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Preface to the Second Edition

The second edition of Feedback Systems contains a variety of changes that are
based on feedback on the first edition, particularly in its use for introductory
courses in control. One of the primary comments from users of the text was that
the use of control tools for design purposes occurred only after several chapters of
analytical tools, leaving the instructor having to try to convince students that the
techniques would soon be useful. In our own teaching, we find that we often use
design examples in the first few weeks of the class and use this to motivate the
various techniques that follow. This approach has been particularly useful in engi-
neering courses, where students are often eager to apply the tools to examples as
part of gaining insight into the methods. We also found that universities that have a
laboratory component attached to their controls class need to introduce some basic
design techniques early, so that students can be implementing control laws in the
laboratory in the early weeks of the course.

To help emphasize this more design-oriented flow, we have rearranged the ma-
terial in the first third of the book. We have added a new chapter on “Feedback
Principles” that illustrates some simple design principles and tools that can be
used to show students what types of problems can be solved using feedback. This
new chapter uses simple models, simulations and elementary analysis techniques,
so that it should be accessible to students from a variety of engineering and scien-
tific backgrounds. For courses in which students have already been exposed to the
basic ideas of feedback, perhaps in an earlier discipline-specific course, this new
chapter can easily be skipped without any loss of continuity.

We have also added a new chapter to the end of the book, focused on control
architectures and design. Our intention in this chapter is to provide a systems view
that describes how control design is integrated into a larger model-based develop-
ment framework, motivated in part by our consulting activities with large compa-
nies. In this new chapter we also take the opportunity to present some overview ma-
terial on “bottoms up” and “top down” approaches to control architectures, briefly
introducing some of the many additional concepts from the field of control that are
in widespread use in applications.

In addition to these relatively large changes, we have made many other smaller
changes based on the feedback we have received from early adopters of the text.
We have added some material on the Routh-Hurwitz criterion and root locus plots,
to at least serve as “hooks” for instructors who wish to cover that material in
more detail. We have also made some notational changes throughout, most notably
changing the symbols for disturbance and noise signals to v and w, respectively.
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The notation in the biological examples has also been updated to match the nota-
tion used in the textbook by Del Vecchio and Murray [DM14]. Finally, there are
a variety of changes on the companion web site, including the addition of python
code (using the python-control toolbox [Pyt]) for many of the examples.

We are indebted to numerous individuals who have taught out of the text and
sent us feedback on changes that would better serve their needs. In addition to the
many individuals listed in the preface to the first edition, we would like to also
thank Constantine Caramanis, Clancy Rowley and André Tits for their feedback
and insights.

Karl Johan Åström Richard M. Murray
Lund, Sweden Pasadena, California



Preface to the First Edition

This book provides an introduction to the basic principles and tools for the design
and analysis of feedback systems. It is intended to serve a diverse audience of
scientists and engineers who are interested in understanding and utilizing feedback
in physical, biological, information and social systems. We have attempted to keep
the mathematical prerequisites to a minimum while being careful not to sacrifice
rigor in the process. We have also attempted to make use of examples from a
variety of disciplines, illustrating the generality of many of the tools while at the
same time showing how they can be applied in specific application domains.

A major goal of this book is to present a concise and insightful view of the
current knowledge in feedback and control systems. The field of control started
by teaching everything that was known at the time and, as new knowledge was
acquired, additional courses were developed to cover new techniques. A conse-
quence of this evolution is that introductory courses have remained the same for
many years, and it is often necessary to take many individual courses in order
to obtain a good perspective on the field. In developing this book, we have at-
tempted to condense the current knowledge by emphasizing fundamental concepts.
We believe that it is important to understand why feedback is useful, to know the
language and basic mathematics of control and to grasp the key paradigms that
have been developed over the past half century. It is also important to be able to
solve simple feedback problems using back-of-the-envelope techniques, to recog-
nize fundamental limitations and difficult control problems and to have a feel for
available design methods.

This book was originally developed for use in an experimental course at Cal-
tech involving students from a wide set of backgrounds. The course was offered to
undergraduates at the junior and senior levels in traditional engineering disciplines,
as well as first- and second-year graduate students in engineering and science. This
latter group included graduate students in biology, computer science and physics.
Over the course of several years, the text has been classroom tested at Caltech and
at Lund University, and the feedback from many students and colleagues has been
incorporated to help improve the readability and accessibility of the material.

Because of its intended audience, this book is organized in a slightly unusual
fashion compared to many other books on feedback and control. In particular, we
introduce a number of concepts in the text that are normally reserved for second-
year courses on control and hence often not available to students who are not con-
trol systems majors. This has been done at the expense of certain traditional top-
ics, which we felt that the astute student could learn independently and are often
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explored through the exercises. Examples of topics that we have included are non-
linear dynamics, Lyapunov stability analysis, the matrix exponential, reachability
and observability, and fundamental limits of performance and robustness. Topics
that we have deemphasized include root locus techniques, lead/lag compensation
and detailed rules for generating Bode and Nyquist plots by hand.

Several features of the book are designed to facilitate its dual function as a basic
engineering text and as an introduction for researchers in natural, information and
social sciences. The bulk of the material is intended to be used regardless of the
audience and covers the core principles and tools in the analysis and design of
feedback systems. Advanced sections, marked by the “dangerous bend” symbol!
shown here, contain material that requires a slightly more technical background,
of the sort that would be expected of senior undergraduates in engineering. A few
sections are marked by two dangerous bend symbols and are intended for readers
with more specialized backgrounds, identified at the beginning of the section. To
limit the length of the text, several standard results and extensions are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here, a companion web site
has been developed and is available from the publisher’s web page:

http://www.cds.caltech.edu/∼murray/amwiki

The web site contains a database of frequently asked questions, supplemental ex-
amples and exercises, and lecture material for courses based on this text. The mate-
rial is organized by chapter and includes a summary of the major points in the text
as well as links to external resources. The web site also contains the source code
for many examples in the book, as well as utilities to implement the techniques
described in the text. Most of the code was originally written using MATLAB M-
files but was also tested with LabView MathScript to ensure compatibility with
both packages. Many files can also be run using other scripting languages such as
Octave, SciLab, SysQuake and Xmath.

The first half of the book focuses almost exclusively on state space control sys-
tems. We begin in Chapter 31 with a description of modeling of physical, biolog-
ical and information systems using ordinary differential equations and difference
equations. Chapter 4 presents a number of examples in some detail, primarily as a
reference for problems that will be used throughout the text. Following this, Chap-
ter 5 looks at the dynamic behavior of models, including definitions of stability
and more complicated nonlinear behavior. We provide advanced sections in this
chapter on Lyapunov stability analysis because we find that it is useful in a broad
array of applications and is frequently a topic that is not introduced until later in
one’s studies.

The remaining three chapters of the first half of the book focus on linear sys-
tems, beginning with a description of input/output behavior in Chapter 6. In Chap-
ter 7, we formally introduce feedback systems by demonstrating how state space
control laws can be designed. This is followed in Chapter 8 by material on output

1Chapter numbers reflect those in the second edition.
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feedback and estimators. Chapters 7 and 8 introduce the key concepts of reacha-
bility and observability, which give tremendous insight into the choice of actuators
and sensors, whether for engineered or natural systems.

The second half of the book presents material that is often considered to be
from the field of “classical control.” This includes the transfer function, introduced
in Chapter 9, which is a fundamental tool for understanding feedback systems.
Using transfer functions, one can begin to analyze the stability of feedback systems
using frequency domain analysis, including the ability to reason about the closed
loop behavior of a system from its open loop characteristics. This is the subject of
Chapter 10, which revolves around the Nyquist stability criterion.

In Chapters 11 and 12, we again look at the design problem, focusing first
on proportional-integral-derivative (PID) controllers and then on the more general
process of loop shaping. PID control is by far the most common design technique
in control systems and a useful tool for any student. The chapter on frequency
domain design introduces many of the ideas of modern control theory, including
the sensitivity function. In Chapter 13, we combine the results from the second half
of the book to analyze some of the fundamental trade-offs between robustness and
performance. This is also a key chapter illustrating the power of the techniques that
have been developed and serving as an introduction for more advanced studies.

The book is designed for use in a 10- to 15-week course in feedback systems
that provides many of the key concepts needed in a variety of disciplines. For a 10-
week course, Chapters 1–3, 5–7 and 9–12 can each be covered in a week’s time,
with the omission of some topics from the final chapters. A more leisurely course,
spread out over 14–15 weeks, could cover the entire book, with 2 weeks on mod-
eling (Chapters 3 and 2)—particularly for students without much background in
ordinary differential equations—and 2 weeks on robust performance (Chapter 13).

The mathematical prerequisites for the book are modest and in keeping with
our goal of providing an introduction that serves a broad audience. We assume
familiarity with the basic tools of linear algebra, including matrices, vectors and
eigenvalues. These are typically covered in a sophomore-level course on the sub-
ject, and the textbooks by Apostol [Apo69], Arnold [Arn87] and Strang [Str88]
can serve as good references. Similarly, we assume basic knowledge of differ-
ential equations, including the concepts of homogeneous and particular solutions
for linear ordinary differential equations in one variable. Apostol [Apo69] and
Boyce and DiPrima [BD04] cover this material well. Finally, we also make use
of complex numbers and functions and, in some of the advanced sections, more
detailed concepts in complex variables that are typically covered in a junior-level
engineering or physics course in mathematical methods. Apostol [Apo67] or Stew-
art [Ste02] can be used for the basic material, with Ahlfors [Ahl66], Marsden and
Hoffman [MH98] or Saff and Snider [SS02] being good references for the more
advanced material. We have chosen not to include appendices summarizing these
various topics since there are a number of good books available.

One additional choice that we felt was important was the decision not to rely
on a knowledge of Laplace transforms in the book. While their use is by far the
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most common approach to teaching feedback systems in engineering, many stu-
dents in the natural and information sciences may lack the necessary mathematical
background. Since Laplace transforms are not required in any essential way, we
have included them only in an advanced section intended to tie things together
for students with that background. Of course, we make tremendous use of trans-
fer functions, which we introduce through the notion of response to exponential
inputs, an approach we feel is more accessible to a broad array of scientists and
engineers. For classes in which students have already had Laplace transforms, it
should be quite natural to build on this background in the appropriate sections of
the text.
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Chapter One
Introduction

Feedback is a central feature of life. The process of feedback governs how we grow, respond

to stress and challenge, and regulate factors such as body temperature, blood pressure and

cholesterol level. The mechanisms operate at every level, from the interaction of proteins in

cells to the interaction of organisms in complex ecologies.

M. B. Hoagland and B. Dodson, The Way Life Works, 1995 [HD95].

In this chapter we provide an introduction to the basic concept of feedback
and the related engineering discipline of control. We focus on both historical and
current examples, with the intention of providing the context for current tools in
feedback and control. Much of the material in this chapter is adapted from a report
on future directions in control [Mur03], and the authors gratefully acknowledge
the contributions of Roger Brockett and Gunter Stein to portions of this chapter.

1.1 What Is Feedback?

A dynamical system is a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The term feedback refers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult because the first system in-
fluences the second and the second system influences the first, leading to a circular
argument. This makes conventional causal reasoning difficult and it is necessary
to analyze the system as a whole. A consequence of this is that the behavior of
feedback systems is often counter-intuitive, and it is therefore necessary to resort
to formal methods to understand them.

Figure 1.1 illustrates in block diagram form the idea of feedback. We often use

u
System 2System 1

y

(a) Closed loop

y
System 2System 1

ur

(b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used as the input of
system 2, and the output of system 2 becomes the input of system 1, creating a closed loop
system. (b) The interconnection between system 2 and system 1 is removed, and the system
is said to be open loop.
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugal governor on the
left consists of a set of flyballs that spread apart as the speed of the engine increases. The
steam engine on the right uses a centrifugal governor (above and to the left of the flywheel)
to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip Taylor [1828].)

the terms open loop and closed loop when referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
shown in Figure 1.1a. If we break the interconnection, we refer to the configuration
as an open loop system, as shown in Figure 1.1b.

As the quote at the beginning of this chapter illustrates, a major source of ex-
amples of feedback systems is biology. Biological systems make use of feedback
in an extraordinary number of ways, on scales ranging from molecules to cells to
organisms to ecosystems. One example is the regulation of glucose in the blood-
stream through the production of insulin and glucagon by the pancreas. The body
attempts to maintain a constant concentration of glucose, which is used by the
body’s cells to produce energy. When glucose levels rise (after eating a meal, for
example), the hormone insulin is released and causes the body to store excess glu-
cose in the liver. When glucose levels are low, the pancreas secretes the hormone
glucagon, which has the opposite effect. Referring to Figure 1.1, we can view the
liver as system 1 and the pancreas as system 2. The output from the liver is the glu-
cose concentration in the blood, and the output from the pancreas is the amount of
insulin or glucagon produced. The interplay between insulin and glucagon secre-
tions throughout the day helps to keep the blood-glucose concentration constant,
at about 90 mg per 100 mL of blood.

An early engineering example of a feedback system is a centrifugal governor,
in which the shaft of a steam engine is connected to a flyball mechanism that is
itself connected to the throttle of the steam engine, as illustrated in Figure 1.2. The
system is designed so that as the speed of the engine increases (perhaps because
of a lessening of the load on the engine), the flyballs spread apart and a linkage
causes the throttle on the steam engine to be closed. This in turn slows down the
engine, which causes the flyballs to come back together. We can model this system
as a closed loop system by taking system 1 as the steam engine and system 2 as
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the governor. When properly designed, the flyball governor maintains a constant
speed of the engine, roughly independent of the loading conditions. The centrifugal
governor was an enabler of the successful Watt steam engine, which fueled the
industrial revolution.

Feedback has many interesting properties that can be exploited in designing
systems. As in the case of glucose regulation or the flyball governor, feedback can
make a system resilient toward external influences. It can also be used to create
linear behavior out of nonlinear components, a common approach in electronics.
More generally, feedback allows a system to be insensitive both to external distur-
bances and to variations in its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabili-
ties in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

Feedback systems are ubiquitous in both natural and engineered systems. Con-
trol systems maintain the environment, lighting and power in our buildings and
factories; they regulate the operation of our cars, consumer electronics and manu-
facturing processes; they enable our transportation and communications systems;
and they are critical elements in our military and space systems. For the most part
they are hidden from view, buried within the code of embedded microprocessors,
executing their functions accurately and reliably. Feedback has also made it pos-
sible to increase dramatically the precision of instruments such as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintains thermal, chemical and
biological conditions through feedback. At the other end of the size scale, global
climate dynamics depend on the feedback interactions between the atmosphere,
the oceans, the land and the sun. Ecosystems are filled with examples of feedback
due to the complex interactions between animal and plant life. Even the dynam-
ics of economies are based on the feedback between individuals and corporations
through markets and the exchange of goods and services.

1.2 What Is Control?

The term control has many meanings and often varies between communities. In
this book, we define control to be the use of algorithms and feedback in engineered
systems. Thus, control includes such examples as feedback loops in electronic am-
plifiers, setpoint controllers in chemical and materials processing, “fly-by-wire”
systems on aircraft and even router protocols that control traffic flow on the Inter-
net. Emerging applications include high-confidence software systems, autonomous
vehicles and robots, real-time resource management systems and biologically en-
gineered systems. At its core, control is an information science and includes the
use of information in both analog and digital representations.
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Controller

System Sensors

Filter

Clock

operator input

D/A Computer A/D

noiseexternal disturbancesnoise

ΣΣ
Output

Process

Actuators

Figure 1.3: Components of a computer-controlled system. The upper dashed box represents
the process dynamics, which include the sensors and actuators in addition to the dynamical
system being controlled. Noise and external disturbances can perturb the dynamics of the
process. The controller is shown in the lower dashed box. It consists of a filter and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a computer that implements
the control algorithm. A system clock controls the operation of the controller, synchronizing
the A/D, D/A and computing processes. The operator input is also fed to the computer as an
external input.

A modern controller senses the operation of a system, compares it against the
desired behavior, computes corrective actions based on a model of the system’s
response to external inputs and actuates the system to effect the desired change.
This basic feedback loop of sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logic are ensuring that the dy-
namics of the closed loop system are stable (bounded disturbances give bounded
errors) and that they have additional desired behavior (good disturbance attenua-
tion, fast responsiveness to changes in operating point, etc). These properties are
established using a variety of modeling and analysis techniques that capture the
essential dynamics of the system and permit the exploration of possible behaviors
in the presence of uncertainty, noise and component failure.

A typical example of a control system is shown in Figure 1.3. The basic ele-
ments of sensing, computation and actuation are clearly seen. In modern control
systems, computation is typically implemented on a digital computer, requiring the
use of analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty
enters the system through noise in sensing and actuation subsystems, external dis-
turbances that affect the underlying system operation and uncertain dynamics in
the system (parameter errors, unmodeled effects, etc). The algorithm that com-
putes the control action as a function of the sensor values is often called a control
law. The system can be influenced externally by an operator who introduces com-
mand signals to the system.
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Control engineering relies on and shares tools from physics (dynamics and
modeling), computer science (information and software) and operations research
(optimization, probability theory and game theory), but it is also different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control and other disciplines is in
the modeling of physical systems, which is common across all areas of engineering
and science. One of the fundamental differences between control-oriented model-
ing and modeling in other disciplines is the way in which interactions between
subsystems are represented. Control relies on a type of input/output modeling that
allows many new insights into the behavior of systems, such as disturbance attenu-
ation and stable interconnection. Model reduction, where a simpler (lower-fidelity)
description of the dynamics is derived from a high-fidelity model, is also naturally
described in an input/output framework. Perhaps most importantly, modeling in a
control context allows the design of robust interconnections between subsystems,
a feature that is crucial in the operation of all large engineered systems.

Control is also closely associated with computer science since virtually all
modern control algorithms for engineering systems are implemented in software.
However, control algorithms and software can be very different from traditional
computer software because of the central role of the dynamics of the system and
the real-time nature of the implementation.

1.3 Feedback Examples

Feedback has many interesting and useful properties. It makes it possible to design
precise systems from imprecise components and to make relevant quantities in a
system change in a prescribed fashion. An unstable system can be stabilized using
feedback, and the effects of external disturbances can be reduced. Feedback also
offers new degrees of freedom to a designer by exploiting sensing, actuation and
computation. In this section we briefly survey some of the important applications
and trends for feedback in the world around us. Considerably more detail is avail-
able in the 2003 report on future directions in control [Mur03] and in a companion
article in the IEEE Control Systems Magazine [MÅB+03].

