nobel Prize in Medicine “for their discoveries concerning the
function of single ion channels in cells.”

ROBOTICS AND INTELLIGENT MACHINES

The goal of cybernetic engineering, already articulated in the 1940s and even before,
has been to implement systems capable of exhibiting highly flexible or “intelligent”
responses to changing circumstances [AKM]. In 1948 the MIT mathematician
Norbert Wiener gave a widely read account of cybernetics [Wie48]. A more math-
ematical treatment of the elements of engineering cybernetics was presented by
H. S. Tsien in 1954, driven by problems related to the control of missiles [Tsi54].
Together, these works and others of that time form much of the intellectual basis
for modern work in robotics and control.

Two recent areas of advancement in robotics and autonomous systems are (con-
sumer) drones and autonomous cars, some examples of which are shown in Fig-
ure 1.7. Quadrocopters such as the DJI Phantom make use of GPS receivers,
accelerometers, magnetometers, and gyros to provide stable flight and also use sta-
bilized camera platforms to provide high quality images and movies. Autonomous
vehicles, such as the Google autonomous car project (now Waymo), make use of a

Figure 1.7: Autonomous vehicles. The figure on the left is a DJI Phantom
3 drone, which is able to maintain its position using GPS and inertial sensors.
The figure on the right is an autonomous car that was developed by Google and
is capable of driving on city streets by using sophisticated sensing and decision-
making (control) software.



1-10 CHAPTER 1

= J 00O [

PN
] Request  Request Request D—>

Clients

Reply Reply Reply

= J 000

g Tier 1 Tier 2 Tier 3

(a) Multitiered Internet services (b) Individual server

Figure 1.8: A multitier system for services on the Internet. In the complete
system shown schematically in (a), users request information from a set of com-
puters (tier 1), which in turn collect information from other computers (tiers 2 and
3). The individual server shown in (b) has a set of reference parameters set by
a (human) system operator, with feedback used to maintain the operation of the
system in the presence of uncertainty. (Based on Hellerstein et al. [HDPT04].)

variety of laser rangefinders, cameras, and radars to perceive their environment and
then use sophisticated decision-making and control algorithms to enable them to
safely drive in a variety of traffic conditions, from high-speed freeways to crowded
city streets.

NETWORKS AND COMPUTING SYSTEMS

Control of networks is a large research area spanning many topics, including con-
gestion control, routing, data caching, and power management. Several features of
these control problems make them very challenging. The dominant feature is the
extremely large scale of the system: the Internet is probably the largest feedback
control system humans have ever built. Another is the decentralized nature of the
control problem: decisions must be made quickly and based only on local informa-
tion. Stability is complicated by the presence of varying time lags, as information
about the network state can be observed or relayed to controllers only after a delay,
and the effect of a local control action can be felt throughout the network only after
substantial delay.

Related to the control of networks is control of the servers that sit on these
networks. Computers are key components of the systems of routers, web servers,
and database servers used for communication, electronic commerce, advertising,
and information storage. A typical example of a multilayer system for e-commerce
is shown in Figure 1.8a. The system has several tiers of servers. The edge server
accepts incoming requests and routes them to the HT'TP server tier where they
are parsed and distributed to the application servers. The processing for differ-
ent requests can vary widely, and the application servers may also access exter-
nal servers managed by other organizations. Control of an individual server in a
layer is illustrated in Figure 1.8b. A quantity representing the quality of service
or cost of operation—such as response time, throughput, service rate, or memory
usage—is measured in the computer. The control variables might represent incom-
ing messages accepted, priorities in the operating system, or memory allocation.
The feedback loop then attempts to maintain quality-of-service variables within a
target range of values.
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Figure 1.9: Supply chain dynamics (after Forrester [For61]). Products flow from
the producer to the customer through distributors and retailers as indicated by
the solid lines. There are typically many factories and warehouses and even more
distributors and retailers. Dashed lines represent feedback and feedforward infor-
mation flowing between the various agents in the chain. Multiple feedback loops
are present as each agent tries to maintain the proper inventory level.

EcoNoMIcs

The economy is a large dynamical system with many actors: governments, orga-
nizations, companies, and individuals. Governments control the economy through
laws and taxes, the central banks by setting interest rates, and companies by setting
prices and making investments. Individuals control the economy through purchases,
savings, and investments. Many efforts have been made to model and control the
system both at the macro level and at the micro level, but this modeling is difficult
because the system is strongly influenced by the behaviors of the different actors
in the system.

The financial system can be viewed as a global controller for the economy.
Unfortunately this important controller does not always function as desired, as
expressed by the following quote by Paul Krugman [Kru09]:

We have magneto trouble, said John Maynard Keynes at the start of the
Great Depression: most of the economic engine was in good shape, but a
crucial component, the financial system, was not working. He also said this:
“We have involved ourselves in a colossal muddle, having blundered in the
control of a delicate machine, the working of which we do not understand.”
Both statements are as true now as they were then.

One of the reasons why it is difficult to model economic systems is that conserva-
tion laws for important variables are missing. A typical example is that the value of
a company as expressed by its stock can change rapidly and erratically. There are,
however, some areas with conservation laws that permit accurate modeling. One
example is the flow of products from a manufacturer to a retailer, as illustrated
in Figure 1.9. The products are physical quantities that obey a conservation law,
and the system can be modeled by accounting for the number of products in the
different inventories. There are considerable economic benefits in controlling sup-
ply chains so that products are available to customers while minimizing products
that are in storage. Realistic supply chain problems are more complicated than
indicated in the figure because there may be many different products, there may be
different factories that are geographically distributed, and the factories may require
raw material or subassemblies.
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Figure 1.10: The wiring diagram of the growth-signaling circuitry of the mam-
malian cell [HWO00]. The major pathways that are thought to play a role in cancer
are indicated in the diagram. Lines represent interactions between genes and pro-
teins in the cell. Lines ending in arrowheads indicate activation of the given gene
or pathway; lines ending in a T-shaped head indicate repression. (Used with per-
mission of Elsevier Ltd. and the authors.)

FEEDBACK IN NATURE

Many problems in the natural sciences involve understanding aggregate behavior
in complex large-scale systems. This behavior emerges from the interaction of a
multitude of simpler systems with intricate patterns of information flow. Repre-
sentative examples can be found in fields ranging from embryology to seismology.
Researchers who specialize in the study of specific complex systems often develop
an intuitive emphasis on analyzing the role of feedback (or interconnection) in fa-
cilitating and stabilizing aggregate behavior. We briefly highlight three application
areas here.

A major theme currently of interest to the biology community is the science of
reverse (and eventually forward) engineering of biological control networks such as
the one shown in Figure 1.10. There are a wide variety of biological phenomena that
provide a rich source of examples of control, including gene regulation and signal
transduction; hormonal, immunological, and cardiovascular feedback mechanisms;
muscular control and locomotion; active sensing, vision, and proprioception; at-
tention and consciousness; and population dynamics and epidemics. Each of these
(and many more) provide opportunities to figure out what works, how it works,
and what we can do to affect it.

In contrast to individual cells and organisms, emergent properties of aggrega-
tions and ecosystems inherently reflect selection mechanisms that act on multiple
levels, and primarily on scales well below that of the system as a whole. Because
ecosystems are complex, multiscale dynamical systems, they provide a broad range
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of new challenges for the modeling and analysis of feedback systems. Recent expe-
rience in applying tools from control and dynamical systems to bacterial networks
suggests that much of the complexity of these networks is due to the presence of
multiple layers of feedback loops that provide robust functionality to the individ-
ual cell [Kit04, SSST04, YHSDO00a]. Yet in other instances, events at the cell level
benefit the colony at the expense of the individual. Systems level analysis can be
applied to ecosystems with the goal of understanding the robustness of such systems
and the extent to which decisions and events affecting individual species contribute
to the robustness and/or fragility of the ecosystem as a whole.

In nature, development of organisms and their control systems have often de-
veloped in synergy. The development of birds is an interesting example, as noted
by John Maynard Smith in 1952 [Smi52]:

[T]he earliest birds, pterosaurs, and flying insects were stable. This is be-
lieved to be because in the absence of a highly evolved sensory and nervous
system they would have been unable to fly if they were not. ... To a flying
animal there are great advantages to be gained by instability. The greater
manoeuvrability is of equal importance to an animal which catches its food
in the air and to the animals upon which it preys. ... It appears that
in the birds and at least in some insects [...] the evolution of the sensory
and nervous systems rendered the stability found in earlier forms no longer
necessary.

1.5 FEEDBACK PROPERTIES

Feedback is a powerful idea which, as we have seen, is used extensively in natural
and technological systems. The principle of feedback is simple: base correcting
actions on the difference between desired and actual performance. In engineering,
feedback has been rediscovered and patented many times in many different contexts.
The use of feedback has often resulted in vast improvements in system capability,
and these improvements have sometimes been revolutionary, as discussed above.
The reason for this is that feedback has some truly remarkable properties. In this
section we will discuss some of the properties of feedback that can be understood
intuitively. This intuition will be formalized in subsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness to uncertainty. For example,
by measuring the difference between the sensed value of a regulated signal and its
desired value, we can supply a corrective action to partially compensate for the
effect of disturbances. This is precisely the effect that Watt exploited in his use of
the centrifugal governor on steam engines. Another use of feedback is to provide
robustness to variations in the process dynamics. If the system undergoes some
change that affects the regulated signal, then we sense this change and try to force
the system back to the desired operating point, even if the process parameters are
not directly measured. In this way, a feedback system provides robust performance
in the presence of uncertain dynamics.
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Figure 1.11: A feedback system for controlling the velocity of a vehicle. In the
block diagram on the left, the velocity of the vehicle is measured and compared to
the desired velocity within the “Compute” block. Based on the difference in the
actual and desired velocities, the throttle (or brake) is used to modify the force
applied to the vehicle by the engine, drivetrain, and wheels. The figure on the
right shows how the velocity changes when the car travels on a horizontal road
and the slope of the road changes to a constant uphill slope. The three different
curves correspond to differing masses of the vehicle, between 1200 and 2000 kg,
demonstrating that feedback can indeed compensate for the changing slope and
that the closed loop system is robust to a large change in the vehicle characteristics.

As an example, consider the simple feedback system shown in Figure 1.11. In
this system, the velocity of a vehicle is controlled by adjusting the amount of gas
flowing to the engine. Simple proportional-integral (PI) feedback is used to make
the amount of gas depend on both the error between the current and the desired
velocity and the integral of that error. The plot on the right shows the effect of this
feedback when the vehicle travels on a horizontal road and it encounters an uphill
slope. When the slope changes, the car decelerates due to gravity forces and the
velocity initially increases. The velocity error is sensed by the controller, which acts
to restore the velocity to the desired value by increasing the throttle. The figure
also shows what happens when the same controller is used for a different masses of
the car, which might result from having a different number of passengers or towing
a trailer. Notice that the steady-state velocity of the vehicle always approaches the
desired velocity and achieves that velocity within approximately 15 s, independent
of the mass (which varies by a factor of + 25%), Thus feedback improves both
performance and robustness of the system.

Another early example of the use of feedback to provide robustness is the neg-
ative feedback amplifier. When telephone communications were developed, am-
plifiers were used to compensate for signal attenuation in long lines. A vacuum
tube was a component that could be used to build amplifiers. Distortion caused
by the nonlinear characteristics of the tube amplifier together with amplifier drift
were obstacles that prevented the development of line amplifiers for a long time. A
major breakthrough was the invention of the feedback amplifier in 1927 by Harold
S. Black, an electrical engineer at Bell Telephone Laboratories. Black used negative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.
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Design of Dynamics

Another use of feedback is to change the dynamics of a system. Through feedback,
we can alter the behavior of a system to meet the needs of an application: sys-
tems that are unstable can be stabilized, systems that are sluggish can be made
responsive, and systems that have drifting operating points can be held constant.
Control theory provides a rich collection of techniques to analyze the stability and
dynamic response of complex systems and to place bounds on the behavior of such
systems by analyzing the gains of linear and nonlinear operators that describe their
components.

An example of the use of control in the design of dynamics comes from the area
of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [McF53], illustrates the role of control
in the development of the airplane:

Men already know how to construct wings or airplanes, which when driven
through the air at sufficient speed, will not only sustain the weight of the
wings themselves, but also that of the engine, and of the engineer as well.
Men also know how to build engines and screws of sufficient lightness and
power to drive these planes at sustaining speed ... Inability to balance and
steer still confronts students of the flying problem ... When this one fea-
ture has been worked out, the age of flying will have arrived, for all other
difficulties are of minor importance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. The Wright
Brothers were well aware of the compromise between stability and maneuverability
when the designed they Wright Flyer [Drab5] and they made the first successful
flight at Kitty Hawk in 1903. Modern fighter airplanes are also unstable in certain
flight regimes, such as take-off and landing.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of feedback in aero-
nautical engineering, and Sperry won a prize in a competition for the safest airplane
in Paris in 1914. Figure 1.12 shows the Curtiss seaplane and the Sperry autopi-
lot. The autopilot is a good example of how feedback can be used to stabilize an
unstable system and hence “design the dynamics” of the aircraft.

Creating Modularity

Feedback can be used to create modularity and shape well-defined relations between
inputs and outputs in a structured hierarchical manner. A modular system is one in
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Figure 1.12: Aircraft autopilot system. The Sperry autopilot (left) contained a
set of four gyros coupled to a set of air valves that controlled the wing surfaces.
The 1912 Curtiss used an autopilot to stabilize the roll, pitch, and yaw of the
aircraft and was able to maintain level flight as a mechanic walked on the wing
(right) [Hug93].

which individual components can be replaced without having to modify the entire
system. By using feedback, it is possible to allow components to maintain their
input/output properties in a manner that is robust to changes in its interconnec-
tions. A typical example is the electrical drive system shown in Figure 1.13, which
has an architecture with three cascaded loops. The innermost loop is a current
loop, where the current controller (CC) drives the amplifier so that the current to
the motor tracks a commanded value (called the “setpoint”). The middle feedback
loop uses a velocity controller (VC) to drive the setpoint of the current controller
so that velocity follows its commanded value. The outer loop drives the setpoint of

the velocity loop to follow the setpoint of the position controller PC.

The control architecture with nested loops shown in Figure 1.13 is common. It

PC

Ur
VvC

F

CC Amplifier

Motor

Current loop

Velocity loop

Position loop

Figure 1.13: Block diagram of a system for position control. The system has
three cascaded loops for control of current, velocity, and position. Each loop has
an externally supplied reference value (denoted by the subscript ‘r’) that sets the
nominal value of the input to the loop, which is added to output from next outer-
most loop to determine the commanded value for the loop (called the “setpoint”).
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simplifies design, commissioning, and operation. Consider for example the design of
the velocity loop. With a well-designed current controller the motor current follows
the setpoint of the controller CC. Since the motor torque is proportional to the
current, the dynamics relating motor velocity to the input of the current controller
is approximately an integrator. This simplified model can be used to design the
velocity loop so that effects of friction and other disturbances are reduced. With
a well-designed velocity loop, the design of the position loop is also simple. The
loops can also be tuned sequentially starting with the inner loop.

This architecture illustrates how feedback can be used to simplify the overall
design of the controller by breaking the problem into stages. This architecture also
provides a level of modularity since each design stage depends only on the closed
loop behavior of the system. If we replace the motor when a new motor, then by
redesigning the current controller (CC) to give the same closed loop performance,
we can leave the outer level loops unchanged. Similarly, if we need to redesign
one of the outer layer controllers for an application with different specifications, we
can often make use of an existing inner loop design (as long as the existing design
provide enough performance to satisfy the outer loop requirements).

Challenges of Feedback

While feedback has many advantages, it also has some potential drawbacks. Chief
among these is the possibility of instability if the system is not designed properly.
We are all familiar with the effects of positive feedback when the amplification on
a microphone is turned up too high in a room. This is an example of feedback
instability, something that we obviously want to avoid. This is tricky because we
must design the system not only to be stable under nominal conditions but also to
remain stable under all possible perturbations of the dynamics.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects measurement
noise into the system. Measurements must be carefully filtered so that the actuation
and process dynamics do not respond to them, while at the same time ensuring
that the measurement signal from the sensor is properly coupled into the closed
loop dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding a control
system in a product. While the cost of sensing, computation, and actuation has de-
creased dramatically in the past few decades, the fact remains that control systems
are often complicated, and hence one must carefully balance the costs and benefits.
An early engineering example of this is the use of microprocessor-based feedback
systems in automobiles.The use of microprocessors in automotive applications be-
gan in the early 1970s and was driven by increasingly strict emissions standards,
which could be met only through electronic controls. Early systems were expensive
and failed more often than desired, leading to frequent customer dissatisfaction.
It was only through aggressive improvements in technology that the performance,
reliability, and cost of these systems allowed them to be used in a transparent fash-
ion. Even today, the complexity of these systems is such that it is difficult for an
individual car owner to fix problems.
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Figure 1.14: Input/output characteristics of on-off controllers. Each plot shows
the input on the horizontal axis and the corresponding output on the vertical axis.
Ideal on-off control is shown in (a), with modifications for a dead zone (b) or
hysteresis (c). Note that for on-off control with hysteresis, the output depends on
the value of past inputs.

1.6 SIMPLE FORMS OF FEEDBACK

The idea of feedback to make corrective actions based on the difference between the
desired and the actual values of a quantity can be implemented in many different
ways. The benefits of feedback can be obtained by very simple feedback laws such
as on-off control, proportional control, and proportional-integral-derivative control.
In this section we provide a brief preview of some of the topics that will be studied
more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

max .f b
wo 1 e>0 (1.1)
Umin 1f € <0,

where the control error e = r — y is the difference between the reference (or com-
mand) signal r and the output of the system y, and u is the actuation command.
Figure 1.14a shows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equation (1.1) is called on-off control. One of its chief advan-
tages is that it is simple and there are no parameters to choose. On-off control
often succeeds in keeping the process variable close to the reference, such as the use
of a simple thermostat to maintain the temperature of a room. It typically results
in a system where the controlled variables oscillate, which is often acceptable if the
oscillation is sufficiently small.

Notice that in equation (1.1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figure 1.14b and 1.14c).

PID Control

The reason why on-off control often gives rise to oscillations is that the system
overreacts since a small change in the error makes the actuated variable change over
the full range. This effect is avoided in proportional control, where the characteristic
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of the controller is proportional to the control error for small errors. This can be
achieved with the control law

Umax  If € > emax,
u=q kpe if enin < e < emax, (1.2)

Umin if e S €min,

where kj, is the controller gain, emin = Umin/kp, a1d €max = Umax/kp. The interval
(émin; €max) 18 called the proportional band because the behavior of the controller is
linear when the error is in this interval:

u = kp(r - y) = kpe if emin < € < emax- (13)

While a vast improvement over on-off control, proportional control has the draw-
back that the process variable often deviates from its reference value. In particular,
if some level of control signal is required for the system to maintain a desired value,
then we must have e # 0 in order to generate the requisite input.

This can be avoided by making the control action proportional to the integral
of the error:

u(t) = k; /0 e(r)dr. (1.4)

This control form is called integral control, and k; is the integral gain. It can
be shown through simple arguments that a controller with integral action has zero
steady-state error (Exercise 1.5). The catch is that there may not always be a steady
state because the system may be oscillating. In addition, if the control action has
magnitude limits, as in equation (1.2), an effect known as “integrator windup”
can occur and may result in poor performance unless appropriate “anti-windup”
compensation is used. Despite the potential drawbacks, which can be overcome
with careful analysis and design, the benefits of integral feedback in providing zero
error in the presence of constant disturbances have made it one of the most used
forms of feedback.

An additional refinement is to provide the controller with an anticipative ability
by using a prediction of the error. A simple prediction is given by the linear

extrapolation
de(t
e(t+T) ~ e(t) + Td%,

which predicts the error Ty time units ahead. Combining proportional, integral,

and derivative control, we obtain a controller that can be expressed mathematically

as

de(t)
dt

The control action is thus a sum of three terms: the present as represented by the
proportional term, the past as represented by the integral of the error, and the
future as represented by a linear extrapolation of the error (the derivative term).
This form of feedback is called a proportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.15.

A PID controller is very useful and is capable of solving a wide range of control
problems. More than 95% of all industrial control problems are solved by PID
control, although many of these controllers are actually proportional-integral (PI)

ut) = kpe(t) + ki /0 e(r) dr + kq (1.5)
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Figure 1.15: Action of a PID controller. At time ¢, the proportional term depends
on the instantaneous value of the error. The integral portion of the feedback is
based on the integral of the error up to time ¢ (shaded portion). The derivative
term provides an estimate of the growth or decay of the error over time by looking
at the rate of change of the error. Ty represents the approximate amount of time
in which the error is projected forward (see text).

controllers because derivative action is often not included [DMO02a).

1.7 COMBINING FEEDBACK WITH LOGIC

Continuous control is often combined with logic to cope with different operating
conditions. Logic is typically related to changes in operating mode, equipment
protection, manual interaction, and saturating actuators. One situation is when
there is one variable that is of primary interest, but other variables may have to be
controlled for equipment protection. For example, when controlling a compressor
the outflow is the primary variable but it may be necessary to switch to a different
mode to avoid compressor stall, which may damage the compressor. We illustrate
some ways in which logic and feedback are combined by a few examples.

Cruise control

The basic control function in a cruise controller, such as the one shown in Fig-
ure 1.11, is to keep the velocity constant. It is typically done with a PI controller.
The controller normally operates in automatic mode but it is is necessary to switch
it off when braking, accelerating, or changing gears. The cruise control system has
a human—machine interface that allows the driver to communicate with the system.
There are many different ways to implement this system; one version is illustrated
in Figure 1.16a. The system has four buttons: on/off, coast/set, resume/accelerate,
and cancel. The operation of the system is governed by a finite state machine that
controls the modes of the PI controller and the reference generator, as shown in
Figure 1.16b.

The finite state machine has four modes: off, standby, cruise, and hold. The
state changes depending on actions of the driver who can brake, accelerate, and
operate using the buttons. The on/off switch moves the states between off and
standby. From standby the system can be moved to cruise by pushing the set/coast
button. The velocity reference is set as the velocity of the car when the button is
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Figure 1.16: Finite state machine for cruise control system. The figure on the
left shows some typical buttons used to control the system. The controller can
be in one of four modes, corresponding to the nodes in the diagram on the right.
Transition between the modes is controlled by pressing one of the four buttons on
the cruise control interface: on/off, set, resume, or cancel.

released. In the cruise state the operator can change the velocity reference; it is
increased using the resume/accelerate button and decreased using the set/coast
button. If the driver accelerates by pushing the gas pedal the speed increases, but
it will go back to the set velocity when the gas pedal is released. If the driver
brakes then the car slows, and the cruise controller goes into hold but it remembers
the setpoint of the controller. It can be brought to the cruise state by pushing the
resume/accelerate button. The system also moves from cruise mode to standby if
the cancel button is pushed. The reference for the velocity controller is remembered.
The system goes into off mode by pushing on/off when the system is engaged.
The PI controller is designed to have good regulation properties and to give
good transient performance when switching between resume and control modes.

Server Farms

Server farms consist of a large number of computers for providing Internet services
(cloud computing). Large server farms, such as the one shown in Figure 1.17, may
have thousands of processors. Power consumption for driving the servers and for

Figure 1.17: Large computer “server farm.”
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cooling them is a prime concern. The cost for energy can be more than 40% of the
operating cost for data centers [EKR03]. The prime task of the server farm is to
respond to a strongly varying computing demand. There are constraints given by
electricity consumption and the available cooling capacity. The throughput of an
individual server depends on the clock rate, which can be changed by adjusting the
voltage applied to the system. Increasing the supply voltage increases the energy
consumption and more cooling is required.

Control of server farms is often performed using a combination of feedback
and logic. Capacity can be increased rapidly if a server is switched on simply by
increasing the voltage to a server, but a server that is switched on consumes energy
and requires cooling. To save energy it is advantageous to switch off servers that are
not required, but it takes some time to switch on a new server. A control system for
a server farm requires individual control of the voltage and cooling of each server
and a strategy for switching servers on and off. Temperature is also important.
Overheating will reduce the life time of the system and may even destroy it. The
cooling system is complicated because cooling air goes through the servers in series
and parallel. The measured value for the cooling system is therefore the server with
the highest temperature. Temperature control is accomplished by a combination of
feedforward logic to determine when servers are switched on and off and feedback
using PID control.

Air—Fuel Control

Air-fuel control is an important problem for ship boilers. The control system
consists of two loops for controlling air and oil flow and a supervisory controller
that adjusts the air—fuel ratio. The ratio should be adjusted for optimal efficiency
when the ships are on open sea but it is necessary to run the system with air excess
when the ships are in the harbor, since generating black smoke will result in heavy
penalties.

An elegant solution to the problem can be obtained by combining PI controllers
with maximum and minimum selectors, as shown in Figure 1.18a. A selector is
a static system with several inputs and one output: a maximum selector gives
an output that is the largest of the inputs, a minimum selector gives an output
that is the smallest of the inputs. Consider the situation when the power demand
is increased: the reference r to the air controller is selected as the commanded
power level by the maximum selector, and the reference to the oil flow controller is
selected as the measured airflow. The oil flow will lag the air flow and there will be
air excess. When the commanded power level is decreased, the reference of the oil
flow controller is selected as the power demand by the minimum selector and the
reference for the air flow controller is selected as the oil flow by the the maximum
selector. The system then operates with air excess when power is decreased.

The resulting response of the system for step changes in the desired power level
is shown in Figure 1.18b, verifying that the system maintains air excess for both
power increases and decreases.

Selectors are commonly used to implement logic in engines and power systems.
They are also used for systems that require very high reliability: by introducing
three sensors and only accepting values where two sensors agree it is possible to
guard for the failure of a single sensor.
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Figure 1.18: Air—fuel controller based on selectors. The left figure shows the
system architecture. The letters r and y in the PI controller denote the input

ports for reference and measured signal respectively.

The right figure shows a

simulation where the power reference r is changed stepwise at t = 1 and ¢ = 15.
Notice that the normalized air flow is larger than the normalized fuel flow both for
increasing and decreasing reference steps.

1.8 CONTROL SYSTEM ARCHITECTURES

Most of the control systems we are investigating in this book will be relatively sim-
ple feedback loops. In this section we will try to give a glimpse of the fact that in
reality the simple loops combine to form a complex system that often has an hierar-
chical structure with controllers, logic, and optimization in different combinations.
Figure 1.19 shows one representation of such a hierarchy, exposing different “layers”
of the control system. This class of systems is discussed in more detail in Chap-
ter 15. We focus here on a few representative examples to illustrate some basic

points.
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Figure 1.19: Layered decomposition of a control system.
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Figure 1.20: Freight train trip optimizer. GE’s Trip Optimizer™ takes data about
the train, the terrain, and the propulsion system and computes the best speed for
the train in order to reach the destination on time while burning the least amount
of diesel fuel. (Figure courtesy GE.)

Freight Train Trip Optimizer

An example of two of the layers represented in Figure 1.19 can be see in the control
of modern locomotives developed by General Electric (GE). Typical requirements
for operating a freight train are to arrive on time and to use as little fuel as possible.
The key issue is to avoid unnecessary braking. Figure 1.20 illustrates a system
developed by GE. At the low layer the train has a speed regulator and a simple
logic to avoid entering a zone where there is another train. The key disturbance
for the speed control is the slope of the ground. The speed controller has a model
of the track, a GPS sensor, and an estimator. The setpoint for the speed controller
is obtained from a trip optimizer, which computes a driving plan that minimizes
the fuel consumption while arriving at the desired arrival time. The arrival time
is provided by a dispatch center, which in turn may use some optimization. This
optimization represents the second layer in Figure 1.19, with the top layer (decision-
making) provided by the human operator.

Diesel-electric freight locomotives pull massive loads of freight cars, weighing
more than 20,000 tons (US), and may be more than a mile in length. A typical
locomotive burns about 35,000 gallons per year and can save an average 10% using
the Trip Optimizer autopilot, representing a substantial savings in cost, natural
resources, and pollution.

Process Control Systems

Process control systems are used to monitor and regulate the manufacturing of
a wide range of chemicals and materials. One example is a paper factory, such
as the one depicted in Figure 1.21. The factory produces paper for a variety of
purposes from logs of wood. There are multiple fiber lines and paper machines,
with a few dozen mechanical and chemical production processes that convert the
logs to a slurry of fibers in different steps, and then paper machines that convert
the fiber slurry to paper. Each production unit has PI(D) controllers that control
flow, temperature, and tank levels. The loops typically operate on time scales from
fractions of seconds to minutes. There is logic to make sure that the process is
safe and there is sequencing for start, stop, and production changes. The setpoints
of the low level control loops are determined from production rates and recipes,
sometimes using optimization. The operation of the system is governed by a su-
pervisory system that measures tank levels and sets the production rates of the
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Figure 1.21: Schematic diagram for a pulp and paper manufacturing plant. The
input to the plant is wood (upper left), which is then process through a number
of stages to create paper products.

different production units. This system performs optimization based on demanded
production, measurement of tank levels, and flows. The optimization is performed
at the time scale of minutes to hours, and it is constrained by the production rates
of the different production units. Process for continuous production in the chemi-
cal and pharmaceutical industry are similar to the paper factory but the individual
production units may be very different.

One of the features of modern process control systems is that they operate
across many time and spatial scales. Modern process control systems are also
integrated with supply chains and product distribution chains, leading to the use
of production planning systems and enterprise resource management systems. An
example of an architecture for distributed control system (DCS), typical for complex
manufacturing systems, is shown in Figure 1.22.

Autonomous Driving

The cruise controller in Figure 1.11 relieves the driver of one task to keep constant
speed, but a driver still has many tasks to perform: plan the route, avoid collisions,
decide the proper speed, plan the route, do lane changes, make turns, and keep
proper distance to the car ahead. Car manufacturers are continuously automating
more and more of these functions, going as far as automatic driving. As an example
of a control system for an autonomous vehicle is shown in Figure 1.23. This control
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Figure 1.22: Functional architecture of process control system, implemented as
a distributed control system (DCS). Figure courtesy of ABB, Inc.

system is designed for driving in urban environments. The feedback system fuses
data from road and traffic sensors (cameras, laser range finders, and radar) to create
a multi-layer “map” of the environment around the vehicle. This map is used to
make decisions about actions that the vehicle should take (drive, stop, change
lanes) and plan a specific path for the vehicle to follow. An optimization-based
planner is used to compute the trajectory for the vehicle to follow, which is passed
to a trajectory tracking module. A supervisory control module performs higher-
level tasks such as mission planning and contingency management (if a sensor or
actuator fails).

We see that this architecture has the basic features shown in Figure 1.19. The
control layers are shown in the navigation block, with the mission planner and
traffic planner representing two levels of discrete decision-making logic, the path
planner representing a trajectory optimization function, and then the lower layers
of control. Similarly, there are multiple layers of sensing, with low level information,
such as vehicle speed and position in the lane, being sent to the trajectory tracking
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Figure 1.23: DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the
2005 and 2007 competitions and its networked control architecture [CFG™06].
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controller, while higher level information about other vehicles on the road and their
predicted motions is sent to the trajectory, traffic, and mission planners.

1.9 FURTHER READING

The material in the first half of this chapter draws from the report of the Panel on
Future Directions on Control, Dynamics and Systems [Mur03]. Several additional
papers and reports have highlighted the successes of control [NS99] and new vistas
in control [Bro00, Kum01, Wis07, LLAET17]. The early development of control
is described by Mayr [May70] and in the books by Bennett [Ben79, Ben93|, which
cover the period 1800-1955. A fascinating examination of some of the early history
of control in the United States has been written by Mindell [Min02]. A popular
book that describes many control concepts across a wide range of disciplines is Out
of Control by Kelly [Kel94].

There are many textbooks available that describe control systems in the con-
text of specific disciplines. For engineers, the textbooks by Franklin, Powell, and
Emami-Naeini [FPENO05], Dorf and Bishop [DB04], Kuo and Golnaraghi [KG02],
and Seborg, Edgar, and Mellichamp [SEMO04] are widely used. More mathematically
oriented treatments of control theory include Sontag [Son98] and Lewis [Lew03].
At the opposite end of the spectrum, the textbook Feedback Control for Every-
one [AM10] provides a readable introduction with minimal mathematical back-
ground required. The books by Hellerstein et al. [HDPT04] and Janert [Janl4]
provide descriptions of the use of feedback control in computing systems. A num-
ber of books look at the role of dynamics and feedback in biological systems, in-
cluding Milhorn [Mil66] (now out of print), J. D. Murray [Mur04], and Ellner and
Guckenheimer [EG05]. The book by Fradkov [Fra07] and the tutorial article by
Bechhoefer [Bec05] cover many specific topics of interest to the physics community.

Systems that combine continuous feedback with logic and sequencing are called
hybrid systems. The theory required to properly model and analyze such systems is
outside the scope of this text, but a comprehensive description is given by Goebel,
Sanfelice, and Teele [GST12]. It is very common that practical control systems
combine feedback control with logic sequencing and selectors; many examples are
given by Astrém and T. Hiagglund [AHO6].

EXERCISES

1.1 Identify five feedback systems that you encounter in your everyday environ-
ment. For each system, identify the sensing mechanism, actuation mechanism, and
control law. Describe the uncertainty with respect to which the feedback system
provides robustness and/or the dynamics that are changed through the use of feed-
back.

1.2 (Balance systems) Balance yourself on one foot with your eyes closed for 15 s.
Using Figure 1.4 as a guide, describe the control system responsible for keeping you
from falling down. Note that the “controller” will differ from that in the diagram
(unless you are an android reading this in the far future).
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1.3 (Eye motion) Perform the following experiment and explain your results: Hold-
ing your head still, move one of your hands left and right in front of your face,
following it with your eyes. Record how quickly you can move your hand before
you begin to lose track of it. Now hold your hand still and shake your head left to
right, once again recording how quickly you can move before losing track of your
hand. Explain any difference in performance by comparing the control systems
used to implement these behaviors.

1.4 (Cruise control) Download the MATLAB code used to produce simulations
for the cruise control system in Figure 1.11 from the companion web site. Using
trial and error, change the parameters of the control law so that the overshoot in
speed is not more than 1 m/s for a vehicle with mass m = 1200 kg. Does the same
controller work if we set m = 2000 kg?

1.5 (Integral action) We say that a system with a constant input reaches steady
state if all system variables approach constant values as time increases. Show that
a controller with integral action, such as those given in equations (1.4) and (1.5),
gives zero error if the closed loop system reaches steady state. Notice that there is
no saturation in the controller.

1.6 (Combining feedback with logic) Consider a system for cruise control where
the overall function is governed by the state machine in Figure 1.16. Assume that
the system has a continuous input for vehicle velocity, discrete inputs indicating
braking and gear changes, and a PI controller with inputs for the reference and
measured velocities and an output for the control signal. Sketch the actions that
have to be taken in the states of the finite state machine to handle the system
properly. Think about if you have to store some extra variables, and if the PI
controller has to be modified.

1.7 Search the web and pick an article in the popular press about a feedback and
control system. Describe the feedback system using the terminology given in the
article. In particular, identify the control system and describe (a) the underlying
process or system being controlled, along with the (b) sensor, (c¢) actuator, and
(d) computational element. If the some of the information is not available in the
article, indicate this and take a guess at what might have been used.

¢



Chapter Two

Feedback Principles

Feedback - it is the fundamental principle that underlies all self-requlating
systems, mot only machines but also the processes of life and the tides of
human affairs.

A. Tustin, “Feedback”, Scientific American, 1952 [Tus52].

This chapter presents examples that illustrate fundamental properties of feed-
back: disturbance attenuation, reference signal tracking, robustness to uncertainty,
and shaping of behavior. The analysis is based on simple static and dynamical mod-
els. After reading this chapter, readers should have some insight into the power of
feedback, they should know about transfer functions and block diagrams, and they
should be able to design simple feedback systems. The basic concepts described
in this chapter are explained in more detail in the remainder of the text, and this
chapter can be skipped for readers who prefer to move directly to the more detailed
analysis and design techniques.

2.1 NONLINEAR STATIC MODELS

We will start by capturing the behavior of the process and the controller using static
models. Although these models are very simple, they give significant insight about
the fundamental properties of feedback: negative feedback increases the range of
linearity, it improves reference signal tracking, and it reduces the gain and the
effects of disturbances and parameter variations. Moderate positive feedback has
the opposite properties: it shrinks the range of linearity and increases the gain of
the system. At a critical value the gain becomes infinite and the system behaves like
a relay; larger values of the gain gives hysteretic behavior. Although static models
give some insight, they cannot capture dynamic phenomena like stability. Positive
feedback combined with dynamics often leads to instability and oscillations, as will
be discussed toward the end of the chapter.

Consider the closed loop system whose block diagram is shown in Figure 2.1.
The closed loop system has a reference (or command) signal = that gives the desired
system output. The controller C' has an input e that is the difference between the
reference r and the process output y, and the output of the controller is the control
signal u. There is also a load disturbance v at the process input that perturbs the
system. Although we will mostly deal with negative feedback, this simple model
also permits analysis of positive feedback.

The process P is modeled as a function that is linear for inputs that are less
than one in magnitude and saturates for inputs of magnitude larger than one. The
controller is modeled by a constant gain k. Formally the process and the controller
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Figure 2.1: Block diagram of simple, static feedback system. The controller is a
constant gain k£ > 0 and the process is modeled by a nonlinear function F(z). The
process output is y, the control signal is u, the external signals are the reference
r, and the load disturbance v. The sign in the lower block indicates whether the
feedback is positive (4) or negative (—).

are described by the functions

1 ifr< -1,
y=F(z)=sat(z) =<z if|z| <1, and u = ke. (2.1)
1 ifz>1,

The process is linear for |z| < 1, which is called the linearity range. In this region
we have y = = and the process gain is 1. The controller gain is k because the
controller’s output u is k times its input e.

The open loop system is the combination of the controller and the process when
there is no feedback. Neglecting the disturbance v, it follows from equation (2.1)
that the input/output relation for the open loop system is

y = F(kr) = sat(kr). (2.2)

It has the gain k and the linearity range |r| < 1/k.

Response to Reference Signals

To explore how well the system output y can follow the reference signal r we assume
that the load disturbance v in Figure 2.1 is zero. We will first consider negative
feedback by setting the gain in the lower block of Figure 2.1 to —1. It follows from
Figure 2.1 and equation (2.1) that the closed loop system is described by

y = sat(u), u=k(r—uy). (2.3)

Eliminating u in these equations we obtain

= sat(k(r — y)). (2.4)
To find the relation between the reference r and the output y we have to solve an
algebraic equation. In the linear range |k(r — y)| < 1 we have y = kLHT. When

|k(r — y)| > 1 the output saturates and we obtain y = +1 (depending on the sign
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Figure 2.2: Input/output behavior of the system: (a) for large negative feedback
(b) positive feedback k& < 1 and (c) large positive feedback. The solid line is the
response of the closed loop system and the dotted line is the response of the open
loop system. Redrawn from [SGA18, Figure 20.5].

of k(r — y). It can be shown that the overall input/output relationship satisfies
-1 ifr< -k

r) =gy ] < B (2.5)
1 if r > kL

s

The linearity range for the closed loop system is [r| < #L. Comparing with equa-

tion (2.2) we find that negative feedback widens the linear range of the system by a
factor of k41 compared to the open loop system. This is illustrated in Figure 2.2a,
which shows the input/output relations of the open loop system (dashed) and the
closed loop system (solid).

Robustness to Parameter Uncertainty

Next we will investigate the sensitivity of the closed loop system to gain variations.
The sensitivity of a system describes how changes in the system parameters affect
the performance of the system. For the open loop system in the linear range we
have y = kw and it thus follows that
_ v o d_dk (2.6)

dk k Y k
The relative change of the output is thus equal to the relative change of the param-
eter and we say that the sensitivity is 1. Thus, for the open loop system, a change
in k of 10% will lead to a change in the output of 10%.

For the closed loop system with an input in the linear range, it follows from
equation (2.5) that

d7y_ r kr r _ Y
dt k+1 (k+1)2 (k+1)2 k(k+1)
and hence p L dk
y—ii
y  k+1k° (2.7)

A comparison with equation (2.6) shows that negative feedback with gain k reduces
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the sensitivity to gain variations by a factor of k+1. If k is 100, for example, a 10%
change in k would lead to less than a 0.1% change in y, so the closed loop system
is much less sensitive to parameter variation.

This type of analysis can also be used to investigate the effect of positive feed-
back. If the —1 in the feedback loop in Figure 2.1 is replaced by +1, equation (2.5)
becomes

y= sat(%“ r). (2.8)

Notice that the gain of the closed loop system is positive and larger than the open
gain for k < 1, as shown in Figure 2.2b. The linearity range is |r| < (1 — k)/k.
A comparison with the open loop system in equation (2.2) shows that positive
feedback with k < 1 shrinks the linearity range by a factor of 1 —k. As k approaches
1 the closed loop gain approaches infinity, the range shrinks to zero, and the system
behaves like a relay.

For positive feedback with k > 1 it follows from equation (2.8) that the closed
loop gain is negative, as shown in Figure 2.2c, and that it approaches —1 as k
approaches infinity. Positive feedback with large gains creates an input/output
characteristic with multiple output values possible for inputs in the range |r| <
k/(k 4+ 1) and the closed loop system behaves like a switch with hysteresis. This
concept is explored in more detail in Section 2.6, and it is shown that if the process
has dynamics then all points where the input/output characteristics has negative
slope are unstable.

We will mostly deal with negative feedback but there are systems that employ
positive feedback, as illustrated in the following example.

Example 2.1 The Superregenerative Amplifier

Edwin Armstrong constructed a “superregenerative” radio receiver with only one
vacuum tube in 1914, when he was still an undergraduate at Columbia University.
The superregenerative amplifier can be modeled as an amplifier with open loop
gain k and a saturated output, combined with a positive feedback loop, as shown
in Figure 2.1. Using equation (2.8), we can compute the gain of the closed loop
system to be kg = k/(1 — k). A very large closed loop gain can be obtained by
selecting a feedback gain k that is just below 1. Choosing k = 0.999 gives k. = 999,
which is a gain increase of almost three orders of magnitude.

The drawback of using positive feedback is that the system is highly sensitive
and the gain has to be adjusted carefully to avoid oscillations. For example, if the
gain k is 0.99 instead of 0.999 (a difference of less than 1%), then the closed loop
gain becomes kg = 99, a difference of 10X (or 1000%). The oscillatory nature of
this circuit requires the use of a more advanced (dynamic) model for analysis of the
amplifier.

Despite its limitations, this type of amplifier is still used in simple walkie-talkies,
garage door openers, and toys. \Y%

Load Disturbance Attenuation

Another use of feedback is to reduce the effects of external disturbances, represented
by the signal v in Figure 2.1. For the open loop system, the output when v # 0 is
given by

y = sat(kr + v).



FEEDBACK PRINCIPLES 2-5

In the linear region we thus have a gain of 1 between v and y, so that disturbances
are passed through with no attenuation.

To investigate the effect of feedback on load disturbances we consider the system
in Figure 2.1 with negative feedback and, for simplicity, we set the reference signal
r to be zero. The relationship between the load disturbance v and the the output
y is given by y = sat(v — ky), which is again an algebraic equation. In the linear
range we get y = v/(k + 1) and more generally it can be shown that

Yy = sat(%ﬂ). (2.9)

In the linear region, negative feedback thus reduces the effect of load disturbances
by the factor £ + 1. The analysis of the effects of positive feedback is discussed in
Exercise 2.1.

Combining these three sets of analyses, we see that negative feedback increases the
range of linearity of the system, decreases the sensitivity of the system to parameter
uncertainty, and attenuates load disturbances. The trade-off is that the closed
loop gain is decreased. Positive feedback has the opposite effect: it can increase
the closed loop gain, but at the cost of increased sensitivity and amplification of
disturbances.

2.2 LINEAR DYNAMICAL MODELS

The analysis in the previous section was based on static models and the dynamics
of the process were neglected. We will now introduce a set of concepts and tools to
analyze the effects of dynamics. To do this we will introduce block diagrams, linear
differential equations, and transfer functions. The block diagram is an abstraction
that describes a system as an interconnection of blocks, whose input/output behav-
ior is described by differential equations. The transfer function, which is a function
of complex variables, is a convenient representation of the differential equations
describing the dynamics of the system. Transfer functions make it possible for us
to find the relations between the signals of a complex system represented by block
diagrams using simple algebra. The values of the transfer function on the imagi-
nary axis gives the steady-state response to sinusoidal signals, which means that the
transfer function can be determined experimentally from the steady-state response
to sinusoidal signals.

Linear Differential Equations and Transfer Functions

In many practical situations, the input/output behavior of a system can be modeled
by a linear differential equation of the form

dny dn—ly d™u dm1qy
S Y tay=bo— b, 2.1
g T gt Tt any =bon F by e b (2.10)

where u is the input, y is the output, and the coefficients a; and by, are real numbers.
The differential equation (2.10) is characterized by two polynomials

a(s) =s"+as"+ - +ap, b(s) = bos™ +brs™ T 4t by, (211)
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where a(s) is the characteristic polynomial of the differential equation (2.10). We
assume that the polynomials a(s) and b(s) do not have common roots. (The con-
sequences of having common roots is discussed in Section 8.3.)

Equation (2.10) represents a time-invariant system because if the pair u(t), y(t)
satisfies the equation so does u(t+ 7), y(t + 7). The equation is also linear because
if uy (¢), y1(t), and ua(t), y2(t) satisfy the equation so does auy (t) + Busa(t), ay (t) +
Bya(t), where a and f are real numbers. Systems that are linear and time-invariant
are often called LTI systems. We can visualize these systems as being characterized
by a huge table of corresponding input/output signal pairs. An interesting property
of an LTT system is that it can be characterized by a single carefully chosen pair,
for example the response of the system to a step input.

The solution to equation (2.10) is the sum of two terms: the general solution to
the homogeneous equation, which does not depend on the input, and a particular
solution, which depends on the input. The homogeneous equation associated with
equation (2.10) is

dn dn—l

WZLJ o dtn*zl/
Letting sy represent the roots of the characteristic equation a(s) = 0, the solution
to equation (2.12) is of the form

+...+ay=0. (2.12)

y(t) = Zn: Cre*! (2.13)
k=1

if the characteristic polynomial does not have repeated roots. The numbers Cy,...,C,
can be determined from the initial conditions at ¢ = 0.

Since the coefficients aj are real, the roots of the characteristic equation are
either real-valued or occur in complex conjugate pairs. A real root si of the char-
acteristic polynomial corresponds to the exponential function e®*!. This function
decreases over time if sj is negative, is constant if s = 0, and increases if s is
positive, as shown in the top row of Figure 2.3. For real roots s; the parameter
T = 1/sy is called the time constant, because it describes how quickly the signal
decays.

A complex root s = o £ iw corresponds to the time functions

t t

e?" sin (wt), e?" cos (wt),
which have oscillatory behavior, as illustrated in the bottom row of Figure 2.3. The
sine terms are shown as solid lines; they have zero crossings with the spacing 7/w.
The dashed lines show the envelopes, which correspond to the exponential function
+eot,

When the characteristic equation has repeated roots, the solutions to the ho-
mogeneous equation (2.12) take the form

y(t) = Cr(t)e™, (2.14)

k=1

where Cj(t) is a polynomial with degree less than the multiplicity of the root s.
The solution (2.14) has Y ;- (deg C, + 1) = n free parameters.
Having explored the solution to the homogeneous equation, we now turn to
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Figure 2.3: Examples of exponential signals. The top row corresponds to expo-
nential signals with a real exponent, and the bottom row corresponds to those with
complex exponents. The dashed line in the last two cases denotes the bounding
envelope for the oscillatory signals. In each case, if the real part of the exponent
is negative then the signal decays, while if the real part is positive then it grows.

the input-dependent part of the solution. The solution to equation (2.10) for an
exponential input is of particular interest, as will be shown in the following. We set
u(t) = e®!, where s # s, is a complex number, and investigate if there is a unique
particular solution of the form y(t) = G(s)e**. Assuming this to be the case, we

find
dlzsest’ @:S2est, d™u :Smest
dt dt? dt™m
o o g (2.15)
di; sG(s)e®, Wg = 52G(s)e, ﬁ = s"G(s)e™.
Inserting these expressions into the differential equation (2.10) gives
(8" +a1s" - 4 a,)G(s)et = (bos™ +bys™ T 4 by, et
and hence , S ) )
Gs) = AT b A b Bs) (2.16)

s"+aps"l 4+ +ay, a(s)’

This function is called the transfer function of the system. It describes a particular
solution to the differential equation for the input e*. Combining this with the
solution to the homogeneous equation, we find that a solution to the differential
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equation (2.10) for the exponential input u(t) = e*! is

y(t) = Z Cr(t)esrt + G(s)e™. (2.17)
k=1

The relation between the transfer function (2.16) and the differential equa-
tion (2.10) is clear: the transfer function (2.16) can be obtained by inspection
from the differential equation (2.10), and conversely the differential equation can
be obtained from the transfer function if the polynomials a(s) and b(s) do not have
common factors. The transfer function G(s) can thus be regarded as a shorthand
notation for the differential equation (2.10). It is a complete characterization of
the differential equation even if it was derived as the response to a specific input
u(t) = e*". We note that the input and the initial conditions must both be given to
obtain the full solution of the differential equation, also referred to as the response
of the system.

To deal with oscillatory signals, like those shown in the bottom row of Figure 2.3,
we allow s to be a complex number. The transfer function G is then a function that
maps complex numbers to complex numbers. We let arg represent the argument
(phase, angle) of a complex number and |-| the magnitude, and note that the
complex response to an input u = ™! = coswt + isinwt is given by G(iwt)e?.
Using just the imaginary parts of the signals, it follows that the particular solution

for the input u = sin(wt) = Im e™? is

y(t) =Im (G(iw) ei‘"t) =Im (|G(zw)| et g Giw) ei“’t)
= |G (iw)| Tm "8 G+t — | G(4)| sin(wt + arg G (iw)).

The input is thus amplified by |G (iw)| and the phase shift between input and output
is arg G(iw). The functions G(iw), |G(iw)|, and arg G(iw) are called the frequency
response, gain, and phase. Gain and phase are also called magnitude and angle.

When the input and the output are constant, u(t) = ug and y(t) = yo, the
differential equation (2.10) has the particular solution y(t) = (bn/an)ug = G(0)uo,
obtained by setting s = 0. The input is thus amplified by the factor G(0), which
is therefore called the zero frequency gain (or sometimes the static gain). If the
differential equation is stable then the solution will converge to G(0)ug as t goes to
infinity.

The full response to an exponential input is the sum of a particular solution and
a solution to the homogeneous equation that is determined by the initial conditions,
as given in equation (2.17). An illustration is given in Figure 2.4 for the transfer
function G(s) = 1/(s + 1)2. The dashed line, which is a pure sine wave, is the
solution obtained when all C}, in equation (2.17) are zero. The solid line shows the
response obtained when the C} are chosen so that y(0) and its derivatives y*)(0),
k=1,...,n—1 are all zero. Since all roots of the characteristic polynomial have
negative real parts, the solution to the homogeneous equation (2.14) goes to zero
as t — oo and the general solution converges to the particular solution.

The transfer function has many interpretations that can be exploited for insight,
analysis, and design. The roots s of the characteristic equation a(s) = 0 are called
poles of the transfer function: the transfer function is infinite for s = s;. The poles
s, appear as exponents in the general solution to the homogeneous equation, as
seen in equations (2.13) and (2.14). Systems with poles that are “lightly damped”
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Figure 2.4: Two responses of a linear time-invariant system to a sinusoidal input.
The dashed line shows the output when the initial conditions are chosen so that
the output is purely sinusoidal. The solid line shows the response response for the
initial conditions y(0) = 0 and y’(0) = 0. The transfer function is G(s) = 1/(s+1)>.

(Re(sk) is negative but close to zero) can exhibit resonances when a sinusoidal input
is applied whose frequency is near the imaginary part of sy.

The roots s; of the polynomial b(s) are called zeros of the transfer function.
The reason is that if b(s;) = 0 it follows that G(s;) = 0, and the particular solu-
tion for the input e®*! is then zero. A system theoretic interpretation is that the
transmission of the exponential signal e*i* is blocked by the zero s = s;, which is
therefore also called a transmission zero.

The transfer function can also convey a great deal of intuition: G(0) is the zero
frequency gain for constant inputs and the frequency response G(iw) captures the
steady-state response to sinusoidal functions. The frequency response of a stable @)
system can be determined experimentally by exploring the steady-state response of
a system to sinusoidal signals. This is an alternative or a complement to physical
modeling. A more elaborate treatment of transfer functions and the frequency
response will be given in Chapter 9.

Stability: The Routh—Hurwitz Criterion

When using feedback there is always the danger that the system may become
unstable, and it is therefore important to have a stability criterion. The differential
equation (2.10) is called stable if all solutions of the homogeneous equation (2.12)
go to zero for any initial condition. It follows from equation (2.14) that this requires
that all the roots of the characteristic equation

a(s)=s"+a;s" '+ +a,=0

have negative real parts.

It can often be difficult to analytically compute the roots of a high-order poly-
nomial. The Routh—Hurwitz criterion is a stability criterion that does not require
explicit calculation of the roots, because it gives conditions in terms of the coeffi-
cients of the characteristic polynomial.
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We illustrate the Routh—Hurwitz criterion by describing it for low-order differ-
ential equations. A first-order differential equation is stable when the coefficient
a1 of the characteristic polynomial is positive, since the root of the characteristic
polynomial will be s = —a; < 0. A second-order polynomial has the roots

1 / 2
s = 5(—a1:|: (11—4(12>7

and it is easy to verify that the real parts of the roots are both negative if and only
if a1 > 0 and as > 0. A third order differential equation is more complicated, but
the roots can be shown to have negative real parts if and only if

ai, as, a3 >0, and aijas > as. (2.18)
The corresponding conditions for a fourth order differential equation are
ai, ag, as, ag > 0, ajas > az, and ajazaz > aias +a;. (2.19)

The Routh-Hurwitz criterion [Gan60] gives similar conditions for arbitrarily high
order polynomials. Stability of a linear differential equation can thus be investi-
gated just by analyzing the signs of various combinations of the coefficients of the
characteristic polynomial.

Block Diagrams and Transfer Functions

As we saw already in Chapter 1, control systems are often described using block
diagrams, such as the ones shown in Figures 1.1 and 1.4. If the behavior of the
blocks are represented by transfer functions, the transfer function of a system can
be obtained simply by algebraic manipulations. It follows from equation (2.17) that
the transfer function can be derived from the particular solution for the input e*t.
To derive the transfer function for a system composed of several blocks, we assume
that the input signal is an exponential u(t) = e¢* and compute the corresponding
particular solutions for all blocks.

Consider for example the system in Figure 2.5a, which is a series connection
of two systems with the transfer functions G(s) and Ga(s). Let the input of the
system be u(t) = e** The output of the first block is then y;(t) = G1(s)e®!, which
is also an exponential, and the output of the second system is y(t) = Ga(s)y1(s) =
Ga(s)G1(s)est = Gao(s)G1(s)u(t). The transfer function of the system is thus
Gyu(s) = Ga2(s)Gi(s), where we use the convention that the right subscript is
the input and the left subscript is the output, so that y = G, u.

Next we will consider parallel connections of systems as shown in Figure 2.5b.
Assuming that the input is u(t) = e*!, the exponential outputs of the blocks are
y1(t) = G1(s)e® and ya(t) = G4(s)e*". The output of the system is then

y(t) = (Gi(s)e” + Ga(s)e™) = (Gi(s) + Ga(s)) ™,
and the transfer function of a parallel connection of systems with the transfer

functions G'(s) and Ga(s) is thus Gyu(s) = Gi(s) + Ga(s).
Finally we will consider the feedback connection shown in Figure 2.5c. If the
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s

(a) Gyu(s) = Ga(s)Gi(s)  (b) Gyu(s) = Gi(s) + G2(s)  (¢) Gyuls)

—Gy

_ Gi(s)
14+ Gy (S)GQ (S)

Figure 2.5: Interconnections of linear systems. Series (a), parallel (b) and feed-
back (c) connections are shown. The transfer functions for the composite systems
can be derived by algebraic manipulations assuming exponential functions for all
signals.

input u(t) = e*! is an exponential we find

y(t) = Gi(s)e(t) = Gi(s) (u(t) — Ga(s)y(t)) = Gi(s)(e” — Ga(s)y(t)).

Solving for y(t) gives
Gl(s) st
)= — et
Y = T G 5)Ga) ¢

The transfer function of a feedback connection of systems with the transfer functions
G1(s) and Ga(s) is thus

Gl(S)

Gl = T G () Gals)”

(2.20)

By using polynomials and transfer functions the relations between signals in a
feedback system can thus be obtained by algebra. With some practice the transfer
functions can often be obtained by inspection, as we explore in more detail in
Chapter 9.

Computations Using Transfer Functions

Many software packages for control system analysis and design permit direct ma-
nipulation of transfer functions. In MATLAB the transfer function

s+ 1

=TT

can be created by the commands s=tf(’s’) and G= (s+1)/(s"2+5xs+6). Given
two transfer functions G1 and G2, we can form series, parallel, and feedback inter-
connections using the commands Gs = series(G1, G2), Gp=parallel(G1l, G2), and
Gf = feedback(G1, G2) (by default, MATLAB’s feedback() command uses nega-
tive feedback).

Software packages can also be used to compute the response of a linear in-
put/output system, represented by its transfer function, to different types of in-
puts. A common input that is used for performance characterization is a signal
that is 0 for ¢ < 0 and then 1 for ¢ > 0. This type of input is called a “step input”
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Figure 2.6: Sample step response. The rise time 7T, overshoot My, settling time
Ts, and steady-state value yss describe important performance properties of the
signal.

and the response of the system to a step input is called the step response of the
system. A typical step response for a linear system is shown in Figure 2.6. Some
standard features of a step response are the rise time 7T, settling time T, overshoot
M, and steady-state value y, as illustrated in the figure. The step response for
a transfer function G is generated by the MATLAB command y=step(G). If we
want to specify the simulation time interval explicitly, we can instead use the com-
mand y=step(G, T). The response to a specific input signal can be generated by
y=1sim(G, u, t), where u and t are the input and time vectors. Having a transfer
function, it is thus very easy to generate time responses.

A detailed presentation of transfer functions will be given in Chapter 9, where
we will see that transfer functions can also be used to represent systems with time
delays and systems described by partial differential equations.

2.3 USING FEEDBACK TO IMPROVE DISTURBANCE
ATTENUATION

Reducing the effects of disturbances is a primary use of feedback. It was used by
James Watt to make steam engines run at constant speed in spite of varying load
and by electrical engineers to make generators driven by water turbines deliver
electricity with constant frequency and voltage. Feedback is commonly used to
alleviate effects of disturbances in the process industry, for machine tools, and for
engine and cruise control in cars. The human body exploits feedback to keep body
temperature, blood pressure, and other important variables constant. For example
the pupillary reflex guarantees that the light intensity of the retina is reasonably
constant in spite of large variations in the ambient light intensity. Keeping vari-
ables close to a desired, constant reference value in spite of disturbances is called a
requlation problem.

To discuss disturbance attenuation we consider the system shown in Figure 2.7.
Since we will focus on the effects of a load disturbance v we will assume for now that
the reference r is zero. To derive the transfer functions from the disturbance input
v to the process output y, which we write as G, we assume that the disturbance
is an exponential function v = e*t. Applying block diagram algebra to Figure 2.7
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Figure 2.7: Block diagram of a simple feedback system. The controller transfer
function is C'(s) and the process transfer function is P(s). The process output is
y, the external signals are the reference r and the load disturbance v.

gives

P(S) st'

Vit = Ps)e — PECEWO = o) = 1 proa ©

The transfer function relating the output y to the load disturbance v is thus

P(s)

Gols) = T P00

(2.21)

To explore the use of feedback to improve disturbance attenuation, we will focus
on a simple process modeled by the first order differential equation

dy

dt—|—ay:bu, a>0, b>0.

The corresponding transfer function is

Pls) = (2.22)

s+a

This model is a reasonable approximation for a physical process if the storage of
mass, momentum, or energy can be captured by a single state variable. Typical
examples are the velocity of a car on a road, the angular velocity of a rotating
system, and the fluid level of a tank.

Proportional Control

We will first investigate the case of proportional control, when the control signal
is proportional to the output error: u = kye, as introduced already in Section 1.6.
The controller transfer function is then C(s) = kp. The process transfer function
is given by equation (2.22) and the effect of the disturbance on the output is then
described by the transfer function (2.21):

_ P b(sta) b
1+ P(s)C(s)  1+bky/(s+a) s+ (a+bky)

Gyv(s)

The relation between the disturbance v and the output y is thus given by the
differential equation
dy

o + (a + bkp)y = bo.
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Figure 2.8: Step responses for a first-order, closed loop system with proportional
control (a) and PI control (b). The process transfer function is P = 2/(s + 1).
The controller gains for proportional control are k, = 0, 0.5, 1, and 2. The PI
controller is designed using equation (2.28) with (. = 0.707 and w. = 0.707, 1, and
2, which gives the controller parameters k, = 0, 0.207, and 0.914 and k; = 0.25,
0.50, and 2.

The closed loop system is stable if a+ bk, > 0. A constant disturbance v = vy then
gives an output that exponentially approaches the value

b

Yo = Gyu(0)vg = @ by Vo

with the time constant 7' = 1/(a + bk,). Without feedback, k, = 0 and for a
constant disturbance vg, the output will instead approach bvg/a. The effect of the
disturbance is thus reduced if k, > 0.

We have thus shown that a constant disturbance gives an error that can be
reduced by feedback using a proportional controller. The error decreases with
increasing controller gain. Figure 2.8a shows the responses for a few values of the

controller gain k.

Proportional-Integral (PI) Control
The PI controller, introduced in Section 1.6, is described by

t
u(t) = kpe(t) + ki/ e(r)dr. (2.23)
0
To determine the transfer function of the controller we differentiate to obtain
d d
Y - k j + kie,

dat ~ Pdt
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and we find that the transfer function is C(s) = kp + ki/s. To investigate the effect
of the disturbance v on the output we use the block diagram in Figure 2.7, and the
transfer function from v to y is

P(s) bs

T 1FP(5)C(s) 52+ (a+ bhy)s + bk (2.24)

Gyo (s)

Using the relationship between transfer functions and differential equations given by
equations (2.10) and (2.16), it follows that the relation between the load disturbance
and the output is given by the differential equation

dv
dt’

d?y

o (2.25)

+ (a+ bkp)@ +bkiy =b
dt

Notice that since the disturbance enters as a derivative on the right hand side,
a constant disturbance gives no steady-state error. The same conclusion can be
drawn from the observation that Gy, (0) = 0. This is consistent with the discussion
of integral action and steady-state error in Section 1.6.

To find suitable values of the controller parameters k, and ki, we consider the
characteristic polynomial of the differential equation (2.25),

aci(s) = 52 + (a + bkp)s + bk;. (2.26)

We can assign arbitrary roots to the characteristic polynomial by choosing the
controller gains k, and k;. The most common case is that we assign complex roots
that give the characteristic polynomial

(s+0q+iwg)(s+0q —iwg) = s>+ 2045 + 03 + w3 (2.27)

By construction, this polynomial has roots at s = —oq +iwq. The general solution
to the homogeneous equation is then a linear combination of the terms

e 74 sin(wqt), e~ 74 cos(wqt),

which are damped sine and cosine functions, as shown in the lower middle plot
in Figure 2.3. The coefficient o4 determines the decay rate and the parameter
wq, called the damped frequency, gives the frequency of the decaying oscillation.
Identifying coefficients of equal powers of s in the polynomials (2.26) and (2.27)
gives
k:p:QUdia, ki:crngwg'
b b
We can thus choose the controller gains to give a desired closed loop response.
Instead of parameterizing the closed loop system in terms of o4 and wq it is
common practice to use the (undamped) natural frequency w. = Vo% + w? and the
damping ratio (. = 04/w.. The closed loop characteristic polynomial is then

(2.28)

aa(s) = 8% + 2045 + 03 + w3 = 8% + 2(wes + w2,

This parameterization has the advantage that (., which is in the range [—1,1],
determines the shape of the response and w. gives the response speed.

Figure 2.8b shows the output y and the control signal u for ¢, = 1/v/2 ~ 0.707
and different values of the design parameter w.. Proportional control gives a steady-
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state error that decreases with increasing controller gain k,. With PI control the
steady-state error is zero. Both the decay rate and the peak error decrease when
the design parameter w. is increased. Larger controller gains give smaller errors
and control signals that react more quickly to the disturbance.

With the controller parameters (2.28), the transfer function (2.24) from distur-
bance v to process output y becomes
P(s) bs

Gyuls) = 1+ P(s)O(s) 82+ 2Ccwes +w?2’

For efficient attenuation of disturbances, it is desirable that |Gy, (iw)| is small for
all w. For small values of w we have |G, (iw)| ~ bw/w?, while for large w we have
|Gyo(iw)| = b/w. The largest value of |Gy, (iw)| is b/(2¢cw.) for w = we. It thus
follows that a large value of w. gives good load disturbance attenuation.

In summary, we find that transfer function analysis gives a simple way to find the
parameters of PI controllers for processes whose dynamics can be approximated by
a first-order system. The technique can be generalized to more complicated systems
but the controller will be more complex. To achieve the benefits of large control
gains the model must be accurate over wide frequency ranges, as will be discussed
next.

Unmodeled Dynamics

The analysis we have made so far indicates that there are no limits to the perfor-
mance that can be achieved. Figure 2.8b shows that arbitrarily fast response can
be obtained simply by making w. sufficiently large. In reality there are of course
limits on what is achievable. One reason is that the controller gains increase with
we: the proportional gain is k, = (2¢cwe — a)/b and the integral gain is k; = w?2/b.
A large value of w, thus gives large controller gains and the control signal may
saturate. Another reason is that the model (2.22) is a simplification: it is only
valid in a given frequency range. If the model is instead

b

P(s) = —————, 2.29

() (s+a)(1+sT) (2:29)
where the term 1 + sT represents the dynamics of sensors, actuators, or other
dynamics that were neglected when deriving equation (2.22)—so-called unmodeled
dynamics—the closed loop characteristic polynomial for the closed loop system

becomes
act = s(s+a)(1+ sT) + b(kps + k;) = s°T + s*(1 + aT) + 2Cewes + w?.

It follows from the Routh—Hurwitz criterion (2.18) that the closed loop system is
stable if w27 < 2¢cwe(1 + aT) or if

weT < 2Ce(1+ aT).

The frequency w. and the achievable response time are thus limited by the unmod-
eled dynamics represented by T', which typically is smaller than the time constant
1/a of the process. When models are developed for control it is therefore important
to also consider the unmodeled dynamics.
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The fact that unmodeled dynamics limit the performance of a feedback system
is an important property and must be considered during the system design. It is
common to use simplified models when designing components of complex systems
and if the unmodeled dynamics of those components (or the other subsystems they
interact with) are not properly taken into account, the implementation of the system
can display poor behavior (of which instability is one extreme example). As we shall
see in later chapters, it is the ability to reason about the effects of uncertainty that
makes control theory a particularly powerful mathematical tool for systems design.

2.4 USING FEEDBACK TO TRACK REFERENCE SIGNALS

Another major application of feedback is to make a system output follow a ref-
erence value, which is called the servo problem. Cruise control, steering of a car,
and tracking a satellite with an antenna or a star with a telescope are some exam-
ples. Other examples are high performance audio amplifiers, machine tools, and
industrial robots.

To illustrate reference signal tracking we will consider the system in Figure 2.7
where the process is a first-order system and the controller is a PI controller with
proportional gain k, and integral gain £;. The transfer functions of the process and

the controller are " 5 )
P(s) = C(s) = Fps F Ri

s+a’ s

(2.30)

Since we will focus on following the reference signal r, we will neglect the load
disturbance and set v = 0. Applying block diagram algebra to the system in
Figure 2.7, we find that the transfer function from the reference signal r to the
output y is

P(s)C(s) bkys + bk;

) = T Peek) ~ Erlart blip)s + bk (2:31)

Since G- (0) = 1 it follows that r = y when r and y are constant, independent of
the values of the parameters a and b, as long as the closed loop system is stable.
The steady-state output is thus equal to the reference, a consequence of the integral
action in the controller.

To determine suitable values of the controller parameters k, and k;, we pro-
ceed as in Section 2.3 by choosing controller parameters that make the closed loop
characteristic polynomial

aci(s) = s* + (a + bky)s + bk; (2.32)

equal to % + 2(.wes + w? with ¢, > 0 and w, > 0. Identifying coefficients of equal
powers of s in these polynomials gives

2 _

ky = % ki = =¢ (2.33)
which is equivalent to equation (2.28). Notice that integral gain increases with the
square of w.. Figure 2.9 shows the output signal y and the control signal u for
different values of the design parameters (. and w.. The response time decreases
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Figure 2.9: Responses to a unit step change in the reference signal for different
values of the design parameters w. and (.. The left figure shows responses for fixed
(e = 0.707 and w. = 1, 2, and 5. The right figure shows responses for w, = 2 and
(. = 0.5, 0.707, and 1. The process parameters are a = b = 1. The initial value of
the control signal is ky.

with increasing w. and the initial value of the control signal also increases because
it takes more effort to move rapidly. The overshoot decreases with increasing (..
For w. = 2, the design choice {, = 1 gives a short settling time and a response
without overshoot.

It is desirable that the output y will track the reference signal r for time-varying
references. This means that we would like the transfer function Gy, (s) to be close
to 1 for large frequency ranges. With the controller parameters (2.33), it follows
from equation (2.31) that

P(s)C(s) (2¢cwe — a)s + w?

Gur(s) = 1+ P(s)C(s) 82+ 2(cwes +w? '

Since Gy-(0) = 1, tracking of constant inputs is perfect. In addition, if s = iw is
smaller in magnitude than w,, then using some approximations it can be shown that
Gyr(s) will be close to one. The frequency w. thus determines the upper bound of
the frequency of input signals that can be tracked with small error, and this bound
is referred to as the bandwidth of the closed loop system. The frequency response
of G, therefore provides a quantitative representation of the tracking abilities.

Controllers with Two Degrees of Freedom

The control law in Figure 2.7 has error feedback because the control signal u is
generated from the error e = r —y. With proportional control, a step in the
reference signal r gives an immediate step change in the control signal u. This
rapid reaction can be advantageous, but it may give large overshoot, which can be
avoided by a replacing the PI controller in equation (2.23) with a controller of the
form

u(t) = ky (Br(t) — y(®)) + ks / (r(r) — y(r)) dr. (2:34)
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Figure 2.10: Block diagram of a closed loop system with a PI controller having
an architecture with two degrees of freedom.

In this modified PI algorithm, the proportional action only acts on the fraction g
of the reference signal. The signal transmissions from reference r to u and from
output y to u can be represented by the (open loop) transfer functions

ki k

—Cluy(s) = kp + = = C(s). (2.35)

S

Cur(s) = Bkp + 5
The controller (2.34) is called a controller with two degrees of freedom since the
transfer functions Cy,,(s) and Cyy(s) are different.

A block diagram of a closed loop system with a PI controller having two degrees
of freedom is shown in Figure 2.10. Let the process transfer function be P(s) =
b/(s + a). The transfer functions from reference r and disturbance v to output y
are

_ bBkys+ bk _ bs
Corl8) = Z ey bky)s + bk;’ Col)= 23 ar bkp)s + bk;’

(2.36)

Comparing with the corresponding transfer function for a controller with error
feedback in equations (2.24) and (2.31), we find that the response to the load
disturbances is the same but the response to reference signals is different.

A simulation of the closed loop system for a = 0 and b = 1 is shown in Fig-
ure 2.11. The figure shows that the parameter 8 has a significant effect on the
responses. Comparing the system with error feedback (8 = 1) to the system with
smaller values of 8 we find that using a system with two degrees of freedom gives
less overshoot and gentler control actions.

1.5 1.5
B
; 1 G 3 1*? 1
)
: a
005’ B T —
0
0 Il Il Il Il Il Il Il Il
0 2 4 6 8 10 0 2 4 6 8 10
Time t Time t

Figure 2.11: Response to a step change in the reference signal for a system with
a PI controller having two degrees of freedom. The process transfer function is
P(s) =1/s and the controller gains are k, = 1.414, ks = 1, and 8 =0, 0.5, and 1.
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The example shows that reference signal response can be improved by using a
controller architecture having two degrees of freedom. In Section 12.4 we will further
show that the responses to reference signals and disturbances can be completely
separated by using a more general system architecture. To use a system with
two degrees of freedom both the reference signal r and the output signal y must
be measured. There are situations where only the error signal e = r — y can
be measured; typical examples are DVD players, optical memories, and atomic
force microscopes. In these cases, only single degree of freedom (error feedback)
controllers can be used.

2.5 USING FEEDBACK TO PROVIDE ROBUSTNESS

Feedback can be used to make good systems from imprecise components. Black’s
invention of the feedback amplifier for the telephone network is an early exam-
ple [Bla77]. Black used negative feedback to design extremely good amplifiers with
linear characteristics from components with nonlinear and time-varying properties.
Since signals are transmitted over long distances they must be amplified. At the
time, the thermionic valve—a type of vacuum tube invented by Lee de Forest in
1906—was the only available technology for amplifying electric signals until the
transistor was in invented in 1947. Vacuum tubes were the key to develop radio,
telephony, and electronics in the first half of the 20th century. They are still used
by some hi-fi aficionados in high quality audio amplifiers.

Vacuum tubes can give high gain but they have nonlinear and time varying
input/output characteristics that distort the transmitted signals. Bode [Bod60]
expressed the problem as follows:

Most of you with hi-fi systems are no doubt proud of the quality of your
amplifiers, but I doubt whether many of you would care to listen to the
sound after the signal had gone in succession through several dozen or several
hundred even of your fine amplifiers.

The effect is illustrated in Exercise 2.10.

Black’s idea to develop a good amplifier was to close a loop with negative
feedback around the tube amplifier. In this way he could obtain a closed loop
system with a linear input/output relation having constant gain. The general recipe
is to localize the nonlinearities and the source of process variations, and to close
feedback loops around them.

Reducing Effects of Parameter Variations and Nonlinearities

Consider an amplifier with a static, nonlinear input/output relation with consider-
able variability, as illustrated in Figure 2.12a. The nominal input/output charac-
teristic is shown as a dashed bold line and examples of variations as thin lines. The
nonlinearity in the figure is given by

y = F(u) = a(u+ Bu?), —3<u<3. (2.37)

The nominal values corresponding to the dashed line are « = 0.2 and § = 1. The
variations of the parameters « and 8 are in the ranges 0.1 < o < 0.5, 0 < 5 < 2.
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Figure 2.12: Responses of a static nonlinear system. The left figure shows the in-
put/output relations of the open loop systems and the right figure shows responses
to the input signal (2.38). The ideal response is shown with solid bold lines. The
nominal response of the nonlinear system is shown using dashed bold lines and
the responses for different parameter values are shown using thin lines. Notice the
large variability in the responses.

The responses of the system to the input
u(t) = sin(t) + sin(wt) + sin(7?¢) (2.38)

are shown in Figure 2.12b. The desired response y = u is shown as a solid bold line
and responses for a range of parameters are shown with thin lines. The nominal
response of the nonlinear system is shown as a dashed bold line, and we see that it
is distorted due to the nonlinearity. Notice in particular the heavy distortion both
for small and large signal amplitudes.

The behavior of the system is clearly not satisfactory, but it can be improved
significantly by introducing feedback. A block diagram of a system with a simple
integral controller is shown in Figure 2.13, where the reference input is now taken
as r. Figure 2.14 shows the behavior of the closed loop system with the same pa-
rameter variations as in Figure 2.12. The input/output plot in Figure 2.14a is a
scatter plot of the inputs and the outputs of the feedback system. The input/output
relation is practically linear and close to the desired response. There is some vari-
ability because of the dynamics introduced by the feedback. Figure 2.14b shows
the responses to the reference signal; notice the dramatic improvement compared
with Figure 2.12b. The tracking error is shown in Figure 2.14c.

C="%1—= p=F(u) -

1 |-

Figure 2.13: Block diagram of a nonlinear system with integral feedback.
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Figure 2.14: Responses of the systems with integral feedback (k; = 1000). The
left figure shows the input/output relationships for the closed loop systems, and
the center figure shows responses to the input signal (2.38) (compare to the corre-
sponding responses in Figure 2.12a and b). The right figure shows the individual
errors (solid lines) and the approximate error given by equation (2.42) (dashed
line).

Nonlinear Analysis and Approximations

Analysis of a closed loop system with nonlinearities is often difficult. We can,
however, obtain significant insight by using approximations. We illustrate a few
ideas using the nonlinear amplifier example.

We first observe that the system is linear when 5 = 0. In other situations we
can thus approximate the nonlinear function by a straight line around an operating
point u = ug. The slope of the nonlinear function at v = ug is F'(ug) and we will
approximate the process with a linear system with the gain F”/(ug). The transfer
functions of the process and the controller are

P(s) = F'(up) = a(1+3Bu3) = b, C(s) = kg (2.39)

where ug denotes the operating condition. It follows from equation (2.21) that the
transfer functions relating the output y and the error e to the reference signal r are

bki S

g G =1-Gyp= (2.40)

Gyr(s) =

The closed loop system is a first-order system with the pole s = —bk;. The process
gain b = a(1 + 3Bu) depends on the values of «, 3, and g, and its smallest value
is 0.1. If the integral gain is chosen as k; = 1000, the smallest value of the closed
loop pole is 100 rad/s, which is fast compared to the high-frequency component
9.9 rad/s of the input signal. It follows from equation (2.40) that the error e(t) is
given by the differential equation

d d d

d—: = —bkie + d—z, d—: = cos(t) 4 7 cos(mt) 4 72 cos(m%t). (2.41)
The fast frequency component of the input (2.38) has the frequency 7% = 9.86; it is
slower than the process dynamics for all parameter variations. Neglecting the term

4
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de/dt in equation (2.41) gives

1 dr w2
e(t) ~ e dt ~ o COS(7T2t>. (2.42)
An estimate of the largest error e(t) ~ 0.1 cos(7?t) is obtained for the smallest value
of b =0.1. It is shown as a dashed line in Figure 2.14c, and we see that it gives a
good estimate of the maximum error across the uncertain parameter space.

This analysis is based on the assumption that the amplifier can be modeled
by a constant gain. The closed loop system is however a dynamic system because
the controller is an integrator. It follows from equation (2.40) that the closed loop
dynamics have the time constant Ty = 1/(bk;). If the amplifier has dynamics,
its time constant must thus be small compared to T in order to provide good
tracking. It follows that the largest admissible integral gain k; is determined by the
unmodeled dynamics.

This example illustrates that feedback can be used to design an amplifier that
has practically linear input/output relation even if the basic amplifier is nonlinear
with strongly varying characteristics.

2.6 POSITIVE FEEDBACK

Most of this book is focused on negative feedback because of its amazingly good
properties, which have been illustrated in the previous sections. In this section we
will briefly discuss positive feedback, which has complementary properties. In spite
of this, positive feedback has found good use in several contexts.

Systems with negative feedback can be well understood by linear analysis. To
understand systems with positive feedback it is necessary to consider nonlinear ef-
fects, because without the nonlinearities the instability caused by positive feedback
will grow without bound. The nonlinear elements can create interesting and useful
effects by limiting the signals.

Positive feedback is common in many settings. Encouraging a student or a
coworker when they have performed well encourages them do to even better. In
biology, it is standard to distinguish inhibitory connections (negative feedback)
from excitatory feedback (positive feedback) as illustrated in Figure 2.15. Neurons
use a combination of positive and negative feedback to generate spikes.

Positive feedback may cause instabilities. Exponential growth, where the rate
of change of a quantity x is proportional to x,

dr
E = ax,
is a typical example, which results in an unbounded solution z(t) = e®!. In nature,
exponential growth of a species is limited by the finite amount of food. Another
common example is when a microphone is placed close to a speaker in public address
systems, resulting in a howling noise. Positive feedback can create stampedes in
cattle herds, runs on banks, and boom-bust behavior. In all these cases there is
exponential growth that is finally limited by finite resources.
The notions of positive and negative feedback are clear if the feedback is static,
as we saw for example in Section 2.1. If the feedback is dynamic its action can
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Figure 2.15: Schematic diagram of the neural network that controls swimming
motions in the marine mollusk Tritonia, which has both positive and negative
feedback [Wil99]. An excitatory connection (positive feedback) is denoted with a
line ending with an arrow, an inhibitory interaction (negative feedback) is denoted
with an arrow ending with a circle. (Figure adapted from [Wil99].)

change from positive to negative depending on the frequency of the signals and
hence more care is required. Use of positive feedback will be illustrated by a few
examples.

Hewlett’s Oscillator

William Hewlett used positive and negative feedback very cleverly to design a stable
oscillator in his master thesis from Stanford University in 1939. The oscillator was
the first product made by Hewlett-Packard, the company that Hewlett founded
with David Packard in 1939 [Pac13].

Electronic circuits in the 1930s and 1940s were based on vacuum tube technol-
ogy. The simplest vacuum tube amplifier has three electrodes: a cathode, grid,
and anode enclosed in a glass tube with vacuum. The cathode, which is heated
with a filament, emits free electrons. A current is created by applying a high pos-
itive voltage between the anode and the cathode. The current can be regulated
by changing the voltage on a grid positioned between the anode and the cathode.
The current depends on the voltage difference between the grid and the cathode,
Vg — V.. Increasing this voltage difference increases the current. The vacuum tube
amplifier can be regarded as a valve for controlling a current by applying a voltage
to the grid.

A schematic diagram of Hewlett’s oscillator is shown in Figure 2.16a. Signals
are amplified by two vacuum tubes and there are two feedback loops. One loop
provides positive feedback from the anode of the second tube to the grid of the first
tube via the network Ry, Cq, Ra,Cs. The second feedback loop provides negative
feedback from the output of the second tube to the cathode of the first tube via the
resistor R and the lamp which has resistance Ry. With a proper gain the positive
feedback loop generates an oscillation with the frequency w = 1/y/R1 RoC1C5. The
gain is given by the negative feedback loop from the anode of the second loop to
the cathode of the first loop, through the resistor R¢ and the lamp R},. This loop
has nonlinear gain because the resistance R}, of the lamp increases with increasing
temperature. An increase of the amplitude of V,, increases the current through
the lamp, which reduces the gain. The result is that an oscillation with stable
amplitude and frequency is obtained.

The feedback loops are more clearly visible in the implementation of the oscil-
lator based on an operational amplifier, shown in Figure 2.16b.



FEEDBACK PRINCIPLES 2-25

Vout

AMAAN
V

Yo+

(a) Hewlett’s oscillator (b) Operational amplifier version

Figure 2.16: Circuit diagrams of William Hewlett’s oscillator. (a) Original sys-
tem with vacuum tubes. (b) Equivalent realization with an operational amplifier.

Implementation of Integral Action by Positive Feedback

Early feedback controllers made of use of integral action that was implementing by
using positive feedback around a system with first order dynamics, as shown in the
block diagram of Figure 2.17. Intuitively the system can be explained as follows.
Proportional feedback typically gives a steady-state error. This can be overcome
by adding a bias signal that cancels the steady-state error. In Figure 2.17 the bias
is estimated by low-pass filtering the control signal and adding it back into to the
signal path. This serves to compensate for any error that is present.

The circuit can be understood better by a little analysis. Using block diagram
algebra we find that the transfer function of the system is

kp kp
Cue = 1—-1/(1+sT) P sT’

which is a transfer function of a PI controller. This way of implementing integral
action is still used in many industrial regulators.

Positive Feedback Combined with Saturation

Systems with interesting and useful properties can be obtained by combining linear
and nonlinear components with positive feedback. In this section we consider an
example of a simple form of memory implemented using a feedback circuit.
Consider the system in Figure 2.18, which consists of a linear block with first-
order dynamics and a nonlinear block with positive feedback. Assume that the

— kp by -

1
1+ 8T}

Figure 2.17: Implementation of integral action by positive feedback.
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Figure 2.18: Block diagram of system with positive feedback and saturation.
The parameters are a = 1 and b = 10.

nonlinearity is

y=F(z) = Tl which gives x = F~!(y) = . _y|y‘
The system is described by the differential equation
dx aF~Y(y) ay
= b —br—G Gy =2+ Y Y
g = ar T b(r+y) =b(r—Gly)), (y) 5 Y= sa—n Y

Rewriting the dynamics in terms of the variable y = F(z), we get the following
relation between the input r and the output y:

dy  dF(z) _ dF(x) dx

it~ dt dz o = FI(FTH ) - b(r = G()). (2.43)

F=1(y)

The function F' is monotone with F’(z) > 0 for all 2 and so the equilibrium points
for a constant input r are given by the solutions of r = G(y). The graph of the
function G is shown in Figure 2.19a for ¢ = 1 and b = 4. The function G(y) has
a local maximum 7.y = (1 — /a/b)? = 0.25 at y = —1 + /a/b = —0.5 and a
local minimum rp;, = —0.25 at y = 0.5. The set of possible equilibrium points
for the system can be determined from Figure 2.19a by fixing r and identifying all
values of y that satisfy » = G(y). There is one unique equilibrium if |r| > 0.25, two
equilibrium points if |r| = 0.25 and three equilibrium points if |r| < 0.25.

The differential equation (2.43) is of first order and the equilibrium point y, is
stable if G’(y.) is positive and unstable if G’(y.) is negative. Stable equilibrium
points are shown in solid lines and unstable equilibrium points by dashed lines in
Figure 2.19a. The differential equation thus has two stable equilibrium points when
Tmin < 7 < Tmax and one stable equilibrium point when |r| > rpax.

To understand the behavior of the system, we will explore what happens when
the reference is changed. If the reference r is zero there are two stable equilibrium
points, as can be seen in Figure 2.19a by looking at the horizontal line at r = 0
(labeled C). We assume that the system is at the stable left equilibrium point,
where y is negative. If the reference is increased, the equilibrium point moves
slightly to the right. When the reference reaches the value 0.25, which corresponds
an unstable equilibrium, the solution moves towards the right stable equilibrium
point, where y is positive, as indicated by the line marked B in Figure 2.19a. If the
value of r is increased further, the output y also increases. The static input/output
relation is thus given by the “inverse function” y = GT(r), which gives the value(s)
of the stable output values as a function of r. The system has hysteretic behavior
as shown in Figure 2.19b, where the dashed line indicates the switches between the
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Figure 2.19: System with positive feedback and saturation. (a) For a fixed refer-
ence value 7, the intersections with the curve r = G(y) corresponds to equilibrium
points for the system. Equilibrium points at selected values of r are shown by
circles (note that for some reference values there are multiple equilibrium points).
Arrows indicate the sign of the derivative of y away from the equilibrium points,
with the solid portions of r = G(y) representing stable equilibrium points and
dashed portions representing unstable equilibrium points. (b) The hysteretic in-
put/output map given by the y = G'(r), showing that some values of 7 have single
equilibrium points while others have two possible (stable) steady-state output val-
ues. (c¢) Simulation of the system dynamics showing the reference r (dashed curve)
and the output y (solid curve).

branches of the solution curves, and they occur at r = £rpy, = +0.25.

The temporal behavior of the system is illustrated by the simulations in Fig-
ure 2.19¢, where the input 7 is dashed and the output y is solid. The shapes of
the signals depend on the parameters; the values a = 5, b = 50 were used in the
figure to give more distinct switches. The hysteresis width is 27, and the param-
eter a gives the sharpness of the corners of the output. The circuit shown in the
Figure 2.18 is commonly used as a trigger to detect changes in a signal (known as
a Schmitt trigger). It is also used as a memory element in solid state memories,
illustrating that feedback can be used to obtain discrete behavior.
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2.7 FURTHER READING

The books by Bennett [Ben79, Ben93] and Mindel [Min02, Min08] give interesting
perspective on the development of control. Much of the material touched upon in
this chapter is referred to as “classical control”; see [CM51], [JNP47], and [Tru55]
for early texts on this material. A more thorough introduction to the principles
of feedback with minimal mathematical prerequisites is available in the textbook
Feedback Control for Everyone [AM10]. The notion of controllers with two degrees
of freedom was introduced by Horowitz [Hor63].

The analysis introduced here will be elaborated in the rest of the book. Transfer
functions and other descriptions of dynamics are discussed in Chapters 3 and 9,
methods to investigate stability in Chapters 5 and 10. The simple method to
find parameters of controllers based on matching of coefficients of the closed loop
characteristic polynomial is developed further in Chapters 7, 8, and 13. Feedforward
control is discussed in Sections 8.5 and 12.4.

EXERCISES

2.1 Consider the system in Figure 2.1, where F'(w) = sat(w) with a negative sign
in the feedback. Assume that » = 0 and v = 1. Sketch the input/output relation
for k = —3,-2,-1,0,1,2.

2.2 Let y € R and v € R. Solve the differential equations

dy d?y dy du

— 4+ ay = bu, — +2—4+y=2— +u,

at Y az " at YT T
for t > 0. Determine the responses to a unit step u(t) = 1 and the exponential
signal u(t) = ! when the initial condition is zero. Derive the transfer functions of
the systems.

2.3 Let yo(t) be the response of a system with the transfer function Gy(s) to
a given input. The transfer function G(s) = (1 + sT)Go(s) has the same zero
frequency gain but it has an additional zero at z = —1/T. Let y(t) be the response
of the system with the transfer function G(s) and show that

dy,
y(t) = yo(t) + Tth)’ (2.44)

Next consider the system with the transfer function

s+ a

Gls) = a(s?+2s+1)’

which has unit zero-frequency-gain (G(0) = 1). Use the result in equation (2.44)
to explore the effect of the zero s = —1/T on the step response of a system

2.4 Consider a closed loop system with process dynamics and a PI controller
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modeled by

d t
d—i—l—ay:bu, uzk‘p(r—y)-l-ki/ (T(T) —y(7))dr,
0

where r is the reference, u is the control variable, and y is the process output.

a) Derive a differential equation relating the output y to the reference r by direct
manipulation of the equations and compute the transfer function Hy,(s). Make
the derivations both by direct manipulation of the differential equations and by
polynomial algebra.

b) Draw a block diagram of the system and derive the transfer functions of the
process P(s) and the controller C(s).

¢) Use block diagram algebra to compute the transfer function from reference r
to output y of the closed loop system and verify that your answer matches your
answer in part (a).

2.5 (Pupil response) The dynamics of the pupillary reflex is approximated by a
linear system with the transfer function

0.2(1—0.1s)
Pls)= ——=.
)=~ 01sp
Assume that the nerve system that controls the pupil opening is modeled as a pro-

portional controller with the gain k. Use the Routh—Hurwitz criterion to determine
the largest gain that gives a stable closed loop system.

2.6 (Cruise control) A simple model for the relation between speed v and throttle
u for a car is given by the transfer function

b
s+a

Gvu =

where b = 1.32 m/s? and a = 0.0101 rad/s (see Section 4.1 and Example 6.11 for
more details). The control signal is normalized to the range 0 < u < 1. Design a
PI controller for the system that gives a closed loop system with the characteristic
polynomial

el (s) = 82 + 2Cewes + w?.

What are the consequences of choosing different values of the design parameters (.
and w.? Use your judgment to find suitable values. Hint: Investigate maximum
acceleration and maximum velocity for step changes in the velocity reference.

2.7 Consider the feedback system in Figure 2.7. Let the disturbance v = 0,
P(s) =1and C(s) = ki/s. Determine the transfer function G, from reference r to
output y. Also determine how much G, is changed when the process gain changes
by 10%.

2.8 The calculations in Section 2.3 can be interpreted as a design method for a
PI controller for a first-order system. A similar calculation can be made for PID
control of the second order system. Let the transfer functions of the process and



2-30 CHAPTER 2

the controller be

b
s24+a15+as’

ks
P(s) = C(s) zkp—i-;—kkds.

Show that the controller parameters

(1+ 2al.)w? — as aw? (a+ 2¢)we — ar
kp = ) ki = —=, kg = )
b b b
give a closed loop system with the characteristic polynomial

(52 + 2¢cwes + w?) (s + awe).

2.9 Consider an open loop system with the nonlinear input/output relation y
F(u). Assume that the system is closed with the proportional controller u
k(r —y). Show that the input/output relation of the closed loop system is

1
y+ o Pl y)=r
k
Estimate the largest deviation from ideal linear response y = r. Illustrate by
plotting the input output responses for a) F(u) = /u and b) F(u) = u? with
0<wu<1andk=5,10 and 100.

2.10 (Nonlinear distortion) The effect of distortion in an amplifier can be illustrated
by the following MATLAB script:

load handel % Load Handel’s Messiah
sound(y, Fs); pause % Play the original music through speaker

% Music filtered through two cascaded open loop amplifiers
y1l = anm_ol(y, 1); y2 = amp_ol(yl, 1);
sound(y2, Fs); pause

% Music filtered through cascaded amplifiers with feedback k=100
y3 = amp_cl(y, 1, 100); y4 = amp_cl(y3, 1, 100);
sound(y4, Fs); pause

where the functions representing the open and closed loop amplifiers are:

% Nonlinear static amplifier
function y = amp_ol(x, a)
z=(x+ 1)/2;
y=2x(z+a*z.x(1-2)-0.5);
end

% Nonlinear amplifier with negative feedback
function y = amp_cl(x, a, k)

y=x- (1/k) * (0.5 + x+ax*x (1 -x.72)/2);
end

The script operates as follows: A file with Handel’s Messiah is first loaded as y
and played. The music is then sent through two amplifiers with the nonlinearity
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amp_ol and played again. Finally, the music is sent through the same amplifiers
with feedback k = 10 amp_cl and played. Listen to the music when you run the
script and explain the action of the filters on the music.

2.11 (Queing systems) Consider a queuing system modeled by

dr \ z

dt Hmax +1’
where A is the acceptance rate of jobs and x is the length of the queue. The model
is nonlinear and the dynamics of the system changes significantly with the queuing
length (see Example 3.15 for a more detailed discussion). Investigate the situation
when a PI controller is used for admission control. Let r be the rate of arrival of
job requests and model the (average) arrival intensity A as

A=ky(r—z)+ k:i/ (r(t) — x(t))dt.

The controller parameters are determined from the approximate model

dx

E =
Find controller parameters that give the closed loop characteristic polynomial s +

2s + 1 for the approximate model. Investigate the behavior of the control strategy
for the full nonlinear model by simulation for the input » = 5 + 4 sin(0.1¢).






Chapter Three

System Modeling

. I asked Fermi whether he was not impressed by the agreement between
our calculated numbers and his measured numbers. He replied, “How many
arbitrary parameters did you use for your calculations?” I thought for a
moment about our cut-off procedures and said, “Four.” He said, “I remember
my friend Johnny von Neumann used to say, with four parameters I can fit
an elephant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for meson-proton
scattering to Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamics used to answer ques-
tions via analysis and simulation. The model we choose depends on the questions
we wish to answer, and so there may be multiple models for a single dynamical
system, with different levels of fidelity depending on the phenomena of interest.
In this chapter we provide an introduction to the concept of modeling and present
some basic material on two specific methods commonly used in feedback and control
systems: differential equations and difference equations.

3.1 MODELING CONCEPTS

A model is a mathematical representation of a physical, biological, or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior of systems, and we will
often work in “state space” form. As pointed out already in Chapter 1, when
using models it is important to keep in mind that they are an approximation of
the underlying system. Analysis and design using models must always be done
carefully to ensure that the limits of the model are respected.

Roughly speaking, a dynamical system is one in which the effects of actions
do not occur immediately. For example, the velocity of a car does not change
immediately when the gas pedal is pushed nor does the temperature in a room
rise instantaneously when a heater is switched on. Similarly, a headache does not
vanish right after an aspirin is taken, requiring time for it to take effect. In business
systems, increased funding for a development project does not increase revenues in
the short term, although it may do so in the long term (if it was a good investment).
All of these are examples of dynamical systems, in which the behavior of the system
evolves with time.

In the remainder of this section we provide an overview of some of the key
concepts in modeling. The mathematical details introduced here are explored more
fully in the remainder of the chapter.
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Figure 3.1: Spring-mass system with nonlinear damping. The position of the
mass is denoted by ¢, with ¢ = 0 corresponding to the rest position of the spring.
The forces on the mass are generated by a linear spring with spring constant k and
a damper with force dependent on the velocity ¢.

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary motion. The
basis was detailed observations of the planets by Tycho Brahe and the results of
Kepler, who found empirically that the orbits of the planets could be well described
by ellipses. Newton embarked on an ambitious program to try to explain why the
planets move in ellipses, and he found that the motion could be explained by his
law of gravitation and the formula stating that force equals mass times acceleration.
In the process he also invented calculus and differential equations.

One of the triumphs of Newton’s mechanics was the observation that the motion
of the planets could be predicted based on the current positions and velocities of all
planets. It was not necessary to know the past motion. The state of a dynamical
system is a collection of variables that completely captures the past motion of a
system for the purpose of predicting future motion. For a system of planets the
state is simply the positions and the velocities of the planets. We call the set of all
possible states the state space.

A common class of mathematical models for dynamical systems is ordinary
differential equations (ODEs). In mechanics, one of the simplest such differential
equations is that of a spring—mass system with damping:

mg + ¢(q) + kq = 0. (3.1)

This system is illustrated in Figure 3.1. The variable ¢ € R represents the position
of the mass m with respect to its rest position. We use the notation ¢ to denote
the derivative of ¢ with respect to time (i.e., the velocity of the mass) and § to
represent the second derivative (acceleration). The spring is assumed to satisfy
Hooke’s law, which says that the force is proportional to the displacement. The
friction element (damper) is taken as a nonlinear function ¢(¢), which can model
effects such as Coulomb friction and viscous drag. The position ¢ and velocity
¢ represent the instantaneous state of the system. We say that this system is a
second-order system since it has two states that we combine in the state vector
z = (q,4).

The evolution of the position and velocity can be described using either a time
plot or a phase portrait, both of which are shown in Figure 3.2. The time plot,
on the left, shows the values of the individual states as a function of time. The
phase portrait, on the right, shows the traces of some of the states from different
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Figure 3.2: Tllustration of a state model. A state model gives the rate of change
of the state as a function of the state. The plot on the left shows the evolution
of the state as a function of time. The plot on the right, called a phase portrait,
shows the evolution of the states relative to each other, with the velocity of the
state denoted by arrows.

initial conditions: it illustrates how the states move in the state space. In the
phase portrait we have also shown arrows that represent the velocity & of the state
x in a few points. The phase portrait gives a strong intuitive representation of the
equation as a vector field or a flow. While systems of second order (two states)
can be represented in this way, unfortunately it is difficult to visualize equations of
higher order using this approach.

The differential equation (3.1) is called an autonomous system because there are
no external influences. (Note that this usage of “autonomous” is slightly different
than in the phrase “autonomous vehicle.”) Such a model is natural for use in
celestial mechanics because it is difficult to influence the motion of the planets.
In many examples, it is useful to model the effects of external disturbances or
controlled forces on the system. One way to capture this is to replace equation (3.1)
by

mg + ¢(q) + kq = u, (3.2)

where u represents the effect of external inputs. The model (3.2) is called a forced
or controlled differential equation. It implies that the rate of change of the state
can be influenced by the input u(¢). Adding the input makes the model richer and
allows new questions to be posed. For example, we can examine what influence
external disturbances have on the trajectories of a system. Or, in the case where
the input variable is something that can be modulated in a controlled way, we can
analyze whether it is possible to “steer” the system from one point in the state
space to another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where the design
of electronic amplifiers led to a focus on input/output behavior. A system was
considered a device that transforms inputs to outputs, as illustrated in Figure 3.3.
Conceptually an input/output model can be viewed as a giant table of input and
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Figure 3.3: Illustration of the input/output view of a dynamical system. The
figure on the left shows a detailed circuit diagram for an electronic amplifier; the
one on the right is its representation as a block diagram.

output signals. Given an input signal u(¢) over some interval of time, the model
should produce the resulting output y(¢).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio
or a television and break it down into manageable pieces such as the receiver,
demodulator, amplifier, and speakers. Each of these pieces has a set of inputs and
outputs and, through proper design, these components can be interconnected to
form the entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully later in this chapter,
but roughly speaking a system is linear if the superposition (addition) of two inputs
yields an output that is the sum of the outputs that would correspond to individual
inputs being applied separately. A system is time-invariant if the output response
for a given input does not depend on when that input is applied.

Many electrical engineering systems can be modeled by linear time-invariant
systems and hence a large number of tools have been developed to analyze them.
One such tool is the step response, which describes the relationship between an
input that changes from zero to a constant value abruptly (a step input) and the
corresponding output. As we shall see later in the text, the step response is very
useful in characterizing the performance of a dynamical system, and it is often used
to specify the desired dynamics. A sample step response is shown in Figure 3.4a.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged.
The results are based on the theory of complex variables and Laplace transforms.
The basic idea behind frequency response is that we can completely characterize
the behavior of a system by its steady-state response to sinusoidal inputs. Roughly
speaking, this is done by decomposing any arbitrary signal into a linear combina-
tion of sinusoids (e.g., by using the Fourier transform) and then using linearity to
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Figure 3.4: Input/output response of a linear system. The step response (a)
shows the output of the system due to an input that changes from 0 to 1 at time
t =5 s. The frequency response (b) shows the amplitude gain and phase change
due to a sinusoidal input at different frequencies.

compute the output by combining the response to the individual frequencies. A
sample frequency response is shown in Figure 3.4b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach to dynam-
ics was strongly influenced by the electrical engineering (input/output) view. A
second wave of developments in control, starting in the late 1950s, was inspired by
mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems. In the 1970s the development was
influenced by advances in automation, which emphasized the need to include logic
and sequencing.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, the model given by equation (3.2) was replaced by

W faw,  y=hi), (33)
dt
where x is a vector of state variables, u is a vector of control signals, and y is a vector
of measurements. The term dz/dt represents the derivative of the vector z with
respect to time, and f and h are (possibly nonlinear) mappings of their arguments
to vectors of the appropriate dimension. For mechanical systems, the state consists
of the position and velocity of the system, so that = (g, ¢) in the case of a damped
spring—mass system. Note that in the control formulation we model dynamics as
first-order differential equations, but we will see that this can capture the dynamics
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of higher-order differential equations by appropriate definition of the state and the
maps f and h.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 7 and 8.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output rep-
resentations and state space representations are particularly useful when modeling
systems with uncertainty since state models are convenient to describe a nominal
model but uncertainties are easier to describe using input/output models (often via
a frequency response description). Uncertainty will be a constant theme throughout
the text and will be studied in particular detail in Chapter 13.

An interesting observation in the design of control systems is that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

Multidomain Modeling

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previous
discussion of mechanical and electrical engineering. A difficulty in systems engi-
neering is that it is frequently necessary to deal with heterogeneous systems from
many different domains, including chemical, electrical, mechanical, and information
systems.

To model such multidomain systems, we start by partitioning a system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy, and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how
the variables of the subsystem behave when the subsystems are interconnected.
These interfaces act by constraining variables within the individual subsystems to
be equal (such as mass, energy, or momentum fluxes). The complete model is then
obtained by combining the descriptions of the subsystems and the interfaces.

Using this methodology it is possible to build up libraries of subsystems that
correspond to physical, chemical, and informational components. The procedure
mimics the engineering approach where systems are built from subsystems that are
themselves built from smaller components. As experience is gained, the compo-
nents and their interfaces can be standardized and collected in model libraries. In
practice, it takes several iterations to obtain a good library that can be reused for
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many applications.

State models or ordinary differential equations are not suitable for component-
based modeling of this form because states may disappear when components are
connected. This implies that the internal description of a component may change
when it is connected to other components. As an illustration we consider two
capacitors in an electrical circuit. Each capacitor has a state corresponding to the
voltage across the capacitors, but one of the states will disappear if the capacitors
are connected in parallel. A similar situation happens with two rotating inertias,
each of which is individually modeled using the angle of rotation and the angular
velocity. Two states will disappear when the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations by differential
algebraic equations, which have the form

F(z,2) =0,
where z € R™. A simple special case is

T = f(:v,y), g(m,y) =0, (34)

where z = (z,y) and F = (¢ — f(z,y),9(x,y)). The key property is that the
derivative 2 is not given explicitly and there may be pure algebraic relations between
the components of the vector z. Modeling using differential algebraic equations is
also called equation-based modeling, acausal modeling, or behavioral modeling.

The model (3.4) captures the examples of the parallel capacitors and the linked
rotating inertias. For example, when two capacitors are connected, we simply add
the algebraic equation expressing that the voltages across the capacitors are the
same.

Modelica is a language that has been developed to support component-based
modeling. Differential algebraic equations are used as the basic description, and
object-oriented programming is used to structure the models. Modelica is used to
model the dynamics of technical systems in domains such as mechanical, electrical,
thermal, hydraulic, thermofluid, and control subsystems. Modelica is intended
to serve as a standard format so that models arising in different domains can be
exchanged between tools and users. A large set of free and commercial Modelica
component libraries are available and are used by a growing number of people in
industry, research, and academia. For further information about Modelica, see
http://www.modelica.org or the books by Tiller [Til01] and Fritson [Fril5].

Finite State Machines and Hybrid Systems

A final type of modeling has been developed within the computer-controlled sys-
tems community. A hybrid system (also called a cyberphysical system) is one that
combines continuous dynamics with discrete logic. The discrete portion of the sys-
tem represents logical variables that reside in a computer, such as the mode of a
system (on, off, degraded, etc.).

Discrete state dynamics are often represented using a finite state machine that
consists of a finite set of discrete states @ € Q. We can think of « as the “mode” of
the system. The dynamics of a finite state machine are defined in terms of transi-
tions between the states. One convenient representation is as a guarded transition
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system:
gi(a, B) = o =ri(a), i=1,...,N.

Here the function ¢ is a Boolean (true/false) function that depends on the current
system mode « and an input §, which might represent an environmental event
(button press, component failure, etc). If the guard g; is true then the system
transitions from the current state o to a new state o', determined by the rule
(transition map) r;. A guarded transition system can have many different rules,
depending on the system state and external input.

It is also possible to combine systems that have continuous states with those
having discrete states, creating a hybrid system. For example, if a system has a
continuous state x and discrete state a, we might write the overall system dynamics

as
dx

dt
In this representation, the continuous dynamics (with state x) are governed by an
ordinary differential equation that may depend on the system mode « (indicated
by the subscript in f,). The discrete transition system is also influenced by the
continuous state, so that the guards g; and rules r; now depend on the continuous
state.

Many other representations are possible for hybrid systems, including models
that allow a non-continuous change in the continuous variables when a change in
the discrete state occurs (so-called reset logic). Computer modeling packages for
hybrid systems include StateFlow (part of the MATLAB suite of tools), Modelica,
and Ptolemy [Ptol4].

= fa(z,u), gi(z,0,8) = o =ri(z,a), i=1,...,N.

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback, and it is there-
fore important to characterize uncertainty. When making measurements, there is
a good tradition to assign both a nominal value and a measure of uncertainty. It is
useful to apply the same principle to modeling, but unfortunately it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be characterized by a func-
tion, uncertainty can be expressed by an uncertainty band as illustrated in Fig-
ure 3.5a. At low signal levels there are uncertainties due to sensor resolution,
friction, and quantization. For example, some models for queuing systems or cells
are based on averages that exhibit significant variations for small populations. At
large signal levels there are saturations or even system failures. The signal ranges
where a model is reasonably accurate vary dramatically between applications, but
it is rare to find models that are accurate for signal ranges larger than 10%.

Characterization of the uncertainty of a dynamical model is much more difficult.
We can try to capture uncertainties by assigning uncertainties to parameters of the
model, but this is often not sufficient. There may be errors due to phenomena that
have been neglected, e.g., small time delays. In control the ultimate test is how well
a control system based on the model performs, and time delays can be important.
There is also a frequency aspect. There are slow phenomena, such as aging, that
can cause changes or drift in the systems. There are also high-frequency effects: a
resistor will no longer be a pure resistance at very high frequencies, and a beam
has stiffness and will exhibit additional dynamics when subject to high-frequency
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Figure 3.5: Characterization of model uncertainty. Uncertainty of a static sys-
tem is illustrated in (a), where the solid line indicates the nominal input/output
relationship and the dashed lines indicate the range of possible uncertainty. The
uncertainty lemon [GPD59] in (b) is one way to capture uncertainty in dynamical
systems emphasizing that a model is valid only in the amplitude and frequency
ranges within the shaded region. In (c) a model is represented by a nominal model
M and another model A representing the uncertainty analogous to the represen-
tation of parameter uncertainty.

excitation. The uncertainty lemon [GPD59] shown in Figure 3.5b is one way to
conceptualize the uncertainty of a system. It illustrates that a model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in Chapter 13
using figures such as Figure 3.5¢. These tools make use of the concept of a transfer
function, which describes the frequency response of an input/output system. For
now, we simply note that one should always be careful to recognize the limits of
a model and not to make use of models outside their range of applicability. For
example, one can describe the uncertainty lemon and then check to make sure that
signals remain in this region. In early analog computing, a system was simulated
using operational amplifiers, and it was customary to give alarms when certain
signal levels were exceeded. Similar features can be included in digital simulation.

3.2 STATE SPACE MODELS

In this section we describe the two primary forms of models that we use in this
text: differential equations and difference equations. Both make use of the notions
of state, inputs, outputs, and dynamics to describe the behavior of a system. We
also briefly discuss modeling of finite state systems.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a physical system the state is
composed of the variables required to account for storage of mass, momentum, and
energy. A key issue in modeling is to decide how accurately this information has
to be represented. The state variables are gathered in a vector x € R™ called the
state vector. The control variables are represented by another vector v € RP, and
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the measured signal by the vector y € RY. A system can then be represented by
the differential equation

dﬁ :f(xvu)v y:h(xau)v (35)
dt

where f: R™ x RP — R™ and h : R™ x RP — R? are smooth mappings. We call a
model of this form a state space model.

The dimension of the state vector is called the order of the model. The model
given in equation (3.5) is called time invariant because the functions f and h do
not depend explicitly on time ¢; there are more general time-varying systems where
the functions do depend on time. The model consists of two functions: the function
f gives the rate of change of the state vector as a function of state x and control w,
and the function h gives the measured values as functions of state x and control u.

A model is called a linear state space model (or often just a “linear system”) if
the functions f and h are linear in x and u. A linear state space model can thus
be represented by

CC% = Az + Bu, y = Czx + Du, (3.6)
where A, B, C, and D are constant matrices. Such a model is said to be linear and
time-invariant, or LTI for short. (In this text we will usually omit the term time-
invariant and just say the model is linear.) The matrix A is called the dynamics
matriz, the matrix B is called the control matriz, the matrix C is called the sensor
matriz, and the matrix D is called the direct term. Frequently models will not
have a direct term, indicating that the control signal does not influence the output
directly.

A different form of linear differential equations, generalizing the second-order
dynamics from mechanics, is an equation of the form

dny dnfl

Y
g + ay dtn—l + -+ any = u, (37)

where ¢ is the independent (time) variable, y(¢) is the dependent (output) variable
and u(t) is the input. The notation d¥y/dt* is used to denote the kth derivative
of y with respect to t, sometimes also written as y*). The controlled differential
equation (3.7) is said to be an nth-order model. This model can be converted into
state space form by defining

x1 dnfly/dtnfl
T dn_2y/dtn_2
xr = : = . )
Tpo1 dy/dt

Tn Y
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and the state space equations become

X —A1T1 — - — Ap Ty u
d xro Tq 0
— = —+ : Y = Tp.
dt |7
Tp—1 Tn—2 0
Ln Tn—1 0

With the appropriate definitions of A, B, C, and D, this equation is in linear state
space form.

An even more general model is obtained by letting the output be a linear com-
bination of the states of the model, i.e.,

y=0bixy +boxs + - + byx, + du.

This model can be represented in state space as

T —a1 —az .. —Qp—1 —0ap 1
p To 1 0o ... 0 0 0
= x| _ 0 1 0 0 |,+ 10 u,
: : : : (3.8)
T, 0 0 1 0 0
y = (b1 by ... bn] z + du.

This particular form of a linear state space model is called reachable canonical form
and will be studied in more detail in later chapters. Many other representations for
a model are possible and we shall see several of these in Chapters 6-8. It is also
possible to expand the form of equation (3.7) to allow derivatives of the input to
appear, as we saw briefly in Chapter 2.

Example 3.1 Spring—mass system
As a simple example of converting a linear differential equation to state space form,
consider the externally-driven spring mass system whose dynamics are given in
equation (3.2):

mg + ¢(q) + kq = u.
This has the same form as equation (3.7) where the output y is the position ¢. The
state of the system can then be written as

BOR0
T2 q
and the state space equations are
d (z) _ (—c¢/m —k/m) (1 L 1/m "
dt x2 1 0 T2 0

where we have further assumed that ¢(§) = ¢¢ (corresponding to viscous friction).

\%
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Figure 3.6: Balance systems. (a) Segway Personal Transporter, (b) Saturn
rocket, and (c) inverted pendulum on a cart. Each of these examples uses forces
at the bottom of the system to keep it upright.

Example 3.2 Balance systems
A more complex example of a type of system that can be modeled using ordinary
differential equations is the class of balance systems. A balance system is a me-
chanical system in which the center of mass is balanced above a pivot point. Some
common examples of balance systems are shown in Figure 3.6. The Segway® Per-
sonal Transporter (Figure 3.6a) uses a motorized platform to stabilize a person
standing on top of it. When the rider leans forward, the transportation device pro-
pels itself along the ground but maintains its upright position. Another example
is a rocket (Figure 3.6b), in which a gimballed nozzle at the bottom of the rocket
is used to stabilize the body of the rocket above it. Other examples of balance
systems include humans or other animals standing upright or a person balancing a
stick on their hand.

Balance systems are a generalization of the spring—mass system we saw earlier.
We can write the dynamics for a mechanical system in the general form

M(q)i+ C(q,q) + K(q) = B(q)u,

where M(q) is the inertia matrix for the system, C(q,q) represents the Coriolis
forces as well as the damping, K(q) gives the forces due to potential energy, and
B(q) describes how the external applied forces couple into the dynamics. Note
that ¢ may be a vector, rather than just a scalar, and represents the configuration
variables of the system. The specific form of the equations can be derived using
Newtonian mechanics. Each of the terms depends on the configuration of the system
q and these terms are often nonlinear in the configuration variables.

Figure 3.6¢ shows a simplified diagram for a balance system consisting of an
inverted pendulum on a cart. To model this system, we choose state variables
that represent the position and velocity of the base of the system, ¢ and ¢, and
the angle and angular rate of the structure above the base, # and 6. (Note the
slight abuse of notation in using ¢ to represent the position and (g, 8) for the full
set of configuration variables.) We let F represent the force applied at the base of
the system, assumed to be in the horizontal direction (aligned with ¢), and choose
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the position and angle of the system as outputs. With this set of definitions, the
dynamics of the system can be computed using Newtonian mechanics and have the

form .
(M +m) —micosf) (d n cg+mlsinf6*) (F (3.9)
—mlcosf (J+ mi?) 6 ¥0 —mglsing | — |0} )

where M is the mass of the base, m and J are the mass and moment of inertia of the
system to be balanced, [ is the distance from the base to the center of mass of the
balanced body, ¢ and  are coefficients of viscous friction, and g is the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space form by defining the

state as x = (q,0,q,0), the input as v = F, and the output as y = (¢,0). If we
define the total mass and total inertia as

M, = M +m, Jy = J +mi?,

the equations of motion then become

q
q . 0 .
d |6 —mlsgh? + mg(mi?/Jy)seco — cg — (v/Jy)mlced + u
dt q - M, — m(ml?/ Jy)ci ’
0 —ml2sgcb? + Myglsg — clcgq — W(Mt/m)Q + lcpu
Jo(My/m) — m(lcp)?
= (4).

where we have used the shorthand ¢y = cosf and sg = sin 6.

In many cases, the angle 6 will be very close to 0, and hence we can use the
approximations sinf ~ 6 and cos# ~ 1. Furthermore, if 6 is small, we can ig-
nore quadratic and higher terms in . Substituting these approximations into our
equations, we see that we are left with a linear state space equation

q 0 0 1 0 q 0
d e 0 0 0 1 0 0
dt |a| [0 m*Pg/p —cli/u —ylm/u| |d e
0 0 Mymgl/p —cm/p —yM/u) \0 Im/p
(100 0
Y=lo 100"
where p = M, J, — m?[?. \%

Example 3.3 Inverted pendulum

A variation of the previous example is one in which the location of the base g does
not need to be controlled. This happens, for example, if we are interested only in
stabilizing a rocket’s upright orientation without worrying about the location of the
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base of the rocket. The dynamics of this simplified system are given by

LA A ey . y (3.10)
e \0) T‘?sin@—%@—i—ZUCOSQ ’ y="u '

where 7 is the coefficient of rotational friction, J; = J + ml?, and u is the force
applied at the base. This system is referred to as an inverted pendulum. \Y%

Difference Equations

In some circumstances, it is more natural to describe the evolution of a system at
discrete instants of time rather than continuously in time. If we refer to each of
these times by an integer £ = 0,1,2,..., then we can ask how the state of the
system changes for each k. Just as in the case of differential equations, we define
the state to be the set of variables that summarizes the past of the system for the
purpose of predicting its future. Systems described in this manner are referred to
as discrete-time systems.
The evolution of a discrete-time system can be written in the form

zlk +1] = f(z[k], ulk]), ylk] = h(x[k], ulk]), (3.11)

where z[k] € R™ is the state of the system at time k (an integer), u[k] € R? is the
input, and y[k] € R? is the output. As before, f and h are smooth mappings of
the appropriate dimension. We call equation (3.11) a difference equation since it
tells us how z[k + 1] differs from z[k]. The state z[k] can be either a scalar- or a
vector-valued quantity; in the case of the latter we write z;[k] for the value of the
jth state at time k.

Just as in the case of differential equations, it is often the case that the equations
are linear in the state and input, in which case we can describe the system by

xlk + 1] = Az[k] + Bulk], y[k] = Cz[k] + Dulk].

As before, we refer to the matrices A, B, C, and D as the dynamics matrix,
the control matrix, the sensor matrix, and the direct term. The solution of a
linear difference equation with initial condition 2[0] and input w[0],...,u[T] can be
computed using repeated substitution and is given by

k—1
k] = A¥x[0] + > A1 Bulj,
. k> 0. (3.12)
ylk] = CA*2[0] + )~ CA* 7 Bulj] + Dulk],
j=0

Difference equations are also useful as an approximation of differential equations,
as we will show later.

Example 3.4 Predator—prey
As an example of a discrete-time system, consider a simple model for a predator—
prey system. The predator—prey problem refers to an ecological system in which



SYSTEM MODELING 3-15

1 1 | 1 1 1 | 1 1 1 | 1 1 1 1 1
1845 1855 1865 1875 1885 1895 1905 1915 1925 1935
Figure 3.7: Predator versus prey. The photograph on the left shows a Canadian
lynx and a snowshoe hare, the lynx’s primary prey. The graph on the right shows
the populations of hares and lynxes between 1845 and 1935 in a section of the
Canadian Rockies [Mac37]. The data were collected on an annual basis over a
period of 90 years. (Photograph copyright Tom and Pat Leeson.)

we have two species, one of which feeds on the other. This type of system has
been studied for decades and is known to exhibit interesting dynamics. Figure 3.7
shows a historical record taken over 90 years for a population of lynxes versus a
population of hares [Mac37]. As can been seen from the graph, the annual records
of the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-time model
to keep track of the rate of births and deaths of each species. Letting H represent
the population of hares and L represent the population of lynxes, we can describe
the state in terms of the populations at discrete periods of time. Letting k be the
discrete-time index (corresponding here to each day), we can write

HI[k + 1) = H[k] + by (u)H[k] — aL[k]H|[K],
L[k + 1] = L[k] + cL[k]H[k] — d\L[K],

where by (u) is the hare birth rate per unit period and is a function of the food
supply wu, d) is the lynx mortality rate, and a and ¢ are the interaction coefficients.
The interaction term aL[k]H [k] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey meet and is hence given
by the product of the population sizes. The interaction term cL[k]|H[k] in the
lynx dynamics has a similar form and represents the rate of growth of the lynx
population. This model makes many simplifying assumptions—such as the fact
that hares decrease in number only through predation by lynxes—but it often is
sufficient to answer basic questions about the system.

To illustrate the use of this system, we can compute the number of lynxes and
hares at each time point from some initial population. This is done by starting
with 2[0] = (Hp, Lo) and then using equation (3.13) to compute the populations in
the following period. By iterating this procedure, we can generate the population
over time. The output of this process for a specific choice of parameters and initial
conditions is shown in Figure 3.8. While the details of the simulation are different
from the experimental data (to be expected given the simplicity of our assumptions),
we see qualitatively similar trends and hence we can use the model to help explore
the dynamics of the system. \Y4

(3.13)

Example 3.5 E-mail server
The IBM Lotus (now Domino) server is a collaborative software system that ad-
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Figure 3.8: Discrete-time simulation of the predator-prey model (3.13). Using
the parameters a = ¢ = 0.014, bn(u) = 0.6, and di = 0.7 in equation (3.13), the
period and magnitude of the lynx and hare population cycles approximately match
the data in Figure 3.7.

ministers users’ e-mail, documents, and notes. Client machines interact with end
users to provide access to data and applications. The server also handles other
administrative tasks. In the early development of the system it was observed that
the performance was poor when the central processing unit (CPU) was overloaded
because of too many service requests, and mechanisms to control the load were
therefore introduced.

The interaction between the client and the server is in the form of remote pro-
cedure calls (RPCs). The server maintains a log of statistics of completed requests.
The total number of requests being served, called RIS (RPCs in server), is also
measured. The load on the server is controlled by a parameter called MaxUsers,
which sets the total number of client connections to the server. This parameter is
controlled by the system administrator. The server can be regarded as a dynamical
system with MaxUsers as the input and RIS as the output. The relationship between
input and output was first investigated by exploring the steady-state performance
and was found to be linear.

In [HDPTO04] a dynamical model in the form of a first-order difference equation
is used to capture the dynamic behavior of this system. Using system identification
techniques, they construct a model of the form

ylk + 1] = aylk] + bulk],

where u = MaxUsers — MaxUsers and y = RIS — RIS. The parameters a = 0.43
and b = 0.47 are parameters that describe the dynamics of the system around
the operating point, and MaxUsers = 165 and RIS = 135 represent the nominal
operating point of the system. The number of requests was averaged over a sampling
period of 60 s. \Y

Another application of difference equations is in the implementation of control
systems on computers. Early controllers were analog physical systems, which can
be modeled by differential equations. When implementing a controller described
by a differential equation using a computer it is necessary to do approximations. A
simple way is to approximate derivatives by finite differences, as illustrated by the
following example.
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Example 3.6 Difference approximation of a PI controller
Consider the proportional-integral (PI) controller

t t
u(t) = kpe(t) + ki/ e(r)dr = kpe(t) + x(t), x(t) = ki/ e(r)dr,
0 0
where the controller state is given by the differential equation

dx

= = hie(?) (3.14)
Assume that the error is measured at regular sampling intervals ¢t = h,2h, 3h, .. ..
Approximating the derivative in equation (3.14) by differences gives

and the controller is then given by the difference equation
a[j +1] = zlj] + hkelj],  ulj] = kpe[j] + x[j],

where z[j] = z(jh), e[j] = e(jh), and u[j] = u(jh) represent the discrete-time state,
error, and input sampled at each time interval (and we use j as our discrete time
index here to avoid confusion with the gains k, and k;). This controller is easy to
implement on a computer since it consists of just addition and multiplication. V

The approximation in the example works well provided that the sampling in-
terval is so short that the variable e(t) changes very little over a sampling interval.

Finite State Machines @

In addition to systems that can be modeled by continuous variables (e.g., positions,
velocities, voltages, temperatures), we often encounter systems that have discrete
states (e.g., on, off, standby, fault). A finite state machine is a model in which
the states of the system are chosen from a finite list of “modes.” The dynamics
of a finite state machine are given by transitions between these modes, possibly in
response to external signals. We illustrate this concept with a simple example.

Example 3.7 Traffic light controller

Consider a finite state machine model of a traffic light control system, as shown
in Figure 3.9. We represent the state of the system in terms of the set of traffic
lights that are turned on (either east-west or north-south). In addition, once a
light is turned on it should stay that way for a certain minimum time, and then
only change when a car comes up to the intersection in the opposite direction. This
gives us two states for each direction of the lights: waiting for a car to arrive and
waiting for the timer to expire. Thus, we have four states for the system, as shown
in Figure 3.9.

The dynamics for the light describe how the system transitions from one state to
another. Starting at the left most state, we assume that the lights are set to allow
traffic in the north—south direction. When a car arrives on the east—west street, we
transition to the state at the top of the diagram, where a timer is started. Once
the timer reaches the designated amount of time, we transition to the state on the
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Figure 3.9: A simple model for a traffic light. The diagram on the right is a
finite state machine model of the traffic light controller.

right side of the diagram and turn on the lights in the east—west direction. From
here we wait until a car arrives on the north—south street and continue the cycle.
Viewed as a control system, this model has a state space consisting of four
discrete states: north—south waiting, north—south countdown, east—west waiting,
and east—west countdown. The inputs to the controller consist of the signals that
indicate whether a car is present at the roads leading up to the intersection. The
outputs from the controller are the signals that change the colors of the traffic light.
Finally, the dynamics of the controller are the transition diagram that controls how
the states (or modes) of the system change in time. \Y

More formally, a finite state machine can be represented as a finite set of discrete
states a € Qgys, Where Qg is a discrete set. The dynamics of the system are
described by transitions between the discrete states, as in the finite state machine
described in the previous example. These transitions can depend on external inputs
or measurements and can generate output actions on transition into or out of a given
state. If we let 8 € Qi, represent (discrete) input events (button press, component
failure, etc) and v € Qqut represent (discrete) output actions (such as turning off a
device), then the dynamics of the finite state machine can be written as a guarded
command system

O/,l:TiO[, )
(@, ) i=1,...,N. (3.15)

gi(a, ) = { " = ai(r, B)
Here the function g; is a Boolean (true/false) function that depends on the current
system mode « and an external input 3. If the guard g; is true then the system
transitions from the current state a to a new state o/, determined by the rule (tran-
sition map) r; and the external input. The output action a; is similarly dependent
on the current state and external input. A guarded transition system can have
many different rules, depending on the system state and external input.

The dynamics of a transition system is similar in many ways to the discrete
time dynamics in equation (3.11). The major difference is that the transitions do
not necessarily occur at regularly spaced intervals of time. Indeed, there is no strict
notion of time in a transition system as we have described it here: it is only the
sequence of events that is kept track of (through the evolution of the discrete state).

Specifications for finite transition systems are often written as logical functions
describing the conditions that should be imposed on the system. For example, we
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Figure 3.10: A driven spring—mass system with damping. Here we use a linear
damping element with coefficient of viscous friction ¢. The mass is driven with a
sinusoidal force of amplitude A.

might wish to say that if a specific sensor is not operating, then the system cannot
transition to a mode that requires the use of that sensor. This could be written as
the logical formula

«a € {states with sensor k not functioning} = o' ¢ {states requiring sensor k}.

The formula of the form p = ¢ where p and ¢ are Boolean propositions can
be written as the logical function (Ip) || (p && ¢), which asserts that if proposition
p is true then proposition ¢ must be true. In the sensor example, p and g are
represented by whether the system mode « is in some set of states.

Finite state machines are very useful for describing logical operations and are
often combined with continuous state models (differential or difference equations)
to create a hybrid system model. The study of hybrid systems is beyond the scope
of this text, but excellent references include Lee and Seshia [LS15] and Alur [Alul5).

Simulation and Analysis

State space models can be used to answer many questions. One of the most com-
mon, as we have seen in the previous examples, involves predicting the evolution of
the system state from a given initial condition. While for simple models this can be
done in closed form, more often it is accomplished through computer simulation.

Consider again the damped spring—-mass system from Section 3.1, but this time
with an external force applied, as shown in Figure 3.10. We wish to predict the
motion of the system for a periodic forcing function, with a given initial condition,
and determine the amplitude, frequency, and decay rate of the resulting motion.

We choose to model the system with a linear ordinary differential equation.
Using Hooke’s law to model the spring and assuming that the damper exerts a
force that is proportional to the velocity of the system, we have

mq + cq + kg = u, (3.16)

where m is the mass, ¢ is the displacement of the mass, c is the coefficient of viscous
friction, k is the spring constant, and w is the applied force. In state space form,
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Figure 3.11: Simulation of the forced spring-mass system with different simula-
tion time constants. The solid line represents the analytical solution. The dashed
lines represent the approximate solution via the method of Euler integration, using
decreasing step sizes.

using = = (g, ¢) as the state and choosing y = ¢ as the output, we have

dxr Tz
T C k u ) Yy=2i.
dt ——T2— —T1+ —

m m m

We see that this is a linear second-order differential equation with one input u and
one output y.

We now wish to compute the response of the system to an input of the form
u = Asinwt. Although it is possible to solve for the response analytically, we
instead make use of a computational approach that does not rely on the specific
form of this system. Consider the general state space system

dx

i f(z,u).

Given the state z at time ¢, we can approximate the value of the state at a short
time h > 0 later by assuming that the rate of change f(x,u) is constant over the
interval t to ¢t + h. This gives

x(t+h) =x(t) + hf(x(t),u(t)). (3.17)

Iterating this equation, we can thus solve for x as a function of time. This approx-
imation is known as Euler integration and is in fact a difference equation if we let
h represent the time increment and write x[k] = x(kh), as we saw in Example 3.6.
Although modern simulation tools such as MATLAB and Mathematica use more
accurate methods than Euler integration, they still have some of the same basic
trade-offs.

Returning to our specific example, Figure 3.11 shows the results of computing
2(t) using equation (3.17), along with the analytical computation. We see that as
h gets smaller, the computed solution converges to the exact solution. The form
of the solution is also worth noticing: after an initial transient, the system settles
into a periodic motion. The portion of the response after the transient is called the
steady-state response to the input.
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In addition to generating simulations, models can also be used to answer other types
of questions. Two that are central to the methods described in this text concern
the stability of an equilibrium point and the input/output frequency response. We
illustrate these two computations through the examples below and return to the
general computations in later chapters.

Returning to the damped spring—mass system, the equations of motion with no
input forcing are given by

d:”—[ e ok ] (3.18)

dt —— T2 — —XT1
m m

where z1 is the position of the mass (relative to the rest position) and z is its
velocity. We wish to show that if the initial state of the system is away from the
rest position, the system will return to the rest position eventually (we will later
define this situation to mean that the rest position is asymptotically stable). While
we could heuristically show this by simulating many, many initial conditions, we
seek instead to prove that this is true for any initial condition.

To do so, we construct a function V : R™ — R that maps the system state to a
positive real number. For mechanical systems, a convenient choice is the energy of
the system,

1 1
Viz) = ikx% + imxg (3.19)
If we look at the time derivative of the energy function, we see that
dv k
— = kx121 + mxods = kx1To + mmg(—£x2 - —x1) = —cx%,
dt m m

which is always either negative or zero. Hence V(x(t)) is never increasing and,
using a bit of analysis that we will see formally later, the individual states must
remain bounded.
If we wish to show that the states eventually return to the origin, we must use
a slightly more detailed analysis. Intuitively, we can reason as follows: suppose
that for some period of time, V' (x(t)) stops decreasing. Then it must be true that
V(x(t)) = 0, which in turn implies that xo(t) = 0 for that same period. In that
case, &2(t) = 0, and we can substitute into the second line of equation (3.18) to
obtain
. c k k
0=y =——a9— —21 = ——21.
m m m
Thus we must have that z; also equals zero, and so the only time that V(z(t))
can stop decreasing is if the state is at the origin (and hence this system is at its
rest position). Since we know that V (z(t)) is never increasing (because V < 0), we
therefore conclude that the origin is stable (for any initial condition).
This type of analysis, called Lyapunov stability analysis, is considered in detail
in Chapter 5. It shows some of the power of using models for the analysis of system
properties.

Another type of analysis that we can perform with models is to compute the output
of a system to a sinusoidal input, known as the frequency response. We again
consider the spring—mass system, but this time keeping the input and leaving the
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Figure 3.12: A frequency response (gain only) computed by measuring the re-
sponse of individual sinusoids. The figure on the left shows the response of the
system as a function of time to a number of different unit magnitude inputs (at
different frequencies). The figure on the right shows this same data in a different
way, with the magnitude of the response plotted as a function of the input fre-
quency. The filled circles correspond to the particular frequencies shown in the
time responses.

system in its original form:
mq + cq + kq = u. (3.20)

We wish to understand how the system responds to a sinusoidal input of the form
u(t) = Asinwt.

We will see how to do this analytically in Chapter 7, but for now we make use of
simulations to compute the answer.

We first begin with the observation that if ¢(¢) is the solution to equation (3.20)
with input u(¢), then applying an input 2u(t) will give a solution 2¢(¢) (this is easily
verified by substitution). Hence it suffices to look at an input with unit magnitude,
A = 1. A second observation, which we will prove in Chapter 6, is that the long-
term response of the system to a sinusoidal input is itself a sinusoid at the same
frequency, and so the output has the form

q(t) = g(w)sin(wt + p(w)),

where g(w) is called the gain of the system and p(w) is called the phase (or phase

offset).
To compute the frequency response numerically, we can simulate the system
at a set of frequencies wi,...,wy and plot the gain and phase at each of these

frequencies. An example of this type of computation is shown in Figure 3.12. For
linear systems the frequency response does not depend on the amplitude A of the
input signal. Frequency response can also be applied to nonlinear systems but the
gain and phase then depend on the A.
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Figure 3.13: Schematic diagrams for different disciplines. Each diagram is used
to illustrate the dynamics of a control system: (a) electrical schematics for a
power system [Kun93], (b) a biological circuit diagram for a synthetic clock cir-
cuit [ASMNO3], (c¢) a process diagram for a distillation column [SEMO04], and (d)
a Petri net description of a communication protocol.

3.3 MODELING METHODOLOGY

To deal with large, complex systems, it is useful to have different representations
of the system that capture the essential features and hide irrelevant details. In all
branches of science and engineering it is common practice to use some graphical
description of systems, called schematic diagrams. They can range from stylistic
pictures to drastically simplified standard symbols. These pictures make it possible
to get an overall view of the system and to identify the individual components.
Examples of such diagrams are shown in Figure 3.13. Schematic diagrams are useful
because they give an overall picture of a system, showing different subprocesses and
their interconnection and indicating variables that can be manipulated and signals
that can be measured.

Block Diagrams

A special graphical representation called a block diagram has been developed in
control engineering. The purpose of a block diagram is to emphasize the information
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Figure 3.14: Standard block diagram elements. The arrows indicate the the in-
puts and outputs of each element, with the mathematical operation corresponding
to the blocked labeled at the output. The system block (f) represents the full
input/output response of a dynamical system.

flow and to hide details of the system. In a block diagram, different process elements
are shown as boxes, and each box has inputs denoted by lines with arrows pointing
toward the box and outputs denoted by lines with arrows going out of the box.
The inputs denote the variables that influence a process, and the outputs denote
the signals that we are interested in or signals that influence other subsystems.
Block diagrams can also be organized in hierarchies, where individual blocks may
themselves contain more detailed block diagrams.

Figure 3.14 shows some of the notation that we use for block diagrams. Signals
are represented as lines, with arrows to indicate inputs and outputs. The first
diagram is the representation for a summation of two signals. An input/output
response is represented as a rectangle with the system name (or mathematical
description) in the block. Two special cases are a proportional gain, which scales
the input by a multiplicative factor, and an integrator, which outputs the integral
of the input signal.

Figure 3.15 illustrates the use of a block diagram, in this case for modeling the
flight response of a fly. The flight dynamics of an insect are incredibly intricate,
involving careful coordination of the muscles within the fly to maintain stable flight
in response to external stimuli. One known characteristic of flies is their ability to
fly upwind by making use of the optical flow in their compound eyes as a feedback
mechanism. Roughly speaking, the fly controls its orientation so that the point of
contraction of the visual field is centered in its visual field [RHD*04].

To understand this complex behavior, we can decompose the overall dynamics
of the system into a series of interconnected subsystems (or blocks). Referring to
Figure 3.15, we can model the insect navigation system through an interconnection
of five blocks. The sensory motor system (a) takes the information from the visual
system (e) and generates muscle commands that attempt to steer the fly so that
the point of contraction is centered. These muscle commands are converted into
forces through the flapping of the wings (b) and the resulting aerodynamic forces
that are produced. The forces from the wings are combined with the drag on the
fly (d) to produce a net force on the body of the fly. The wind velocity enters
through the drag aerodynamics. Finally, the body dynamics (c) describe how the
fly translates and rotates as a function of the net forces that are applied to it. The
insect position, speed, and orientation are fed back to the drag aerodynamics and
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Figure 3.15: A block diagram representation of the flight control system for an
insect flying against the wind. The mechanical portion of the model consists of the
rigid-body dynamics of the fly, the drag due to flying through the air, and the forces
generated by the wings. The motion of the body causes the visual environment of
the fly to change, and this information is then used to control the motion of the
wings (through the sensory motor system), closing the loop.

vision system blocks as inputs.

Each of the blocks in the diagram can itself be a complicated subsystem. For
example, the visual system of a fruit fly consists of two complicated compound eyes
(with about 700 elements per eye), and the sensory motor system has about 200,000
neurons that are used to process information. A more detailed block diagram of
the insect flight control system would show the interconnections between these
elements, but here we have used one block to represent how the motion of the
fly affects the output of the visual system, and a second block to represent how
the visual field is processed by the fly’s brain to generate muscle commands. The
choice of the level of detail of the blocks and what elements to separate into different
blocks often depends on experience and on the questions that one wants to answer
using the model. One of the powerful features of block diagrams is their ability to
hide information about the details of a system that may not be needed to gain an
understanding of the essential dynamics of the system.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, we need to
form the differential equations that describe the complete system. In many cases
the equations can be obtained by combining the differential equations that describe
each subsystem and substituting variables. This simple procedure cannot be used
when there are closed loops of subsystems that all have a direct connection between
inputs and outputs, known as an algebraic loop. A direct connection means that a
change in the input u gives an instantaneous change in the output y.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx

E = f(l'vu)a Yy= h(IL'), (321)
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and a proportional controller described by uw = —ky. There is no direct connec-
tion since the function h does not depend on w. In that case we can obtain the
equation for the closed loop system simply by replacing uw by —ky = —kh(z) in
equation (3.21) to give

dx
e f(xafkh(x))a y:h(l')7
dt
which is an ordinary differential equation.
The situation is more complicated if there is a direct connection. If y = h(z,u),
then replacing u by —ky gives

%:f(x7_ky)a y:h(l‘,—ky)
To obtain a differential equation for z, the algebraic equation y = h(z, —ky) must
first be solved to give y = a(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. The resulting model
becomes a set of differential algebraic equations, similar to equation (3.4). Resolving
algebraic loops is a nontrivial problem because it requires the symbolic solution
of algebraic equations. Most block diagram-oriented modeling languages cannot
handle algebraic loops, and they simply give a diagnosis that such loops are present.
In the era of analog computing, algebraic loops were eliminated by introducing fast
dynamics between the loops. This created differential equations with fast and slow
modes that are difficult to solve numerically. Advanced modeling languages like
Modelica use several sophisticated methods to resolve algebraic loops.

Modeling from Experiments

Since control systems are provided with sensors and actuators, it is also possible to
obtain models of system dynamics from experiments on the process. The models
are restricted to input/output models since only these signals are accessible to
experiments, but modeling from experiments can also be combined with modeling
from physics through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the response to a
step change in the control signal. Such an experiment begins by setting the control
signal to a constant value. When the output settles to a constant value (assuming
the system is stable), the control signal is changed quickly to a new level and the
output is observed. The experiment gives the step response of the system, and the
shape of the response gives useful information about the dynamics. It immediately
gives an indication of the response time, and it tells if the system is oscillatory or
if the response is monotone.

Example 3.8 Spring—mass system
The dynamics of the spring—mass system in Section 3.1 are given by

mg + cq + kq = u. (3.22)

We wish to determine the constants m, ¢, and k by measuring the response of the
system to a step input of magnitude Fj.



SYSTEM MODELING 3-27

0.8 ‘
q,))
Ehadl q(t,) 4(c0)
ol
g04 f
Z - >
o
~02F T A
0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Time ¢ [s]

Figure 3.16: Step response for a spring—mass system. The magnitude of the step
input is Fo = 20 N. The period of oscillation T is determined by looking at the
time between two subsequent local maxima in the response. The period combined
with the steady-state value g(oco) and the relative decrease between local maxima
can be used to estimate the parameters in a model of the system.

We will show in Chapter 7 that when ¢?> < 4km, the step response for this
system from the rest configuration is given by

- F() 1 k ct .
q(t) = % (1 - w—d\/ o exp(f%) sin(wqt + gp)) ,

Viakm — ¢? 1 [ Vidkm — ¢?
wq = T, Y = tan f .

From the form of the solution, we see that the shape of the step response is deter-
mined by the parameters of the system. Hence, by measuring certain features of
the step response we can determine the parameter values.

Figure 3.16 shows the response of the system to a step of magnitude Fy = 20 N,
along with some measurements. We start by noting that the steady-state position
of the mass (after the oscillations die down) is a function of the spring constant k:

g(00) = -, (3.23)

where Fp is the magnitude of the applied force (Fy = 1 for a unit step input). The
parameter 1/k is called the gain of the system. The period of the oscillation can
be measured between two peaks and must satisfy

2r Vakm — ¢

T 2m

Finally, the rate of decay of the oscillations is given by the exponential factor in
the solution. Measuring the amount of decay between two peaks, we have

c

log(q(tl) - %) - log(q(tg) - %) = %(tz —t1). (3.24)

Using this set of three equations, we can solve for the parameters and determine
that for the step response in Figure 3.16 we have m =~ 250 kg, ¢ ~ 60 N s/m, and
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k =~ 40 N/m. \Y

Modeling from experiments can also be done using many other signals. Sinu-
soidal signals are commonly used (particularly for systems with fast dynamics) and
precise measurements can be obtained by exploiting correlation techniques. An
indication of nonlinearities can be obtained by repeating experiments with input
signals having different amplitudes. Modeling based on sinusoidal signals is very
time consuming for systems with slow dynamics. In such situations it is advanta-
geous to used signals that switch between two different levels. There is a whole
subfield of control called system identification that deals with experimental deter-
mination of models. Questions like optimal inputs, experiments in open and closed
loop, model accuracy, and fundamental limits are dealt with extensively.

Normalization and Scaling

When deriving a model, it is often useful to introduce dimension-free variables.
Such a procedure can often simplify the equations for a system by reducing the
number of parameters. It can also reveal interesting properties of the model. It is
also useful to normalize variables by scaling to improve numerics and allow faster
and more accurate simulations.

The procedure of scaling is straightforward in principle: choose units for each
independent variable and introduce new variables by dividing the variables by the
chosen normalization unit. We illustrate the procedure with two examples.

Example 3.9 Spring—mass system
Consider again the spring—mass system introduced earlier. Neglecting the damping,
the system is described by

mg + kq = u.

The model has two parameters m and k. To normalize the model we introduce
dimension-free variables x = ¢/l and 7 = wpt, where wg = \/k/m and [ is the
chosen length scale. We scale force by miw? and introduce v = u/(miw3). The
scaled equation then becomes

P &g/l 1
dr?  d(wot)2  mlw?

(—kq+u) =—z +v,

which is the normalized undamped spring—mass system. Notice that the normalized
model has no parameters, while the original model had two parameters m and k.
Introducing the scaled, dimension-free state variables z; = = = ¢/l and 2z, =
dx/dt = ¢/(lwp), the model can be written as

i z1 . 0 1 z1 + 0

dr lz=)  |-1 0 29 v]
This simple linear equation describes the dynamics of any spring—mass system,
independent of the particular parameters, and hence gives us insight into the fun-

damental dynamics of this oscillatory system. To recover the physical frequency of
oscillation or its magnitude, we must invert the scaling we have applied. v

Example 3.10 Balance system
Consider the balance system described in Example 3.2. Neglecting damping by
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putting ¢ = 0 and v = 0 in equation (3.9), the model can be written as

2 2
q d=0 ) do. 2
(M—i—m)ﬁ — mlcos@w —l—mlsm@(a) =F,
d*q 5. d%0 )
—mlcos@w +(J+mi )ﬁ —mglsinf = 0.

Let wg = y/mgl/(J 4+ ml?), choose the length scale as [, let the time scale be 1/wy,
choose the force scale as (M + m)lw?, and introduce the scaled variables 7 = wpt,
x =q/l, and u = F/((M + m)lw?). The equations then become

d? d?o df 2 d? 20

de — acosﬁﬁ + asint?(%) =u, fﬁcosﬁd—;s + i singd =0,
where a = m/(M + m) and 8 = ml?/(J + mi?). Notice that the original model
has five parameters m, M, J, [, and g but the normalized model has only two
parameters a and 8. If M > m and mi? > J, we get a ~ 0 and 3 ~ 1, and the
model can be approximated by

d? d*0

d—Tﬁ:u, WmeO:ucosé).
The model can be interpreted as a mass combined with an inverted pendulum
driven by the same input. v

For large systems scaling is not so easy: there are many choices and good
selection of variables and normalization units require good understanding of the
physics of the system and the numerical methods that will be used for analysis,
scaling of large systems is therefore still an art.

3.4 MODELING EXAMPLES

In this section we introduce additional examples that illustrate some of the differ-
ent types of systems for which one can develop differential equation and difference
equation models. These examples are specifically chosen from a range of different
fields to highlight the broad variety of systems to which feedback and control con-
cepts can be applied. A more detailed set of applications that serve as running
examples throughout the text are given in Chapter 4.

Motion Control Systems

Motion control systems involve the use of computation and feedback to control the
movement of a mechanical system. Motion control systems range from nanoposi-
tioning systems (atomic force microscopes, adaptive optics), to control systems for
the read/write heads in a disk drive of a DVD player, to manufacturing systems
(transfer machines and industrial robots), to automotive control systems (antilock
brakes, suspension control, traction control), to air and space flight control systems
(airplanes, satellites, rockets, and planetary rovers).

Example 3.11 Vehicle steering
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(a) Overhead view (b) Bicycle model

Figure 3.17: Vehicle steering dynamics. The left figure shows an overhead view
of a vehicle with four wheels. The wheelbase is b and the center of mass at a
distance a forward of the rear wheels. By approximating the motion of the front
and rear pairs of wheels by a single front wheel and a single rear wheel, we obtain
an abstraction called the bicycle model, shown on the right. The steering angle is
6 and the velocity at the center of mass has the angle « relative the length axis
of the vehicle. The position of the vehicle is given by (z,y) and the orientation
(heading) by 6.

A common problem in motion control is to control the trajectory of a vehicle
through an actuator that causes a change in the orientation. A steering wheel
on an automobile and the front wheel of a bicycle are two examples, but similar dy-
namics occur in the steering of ships or control of the pitch dynamics of an aircraft.
In many cases, we can understand the basic behavior of these systems through the
use of a simple model that captures the basic kinematics of the system.

Consider a conventional vehicle with a fixed rear axle and a set of front wheels
that can be rotated, as shown in Figure 3.17. For the purpose of steering we are
interested in a model that describes how the velocity of the vehicle depends on the
steering angle 6. To be specific, let b be the wheelbase and consider the velocity v
at the center of mass, a distance a from the rear wheel, as shown in Figure 3.17.
Let  and y be the coordinates of the center of mass, 6 the heading angle, and «
the angle between the velocity vector v and the centerline of the vehicle. The point
O is at the intersection of the normals to the front and rear wheels.

Assuming no slipping of the wheels, the motion of the vehicle is given by a
rotation around the point O in the figure. Letting the distance from the center of
rotation O to the contact point of the rear wheel be r,, it the follows from Figure 3.17
that b = r, tand and a = r, tan «, which implies that tana = (a/b) tand, and we
obtain the following relation between « and the steering angle §:

atané). (3.25)

a = arctan(
b

If the vehicle speed at its center of mass is v, the motion of the center of mass is
then given by

% =wvcos (a+6),
. (3.26)
Y _ vsin (a + 0).

dt
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(a) Harrier “jump jet” (b) Simplified model

Figure 3.18: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a)
redirects its engine thrust downward so that it can “hover” above the ground.
Some air from the engine is diverted to the wing tips to be used for maneuvering.
As shown in (b), the net thrust on the aircraft can be decomposed into a horizontal
force F and a vertical force F» acting at a distance r from the center of mass.

To see how the heading angle 0 is influenced by the steering angle, we observe from
Figure 3.17 that the distance from the center of mass to the center of rotation O
is r. = a/sina. The vehicle thus rotates around the point O with the angular
velocity v/r. = (v/a) sin . Hence

df v vsina v atand v
_— = = = —si ~ — 2
dt  reexte a am <arctan ( b ) ) b 5 (3:27)

where the approximation holds for small § and a.

Equations (3.25)—(3.27) can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the road and that the two front
wheels can be approximated by a single wheel at the center of the car. This model
is often called the bicycle model. The assumption of no slip can be relaxed by
adding an extra state variable, giving a more realistic model. Such a model also
describes the steering dynamics of ships as well as the pitch dynamics of aircraft
and missiles. It is also possible to choose coordinates so that the reference point is
at the rear wheels (corresponding to setting a = 0), a model often referred to as
the Dubins car [Dub57].

Figure 3.17 represents the situation when the vehicle moves forward and has
front-wheel steering. The figure shows that the model also applies to rear wheel
steering if the sign of the velocity is reversed. v

Example 3.12 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such as the Harrier “jump jet”
shown Figure 3.18a. The Harrier is capable of vertical takeoff by redirecting its
thrust downward and through the use of smaller maneuvering thrusters located on
its wings. A simplified model of the Harrier is shown in Figure 3.18b, where we
focus on the motion of the vehicle in a vertical plane through the wings of the
aircraft. We resolve the forces generated by the main downward thruster and the
maneuvering thrusters as a pair of forces F; and Fy acting at a distance r below
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Figure 3.19: Two thermofluid systems. A schematic diagram of a simple water
heater a tank with a submerged electrical heater (a) and schematic diagram of a
drum boiler (b).

the aircraft (determined by the geometry of the thrusters).

Let (z,y,6) denote the position and orientation of the center of mass of the
aircraft. Let m be the mass of the vehicle, J the moment of inertia, g the gravi-
tational constant, and ¢ the damping coefficient. Then the equations of motion for
the vehicle are given by

mZ = Fycos — Fysinf — ci,
my = Fysinf + F5cosf — mg — cy, (3.28)
J0 = T‘Fl.

It is convenient to redefine the inputs so that the origin is an equilibrium point of

the system with zero input. Letting vy = F; and us = F» — mg, the equations
become

mi& = —mgsinf — c& + uy cos — ug sin 6,
mi = mg(cosf — 1) — cy + uq sin 6 + uy cos 6, (3.29)
Jo = ru.

These equations describe the motion of the vehicle as a set of three coupled second-
order differential equations. \Y%

Thermofluid Systems

Thermofluid systems are commonly used in process control, power generation, and
for heating ventilation and air conditioning in buildings and cars. The processes
involve motion of fluids and transmission of energy; typical processes include heat
exchangers, evaporators, chillers, and compressors. The dynamics are often com-
plicated because of two-phase flows and accurate modeling often requires partial
differential equations and computational fluid dynamics. Two examples are given
in Figure 3.19.
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Example 3.13 Water heater

Consider the water heater in Figure 3.19a, which is a cylindrical tank with cross
section A. The mass of the water is m and its temperature is 7. The inflow
and outflow rates are ¢;, and qout, the temperature of the inflow is Tj,, and the
temperature of the outflow is 7. The total mass is m = pAh, where p is its the
density, h is the water level, C' is the specific heat capacity for water, and mCT
is the total energy. The system can be modeled by a mass balance and an energy
balance, and we obtain

dm d(mCT
E = ({in — Yout, % =P + Qdin Cﬂn — Gout CTa (330)

where P is the power from the heater. Energy losses have been neglected and it is
assumed that all water in the tank has the same temperature.

Assuming that C'is constant and expanding the derivative for the energy balance
we obtain

dmCT) dm

dT
dt —ECT“V‘mCE—P“F(ZinCTin_QOutCT-

Solving this equation for d7'/dt and using the mass balance to eliminate dm/dt, we
find that the mass and energy balances expressed by equation (3.30) can be written

as
dm dT din 1
— = (in — —=—(T-T)+ —P. 3.31
dt Gin Gout> dt m ( n ) + mC ( )
The state variables are the total mass m and the temperature T', the control (input)
variables are the input power P and inflow rate ¢;,, and the disturbances are the

temperature of the inflow T3, and the output flow rate gout. \%

Example 3.14 Drum Boiler

A drum boiler is a piece of equipment used to produce steam, for example as
part of a power generation system where the steam drives a turbine connected to
a generator. The drum in a drum boiler shares many properties with the water
heater but there are two significant complications: the material constants p and C
depend on the state, and there is a mixture of water and steam in both the riser
and the drum. Modeling can still be done by mass and energy balances, but the
two-phase flow leads to significant complications, which will be discussed briefly in
the next example. A diagram of a drum boiler is shown in Figure 3.19b.