Power Generation and Transmission. Access to electrical power has been one of
the major drivers of technological progress in modern society. Much of the early
development of control was driven by the generation and distribution of electrical
power. Control is mission critical for power systems, and there are many control
loops in individual power stations. Control is also important for the operation of
the whole power network since it is difficult to store energy and it is thus necessary
to match production to consumption. Power management is a straightforward reg-
ulation problem for a system with one generator and one power consumer, but it
is more difficult in a highly distributed system with many generators and long dis-
tances between consumption and generation. Power demand can change rapidly in
an unpredictable manner and combining generators and consumers into large net-
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Figure 1.4: A small portion of the European power network. By 2008 European power
suppliers will operate a single interconnected network covering a region from the Arctic to
the Mediterranean and from the Atlantic to the Urals. In 2004 the installed power was more
than 700 GW (7×1011 W). (Source: UCTE [www.ucte.org])

works makes it possible to share loads among many suppliers and to average con-
sumption among many customers. Large transcontinental and transnational power
systems have therefore been built, such as the one show in Figure 1.4.

Aerospace and Transportation. In aerospace, control has been a key technological
capability tracing back to the beginning of the 20th century. Indeed, the Wright
brothers are correctly famous not for demonstrating simply powered flight but
controlled powered flight. Their early Wright Flyer incorporated moving control
surfaces (vertical fins and canards) and warpable wings that allowed the pilot to
regulate the aircraft’s flight. In fact, the aircraft itself was not stable, so continuous
pilot corrections were mandatory. This early example of controlled flight was fol-
lowed by a fascinating success story of continuous improvements in flight control
technology, culminating in the high-performance, highly reliable automatic flight
control systems we see in modern commercial and military aircraft today.

Materials and Processing. The chemical industry is responsible for the remarkable
progress in developing new materials that are key to our modern society. In addi-
tion to the continuing need to improve product quality, several other factors in the
process control industry are drivers for the use of control. Environmental statutes
continue to place stricter limitations on the production of pollutants, forcing the
use of sophisticated pollution control devices. Environmental safety considera-
tions have led to the design of smaller storage capacities to diminish the risk of
major chemical leakage, requiring tighter control on upstream processes and, in
some cases, supply chains. And large increases in energy costs have encouraged
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Figure 1.5: The voltage clamp method for measuring ion currents in cells using feedback. A
pipette is used to place an electrode in a cell (left and middle) and maintain the potential of
the cell at a fixed level. The internal voltage in the cell is vi, and the voltage of the external
fluid is ve. The feedback system (right) controls the current I into the cell so that the voltage
drop across the cell membrane ∆v = vi− ve is equal to its reference value ∆vr. The current I

is then equal to the ion current.

engineers to design plants that are highly integrated, coupling many processes that
used to operate independently. All of these trends increase the complexity of these
processes and the performance requirements for the control systems, making con-
trol system design increasingly challenging.

Instrumentation. The measurement of physical variables is of prime interest in
science and engineering. Consider, for example, an accelerometer, where early in-
struments consisted of a mass suspended on a spring with a deflection sensor. The
precision of such an instrument depends critically on accurate calibration of the
spring and the sensor. There is also a design compromise because a weak spring
gives high sensitivity but low bandwidth. A different way of measuring accelera-
tion is to use force feedback. The spring is replaced by a voice coil that is controlled
so that the mass remains at a constant position. The acceleration is proportional to
the current through the voice coil. In such an instrument, the precision depends en-
tirely on the calibration of the voice coil and does not depend on the sensor, which
is used only as the feedback signal. The sensitivity/bandwidth compromise is also
avoided.

Another important application of feedback is in instrumentation for biological
systems. Feedback is widely used to measure ion currents in cells using a device
called a voltage clamp, which is illustrated in Figure 1.5. Hodgkin and Huxley
used the voltage clamp to investigate propagation of action potentials in the giant
axon of the squid. In 1963 they shared the Nobel Prize in Medicine with Eccles
for “their discoveries concerning the ionic mechanisms involved in excitation and
inhibition in the peripheral and central portions of the nerve cell membrane.” A
refinement of the voltage clamp called a patch clamp made it possible to measure
exactly when a single ion channel is opened or closed. This was developed by
Neher and Sakmann, who received the 1991 Nobel Prize in Medicine “for their
discoveries concerning the function of single ion channels in cells.”

Robotics and Intelligent Machines. The goal of cybernetic engineering, already ar-
ticulated in the 1940s and even before, has been to implement systems capable of
exhibiting highly flexible or “intelligent” responses to changing circumstances. In
1948 the MIT mathematician Norbert Wiener gave a widely read account of cy-
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Figure 1.6: Autonomous vehicles. The figure on the left is a DJI Phantom 3 drone, which
is able to maintain its position using GPS and inertial sensors. The figure on the right is an
autonomous car that was developed by Google and is capable of driving on city streets by
using sophisticated sensing and decision-making (control) software.

bernetics [Wie48]. A more mathematical treatment of the elements of engineering
cybernetics was presented by H. S. Tsien in 1954, driven by problems related to
the control of missiles [Tsi54]. Together, these works and others of that time form
much of the intellectual basis for modern work in robotics and control.

Two recent areas of advancement in robotics and autonomous systems are (con-
sumer) drones and autonomous cars, some examples of which are shown in Fig-
ure 1.6. Quadrocopters such as the DJI Phantom make use of GPS receivers, ac-
celerometers, magnetometers and gyros to provide stable flight, and also use sta-
bilized camera platforms to provide high quality images and movies. Autonomous
vehicles, such as the Google autonomous car project, make use of a variety of laser
rangefinders, cameras and radars to perceive their environment and then use so-
phisticated decision-making and control algorithms to enable them to safely drive
in a variety of traffic conditions, from high-speed freeways to crowded city streets.

Networks and Computing Systems. Control of networks is a large research area
spanning many topics, including congestion control, routing, data caching and
power management. Several features of these control problems make them very
challenging. The dominant feature is the extremely large scale of the system; the
Internet is probably the largest feedback control system humans have ever built.
Another is the decentralized nature of the control problem: decisions must be made
quickly and based only on local information. Stability is complicated by the pres-
ence of varying time lags, as information about the network state can be observed
or relayed to controllers only after a delay, and the effect of a local control action
can be felt throughout the network only after substantial delay.

Related to the control of networks is control of the servers that sit on these net-
works. Computers are key components of the systems of routers, web servers and
database servers used for communication, electronic commerce, advertising and
information storage. A typical example of a multilayer system for e-commerce is
shown in Figure 1.7a. The system has several tiers of servers. The edge server
accepts incoming requests and routes them to the HTTP server tier where they
are parsed and distributed to the application servers. The processing for differ-



1.3. FEEDBACK EXAMPLES 1-9

The Internet

Request

Reply

Request

Reply

Request

Reply

Tier 1 Tier 2 Tier 3

Clients

(a) Multitiered Internet services (b) Individual server

Figure 1.7: A multitier system for services on the Internet. In the complete system shown
schematically in (a), users request information from a set of computers (tier 1), which in turn
collect information from other computers (tiers 2 and 3). The individual server shown in (b)
has a set of reference parameters set by a (human) system operator, with feedback used to
maintain the operation of the system in the presence of uncertainty. (Based on Hellerstein et
al. [HDPT04].)

ent requests can vary widely, and the application servers may also access external
servers managed by other organizations. Control of an individual server in a layer
is illustrated in Figure 1.7b. A quantity representing the quality of service or cost of
operation—such as response time, throughput, service rate or memory usage—is
measured in the computer. The control variables might represent incoming mes-
sages accepted, priorities in the operating system or memory allocation. The feed-
back loop then attempts to maintain quality-of-service variables within a target
range of values.

Economics. The economy is a large, dynamical system with many actors: govern-
ments, organizations, companies and individuals. Governments control the econ-
omy through laws and taxes, the central banks by setting interest rates and com-
panies by setting prices and making investments. Individuals control the econ-
omy through purchases, savings and investments. Many efforts have been made to
model the system both at the macro level and at the micro level, but this model-
ing is difficult because the system is strongly influenced by the behaviors of the
different actors in the system.

One of the reasons why it is difficult to model economic systems is that there
are no conservation laws. A typical example is that the value of a company as ex-
pressed by its stock can change rapidly and erratically. There are, however, some
areas with conservation laws that permit accurate modeling. One example is the
flow of products from a manufacturer to a retailer as illustrated in Figure 1.8. The
products are physical quantities that obey a conservation law, and the system can
be modeled by accounting for the number of products in the different inventories.
There are considerable economic benefits in controlling supply chains so that prod-
ucts are available to customers while minimizing products that are in storage. The
real problems are more complicated than indicated in the figure because there may
be many different products, there may be different factories that are geographically
distributed and the factories may require raw material or subassemblies.

Feedback in Nature. Many problems in the natural sciences involve understanding
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Figure 1.8: Supply chain dynamics (after Forrester [For61]). Products flow from the pro-
ducer to the customer through distributors and retailers as indicated by the solid lines. There
are typically many factories and warehouses and even more distributors and retailers. Multi-
ple feedback loops are present as each agent tries to maintain the proper inventory level.

aggregate behavior in complex large-scale systems. This behavior emerges from
the interaction of a multitude of simpler systems with intricate patterns of infor-
mation flow. Representative examples can be found in fields ranging from embry-
ology to seismology. Researchers who specialize in the study of specific complex
systems often develop an intuitive emphasis on analyzing the role of feedback (or
interconnection) in facilitating and stabilizing aggregate behavior. We briefly high-
light three application areas here.

A major theme currently of interest to the biology community is the science of
reverse (and eventually forward) engineering of biological control networks such
as the one shown in Figure 1.9. There are a wide variety of biological phenom-
ena that provide a rich source of examples of control, including gene regulation
and signal transduction; hormonal, immunological and cardiovascular feedback
mechanisms; muscular control and locomotion; active sensing, vision and propri-
oception; attention and consciousness; and population dynamics and epidemics.
Each of these (and many more) provide opportunities to figure out what works,
how it works, and what we can do to affect it.

In contrast to individual cells and organisms, emergent properties of aggre-
gations and ecosystems inherently reflect selection mechanisms that act on mul-
tiple levels, and primarily on scales well below that of the system as a whole.
Because ecosystems are complex, multiscale dynamical systems, they provide a
broad range of new challenges for the modeling and analysis of feedback systems.
Recent experience in applying tools from control and dynamical systems to bac-
terial networks suggests that much of the complexity of these networks is due to
the presence of multiple layers of feedback loops that provide robust functional-
ity to the individual cell. Yet in other instances, events at the cell level benefit the
colony at the expense of the individual. Systems level analysis can be applied to
ecosystems with the goal of understanding the robustness of such systems and the
extent to which decisions and events affecting individual species contribute to the
robustness and/or fragility of the ecosystem as a whole.
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Figure 1.9: The wiring diagram of the growth-signaling circuitry of the mammalian
cell [HW00]. The major pathways that are thought to play a role in cancer are indicated
in the diagram. Lines represent interactions between genes and proteins in the cell. Lines
ending in arrowheads indicate activation of the given gene or pathway; lines ending in a
T-shaped head indicate repression. (Used with permission of Elsevier Ltd. and the authors.)

1.4 Feedback Properties

Feedback is a powerful idea which, as we have seen, is used extensively in natural
and technological systems. The principle of feedback is simple: base correcting
actions on the difference between desired and actual performance. In engineering,
feedback has been rediscovered and patented many times in many different con-
texts. The use of feedback has often resulted in vast improvements in system ca-
pability, and these improvements have sometimes been revolutionary, as discussed
above. The reason for this is that feedback has some truly remarkable properties.
In this section we will discuss some of the properties of feedback that can be un-
derstood intuitively. This intuition will be formalized in subsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness to uncertainty. By mea-
suring the difference between the sensed value of a regulated signal and its desired
value, we can supply a corrective action. If the system undergoes some change that
affects the regulated signal, then we sense this change and try to force the system
back to the desired operating point. This is precisely the effect that Watt exploited
in his use of the centrifugal governor on steam engines.

As an example of this principle, consider the simple feedback system shown in
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Figure 1.10: A feedback system for controlling the speed of a vehicle. In the block diagram
on the left, the speed of the vehicle is measured and compared to the desired speed within the
“Compute” block. Based on the difference in the actual and desired speeds, the throttle (or
brake) is used to modify the force applied to the vehicle by the engine, drivetrain and wheels.
The figure on the right shows the response of the control system to a commanded change
in speed from 25 m/s to 30 m/s. The three different curves correspond to differing masses
of the vehicle, between 1000 and 3000 kg, demonstrating the robustness of the closed loop
system to a very large change in the vehicle characteristics.

Figure 1.10. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simple proportional-integral (PI) feedback
is used to make the amount of gas depend on both the error between the current
and the desired speed and the integral of that error. The plot on the right shows
the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from having a different number of
passengers or towing a trailer. Notice that independent of the mass (which varies by
a factor of 3!), the steady-state speed of the vehicle always approaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustness is the nega-
tive feedback amplifier. When telephone communications were developed, ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuum tube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black used negative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a system. Through feed-
back, we can alter the behavior of a system to meet the needs of an application:
systems that are unstable can be stabilized, systems that are sluggish can be made
responsive and systems that have drifting operating points can be held constant.
Control theory provides a rich collection of techniques to analyze the stability and
dynamic response of complex systems and to place bounds on the behavior of such
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systems by analyzing the gains of linear and nonlinear operators that describe their
components.

An example of the use of control in the design of dynamics comes from the
area of flight control. The following quote, from a lecture presented by Wilbur
Wright to the Western Society of Engineers in 1901 [McF53], illustrates the role
of control in the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the
age of flying will have arrived, for all other difficulties are of minor
importance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By using their
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was point-
ing down, and vice versa. The Sperry autopilot was the first use of feedback in
aeronautical engineering, and Sperry won a prize in a competition for the safest
airplane in Paris in 1914. Figure 1.11 shows the Curtiss seaplane and the Sperry
autopilot. The autopilot is a good example of how feedback can be used to stabilize
an unstable system and hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By using feedback
to create a system whose response matches a desired profile, we can hide the com-
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the responses
of a large number of interacting components. This was one of the advantages of
Black’s use of negative feedback in vacuum tube amplifiers: the resulting device
had a well-defined linear input/output response that did not depend on the individ-
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Figure 1.11: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [Hug93].

ual characteristics of the vacuum tubes being used.

Creating Modularity

Feedback can be used to create modularity and shape well-defined relations be-
tween inputs and outputs in a structured hierarchical manner. A modular system is
one in which individual components can be replaced without having to modify the
entire system. By using feedback, it is possible to allow components to maintain
their input/output properties in a manner that is robust to changes in its intercon-
nections. A typical example is the electrical drive system shown in Figure 1.12,
which has an architecture with three cascaded loops. The innermost loop is a cur-
rent loop, the controller CC drives the amplifier so that the current to the motor
follows the set point. The velocity loop with the controller VC drives the set point
of the current controller so that velocity follows the set point of VC. The outer
loop drives the set point of the velocity loop to follow the set point of the position
controller
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Figure 1.12: Block diagram of a system for position control. The system has three cascaded
loops for control of current, velocity and position.
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The control architecture with nested loops shown in Figure 1.12 is common.
It simplifies both design, commissioning and operation. Consider for example the
design of the velocity loop. With a well-designed current controller the motor cur-
rent follows the set point of the controller independent of friction and other effects.
Since the motor velocity is proportional to the current the dynamics relating ve-
locity to the input of the current controller is approximately an integrator, because
force is proportional to current and angular acceleration is proportional to force.
The design of the velocity loop is then simple. With a well-designed velocity loop,
the design of the position loop is also simple. The loops can also be tuned sequen-
tially starting with the inner loop. The architecture illustrates how feedback can be
used to simplify modeling and create modular systems.

Drawbacks of Feedback

While feedback has many advantages, it also has some drawbacks. Chief among
these is the possibility of instability if the system is not designed properly. We
are all familiar with the effects of positive feedback when the amplification on
a microphone is turned up too high in a room. This is an example of feedback
instability, something that we obviously want to avoid. This is tricky because we
must design the system not only to be stable under nominal conditions but also to
remain stable under all possible perturbations of the dynamics.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects measure-
ment noise into the system. Measurements must be carefully filtered so that the
actuation and process dynamics do not respond to them, while at the same time
ensuring that the measurement signal from the sensor is properly coupled into the
closed loop dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding a con-
trol system in a product. While the cost of sensing, computation and actuation has
decreased dramatically in the past few decades, the fact remains that control sys-
tems are often complicated, and hence one must carefully balance the costs and
benefits. An early engineering example of this is the use of microprocessor-based
feedback systems in automobiles.The use of microprocessors in automotive appli-
cations began in the early 1970s and was driven by increasingly strict emissions
standards, which could be met only through electronic controls. Early systems
were expensive and failed more often than desired, leading to frequent customer
dissatisfaction. It was only through aggressive improvements in technology that
the performance, reliability and cost of these systems allowed them to be used in a
transparent fashion. Even today, the complexity of these systems is such that it is
difficult for an individual car owner to fix problems.

Feedforward

Feedback is reactive: there must be an error before corrective actions are taken.
However, in some circumstances it is possible to measure a disturbance before it
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Table 1.1: Properties of feedback and feedforward

Feedback Feedforward

Closed loop Open loop
Acts on deviations Acts on plans

Robust to model uncertainty Sensitive to model uncertainty
Risk for instability No risk for instability

Sensitive to measurement noise Insensitive to measurement noise

enters the system, and this information can then be used to take corrective action
before the disturbance has influenced the system. The effect of the disturbance
is thus reduced by measuring it and generating a control signal that counteracts it.
This way of controlling a system is called feedforward. Feedforward is particularly
useful in shaping the response to command signals because command signals are
always available. Since feedforward attempts to match two signals, it requires good
process models; otherwise the corrections may have the wrong size or may be
badly timed.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties which are summarized in Table 1.1.

Positive Feedback

In most of this text, we will consider the role of negative feedback, in which we
attempt to regulate the system by reacting to disturbances in a way that decreases
the effect of those disturbances. Positive feedback plays an important role in social
and biological systems, positive feedback. can play an important role. In a system
with positive feedback, the increase in some variable or signal leads to a situation
in which that quantity is further increased through its dynamics. This has a desta-
bilizing effect and is usually accompanied by a saturation that limits the growth
of the quantity. Although often considered undesirable, this behavior is used in
biological (and engineering) systems to obtain a very fast response to a condition
or signal. Another common use of positive feedback is the design of systems with
oscillatory dynamics.

One example of the use of positive feedback is to create switching behavior,
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do not cause the
system to jitter. This type of behavior is called bistability and is often associated
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Figure 1.13: Input/output characteristics of on-off controllers. Each plot shows the input on
the horizontal axis and the corresponding output on the vertical axis. Ideal on-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (c). Note that for on-off
control with hysteresis, the output depends on the value of past inputs.

with memory devices.

1.5 Simple Forms of Feedback

The idea of feedback to make corrective actions based on the difference between
the desired and the actual values of a quantity can be implemented in many differ-
ent ways. The benefits of feedback can be obtained by very simple feedback laws
such as on-off control, proportional control and proportional-integral-derivative
control. In this section we provide a brief preview of some of the topics that will
be studied more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

u =

{
umax if e > 0

umin if e < 0,
(1.1)

where the control error e = r−y is the difference between the reference signal (or
command signal) r and the output of the system y and u is the actuation command.
Figure 1.13a shows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equation (1.1) is called on-off control. One of its chief advan-
tages is that it is simple and there are no parameters to choose. On-off control often
succeeds in keeping the process variable close to the reference, such as the use of
a simple thermostat to maintain the temperature of a room. It typically results in
a system where the controlled variables oscillate, which is often acceptable if the
oscillation is sufficiently small.

Notice that in equation (1.1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figure 1.13b and 1.13c).
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PID Control

The reason why on-off control often gives rise to oscillations is that the system
overreacts since a small change in the error makes the actuated variable change
over the full range. This effect is avoided in proportional control, where the char-
acteristic of the controller is proportional to the control error for small errors. This
can be achieved with the control law

u =

⎧
⎪⎨

⎪⎩

umax if e≥ emax

kpe if emin < e < emax

umin if e≤ emin,

(1.2)

where kp is the controller gain, emin = umin/kp and emax = umax/kp. The interval
(emin,emax) is called the proportional band because the behavior of the controller
is linear when the error is in this interval:

u = kp(r− y) = kpe if emin ≤ e≤ emax. (1.3)

While a vast improvement over on-off control, proportional control has the
drawback that the process variable often deviates from its reference value. In par-
ticular, if some level of control signal is required for the system to maintain a
desired value, then we must have e ̸= 0 in order to generate the requisite input.

This can be avoided by making the control action proportional to the integral
of the error:

u(t) = ki

∫ t

0
e(τ)dτ . (1.4)

This control form is called integral control, and ki is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error (Exercise 1.5). The catch is that there may not always be a steady
state because the system may be oscillating. In addition, if the control action has
magnitude limits, as in equation (1.2), an effect known as “integrator windup”
can occur and may result in poor performance unless appropriate “anti-windup”
compensation is used. Despite the potential drawbacks, which can be overcome
with careful analysis and design, the benefits of integral feedback in providing
zero error in the presence of constant disturbances have made it one of the most
used forms of feedback.

An additional refinement is to provide the controller with an anticipative abil-
ity by using a prediction of the error. A simple prediction is given by the linear
extrapolation

e(t +Td)≈ e(t)+Td
de(t)

dt
,

which predicts the error Td time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be expressed mathematically as

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ + kd

de(t)

dt
. (1.5)

The control action is thus a sum of three terms: the past as represented by the
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Figure 1.14: Action of a PID controller. At time t, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedback is based on the integral
of the error up to time t (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of change of the error. Td

represents the approximate amount of time in which the error is projected forward (see text).

integral of the error, the present as represented by the proportional term and the
future as represented by a linear extrapolation of the error (the derivative term).
This form of feedback is called a proportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.14.

A PID controller is very useful and is capable of solving a wide range of con-
trol problems. More than 95% of all industrial control problems are solved by
PID control, although many of these controllers are actually proportional-integral
(PI) controllers because derivative action is often not included [DM02]. There are
also more advanced controllers, which differ from PID controllers by using more
sophisticated methods for prediction.

1.6 Combining Feedback with Logic

The PID controller is a continuous time system. The on-off controller can be
viewed both as a controller and a logic system. Continuous control is often com-
bined with logic to cope with different operating conditions. Logic is typically
related to changes in operating conditions, equipment protection, manual interac-
tion and saturating actuators. One situation is when there is one variable that is
of primary interest, but other variables may have to be controlled for equipment
protection. For example, when controlling a compressor the outflow is the primary
variable but it may be necessary to switch to a different mode to avoid compressor
stall, which may damage the compressor. We illustrate some ways in which, logic
and feedback are combined by a few examples.

Collision Avoidance

Path following is a primary criterion for controlling a robot or an autonomous
vehicle but these systems also have a system for collision detection which will
override path following if there is a risk for collision with another object. It is
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thus necessary to have logic for choosing between path following and collision
avoidance. Since controllers have state it is necessary to handle the controller states
properly when switching between different control objectives as will be discussed
further in Section 3.2.

Server Farms

Server farms consist of a large number of computers for providing Internet services
(cloud computing). Large server farms may have thousands of processors. Power
consumption for driving the servers and for cooling them is a prime concern. The
cost for energy can be more than 40% of the total cost for data centers, which is
of the order of a million $ per month for a large installation [EKR03]. The prime
task of the server farm is to respond to a strongly varying computing demand.
There are constraints given by electricity consumption and the available cooling
capacity. The throughput of an individual server depends on the clock rate, which
can be changed by the voltage applied to the system. Increasing the supply voltage
increases the energy consumption and more cooling is required.

Control of server farms is often performed using a combination of feedback
and logic. Capacity can be increased rapidly if a server is switched on simply by
increasing the voltage to a server, but a server that is switched on consumes energy
and requires cooling. Control of server farms is often performed by a combination
of feedback and logic. To save energy it is advantageous to switch off servers that
are not required, but it takes some time to switch on a new server. A control sys-
tem for a server farm requires individual control of the voltage and cooling of each
server and a strategy for switching servers on and off. Temperature is important.
Overheating will reduce the life time of the system and may even destroy it. The
cooling system is complicated because cooling air goes through the servers in se-
ries and parallel. The measured value for the cooling system is therefore the server
with the highest temperature. Control of server farms is often performed with a
combination of feedback and logic.

Air-Fuel Control

Air-fuel control is an important problem for ship boilers. The control system con-
sists of two loops for controlling air and oil flow and a supervisory controller that
adjusts the air-fuel ratio. The ratio should be adjusted for optimal efficiency when
the ships are on open sea but it is necessary to run the system with air excess
when the ships are in the harbor, since generating black smoke will result in heavy
penalties.

An elegant solution to the problem can be obtained by combining PI controllers
with maximum and minimum selectors, as shown in Figure 1.15. A selector is a
static system with several inputs and one output: a maximum selector gives an out-
put which is the largest of the inputs, a minimum selector gives an output which
is the smallest of the inputs. Consider the situation when the power demand is
increased: the reference r to the air controller is selected as the commanded power
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Figure 1.15: Air-fuel controller based on selectors. The left figure shows the system archi-
tecture. The letters r and y in the PI controller denotes the input ports for reference and
measured signal respectively. The right figure shows a simulation where the power reference
r (red) is changed at t = 1 and t = 15. Notice that the air flow (solid blue) is larger than the
fuel flow (dashed) both for increasing and decreasing reference steps.

level by the maximum selector, and the reference to the oil flow controller is se-
lected as the measured airflow. The oil flow will lag the air flow and there will be
air excess. When the commanded power level is decreased, the reference of the oil
flow controller is selected as the power demand by the minimum selector and the
reference for the air flow controller is selected as the oil flow by the the maximum
selector. The system then operates with air excess when power is decreased.

A simulation of the control logic is shown in Figure 1.15b, based on the process
model

dxa

dt
=−4xa +4ua,

dxo

dt
=−xo +uo,

where xa and xo are the states representing air and oil dynamics. The air dynamics
are faster than the oil dynamics. The PI controllers are described by

ua =−kpaxa + kia

∫ t

(ra− ya)dt, ra = max(r,x0),

uo =−kpoxo + kio

∫ t

(ro− yo)dt, ro = min(r,xa).

The controller gains used in are kpa = 1, kia = 1, kpo = 2 and kio = 4.
Selectors are commonly used to implement logic in engines and power systems.

They are also used for systems that require very high reliability: by introducing
three sensors and only accepting values where two sensors agree it is possible to
guard for the failure of a single sensor.

Cruise control

The basic control function in cruise controller, such as the one shown in Fig-
ure 1.16, is to keep the velocity constant. It is typically done with a PI controller.
The controller normally operates in automatic mode but it is is necessary to switch
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Figure 1.16: Finite state machine for cruise control system. The figure on the left shows
some typical buttons used to control the system. The controller can be in one of four modes,
corresponding to the nodes in the diagram on the right. Transition between the modes is
controlled by pressing one of the five buttons on the cruise control interface: on, off, set,
resume or cancel.

it off when braking, accelerating or changing gears. The cruise control system
has a human–machine interface that allows the driver to communicate with the
system. There are many different ways to implement this system; one version is
illustrated in Figure 1.16. The system has four buttons: on-off, set/decelerate, re-
sume/accelerate and cancel. The operation of the system is governed by a finite
state machine that controls the modes of the PI controller and the reference gener-
ator; see Figure 1.16.

The finite state machine has four modes: off, standby, cruise and hold. The state
changes depending on actions of the driver who can brake, accelerate and operate
using the buttons. The on/off switch moves the states between off and standby.
From standby the system can be moved to cruise by pushing the resume/accelerate
button. The velocity reference is set as the velocity of the car when the button is
released. In the cruise state the operator can change the velocity reference; it is
increased by the button resume/accelerate and decreased by the button set/coast.
If the driver accelerates by pushing the gas pedal the speed increases but it will
go back to the set velocity when the gas pedal is released. If the driver brakes the
car brakes and the cruise controller goes into hold but it remembers the set point
of the controller; it can be brought to the cruise state by pushing the res/accelerate
button. The system also moves from cruise mode to standby if the cancel button is
pushed. The reference for the velocity controller is remembered. The system goes
into off mode by pushing off.

The PI controller is designed to have good regulation properties and to give
good transient performance when switching between resume and control modes.

Simple logic can be dealt with using selectors as illustrated in Section 3.2, but
more formal methods are needed in more complex situation. Since controllers are
dynamical systems they have a state, which has to be dealt with properly when
switching controllers.
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Figure 1.17: Freight locomotives carry massive loads of expensive diesel. GE’s Trip Opti-
mizer is a type of cruise control that combs through piles of data and synthesizes them for the
driver in a way that allows him or her to steer the locomotive to maintain the most efficient
speed at all times and reduce fuel burn.

1.7 Control System Architectures

Most of the control systems we are investigating in this book will be relatively
simple feedback loops. In this section we will try to give a glimpse of the fact
that in reality the simple loops combine to form a complex system which often
has an hierarchical structure with controllers, logic and optimization in different
combinations.

Freight Train Trip Optimizer

Typical requirements for operating a freight train is to arrive in time and to use as
little fuel as possible. The key issue is to avoid unnecessary breaking. Figure 1.17
illustrates a system developed by General Electric. At the low level the train has a
speed regulator and a simple logic to avoid entering a zone where there is another
train. The key disturbance for the speed control is the slope of the ground. The
speed controller has a model of the track, a GPS sensor and an estimator. The set
point for the speed controller is obtained from a trip optimizer, computes a driving
plan that minimizes the fuel consumption while arriving at the desired arrival time.
The arrival time is provided by a dispatch center which in turn may use some
optimization.

Paper Factory

Figure 1.18a is a picture of a plant for making craft paper. The factory produces
paper for sacks and container board from logs of wood. There are three fiber lines
and six paper machines. The plant has a few dozen mechanical and chemical pro-
duction processes that convert the logs to a slurry of fibers in different steps and six
paper machines that convert the fiber slurry to paper. There are several dozen tanks
for storage of intermediate products. Each production unit has PI(D) controllers
that control, flow, temperature and tank levels. The loops typically operate in a
time scales from fractions of seconds to minutes. There is logic to make sure that
the process is safe and there is sequencing for start, stop and production changes.
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(a) Paper mill in Gruvön, Sweden (b) Enterprise control framework

Figure 1.18: A paper plant with enterprise control.
Update caption

The setpoints of the low level control loops are determined from production rates
and recipes, sometimes using optimization. The operation of the system is gov-
erned by a supervisory system that measures tank levels and sets the production
rates of the different production unit. This system performs optimization based on
demanded production, measurement of tank levels and flows. The optimization is
performed at the time scale of minutes to hours and it is constrained by the pro-
duction rates of the different production units. At a higher level there is a system
for distributing the product and for bringing in raw material using supply chain
management. The manufacturing system may also be connected to the business
system at an even higher level as illustrated in Figure 1.18b. There is also exten-
sive communication because the production unit may cover an area of kilometers
and he supply chains for raw material and customers a much larger range.

Process for continuous production in the chemical and pharmaceutical industry
are similar to the paper factory but the individual production units may be very
different. At an abstract level the systems can be represented by Figure 1.19.

Autonomous Driving

The cruise controller in Figure 1.10 relieves the driver of one task to keep constant
speed, but a driver still has many tasks to perform: plan the route, avoid collisions,
decide the proper speed, plan the route, do lane changes, make turns, keep proper
distance to the car ahead. Car manufacturers are continuously automating several
of these functions going as far as automatic driving. Figure 1.20 shows a block di-
agram of the architecture of a typical autonomous car [CEHM10]. At a high level,
autonomous vehicles decompose the driving problem into four basic subsystems:
sensing, perception, planning and control.

The sensing subsystem is responsible for taking raw data measurements. For
the vehicle, this included GPS, IMU (inertial measurement unit) and odometry
measurements (or an off the shelf system that fused these together); several teams
also included vision for lane and stop line detection. For perceiving the static and
dynamic urban environment, measurements included laser range finders, radar and
cameras. Most teams also segmented the laser (e.g. clustering) and vision data
(e.g. lane finding) in order to produce a data product of smaller size that is easier
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Figure 1.19: Functional architecture of process control system, implemented as a distributed
control system (DCS). Figure provided by Daniele Pugliesi, Wikimedia Commons.

to process.
The perception subsystem is responsible for creating usable information about

the vehicle and its environment. Vehicle estimation includes pose (inertial posi-
tion, velocity, attitude, rates) as well as map relative information (e.g. the vehicle
location within a lane or map); the latter typically uses vision or laser measure-
ments to help to produce map relative estimates. Estimation of the environment
can be accomplished in a number of ways, primarily because of the variations
in sensors, computation and resources. For example, many vehicles use sensors
mounted around the vehicle (front right, front left, side, etc.) and reason about
elements such as the location, velocity, lane of other cars, and sensor occlusions.

The planning subsystem typically includes common components such as path
planners, behavioral planners and route (map) planners. These vary, however, across
different implementations. Some common approaches to path planning include
graph search across a tree of possible trajectories and online optimization-based
planners. Behavioral planners are usually built around finite-state machine logic. A
key element in most planners is reasoning about the probabilistic information com-
ing from the perception subsystem, which is typically accomplished with a finite-
state machine. For special behaviors, such as operation at intersections, zones, and
blockages, custom components are usually designed.

Finally, the control subsystem includes the actual actuators and commands to
drive the car; information for the control law would come from some combination
of the higher level planning (i.e. the proposed path), and/or direct sensing in some
cases in order to increase the speed of response and avoid obstacles.
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Figure 1.20: High level systems architecture for urban driving [CEHM10].

1.8 Further Reading

The material in the first half of this chapter draws heavily from the report of the
Panel on Future Directions on Control, Dynamics and Systems [Mur03]. Several
additional papers and reports have highlighted the successes of control [NS99] and
new vistas in control [Bro00, Kum01, Wis07]. The early development of control is
described by Mayr [May70] and in the books by Bennett [Ben79, Ben93], which
cover the period 1800–1955. A fascinating examination of some of the early his-
tory of control in the United States has been written by Mindell [Min02]. A popular
book that describes many control concepts across a wide range of disciplines is Out
of Control by Kelly [Kel94].

There are many textbooks available that describe control systems in the con-
text of specific disciplines. For engineers, the textbooks by Franklin, Powell and
Emami-Naeini [FPEN05], Dorf and Bishop [DB04], Kuo and Golnaraghi [KG02]
and Seborg, Edgar and Mellichamp [SEM04] are widely used. More mathemati-
cally oriented treatments of control theory include Sontag [Son98] and Lewis [Lew03].
The books by Hellerstein et al. [HDPT04] and Janert [Jan14] provide descriptions
of the use of feedback control in computing systems. A number of books look at the
role of dynamics and feedback in biological systems, including Milhorn [Mil66]
(now out of print), J. D. Murray [Mur04] and Ellner and Guckenheimer [EG05].
The book by Fradkov [Fra07] and the tutorial article by Bechhoefer [Bec05] cover
many specific topics of interest to the physics community.

Systems that combine continuous feedback with logic and sequencing are called
hybrid systems [RST12]. The theory required to properly model and analyze such
systems is outside the scope of this book. It is, however, very common that practi-
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cal control systems combine feedback control with logic sequencing and selectors;
many examples are given in [ÅH05].

Exercises

1.1 (Eye motion) Perform the following experiment and explain your results: Hold-
ing your head still, move one of your hands left and right in front of your face,
following it with your eyes. Record how quickly you can move your hand before
you begin to lose track of it. Now hold your hand still and shake your head left to
right, once again recording how quickly you can move before losing track of your
hand.

1.2 Identify five feedback systems that you encounter in your everyday environ-
ment. For each system, identify the sensing mechanism, actuation mechanism and
control law. Describe the uncertainty with respect to which the feedback system
provides robustness and/or the dynamics that are changed through the use of feed-
back.

1.3 (Balance systems) Balance yourself on one foot with your eyes closed for 15 s.
Using Figure 1.3 as a guide, describe the control system responsible for keeping
you from falling down. Note that the “controller” will differ from that in the dia-
gram (unless you are an android reading this in the far future).

1.4 (Cruise control) Download the MATLAB code used to produce simulations for
the cruise control system in Figure 1.10 from the companion web site. Using trial
and error, change the parameters of the control law so that the overshoot in speed
is not more than 1 m/s for a vehicle with mass m = 1000 kg.

1.5 (Integral action) We say that a system with a constant input reaches steady
state if all system variables approach constant values as time increases. Show that
a controller with integral action, such as those given in equations (1.4) and (1.5),
gives zero error if the closed loop system reaches steady state. Notice that there is
no saturation in the controller.

1.6 Search the web and pick an article in the popular press about a feedback and
control system. Describe the feedback system using the terminology given in the
article. In particular, identify the control system and describe (a) the underlying
process or system being controlled, along with the (b) sensor, (c) actuator and (d)
computational element. If the some of the information is not available in the article,
indicate this and take a guess at what might have been used.





Chapter Two
Feedback Principles

Feedback - it is the fundamental principle that underlies all self-regulating systems, not only

machines but also the processes of life and the tides of human affairs.

A. Tustin, “Feedback”, Scientific American, 1952 [Tus52].

This chapter presents some examples that illustrate fundamental properties
of feedback: disturbance attenuation, command signal following, robustness and
shaping of behavior. Simple methods for analysis and design of low order sys-
tems are introduced. After reading this chapter, readers should have some insight
into the power of feedback, they should know about transfer functions and block
diagrams and be able to design simple feedback systems. The basic concepts de-
scribed in this chapter are explained in more detail in the remainder of the text,
and this chapter can be skipped for readers who prefer to move directly to the
more detailed analysis and design techniques.

2.1 Mathematical Models

The fundamental properties of feedback will be illustrated using a collection of
examples. We need a modest set of concepts and tools to analyze simple feedback
systems: linear differential equations, transfer functions, block diagrams and block
diagram algebra. In addition we need a simulation tool. In this section we will
introduce some of these tools.