Control of the drum level is a key problem: if the level is too low the tubes will
burn through, and if the level is too high water may enter the turbine and cause
damage to the turbine blades. We will focus on modeling of the drum level. Water
entering the system is controlled by the feedwater valve; water leaves the drum as
steam through the steam valve. Water circulates through the drum-downcomer-
riser loop, and it is heated in the riser tubes. The differences in densities in the
downcomer tubes and the riser tubes creates self-circulation. The figure shows only
one riser tube and one downcomer tube, but in the boiler we discuss there are 22
downcomer tubes and 788 riser tubes, and the drum volume is 40 m3. There is
pure water in the downcomer tubes and at the bottom of the riser tubes. Steam is
generated by heating the tubes and the amount of steam increases along the riser
tubes. There is a mixture of steam and water in the drum.

Consider the situation when the system is in equilibrium and the steam valve
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Figure 3.20: Model (dashed line) and plant data (solid line) for open loop pertur-
bations in steam flow rate at medium load. Notice that the drum level increases
initially when the steam flow is increased. The experiment was performed by
removing all controllers and introducing a perturbation in the steam flow [AB00].

is suddenly opened. More steam then leaves the system, and we may expect the
drum level to decrease. This will not happen because the pressure in the drum
will decrease when steam leaves the system. The air bubbles in the riser and the
drum will then increase, and the water level will initially increase. If we continue
to keep the steam valve open, the level will finally start to decrease. The dynamics
relating drum level to feedwater flow has a similar characteristic. If feedwater flow
is increased then the water temperature in the drum will decrease, bubbles will
collapse, and the drum level will initially decrease. This effect, which is called
shrink and swell or inverse response, makes it difficult to control the drum level.

The effect is illustrated in Figure 3.20, which shows simulated and experimental
data for a medium sized boiler. The inverse response characteristics are clearly
seen in the figure. The model used in the simulation is a fifth-order model based
on mass, energy, and momentum balances; details are given in [ABO0O].

The inverse response character of the dynamics from feedwater to drum level
makes it difficult to control the drum level. For this reason the system is provided
with sensors of steam flow and feedwater flow as indicated in Figure 3.19b. The
extra sensors make it possible to predict whether the mass of water and steam in
the system is decreasing or increasing. We will discuss the consequences of having
dynamics with inverse response in Section 14.4. \%

Information Systems

Information systems range from communication systems like the Internet to soft-
ware systems that manipulate data or manage enterprise-wide resources. Feedback
is present in all these systems, and designing strategies for routing, flow control, and
buffer management is a typical problem. Many results in queuing theory emerged
from design of telecommunication systems and later from development of the In-
ternet and computer communication systems [BG87, Kle75, Sch87]. Management
of queues to avoid congestion is a central problem and we will therefore start by
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Figure 3.21: Schematic diagram of a queuing system. Messages arrive at rate A
and are stored in a queue. Messages are processed and removed from the queue at
rate pu. The average length of the queue is given by = € R.

discussing the modeling of queuing systems.

Example 3.15 Queuing systems

A schematic picture of a simple queue is shown in Figure 3.21. Requests arrive
and are then queued and processed. There can be large variations in arrival rates
and service rates, and the queue length builds up when the arrival rate is larger
than the service rate. When the queue becomes too large, service is denied using
an admission control policy.

The system can be modeled in many different ways. One way is to model each
incoming request, which leads to an event-based, discrete-state model where the
state is an integer that represents the queue length. The queue changes when a
request arrives or a request is serviced. The statistics of arrival and servicing are
typically modeled as random processes. In many cases it is possible to determine
statistics of quantities like queue length and service time, but the computations can
be quite complicated.

A significant simplification can be obtained by approximating the discrete queue
length by a continuous variable. Instead of keeping track of each request we instead
view service and requests as continuous flows. The model obtained is called a flow
model because of the analogy with fluid dynamics where motion of molecules are
replace by continuous flows. Hence, if the queue length x is a continuous variable
and the arrivals and services are flows with rates A and pu, the system can be
modeled by the first-order differential equation

%zA—u:/\—umaxf(a:), x>0, (3.32)
as proposed by Agnew [Agn76]. The service rate y depends on the queue length; if
there are no capacity restrictions we have p = /T where T is the time it takes to
serve one customer. The service rate thus increases linearly with the queue length.
In reality the growth will be slower because longer queues require more resources,
and the service rate has an upper limit p,.«. These effects are captured by modeling
the service rate as fimax f (), where function f(z) is monotone, approximately linear
for small z, and f(c0) = 1.

For a particular queue, the function f(z) can be determined empirically by
measuring the queue length for different arrival and service rates. A simple choice
is f(z) = /(1 + x), which gives the model

dzx T

— = A max __ | 1 ° .
dt Hmax 3T (3:33)
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Figure 3.22: Queuing dynamics. (a) The steady-state queue length as a function
of A/timax. (b) The behavior of the queue length when there is a temporary over-
load in the system. The solid line shows a realization of an event-based simulation,
and the dashed line shows the behavior of the flow model (3.33). The maximum
service rate is max = 1, and the arrival rate starts at A = 0.5. The arrival rate is
increased to A = 4 at time 20, and it returns to A = 0.5 at time 25.

It was shown by Tipper [TS90] that if arrival and service processes are Poisson
processes, then average queue length is given by equation (3.33).

To explore the properties of the model (3.33) we will first investigate the equi-
librium value of the queue length when the arrival rate A is constant. Setting the
derivative dz/dt to zero in equation (3.33) and solving for x, we find that the queue
length x approaches the steady-state value

A

ﬁ. (3.34)

Te =

Figure 3.22a shows the steady-state queue length as a function of A\/pimayx, the
effective service rate excess. Notice that the queue length increases rapidly as A
approaches pimax. To have a queue length less than 20 requires A/ fimax < 0.95. The
average time to service a request can be shown to be Ty = (x + 1)/pimax, and it
increases dramatically as A approaches fiyax-

Figure 3.22b illustrates the behavior of the server in a typical overload situation.
The figure shows that the queue builds up quickly and clears very slowly. Since the
response time is proportional to queue length, it means that the quality of service
is poor for a long period after an overload. This behavior is called the rush-hour
effect and has been observed in web servers and many other queuing systems such
as automobile traffic.

The dashed line in Figure 3.22b shows the behavior of the flow model, which
describes the average queue length. The simple model captures behavior qualita-
tively, but there are variations from sample to sample when the queue length is
short. \Y%

Many complex systems use discrete control actions. Such systems can be mod-
eled by characterizing the situations that correspond to each control action, as
illustrated in the following example.

Example 3.16 Virtual memory paging control

An early example of the use of feedback in computer systems was applied in the
operating system OS/VS for the IBM 370 [BG68, Cro93|. The system used virtual
memory, which allows programs to address more memory than is physically avail-
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Figure 3.23: [Illustration of feedback in the virtual memory system of the
IBM/370. (a) The effect of feedback on execution times in a simulation, follow-
ing [BG68]. Results with no feedback are shown with o, and results with feedback
with x. Notice the dramatic decrease in execution time for the system with feed-
back. (b) How the three states are obtained based on process measurements.

able as fast memory. Data in current fast memory (random access memory, RAM)
is accessed directly, but data that resides in slower memory (disk) is automatically
loaded into fast memory. The system is implemented in such a way that it appears
to the programmer as a single large section of memory. The system performed
very well in many situations, but very long execution times were encountered in
overload situations, as shown by the open circles in Figure 3.23a. The difficulty was
resolved with a simple discrete feedback system. The load of the central processing
unit (CPU) was measured together with the number of page swaps between fast
memory and slow memory. The operating region was classified as being in one of
three states: normal, underload, or overload. The normal state is characterized by
high CPU activity, the underload state is characterized by low CPU activity and
few page replacements, the overload state has moderate to low CPU load but many
page replacements; see Figure 3.23b. The boundaries between the regions and the
time for measuring the load were determined from simulations using typical loads.
The control strategy was to do nothing in the normal load condition, to exclude
a process from memory in the overload condition and to allow a new process or a
previously excluded process in the underload condition. The crosses in Figure 3.23a
show the effectiveness of the simple feedback system in simulated loads. Similar
principles are used in many other situations, e.g., in fast, on-chip cache memory.

\%

Example 3.17 Consensus protocols in sensor networks
Sensor networks are used in a variety of applications where we want to collect
and aggregate information over a region of space using multiple sensors that are
connected together via a communications network. Examples include monitoring
environmental conditions in a geographical area (or inside a building), monitoring
the movement of animals or vehicles, and monitoring the resource loading across
a group of computers. In many sensor networks the computational resources are
distributed along with the sensors, and it can be important for the set of distributed
agents to reach a consensus about a certain property, such as the average temper-
ature in a region or the average computational load among a set of computers.

To illustrate how such a consensus might be achieved, we consider the problem
of computing the average value of a set of numbers that are locally available to the
individual agents. We wish to design a “protocol” (algorithm) such that all agents
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Figure 3.24: Consensus protocols for sensor networks. (a) A simple sensor net-
work with five nodes. In this network, node 1 communicates with node 2 and
node 2 communicates with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating
the convergence of the consensus protocol (3.35) to the average value of the initial
conditions.

will agree on the average value. We consider the case in which all agents cannot
necessarily communicate with each other directly, although we will assume that the
communications network is connected (meaning that no two groups of agents are
completely isolated from each other). Figure 3.24a shows a simple situation of this
type.

We model the connectivity of the sensor network using a graph, with nodes
corresponding to the sensors and edges corresponding to the existence of a direct
communications link between two nodes. For any such graph, we can build an
adjacency matriz, where each row and column of the matrix corresponds to a node
and a 1 in the respective row and column indicates that the two nodes are connected.
For the network shown in Figure 3.24a, the corresponding adjacency matrix is

b

Il
[N Noll Nl
=
O = O = O
OO = = O
[N eNoll Nl

We use the notation N; to represent the set of neighbors of a node i. For example,
in the network shown in Figure 3.24a N, = {1,3,4,5} and N3 = {2,4}.

To solve the consensus problem, let x; be the state of the ith sensor, correspond-
ing to that sensor’s estimate of the average value that we are trying to compute. We
initialize the state to the value of the quantity measured by the individual sensor.
The consensus protocol (algorithm) can now be realized as a local update law

zilk + 1] = zi[k] + 7 > (a;[k] — 2:[K)). (3.35)
JEN;

This protocol attempts to compute the average by updating the local state of each
agent based on the value of its neighbors. The combined dynamics of all agents can
be written in the form

z[k + 1) = x[k] — v(D — A)z[k], (3.36)

where A is the adjacency matrix and D is a diagonal matrix with entries corre-
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sponding to the number of neighbors of each node. The constant -« describes the
rate at which the estimate of the average is updated based on information from
neighboring nodes. The matrix L := D — A is called the Laplacian of the graph.
The equilibrium points of equation (3.36) are the set of states such that ze[k +
1] = xe[k]. It can be shown that if the network is connected, z, = (a, v, ..., @) is an
equilibrium state for the system, corresponding to each sensor having an identical
estimate « for the average. Furthermore, we can show that « is indeed the average
value of the initial states. Since there can be cycles in the graph, it is possible that
the state of the system could enter into an infinite loop and never converge to the
desired consensus state. A formal analysis requires tools that will be introduced
later in the text, but it can be shown that for any connected graph we can always
find a ~ such that the states of the individual agents converge to the average.
A simulation demonstrating this property is shown in Figure 3.24b. Although
we have focused here on consensus to the average value of a set of measurements,
other consensus states can be achieved through choice of appropriate feedback laws.
Examples include finding the maximum or minimum value in a network, counting
the number of nodes in a network or computing higher-order statistical moments
of a distributed quantity [Cor08, OSFMO7]. \Y

Biological Systems

Biological systems provide perhaps the richest source of feedback and control exam-
ples. The basic problem of homeostasis, in which a quantity such as temperature or
blood sugar level is regulated to a fixed value, is but one of the many types of com-
plex feedback interactions that can occur in molecular machines, cells, organisms,
and ecosystems.

Example 3.18 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNA) is generated from
a segment of DNA. The promoter region of a gene allows transcription to be con-
trolled by the presence of other proteins, called transcription factors, which bind
to the promoter region and either repress or activate RNA polymerase, the enzyme
that produces an mRNA transcript from DNA. The mRNA is then translated into
a protein according to its nucleotide sequence. This process is illustrated in Fig-
ure 3.25.

A simple model of the transcriptional regulation process is through the use of
a Hill function [DM14, Mur04]. Consider the regulation of a protein A with a
concentration given by p, and a corresponding mRNA concentration m,. Let B be
a second protein with concentration py, that represses the production of protein A
through transcriptional regulation. The resulting dynamics of p, and m, can be
written as
dpa

dm, Qab
= a0 — 6& as —; — Rallla — YaPa, 3.37
dt 1+ Fappl™ + ao m gt KaMa — YaP ( )

where i, + a0 is the unregulated transcription rate, d, represents the rate of
degradation of mRNA, «a.p, kap, and n,p, are parameters that describe how B re-
presses A, k, represents the rate of production of the protein from its corresponding
mRNA, and ~, represents the rate of degradation of the protein A. The parameter
Qa0 describes the “leakiness” of the promoter, and n,y, is called the Hill coefficient
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Figure 3.25: Biological circuitry. The cell on the left is a bovine pulmonary
cell, stained so that the nucleus, actin, and chromatin are visible. The figure on
the right gives an overview of the process by which proteins in the cell are made.
RNA is transcribed from DNA by an RNA polymerase enzyme. The RNA is then
translated into a polypeptide chain by a molecular machine called a ribosome, and
then the polypeptide chain folds into a protein molecule.

and relates to the cooperativity of the promoter.
A similar model can be used when a protein activates the production of another
protein rather than repressing it. In this case, the equations have the form

dma _ cabkappp™
dt 1+ k‘abpgab

4 Qag — 0aMa, at = RaMa — YaPa, (338)

where the variables are the same as described previously. Note that in the case of the
activator, if py, is zero, then the production rate is cag < ap (Versus aap, + @ag for
the repressor). As py, gets large, the first term in the expression for 1, approaches
1 and the transcription rate becomes ap, + o (versus a,g for the repressor). Thus
we see that the activator and repressor act in opposite fashion from each other.

As an example of how these models can be used, we consider the model of a
“repressilator,” originally due to Elowitz and Leibler [EL00]. The repressilator is
a synthetic circuit in which three proteins each repress another in a cycle. This is
shown schematically in Figure 3.26a, where the three proteins are TetR, Acl, and
Lacl. The basic idea of the repressilator is that if TetR is present, then it represses
the production of Acl. If Acl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, then
Acl is no longer repressed, and so on. If the dynamics of the circuit are designed
properly, the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (3.37), with A and
B replaced by the appropriate combination of TetR, cI, and Lacl. The state of
the system is then given by & = (MTetR, PTetR, Mel, Pels MLacl; PLacl ) Figure 3.26b
shows the traces of the three protein concentrations for parameters n = 2, a = 0.5,
E=6.25x10"% ap=5x10"% 0 =58x 1073, k = 0.12, and v = 1.2 x 1073 with
initial conditions x(0) = (1, 200, 0,0, 0,0) (following [ELO00]). \Y

Example 3.19 Nerve cells

Neurons are key elements of the control systems for all humans and animals. There
are different types of neurons: sensory neurons respond to stimuli, motor neurons
control muscles and other organs, and interneurons that act as intermediaries in
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Figure 3.26: The repressilator genetic regulatory network. (a) A schematic
diagram of the repressilator, showing the layout of the genes in the plasmid that
holds the circuit as well as the circuit diagram (center). (b) A simulation of a
simple model for the repressilator, showing the oscillation of the individual protein
concentrations. (Figure courtesy M. Elowitz.)

passing signals between other neurons. Neurons are often connected to form net-
works, a human brain has close to 100 billion neurons.

A neuron has three parts: the cell body (soma), the axon, and the dendrites, as
shown in Figure 3.27a. The cell body varies in size from 4 to 100 pm and axons have
lengths from one millimeter to a meter. The cell has a membrane that separates it
from the outside environment (extracellular space), with molecular-scale channels
that let ions pass through the membrane, creating a voltage difference across the
cell membrane. An electric pulse (spike) is generated when the voltage difference
reaches a critical level. Pulse rates range from 1 Hz to 1 kHz and the generated
pulse travels along the axon to its terminals.

Neurons receive signals from other neurons through dendrites. There are elec-
trochemical reactions at the interface between an axon and a dendrite of another
cell that allows transmission between two neurons. The axon terminal has vesicles
that contain neurotransmitters, which are released in the synaptic gap when the
axon is stimulated by electrical pulses, as illustrated in Figure 3.27b. The neuro-
transmitters stimulate ion channels in the cell membrane, causing them to open.

Neurotransmitter

\Y Dendrites Molecules

Axon terminals

B

Receptor” @
Lo (,Synapse

(a) Small network of neurons (b) Synapse

Figure 3.27: Nerve cell physiology. The left figure shows a neuron and the right
figures illustrated the synaptic gap between an axon terminal and a dendrite.
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There are many types of channels; two common ones are sodium (Na™') channels
and potassium (K1) channels. The potassium channel has a slow excitatory action,
while the sodium channel has a fast excitatory and a slow inhibitory action.

The dynamics of the neuron are a fundamental mechanism for understanding
signaling in cells. The Hodgkin—-Huxley equation is a model for neuron dynamics.
It models the cell membrane as a capacitor,

dv
CE = INaJr + IK+ + Ileak + Iinput7
where V' is the membrane potential, C' is the capacitance, I+ and I+ are the
current caused by the transport of sodium and potassium ions across the cell mem-
brane, Iicak is a leakage current, and Iinpy: is the external stimulation of the cell.
Each current obeys Ohm’s law,

INaLJr = gNa(ENa+ - V)7 IKJr = gK(E/‘KJr - V)7 Ileak = gleak(Eleak - V)

The conductances gna, gk, and gieax depend on the voltage V' through the variables

m, n, and h, where gy, is proportional to m>h, gk is proportional to n* and gjeax

is a constant. The variables m, n, and h are given by the differential equations
dm  mq(V)—m dh ho(V)—h dn ne(V)—n

At (V) dt (V) dat (V)

where the functions mg, ha, na, Tm, Th, and 7, are derived from experimental data.
The functions m, and n, are monotone and increasing in V, creating excitatory
behavior. The function h, is monotone and decreasing, creating inhibitory behav-
ior. The time constant 7,, is almost an order of magnitude smaller than the time
constants 7, and 7,.

The equilibrium voltages Fy+ and Ey+ are given by Nernst’s law,

RIS

E
nk 8 G’

where R is Boltzmann’s constant, 7' is the absolute temperature, F' is Faraday’s
constant, n is the charge (or valence) of the ion, and ¢; and ¢, are the ion concen-
trations inside the cell and in the external fluid. At 20 °C we have RT/F =20 mV,
Ey+ =55 mV,and Fg+ =-92mV.

The Hodgkin-Huxley equations are complicated and contain many widely dif-
ferent time scales, and many approximations have therefore been proposed. One
approximation is the FitzHugh-Nagumo model (Exercise 3.12). A simulation of
this model is shown in Figure 3.28 to illustrate the behavior of a neuron to an ex-
ternal current stimulation. The system is initially at rest with I =0 and V =0. A
short current pulse enters at time ¢ = 5 ms, the neuron is excited, and responds by
sending out a spike. The neuron is then excited at time ¢ = 30 ms and the neuron
then starts spiking. \Y%

The Hodgkin—-Huxley model was originally developed as a means to predict
the quantitative behavior of the squid giant axon [HH52]. Hodgkin and Huxley
shared the 1963 Nobel Prize in Physiology (along with J. C. Eccles) for analysis
of the electrical and chemical events in nerve cell discharges. The voltage clamp
described in Section 1.4 was used to determine the functions mg(V'), ne(V), and
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Figure 3.28: Response of a neuron to a current input. The current input is
shown in (a) and the neuron voltage V in (b). The simulation was done using the
FitzHugh-Nagumo model (Exercise 3.12).

ha(V'). There are many variations of models for the dynamics of neurons based on
the Hodgkin-Huxley model; a recent reference is [PDS18]. Some models combine
ordinary differential equations with discrete transitions, so—called integrate-and-fire
models or hybrid systems.

3.5 FURTHER READING

Modeling is ubiquitous in engineering and science and has a long history in applied
mathematics. For example, the Fourier series was introduced by Fourier when
he modeled heat conduction in solids [Fou07]. A classic book on the modeling
of physical systems, especially mechanical, electrical, and thermofluid systems, is
Cannon [Can03]. The book by Aris [Ari94] is highly original and has a detailed
discussion of the use of dimension-free variables. Models of dynamics have been
developed in many different fields, including mechanics [Arn78, Gol53], heat conduc-
tion [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, EN194], robotics [MLS94, SV89],
circuits [Gui63], power systems [Kun93], acoustics [Ber54], and micromechanical
systems [Sen01]. The authors’ favorite books on modeling of biological systems
are Keener and Sneyd [KS08, KS09], J. D. Murray [Mur04], and Wilson [Wil99].
Control requires modeling from many different domains, and most control theory
texts contain several chapters on modeling using ordinary differential equations
and difference equations (see, for example, [FPENO05]). A good source for system
identification is Ljung [Lju99b].

EXERCISES

3.1 (Chain of integrators form) Consider the linear ordinary differential equa-
tion (3.7). Show that by choosing a state space representation with z; = y, the
dynamics can be written as

0 1 0 0
N 0
A= 8 ; (1) . B= , C:(l oo]
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This canonical form is called the chain of integrators form.

3.2 (Inverted pendulum) Use the equations of motion for a balance system to derive
a dynamical model for the inverted pendulum described in Example 3.3 and verify
that the dynamics are given by equation (3.10).

3.3 (Discrete-time dynamics) Consider the following discrete-time system
x|k + 1] = Az[k] + Bulk], ylk] = Cz[k],

where

I K _ | @11 a2 _ [0 _
_[] A_[O ] B_[l], c= (1 0).

In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions, and the inputs.

a) For the case when a1o5 = 0 and u = 0, give a closed form expression for the
output of the system.

b) A discrete system is in equilibrium when x[k+ 1] = z[k] for all k. Let u = r be a
constant input and compute the resulting equilibrium point for the system. Show
that if |a;;| < 1 for all 4, all initial conditions give solutions that converge to the
equilibrium point.

¢) Write a computer program to plot the output of the system in response to a
unit step input, u[k] = 1, £ > 0. Plot the response of your system with z[0] = 0
and A given by a1; = 0.5, a12 = 1, and age = 0.25.

3.4 (Keynesian economics) Keynes’ simple model for an economy is given by
Y[k] = C[k] + I[k] + G[E],

where Y, C, I, and G are gross national product (GNP), consumption, investment
and government expenditure for year k. Consumption and investment are modeled
by difference equations of the form

Clk+1]=aY[kl,  I[k+1]=b(C[k+ 1] — C[K]),

where a and b are parameters. The first equation implies that consumption in-
creases with GNP but that the effect is delayed. The second equation implies that
investment is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

1
Ye = mGea
where the parameter 1/(1—a) is the Keynes multiplier (the gain from G to Y'). With
a = 0.75 an increase of government expenditure will result in a fourfold increase of
GNP. Also show that the model can be written as the following discrete-time state
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[(;[%11111] = [aba—b fb] [?[[;f]]] + [fb] Gl#,

Y[k] = C[k] + I[k] + G[K].

model:

3.5 (Least squares system identification) Consider a nonlinear differential equation
that can be written in the form

dx M
=1

where f;(z) are known nonlinear functions and «; are unknown, but constant,
parameters. Suppose that we have measurements (or estimates) of the full state x
at time instants t1,ts,...,tN, with N > M. Show that the parameters a; can be
estimated by finding the least squares solution to a linear equation of the form

Ha = b,

where o € RM is the vector of all parameters and H € R¥*M and b € RV are
appropriately defined.

3.6 (Normalized oscillator dynamics) Consider a damped spring—mass system with
dynamics
m{ + cq+ kq = F.

Let wyg = v/k/m be the natural frequency and { = ¢/(2v'km) be the damping ratio.

a) Show that by rescaling the equations, we can write the dynamics in the form
G+ 2(wod + wig = wiu, (3.39)

where u = F/k. This form of the dynamics is that of a linear oscillator with natural

frequency wp and damping ratio (.

b) Show that the system can be further normalized and written in the form

dz dz
d—Tl = 29, d—: = —2z1 — 2(29 + V. (3.40)

The essential dynamics of the system are governed by a single damping parameter
¢. The Q-value, defined as @ = 1/2(, is sometimes used instead of (.

3.7 (Dubins car) Show that the trajectory of a vehicle with reference point chosen
as the center of the rear wheels can be modeled by dynamics of the form

T dy . dd v
E—vcosﬂ, E-vsm@, a—gtané,

where the variables and constants are defined as in Example 3.11.

3.8 (Electric generator) An electric generator connected to a strong power grid can
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be modeled by a momentum balance for the rotor of the generator:

2

C;Tf =P,.—P. =P, — l:j)(—vsingp,

where J is the effective moment of inertia of the generator, ¢ is the angle of rotation,
P,, is the mechanical power that drives the generator, P, is the active electrical
power, E is the generator voltage, V is the grid voltage, and X is the reactance of
the line. Assuming that the line dynamics are much faster than the rotor dynamics,
P. = VI = (EV/X)sinp, where I is the current component in phase with the
voltage E and ¢ is the phase angle between voltages E and V. Show that the
dynamics of the electric generator has a normalized form that is similar to the
dynamics of a pendulum with forcing at the pivot.

3.9 (Admission control for a queue) Consider the queuing system described in
Example 3.15. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx T
i Ay — Hmax 7 u = sat(g,1)(k(r — x)), (3.41)
where the controller is a simple proportional control with saturation (sat(p) is
defined by equation (4.10)) and r is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rush-hour effect and explain how
the choice of r affects the system dynamics.

3.10 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A —
YN

u1_|g 3._1@

L—y

B

u2

Using the models from Example 3.18—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady-state quickly—show
that the dynamics can be written in normalized coordinates as

dz i dzp 1z
—_ = — 21 — V1, _— =
dr  1+2% e dr 1427

— Z2 — Vg, (342)

where z; and z9 are scaled versions of the protein concentrations and the time scale
has also been changed. Show that p =~ 200 using the parameters in Example 3.18,
and use simulations to demonstrate the switch-like behavior of the system.

3.11 (Motor drive) Consider a system consisting of a motor driving two masses
that are connected by a torsional spring, as shown in the diagram below.
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This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current I, the dynamics
of the system can be described by the equations

d*p1 dp1  doo
J WL 22N 4 ko1 — 2) = kil
1 dt2 + C( dt dt ) + (gpl ()02) I (3 43)
d?py dpy  dpr -
e~ ) e e =T

where @1 and @9 are the angles of the two masses, w; = dy; /dt are their velocities,
J; represents moments of inertia, ¢ is the damping coefficient, k represents the shaft
stiffness, k; is the torque constant for the motor, and Ty is the disturbance torque
applied at the end of the shaft. Similar equations are obtained for a robot with
flexible arms and for the arms of DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized)
state variables 1 = @1, T2 = @2, T3 = wi/wo, and x4 = ws/wp, where wy =
VE(J1 + J2)/(J1J2) is the undamped natural frequency of the system when the
control signal is zero.

3.12 (FitzHugh-Nagumo) The second-order FitzHugh—-Nagumo equations

v

Lid drR _
dt -

10(V-V3/3 - R+ Iy,), 7

0.8(1.25V — R+ 1.5),

are a simplified version of the Hodgkin—Huxley equations discussed in Example 3.19.
The variable V' is the voltage across the axon membrane and R is an auxiliary
variable that approximates several ion currents that flow across the membrane.
Simulate the equations and reproduce the simulation in Figure 3.28. Explore the
effect of the input current [j,.






Chapter Four

Examples

... Don’t apply any model until you understand the simplifying assumptions
on which it is based, and you can test their validity. Catch phrase: use only
as directed. Distinguish at all times between the model and the real world.
Catch phrase: You will never strike oil by drilling through the map!”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70].

In this chapter we present a collection of examples spanning many different
fields of science and engineering. These examples are used throughout the text
and in exercises to illustrate different concepts. First-time readers may wish to
focus on only a few examples with which they have had the most prior experience
or insight to understand the concepts of state, input, output, and dynamics in a
familiar setting.

4.1 CRUISE CONTROL

The cruise control system of a car is a common feedback system encountered in
everyday life. The system attempts to maintain a constant velocity in the presence
of disturbances primarily caused by changes in the slope of a road. The controller
compensates for these unknowns by measuring the speed of the car and adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figure 4.1. Let v be
the speed of the car and v, the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type described briefly in Chapter 1,
receives the signals v and v, and generates a (normalized) control signal u that is
sent to an actuator that controls the throttle position. The throttle in turn controls
the torque T delivered by the engine, which is transmitted through the gears and
the wheels, generating a force F' that moves the car. There are disturbance forces
Fy due to variations in the slope of the road, the rolling resistance, and aerodynamic
forces. The cruise controller also has a human—machine interface that allows the
driver to set and modify the desired speed. There are also functions that disconnect
the cruise control when the brake is touched.

The system has many individual components—actuator, engine, transmission,
wheels, and car body—and a detailed model can be very complicated. In spite of
this, the model required to design the cruise controller can be quite simple.

To develop a mathematical model we start with a force balance for the car
body. Letting m be the total mass of the car (including passengers), the equation
of motion of the car is simply

W _p_p,. 41
M d (4.1)
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Figure 4.1: Block diagram of a cruise control system for an automobile. The
throttle-controlled engine generates a torque 1" that is transmitted to the ground
through the gearbox and wheels. Combined with the external forces from the
environment, such as aerodynamic drag and gravitational forces on hills, the net
force causes the car to move. The velocity of the car v is measured by a control
system that adjusts the throttle through an actuation mechanism. A driver inter-
face allows the system to be turned on and off and the reference speed v, to be
established.

Typical values for the mass of a car are in the range of 1000-2000 kg (we will use
1600 kg here).

The force F' is generated by the engine, whose torque is proportional to the
rate of fuel injection, which is itself proportional to a control signal 0 < u < 1
that controls the throttle position. The torque also depends on engine speed w. A
simple representation of the torque at full throttle is given by the torque curve

T(w) = T (1 - 5(:; - 1>2> 7 (4.2)

where the maximum torque T}, is obtained at engine speed wy,. Typical parameters
are T, = 190 Nm, wy, = 420 rad/s (about 4000 RPM), and 5 = 0.4. Let n be the
gear ratio and r the wheel radius. The engine speed is related to the velocity

through the expression
n
W= —v=:Q,,
r

and the driving force can be written as
F = %T(w) = a,ul (apv).
T

Typical values of «,, for gears 1 through 5 are a; = 40, ay = 25, ag = 16, oy = 12,
and a5 = 10. The inverse of «,, has a physical interpretation as the effective wheel
radius. Figure 4.2 shows the torque as a function of engine speed and vehicle speed.
The figure shows that the effect of the gear is to “flatten” the torque curve so that
nearly full torque can be obtained over almost the whole speed range.

The disturbance force Fy has three major components: Fj, the forces due to
gravity; F}, the forces due to rolling friction; and F}, the aerodynamic drag. Letting
the slope of the road be 6, gravity gives the force F,, = mgsin#, as illustrated in
Figure 4.3a, where g = 9.8 m/s? is the gravitational constant. A simple model of
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Figure 4.2: Torque curves for typical car engine. The graph on the left shows the
torque generated by the engine as a function of the angular velocity of the engine,
while the curve on the right shows torque as a function of car speed for different
gears.

rolling friction is
F, = mgC, sgn(v),

where C is the coefficient of rolling friction and sgn(v) is the sign of v (£1) or zero
if v =0. A typical value for the coefficient of rolling friction is C; = 0.01. Finally,
the aerodynamic drag is proportional to the square of the speed:

1
F, = §pCdA|v|v,

where p is the density of air, Cy is the shape-dependent aerodynamic drag coeffi-
cient, and A is the frontal area of the car. Typical parameters are p = 1.3 kg/m?,
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Figure 4.3: Car with cruise control encountering a sloping road. A schematic
diagram is shown in (a), and (b) shows the response in speed and throttle when a
slope of 4° is encountered. The hill is modeled as a net change of 4° in hill angle
0, with a linear change in the angle between t = 5 and ¢t = 6. The PI controller
has proportional gain £, = 0.5 and integral gain ki = 0.1.
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Cq=0.32, and A = 2.4 m?.
Summarizing, we find that the car’s speed can be modeled by

m% = apuT (anv) — mgCysgn(v) — %pC’dA|v|v —mgsiné, (4.3)
where the function T is given by equation (4.2). The model (4.3) is a dynamical
system of first order. The state is the car velocity v, which is also the output. The
input is the signal u that controls the throttle position, and the disturbance is the
force Fy = mgsin 0, which depends on the slope of the road. The system is nonlinear
because of the torque curve, the gravity term, and the nonlinear character of rolling
friction and aerodynamic drag. There can also be variations in the parameters; e.g.,
the mass of the car depends on the number of passengers and the load being carried
in the car.

We add to this model a feedback controller that attempts to regulate the speed
of the car in the presence of disturbances. We use a proportional-integral controller,
which has the form

u(t) = kpe(t) + ki/o e(r) dr.

This controller can itself be realized as an input/output dynamical system by defin-
ing a controller state z and implementing the differential equation

% = — v, u=ky(v. —v)+kiz, (4.4)
where v, is the desired (reference) speed. As discussed briefly in Section 1.6, the
integrator (represented by the state z) ensures that in steady state the error will be
driven to zero, even when there are disturbances or modeling errors. (The design
of PI controllers is the subject of Chapter 11.) Figure 4.3b shows the response of
the closed loop system, consisting of equations (4.3) and (4.4), when it encounters
a hill. The figure shows that even if the hill is so steep that the throttle changes
from 0.17 to almost full throttle, the largest speed error is less than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (4.3). It may seem
surprising that such a seemingly complicated system can be described by the simple
model (4.3). It is important to make sure that we restrict our use of the model
to the uncertainty lemon conceptualized in Figure 3.5b. The model is not valid
for very rapid changes of the throttle because we have ignored the details of the
engine dynamics, neither is it valid for very slow changes because the properties
of the engine will change over the years. Nevertheless the model is very useful
for the design of a cruise control system. As we shall see in later chapters, the
reason for this is the inherent robustness of feedback systems: even if the model
is not perfectly accurate, we can use it to design a controller and make use of the
feedback in the controller to manage the uncertainty in the system.

The cruise control system also has a human—machine interface that allows the
driver to communicate with the system. There are many different ways to imple-
ment this system; one version is illustrated in Figure 4.4. The system has four
buttons: on-off, set/decelerate, resume/accelerate, and cancel. The operation of
the system is governed by a finite state machine that controls the modes of the PI
controller and the reference generator. Implementation of controllers and reference
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Figure 4.4: Finite state machine for cruise control system. The figure on the
left shows some typical buttons used to control the system. The controller can
be in one of four modes, corresponding to the nodes in the diagram on the right.
Transition between the modes is controlled by pressing one of the five buttons on
the cruise control interface: on, off, set, resume, or cancel.

generators will be discussed more fully in Chapter 11.

The use of control in automotive systems goes well beyond the simple cruise
control system described here. Applications include emissions control, traction
control, power control (especially in hybrid vehicles), and adaptive cruise control.
Many automotive applications are discussed in detail in the book by Kiencke and
Nielsen [KNOO] and in the survey papers by Powers et al. [BP96, PN00]. New
vehicles coming on the market also include many “self-driving” features, which
represent even more complex feedback systems.

4.2 BICYCLE DYNAMICS

The bicycle is an interesting dynamical system with the feature that one of its key
properties is due to a feedback mechanism that is created by the design of the front
fork. A detailed model of a bicycle is complex because the system has many degrees
of freedom and the geometry is complicated. However, a great deal of insight can
be obtained from simple models.

To derive the equations of motion we assume that the bicycle rolls on the hor-
izontal xy plane. Introduce a coordinate system that is fixed to the bicycle with
the £-axis through the contact points of the wheels with the ground, the n-axis
horizontal, and the (-axis vertical, as shown in Figure 4.5. Let vg be the velocity of
the bicycle at the rear wheel, b the wheelbase, ¢ the tilt angle, and § the steering
angle. The coordinate system rotates around the point O with the angular velocity
w = vpd /b, and an observer fixed to the bicycle experiences forces due to the motion
of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pendulum, as shown
in the rear view in Figure 4.5b. To model the tilt, consider the rigid body obtained
when the wheels, the rider, and the front fork assembly are fixed to the bicycle
frame. Let m be the total mass of the system, J the moment of inertia of the body
with respect to the &-axis, and D the product of inertia with respect to the &£C
axes. Furthermore, let the £ and ( coordinates of the center of mass with respect
to the rear wheel contact point, P, be a and h, respectively. We have J ~ mh?
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Figure 4.5: Schematic views of a bicycle. The steering angle is J, and the roll
angle is . The center of mass has height h and distance a from a vertical through
the contact point P; of the rear wheel. The wheelbase b is the distance between
P and P, and the trail c is the distance between P> and Ps.

and D = mah. The torques acting on the system are due to gravity and centripetal
action. Assuming that the steering angle 0 is small, the equation of motion becomes

d*p  Duvgy d§ mudh

s. (4.5)

The term mgh sin ¢ is the torque generated by gravity. The terms containing é and
its derivative are the torques generated by steering, with the term (Duwg/b) dé/dt
due to inertial forces and the term (mvgh/b)§ due to centripetal forces.

The steering angle is influenced by the torque the rider applies to the handle
bar. Because of the tilt of the steering axis and the shape of the front fork, the
contact point of the front wheel with the road P, is behind the axis of rotation
of the front wheel assembly, as shown in Figure 4.5c. The distance ¢ between the
contact point of the front wheel P, and the projection of the axis of rotation of the
front fork assembly Pj is called the trail. The steering properties of a bicycle depend
critically on the trail. A large trail increases stability but makes the steering less
agile.

A consequence of the design of the front fork is that the steering angle J is
influenced both by steering torque 7" and by the tilt of the frame . This means
that a bicycle with a front fork is a feedback system as illustrated by the block
diagram in Figure 4.6. The steering angle § influences the tilt angle ¢, and the
tilt angle influences the steering angle, giving rise to the circular causality that is
characteristic of reasoning about feedback. For a front fork with a positive trail,
the bicycle will steer into the lean, creating a centrifugal force that attempts to
diminish the lean.

Under certain conditions, the feedback can actually stabilize the bicycle. A
crude empirical model is obtained by assuming that the front fork can be modeled
as the static system

d= k‘lT — k‘g(p. (46)

Combining the model of the bicycle frame (4.5) with the model of the front fork (4.6),
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Figure 4.6: Block diagram of a bicycle with a front fork. The steering torque
applied to the handlebars is T', the roll angle is ¢, and the steering angle is §.
Notice that the front fork creates a feedback from the roll angle ¢ to the steering
angle § that under certain conditions can stabilize the system.

we get the the following system model:

szi n Duok, dp (mvihka o h)@ _ Duoky dT muahk;

T
dt? b dt

b dt b ’ (47)

where we have approximated sin ¢ with . The left hand side of this equation looks
like the equation for a spring mass system, where the damping term is Dugks /b and
the spring term is mvZks /b —mgh. Notice that the spring term is negative if vg = 0
and that it becomes positive for v > /gb/ks. We can thus conclude that the
bicycle is unstable for small velocities but that the feedback provided by the front
fork makes the bicycle stable if the velocity is sufficiently large.

The simple model given by equations (4.5) and (4.6) neglects the dynamics of
the front fork, the tire-road interaction, and the fact that the parameters depend
on the velocity. A more accurate model, called the Whipple model, is obtained using
the rigid-body dynamics of the front fork and the frame. Assuming small angles,
this model becomes

M [‘g] + Cy [“g] + (Ko + Ko1?) [“g] = [;] , (4.8)

where the elements of the 2 x 2 matrices M, C, Ky, and K5 depend on the geometry
and the mass distribution of the bicycle. Note that this has a form somewhat similar
to that of the spring—mass system introduced in Chapter 3 and the balance system
in Example 3.2. Even this more complex model is inaccurate because the interaction
between the tire and the road is neglected; taking this into account requires two
additional state variables. Again, the uncertainty lemon in Figure 3.5b provides a
framework for understanding the validity of the model under these assumptions.

Interesting presentations on the development of the bicycle are given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (4.8) was presented in
a paper by Whipple in 1899 [Whi99]. More details on bicycle modeling are given
in the papers [AKL05, LS06], which has many additional references.

4.3 OPERATIONAL AMPLIFIER CIRCUITS

An operational amplifier (op amp) is a modern implementation of Black’s feedback
amplifier. It is a universal component that is widely used for instrumentation, con-
trol, and communication. It is also a key element in analog computing. Schematic



4-8 CHAPTER 4

. ey
I 1 i~
. o.ffseF null NC Vo —— Vout v_ Vout
mverting mput — ey
oo —
non-inv. input — — output VT V+
e- — — offset null e
(a) Chip pinout (b) Full schematic (c) Simple view

Figure 4.7: An operational amplifier and two schematic diagrams. (a) The
amplifier pin connections on an integrated circuit chip. (b) A schematic with all
connections. (c) Only the signal connections.

diagrams of the operational amplifier are shown in Figure 4.7. The amplifier has one
inverting input (v_), one noninverting input (v ), and one output (vout). There are
also connections for the supply voltages, e_ and ey, and a zero adjustment (offset
null). A simple model is obtained by assuming that the input currents i_ and iy
are zero and that the output is given by the static relation

Vout = S8 (1, Umas) (k(v+ - 11_)), (4.9)
where sat denotes the saturation function

a ifx<a,
sat(gpy () = ifa<a<b, (4.10)
b ifx >0

We assume that the gain k is large, in the range of 10-10%, and the voltages vmin
and vy satisfy
e_ < Umin < Umax < €+

and hence are in the range of the supply voltages. More accurate models are
obtained by replacing the saturation function with a smooth function as shown in
Figure 4.8. For small input signals the amplifier characteristic (4.9) is linear:

Vout

VUmax

vy — v

VUmin

Figure 4.8: Input/output characteristics of an operational amplifier. The differ-
ential input is given by vy — v—. The output voltage is a linear function of the
input in a small range around 0, with saturation at vmin and vmax. In the linear
regime the op amp has high gain.
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Figure 4.9: Stable amplifier using an op amp. The circuit (a) uses negative
feedback around an operational amplifier and has a corresponding block diagram
(b). The resistors Ry and R2 determine the gain of the amplifier.

Vout = k(vy —v_) = —kv. (4.11)

Since the open loop gain k is very large, the range of input signals where the system
is linear is very small.

A simple amplifier is obtained by arranging feedback around the basic opera-
tional amplifier as shown in Figure 4.9a. To model the feedback amplifier in the
linear range, we assume that the current ¢y = ¢_ + ¢ is zero and that the gain of
the amplifier is so large that the voltage v = v_ — vy is also zero. It follows from
Ohm’s law that the currents through resistors R; and Ry are given by

Y2
Ri Ry
and hence the closed loop gain of the amplifier is

22 = —ka, where k R

ol = —. 4.12
U1 ! R1 ( )

A more accurate model is obtained by continuing to neglect the current ig but
assuming that the voltage v is small but not negligible. The current balance is then
v — U vV — V2

= . 4.1
Rl R2 ( 3)

Assuming that the amplifier operates in the linear range and using equation (4.11),
the gain of the closed loop system becomes

va Ry kR Ry
hg= 22 Mhu 4.14
: v Ry Ri+Ry+kRi R ( )

If the open loop gain k of the operational amplifier is large, the closed loop gain
ke is the same as in the simple model given by equation (4.12). Notice that the
closed loop gain depends only on the passive components and that variations in k
have only a marginal effect on the closed loop gain. For example if ¥ = 10° and
Ry /Ry = 100, a variation of k by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nice illustration of how feedback
can be used to make precise systems from uncertain components. In this particular
case, feedback is used to trade high gain and low robustness for low gain and high
robustness. Equation (4.14) was the formula that inspired Black when he invented
the feedback amplifier [Bla34] (see the quote at the beginning of Chapter 13).
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Figure 4.10: Circuit diagram of a PI controller obtained by feedback around an
operational amplifier. The capacitor C is used to store charge and represents the
integral of the input.

It is instructive to develop a block diagram for the feedback amplifier in Fig-
ure 4.9a. To do this we will represent the pure amplifier with input v and output
vo as one block. To complete the block diagram, we must describe how v depends
on v, and vy. Solving equation (4.13) for v gives

; Ry R Ry (

Ry
TR tR TR AR R+ R \R

B U + U2)7
and we obtain the block diagram shown in Figure 4.9b. The diagram clearly shows
that the system has feedback and that the gain from vy to v is R1/(R; + Rz), which
can also be read from the circuit diagram in Figure 4.9a. If the loop is stable and
the gain of the amplifier is large, it follows that the error e is small, and we find
that vo = —(Rg/R;1)v1. Notice that the resistor Ry appears in two blocks in the
block diagram. This situation is typical in electrical circuits, and it is one reason
why block diagrams are not always well suited for some types of physical modeling.
The simple model of the amplifier given by equation (4.11) provides qualitative
insight, but it neglects the fact that the amplifier is a dynamical system. A more

realistic model is
dvout

dt

The parameter b has dimensions of frequency and is called the gain-bandwidth
product of the amplifier. Whether a more complicated model is used depends on
the questions to be answered and the required size of the uncertainty lemon. The
model (4.15) is still not valid for very high or very low frequencies since drift causes
deviations at low frequencies and there are additional dynamics that appear at
frequencies close to b. The model is also not valid for large signals—an upper limit
is given by the voltage of the power supply, typically in the range of 5-10 V—
neither is it valid for very low signals because of electrical noise. These effects can
be added, if needed, but increase the complexity of the analysis.

The operational amplifier is very versatile, and many different systems can be
built by combining it with resistors and capacitors. In fact, any linear system can
be implemented by combining operational amplifiers with resistors and capacitors.
Exercise 4.5 shows how a second-order oscillator is implemented, and Figure 4.10
shows the circuit diagram for an analog proportional-integral controller. To develop
a simple model for the circuit we assume that the current iy is zero and that the
open loop gain k is so large that the input voltage v is negligible. The current ¢
through the capacitor is ¢ = C'dv./dt, where v, is the voltage across the capacitor.

= —aUoyut — V. (4.15)
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Since the same current goes through the resistor R;, we get

. (%1} dvc
i = —

TRy, dt’

which implies that

ve(t) = %/i(t) it = RIC /Otvl(r)dT.

The output voltage is thus given by

R

. I
va(t) = —Rgi — v, = —R—lvl(t) — R/o vy (T)dT,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [Lun05,
Phi48], and their usage is described in many textbooks (e.g., [CD75]). Good infor-
mation is also available from suppliers [Jun02, Man02].

4.4 COMPUTING SYSTEMS AND NETWORKS

The application of feedback to computing systems follows the same principles as the
control of physical systems, but the types of measurements and control inputs that
can be used are somewhat different. Measurements (sensors) are typically related to
resource utilization in the computing system or network and can include quantities
such as the processor load, memory usage, or network bandwidth. Control variables
(actuators) typically involve setting limits on the resources available to a process.
This might be done by controlling the amount of memory, disk space, or time
that a process can consume, turning on or off processing, delaying availability of a
resource, or rejecting incoming requests to a server process. Process modeling for
networked computing systems is also challenging, and empirical models based on
measurements are often used when a first-principles model is not available.

Web Server Control

Web servers respond to requests from the Internet and provide information in the
form of web pages. Modern web servers start multiple processes to respond to
requests, with each process assigned to a single source until no further requests are
received from that source for a predefined period of time. Processes that are idle
become part of a pool that can be used to respond to new requests. To provide a
fast response to web requests, it is important that the web server processes do not
overload the server’s computational capabilities or exhaust its memory. Since other
processes may be running on the server, the amount of available processing power
and memory is uncertain, and feedback can be used to provide good performance
in the presence of this uncertainty.

Figure 4.11 illustrates the use of feedback to modulate the operation of an
Apache web server. The web server operates by placing incoming connection re-
quests on a queue and then starting a subprocess to handle requests for each ac-
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Figure 4.11: Feedback control of a web server. Connection requests arrive on an
input queue, where they are sent to a server process. A finite state machine keeps
track of the state of the individual server processes and responds to requests. A
control algorithm can modify the server’s operation by controlling parameters that
affect its behavior, such as the maximum number of requests that can be serviced
at a single time (MaxClients) or the amount of time that a connection can remain
idle before it is dropped (KeepAlive).

cepted connection. This subprocess responds to requests from a given connection
as they come in, alternating between a Busy state and a Wait state. (Keeping the
subprocess active between requests is known as the persistence of the connection
and provides a substantial reduction in latency to requests for multiple pieces of
information from a single site.) If no requests are received for a sufficiently long
period of time, controlled by the KeepAlive parameter, then the connection is
dropped and the subprocess enters an Idle state, where it can be assigned another
connection. A maximum of MaxClients simultaneous requests will be served, with
the remainder remaining on the incoming request queue.

The parameters that control the server represent a trade-off between perfor-
mance (how quickly requests receive a response) and resource usage (the amount
of processing power and memory used by the server). Increasing the MaxClients
parameter allows connection requests to be pulled off of the queue more quickly
but increases the amount of processing power and memory usage that is required.
Increasing the KeepAlive timeout means that individual connections can remain
idle for a longer period of time, which decreases the processing load on the machine
but increases the length of the queue (and hence the amount of time required for
a user to initiate a connection). Successful operation of a busy server requires a
proper choice of these parameters, often based on trial and error.

To model the dynamics of this system in more detail, we create a discrete-time
model with states given by the average processor load z.,, and the percentage
memory usage Tmem- Lhe inputs to the system are taken as the maximum number
of clients u,. and the keep-alive time wy,. If we assume a linear model around the
equilibrium point, the dynamics can be written as

i) = G ) (Geli) + (B ) (i)

where the coeflicients of the A and B matrices can be determined based on empirical
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measurements or detailed modeling of the web server’s processing and memory
usage. Using system identification, Diao et al. [DGHT02, HDPT04] identified the
linearized dynamics as

(054 —0.11 (-85 44 i
A= [—0.026 0.63 ] B= [—2.5 2.8] x 1077,

where the system was linearized about the equilibrium point
Tepu = 0.58, Uka = 11 s, Tmem = 0.59, Ume = 600.

This model shows the basic characteristics that were described above. Looking
first at the B matrix, we see that increasing the KeepAlive timeout (first column
of the B matrix) decreases both the processor usage and the memory usage since
there is more persistence in connections and hence the server spends a longer time
waiting for a connection to close rather than taking on a new active connection. The
MaxClients connection increases both the processing and memory requirements.
Note that the largest effect on the processor load is the KeepAlive timeout. The A
matrix tells us how the processor and memory usage evolve in a region of the state
space near the equilibrium point. The diagonal terms describe how the individual
resources return to equilibrium after a transient increase or decrease. The off-
diagonal terms show that there is coupling between the two resources, so that a
change in one could cause a later change in the other.

Although this model is very simple, we will see in later examples that it can
be used to modify the parameters controlling the server in real time and provide
robustness with respect to uncertainties in the load on the machine. Similar types of
mechanisms have been used for other types of servers. It is important to remember
the assumptions on the model and their role in determining when the model is valid.
In particular, since we have chosen to use average quantities over a given sample
time, the model will not provide an accurate representation for high-frequency
phenomena.

Congestion Control

The Internet was created to obtain a large, highly decentralized, efficient, and
expandable communication system. The system consists of a large number of in-
terconnected gateways. A message is split into several packets that are transmitted
over different paths in the network, and the packages are rejoined to recover the
message at the receiver. An acknowledgment (“ack”) message is sent back to the
sender when a packet is received. The operation of the system is governed by a
simple but powerful decentralized control structure that has evolved over time.

The system has two control mechanisms called protocols: the Transmission Con-
trol Protocol (TCP) for end-to-end network communication and the Internet Proto-
col (IP) for routing packets and for host-to-gateway or gateway-to-gateway commu-
nication. The current protocols evolved after some spectacular congestion collapses
occurred in the mid 1980s, when throughput unexpectedly could drop by a factor
of 1000 [Jac95]. The control mechanism in TCP is based on conserving the number
of packets in the loop from the sender to the receiver and back to the sender. The
sending rate is increased when there is no congestion, and it is dropped to a low
level when there is congestion.
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Figure 4.12: Internet congestion control. (a) Source computers send information
to routers, which forward the information to other routers that eventually connect
to the receiving computer. When a packet is received, an acknowledgment packet is
sent back through the routers (not shown). The routers buffer information received
from the sources and send the data across the outgoing link. (b) The equilibrium
buffer size be for a set of N identical computers sending packets through a single
router with drop probability pb.

To derive an overall model for congestion control, we model three separate
elements of the system: the rate at which packets are sent by individual sources
(computers), the dynamics of the queues in the links (routers), and the admission
control mechanism for the queues. Figure 4.12a is a block diagram of the system.

The current source control mechanism on the Internet is a protocol known as
TCP/Reno [LPD02]. This protocol operates by sending packets to a receiver and
waiting to receive an acknowledgment from the receiver that the packet has ar-
rived. If no acknowledgment is sent within a certain timeout period, the packet is
retransmitted. To avoid waiting for the acknowledgment before sending the next
packet, Reno transmits multiple packets up to a fixed window around the latest
packet that has been acknowledged. If the window size is chosen properly, packets
at the beginning of the window will be acknowledged before the source transmits
packets at the end of the window, allowing the computer to continuously stream
packets at a high rate.

To determine the size of the window to use, TCP/Reno uses a feedback mech-
anism in which (roughly speaking) the window size is increased at a fixed rate as
long as packets are acknowledged and the window size is cut in half when packets
are lost. This mechanism allows a dynamic adjustment of the window size in which
each computer acts in a greedy fashion as long as packets are being delivered but
backs off quickly when congestion occurs.

A model for the behavior of the source can be developed by describing the
dynamics of the window size. Suppose we have N computers (sources) and let w;
be the current window size (measured in number of packets) for the ith computer.
Let g; represent the end-to-end probability that a packet will be dropped someplace
between the source and the receiver. We can model the dynamics of the window
size w; by the differential equation

dwi - (T — i B .
a (1*%)T 7%(77’2@*7}))7 ry = —, (4.17)
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where 7; is the round-trip time for a packet to reach its destination and the acknowl-
edgment to be sent back, and r; is the resulting rate at which packets are cleared
from the list of packets that have been received. The first term in the dynamics
represents the increase in window size when a packet is received, and the second
term represents the decrease in window size when a packet is lost. Notice that r; is
evaluated at time t — 7;, representing the time required to receive acknowledgments
that a packet has arrived.

The link dynamics are controlled by the dynamics of the router queue and the
admission control mechanism for the queue. Assume that we have L links in the
network and use [ to index the individual links. We model the queue in terms of
the current number of packets in the router’s buffer b, and assume that the router
transmits packets at a rate ¢;, equal to the capacity of the link. The buffer dynamics
can then be written as

by [si—e it >0 L

#L;lidzd &:;mmp@% (4.18)
where Rj; = 1 if link [ is used by source ¢ and 0 otherwise, Tlfi is the time it takes a
packet from source 7 to reach link [, and s; is the total rate at which packets arrive
at link /. The matrix R € RE*Y is called the routing matriz.

The admission control mechanism determines whether a given packet is accepted
by a router. Since our model is based on the average quantities in the network and
not the individual packets, one simple model is to assume that the probability
that a packet is dropped depends on how full the buffer is. If we let b; max be
the maximum number of packets that the router ¢ can buffer, we write the drop
probability as p; = B;(bi, bi,max), where §; is a function with §;(0, b; max) = 0 and
Bi(bi,max, bi,max) = 1. For simplicity, we will assume for now that p; = p;b; (see
Exercise 4.6 for a more detailed model). The probability that a packet is dropped
at a given link can be used to determine the end-to-end probability that a packet
is lost in transmission:

L L
¢ =1-[Ru(t—p) = > Ruplt — 1), (4.19)
=1 =0

where 7 is the backward delay from link [ to source i and the approximation is
valid as long as the individual drop probabilities are small. We use the backward
delay since this represents the time required for the acknowledgment packet to be
received by the source.

Together, equations (4.17), (4.18), and (4.19) represent a model of congestion
control dynamics. We can obtain substantial insight by considering a special case
in which we have N identical sources and one link. In addition, we assume for the
moment that the forward and backward time delays can be ignored and that none
of the routers are saturated or empty, in which case the dynamics can be reduced
to the form

dw; 1 pe(2 +w?) b L wy b b
e B S OE EUE (4.20)

1=

where w; € R, ¢ = 1,..., N, is a vector of window sizes for the sources of data,
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b € R is the current buffer size of the router, p controls the rate at which packets
are dropped, and c is the capacity of the link connecting the router to the com-
puters. The variable 7P represents the amount of time required for a packet to be
processed by the router, based on the size of the buffer and the capacity of the link.
Substituting 7P into the equations, we write the state space dynamics as

dw; ¢ w? db cw;
_ 14—t - = L e 4.21
it b pc( T3 ) DS (421)

More sophisticated models can be found in [Low17, LPD02] and subsequent exer-
cises and examples. .
The nominal operating point for the system can be found by setting w; = b = 0:

0= ¢ 1+wi2 0 Y cw;
= — — pC —_— = — C.
b F 2 ) 247y

Exploiting the fact that all of the source dynamics are identical, it follows that all

of the w; should be the same, and it can be shown that there is a unique equilibrium
point satisfying the equations

be cTP 1

Wie = 77 =

"N N’  2p°N?

(pbe)3 + (pbe) —-1=0. (422)

The solution for the second equation is a bit messy but can easily be determined nu-
merically. A plot of its solution as a function of 1/(2p?N?) is shown in Figure 4.12b.
We also note that at equilibrium we have the following additional equalities:

be Nuwe e
TCp:?: ;U , qc:NpC:pr07 TC:%' (4.23)

Figure 4.13 shows a simulation of 60 sources communicating across a single link,
with 20 sources dropping out at ¢ = 500 ms and the remaining sources increasing
their rates (window sizes) to compensate. Note that the buffer size and window
sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [Tan96]. A good presentation of the ideas behind the control principles
for the Internet is given by one of its designers, Van Jacobson, in [Jac95]. F.
Kelly [Kel85] presents an early effort on the analysis of the system. The books by
Hellerstein et al. [HDPTO04] and Janert [Janl4] give many examples of the use of
feedback in computer systems.

4.5 ATOMIC FORCE MICROSCOPY

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Heinrich Rohrer
for their design of the scanning tunneling microscope. The idea of the instrument
is to bring an atomically sharp tip so close to a conducting surface that tunneling
occurs. An image is obtained by traversing the tip across the sample and measuring
the tunneling current as a function of tip position. This invention has stimulated
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Figure 4.13: Internet congestion control for N identical sources across a single
link. As shown on the left, multiple sources attempt to communicate through a
router across a single link. An “ack” packet sent by the receiver acknowledges that
the message was received; otherwise the message packet is resent and the sending
rate is slowed down at the source. The simulation on the right is for 60 sources
starting at random rates (window sizes), with 20 sources dropping out at ¢ = 500
ms. The buffer size is shown at the top, and the individual source rates for 6 of
the sources are shown at the bottom.

the development of a family of instruments that permit visualization of surface
structure at the nanometer scale, including the atomic force microscope (AFM),
where a sample is probed by a tip on a cantilever. An AFM can operate in two
modes. In tapping mode the cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. In contact mode the cantilever is in contact with the
sample, and its bending is controlled by feedback. In both cases control is actuated
by a piezo element that controls the vertical position of the cantilever base (or the
sample). The control system has a direct influence on picture quality and scanning
rate.

A schematic picture of an atomic force microscope is shown in Figure 4.14a. A
microcantilever with a tip having a radius of the order of 10 nm is placed close to
the sample. The tip can be moved vertically and horizontally using a piezoelectric
scanner. It is clamped to the sample surface by attractive van der Waals forces and
repulsive Pauli forces. The cantilever tilt depends on the topography of the surface
and the position of the cantilever base, which is controlled by the piezo element.
The tilt is measured by sensing the deflection of the laser beam using a photodiode.
The signal from the photodiode is amplified and sent to a controller that drives
the amplifier for the vertical position of the cantilever (z). By controlling the piezo
element so that the deflection of the cantilever is constant, the signal driving the
vertical deflection of the piezo element is a measure of the atomic forces between
the cantilever tip and the atoms of the sample. An image of the surface is obtained
by scanning the cantilever along the sample. The resolution makes it possible to
see the structure of the sample on the atomic scale, as illustrated in Figure 4.14b,
which shows an AFM image of DNA.

The horizontal motion of an AFM is typically modeled as a spring—mass system
with low damping. The vertical motion is more complicated. To model the system,
we start with the block diagram shown in Figure 4.15. Signals that are easily
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Figure 4.14: Atomic force microscope. (a) A schematic diagram of an atomic
force microscope, consisting of a piezo drive that scans the sample under the AFM
tip. A laser reflects off of the cantilever and is used to measure the detection of the
tip through a feedback controller. (b) An AFM image of strands of DNA. (Image
courtesy Veeco Instruments.)

accessible are the input voltage u to the power amplifier that drives the piezo
element, the voltage v applied to the piezo element, and the output voltage y of the
signal amplifier for the photodiode. The controller is a PI controller implemented
by a computer, which is connected to the system by analog-to-digital (A/D) and
digital-to-analog (D/A) converters. The deflection of the cantilever ¢ is also shown
in the figure. The desired reference value for the deflection is an input to the
computer.

There are several different configurations that have different dynamics. Here we
will discuss a high-performance system from [SAD*07] where the cantilever base
is positioned vertically using a piezo stack. We begin the modeling with a simple
experiment on the system. Figure 4.16a shows a step response of a scanner from
the power amplifier input voltage u to the output voltage y of the signal amplifier
for the photodiode. This experiment captures the dynamics of the chain of blocks
from u to y in the block diagram in Figure 4.15. Figure 4.16a shows that the system

Sample topography

Piezo 2 Cantil ¥ Laser &
element antilever " | photodiode

Deflection reference

'

Power v 1D C ¢ Al Y Signal
Alromputerp amplifier

amplifier

Figure 4.15: Block diagram of the system for vertical positioning of the cantilever
for an atomic force microscope in contact mode. The control system attempts to
keep the cantilever deflection equal to its reference value. Cantilever deflection
is measured, amplified, and converted to a digital signal, then compared with its
reference value. A correcting signal is generated by the computer, converted to
analog form, amplified, and sent to the piezo element.
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Figure 4.16: Modeling of an atomic force microscope. (a) A measured step
response. The top curve shows the voltage u applied to the drive amplifier (50
mV/div), the middle curve is the output V;, of the power amplifier (500 mV /div),
and the bottom curve is the output y of the signal amplifier (500 mV /div). The
time scale is 25 ps/div. Data have been supplied by Georg Schitter. (b) A simple
mechanical model for the vertical positioner and the piezo crystal.

responds quickly but that there is a poorly damped oscillatory mode with a period
of about 35 ps. A primary task of the modeling is to understand the origin of the
oscillatory behavior. To do so we will explore the system in more detail.

The natural frequency of the clamped cantilever is typically several hundred
kilohertz, which is much higher than the observed oscillation of about 30 kHz. As
a first approximation we will model it as a static system. Since the deflections are
small, we can assume that the bending ¢ of the cantilever is proportional to the
difference in height between the cantilever tip at the probe and the piezo scanner. A
more accurate model can be obtained by modeling the cantilever as a spring—mass
system of the type discussed in Chapter 3.

Figure 4.16a also shows that the response of the power amplifier is fast. The
photodiode and the signal amplifier also have fast responses and can thus be mod-
eled as static systems. The remaining block is a piezo system with suspension. A
schematic mechanical representation of the vertical motion of the scanner is shown
in Figure 4.16b. We will model the system as two masses separated by an ideal
piezo element. The mass m, is half of the piezo system, and the mass ms is the
other half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crystal generates a force
F between the masses and that there is a damping ¢ in the spring. Let the positions
of the center of the masses be z; and z3. A momentum balance gives the following
model for the system:

A’z d?zy dzy
— =F, ——— = —Ccog—— — kozo — F.
e B
Let the elongation of the piezo element [ = z; — z5 be the control variable and the
height z; of the cantilever base be the output. Eliminating the variable F' in the
equations above and substituting z; — [ for zo gives the model

d?z dz d?l dl
W—FCzi—‘rk‘gzl :TTZQE—FCQ%—F]{;QZ. (424)

(m1 +ma) a
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Summarizing, we find that a simple model of the system is obtained by modeling
the piezo by equation (4.24) and all the other blocks by static models. Introducing
the linear equations | = k3u and y = k421, we now have a complete model relating
the output y to the control signal u. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the power amplifier. As in the
previous examples, the concept of the uncertainty lemon in Figure 3.5b provides
a framework for describing the uncertainty: the model will be accurate up to the
frequencies of the fastest modeled modes and over a range of motion in which
linearized stiffness models can be used.

The experimental results in Figure 4.16a can be explained qualitatively as fol-
lows. When a voltage is applied to the piezo, it expands by [y, the mass m; moves
up, and the mass mo moves down instantaneously. The system settles after a poorly
damped oscillation.

It is highly desirable to design a control system for the vertical motion so that it
responds quickly with little oscillation. The instrument designer has several choices:
to accept the oscillation and have a slow response time, to design a control system
that can damp the oscillations, or to redesign the mechanics to give resonances
of higher frequency. The last two alternatives give a faster response and faster
imaging.

Since the dynamic behavior of the system changes with the properties of the
sample, it is necessary to tune the feedback loop. In simple systems this is currently
done manually by adjusting parameters of a PI controller. There are interesting
possibilities for making AFM systems easier to use by introducing automatic tuning
and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamental to solid state physics, see
Kittel [Kit95]. The model discussed in this section is based on Schitter [Sch01].

4.6 DRUG ADMINISTRATION

The phrase “take two pills three times a day” is a recommendation with which we
are all familiar. Behind this recommendation is a solution of an open loop control
problem. The key issue is to make sure that the concentration of a medicine in
a part of the body is sufficiently high to be effective but not so high that it will
cause undesirable side effects. The control action is quantized, take two pills, and
sampled, every 8 hours. The prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and weight of the patient.

Drug administration is a control problem. To solve it we must understand how
a drug spreads in the body after it is administered. This topic, called pharmacoki-
netics, is now a discipline of its own, and the models used are called compartment
models. They go back to the 1920s when Widmark modeled the propagation of alco-
hol in the body [WT24]. Compartment models are now important for the screening
of all drugs used by humans. The schematic diagram in Figure 4.17 illustrates the
idea of a compartment model. The body is viewed as a number of compartments
like blood plasma, kidney, liver, and tissues that are separated by membranes.
It is assumed that there is perfect mixing so that the drug concentration is con-
stant in each compartment. The complex transport processes are approximated by
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Figure 4.17: Abstraction used to compartmentalize the body for the purpose of
describing drug distribution (based on Teorell [Teo37]). The body is abstracted
by a number of compartments with perfect mixing, and the complex transport
processes are approximated by assuming that the flow is proportional to the con-
centration differences in the compartments. The constants k; parameterize the
rates of flow between different compartments.

assuming that the flow rates between the compartments are proportional to the
concentration differences in the compartments.

To describe the effect of a drug it is necessary to know both its concentration
and how it influences the body. The relation between concentration c and its effect
e is typically nonlinear. A simple model is

c

6= ——€max- (4.25)
ECs0 + ¢

The effect is linear for low concentrations, and it saturates at high concentrations.
The parameter EC5( represents the concentration of the drug that gives half (50%)
maximal response. The relation can also be dynamic, and it is then called pharma-
codynamics.

Compartment Models

The simplest dynamical model for drug administration is obtained by assuming
that the drug is evenly distributed in a single compartment after it has been ad-
ministered and that the drug is removed at a rate proportional to the concentration.
The compartments behave like stirred tanks with perfect mixing. Let ¢ be the con-
centration, V' the volume, and ¢ the outflow rate. Converting the description of the
system into differential equations gives the model

% = —qc, c>0. (4.26)
This equation has the solution ¢(t) = coe= %V = ¢ge ¥, which shows that the
concentration decays exponentially with the time constant T' = V/q after an injec-
tion. The input is introduced implicitly as an initial condition in the model (4.26).
More generally, the way the input enters the model depends on how the drug is
administered. For example, the input can be represented as a mass flow into the
compartment where the drug is injected. A pill that is dissolved can also be inter-
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Figure 4.18: Schematic diagrams of compartment models. (a) A simple two-
compartment model. Each compartment is labeled by its volume, and arrows
indicate the flow of chemical into, out of, and between compartments. (b) A system
with six compartments used to study the metabolism of thyroid hormone [God83].
The notation k;; denotes the transport from compartment j to compartment i.

preted as an input in terms of a mass flow rate.

The model (4.26) is called a one-compartment model or a single-pool model. The
parameter k = ¢/V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasma. By measuring the
concentration at a few times, the initial concentration can be obtained by extrap-
olation. If the total amount of injected substance m is known, the volume V can
then be determined as V' =m/co.

The simple one-compartment model captures the gross behavior of drug distri-
bution, but it is based on many simplifications. Improved models can be obtained
by considering the body as composed of several compartments. Examples of such
systems are shown in Figure 4.18, where the compartments are represented as circles
and the flows by arrows.

Modeling will be illustrated using the two-compartment model in Figure 4.18a.
We assume that there is perfect mixing in each compartment and that the trans-
port between the compartments is driven by concentration differences. We further
assume that a drug with concentration ¢ is injected in compartment 1 at a volume
flow rate of w and that the concentration in compartment 2 is the output. Let ¢y
and ¢, be the concentrations of the drug in the compartments, and let V; and V5
be the volumes of the compartments. The mass balances for the compartments are

dc
Vlditl =q(c2 — c1) — qoc1 + cou, c1 >0,
d
Vz% =q(c1 —c2), 220, (4.27)
t
Yy = Ca,

where ¢ represents flow rate between the compartments and ¢y represents the flow
rate out of compartment 1 that is not going to compartment 2. Introducing the
variables ko = qo/V1, k1 = q/V1, ka = q/Va, and by = ¢p/V;1 and using matrix
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notation, the model can be written as

de - —k‘o —k‘1 k‘l bO —
o= [ ks ko ctlo|w y = [O 1] c. (4.28)

Comparing this model with its graphical representation in Figure 4.18a, we find
that the mathematical representation (4.28) can be written by inspection.

It should also be emphasized that simple compartment models such as the one in
equation (4.28) have a limited range of validity. Low-frequency limits exist because
the human body changes with time, and since the compartment model uses average
concentrations, they will not accurately represent rapid changes. There are also
nonlinear effects that influence transportation between the compartments.

Compartment models are widely used in medicine, engineering, and environ-
mental science. An interesting property of these systems is that variables like
concentration and mass are always positive. An essential difficulty in compart-
ment modeling is deciding how to divide a complex system into compartments.
Compartment models can also be nonlinear, as illustrated in the next section.

The papers by Widmark and Tandberg [WT24] and Teorell [Teo37] are classics
in pharmacokinetics, which is now an established discipline with many textbooks
[Dos68, Jac72, GP82]. Because of its medical importance, pharmacokinetics is
now an essential component of drug development. The book by Riggs [Rig63] is a
good source for the modeling of physiological systems, and a more mathematical
treatment is given in Keener and Sneyd [KS08, KS09]. Compartment models are
discussed in Godfrey [God83]. The problem of determining rate coefficients from
experimental data is discussed in Bellman and Astrém [BA70] and Godfrey [God83).

Insulin—Glucose Dynamics

Glucose provides energy to all cells in the body. It is influenced by many factors:
body constitution, food intake, digestion, stress, and exercise. Healthy individuals
have sophisticated mechanisms that regulate glucose concentration in the blood.
A schematic picture of the relevant parts of the body involved are shown in Fig-
ures 4.19a and 4.19b. The pancreas secretes the hormones insulin and glucagon.
Glucagon is released into the bloodstream when the glucose level is low. It acts on
cells in the liver that release glucose. Insulin is secreted when the glucose level is
high, and the glucose level is lowered by causing the liver and other cells to take up
more glucose. There are also other hormones that influence glucose concentration.
It is important that the blood glucose concentration is regulated to be in the range
70-110 mg/L.

Diabetes is a disease where the body’s ability to produce or respond to insulin
is impaired, resulting in blood sugar levels that are too high. There are several
varieties of diabetes: production of insulin can be impaired (type 1) or the ability
of the body to absorb insulin can be reduced (type 2). Long exposure to high blood
sugar concentration is serious and may result in cardiovascular diseases, stroke,
chronic kidney disease, foot ulcers, and blindness. Low blood sugar is also serious
and can give headaches, fatigue, dizziness, lethargy, and blurred vision. Very low
blood sugar levels can result in a coma.

The mechanisms that regulate glucose and insulin are complicated. Models of
different complexity have been developed. The models are typically tested with data
from experiments where glucose is injected intravenously and insulin and glucose
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Figure 4.19: Insulin—glucose dynamics. (a) Sketch of body parts involved in
the control of glucose. (b) Schematic diagram of the system. (c) Responses
of insulin and glucose when glucose in injected intravenously. From Pacini and
Bergman [PB86].

concentrations are measured at regular time intervals, as shown in Figure 4.19c.

A simple minimal model was developed by Bergman and coworkers [Ber89,
Ber01]. It is a compartment model with two state variables: concentration of
glucose in the bloodstream G and the variable X representing the effect of insulin
on glucose removal, which is proportional to the concentration of insulin in the
interstitial fluid. The minimal model is given by the equations

G

dX
%—pl(Ge—G)—XG—l-uG, — = —po X +p3(I — L) + ur. (4.29)

dt

The first equation is a compartment model for glucose. The right-hand side has
two terms: a clearance term that models glucose removal at a rate proportional
to G — G, and the nonlinear term X G, which accounts for the fact that removal
rate is also proportional to the product of X and G. Clearance of insulin is thus
enhanced by the variable X. The second equation is obtained from a compartment
model for insulin in the interstitial fluid. The terms ug and uy are external inputs,
capturing injection of insulin and glucose.

Figure 4.19¢ shows a fit of the minimal-model to a test on a normal person where
glucose was injected intravenously at time t = 0 and samples of concentrations of
insulin and glucose are taken at different times. The glucose concentration rises
rapidly, and the pancreas responds with a rapid spike-like injection of insulin. The
glucose and insulin levels then gradually approach the equilibrium values.

A model that is slightly more complicated than the minimal model is given in
Exercise 4.9 and includes a compartment for insulin in the bloodstream. There
are many more complicated models that capture dynamics of food intake and mea-
surement dynamics [CRK11, FCF*T06, GMGMO05, MLK06, MRCO07]. The models
are used in many different ways for insight, analysis, and treatment of diabetes.
A model for type 1 diabetes developed at the University of Virginia [LRS12] has
been approved by the U. S. Food and Drug Administration (FDA) as a replacement
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for animal testing of closed-loop control strategies for regulation of blood sugar (in
silico testing).

A simple way to measure blood sugar is to analyze glucose concentration in a
drop of blood obtained by a fingerstick. Diabetic patients can also be provided with
a continuous glucose monitor (GCM), which is a tiny sensor wire under the skin
with an adhesive patch and a wireless transmitter. The sensor measures glucose
concentration in the interstitial fluid near the sensor wire; calibration is required to
obtain the glucose concentration in the bloodstream. The sensor is often placed in
the upper arm where it can be connected wirelessly to a smartphone. An application
on the phone can then generate advice on how much insulin has to be injected, for
example long-lasting insulin for maintenance of a base level and rapid-acting insulin
taken at meal times. The advice is based on a model of the glucose-insulin system
that is matched to the patient. Devices of this type are increasingly available and
widely used by patients with diabetes.