Linear Differential Equations and Transfer Functions

In many practical situations, the input/output behavior of a system can be modeled
by a linear differential equation of the form

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = b1

dn−1u

dtn−1
+ · · ·+bnu, (2.1)

where u is the input, y is the output and the coefficients ak and bk are real num-
bers. The model (2.1) is more general than the model given by equation (3.7) in
Section 3.2 because the right hand side has terms with derivatives of the input u.
The differential equation (2.1) is characterized by two polynomials

a(s) = sn +a1sn−1 + · · ·+an, b(s) = b1sn−1 +b2sn−2 + · · ·+bn, (2.2)

where a(s) is the characteristic polynomial of the differential equation (2.1).
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Figure 2.1: Examples of exponential signals. The top row corresponds to exponential signals
with a real exponent, and the bottom row corresponds to those with complex exponents. The
dashed line in the last two cases denotes the bounding envelope for the oscillatory signals.
In each case, if the real part of the exponent is negative then the signal decays, while if the
real part is positive then it grows.

The solution to equation (2.1) is the sum of two terms: the general solution to
the homogeneous equation, which does not depend on the input, and a particular
solution, which depends on the input. The homogeneous equation associated with
equation (2.1) is

dny

dtn
+a1

dn−1y

dtn−1
+ . . .+any = 0. (2.3)

Letting sk represent the roots of the characteristic equation a(s) = 0, the solutions
to equation (2.3) is

y(t) =
n

∑
k=1

Ckeskt (2.4)

if the characteristic does not have multiple roots sk. The parameters C1, . . . ,Cn are
constants that can be determined from the initial conditions.

Since the coefficients ak are real, the roots of the characteristic equation are ei-
ther real-valued or occur in complex conjugate pairs. A real root sk of the character-
istic equation corresponds to the exponential function eskt . This function decreases
over time if sk is negative, is constant if sk = 0 and increases if sk is positive, as
shown in the top row of Figure 2.1. For real roots sk the parameter T = 1/sk is the
time constant.

A complex root sk = σ ± iω corresponds to the time functions

eσt sin(ωt), eσt cos(ωt),
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which have oscillatory behavior, as illustrated in the bottom row of Figure 2.1. The
sine terms are shown as solid lines and the cosine terms as dashed lines; they have
zero crossings with the spacing π/ω . The dotted lines show the envelopes, which
correspond to the exponential function ±eσt .

When the characteristic equation (2.4) has multiple roots, the solutions to the
homogeneous equation (2.3) take the form

y(t) =
m

∑
k=1

Ck(t)e
skt , (2.5)

where Ck(t) is a polynomial with degree less than the multiplicity of the root sk.
The solution (2.5) has ∑m

k=1(degCk +1) = n free parameters.
Having explored the solution to the homogeneous equation, we now turn to the

input-dependent part of the solution. The solution to equation (2.1) for an expo-
nential input is of particular interest. We set u(t) = est and investigate if there is a
unique particular solution of the form y(t) = G(s)est . Assuming this to be the case,
we find

du

dt
= sest ,

d2u

dt2
= s2est , · · ·

dnu

dtn
= snest

dy

dt
= sG(s)est ,

d2y

dt2
= s2G(s)est , · · ·

dny

dtn
= snG(s)est .

(2.6)

Inserting these expressions into the differential equation (2.1) gives

(sn +a1sn−1 + · · ·+an)G(s)est = (b1sn−1 +b2sn−2 + · · ·+bn)e
st

and hence

G(s) =
b1sn−1 +b2sn−2 + · · ·+bn

sn +a1sn−1 + · · ·+an
=

b(s)

a(s)
. (2.7)

This function is called the transfer function of the system. It describes a particular
solution to the differential equation for the input est . Summarizing, we find that the
solution to the differential equation (2.1) for the exponential input u(t) = est is

y(t) =
m

∑
k=1

Ck(t)e
skt +G(s)est . (2.8)

To further illustrate the relation between the transfer function and the differen-
tial equation, introduce the differential operator p = d

dt and the notation pk = dk

dtk .
The differential equation (2.1) can be written as

pny+a1 pn−1y+ · · ·any = b1 pn−1u+b2 pn−1u+ · · ·+bnu,

or
(pn +a1 pn−1 + · · ·+an)y = (b1 pn−1 +b2 pn−2 + · · ·+bn)u.

The relation between the transfer function (2.7) and the differential equation (2.1)
is clear: the transfer function (2.7) can be obtained by inspection from the dif-
ferential equation (2.1), and conversely the differential equation can be obtained
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Figure 2.2: Two responses of a linear time-invariant system to a sinusoidal input. The dashed
line shows the output when the inital conditions are chosed so that the output is purely
sinusoidal. The full lines show the response response for the initial conditions y(0) = 0 and
y′(0) = 0. The transfer function G(s) = 1/(s + 1)2 and the characteristic equation has a
double root s =−1.

.

from the transfer function. The transfer function can thus be regarded as a short-
hand notation for the differential equation (2.1). It is a complete characterization
of the differential equation even if it was derived as the response to a specific input
u(t) = est . The input and the initial conditions must, however, be given to obtain
the solution of the differential equation or the response of the system.

The transfer function G(s) is a useful representation of the differential equa-
tion (2.1) and of the system modeled by the differential equation. The particular
solution for a constant input u(t) = 1 = e0· t is y(t) = G(0) = bn/an. The quantity
G(0) is called the zero frequency gain or the static gain. To deal with oscillatory
signals, like those shown in Figure 2.1, it is convenient to allow s to be a complex
number. The transfer function is then a function G : C→ C that maps complex
numbers to complex numbers. Letting arg represent the argument (phase, angle)
of a complex number and | · | the magnitude, the particular solution for the input
u = sin(ωt) = Imeiωt is

y(t) = Im
(
G(iω)eiωt

)
= Im

(
|G(iω)|eiargG(iω)eiωt

)

= |G(iω)| Imei(argG(iω)+ωt) = |G(iω)|sin(ωt + argG(iω)).

The input is thus amplified by |G(iω)| and the phase shift between input and output
is argG(iω). The functions G(iω), |G(iω)| and argG(iω) are called the frequency
response, gain and phase. The gain and the phase are also called magnitude and
angle.

The actual response (2.8) to a sine function is the sum of a particular solution
and a solution to the homogeneous equation which is determined by the initial
conditions. An illustration is given in Figure 2.2. The dashed line, which is a pure
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sinewave, is the solution obtained when all Ck in (2.5) are zero. The full line shows
the response obtained when Ck in (2.8) are chosen so that y(0) and its derivatives
y(k)(0), k = 1, . . . ,n− 1 are all zero. Since all roots of the characteristic equation
have negative real parts, the solution to the homogeneous equation (2.5) goes to
zero as t→ ∞ and the general solution converges to the particular solution as time
increases.

The transfer function has many physical interpretations that can be exploited
for analysis and design. The roots of the characteristic equation a(s) = 0 are called
poles of the transfer function. A pole sk appears as exponent in the general solution
to the homogeneous equation, see (2.4) or (2.5). The roots of the polynomial b(s)
are called zeros of the transfer function. The reason is that if b(sk) = 0 it follows
that G(sk) = 0, and the particular solution for the input eskt is then zero. A system
theoretic interpretation is that the transmission of the exponential signal eskt is
blocked by the zero s = sk. A zero is therefore also called a transmission zero. The
transfer function makes it possible to apply algebra to determine relations between
signals in a complex system. The frequency response of a stable system can be
determined experimentally by exploring the response of a system to sinusoidal
signals.

The transfer function can also convey a great deal of intuition: the approxima-
tions of G(s) for small and large s capture the propagation of slow and fast signals
respectively. Consider for example the spring-mass system in equation (3.16), with
input u (force) and output q (position), which has the transfer function

G(s) =
1

ms2 + cs+ k
.

For small s we have G(s) ≈ 1/k. The corresponding input/output relation is q =
(1/k)u which implies that for low frequency inputs, the system behaves like a
spring driven by a force. For large s we have G(s) ≈ 1/(ms2). The corresponding
differential equation is mq̈ = u, and for high frequency inputs the system behaves
like mass driven by a force (a double integrator). A more eleborate treatment of
transfer functions and the frequency response will be given in later chapters, par-
ticularly in Chapter 9.

Stability: The Routh-Hurwitz Criterion

When using feedback there is always the danger that the system may become un-
stable, and it is therefore important to have a stability criterion. The differential
equation (2.1) is called stable if all solutions of the homogeneous equation (2.3)
go to zero for any initial condition. It follows from equation (2.5) that this requires
that all the roots of the characteristic equation

a(s) = sn +a1sn−1 + · · ·+an = 0,

have negative real parts. The Routh-Hurwitz criterion is a stability criterion that
does not require explicit calculation of the roots, because it gives conditions in
terms of the coefficients of the characteristic polynomial..
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Figure 2.3: Block diagram of simple feedback system. The controller transfer function is
C(s) and the process transfer function is P(s). The process output is y, the external signals
are the reference r and the load disturbance v.

We illustrate the Routh-Hurwitz criterion by describing it for first, second and
third order differential equations. A first order differential equation is stable if
the coefficient a1 of the characteristic polynomial is positive, since the zero of the
characteristic polynomial will be s=−a1 < 0. A second order polynomial is stable
if and only if the coefficients a1 and a2 are all positive. Since the roots are

s =
1

2

(
−a1 ±

√
a2

1−4a2

)
,

it is easy to verify that the real parts are negative if and only if a1 > 0 and a2 > 0.
A third order differential equation is more complicated, but the roots can be shown
to have negative real parts if and only if

a1, a2, a3 > 0, and a1a2 > a3. (2.9)

The corresponding conditions for a fourth order differential equation are

a1, a2, a3 > 0, a1a2 > a3, and a1a2a3 > a2
1 a4 +a2

3. (2.10)

The Routh-Hurwitz criterion [Gan60] gives similar conditions for arbitrarily high
order polynomials. Stability of a linear differential equation can thus be investi-
gated just by analyzing the signs of various combinations of the coefficients of the
characteristic polynomial.

Block Diagrams and Transfer Functions

As described in Chapter 3, control systems are often described using block dia-
grams. Figure 2.3 shows a block diagram of a typical control system. The control
system takes a reference signal r and compares it to the system output y (assumed
to be in the same units). The resulting error is fed to a controller, whose output u
drives the process. We also model process disturbances using the signal v, which
we assume enters in the same location as the controller input. If each block is mod-
eled as a linear differential equation (2.1), we need to find the differential equation
that relates the signals in the complete system. A block can be considered as a
filter that generates the output from the input, and the block is characterized by its
transfer function, which is a nice shorthand notation for the differential equation
describing the input/output relation.


 The Routh-Hurwitz stability criterion has an interesting history Ben79. Maxwell found that stability of simple feedback loops could be determined by investigating if all roots of the characteristic equation are in the left half plane. He derived the condition for third order equations and consulted his Cambridge colleague Routh, who gave the general solution. The Swiss turbine engineer Stodola at ETH was faced with the same problem when working with water turbines for electricity generation. He turned to his colleague Hurwitz, who solved the problem independently of Routh, using different techniques. The result is generally known as the Routh-Hurwitz criterion. 
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Assume that the disturbance v in Figure 2.3 is zero and that we want to find the
differential equation that describes how the output y is influenced by the reference
signal r. Let the transfer functions of the controller and the process be character-
ized by the polynomials bc(s), ac(s), bp(s) and ap(s), so that

C(s) =
bc(s)

ac(s)
, P(s) =

bp(s)

ap(s)
. (2.11)

The corresponding differential equations are

ac(p)u(t) = bc(p)
(
r(t)− y(t)

)
, ap(p)y(t) = bp(p)u(t),

where we recall that pk = dk

dtk . Multiplying the first equation by ap(p) and the

second with ac(p) we find that

ac(p)ap(p)y(t) = ac(p)bp(p)u(t) = bp(p)bc(p)
(
r(t)− y(t)

)
.

Solving for y(t) gives
(
ac(p)ap(p)+bp(p)bc(p)

)
y(t) = bp(p)bc(p)r(t), (2.12)

which is the differential equation that relates the output to the reference. We see
that the polynomial notation makes it easy to manipulate differential equations.
Forming linear combinations of differential equations and their derivatives corre-
sponds to polynomial multiplication.

The differential equation (2.12) corresponds to the transfer function

Gyr =
bp(s)bc(s)

ac(s)ap(s)+bp(s)bc(s)
=

P(s)C(s)

1+P(s)C(s)
, (2.13)

where we use the notation Gyr for the transfer function from r to y. Proceeding
in the same way we obtain the following transfer functions for other input/output
paairs:

Gur =
C(s)

1+P(s)C(s)
, Gyv =

P(s)

1+P(s)C(s)
, Guv =

−P(s)C(s)

1+P(s)C(s)
. (2.14)

Instead of manipulating the differential equations we can also determine trans-
fer functions by tracing variables around the loop. Since the transfer function can
be computed from transmission of exponential signals we assume that the initial
conditions for the differential equations describing the system are chosed so that all
variables r, e, u v and y are exponential time functions of the form A(s)est . Assume,
for example that we would like to determine the transfer function Gyv(s), then let
the input v be an exponential signal v(t) = est . The output is then y(t) = Gyv(s)est ,
where Gyv(s) is the unknown transfer function. Tracing variables around the loop
in the block diagram in Figure 2.3 gives

y(t) = Gyv(s)e
st = P(s)est −P(s)C(s)y(t) = P(s)est −P(s)C(s)Gyv(s)e

st

and hence
Gyv(s)e

st = P(s)est −P(s)C(s)Gyv(s)e
st .
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Solving for Gyv(s) gives the expression (2.14). To simplify the writing we can write
the above equations as

y = Pv−PCy =⇒ y =
P

1+PC
v,

where the lower case letters are pure exponential time functions and the capital
letters are complex numbers.

By using polynomials and transfer functions the relations between signals in
a feedback system can thus be obtained by algebra. In fact, the transfer functions
relating two signals can be obtained from the block diagram by inspection. The
denominator is always 1+P(s)C(s) and the numerator is a product of the transfer
functions between the input and the output signals. For example, the transfer func-
tions from disturbance v to control u in Figure 2.3 are P(s), −1 and C(s) and so
the numerator for Guv is −P(s)C(s).

2.2 Using Feedback to Improve Disturbance Attenuation

Reducing the effects of disturbances is a primary use of feedback. It was used by
James Watt to make steam engines run at constant speed in spite of varying load
and by electrical engineers to make generators driven by water turbines deliver
electricity with constant frequency and voltage. Feedback is commonly used to
alleviate disturbances in the process industry, for machine tools and for engine and
cruise control in cars. In humans the pupillary reflex is used to make sure that the
light intensity of the retina is reasonably constant in spite of large variations in
the ambient light. The human body exploits feedback to keep body temperature,
blood pressure and other important variables constant. Keeping variables close to
a desired, constant reference values in spite of disturbances is called a regulation
problem.

Disturbance attenuation will be illustrated by control of a process whose dy-
namics can be approximated by a first order system. A block diagram of the sys-
tem is shown in Figure 2.3. Since we will focus on the effects of a load disturbance
v we will assume that the reference r is zero. The transfer functions Gyv and Guv

relating the output y and the control u to the load disturbance are given by equa-
tion (2.14). For simplicity we will assume that the process is modeled by the first
order differential equation

dy

dt
+ay = bu, a > 0, b > 0.

The corresponding transfer function is

P(s) =
b

s+a
. (2.15)

A first order system is a reasonable model of a physical system if the storage of
mass, momentum or energy can be captured by a single state variable. Typical
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examples are the velocity of a car on a road, the angular velocity of a rotating
system and the level of a tank.

Proportional Control

We will first investigate the case of proportional (P) control, when the control sig-
nal is proportional to the output error: u = kpe, see Section 1.5. The controller
transfer function is then C(s) = kp. The process transfer function is given by equa-
tion (2.15) and the effect of the disturbance on the output is then described by the
transfer function (2.14):

Gyv(s) =
P(s)

1+P(s)C(s)
=

b
s+a

1+
bkp

s+a

=
b

s+a+bkp
.

The relation between the disturbance v and the output y is thus given by the differ-
ential equation

dy

dt
+(a+bkp)y = bv.

The closed loop system is stable if a+bkp > 0. A constant disturbance v = v0 then
gives an output that approaches the steady state value

y0 = Gyv(0) =
b

a+bkp
v0

exponentially with the time constant T = 1/(a+ bkp). Without feedback kp = 0
and a constant disturbance v0 thus gives the steady state error v0/a. The steady
state error thus decreases when using feedback if kp > 0.

We have thus shown that a constant disturbance gives an error that can be re-
duced by feedback using a proportional controller. The error decreases with in-
creasing controller gain. Figure 2.4a shows the responses for a few values of con-
troller gain kp.

Proportional-Integral (PI) Control

The PI controller, introduced in Section 1.5, is described by

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ . (2.16)

To determine the transfer function of the controller we differentiate, hence

du

dt
= kp

de

dt
+ kie

and we find by inspection that the transfer function is C(s) = kp + ki/s. To inves-
tigate the effect of the disturbance v on the output we use the block diagram in
Figure 2.3 and we find by inspection that the transfer function from v to y is

Gyv(s) =
P(s)

1+P(s)C(s)
=

bs

s2 +(a+bkp)s+bki
. (2.17)
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Figure 2.4: Responses of open and closed loop system with proportional control (a) and PI
control (b). The process transfer function is P = 2/(s+1). The controller gains for propor-
tional control are kp = 0, 0.5, 1 and 2. The PI controller is designed using equation (2.21)
with ζc = 0.707 and ωc = 0.707, 1 and 2, which gives the controller parameters kp = 0,
0.207, 0.914 and ki = 0.25, 0.50 and 2.

The relation between the load disturbance and the output is thus given by the dif-
ferential equation

d2y

dt2
+(a+bkp)

dy

dt
+bkiy = b

dv

dt
. (2.18)

Notice that, since the disturbance enters as a derivative on the right hand side, a
constant disturbance gives no steady state error. The same conclusion can be drawn
from the observation that Gyv(0) = 0. Compare with the discussion of integral
action and steady state error in Section 1.5.

To find suitable values of the controller parameters kp and ki, we consider the
characteristic polynomial of the differential equation (2.18),

acl(s) = s2 +(a+bkp)s+bki. (2.19)

We can assign arbitrary roots to the characteristic polynomial by choosing the
controller gains kp and ki, and we choose controller parameters that give the char-
acteristic polynomial

(s+σd + iωd)(s+σd− iωd) = s2 +2σds+σ2
d +ω2

d . (2.20)

This polynomial has roots at s =−σd ± iωd . The general solution to the homoge-
neous equation is then a linear combination of the terms

e−σdt sin(ωdt), e−σdt cos(ωdt),

which are damped sine and cosine functions, as shown in the lower left plot in
Figure 2.1. The coefficient σd determines the decay rate and the parameter ωd
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gives the frequency of the decaying oscillation. Identifying coefficients of equal
powers of s in the polynomials (2.19) and (2.20) gives

kp =
2σd−a

b
, ki =

σ2
d +ω2

d

b
. (2.21)

Instead of parameterizing the closed loop system in terms of σd and ωd it is

common practice to use the undamped natural frequency ωc =
√

σ2
d +ω2

d and the

damping ratio ζc = σd/ωc. The closed loop characteristic polynomial is then

acl(s) = s2 +2σds+σ2
d +ω2

d = s2 +2ζcωcs+ω2
c .

This parameterization has the advantage that ζc, which is in the range [−1,1],
determines the shape of the response and ωc gives the response speed.

Figure 2.4b shows the output y and the control signal u for ζc = 1/
√

2 = 0.707
and different values of ωc. Proportional control gives a steady-state error which
decreases with increasing controller gain kp. With PI control the steady-state error
is zero. Both the decay rate and the peak error decrease when the design parameter
ωc is increased. Larger controller gain give smaller errors and control signals that
react faster to the disturbance.

With the controller parameters (2.21) the transfer function (2.17) from distur-
bance v to process output becomes

Gyv(s) =
P(s)

1+P(s)C(s)
=

bs

s2 +2ζcωcs+ω2
c

.

For efficient attenuation of disturbances is desirable that |Gyv(iω)| is small for
all ω . For small values of ω we have |Gyv(iω)| ≈ bω/ωc, for large ω we have
|Gyv(iω)| ≈ b/ω . The largest value of |Gyv(iω)| is b/(2ζcωc) for ω = ωc. It thus
follows that a large value of ωc gives good load disturbance attenuation.

In summary, we find that the analysis gives a simple way to find the parameters
of PI controllers for processes whose dynamics can be approximated by a first
order system. The technique can be generalized to more complicated systems but
the controller will be more complex. To achieve the benefits of large control gains
the model must be accurate over wide frequency ranges, as will be discussed next.

Unmodeled Dynamics

The analysis we have made so far indicates that there are no limits to the perfor-
mance that can be achieved. Figure 2.4b shows that arbitrarily fast response can be
obtained simply by making ωc sufficiently large. In reality there are of course lim-
itations on what is achievable. One reason is that the controller gains increase with
ωc, the proportional gain is kp = (2ζcωc−a)/b and the integral gain is ki = ω2

c /b.
A large value of ωc thus gives large controller gains and the control signal may
be so large that actuator saturates. Another reason is that the model (2.15) is a
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simplification: it is only valid in a given frequency range. If the model is instead

P(s) =
b

(s+a)(1+ sT )
, (2.22)

where the term 1+ sT represents the dynamics of sensors, actuators or other dy-
namics that was neglected when deriving equation (2.15), so-called unmodeled
dynamics, the closed loop characteristic polynomial for the closed loop system
becomes

acl = s(s+a)(1+ sT )+ kps+ ki = s3T + s2(1+aT )+2ζcωcs+ω2
c .

It follows from the Routh-Hurwitz criterion (2.9) that the closed loop system is
stable if ω2

c T < 2ζcωc(1+aT ) or if

ωc <
2ζc(1+aT )

T
.

The frequency ωc and the achievable response time are thus limited by the un-
modeled dynamics represented by T . When models are developed for control it is
therefore important to also consider the unmodeled dynamics.

2.3 Using Feedback to Follow Command Signals

Another major application of feedback is to make a system output follow a com-
mand signal. This is called the servo problem. Cruise control and steering of a car,
tracking a satellite with an antenna or a star with a telescope are some examples.
Other examples appear in high performance audio amplifiers, machine tools and
industrial robots.

To illustrate command signal following we will consider the system in Fig-
ure 2.3 where the process is a first order system and the controller is a PI controller.
The transfer functions of the process and the controller are

P(s) =
b

s+a
, C(s) =

kps+ ki

s
. (2.23)

Since we will focus on following the command signal r we will neglect the load
disturbance, v = 0. It follows from equation (2.13) that the transfer function from
the command signal r to the output y is

Gyr(s) =
P(s)C(s)

1+P(s)C(s)
=

bkps+bki

s2 +(a+bkp)s+bki
. (2.24)

Since Gyr(0) = 1 it follows that r = y when r and y are constant, independent of the
values of the parameters a and b, as long as the closed loop is stable. The steady
state output is thus equal to the reference, a useful property of controllers with
integral action.

To determine suitable values of the controller parameters kp and ki we proceed
as in Section 2.2 by choosing controller parameters that makes the closed-loop
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Figure 2.5: Responses to a unit step change in the command signal for different values of
the design parameters ωc and ζc. The left figure shows responses for fixed ζc = 0.707 and
ωc = 1, 2 and 5. The right figure shows responses for ωc = 2 and ζc = 0.5, 0.707, and 1. The
process parameters are a = b = 1. The initial value of the control signal is kp.

characteristic polynomial

acl(s) = s2 +(a+bkp)s+bki (2.25)

equal to s2+2ζcωcs+ω2
c with ζc > 0 and ωc > 0. Identifying coefficients of equal

powers of s in these polynomials give

kp =
2ζcωc−a

b
, ki =

ω2
c

b
, (2.26)

which is equivalent to equation (2.21). Notice that integral gain increases with the
square of ωc. Figure 2.5 shows the output signal y and the control signal u for
different values of the design parameters ζc and ωc. The response time decreases
with increasing ωc and the initial value of the control signal also increases because
it takes more effort to move rapidly. The overshoot decreases with increasing ζc.
For ωc = 2, the design choice ζc = 1 gives a short settling time and a response
without overshoot.

It is desirable that the output y will track the reference r for time-varying ref-
erences. This means that we would like the transfer function Gyr(s) to be close to
1 for large frequency ranges. With the controller parameters (2.26) it follows from
equation (2.24) that

Gyr(s) =
P(s)C(s)

1+P(s)C(s)
=

(2ζcωc−a)s+ω2
c

s2 +2ζcωcs+ω2
c

.

The magnitude will be close to 1 when ωc is large compared to s. It is thus de-
sirable to have a large ωc to be able to track fast changes in the reference signal.
The frequency response of Gyr gives a quantitative representation of the tracking



2-14 CHAPTER 2. FEEDBACK PRINCIPLES

Controller

βkp +
ki

s
P

(1−β )kp

ΣΣ Σ
r e u y

−1

v

Figure 2.6: Block diagram of a closed-loop system with a PI controller having an architec-
ture with two degrees of freedom.

abilities.

Controllers with Two Degrees of Freedom

The control law in Figure 2.3 has error feedback because the control signal u is
generated from the error e= r−y. With proportional control, a step in the reference
signal r gives an immediate step change in the control signal u. This rapid reaction
can be advantageous, but it may give large overshoot, which can be avoided by a
replacing the PI controller in equation (2.16) with a controller of the form

u(t) = kp

(
β r(t)− y(t)

)
+ ki

∫ t

0
(r(τ)− y(τ))dτ . (2.27)

In this modified PI algorithm, the proportional action only acts on the fraction β of
the reference signal. The signal transmission from reference r to u and from output
y to u can be represented by the transfer functions

Cur(s) = βkp +
ki

s
, Cuy(s) = kp +

ki

s
=C(s). (2.28)

The controller (2.27) is called a controller with two degrees of freedom since the
transfer functions Cur(s) and Cuy(s) are different.

A block diagram of a closed loop system with a PI controller having two de-
grees of freedom is shown in Figure 2.6. Let the process transfer function be
P(s) = b/(s + a). The transfer functions from reference r and disturbance v to
output y are

Gyr(s) =
bβkps+bki

s2 +(a+bkp)s+bki
, Gyv(s) =

s

s2 +(a+bkp)s+bki
. (2.29)

Comparing with the corresponding transfer function for a controller with error
feedback in equations (2.17) and (2.24) we find that the responses to the load
disturbances are the same but the response to reference values are different.

A simulation of the closed loop system for a = 0 and b = 1 is shown in Fig-
ure 2.7. The figure shows that the parameter β has a significant effect on the re-
sponses. Comparing the system with error feedback (β = 1) to the system with



2.4. USING FEEDBACK TO PROVIDE ROBUSTNESS 2-15

0 2 4 6 8 10
0

0.5

1

1.5

β

t

y

0 2 4 6 8 10

0

0.5

1

1.5
β

t

u

Figure 2.7: Response to a step change in the command signal for a system with a PI con-
troller having two degrees of freedom. The process transfer function is P(s) = 1/s and the
controller gains are kp = 1.414, ki = 1 and β = 0, 0.5 and 1.

smaller values of β we find that using a system with two degrees of freedom gives
the same settling time with less overshoot and gentler control actions.

The example shows that command signal response can be improved by using
a controller architecture having two degrees of freedom. In Section 2.7 we will
show that the responses to command signals and disturbances can be completely
separated by using a more general system architecture. To use a system with two
degrees of freedom both the reference signal r and the output signal y must be
measured. There are situations where only the error signal e = r− y can be mea-
sured, typical examples are DVD players, optical memories and atomic force mi-
croscopes.

2.4 Using Feedback to Provide Robustness

Feedback can be used to make good systems from poor components. The devel-
opment of the electric feedback amplifier for transmission of telephone signals is
an early example [Ben93]. Design of amplifiers with constant linear gain was a
major problem. The basic component in the amplifier was the vacuum tube, which
was nonlinear and time varying. A major accomplishment was the invention of
the feedback amplifier. The idea is to close a feedback loop by arranging a feed-
back loop around the vacuum tube, which gives a closed loop system with a linear
input/output relation having constant gain.

The idea to use feedback to linearize input/output characteristics and to make
it insensitive to process variations is common. The recipe is to localize the source
of the variations and to close feedback loops around them. This idea is used ex-
tensively to obtain linear amplifiers and actuators, and to reduce effects of friction
in mechanical systems. We will illustrate with a simple model of an electronic
amplifier.

A Nonlinear Amplifier

Consider an amplifier with a static, nonlinear input/output relation with consider-
able variability as illustrated in Figure 2.8a. The nominal input/output character-
istics is shown as a dashed bold line and examples of variations as thin lines. The


 Black, the inventor of the negative feedback amplifier, had the following to say black1977: ``Few rosier dreams could be dreamt than that of an amplifier whose overall performance is perfectly constant, and in whose output distortion constitutes only one hundredth of a millionth of the total energy, although the component parts may be far from linear in their response and their gain may vary over a considerable range.'' 
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Figure 2.8: Responses of a static nonlinear system. The left figure shows the input/output re-
lation of the open-loop system and the right figure shows responses to the input signal (2.31).
The ideal response is shown solid bold lines. The nominal response of the nonlinear system
is shown using dashed bold lines and the responses for different parameter values are shown
using thin lines.

nonlinearity in the figure is actually

y = f (u) = α(u+βu3), −3≤ u≤ 3. (2.30)

The nominal values corresponding to the dashed line are α = 0.2 and β = 1. The
variations of the parameters α and β are in the ranges 0.1 ≤ α ≤ 0.5, 0 ≤ β ≤ 2.
The responses of the system to the input u = r with

r(t) = sin(t)+ sin(πt)+ sin(π2t). (2.31)

are shown in Figure 2.8b. The desired response y = u is shown as a solid bold line
and responses for a range of parameters are shown with thin lines. The nominal
response of the nonlinear system is shown as a dashed bold line. It is distorted
due to the nonlinearity. Notice in particular the heavy distortion both for small and
large signal amplitudes. The behavior of the system is clearly not satisfactory.

The behavior of the system can be improved significantly by introducing feed-
back. A block diagram of a system with a simple integral controller is shown in
Figure 2.9. Figure 2.10 shows the behavior of the closed loop system with the same
parameter variations as in Figure 2.8. The input/output plot in Figure 2.10a is a
scatter plot of the inputs and the outputs of the feedback system. The input/output

r

Σ
e u y

ki

s
f (u)

−1

Figure 2.9: Block diagram of a nonlinear system with integral feedback.
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Figure 2.10: Responses of the system with integral feedback (ki = 1000). The left plot, is a
scatter plot of inputs and outputs. The center plot shows the response of the closed loop sys-
tem to the input signal r, and the right plot shows the control error. The parameter variations
are the same as in Figure 2.8. Notice the dramatic improvement compared to Figure 2.8b.
The dashed line in (c) corresponds to the approximate error based on linearization of the
nonlinearity.

relation is practically linear and close to the desired response. There is some vari-
ability because of the dynamics introduced by the feedback. Figure 2.10b shows
the responses to the reference signal; notice the dramatic improvement compared
with Figure 2.8b. The tracking error is shown in Figure 2.10c.

Analysis
!

Analysis of the closed loop system is difficult because it is nonlinear. We can how-
ever obtain significant insight by using approximations. We first observe that the
system is linear when β = 0. In other situations we will approximate the nonlin-
ear function by a straight line around an operating point u = u0. The slope of the
nonlinear function at u = u0 is f ′(u0) and we will approximate the process with a
linear system with the gain f ′(u0). The transfer functions of the process and the
controller are

P(s) = b = f ′(u0) = α(1+3βu2
0), C(s) =

ki

s
, (2.32)

acitonwhere u0 denotes the operating condition. The process gain b=α(1+3βu2
0)

is in the range 0.1–27.5 depending on the values of α,β and u0. It follows from
equation (2.14) that the transfer functions relating the output y and the error e to
the reference signal are

Gyr(s) =
bki

s+bki
, Ger(s) = 1−Gyr =

s

s+bki
. (2.33)

The closed loop system is a first-order system with the pole s =−bki and the time
constant Tcl = 1/(bki). The integral gain is chosen as ki = 1000. The closed loop
pole ranges from 100 rad/s to 2.75×104 rad/s, which is fast compared to the high
frequency component 9.86 rad/s of the input signal.
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The error for the approximated system is described by the differential equation

de

dt
=−bkie+

dr

dt
,

dr

dt
= cos(t)+π cos(πt)+π2 cos(π2t). (2.34)

The fast frequency component of the input (2.31) has the frequency π2 = 9.86; it
is slower than the process dynamics for all parameter variations. Neglecting the
term de/dt in equation (2.34) gives

e≈
1

bki

dr

dt
. (2.35)

The largest error is obtained when b has its smallest value 0.1. The error is then
approximately π2/(bki)cos(π2t)≈ 0.1cos(π2t), which is shown as the dashed line
in Figure 2.10c.

This analysis has shown that it is possible to design an integrating controller
for a system whose dynamics can be approximated by a static model. Design is es-
sentially the choice of a single parameter: the integral gain ki of the controller. The
closed loop transfer function from reference to output is given by equation (2.33)
where integral gain is ki = 1/(bTcl) where Tcl is the desired time constant of the
closed loop system. The integral gain is inversely proportional to Tcl and the largest
integral gain is limited by unmodeled dynamics.

This example illustrates that feedback can be used to design an amplifier that
has practically linear input/output relation even if the basic amplifier is nonlinear
with strongly varying characteristics.

2.5 Positive Feedback

Most of this book is focused on negative feedback because of its amazingly good
properties, which have been illustrated in the previous sections. In this section we
will discuss positive feedback, which has complementary properties. In spite of
this positive feedback has found good use in several contexts.

Systems with negative feedback can be well understood by linear analysis. To
understand systems with positive feedback it is necessary to consider nonlinear ef-
fects, because without the nonlinearities the instability caused by positive feedback
will grow without bounds. The nonlinear elements contribute to create interesting
and useful effects by limiting the signals.

Positive feedback is common: encouraging a student or a coworker when they
have performed well encourages them do to even better. In biology, it is standard
to distinguish inhibitory connections (negative feedback) from excitatory feedback
(positive feedback) as illustrated in Figure 2.11. Neurons use a combination of
positive and negative feedback to generate spikes.

Positive feedback may cause instabilities. Exponential growth is a typical ex-
ample of positive feedback, where the rate of change of a quantity x is proportional
to the x. Hence

dx

dt
= αx,
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Figure 2.11: Schematic diagram of the neural network that controls swimming motions in
the marine mollusk Tritonia, which has both positive and negative feedback [Wil99]. An
excitatory connection (positive feedback) is denoted with a line ending with an arrow, an
inhibitory interaction (negative feedback) iis denoted with an arrow ending with a circle.
(Figure adapted from [Wil99].)

which implies that x(t) = eαt grows exponentially. In nature, exponential growth
of a species is limited by the finite amount of food. Another common example is
when a microphone is placed close to a speaker in public address systems, resulting
in a howling noise. Positive feedback can create stampedes in cattle heard, runs on
banks and boom-bust behavior. In all these cases there is exponential growth that
is finally limited by finite resources.

The notions of positive and negative feedback are highly intuitive but they are
also too simplistic. Their interpretation is clear when we are not considering dy-
namics. But if dynamics is considered the sign of the feedback will depend on the
frequency, and feedback can change from positive to negative when the frequency
changes. A good understanding of the dynamic case can be obtained by tracing
sinusoidal signals around the feedback loop as will be done in Section 10.2. We
then obtain a more sophisticated notion that a block with feedback is positive if the
input and output signals are in phase, and feedback is negative if signals are out of
phase. With the simple interpretation it appears that a system with negative feed-
back will always be stable and that a system with positive feedback will always be
unstable. None of these statements are true when dynamics are considered.

In spite of the drawbacks mentioned above, positive feedback has several useful
applications. A typical example is the generation of periodic signals as illustrated
by the following example.

Hewlett’s Oscillator

Since positive feedback tends to generate instability it can be use to construct os-
cillators. To limit the exponential growth it is necessary to introduce some nonlin-
earity that limits the amplitude of the oscillation. An example is given in a Fig-
ure 2.12 from William Hewlett’s 1939 PhD thesis at Stanford University. Hewlett
used two vacuum tubes with positive feedback and a nonlinear element in the form
of a lamp to maintain constant amplitude of the oscillation. The positive feedback
in the basic loop creates an oscillation. The resistance of the lamp decreases as
the signal amplitude increases and the amplitude is limited. Hewlett’s oscillator
was the beginning of a very successful company that Hewlett founded with David
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Figure 2.12: Circuit diagram of William Hewlett’s oscillator that gives a stable oscillation
by using positve feedback and a nonlinearity (lamp) that stabilized the amplitude of the
oscillation, [].

Packard.

The Superregenerative Receiver

In the previous sections we have shown that negative feedback has some very
useful properties. The negative feedback amplifier was an enabler for long-distance
telephony. A key idea was to design an amplifier with a very large open loop gain
and to reduce the gain by negative feedback. The result was an amplifier that is
robust and linear. Positive feedback has complementary properties: it is possible
to create high gain but the closed loop system is sensitive to parameter variations.

To undertstand that positive feedback can generate high gains we consider an
amplifer with gain Aol . Neglecting dynamics and closing a feedback loop around
the amplifier with positive feedback k gives a closed loop system with the closed
loop gain

Acl =
Aol

1− kAol
.

A very large closed loop gain Acl can be obtained by selecting a feedback gain k
that is just below the stability limit 1/Aol . Choosing the gain so that kAol = 0.999
gives Acl = 1000Aol . Using this idea, Armstrong constructed a superregenerative
radio receiver in 1914 when he was still undergraduate at Columbia University. He
built a radio receiver with only one vaccum tube. The drawback by using positive
feedback is that the system is highly sensitive and that the gain has to be adjusted
carefully to avoid oscillations. It is still used in simple walkie-takies, garage door
openers and toys.