Patients with type 1 diabetes can also be provided with an artificial pancreas,
a fully automatic system that regulates the blood sugar [Kow09, CRK11]. An arti-
ficial pancreas consists of a glucose monitor that measures blood sugar, an insulin
infusion pump, and a control algorithm that computes the amount of insulin to be
injected based on the measured blood sugar value. The Medtronic MiniMed 670G
was approved by FDA for use by adults in 2016 and for children over seven years
old in 2018. The system has a sampling period of 5 minutes and a PID algorithm
to control the injection rate [Stel3]. Similar devices with model predictive control
have also been tested [Beql3]. The glucose monitor requires frequent observation,
the wire has to be replaced regularly, and the sensor must be calibrated frequently
using a fingerstick. There are extreme safety requirements on an artificial pan-
creas [Beql2, Kow09], and it is absolutely essential to ensure that the glucose level
does not get too low (hypoglycemia). All these additions make the system more
complicated.

4.7 POPULATION DYNAMICS

Population growth is a complex dynamic process that involves the interaction of one
or more species with their environment and the larger ecosystem. The dynamics of
population groups are interesting and important in many different areas of social
and environmental policy. There are examples where new species have been intro-
duced into new habitats, sometimes with disastrous results. There have also been
attempts to control population growth both through incentives and through legisla-
tion. In this section we describe some of the models that can be used to understand
how populations evolve with time and as a function of their environments.

Logistic Growth Model

Let x be the population of a species at time ¢. A simple model is to assume that
the birth rates and mortality rates are proportional to the total population. This
gives the linear model

Ccll% =br—dr=(b—d)z=rz, x>0, (4.30)
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where birth rate b and mortality rate d are parameters. The model gives an ex-
ponential increase if b > d or an exponential decrease if b < d. A more realistic
model is to assume that the birth rate decreases when the population is large. The
following modification of the model (4.30) has this property:

d
d—“;” - m(1 - %) x>0, (4.31)
where k is the carrying capacity of the environment. The model (4.31) is called the
logistic growth model.

Predator—Prey Models

A more sophisticated model of population dynamics includes the effects of compet-
ing populations, where one species may feed on another. This situation, referred to
as the predator—prey problem, was introduced in Example 3.4, where we developed
a discrete-time model that captured some of the features of historical records of
lynx and hare populations.

In this section, we replace the difference equation model used there with a more
sophisticated differential equation model. Let H(t) represent the number of hares
(prey) and let L(t) represent the number of lynxes (predator). The dynamics of
the system are modeled as

%ZTH (1_‘ZZ>_GHEI’ HZO,

o p ¢+ (4.32)
a

&y —dL L>0.

dt c+H ’ 20

In the first equation, r represents the growth rate of the hares, k represents the
maximum population of the hares (in the absence of lynxes), a represents the
interaction term that describes how the hares are diminished as a function of the
lynx population, and ¢ controls the prey consumption rate for low hare population.
In the second equation, b represents the growth coefficient of the lynxes and d
represents the mortality rate of the lynxes. Note that the hare dynamics include a
term that resembles the logistic growth model (4.31).

Of particular interest are the values at which the population values remain
constant, called equilibrium points. The equilibrium points for this system can be
determined by setting the right-hand side of the above equations to zero. Letting
H, and L, represent the equilibrium state, from the second equation we have

cd
L = H! = . 4.
0 or H 4 (4.33)

Substituting this into the first equation, we have that for L, = 0 either H, = 0 or
H, = k. For L., # 0, we obtain

L =

rHe(c+ H,) (1 B He> _ ber(abk — cd — dk)
N aH, o

ko (ab— d)2k (4:34)
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Figure 4.20: Simulation of the predator—prey system. The figure on the left
shows a simulation of the two populations as a function of time. The figure on
the right shows the populations plotted against each other, starting from different
values of the population. The oscillation seen in both figures is an example of a
limit cycle. The parameter values used for the simulations are a = 3.2, b = 0.6,
c=50,d=0.56, k=125, and r = 1.6.

Thus, we have three possible equilibrium points @, = (Le, He):

0 k H
xe:[o]a ze:[o]a ze:[L*]7

where HX and L} are given in equations (4.33) and (4.34). Note that the equilib-
rium populations may be negative for some parameter values, corresponding to a
unachievable equilibrium point.

Figure 4.20 shows a simulation of the dynamics starting from a set of popu-
lation values near the nonzero equilibrium values. We see that for this choice of
parameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 3.7.

Volume I of the two-volume set by J. D. Murray [Mur04] give a broad coverage
of population dynamics.

EXERCISES

4.1 (Cruise control) Consider the cruise control example described in Section 4.1.
Build a simulation that re-creates the response to a hill shown in Figure 4.3b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of the hill.

4.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
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tion (4.5) can be approximated in state space form as
i 1 o 0 1 T + D’Uo/(bJ> u
dt \z2) — \mgh/J 0} |z2 muvdh/(bJ))
Y= [1 O] z,

where the input u is the steering angle § and the output y is the tilt angle . What
do the states x1 and x5 represent?

4.3 (Bicycle steering) Combine the bicycle model given by equation (4.5) and the
model for steering kinematics in Example 3.11 to obtain a model that describes the
path of the center of mass of the bicycle.

4.4 (Operational amplifier circuit) Consider the op amp circuit shown below.

V2
O—MWA—T— WV MV
R, R, Ry
Ry
v CG=F+ —'\A/\TO
VO

(&) —|— V3

[ O

Show that the dynamics can be written in state space form as

1 1 1

de RiC, R.Cy R.Cy _

i~ | Ry 1 R A . b y_(() 1]33’
R, RyCy RyCy

where u = v; and y = v3. (Hint: Use v2 and vs as your state variables.)

4.5 (Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

G R4 Cy
H " H

M MY

Show that the dynamics can be written in state space form as

0o
dr Ry R3Cy "
7 . !
Ry

where the state variables represent the voltages across the capacitors x1 = vy and
ro = V9.
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4.6 (Congestion control using RED [LPW102]) A number of improvements can
be made to the model for Internet congestion control presented in Section 4.4.
To ensure that the router’s buffer size remains positive, we can modify the buffer
dynamics to satisfy

dt

db; _)si—a if0< b < bl,maX7
o otherwise.

In addition, we can model the drop probability of a packet based on how close a
filtered estimate of the buffer size is to the buffer limits, a mechanism known as
random early detection (RED):

0 ajp < b%ow7
b= /Bl(al) = pl(ai B b}OW) . b%o‘.’v <ar< bllmid’
nl(ai _ b;md) + Pl(b;md _ b%ow) b;md < a; < b;nax’
1 aj > b;nax’
dal

T —aqcr(ap — by),

where oy, pi, i, bi°Y, b4 and b"*® are parameters for the RED protocol. The
variable a; is a smoothed version of the buffer size b;. Using the model above,
write a simulation for the system and find a set of parameter values for which there
is a stable equilibrium point and a set for which the system exhibits oscillatory
solutions. The following sets of parameters should be explored:

N = 20,30,...,60, blow = 40 pkts, a; =107%,
c=38,9,...,15 pkts/ms, bid = 540 pkts, o1 = 0.0002,
7P = 55,60, ...,100 ms bmax = 1080 pkts, m = 0.00167.

4.7 (Atomic force microscope with piezo tube) A schematic diagram of an AFM
where the vertical scanner is a piezo tube with preloading is shown below.

yr_m

Ve
my

ky == 2

Show that the dynamics can be written as

d? d d?
(m1 + mz)i + (a1 + Cz)ﬁ + (k1 + k)21 =

dl
a2 dt +eagy kel

Mg Ty

where z; is the displacement of the first mass and [ = z; — 25 is the difference in
displacement between the first and second masses. Are there parameter values that
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make the dynamics particularly simple?

4.8 (Drug administration) The metabolism of alcohol in the body can be modeled
by the nonlinear compartment model

dC]

dcb
V —
Vat

bﬁ = Q(Cb - Cl) — (max

= q(a —cb) + Givs Qgi,

C1
——+
co t+a
where V}, = 48 L and V] = 0.6 L are the apparent volumes of distribution of body
water and liver water, ¢, and ¢; are the concentrations of alcohol in the com-
partments, g, and g,; are the injection rates for intravenous and gastrointestinal
intake, ¢ = 1.5 L/min is the total hepatic blood flow, gmax = 2.75 mmol/min and
¢p = 0.1 mmol/L. Simulate the system and compute the concentration in the blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

4.9 (Insulin-glucose dynamics) The following model for insulin glucose dynamics by
Gaetano and colleagues [GMGMO5] has three states: glucose concentration in the
bloodstream G [mg/dL], insulin concentration in the bloodstream I [pUI/ml], and
X [min~'] that represents the increased removal rate of glucose due to insulin. The
state X is proportional to the concentration of interstitial insulin. The dynamics
are:

dG
i —(p1 + X)G 4+ p1Gp + ug
dX
— = —po X I—1
7 P2 X + p3( b)
Di
E = P4 max(G — D5, 0) — pg([ — Ib) =+ ug.

Use the parameters

Gy, = 87, I, =379, p1 =005 py=0.5, p3 = 1074,

ps=1075,  ps =150, ps = 0.05,  p;=199.

Simulate the system with the initial conditions G(0) = 400, I(0) = 200 and X (0) =
0. This corresponds to a person having taken a large initial dose of glucose.

4.10 (Population dynamics) Consider the model for logistic growth given by equa-
tion (4.31). Show that the maximum growth rate occurs when the size of the
population is half of the steady-state value.

4.11 (Fisheries management) Some features of the dynamics of a commercial fishery
can be described by the following simple model:

dx

= f@) —h(zw), oy =bh(ew) - e

where z is the total biomass, f(z) = rz(1—z/k) is the growth rate, and r and k are
constant parameters. The harvesting rate is h(z,u) = axu, where a is a constant
parameter and u is the fishing effort. The output y is the rate of revenue, where b
and c are constants representing the price of fish and the cost of fishing.

a) Find a sustainable equilibrium point where the revenue is as large as possi-
ble. Determine the equilibrium value of the biomass and the fishing effort at the
equilibrium.
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b) With the parameters a = 0.1, b= 1, ¢ = 1, k = 100, and r = 0.2 the sustainable
equilibrium point corresponds to z, = 55 and u, = 0.9. For an individual fisherman
it is profitable to fish as long as the rate of revenue y = (abx — c)u is positive.
Explore by simulation what happens if the fishing intensity is much higher than
the sustainable fishing rate wu,, say u = 3. Use the results to discuss the role of
having a fishing quota.

4.12 (Predator-prey dynamics) The Lotka-Volterra equation

© et L =(etdny,

where x and y are the numbers of preys and predators, is a model for predator-prey
behavior that is simpler than the one given by equation (4.32). Show by scaling
all variables z, y, and ¢ that the system is essentially governed by one parameter.
Simulate the original equations with the parameters a = 1.6, b = 0.003, ¢ = 0.6,
and d = 0.001 and the initial conditions z(0) = 50, y(0) = 200.






Chapter Five

Dynamic Behavior

It Don’t Mean a Thing If It Ain’t Got That Swing.
Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behavior of dynamical
systems focused on systems modeled by nonlinear differential equations. This allows
us to consider equilibrium points, stability, limit cycles, and other key concepts in
understanding dynamic behavior. We also introduce some methods for analyzing
the global behavior of solutions.

5.1 SOLVING DIFFERENTIAL EQUATIONS

In the previous two chapters we saw that one of the methods of modeling dynamical
systems is through the use of ordinary differential equations (ODEs). A state space,
input/output system has the form

T —fw, y=hiu), (1)
t
where © = (z1,...,2,) € R™ is the state, u € R? is the input, and y € R? is the
output. The smooth maps f : R x RP — R™ and h : R” x RP — R? represent
the dynamics and measurements for the system. In general, they can be nonlinear
functions of their arguments. Systems with many inputs and many outputs are
called multi-input, multi-output systems (MIMO) systems. We will usually focus
on single-input, single-output (SISO) systems, for which p = ¢ = 1.

We begin by investigating systems in which the input has been set to a function
of the state, u = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equations in this case become

o = f(,a(@) = F(). (5.2)
To understand the dynamic behavior of this system, we need to analyze the
features of the solutions of equation (5.2). While in some simple situations we can
write down the solutions in analytical form, often we must rely on computational
approaches. We begin by describing the class of solutions for this problem.
We say that x(t) is a solution of the differential equation (5.2) on the time
interval ty € R to tf € R if

dz(t)
dt

= F(x(t)) forall tg <t <t
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A given differential equation may have many solutions. We will most often be
interested in the initial value problem, where x(t) is prescribed at a given time
to € R and we wish to find a solution valid for all future time t > t,.

We say that x(t) is a solution of the differential equation (5.2) with initial value
xo € R™ at tg € R if

dz(t)

to) = d
x(tg) = xp an o

= F(x(t)) forall tg <t <ty

For most differential equations we will encounter, there is a unique solution that is
defined for tg < t < tr. The solution may be defined for all time ¢ > ¢y, in which
case we take ty = co. Because we will primarily be interested in solutions of the
initial value problem for differential equations, we will usually refer to this simply
as the solution of a differential equation.

We will typically assume that t( is equal to 0. In the case when F is independent
of time (as in equation (5.2)), we can do so without loss of generality by choosing
a new independent (time) variable, 7 =t — t (Exercise 5.1).

Example 5.1 Damped oscillator
Consider a damped linear oscillator with dynamics of the form

G+ 2¢wod + wiqg =0,

where ¢ is the displacement of the oscillator from its rest position. These dynamics
are equivalent to those of a spring-mass system, as shown in Exercise 3.6. We
assume that ¢ < 1, corresponding to a lightly damped system (the reason for this
particular choice will become clear later). We can rewrite this in state space form
by setting 1 = ¢ and x5 = §/wo, giving

dz, dzz

— = woZ2, = —wox1 — 2Cwoxs.
7 02 7 0T1 — 2CWoT2

In vector form, the right-hand side can be written as

F(z) = [ worz ] .

—wpx1 — 2Cwox2

The solution to the initial value problem can be written in a number of different
ways and will be explored in more detail in Chapter 6. Here we simply assert that
the solution can be written as

1

x1(t) = e~ Cwot (:1010 coswqt + — (wox19 + X20) sin wdt) ,
wd
1

xo(t) = e~ Cwot (xgo cos wqt — —(nglo + wopxoo) sin wdt) ,
wd

where 29 = (210, 20) is the initial condition and wgq = wp+/1 — (2. This solution
can be verified by substituting it into the differential equation. We see that the so-
lution is explicitly dependent on the initial condition, and it can be shown that this
solution is unique. A plot of the initial condition response is shown in Figure 5.1.
We note that this form of the solution holds only for 0 < ( < 1, corresponding to
an “underdamped” oscillator. \Y%
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Figure 5.1: Response of the damped oscillator to the initial condition z¢ = (1,0).
The solution is unique for the given initial conditions and consists of an oscillatory
solution for each state, with an exponentially decaying magnitude.

Without imposing some mathematical conditions on the function F', the differ- g%
ential equation (5.2) may not have a solution for all ¢, and there is no guarantee
that the solution is unique. We illustrate these possibilities with two examples.

Example 5.2 Finite escape time
Let € R and consider the differential equation
dz 9
— = 5.3
7 = (5.3)
with the initial condition x(0) = 1. By differentiation we can verify that the
function

satisfies the differential equation and that it also satisfies the initial condition. A
graph of the solution is given in Figure 5.2a; notice that the solution goes to infinity
as t goes to 1. We say that this system has finite escape time. Thus the solution

exists only in the time interval 0 <t < 1. Vv
100 100
8 8
(5] [<5)
3 50F b 5 501
) )
0 : 0
0 0.5 1 1.5 0 2 4 6 8 10
Time ¢ Time ¢
(a) Finite escape time (b) Nonunique solutions

Figure 5.2: Existence and uniqueness of solutions. Equation (5.3) has a solution
only for time ¢ < 1, at which point the solution goes to infinity, as shown in (a).
Equation (5.4) is an example of a system with many solutions, as shown in (b). For
each value of a, we get a different solution starting from the same initial condition.
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Example 5.3 Nonunique solution
Let z € R and consider the differential equation

dx
i 2Vx (5.4)

with initial condition 2(0) = 0. We can show that the function

) 0 if0<t<a,
€T =
(t—a)? ift>a

satisfies the differential equation for all values of the parameter a > 0. To see this,
we differentiate z(t) to obtain

dr )0 if0<t<a,
dt — |2(t—a) ift>a,

and hence & = 2/z for all ¢ > 0 with 2(0) = 0. A graph of some of the possible
solutions is given in Figure 5.2b. Notice that in this case there are many solutions
to the differential equation. v

These simple examples show that there may be difficulties even with simple
differential equations. Existence and uniqueness can be guaranteed by requiring
that the function F' have the property that for some fixed ¢ € R,

[F(z) = F(y)ll <clle =yl forall z,y,

which is called Lipschitz continuity. A sufficient condition for a function to be
Lipschitz is that the Jacobian OF/dz is uniformly bounded for all z. The difficulty
in Example 5.2 is that the derivative OF/0x becomes large for large x, and the
difficulty in Example 5.3 is that the derivative F/0z is infinite at the origin.

5.2 QUALITATIVE ANALYSIS

The qualitative behavior of nonlinear systems is important in understanding some of
the key concepts of stability in nonlinear dynamics. We will focus on an important
class of systems known as planar dynamical systems. These systems have two state
variables x € R?, allowing their solutions to be plotted in the (z1,x2) plane. The
basic concepts that we describe hold more generally and can be used to understand
dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems with state
x € R? is to plot the phase portrait of the system, briefly introduced in Chapter 3.
We start by introducing the concept of a wvector field. For a system of ordinary
differential equations

dx
-~ _F
dt (I),



DYNAMIC BEHAVIOR 5-5

S-SR \
05p , _ _ >N\ O\ 05
s SUYMNY
N AN = .
2 ot Py Cy 2 ot ]
AT P ]
\\'\\\\.,//J
_0-5’\\\\\\\_,; —0.5 ]
:{Q\\\\\\._,
-1 \\\\\\k -1 L
-1 =05 0 0.5 1 -1 =05 0 0.5 1
Tl 1
(a) Vector field (b) Phase portrait

Figure 5.3: Phase portraits. (a) This plot shows the vector field for a planar
dynamical system. Each arrow shows the velocity at that point in the state space.
(b) This plot includes the solutions (sometimes called streamlines) from different
initial conditions, with the vector field superimposed.

the right-hand side of the differential equation defines at every & € R™ a velocity
F(z) € R™. This velocity tells us how z changes and can be represented as a vector
F(z) e R™.

For planar dynamical systems, each state corresponds to a point in the plane
and F(z) is a vector representing the velocity of that state. We can plot these
vectors on a grid of points in the plane and obtain a visual image of the dynamics
of the system, as shown in Figure 5.3a. The points where the velocities are zero
are of particular interest since they define stationary points of the flow: if we start
at such a state, we stay at that state.

A phase portrait is constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a set of initial conditions,
we plot the solution of the differential equation in the plane R2. This corresponds
to following the arrows at each point in the phase plane and drawing the resulting
trajectory. By plotting the solutions for several different initial conditions, we ob-
tain a phase portrait, as show in Figure 5.3b. Phase portraits are also sometimes
called phase plane diagrams.

Phase portraits give insight into the dynamics of the system by showing the
solutions plotted in the (two-dimensional) state space of the system. For example,
we can see whether all trajectories tend to a single point as time increases or whether
there are more complicated behaviors. In the example in Figure 5.3, corresponding
to a damped oscillator, the solutions approach the origin for all initial conditions.
This is consistent with our simulation in Figure 5.1, but it allows us to infer the
behavior for all initial conditions rather than a single initial condition. However,
the phase portrait does not readily tell us the rate of change of the states (although
this can be inferred from the lengths of the arrows in the vector field plot).
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Figure 5.4: Equilibrium points for an inverted pendulum. An inverted pendulum
is a model for a class of balance systems in which we wish to keep a system upright,
such as a rocket (a). Using a simplified model of an inverted pendulum (b), we can
develop a phase portrait that shows the dynamics of the system (c). The system
has multiple equilibrium points, marked by the solid dots along the x> = 0 line.

Equilibrium Points and Limit Cycles

An equilibrium point of a dynamical system represents a stationary condition for
the dynamics. We say that a state z. is an equilibrium point for a dynamical system

dx

o = 1@)

if F(ze) = 0. If a dynamical system has an initial condition x(0) = x., then it will

stay at the equilibrium point: x(t) = x. for all ¢ > 0, where we have taken ¢ty = 0.
Equilibrium points are one of the most important features of a dynamical system

since they define the states corresponding to constant operating conditions. A

dynamical system can have zero, one, or more equilibrium points.

Example 5.4 Inverted pendulum
Consider the inverted pendulum in Figure 5.4, which is a part of the balance system
we considered in Chapter 3. The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at the base of the rocket, we
seek to keep the rocket stabilized in the upright position. The state variables are
the angle § = z7 and the angular velocity df/dt = xo, the control variable is the
acceleration u of the pivot, and the output is the angle 6.

For simplicity we assume that mgl/J; = 1, I/J; = 1 and set ¢ = v/J;, so that
the dynamics (equation (3.10)) become

de_ [ 2 ] . (5.5)

dt ~ |sinz; — cxe + ucosxy

This is a nonlinear time-invariant system of second order. This same set of equa-
tions can also be obtained by appropriate normalization of the system dynamics as
illustrated in Example 3.10.

We consider the open loop dynamics by setting u = 0. The equilibrium points

for the system are given by
+nm
:Ee = 0 )
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Figure 5.5: Phase portrait and time domain simulation for a system with a limit
cycle. The phase portrait (a) shows the states of the solution plotted for different
initial conditions. The limit cycle corresponds to a closed loop trajectory. The
simulation (b) shows a single solution plotted as a function of time, with the limit
cycle corresponding to a steady oscillation of fixed amplitude.

where n = 0,1,2,.... The equilibrium points for n even correspond to the pendu-
lum pointing up and those for n odd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inputs) is shown in Figure 5.4c.
The phase portrait shows —27 < z; < 2, so five of the equilibrium points are
shown. \Y

Nonlinear systems can exhibit rich behavior. Apart from equilibrium points they
can also exhibit stationary periodic solutions. This is of great practical value in
generating sinusoidally varying voltages in power systems or in generating periodic
signals for animal locomotion. A simple example is given in Exercise 5.13, which
shows the circuit diagram for an electronic oscillator. A normalized model of the
oscillator is given by the equation

dzy =x9 +21(1 — 2% — 23), dey = —11 + 25(1 — 2] — z3). (5.6)
dt dt
The phase portrait and time domain solutions are given in Figure 5.5. The figure
shows that the solutions in the phase plane converge to a circular trajectory. In the
time domain this corresponds to an oscillatory solution. Mathematically the circle
is called a limit cycle. More formally, we call a nonconstant solution x,(¢) a limit
cycle of period T' > 0 if 2, (t + T) = xp(t) for all ¢ € R and nearby trajectories
converge to z,(-) as t — oo (stable limit cycle) or ¢ — —oo (unstable limit cycle).
There are methods for determining limit cycles for second-order systems, but for
general higher-order systems we have to resort to computational analysis. Com-
puter algorithms find limit cycles by searching for periodic trajectories in state
space that satisfy the dynamics of the system. In many situations, stable limit
cycles can be found by simulating the system with different initial conditions.
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Time t

Figure 5.6: Illustration of Lyapunov’s concept of a stable solution. The solution
represented by the solid line is stable if we can guarantee that all solutions remain
within a tube of diameter e by choosing initial conditions sufficiently close the
solution.

5.3 STABILITY

The stability of a solution determines whether or not solutions nearby the solution
remain close, get closer, or move further away. We now give a formal definition of
stability and describe tests for determining whether a solution is stable.

Definitions

Let z(t;a) be a solution to the differential equation with initial condition a. A
solution is stable if other solutions that start near a stay close to x(¢; a). Formally,
we say that the solution z(t;a) is stable if for all € > 0, there exists a 6 > 0 such
that

Ib—all<d = |z(t;d)—=x(t;a)| <e forallt>D0.

Note that this definition does not imply that x(¢;b) approaches x(t;a) as time
increases but just that it stays nearby. Furthermore, the value of § may depend on
€, so that if we wish to stay very close to the solution, we may have to start very,
very close (0 < €). This type of stability, which is illustrated in Figure 5.6, is also
called stability in the sense of Lyapunov. If a solution is stable in this sense and
the trajectories do not converge, we say that the solution is neutrally stable.

An important special case is when the solution x(¢;a) = z, is an equilibrium
solution. In this case the condition for stability becomes

|2(0) —zel| <6 = |lz(t) —ze|| <€ forallt>0. (5.7)

Instead of saying that the solution is stable, we simply say that the equilibrium
point is stable. An example of a neutrally stable equilibrium point is shown in
Figure 5.7. From the phase portrait, we see that if we start near the equilibrium
point, then we stay near the equilibrium point. Furthermore, if we choose an initial
condition from within the inner dashed circle (of radius ¢) then all trajectories will
remain inside the region defined by the outer dashed circle (of radius €). Note,
however, that trajectories may not remain confined remain inside the individual
circles (and hence we must choose § < €).

A solution z(t;a) is asymptotically stable if it is stable in the sense of Lyapunov
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Figure 5.7: Phase portrait and time domain simulation for a system with a single
stable equilibrium point. The equilibrium point z. at the origin is stable since all
trajectories that start near x. stay near ze.

and, in addition, x(¢;b) approaches xz(t; a) as t approaches infinity for b sufficiently
close to a. Hence, the solution z(¢;a) is asymptotically stable if for every ¢ > 0
there exists a § > 0 such that

Ib—all <0 = |z(t;b) —z(t;a)] <e and tlim llx(t; ) — z(t; )| = 0.

This corresponds to the case where all nearby trajectories converge to the stable
solution for large time. In the case of an equilibrium solution ., we can write this
condition as

[(0) —xe|]| <6 = ||z(t) —wel]| <€ and tlim x(t) = ze. (5.8)

Figure 5.8 shows an example of an asymptotically stable equilibrium point. Indeed,
as seen in the phase portrait, not only do all trajectories stay near the equilibrium
point at the origin, but they also all approach the origin as t gets large (the direc-
tions of the arrows on the phase portrait show the direction in which the trajectories

1 = T2
0.5¢ S T2 = —X1 — T2
4
><(\] 07 i 1 T
4 ~ 05E xl - x2 B
-0.5 1 1 - .
0( - — —
s/
-1 . 05 LN A | | | 4
-1 -0.5 0 0.5 1 0 2 4 6 8 10
x| Time ¢

Figure 5.8: Phase portrait and time domain simulation for a system with a single
asymptotically stable equilibrium point. The equilibrium point z. at the origin is
asymptotically stable since the trajectories converge to this point as ¢t — cc.
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Figure 5.9: Phase portrait and time domain simulation for a system with a single
unstable equilibrium point. The equilibrium point z. at the origin is unstable since
not all trajectories that start near z. stay near z.. The sample trajectory on the
right shows that the trajectories very quickly depart from zero.

move).

A solution z(t; a) is unstable if it is not stable. More specifically, we say that a
solution z(t;a) is unstable if given some € > 0, there does not exist a § > 0 such
that if ||b — al| < 9, then ||z(t;b) — z(¢;a)|| < € for all t. An example of an unstable
equilibrium point z, is shown in Figure 5.9. Note that no matter how small we
make 4§, there is always an initial condition with ||z(0) — z.|| < § that flows away
from z,.

The definitions above are given without careful description of their domain of
applicability. More formally, we define a solution to be locally stable (or locally
asymptotically stable) if it is stable for all initial conditions = € B,.(a), where

Br(a) ={z: [l —af <r}

is a ball of radius r around a and r > 0. A solution is globally asymptotically stable
if it is asymptotically stable for all r > 0.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either
a source, if all trajectories lead away from the equilibrium point, or a saddle, if
some trajectories lead to the equilibrium point and others move away (this is the
situation pictured in Figure 5.9). Finally, an equilibrium point that is stable but
not asymptotically stable (i.e., neutrally stable, such as the one in Figure 5.7) is
called a center.

Example 5.5 Congestion control
The TCP protocol is used to adjust the rate of packet transmission on the Inter-
net. Stability of this system is important to insure smooth and efficient flow of
information across the network.

The model for congestion control in a network consisting of N identical com-
puters connected to a single router, described in more detail in Section 4.4, is given

by
dw c w2 db we
o —Z 14 — o N— —
i b pc(* > @y o



DYNAMIC BEHAVIOR 5-11

300

Buffer size, b [pkts]
Buffer size, b [pkts]

=)
4

(=]

0 2 4 6 8 10 0 2 4 6 8 10
Window size, w [pkts] Window size, w [pkts]
(a) p=2x10"*, ¢ = 10 pkts/ms (b) p=4 x 107*, ¢ = 20 pkts/ms

Figure 5.10: Phase portraits for a congestion control protocol running with
N = 60 identical source computers. The equilibrium values correspond to a fixed
window at the source, which results in a steady-state buffer size and corresponding
transmission rate. A faster link (b) uses a smaller buffer size since it can handle
packets at a higher rate.

where w is the window size and b is the buffer size of the router. The equilibrium
points are given by

2

be = Nw,, where 1w, (1 + u;e) = Nip
Since w(1+w?/2) is monotone, there is only one equilibrium point. Phase portraits
are shown in Figure 5.10 for two different sets of parameter values. In each case we
see that the system converges to an equilibrium point in which the buffer is below its
full capacity of 500 packets. The equilibrium size of the buffer represents a balance
between the transmission rates for the sources and the capacity of the link. We
see from the phase portraits that the equilibrium points are asymptotically stable
since all initial conditions result in trajectories that converge to these points.

\Y
Stability of Linear Systems
A linear dynamical system has the form
d
c% = Az, z(0) = zo, (5.9)

where A € R™ ™ is a square matrix, corresponding to the dynamics matrix of a
linear control system (3.6). For a linear system, the stability of the equilibrium
point at the origin can be determined from the eigenvalues of the matrix A:

AA) :={s € C:det(sI — A) =0}.

The polynomial det(sI — A) is the characteristic polynomial and the eigenvalues are
its roots. We use the notation A; for the jth eigenvalue of A, so that A\; € A(A4).
In general A\ can be complex-valued, although if A is real-valued, then for any
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eigenvalue A, its complex conjugate A* will also be an eigenvalue. The origin is
always an equilibrium point for a linear system. Since the stability of a linear
system depends only on the matrix A, we find that stability is a property of the
system. For a linear system we can therefore talk about the stability of the system
rather than the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
are in diagonal form. In this case, the dynamics have the form

A1 0
dx Az
— = x. 5.10
e (5.10)

0 An

It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of n individual systems @; = A;z;.
Each of these scalar solutions is of the form

zi(t) = Mz (0).

We see that the equilibrium point z. = 0 is stable if A\; < 0 and asymptotically
stable if A; < 0.
Another simple case is when the dynamics are in the block diagonal form

g1 W1 0 0
—Ww1 01 0 0
dx . . .
a 0 0o . : L
0 0 Om W
0 0 —Wm  Om

In this case, the eigenvalues can be shown to be A; = 0; £ iw;. We once again can
separate the state trajectories into independent solutions for each pair of states,
and the solutions are of the form

Igj_l(t) = e”ft (12]'_1(0) COS wjt + 502]‘(0) sin w]'t),

29;(t) = €79" (—w9;-1(0) sinw;t + 22;(0) cosw;t),

where j = 1,2,...,m. We see that this system is asymptotically stable if and only
if 0; = Re\; < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but many systems
can be transformed into these forms via coordinate transformations. One such
class of systems is those for which the dynamics matrix has distinct (nonrepeating)
eigenvalues. In this case there is a matrix T' € R™*" such that the matrix TAT !
is in (block) diagonal form, with the block diagonal elements corresponding to
the eigenvalues of the original matrix A (see Exercise 5.15). If we choose new
coordinates z = Tz, then

d
d% —Ti=TAr = TAT 'z
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and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as those of the original system
since if v is an eigenvector of A, then w = Tv can be shown to be an eigenvector
of TAT~'. We can reason about the stability of the original system by noting
that 2(t) = T~ 12(t), and so if the transformed system is stable (or asymptotically
stable), then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stabil-
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:

Theorem 5.1 (Stability of a linear system). The system

dx
— = Az
dt
is asymptotically stable if and only if all eigenvalues of A have a strictly negative
real part and is unstable if any eigenvalue of A has a strictly positive real part.

Note that it is not enough to have eigenvalues with Re(A) < 0. As a simple
example, consider the system ¢ = 0, which can be written in state space form as

i T _ 0 1 T
dt \z2) |0 0O z2)
The system has eigenvalues A = 0 but the solutions are not bounded since we have

Il(t) =x1,0+ .%'2’0t7 {EQ(t) = 22,0-

Example 5.6 Compartment model

Consider the two-compartment module for drug delivery described in Section 4.6.
Using concentrations as state variables and denoting the state vector by x, the
system dynamics are given by

dx —ko — k1 k1 bo (

— = T u, =10 1] x,

dt [ ke k) "7 (0 v
where the input u is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measured output y. We wish to

design a feedback control law that maintains a constant output given by y = yq.
We choose an output feedback control law of the form

u = —k(y —ya) + ua,

where uq is the rate of injection required to maintain the desired concentration
Yy = yq, and k is a feedback gain that should be chosen such that the closed loop
system is stable. Substituting the control law into the system, we obtain

dx o —k() — kl kl — bok bo
dt [ ko —k )T {0

[0 1] v =: Cu.

] (uq + kya) =: Az + Bue,

Y
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The equilibrium concentration z, € R? can be obtained by solving the equation
Aze + Bue = 0 and some simple algebra yields

ko
Tle = T2,e = Yd, Ue = Ud = Fyd~
0

To analyze the system around the equilibrium point, we choose new coordinates
z = ¢ — Ze. In these coordinates the equilibrium point is at the origin and the
dynamics become
dz _ *ko — kl k‘l - bok
dt [ ko —k2 ] ‘

We can now apply the results of Theorem 5.1 to determine the stability of the
system. The eigenvalues of the system are given by the roots of the characteristic
polynomial

A(s) = 8% + (ko + k1 + ka2)s + (koka + bokz2k).

While the specific form of the roots is messy, it can be shown using the Routh—
Hurwitz criterion that the roots have negative real part as long as the linear term
and the constant term are both positive (see Section 2.2, page 2-9). Hence the
system is stable for any k£ > 0. \Y%

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible to determine
the local stability of an equilibrium point by approximating the system by a linear
system. The following example illustrates the basic idea.

Example 5.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dr To
dt  |sinz; —czo )’

where we have defined the state as z = (6,0). We first consider the equilibrium
point at = (0,0), corresponding to the straight-up position. If we assume that
the angle & = x; remains small, then we can replace sin xy with x; and cos z; with
1, which gives the approximate system

dr To [0 1
dat [gcl—cwg] o [1 —c] v (5.11)

Intuitively, this system should behave similarly to the more complicated model as
long as x; is small. In particular, it can be verified that the equilibrium point
(0,0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (5.11)

We can also approximate the system around the stable equilibrium point at
2 = (m,0). In this case we have to expand sinz; and cosz; around z; = m,
according to the expansions

sin(m 4+ 0) = —sinf ~ —0, cos(m + 6) = —cos(f) = —1.
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Figure 5.11: Comparison between the phase portraits for the full nonlinear sys-
tem (a) and its linear approximation around the origin (b). Notice that near the
equilibrium point at the center of the plots, the phase portraits (and hence the
dynamics) are almost identical.

If we define z; = 1 — 7 and zo = 2, the resulting approximate dynamics are given

by
dZ - Z9 o 0 1
i [—z1 _sz] = [_1 _C] z. (5.12)

It can be shown that the eigenvalues of the dynamics matrix have negative real
parts, confirming that the downward equilibrium point is asymptotically stable.
Figure 5.11 shows the phase portraits for the original system and the approxi-
mate system around the stable equilibrium point. Note that z = (0,0) is the equi-
librium point for this system and that it has the same basic form as the dynamics
shown in Figure 5.8. The solutions for the original system and the approximate are
very similar, although not exactly the same. It can be shown that if a linear ap-
proximation has either asymptotically stable or unstable equilibrium points, then
the local stability of the original system must be the same (see Theorem 5.3 on
page 5-26 for the case of asymptotic stability). v

More generally, suppose that we have a nonlinear system

dx

— =F(x

that has an equilibrium point at z.. Computing the Taylor series expansion of the
vector field, we can write

d F
d—f = F(xe) + g—x (z — xe) + higher-order terms in (z — ).

Te

Since F'(z,) = 0, we can approximate the system by choosing a new state variable
z =T — T, and writing

dz oF
pri Az, where A= e - (5.13)

We call the system (5.13) the linear approzimation of the original nonlinear system
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or the linearization at x.. The following example illustrates the idea.

Example 5.8 Stability a tanker
The normalized steering dynamics of a large ship can be modeled by the following
equations:
@ = a1v + aor + av|v| + b1 4, @ = azv + ayqr + b,
dt dt

where v is the component of the velocity vector that is orthogonal to the ship direc-
tion, r is the turning rate, and ¢ is the rudder angle. The variables are normalized
by using the ship length [ as length unit and the time to travel one ship length as
the time unit. The mass is normalized by pl3/2, where p is the density of water.
The normalized parameters are a; = —0.6, as = —0.3, a3 = =5, ag = =2, a = =2,
b1 = 0.1, and by = —0.8.

Setting the rudder angle 6 = 0, we find that the equilibrium points are given by
the equations

a1v + agr + avlv| = 0, asv + aqr = 0.

Elimination of the variable r in these equations give
(agas — ajaq)v + aaqv|v] =0

There are three equilibrium solutions: v, = 0 and v, = £0.075. Linearizing the
equation gives a second order system with dynamics matrices

-0.6 —-0.3 -14 -0.3
w= (T A ()

The linearized matrix Ag, for the equilibrium point v, = 0, has the characteristic
polynomial s2 + 2.3s — 0.9, which has one root in the right half-plane. The equilib-
rium point is thus unstable. The matrix Ay, for the equilibrium points v, = £0.75,
has the characteristic polynomial s? + 3.4s + 1.3, which has all roots in the left
half-plane. These equilibrium points are stable.

Summarizing, we find that the equilibrium point v, = r, = 0, which corresponds
to the ship moving forward at constant speed, is unstable. The other equilibrium
points v, = —0.075, r, = 0.1875, and v, = 0.075, r, = —0.1875 are stable (see
Figure 5.12b). These equilibrium points correspond to the tanker moving in a
circle to the left of to the right. Hence if the rudder is set to 4 = 0 and the ship is
moving forward it will thus either turn to the right or to the left and approach one
of the stable equilibrium points, which way it goes depends on the exact value of
the initial condition. The trajectories are shown in Figure 5.12a. \Y%

The fact that a linear model can be used to study the behavior of a nonlinear
system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equilib-
rium point, which in turn ensures that the linear approximation used to stabilize
it is valid.
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Figure 5.12: Equilibrium points for tanker. The trajectories are shown in (a)
and the rudder characteristics in (b), where the equilibrium points are marked by
circles.

Stability of Limit Cycles

Stability of nonequilibrium solutions can also be investigated as illustrated by the
following example.

Example 5.9 Stability of an oscillation
Consider the system given by equation (5.6),

d
% zxg—&—xl(l—x%—xg),

dza

el —x1 +x2(1 — 1:% — x%),

whose phase portrait is shown in Figure 5.5. The differential equation has a periodic
solution

(5.14)

_ [21(0) cost + z2(0) sint
o = x2(0) cost — z1(0) sint J ’

with 22(0) + 22(0) = 1. Notice that the nonlinear terms disappear on the periodic
solution.

To explore the stability of this solution, we introduce polar coordinates r > 0
and ¢, which are related to the state variables x; and x5 by

T1 = T COS p, ZTo = rSine.
Differentiation gives the following linear equations for i and ¢:
T1 = 1 COsp — rpsin g, To = 7" 8in @ + 7 COS Y.
Solving this linear system for 7 and ¢ gives, after some calculation,

dr dy
= (1 =2 - — 1. 5.15
-, 2 (5.15)
Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation for r has two equilibrium points: 7 = 0 and r = 1 (notice that
r is assumed to be non-negative). The derivative dr/dt is positive for 0 < r < 1
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Figure 5.13: Solution curves for a stable limit cycle. The phase portrait on the
left shows that the trajectory for the system rapidly converges to the stable limit
cycle. The starting points for the trajectories are marked by circles in the phase
portrait. The time domain plots on the right show that the states do not converge
to the solution but instead maintain a constant phase error.

and negative for r > 1. The variable r will therefore increase if 0 < r < 1 and
decrease if r > 1, and we find that the equilibrium point » = 0 is unstable and the
equilibrium point r = 1 is stable. Solutions with initial conditions different from 0
will thus all converge to the stable equilibrium point r = 1 as time increases.

To study the stability of the full system, we must also investigate the behavior of
angle ¢. The equation for ¢ can be integrated analytically to give ¢(t) = —t+¢(0),
which shows that solutions starting at different initial angles ¢ (0) will grow linearly
with time, remaining separated by a constant amount. The solution r =1, ¢ = —t
is thus stable but not asymptotically stable. The unit circle in the phase plane is
attracting, in the sense that all solutions with 7(0) > 0 converge to the unit circle,
as illustrated in the simulation in Figure 5.13. Notice that the solutions approach
the circle rapidly, but that there is a constant phase shift between the solutions.

\Y
5.4 LYAPUNOYV STABILITY ANALYSIS
We now return to the study of the full nonlinear system
d
d% = F(z), z€R" (5.16)

Having defined when a solution for a nonlinear dynamical system is stable, we
can now ask how to prove that a given solution is stable, asymptotically stable,
or unstable. For physical systems, one can often argue about stability based on
dissipation of energy. The generalization of that technique to arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.

In this section we will describe techniques for determining the stability of solu-
tions for a nonlinear system (5.16). We will generally be interested in stability of
equilibrium points, and it will be convenient to assume that z, = 0 is the equilib-
rium point of interest. (If not, rewrite the equations in a new set of coordinates
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Lyapunov Functions

A Lyapunov function V : R®™ — R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, if we can find a nonnegative
function that always decreases along trajectories of the system, we can conclude
that the minimum of the function is a stable equilibrium point (locally).

To describe this more formally, we start with a few definitions. Let B, = B,.(0)
be a ball of radius r around the origin. We say that a continuous function V is
positive definite on B, if V(z) > 0 for all z € B,., x # 0 and V(0) = 0. Similarly, a
function is negative definite on B, if V(x) < 0 for all z € B,.,  # 0 and V(0) = 0.
We say that a function V is positive semidefinite if V(z) > 0 for all € B,, but
V(x) can be zero at points other than just = 0.

To illustrate the difference between a positive definite function and a positive
semidefinite function, suppose that € R? and let

Vi(z) = a3, Va(z) = 2f + 3.

Both V; and V5 are always nonnegative. However, it is possible for V; to be zero
even if x # 0. Specifically, if we set x = (0, ¢), where ¢ € R is any nonzero number,
then Vi(x) = 0. On the other hand, Vo(z) = 0 if and only if z = (0,0). Thus V; is
positive semidefinite and V5 is positive definite.

We can now characterize the stability of an equilibrium point z, = 0 for the
system (5.16).

Theorem 5.2 (Lyapunov stability theorem). Let V' be a function on R™ and let 1%
represent the time derivative of V along trajectories of the system dynamics (5.16):

g Vde oV

T

If there exists 7 > 0 such that V is positive definite and V is negative semidefinite
on By, then x = 0 is (locally) stable in the sense of Lyapunov. If V is positive
definite and V is negative definite in B,, then x = 0 is (locally) asymptotically
stable.

If V satisfies one of the conditions above, we say that V is a (local) Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined by V(z) = ¢,
¢ > 0, and for each c this gives a closed contour, as shown in Figure 5.14. The
condition that V(m) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories move to smaller and smaller
values of V and if V is negative definite then 2 must approach 0.

Finding Lyapunov functions is not always easy. For example, consider the linear

system
dzy dzo

=L =g, -2
at — ? dt
Since the system is linear, it can be easily verified that the eigenvalues of the

= —x1 — aTo9, a > 0.
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Figure 5.14: Geometric illustration of Lyapunov’s stability theorem. The closed
contours represent the level sets of the Lyapunov function V(z) = c¢. If dz/dt
points inward to these sets at all points along the contour, then the trajectories of
the system will always cause V() to decrease along the trajectory.

corresponding dynamics matrix are given by

—a++va? -4

A= 5

These eigenvalues always have negative real part for « > 0 and hence the system
is asymptotically stable. It follows that x(t) — 0 and ¢ — oo and so a natural
Lyapunov function candidate would be the squared magnitude of the state:

1 1
V(z) = a3 + =a3.

() = 593 + 573
Taking the time derivative of this function and evaluating along the trajectories of
the system we find that '

V(z) = —ax?.
But this function is not positive definite, as can be seen by evaluating V at the point
x = (1,0), which gives V(z) = 0. Hence even though the system is asymptotically
stable, a Lyapunov function that proves stability is not as simple as the squared
magnitude of the state.

We now consider some additional examples.

Example 5.10 Scalar nonlinear system
Consider the scalar nonlinear system

dr 2
dt 1+
This system has equilibrium points at z = 1 and x = —2. We consider the equilib-

rium point at x = 1 and rewrite the dynamics using z = x — 1:

a_ 2,
dt 24z T

which has an equilibrium point at z = 0. Now consider the candidate Lyapunov
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function

1
V(z) = 522,

which is globally positive definite. The derivative of V along trajectories of the
system is given by
2z 9
= —z
24z
If we restrict our analysis to an interval B,., where r < 2, then 2+ z > 0 and we
can multiply through by 2 4+ z to obtain

V(z) =22

—Z.

22 — (22 +2)(2+2) = 22— 322 = —2%(2+3) <0, z€ By, r<2.

It follows that V(z) < 0 for all z € B,., z # 0, and hence the equilibrium point
x = 1 is locally asymptotically stable. v

A slightly more complicated situation occurs if V is negative semidefinite. In
this case it is possible that V() = 0 when x # 0, and hence x could stop decreasing
in value. The following example illustrates this case.

Example 5.11 Hanging pendulum
A normalized model for a hanging pendulum is

dl‘l dSCQ .
E—l‘g, W—*Slnl’l,
where x; is the angle between the pendulum and the vertical, with positive x;
corresponding to counterclockwise rotation. The equation has an equilibrium point
x1 = x9 = 0, which corresponds to the pendulum hanging straight down. To explore
the stability of this equilibrium point we choose the total energy as a Lyapunov
function:
. Lo 1o 1,

V(z)=1—coszy + 2%2 N 511 + 5%2

The Taylor series approximation shows that the function is positive definite for

small z. The time derivative of V() is
V =&ysinxy + d9x9 = x98inz] — 2o sinxy; = 0.

Since this function is negative semidefinite, it follows from Lyapunov’s theorem that
the equilibrium point is stable but not necessarily asymptotically stable. When per-
turbed, the pendulum actually moves in a trajectory that corresponds to constant
energy. \Y

As demonstrated already, Lyapunov functions are not always easy to find, and
they are also not unique. In many cases energy functions can be used as a starting
point, as was done in Example 5.11. It turns out that Lyapunov functions can
always be found for any stable system (under certain conditions), and hence one
knows that if a system is stable, a Lyapunov function exists (and vice versa).
Recent results using sum-of-squares methods have provided systematic approaches
for finding Lyapunov systems [PPP02]. Sum-of-squares techniques can be applied
to a broad variety of systems, including systems whose dynamics are described by
polynomial equations, as well as hybrid systems, which can have different models
for different regions of state space.
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For a linear dynamical system of the form

dx
— = Az,
dt
it is possible to construct Lyapunov functions in a systematic manner. To do so,
we consider quadratic functions of the form

V(z) = 2T P,

where P € R™ " is a symmetric matrix (P = PT). The condition that V be
positive definite on B, for some r > 0 is equivalent to the condition that P be a
positive definite matriz:

zT Pz >0, forall z#0,

which we write as P > 0. It can be shown that if P is symmetric, then P is positive
definite if and only if all of its eigenvalues are real and positive.

Given a candidate Lyapunov function V(z) = 27 Px, we can now compute its
derivative along flows of the system:

V= g—‘;% =2T(ATP + PA)x = —2TQu.
The requirement that V be negative definite on B, (for asymptotic stability) be-
comes a condition that the matrix @ be positive definite. Thus, to find a Lyapunov
function for a linear system it is sufficient to choose a @ > 0 and solve the Lyapunov
equation:

ATP+ PA=-Q. (5.17)

This is a linear equation in the entries of P, and hence it can be solved using
linear algebra. It can be shown that the equation always has a solution if all of
the eigenvalues of the matrix A are in the left half-plane. Moreover, the solution
P is positive definite if @Q is positive definite. It is thus always possible to find a
quadratic Lyapunov function for a stable linear system. We will defer a proof of this
until Chapter 6, where more tools for analysis of linear systems will be developed.

Example 5.12 Spring—mass system
Consider a simple spring—mass system, whose state space dynamics are given by

dl’l dl’g k b
— = — = ——x — —29, b,k > 0.
a0 dt L m,
Note that this is equivalent to the example we used on page 5-19 if k¥ = m and
b/m = a.
To find a Lyapunov function for the system, we choose @ = —I and the equa-

tion (5.17) becomes

(i I R I (S I IR ) G

By evaluating each element of this matrix equation, we can obtaining a set of linear
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equations for py;:

2k b k
——p12 = —1, P11 — —pi2 — —p22 =0, 2p12 — —pa2 = —1.
m m m m

These equations can be solved for py1, p12, and ps to obtain

b2 + k(k +m) m
. 26k 2%
m m(k 4+ m)
2k 2bk
Finally, it follows that
b2 + k(k +m) m m(k +m)
V) = T mm

Notice that while it can be verified that this function is positive definite, its level
sets are rotated ellipses. v

Knowing that we have a direct method to find Lyapunov functions for linear sys-
tems, we can now investigate the stability of nonlinear systems. Consider the
system

dx ~

i F(z) =: Az + F(z), (5.18)
where F(0) = 0 and F(z) contains terms that are second order and higher in the
elements of z. The function Az is an approximation of F'(x) near the origin, and we
can determine the Lyapunov function for the linear approximation and investigate if
it is also a Lyapunov function for the full nonlinear system. The following example
illustrates the approach.

Example 5.13 Genetic switch
Consider the dynamics of a set of repressors connected together in a cycle, as
shown in Figure 5.15a. The normalized dynamics for this system were given in

Exercise 3.10: p p
21 0 22 1
- — = = — 5.19
dr 1+ 27 b dr 142z} = (5.19)

where z; and zy are scaled versions of the protein concentrations, n > 0 and u > 0
are parameters that describe the interconnection between the genes, and we have
set the external inputs u; and us to zero.

The equilibrium points for the system are found by equating the time derivatives
to zero. We define

_on oy df _ —pnut Tt
so that our dynamics become
dz dz
T;=f(22)—21, CTTQZJC(Zl)—Zm
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Figure 5.15: Stability of a genetic switch. The circuit diagram in (a) represents
two proteins that are each repressing the production of the other. The inputs u;
and wue interfere with this repression, allowing the circuit dynamics to be modified.
The equilibrium points for this circuit can be determined by the intersection of the
two curves shown in (b).

and the equilibrium points are defined as the solutions of the equations

21 = f(22), 22 = f(21).

If we plot the curves (z1, f(z1)) and (f(z2),22) on a graph, then these equations
will have a solution when the curves intersect, as shown in Figure 5.15b. Because
of the shape of the curves, it can be shown that there will always be three solutions:
one at z1. = 29, one with z1. < 29, and one with 21, > 2z9.. If > 1, then we can
show that the solutions are given approximately by

1 1
e ph 20N I Mle =26 2N DD S Mg (5.20)

To check the stability of the system, we write f(u) in terms of its Taylor series
expansion about u:

flu) = flue) + f/(ue) - (u — ue) + %f”(ue) - (u — ue)? + higher-order terms,

where f’ represents the first derivative of the function, and f” the second. Using
these approximations, the dynamics can then be written as

dw -1 f(22¢) ~
°or I
i [f'(m) oy wt Fw),
where w = z— z, is the shifted state and F (w) represents quadratic and higher-order
terms.

We now use equation (5.17) to search for a Lyapunov function. Choosing Q = I
and letting P € R?*? have elements p;;, we search for a solution of the equation

-1 fi P piz| | [P Pr2 -1 fz)_ (-1 0
f; -1 P12 P22 D12 P22 i -1 0o -1}
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where f] = f'(z1.) and f5 = f’(z2.). Note that we have set pa; = p12 to force P to
be symmetric. Multiplying out the matrices, we obtain

—2p11 + 2f1p12 p11fs — 2p12 + paa fi _ -1 0
P11y — 2p12 + P22 fi —2pas + 2512 0 -1)”

which is a set of linear equations for the unknowns p;;. We can solve these linear
equations to obtain

PR R (. pzz:_f—f{fgw_
A(fifs =1) 7 A(ff -1 A(fif: = 1)
To check that V(w) = w? Pw is a Lyapunov function, we must verify that V (w) is

positive definite function or equivalently that P > 0. Since P is a 2 X 2 symmetric
matrix, it has two real eigenvalues \; and Ao that satisfy

P11 =

A1 + Ay = trace(P), A1 Ao = det(P).

In order for P to be positive definite A\; and Ay must be positive, and we thus
require that

P25 44 gy = T2 S 44
4—4f1 15 ’ 16 — 16f1 f5

We see that trace(P) = 4det(P) and the numerator of the expressions is just
(f1 — f2)*> +4 >0, so it suffices to check the sign of 1 — f] f5. In particular, for P
to be positive definite, we require that

f/(zle)f/(ZQE) <1

We can now make use of the expressions for f’ defined earlier and evaluate at
the approximate locations of the equilibrium points derived in equation (5.20). For
the equilibrium points where z1, # 29, we can show that

> 0.

trace(P) =

1 —pnp !t =D 5 _n?
/ ! ~ ! / — . ~ n +n.
f(zle)f (226) Nf(/l)f (anl) (1_’_#“)2 (1+/J/_n(n_1))2 n :U/

Using n = 2 and p = 200 from Exercise 3.10, we see that f’'(z1¢)f’(22.) < 1 and
hence P is positive definite. This implies that V is a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the equilibrium points 21, # 22, are stable for the system (5.19),
we now compute V at the equilibrium point. By construction,

V = wT(PA+ ATP)w + FT(w)Pw + wTPF(w)
= —wTw 4+ FY(w)Pw + w'PF(w).

Since all terms in F are quadratic or higher order in w, it follows that F T(w)Pw
and wTPF(w) consist of terms that are at least third order in w. Therefore if w
is sufficiently close to zero, then the cubic and higher-order terms will be smaller
than the quadratic terms. Hence, sufficiently close to w = 0, V is negative definite,
allowing us to conclude that these equilibrium points are both stable.
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Figure 5.16: Dynamics of a genetic switch. The phase portrait on the left shows
that the switch has three equilibrium points, corresponding to protein A having a
concentration greater than, equal to, or less than protein B. The equilibrium point
with equal protein concentrations is unstable, but the other equilibrium points are
stable. The simulation on the right shows the time response of the system starting
from two different initial conditions. The initial portion of the curve corresponds
to initial concentrations z(0) = (1,5) and converges to the equilibrium point where
Z1e < 22¢. At time t = 10, the concentrations are perturbed by +2 in z; and —2
in z2, moving the state into the region of the state space whose solutions converge
to the equilibrium point where z2. < z1e.

Figure 5.16 shows the phase portrait and time traces for a system with u = 4,
illustrating the bistable nature of the system. When the initial condition starts
with a concentration of protein B greater than that of A, the solution converges to
the equilibrium point at (approximately) (1/u™~ 1, u). If A is greater than B, then
it goes to (u,1/u"~1). The equilibrium point with z;, = 29, is unstable. \Y

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.

Theorem 5.3. Consider the dynamical system (5.18) with F(0) = 0 and F such
that lim | F(z)||/||=|| — 0 as ||z|| — 0. If the real parts of all eigenvalues of A are
strictly less than zero, then . = 0 is a locally asymptotically stable equilibrium
point of equation (5.18).

This theorem implies that asymptotic stability of the linear approximation im-
plies local asymptotic stability of the original nonlinear system. The theorem is very
important for control because it implies that stabilization of a linear approximation
of a nonlinear system results in a stable equilibrium point for the nonlinear system.
The proof of this theorem follows the technique used in Example 5.13. A formal
proof can be found in [Kha01].

It can also be shown that if A has one or more eigenvalues with strictly positive
real part, then x, = 0 is an unstable equilibrium point for the nonlinear system.
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Krasovski—Lasalle Invariance Principle

For general nonlinear systems, especially those in symbolic form, it can be difficult
to find a positive definite function V' whose derivative is strictly negative definite.
The Krasovski-Lasalle theorem enables us to conclude the asymptotic stability of
an equilibrium point under less restrictive conditions, namely, in the case where 1%
is negative semidefinite, which is often easier to construct. It only applies to time-
invariant or periodic systems, which are the cases we consider here. This section
makes use of some additional concepts from dynamical systems; see Hahn [Hah67]
or Khalil [Kha01] for a more detailed description.

We will deal with the time-invariant case and begin by introducing a few more
definitions. We denote the solution trajectories of the time-invariant system

dx

i F(x) (5.21)
as z(t; a), which is the solution of equation (5.21) at time ¢ starting from a at to = 0.
The w limit set of a trajectory x(¢;a) is the set of all points z € R™ such that there
exists a strictly increasing sequence of times t, such that z(t,;a) — z as n — oo.
A set M C R™ is said to be an invariant set if for all b € M, we have z(¢;b) € M
for all ¢ > 0. It can be proved that the w limit set of every trajectory is closed and
invariant. We may now state the Krasovski-Lasalle principle.

Theorem 5.4 (Krasovski-Lasalle principle). Let V : R™ — R be a locally positive
definite function such that on the compact set Q, = {x € R" : V(z) < r} we have
V(z) <0. Define

S={zecQ, :V(z)=0}

Ast — oo, the trajectory tends to the largest invariant set inside S; i.e., its w limit
set is contained inside the largest invariant set in S. In particular, if S contains no
invariant sets other than x = 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].

Lyapunov functions can often be used to design stabilizing controllers, as is
illustrated by the following example, which also illustrates how the Krasovski—
Lasalle principle can be applied.

Example 5.14 Inverted pendulum
Following the analysis in Example 3.10, an inverted pendulum can be described by
the following normalized model:

d d
% = Io, % =sinx; + ucosxy, (5.22)
where z; is the angular deviation from the upright position and u is the (scaled)
acceleration of the pivot, as shown in Figure 5.17a. The system has an equilibrium
point at 1 = x5 = 0, which corresponds to the pendulum standing upright. This
equilibrium point is unstable.

To find a stabilizing controller we consider the following candidate for a Lya-
punov function:
1 1,

x% ~ (a — f)x% + —x5.

V(x) = (coszy — 1) + a(l — cos® x1) + ) 5

DN | =
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(a) Physical system (b) Phase portrait (¢) Manifold view

Figure 5.17: Stabilized inverted pendulum. A control law applies a force u
at the bottom of the pendulum to stabilize the inverted position (a). The phase
portrait (b) shows that the equilibrium point corresponding to the vertical position
is stabilized. The shaded region indicates the set of initial conditions that converge
to the origin. The ellipse corresponds to a level set of a Lyapunov function V(z)
for which V(z) > 0 and V(z) < 0 for all points inside the ellipse. This can be
used as an estimate of the region of attraction of the equilibrium point. The actual
dynamics of the system evolve on a manifold (c).

The Taylor series expansion shows that the function is positive definite near the
origin if @ > 0.5. The time derivative of V(z) is

V = —&y sinxzy 4 2aiq sinxy cos xq1 + Lowe = zo(u + 2asinz) cos x.
Choosing the feedback law
u = —2asinxr] — X9 COS T

gives
V = —22 cos?
= —x5cos” T].

It follows from Lyapunov’s theorem that the equilibrium point is (locally) sta-
ble. However, since the function is only negative semidefinite, we cannot conclude
asymptotic stability using Theorem 5.2. However, note that V' = 0 implies that
9 =0o0r x; =7/2+nm.
If we restrict our analysis to a small neighborhood of the origin €,., r < 7/2,
then we can define
S ={(x1,22) € Q1 z3 =0}

and we can compute the largest invariant set inside S. For a trajectory to remain
in this set we must have xo = 0 for all ¢t and hence #2(¢) = 0 as well. Using the
dynamics of the system (5.22), we see that x2(t) = 0 and #2(t) = 0 implies () =0
as well. Hence the largest invariant set inside S is (z1,22) = 0, and we can use
the Krasovski-Lasalle principle to conclude that the origin is locally asymptotically
stable. A phase portrait of the closed loop system is shown in Figure 5.17b.

In the analysis and the phase portrait, we have treated the angle of the pendulum
0 = x1 as a real number. In fact, 6 is an angle with § = 27 equivalent to § = 0.
Hence the dynamics of the system actually evolve on a manifold (smooth surface)
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as shown in Figure 5.17c. Analysis of nonlinear dynamical systems on manifolds is
more complicated, but uses many of the same basic ideas presented here. v

5.5 PARAMETRIC AND NONLOCAL BEHAVIOR

Most of the tools that we have explored are focused on the local behavior of a
fixed system near an equilibrium point. In this section we briefly introduce some
concepts regarding the global behavior of nonlinear systems and the dependence of
a system’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear system we can start by finding
the equilibrium points. We can then proceed to analyze the local behavior around
the equilibrium points. The behavior of a system near an equilibrium point is called
the local behavior of the system.

The solutions of the system can be very different far away from an equilibrium
point. This is seen, for example, in the stabilized pendulum in Example 5.14. The
inverted equilibrium point is stable, with small oscillations that eventually converge
to the origin. But far away from this equilibrium point there are trajectories that
converge to other equilibrium points or even cases in which the pendulum swings
around the top multiple times, giving very long oscillations that are topologically
different from those near the origin.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figure 5.17b. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibrium
points that are attracting. This gives partial information about the behavior of the
system.

One method for approximating the region of attraction is through the use of
Lyapunov functions. Suppose that V is a local Lyapunov function for a system
around an equilibrium point zg. Let Q. be a set on which V(z) has a value less
than r,

Q. ={zeR":V(z) <r},

and suppose that V(w) < 0 for all z € Q,, with equality only at the equilibrium
point zg. Then 2, is inside the region of attraction of the equilibrium point. Since
this approximation depends on the Lyapunov function and the choice of Lyapunov
function is not unique, it can sometimes be a very conservative estimate.

It is sometimes the case that we can find a Lyapunov function V' such that
V is positive definite and V is negative (semi-) definite for all x € R™. In many
instances it can then be shown that the region of attraction for the equilibrium
point is the entire state space, and the equilibrium point is globally asymptotically
stable. More detailed conditions for global stability can be found in [Kha01] and
other textbooks.
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Example 5.15 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Example 5.14. The Lyapunov
function for the system was

1
V(z) = (coszy — 1) +a(l — cos® x;) + §x§
With a > 0.5, V was negative semidefinite for all z and nonzero when x; # +m/2.
Hence any x such that |z;| < 7/2 and V(z) > 0 will be inside the invariant set

defined by the level curves of V' (z). One of these level sets is shown in Figure 5.17b.
\%

Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context
of models by exploring how the location of equilibrium points, their stability, their
regions of attraction, and other dynamic phenomena, such as limit cycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

dx

5 =~ P, zer, p € RE, (5.23)

where x is the state and p is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x,p) =0,

and as p is varied, the corresponding solutions z.(u) can also vary. We say that
the system (5.23) has a bifurcation at u = p* if the behavior of the system changes
qualitatively at p*. This can occur either because of a change in stability type or
a change in the number of solutions at a given value of p.

Example 5.16 Predator—prey

Consider the predator—prey system described in Example 3.4 and modeled as a
continuous time system as described in Section 4.7. The dynamics of the system
are given by

dH

= —rH dL
a

(5.24)

)

] H aHL dL b aHL
< k > c+H’ dt ¢+ H
where H and L are the numbers of hares (prey) and lynxes (predators) and a, b,
¢, d, k, and r are parameters that model a given predator—prey system (described
in more detail in Section 4.7). The system has an equilibrium point at H, > 0 and
L > 0 that can be found numerically.

To explore how the parameters of the model affect the behavior of the system, we
choose to focus on two specific parameters of interest: a, the interaction coefficient
between the populations and ¢, a parameter affecting the prey consumption rate.
Figure 5.18a is a numerically computed parametric stability diagram showing the
regions in the chosen parameter space for which the equilibrium point is stable
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Figure 5.18: Bifurcation analysis of the predator-prey system. (a) Parametric
stability diagram showing the regions in parameter space for which the system is
stable. (b) Bifurcation diagram showing the location and stability of the equilib-
rium point as a function of a. The solid line represents a stable equilibrium point,
and the dashed line represents an unstable equilibrium point. The dash-dotted
lines indicate the upper and lower bounds for the limit cycle at that parameter
value (computed via simulation). The nominal values of the parameters in the
model are a = 3.2, b = 0.6, ¢ =50, d = 0.56, k = 125, and r = 1.6.

(leaving the other parameters at their nominal values). We see from this figure
that for certain combinations of a and ¢ we get a stable equilibrium point, while at
other values this equilibrium point is unstable.

Figure 5.18b is a numerically computed bifurcation diagram for the system. In
this plot, we choose one parameter to vary (a) and then plot the equilibrium value
of one of the states (H) on the vertical axis. The remaining parameters are set to
their nominal values. A solid line indicates that the equilibrium point is stable; a
dashed line indicates that the equilibrium point is unstable. Note that the stability
in the bifurcation diagram matches that in the parametric stability diagram for
¢ = 50 (the nominal value) and a varying from 1.35 to 4. For the predator—prey
system, when the equilibrium point is unstable, the solution converges to a stable
limit cycle. The amplitude of this limit cycle is shown by the dash-dotted line in
Figure 5.18b. \Y

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium point remains fixed but the stability of the equilib-
rium point changes as the parameters are varied. In such a case it is revealing to
plot the eigenvalues of the system as a function of the parameters. Such plots are
called root locus diagrams because they give the locus of the eigenvalues when pa-
rameters change. Bifurcations occur when parameter values are such that there are
eigenvalues with zero real part. Computing environments such LABVIEW, MAT-
LAB, Mathematica, and Python have tools for plotting root loci. A more detailed
discussion of the root locus is given in Section 12.5.

Example 5.17 Root locus diagram for a bicycle model
Consider the linear bicycle model given by equation (4.8) in Section 4.2. Introducing
the state variables 1 = ¢, xo = §, x5 = ¢, and x4 = J and setting the steering
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Figure 5.19: Stability plots for a bicycle moving at constant velocity. The plot
in (a) shows the real part of the system eigenvalues as a function of the bicycle
velocity vo. The system is stable when all eigenvalues have negative real part
(shaded region). The plot in (b) shows the locus of eigenvalues on the complex
plane as the velocity v is varied and gives a different view of the stability of the
system. This type of plot is called a root locus diagram.

torque 7" = 0, the equations can be written as

dx 0 I
i r =: Ax,
dt —M_I(K0+K2U(2)) _M_IC'UO

where [ is a 2 x 2 identity matrix and vg is the velocity of the bicycle. Figure 5.19a
shows the real parts of the eigenvalues as a function of velocity. Figure 5.19b shows
the dependence of the eigenvalues of A on the velocity vg. The figures show that the
bicycle is unstable for low velocities because two eigenvalues are in the right half-
plane. As the velocity increases, these eigenvalues move into the left half-plane,
indicating that the bicycle becomes self-stabilizing. As the velocity is increased
further, there is an eigenvalue close to the origin that moves into the right half-
plane, making the bicycle unstable again. However, this eigenvalue is small and
so it can easily be stabilized by a rider. Figure 5.19a shows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. v

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters of
the system to eliminate extra parameters when possible. Computer programs such
as AUTO, LOCBIF, and XPPAUT provide numerical algorithms for producing stability
and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations to design feedback laws
that stabilize an equilibrium point and provide a desired level of performance.
However, for some classes of problems the feedback controller must be nonlinear to
accomplish its function. By making use of Lyapunov functions we can often design
a nonlinear control law that provides stable behavior, as we saw in Example 5.14.
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Figure 5.20: Headphones with noise cancellation. Noise is sensed by the exterior
microphone (a) and sent to a filter in such a way that it cancels the noise that
penetrates the headphone (b). The filter parameters a and b are adjusted by the
controller. S represents the input signal to the headphones.

One way to systematically design a nonlinear controller is to begin with a can-
didate Lyapunov function V(x) and a control system & = f(x,u). We say that
V(z) is a control Lyapunov function if for every z there exists a u such that
V(z) = 9V f(z,u) < 0. In this case, it may be possible to find a function a(z)
such that © = «(x) stabilizes the system. The following example illustrates the
approach.

Example 5.18 Noise cancellation
Noise cancellation is used in consumer electronics and in industrial systems to
reduce the effects of noise and vibrations. The idea is to locally reduce the effect of
noise by generating opposing signals. A pair of headphones with noise cancellation
such as those shown in Figure 5.20a is a typical example. A schematic diagram of
the system is shown in Figure 5.20b. The system has two microphones, one outside
the headphones that picks up exterior noise n and another inside the headphones
that picks up the signal e, which is a combination of the desired signal S and
the external noise that penetrates the headphone. The signal from the exterior
microphone is filtered and sent to the headphones in such a way that it cancels
the external noise that penetrates into the headphones. The parameters of the
filter are adjusted by a feedback mechanism to make the noise signal in the internal
microphone as small as possible. The feedback is inherently nonlinear because it
acts by changing the parameters of the filter.

To analyze the system we assume for simplicity that the propagation of external
noise into the headphones is modeled by the first-order dynamical system

dz
o = 0% + bon, (5.25)

where n is the external noise signal, z is the sound level inside the headphones, and

the parameters ag < 0 and by are not known. Assume that the filter is a dynamical

system of the same type:

d—w—aw—i—bn
dt ’
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where the parameters a and b are adjustable. We wish to find a controller that
updates a and b so that they converge to the (unknown) parameters ag and bg. If
a = ag and b = by we have e = S and the noise effect of the noise is eliminated.
Assuming for simplicity that S = 0, introduce 1 = e = z — w, 3 = a — ag, and
x3 = b— by. Then

d{El

o ap(z —w) 4 (a — ag)w + (b — bo)n = agzy + x2w + T3N. (5.26)
We will achieve noise cancellation if we can find a feedback law for changing the
parameters a and b so that the error e goes to zero. To do this we choose

V(xy,x9,23) = (ozxf + :z:% + :z:%)

N | —

as a candidate Lyapunov function for equation (5.26). The derivative of V is
V = amiq + Tods + T3i3 = aapr? + ro(io + awxy) + x3(ds + anxy).
Choosing
a4 = Iy = —Quwr, = —QWe, b=is=—anz = —amne, (5.27)

we find that V = aapr? < 0, and it follows that the quadratic function will decrease
as long as e = #; = w — z # 0. The nonlinear feedback (5.27) thus attempts to
change the parameters so that the error between the signal and the noise is small.
Notice that feedback law (5.27) does not use the model (5.25) explicitly.

A simulation of the system is shown in Figure 5.21. In the simulation we have
represented the signal as a pure sinusoid and the noise as broad band noise. The
figure shows the dramatic improvement with noise cancellation. The sinusoidal
signal is not visible without noise cancellation. The filter parameters change quickly
from their initial values a = b = 0. Filters of higher order with more coeflicients
are used in practice. \Y%

5.6 FURTHER READING

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [Str94] and the highly illustrated text by
Abraham and Shaw [AS82]. More technical treatments include Andronov, Vitt,
and Khaikin [AVKS87], Guckenheimer and Holmes [GH83], and Wiggins [Wig90].
For students with a strong interest in mechanics, the texts by Arnold [Arn87] and
Marsden and Ratiu [MR94] provide an elegant approach using tools from differential
geometry. Finally, good treatments of dynamical systems methods in biology are
given by Wilson [Wil99] and Ellner and Guckenheimer [EGO05]. There is a large lit-
erature on Lyapunov stability theory, including the classic texts by Malkin [Mal59],
Hahn [Hah67], and Krasovski [Kra63]. We highly recommend the comprehensive
treatment by Khalil [Kha01].
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Figure 5.21: Simulation of noise cancellation. The upper left figure shows the
headphone signal without noise cancellation, and the lower left figure shows the
signal with noise cancellation. The right figures show the parameters a and b of
the filter.

EXERCISES

5.1 (Time-invariant systems) Show that if we have a solution of the differential
equation (5.1) given by x(¢) with initial condition 2(tg) = xg, then Z(7) = z(t —t¢)
is a solution of the differential equation

dz
= P(i
dr (7)

with initial condition Z(0) = xq, where 7 =t — to.

5.2 (Flow in a tank) Consider a cylindrical tank with cross sectional area A m?,
effective outlet area a m?, and inflow g, m3/s. An energy balance shows that the
outlet velocity is v = v/2gh m/s, where g m/s? is the acceleration of gravity and h
is the distance between the outlet and the water level in the tank (in meters). Show
that the system can be modeled by

dh a 1

E = _Z V 2gh + qua Gout = @/ 2gh.

Use the parameters A = 0.2, a = 0.01. Simulate the system when the inflow is zero
and the initial level is h = 0.2. Do you expect any difficulties in the simulation?

5.3 (Cruise control) Consider the cruise control system described in Section 4.1.
Generate a phase portrait for the closed loop system on flat ground (§ = 0), in
fourth gear, using a PI controller (with &k, = 0.5 and k; = 0.1), m = 1600 kg, and
desired speed 20 m/s. Your system model should include the effects of saturating
the input between 0 and 1.



5-36 CHAPTER 5

5.4 (Lyapunov functions) Consider the second-order system

dl‘l dxg

— = —ax, — = —bx; — cxa,
dt ! dt o

where a, b, c > 0. Investigate whether the functions

1 1 1 1 b
V1($):§33f+§50§7 ‘/2($):§$%+§($2+C_a

131)2

are Lyapunov functions for the system and give any conditions that must hold.

5.5 (Damped spring—mass system) Consider a damped spring—mass system with @
dynamics
mg+cq+ kq = 0.

A natural candidate for a Lyapunov function is the total energy of the system,
given by

1 1
V =-m¢® + k¢’
2mq + 5 q
Use the Krasovski-Lasalle theorem to show that the system is asymptotically stable.

5.6 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise 3.8:

d?¢ EV
Jﬁzpm—Pe:Pm—Tsmgﬂ.
The parameter
_ Puax _ BV
‘T P.  XPa

is the ratio between the maximum deliverable power P,y = EV/X and the me-
chanical power Py,.

a) Counsider a as a bifurcation parameter and discuss how the equilibrium points
depend on a.

b) For a > 1, show that there is a center at ¢y = arcsin(1/a) and a saddle at
Y =T — @o.

¢) Assume a > 1 and show that there is a solution through the saddle that satisfies

J rdpN2 EV
0 (di:) — Pu(o— o) — T(COS w —cospg) =0. (5.28)
Set J/P, = 1 and use simulation to show that the stability region is the interior
of the area enclosed by this solution. Investigate what happens if the system is in
equilibrium with a value of a that is slightly larger than 1 and a suddenly decreases,
corresponding to the reactance of the line suddenly increasing.

5.7 (Lyapunov equation) Show that Lyapunov equation (5.17) always has a solution
if all of the eigenvalues of A are in the left half-plane. (Hint: Use the fact that the
Lyapunov equation is linear in P and start with the case where A has distinct
eigenvalues.)
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5.8 (Congestion control) Consider the congestion control problem described in Sec-
tion 4.4. Confirm that the equilibrium point for the system is given by equa-
tion (4.22) and compute the stability of this equilibrium point using a linear ap-
proximation.

5.9 (Shaping behavior by feedback) An inverted pendulum can be modeled by the
differential equation

da?l d.Z’Q . +

— = To, —= =sinx; +ucosxy,

dt dt

where z7 is the angle of the pendulum clockwise), and zo is its angular velocity
(see Example 5.14). Qualitatively discuss the behavior of the open loop system and
how the behavior changes when the feedback v = —2sin(z) is introduced. (Hint:
use phase portraits.)

5.10 (Swinging up a pendulum) Consider the inverted pendulum, discussed in
Example 5.4, that is described by

0 =sinf 4+ ucosb,

where 6 is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function

. 1.
V(0,0) = cosf — 1+ 502,

show that the state feedback u = k(V — V)H cos 0 causes the pendulum to “swing
up” to the upright position.

5.11 (Root locus diagram) Consider the linear system

dr_ (01 x+ -1 *[1 O]:r

dt - 0 _3 4 U, y - 9
with the feedback u = —ky. Plot the location of the eigenvalues as a function the
parameter k.

5.12 (Discrete-time Lyapunov function) Consider a nonlinear discrete-time system
with dynamics x[k+1] = f(z[k]) and equilibrium point z, = 0. Suppose there exists
a smooth, positive definite function V' : R™ — R such that V(f(z)) — V(z) < 0 for
xz # 0 and V(0) = 0. Show that z, = 0 is (locally) asymptotically stable.

5.13 (Operational amplifier oscillator) An op amp circuit for an oscillator was
shown in Exercise 4.5. The oscillatory solution for that linear circuit was stable
but not asymptotically stable. A schematic of a modified circuit that has nonlinear
elements is shown in the figure below.
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The modification is obtained by making a feedback around each of the operational
amplifiers that has capacitors and making use of multipliers. The signal a, =
v} + av3 — v3 is the amplitude error. Show that the system is modeled by

d’Ul - 1 1 2 2 2
e Rlclvg—i— RHOlvl(vO v] — avy),

d’U2 1 1
2 _ 2 2
vy — V] — o).

T G T B,

Determine a so that the circuit gives an oscillation with a stable limit cycle with
amplitude vg. (Hint: Use the results of Example 5.9.)

5.14 (Self-activating genetic circuit) Consider the dynamics of a genetic circuit that
implements self-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example 3.18, the dynamics for the system can be written as

dm ap? dp
— -5 haC A — 5.29
pra e at TP (5:29)

for p,m > 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

5.15 (Diagonal systems) Let A € R™*™ be a square matrix with real eigenvalues
Al,..., A, and corresponding eigenvectors v, ..., v,. Assume that the eigenvalues
are distinct (A; # \; for ¢ # j).
a) Show that v; # v; for i # j.
b) Show that the eigenvectors form a basis for R™ so that any vector z can be

written as x = Y a,v; for a; € R.

c) Let T = [Ul vy ... vn] and show that T-1AT is a diagonal matrix of the
form (5.10).
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d) Show that if some of the A; are complex numbers, then A can be written as

Ay 0
A= . where A, =)€R or Aiz[” “].
—Ww g
0 Ay

in an appropriate set of coordinates.

This form of the dynamics of a linear system is often referred to as block diagonal
form.

5.16 (Furuta pendulum) The Furuta pendulum, an inverted pendulum on a rotating
arm, is shown to the left in the figure below.

0.5F B

Pendulum angle 6/7
o
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

0 5 10 15 20
Angular velocity w

Consider the situation when the pendulum arm is spinning with constant rate. The
system has multiple equilibrium points that depend on the angular velocity w, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

Jpé — Jywdsinfcosd —myglsind = 0,

where J;, is the moment of inertia of the pendulum with respect to its pivot, m,, is
the pendulum mass, [ is the distance between the pivot and the center of mass of
the pendulum, and wy is the the rate of rotation of the arm.

a) Determine the equilibrium points for the system and the condition(s) for stability
of each equilibrium point (in terms of wy).

b) Consider the angular velocity as a bifurcation parameter and verify the bifurca-
tion diagram given above. This is an example of a pitchfork bifurcation.






Chapter Six

Linear Systems

Few physical elements display truly linear characteristics. For example the
relation between force on a spring and displacement of the spring is always
nonlinear to some degree. The relation between current through a resistor
and voltage drop across it also deviates from a straight-line relation. How-
ever, if in each case the relation is reasonably linear, then it will be found
that the system behavior will be very close to that obtained by assuming an
ideal, linear physical element, and the analytical simplification is so enor-
mous that we make linear assumptions wherever we can possibly do so in
good conscience.

Robert H. Cannon, Dynamics of Physical Systems, 1967 [Can03].

In Chapters 3-5 we considered the construction and analysis of differential equa-
tion models for dynamical systems. In this chapter we specialize our results to the
case of linear, time-invariant input/output systems. Two central concepts are the
matrix exponential and the convolution equation, through which we can completely
characterize the behavior of a linear system. We also describe some properties of
the input/output response and show how to approximate a nonlinear system by a
linear one.

6.1 BASIC DEFINITIONS

We have seen several instances of linear differential equations in the examples in the
previous chapters, including the spring—mass system (damped oscillator) and the
operational amplifier in the presence of small (nonsaturating) input signals. More
generally, many dynamical systems can be modeled accurately by linear differential
equations. Electrical circuits are one example of a broad class of systems for which
linear models can be used effectively. Linear models are also broadly applicable in
mechanical engineering, for example, as models of small deviations from equilibrium
points in solid and fluid mechanics. Signal-processing systems, including digital
filters of the sort used in MP3 players and streaming audio, are another source of
good examples, although these are often best modeled in discrete time (as described
in more detail in the exercises).

In many cases, we create systems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linear behavior that led Harold
S. Black to the invention of the negative feedback amplifier. Almost all modern
signal processing systems, whether analog or digital, use feedback to produce linear
or near-linear input/output characteristics. For these systems, it is often useful to
represent the input/output characteristics as linear, ignoring the internal details
required to get that linear response.
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For other systems, nonlinearities cannot be ignored, especially if one cares about
the global behavior of the system. The predator—prey problem is one example of
this: to capture the oscillatory behavior of the interdependent populations we must
include the nonlinear coupling terms. Other examples include switching behavior
and generating periodic motion for locomotion. However, if we care about what
happens near an equilibrium point, it often suffices to approximate the nonlinear
dynamics by their local linearization, as we already explored briefly in Section 5.3.
The linearization is essentially an approximation of the nonlinear dynamics around
the desired operating point.

Linearity

We now proceed to define linearity of input/output systems more formally. Consider
a state space system of the form

L= e, y=hiew), (6.1)
t

where z € R™, u € RP, and y € RY. As in the previous chapters, we will usually
restrict ourselves to the single-input, single-output case by taking p = ¢ = 1. We
also assume that all functions are smooth and that for a reasonable class of inputs
(e.g., piecewise continuous functions of time) the solutions of equation (6.1) exist
for all time.

It will be convenient to assume that the origin = 0, v = 0 is an equilibrium
point for this system (& = 0) and that h(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose that (ze,ue) # (0,0) is an equilibrium point
of the system with output ye = h(ze, ue). Then we can define a new set of states,
inputs and outputs,

2

=T — Te, ﬂ,:U/—Ue7 g:y_yea
and rewrite the equations of motion in terms of these variables:

93— 1@+ e+ o) = (@0,

J=h(Z+ Te, U+ Ue) — Yo =: B(i,u)

In the new set of variables, the origin is an equilibrium point with output 0, and
hence we can carry out our analysis in this set of variables. Once we have obtained
our answers in this new set of variables, we simply “translate” them back to the
original coordinates using x = & + Ze, ¥ = U + Ue, and y = § + Yo.

Returning to the original equations (6.1), now assuming without loss of gener-
ality that the origin is the equilibrium point of interest, we write the output y(t)
corresponding to the initial condition x(0) = z¢ and input u(t) as y(t; xo, u). Using
this notation, a system is said to be a linear input/output system if the following
conditions are satisfied:

(1) y(t706$1 +B£L’270) = ay(tvxho) +ﬁy(t,x270)7
(i) y(t;0,0ur + yuz) = y(t; 0, ur) + yy(t; 0, uz).
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Thus, we define a system to be linear if the outputs are jointly linear in the initial
condition response (u = 0) and the forced response (2(0) = 0). Property (iii) is a
statement of the principle of superposition: the response of a linear system to the
sum of two inputs u; and us is the sum of the outputs y; and y» corresponding to
the individual inputs.

The general form of a linear state space system is

% = Az + Bu, y = Cx + Du, (6.3)
where A € R"*" B € R"*P (' € R?*"™ and D € R?*P. In the special case of a
single-input, single-output system, B is a column vector, C is a row vector, and
D is scalar. Equation (6.3) is a system of linear first-order differential equations
with input u, state x, and output y. It is easy to show that given solutions 1 (t)
and x2(t) for this set of equations, the corresponding outputs satisfy the linearity
conditions (6.2).

We define z,(t) to be the solution with zero input (the general solution to the
homogeneous system),

dx
7: = ALL‘}“ xh(O) = 2o,

and the solution z,(¢) to be the input dependent solution with zero initial condition
(the particular solution or forced solution),

dzy

i Azp, + Bu, zp(0) = 0.

Figure 6.1 illustrates how these two individual solutions can be superimposed to
form the complete solution.

It is also possible to show that if a dynamical system with a finite number of
states is input/output linear in the sense we have described, it can always be rep-
resented by a state space equation of the form (6.3) through an appropriate choice
of state variables. In Section 6.2 we will give an explicit solution of equation (6.3),
but we illustrate the basic form through a simple example.

Example 6.1 Scalar system
Consider the first-order differential equation

x
m =ar + u, y=ux,

with (0) = zo. Let u3 = Asinwit and us = Bcoswat. The solution to the
homogeneous system is xy,(t) = e*xg, and two particular solutions with z(0) = 0

are
—wie% 4+ wq coswit + asinwyt

Y l(t) =-4 )
P a? + w?
ae®t — g coswat + ws sin wot
Tpya(t) =B .
P2( ) ag 4 w%

Suppose that we now choose 2(0) = axg and u = uy + us. Then the resulting
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Figure 6.1: Superposition of homogeneous and particular solutions. The first row
shows the input, state, and output corresponding to the initial condition response.
The second row shows the same variables corresponding to zero initial condition
but nonzero input. The third row is the complete solution, which is the sum of
the two individual solutions.

solution is the weighted sum of the individual solutions:

Aw Ba
z(t) = e (aaco—i— 5 12+ 5 2)
a® +wy e+ w; (6.4)
wy coswit + asinwqt —a coswat 4+ we sin wot '
-4 2 2 +B 2 2
a® + wy a” + wy

To see this, substitute equation (6.4) into the differential equation. Thus, the
properties of a linear system are satisfied. \Y%

Time Invariance

Time invariance is an important concept that is used to describe a system whose
properties do not change with time. More precisely, for a time-invariant system
if the input u(t) gives output y(t), then if we shift the time at which the input
is applied by a constant amount a, u(t + a) gives the output y(t + a). Systems
that are linear and time-invariant, often called LTI systems, have the interesting
property that their response to an arbitrary input is completely characterized by
their response to step inputs or their response to short “impulses.”

To explore the consequences of time invariance, we first compute the response to
a piecewise constant input. Assume that the system has zero initial condition and
consider the piecewise constant input shown in Figure 6.2a. The input has jumps
at times tg, and its values after the jumps are u(tx). The input can be viewed as a
combination of steps: the first step at time ¢y has amplitude u(tp), the second step
at time t; has amplitude u(t;) — u(tp), etc.
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Figure 6.2: Response to piecewise constant inputs. A piecewise constant signal
can be represented as a sum of step signals (a), and the resulting output is the
sum of the individual outputs (b).

Assuming that the system is initially at an equilibrium point (so that the initial
condition response is zero), the response to the input can be obtained by superim-
posing the responses to a combination of step inputs. Let H(t) be the response to
a unit step applied at time 0, and assume that H(0) = 0. The response to the first
step is then H (t—to)u(to), the response to the second step is H(t—t1) (u(t1)—u(to)),
and we find that the complete response is given by

y(t) = H(t —to)u(to) + H(t — t1) (ul(tr) — ulto)) + -+

(H(t—to) — H(t —t1))u(to) + (H(t —t1) — H(t — t2))u(ts) + - --

(H(t —tp—1) — H(t — tx))u(to—1) + H(t — tn)u(ts)

M=

=~
Il
—

H(t —ty_1) — H(t —tg)
tp — tk—1

u(tk71)(tk - tkfl) + H(t —tn)u(tn),

\E

-
I

1

where n is such that ¢,, <t¢. An example of this computation is shown in Figure 6.2b.
The response to a continuous input signal is obtained by taking the limit n — oo
in such a way that ¢t —tx_1 — 0 and t,, — ¢, which gives

y(t) = /0 H(t - 7)u(r)dr, (6.5)

where H' is the derivative of the step response, also called the impulse response.
The response of a linear time-invariant system to any input can thus be computed
from the step response. Notice that the output depends only on the input since we
assumed the system was initially at rest, 2(0) = 0. We will derive equation (6.5) in
a slightly different way in the Section 6.3.
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6.2 THE MATRIX EXPONENTIAL

Equation (6.5) shows that the output of a linear system with zero initial state can
be written as an integral over the inputs u(t). In this section and the next we derive
a more general version of this formula, which includes nonzero initial conditions.
We begin by exploring the initial condition response using the matrix exponential.

Initial Condition Response

We will now explicitly show that the output of a linear system depends linearly on
the input and the initial conditions. We begin by considering the general solution
to the homogeneous system corresponding to the dynamics

dx

— = Ax. 6.6
at " (6:6)

For the scalar differential equation

d
d—j:ax, r€R,a€R,

the solution is given by the exponential
z(t) = e*2(0).

We wish to generalize this to the vector case, where A becomes a matrix. We define
the matrix exponential as the infinite series

1 1 = 1

X _ Iyv2 . Y y3 L oyk

e =T+ X+ o X%+ o X7 —Zk!X, (6.7)
k=0

where X € R™ "™ is a square matrix and [ is the n x n identity matrix. We make

use of the notation

X0 =17, X?=XX, X" =X""1X,

which defines what we mean by the “power” of a matrix. Equation (6.7) is easy
to remember since it is just the Taylor series for the scalar exponential, applied to
the matrix X. It can be shown that the series in equation (6.7) converges for any
matrix X € R™ ™ in the same way that the normal exponential is defined for any
scalar a € R.

Replacing X in equation (6.7) by At, where t € R, we find that

1 1 =1
At _ 14252 3,3 kyk
e —I+At+2At+3!At+ —Ek!At,
k=0
and differentiating this expression with respect to ¢ gives

d At __ 2 1 342 _ — 1 kik _ At
e = A A% S A —Akzzok!At = Ae, (6.8)
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Multiplying by x(0) from the right, we find that x(t) = e**x(0) is the solution
to the differential equation (6.6) with initial condition x(0). We summarize this
important result as a proposition.

Proposition 6.1. The solution to the homogeneous system of differential equa-
tions (6.6) is given by
z(t) = e (0).

Notice that the form of the solution is exactly the same as for scalar equations,

but we must be sure to put the vector 2(0) on the right of the matrix e”?.

The form of the solution immediately allows us to see that the solution is linear
in the initial condition. In particular, if xu1(¢) is the solution to equation (6.6) with
initial condition x(0) = xg; and xn2(t) with initial condition x(0) = g2, then the
solution with initial condition x(0) = a1 + Bxoz is given by

z(t) = et (axor + Proz) = (ozeAtxm + Betag) = aany (t) + Brna(t).
Similarly, we see that the corresponding output is given by
y(t) = Cz(t) = ayni(t) + Byn2(t),

where yp1(t) and yn2(t) are the outputs corresponding to xp1 (t) and zpe(t).
We illustrate computation of the matrix exponential by two examples.

Example 6.2 Double integrator
A very simple linear system that is useful in understanding basic concepts is the
second-order system given by

This system is called a double integrator because the input u is integrated twice to
determine the output y.
In state space form, we write z = (¢, ¢) and

dx 01 0
E_ [0 0]x—|— [1] U.

The dynamics matrix of a double integrator is
0 1
=0 o)

and we find by direct calculation that A% = 0 and hence

Thus the solution of the homogeneous system (u = 0) for the double integrator is

given by (1 ) (21(0)) _ (z1(0) + tz2(0)
o= (3 1) (8) - (o).
y(t) = 21(0) + tz2(0).
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Example 6.3 Undamped oscillator

A model for an oscillator, such as the spring—mass system with zero damping, is
. 2
q + wyq = u.

Putting the system into state space form using x; = ¢, 2 = ¢/wp, the dynamics
matrix for this system can be written as

A= 0 wo and oAt — co.swot sin wgt ‘
—wp O —sinwpt coswpt

t

This expression for eA* can be verified by differentiation:

d T sinwgt  wp cos wopt
dt —wp coswplt  —wp sin wgt

0 wo coswpt  sinwgt At
= . = Ae™".
—wy 0 —sinwgt coswgt

The solution is then given by

2(t) = eAtz(0) [ cos wot sinwot] [331(0)] ’

—sinwpt  coswot x2(0)

The solution is more complicated if the system has damping:
§ + 2Cwod + wiq = u.

If { <1 we have

—(wo  wq  twot [ coswat  sinwat
exp[wd —Cwy t=e —sinwgt coswqgt )

where wq = woy/1 — (2. The result can be proven by differentiating the exponential
matrix. The corresponding results for ¢ > 1 are given in Exercise 6.4. \Y%

An important class of linear systems are those that can be converted into diag-
onal form by a linear change of coordinates. Suppose that we are given a system

dx

— = Az

dt
such that all the eigenvalues of A are distinct. It can be shown (Exercise 5.15) that
there exists an invertible matrix 7" such that TAT ! is diagonal. If we choose a set
of coordinates z = T'x, then in the new coordinates the dynamics become

B pdT e — AT
dt dt
By definition of T, this system will be diagonal.
Now consider a diagonal matrix A and the corresponding kth power of At, which
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is also diagonal:

A\ Ntk

A2 btk

0 ... 0 .'
An P

It follows from the series expansion that the matrix exponential is given by

A similar expansion can be done in the case where the eigenvalues are complex,
using a block diagonal matrix, similar to what was done in Section 5.3.

Given the solution to the dynamics in the z coordinates, the solution in the
original = coordinates can be obtained using the expression x = T~'z. We can
thus obtain an explicit solution for a linear system whose dynamics matrix is diag-
onalizable.

Jordan Form @

Some matrices with repeated eigenvalues cannot be transformed to diagonal form.
They can, however, be transformed to a closely related form, called the Jordan form,
in which the dynamics matrix has the eigenvalues along the diagonal. When there
are equal eigenvalues, there may be 1’s appearing in the superdiagonal indicating
that there is coupling between the states.

Specifically, we define a matrix to be in Jordan form if it can be written as

” N1 0
J = ) ,  where J; =
Ji DY

and ); is an eigenvalue of J;. Each matrix J; is called a Jordan block. A first-
order Jordan block can be represented as a system consisting of an integrator with
feedback A. A Jordan block of higher order can be represented as series connections
of such systems, as illustrated in Figure 6.3.

Theorem 6.2 (Jordan decomposition). Any matrizx A € R"*™ can be transformed
into Jordan form with the eigenvalues of A determining A; in the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Str88]. The special
case where the eigenvalues are distinct is examined in Exercise 5.15. O

Converting a matrix into Jordan form can be complicated, although MATLAB
can do this conversion for numerical matrices using the jordan function. There is
no requirement that the individual \;’s be distinct, and hence for a given eigenvalue
we can have one or more Jordan blocks of different sizes.
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1 x2 1 z3 x2

/ / / / ;G 1

A A A A A A

(a) 1 x 1 block (b) 2 x 2 block (c) 3 x 3 block

Figure 6.3: Representations of linear systems where the dynamics matrices are
Jordan blocks. A 1 x 1 Jordan block corresponds to an integrator with feedback
A, as shown on the left. 2 x 2 and 3 x 3 Jordan blocks correspond to cascade
connections of integrators with identical feedback, as shown in the middle and
right diagrams.

Once a matrix is in Jordan form, the exponential of the matrix can be computed
in terms of the Jordan blocks:

et = . . (6.10)

This follows from the block diagonal form of J. The exponentials of the Jordan
blocks can in turn be written as

t2 e 1

1t L oy

tn—?

1 t (n—2)!
edit — : erit, (6.11)

t
1

As before, we can express the solution to a linear system that can be converted into
this form by making use of the transformations z = Tz and z = T~ 1z,

When there are multiple eigenvalues, the invariant subspaces associated with
each eigenvalue correspond to the Jordan blocks of the matrix A. Note that some
eigenvalues of A may be complex, in which case the transformation 7" that converts
a matrix into Jordan form will also be complex. When A has a nonzero imaginary
component, the solutions will have oscillatory components since

elo it — ¢ (coswt 4 i sinwt).
We can now use these results to prove Theorem 5.1, which states that the equilib-
rium point x, = 0 of a linear system is asymptotically stable if and only if Re A\; < 0
for all 4.

Proof of Theorem 5.1. Let T € C™*™ be an invertible matrix that transforms A
into Jordan form, J = TAT~!. Using coordinates z = Tz, we can write the
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solution z(t) as
2(t) = e”72(0),

where 2(0) = Tz(0), so that z(t) = T~ 'e’t2(0).

The solution z(t) can be written in terms of the elements of the matrix expo-
nential. From equation (6.11) these elements all decay to zero for arbitrary z(0) if
and only if Re\; < 0 for all 7. Furthermore, if any A; has positive real part, then
there exists an initial condition z(0) such that the corresponding solution increases
without bound. Since we can scale this initial condition to be arbitrarily small,
it follows that the equilibrium point is unstable if any eigenvalue has positive real
part. O

The existence of a canonical form allows us to prove many properties of linear
systems by changing to a set of coordinates in which the A matrix is in Jordan
form. We illustrate this in the following proposition, which follows along the same
lines as the proof of Theorem 5.1.

Proposition 6.3. Suppose that the system

dx

— = Az

dt
has no eigenvalues with strictly positive real part and one or more eigenvalues with
zero real part. Then the system is stable (in the sense of Lyapunov) if and only

if the Jordan blocks corresponding to each eigenvalue with zero real part are scalar
(1 x 1) blocks.

Proof. See Exercise 6.6b. O
The following example illustrates the use of the Jordan form.

Example 6.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft such as that described in Ex-
ample 3.12. Suppose that we choose u; = uy = 0 so that the dynamics of the
system become

24
z5
dZ 26
dt —gsinzz — = 24 ’ (6.12)
g(coszz —1) — = 25
0

where 2z = (z,y,0,4,9,0). The equilibrium points for the system are given by
setting the velocities #, 9, and 6 to zero and choosing the remaining variables to
satisfy
—gsinzg . =0
g Be — 23, =0.=0.
g(coszge—1)=0 ’

This corresponds to the upright orientation for the aircraft. Note that x, and ye
are not specified. This is because we can translate the system to a new (upright)
position and still obtain an equilibrium point.

To compute the stability of the equilibrium point, we compute the linearization
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i il
(a) Mode 1 (b) Mode 2

Figure 6.4: Modes of vibration for a system consisting of two masses connected
by springs. In (a) the masses move left and right in synchronization in (b) they
move toward or against each other.

using equation (5.13):

00 0 1 0 0
00 0 0 1 0

A 9F] _]0o 0 0 0 0 1
0z, |0 0 —g —¢/m 0 0
) 00 0 0 —¢/m 0

00 0 0 0 0

The eigenvalues of the system can be computed as
)\(A) = {Oa 07 0; O, _C/m, —c/m}

We see that the linearized system is not asymptotically stable since not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense of Lyapunov, we must
make use of the Jordan form. It can be shown that the Jordan form of A is given
by

00 0 O 0 0
0j0 1 O 0 0
J— 00 0 1 0 0
00 0 O 0 0
0/0 0 0| —¢/m 0
0/0 0 O 0 —c/m

Since the second Jordan block has eigenvalue 0 and is not a simple eigenvalue, the
linearization is unstable (Exercise ).

\%

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a description of the types of
behavior the system can exhibit. For oscillatory systems, the term mode is often
used to describe the vibration patterns that can occur. Figure 6.4 illustrates the
modes for a system consisting of two masses connected by springs. One pattern is
when both masses oscillate left and right in unison, and another is when the masses
move toward and away from each other.

The initial condition response of a linear system can be written in terms of
a matrix exponential involving the dynamics matrix A. The properties of the
matrix A therefore determine the resulting behavior of the system. Given a matrix
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Figure 6.5: The notion of modes for a second-order system with real eigenvalues.
The left figure shows the phase portrait and the modes corresponding to solutions
that start on the eigenvectors (bold lines). The corresponding time functions are
shown on the right.

A € R™ "™ recall that v is an eigenvector of A with eigenvalue A if
Av = .

In general A\ and v may be complex-valued, although if A is real-valued, then for
any eigenvalue A its complex conjugate A* will also be an eigenvalue (with v* as
the corresponding eigenvector).

Suppose first that A and v are a real-valued eigenvalue/eigenvector pair for A.
If we look at the solution of the differential equation for x(0) = v, it follows from
the definition of the matrix exponential that

N 1 242
ety = (I+At+§A2t2+-~-)v:v+)\tv+7v+-~- = M.

The solution thus lies in the subspace spanned by the eigenvector. The eigenvalue
A describes how the solution varies in time, and this solution is often called a mode
of the system. (In the literature, the term “mode” is also often used to refer to the
eigenvalue rather than the solution.)

If we look at the individual elements of the vectors x and v, it follows that

zi(t) My oy

7(t) Sy vy

and hence the ratios of the components of the state x are constants for a (real)
mode. The eigenvector thus gives the “shape” of the solution and is also called
a mode shape of the system. Figure 6.5 illustrates the modes for a second-order
system consisting of a fast mode and a slow mode. Notice that the state variables
have the same sign for the slow mode and different signs for the fast mode.

The situation is more complicated when the eigenvalues of A are complex. Since
A has real elements, the eigenvalues and the eigenvectors are complex conjugates
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A =0 tiw and v = u *+ tw, which implies that

v+ v* )
2 7 2%

u =

Making use of the matrix exponential, we have

ety = eM(u +iw) = e’ ((ucoswt — wsinwt) + i(usinwt + w coswt)),

from which it follows that

1 .
ety = = (6At1} + eAtv*) = ue’t coswt — we’t sinwt,
2
1 .
eMw = . (eAtv — eAtv*) = ue?" sinwt + we’" coswt.
i

A solution with initial conditions in the subspace spanned by the real part u and
imaginary part w of the eigenvector will thus remain in that subspace. The solution
will be a logarithmic spiral characterized by ¢ and w. We again call the solution
corresponding to A a mode of the system, and v the mode shape.

If a matrix A has n distinct eigenvalues Aq,...,\,, then the initial condition
response can be written as a linear combination of the modes. To see this, suppose
for simplicity that we have all real eigenvalues with corresponding unit eigenvectors
v1,...,V,. From linear algebra, these eigenvectors are linearly independent, and
we can write the initial condition 2(0) as

z(0) = a1v1 + aava + -+ - + QpUy.

Using linearity, the initial condition response can be written as

A t

z(t) = areMto; + asetuy 4 - + apetuy,.

Thus, the response is a linear combination of the modes of the system, with the
amplitude of the individual modes growing or decaying as e*:*. The case for distinct
complex eigenvalues follows similarly (the case for nondistinct eigenvalues is more
subtle and requires making use of the Jordan form discussed in the previous section).

Example 6.5 Coupled spring—mass system
Consider the spring—mass system shown in Figure 6.4, but with the addition of
dampers on each mass. The equations of motion of the system are

mgy = —2kq1 — cq1 + kqa, mgs = kq1 — 2kga — cgo.

In state space form, we define the state to be = (q1, g2, 1, §2), and we can rewrite
the equations as

0 0 1 0

0 0 0 1
dr 2k k c
=2 & _° g |=
dt m m m

k2% 4, _c

m m m

We now define a transformation z = T'x that puts this system into a simpler form.
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Let 21 = %(ql +q2), 20 =21, 23 = %(ql —¢2) and z4 = Z3, so that

1 1 0 0
110 0o 1 1
z=Tx = 311 21 0 o x.
0 0 1 -1
In the new coordinates, the dynamics become
0 1 0 0
k c
dz m om 0 0
2e z,
dt 0 0 0 1
0 _8k ¢
m m

and we see that the model is now in block diagonal form.

In the 2z coordinates, the states z; and 2z, parameterize one mode with eigen-
values A = —c/(2m) + i\/k/m, and the states z3 and z4 another mode with
A & —c¢/(2m) £ i/3k/m. From the form of the transformation T we see that
these modes correspond exactly to the modes in Figure 6.4, in which ¢; and ¢
move either toward or against each other. The real and imaginary parts of the
eigenvalues give the decay rates ¢ and frequencies w for each mode. v

6.3 INPUT/OUTPUT RESPONSE

In the previous section we saw how to compute the initial condition response using
the matrix exponential. In this section we derive the convolution equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (6.3), repeated here:

d
d—i = Az + Bu, y = Cx + Du. (6.13)

Using the matrix exponential, the solution to equation (6.13) can be written as
follows.

Theorem 6.4. The solution to the linear differential equation (6.13) is given by
t
z(t) = eMax(0) + / A7) Bu(r)dr. (6.14)
0
Proof. To prove this, we differentiate both sides and use the property (6.8) of the

matrix exponential. This gives

¢
% = Ae?Mz(0) + / A7) Bu(r)dr 4+ Bu(t) = Az + Bu,
0



6-16 CHAPTER 6

— — — Pulse responses

i r b j Impulse response
= 5
= 0.5 £07

DT 1 5

0 L ' L ‘ L L 0 L L L

0 2 4 6 8 10 0 10 20 30 40
Time ¢ Time ¢
(a) Pulse and impulse functions (b) Pulse and impulse responses

Figure 6.6: Pulse response and impulse response. (a) The rectangles show pulses
of width 5, 2.5, and 0.8, each with total area equal to 1. The arrow denotes an
impulse () defined by equation (6.17). The corresponding pulse responses for
a linear system with eigenvalues A\ = {—0.08, —0.62} are shown in (b) as dashed
lines. The solid line is the true impulse response, which is well approximated by a
pulse of duration 0.8.

which proves the result since the initial conditions are also met. Notice that the

calculation is essentially the same as for proving the result for a first-order equation.
O

It follows from equations (6.13) and (6.14) that the input/output relation for a
linear system is given by

y(t) = Cez(0) + /t Ce A7) Bu(r)dr 4+ Du(t). (6.15)
0

It is easy to see from this equation that the output is jointly linear in both the
initial conditions and the input, which follows from the linearity of matrix/vector
multiplication and integration.

Equation (6.15) is called the convolution equation, and it represents the general
form of the solution of a system of coupled linear differential equations. We see
immediately that the dynamics of the system, as characterized by the matrix A,
plays a critical role in both the stability and performance of the system. Indeed,
the matrix exponential describes both what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can be given using the concept
of the impulse response of a system. Consider the application of an input signal
u(t) given by the following equation:

0 if t <0,
u(t) =pe(t) = {1/e f0<t<e (6.16)
0 ift>e

This signal is a pulse of duration e and amplitude 1/, as illustrated in Figure 6.6a.
We define an impulse 6(t) to be the limit of this signal as ¢ — 0:

5(1) = lim pe (1) (6.17)

¢
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This signal, sometimes called a delta function, is not physically achievable but
provides a convenient abstraction in understanding the response of a system. Note
that the integral of an impulse is 1:

¢ ¢ ¢
/ o(r)dr = / lim p(t)dr = lim [ pc(t)dr
0 0 0

e—0 e—0
€

=lim [ 1/edr =1, t>0.
e—0 0
In particular, the integral of an impulse over an arbitrarily short period of time
that includes the origin is identically 1.
We define the impulse response h(t) for a system as the output of the system
with zero initial condition and having an impulse as its input:

t
h(t) = / CeA'="TB(7) dr + Di(t) = Ce** B + Di(t), (6.18)
0

where the second equality follows from the fact that 0(¢) is zero everywhere except
the origin and its integral is identically 1. We can now write the convolution equa-
tion in terms of the initial condition response and the convolution of the impulse
response and the input signal:

y(t) = CeMx(0) + /0 h(t — m)u(r)dr (6.19)

One interpretation of this equation, explored in Exercise 6.2, is that the response
of the linear system is the superposition of the response to an infinite set of shifted
impulses whose magnitudes are given by the input w(t). This is essentially the
argument used in analyzing Figure 6.2 and deriving equation (6.5). Note that the
second term in equation (6.19) is identical to equation (6.5), and it can be shown
that the impulse response is the derivative of the step response.

The use of pulses p.(t) as approximations of the impulse function §(¢) also
provides a mechanism for identifying the dynamics of a system from experiments.
Figure 6.6b shows the pulse responses of a system for different pulse widths. Notice
that the pulse responses approach the impulse response as the pulse width goes to
zero. As a general rule, if the fastest eigenvalue of a stable system has real part
—0Omax, then a pulse of length e will provide a good estimate of the impulse response
if eomax < 1. Note that for Figure 6.6, a pulse width of € = 1 s gives e€oax = 0.62
and the pulse response is already close to the impulse response.

Coordinate Invariance

The components of the input vector u and the output vector y are determined by
the chosen inputs and outputs of a model, but the state variables depend on the
coordinate frame chosen to represent the state. This choice of coordinates affects
the values of the matrices A, B, and C that are used in the model. (The direct
term D is not affected since it maps inputs to outputs.) We now investigate some
of the consequences of changing coordinate systems.

Introduce new coordinates z by the transformation z = Tz, where T is an
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Figure 6.7: Coupled spring mass system. Each mass is connected to two springs
with stiffness k and a viscous damper with damping coefficient c¢. The mass on the
right is driven through a spring connected to a sinusoidally varying attachment.

invertible matrix. It follows from equation (6.3) that

d ~ ~
d;; =T(Az + Bu) = TAT 'z 4+ TBu=: Az + Bu,

y=Czx+ Du=CT 2+ Du=: Cz+ Du.

The transformed system has the same form as equation (6.3), but the matrices A,
B, and C are different:

A=TAT™, B =TB, C=cr (6.20)

There are often special choices of coordinate systems that allow us to see a particular
property of the system, hence coordinate transformations can be used to gain new
insight into the dynamics. The eigenvalues of A are the same as those of A, so
stability is not affected.

We can also compare the solution of the system in transformed coordinates to
that in the original state coordinates. We make use of an important property of
the exponential map,

eTST™H _ TeST 1,

which can be verified by substitution in the definition of the matrix exponential.
Using this property, it is easy to show that

N t R
z(t) =T 2(t) = T 1eMTa(0) + T4 / eA=7) Bu(7) dr.
0

From this form of the equation, we see that if it is possible to transform A into
a form A for which the matrix exponential is easy to compute, we can use that
computation to solve the general convolution equation for the untransformed state
z by simple matrix multiplications. This technique is illustrated in the following
example.

Example 6.6 Coupled spring—mass system
Consider the coupled spring—mass system shown in Figure 6.7. The input to this
system is the sinusoidal motion of the position of the rightmost spring, and the
output is the position of each mass, ¢; and g2. The equations of motion are given
by

mg1 = —2kq1 — cq1 + kqa, mgs = kq1 — 2kqa — c¢g2 + ku.
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In state space form, we define the state to be = (q1, g2, 1, §2), and we can rewrite
the equations as

0 0 1 0 0
0 0 0 1 0
dx 2k k c
=== X _= 0 z+ 10 |u
dt m m m
k % c k
— o O N m
m m m

This is a coupled set of four differential equations and is quite complicated to solve
in analytical form.

The dynamics matrix is the same as in Example 6.5, and we can use the coor-
dinate transformation defined there to put the system in block diagonal form:

0 1 0 0 2
k c
O IR B T
a | o 0 0 1 0 ’
o o %k _c _ Kk
m m 2m

Note that the resulting matrix equations are block diagonal and hence decoupled.
We can solve for the solutions by computing the solutions of two sets of second-
order systems represented by the states (z1, 22) and (23, z4). Indeed, the functional
form of each set of equations is identical to that of a single spring—mass system.
(The explicit solution is derived in Section 7.3.)

Once we have solved the two sets of independent second-order equations, we can
recover the dynamics in the original coordinates by inverting the state transforma-
tion and writing + = T~ !2. We can also determine the stability of the system by
looking at the stability of the independent second-order systems. v

Steady-State Response

Given a linear input/output system

d

d—i = Ax + Bu, y = Cx + Du, (6.21)
the general form of the solution to equation (6.21) is given by the convolution
equation:

t
y(t) = CeAtx(O) + / C@A(t_T)Bu(T)dT + Duf(t).
0

We see from the form of this equation that the solution consists of an initial condi-
tion response and an input response.

The input response, corresponding to the last two terms in the equation above,
itself consists of two components—the transient response and the steady-state re-
sponse. The transient response occurs in the first period of time after the input
is applied and reflects the mismatch between the initial condition and the steady-
state solution. The steady-state response is the portion of the output response that
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Figure 6.8: Transient versus steady-state response. The input to a linear system
is shown in (a), and the corresponding output with z(0) = 0 is shown in (b). The
output signal initially undergoes a transient before settling into its steady-state
behavior.

reflects the long-term behavior of the system under the given inputs. For inputs
that are periodic the steady-state response will often be periodic, and for constant
inputs the response will often be constant. An example of the transient and the
steady-state response for a periodic input is shown in Figure 6.8.

A particularly common form of input is a step input, which represents an abrupt
change in input from one value to another. A wunit step (sometimes called the
Heaviside step function) is defined as

0 ift=0,
u(t) = S(t) = {1 ift>0

The step response of the system (6.21) is defined as the output y(¢) starting from
zero initial condition (or the appropriate equilibrium point) and given a step input.
We note that the step input is discontinuous and hence is not practically imple-
mentable. However, it is a convenient abstraction that is widely used in studying
input / output systems.

We can compute the step response to a linear system using the convolution
equation. Setting x(0) = 0 and using the definition of the step input above, we
have

t t
y(t) = / CBA(tiT)BU(T)dT + Du(t) = C’/ A= Bdr + D
0 0
t J—
= C/ e’ Bdo + D =C (A" 'e* B) ]Z;g +D
0
=CA'eMB-CA'B+D.
We can rewrite the solution as

y(t)=CA'e*B+D—-CA™'B, t>0. (6.22)

transient steady-state

The first term is the transient response and it decays to zero as t — oo if all eigen-
values of A have negative real parts (implying that the origin is a stable equilibrium
point in the absence of any input). The second term, computed under the assump-
tion that the matrix A is invertible, is the steady-state step response and represents
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Figure 6.9: Sample step response. The rise time, overshoot, settling time, and
steady-state value give the key performance properties of the signal.

the value of the output for large time.

A sample step response is shown in Figure 6.9. Several key properties are used
when describing a step response. The steady-state value yss of a step response is
the final level of the output, assuming it converges. The rise time T, is the amount
of time required for the signal to first go from 10% of its final value to 90% of
its final value. (It is possible to define other limits as well, but in this book we
shall use these percentages unless otherwise indicated.) The overshoot M, is the
percentage of the final value by which the signal initially rises above the final value.
This usually assumes that future values of the signal do not overshoot the final
value by more than this initial transient, otherwise the term can be ambiguous.
Finally, the settling time Ty is the amount of time required for the signal to stay
within 2% of its final value for all future times. The settling time is also sometimes
defined as reaching 1% or 5% of the final value (see Exercise 6.7). In general these
performance measures can depend on the amplitude of the input step, but for linear
systems the last three quantities defined above are independent of the size of the
step.

Example 6.7 Compartment model

Consider the compartment model illustrated in Figure 6.10 and described in more
detail in Section 4.6. Assume that a drug is administered by constant infusion in
compartment V; and that the drug has its effect in compartment V5. To assess how
quickly the concentration in the compartment reaches steady state we compute the
step response, which is shown in Figure 6.10b. The step response is quite slow, with
a settling time of 39 min. It is possible to obtain the steady-state concentration
much faster by having a faster injection rate initially, as shown in Figure 6.10c.
The response of the system in this case can be computed by combining two step
responses (Exercise 6.3). \Y

Frequency Response

Another common input signal to a linear system is a sinusoid (or a combination of
sinusoids). The frequency response of an input/output system measures the way
in which the system responds to a sinusoidal excitation on one of its inputs. As
we have already seen for scalar systems, the particular solution associated with
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Figure 6.10: Response of a compartment model to a constant drug infusion. A
simple diagram of the system is shown in (a). The step response (b) shows the rate
of concentration buildup in compartment 2. In (¢) a pulse of initial concentration
is used to speed up the response.

a sinusoidal excitation is itself a sinusoid at the same frequency. Hence we can
compare the magnitude and phase of the output sinusoid to the input.

To see this in more detail, we must evaluate the convolution equation (6.15) for
u = coswt. This turns out to be a very messy calculation, but we can make use of
the fact that the system is linear to simplify the derivation. It follows from Euler’s
formula that

1/ . A
coswt = 3 (e“"t + e*“’”).

Since the system is linear, it suffices to compute the response of the system to the
complex input u(t) = e** and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding to s = iw and s = —iw.

Applying the convolution equation to the input u = e** we have

t
y(t) = Cetz(0) + / CeAt=7) Bes"dr + De®t
0

t
= CeMz(0) + C’eAt/ eCI=A7T Bdr 4+ Dest.
0

If we assume that none of the eigenvalues of A are equal to +iw, then the matrix
sI — A is invertible, and we can write

y(t) = Cetz(0) + Cett ((SI - A)_le(SI_A)TB> ’; + De*!
= Cex(0) + CeM(sI — A)~! (e(SI_A)t - I)B + De®t
= CeMz(0) + C(sI — A)~e* B — Ce?(sI — A)71B + De*t,
and we obtain

y(t) = Ce?*(w(0) = (sI = A)7'B) + (C(sT = )" B+ D) e (6.23)

transient steady-state
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Figure 6.11: Steady-state response of an asymptotically stable linear system to
a sinusoid. (a) A sinusoidal input of magnitude A, (dashed) gives a sinusoidal
output of magnitude A, (solid), delayed by AT seconds. (b) Frequency response,
showing gain and phase. The gain is given by the ratio of the output amplitude
to the input amplitude, M = A, /A,. The phase lag is given by 6 = —2xAT/T; it
is negative for the case shown because the output lags the input.

Notice that once again the solution consists of both a transient component and
a steady-state component. The transient component decays to zero if the system
is asymptotically stable and the steady-state component is proportional to the
(complex) input u = €.
We can simplify the form of the solution slightly further by rewriting the steady-
state response as
yss(t) _ Meieest _ Me(us),

where

Me? = G(s) =C(sI — A)"'B+ D, (6.24)

and M and 6 represent the magnitude and phase of the complex number G(s).
When s = iw, we say that M = |G(iw)| is the gain and 0 = arg G(iw) is the
phase of the system at a given forcing frequency w. Using linearity and combining
the solutions for s = +iw and s = —iw, we can show that if we have an input
u = Ay sin(wt + ¢) and an output y = A, sin(wt + ¢), then

Ay

gain(w) = 4 =M, phase(w) = ¢ — = 0.

The steady-state solution for a sinusoid u = coswt = sin(wt + 7/2) is now given by
Yss(t) = Re(G(iw)e™") = M cos(wt + 0). (6.25)

If the phase 6 is positive, we say that the output leads the input, otherwise we say
it lags the input.

A sample steady-state sinusoidal response is illustrated in Figure 6.11a. The
dashed line shows the input sinusoid, which has amplitude 1. The output sinusoid
is shown as a solid line and has a different amplitude plus a shifted phase. The
gain is the ratio of the amplitudes of the sinusoids, which can be determined by
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Figure 6.12: Active band-pass filter. The circuit diagram (a) shows an op amp
with two RC filters arranged to provide a band-pass filter. The plot in (b) shows
the gain and phase of the filter as a function of frequency. Note that the phase
starts at -90° due to the negative gain of the operational amplifier.

measuring the height of the peaks. The phase is determined by comparing the ratio
of the time between zero crossings of the input and output to the overall period of
the sinusoid:

= or. —.
0 T T

A convenient way to view the frequency response is to plot how the gain and
phase in equation (6.24) depend on w (through s = iw). Figure 6.11b shows an

example of this type of representation (called a Bode plot and discussed in more
detail in Section 9.6).

Example 6.8 Active band-pass filter
Consider the op amp circuit shown in Figure 6.12a. We can derive the dynamics of
the system by writing the nodal equations, which state that the sum of the currents

at any node must be zero. Assuming that v_ = v, = 0, as we did in Section 4.3,
we have p p p
V1 — V2 Vg V2 U3 U3
0= - C1—, 0=C—+ — +Cy—-.
Ry Yt Vit TR
Choosing ve and vs as our states and using these equations, we obtain
d’U2 o V1 — VU2 d?]g o —U3 V1 — V2
d  RiCp’ dt  ReCy ROy’

Rewriting these in linear state space form, we obtain

1 1
- 0
dx - R, Cy RiCy o
i ] ! o I T y = (O 1] x, (6.26)
R102 RQCQ R102

where & = (v2,v3), u = v, and y = v3.
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The frequency response for the system can be computed using equation (6.24):

R2 R1 01 S

Me?® =C(sI — A 'B+D=-—=
e = C(s )" B+ Ri (1+ R1Cys)(1+ RyChs)’

The magnitude and phase are plotted in Figure 6.12b for Ry = 100 €2, Ry = 5 k{,
and C; = Cy = 100 pF. We see that signals with frequencies around 15 rad/s pass
through the circuit with small attenuation but that signals below 2 rad/s or above
100 rad/s are attenuated. At 0.1 rad/s the input signal is attenuated by a factor of
20. This type of circuit is called a band-pass filter since it passes through signals in
the band of frequencies between 5 and 50 rad/s (approximately). \%

As in the case of the step response, a number of standard properties are defined
for frequency responses. The gain of a system at w = 0 is called the zero frequency
gain and corresponds to the ratio between a constant input and the steady output:

My=G(0)=-CA*B+D

(compare to equation (6.24)). The zero frequency gain is well defined only if A is
invertible (i.e., if it does not have eigenvalues at 0). It is also important to note that
the zero frequency gain is a relevant quantity only when a system is stable about
the corresponding equilibrium point. So, if we apply a constant input v = r, then
the corresponding equilibrium point z, = —A~!Br must be stable in order to talk
about the zero frequency gain. (In electrical engineering, the zero frequency gain
is often called the DC' gain. DC stands for direct current and reflects the common
separation of signals in electrical engineering into a direct current (zero frequency)
term and an alternating current (AC) term.)

The bandwidth wy, of a system is the frequency range over which the gain has
decreased by no more than a factor of 1/1/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the reference value is taken as the zero
frequency gain. For systems that attenuate low frequencies but pass through high
frequencies, the reference gain is taken as the high-frequency gain. For a system
such as the band-pass filter in Example 6.8, bandwidth is defined as the range of
frequencies where the gain is larger than 1/v/2 of the gain at the center of the band.
(For Example 6.8 this would give a bandwidth of approximately 2 to 100 rad/s.)

Other important properties of the frequency response are the resonant peak
M, the largest value of the frequency response, and the peak frequency wp,, the
frequency where the maximum occurs. These two properties describe the frequency
of the sinusoidal input that produces the largest possible output and the gain at
the frequency.

Example 6.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomic force microscope in
contact mode, discussed in Section 4.5. The basic dynamics are given by equa-
tion (4.24). The piezo stack can be modeled by a second-order system with un-
damped natural frequency ws and damping ratio (3. The dynamics are then de-
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Figure 6.13: AFM frequency response. (a) A block diagram for the vertical
dynamics of an atomic force microscope in contact mode. The plot in (b) shows
the gain and phase for the piezo stack. The response contains two frequency
peaks at resonances of the system, along with an antiresonance at w = 268 krad/s.
The combination of a resonant peak followed by an antiresonance is common for
systems with multiple lightly damped modes. The dashed horizontal line represents
the gain equal to the zero frequency gain divided by v/2.

scribed by the linear system

0 1 0 0 0
dﬁ _ —k‘g/(ml —|—m2) —02/(m1 +m2) 1/m2 0 " 0 u
dt 0 0 0 w3 0 ’
0 0 —ws  —2Q3ws3 w3
Mo [ miko mico ]
y = 1 0 x7
my1+mo \mp+mg  my + ma

where the input is the drive signal to the amplifier and the output is the elongation
of the piezo. The frequency response of the system is shown in Figure 6.13b. The
zero frequency gain of the system is My = 1. There are two resonant poles with
peaks M1 = 2.12 at wp,,1 = 238 krad/s and Mo = 4.29 at wpe = 746 krad/s.
There is also a dip in the gain My = 0.556 for wy,q = 268 krad/s. This dip, called
an antiresonance, is associated with a dip in the phase and limits the performance
when the system is controlled by simple controllers, as we will see in Chapter 11.
The bandwidth is the frequency range over which the gain has decreased by no
more than a factor of 1//2 from its reference value, which in this case is the
zero frequency gain. Neglecting the slight dip at the antiresonance, the bandwidth
becomes wy, = 1.12 Mrad/s.

\Y

So far we have used the frequency response to compute the output for a single
sinusoid. The transfer function can also be used to compute the output for any
periodic signal. Consider a system with the frequency response G(iw). Let the
input signal u(t) be periodic and decompose it into a sum of a set of sines and
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cosines,

u(t) = Z ay sin(kwe t) + by cos(kwe t),
k=0

where wy is the fundamental frequency of the periodic input. Using equation (6.25)
and superposition, we find that the input u(t) generates the steady-state output

y(t) = Z |G (ikwe)] (ak sin(kw¢ t + arg G(ikwy)) + by cos(kwy t + arg G(ikwf))>.
k=0

The gain and phase at each frequency are determined by the frequency response
G(iw), as given in equation (6.24). If we know the steady-state frequency response
G(iw), we can thus compute the response to any (periodic) signal using superposi-
tion.

We can go even further to approximate the response to a transient signal. Consider
a system with the transfer function G(s) and the input u. Approximate the initial
part of the function u(t) by the periodic signal
0 u(t) if0<t<T/2,
U =
P 0 ifT/2<t<T,
with period T'. Since u,, is periodic it has a Fourier transform up(iw), and it follows
from equation (6.25) that the Fourier transform of y, is yr(iw) = G(iw)ur(iw),
where up and yr represent the Fourier transforms of u, and y;, respectively. Tak-

ing the inverse Fourier transform then gives the time response y,(t). Efficient
algorithms can be obtained using fast Fourier transforms (Exercise 6.12).

Sampling

It is often convenient to use both differential and difference equations in modeling
and control. For linear systems it is straightforward to transform from one to the
other. Consider the general linear system described by equation (6.13) and assume
that the control signal is constant over a sampling interval of constant length h. It
follows from equation (6.14) of Theorem 6.4 that

z(t+h) = elx(t) + / o eAUHh=T) By (1) dr = ®a(t) + Tu(t), (6.27)

where we have assumed that the discontinuous control signal is continuous from
the right. The behavior of the system at the sampling times ¢t = kh is described by
the difference equation

zlk + 1] = dx[k] + Tulk], y[k] = Cz[k] + Dulk], (6.28)

h
o = Al r= (/ eASds)B.
0

Notice that the difference equation (6.28) is an exact representation of the behavior
of the system at the sampling instants. Similar expressions can also be obtained if

where
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the control signal is linear over the sampling interval.

The transformation from equation (6.27) to equation (6.28) is called sampling.
The relations between the system matrices in the continuous and sampled repre-
sentations are as follows:

1 4 As -1
A=Llogd, B= (/O e ds) . (6.29)

Notice that if A is invertible, we have
I=A"(e*-1)B.

All continuous-time systems can be sampled to obtain a discrete-time version,
but there are discrete-time systems that do not have a continuous-time equivalent.
The issue is related to logarithms of matrices and there are several subtleties; for
example, there may be many solutions. A necessary but not sufficient condition is
that the matrix ® is nonsingular, see [Gan60]. A key result is that a real matrix has
a real logarithm if and only if it is invertible and if each Jordan block associated
with a negative eigenvalue occurs an even number of times [Cul66]. This implies
that the matrix ® cannot have isolated eigenvalues on the negative real axis. A
detailed discussion of sampling is given in [SAH84].

Example 6.10 IBM Lotus server
In Example 3.5 we described how the dynamics of an IBM Lotus server were ob-
tained as the discrete-time system

zlk + 1] = az[k] + bulk],

where a = 0.43, b = 0.47, the sampling period is h = 60 s, and x denotes the total
requests being served . A differential equation model is needed if we would like to
design control systems based on continuous-time theory. Such a model is obtained
by applying equation (6.29); hence

1 " -1
A=2%_ o141, B= (/ At dt) b= 0.0116,
h 0

and we find that the difference equation can be interpreted as a sampled version of
the ordinary differential equation

d
d% — —0.01412 + 0.0116w.

6.4 LINEARIZATION

As described at the beginning of the chapter, a common source of linear system
models is through the approximation of a nonlinear system by a linear one. It is
common practice in control engineering to design controllers based on an approx-
imate linear model and to verify the results by simulating the closed loop system
using a nonlinear model. In this section we describe how to locally approximate
a nonlinear system by a linear one, and discuss what can be inferred about the
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stability of the original system. We begin with an illustration that controllers can
successfully be designed from approximate linear models using the cruise control
example, which is described in more detail in Chapter 4.

Example 6.11 Cruise control
The dynamics for the cruise control system are derived in Section 4.1 and have the
form
dv 1 .
mo = anuT (apv) — mgCy sgn(v) — §pCdAv|v| — mgsiné, (6.30)

where the first term on the right-hand side of the equation is the force generated
by the engine and the remaining three terms are the rolling friction, aerodynamic
drag, and gravitational disturbance force. There is an equilibrium point (ve, ue)
when the force applied by the engine balances the disturbance forces.

To explore the behavior of the system near the equilibrium point we will linearize
the system. A Taylor series expansion of equation (6.30) around the equilibrium
point gives

% = a(ve — v) — by(0 — 6e) + b(u — ue) + higher-order terms, (6.31)
where
2
a= _ Ueay T (omve) + pCdAve7 by = gcosbe, b= 7Q”T(a"v6). (6.32)
m m

Notice that the term corresponding to rolling friction disappears if v = 0. For
a car in fourth gear with v, = 20 m/s, 6, = 0 and the numerical values for the
car from Section 4.1, the equilibrium value for the throttle is u, = 0.1687 and the
parameters are a = 0.0101, b = 1.32, and b, = 9.8. This linear model describes
how small perturbations in the velocity about the nominal speed evolve in time.
We will later describe how to design a proportional-integral (PI) controller for
the system. Here we will simply assume that we have obtained a good controller
and we will compare the behaviors when the closed loop system is simulated using
the nonlinear model and the linear approximation. The simulation scenario is
that the car is running with constant speed on a horizontal road and the system
has stabilized so that the vehicle speed and the controller output are constant.
Figure 6.14 shows what happens when the car encounters a hill with a slope of 4°
at time t =5 s. The results for the nonlinear model are solid curves and those for
the linear model are dashed curves. The differences between the curves are very
small, and control design based on the linearized model is thus validated. \Y%

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, single-output nonlinear system

dx
i R™ R
p flxz,u), reR"uck, (6.33)

y=h(z,u), yeR,

with an equilibrium point at * = x., u = u.. Without loss of generality we can
assume that z, = 0 and u, = 0, although initially we will consider the general case
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Figure 6.14: Simulated response of a vehicle with PI cruise control as it climbs a
hill with a slope of 4°. The solid line is the simulation based on a nonlinear model,
and the dashed line shows the corresponding simulation using a linear model. The
controller gains are k, = 0.5 and k; = 0.1.

to make the shift of coordinates explicit.

To study the local behavior of the system around the equilibrium point (., u),
we suppose that x — z, and u — u, are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with the (lower-order) linear
terms. This is roughly the same type of argument that is used when we do small-
angle approximations, replacing sin # with 8 and cos @ with 1 for 6 near zero.

We define a new set of state variables z, as well as inputs v and outputs w:

Z=1T — T, V=U— U, w =1y — h(Te, o).

These variables are all close to zero when we are near the equilibrium point, and so
in these variables the nonlinear terms can be thought of as the higher-order terms
in a Taylor series expansion of the relevant vector fields (assuming for now that
these exist).

Formally, the Jacobian linearization of the nonlinear system (6.33) is

dz

- = Az + Bu, w = Cz+ Duv, (6.34)
where
A:g , B:a—f , C:% , D:% (6.35)
ox (e,te) ou (2e,u0) ox (Be,u) ou (e,te)

The system (6.34) approximates the original system (6.33) when we are near the
equilibrium point about which the system was linearized. It follows from Theo-
rem 5.3 that if the linearization is asymptotically stable, then the equilibrium point
Ze is locally asymptotically stable for the full nonlinear system.

Example 6.12 Cruise control using Jacobian linearization
Consider again the cruise control system from Example 6.11 with 6 taken as a
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constant 6,. We can write the dynamics as a first-order, nonlinear differential
equation:

dx o,
i flz,u) = EuT(anm) — gCysgn(z) —

Y= h(x,u) =7,

lpCdA

z? — gsin b,
2 m

where = v is the velocity of the vehicle and u is the throttle. We use the velocity
as the output of the system (since this is what we are trying to control).

If we linearize the dynamics of the system about an equilibrium point = = v, §,
0, u = u, we obtain Using the formulas above, we obtain

s aof _ueaiT’(anxe) + pCqAzx, B of o, T(ane)
or (20100 m ou (o0 m
C= ? =1 D= ? =0,
L (Te,e) u (Te,ue)

where we have used the fact that sgn(z) = 1 for > 0. This matches the results
in Example 6.11, remembering that we have used x as the system state (vehicle
velocity). \Y%

It is important to note that we can define the linearization of a system only
near an equilibrium point. To see this, consider a polynomial system

dx 9 3
E:ao—i—alm—i—agx + azx” + u,

where ag # 0. A set of equilibrium points for this system is given by (e, ue) =
(Te, —ag — a1Te — azx? — azxd), and we can linearize around any of them. Suppose
that we try to linearize around the origin of the system « = 0, u = 0 (which does not
correspond to an equilibrium point for this example). If we drop the higher-order
terms in x, then we get

T
— =ag+ a1z + u,
i 0+ a1+

which is not the Jacobian linearization if ag # 0. The constant term must be kept,
and it is not present in equation (6.34). Furthermore, even if we kept the constant
term in the approximate model, the system would quickly move away from this
point (since it is “driven” by the constant term ag), and hence the approximation
could soon fail to hold.

Software for modeling and simulation frequently has facilities for performing
linearization symbolically or numerically. The MATLAB command trim finds the
equilibrium point, and 1inmod extracts linear state space models from a SIMULINK
system around an equilibrium point.

Example 6.13 Vehicle steering
Consider the vehicle steering system introduced in Example 3.11. The nonlinear
equations of motion for the system are given by equations (3.25)—(3.27) and can be
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written as
. v cos (a(d) + 6)
d v sin(a(d) +0) B atand
dt [g] N v sin a(d) ’ a(d) = arctan( b )
a

The state of the system is the position z, y of the center of mass and the orientation
0 of the vehicle. The control variable is the steering angle 6. Furthermore b is the
wheelbase and a is the distance between the center of mass and the rear wheel.

We are interested in the motion of the vehicle about a straight-line path (6 = 6j)
with constant velocity vy # 0. To find the relevant equilibrium point, we first set
0 = 0 and we see that we must have § = 0, corresponding to the steering wheel
being straight. This also yields a = 0. Looking at the first two equations in the
dynamics, we see that the motion in the xy plane is by definition not at equilibrium
since #2 + 2 = v2 # 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral deviation of the vehicle
from a straight line. For simplicity, we let 8, = 0, which corresponds to driving
along the = axis. We can then focus on the equations of motion in the y and 6
directions. With some abuse of notation we introduce the state x = (y,0) and
u = 0. The system is then in standard form with

vo sin (a(u) + x2)
flz,u) = v sin a(u) , alu) = arctan(

a

atanu

), h(z,u) = 1.

The equilibrium point of interest is given by 2 = (0,0) and u = 0. To compute the
linearized model around this equilibrium point, we make use of the formulas (6.35).
A straightforward calculation yields

af 0 wp af avy /b
A - = = B = — =
oz =0 [0 0 ] ’ ou =0 vo/b )’
oh oh
= = =1 0 D= " =
¢ 0z | z=0 ( ] ’ ou | z=0 0
u=0 u=0
and the linearized system
dx
e Az + Bu, y=Cz+ Du (6.36)

thus provides an approximation to the original nonlinear dynamics.

The linearized model can be simplified further by introducing normalized vari-
ables, as discussed in Section 3.3. For this system, we choose the wheelbase b as
the length unit and the time unit as the time required to travel a wheelbase. The
normalized state is thus z = (z1/b,22), and the new time variable is 7 = wgt/b.
The model (6.36) then becomes

R N T R

where v = a/b. The normalized linear model for vehicle steering with nonslipping
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wheels is thus a linear system with only one parameter ~. v

Feedback Linearization

Another type of linearization is the use of feedback to convert the dynamics of a
nonlinear system into those of a linear one. We illustrate the basic idea with an
example.

Example 6.14 Cruise control
Consider again the cruise control system from Example 6.11, whose dynamics are
given in equation (6.30):

dv

1
mo = anuT (apv) — mgCy sgn(v) — ipCdAvM —mgsin6.

If we choose u as a feedback law of the form

1 . 1
u= T (ant) <u + mgCisgn(v) + 2pC’dAv|v> ) (6.38)

then the resulting dynamics become

m% =u+d, (6.39)
where d(t) = —mgsin6(t) is the disturbance force due the slope of the road (which
may be changing as we drive). If we now define a feedback law for @ (such as
a proportional-integral-derivative [PID] controller), we can use equation (6.38) to
compute the final input that should be commanded.

Equation (6.39) is a linear differential equation. We have essentially “inverted”
the nonlinearity through the use of the feedback law (6.38). This requires that
we have an accurate measurement of the vehicle velocity v as well as an accurate
model of the torque characteristics of the engine, gear ratios, drag and friction
characteristics, and mass of the car. While such a model is not generally available
(remembering that the parameter values can change), if we design a good feedback
law for u, then we can achieve robustness to these uncertainties. \Y%

More generally, we say that a system of the form

T = e, y=hi),

is feedback linearizable if there exists a control law v = «(x, v) such that the resulting
closed loop system is input/output linear with input v and output y, as shown in
Figure 6.15. To fully characterize such systems is beyond the scope of this text, but
we note that in addition to changes in the input, the general theory also allows for
(nonlinear) changes in the states that are used to describe the system, keeping only

the input and output variables fixed. More details of this process can be found in
the textbooks by Isidori [Isi95] and Khalil [Kha01].

One case that comes up relatively frequently, and is hence worth special mention, @
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Figure 6.15: Feedback linearization. A nonlinear feedback of the form u = a(z, v)
is used to modify the dynamics of a nonlinear process so that the response from the
input v to the output y is linear. A linear controller can then be used to regulate
the system’s dynamics.

is the set of mechanical systems of the form

M(q)§+ C(q,q) = B(q)u.

Here ¢ € R™ is the configuration of the mechanical system, M(q) € R"*" is the
configuration-dependent inertia matrix, C(q, ¢) € R™ represents the Coriolis forces
and additional nonlinear forces (such as stiffness and friction), and B(q) € R"*?
is the input matrix. If p = n, then we have the same number of inputs and
configuration variables, and if we further have that B(q) is an invertible matrix for
all configurations ¢, then we can choose

u= B (q)(M(q)v+ C(q,4))- (6.40)
The resulting dynamics become
M(q)i = M(q)v = q=v,

which is a linear system. We can now use the tools of linear system theory to
analyze and design control laws for the linearized system, remembering to apply
equation (6.40) to obtain the actual input that will be applied to the system.

This type of control is common in robotics, where it goes by the name of com-
puted torque, and in aircraft flight control, where it is called dynamic inversion.
Some modeling tools like Modelica can generate the code for the inverse model
automatically. One caution is that feedback linearization can often cancel out
beneficial terms in the natural dynamics, and hence it must be used with care.
Extensions that do not require complete cancellation of nonlinearities are discussed
in Khalil [Kha01] and Krsti¢ et al. [KKK95].

6.5 FURTHER READING

The majority of the material in this chapter is classical and can be found in most
books on dynamics and control theory, including early works on control such as
James, Nichols and Phillips [JNP47] and more recent textbooks such as Dorf and
Bishop [DB04], Franklin, Powell, and Emami-Naeini [FPENO05], and Ogata [Oga01].
An excellent presentation of linear systems based on the matrix exponential is
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given in the book by Brockett [Bro70], a more comprehensive treatment is given by
Rugh [Rug95], and an elegant mathematical treatment is given in Sontag [Son98].
Material on feedback linearization can be found in books on nonlinear control theory
such as Isidori [Isi95] and Khalil [Kha0l]. The idea of characterizing dynamics by
considering the responses to step inputs is due to Heaviside, who also introduced an
operator calculus to analyze linear systems. The unit step is therefore also called
the Heaviside step function. Analysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of lack of mathematical rigor,
as described in the biography by Nahin [Nah88]. The difficulties were cleared up
later by the mathematician Laurent Schwartz who developed distribution theory
in the late 1940s. In engineering, linear systems have traditionally been analyzed
using Laplace transforms as described in Gardner and Barnes [GB42]. Use of
the matrix exponential started with developments of control theory in the 1960s,
strongly stimulated by a textbook by Zadeh and Desoer [ZD63]. Use of matrix
techniques expanded rapidly when the powerful methods of numeric linear algebra
were packaged in programs like LABVIEW, MATLAB, and Mathematica. The
books by Gantmacher [Gan60] are good sources for matrix theory.

EXERCISES

6.1 (Response to the derivative of a signal) Show that if y(¢) is the output of a
linear system corresponding to input u(t), then the output corresponding to an
input 4(t) is given by y(t). (Hint: Use the definition of the derivative: 2(t) =
lime_,o (2(t +€) — 2(t)) /e.)

6.2 (Impulse response and convolution) Show that a signal u(t) can be decomposed
in terms of the impulse response §(¢) as

u(t) = /O 5t — Tyu(r) dr

and use this decomposition plus the principle of superposition to show that the
response of a linear, time-invariant system to an input u(t) (assuming a zero initial
condition) can be written as

y(t) = / Wt — ryu(r) dr,

where h(t) is the impulse response of the system. (Hint: Use the definition of the
Riemann integral.)

6.3 (Pulse response for a compartment model) Consider the compartment model
given in Example 6.7. Compute the step response for the system and compare it
with Figure 6.10b. Use the principle of superposition to compute the response to
the 5 s pulse input shown in Figure 6.10c. Use the parameter values kg = 0.1,
]Cl = 01, ]CQ = 05, and bo = 1.5.

6.4 (Matrix exponential for second-order system) Assume that ¢ < 1 and let wq =
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woy/1 — ¢2. Show that

—Cwo  wq _ —¢wot [ coswat  sinwqt
exp[_wd —Cwy t=e —sinwgt coswqat )

—Wo wo _ —wot 1 th
o (0 ) )= o)

6.5 (Lyapunov function for a linear system) Consider a linear system & = Ax with
ReA; < 0 for all eigenvalues A; of the matrix A. Show that the matrix

P:/ eATTQeAT dr
0

Also show that

defines a Lyapunov function of the form V(x) = 27 Pz with Q = 0 (positive
definite).

6.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan form that
is non-diagonal.

a) Prove Proposition 6.3 by showing that if the system contains a real eigenvalue
A = 0 with a nontrivial Jordan block, then there exists an initial condition with a
solution that grows in time.

b) Extend this argument to the case of complex eigenvalues with Re A = 0 by using @
the block Jordan form

0 w 1 0

—w 0 0 1
Ti=lo 0 0 w
0 0 —w 0

6.7 (Rise time for a first-order system) Consider a first-order system of the form

T— = —x +tu, =
dt Y

We say that the parameter 7 is the time constant for the system since the zero
input system approaches the origin as e~*/7. For a first-order system of this form,
show that the rise time for a step response of the system is approximately 27, and
that 1%, 2%, and 5% settling times approximately corresponds to 4.67, 47, and
3T.

6.8 (Discrete-time systems) Consider a linear discrete-time system of the form

xlk + 1] = Az[k] + Bulk], y[k] = Cx[k] + Dulk].

a) Show that the general form of the output of a discrete-time linear system is



LINEAR SYSTEMS 6-37

given by the discrete-time convolution equation:

k—1
ylk] = CA*2[0] + Y CAF=I~  Buj] + Dulk].

=0

b) Show that a discrete-time linear system is asymptotically stable if and only if
all the eigenvalues of A have a magnitude strictly less than 1.

6.9 (Keynesian economics) Consider the following simple Keynesian macroeco-
nomic model in the form of a linear discrete-time system discussed in Exercise 6.8:

(Ser0) = s ) (5] + () e
Y[t] = Clt] + I[t] + G[t].

Determine the eigenvalues of the dynamics matrix. When are the magnitudes of
the eigenvalues less than 17 Assume that the system is in equilibrium with constant
values capital spending C, investment I, and government expenditure GG. Explore
what happens when government expenditure increases by 10%. Use the values
a =0.25 and b = 0.5.

6.10 Consider a scalar system

dx

— =1-a2*+u

dt +
Compute the equilibrium points for the unforced system (u = 0) and use a Taylor
series expansion around the equilibrium point to compute the linearization. Verify
that this agrees with the linearization in equation (6.34).

6.11 (Transcriptional regulation) Consider the dynamics of a genetic circuit that
implements self-repression: the protein produced by a gene is a repressor for that
gene, thus restricting its own production. Using the models presented in Exam-
ple 3.18, the dynamics for the system can be written as

dm « dp

— = ——— 4ty — 0m — u, — = Km — yp, 6.41

a1k dt P (6.41)
where u is a disturbance term that affects RNA transcription and m,p > 0. Find
the equilibrium points for the system and use the linearized dynamics around each
equilibrium point to determine the local stability of the equilibrium point and the
step response of the system to a disturbance.

6.12 (Time responses from frequency responses) Consider the following MAT-
LAB program, which computes the approximate step response from the frequency
response. Explain how it works and explore the effects of the parameter tmax.

P ="1./(s+1).727; % process dynamics
tmax = 20; % simulation time
N = 2°(12); % number of points for simulation
dt = tmax/N; % time interval
%

dw = 2xpi/tmax; frequency interval

4
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% Compute the time and frequency vectors
t = dt*(0:N-1);

omega = -pi/dt:dw: (pi/dt-dw);

s = i*omega;

% Evaluate the frequency response
pv=eval(P);

=

Compute the input and output signals using the frequency response
[ones(1,N/2) zeros(1,N/2)]; U = fft(u);
ifft(£ftshift(pv) .* U); y = real(y);

u
y

% Analytic solution in the time domain
ye =1 - exp(-t) - t .x exp(-t);

% Plot analytic and approximate step responses
subplot(211); plot(t, y, ’b-’, t, ye, ’r--’);

% Zoom in on the first half of the response
tp = t(1:N/2); yp = y(1:N/2); ye = 1-exp(-t) - t .* exp(-t);
subplot(212); plot(tp, yp, ’b-’, t, ye, ’r--’);



Chapter Seven

State Feedback

Intuitively, the state may be regarded as a kind of information storage or
memory or accumulation of past causes. We must, of course, demand that
the set of internal states 3 be sufficiently rich to carry all information about
the past history of ¥ to predict the effect of the past upon the future. We do
not insist, however, that the state is the least such information although this
s often a convenient assumption.

R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System
Theory, 1969 [KFAG9].

This chapter describes how the feedback of a system’s state can be used to
shape the local behavior of a system. The concept of reachability is introduced and
used to investigate how to design the dynamics of a system through assignment of
its eigenvalues. In particular, it will be shown that under certain conditions it is
possible to assign the system eigenvalues arbitrarily by appropriate feedback of the
system state.

7.1 REACHABILITY

One of the fundamental properties of a control system is what set of points in the
state space can be reached through the choice of a control input. It turns out
that the property of reachability is also fundamental in understanding the extent
to which feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of the system and focusing on
the evolution of the state, given by

Z—f = Az + Bu, (7.1)
where x € R™, u € R, A is an n X n matrix, and B a column vector. A fundamental
question is whether it is possible to find control signals so that any point in the
state space can be reached through some choice of input. To study this, we define
the reachable set R(xg, < T) as the set of all points ¢ such that there exists an
input u(t), 0 < ¢t < T that steers the system from z(0) = z¢ to z(T) = w¢, as
illustrated in Figure 7.1a.

Definition 7.1 (Reachability). A linear system is reachable if for any xg, z; € R™
there exists aT > 0 and u: [0,7] — R such that if 2(0) = z( then the corresponding
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R(xo,< T) 4

(a) Reachable set (b) Reachability through control

Figure 7.1: The reachable set for a control system. The set R(zo, < T') shown in
(a) is the set of points reachable from zg in time less than 7. The phase portrait in
(b) shows the dynamics for a double integrator, with the natural dynamics drawn
as horizontal arrows and the control inputs drawn as vertical arrows. The set of
achievable equilibrium points is the x axis. By setting the control inputs as a
function of the state, it is possible to steer the system to the origin, as shown on
the sample path.

solution satisfies z(T") = xs.

The definition of reachability addresses whether it is possible to reach all points
in the state space in a transient fashion. In many applications, the set of points
that we are most interested in reaching is the set of equilibrium points of the system
(since we can remain at those points with constant input w). The set of all possible
equilibrium points for constant controls is given by

€ ={x,: Az + Bu, = 0 for some u, € R}.

This means that possible equilibrium points lie in a one- (or possibly higher) di-
mensional subspace. If the matrix A is invertible, this subspace is one-dimensional
and is spanned by A~ B.

The following example provides some insight into the possibilities.

Example 7.1 Double integrator
Consider a linear system consisting of a double integrator whose dynamics are given
by
dl‘l dl’g
at dt
Figure 7.1b shows a phase portrait of the system. The open loop dynamics (u = 0)
are shown as horizontal arrows pointed to the right for zo > 0 and to the left for
x9 < 0. The control input is represented by a double-headed arrow in the vertical
direction, corresponding to our ability to set the value of #5. The set of equilibrium
points & corresponds to the z; axis, with ue = 0.

Suppose first that we wish to reach the origin from an initial condition (a,0).
We can directly move the state up and down in the phase plane, but we must rely
on the natural dynamics to control the motion to the left and right. If @ > 0, we
can move toward the origin by first setting v < 0, which will cause z2 to become
negative. Once x5 < 0, the value of z; will begin to decrease and we will move to
the left. After a while, we can set u to be positive, moving x5 back toward zero
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and slowing the motion in the z; direction. If we bring xo to a positive value, we
can move the system state in the opposite direction.

Figure 7.1b shows a sample trajectory bringing the system to the origin. Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since 3 = 0 when x5 = 0), but if we go to a point in the state space
with z9 # 0, we can pass through the point only in a transient fashion. v

To find general conditions under which a linear system is reachable, we will first
give a heuristic argument based on formal calculations with impulse functions. We
note that if we can reach all points in the state space through some choice of input,
then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system (7.1) to an input u(t) is
given by

x(t) = /Ot A=) Bu(1) dr. (7.2)

If we choose the input to be a impulse function 6(¢) as defined in Section 6.3, the
state becomes

¢
x5 = / AT Bs(7) dr = e*'B.
0

(Note that the state changes instantaneously in response to the impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise 6.1):

d
Ti = % = AeAtB.

Continuing this process and using the linearity of the system, the input
u(t) = ar8(t) + agd(t) + azd(t) + - - + a0 V(1)
gives the state
z(t) = a1eMB + as AeM B+ a3 A2eMB 4 - - + 0, AV e B,
Taking the limit as t goes to zero through positive values, we get

lim z(t) = a1 B + a2 AB + asA’B+ -+ a, A" 'B.
t—0+

On the right is a linear combination of the columns of the matrix
W, = (B AB - A”—lB] . (7.3)

To reach an arbitrary point in the state space, we thus require that W, has n
independent columns (full rank). The matrix W, is called the reachability matriz.

Although we have only considered the scalar input case, it turns out that this
same test works in the multi-input case, where we require that W, be full column
rank (have n linearly independent columns). In addition, it can be shown that only



7-4 CHAPTER 7

the terms up to A”~' B must be computed; additional terms add no new directions
to W, (see Exercise 7.11).

An input consisting of a sum of impulse functions and their derivatives is a very
violent signal. To see that an arbitrary point can be reached with smoother signals
we can make use of the convolution equation. Assuming that the initial condition
is zero, the state of a linear system is given by

t t
x(t) = / eA(t_T)Bu(T)dT = / eATBu(t —7)dr.
0 0

It follows from the theory of matrix functions, specifically the Cayley—Hamilton
theorem (see Exercise 7.11), that

eAT = IO[()(T) + Aal(T) + -+ Anilan—l(’r%

where a;(7) are scalar functions, and we find that

x(t) :B/o ag(T)u(t — 1) dT—I—AB/O ay(T)u(t —7)dr
n-t toz 1(T)u(t — 7) dr.
+--+A B/o n—1(T)u(t —7)d

Again we observe that the right-hand side is a linear combination of the columns
of the reachability matrix W, given by equation (7.3). This basic approach leads
to the following theorem.