Implementation of Integral Action

Positive feedback was used very in early controllers where integral action was
provided by positive feedback around a system with first order dynamics, as shown
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Figure 2.13: Implementation of integral action by positive feedback .

in the block diagram of Figure 2.13. Intuitively the system can be explained as
follows. Proportional feedback typically gives a steady state error. This can be
overcome by adding a bias signal. In Figure 2.13 the bias is estimated by low pass
filtering the control signal and adding it back into to the signal path. The circuit
can be understood better by a little analysis. Using block diagram algebra we find
that the transfer function of the system is

Gue =
kp

1−
1

1+ sT

= kp +
kp

sT
,

which is a transfer function of a PI controller. This way of implementing integral
action is still used in many systems. Notice that in this case the closed loop system
is in fact unstable since it has an integrator. Since this is the desired behavior
(integral action), it is not necessary to limit the signal.

Positive Feedback Combined with Saturation

Positive feedback is often combined with nonlinear elements as in Hewlett’s oscil-
lator. Figure 2.14, which shows the block diagram of a system with positive feed-
back and a nonlinearity in the form of a saturation is another example. The system
has a forward path with a gain followed by a block with first order dynamics and
a nonlinearity with saturation characteristics. We assume that the nonlinearity is
given by

y = f (x) =
x

1+ |x|
, x = f−1(y) =

y

1− |y|
. (2.36)

Figure 2.14: Block diagram of system with positive feedback and saturation. The parameters
are a = 1, b = 1 and k = 10.



2-22 CHAPTER 2. FEEDBACK PRINCIPLES

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

y

r=
G

(y
)

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

r

y=
G

(r)

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

t

r,y

Figure 2.15: System with positive feedback and saturation, (a) show the function G(y) used
in the analysis, (b) shows the hysteretic input output map and (c) shows a simulation of the
system. The input is the dashed curve and the output is the solid line.

The system is described by the equations

dx

dt
=−ax+ k(r+ y) = k(r−G(y)), G(y) =

ay

k(1− |y|)
− y. (2.37)

The equilibria for a constant input r are given by

r =−y+
a

k
f−1(y) = G(y) where G′(y) =−1+

a

k(1− |y|)2
. (2.38)

The graph of the function G is shown in Figure 2.14a for the parameters a = 1,
b = 1 and k = 10. The function is monotone if k ≤ a and there is a unique equi-
librium. If k > a the function G has a maximum rmax = 1 + a/k− 2

√
a/k at

y =−1/
√

1+a/k and a minimum rmin =−rmax at y = 1/
√

1+a/k. For constant
r the equation (2.38) has three solutions if rmin < r < rmax, and one equilibrium
if r < rmin or if r > rmax. It is easy to understand the behavior of the solutions to
differential equation (2.38), since it is of first order. Since x is a monotone function
of y it follows follows from equation (2.37) that dx/dt is positive to the left of an
equilibrium where G′(y) is positive, and positive to the left of the equilibrium. The
stable equilibria thus corresponds the values of y where the slope of G(y) is posi-
tive, they are marked with full lines in Figure 2.15a. The differential equation thus
has two stable equilibria when rmin < r < rmax and one stable equilibrium when
|r|> rmax. The input-output relation of the system will then have the hysteretic be-
havior shown in Figure 2.15b where the output switches between the values close
to ±1. Results of asimulation of the system is shown in Figure 2.15c. The shape
of the output signal depends on the parameters, the values a = 5, b = 1 and k = 50
were used in the figure. The parameter a influences the dynamics of the swith-
ing, the parameter b is half the hysteresis width and the parameter k influences the
sharpness of the switches..

The circuit shown in the Figure 2.14 is commonly used as a trigger to detect
changes in a signal (a Schmitt trigger). It is also used as a memory element in solid
state memories.

2.6 Using Feedback to Shape Behavior

The regulation and servo problems discussed in Sections 2.2 and 2.3 are classical
applications of feedback. In Section 2.4 it was shown that feedback can be used to
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CP

CM
CP

CM

Figure 2.16: Schematic digram of two aircrafts. The aircraft at the top is stable because it
has the center of pressure CP behind the center of mass CM. The aircraft at the bottom is
unstable because the positions of center of mass and center of pressure are reversed.

obtain essentially linear input/output behavior for a nonlinear system with strong
variability. In this section we will show how feedback can be used to shape the
dynamic behavior of a system.

Collision avoidance is a useful behavior of moving robots. Feedback is used in
automobiles to create behaviors that avoid locking brakes, skids and collision with
pedestrians. Feedback is used to make the dynamic behavior of airplanes invariant
to operating conditions. Feedback is also an essential element of human balancing
and locomotion.

Bacteria use simple feedback mechanisms to search for areas where there is
high concentration of food or light. The principle is to sense a variable and to
make exploratory moves to see if the concentration increases. A similar mechanism
can be used to avoid harmful substances. Optimization is also used in computer
systems to maintain high throughput of servers.

Stabilization

Stabilizing an unstable system is a typical example of how feedback can be used
to change behavior. Many systems are naturally unstable. The ability to stand up-
right, walk and run has given humans many advantages but it requires stabiliza-
tion. Stability and maneuverability are conflicting goals in vehicle design. The
ship designer Minorsky realized that there was a trade-off between maneuverable
and stability and he emphasized that a stable ship is difficult to steer. The Wright
Flyer, which was maneuverable but unstable, inspired Sperry to design an autopi-
lot. Feedback has been used extensively in aircraft, from simple systems for sta-
bility augmentation to systems that provide full autonomy.

Military airplanes gain significant competitive advantage by being made unsta-
ble. Schematic pictures of two airplanes are shown in Figure 2.16. The positions of
the center of mass CM and the center of pressure CP are key elements. To be stable
the center of pressure must be behind of the center of mass. The center of pressure
of an aircraft shifts backwards when a plane goes supersonic. If the plane is stable
at subsonic speeds it becomes even more stable at supersonic speeds because of
the long distance between CM and CP. Large forces and large control surfaces are
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then required to maneuver the airplane and the plane will be more sluggish. A more
balanced design is obtained by placing the center of pressure in front of the cen-
ter of mass at subsonic speeds. Such an airplane will have superior performance,
but it is unstable at subsonic speeds, typically at takeoff and landing. The control
system that stabilizes the aircraft in these operating conditions is mission-critical,
with strong requirements on robustness and reliability.

The evolutionary biologist John Maynard Smith [Smi52] has claimed that while
early flying animals were inherently stable they later developed unstable configura-
tions when their sensory and nervous systems became more sophisticated and able
to stabilize. The unstable configuration had significant advantages in manoevrabil-
ity both for predator and prey.

Keeping an inverted pendulum in the upright position is a prototype example
of stabilization. Consider the cart–pendulum system discussed in Examples 3.1
and 3.2. Neglecting damping, assuming that the cart is much heavier than the pen-
dulum and assuming that the tilt angle θ is small, equation (3.10) can be approxi-
mated by the differential equation

Jt θ̈ −mglθ = u. (2.39)

The transfer function of the open loop system is

Gθu =
1

Jts2−mgl
, acl(s) = Jts

2−mgl.

The system is unstable because it has a pole s =
√

mgl/Jt = ω0 in the right half
plane. It can be stabilized with a proportional-derivative (PD) controller that has
the transfer function

C(s) = kds+ kp. (2.40)

The closed-loop characteristic polynomial is

acl(s) = Jts
2 + kds+(kp−mgl),

and all of its roots are in the left half plane if kp > mgl.
One way to find controller parameters is to choose the controller gains so that

the characteristic polynomial has natural frequency ωc and damping ratio ζc, hence

kd = 2ζcωcJt , kp = Jtω
2
c +mgl.

Choosing ωc =ω0 moves the poles from ±ω0 in open loop to−ζcω0± i
√

1−ζ 2
c ω0

in closed loop. The controller gains are then kp = 2mgl and kd = 2ζc

√
mglJt . The

control law (2.40) stabilizes the pendulum but is does not stabilize the motion of
the cart. To do this it is necessary to introduce feedback from cart position and cart
velocity.

The Segway
!

The Segway discussed in Example 3.1 is essentially a pendulum on a cart and
can be modeled by equation (3.9) with an added torque τ on the pendulum that is
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exerted by the person leaning on the platform. Neglecting the damping terms cṗ,
γθ̇ and linearizing equation (3.9) gives

Mt p̈−mlθ̈ = u, −ml p̈+ Jt θ̈ −mglθ =−τ ,

where u is the horizontal force generated by the motor and τ is the torque generated
by the lean of the rider. Since the Segway is similar to the inverted pendulum on
a cart, we will explore if the feedback (2.40) can be used to stabilize the system.
The closed loop system is then described by

Mt p̈−mlθ̈ =−kd θ̇ − kpθ , −ml p̈+ Jt θ̈ −mglθ =−τ . (2.41)

Multiplying the first equation by ml, the second by Mt and adding the equations,
we obtain

(MtJt −m2l2)θ̈ +mlkd θ̇ +ml(kp−Mtg)θ =−Mtτ .

Since MtJt −m2l2 = MtJ + nMl2 > 0, this differential equation is stable if kp >
Mtg. Solving for p̈ in equation (2.41) gives the following transfer functions from
torque τ to tilt angle θ and horizontal acceleration p̈:

Gp̈τ(s) =
m2l2s2−mlkds−mlkp

(MtJt −m2l2)s2 +mlkds+ml(kp−Mtg)
,

Gθτ(s) =
Mt

(MtJt −m2l2)s2 +mlkds+ml(kp−Mtg)
.

The feedback (2.40), which stabilizes the Segway, thus creates a behavior where
the horizontal acceleration p̈ of the Segway can be controlled by the torque τ ,
which can be generated by leaning on the Segway.

Impedance Control and Haptics

Changing behavior of a mechanical system is common in robotics and haptics.
Position control is not sufficient when industrial robots are used for grinding, pol-
ishing and assembly. The robot can be brought into proximity with the workspace
by position control but to carry out the operations it is desirable to shape how
the force depends on the distance between the tool and the workspace. A spring-
like behavior is an example. The general problem is to create a behavior speci-
fied by a given differential equation between force and motion, a procedure called
impedance control. Similar situations occur in teleoperation in hazardous environ-
ment or in telesurgery. In this situation the workpiece is operated remotely using a
joystick. It is useful for the operator to have some indication of the forces between
the tool and the workpiece. This can be accomplished by generating a force on the
operators joystick that mimics the force on the workpiece.

Figure 2.17 shows two haptic input devices. The systems are pen-like with
levers or gimbals containing angle sensors and force actuation. By sensing position
and orientation, and generating a force depending on position and velocity, it is
possible to create a behavior that simulates touching real or virtual objects. Forces
that simulate friction and surface structure can also be generated.
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Figure 2.17: Haptic devices, the left figure shows the PHANTOM® and the right a system
is developed by Quanser.

We illustrate the principle with a joystick having a low friction joint. Let J be
the moment of inertia, and let the actuation torque and the external torque from the
operator be Ta and T , respectively. The equation of motion is

J
d2θ

dt2
= T +Ta.

By measuring the angle θ and its first two derivatives we can create the feedback

Ta = kp(θr−θ)− kd
dθ

dt
− ka

d2θ

dt2
.

The closed loop system is then

(J+ ka)
d2θ

dt2
+ kd

dθ

dt
+ kp(θ −θr) = T.

The feedback has thus provided virtual inertia J + ka, virtual damping kd and vir-
tual spring action kp. If no torque T is applied, the joystick will assume the orien-
tation given by the reference signal θr. If a the user applies a torque, the joystick
will behave like a damped spring-mass system.

2.7 Feedback and Feedforward

Feedback and feedforward have complementary properties as was discussed in
Section 1.4. Feedback only acts when there are deviations between the actual and
the desired behavior, feedforward acts on planned behavior. Feedback and feedfor-
ward can be combined to improve response to command signals and to reduce the
effect of disturbances that can be measured. In this section we will discuss design
of feedforward control.
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Feedforward and System Inversion

To explore feedforward control we will first investigate command signal following.
Consider the system modeled by the differential equation (2.1):

dny

dtn
+a1

dn−1y

dtn−1
+ . . .+any = b1

dn−1u

dtn−1
+ . . .+bnu.

Assume that we want to find a control signal u that gives the response yr. It follows
from equation (2.1) that the desired control signal satisfies

b1
dn−1u

dtn−1
+ . . .+bnu =

dnyr

dtn
+a1

dn−1yr

dtn−1
+ . . .+anyr, (2.42)

This equation is called the inverse of equation (2.1) because it is obtained by ex-
changing inputs and outputs. If the transfer function of the original system is P(s),
the transfer function of the inverse system is simply P−1(s).

There are problems with system inversion since the inverse may require differ-
entiations and it may be unstable. For example, if b1 ̸= 0 we have P−1(s) ≈ s/b1

for large s, which implies that to obtain a bounded control signal we must require
that the reference signal has a smooth first derivative. If b1 = 0 we must similarly
require that the reference signal has a smooth second derivative.

Difficulties with Feedforward Compensation

Let the process and the desired response have the transfer functions

P(s) =
1

(s+1)2
, Fm(s) =

ω2
c

s2 +2ζcωcs+ω2
c

.

The feedforward transfer function is then given by equation (??), hence

Ff(s) = P−1(s)Fm(s) =
ω2

c (s+1)2

s2 +2ζcωcs+ω2
c

. (2.43)

Notice that Ff(0) = 1 and Ff(∞) = ω2
c . The initial value of the control signal for a

unit step command is thus ω2
c and the final value is 1. Figure 2.18 shows the outputs

y and the feedforward signals uff for a unit step reference signal r and different
values of ωc. The parameter ωc determines the response speed and since Ff(∞) =
ω2

c , very large control signals are required fast responses, Achievable performance
is thus limited by the size of admissible control signals.

Let the process and the desired response be characterized by the transfer func-
tions

P(s) =
1− s

(s+1)2
, Fm(s) =

ω2
c (1− s)

s2 +2ζcωcs+ω2
c

.

Since the process has a right half plane zero at s = 1 the inverse model is unstable
and it follows from equation (??) that we must require that the transfer function
of the desired response has the same zero. Equation (??) gives the feedforward
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Figure 2.18: Outputs y (top plots) and feedforward signals uff (lower plots) for a unit step
command signal. The values of the design parameter is ωc = 0.2 (left) 1 (center) and 5
right. The outputs are identical apart from the time scale, but the control signals required to
generate the output differs significantly. The largest value of the feedforward signal uff is
ω2

c , and it increases significantly with increasing ωc.

transfer function

Ff(s) =
ω2

c (s+1)2

s2 +2ζcωcs+ω2
c

, (2.44)

which is the same as equation (2.43). Figure 2.19 shows the outputs y and the
feedforward signals uff for different values of ωc. The response to the command
signal goes in the wrong direction initially because of the right half plane zero
at s = 1. This effect, called inverse response, is barely noticeable if the response
is slow (ωc = 1) but increases with increasing response speed. For ωc = 5 the
undershoot is more than 200%. The right half plane zero thus severely limits the
response time.

The behavior of the control signal changes qualitatively with ωc. To understand
what happens we note that the zero frequency gain of the feedforward transfer
function (2.44) is Ff(0) = 1 and that its high frequency gain is Ff(∞) = ω2

c . For a
unit step reference signal r = 1, the initial value of the control signal is uff(0) = ω2

c

and the final value is uff(∞) = 1. For ωc = 0.2 the control signal grows from 0.04
to the final value 1 with a small overshoot. For ωc = 1 the control signal starts from
1 has an overshoot and settles on the final value 1. For ωc = 5 the control signals
starts at 25 and decays towards the final value 1 with an undershoot.
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Figure 2.19: Outputs y (top plots) and feedforward signals uff (lower plots) for a unit step
command signal. The design parameter has the values ωc = 0.2 (left) 1 (center) and 0.5
(right) for a unit step command in the reference signal. The dashed curve shows the response
that could be achieved if the process did not have the right half plane zero.

Sensitivity to Process Variations

Combining Feedforward with Feedback

Since feedback can give systems that are robust to model uncertainties it seems nat-
ural to combine feedforward with feedback. The architecture of such a controller is
shown in the block diagram of Figure 2.20. The controller has three blocks repre-
senting the feedback transfer function C(s) and the feedforward transfer functions
Fm and Ff.

The controller architecture in Figure 2.20 admits a decoupling of the response
to command signals and the response to disturbances. The feedback controller
C(s) is designed to give robustness to process variations and attenuation of load
disturbances. The desired response to command signals is obtained by design of
the feedforward transfer functions Ff and Fm.

Feedforward is most effective when the disturbance v enters early in the pro-
cess. This occurs when most of the dynamics are in process section P2. When
P2 = P, and therefore P2 = 1, the feedforward compensator is simply a propor-
tional controller.

Noise cancellation is a common example of the use of feedforward to cancel
effects of disturbances. Consider, for example, a pilot that has to communicate in
a noisy cabin. The environmental noise will seriously deteriorate the communi-
cation because the pilots microphone will pick up ambient noise. The noise can
be reduced significantly by using two microphones as illustrated in Figure 2.21.
The primary microphone is directed towards the pilot. It picks up the pilots voice
and ambient noise. The second microphone is directed away from the pilot and it
picks up the ambient noise. The effect of the noise can be reduced by filtering the
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Figure 2.20: Block diagram of a closed loop system where the controller has an architecture
with two degrees of freedom. The signals ym and uff are generated by feedforward from the
reference r. The feedback controller C(s) acts on the control error e = ym− y and generates
the feedback control signal ufb.

signal from the secondary microphone and subtracting it from the signal from the
primary microphone. A block diagram of the system is shown in Figure 2.21b. The
transfer function G(s) represents the dynamics of the acoustic transmission from
the secondary microphone to the first microphone. The transfer function F(s) is
the transfer function of the filter. To cancel the effect of the noise the transfer func-
tion F(s) should be close to G(s). Since the noise transmission depends on the
situation, for example how the pilot turns his head, it is common to let the filter
be adaptive so that it can adjust, as described later in Example 5.16. Noise cancel-
lation has many applications, in headphones, to create noise-free spaces by active
noise control, or to measure electrocardiograms and the heartbeats of mother and
fetus.

2.8 Further Reading

The books by Bennett [Ben79, Ben93] and Mindel [Min02, Min08] give interest-
ing perspective on the development of control. Much of the material touched upon
in this chapter is classical control; see [CM51], [JNP47] and [Tru55]. The notion
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Figure 2.21: Schematic and block diagrams for noise cancellation.
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of controllers with two degrees of freedom was introduced by Horowitz [Hor63].
The analysis will be elaborated in the rest of the book. Transfer functions and other
descriptions of dynamics are discussed in Chapters 6 and 9, methods to investi-
gate stability in Chapter 10. The simple method to find parameters of controllers
based on matching of coefficients of the closed loop characteristic polynomial is
developed further in Chapters 7, 8 and 13. Feedforward control is discussed in
Section 8.5 and Section 12.2.