Theorem 7.1 (Reachability rank condition). A linear system of the form (7.1) is
reachable if and only if the reachability matriz W, is invertible (full column rank).

The formal proof of this theorem is beyond the scope of this text but follows
along the lines of the sketch above and can be found in most books on linear control
theory, such as Callier and Desoer [CD91] or Lewis [Lew03]. It is also interesting to
note that Theorem 7.1 makes no mention of the time 7' that was in our definition
of reachability. For a linear system, it turns out that we can find an input taking
g to x¢ for any T > 0, though the size of the input required can be very large
when T is very small.

We illustrate the concept of reachability with the following example.

Example 7.2 Balance system
Consider the balance system introduced in Example 3.2 and shown in Figure 7.2.
Recall that this system is a model for a class of examples in which the center of mass
is balanced above a pivot point. One example is the Segway Personal Transporter
shown in Figure 7.2a, about which a natural question to ask is whether we can move
from one stationary point to another by appropriate application of forces through
the wheels.

The nonlinear equations of motion for the system are given in equation (3.9)
and repeated here:

(M +m)j—milcos0f = —cg—mlsinh 6> + F, (7.4)
(J +mi?)§ —milcosf = —~0 + mglsin 6. .
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(a) Segway (b) Cart—pendulum system

Figure 7.2: Balance system. The Segway Personal Transporter shown in (a) is
an example of a balance system that uses torque applied to the wheels to keep
the rider upright. A simplified diagram for a balance system is shown in (b). The
system consists of a mass m on a rod of length [ connected by a pivot to a cart
with mass M.

For simplicity, we take ¢ = v = 0. Linearizing around the equilibrium point z, =
(0,0,0,0), the dynamics matrix and the control matrix are

0 0 1 0 0

0 0 0 1 0
A= 0 m22g/u 0 0f° B= Jo/p |’

0 Mimgl/u 0 0 Im/u

where = M J, — m?1?, M, = M +m, and J, = J 4+ ml?. The reachability matrix
is

0 Ji/p 0 glm?/p?
0o I 0 12m2 M, / >
W, — m/p Lo dim o/ 1 (75)
Je/w 0 gl>m?>/p 0
Im/u 0 gl>m?2 M,/ 1i? 0

To compute the determinant we permute the first and the last columns of the
matrix W, and use the fact that such a permutation changes the determinant by a
factor of —1. This gives a block diagonal matrix with two identical blocks and the
determinant becomes

gl*m* ngmQJtMt)Q B g*1*m*

det(W,) = - (5 " e

(MJ +mJ + Mmi*)?,

and we can conclude that the system is reachable. This implies that we can move
the system from any initial state to any final state and, in particular, that we can
always find an input to bring the system from an initial state to an equilibrium
point. v

It is useful to have an intuitive understanding of the mechanisms that make
a system unreachable. An example of such a system is given in Figure 7.3. The
system consists of two identical systems with the same input. We cannot separately
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Figure 7.3: An unreachable system. The cart—pendulum system shown on the
left has a single input that affects two pendula of equal length and mass. Since
the forces affecting the two pendula are the same and their dynamics are identical,
it is not possible to arbitrarily control the state of the system. The figure on the
right is a block diagram representation of this situation.

cause the first and the second systems to do something different since they have
the same input. Hence we cannot reach arbitrary states, and so the system is not
reachable (Exercise 7.3).

More subtle mechanisms for nonreachability can also occur. For example, if
there is a linear combination of states that always remains constant, then the system
is not reachable. To see this, suppose that there exists a row vector H such that

d
0= EHJU = H(Az + Bu), for all z and u.

Then H is in the left null space of both A and B and it follows that
HW, = H [B AB .. A”—lB] —0.

Hence the reachability matrix is not full rank. In this case, if we have an initial
condition xg and we wish to reach a state x¢ for which Hxg # Huxy, then since
Hzx(t) is constant, no input u can move the state from z to xs.

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient to change
coordinates and write the dynamics of the system in the transformed coordinates
z = Tz. One application of a change of coordinates is to convert a system into a
canonical form in which it is easy to perform certain types of analysis.

A linear state space system is in reachable canonical form if its dynamics are
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i i i i
d by bo bn—1 bn

—1 ai a Ap—1 an
IS i

Figure 7.4: Block diagram for a system in reachable canonical form. The indi-
vidual states of the system are represented by a chain of integrators whose input
depends on the weighted values of the states. The output is given by an appropriate
combination of the system input and other states.

given by
—a; —az —as —ay 1
J 1 0 0 0 0
£ _ 0 1 0 0 2+ 0 u,
: (7.6)
0 1 0 0

A block diagram for a system in reachable canonical form is shown in Figure 7.4.
We see that the coefficients that appear in the A and B matrices show up directly
in the block diagram. Furthermore, the output of the system is a simple linear
combination of the outputs of the integration blocks.
The characteristic polynomial for a system in reachable canonical form is given
by
As)=8"4+a18" - an_ 15+ an. (7.7)

The reachability matrix also has a relatively simple structure:

1 —a; a2 —ay - x
0 1 —aq *
Wo= (B AB ... AB) = |,
0 0 0 1 %
0 0 0 e 1

where * indicates a possibly nonzero term and we use a tilde to remind us that A
and B are in a special form. The matrix W; is full rank since no column can be
written as a linear combination of the others because of the triangular structure of
the matrix.

We now consider the problem of finding a change of coordinates such that the
dynamics of a system can be written in reachable canonical form. Let A, B represent
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the dynamics of a given system and A, B be the dynamics in reachable canonical
form. Suppose that we wish to transform the original system into reachable canon-
ical form using a coordinate transformation z = Tx. As shown in the previous
chapter, the dynamics matrix and the control matrix for the transformed system
are

A=TAT*, B=TB.

The reachability matrix for the transformed system then becomes

W.= (B 4B ... A'B).
Transforming each element individually, we have

AB =TAT 'TB =TAB,
A’B = (TAT Y)2TB =TAT 'TAT'TB =TA?B,

A"B =TA"B,
and hence the reachability matrix for the transformed system is
W, =T (B AB - A"—lB] = TW,. (7.8)

If W, is invertible, we can thus solve for the transformation 7" that takes the system
into reachable canonical form:

T=WwWw L
The following example illustrates the approach.

Example 7.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dj_aw+0
7= - o] ®t 1] ™

We wish to find the transformation that converts the system into reachable canon-

ical form:
1 —aq —ao o 1

The coefficients a1 and ao can be determined from the characteristic polynomial
for the original system:

a1 = —2a,
As) =det(s] — A) = s> —2as + (o +w?) = R
as = o +w”.

The reachability matrix for each system is

[0 w = (1 —aq
Sl U B U
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The transformation 7" becomes

T Wl [—(a1+a)/w 1] _ (ofw 1]7

1/w 0 1/w 0

and hence the coordinates

[21] e [aml/w+m2

29 1w
put the system in reachable canonical form. \Y%
We summarize the results of this section in the following theorem.

Theorem 7.2 (Reachable canonical form). Let A and B be the dynamics and con-
trol matrices for a reachable system and suppose that the characteristic polynomial
for A is given by

det(sI —A) =s"+a1s" '+ +an_15+ an,.

Then there exists a transformation z = Tx such that in the transformed coordinates
the dynamics and control matrices are in reachable canonical form (7.6).

One important implication of this theorem is that for any reachable system, we
can assume without loss of generality that the coordinates are chosen such that the
system is in reachable canonical form. This is particularly useful for proofs, as we
shall see later in this chapter. However, for high-order systems, small changes in
the coefficients a; can give large changes in the eigenvalues. Hence, the reachable
canonical form is not always well conditioned and must be used with some care.

7.2 STABILIZATION BY STATE FEEDBACK

The state of a dynamical system is a collection of variables that permits prediction
of the future evolution of a system given its future inputs. We now explore the
idea of designing the dynamics of a system through feedback of the state. We will
assume that the system to be controlled is described by a linear state model and
has a single input (for simplicity). The feedback control law will be developed step
by step using a single idea: the positioning of closed loop eigenvalues in desired
locations.

State Space Controller Structure

Figure 7.5 is a diagram of a typical control system using state feedback. The full
system consists of the process dynamics, which we take to be linear, the controller
elements K and kg, the reference input (or command signal) r, and process dis-
turbances v. The goal of the feedback controller is to regulate the output of the
system y such that it tracks the reference input in the presence of disturbances and
also uncertainty in the process dynamics.

An important element of the control design is the performance specification. The
simplest performance specification is that of stability: given a constant reference r
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Controller Process

= Az + Bu
y=Cx+ Du

Figure 7.5: A feedback control system with state feedback. The controller uses
the system state & and the reference input r to command the process through its
input u. We model disturbances via the additive input v.

and in the absence of any disturbances, we would like the equilibrium point of the
system to be asymptotically stable. More sophisticated performance specifications
typically involve giving desired properties of the step or frequency response of the
system, such as specifying the desired rise time, overshoot, and settling time of the
step response. Finally, we are often concerned with the disturbance attenuation
properties of the system: to what extent can we experience disturbance inputs v
and still hold the output y near the desired value?
Consider a system described by the linear differential equation

Cji—g; = Az + Bu, y = Cx + Du, (7.9)
where we have ignored the disturbance signal v for now. Our goal is to drive the
output y to a given reference value r and hold it there.

We begin by assuming that all components of the state vector are measured.
Since the state at time ¢ contains all the information necessary to predict the future
behavior of the system, the most general time-invariant control law is a function of
the state and the reference input:

u=az,r).
If the control law is restricted to be linear, it can be written as
u=—Kx+ ker, (7.10)

where r is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figure 7.5. The negative
sign is a convention to indicate that negative feedback is the normal situation. The
term ker represents a feedforward signal from the reference to the control. The
closed loop system obtained when the feedback (7.10) is applied to the system (7.9)

is given by
d
dit” = (A — BK)z + Blr. (7.11)

We attempt to determine the feedback gain K so that the closed loop system has
the characteristic polynomial

p(s) =" +p1s" " 4+ pp15 + o (7.12)
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This control problem is called the eigenvalue assignment problem or pole placement
problem (we will define poles more formally in Chapter 9).

Note that k¢ does not affect the stability of the system (which is determined by
the eigenvalues of A — BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the closed loop system are given
by

Ie:—<A—BK)_1ka’I“7 ye:cxe+Due7

hence k¢ should be chosen such that y. = r (the desired output value). Since ki is
a scalar, we can easily solve to show that if D = 0 (the most common case),

ke=—-1/(C(A— BK) 'B). (7.13)

Notice that ks is exactly the inverse of the zero frequency gain of the closed loop
system. The solution for D # 0 is left as an exercise.

Using the gains K and kg, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to construct such a state feedback
control law, we begin with a few examples that provide some basic intuition and
insights.

Example 7.4 Vehicle steering
In Example 6.13 we derived a normalized linear model for vehicle steering. The
dynamics describing the lateral deviation were given by the normalized dynamics

_ (o1 _ [~
=loo) =00
C= [1 0) , D=0,
where v = a/b is the ratio of the distance between the center of mass and the rear
wheel, a, and the wheelbase b. We want to design a controller that stabilizes the

dynamics and tracks a given reference value r of the lateral position of the vehicle.
To do this we introduce the feedback

u=—Kx+ kir = —k1x1 — koxo + ker,

and the closed loop system becomes

de I e L e 7 vk
dt—(A—BK):c—Fkar—[_kl ey x+ ke | 7

y=Cx+ Du= (1 O] x.
The closed loop system has the characteristic polynomial

s+ vkt vk —1

det(sIA+BK)det[ K s+ ko

] =52+ (’ykl + k’z)s + k1.

Suppose that we would like to use feedback to design the dynamics of the system
to have the characteristic polynomial

p(s) = 82 + 2(cwes + w?.
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Figure 7.6: State feedback control of a steering system. Unit step responses
(from zero initial condition) obtained with controllers designed with (. = 0.7 and
we = 0.05, 0.07, and 0.1 [rad/s] are shown in (a). The dashed lines indicate +5%
deviations from the setpoint. Notice that response speed increases with increasing
we, but that large w. also give large initial control actions. Unit step responses
obtained with a controller designed with w. = 0.07 and (. = 0.5, 0.7, and 1 are
shown in (b).

Comparing this polynomial with the characteristic polynomial of the closed loop
system, we see that the feedback gains should be chosen as

k1 = wf, ko = 2Ccwe — fwa.
Equation (7.13) gives k, = k; = w?, and the control law can be written as
w=ki(r—z) — koxo = wi(r — x1) — (2Cewe — Yw?)2o.

To find reasonable values of w. we have to balance the speed of response with
the available control authority. The unit step responses for the closed loop system
for different values of the design parameters are shown in Figure 7.6. The effect
of w¢ is shown in Figure 7.6a, which shows that the response speed increases with
increasing w.. All responses have overshoot less than 5%, as indicated by the
dashed lines, which corresponds to 15 cm assuming a wheelbase b = 3 m. The
settling times range from 3 to 6 normalized time units, which corresponds to about
2-4 s at vg = 15 m/s. The effect of (. is shown in Figure 7.6b. The response speed
and the overshoot increase with decreasing damping.

To select the specific gains to use, we can evaluate how the choice of parameters
affects vehicle handling characteristics. For example, a lateral error of 20% of the
wheelbase is relatively large and we might choose w. to exert a relatively large
steering angle to correct for such an error. For w, = 0.7 and a step input of size 0.2
(in normalized units), Figure 7.6a indicates that the initial steering angle will be
0.1 rad, which is aggressive but not unreasonable at moderate speeds. The value
for (. can be also be chosen as 0.7, which gives a fast response with approximately
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5% overshoot. \Y

The example of the vehicle steering system illustrates how state feedback can
be used to set the eigenvalues of a closed loop system to arbitrary values. We see
that for this example we can set the eigenvalues to any location. We now show that
this is a general property for reachable systems.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system are
the coefficients of the characteristic polynomial. It is therefore natural to consider
systems in this form when solving the eigenvalue assignment problem.

Consider a system in reachable canonical form, i.e,

—a; —az —as —an 1
J 1 0 0 0 0
dt : ST 0 (7.15)
0 1 0 0
y:ézz (bl b2 bn) zZ.

It follows from equation (7.7) that the open loop system has the characteristic
polynomial
det(sl —A) = 8" +a1s" '+ +an_15+ a,.

Before making a formal analysis we can gain some insight by investigating the block
diagram of the system shown in Figure 7.4. The characteristic polynomial is given
by the parameters aj in the figure. Notice that the parameter a; can be changed
by feedback from state z; to the input w. It is thus straightforward to change the
coeflicients of the characteristic polynomial by state feedback.

Returning to equations, introducing the control law

w=—Kz+kir=—kizy — kozo — -+ — knzn + ker, (7.16)

the closed loop system becomes

—a1—1~cl —ag—iﬂg —(Lg—ifg —an—kn kf
0 0 0 0
dz _ 0 1 0o ... 0 o]
dt : : : (7.17)
0 1 0 0
y:[b1 by - bn] 2.

The feedback changes the elements of the first row of the A matrix, which corre-
sponds to the parameters of the characteristic polynomial. The closed loop system
thus has the characteristic polynomial

s" + (a1 + %1)8"_1 + (ag + 152)5"_2 +- -+ (an—1+ /;Jn_l)s + an + k.
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Requiring this polynomial to be equal to the desired closed loop polynomial
p(s) = 8" +p1s" Tt A pa1s +

we find that the controller gains should be chosen as

];1:101—@17 ]22:102—@2’ kn:pn_an~

This feedback simply replaces the parameters a; in the system (7.15) by p;. The
feedback gain for a system in reachable canonical form is thus

K= [pl_al p2 —az - pn_an] . (718)

To have zero frequency gain equal to unity, we compute the equilibrium point
ze by setting the right hand side of equation (7.17) to zero and then compute the
corresponding output. It can be seen that ze1,..., % n—1 must all be zero and we
are left with R

(—an —kn)Zen +kir =0 and  ye = bpzen.
It follows that in order for y. to be equal to r then the parameter k¢ should be
chosen as -
an+kn _ pn

b bn

Notice that it is essential to know the precise values of parameters a,, and b, in
order to obtain the correct zero frequency gain. The zero frequency gain is thus
obtained by precise calibration. This is very different from obtaining the correct
steady-state value by integral action, which we shall see in later sections.

ke = (7.19)

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. To solve the problem in
the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

d

d—? = Ax + Bu, y = Cz + Du. (7.20)
We can change the coordinates by a linear transformation z = T'x so that the trans-
formed system is in reachable canonical form (7.15). For such a system the feed-
back is given by equation (7.16), where the coefficients are given by equation (7.18).
Transforming back to the original coordinates gives the control law

w=—Kz+kir = —KTz + ker.
The form of the controller is a feedback term — Kz and a feedforward term k¢r.
The results obtained can be summarized as follows.

Theorem 7.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation (7.20), with one input and one output. Let \(s) = s™ +as" "1 +
cor 4 ap—18 + ay, be the characteristic polynomial of A. If the system is reachable,
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then there exists a control law
u=—Kx+ kg
that gives a closed loop system with the characteristic polynomial
p(s) =s" +p1s" '+t pa1s+pa
and unity zero frequency gain between r and y. The feedback gain is given by
K=KT= (plfal P2 —ag - pnfan) WTWT_l, (7.21)

where a; are the coefficients of the characteristic polynomial of the matriz A and
the matrices W, and W, are given by

1 a1 a Qp—1

0 1 aq st Ap—2
WT:[B AB ... ATHB], W, =

0 0 1 ay

0 0 0 1

The feedforward gain is given by
kf=—1/(C(A— BK) 'B).

For simple problems, the eigenvalue assignment problem can be solved by in-
troducing the elements k; of K as unknown variables. We then compute the char-
acteristic polynomial

A(s) =det(sI — A+ BK)

and equate coefficients of equal powers of s to the coefficients of the desired char-
acteristic polynomial

p(s)=8"+p1s" 4+ pu18+ Pn.

This gives a system of linear equations to determine k;. The equations can always
be solved if the system is reachable, exactly as we did in Example 7.4.

Equation (7.21), which is called Ackermann’s formula [Ack72, Ack85], can be
used for numeric computations. It is implemented in the MATLAB function acker.
The MATLAB function place is preferable for systems of high order because it is
better conditioned numerically.

Example 7.5 Predator—prey

Consider the problem of regulating the population of an ecosystem by modulating
the food supply. We use the predator—prey model introduced in Example 5.16 and
described in more detail in Section 4.7. The dynamics for the system are given by

dH
dt
dL _baHL
dt c+H

H >0,

HY aHL
C+H7 =

v (1

—dL, L>0.



7-16 CHAPTER 7

We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a=32, b=0.6, c=50,
d=056, k=125 r=1.6.

We take the parameter r, corresponding to the growth rate for hares, as the input
to the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term (r 4 «) in the first equation, where here
r represents a constant parameter (not the reference signal) and u represents the
controlled modulation. We choose the number of lynxes L as the output of our
system.

To control this system, we first linearize the system around the equilibrium point
of the system (H,, L¢), which can be determined numerically to be z, ~ (20.6,29.5).
This yields a linear dynamical system

d [zl] _ [0.13 —0.93] [zl] N [17.2] ; w [0 1) [zl]

dt | 22 0.57 0 29 0 ’ z9 )’
where z1 = H — He, 20 = L — L., and v = u. It is easy to check that the system is
reachable around the equilibrium point (z,v) = (0, 0), and hence we can assign the
eigenvalues of the system using state feedback.

Selecting the eigenvalues of the closed loop system requires balancing the ability
to modulate the input against the natural dynamics of the system. This can be
done by the process of trial and error or by using some of the more systematic
techniques discussed in the remainder of the text. For now, we simply choose the
desired closed loop eigenvalues to be at A = {—0.1,—0.2}. We can then solve for
the feedback gains using the techniques described earlier, which results in

K = (0.025 —0.052] .

Finally, we solve for the feedforward gain k¢, using equation (7.13) to obtain k¢ =
0.002.
Putting these steps together, our control law becomes

v=—Kz+ kiLq,

where Lg is the desired number of lynxes. In order to implement the control law,
we must rewrite it using the original coordinates for the system, yielding

u=1ue — K(x —xe) + k(La — Ye)

H —20.6

=— (0025 ~0.052) [L 205

] +0.002 (Lg — 29.5).

This rule tells us how much we should modulate v as a function of the current
number of lynxes and hares in the ecosystem. Figure 7.7a shows a simulation of
the resulting closed loop system using the parameters defined above and starting
with an initial population of 15 hares and 20 lynxes. Note that the system stabilizes
the population of lynxes at the reference value (Lg = 30). A phase portrait of the
system is given in Figure 7.7b, showing how other initial conditions converge to the
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Figure 7.7: Simulation results for the controlled predator—prey system. The
population of lynxes and hares as a function of time is shown in (a), and a phase
portrait for the controlled system is shown in (b). Feedback is used to make the
population stable at He = 20.6 and L. = 30.

stabilized equilibrium population. Notice that the dynamics are very different from
the natural dynamics (shown in Figure 4.20). \Y

The results of this section show that we can use state feedback to design the
dynamics of a reachable system, under the strong assumption that we can mea-
sure all of the states. We shall address the availability of the states in the next
chapter, when we consider output feedback and state estimation. In addition, The-
orem 7.3, which states that the eigenvalues can be assigned to arbitrary locations,
is also highly idealized and assumes that the dynamics of the process are known to
high precision. The robustness of state feedback combined with state estimators is
considered in Chapter 13 after we have developed the requisite tools.

7.3 DESIGN CONSIDERATIONS

The location of the eigenvalues determines the behavior of the closed loop dynamics,
and hence where we place the eigenvalues is the main design decision to be made. As
with all other feedback design problems, there are trade-offs among the magnitude
of the control inputs, the robustness of the system to perturbations, and the closed
loop performance of the system. In this section we examine some of these trade-offs
starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class
of systems and build more intuition about the relationship between stability and
performance.
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A canonical second-order system is a differential equation of the form
G+ 2¢wod + wiq = kwiu, Yy =q. (7.22)

In state space form, this system can be represented as

dl’_ 0 wo 0 o
== [_wO _2@0] v+ [ka] u, y=(1 0) = (7.23)

where © = (g, ¢/wp) represents a normalized choice of states. The eigenvalues of
this system are given by

A= _CUJ() :tu.)o\/ (<2 — 1),

and we see that the system is stable if wy > 0 and ¢ > 0. Note that the eigenvalues
are complex if ¢ < 1 and real otherwise. Equations (7.22) and (7.23) can be used
to describe many second-order systems, including damped oscillators, active filters,
and flexible structures, as shown in the examples below.

The form of the solution depends on the value of ¢, which is referred to as the
damping ratio for the system. If ( > 1, we say that the system is overdamped, and
the natural response (u = 0) of the system is given by

x x azx x
(t):ﬁ 10 + 20 —at _ 10+ 20 —pt

B8—a B8—a ’
where @ = wo(¢ + /€2 —1) and 8 = wo(¢ — /(% —1). We see that the response

consists of the sum of two exponentially decaying signals. If { = 1, then the system
is critically damped and solution becomes

y(t) = e_cwot(fﬂlo + (220 + Cwoz10)t).

Note that this is still asymptotically stable as long as wg > 0, although the second
term within the outer parentheses is increasing with time (but more slowly than
the decaying exponential that is multiplying it).

Finally, if 0 < ¢ < 1, then the solution is oscillatory and equation (7.22) is said
to be underdamped. The natural response of the system is given by

1
y(t) = e~ owot (:1:10 coswgt + (@zlo + —xg()) sinwdt> ,
wq wq

where wq = wgv/1 — (2 is called the damped frequency. For ( < 1, wq & wq defines
the oscillation frequency of the solution and ( gives the damping rate relative to wy.
The parameter wy is referred to as the natural frequency of the system, stemming
from the fact that for { = 0 the oscillation frequency is given by wy.

Because of the simple form of a second-order system, it is possible to solve for
the step and frequency responses in analytical form. The solution for the step
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Figure 7.8: Step response for a second-order system. Normalized step responses
for the system (7.23) for ¢ = 0, 0.4, 0.7 (thicker), 1, and 1.2. As the damping ratio
is increased, the rise time of the system gets longer, but there is less overshoot.
The horizontal axis is in scaled units wot; higher values of wg result in a faster
response (rise time and settling time).

response depends on the magnitude of (:

k (1 — e~ Swot cos wyt — \/fﬁe’cw"t sin wdt> , if¢ <1,
k(1 — e “ot(1+ wpt)), if ¢ =1;

y(t) = .
1< —wot(¢—y/C=1)
k (1 > (\/@7_1 + 1>e

where we have taken x(0) = 0. Note that for the lightly damped case (¢ < 1) we
have an oscillatory solution at frequency wq.

Step responses of systems with & = 1 and different values of ¢ are shown in
Figure 7.8. The shape of the response is determined by (, and the speed of the
response is determined by wy (included in the time axis scaling): the response is
faster if wyg is larger.

In addition to the explicit form of the solution, we can also compute the proper-
ties of the step response that were defined in Section 6.3. For example, to compute
the maximum overshoot for an underdamped system, we rewrite the output as

(7.24)

y(t) =k <1 - #674“’“ sin(wqt + ga)) , (7.25)

V=@

where ¢ = arccos (. The maximum overshoot will occur at the first time in which
the derivative of y is zero, at which time the fraction of the final value can be shown

to be
M, = e~ T/ V1=C2

The rise time is normally defined as the time for the step response to go from
p% of its final value to (100 — p)%. Typical values are p = 5 or 10%. An alternative
definition is the inverse of the steepest slope: by differentiating equation (7.25) we
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Table 7.1: Properties of the step response for a second-order system with 0 <
¢<1.

Property Value ¢=05 ¢=1/V2 ¢=1
Steady-state value k k k k

Rise time (inverse slope) T, = ¥/ % /o 1.8/wo  2.2/wo 2.7 Jwo
Overshoot M, = e IVI=? 6% 4% 0%
Settling time (2%) Ts ~ 4/Cwo 8.0/wo  5.6/wo 4.0/wo

find after straightforward but tedious calculations that

1
T, = — e¥/tane, @ = arccos (.
wo

Similar computations can be done for the other characteristics of a step response.

Table 7.1 summarizes these calculations.
The frequency response for a second-order system can also be computed explic-

itly and is given by
kw? kw?

Me? = - - 5= - .
(iw)? 4+ 2Cwo (iw) + wi Wi — w? + 2iCwow

A graphical illustration of the frequency response is given in Figure 7.9. Notice the
resonant peak that increases with decreasing ¢. The peak is often characterized by
its Q-value, defined as @ = 1/2¢. The properties of the frequency response for a
second-order system are summarized in Table 7.2.

¢=0.08 Im ¢~ ol ]
¢=0.2 m ¢~
(=05 \\x» - g ¢
T~x © 10 1
(=1 10
R
\ =e _ 0
g ¢
o 90 1
X x £
= 180
107 10° 10'
Normalized frequency w/wo
(a) Eigenvalues (b) Frequency responses

Figure 7.9: Frequency response of a second-order system (7.23). (a) Eigenvalues
as a function of ¢. (b) Frequency response as a function of (. The upper curve
shows the gain ratio M, and the lower curve shows the phase shift . For small
¢ there is a large peak in the magnitude of the frequency response and a rapid
change in phase centered at w = wp. As ( is increased, the magnitude of the peak
drops and the phase changes more smoothly between 0° and -180°.
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Table 7.2: Properties of the frequency response for a second-order system with
0<(¢<1.

Property Value (=01 ¢=05 (¢=1/V2
Zero frequency gain My k k k
Bandwidth wp = Wo \/1 -2+ +v/(1-2¢?)24+1 154wo 1.27wo wo

k/(2¢/1—C2%) if¢<v2/2
Resonant peak gain M, = /¢ ) l C<V2/2, 1.15k k

N/A if ¢ >/2/2,

V1—=2¢2 if ( <+2/2

Resonant frequency wm: = o ¢ 1 €< f/ ’ wo 0.707wg O

0 if ¢ >+/2/2,

Example 7.6 Drug administration
To illustrate the use of these formulas, consider the two-compartment model for
drug administration, described in Section 4.6. The dynamics of the system are

%: [ kok2 k1 _k];] c+ [b(;)] u, Yy = [O 1] c,

where c¢; and co are the concentrations of the drug in each compartment, kg, k1, ko,
and by are parameters of the system, u is the flow rate of the drug into compart-
ment 1 and y is the concentration of the drug in compartment 2. We assume that
we can measure the concentrations of the drug in each compartment, and we would
like to design a feedback law to maintain the output at a given reference value r.

We choose ¢ = 1/4/2 to minimize the overshoot and additionally require the
rise time to be T, = 10 min. Using the formulas in Table 7.1, this gives a value for

wo = 0.22. We can now compute the gains to place the eigenvalues at this location.
Setting u = —Kx + k¢r, the closed loop eigenvalues for the system satisfy

A(s) = —0.2 % 0.096i.

Choosing k1 = —0.2 and ks = 0.2, with K = (151, 12:2) to avoid confusion with the
rates k; in the dynamics matrix, gives the desired closed loop behavior. Equa-
tion (7.13) gives the feedforward gain kr = 0.065. The response of the controller is
shown in Figure 7.10 and compared with an open loop strategy involving adminis-
tering periodic doses of the drug. \Y

Higher-Order Systems

Our emphasis so far has considered only second-order systems. For higher-order
systems, eigenvalue assignment is considerably more difficult, especially when trying
to account for the many trade-offs that are present in a feedback design.

One of the other reasons why second-order systems play such an important
role in feedback systems is that even for more complicated systems the response is
often characterized by the dominant eigenvalues. To define these more precisely,
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Figure 7.10: Open loop versus closed loop drug administration. Comparison
between drug administration using a sequence of doses versus continuously moni-
toring the concentrations and adjusting the dosage continuously. In each case, the
concentration is (approximately) maintained at the desired level, but the closed
loop system has substantially less variability in drug concentration.

consider a stable system with eigenvalues A\;, 7 = 1,...,n. We say that a complex
conjugate pair of eigenvalues A\, \* is a dominant pair if they are the closest pair
to the imaginary axis. In the case when multiple eigenvalues pairs are the same
distance to the imaginary axis, a second criterion is to look at the relative damping
of the system modes. We define the damping ratio for a complex eigenvalue A\ as

—Re A
C: —
Al

Given multiple complex conjugate pairs with the same real part, the dominant pair
will the set with the lowest damping ratio.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be
the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
pair of eigenvalues:

A
A*

d
?i: J2 . 2+Bu, y:CZ

Jk

(Note that the state z may be complex because of the Jordan transformation.)
The response of the system will be a linear combination of the responses from
each of the individual Jordan subsystems. As we see from Figure 7.8, for { < 1 the
subsystem with the slowest response is precisely the one with the whose eigenvalues
are closest to the imaginary axis. Hence, when we add the responses from each of
the individual subsystems, it is the dominant pair of eigenvalues that will be the
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primary factor after the initial transients due to the other terms in the solution die
out. While this simple analysis does not always hold (e.g., if some non-dominant
terms have larger coefficients because of the particular form of the system), it is
often the case that the dominant eigenvalues determine the (step) response of the
system.

The only formal requirement for eigenvalue assignment is that the system be
reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will be
discussed in depth in Chapters 12 and 13.

We illustrate some of the main ideas using the balance system as an example.

Example 7.7 Balance system
Consider the problem of stabilizing a balance system, whose dynamics were given
in Example 7.2. The dynamics are given by

0 0 1 0 0

4 0 0 0 1 B 0
S0 mPPg/p —cdi/p —ylm/p | | /e
0 Mymgl/p —cm/u —yMi/p Im/u

where My = M +m, J; = J +ml?, u = M;J, — m?? and we have left ¢ and ~
nonzero. We use the following parameters for the system (corresponding roughly
to a human being balanced on a stabilizing cart):

M =10 kg, m = 80 kg, ¢=0.1 Ns/m,

2
J=100kgm?/?,  I=1m, 4 =001Nms 9 O8m/%
The eigenvalues of the open loop dynamics are given by A ~ 0, —0.0011, £2.68.
We have verified already in Example 7.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and provide a desired level of
performance.

To decide where to place the closed loop eigenvalues, we note that the closed
loop dynamics will roughly consist of two components: a set of fast dynamics that
stabilize the pendulum in the inverted position and a set of slower dynamics that
control the position of the cart. For the fast dynamics, we look to the natural
period of the pendulum (in the hanging-down position), which is given by wy =
mgl/(J +mi?) = 2.1rad/s. To provide a fast response we choose a damping
ratio of ¢ = 0.5 and try to place the first pair of eigenvalues at A; 2 & —Cwo £iwy ~
—1 & 24, where we have used the approximation that 1/1 — (2 = 1. For the slow
dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s. This
gives eigenvalues A3 4 = —0.35 &= 0.351.

The controller consists of a feedback on the state and a feedforward gain for the
reference input. The feedback gain is given by

K= [—15.6 1730 —50.1 443),
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Figure 7.11: State feedback control of a balance system. The step response of a
controller designed to give fast performance is shown in (a). Although the response
characteristics (upper left) look very good, the input magnitude (lower left) is very
large. Also note that the force is negative initially. A less aggressive controller is
shown in (b). Here the response time is slowed down, but the input magnitude is
much more reasonable. Both step responses are applied to the linearized dynamics.

which can be computed using Theorem 7.3 or using the MATLAB place command.
The feedforward gain is k¢ = —1/(C(A— BK)~!B) = —15.6. The step response for
the resulting controller (applied to the linearized system) is given in Figure 7.11a.
While the step response gives the desired characteristics, the input required (lower
left) is excessively large, almost three times the force of gravity at its peak.

To provide a more realistic response, we can redesign the controller to have
slower dynamics. We see that the peak of the input force occurs on the fast time
scale, and hence we choose to slow this down by approximately a factor of 3, leaving
the damping ratio unchanged. We also slow down the second set of eigenvalues,
with the intuition that we should move the position of the cart more slowly than we
stabilize the pendulum dynamics. Leaving the damping ratio for the slow dynamics
unchanged at 0.7 and changing the frequency to 1 (corresponding to a rise time of
approximately 10 s), the desired eigenvalues become

A = {—0.33 + 0.66i, —0.18 = 0.18i}.

The performance of the resulting controller is shown in Figure 7.11b. \Y%

As we see from this example, it can be difficult to decide where to place the
eigenvalues using state feedback. This is one of the principal limitations of this
approach, especially for systems of higher dimension. Optimal control, such as the
linear quadratic regulator problem discussed in Section 7.5, is one approach that is
available. One can also focus on the frequency response for performing the design,
which is the subject of Chapters 9-13.
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7.4 INTEGRAL ACTION

Controllers based on state feedback achieve the correct steady-state response to
command signals by careful calibration of the gain k¢. However, one of the primary
uses of feedback is to allow good performance in the presence of uncertainty, and
hence requiring that we have an exact model of the process is undesirable. An
alternative to calibration is to make use of integral feedback, in which the controller
uses an integrator to provide zero steady-state error. The basic concept of integral
feedback was introduced in Section 1.6 and discussed briefly in Sections 2.3 and 2.4;
here we provide a more complete description and analysis.

System Augmentation

The basic approach in integral feedback is to create a state within the controller
that computes the integral of the error signal, which is then used as a feedback
term. We do this by augmenting the description of the system with a new state z,
which is the integral of the difference between the the actual output y and desired
output r. The augmented state equations become

d (z) (Ax+Bu) _(Az+ Bu

dt[z]_[ y—r ]_[C’z—r ‘ (7.26)
Note that if we find a controller that stabilizes the system, then we will necessarily
have z = 0 in steady state and hence y = r in steady state.

Given the augmented system, we design a state space controller in the usual
fashion, with a control law of the form

u=—Kz — kz+ ker, (7.27)

where K is the usual state feedback term, k; is the integral term, and ks is used to
set the nominal input for the desired steady state. The resulting equilibrium point
for the system is given by

To = —(A — BK) ' B(ksr — kize), Cxe =,

which comes from setting the right hand side of equation (7.26) to zero and substi-
tuting u from equation (7.27). Note that the value of z. is not specified but rather
will automatically settle to the value that makes 2 = y — r = 0, which implies that
at equilibrium the output will equal the reference value. This holds independently
of the specific values of A, B, and K as long as the system is stable (which can be
done through appropriate choice of K and ;).

The final control law is given by

dz

u=—Kx — kiz + ker, i

y—-r,

where we have now included the dynamics of the integrator as part of the specifica-
tion of the controller. This type of control law is known as a dynamic compensator
since it has its own internal dynamics. The following example illustrates the basic
approach.

Example 7.8 Cruise control
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Consider the cruise control example introduced in Section 1.5 and considered further
in Example 6.11 (see also Section 4.1). The linearized dynamics of the process
around an equilibrium point ve, ue are given by

dx

E:ax—bgﬂ—i—bw, Y=v=2=T~+ Ve,

where x = v — e, W = u—Ue, M is the mass of the car and 6 is the angle of the road.

The constant a depends on the throttle characteristic and is given in Example 6.11.
If we augment the system with an integrator, the process dynamics become

d d
—x:ax—bgﬁ—i-bw, —Z:y—vT:ve+x—vT,

dt dt

or, in state space form,

i ()00 () () ()

Note that when the system is at equilibrium, we have that Z = 0, which implies
that the vehicle speed v = v, +  should be equal to the desired reference speed v,..
Our controller will be of the form
% =y — U, w = —kpr — kiz + kevy,
dt
and the gains £, ki, and k¢ will be chosen to stabilize the system and provide the
correct input for the reference speed.

Assume that we wish to design the closed loop system to have the characteristic
polynomial

A(s) = s+ as + as.

Setting the disturbance 8 = 0, the characteristic polynomial of the closed loop
system is given by

det(sI — (A — BK)) = s* + (bky, — a)s + bk;,

and hence we set

kpzy, k=2, k=-1/(C(4-BK)'B) ="

The resulting controller stabilizes the system and hence brings Zz = y — v, to zero,
resulting in perfect tracking. Notice that even if we have a small error in the values
of the parameters defining the system, as long as the closed loop eigenvalues are
still stable, then the tracking error will approach zero. Thus the exact calibration
required in our previous approach (using kf) is not needed here. Indeed, we can
even choose kf = 0 and let the feedback controller do all of the work. However, k¢
does influence the transient response to command signals and setting it properly
will generally give a more favorable response.

Integral feedback can also be used to compensate for constant disturbances.
Figure 7.12 shows the results of a simulation in which the car encounters a hill
with angle # = 4° at t = 5s. The steady-state values of the throttle for P and
PI control are very close but the corresponding values of the car velocity are quite
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Figure 7.12: Velocity and throttle for a car with cruise control based on pro-
portional (dashed) and PI control (solid). The PI controller is able to adjust the
throttle to compensate for the effect of the hill and maintain the speed at the
reference value of v, = 20 m/s. The controller gains are k, = 0.5 and k; = 0.1.

different. The reason for this is that the zero frequency gain from throttle to
velocity is —b/a = 130 is high. The stability of the system is not affected by this
external disturbance, and so we once again see that the car’s velocity converges
to the reference speed. This ability to handle constant disturbances is a general
property of controllers with integral feedback (see Exercise 7.4). v

Reachability of the Augmented System

Eigenvalue assignment requires that the augmented system (7.26) is reachable. To
explore this we compute the reachability matrix of the augmented system.

Wr:[B AB ... A"B ]

0 CB ... CA™'B

To find the conditions for W, to be of full rank, the matrix will be transformed by
making column operations. Let aj be the coefficients of the characteristic polyno-
mial of the matrix A:

Aa(s) =s"+ a1s" V4t an_18 + an.

Multiplying the first column by a,, the second by a,,_1, through multiplication of
the (n-1)th column by a; and then adding these to the last column of the matrix W,
it follows from the Cayley—Hamilton theorem (Exercise 7.11) that the transformed
matrix becomes

B AB ... 0
Wr‘[o CB ... bn]’
where
b, =C(A" 'B4+a A" 2B +... +a,_1B). (7.28)

If the matrix A is invertible, implying that there are no eigenvalues at the origin,
then we can rewrite the formula for b,, as

by, = CA (A" + ;A" ' + ...+ ap,_1A)B = —a,CA™'B,

where the final equality follows from a second application of the Cayley—Hamilton

theorem. As long as the coefficient b,, # 0, then the system is reachable and it is

possible to assign the eigenvalues of the augmented system to arbitrary values.
We will see in Chapter 9 that the coefficient b,, can be identified with a coefficient

4
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of the transfer function

bis" L4 bys" 24 ...+ b,
s+ aisml 4. +a,

G(s) =

The condition for reachability is thus that the original system does not contain a
pure derivative.

7.5 LINEAR QUADRATIC REGULATORS

As an alternative to selecting the closed loop eigenvalue locations to accomplish a
certain objective, the gains for a state feedback controller can instead be chosen by
attempting to optimize a cost function. This can be particularly useful in helping
balance the performance of the system with the magnitude of the inputs required
to achieve that level of performance.

The linear quadratic regulator (LQR) problem is one of the most common op-
timal control problems. Given a multi-input linear system

%:Ax—i—Bu, z €R" ueRP,

with initial condition 2:(0) = z¢, we attempt to minimize the quadratic cost function

(o) = /0 (27 Qua + uT Quu) di + 2 (1) Qra(te), (7.29)

where @, = 0, @, > 0 and Q¢ = 0 are symmetric, positive (semi-) definite matrices
of the appropriate dimensions. This cost function represents a trade-off between
the deviation of the state from the origin and the cost of the control input. By
choosing the matrices @, @, and Q¢ we can balance the rate of convergence of the
solutions with the cost of the control.

The solution to the LQR problem is given by a linear control law of the form

u=—-Kz, K=Q,;'BTS, (7.30)
where S € R"*" is a positive definite, symmetric matrix given by

_ 45

i ATS + SA—-SBQ,;'BTS +Q., S(t) = Q. (7.31)

This differential equation, called the Riccati differential equation, is integrated back-
wards in time starting with S(¢f) = Q¢. The minimal cost function, representing
the optimal cost, is given by

te
min/ (27 Quz + u" Quu) dt + 27 (tr)Qsz(te) = 7 (0)S(0)z(0) (7.32)
“ Jo

The matrices A, B, @, Q., and K may depend on time. A solution to the optimal
control problem exists if the Riccati equation has a unique positive solution. The
LQR approach is particularly well suited when linearizing around a trajectory as
will be done later in Section 8.5.
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The LQR problem is simplified significantly if the time horizon is infinite and
all matrices are constants, in which case S is a constant matrix given by the steady-
state solution of (7.31):

ATS + SA-SBQ,;'BTS +Q, =0. (7.33)

This equation is called the algebraic Riccati equation. If the system is reach-
able, it can be shown that there is a unique positive definite matrix S satisfy-
ing equation (7.33) that makes the closed loop system stable. The feedback gain
K = Q;'BTS is then also a constant matrix. The MATLAB command 1qgr returns
K, S, and the dynamics matrix £ = A — BK of the closed loop system.

A key question in LQR design is how to choose the weights @, @, and Q¢. To
guarantee that a solution exists, we must have @, = 0 and @, > 0. In addition,
there are certain “observability” conditions on @), that limit its choice. Here we
assume @, > 0 to ensure that solutions to the algebraic Riccati equation always
exist. To choose specific values for the cost function weights @, and @,,, we must
use our knowledge of the system we are trying to control. A particularly simple
choice is to use diagonal weights

q1 0 P1 0
Qw = . y Qu = .
0 In 0 Pn

For this choice of @, and @,, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we
can take states that should remain small and attach higher weight values to them.
Similarly, we can penalize an input versus the states and other inputs through
choice of the corresponding input weight p.

Example 7.9 Vectored thrust aircraft
Consider the original dynamics of the system (3.28), written in state space form as

Z4 8
zZ5 0
dz z
n _224 + %cos@—%sinH
m
—9— 525 Losing + £2 cos

(see also Example 6.4). The system parameters are m = 4 kg, J = 0.0475 kg m?,
r=0.25m, g = 9.8 m/s?, ¢ = 0.05 Ns/m, which corresponds to a scaled model of
the system. The equilibrium point for the system is given by F} = 0, F, = mg, and
Ze = (Zey Yo, 0,0,0,0). To derive the linearized model near an equilibrium point, we
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compute the linearization according to equation (6.35):

0 0 O 1 0 0 0 0
0 0 O 0 1 0 0 0
0 0 O 0 0 1 0 0
A= 0 0 —g —c¢/m 0 0l” B= 1/m 0 |’
0 0 O 0 —c/m 0 0 1/m
0 0 O 0 0 0 r/J 0
10 00 00 0 0
¢= 010 00 0] ’ D= 0 0] '
Letting £ = z — 2, and v = F' — F,, the linearized system is given by
3
— = A B s - C .
g = Ast By y=0C¢

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, we write the cost func-
tion as

J = / (€7 Qet + 0T Quu ),
0

where £ = 2z — 2, and v = F' — F, again represent the local coordinates around the
desired equilibrium point (ze, Fe). We begin with diagonal matrices for the state
and input costs:

1 0 00 0 O
01 0 0 0O
100 1 0 0 O _[p O
=10 0010 of Q“_[op]'
0 000 1O
0 000 01
This gives a control law of the form v = —K¢, which can then be used to derive

the control law in terms of the original variables:
F=v+4+F,=-K(z— z)+ Fe.

As computed in Example 6.4, the equilibrium points have F, = (0, mg) and 2z, =
(ZeyYe,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure 7.13a for p = 1. The response can be tuned by adjusting
the weights in the LQR cost. Figure 7.13b shows the response in the z direction
for different choices of the weight p.

\Y

Linear quadratic regulators can also be designed for discrete-time systems, as
illustrated by the following example.

Example 7.10 Web server control

Consider the web server example given in Section 4.4, where a discrete-time model
for the system was given. We wish to design a control law that sets the server
parameters so that the average server processor load is maintained at a desired
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(a) Step response in x and y (b) Effect of control weight p

Figure 7.13: Step response for a vectored thrust aircraft. The plot in (a) shows
the z and y positions of the aircraft when it is commanded to move 1 m in each
direction. In (b) the z motion is shown for control weights p = 1, 10?, 10*. A higher
weight of the input term in the cost function causes a more sluggish response.

level. Since other processes may be running on the server, the web server must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 7.14. We focus on
the special case where we wish to control only the processor load using both the
KeepAlive and MaxClients parameters. We also include a “disturbance” on the
measured load that represents the use of the processing cycles by other processes
running on the server. The system has the same basic structure as the generic
control system in Figure 7.5, with the variation that the disturbance enters after
the process dynamics.

The dynamics of the system are given by a set of difference equations of the
form

l’[k’ + 1] = A:L'[k] + Bu[k}v Yepu [k] = Zcpu [k] + dcpu [k]a

where = (Zcpu, Tmem) 1S the state of the web server, 4 = (Uka, tmc) is the input,
dcpy is the processing load from other processes on the computer, and ycpy is the
total processor load. The matrices A € R?*2 and B € R?*? are described in
Section 4.4.

dcpu
Precompensation Server
p Tcpu Yepu
Tcpu u —
— kg P
Tmem
Feedback
—-K

Figure 7.14: Feedback control of a web server. The controller sets the values of
the web server parameters based on the difference between the nominal parameters
(determined by k¢repu) and the current load yepy. The disturbance v represents
the load due to other processes running on the server. Note that the measurement
is taken after the disturbance so that we measure the total load on the server.
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We choose our controller to be a feedback controller of the form

u=—-K [ Yepu ] + kfrepu,

mem

where ¢y is the desired processor load. Note that we have used the measured
processor load ycpy instead of the CPU state xcp, to ensure that we adjust the
system operation based on the actual load. (This modification is necessary because
of the nonstandard way in which the disturbance enters the process dynamics.)
The feedback gain matrix K can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, with the cost function given

by
50 1/502 0
Qe = [0 1] o Qu= [ 0 1/10002] '

The cost function for the state (), is chosen so that we place more emphasis on the
processor load versus the memory usage. The cost function for the inputs @, is
chosen so as to normalize the two inputs, with a KeepAlive timeout of 50 s having
the same weight as a MaxClients value of 1000. These values are squared since
the cost associated with the inputs is given by u” Q,u. Using the dynamics in
Section 4.4 and the d1gr command in MATLAB, the resulting gains become

~22.3 10.1
K= [382.7 77.7] '

As in the case of a continuous-time control system, the feedforward gain kg is
chosen to yield the desired operating point for the system. Setting xz[k+1] = z[k] =
Te, the steady-state equilibrium point and output for a given reference input r are
given by

2o = (A — BK)x. + Bkgr, Yo = Ce.

This is a matrix equation in which k¢ is a column vector that sets the two input
values based on the desired reference. Since we have two inputs, we can set both
the desired CPU load ycpu,e and the desired memory usage Tmem,e. If we take the
desired equilibrium state to be of the form z, = (r, 0), where we choose the desired
value of memory usage to be zero to make as much memory as possible available
for other tasks, then we must solve

[g] = (A— BK — I)"'Bkr.

Solving this equation for k¢, we obtain

e — (((A—BK—I)’IB))_1 [é] - [54399.35] '

The dynamics of the closed loop system are illustrated in Figure 7.15. We apply
a change in load of d.p, = 0.3 at time ¢ = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desired load at 0.57. Note that
both the KeepAlive and MaxClients parameters are adjusted. Although the load
is decreased, it remains approximately 0.2 above the desired steady state. \Y%
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Figure 7.15: Web server with LQR control. The plot in (a) shows the state of the
system under a change in external load applied at £ = 10 ms. The corresponding
web server parameters (system inputs) are shown in (b). The controller is able to
reduce the effect of the disturbance by approximately 40%.

7.6 FURTHER READING

The importance of state models and state feedback was discussed in the seminal
paper by Kalman [Kal60], where the state feedback gain was obtained by solving
an optimization problem that minimized a quadratic loss function. The notions of
reachability and observability (Chapter 8) are also due to Kalman [Kal61b] (see
also [Gil63, KHNG63]). Kalman defines controllability and reachability as the ability
to reach the origin and an arbitrary state, respectively [KFA69]. We note that in
most textbooks the term “controllability” is used instead of “reachability,” but we
prefer the latter term because it is more descriptive of the fundamental property
of being able to reach arbitrary states. Most undergraduate textbooks on control
contain material on state space systems, including, for example, Franklin, Powell,
and Emami-Naeini [FPEN05] and Ogata [Oga0l]. Friedland’s textbook [Fri04]
covers the material in the previous, current, and next chapter in considerable detail,
including the topic of optimal control.

EXERCISES

7.1 (Double integrator) Counsider the double integrator. Find a piecewise constant
control strategy that drives the system from the origin to the state = = (1, 1).

7.2 (Reachability from nonzero initial state) Extend the argument in Section 7.1
to show that if a system is reachable from an initial state of zero, it is reachable
from a nonzero initial state.

7.3 (Unreachable systems) Consider a system with the state x and z described by

the equations

dx dz
7 x + Bu, 7 z+ Bu

If 2(0) = z(0) it follows that x(t) = z(t) for all ¢ regardless of the input that is
applied. Show that this violates the definition of reachability and further show that
the reachability matrix W, is not full rank.



7-34 CHAPTER 7

7.4 (Integral feedback for rejecting constant disturbances) Consider a linear system

of the form J
d—f:Am—&-Bu—&—Fd, y=Cx

where u is a scalar and v is a disturbance that enters the system through a distur-
bance vector F' € R™. Assume that the matrix A is invertible and the zero frequency
gain CA~! B is nonzero. Show that integral feedback can be used to compensate for
a constant disturbance by giving zero steady-state output error even when d # 0.

7.5 (Rear-steered bicycle) A simple model for a bicycle was given by equation (4.5)
in Section 4.2. A model for a bicycle with rear-wheel steering is obtained by revers-
ing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.

7.6 (Characteristic polynomial for reachable canonical form) Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (7.7) and that

d"zy n dr 1z n n dzy, n dnFy
a et apo1—— tan2y = ——1,
din T g1 Lt BT gk

where z; is the kth state.

7.7 (Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

1 a1 ay - ap—1
1 a/l .. an72
W= 1
0
a
1

7.8 (Non-maintainable equilibrium points) Consider the normalized model of a

pendulum on a cart

d’*z d%0

7z =W Tz —0 + u,
where x is cart position and 6 is pendulum angle. Can the angle 6§ = 6, for 6y # 0
be maintained?

7.9 (Eigenvalue assignment) Consider the system

dx -1 0 a—1
dt—Am—l—Bu—[l O]x—I—[ 1 ]u,

with @ = 1.25. Design a state feedback that gives det(sI — BK) = s? + 2(cw.s +w?,
where w, = 5, and (., = 0.6.
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7.10 (Eigenvalue assignment for unreachable system) Consider the system

de_ (01}, (2 - (1 o)
dt - 0 O x 0 u? y - x}
with the control law

u = —kix1 — koxo + k¢r.

Compute the rank of the reachability matrix for the system and show that eigen-
values of the system cannot be assigned to arbitrary values.

7.11 (Cayley-Hamilton theorem) Let A € R™*™ be a matrix with characteristic
polynomial \(s) = det(s] — A) = s" +a;s" '+ -+ a,_15+a,. Assume that
the matrix A can be diagonalized and show that it satisfies

MA) = A"+ A"+ a1 A+ and =0,

where the zero on the right hand side represents a matrix of elements with all zeros.
Use this result to show that A™ can be written in terms of lower order powers of
A and hence any matrix polynomial in A can be rewritten using terms of order at
most n — 1.

7.12 (Dominant pairs) Consider the following two linear systems:

do [—1.1 —0.1] ot [1] y do [—1.1 —0.1] ot
5,: dt 10 0) U g, 10

y= [1.01 0.11] z, y= [1.1 1.01] z.

(6) ©

Show that although both systems have the same eigenvalues, the step responses of
the two systems are dominated by different sets of eigenvalues.

7.13 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise 3.11. Using the following normalized parameters,

J1=10/9, Jo=10, =01, k=1 k=1,

verify that the eigenvalues of the open loop system are 0,0,—0.05 4+ i. Design a
state feedback that gives a closed loop system with eigenvalues —2, —1, and —1+1.
This choice implies that the oscillatory eigenvalues will be well damped and that
the eigenvalues at the origin are replaced by eigenvalues on the negative real axis.
Simulate the responses of the closed loop system to step changes in the reference
signal for 65 and a step change in a disturbance torque on the second rotor.

7.14 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (4.8) in Section 4.2. Using the parameters from the companion web site, the
model is unstable at the velocity v = 5 m/s and the open loop eigenvalues are
—1.84, —14.29, and 1.30 £ 4.60:¢. Find the gains of a controller that stabilizes the
bicycle and gives closed loop eigenvalues at —2, —10, and —1 + <. Simulate the
response of the system to a step change in the steering reference of 0.002 rad.

7.15 (Atomic force microscope) Consider the model of an AFM in contact mode
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given in Example 6.9:

0 1 0 0 0
dj . 7k2/(m1 +m2) 702/(m1 +m2) 1/m2 0 . 0 u
dt 0 0 0 w3 0 ’
0 0 —w3  —2Q3ws3 w3
ma myka mic2
= [ 1 0] x.
mi + me mi+mg My 4+ me

Use the MATLAB script afm_data.m from the companion web site to generate the
system matrices.

a) Compute the reachability matrix of the system and numerically determine its
rank. Scale the model by using milliseconds instead of seconds as time units. Repeat
the calculation of the reachability matrix and its rank.

b) Find a state feedback controller that gives a closed loop system with complex
poles having damping ratio 0.707. Use the scaled model for the computations.

¢) Compute state feedback gains using linear quadratic control. Experiment by
using different weights. Compute the gains for ¢y = ¢o = 0,93 = g4 = 1 and
p1 = 0.1 and explain the result. Choose ¢ = g2 = g3 = ¢4 = 1 and explore what
happens to the feedback gains and closed loop eigenvalues when you change p;.
Use the scaled system for this computation.

7.16 Consider the second-order system

d?y dy du
SV 052 fy=a" tu
a2 TP TV S T

Let the initial conditions be zero.

a) Show that the initial slope of the unit step response is a. Discuss what it means
when a < 0.

b) Show that there are points on the unit step response that are invariant with a.
Discuss qualitatively the effect of the parameter a on the solution.

¢) Simulate the system and explore the effect of a on the rise time and overshoot.

7.17 (Performance specifications and transfer functions) Find the transfer function
of a second order system that satisfies the following closed loop specifications: (a)
zero steady-state error, (b) 2% settling time less than 2's, (c¢) rise time less than
0.8 s and (d) overshoot less than 3%.

7.18 (Bryson’s rule) Bryson and Ho [BH75] have suggested the following method
for choosing the matrices @, and @, in equation (7.29). Start by choosing Q.
and @, as diagonal matrices whose elements are the inverses of the squares of the
maxima of the corresponding variables. Then modify the elements to obtain a
compromise among response time, damping, and control effort. Apply this method
to the motor drive in Exercise 7.13. Assume that the largest values of the ¢; and
o are 1, the largest values of ¢, and ¢ are 2 and the largest control signal is 10.
Simulate the closed loop system for ¢5(0) = 1 and all other states are initialized to
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0. Explore the effects of different values of the diagonal elements for @), and Q..

7.19 (Linear quadratic regulator) Consider the first-order system

d—? = az + bu, x(0) = o,

where all variables are scalar. Find a control law that minimizes the criterion

J(o) = min (qfxz’ (t) + /O ! (qu2?(t) + quuQ(t))dt),

where ¢¢, ¢, and ¢, are all positive.

7.20 (LQR proof) Use the Riccati equation (7.31) and the relation
2T (tr) Qe (te) — =7 (0)S(0)z(0) =

/Otf (iT(t)S(t)x(t) + 2T S(t)x(t) + xT(t)S(t)j;(t))dt_

to show that the cost function for the linear quadratic regulator problem can be
written as

te
| (+T®Qua®) + uT 0Quult) ) + o (t)Qua(t)
0
te T
= 27 (0)S(0)(0) + / (u(t)+ Qi BTS(1)2()) Qu(u() +Qu BT SMx(t) )t,
0
from which it follows that the control law u(t) = —Kxz(t) = —Q;'BTS(t)z(t) is
optimal. Does the proof hold when all matrices depend on time?

7.21 (Riccati and Euler equations) Consider the Riccati equation

d
_ch — ATS 4 SA— SBQ;'BTS + Q.. S(t) = Qr.

Show that the solution is
S(t) = [War(t) + Voo ()Qe] [¥11 () + W12(£) Q]
where the matrix ¥ satisfies the differential equation

dv _d (@ V) (A —-BQ.'BT) (¥ Yo
dt — dt (Y1 ¥ar) | —Qu —AT Wor WUy )’

with initial conditions

ven = (i) i) = (0 9)






Chapter Eight

Output Feedback

One may separate the problem of physical realization into two stages: com-
putation of the “best approximation” &(t1) of the state from knowledge of
y(t) fort <ty and computation of u(t1) given &(t1).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 1960 [Kal60].

In this chapter we show how to use output feedback to modify the dynamics of
the system through the use of observers. We introduce the concept of observability
and show that if a system is observable, it is possible to recover the state from
measurements of the inputs and outputs to the system. We then show how to
design a controller with feedback from the observer state. A general controller
with two degrees of freedom is obtained by adding feedforward. We illustrate by
outlining a controller for a nonlinear system that also employs gain scheduling.

8.1 OBSERVABILITY

In Section 7.2 of the previous chapter it was shown that it is possible to find a state
feedback law that gives desired closed loop eigenvalues provided that the system is
reachable and that all the states are measured by sensors. For many situations, it
is highly unrealistic to assume that all the states are measured. In this section we
investigate how the state can be estimated by using a mathematical model and a
few measurements. It will be shown that computation of the states can be carried
out by a dynamical system called an observer.

Definition of Observability

Consider a system described by a set of differential equations

Z—j = Axz + Bu, y = Cx + Du, (8.1)
where z € R” is the state, u € RP the input, and y € R? the measured output. We
wish to estimate the state of the system from its inputs and outputs, as illustrated
in Figure 8.1. In some situations we will assume that there is only one measured
signal, i.e., that the signal y is a scalar and that C is a (row) vector. This signal
may be corrupted by noise w, although we shall start by considering the noise-free
case. We write & for the state estimate given by the observer.

Definition 8.1 (Observability). A linear system is observable if for every T' > 0 it
is possible to determine the state of the system x(7") through measurements of y(t)
and u(t) on the interval [0, 1.
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w
Process
uw T = Az + Bu Y z
> Observer [—*
y=Cx+ Du

Figure 8.1: Block diagram for an observer. The observer uses the process mea-
surement y (possibly corrupted by noise w) and the input u to estimate the current
state of the process, denoted Z.

The definition above holds for nonlinear systems as well, and the results dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many important applications, even
outside feedback systems. If a system is observable, then there are no “hidden” dy-
namics inside it; we can understand everything that is going on through observation
(over time) of the inputs and outputs. As we shall see, the problem of observability
is of significant practical interest because it will determine if a set of sensors is
sufficient for controlling a system. Sensors combined with a mathematical model
of the system can also be viewed as a “virtual sensor” that gives information about
variables that are not measured directly. The process of reconciling signals from
many sensors using mathematical models is also called sensor fusion.

Testing for Observability

When discussing reachability in the previous chapter, we neglected the output and
focused on the state. Similarly, it is convenient here to initially neglect the input
and focus on the autonomous system

dx

— = Az, = Cux, 8.2
g y (8.2)
where x € R™ and y € R. We wish to understand when it is possible to determine
the state from observations of the output.

The output itself gives the projection of the state onto vectors that are rows
of the matrix C. The observability problem can immediately be solved if n = ¢
(number of outputs equals number of states) and the matrix C' is invertible. If the
matrix is not square and invertible, we can take derivatives of the output to obtain

dy dx

W_ o™ _ cAx.
o~ O~

From the derivative of the output we thus get the projection of the state on vectors
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that are rows of the matrix C'A. Proceeding in this way, we get at every time ¢

y(t) C

y(t) CA

ity [=] ¢ f42 (%) (8.3)
y(nf:l) (t) CAnL

We thus find that the state at time ¢ can be determined from the output and its
derivatives at time t if the observability matriz

C
CA

w, = | €A% (8.4)

cAnt

has full row rank (n independent rows). As in the case of reachability, it turns out
that we need not consider any derivatives higher than n — 1 (this is an application
of the Cayley-Hamilton theorem [Exercise 7.11]).

The calculation can easily be extended to systems with inputs and many mea-
sured signals. The state is then given by a linear combination of inputs and outputs
and their higher derivatives. The observability criterion is unchanged. We leave
this case as an exercise for the reader.

In practice, differentiation of the output can give large errors when there is
measurement noise, and therefore the method sketched above is not particularly
practical. We will address this issue in more detail in the next section, but for now
we have the following basic result.

Theorem 8.1 (Observability rank condition). A linear system of the form (8.1)
is observable if and only if the observability matriz W, is full row rank.

Proof. The sufficiency of the observability rank condition follows from the analysis
above. To prove necessity, suppose that the system is observable but W, is not
full row rank. Let v € R™, v # 0, be a vector in the null space of W, so that
Wov = 0. (Such a v exists using the fact that the row and column rank of a matrix
are always equal.) If we let 2(0) = v be the initial condition for the system and
choose u = 0, then the output is given by y(t) = Cev. Since e can be written
as a power series in A and since A™ and higher powers can be rewritten in terms of
lower powers of A (by the Cayley—Hamilton theorem), it follows that y(t) will be
identically zero (the reader should fill in the missing steps). However, if both the
input and output of the system are zero, then a valid estimate of the state is & = 0
for all time, which is clearly incorrect since z(0) = v # 0. Hence by contradiction
we must have that W, is full row rank if the system is observable. O

Example 8.1 Compartment model
Consider the two-compartment model in Figure 4.18a, but assume that only the
concentration in the first compartment can be measured. The system is described
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Ry R
s Vi V2
O—

— S ——lj R, |R2 Rs

(a) Block diagram (b) Op amp circuit

Figure 8.2: An unobservable system. Two identical subsystems have outputs
that add together to form the overall system output. The individual states of
the subsystem cannot be determined since the contributions of each to the output
are not distinguishable. The circuit diagram on the right is an example of such a
system.

by the linear system

de —ko—k1 ki bo

de _ ot u, - [1 0] c.

dt [ P 0 Y
The first compartment represents the drug concentration in the blood plasma, and
the second compartment the drug concentration in the tissue where it is active. To
determine if it is possible to find the concentration in the tissue compartment from

a measurement of blood plasma, we investigate the observability of the system by
forming the observability matrix

c 1 0
Wo = [CA] B [—ko—k1 kl] '

The rows are linearly independent if k; # 0, and under this condition it is thus
possible to determine the concentration of the drug in the active compartment from
measurements of the drug concentration in the blood. v

It is useful to have an understanding of the mechanisms that make a system
unobservable. Such a system is shown in Figure 8.2. The system is composed of
two identical systems whose outputs are subtracted. It seems intuitively clear that
it is not possible to deduce the states from the output since we cannot deduce the
individual output contributions from the difference. This can also be seen formally
(Exercise 8.3).

Observable Canonical Form

As in the case of reachability, certain canonical forms will be useful in studying
observability. A linear single-input, single-output state space system is in observable
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Zn Zn—1 %) 21

Figure 8.3: Block diagram of a system in observable canonical form. The states
of the system are represented by individual integrators whose inputs are a weighted
combination of the next integrator in the chain, the first state (rightmost integra-
tor), and the system ginput. The output is a combination of the first state and
the input. Compare with the block diagram of the system in reachable form in
Figure 7.4.

canonical form if its dynamics are given by

—ap 1 0 0 by
—ay 0 1 0 by
dz
€ z+ : u,
—Qp—1 0 0 1 bn—l
—a, 0 O 0 bn,
y= [1 00 - o] 2+ dou.

This definition can be extended to systems with many inputs; the only difference
is that the vector multiplying u is replaced by a matrix.

Figure 8.3 is a block diagram for a system in observable canonical form. As
in the case of reachable canonical form, we see that the coefficients in the system
description appear directly in the block diagram. The characteristic polynomial for
a system in observable canonical form is

As)=s"+ars" M+ +an_15+an. (8.5)

It is possible to reason about the observability of a system in observable canonical
form by studying the block diagram. If the input u and the output y are available,
the state z; can clearly be computed. Differentiating z1, we obtain the input to
the integrator that generates z;, and we can now obtain zo = 27 + a121 — biu.
Proceeding in this way, we can compute all states. The computation will, however,
require that the signals be differentiated.

To check observability more formally, we compute the observability matrix for
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a system in observable canonical form, which is given by

1 0 0 0
—Qaq 1 0 0

WO _ —a% —as —ap 1 0 ,
* * 1

where * represents an entry whose exact value is not important. The columns of

this matrix are linearly independent (since it is lower triangular), and hence W, is
invertible. A straightforward but tedious calculation shows that the inverse of the
observability matrix has a simple form given by

1 0 0 - 0

aq 1 0 0

W—l — ao ay 1 0
Gp—1 Ap—2 Gp-3 *°° 1

As in the case of reachability, it turns out that a system is observable if and
only if there exists a transformation T that converts the system into observable
canonical form. This is useful for proofs since it lets us assume that a system is in
observable canonical form without any loss of generality. The observable canonical
form may be poorly conditioned numerically.

8.2 STATE ESTIMATION

Having defined the concept of observability, we now return to the question of how
to construct an observer for a system. We will look for observers that can be
represented as a linear dynamical system that takes the inputs and outputs of the
system we are observing and produces an estimate of the system’s state. That is,
we wish to construct a dynamical system of the form

dz

— =F2+ Gu+ Hy,

dt Y
where u and y are the input and output of the original system and & € R” is an
estimate of the state with the property that &(t) — z(t) as t — oo.

The Observer

We consider the system in equation (8.1) with D set to zero to simplify the expo-
sition:
dz

i Az + Bu, y = Cuz. (8.6)
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We can attempt to determine the state simply by simulating the equations with
the correct input. An estimate of the state is then given by
‘% — Ai + Bu. (8.7)

To find the properties of this estimate, introduce the estimation error & = x — Z.
It follows from equations (8.6) and (8.7) that

dr

dt
If the dynamics matrix A has all its eigenvalues in the left half-plane, the error
Z will go to zero, and hence equation (8.7) is a dynamical system whose output
converges to the state of the system (8.6). However, the convergence might be
slower than desired.

The observer given by equation (8.7) uses only the process input «; the measured
signal does not appear in the equation. We must also require that the system be
stable, and essentially our estimator converges because the transient dynamics of
both the observer and the estimator are going to zero. This is not very useful in
a control design context since we want to have our estimate converge quickly to a
nonzero state so that we can make use of it in our controller. We will therefore
attempt to modify the observer so that the output is used and its convergence
properties can be designed to be fast relative to the system’s dynamics. This
version will also work for unstable systems.

Consider the observer

dz . .

i Az + Bu+ L(y — C%). (8.8)
This can be considered as a generalization of equation (8.7). Feedback from the
measured output is provided by adding the term L(y — C'%), which is proportional
to the difference between the observed output and the output predicted by the
observer. It follows from equations (8.6) and (8.8) that

dz -
pri (A—LO)z.
If the matrix L can be chosen in such a way that the matrix A— LC has eigenvalues
with negative real parts, the error & will go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a state feedback and find-
ing the observer. State feedback design by eigenvalue assignment is equivalent to
finding a matrix K so that A — BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrix L so that A — LC' has
given eigenvalues. Since the eigenvalues of a matrix and its transpose are the same
we can establish the following equivalences:

A AT, B+ CT, K« LT, Wy < WT. (8.9)

The observer design problem is the dual of the state feedback design problem. Using
the results of Theorem 7.3, we get the following theorem on observer design.
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Theorem 8.2 (Observer design by eigenvalue assignment). Consider the system

given by
dx
i Ax + Bu, y=Cuz, (8.10)

with one input and one output. Let A(s) = s™ + a1s" 1 4+ -+ an_15+ a, be the
characteristic polynomial for A. If the system is observable, then the dynamical

system
di
dit” = Ai + Bu+ L(y — C#) (8.11)

s an observer for the system, with L chosen as

pP1r—m
~ | P2 — a2
L == WO_IWO . (812>
Pn — Gn
and the matrices W, and Wo given by
1 0 0 0 0) '
C aq 1 0 0 0
CA — a9 aq 1 0 0
Wo = ) WO = .

cAr1 Ap_9 QAp_3 Ap_4 1 0
Ap—1 Qp—9 Gp—3 ... a1 1

The resulting observer error T = x — & is governed by a differential equation having
the characteristic polynomial

p(s) =s" +p1s" 4+ 4 pp.

The dynamical system (8.11) is called an observer for (the states of) the sys-
tem (8.10) because it will generate an approximation of the states of the system
from its inputs and outputs. This form of an observer is a much more useful form
than the one given by pure differentiation in equation (8.3).

Example 8.2 Compartment model
Consider the compartment model in Example 8.1, which is characterized by the

matrices
(ko Fk1 Kk _[bo _
A_[ o k2], B_[O], C_[l o].

The observability matrix was computed in Example 8.1, where we concluded that
the system was observable if k1 # 0. The dynamics matrix has the characteristic
polynomial

S+k0+k1 —kl

A(s) = det [ —ky s+ ko

] = 5% 4 (ko + k1 + ko)s + koks.

Let the desired characteristic polynomial of the observer be s2 + pis + p2, and
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(a) Two compartment (b) Observer response

model

Figure 8.4: Observer for a two compartment system. A two compartment model
is shown on the left. The observer measures the input concentration v and output
concentration y = ¢; to determine the compartment concentrations, shown on the
right. The true concentrations are shown by solid lines and the estimates generated
by the observer by dashed lines.

equation (8.12) gives the observer gain

I — 1 0 -1 1 0 -t pl—k‘o—kl—kg
S\ ko—k1 K ko+ki+ky 1 p2 — koks
_ p1— ko — k1 — ko
(pa — prka + kiko + k3)/k1 )

Notice that the observability condition k1 # 0 is essential. The behavior of the
observer is illustrated by the simulation in Figure 8.4b. Notice how the observed
concentrations approach the true concentrations. v

The observer is a dynamical system whose inputs are the process input v and the
process output y. The rate of change of the estimate is composed of two terms. One
term, AZ + Bu, is the rate of change computed from the model with Z substituted
for x. The other term, L(y — ), is proportional to the difference e = y — § between
measured output y and its estimate §y = Cz. The observer gain L is a matrix that
determines how the error e is weighted and distributed among the state estimates.
The observer thus combines measurements with a dynamical model of the system.
A block diagram of the observer is shown in Figure 8.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introduce the elements of the
observer gain L as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.

Example 8.3 Vehicle steering
The normalized linear model for vehicle steering derived in Examples 6.13 and 7.4
gives the following state space model dynamics relating lateral path deviation y to
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Figure 8.5: Block diagram of the observer. The observer takes the signals y and
u as inputs and produces an estimate x. Notice that the observer contains a copy
of the process model that is driven by y — g through the observer gain L.

steering angle u:

‘%’: [8 (1)] - [Z] " Y= [1 0] z. (8.13)

Recall that the state 1 represents the lateral path deviation and that zo represents
the turning rate. We will now derive an observer that uses the system model to
determine the turning rate from the measured path deviation.
The observability matrix is
10
WO - [O 1] )

i.e., the identity matrix. The system is thus observable, and the eigenvalue assign-
ment problem can be solved. We have

(L 1
e (),

which has the characteristic polynomial

8-’-11

det (s — A+ LC) = det [ !
2

_81] :52+118+12.

Assuming that we want to have an observer with the characteristic polynomial
2 _ 2 2
§°+ P15+ p2 =5 4+ 20Wwos + wg,
the observer gains should be chosen as
l1 = p1 = 2Cowo, Iy =ps = wp.

The observer is then

d:i‘i N A\ 0 1 N Yy ll N
E—AerBquL(nyx)— [O 0] T+ [1] u+ [12] (y — 21).
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Figure 8.6: Simulation of an observer for a vehicle driving on a curvy road. (a)
The vehicle trajectory, as viewed from above, with the lane boundaries shown as
dashed lines. (b) The response of the observer with an initial position error. The
plots on the left show the lateral deviation x1 and the lateral velocity x2 with solid
lines and their estimates £; and &2 with dashed lines. The plots on the right show
the estimation errors. The parameters used to design the estimator were w, = 1
and (, = 0.7.

A simulation of the observer for a vehicle driving on a curvy road is shown in
Figure 8.6. Figure 8.6a shows the trajectory of the vehicle on the road, as viewed
from above. The response of the observer is shown in Figure 8.6a, where time is
normalized to the vehicle length. We see that the observer error settles in about 4
vehicle lengths. \Y

To compute the observer gains for systems of high order we have to use numerical
calculations. The duality between the design of a state feedback and the design of
an observer means that the computer algorithms for state feedback can also be used
for the observer design; we simply use the transpose of the dynamics matrix and
the output matrix. The MATLAB command acker, which essentially is a direct
implementation of the calculations given in Theorem 8.2, can be used for systems
with one output. The MATLAB command place can be used for systems with
many outputs. It is also better conditioned numerically.

Requirements on a control system typically involve performance and robustness
specifications. Choosing a fast observer gives fast convergence but the observer
gains will be high and the estimated state will be sensitive to measurement noise.
If noise characteristics are known it is possible to find the best compromise, as will
be discussed in Section 8.4, the observer is then called a Kalman filter.

8.3 CONTROL USING ESTIMATED STATE

In this section we will consider a state space system of the form

Z—f = Az + Bu, y=Cz. (8.14)

0
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We wish to design a feedback controller for the system where only the output is
measured. Notice that we have assumed that there is no direct term in the system
(D = 0), which is often a realistic assumption. The presence of a direct term in
combination with a controller having proportional action creates an algebraic loop,
which will be discussed in Section 9.4. The problem can still be solved even if there
is a direct term, but the calculations are more complicated.

As before, we will assume that v and y are scalars. We also assume that the
system is reachable and observable. In Chapter 7 we found a feedback of the form

u=—Kx+ ker

for the case that all states could be measured, and in Section 8.2 we developed an
observer that can generate estimates of the state & based on inputs and outputs.
In this section we will combine the ideas of these sections to find a feedback that
gives desired closed loop eigenvalues for systems where only outputs are available
for feedback.

If all states are not measurable, it seems reasonable to try the feedback

u=—Kz + ker, (8.15)

where & is the output of an observer of the state, i.e.,

%f _ Ai+ Bu+ L(y — C#). (8.16)
It is not clear that such a combination will have the desired effect. To explore this,
note that since the system (8.14) and the observer (8.16) are both of state dimension
n, the closed loop system has state dimension 2n with state (z, &). The evolution
of the states is described by equations (8.14)-(8.16). To analyze the closed loop
system, we change coordinates and replace the estimated state variable & by the
estimation error

i=gx—i. (8.17)
Subtraction of equation (8.16) from equation (8.14) gives

di
ch = Az — A3 — L(Cx — C#) = A% — LC# = (A — LC)z.

Returning to the process dynamics, introducing u from equation (8.15) into
equation (8.14) and using equation (8.17) to eliminate & gives

d
d—gtc:Ax+Bu:A:c—BK:%+kar:Ax—BK(:c—fc)—kkar

— (A — BK)z + BK& + Bk

The closed loop system is thus governed by

d (z A— BK BK x Bk
di [a:] = [ 0 A—LC] [w] + [ 0 ] T (8.18)
Notice that the state T, representing the observer error, is not affected by the

reference signal r. This is desirable since we do not want the reference signal to
generate observer errors.



OUTPUT FEEDBACK 813

Since the dynamics matrix is block diagonal, we find that the characteristic
polynomial of the closed loop system is

A(s) =det (s — A+ BK)det (s — A+ LC).

This polynomial is a product of two terms: the characteristic polynomial of the
closed loop system obtained with state feedback det (s — A + BK) and the char-
acteristic polynomial of the observer det (sI — A + LC'). The design procedure thus
separates into two subproblems: design of a state feedback and design of an ob-
server. The feedback (8.15) that was motivated heuristically therefore provides an
elegant solution to the eigenvalue assignment problem for output feedback. The
result is summarized as follows.

Theorem 8.3 (Eigenvalue assignment by output feedback). Consider the system

%:AerBu, y=Cux.

The controller described by

%:ASE""BU"‘L(y_Ci‘):<A—BK—LC).%+kaT+Ly7
u=—Kz&+ kg

gives a closed loop system with the characteristic polynomial
A(s) =det (s — A+ BK)det (sI — A+ LC).

This polynomial can be assigned arbitrary roots if the system is reachable and ob-
servable.

The controller has a strong intuitive appeal: it can be thought of as being
composed of two parts: state feedback and an observer. The controller is now a
dynamical system with internal state dynamics generated by the observer. The
control action makes use of feedback from the estimated states Z. The feedback
gain K can be computed as if all state variables can be measured, and it depends
only on A and B. The observer gain L depends only on A and C'. The property that
the eigenvalue assignment for output feedback can be separated into an eigenvalue
assignment for a state feedback and an observer is called the separation principle.

A block diagram of the controller is shown in Figure 8.7. Notice that the
controller contains a dynamical model of the plant. This is called the internal
model principle: the controller contains a model of the process being controlled.

Requirements on a control system typically involve performance and robustness
specifications. It is not obvious how such properties are reflected in the closed loop
eigenvalues. It is therefore important to evaluate the design for example by plotting
time responses to get more insight into the properties of the design. Additional dis-
cussion is presented in Section 14.5, where we consider the robustness of eigenvalue
assignment (pole placement) design and also give some design rules.

Example 8.4 Vehicle steering
Consider again the normalized linear model for vehicle steering in Example 7.4. The
dynamics relating the steering angle u to the lateral path deviation y are given by
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Figure 8.7: Block diagram of an observer-based control system. The observer
uses the measured output y and the input u to construct an estimate of the state.
This estimate is used by a state feedback controller to generate the corrective
input. The controller consists of the observer and the state feedback; the observer
is identical to that in Figure 8.5.

the state space model (8.13). Combining the state feedback derived in Example 7.4
with the observer determined in Example 8.3, we find that the controller is given
by

dz [0 1) . v l -
E_Ax+Bu+L(y—C’x)— [0 0]$—|— [1]u+ [l ] (y — 1),

u=—KZ+ ker = kl(’/‘ — i‘l) — koo,
Elimination of the variable u gives

di
dt

(A— BK — LC)& + Ly + Bker

=l — k1 1—7ke) . lh

- e ) e () e

where we have set k¢ = ky as described in Example 7.4. The controller is a dynam-
ical system of second order, with two inputs y and r and one output u. Figure 8.8
shows a simulation of the system when the vehicle is driven along a curvy road.
Since we are using a normalized model, the length unit is the vehicle length and
the time unit is the time it takes to travel one vehicle length. The estimator is
initialized with all states equal to zero but the real system has an initial lateral
position of 0.8. The figures show that the estimates converge quickly to their true
values. The vehicle roughly tracks the desired path, but there are errors because

the road is curving. The tracking error can be improved by introducing feedforward
(Section 8.5). \V4
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Figure 8.8: Simulation of a vehicle driving on a curvy road with a controller
based on state feedback and an observer. The left plot shows the lane boundaries
(dotted), the vehicle position (solid), and its estimate (dashed), the upper right
plot shows the velocity (solid) and its estimate (dashed), and the lower right plot
shows the control signal using state feedback (solid) and the control signal using
the estimated state (dashed).

Kalman’s Decomposition of a Linear System

In this chapter and the previous one we have seen that two fundamental properties
of a linear input/output system are reachability and observability. It turns out
that these two properties can be used to classify the dynamics of a system. The
key result is Kalman’s decomposition theorem, which says that a linear system can
be divided into four subsystems: ¥;, which is reachable and observable, 3,5 which
is reachable but not observable, 33, which is not reachable but is observable, and
Y75 which is neither reachable nor observable.

We will first consider this in the special case of systems with one input and one
output, and where the matrix A has distinct eigenvalues. In this case we can find
a set of coordinates such that the A matrix is diagonal and, with some additional
reordering of the states, the system can be written as

Ao O 0 0 Bro

v |0 As 0 0 Bis

o o0 A, oo |™ (5.19)
0 0 0 A 0 '

Y= [Cro 0 Cro O]x—FDu.

All states zj such that By # 0 are reachable, and all states such that Cy # 0 are
observable. If we set the initial state to zero (or equivalently look at the steady-
state response if A is stable), the states given by x7, and xrs will be zero and z,;
does not affect the output. Hence the output y can be determined from the system

dxyo
dt

= AroZro + Brou, y = Crotro + Du.

Thus from the input/output point of view, it is only the reachable and observable
dynamics that matter. A block diagram of the system illustrating this property is
given in Figure 8.9a.
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(a) Distinct eigenvalues (b) General case

Figure 8.9: Kalman’s decomposition of a linear system. The decomposition in
(a) is for a system with distinct eigenvalues and the one in (b) is the general case.
The system is broken into four subsystems, representing the various combinations
of reachable and observable states. The input/output relationship only depends
on the subset of states that are both reachable and observable.

The general case of the Kalman decomposition is more complicated and requires
some additional linear algebra; see the original paper by Kalman, Ho, and Naren-
dra [KHNG63]. The key result is that the state space can still be decomposed into
four parts, but there will be additional coupling so that the equations have the form

Ao O * 0 Bro

dr | * A x* * B

i |o o0 A o o " (8.20)
0 0 * AE 0 '

y= [Cro 0 Cso 0] T,

where x denotes block matrices of appropriate dimensions. If 23,(0) = 0 then the
input/output response of the system is given by

dTro

dat = AroZro + Brou, y = CroZro + Du, (8'21)

which are the dynamics of the reachable and observable subsystem Y,.,. A block
diagram of the system is shown in Figure 8.9b.
The following example illustrates Kalman’s decomposition.

Example 8.5 System and controller with feedback from observer states

Consider the system

d
d—i:Ax—kBu, y=Cx.

The following controller, based on feedback from the observer state, was given in
Theorem 8.3:

d
d—f:AoE+Bu+L(y—O:E), u=—Kz+ ker.
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Introducing the states x and & = = — 2, the closed loop system can be written as

d (z A—- BK BK x Bk T

dt[:z]:[ 0 ALC][:;;]JF[O]T’ v=(c O][x]
which is a Kalman decomposition like the one shown in Figure 8.9b with only
two subsystems Y, and 35,. The subsystem Y.,, with state x, is reachable and
observable, and the subsystem Yz,, with state Z, is not reachable but observable.
It is natural that the state Z is not reachable from the reference signal r because
it would not make sense to design a system where changes in the command signal
could generate observer errors. The relationship between the reference r and the
output y is given by

d
ch — (A— BK)x + Bk,  y = Cx,
which is the same relationship as for a system with full state feedback. v

8.4 KALMAN FILTERING

One of the principal uses of observers in practice is to estimate the state of a
system in the presence of moisy measurements. We have not yet treated noise
in our analysis, and a full treatment of stochastic dynamical systems is beyond
the scope of this text. In this section, we present a brief introduction to the use
of stochastic systems analysis for constructing observers. We work primarily in
discrete time to avoid some of the complications associated with continuous-time
random processes and to keep the mathematical prerequisites to a minimum. This
section assumes basic knowledge of random variables and stochastic processes; see
Kumar and Varaiya [KV86] or Astrém [Ast06] for the required material.

Discrete-Time Systems

Consider a discrete-time linear system with dynamics
z[k + 1] = Az[k] + Bulk] + v[k], ylk] = Czlk] + wlk], (8.22)
where v[k] and w[k] are Gaussian white noise processes satisfying
E(v[k]) =0, E(w[k]) =0,

0 ifk+#j, E(w[k]wT[j]):{O if k # j, (8.23)

R, ifk=1j, R, ifk=j,
E(v[kw"[4]) = 0.

E(v[k]o"[j]) = {

E(v[k]) represents the expected value of v[k] and E(v[k]vT []) is the covariance ma-
trix. The matrices R, and R, are the covariance matrices for the process distur-
bance v and measurement noise w. (R, is allowed to be singular if the disturbances
do not affect all states.) We assume that the initial condition is also modeled as a
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Gaussian random variable with
E(z[0]) = xo, E((x[0] — 20)(x[0] — 20)") = Pp. (8.24)
We would like to find an estimate Z[k] that minimizes the mean square error
Plk] = E((x[k] — @[k])([k] — 2[k])"), (8.25)

given the measurements {y(x) : 0 < k < k}. We consider an observer in the same
basic form as derived previously:

z[k + 1] = Az[k] + Bulk] + L[k](y[k] — Cz[k]). (8.26)
The following theorem summarizes the main result.

Theorem 8.4 (Kalman, 1961). Consider a random process x[k] with dynamics
given by equation (8.22) and noise processes and initial conditions described by
equations (8.23) and (8.24). The observer gain L that minimizes the mean square

error is given by
L[k] = APK]CT(R,, + CP[k]CT)!,

where
Plk+1]=(A- LC)P[k}(A- LC)" + R, + LR, L",

8.27
P[0] = E((2[0] = 20)(z[0] — zo)7). (527

Before we prove this result, we reflect on its form and function. First, note
that the Kalman filter has the form of a recursive filter: given mean square error
P[k] = E((x[k] — 2[k])(z[k] — 2[k])T) at time k, we can compute how the estimate
and error change. Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate &[k] and the error covariance
P[k], so we can see how reliable the estimate is. It can also be shown that the
Kalman filter extracts the maximum possible information about output data. If we
form the residual between the measured output and the estimated output,

we can show that for the Kalman filter the covariance matrix is

1 ifj=k,

R (. k) = E(elle [K)) = W[kldy ajk:{o oy

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used even if the process,
noise, or disturbances are time-varying. When the system is time-invariant and if
Pk] converges, then the observer gain is constant:

L= APCT(R, +CPCT),
where P satisfies

P = APAT + R, — APCT (R, + CPCT)"'CPAT.
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We see that the optimal gain depends on both the process noise and the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choose state feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is solved
by the d1ge command in MATLAB.

Proof of theorem. We wish to minimize the mean square of the error E((z[k] —
2[k])(z[k] — 2[k])T). We will define this quantity as P[k] and then show that it
satisfies the recursion given in equation (8.27). By definition,
Plk+1] = E((z[k + 1] — 2[k + 1)) (z[k + 1] — 2[k + 1))T)
= (A - LC)PK)(A - LC)T + R, + LR, LT
= AP[k]AT + R, — AP[K]CT L™ — LCP[k]A™
+ L(R, + CPE]JCT)LT.

Letting R, = (R, + CP[k]CT), we have

Plk +1] = AP[k]AT + R, — AP[k|CTLT — LCP[k]A" + LR.L"
— AP[KJAT + R, + (L—AP[KJCT RZY) R (L— AP[KCT R
— AP[K|JCTR-'CPT[k]AT.

To minimize this expression, we choose L = AP[k]JCTR!, and the theorem is

€

proved. O

Continuous-Time Systems

The Kalman filter can also be applied to continuous-time stochastic processes. The
mathematical derivation of this result requires more sophisticated tools, but the
final form of the estimator is relatively straightforward.

Consider a continuous stochastic system

dz
i Az + Bu+ v, E(v(s)vT (t)) = R,6(t — s), (8.28)
y=Cx+ w, E(w(s)wT (t)) = Ryo(t — s),

where 0(7) is the unit impulse function, and the initial value is Gaussian with mean
xo and covariance Py = E((z(0) — z0)(x(0) — o)) Assume that the disturbance v
and noise w are zero mean and Gaussian (but not necessarily time-invariant):

]. 1 TR71 ]. 1 TRflw

df(w) = ———— e 3BV pdf(w) = —— 3w R
pdi(v) = o pdf(w) = w=—a==e
(8.29)

The model (8.28) is very general. We can model the dynamics both of the process
and the disturbances, as illustrated by the following example.

Example 8.6 Modeling of process and disturbances
Consider a process whose dynamics are described by

dzr

E:x—i—u—f—v, Y=+ w.
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The disturbance v is noisy sinusoidal disturbance with frequency wy and w is white
measurement noise. We model the oscillatory load disturbance as v = 21, where

i Z1 _ 70.01&]0 wo zZ1 + 0 e
dt z9 o —Wwo —0.01(4}0 z9 wWo ’
and e is zero mean white noise with covariance function rJ(t).
Augmenting the state with the states of the noise model by introducing the new

T
state £ = (x 21 2’2] we obtain the model

e (L1 0 1
Z=10 <001 w | &+ [0futw, y:[l 0 0]§+w7
0  —w  —0.0lwp 0

where v is white Gaussian noise with zero mean and the covariance R,d(t) with

00 0
R,=10 0 0 |.
0 0 wir
The model is in the standard form given by equations (8.28) and (8.29). \Y

We will now return to the filtering problem. Specifically, we wish to find the
estimate Z(t) that minimizes the mean square error P(t) = E((x(t) — 2(t))(z(t) —
2(t)T) given {y(1): 0 < 7 < t}.

Theorem 8.5 (Kalman—-Bucy, 1961). The optimal estimator has the form of a
linear observer
dz

= = Ai+Bu+ Ly Ci),  (0) =E(z(0),

where L = PCTR,Y and P = E((z(t) — 2(t))(x(t) — 2(¢))T) and satisfies

‘z—]j = AP+PAT —PCTR_'CP+R,, P(0)=E((x(0)—z0)(z(0)—z0)T). (8.30)

All matrices A, B, C, R,, Ry, P and L can be time varying. The essential
condition is that the Riccati equation (8.30) has a unique positive solution.

As in the discrete case, when the system is time-invariant and if P(¢) converges,
the observer gain L = PCT R is constant and P is the solution to

AP+ PAT — PCTR,'CP+ R, =0, (8.31)

which is called the algebraic Riccati equation.

Notice that there are a strong similarities between the Riccati equations (8.30)
and (8.31) for the Kalman filtering problem and the corresponding equations (7.31)
and (7.33) for the linear quadratic regulator (LQR). We have the equivalences

A AT BoCdT, KLY, PSS, Qe R, Que Ry (832)

which we can compare with equation (8.9). The MATLAB command kalman can
be used to compute optimal filter gains.
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Example 8.7 Vectored thrust aircraft

The dynamics for a vectored thrust aircraft were considered in Examples 3.12
and 7.9. We consider the (linearized) lateral dynamics of the system, consisting
of the subsystems whose states are given by z = (z,0, z, 9) The dynamics of the
linearized system can be obtained from Example 7.9 by extracting only the relevant
states and outputs, giving

o0 1 0 0
o0 0 1 0
A=l Sy —om ool B=|o | c_(0001],
O 0 0 0 r)J

where the linearized state £ = z — 2z, represents the system state linearized around
the equilibrium point z.. To design a Kalman filter for the system, we must include
a description of the process disturbances and the sensor noise. We thus augment
the system to have the form

dg

E:A{—FBU—FFU, y=C¢&+w,
where F' represents the structure of the disturbances (including the effects of non-
linearities that we have ignored in the linearization), v represents the disturbance
source (modeled as zero mean, Gaussian white noise), and w represents that mea-
surement noise (also zero mean, Gaussian, and white).

For this example, we choose F' as the identity matrix and choose disturbances v,
i=1,...,n,tobeindependent random variables with covariance given by R;; = 0.1,
R;; =0, 7 # j. The sensor noise is a single random variable that we model as white
noise having covariance R,, = 10~%. Using the same parameters as before, the
resulting Kalman gain is given by

37.0
—46.9
185
—31.6

L =

The performance of the estimator is shown in Figure 8.10a. We see that while the
estimator roughly tracks the system state, it contains significant overshoot in the
state estimate and has significant error in the estimate for 6 even after 2 seconds,
which can lead to poor performance in a closed loop setting.

To improve the performance of the estimator, we explore the impact of adding
a new output measurement. Suppose that instead of measuring just the output
position z, we also measure the orientation of the aircraft . The output becomes

(1000 wy
y‘[o 10 0]§+[w2]’

and if we assume that w; and wy are independent white noise sources each with
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Figure 8.10: Kalman filter response for a (linearized) vectored thrust aircraft
with disturbances and noise during the initial portion of a step response. In the
first design (a) only the lateral position of the aircraft is measured. Adding a direct
measurement of the roll angle produces a much better observer (b). The initial
estimator state for both simulations is (0.1,0.0175,0.01,0) and the controller gains
are K = (—1,7.9,-1.6,2.1) and k¢ = —1.

covariance R,,, = 1074, then the optimal estimator gain matrix becomes

32.6 —0.150
- —0.150 32.6
32.7 -9.79
—-0.0033  31.6

These gains provide good immunity to noise and high performance, as illustrated
in Figure 8.10b. \Y

Linear Quadratic Gaussian Control (LQG)

In Section 7.5 we considered optimization of the criterion (7.29) when the the control
u(t) could be a function of the state z(t). We will now explore the same problem
for the stochastic system (8.28) where the control u(t) is a function of the output
y(t).

Consider the system given by equation (8.28) where the initial state is Gaussian
with mean zy and covariance Py and the disturbances v and w are characterized
by (8.29). Assume that the requirement can be captured by the cost function

te
J=minE (/ (27 Qe 4+ u” Quu) dt + xT(tf)Qfx(tf),> (8.33)
“ 0

where we minimize over all controls such that u(t) is a function of all measurements
y(7),0 < 7 <t obtained up to time t.

The optimal control law is simply u(t) = —K3(t) where K = SBQ, ' and S
is the solution of the Riccati equation (7.31) (for the linear quadratic regulator)
and Z(¢) is given by the Kalman filter (Theorem 8.5). The solution of the problem
can thus be separated into a deterministic control problem (LQR) and an optimal

4
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Figure 8.11: Block diagram of a controller based on a structure with two degrees
of freedom that combines feedback and feedforward. The controller consists of a
trajectory generator, state feedback, and an observer. The trajectory generation
subsystem computes a feedforward command ug along with the desired state xgq.
The state feedback controller uses the estimated state and desired state to compute
a corrective input usp.

filtering problem. This remarkable result is also known as the separation principle,
as mentioned briefly in Section 8.3.
The minimum cost function is

t te
min J = 225(0)zo + Tt (S(0)Fy) +/ Tr (R, S) dt+/ Tr (LTQ,LP) dt,
0 0

where Tr is the trace of a matrix, the first two terms represent the cost of the
mean xg and covariance Py of the initial state, the third term represents the cost
due to the load disturbance, and the last term represents the cost of prediction.
Notice that the models we have used do not have a direct term in the output. The
separation theorem does not hold in this case because the nature of the disturbances
is then influenced by the feedback.

8.5 STATE SPACE CONTROLLER DESIGN

State estimators and state feedback are important components of a controller. In
this section, we will add feedforward to arrive at a general controller structure that
appears in many places in control theory and is the heart of most modern control
systems. We will also briefly sketch how computers can be used to implement a
controller based on output feedback.

Two Degree-of-Freedom Controller Architecture

In this chapter and the previous one we have emphasized feedback as a mechanism
for minimizing tracking error; reference values were introduced simply by adding
them to the state feedback through a gain kf. A more sophisticated way of doing
this is shown by the block diagram in Figure 8.11, where the controller consists of
three parts: an observer that computes estimates of the states based on a model and
measured process inputs and outputs, a state feedback, and a trajectory generator
that computes the desired behavior of all states xq and a feedforward signal ug.
Under the ideal conditions of no disturbances and no modeling errors the signal ug
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generates the desired behavior x4 when applied to the process. The signals x4 and
ug are generated from the task description t4. In simple cases the task description
is simply the reference signal r, and x4 and ug are generated by sending r through
linear systems. For motion control problems, such as vehicle steering and robotics,
the task description consists of the coordinates of a number of points (waypoints)
that the vehicle should pass. In other situations the task description could be to
transition from one state to another while optimizing some criterion.

To get some insight into the behavior of the system, consider the case when
there are no disturbances and the system is in equilibrium with a constant reference
signal and with the observer state & equal to the process state . When the reference
signal is changed, the signals ug and x4 will change. The observer tracks the state
perfectly because the initial state was correct. The estimated state & is thus equal
to the desired state x4, and the feedback signal ug, = K (x4 — &) will also be zero.
All action is thus created by the signals from the trajectory generator. If there
are some disturbances or some modeling errors, the feedback signal will attempt to
correct the situation.

This controller is said to have two degrees of freedom because the responses
to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).

Feedforward Design and Trajectory Generation

We will now discuss design of controllers with the architecture shown in Figure 8.11.
For an analytic description we start with the full nonlinear dynamics of the process

d

—=f@w,  y=hu). (8:34)
A feasible trajectory for the system (8.34) is a pair (xzq(t), ug(t)) that satisfies the
differential equation and generates the desired trajectory:

Ea(t) = f(zalt), u(t)), r(t) = h(za(t), un(t)).

The problem of finding a feasible trajectory for a system is called the trajectory
generation problem, with x4 representing the desired state for the (nominal) system
and ug representing the desired input or the feedforward control. If we can find
a feasible trajectory for the system, we can search for controllers of the form u =
a(z, 4, ug) that track the desired reference trajectory.

In many applications, it is possible to attach a cost function to trajectories that
describe how well they balance trajectory tracking with other factors, such as the
magnitude of the inputs required. In such applications, it is natural to ask that we
find the optimal controller with respect to some cost function:

T
Lr(ur;/o L(x,u)dt-i—v(x(T))a

subject to the constraint

&= f(z,u), r e R", ueRP.
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Figure 8.12: Trajectory generation for changing lanes. We wish to change from
the right lane to the left lane over a distance of 90 m in 6 s. The planned trajectory
in the zy plane is shown in (a) and the lateral position y and the steering angle ¢
over the maneuver time interval are shown in (b).

Abstractly, this is a constrained optimization problem where we seek a feasible
trajectory (zq(t),us(t)) that minimizes the cost function. Depending on the form
of the dynamics, this problem can be quite complex to solve, but there are good
numerical packages for solving such problems, including handling constraints on
the range of inputs as well as the allowable values of the state.

In some situations we can simplify the approach of generating feasible trajec-
tories by exploiting the structure of the system. The next example illustrates one
such approach.

Example 8.8 Vehicle steering
To illustrate how we can use a two degree-of-freedom design to improve the perfor-
mance of the system, consider the problem of steering a car to change lanes on a
road, as illustrated in Figure 8.12a.

We use the non-normalized form of the dynamics, which were derived in Ex-
ample 3.11. As shown in Exercise 3.7, using the center of the rear wheels as the
reference (o = 0) the dynamics can be written as

dy dd v

XL .
— =wcosb, — = vsinb, —

dt dt o~ p o

where v is the forward velocity of the vehicle, 6 is the heading angle, and 0 is the
steering angle. To generate a trajectory for the system, we note that we can solve
for the states and inputs of the system given x(t), y(¢) by solving the following sets
of equations:

& =wvcosb, i =1vcosf — vhsinb,

Y =wvsin6, §j = 0sinf + vl cos b, (8.35)
0 = (v/b) tan é.

This set of five equations has five unknowns (6, 0, v, v and d) that can be solved
using trigonometry and linear algebra given the path variables z(t), y(¢) and their
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time derivatives. It follows that we can compute a feasible state trajectory for the
system given any path x(¢), y(t). (This special property of a system is known as
differential flatness and is described in more detail below.)

To find a trajectory from an initial state (zo, yo,00) to a final state (x, ys, 0f) at
a time T, we look for a path x(t),y(t) that satisfies

z(0) = zo, z(T) = xy,

y(0) = yo, y(T) = v, (8.36)
%(0) sin 6y — y(0) cos 6y = 0, #(T) sin Oy — y(T) cos b = 0, ’
7(0) sin by + £(0) cos by = vy, y(T) sin O + &(T') cos O = vy,

where v is the initial velocity and v is the final velocity along the trajectory. One
such trajectory can be found by choosing x(¢) and y(t) to have the form

zq(t) = o + art + aot? + ast?, ya(t) = Bo + Bit + Bot? + Bst.

Substituting these equations into equation (8.36), we are left with a set of linear
equations that can be solved for «;, 8;, i = 0,1,2,3. This gives a feasible trajectory
for the system by using equation (8.35) to solve for 64, vq, and dq.

Figure 8.12b shows a sample trajectory generated by a set of higher-order equa-
tions that also set the initial and final steering angle to zero. Notice that the feed-
forward input is different from zero, allowing the controller to command a steering
angle that executes the turn in the absence of errors. \Y%

The concept of differential flatness that we exploited in the previous example is
a fairly general one and can be applied to many interesting trajectory generation
problems. A nonlinear system (8.34) is differentially flat if there exists a flat output
z such that the state x and the input u can be expressed as functions of the flat
output z and a finite number of its derivatives:

x=B(z%...,29), w="(z%,...,29). (8.37)

The number of flat outputs is always equal to the number of system inputs. The
vehicle steering model is differentially flat with the position of the rear wheels as
the flat output.

A broad class of systems that is differentially flat is the class of reachable lin-
ear systems. For the linear system given in equation (7.6), which is in reachable
canonical form, we have

n—1 n—2 s
21:Z§L ), Z2:Z£L )7 cevy RApn—1 = Zn;,

w=2" 40120V 442072 4 fanz,,

and the nth component z, of the state vector is thus a flat output. Since any
reachable system can be transformed to reachable canonical form, it follows that
every reachable linear system is differentially flat.

Note that no differential equations need to be integrated in order to compute
the feasible trajectories for a differentially flat system (unlike optimal control meth-
ods, which often involve parameterizing the input and then solving the differential
equations). The practical implication is that nominal trajectories and inputs that
satisfy the equations of motion for a differentially flat system can be computed
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efficiently. The concept of differential flatness is described in more detail in the
review article by Fliess et al. [FLMR95].

Disturbance Modeling and State Augmentation

We often have some information about load disturbances: they can be unknown con-
stants, drifting with unknown rates, sinusoidal with known or unknown frequency,
or stochastic signals. This information can be used by modeling the disturbances
by differential equations and augmenting the process state with the disturbance
states as was done in Section 7.4. We illustrate with a simple example.

Example 8.9 Integral action by state augmentation

Consider the system (8.1) and assume that there is a constant but unknown dis-
turbance z acting additively on the process input. The system and the disturbance
can then be modeled by augmenting the state z with z. An unknown constant
can be modeled by the differential equation dz/dt = 0 and we obtain the following
model for the process and its environment:

d (z Az + Bu A0 B T

o B S e i R I e GO N U
Notice that the disturbance state z is not reachable from w, but because the dis-
turbance enters at the process input it can be attenuated by the control law

uw=—Ki— 2, (8.38)

where  and Z are estimates of the state x and the disturbance z. The estimated
disturbance can be obtained from the observer:

dz d?

— = AT+ Bu+ L, (y — C2), — =L,(y — C%).

dt dt
Integrating the last equation and inserting the expression for Z in the control
law (8.38) gives

u=—-Ki— L, /0 (y(r) — C(r))dr,

which is a state feedback controller with integral action. Notice that the integral
action is created through estimation of a disturbance state. v

The idea of the example can be extended to many types of disturbances and we
emphasized that much can be gained from modeling a process and its environment
(disturbances acting on the process and measurement noise).

Feedback Design and Gain Scheduling

We now assume that the trajectory generator is able to compute a desired trajectory
(x4, ug) that satisfies the dynamics (8.34) and satisfies = h(zq, ug). To design the
feedback controller, we construct the error system. Let £ = x — x4 and ug, = u—ug
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and compute the dynamics for the error:

§ =i —ia=f(w,u) = f(za,us)
= f(f + 24,0 + uff) - f(xd’uff) = F(fvvv'xd(t)vuff(t))'

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around £ = 0:

d,
X~ AWE+ B, ha,u) ~ O)e()
ap = % =2 o =2 .
98 OV | (g ) use (1)) O€ | (2 (2) ure (1))

(za(t),us(t))

In general, this system is time-varying. Note that £ corresponds to —e in Fig-
ure 8.11 due to the convention of using negative feedback in the block diagram.
We can now proceed to using LQR to compute the time-varying feedback gain
K(t) = Q,'(t)BT(t)S(t) by solving the Riccati differential equation (7.31) and the
Kalman filter gain L(t) = P(t)CT (t)R,'(t), where P(t) is obtained by solving the
Riccati equation (8.30).

Assume now that xq and ug are either constant or slowly varying (with respect
to the process dynamics). It is often the case that A(t), B(t) and C(¢) depend only
on x4, in which case it is convenient to write A(t) = A(zq), B(t) = B(zq) and
C(t) = C(xq). This allows us to consider just the linear system given by A(zq),
B(zq), and C(zq). If we design a state feedback controller K (xq) for each x4, then
we can regulate the system using the feedback

ump = —K(x4q)&.
Substituting back the definitions of £ and ug,, our controller becomes
u=um + ug = —K(xq)(x — 2q) + ug-.

This form of controller is called a gain scheduled linear controller with feedforward
(0

Example 8.10 Steering control with velocity scheduling

Consider the problem of controlling the motion of a automobile so that it follows
a given trajectory on the ground, as shown in Figure 8.13a. We use the model
derived in Example 8.8. A simple feasible trajectory for the system is to follow
a straight line in the x direction at lateral position y, and fixed velocity v,. This
corresponds to a desired state zq = (v,t, ¥y, 0) and nominal input ug = (v, 0).
Note that (xq,ug) is not an equilibrium point for the system, but it does satisfy
the equations of motion.

Linearizing the system about the desired trajectory, we obtain

y 00 —sin9] [o 0 o]
Ag= — = |0 0 cos@ =10 0 1},
9w o 0 0 oy L0 00

1 0
s-% _[o o].
Ou (wa,usr) 0 v/l
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(a) Vehicle configuration (b) Controller response

Figure 8.13: Vehicle steering using gain scheduling. (a) Vehicle configuration
consists of the z, y position of the vehicle, its angle with respect to the road,
and the steering wheel angle. (b) Step responses for the vehicle lateral position
(solid) and forward velocity (dashed). Gain scheduling is used to set the feedback
controller gains for the different forward velocities.

We form the error dynamics by setting e = z — x4 and w = v — ug:

. . . Uy

by = w1, éy = ey, € = W2
We see that the first state is decoupled from the second two states and hence we
can design a controller by treating these two subsystems separately. Suppose that
we wish to place the closed loop eigenvalues of the longitudinal dynamics (e,) at A
and place the closed loop eigenvalues of the lateral dynamics (e, eg) at the roots
of the polynomial equation s2 + a;s + a; = 0. This can accomplished by setting

w; = — ey, Wy = v—(aley + asey).
T
Note that the gain [/v, depends on the velocity v, (or equivalently on the nominal
input ug), giving us a gain scheduled controller.
In the original inputs and state coordinates, the controller has the form

v A 0 0 xr — vt v
=— l l — !
Ur Ur
Kd e use

The form of the controller shows that at low speeds the gains in the steering angle
will be high, meaning that we must turn the wheel harder to achieve the same
effect. As the speed increases, the gains become smaller. This matches the usual
experience that at high speed a very small amount of actuation is required to control
the lateral position of a car. Note that the gains go to infinity when the vehicle is
stopped (v, = 0), corresponding to the fact that the system is not reachable at this
point.

Figure 8.13b shows the response of the controller to a step change in lateral
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position at three different reference speeds. Notice that the rate of the response
is constant, independent of the reference speed, reflecting the fact that the gain
scheduled controllers each set the closed loop eigenvalues to the same values. V

Nonlinear Estimation

Finally, we briefly comment on the observer represented in Figure 8.11. Since we
are now considering a nonlinear system that operate over a wide range of a state
space, it is desirable to use full nonlinear dynamics for the prediction portion of
the observer. This can then be combined with a linear correction term, so that the
observer has the form:

B~ Fou) + L@ — b)),

The estimator gain L(&) is the observer gain obtained by linearizing the system
around the currently estimated state. This form of the observer is known as an
extended Kalman filter and has proved to be a very effective means of estimating
the state of a nonlinear system.

The combination of trajectory generation, trajectory tracking, and nonlinear
estimation provides a means for state space control of nonlinear systems. There are
many ways to generate the feedforward signal, and there are also many different
ways to compute the feedback gain K and the observer gain L. Note that once
again the internal model principle applies: the overall controller contains a model
of the system to be controlled and its environment through the observer.

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves, or other physical devices. Since in modern en-
gineering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by the A/D con-
verter, the control signal is computed and the resulting output is converted to analog
form for the actuators, as shown in Figure 8.14. To illustrate the main princi-
ples of how to implement feedback in this environment, we consider the controller
described by equations (8.15) and (8.16), i.e.,

dz . . N
E:Az—FBu—FL(y—C'x), u=—K& + ker.
The second equation consists only of additions and multiplications and can thus
be implemented directly on a computer. The first equation can be implemented by
approximating the derivative by a difference

A #(ty) — ()

E ~ 3 = A{%(tk) + Bu(tk) + L(y(tk) — C(i’(tk)),

where t; are the sampling instants and h = t;y; — tx is the sampling period.
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Figure 8.14: Components of a computer-controlled system. The controller con-
sists of analog-to-digital (A/D) and digital-to-analog (D/A) converters, as well as
a computer that implements the control algorithm. A system clock controls the
operation of the controller, synchronizing the A/D, D/A, and computing processes.
The operator input is also fed to the computer as an external input.

Rewriting the equation to isolate Z(tx41), we get the difference equation
i‘(thrl) = i‘(tk) + h(Ai’(tk) + Bu(tk) + L(y(tk) — Cff?(ﬁk))) (8.39)

The calculation of the estimated state at time tjy; requires only addition and
multiplication and can easily be done by a computer. A section of pseudocode for
the program that performs this calculation is

% Control algorithm - main loop
r = adin(chl)
y = adin(ch2)

read reference

get process output

(xd, uff) = trajgen(r) generate feedforward

u = K+(xd - xhat) + uff compute control variable
daout (chl, u) % set analog output

xhat = xhat + h*(A*x+B*u+L*(y-C*x)) J update state estimate

R

The program runs periodically at a fixed sampling period h. Notice that the
number of computations between reading the analog input and setting the analog
output has been minimized by updating the state after the analog output has been
set. The program has an array of states xhat that represents the state estimate.
The choice of sampling period requires some care.

There are more sophisticated ways of approximating a differential equation by a
difference equation. If the control signal is constant between the sampling instants,
it is possible to obtain exact equations; see [AW97].

There are several practical issues that also must be dealt with. For example, it
is necessary to filter measured signals before they are sampled so that the filtered
signal has little frequency content above fs/2 (the Nyquist frequency), where f, =
1/h is the sampling frequency. This avoids a phenomenon known as aliasing. If
controllers with integral action are used, it is also necessary to provide protection
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so that the integral does not become too large when the actuator saturates. This
issue, called integrator windup, is studied in more detail in Chapter 11. Care must
also be taken so that parameter changes do not cause disturbances.

8.6 FURTHER READING

The notion of observability is due to Kalman [Kal61b] and, combined with the dual
notion of reachability, it was a major stepping stone toward establishing state space
control theory beginning in the 1960s. The observer first appeared as the Kalman
filter, in the paper by Kalman [Kal61a] for the discrete-time case and Kalman and
Bucy [KB61] for the continuous-time case. The fact that all eigenvalues can be
placed by state feedback for a reachable system was first obtained by Bertram in
1959 [KFAG9, p. 49], and a formal proof was given by Rissanen [Ris60]. Kalman
also conjectured that the controller for output feedback could be obtained by com-
bining a state feedback with a Kalman filter; see the quote in the beginning of this
chapter. This result, which is known as the separation theorem is mathematically
subtle. Attempts of proof were made by Josep and Tou [JT61] and Gunckel and
Franklin [GF71], but a rigorous proof was given by Georgiou and Lindquist [GL13]
in 2013. The combined result is known as the linear quadratic Gaussian control
theory; a compact treatment is given in the books by Anderson and Moore [AM90],
Astrom [Ast06], and Lindquist and Picci [LP15]. Tt was also shown that solutions to
robust control problems had a similar structure but with different ways of comput-
ing observer and state feedback gains [DGKF89]. The importance of systems with
two degrees of freedom that combine feedback and feedforward was emphasized
by Horowitz [Hor63]. The controller structure discussed in Section 8.5 is based
on these ideas. The particular form in Figure 8.11 appeared in [AWQ?], where
computer implementation of the controller was discussed in detail. The hypothesis
that motion control in humans is based on a combination of feedback and feedfor-
ward was proposed by Ito in 1970 [Ito70]. Differentially flat systems were originally
studied by Fliess et al. [FLMR92]; they are very useful for trajectory generation.

EXERCISES
8.1 (Observability) Consider the system given by

dx

— = Az + Bu, = Cl,

dt Y
where x € R”, u € RP, and y € R?. Show that the states can be determined from
the input u and the output y and their derivatives if the observability matrix W,

given by equation (8.4) has n independent rows.

8.2 (Coordinate transformations) Consider a system under a coordinate transfor-
mation z = Tz, where T" € R™*" is an invertible matrix. Show that the observ-
ability matrix for the transformed system is given by W, = W,T~! and hence
observability is independent of the choice of coordinates.
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8.3 Show that the system depicted in Figure 8.2 is not observable.

8.4 (Observable canonical form) Show that if a system is observable, then there
exists a change of coordinates z = Tx that puts the transformed system into ob-
servable canonical form.

8.5 (Bicycle dynamics) The linearized model for a bicycle is given in equation (4.5),
which has the form

2
h

9,

where ¢ is the tilt of the bicycle and ¢ is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.

8.6 (Observer design by eigenvalue assignment) Consider the system

dx -1 0 a—1
dt—AJ;—[l 0]x,+[ 1 ]u, y—Cm—[O l]w.

Design an observer such that det(s] — LC) = s% + 2{,wo5s + w? with values w, = 10
and ¢, = 0.6.

8.7 (Integral action) The model (8.1) assumes that the input u = 0 corresponds
to z = 0. In practice, it is very difficult to know the value of the control signal
that gives a precise value of the state or the output because this would require a
perfectly calibrated system. One way to avoid this assumption is to assume that
the model is given by

d

£:AI+B(U+U0), y = Cx + Du,

where ug is an unknown constant that can be modeled as dug/dt = 0. Consider ug
as an additional state variable and derive a controller based on feedback from the
observed state. Show that the controller has integral action and that it does not
require a perfectly calibrated system.

8.8 (Vectored thrust aircraft) The lateral dynamics of the vectored thrust air-
craft example described in Example 7.9 can be obtained by considering the mo-
tion described by the states z = (m,@,ﬁc,é). Construct an estimator for these
dynamics by setting the eigenvalues of the observer into a Butterworth pattern with
Abw = —3.83 £ 9.244, —9.24 4 3.83:¢. Using this estimator combined with the state
space controller computed in Example 7.9, plot the step response of the closed loop
system.

8.9 (Uniqueness of observers) Show that the design of an observer by eigenvalue
assignment is unique for single-output systems. Construct examples that show that
the problem is not necessarily unique for systems with many outputs.

8.10 (Observers using differentiation) Consider the linear system (8.2), and assume
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that the observability matrix W, is invertible. Show that

T
=Wt [y TRTIEEES y(n—l)]

is an observer. Show that it has the advantage of giving the state instantaneously
but that it also has some severe practical drawbacks.

8.11 (Observer for Teorell’s compartment model) Teorell’s compartment model,
shown in Figure 4.17, has the following state space representation:

—ky 0 0 0 0 1
o ki —ka—ks O ks 0 0
— = 0 k4 0 0 Ol xz+ |0 u,
dt 0 ks 0 —ks—ks O 0
0 0 0 ks 0 0

where representative parameters are k; = 0.02, ko = 0.1, ks = 0.05, ky = k5 =
0.005. The concentration of a drug that is active in compartment 5 is measured in
the bloodstream (compartment 2). Determine the compartments that are observ-
able from measurement of concentration in the bloodstream and design an estima-
tor for these concentrations base on eigenvalue assignment. Choose the closed loop
eigenvalues —0.03, —0.05, and —0.1. Simulate the system when the input is a pulse
injection.

8.12 (Observer design for motor drive) Consider the normalized model of the motor
drive in Exercise 3.11 where the open loop system has the eigenvalues 0,0, —0.05=1.
A state feedback that gave a closed loop system with eigenvalues in —2, —1, and
—1 4+ ¢ was designed in Exercise 7.13. Design an observer for the system that has
eigenvalues —4, —2, and —2 + 2i. Combine the observer with the state feedback
from Exercise 7.13 to obtain an output feedback and simulate the complete system.

8.13 (Feedforward design for motor drive) Consider the normalized model of the
motor drive in Exercise 3.11. Design the dynamics of the block labeled “trajec-
tory generation” in Figure 8.11 so that the dynamics relating the output 7 to the
reference signal r has the dynamics

dgym d2ym

d
F + amlW + sz% + m3Ym = Am3T, (840)

with parameters da,,1 = 2.5Wp, ama = 2.5w2,, and a,,3 = w3,. Discuss how the

largest value of the feedforward signal for a unit step in the reference signal depends
on Wyy,.

8.14 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (4.8) in Section 4.2. A state feedback for the system was designed in Exer-
cise 7.14. Design an observer and an output feedback for the system.

8.15 (Discrete-time random walk) Suppose that we wish to estimate the position
of a particle that is undergoing a random walk in one dimension (i.e., along a line).
We model the position of the particle as

zlk + 1] = z[k] + ulk],

¢
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where z is the position of the particle and u is a white noise processes with F{u[i]} =
0 and E{uli]u[j]} = Ru0(i — j). We assume that we can measure x subject to
additive, zero-mean, Gaussian white noise with covariance 1.

a) Compute the expected value and covariance of the particle as a function of k.

b) Construct a Kalman filter to estimate the position of the particle given the
noisy measurements of its position. Compute the steady-state expected value and
covariance of the error of your estimate.

¢) Suppose that E{u[0]} = p # 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

8.16 (Kalman decomposition) Consider a linear system characterized by the ma-
trices

9 1 -1 2 9
1 -3 0 2 2

a=| 5 oB=15 0_(0 1 -1 0], D =0.
0 1 -1 -1 1

Construct a Kalman decomposition for the system. (Hint: Try to diagonalize.)

8.17 (Kalman filtering for a first-order system) Consider the system

d—f:ax—l—v, Yy=cr+w

where all variables are scalar. The signals v and w are uncorrelated white noise
disturbances with zero mean values and covariance functions

E(v(s)vT (t)) = r,0(t — 5), E(w(s)w? (t)) = r,d(t — s).

The initial condition is Gaussian with mean value xg and covariance Py. Determine
the Kalman filter for the system and analyze what happens for large ¢.

8.18 (LQG control for a first-order system) Consider the system

dx
E:ax—i—bu—i—v, y=cr+w

where all variables are scalar and w are uncorrelated white noise disturbances with
zero mean values and covariance functions

E(v(s)vT (1)) = r,0(t — 8), E(w(s)w” (t)) = r,o(t — s).

The initial condition is Gaussian with mean value xy and covariance Py. Determine
a controller that minimizes the cost function

J =min (qomz(tf) + /Otf (qwmz(t) + quu2(t))clt)7

where ¢, ¢, and g, are all positive. Explore the different contributions to the
minimal loss and Investigate what happens when t; goes to infinity.
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8.19 (Vertical alignment) In navigation systems it is important to align a system
to the vertical. This can be accomplished by measuring the vertical acceleration
and controlling the platform so that the measured acceleration is zero. A simplified
one-dimensional version of the problem can be modeled by

dy _

=W u=—ky y=etuw,

where ¢ is the alignment error, v the control signal, y the measured signal, and w
the measurement noise, which is assumed to be white noise with zero mean and
covariance function E(w(s)w? (t)) = r,d(t—s). The initial misalignment is assumed
to be a random variable with zero mean and the covariance P,. Determine a time-
varying gain k(t) such that the error goes to zero as fast as possible. Compare this
with a constant gain.



Chapter Nine

Transfer Functions

The typical requlator system can frequently be described, in essentials, by
differential equations of no more than perhaps the second, third, or fourth
order. ...In contrast, the order of the set of differential equations describing
the typical negative feedback amplifier used in telephony is likely to be very
much greater. As a matter of idle curiosity, I once counted to find out what
the order of the set of equations in an amplifier I had just designed would
have been, if I had worked with the differential equations directly. It turned
out to be 55.

Hendrik Bode, 1960 [Bod60].

This chapter introduces the concept of the transfer function, which is a compact
description of the input/output relation for a linear time-invariant system. We will
show how to obtain transfer functions analytically and experimentally. Combining
transfer functions with block diagrams gives a powerful algebraic method to analyze
linear systems with many blocks. The transfer function allows new interpretations
of system dynamics. We will also introduce the Bode plot, a powerful graphical
representation of the transfer function that was introduced by Bode to analyze and
design feedback amplifiers.

9.1 FREQUENCY DOMAIN MODELING

Figure 9.1 is a block diagram for a typical control system, consisting of a process
to be controlled and a controller that combines feedback and feedforward. We

| Reference Feedback | v Process w

I

! shaping controller dynamics
I

T e Lu Iz n Yy
4:—> F C P -

I

! |

! |

! |

: |

1 —1 (=

! Controller |
|

Figure 9.1: A block diagram for a feedback control system. The reference signal r
is fed through a reference shaping block, which generates a signal which is compared
with the output y to form the error e. The control signal u is generated by the
controller, which has the error as the input. The load disturbance v and the
measurement noise w are external signals.
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saw in the previous two chapters how to analyze and design such systems using
state space descriptions of the blocks. As mentioned in Chapter 3, an alternative
approach is to focus on the input/output characteristics of the system. Since it
is the inputs and outputs that are used to connect the systems, one could expect
that this point of view would allow an understanding of the overall behavior of the
system. Transfer functions are the main tool in implementing this approach for
linear systems.

The basic idea of the transfer function comes from looking at the frequency
response of a system. Suppose that we have an input signal that is periodic. Then
we can decompose this signal into the sum of a set of sines and cosines,

u(t) = Z ay, sin(kwst) + by, cos(kwt),
k=0

where wy is the fundamental frequency of the periodic input. As we saw in Sec-
tion 6.3, the input u(t) generates corresponding sine and cosine outputs (in steady
state), with possibly shifted magnitude and phase. The gain and phase at each
frequency are determined by the frequency response given in equation (6.24):

G(iw) = Cliwl — A)"'B + D, (9.1)

where we set w = kwy for each k = 1,...,00. We can thus use the steady-state
frequency response G(iw) and superposition to compute the steady-state response
any periodic signal.

The transfer function generalizes this notion to allow a broader class of input
signals besides periodic ones. As we shall see in the next section, the transfer
function represents the response of the system to an exponential input, u = est. It
turns out that the form of the transfer function is precisely the same as that of
equation (9.1). This should not be surprising since we derived equation (9.1) by
writing sinusoids as sums of complex exponentials. The transfer function can also
be introduced as the ratio of the Laplace transforms of output and input when the
initial state is zero, although one does not have to understand the details of Laplace
transforms in order to make use of transfer functions.

Modeling a system through its response to sinusoidal and exponential signals is
known as frequency domain modeling. This terminology stems from the fact that
we represent the dynamics of the system in terms of the generalized frequency s
rather than the time domain variable ¢. The transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a particularly convenient
representation in manipulating and analyzing complex linear feedback systems.
As we shall see, there are graphical representations of transfer functions (Bode
and Nyquist plots) that capture interesting properties of the underlying dynamics.
Transfer functions also make it possible to express the changes in a system because
of modeling error, which is essential when considering sensitivity to process varia-
tions of the sort discussed in Chapter 13. More specifically, using transfer functions
it is possible to analyze what happens when dynamical models are approximated
by static models or when high-order models are approximated by low-order mod-
els. One consequence is that we can introduce concepts that express the degree of
stability of a system.

While many of the concepts for state space modeling and analysis apply directly
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to nonlinear systems, frequency domain analysis applies primarily to linear systems.
The notions of gain and phase can, however, be generalized to nonlinear systems
and, in particular, propagation of sinusoidal signals through a nonlinear system
can approximately be captured by an analog of the frequency response called the
describing function. These extensions of frequency response will be discussed in
Section 10.5.

9.2 DETERMINING THE TRANSFER FUNCTION

As we have seen in previous chapters, the input/output dynamics of a linear system
have two components: the initial condition response and the forced response, which
depends on the system input. The forced response can be characterized by the
transfer function. In this section we will compute transfer functions for general
linear time-invariant systems. Transfer functions will also be determined for systems
with time delays and systems described by partial differential equations, for which
the transfer functions obtained are then transcendental functions of a complex
variable.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we will make use of a special
type of signal, called an exponential signal, of the form e, where s = o + iw is
a complex number. Exponential signals play an important role in linear systems.
They appear in the solution of differential equations and in the impulse response
of linear systems, and many signals can be represented as exponentials or sums
of exponentials. For example, a constant signal is simply e®* with a = 0. Using
Euler’s formula, damped sine and cosine signals can be represented by

e(UJrzw)t — Ottt — eo’t(

coswt + i sinwt),

where o < 0 determines the decay rate. Figure 9.2 gives examples of signals that
can be represented by complex exponentials; many other signals can be represented
by linear combinations of these signals.

As in the case of the sinusoidal signals we considered in Section 6.3, we will
allow complex-valued signals in the derivation that follows, although in practice we
always add together combinations of signals that result in real-valued functions.

To find the transfer function for the state space system

d

d—? = Az + Bu, y = Czx + Du, (9.2)
we let the input be the exponential signal u(t) = €' and assume that s ¢ A(A).
The state is then given by

t
z(t) = eMx(0) + / AT BesT dr = eMa(0) + eM(sT — A)7! (e(SI_A)t — I)B.
0
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Figure 9.2: Examples of exponential signals. The top row corresponds to expo-
nential signals with a real exponent, and the bottom row corresponds to those with
complex exponents. The dashed line in the last two cases denotes the bounding
envelope for the oscillatory signals. In each case, if the real part of the exponent
is negative then the signal decays, while if the real part is positive then it grows.

The output y of equation (9.2) then becomes

y(t) = Cx(t) + Du(t)

= CeMz(0) (C’(s[ —A)B+ D) et — Ceft(sI — A)~1B
——

initial state response

input response (93)

= Cett (x(O) — (sl — A)*lB) + (0(31 ~A)'B+ D)est,

transient response pure exponential response y;,

and the transfer function from u to y of the system (9.2) is the coefficient of the
term e*!, hence
G(s)=C(sI — A)~'B+D. (9.4)

Compare this with the definition of frequency response given by equations (6.23)
and (6.24).

An important point in the derivation of the transfer function is the fact that
we have restricted s so that s # A;(A), the eigenvalues of A. At those values of s,
we see that the response (9.3) of the system is singular (since sI — A then is not
invertible). The transfer function can, however, be extended to all values of s by
analytic continuation.

To give some insight we will now discuss the structure of equation (9.3). We
first notice that the output y(t) can be separated into two terms in two different
ways, as is indicated by braces in the equation.
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The response of the system to initial conditions is Ce??z(0). Recall that e4*
can be written in terms of the eigenvalues of A (using the Jordan form in the case of
repeated eigenvalues), and hence the transient response is a linear combination of
terms of the form p;(t)e*i?, where \; are eigenvalues of A and p;(t) is a polynomial
whose degree is less than the multiplicity of the eigenvalue (Exercise 9.1).

The transient response to the input u(t) = e contains a mixture of terms
pj(t)e*it and the exponential function

Yp(t) = (C(sI — A)"'B + D)e* = G(s)e™, (9.5)

which is a particular solution to the differential equation (9.2). We call equa-
tion (9.5) the pure exponential solution because it has only one exponential e, Tt
follows from equation (9.3) that the output y(t) is equal to the pure exponential
solution y,(¢) if the initial condition is chosen as

z(0) = (sI — A)"'B. (9.6)
If the system (9.2) is asymptotically stable, then e4* — 0 as t — oco. If in
addition the input u(t) is a constant u(t) = €°"t or a sinusoid u(t) = e™* then the
response converges to a constant or sinusoidal steady-state solution (as shown in
equation (6.23)).

To simplify manipulation of the equations describing linear time-invariant sys-
tems, we introduce £ as the class of time functions that can be created from combi-
nations of signals of the form X (s)e%, where the parameter s is a complex variable
and X (s) is a complex function (vector valued if needed). It follows from equa-
tions (9.3) and (9.4) that if a system with transfer function G(s) has the input
u € & then there is a particular solution y € £ that satisfies the dynamics of the
system. This solution is the actual response of the system if the initial condition
is chosen as equation (9.6). Since the transfer function of a system is given by
the pure exponential response, we can derive transfer functions using exponential
signals, and we will use the notation

y= Gyu Uu, (9.7)

where G, is the transfer function for the linear input/output system taking u to
y. Mathematically, it is important to remember that this notation assumes the use
of combinations of exponential signals. We will also often drop the subscripts on G
and just write y = Gu when the meaning is clear from context.

Example 9.1 Damped oscillator
Consider the response of a damped linear oscillator, whose state space dynamics
were studied in Section 7.3:

dx 0 w 0
i [—wo —2C0w0] T+ [kwo] u, y = [1 0) x. (9.8)

This system is asymptotically stable if ( > 0, and so we can look at the steady-state
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response to an input u = et

Gouls) = Clst = Ay = (1 0) [ 2 sigfwo]l (1)

1 s+ 20wy —wo 0
(1 o) (+z<w+w[ w s ])[kw] (99)

2
kwg

§2 4+ 2Cwos + wi

The steady-state response to a step input is obtained by setting s = 0, which gives
u=1 = y = Gyu(0)u = k.

If we wish to compute the steady-state response to a sinusoid, we write

(ie7" —ie™) = y= 3 (iGyu(—iw)e™ ™" — iGy, (iw)e™") .

N | =

u = sinwt =

We can now write G(iw) in terms of its magnitude and phase,

2
kw§

Gliw) = —w? + (2¢wow)i + w?

i0
= Me*,

where the magnitude (or gain) M and phase 6 are given by

kw? sinf  —2Cwow

M = , =— 5
\/(wg —w?)2 + (2Cwow)? cos) wi—w

We can also make use of the fact that G(—iw) is given by its complex conjugate
G*(iw), and it follows that G(—iw) = Me~*. Substituting these expressions into
our output equation, we obtain

1 . . . .
y = 5 (i(Mesz)efzwt . ,L'(Meze)ezwt)

1 , .
=M. 3 (ie‘l(“”@) - iez(‘“”e)) = M sin(wt + 6).

The responses to other signals can be computed by writing the input as an appro-
priate combination of exponential responses and using linearity. v

Example 9.2 Operational amplifier circuit

To further illustrate the use of exponential signals, we consider the operational am-
plifier circuit described in Section 4.3 and reproduced in Figure 9.3a. The model in
Section 4.3 is a simplification because the linear behavior of the amplifier is mod-
eled as a constant gain. In reality there are significant dynamics in the amplifier,
and the static model vy = —kv (equation (4.11)) should therefore be replaced by

a dynamical model vy, = —Gv. A simple transfer function is
ak
G(s) = . 9.10
(s) = - a (9.10)

These dynamics correspond to a first-order system with time constant 1/a. The
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Frequency w [rad/s]
(a) Circuit diagram (b) Frequency response

Figure 9.3: Stable amplifier based on negative feedback around an operational
amplifier. The circuit diagram on the left shows a typical amplifier with low-
frequency gain Ra/R:. If we model the dynamic response of the op amp as G(s) =
ak/(s+ a), then the gain falls off at frequency w = aR1k/R2, as shown in the gain
curves on the right. The frequency response is computed for k = 107, a = 10 rad/s,
Ry =10° Q, and Ry =1, 102, 10%, and 10° Q.

parameter k is called the open loop gain, and the product ak is called the gain-
bandwidth product; typical values for these parameters are k = 107 and ak = 107
10 rad/s.

If the input v; is an exponential signal e*!, then there are solutions where all
signals in the circuit are exponentials, v, v1,v2 € &, since all of the elements of the
circuit are modeled as being linear. The equations describing the system can then
be manipulated algebraically.

Assuming that the current into the amplifier is zero, as is done in Section 4.3,
the current through the resistors R; and Rs are the same, hence

v — U UV — V3

i = oS , oOr (R1 + RQ)'U = Rovi1 + Ryvg

Combining the above equation with the open loop dynamics of the operational
amplifier (9.10), which can be written as v = —Gwv in the simplified notation (9.7),
gives the following model for the closed loop system:

(R1 + R2)v = Rovi + Ryvo, vy = —GW, v,v1,v2 € E. (9.11)
Eliminating v between these equations yields

_ _R2G - —Rgak v
T Ri+ Ry + RIG ' Riak+ (Ri+Ra)(s+a) "

V2

and the transfer function of the closed loop system is

—Rg&k‘
Riak + (R + Ra)(s+a)’

Glyo, = (9.12)

The low-frequency gain is obtained by setting s = 0, hence

~kR, Ry

Gv vy 0)= 75— ~r—5",
2 ( ) (k+1)R1+R2 R,

which is the result given by equation (4.12) in Section 4.3. The bandwidth of the
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amplifier circuit is

Ri(k+1)+ R Rk
Wp =a@—————————— R Q

— k 1
R+ Ry R or > 1,

where the approximation holds for Ry/R; > 1. The gain of the closed loop system
drops off at high frequencies as Roak/(w(R; + R2)). The frequency response of the
transfer function is shown in Figure 9.3b for k = 107, a = 10 rad/s, Ry = 10° Q,
and R, =1, 102, 10%, and 10% Q.

Note that in solving this example, we bypassed explicitly writing the signals as
v = V(s)e*t and instead worked directly with v, assuming it was an exponential.
This shortcut is handy in solving problems of this sort and when manipulating block
diagrams. A comparison with Section 4.3, where we make the same calculation
when G(s) is a constant, shows analysis of systems using transfer functions is as
easy as using static systems. The calculations are the same if the resistances Ry
and Ry are replaced by impedances, as discussed in Example 9.3. v

Transfer Functions for Linear Differential Equations

Consider a linear system described by the controlled differential equation

n n—1 m m—1
%Jral%+~~~+any:b0%+b1fltm7_?+~~+bmu, (9.13)
where wu is the input and ¥ is the output. Notice that here we have generalized our
system description from Section 3.2 to allow both the input and its derivatives to
appear. This type of description arises in many applications, as described briefly
in Chapter 2 and Section 3.2; bicycle dynamics and AFM modeling are two specific
examples.

To determine the transfer function of the system (9.13), let the input be u(t) =
est. Since the system is linear, there is an output of the system that is also an
exponential function y(t) = yoe®!. Inserting the signals into equation (9.13), we
find

(8" +a1s" 4+ an)yoe’ = (bos™ + brs™ - 4 by e,
and the response of the system can be completely described by two polynomials
a(s) =s"+a;s" -+ ap, b(s) = bos™ +b1s™ L4 4 by (9.14)

The polynomial a(s) is the characteristic polynomial of the ordinary differential
equation. If a(s) # 0, it follows that

y(t) = yoet = Zgie“. (9.15)

The transfer function of the system (9.13) is thus the rational function

Gls) = b(s) _ bos™ +bis™ 4 4 by (0.16)
a(s) s"taps" 4 ta, '

where the polynomials a(s) and b(s) are given by equation (9.14). Notice that
the transfer function for the system (9.13) can be obtained by inspection since the
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Figure 9.4: A vibration damper. Vibrations of the mass m; can be damped by
providing it with an auxiliary mass ma, attached to m: by a spring with stiffness
k2. The parameters m2 and k2 are chosen so that the frequency /k2/m2 matches
the frequency of the vibration.

coefficients of a(s) and b(s) are precisely the coefficients of the derivatives of u and
y. The zeros and the poles of the transfer functions are the zeros of the polynomials
a(s) and b(s). The properties of the system are determined by the poles and zeros
of the transfer function, as we shall see in the examples that follow and shall explore
in more detail in Section 9.5.

Example 9.3 Electrical circuit elements

Modeling of electrical circuits is a common use of transfer functions. Consider, for
example, a resistor modeled by Ohm’s law V = IR, where V is the voltage across
the resistor, I is the current through the resistor and R is the resistance value. If
we consider current to be the input and voltage to be the output, the resistor has
the transfer function Z(s) = R, which is also called the generalized impedance of
the circuit element.

Next we consider an inductor whose input/output characteristic is given by

dl
L—=V.
dt
Letting the current be I(t) = e, we find that the voltage is V(t) = Lse®" and the
transfer function of an inductor is thus Z(s) = Ls. A capacitor is characterized by

dv
C— =1,

dt
and a similar analysis gives a transfer function from current to voltage of Z(s) =
1/(Cs). Using transfer functions, complex electrical circuits can be analyzed al-
gebraically by using the generalized impedance Z(s) just as one would use the
resistance value in a resistor network. \Y%

Example 9.4 Vibration damper
Damping vibrations is a common engineering problem. A schematic diagram of a
vibration damper is shown in Figure 9.4. To analyze the system we use Newton’s
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equations for the two masses:
mljél —+ Clil —+ klfL'l + ]Cg(icl — .TQ) = F, mg":ﬂ.Q -+ kQ(iL’Q — 1'1) = 0

To determine the transfer function from the force F' to the position x; of the mass
my we first find particular exponential solutions:

(m182 + c1871 + kl)l‘l + kg(l‘l — 332) =F, m232 + kg(l‘g - 1‘1) =0, (917)

We solve x5 from the second expression,

ko

Ty = ——5——71T1,
2 m232 + kz !
and insert this into the first expression to obtain

ko

2
(mls +c18+ k'l)afl + ]{12 (1 — m

)331 = F,
and hence

[(m182 +cis+ ki + kg)(m282 + ko) — k%} T = (mgs2 + ko) F.
Expanding the expression gives the the transfer function

’I”I’LQS2 + ko
m1m254 + 77126153 + (m1k2 + mg(kl + k2))$2 + kgcls + klkg

Gl‘lF =

from the disturbance force F' to the position x; of the mass m;. The transfer
function has a zero at s = +iy/ko/mo, which means that transmission of sinusoidal
signals with this frequency are blocked (this blocking property will be discussed in
Section 9.5). \Y

As the examples above illustrate, transfer functions provide a simple represen-
tation for linear input/output systems. Transfer functions for some common linear
time-invariant systems are given in Table 9.1. Transfer functions of a form similar
to equation (9.13) can also be constructed for systems with many inputs and many
outputs.

Time Delays and Partial Differential Equations

Although we have focused thus far on ordinary differential equations, transfer func-
tions can also be used for other types of linear systems. We illustrate this using
time delays and systems described by a partial differential equation.

Example 9.5 Time delay

Time delays appear in many systems: typical examples are delays in nerve propa-
gation, communication systems, and mass transport. A system with a time delay
has the input/output relation

y(t) = u(t — 7). (9.18)

To obtain the corresponding transfer function we let the input be u(t) = e, and
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Table 9.1: Transfer functions for some common linear time-invariant systems.

Type System Transfer Function
. 1
Integrator y=u -
s
Differentiator y=1u s
. . 1
First-order system y+ay=u
s+a
Double i j = !
ouble integrator y=u ol

Damped oscillator 4 + 2Cwoy + Wiy = u m

State space system & = Az + Bu,y = Cz +Du C(sI — A" 'B+D
. ki

PID controller y = kpu—+ kat + ki fu kp + kas + .

Time delay y() =u(t —1) e "?

the output is then
y(t) = u(t —7) = 57T = 75Tt = e Tu(t).

We find that the transfer function of a time delay is thus G(s) = e~*7, which is not
a rational function. \V4

Example 9.6 Heat propagation

Consider the problem of one-dimensional heat propagation in a semi-infinite metal
rod. Assume that the input is the temperature at one end and that the output is
the temperature at a point along the rod. Let 0(x, t) be the temperature at position
x and time ¢t. With a proper choice of length scales and units, heat propagation is
described by the partial differential equation

20  9%0

= e D =0(L0), (9.19)

and the point of interest can be assumed to have x = 1. The boundary condition
for the partial differential equation is

0(0,t) = u(t).

To determine the transfer function we choose the input as u(t) = e**. Assume that
there is a solution to the partial differential equation of the form 0(z,t) = v(x)e
and insert this into equation (9.19) to obtain

_ &

T dx?’

sip(x)

4
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with boundary condition t(0) = 1. This ordinary differential equation (with inde-
pendent variable x) has the solution

Y(x) = Ae®™v* + Be V5,

Since the temperature of the rod is bounded we have A = 0, the boundary condition
gives B = 1, and the solution is then

y(t) = 0(1,1) = p(1)e® = e Vet = e Vou(t).

The system thus has the transfer function G(s) = e~V*. As in the case of a time
delay, the transfer function is not a rational function. \Y%

State Space Realizations of Transfer Functions

We have seen in equation (9.4) how to compute the transfer function for a given
state space control system. The inverse problem, computing a state space control
system for a given transfer function, is known as the realization problem. Given a
transfer function G(s), we say that a state space system with matrices A, B, C, and
D is a (state space) realization of G(s) if G(s) = C(sI — A)"'B + D. We explore
here some of the properties of realizations of transfer functions, starting with the
question of uniqueness.

As we saw in Section 6.3, it is possible to choose a different set of coordinates for
the state space of a linear system and still preserve the input/output response. In
other words, the matrices A, B, C, and D in the state space equations (9.2) depend
on the choice of coordinate system used for the states, but since the transfer function
relates input to outputs, it should be invariant to coordinate changes in the state
space. Repeating the analysis in Chapter 6, consider a model (9.2) and introduce
new coordinates z by the transformation z = T'x, where T is a nonsingular matrix.
The system is then described by

% =T(Az + Bu) = TAT ‘2 +TBu=: Az + Bu,

y:Cm—i—Du:CT_lz—i—Du::C'z—i—Du.

This system has the same form as equation (9.2), but the matrices A, B, and C
are different:

A=TAT™ !, B =TB, C=cr . (9.20)

Computing the transfer function of the transformed model, we get

G(s)=C(sI —A)'B4+D=CT (s —-TAT"Y)"'TB+ D
— C(T Y (sI = TAT )T) "B+ D =C(sI — A)"'B+ D = G(s),

which is identical to the transfer function (9.4) computed from the system descrip-
tion (9.2). The transfer function is thus invariant to changes of the coordinates in
the state space.

One consequence of this coordinate invariance is that it is not possible for there
to be a unique state space realization for a given transfer function. Given any one
realization, we can compute another realization by simply changing coordinates
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using any invertible matrix 7. Note, however, that the dimension of the state
space realization is not changed by this transformation. It therefore makes sense
to talk about a minimal realization, in which the number of states is as small as
possible. For a transfer function G(s) = b(s)/a(s) with denominator a(s) of degree
n, it can be shown that there is always a realization with n states, given by a state
space system in reachable canonical form (Exercise 9.3). In general, a minimal
realization will always have at most n states. However, the degree may be lower if
there are pole/zero cancellations, as illustrated by the following example.

Example 9.7 Cancellation of poles and zeros
Consider the system

S (3o (e o)

Equation (9.4) gives the following transfer function

G0 (30 () -mmm 00 2] (0)

s+1 s+1 1

2+35+2 (s+1)(s+3) s+3

G(s)

Even though the original state space system was of second order, the transfer
function is a first-order rational function. The reason is that the factor s + 1
has been canceled when computing the transfer function. Cancellation of poles and
zeros is related to lack of reachability and observability. In this particular case the

reachability matrix
1 -2
w.= (B 4B) = [1 _2]

has rank 1 and the system is not reachable. Notice that it was shown in Section 8.3
that the transfer function is given by the reachable and observable subsystem >,
in the Kalman decomposition of a linear system, which in this case is of first order.

\%

The general approach to understand realizations (and minimal realizations) is to
make use of the Kalman decomposition in Section 8.3. We see from the structure
of equation (8.20) that the input/output response of a linear control system is
determined solely by the reachable and observable subsystem ¥;,. When a system
lacks reachability and observability, this shows up as cancellation of poles and zeros
in the transfer function computed from the full system matrices.

Cancellation of poles and zeros was controversial for a long time, which was
manifested in rules for manipulating transfer functions: do not cancel factors with
roots in the right half-plane. Special algebraic methods were also developed to do
block diagram algebra. Kalman’s decomposition, which clarifies that the trans-
fer function only represents part of the dynamics, gives clear insight into what is
happening. These issues are discussed in more detail in Section 9.5.

The results of this section can also be extended to the case of multi-input, multi-
output (MIMO) systems. The transfer function G(s) for a single-input, single-
output given by equation (9.4) is a function of complex variables, G : C — C.
For systems with p inputs and ¢ outputs the transfer function is matrix-valued,
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Table 9.2: Laplace transforms for some common signals.

Signal u(t) Laplace transform U (s) Signal u(t)  Laplace transform U(s)
S(t) [unit step] 1 4(t) [impulse] 1
s
i a cos(at) -
sin(at) ra 2 + a2
a s+«

e~ sin(at) e~ cos(at)

(s+a)?+a?

G : C — C?7*P. The techniques described above can be generalized to this case, but
the notion of a (minimal) realization becomes substantially more complicated.

9.3 LAPLACE TRANSFORMS

The traditional way to derive the transfer function for a linear, time-invariant, in-
put/output system is to make use of Laplace transforms. The Laplace transform
method was particularly important before the advent of computers, since it pro-
vided a practical way to compute the response of a system to a given input. Today,
we compute the response of a linear (or nonlinear) system to complex inputs us-
ing numerical simulation, and the Laplace transform is no longer needed for this
purpose. It is however, still useful to gain insight into the response of linear systems.

In this section, we provide a brief introduction to the use of Laplace trans-
forms and their connections with transfer functions. Only a few elementary prop-
erties of Laplace transforms are needed for basic control applications; students who
are not familiar with them can safely skip this section. A good reference for the
mathematical material in this section is the classic book by Widder [Wid41] or
the more modern treatments available in standard textbooks on signals and sys-
tems [LV11, OWNOG6].

Consider a function f(t), f : RT — R, that is integrable and grows no faster
than e®o! for some finite so € R and large t. The Laplace transform maps f to a
function F = Lf : C — C of a complex variable. It is defined by

F(s) = /000 e "' f(t)dt, Res > so. (9.21)

Using this formula, it is possible to compute the Laplace transform of some common
functions; see Table 9.2.

The Laplace transform has some properties that makes it well suited to deal
with linear systems. First we observe that the transform itself is linear because

L(af +bg) = / T e af (1) + ba(t)) dt
(9.22)

= a/ e St f(t) dt + b/ e *tg(t)dt = alLf +bLg.
0 0

¢
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Using linearity we can compute the Laplace transform of combinations of simple
inputs, such as those that make up the set of exponential signals £ introduced
earlier.

Next we will calculate the Laplace transform of the integral of a function. Using
integration by parts, we get

c/otf(T) dT:/OOO (e—sf /Otf(T) dT) dt

- /Otfm ar| [T s = [T,

5 5 Jo

hence . ) )
E/O flrydr = ;Ef = ;F(s) (9.23)

Integration of a time function thus corresponds to division of the corresponding
Laplace transform by s.

Since integration corresponds to division by s, we can expect that differentia-
tion corresponds to multiplication by s. This is not quite true as we will see by
calculating the Laplace transform of the derivative of a function. We have

d e oo e
g et =) s / e f(t)dt = —f(0) + SLF,

where the second equality is obtained using integration by parts. We thus obtain

E% =sLf — f(0) =sF(s)— f(0). (9.24)

Notice the appearance of the initial value f(0) of the function. The formula (9.24)
is particularly simple if the initial conditions are zero, because if f(0) = 0 it follows
that differentiation of a function corresponds to multiplication of the transform by
s, compare with the differentiation of exponential signals.

Using Laplace transforms the transfer function for a linear time-invariant system
can be defined as the ratio of the transform of the input and the output, when the
transforms are computed under the assumption that all initial conditions are zero.
We will now illustrate how Laplace transforms can be used to compute transfer
functions.

Example 9.8 Transfer function of state space model
Consider the state space system described by equation (9.2). Taking Laplace trans-
forms gives

sX(s) —x(0) = AX(s) + BU(s), Y(s) =CX(s)+ DU(s).
Elimination of X (s) gives
X(s) = (sI — A)~'z(0) + (sI — A)"'BU(s). (9.25)
When the initial condition z(0) is zero we have

X(s) = (sI — A)"'BU(s),  Y(s) = (C(s[ —A)'B+ D)U(s).
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and the transfer function is given by G(s) = C(sI — A)~'B + D (compare with
equation (9.4)). \Y%

Example 9.9 Transfer functions and impulse response

Consider a linear time-invariant system with zero initial state. We saw in Section 6.3
that the relation between the input u and the output y is given by the convolution
integral

u(t) = / Wt — ru(r) dr.

where h(t) is the impulse response for the system (assumed causal). Taking the
Laplace transform of this expression gives

Y(s):/ —sty dt/o /0 h(t — 7)u(r) dr dt
/ / ~0T e Th(t — T)u(r) dr dt

:/O e Tu(r )dT/O et h(t) dt = H(s)U(s).

Thus, the input/output response is given by Y (s) = H(s)U(s), where H, U, and
Y are the Laplace transforms of h, u, and y.

The system theoretic interpretation is that the Laplace transform of the output
of a linear system is a product of two terms, the Laplace transform of the input
U(s) and the Laplace transform of the impulse response of the system H(s). A
mathematical interpretation is that the Laplace transform of a convolution is the
product of the transforms of the functions that are convolved. The fact that the
formula Y'(s) = H(s)U(s) is much simpler than a convolution is one reason why
Laplace transforms have traditionally been popular in engineering. \%

A variety of theorems are available using Laplace transforms that are useful in
a control systems setting. The initial value theorem states that

Jn 0= Jin 5P (5
Using this theorem and the fact that a step input has Laplace transform 1/s, we
can compute the initial value of signals in a control system in response to step
inputs. For example, if G, represents that transfer function between the reference
r and control input u, then the step response will have the property that

u(0) = limu(t) = lim sU(s) = lim s-Gyr(s)- é = Gyr(00).

t—0 s§—00 s—00

Similarly, the final value theorem states that

lim f(t) = lig%) sF(s),

t—o0

and this can be used to show that for a step input r(¢) we have lim; o y(t) =

Gyr(0).
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Figure 9.5: Interconnections of linear systems. Series (a), parallel (b) and feed-
back (c) connections are shown. The transfer functions for the composite systems
can be derived by algebraic manipulations assuming exponential functions for all
signals.

Go

(a) Gyu = G2G1 (b) Gyu = G1 + G2 (¢) Gyu =

9.4 BLOCK DIAGRAMS AND TRANSFER FUNCTIONS

The combination of block diagrams and transfer functions is a powerful way to
represent control systems. Transfer functions relating different signals in the system
can be derived by purely algebraic manipulations of the transfer functions of the
blocks using block diagram algebra. Outputs resulting from several input signals can
be derived using superposition. To show how this can be done, we will begin with
simple combinations of systems. We will assume that all signals are exponential
signals £ and we will use the compact notation y = Gu for the output y € £ of a
linear time-invariant system with the input u € £ and the transfer function G (see
equation (9.7) and recall its interpretation).