Exercises

2.1 Let y ∈ R and u ∈ R. Solve the differential equations

dy

dt
+ay = bu,

d2y

dt2
+2

dy

dt
+ y = 2

du

dt
+u,

for t > 0. Determine the responses to a unit step u(t) = 1 and the exponential
signal u(t) = est when the initial condition is zero. Derive the transfer functions of
the systems.

2.2 Let y0(t) be the response of a system with the transfer function G0(s) to a given
input. The transfer function G(s) = (1+ sT )G0(s) has the same zero frequency
gain but it has an additional zero at z = −1/T . Let y(t) be the response of the
system with the transfer function G(s) and show that

y(t) = y0(t)+T
dy0

dt
, (2.45)

Next consider the system with the transfer function

G(s) =
s+a

a(s2 +2s+1)
,

which has unit zero-frequency-gain (G(0) = 1). Use the result in equation (2.45)
to explore the effect of the zero s =−1/T on the step response of a system

2.3 Consider a closed loop system with process dynamics and a PI controller
modeled by

dy

dt
+ay = bu, u = kp(r− y)+ ki

∫ t

0
(r(τ)− y(τ))dτ ,

where r is the reference, u the control variable and y the process output. Derive a
differential equation relating the output y to the difference by direct manipulation
of the equations. Draw a block diagram of the system. Derive the transfer functions
of the process and the controller. Compute the transfer function from reference r to
output y of the closed loop system. Make the derivations both by direct manipula-
tion of the system equations and by polynomial algebra. Compare the results with
a direct determination of the transfer functions by inspection of the block diagram.
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2.4 The dynamics of the pupillary reflex is approximated by a linear system with
the transfer function

P(s) =
0.2(1−0.1s)

(1+0.1s)3
.

Assume that the nerve system that controls the pupil opening is modeled as a
proportional controller with the gain k. Use Routh-Hurwitz theorem to determine
the largest gain that gives a stable closed loop system.

2.5 A simple model for the relation between speed v and throttle u for a car is
given by the transfer function

Gvu =
b

s+a

where b = 1 m/s2 and a = 0.025 rad/s (see Section 4.1). The control signal is
normalized to the range 0≤ u≤ 1. Design a PI controller for the system that gives
a closed loop system with the characteristic polynomial

acl(s) = s2 +2ζ ωcs+ω2
c .

What are the consequences of choosing different values of the design parameters
ζ and ωc? Use your judgment to find suitable values. Hint: Investigate maximum
acceleration and maximum velocity for step changes in the velocity reference.

2.6 Consider the feedback system in Figure 2.3. Let the disturbance v= 0, P(s)= 1
and C(s) = ki/s. Determine the transfer function Gyr from reference r to output y.
Also determine how much Gyr is changed when the process gain changes by 10%.

2.7 The calculations in Section 2.2 can be interpreted as a design method for a
PI controller for a first order system. A similar calculation can be made for PID
control of the second order system. Let the transfer functions of the process and
the controller be

P(s) =
b

s2 +a1s+a2
, C(s) = kp +

ki

s
+ kds.

Show that the controller parameters

kp =
(1+2αζ )ω2

c −a2

b
, ki =

αω3
c

b
, kd =

(α +2ζ )ωc−a1

b
.

give a closed loop system with the characteristic polynomial

(s2 +2ζ ωcs+ω2
c )(s+αωc).

2.8 Consider an open loop system with the nonlinear input-output relation y =
f (u). Assume that the system is closed with the proportional controller u = k(r−
y). Show that the input-output relation of the closed loop system is

y+
1

k
f−1(y) = r.
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Estimate the largest deviation from ideal linear response y= r. Illustrate by plotting
the input output responses for a) f (u) =

√
u and b) f (u) = u2 with 0≤ u≤ 1 and

k = 5,10 and 100.

2.9 Consider the system in Section 2.2 where the controller was designed to give a
closed loop system characterized by ωc = 1 and ζ = 0.707. The transfer functions
of the process and the controller are

P(s) =
2

s+1
, C(s) =

0.207s+0.5

s
.

The response of the closed loop system to step command signals has a settling time
(time required to stay within 2% of the final value, see Figure 6.9) of 4/ζ ωc ≈
5.66. Assume that the attenuation of the load disturbances is satisfactory but that
we want a closed loop system system that responds five times faster to command
signals without overshoot. Determine the transfer functions of a controller with the
architecture in Figure 2.20 that gives a response to command signals with a first
order dynamics. Simulate the system in the nominal case of a perfect model and
explore the effects of modeling errors by simulation.

2.10 Consider a queuing system modeled by

dx

dt
= λ −µmax

x

x+1
.

The model is nonlinear and the dynamics of the system changes significantly with
the queuing length; see Example 3.12. Investigate the situation when a PI controller
is used for admission control. The arrival intensity λ is then given by

λ = kp(r− x)+ ki

∫ t

(r(t)− x(t))dt.

The controller parameters are determined from the approximate model

dx

dt
= λ .

Find controller parameters that give the closed loop characteristic polynomial s2+
2s+ 1 for the approximate model. Investigate the behavior of the control strategy
for the nonlinear model by simulation for the input r = 5+4sin(0.1t).





Chapter Three
System Modeling

... I asked Fermi whether he was not impressed by the agreement between our calculated

numbers and his measured numbers. He replied, “How many arbitrary parameters did you

use for your calculations?” I thought for a moment about our cut-off procedures and said,

“Four.” He said, “I remember my friend Johnny von Neumann used to say, with four param-

eters I can fit an elephant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for meson-proton scattering to
Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamics used to answer
questions via analysis and simulation. The model we choose depends on the ques-
tions we wish to answer, and so there may be multiple models for a single dy-
namical system, with different levels of fidelity depending on the phenomena of
interest. In this chapter we provide an introduction to the concept of modeling and
present some basic material on two specific methods commonly used in feedback
and control systems: differential equations and difference equations.

3.1 Modeling Concepts

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models
of dynamical systems describing the input/output behavior of systems, and we
will often work in “state space” form. As pointed out already in Chapter 1, when
using models it is important to keep in mind that they are an approximation of
the underlying system. Analysis and design using models must always be done
carefully to insure that the limits of the model are respected.

Roughly speaking, a dynamical system is one in which the effects of actions
do not occur immediately. For example, the velocity of a car does not change
immediately when the gas pedal is pushed nor does the temperature in a room
rise instantaneously when a heater is switched on. Similarly, a headache does not
vanish right after an aspirin is taken, requiring time for it to take effect. In business
systems, increased funding for a development project does not increase revenues in
the short term, although it may do so in the long term (if it was a good investment).
All of these are examples of dynamical systems, in which the behavior of the
system evolves with time.

In the remainder of this section we provide an overview of some of the key
concepts in modeling. The mathematical details introduced here are explored more
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rest position

m

k

c(q̇)

q

Figure 3.1: Spring–mass system with nonlinear damping. The position of the mass is de-
noted by q, with q = 0 corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring constant k and a damper with force depen-
dent on the velocity q̇.

fully in the remainder of the chapter.

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary motion. The
basis was detailed observations of the planets by Tycho Brahe and the results of
Kepler, who found empirically that the orbits of the planets could be well described
by ellipses. Newton embarked on an ambitious program to try to explain why the
planets move in ellipses, and he found that the motion could be explained by his
law of gravitation and the formula stating that force equals mass times acceleration.
In the process he also invented calculus and differential equations.

One of the triumphs of Newton’s mechanics was the observation that the mo-
tion of the planets could be predicted based on the current positions and velocities
of all planets. It was not necessary to know the past motion. The state of a dynam-
ical system is a collection of variables that completely captures the past motion of
a system for the purpose of predicting future motion. For a system of planets the
state is simply the positions and the velocities of the planets. We call the set of all
possible states the state space.

A common class of mathematical models for dynamical systems is ordinary
differential equations (ODEs). In mechanics, one of the simplest such differential
equations is that of a spring–mass system with damping:

mq̈+ c(q̇)+ kq = 0. (3.1)

This system is illustrated in Figure 3.1. The variable q ∈ R represents the position
of the mass m with respect to its rest position. We use the notation q̇ to denote
the derivative of q with respect to time (i.e., the velocity of the mass) and q̈ to
represent the second derivative (acceleration). The spring is assumed to satisfy
Hooke’s law, which says that the force is proportional to the displacement. The
friction element (damper) is taken as a nonlinear function c(q̇), which can model
effects such as stiction and viscous drag. The position q and velocity q̇ represent
the instantaneous state of the system. We say that this system is a second-order
system since it has two states which we combine in the state vector x = (q, q̇).
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Figure 3.2: Illustration of a state model. A state model gives the rate of change of the state
as a function of the state. The plot on the left shows the evolution of the state as a function of
time. The plot on the right, called a phase portrait, shows the evolution of the states relative
to each other, with the velocity of the state denoted by arrows.

The evolution of the position and velocity can be described using either a time
plot or a phase portrait, both of which are shown in Figure 3.2. The time plot,
on the left, shows the values of the individual states as a function of time. The
phase portrait, on the right, shows the traces of some of the states from different
initial conditions, it illustrates how the states move in the state space. In the phase
portrait we have also shown arrows that represent the velocity ẋ of the state x
in a few points. The phase portrait gives a strong intuitive representation of the
equation as a vector field or a flow.While systems of second order (two states) can
be represented in this way, unfortunately it is difficult to visualize equations of
higher order using this approach.

The differential equation (3.1) is called an autonomous system because there
are no external influences. (Note that this usage of “autonomous” is slightly dif-
ferent than in the phrase “autonomous vehicle”.) Such a model is natural for use
in celestial mechanics because it is difficult to influence the motion of the planets.
In many examples, it is useful to model the effects of external disturbances or con-
trolled forces on the system. One way to capture this is to replace equation (3.1)
by

mq̈+ c(q̇)+ kq = u, (3.2)

where u represents the effect of external inputs. The model (3.2) is called a forced
or controlled differential equation. It implies that the rate of change of the state
can be influenced by the input u(t). Adding the input makes the model richer and
allows new questions to be posed. For example, we can examine what influence
external disturbances have on the trajectories of a system. Or, in the case where
the input variable is something that can be modulated in a controlled way, we can
analyze whether it is possible to “steer” the system from one point in the state
space to another through proper choice of the input.
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Figure 3.3: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one on the right is its
representation as a block diagram.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where the de-
sign of electronic amplifiers led to a focus on input/output behavior. A system was
considered a device that transforms inputs to outputs, as illustrated in Figure 3.3.
Conceptually an input/output model can be viewed as a giant table of inputs and
outputs. Given an input signal u(t) over some interval of time, the model should
produce the resulting output y(t).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio
or a television and break it down into manageable pieces such as the receiver,
demodulator, amplifier and speakers. Each of these pieces has a set of inputs and
outputs and, through proper design, these components can be interconnected to
form the entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully later in this chapter, but
roughly speaking a system is linear if the superposition (addition) of two inputs
yields an output that is the sum of the outputs that would correspond to individual
inputs being applied separately. A system is time-invariant if the output response
for a given input does not depend on when that input is applied.

Many electrical engineering systems can be modeled by linear time-invariant
systems, and hence a large number of tools have been developed to analyze them.
One such tool is the step response, which describes the relationship between an
input that changes from zero to a constant value abruptly (a step input) and the
corresponding output. As we shall see later in the text, the step response is very
useful in characterizing the performance of a dynamical system, and it is often used
to specify the desired dynamics. A sample step response is shown in Figure 3.4a.

Another way to describe a linear time-invariant system is to represent it by its
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Figure 3.4: Input/output response of a linear system. The step response (a) shows the output
of the system due to an input that changes from 0 to 1 at time t = 5 s. The frequency re-
sponse (b) shows the amplitude gain and phase change due to a sinusoidal input at different
frequencies.

response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged.
The results are based on the theory of complex variables and Laplace transforms.
The basic idea behind frequency response is that we can completely characterize
the behavior of a system by its steady-state response to sinusoidal inputs. Roughly
speaking, this is done by decomposing any arbitrary signal into a linear combi-
nation of sinusoids (e.g., by using the Fourier transform) and then using linearity
to compute the output by combining the response to the individual frequencies. A
sample frequency response is shown in Figure 3.4b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems. In the 1970s the development was
influenced by advances in automation, which emphasized the need to include logic
and sequencing.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general
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forms of equations. In control, the model given by equation (3.2) was replaced by

dx

dt
= f (x,u), y = h(x,u), (3.3)

where x is a vector of state variables, u is a vector of control signals and y is a vec-
tor of measurements. The term dx/dt represents the derivative of x with respect to
time, now considered a vector, and f and h are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimension. For mechanical systems,
the state consists of the position and velocity of the system, so that x = (q, q̇) in
the case of a damped spring–mass system. Note that in the control formulation we
model dynamics as first-order differential equations, but we will see that this can
capture the dynamics of higher-order differential equations by appropriate defini-
tion of the state and the maps f and h.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 7 and 8.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
systems with uncertainty since state models are convenient to describe a nominal
model but uncertainties are easier to describe using input/output models (often via
a frequency response description). Uncertainty will be a constant theme through-
out the text and will be studied in particular detail in Chapter 13.

An interesting observation in the design of control systems is that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

Multidomain Modeling
!

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previ-
ous discussion of mechanical and electrical engineering. A difficulty in systems
engineering is that it is frequently necessary to deal with heterogeneous systems
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from many different domains, including chemical, electrical, mechanical and in-
formation systems.

To model such multidomain systems, we start by partitioning a system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how
the variables of the subsystem behave when the subsystems are interconnected.
These interfaces act by constraining variables within the individual subsystems to
be equal (such as mass, energy or momentum fluxes). The complete model is then
obtained by combining the descriptions of the subsystems and the interfaces.

Using this methodology it is possible to build up libraries of subsystems that
correspond to physical, chemical and informational components. The procedure
mimics the engineering approach where systems are built from subsystems that
are themselves built from smaller components. As experience is gained, the com-
ponents and their interfaces can be standardized and collected in model libraries.
In practice, it takes several iterations to obtain a good library that can be reused for
many applications.

State models or ordinary differential equations are not suitable for component-
based modeling of this form because states may disappear when components are
connected. This implies that the internal description of a component may change
when it is connected to other components. As an illustration we consider two ca-
pacitors in an electrical circuit. Each capacitor has a state corresponding to the
voltage across the capacitors, but one of the states will disappear if the capacitors
are connected in parallel. A similar situation happens with two rotating inertias,
each of which is individually modeled using the angle of rotation and the angular
velocity. Two states will disappear when the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations by differential
algebraic equations, which have the form

F(z, ż) = 0,

where z ∈ Rn. A simple special case is

ẋ = f (x,y), g(x,y) = 0, (3.4)

where z = (x,y) and F = (ẋ− f (x,y),g(x,y)). The key property is that the deriva-
tive ż is not given explicitly and there may be pure algebraic relations between the
components of the vector z. Modeling using differential algebraic equations is also
called equation-based modeling, acausal modeling or behavioral modeling.

The model (3.4) captures the examples of the parallel capacitors and the linked
rotating inertias. For example, when two capacitors are connected, we simply add
the algebraic equation expressing that the voltages across the capacitors are the
same.

Modelica is a language that has been developed to support component-based
modeling. Differential algebraic equations are used as the basic description, and
object-oriented programming is used to structure the models. Modelica is used to
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model the dynamics of technical systems in domains such as mechanical, electri-
cal, thermal, hydraulic, thermofluid and control subsystems. Modelica is intended
to serve as a standard format so that models arising in different domains can be
exchanged between tools and users. A large set of free and commercial Modelica
component libraries are available and are used by a growing number of people
in industry, research and academia. For further information about Modelica, see
http://www.modelica.org or Tiller [Til01].

Finite State Machines and Hybrid Systems
!

A final type of modeling has been developed within the hybrid systems commu-
nity. A hybrid system (also called a cyberphysical system) is one that combines
continuous dynamics with discrete logic. The discrete portion of the system repre-
sents logical variables that reside in a computer, such as the mode of a system (on,
off, degraded, etc.).

Discrete state dynamics are often represented using a finite state machine that
consists of a finite set of discrete states α ∈Q. We can think of α as the “mode” of
the system. The dynamics of a finite state machine are defined in terms of transi-
tions between the states. One convenient representation is as a guarded transition
system:

gi(α,β ) =⇒ α ′ = ri(α), i = 1, . . . ,N.

Here the function g is a Boolean (true/false) function that depends on the current
system mode α and an input β , which might represent an environmental event
(button press, component failure, etc). If the guard gi is true then the system transi-
tions from the current state α to a new state α ′, determined by the role (transition
map) ri. The guarded transition system can have many different rules, depending
on the system state and external input.

It is also possible to combine systems that have finite states with those having
discrete states, creating a hybrid system. For example, if a system has a continuous
state x and discrete state α , we might write the overall system dynamics as

dx

dt
= fα(x,u,v), gi(x,α,β ) =⇒ α ′ = ri(x,α), i = 1, . . . ,N.

In this representation, the continuous dynamics (with state x) are governed by an
ordinary differential equation that may depend on the system mode α (indicated
by the subscript in fα ). The discrete transition system is also influenced by the
continuous state, so that the guards gi and rules ri now depend on the continuous
state.

Many other representations are possible for hybrid systems, including models
that allow a non-continuous change in the continuous variables when a change in
the discrete state occurs (so-called reset logic). Computer modeling packages for
hybrid systems include StateFlow (part of the MATLAB suite of tools), Modelica
and Ptolemy [Pto14].

http://www.modelica.org
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Figure 3.5: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relationship and the
dashed lines indicate the range of possible uncertainty. The uncertainty lemon [GPD59] in
(b) is one way to capture uncertainty in dynamical systems emphasizing that a model is valid
only in the amplitude and frequency ranges within the shaded region. In (c) a model is rep-
resented by a nominal model M and another model ∆ representing the uncertainty analogous
to the representation of parameter uncertainty.

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback, and it is there-
fore important to characterize uncertainty. When making measurements, there is a
good tradition to assign both a nominal value and a measure of uncertainty. It is
useful to apply the same principle to modeling, but unfortunately it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be characterized by a func-
tion, uncertainty can be expressed by an uncertainty band as illustrated in Fig-
ure 3.5a. At low signal levels there are uncertainties due to sensor resolution, fric-
tion and quantization. For example, some models for queuing systems or cells are
based on averages that exhibit significant variations for small populations. At large
signal levels there are saturations or even system failures. The signal ranges where
a model is reasonably accurate vary dramatically between applications, but it is
rare to find models that are accurate for signal ranges larger than 104.