Consider a system that is a cascade combination of systems with the transfer
functions G(s) and Ga(s), as shown in Figure 9.5a. Let the input of the system
be u € £. The output of the first block is then Giu € £, which is also the input to
the second system. The output of the second system is then

y = G2(Gru) = (G2G1)u. (9.26)

The transfer function of the series connection is thus G = G>G1, i.e., the product
of the transfer functions. The order of the individual transfer functions is due to
the fact that we place the input signal on the right-hand side of this expression,
hence we first multiply by G; and then by G5. Unfortunately, this has the opposite
ordering from the diagrams that we use, where we typically have the signal flow
from left to right, so one needs to be careful. The ordering is important if either
G or G is a vector-valued transfer function, as we shall see in some examples.

Consider next a parallel connection of systems with the transfer functions G
and Gg, as shown in Figure 9.5b, and assume that all signals are exponential signals.
The outputs of the first and second systems are simply G1u and Gou and the output
of the parallel connection is

Yy = Glu + GQU = (Gl + GQ)U

The transfer function for a parallel connection is thus G = G + Gs.
Finally, consider a feedback connection of systems with the transfer functions
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—1 |-

Figure 9.6: Block diagram of a feedback system. The inputs to the system are
the reference signal r, the process disturbance v and the measurement noise w.
The remaining signals in the system can all be chosen as possible outputs, and
transfer functions can be used to relate the system inputs to the other labeled
signals.

G171 and G, as shown in Figure 9.5c. Writing the relations between the signals for
the different blocks and the summation unit, we find

y = Gie, e =u— Gay. (9.27)
Elimination of e gives
Gi
y=G(u—Gqy) = ([(A+GGly=Gu = y= mu
The transfer function of the feedback connection is thus
G:TI%IE' (9.28)

These three basic interconnections can be used as the basis for computing transfer
functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figure 9.6, which was given at the beginning of the chapter.
The system has three blocks representing a process P, a feedback controller C,
and a feedforward controller F'. Together, C' and F' define the control law for the
system. There are three external signals: the reference (or command signal) r,
the load disturbance v, and the measurement noise w. A typical problem is to
determine how the error e is related to the signals r, v, and w.

To derive the transfer functions we are interested in, we assume that all signals
are exponential signals £ and we write the relations between the signals for each
block in the system block diagram. Assume for example that we are interested in
the control error e. The summation point and the block F'(s) gives

e=Fr—y.
The signal y is the sum of w and 7, where 7 is the output of the process P(s):

y=w-+n, n=P(v+u), u = Ce,
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T e y T P Yy
— F PC - — F S —
(b)
1 | r s y
PCF
1+PC

(a) (c)
Figure 9.7: Example of block diagram algebra. The results from multiplying
the process and controller transfer functions (from Figure 9.6) are shown in (a).
Replacing the feedback loop with its transfer function equivalent yields (b), and
finally multiplying the two remaining blocks gives the reference to output repre-
sentation in (c).

Combining these equations gives

e=Fr—y=Fr—(w+n)=Fr—(w+P(v+u))
=Fr — (w+ P(v+Ce)),
and hence
e=Fr—w— Pv— PCe,
Finally, solving this equation for e gives

F 1 P

““1xpc" 1xpc” 1xpC’

= Gerr + Geww + Gev’U7 (929)

and the error is thus the sum of three terms, depending on the reference r, the
measurement noise w, and the load disturbance v. The functions

F -1 —-P

CoZirper “Tixper “0Tiype

(9.30)
are transfer functions from reference r, noise w, and disturbance v to the error e.
Equation (9.29) can also be obtained by computing the outputs for each input and
using superposition.

We can also derive transfer functions by manipulating the block diagrams di-
rectly, as illustrated in Figure 9.7. Suppose we wish to compute the transfer func-
tion between the reference r and the output y. We begin by combining the process
and controller blocks in Figure 9.6 to obtain the diagram in Figure 9.7a. We can
now eliminate the feedback loop using the algebra for a feedback interconnection
(Figure 9.7b) and then use the series interconnection rule to obtain

PCF

Gy =17 po

(9.31)

Similar manipulations can be used to obtain the other transfer functions (Exer-
cise 9.10).

The above analysis illustrates an effective way to manipulate the equations to
obtain the relations between inputs and outputs in a feedback system. The general
idea is to start with the variable of interest and to trace variables backwards around
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the feedback loop. With some practice, equations (9.29) and (9.30) can be written
directly by inspection of the block diagram. Notice, for example, that all terms
in equation (9.30) have the same denominator and that the numerators are the
blocks that one passes through when going directly from input to output (ignoring
the feedback). This type of rule can be used to compute transfer functions by
inspection, although for systems with multiple feedback loops it can be tricky to
compute them without writing down the algebra explicitly.

We can also use block diagram algebra to obtain insights about state space con-
trollers. Consider a state space controller that uses an observer, such as the one
shown in Figure 8.7. The process model is

d
d—i:Ax—l—Bu, y = Cx,

and the controller (8.15) is given by
u=—KZI + ke, (9.32)
where & is the output of a state observer (8.16) given by

di
dit” — Ai+ Bu+L(y—C#), u=—K&+ ke (9.33)
The controller is a system with one output u and two inputs, the reference r and
the measured signal y. Using transfer functions and exponential signals it can be
represented as

U = Gurr — Guyy, (9.34)

The transfer function G, from y to u describes the feedback action and G, from
r to u describes the feedforward action. We call these open loop transfer functions
because they represent the relationships between the signals without considering the
dynamics of the process (e.g., removing P from the system description or cutting
the loop at the process input or output). To derive the controller transfer functions
we rewrite equation (9.33) as

dz

= =(A=BK —LC)¢ + Blr + Ly, u= K&+ k. (9.35)

Letting Z, r, and y be exponential signals, the above equation gives
(sI —(A— BK — LC))t = Bk¢ + Ly, u=—K&+ kr,
and we find that the controller transfer functions in equation (9.34) are

Gur = ki — K(sI — A+ BK + LC) ' Bk,

) (9.36)
Guy = K(sI — A+ BK + LC)"'L

We illustrate with an example.

Example 9.10 Vehicle steering

Consider the linearized model for vehicle steering introduced in Example 6.13. In
Examples 7.4 and 8.3 we designed a state feedback controller and state estimator for
the system. A block diagram for the resulting control system is given in Figure 9.8.
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Figure 9.8: Block diagram for a steering control system. The control system
is designed to maintain the lateral position of the vehicle along a reference curve
(left). The structure of the control system is shown on the right as a block diagram
of transfer functions. The estimator consists of two components that compute the
estimated state & from the combination of the input v and output y of the process.
The estimated state is fed through a state feedback controller and combined with
a feedforward gain obtain the commanded steering angle w.

Note that we have split the estimator into two components, Gz, (s) and Gzy(s),
corresponding to its inputs v and y. To compute these transfer functions we use
equation (9.33) and the expressions for A, B, C, and L from Example 8.3, hence

vs+1 lis+ 1y
82+118+ZQ S2+118+12
Giu(s) = ) Giyl(s) = )
S+ll —’ylg ZQS
82+l18+l2 82+l18+l2

where l; and [, are the observer gains and ~ is the scaled position of the center
of mass from the rear wheels. Applying block diagram algebra to the controller in
Figure 9.8 we obtain

a (S) . ke . kf(82 +lis+ lg)
“r 1+ KGzu(s) $2 + s(yk1 + ko + 1) + k1 4+ 1o+ kaly — vkaly’
and
Guy(S) KGjy(S) _ S(klll + kglz) + kqlo

T 1+ KGau(s) 82+ s(yky + ko + 1) + k1 + la + koly — vhalo

where k1 and ko are the state feedback gains and kr is the feedforward gain. The
last equalities are obtained applying block diagram algebra to Figure 9.8.

To compute the closed loop transfer function G, from reference r to output y,
we begin by deriving the transfer function for the process P(s). We can compute
this directly from the state space description, which was given in Example 6.13.
Using that description, we have

P(s) = Gyu(s) = C(sI — A)"'B+ D = (1 0] [8 81]_1 [?] - 758;”.
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The transfer function for the full closed loop system between the input » and the
output y is then given by

P(s)Gur(s) _  ke(ys+1)

Gyr = = :
V" 1= P(8)Guy(s)  s2+ (k1y + k2)s + k1

(Note the unusual sign in the denominator of the middle term, which occurs because
Gy is in the feedback path and incorporates the —1 gain element.) \Y%

Note that in the previous example the observer gains [; and l; do not appear
in the transfer function G,. This is true in general, as follows from Figure 8.9b in
Section 8.3.

We also note that a control system using an observer should be implemented as
the multivariable system (9.35), which is of order n. It should not be implemented
using two separate transfer functions, as described in equation (9.34), because the
controller would then be of order 2n, and there will be unobservable modes.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, it is necessary
to form the differential equations that describe the complete system. In many cases
the equations can be obtained by combining the differential equations that describe
each subsystem and substituting variables. This simple procedure cannot be used
when there are closed loops of subsystems that all have a direct connection between
inputs and outputs, known as an algebraic loop.

To see what can happen, consider a system with two blocks, a first-order non-

linear system,
dx

i flx,u), y = h(z), (9.37)

and a proportional controller described by u = —ky. There is no direct term since
the function h does not depend on u. In that case we can obtain the equation for
the closed loop system simply by replacing u by —ky in equation (9.37) to give

dx

i flz,—ky),  y=h(z).

Such a procedure can easily be automated using simple formula manipulation.
The situation is more complicated if there is a direct term. If y = h(z, ), then
replacing u by —ky gives

% :f(l‘v_ky)a y:h(w,—ky)
To obtain a differential equation for x, the algebraic equation y = h(z, —ky) must
be solved to give y = a(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. Resolving algebraic
loops is a nontrivial problem because it requires the symbolic solution of algebraic
equations. Most block diagram-oriented modeling languages cannot handle alge-
braic loops, and they simply give a diagnosis that such loops are present. In the era
of analog computing, algebraic loops were eliminated by introducing fast dynamics
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between the loops. This created differential equations with fast and slow modes
that are difficult to solve numerically. Advanced modeling languages like Modelica
use several sophisticated methods to resolve algebraic loops.

9.5 ZERO FREQUENCY GAIN, POLES, AND ZEROS

The transfer function has many useful interpretations and the features of a transfer
function are often associated with important system properties. Three of the most
important features are the gain and the locations of the poles and zeros.

Zero Frequency Gain

The zero frequency gain of a system is given by the magnitude of the transfer
function at s = 0. It represents the ratio of the steady-state value of the output
with respect to a step input (which can be represented as u = e%! with s = 0). For
a state space system, we computed the zero frequency gain in equation (6.22):

G(0)=D —CA™'B.

For a system modeled as the linear differential equation

mn

d™y d 1y b d™u ) dm 1y
dtn + a1 dtn—l +o Tt anly = Yo dtm +o dt?n—l

+...+bmu7

if we assume that the input u and output y are constants 49 and ug, then we find
that a,y9 = bnug, and the zero frequency gain is
bm

G@:%:a. (9.38)

Poles and Zeros

Next consider a linear system with the rational transfer function

G(s) = Z((i;'

The roots of the polynomial a(s) are called the poles of the system, and the roots of
b(s) are called the zeros of the system. If p is a pole, it follows that y(t) = eP! is a
solution of equation (9.13) with u = 0 (the solution to the homogeneous equation).
A pole p corresponds to a mode of the system with corresponding modal solution
ePt. The unforced motion of the system after an arbitrary excitation is a weighted
sum of modes. Zeros have a different interpretation. Since the pure exponential
output corresponding to the input u(t) = e with a(s) # 0 is G(s)e®, it follows
that the pure exponential output is zero if b(s) = 0. Zeros of the transfer function
thus block transmission of the corresponding exponential signals.

The difference between the number of poles and zeros ny. = n —m is called the
pole excess (also sometimes referred to as the relative degree). A rational transfer
function is called proper if n,e > 0 and strictly proper if npe > 0.
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Effective use of zeros is made in integral control. To obtain a closed loop system
where a constant disturbance does not create a steady-state error, the controller is
designed so that the transfer function from disturbance to control error has a zero
at the origin. Vibration dampers are another example where the system is designed
so that the transfer function from disturbance force to motion has a zero at the
frequency we want to damp (Example 9.4).

For a state space system with transfer function G(s) = C(sI — A)~'B + D, the
poles of the transfer function are the eigenvalues of the matrix A in the state space
model. One easy way to see this is to notice that the value of G(s) is unbounded
when s is an eigenvalue of a system since this is precisely the set of points where the
characteristic polynomial A(s) = det(sI—A) = 0 (and hence sI—A is noninvertible).
It follows that the poles of a state space system depend only on the matrix A, which
represents the intrinsic dynamics of the system. We say that a transfer function is
stable if all of its poles have negative real part.

To find the zeros of a state space system, we observe that the zeros are complex
numbers s such that the input u(t) = Upe®® gives zero output. Inserting the pure
exponential response x(t) = Xoe®® and setting y(t) = 0 in equation (9.2) gives

se’tryg = AXye®t + BUye®t 0= Ce*t Xy + De’tUy,

which can be written as
A—sI B Xo) &t
(" B} () -0

This equation has a solution with nonzero X, Uy only if the matrix on the left does
not have full column rank. The zeros are thus the values s such that the matrix

[A 651 g] (9.39)

loses rank.

Since the zeros depend on A, B, C, and D, they therefore depend on how the
inputs and outputs are coupled to the states. Notice in particular that if the matrix
B has full row rank, then the matrix in equation (9.39) has n linearly independent
rows for all values of s. Similarly there are n linearly independent columns if the
matrix C has full column rank. This implies that systems where the matrix B or
C is square and full rank do not have zeros. In particular it means that a system
has no zeros if it is fully actuated (each state can be controlled independently) or
if the full state is measured.

A convenient way to view the poles and zeros of a transfer function is through
a pole zero diagram, as shown in Figure 9.9. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are multiple poles or zeros at
a fixed location, these are often indicated with overlapping crosses or circles (or
other annotations). Poles in the left half-plane correspond to stable modes of the
system, and poles in the right half-plane correspond to unstable modes. We thus
call a pole in the left half-plane a stable pole and a pole in the right half-plane an
unstable pole. A similar terminology is used for zeros, even though the zeros do not
directly relate to stability or instability of the system. Notice that the gain must
also be given to have a complete description of the transfer function.
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Figure 9.9: A pole zero diagram for a transfer function with zeros at —5 and —1
and poles at —3 and —2 =+ 2j. The circles represent the locations of the zeros, and
the crosses the locations of the poles. A complete characterization requires we also
specify the gain of the system.

Example 9.11 Balance system

Consider the dynamics for a balance system, shown in Figure 9.10. The trans-
fer function for a balance system can be derived directly from the second-order
equations, given in Example 3.2:

d%q d?o dq . odl\2
Mtﬁ—mlwcosg‘i—CE +mlsln0(a) :F,
d? d*0 do :
_ml COSGE;I + Jtﬁ +’}/E — ’mngln9 = O

If we assume that @ and @ are small, we can approximate this nonlinear system by

(a) Cart—pendulum system (c) Pole zero diagram for Hyr

Figure 9.10: Poles and zeros for a balance system. The balance system (a) can
be modeled around its vertical equilibrium point by a fourth order linear system.
The poles and zeros for the transfer functions Hygr and Hyr are shown in (b) and
(c), respectively.
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a set of linear second-order differential equations,

d*q 20  dq

M ml— +c— = F,

a2 A2 Tdt
2q 20 df

If we let F' be an exponential signal, the resulting response satisfies
M,s*>q—mls®’0 +csq=F,
Jis?0 —mls? g+ vs6 —mglf = 0,

where all signals are exponential signals. The resulting transfer functions for the
position of the cart and the orientation of the pendulum are given by solving for ¢
and 6 in terms of F' to obtain

Hor(s) = mls
s = (M Jy — m212)s3 + (Y M, + ¢Jy)s? + (cy — Mymgl)s — mglce’
Jis? 4+ vs —mgl
Hgr(s) = - U 7

(M Jy — m212)s* + (Y My + ¢Jy)s3 + (¢y — Mymgl)s? — mglces’

where each of the coefficients is positive. The pole zero diagrams for these two
transfer functions are shown in Figure 9.10 using the parameters from Example 7.7.
If we assume the damping is small and set ¢ = 0 and v = 0, we obtain

ml
H =
or(s) (M, Jy, — m212)s2 — Mymgl’
Jis2 — mgl
HqF(S) = . g

52 ((MtJt —m?2[?)s? — thgl) ’
This gives nonzero poles and zeros at

1M I
MIX 4268, 2=+ ~ 42,09

=44/ —"
p MtJt — m212 Jt

We see that these are quite close to the pole and zero locations in Figure 9.10. V

Pole/Zero Cancellations

Because transfer functions are often polynomials in s, it can sometimes happen
that the numerator and denominator have a common factor, which can be can-
celed. Sometimes these cancellations are simply algebraic simplifications, but in
other situations they can mask potential fragilities in the model. In particular, if a
pole/zero cancellation occurs because terms in separate blocks just happen to coin-
cide, the cancellation may not occur if one of the systems is slightly perturbed. In
some situations this can result in severe differences between the expected behavior
and the actual behavior.

Consider the block diagram in Figure 9.6 with F =1 (no feedforward compen-
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sation) and let C' and P be given by

C(s) = Z:Ezg’ P(s) np(S).

The transfer function from r to e is then given by

_ 1 _ de(s)dp(s)
1+ PC  de(s)dp(s) + nc(s)np(s)

Ger(s)

If there are common factors in the numerator and denominator polynomials, then
these terms can be factored out and eliminated from both the numerator and de-

nominator. For example, if the controller has a zero at s = —a and the process has
a pole at s = —a, then we will have
s+a)d.(s)d. (s d.(s)d. (s
o) (5 + a)de(s)dp (s) ) (5)d (5)

(s + a)de(s)dy,(s) + (s + a)ni(s)np(s)  de(s)d},(s) + ni(s)np(s)’

where n¢(s) and d,(s) represent the relevant polynomials with the term s + a
factored out. We see that the s 4+ a term does not appear in the transfer function
Ger.

Suppose instead that we compute the transfer function from v to e, which
represents the effect of a disturbance on the error between the reference and the
output. This transfer function is given by

_ dc(s)np(s)
Gerls) = D@ (5) + (s + e n(s)

Notice that if a < 0, then the pole is in the right half-plane and the transfer function
Gy is unstable. Hence, even though the transfer function from r to e appears to be
okay (assuming a perfect pole/zero cancellation), the transfer function from v to e
can exhibit unbounded behavior. This unwanted behavior is typical of an unstable
pole/zero cancellation.

As noted at the end of Section 9.2, the cancellation of a pole with a zero can be
understood in terms of the state space representation of the systems. Reachability
or observability is lost when there are cancellations of poles and zeros (Example 9.7
and Exercise 9.14) and the transfer function depends only on the dynamics in the
reachable and observable subsystem X ;q.

Example 9.12 Cruise control

A cruise control system can be modeled by the block diagram in Figure 9.6, where
y is the vehicle velocity, r the desired velocity, v the slope of the road, and u the
throttle. Furthermore F'(s) = 1, and the input/output response from throttle to
velocity for the linearized model for a car has the transfer function P(s) = b/(s+a).
A simple (but not necessarily good) way to design a PI controller is to choose the
parameters of the PI controller as k; = ak,. The controller transfer function is then
C(s) =k, +ki/s = kp(s+a)/s. It has a zero at s = —k;j/k, = —a that cancels the
process pole at s = —a. We have P(s)C(s) = bk,/s giving the transfer function
from reference to vehicle velocity as Gy, (s) = bkp/(s + bkp), and control design is
then simply a matter of choosing the gain k. The closed loop system dynamics are
of second order with the time constants 1/(bk,) and 1/a. Notice that the canceled
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Figure 9.11: Car with PI cruise control encountering a sloping road. The velocity
error is shown on the left and the throttle is shown on the right. Results for a
PI controller with k, = 0.5 and ki = 0.005 are shown by solid lines, and for a
controller with k£, = 0.5 and ki = 0.1 are shown by dashed lines. Compare with
Figure 4.3b.

pole 1/a is much slower than the other pole.

Figure 9.11 shows the velocity error when the car encounters an increase in the
road slope. A comparison with the controller used in Figure 4.3b (reproduced in
dashed curves) shows that the controller based on pole/zero cancellation has very
poor performance. The velocity error is larger, and it takes a long time to settle.

Notice that the control signal remains practically constant after ¢ = 15 even
if the error is large after that time. To understand what happens we will analyze
the system. The parameters of the system are a = 0.0101 and b = 1.32, and the
controller parameters are k, = 0.5 and k; = 0.005. The closed loop time constant
is 1/(bkp) = 1.5s, and we would expect that the error would settle in about 6 s
(4 time constants). The transfer functions from road slope to velocity and control
signals are

bys bk
G = —g G ) = P .
w(5) (s+a)(s+ bky)’ u () s + bk,
Notice that the slow canceled mode s = —a = —0.0101 appears in G, but not in
Gluv- The reason why the control signal remains constant is that the controller has
a zero at s = —0.0101, which cancels the slowly decaying process mode. Notice
that the error would diverge if the canceled pole was unstable. \Y%

The lesson we can learn from this example is that it is a bad idea to try to
cancel unstable or slow process poles. A more detailed discussion of pole/zero
cancellations and their impact on robustness is given in Section 14.5.

9.6 THE BODE PLOT

The frequency response of a linear system can be computed from its transfer func-
tion by setting s = iw, corresponding to a complex exponential

u(t) = et = cos(wt) + i sin(wt).
The resulting output has the form

y(t) = G(iw)e™t = Me' @) = M cos(wt + @) + iM sin(wt + @),
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Figure 9.12: Bode plot of the transfer function C(s) =20+ 12 + 10s = 10@
corresponding to an ideal PID controller. The upper plot is the gain curve and the
lower plot is the phase curve. The dashed lines show straight-line approximations
of the gain curve and the corresponding phase curve.

where M and ¢ are the gain and phase of G:

. Im G (iw)
M = |G(iw)], = arctan ReGliw)’
The gain and phase of G are also called the magnitude and argument of G, terms
that come from the theory of complex variables.

It follows from linearity that the response to a single sinusoid (sin(wt) or cos(wt))
is amplified by M and phase-shifted by ¢. It will often be convenient to represent
the phase in degrees rather than radians. We will use the notation ZG(iw) for
the phase in degrees and arg G(iw) for the phase in radians. In addition, while
we always take arg G(iw) to be in the range (—m, 7], we will take ZG(iw) to be
continuous, so that it can take on values outside the range of —180° to 180°.

The frequency response G(iw) can thus be represented by two curves: the gain
curve and the phase curve. The gain curve gives |G(iw)| as a function of frequency
w, and the phase curve gives ZG(iw). One particularly useful way of drawing these
curves is to use a log/log scale for the gain curve and a log/linear scale for the
phase curve. This type of plot is called a Bode plot and is shown in Figure 9.12.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy to sketch and interpret.
Since the frequency scale is logarithmic, they cover the behavior of a linear system
over a wide frequency range.

Consider a transfer function that is a rational function of the form

_ bi(s)ba(s)
Gls) = ai(s)as(s)’
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Figure 9.13: Bode plots of the transfer functions G(s) = sk fork =—-2,-1,0,1,2.
On a log-log scale, the gain curve is a straight line with slope k. The phase curves
for the transfer functions are constants, with phase equal to k x 90°.

We have
log |G(s)| = log [b1(s)| + log [b2(s)| — log |a1(s)| — log |aa(s)],

and hence we can compute the gain curve by simply adding and subtracting gains
corresponding to terms in the numerator and denominator. Similarly,

LG(s) = £Lbi(s) + Lba(s) — Lay(s) — Zaxa(s),

and so the phase curve can be determined in an analogous fashion. Since a poly-
nomial can be written as a product of terms of the type
5% + 2¢wos + wa,

k, s, s+a,

it suffices to be able to sketch Bode diagrams for these terms. The Bode plot of a
complex system is then obtained by adding the gains and phases of the terms.
The function G(s) = s* is a simple transfer function, with the important special
cases of kK = 1 corresponding to a differentiator and k£ = —1 to an integrator. The
gain and phase of the term are given by
log |G(iw)| = k x logw, ZG(iw) = k x 90°.
The gain curve is thus a straight line with slope k, and the phase curve is a constant
at kx90°. The case when k = 1 corresponds to a differentiator and has slope 1 with
phase 90°. The case when & = —1 corresponds to an integrator and has slope —1
with phase —90°. Bode plots of the various powers of k are shown in Figure 9.13.
Consider next the transfer function of a first-order system, given by

a

, a > 0.
s+ a

G(s) =
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Figure 9.14: Bode plots for first- and second-order systems. (a) The first-order
system G(s) = a/(s + a) can be approximated by asymptotic curves (dashed) in
both the gain and the frequency, with the breakpoint in the gain curve at w = a
and the phase decreasing by 90° over a factor of 100 in frequency. (b) The second-
order system G(s) = wj/(s? + 2¢wos +w§) has a peak at frequency wo and then a
slope of —2 beyond the peak; the phase decreases from 0° to —180°. The height
of the peak and the rate of change of phase depending on the damping ratio ¢
(¢ =0.02, 0.1, 0.2, 0.5, and 1.0 shown).

We have
Gl =i LGl = L)~ s+ a)
and hence
1 180
log |G (iw)| = loga — 3 log (w? + a?), /G(iw) = ——— arctan g.
T

The Bode plot is shown in Figure 9.14a, with the magnitude normalized by the zero
frequency gain. Both the gain curve and the phase curve can be approximated by
the following straight lines

log |G (iw)| 0 ifw<a,
w)| ~
& loga — logw if w > a,

0 if w < a/10,
LG(iw) ~ ¢ —45 — 45(logw — loga,) if a/10 < w < 10a,
-90 if w > 10a,

which intersect at w = a. The approximate gain curve consists of a horizontal
line up to frequency w = a, called the breakpoint or corner frequency, after which
the curve is a line of slope —1 (on a log-log scale). The phase curve is zero up to
frequency a/10 and then decreases linearly by 45°/decade up to frequency 10a, at
which point it remains constant at 90°. Notice that a first-order system behaves like
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a constant for low frequencies and like an integrator for high frequencies; compare
with the Bode plot in Figure 9.13.
Finally, consider the transfer function for a second-order system,

2
“o

$2 4 2woCs +wi’

G(s) =
with 0 < ¢ < 1, for which we have

1
log |G (iw)| = 2logwo — 3 log (w* + 2wgw?(2¢* — 1) 4+ wy),

ZG(iw) = _180 arctan ZQCLOWT

T Wi —w
The gain curve has an asymptote with zero slope for w <« wy. For large val-
ues of w the gain curve has an asymptote with slope —2. The largest gain Q =
max,, |G(iw)| = 1/(2(), called the Q-value, is obtained for w ~ wy. The phase is
zero for low frequencies and approaches 180° for large frequencies. The curves can
be approximated with the following piecewise linear expressions

log |G (iw)| 0 if w <K wy,
0 w)| ~
& 2logwy — 2logw if w > wo,

0 if w < wy,
—180 if w > wq.

ZG(iw) = {

The Bode plot is shown in Figure 9.14b. Note that the asymptotic approximation is

poor near w = wy and that the Bode plot depends strongly on ¢ near this frequency.

Given the Bode plots of the basic functions, we can now sketch the frequency

response for a more general system. The following example illustrates the basic
idea.

Example 9.13 Asymptotic approximation for a transfer function
Consider the transfer function given by

k(s+b)

Gls) = (s +a)(s? + 2¢wos +wp)’

a < b< wg.

The Bode plot for this transfer function appears in Figure 9.15, with the complete
transfer function shown as a solid curve and the asymptotic approximation shown
as a dashed curve.
We begin with the gain curve. At low frequency, the magnitude is given by
kb

aw
When we reach w = a, the effect of the pole begins and the gain decreases with
slope —1. At w = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used until the effect of the
second-order pole is seen at w = wy, at which point the asymptote changes to slope

—2. We see that the gain curve is fairly accurate except in the region of the peak
due to the second-order pole (indicating that for this case ¢ is reasonably small).
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Figure 9.15: Asymptotic approximation to a Bode plot. The thin curve is the
Bode plot for the transfer function G(s) = k(s4b)/(s+a)(s* +2Cwos +w3), where
a < b < wg. Each segment in the gain and phase curves represents a separate
portion of the approximation, where either a pole or a zero begins to have effect.
Each segment of the approximation is a straight line between these points at a
slope given by the rules for computing the effects of poles and zeros.

The phase curve is more complicated since the effect of the phase stretches out
much further. The effect of the pole begins at w = a/10, at which point we change
from phase 0 to a slope of —45°/decade. The zero begins to affect the phase at
w = b/10, producing a flat section in the phase. At w = 10a the phase contributions
from the pole end, and we are left with a slope of +45° /decade (from the zero). At
the location of the second-order pole, s = iwy, we get a jump in phase of —180°.
Finally, at w = 10b the phase contributions of the zero end, and we are left with a
phase of —180 degrees. We see that the straight-line approximation for the phase is
not as accurate as it was for the gain curve, but it does capture the basic features
of the phase changes as a function of frequency. \Y%

Poles and Zeros in the Right Half-Plane

The gain curve of a transfer function remains the same if a pole or a zero of a
transfer function is shifted from the left half-plane to the right half-plane by mirror
imaging in the imaginary axis. The phase will, however, change significantly as is
illustrated by the following example.

Example 9.14 Transfer function with a zero in the right half-plane
Consider the transfer functions

s+1 s+1
Gronseiy G = GTon G0

G(s) =

and
—s+1

(s +0.1)(s+ 10)°

Grnps (5) =
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Figure 9.16: Effect of a right half-plane pole and a right half-plane zero on the
Bode plot. The curves for G, which has all poles and zeros in the right half-plane,
are shown in solid lines and the curves for Ginpp and Ginp, are shown as dashed
curves. The left plot shows Bode plots for the transfer functions G and Grupp,
which have a pole at s = —10 and a zero at s = —1, but G has a pole at s = —0.1
while Ginpp has a corresponding pole at s = 0.1. The right plot shows the Bode
plots for the transfer functions G and Ginpz, which have the same poles at s— = 0.1
and s = —10, while G has a zero at s = —1 and Ginp, has a zero s = —1.

The transfer functions G and Gppp have the zero at s = —1 and the pole at s = —10
in common, while G' has the pole at s = —0.1 but G,pnpp has the pole at s = 0.1.
Similarly, the transfer functions G and Gnp, have the same poles, but G has the
zero at s = —1 while G,np, has the zero at s = 1. Notice that all transfer functions
have the same gain curves but that the phase curves differ significantly, as shown in
Figure 9.16. Notice in particular that the transfer functions Gynpp and Ginp, have

much larger phase lags than G. \Y

A time delay, which has the transfer function G(s) = e¢™*7, is an even more
striking example than a right half-plane zero. Since |G(iwT)| = |e™™7| = 1 the
gain curve is constant but the phase is ZG(iwT) = —180wT /7, which has a large

negative value for large w. Time delays are in this respect similar to right half-plane
zeros; see Figure 9.16b. Intuitively it seems reasonable that extra phase will cause
difficulties for control since there is a delay between applying an input and seeing
its effect. Poles and zeros in the right half-plane and time delay will indeed limit
the achievable control performance, as will be discussed in detail in Section 10.4
and Chapter 14.

Insight and Overview from the Bode Plot

The Bode plot gives a quick overview of a system. The plot covers wide ranges
in amplitude and frequency because of the logarithmic scales. Since many useful
signals can be decomposed into a sum of sinusoids, it is possible to visualize the
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Figure 9.17: Bode plots for low-pass, band-pass, and high-pass filters. The upper
plots are the gain curves and the lower plots are the phase curves. Each system
passes frequencies in a different range and attenuates frequencies outside of that
range.

behavior of a system for different frequency ranges. The system can be viewed as a
filter that can change the amplitude (and phase) of the input signals according to
the frequency response. For example, if there are frequency ranges where the gain
curve has constant slope and the phase is close to zero, the action of the system
for signals with these frequencies can be interpreted as a pure gain. Similarly, for
frequencies where the slope is +1 and the phase close to 90°, the action of the
system can be interpreted as a differentiator, as shown in Figure 9.13.

Three common types of frequency responses are shown in Figure 9.17. The
system in Figure 9.17a is called a low-pass filter because the gain is constant for
low frequencies and drops for high frequencies. Notice that the phase is zero for low
frequencies and —180° for high frequencies. The systems in Figures 9.17b and 9.17c
are called a band-pass filter and high-pass filter for similar reasons.

To illustrate how different system behaviors can be read from the Bode plots
we consider the band-pass filter in Figure 9.17b. For frequencies around w = wy,
the signal is passed through with no change in gain. However, for frequencies well
below or well above wy, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frequencies below wg/100
there is a phase lead of 90°, and for frequencies above 100wy there is a phase lag
of 90°. These actions correspond to differentiation and integration of the signal in
these frequency ranges.

The intuition captured in the Bode plot can also be related to the transfer
function: the approximations of G(s) for small and large s capture the propagation
of slow and fast signals respectively as is illustrated by the example.

Example 9.15 Qualitative insight from the transfer function
Consider a spring—mass system with input u (force) and output ¢ (position), whose
dynamics satisfy the second-order differential equation

mq + cqg + kq = u.
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Figure 9.18: Bode plot for a spring—mass system. At low frequency the system
behaves like a spring with G(s) = 1/k and at high frequency the system behaves
like a pure mass with G(s) =~ 1/(ms?).

The system has the transfer function

1

Gls) = ms?2 +cs+k’

and the Bode plot is shown in Figure 9.18. For small s we have G(s) ~ 1/k. The
corresponding input/output relation is ¢ = (1/k)u, which implies that for low-
frequency inputs, the system behaves like a spring driven by a force. For large s
we have G(s) ~ 1/(ms?). The corresponding differential equation is mj = u and

the system thus behaves like mass driven by a force (a double integrator).
\Y

Example 9.16 Transcriptional regulation

Consider a genetic circuit consisting of a single gene. We wish to study the response
of the protein concentration to fluctuations in the mRNA dynamics. We consider
two cases: a constitutive promoter (no regulation) and self-repression (negative
feedback), illustrated in Figure 9.19. The dynamics of the system are given by

dm

d
E:a(p)_am_’l% *p:"fm_’ﬂ%

dt
where v is a disturbance term that affects mRNA transcription.

For the case of no feedback we have a(p) = ap, and when v = 0 the system
has an equilibrium point at m. = «ap/d, pe = kag/(7d). The open loop transfer
function from v to p is given by

—K

ol §)= — v
Gpu(s) (s+8)(s+7)

For the case of negative regulation, we have

a(p) + ap,

_ M
1+ kpn
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Figure 9.19: Noise attenuation in a genetic circuit. The open loop system (a)
consists of a constitutive promoter, while the closed loop circuit (b) is self-regulated
with negative feedback (repressor). The frequency response for each circuit is
shown in (c).

and the equilibrium points satisfy

me = lpe» +ag = 0me = —Pe-
K K

«
L+ kg

The resulting transfer function is given by

Gl (s) K no kpt 1
= , c=-—>°_
pv (s+0)(s+7)+ ko (14 kpr)?

Figure 9.19¢ shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). v

Determining Transfer Functions Experimentally

The transfer function of a system provides a summary of the input/output response
and is very useful for analysis and design. We can often build an input/output
model for a given application by directly measuring the frequency response and
fitting a transfer function to it. To do so, we perturb the input to the system
using a sinusoidal signal at a fixed frequency. When steady state is reached, the
amplitude ratio and the phase lag give the frequency response for the excitation
frequency. The complete frequency response is obtained by sweeping over a range
of frequencies.

By using correlation techniques it is possible to determine the frequency re-
sponse very accurately, and an analytic transfer function can be obtained from the
frequency response by curve fitting. The success of this approach has led to in-
struments and software that automate this process, called spectrum analyzers. We
illustrate the basic concept through two examples.

Example 9.17 Atomic force microscope
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Figure 9.20: Frequency response of a preloaded piezoelectric drive for an atomic
force microscope. The Bode plot shows the response of the measured transfer
function (solid) and the fitted transfer function (dashed).

To illustrate the utility of spectrum analysis, we consider the dynamics of the atomic
force microscope, described in Section 4.5. Experimental determination of the
frequency response is particularly attractive for this system because its dynamics
are very fast and hence experiments can be done quickly. A typical example is given
in Figure 9.20, which shows an experimentally determined frequency response (solid
line). In this case the frequency response was obtained in less than a second. The
transfer function

G(s) kw3wiw?(s? + 2Ciwis + w?) (82 + 2¢was + wi)e 5T
S) = )
wiw?(s? + 2Cwas + w3)(s? + 2Cswss + w3) (82 + 2¢swss + w?)

with w; = 2nf;, k=5,

f1=24kHz, fo=26kHz, f3=65kHz, fi=83kHz, f5=9.3kHz,
C1=0.025, (3=0042, ¢ =0.03, o = 0.03, s = 0.032,

and 7 =107 s, was fitted to the data (dashed line). The frequencies w; and w;
associated with the zeros are located where the gain curve has minima, and the
frequencies we, w3, and ws associated with the poles are located where the gain
curve has local maxima. The relative damping ratios are adjusted to give a good
fit to maxima and minima. When a good fit to the gain curve is obtained, the time
delay is adjusted to give a good fit to the phase curve. The piezo drive is preloaded,
and a simple model of its dynamics is derived in Exercise 4.7. The pole at 2.55 kHz
corresponds to the trampoline mode derived in the exercise; the other resonances

are higher modes.
\Y%

Example 9.18 Pupillary light reflex dynamics

The human eye is an organ that is easily accessible for experiments. It has a control

system that adjusts the pupil opening to regulate the light intensity at the retina.
This control system was explored extensively by Stark in the 1960s [Sta68]. To

determine the dynamics, light intensity on the eye was varied sinusoidally and the
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Figure 9.21: Light stimulation of the eye. In (a) the light beam is so large that
it always covers the whole pupil, giving closed loop dynamics. In (b) the light
is focused into a beam which is so narrow that it is not influenced by the pupil
opening, giving open loop dynamics. In (c) the light beam is focused on the edge
of the pupil opening, which has the effect of increasing the gain of the system
since small changes in the pupil opening have a large effect on the amount of light
entering the eye. From Stark [Sta68].

(b) Open loop

pupil opening was measured. A fundamental difficulty is that the closed loop system
is insensitive to internal system parameters, so analysis of a closed loop system thus
gives little information about the internal properties of the system. Stark used a
clever experimental technique that allowed him to investigate both open and closed
loop dynamics. He excited the system by varying the intensity of a light beam
focused on the eye and measured pupil area, as illustrated in Figure 9.21. By using
a wide light beam that covers the whole pupil, the measurement gives the closed
loop dynamics. The open loop dynamics were obtained by using a narrow beam,
which is small enough that it is not influenced by the pupil opening. The result of
one experiment for determining open loop dynamics is given in Figure 9.22. Fitting
a transfer function to the gain curve gives a good fit for G(s) = 0.17/(1 + 0.08s)3.
This curve gives a poor fit to the phase curve as shown by the dashed curve in
Figure 9.22. The fit to the phase curve is improved by adding a 0.2 s time delay,
which leaves the gain curve unchanged while substantially modifying the phase

30 T T T
R ~02f 1
foé g/ 005F o Measured 2
= 10 = 0.02f Model o

0.01 : : :
=5 0 T

30 jé” N_\_
< = - <
O _ =~ -
;E ZOWV\/\/\A/\/\/\/\/\/V‘ 3 \
= = - -
£ 0 (\5] _360| Model‘ w/out dela?/ % g

0 5 10 15 20 2 5 10 20
Time (s) Frequency w [rad/s]

Figure 9.22: Sample curves from an open loop frequency response of the eye (left)
and a Bode plot for the open loop dynamics (right). The solid curve shows a fit of
the data using a third-order transfer function with 0.2 s time delay. The dashed
curve in the Bode plot is the phase of the system without time delay, showing that
the delay is needed to properly capture the phase. (Figure redrawn from the data
of Stark [Sta68].)
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curve. The final fit gives the model

017  _goe

G = T 0.08sp°

The Bode plot of this is shown with solid curves in Figure 9.22. Modeling of the
pupillary reflex from first principles is discussed in detail in [KS09]. \Y

Notice that for both the AFM drive and pupillary dynamics it is not easy to
derive appropriate models from first principles. In practice, it is often fruitful to use
a combination of analytical modeling and experimental identification of parameters.
Experimental determination of frequency response is less attractive for systems with
slow dynamics because the experiment takes a long time.

9.7 FURTHER READING

The idea of characterizing a linear system by its steady-state response to sinusoids
was introduced by Fourier in his investigation of heat conduction in solids [Fou07].
Much later, it was used by the electrical engineer Steinmetz who introduced the iw
method for analyzing electrical circuits. Transfer functions were introduced via the
Laplace transform by Gardner and Barnes [GB42], who also used them to calcu-
late the response of linear systems. The Laplace transform was very important in
the early phase of control because it made it possible to find transients via tables
(see, e.g., [JINP47]). Combined with block diagrams and transfer functions, Laplace
transforms provided powerful techniques for dealing with complex systems. Cal-
culation of responses based on Laplace transforms is less important today, when
responses of linear systems can easily be generated using computers. The frequency
response of a system can also be measured directly using a frequency response an-
alyzer. There are many excellent books on the use of Laplace transforms and
transfer functions for modeling and analysis of linear input/output systems. Tra-
ditional texts on control such as [DB04], [FPENO05] and [Oga0l] are representative
examples. Pole/zero cancellation was one of the mysteries of early control theory.
It is clear that common factors can be canceled in a rational function, but can-
cellations have system theoretical consequences that were not clearly understood
until Kalman’s decomposition of a linear system was introduced [KHNG63]. In the
following chapters, we will use transfer functions extensively to analyze stability
and to describe model uncertainty.

EXERCISES

9.1 Consider the system

0 =axr + u.

Compute the exponential response of the system and use this to derive the transfer
function from w to x. Show that when s = a, a pole of the transfer function, the
response to the exponential input u(t) = e is x(t) = e**x(0) + te*.
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9.2 Let G(s) be the transfer function for a linear system. Show that if we ap-
ply an input u(t) = Asin(wt), then the steady-state output is given by y(t) =
|G (iw)|Asin(wt 4+ arg G(iw)). (Hint: Start by showing that the real part of a com-
plex number is a linear operation and then use this fact.)

9.3 Consider linear time-invariant systems with the control matrices

(@) A= _01 _02] B = f co=(1 1), b =y

() A= :g é],B :;,C:[l 0],D —0,

(6) A= _13 _02],3 :(l),C:[l 3],D —0.
543

Show that all systems have the transfer function G(s) = —————.
Y S P PGy

9.4 (Kalman decomposition) Show that the transfer function of a system depends

only on the dynamics in the reachable and observable subspace of the Kalman

decomposition. (Hint: Consider the representation given by equation (8.20).)

9.5 (Inverted pendulum) A model for an inverted pendulum was introduced in
Example 3.3. Neglecting damping and linearizing the pendulum around the upright
position gives a linear system characterized by the matrices

[mg(l)/Jt é] B[l/ojt], c=(10), p=o

Determine the transfer function of the system.

9.6 (Operational amplifier) Consider the operational amplifier described in Sec-
tion 4.3 and analyzed in Example 9.2. A PI controller can be constructed using
an op amp by replacing the resistor Ry with a resistor and capacitor in series, as
shown in Figure 4.10. The resulting transfer function of the circuit is given by

1 kC's
G(s) = — (R2 + cs> ' (((k + 1)R1C + RyC)s + 1) ’

where k is the gain of the op amp, R; and R are the resistances in the compensation
network and C' is the capacitance.

a) Sketch the Bode plot for the system under the assumption that k& > R > Rj.
You should label the key features in your plot, including the gain and phase at low
frequency, the slopes of the gain curve, the frequencies at which the gain changes
slope, etc.

b) Suppose now that we include some dynamics in the amplifier, as outlined in
Example 8.1. This would involve replacing the gain k with the transfer function
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Compute the resulting transfer function for the system (i.e., replace k with H(s))
and find the poles and zeros assuming the following parameter values

—= =100, k=10, R,C =1, T =0.01.

¢) Sketch the Bode plot for the transfer function in part (b) using straight line
approximations and compare this to the exact plot of the transfer function (using
MATLAB). Make sure to label the important features in your plot.

9.7 (Transfer function for state space system) Consider the linear state space system

d
d—?:Ax—FBu, y=Cux.

a) Show that the transfer function is

bis" Tt +bos" 24 4 by,
s +asm T+ +oay

G(s) =

)

where
bi=CB, by=CAB+a;CB, ..., by=CA" 'B+a,CA" 2B +---+a, 1CB
and \(s) = 8" +a;s" "t + -+ + a, is the characteristic polynomial for A.

b) Compute the transfer function for a linear system in reachable canonical form
and show that it matches the transfer function given above.

9.8 (Delay differential equation) Consider a system described by

dx
i —z(t) +u(t —7)

Derive the transfer function for the system.

9.9 (Congestion control) Consider the congestion control model described in Sec-
tion 4.4. Let w represent the individual window size for a set of IV identical sources,
q represent the end-to-end probability of a dropped packet, b represent the number
of packets in the router’s buffer and p represent the probability that a packet is
dropped by the router. We write w = Nw to represent the total number of packets
being received from all N sources. Show that the linearized model can be described
by the transfer functions

a ( ) e_TfS ( ) N I ( ) —7Ps ( ) —1Pg
3(8) = —--—, Ggo(8) = ————"—, s)=c¢e Gop(s) = pe~Te?,
bw 7'6?5 + e T's’ wl Ge (Tcps 8 Qewe) » ’ P P

where (we, be) is the equilibrium point for the system, 7P is the router processing
time, and 7! and 7P are the forward and backward propagation times.

9.10 Using block diagram algebra, show that the transfer functions from v to y
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and w to y in Figure 9.6 are given by

P 1

Go=17pc Cw=17rpC

9.11 (Vectored thrust aircraft) Consider the lateral dynamics of a vectored thrust
aircraft as described in Example 3.12. Show that the dynamics can be described
using the following block diagram:

r 0 v 1
Js?

ms?2 + cs

Use this block diagram to compute the transfer functions from u; to # and x and
show that they satisfy

r Js? —mgr

H w1 — 1 99 Ha:u = T 9/, o5 . -
bur = g2 Y Js?(ms? + cs)

9.12 (Vehicle suspension [HB90]) Active and passive damping are used in cars to
give a smooth ride on a bumpy road. A schematic diagram of a car with a damping
system in shown in the figure below.

(Porter Class I race car driven by Todd Cuffaro)

This model is called a quarter car model, and the car is approximated with two
masses, one representing one fourth of the car body and the other a wheel. The
actuator exerts a force F' between the wheel and the body based on feedback from
the distance between the body and the center of the wheel (the rattle space).

Let xp, =, and x, represent the heights of body, wheel, and road measured
from their equilibrium points. A simple model of the system is given by Newton’s
equations for the body and the wheel,

mpdy = F, Myply = —F + k(2 — Tp),

where my, is a quarter of the body mass, m,, is the effective mass of the wheel
including brakes and part of the suspension system (the unsprung mass) and k; is
the tire stiffness. For a conventional damper consisting of a spring and a damper,
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we have F = k(z, — xp) + ¢(@y — &p). For an active damper the force F can
be more general and can also depend on riding conditions. Rider comfort can be
characterized by the transfer function G, from road height z, to body acceleration
a = Zp. Show that this transfer function has the property Guu, (iw:) = ki/my,
where wy = \/ki/m,, (the tire hop frequency). The equation implies that there are
fundamental limits to the comfort that can be achieved with any damper.

9.13 (Solutions corresponding to poles and zeros) Consider the differential equation

dn dn—l dn—lu dn—2u
T g G = by gy b

a) Let A\ be a root of the characteristic equation
sS"+as" 4 +a, =0.
Show that if u(t) = 0, the differential equation has the solution y(t) = e**.

b) Let x be a zero of the polynomial
b(s) = b1s" L 4 bos" 24 - 4 by,

Show that if the input is u(t) = !, then there is a solution to the differential
equation that is identically zero.

9.14 (Pole-zero cancellation) Consider a closed loop system of the form of Fig-
ure 9.6, with F' = 1 and P and C having a pole/zero cancellation. Show that if
each system is written in state space form, the resulting closed loop system is not
reachable and not observable.

9.15 (Inverted pendulum with PD control) Consider the normalized inverted pen-
dulum system, whose transfer function is given by P(s) = 1/(s*> — 1) (Exer-
cise 9.5). A proportional-derivative control law for this system has transfer function
C(s) = kp+kas (see Table 9.1). Suppose that we choose C(s) = a(s—1). Compute
the closed loop dynamics and show that the system has good tracking of reference
signals but does not have good disturbance rejection properties.

9.16 (Bode plot for a simple zero) Show that the Bode plot for transfer function
G(s) = (s + a)/a can be approximated by

log |G (iw)| 0 if w<a,
iw)| =~
& logw —loga ifw > a,

0 if w < a/10,
ZG(iw) = ¢ 45 + 45(logw — loga) if a/10 < w < 10a,
90 if w > 10a.



Chapter Ten

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tests that
it possessed the advantages which he had predicted for it. In particular,
its gain was constant to a high degree, and it was linear enough so that
spurious signals caused by the interaction of the various channels could be
kept within permissible limits. For best results the feedback factor ufS had
to be numerically much larger than unity. The possibility of stability with a
feedback factor larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 1956 [Nyq56].

In this chapter we study how the stability and robustness of closed loop systems
can be determined by investigating how sinusoidal signals of different frequencies
propagate around the feedback loop. This technique allows us to reason about the
closed loop behavior of a system through the frequency domain properties of the
open loop transfer function. The Nyquist stability theorem is a key result that
provides a way to analyze stability and introduce measures of degrees of stability.

10.1 THE LOOP TRANSFER FUNCTION

Understanding how the behavior of a closed loop system is influenced by the prop-
erties of its open loop dynamics is tricky. Indeed, as the quote from Nyquist above
illustrates, the behavior of feedback systems can often be puzzling. However, using
the mathematical framework of transfer functions provides an elegant way to reason
about such systems, which we call loop analysis.

The basic idea of loop analysis is to trace how a sinusoidal signal propagates in
the feedback loop and explore the resulting stability by investigating if the prop-
agated signal grows or decays. This is easy to do because the transmission of
sinusoidal signals through a linear dynamical system is characterized by the fre-
quency response of the system. The key result is the Nyquist stability theorem,
which provides a great deal of insight regarding the stability of a system. Unlike
proving stability with Lyapunov functions, studied in Chapter 5, the Nyquist crite-
rion allows us to determine more than just whether a system is stable or unstable.
It provides a measure of the degree of stability through the definition of stability
margins. The Nyquist theorem also indicates how an unstable system should be
changed to make it stable, which we shall study in detail in Chapters 11-13.

Consider the system in Figure 10.1a. The traditional way to determine if the
closed loop system is stable is to investigate if the closed loop characteristic poly-
nomial has all its roots in the left half-plane. If the process and the controller have
rational transfer functions P(s) = np(s)/dp(s) and C(s) = nc(s)/dc(s), then the
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r e u y B A
C(s) = P(s) - — —= L(s)
—1 |- —1 |-
(a) Closed loop system (b) Open loop system

Figure 10.1: The loop transfer function. The stability of the feedback system (a)
can be determined by tracing signals around the loop. Letting L = PC' represent
the loop transfer function, we break the loop in (b) and ask whether a signal
injected at the point A has the same magnitude and phase when it reaches point
B.

closed loop system has the transfer function

rcC np(8)nc(s)

Gyr(s) = 1+ PC - dp(s)dC(S) + np(s)nC(S),

and the characteristic polynomial is
A(s) = dp(s)dc(s) + np(s)ne(s).

To check stability, we simply compute the roots of the characteristic polynomial
and verify that they each have negative real part. This approach is straightforward
but it gives little guidance for design: it is not easy to tell how the controller should
be modified to make an unstable system stable.

Nyquist’s idea was to first investigate conditions under which oscillations can
occur in a feedback loop. To study this, we introduce the loop transfer function
L(s) = P(s)C(s), which is the transfer function obtained by breaking the feedback
loop, as shown in Figure 10.1b. The loop transfer function is simply the transfer
function from the input at position A to the output at position B multiplied by —1
(to account for the usual convention of negative feedback).

Assume that a sinusoid of frequency wy is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequency wg. It seems reasonable
that an oscillation can be maintained if the signal at B has the same amplitude and
phase as the injected signal because we can then disconnect the injected signal and
connect A to B. Tracing signals around the loop, we find that the signals at A and
B are identical if there is a frequency wg such that

Liwg) = —1, (10.1)

which then provides a condition for maintaining an oscillation. The condition in
equation (10.1) implies that the Nyquist plot of the loop transfer function goes
through the point —1, which is called the critical point. Letting w. represent a
frequency at which ZL(iw.) = 180°, we can further reason that the system is
stable if |L(iw.)| < 1, since the signal at point B will have smaller amplitude than
the injected signal. This is essentially true, but there are several subtleties that
require a proper mathematical analysis, leading to Nyquist’s stability criterion.
Before discussing the details we give an example of calculating the loop transfer
function.
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Figure 10.2: Block diagram of a DC motor control system with a short delay in
the sensed position of the motor.

Example 10.1 Electric motor with proportional controller and delay
Consider a simple direct current electric motor with inertia J and damping (or back
EMF) ¢. We wish to control the position of the motor using a feedback controller,
and we consider the case where there is a small delay in the measurement of the
motor position (a common case for controllers implemented on a computer with
a fixed sampling rate). A block diagram for the motor with a controller C(s) is
shown in Figure 10.2. Using block diagram algebra, the process dynamics can be
shown to be

kr
- Js?24cs’

We now use a proportional controller of the form

P(s)

The loop transfer function for the system control system is given by

krk,
=—2" ¢
Js2 +cs

—TS

L(s) = P(s)C(s)e™ ™

where 7 is the delay in sensing of the motor position. We wish to understand under
which conditions the closed loop system is stable.

The condition for oscillation is given by equation (10.1), which requires that the
phase of the loop transfer function must be 180° at some frequency wy. Examining
the loop transfer function we see that if 7 = 0 (no delay) then for s near 0 the phase
of L(s) will be 90° while for large s the phase of L(s) will approach 180°. Since
the gain of the system decreases as s increases, it is not possible for the condition
of oscillation to be met in the case of no delay (the gain will always be less than 1
at arbitrarily high frequency).

When there is a small delay in the system, however, it is possible that we might
get oscillations in the closed loop system. Suppose that wg represents the frequency
at which the magnitude of L(iw) is equal to 1 (the specific value of wy will depend
on the parameters of the motor and the controller). Notice that the magnitude
of the loop transfer function is not affected by the delay, but the phase increases
as 7T increases. In particular, if we let 6y be the phase of the undelayed system at
frequency wy, then a time delay of 7. = (7 + 6p)/wp will cause L(iwg) to be equal
to —1. This means that as signals traverse the feedback loop, they can return in
phase with the original signal and an oscillation may result.
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Figure 10.3: Loop transfer function and step response for the DC motor control
system. The system parameters are k1 = 50, J = 2, ¢ = 1 and the controller
parameters are kp, = 1 and 7 =0, 0.1, and 1.

Figure 10.3 shows three controllers that result in stable, oscillatory, and unstable
closed loop performance, depending on the amount of delay in the system. The
instability is caused by the fact that the disturbance signals that propagate around
the feedback loop can be in phase with the original disturbance due to the delay. If
the gain around the loop is greater than or equal to one, this can lead to instability.

\%

One of the powerful concepts embedded in Nyquist’s approach to stability anal-
ysis is that it allows us to study the stability of the feedback system by looking
at properties of the loop transfer function L = PC. The advantage of doing this
is that it is easy to see how the controller should be chosen to obtain a desired
loop transfer function. For example, if we change the gain of the controller, the
loop transfer function will be scaled accordingly and the critical point is avoided.
A simple way to stabilize an unstable system is to reduce the gain or to modify the
controller so that the critical point —1 is avoided. Different ways to do this, called
loop shaping, will be developed and discussed in Chapter 12.

10.2 THE NYQUIST CRITERION

In this section we present Nyquist’s criterion for determining the stability of a
feedback system through analysis of the loop transfer function. We begin by intro-
ducing a convenient graphical tool, the Nyquist plot, and show how it can be used
to ascertain stability.

The Nyquist Plot

We saw in the previous chapter that the dynamics of a linear system can be rep-
resented by its frequency response and graphically illustrated by a Bode plot. To
study the stability of a system, we will make use of a different representation of
the frequency response called a Nyquist plot. The Nyquist plot of the loop transfer
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(a) Nyquist contour (b) Nyquist plot

Figure 10.4: The Nyquist contour and the Nyquist plot. (a) The Nyquist contour
I' encloses the right half-plane, with a small semicircle around any poles of L(s)
at the origin or on the imaginary axis (illustrated here at the origin) and an arc
whose radius R extends towards infinity. (b) The Nyquist plot is the image of the
loop transfer function L(s) when s traverses I' in the clockwise direction. The solid
curve corresponds to w > 0, and the dashed curve to w < 0. The gain and phase
at the frequency w are g = |L(iw)| and ¢ = ZL(iw). The curve is generated for
L(s) =14e /(s +1)2

function L(s) is formed by tracing s € C around the Nyquist contour, consisting
of the imaginary axis combined with an arc at infinity connecting the endpoints
of the imaginary axis. This contour, sometimes called the “Nyquist D contour”,
is denoted as I' C C and is illustrated in Figure 10.4a. The image of L(s) when
s traverses I' gives a closed curve in the complex plane and is referred to as the
Nyquist plot for L(s), as shown in Figure 10.4b. Note that if the transfer function
L(s) goes to zero as s gets large (the usual case), then the portion of the contour
“at infinity” maps to the origin. Furthermore, the portion of the plot corresponding
to w < 0, shown in dashed lines in Figure 10.4b, is the mirror image of the portion
with w > 0.

There is a subtlety in the Nyquist plot when the loop transfer function has
poles on the imaginary axis because the gain is infinite at the poles. To solve this
problem, we modify the contour I' to include small deviations that avoid any poles
on the imaginary axis, as illustrated in Figure 10.4a (assuming a pole of L(s) at the
origin). The deviation consists of a small semicircle to the right of the imaginary
axis pole location. Formally the contour I' is defined as

I'= lim (—iR,—ir)U {re?? .0 ¢ [-%.%]}U (ir,iR) U {Re™™ .0 ¢ [-Z,2]}

r—0
R—o0

(10.2)
for the case with a pole at the origin.
We now state the Nyquist criterion for the special case where the loop transfer
function L(s) has no poles in the right half-plane and no poles on the imaginary
axis except possibly at the origin.

Theorem 10.1 (Simplified Nyquist criterion). Let L(s) be the loop transfer func-
tion for a negative feedback system (as shown in Figure 10.1a) and assume that L
has no poles in the closed right half-plane (Res > 0) except possibly at the ori-
gin. Then the closed loop system Go(s) = L(s)/(1 + L(s)) is stable if and only
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Figure 10.5: Nyquist plot for a third-order transfer function L(s). The Nyquist
plot consists of a trace of the loop transfer function L(s) = 1/(s4a)® with a = 0.6.
The solid line represents the portion of the transfer function along the positive
imaginary axis, and the dashed line the negative imaginary axis. The outer arc of
the D contour maps to the origin.

if the image of L along the closed contour T’ given by equation (10.2) has no net
encirclements of the critical point s = —1.

The following conceptual procedure can be used to determine that there are no
net encirclements. Fix a pin at the critical point s = —1, orthogonal to the plane.
Attach a string with one end at the critical point and the other on the Nyquist
plot. Let the end of the string attached to the Nyquist curve traverse the whole
curve. There are no encirclements if the string does not wind up on the pin when
the curve is encircled. The number of encirclements is called the winding number.

Example 10.2 Nyquist plot for a third-order system
Consider a third-order transfer function
1
L(s) = ————.
To compute the Nyquist plot we start by evaluating points on the imaginary axis
s = iw, which yields

) 1 (a —iw)? a® —3aw? WP — 3w
L(iw) = — = = i .
(iw+apP (@2+w2)? (a2 +w?) (a2 + w2)?

This is plotted in the complex plane in Figure 10.5, with the points corresponding
to w > 0 drawn as a solid line and w < 0 as a dashed line. Notice that these curves
are mirror images of each other.

To complete the Nyquist plot, we compute L(s) for s on the outer arc of the
Nyquist contour. This arc has the form s = Re™% for § € [-7/2,7/2] and R — oc.
This gives

- 1
—160\ __
L(R6 ) = m —0 as R — oo.
Thus the outer arc of the Nyquist contour I' maps to the origin on the Nyquist
plot. \Y%

An alternative to computing the Nyquist plot explicitly is to determine the
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Figure 10.6: Sketching Nyquist and Bode plots. The loop transfer function is
L(s) = 1/(s(s+1)?). The large semicircle is the map of the small semicircle of the
Nyquist contour around the pole at the origin. The closed loop is stable because
the Nyquist curve does not encircle the critical point. The point where the phase
is —180° is marked with a circle in the Bode plot.

plot from the frequency response (Bode plot), which gives the Nyquist curve for
s = iw, w > 0. We start by plotting L(iw) from w = 0 to w = oo, which can
be read off from the magnitude and phase of the transfer function. We then plot
L(Re®) with € [-m/2,7/2] and R — oo, which goes to zero if the high-frequency
gain of L(iw) goes to zero (if and only if L(s) is strictly proper). The remaining
parts of the plot can be determined by taking the mirror image of the curve thus
far (normally plotted using a dashed line). The plot can then be labeled with
arrows corresponding to a clockwise traversal around the Nyquist contour (the
same direction in which the first portion of the curve was plotted).

Example 10.3 Third-order system with a pole at the origin
Consider the transfer function

k
L(s) = m7

where the gain has the nominal value £ = 1. The Bode plot is shown in Figure 10.6a.
The system has a single pole at s = 0 and a double pole at s = —1. The gain curve
of the Bode plot thus has the slope —1 for low frequencies, and at the double pole
s =1 the slope changes to —3. For small s we have L = k/s, which means that the
low-frequency asymptote intersects the unit gain line at w = k. The phase curve
starts at —90° for low frequencies, it is —180° at the breakpoint w = 1, and it is
—270° at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquist plot, shown
in Figure 10.6b. It starts with a phase of —90° for low frequencies, intersects the
negative real axis at the breakpoint w = 1 where L(i) = —0.5 and goes to zero along
the imaginary axis for high frequencies. The small half-circle of the Nyquist contour
at the origin is mapped on a large circle enclosing the right half-plane. The Nyquist
curve does not encircle the critical point s = —1, and it follows from the simplified
Nyquist theorem that the closed loop system is stable. Since L(i) = —k/2, we
find the closed loop system becomes unstable if the gain is increased to k = 2 or
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Figure 10.7: Internet congestion control. A set of N sources using TCP/Reno
send messages through a single router with admission control (left). Link delays
are included for the forward and backward directions. The Nyquist plot for the
loop transfer function is shown on the right.

beyond. \Y%

The Nyquist criterion does not require that |L(iw.)| < 1 for all w. corresponding
to a crossing of the negative real axis. Rather, it says that the number of encir-
clements must be zero, allowing for the possibility that the Nyquist curve could
cross the negative real axis and cross back at magnitudes greater than 1. The fact
that it was possible to have high feedback gains surprised the early designers of
feedback amplifiers, as mentioned in the quote in the beginning of this chapter.

One advantage of the Nyquist criterion is that it tells us how a system is in-
fluenced by changes of the controller parameters. For example, it is very easy to
visualize what happens when the gain is changed since this just scales the Nyquist
curve.

Example 10.4 Congestion control
Consider the Internet congestion control system described in Section 4.4. Suppose
we have N identical sources and a disturbance d representing an external data
source, as shown in Figure 10.7a. We let w represent the individual window size for
a source, ¢ represent the end-to-end probability of a dropped packet, b represent
the number of packets in the router’s buffer, and p represent the probability that a
packet is dropped by the router. We write w for the total number of packets being
received from all N sources. We also include forward and backward propagation
delays between the router and the senders.

To analyze the stability of the system, we use the transfer functions computed
in Exercise 9.9:

1 1

S S SN N S
s 4eT's a(5) 4e(18s + gewe) wls)=p

Gb@ (S) =
where (we, be) is the equilibrium point for the system, N is the number of sources,
7P is the steady-state round-trip time, and 7% and 7 are the forward and backward
propagation times. We use Gy and éqp to represent the transfer functions with
the forward and backward time delays removed since this is accounted for as a
separate blocks in Figure 10.7a. Similarly, G = Ggq/N since we have pulled out
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the multiplier NV as a separate block as well.
The loop transfer function is given by

N 1 it
L(S) =p- D i 9 € 7'957
TeS+e Qe(Te s+ Qewe)

where 7t = 7P 4+ 7f 4+ 7P is the total round trip delay time. Using the fact that w, =
be/N = 7Pc/N and g = 2/(2 + w?) ~ 2/w? = 2N3/(tPc)? from equation (4.17),
we can show that
N )
— e
s+ e s 2N?(c(78)?s + 2N)

t
— TS

L(s)=p-

Note that we have chosen the sign of L(s) to use the same sign convention as in
Figure 10.1b.

The Nyquist plot for the loop transfer function is shown in Figure 10.7b. To
obtain an analytic stability criterion we can approximate the transfer function close
to the intersection with the negative real axis, which occurs at the phase crossover
frequency wp.. The second factor is stable if 7P > 7' and has fast dynamics, so we
approximate it by its zero frequency gain N. The third factor has slow dynamics (it
can be shown that 2N < ¢(7P)?wp.), and we can approximate it by an integrator.
We thus obtain the following approximation of the loop transfer function around
the phase crossover frequency:

3(-p)\3 2. p
c (Te) —7ls _ PC Te —1ls

L(s)=p - N+ - —"5—5 =
(s)~p 2N2¢(18)2s c 9Ns

The integrator has a phase lag of 7/2 and the transfer function L(s) has the phase
crossover frequency wpe = 7/(272). A necessary condition for stability is thus
|L(iwpe)| < 1, which gives the condition

pe (2"

< 1.
TN

Using the Nyquist criterion, the closed loop system will be unstable if this quantity
is greater than 1. In particular, for a fixed processing time 7P, the system will
become unstable as the link capacity c¢. This indicates that the TCP protocol may
not be scalable to high-capacity networks, as pointed out by Low et al. [LPD02].
Exercise 10.9 provides some ideas of how this might be overcome.

\%

The General Nyquist Criterion

Theorem 10.1 requires that L(s) has no poles in the closed right half-plane, except
possibly at the origin. In some situations this is not the case and we need a more
general result. This requires some results from the theory of complex variables,
for which the reader can consult Ahlfors [Ahl66]. Since some precision is needed
in stating Nyquist’s criterion properly, we will use a more mathematical style of
presentation. We also follow the mathematical convention of counting encirclements
in the counterclockwise direction for the remainder of this section. The key result
is the following theorem about functions of complex variables.
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Figure 10.8: Graphical proof of the principle of the variation of the argument.

Theorem 10.2 (Principle of variation of the argument). Let I' be a closed contour
in the complex plane and let D represent the interior of I'. Assume the function
f:C — C is analytic on I' and D except at a finite number of poles and zeros in
D. Then the winding number ny, is given by

1 1 f'(s)
w= oA = ds =1, p — .
n o7 argr f(S) i /F f(s) S Ny,D Np,D
where Aargp is the net variation in the angle when s traverses the contour I' in
the counterclockwise direction, n, p is the number of zeros of f(s) in D, and np p
is the number of poles of f(s) in D. Poles and zeros of multiplicity m are counted

m times.

To understand why the principle of variation of the argument is true, we keep
track of how the argument (angle) of a function varies as we traverse a closed
contour. Figure 10.8 illustrates the basic idea. Consider a function f : C — C of
the form
(s —z1)-- (s — 2m)
(s=p1) (s —pn)’
where z; are zeros and p; are poles. We can rewrite the factors in this function by
keeping track of the distance and angle to each pole and zero:

f(s) = (10.3)

7«16“1)1 . T-me“/’m

s) = . ——
f( ) plelel e pmelen
The argument (angle) of f(s) at any given value of s can be computed by adding
the contributions for the zeros and subtracting the contributions from the poles,

arg(f(s) =Y v —»_0;.
i=1 i=1

We now consider what happens if we traverse a closed loop contour I'. If all of
the poles and zeros in f(s) are outside of the contour, then the net contribution to
the angle from terms in the numerator and denominator will be zero since there is
no way for the angle to “accumulate.” Thus the contribution from each individual
zero and pole will integrate to zero as we traverse the contour. If, however, the
zero or pole is inside the contour I', then the net change in angle as we transverse
the contour will be 27 for terms in the numerator (zeros) or —2x for terms in the
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denominator (poles). Thus the net change in the angle as we traverse the contour
is given by 27(Z — P), where Z is the number of zeros inside the contour and P is
the number of poles inside the contour.

Formal proof. Assume that s = a is a zero of multiplicity m. In the neighborhood
of s = a we have

f(s) = (s = a)"g(s),

where the function g is analytic and different from zero. The ratio of the derivative
of f to itself is then given by

and the second term is analytic at s = a. The function f’/f thus has a single pole
at s = a with the residue m. The sum of the residues at the zeros of this function
is n, p. Similarly, we find that the sum of the residues for the poles is —np p, and
hence

!/
R Q) ds ! 4 log f(s)ds = %A argr log f(s),

Mt2,D = Tp, D = 27t Jp f(s) ~ om r ds

where A argp again denotes the variation along the contour I'. We have

log f(s) = log|f(s)| +iarg f(s),

and since the variation of |f(s)| around a closed contour is zero it follows that

Aargplog f(s) = iAargp arg f(s),
and the theorem is proved. O

This theorem is useful in determining the number of poles and zeros of a function
of a complex variable in a given region. By choosing an appropriate closed region
D with boundary I', we can determine the difference between the number of zeros
and poles through computation of the winding number.

Theorem 10.2 can be used to obtain a general version of Nyquist’s stability
theorem by choosing I" as the Nyquist contour shown in Figure 10.4a, which encloses
the right half-plane. To construct the contour, we start with part of the imaginary
axis —i1R < s < iR and a semicircle to the right with radius R. If the function
f has poles on the imaginary axis, we introduce small semicircles with radii r to
the right of the poles as shown in the figure, because we will consider roots on the
imaginary axis as unstable. The Nyquist contour is obtained by selecting R large
enough and r small enough so that all open-loop right half-plane poles are enclosed.

Note that I has orientation opposite that shown in Figure 10.4a. The convention
in engineering is to traverse the Nyquist contour in the clockwise direction since
this corresponds to increasing frequency moving upwards along the imaginary axis,
which makes it easy to sketch the Nyquist contour from a Bode plot. In mathe-
matics it is customary to define the winding number for a curve with respect to a
point so that it is positive when the contour is traversed counterclockwise. This
difference does not matter as long as we use the same convention for orientation
when traversing the Nyquist contour and computing the winding number.
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To use the principle of variation of the argument (Theorem thm:loopanal:arg) to
obtain an improved stability criterion we apply it to the function f(s) =1+ L(s),
where L(s) is the loop transfer function of a closed loop system with negative
feedback. The generalized Nyquist criterion is given by the following theorem.

Theorem 10.3 (General Nyquist criterion). Consider a closed loop system with
loop transfer function L(s) that has P poles in the region enclosed by the Nyquist
contour I'. Let ny, be the winding number of f(s) =1+ L(s) when s traverses I' in
the counterclockwise direction. Assume that 1 + L(iw) # 0 for all w on T' and that
Nw (1 + L(s)) + np rnp(L(s)) = 0, where ny rpp(L(s)) = P is the number of poles of
L(s) in the open right half-plane. Then the closed loop system has no poles in the
closed right half-plane and it is thus stable.

Proof. The proof follows directly from the principle of variation of the argument,
Theorem 10.2. The closed loop poles of the system are the zeros of the function
f(s) =14 L(s). It follows from the assumptions that the function f(s) has no
zeros on the contour I'. To find the zeros in the right half-plane, we investigate
the winding number of the function f(s) =14 L(s) as s moves along the Nyquist
contour I' in the counterclockwise direction. The winding number n,, can be de-
termined from the Nyquist plot. A direct application of Theorem 10.2 shows that
since nw (1 + L(s)) +np p(L(s)) = 0, then f(s) has no zeros in the right half-plane.
Since the image of 1 + L(s) is a shifted version of L(s), we usually express the
Nyquist criterion as net encirclements of the —1 point by the image of L(s). O

The condition that 1+ L(iw) # 0 on I' implies that the Nyquist curve does
not go through the critical point —1 for any frequency. The condition that ny (1 +
L(s))+npnp(L(s)) = 0, which is called the winding number condition, implies that
the Nyquist curve encircles the critical point as many times as the loop transfer
function L(s) has poles in the right half-plane.

As noted above, in practice the Nyquist criterion is most often applied by
traversing the Nyquist contour in the clockwise direction, since this corresponds
to tracing out the Nyquist curve from w = 0 to oo, which can be read off from the
Bode plot. In this case, the number of net encirclements of the —1 point must also
be counted in the clockwise direction. If we let P be the number of unstable poles
in the loop transfer function, N be the number of clockwise encirclements of the
point —1, and Z be the number of unstable stable zeros of 1 + L (and hence the
number of unstable poles of the closed loop) then the following relation holds:

Z =N+ P.

Note also than when using small semicircles of radius r to avoid poles on the imag-
inary axis these will generate a section of the Nyquist curve with large magnitude,
requiring care in computing the winding number.

Example 10.5 Stabilized inverted pendulum

The linearized dynamics of a normalized inverted pendulum can be represented by
the transfer function P(s) = 1/(s%—1), where the input is acceleration of the pivot
and the output is the pendulum angle 0, as shown in Figure 10.9 (Exercise 9.5). We
attempt to stabilize the pendulum with a proportional-derivative (PD) controller
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(a) Inverted pendulum (b) Nyquist plot

Figure 10.9: PD control of an inverted pendulum. (a) The system consists of
a mass that is balanced by applying a force at the pivot point. A proportional-
derivative controller with transfer function C(s) = k(s + 2) is used to command u
based on 6. (b) A Nyquist plot of the loop transfer function for gain k = 1. There
is one counterclockwise encirclement of the critical point, giving N = —1 clockwise
encirclements.

having the transfer function C(s) = k(s + 2). The loop transfer function is

k(s+2)

L(s) = SRR

The Nyquist plot of the loop transfer function is shown in Figure 10.9b. We have
L(0) = —2k and L(co) = 0. If k > 0.5, the Nyquist curve encircles the critical point
s = —1 in the counterclockwise direction when the Nyquist contour « is encircled
in the clockwise direction. The number of encirclements is thus NV = —1. Since the
loop transfer function has one pole in the right half-plane (P = 1), we find that
Z = N + P = 0 and the system is thus stable for £ > 0.5. If k£ < 0.5, there is no
encirclement and the closed loop will have one pole in the right half-plane. Notice
that the system is unstable for small gains but stable for high gains. v

Conditional Stability

An unstable system can often be stabilized simply by reducing the loop gain. How-
ever, as Example 10.5 illustrates, there are situations where a system can be stabi-
lized by increasing the gain. This was first encountered by electrical engineers in
the design of feedback amplifiers, who coined the term conditional stability. The
problem was actually a strong motivation for Nyquist to develop his theory. The
following example further illustrates this concept.

Example 10.6 Conditional stability for a third-order system
Consider a feedback system with the loop transfer function

 3k(s+6)?

EESVER (10.4)

L(s)
The Nyquist plot of the loop transfer function is shown in Figure 10.10 for & = 1.
Notice that the Nyquist curve intersects the negative real axis twice. The first
intersection occurs at L = —12 for w = 2, and the second at L = —4.5 for w = 3.
The intuitive argument based on signal tracing around the loop in Figure 10.1b is
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Figure 10.10: Nyquist curve for the loop transfer function L(s) = (3(3 +
6)°)/(s(s + 1)?). The plot on the right is an enlargement of the box around
the origin of the plot on the left. The Nyquist curve intersects the negative real
axis twice but has no net encirclements of —1.

misleading in this case. Injection of a sinusoid with frequency 2 rad/s