Characterization of the uncertainty of a dynamic model is much more difficult.
We can try to capture uncertainties by assigning uncertainties to parameters of the
model, but this is often not sufficient. There may be errors due to phenomena that
have been neglected, e.g., small time delays. In control the ultimate test is how well
a control system based on the model performs, and time delays can be important.
There is also a frequency aspect. There are slow phenomena, such as aging, that
can cause changes or drift in the systems. There are also high-frequency effects: a
resistor will no longer be a pure resistance at very high frequencies, and a beam
has stiffness and will exhibit additional dynamics when subject to high-frequency
excitation. The uncertainty lemon [GPD59] shown in Figure 3.5b is one way to
conceptualize the uncertainty of a system. It illustrates that a model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in Chapter 13
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using figures such as Figure 3.5c. These tools make use of the concept of a transfer
function, which describes the frequency response of an input/output system. For
now, we simply note that one should always be careful to recognize the limits of
a model and not to make use of models outside their range of applicability. For
example, one can describe the uncertainty lemon and then check to make sure that
signals remain in this region. In early analog computing, a system was simulated
using operational amplifiers, and it was customary to give alarms when certain
signal levels were exceeded. Similar features can be included in digital simulation.

3.2 State Space Models

In this section we introduce the two primary forms of models that we use in this
text: differential equations and difference equations. Both make use of the notions
of state, inputs, outputs and dynamics to describe the behavior of a system. We
also briefly discuss modeling of finite state system and hybrid systems.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a physical system the state
is composed of the variables required to account for storage of mass, momentum
and energy. A key issue in modeling is to decide how accurately this storage has
to be represented. The state variables are gathered in a vector x ∈ Rn called the
state vector. The control variables are represented by another vector u ∈ Rp, and
the measured signal by the vector y ∈Rq. A system can then be represented by the
differential equation

dx

dt
= f (x,u), y = h(x,u), (3.5)

where f : Rn×Rp→ Rn and h : Rn×Rp→ Rq are smooth mappings. We call a
model of this form a state space model.

The dimension of the state vector is called the order of the model. The model (3.5)
is called time-invariant because the functions f and h do not depend explicitly on
time t; there are more general time-varying systems where the functions do de-
pend on time. The model consists of two functions: the function f gives the rate of
change of the state vector as a function of state x and control u, and the function h
gives the measured values as functions of state x and control u.

A model is called a linear state space model (or often just a “linear system”) if
the functions f and h are linear in x and u. A linear state space model can thus be
represented by

dx

dt
= Ax+Bu, y =Cx+Du, (3.6)

where A, B, C and D are constant matrices. Such a model is said to be linear and
time-invariant, or LTI for short. (In this text we will usually omit the term time-
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invariant and just say the model is linear.) The matrix A is called the dynamics
matrix, the matrix B is called the control matrix, the matrix C is called the sensor
matrix and the matrix D is called the direct term. Frequently models will not have a
direct term, indicating that the control signal does not influence the output directly.

A different form of linear differential equations, generalizing the second-order
dynamics from mechanics, is an equation of the form

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = u, (3.7)

where t is the independent (time) variable, y(t) is the dependent (output) variable
and u(t) is the input. The notation dky/dtk is used to denote the kth derivative
of y with respect to t, sometimes also written as y(k). The controlled differential
equation (3.7) is said to be an nth-order model. This model can be converted into
state space form by defining

x =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2
...

xn−1

xn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dn−1y/dtn−1

dn−2y/dtn−2

...
dy/dt

y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

and the state space equations become

d

dt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2
...

xn−1

xn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1x1− · · ·−anxn

x1
...

xn−2

xn−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
0
...
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, y = xn.

With the appropriate definitions of A, B, C and D, this equation is in linear state
space form.

An even more general model is obtained by letting the output be a linear com-
bination of the states of the model, i.e.,

y = b1x1 +b2x2 + · · ·+bnxn +du.

This model can be represented in state space as

d

dt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3
...

xn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1 −a2 . . . −an−1 −an

1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0
0
...
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
⎧
⎩b1 b2 . . . bn

⎫
⎭x+du.

(3.8)

This particular form of a linear state space model is called reachable canonical
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(c) Cart–pendulum system

Figure 3.6: Balance systems. (a) Segway Personal Transporter, (b) Saturn rocket and (c)
inverted pendulum on a cart. Each of these examples uses forces at the bottom of the system
to keep it upright.

form and will be studied in more detail in later chapters. Many other representa-
tions for a model are possible and we shall see several of these in Chapters 6–8.
It is also possible to expand the form of equation (3.7) to allow derivatives of the
input to appear, as we shall see in Chapter 2.

Example 3.1 Balance systems
An example of a type of system that can be modeled using ordinary differential
equations is the class of balance systems. A balance system is a mechanical sys-
tem in which the center of mass is balanced above a pivot point. Some common
examples of balance systems are shown in Figure 3.6. The Segway® Personal
Transporter (Figure 3.6a) uses a motorized platform to stabilize a person standing
on top of it. When the rider leans forward, the transportation device propels itself
along the ground but maintains its upright position. Another example is a rocket
(Figure 3.6b), in which a gimbaled nozzle at the bottom of the rocket is used to
stabilize the body of the rocket above it. Other examples of balance systems in-
clude humans or other animals standing upright or a person balancing a stick on
their hand.

Balance systems are a generalization of the spring–mass system we saw earlier.
We can write the dynamics for a mechanical system in the general form

M(q)q̈+C(q, q̇)+K(q) = B(q)u,

where M(q) is the inertia matrix for the system, C(q, q̇) represents the Coriolis
forces as well as the damping, K(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into the dynamics. Note that
q may be a vector, rather than just a scalar, and represent the configuration variables
of the system. The specific form of the equations can be derived using Newtonian
mechanics. Each of the terms depends on the configuration of the system q and
that these terms are often nonlinear in the configuration variables.

Figure 3.6c shows a simplified diagram for a balance system consisting of an
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inverted pendulum on a cart. To model this system, we choose state variables that
represent the position and velocity of the base of the system, p and ṗ, and the an-
gle and angular rate of the structure above the base, θ and θ̇ . We let F represent
the force applied at the base of the system, assumed to be in the horizontal direc-
tion (aligned with p), and choose the position and angle of the system as outputs.
With this set of definitions, the dynamics of the system can be computed using
Newtonian mechanics and have the form

⎧
⎪⎪⎩

(M+m) −ml cosθ
−ml cosθ (J+ml2)

⎫
⎪⎪⎭
⎧
⎪⎪⎩

p̈

θ̈

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

cṗ+ml sinθ θ̇ 2

γθ̇ −mgl sinθ

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

F
0

⎫
⎪⎪⎭ , (3.9)

where M is the mass of the base, m and J are the mass and moment of inertia of the
system to be balanced, l is the distance from the base to the center of mass of the
balanced body, c and γ are coefficients of viscous friction and g is the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space form by defining the
state as x= (p,θ , ṗ, θ̇), the input as u=F and the output as y= (p,θ). If we define
the total mass and total inertia as

Mt = M+m, Jt = J+ml2,

the equations of motion then become

d

dt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
θ
ṗ

θ̇

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ

θ̇
−mlsθ θ̇ 2 +mg(ml2/Jt)sθ cθ − cṗ− (γ/Jt)mlcθ θ̇ +u

Mt −m(ml2/Jt)c2
θ

−ml2sθ cθ θ̇ 2 +Mtglsθ − clcθ ṗ− γ(Mt/m)θ̇ + lcθ u

Jt(Mt/m)−m(lcθ )2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

y =

⎧
⎪⎪⎩

p
θ

⎫
⎪⎪⎭ ,

where we have used the shorthand cθ = cosθ and sθ = sinθ .
In many cases, the angle θ will be very close to 0, and hence we can use the

approximations sinθ ≈ θ and cosθ ≈ 1. Furthermore, if θ̇ is small, we can ig-
nore quadratic and higher terms in θ̇ . Substituting these approximations into our
equations, we see that we are left with a linear state space equation

d

dt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
θ
ṗ

θ̇

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1

0 m2l2g/µ −cJt/µ −γlm/µ

0 Mtmgl/µ −clm/µ −γMt/µ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
θ
ṗ

θ̇

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

Jt/µ

lm/µ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =

⎧
⎪⎪⎩

1 0 0 0
0 1 0 0

⎫
⎪⎪⎭x,

where µ = MtJt −m2l2. ∇
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Example 3.2 Inverted pendulum
A variation of the previous example is one in which the location of the base p does
not need to be controlled. This happens, for example, if we are interested only in
stabilizing a rocket’s upright orientation without worrying about the location of
base of the rocket. The dynamics of this simplified system are given by

d

dt

⎧
⎪⎪⎩

θ
θ̇

⎫
⎪⎪⎭=

⎧
⎪⎪⎪⎪⎪⎩

θ̇
mgl

Jt
sinθ −

γ

Jt
θ̇ +

l

Jt
ucosθ

⎫
⎪⎪⎪⎪⎪⎭ , y = θ , (3.10)

where γ is the coefficient of rotational friction, Jt = J +ml2 and u is the force
applied at the base. This system is referred to as an inverted pendulum. ∇

Difference Equations

In some circumstances, it is more natural to describe the evolution of a system
at discrete instants of time rather than continuously in time. If we refer to each
of these times by an integer k = 0,1,2, . . . , then we can ask how the state of the
system changes for each k. Just as in the case of differential equations, we define
the state to be the set of variables that summarizes the past of the system for the
purpose of predicting its future. Systems described in this manner are referred to
as discrete-time systems.

The evolution of a discrete-time system can be written in the form

x[k+1] = f (x[k],u[k]), y[k] = h(x[k],u[k]), (3.11)

where x[k] ∈ Rn is the state of the system at time k (an integer), u[k] ∈ Rp is the
input and y[k] ∈ Rq is the output. As before, f and h are smooth mappings of the
appropriate dimension. We call equation (3.11) a difference equation since it tells
us how x[k+1] differs from x[k]. The state x[k] can be either a scalar- or a vector-
valued quantity; in the case of the latter we write x j[k] for the value of the jth state
at time k.

Just as in the case of differential equations, it is often the case that the equations
are linear in the state and input, in which case we can describe the system by

x[k+1] = Ax[k]+Bu[k], y[k] =Cx[k]+Du[k].

As before, we refer to the matrices A, B, C and D as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. The solution of a linear dif-
ference equation with initial condition x[0] and input u[0], . . . ,u[T ] is given by

x[k] = Akx[0]+
k−1

∑
j=0

Ak− j−1Bu[ j],

y[k] =CAkx[0]+
k−1

∑
j=0

CAk− j−1Bu[ j]+Du[k],

k > 0. (3.12)
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Figure 3.7: Predator versus prey. The photograph on the left shows a Canadian lynx and
a snowshoe hare, the lynx’s primary prey. The graph on the right shows the populations of
hares and lynxes between 1845 and 1935 in a section of the Canadian Rockies [Mac37]. The
data were collected on an annual basis over a period of 90 years. (Photograph copyright Tom
and Pat Leeson.)

Difference equations are also useful as an approximation of differential equa-
tions, as we will show later.

Example 3.3 Predator–prey
As an example of a discrete-time system, consider a simple model for a predator–
prey system. The predator–prey problem refers to an ecological system in which
we have two species, one of which feeds on the other. This type of system has
been studied for decades and is known to exhibit interesting dynamics. Figure 3.7
shows a historical record taken over 90 years for a population of lynxes versus a
population of hares [Mac37]. As can been seen from the graph, the annual records
of the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-time
model to keep track of the rate of births and deaths of each species. Letting H
represent the population of hares and L represent the population of lynxes, we can
describe the state in terms of the populations at discrete periods of time. Letting k
be the discrete-time index (e.g., the day or month number), we can write

H[k+1] = H[k]+br(u)H[k]−aL[k]H[k],

L[k+1] = L[k]+ cL[k]H[k]−d f L[k],
(3.13)

where br(u) is the hare birth rate per unit period and is a function of the food sup-
ply u, d f is the lynx mortality rate and a and c are the interaction coefficients. The
interaction term aL[k]H[k] models the rate of predation, which is assumed to be
proportional to the rate at which predators and prey meet and is hence given by the
product of the population sizes. The interaction term cL[k]H[k] in the lynx dynam-
ics has a similar form and represents the rate of growth of the lynx population. This
model makes many simplifying assumptions—such as the fact that hares decrease
in number only through predation by lynxes—but it often is sufficient to answer
basic questions about the system.

To illustrate the use of this system, we can compute the number of lynxes and
hares at each time point from some initial population. This is done by starting with
x[0] = (H0,L0) and then using equation (3.13) to compute the populations in the
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Figure 3.8: Discrete-time simulation of the predator–prey model (3.13). Using the param-
eters a = c = 0.014, br(u) = 0.6 and d = 0.7 in equation (3.13) with daily updates, the
period and magnitude of the lynx and hare population cycles approximately match the data
in Figure 3.7.

following period. By iterating this procedure, we can generate the population over
time. The output of this process for a specific choice of parameters and initial con-
ditions is shown in Figure 3.8. While the details of the simulation are different
from the experimental data (to be expected given the simplicity of our assump-
tions), we see qualitatively similar trends and hence we can use the model to help
explore the dynamics of the system. ∇

Example 3.4 E-mail server
The IBM Lotus server is a collaborative software system that administers users’
e-mail, documents and notes. Client machines interact with end users to provide
access to data and applications. The server also handles other administrative tasks.
In the early development of the system it was observed that the performance was
poor when the central processing unit (CPU) was overloaded because of too many
service requests, and mechanisms to control the load were therefore introduced.

The interaction between the client and the server is in the form of remote proce-
dure calls (RPCs). The server maintains a log of statistics of completed requests.
The total number of requests being served, called RIS (RPCs in server), is also
measured. The load on the server is controlled by a parameter called MaxUsers,
which sets the total number of client connections to the server. This parameter is
controlled by the system administrator. The server can be regarded as a dynami-
cal system with MaxUsers as the input and RIS as the output. The relationship
between input and output was first investigated by exploring the steady-state per-
formance and was found to be linear.

In [HDPT04] a dynamic model in the form of a first-order difference equation
is used to capture the dynamic behavior of this system. Using system identification
techniques, they construct a model of the form

y[k+1] = ay[k]+bu[k],

where u = MaxUsers−MaxUsers and y = RIS−RIS. The parameters a =
0.43 and b = 0.47 are parameters that describe the dynamics of the system around
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the operating point, and MaxUsers = 165 and RIS = 135 represent the nomi-
nal operating point of the system. The number of requests was averaged over a
sampling period of 60 s. ∇

Another application of difference equation is in the implementation of control
systems on computers. Early controllers were analog physical systems, which can
be modeled by differential equations. When implementing a controller described
by a differential equation using a computer it is necessary to do approximations.
A simple way is to approximate derivatives by finite differences, as illustrated by
the following example.

Example 3.5 Difference approximation of a PI controller
Consider the PI controller

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ = kpe(t)+ x(t), x = ki

∫ t

0
e(τ)dτ ,

where the controller state is given by the differential equation

dx

dt
= kie(t) (3.14)

Assume that the error is measured at regular sampling intervals t = h,2h,3h, . . ..
Approximating the derivative in equation (3.14) by differences gives

x(kh+h)− x(kh)

h
= kie(kh),

and the controller is then given by the difference equation

x[k+1] = x[k]+hki e[k], u[k] = kpe[k]+ x[k],

where x[k] = x(kh), e[k] = e(kh) and u[k] = u(kh) represent the discrete-time state,
error and input sampled at each time interval. This controller is easy to implement
on a computer since it consists of just addition and multiplication. ∇

The approximation in the example works well provided that the sampling in-
terval is so short that the variable e(t) changes very little over a sampling interval.

Finite State Machines
!

A finite state machine is a model in which the states of the system are chosen
from a finite list of “modes”. The dynamics of a finite state machine are given
by transitions between these modes, possibly in response to external signals. We
illustrate this concept with a simple example.

Example 3.6 Traffic light controller
Consider a finite state machine model of a traffic light control system, as shown
in Figure 3.6. We represent the state of the system in terms of the set of traffic
lights that are turned on (either east–west or north–south). In addition, once a light
is turned on it should stay that way for a certain minimum time, and then only
change when a car comes up to the intersection in the opposite direction. This
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Figure 3.9: A simple model for a traffic light. The diagram on the right is a finite state
machine model of the traffic light controller.

gives us two states for each direction of the lights: waiting for a car to arrive and
waiting for the timer to expire. Thus, we have four states for the system, as show
in Figure 3.6.

The dynamics for the light describe how the system transitions from one state
to another. Starting at the left most state, we assume that the lights are set to allow
traffic in the north–south direction. When a car arrives on the east–west street, we
transition to the state at the top of the diagram, where a timer is started. Once the
timer reaches the designated amount of time, we transition to the state on the right
side of the diagram and turn on the lights in the east–west direction. From here we
wait until a car arrives on the north–south street and continue the cycle.

Viewed as a control system, this model has a state space consisting of four
discrete states: north–south waiting, north–south countdown, east–west waiting,
and east–west countdown. The inputs to the controller consist of the signals that
indicate whether a car is present at the roads leading up to the intersection. The
outputs from the controller are the signals that change the colors of the traffic light.
Finally, the dynamics of the controller are the transition diagram that controls how
the states (or modes) of the system change in time. ∇

More formally, a finite state machine can be represented as a finite set of dis-
crete states α ∈ Qsys, where Qsys is a discrete set. The dynamics of the system
are described by transitions between the discrete states, as in the finite state ma-
chine described in the previous example. These transitions can depend on external
inputs or measurements and can generate output actions on transition into or out
of a given state. If we let β ∈ Qin represent (discrete) input events (button press,
component failure, etc) and γ ∈ Qout represent (discrete) output actions (such as
turning off of device), then the dynamics of the finite state machine can be written
as a guarded command system

gi(α,β ) =⇒
α ′ = ri(α,β ),

γ = ai(α,β ),
i = 1, . . . ,N. (3.15)

Here the function g is a Boolean (true/false) function that depends on the current
system mode α and an external input β . If the guard gi is true then the system
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transitions from the current state α to a new state α ′, determined by the rule (tran-
sition map) ri and the external input. The output action γ is similarly dependent on
the current state and external input. A guarded transition system can have many
different rules, depending on the system state and external input.

The dynamics of a transition system is similar in many ways to the discrete
time dynamics in equation (3.11). The major difference is that the transitions do
not necessarily occur at regularly spaced intervals of time. Indeed, there is no strict
notion of time in a transition system as we have described it here: it is only the
sequence of events that is kept track of (through the evolution of the discrete state).

Specifications for finite transition systems are often written as logical functions
describing the conditions that should be imposed on the system. For example, we
might wish to say that if a specific sensor is not operating, then the system cannot
transition to a mode that requires the use of that sensor. This could be written as
the logical formula

α ∈ {states with sensor k not functioning} =⇒ α ̸∈ {states requiring sensor k}.

The formula of the form p =⇒ q where p and q are Boolean propositions can be
written as the logical function (!p) ||(p&&q), which asserts that if proposition p is
true then proposition q must be true. In the sensor example, p and q are represented
by whether the system mode α is in some set of states.

Finite state machines are very useful for describing logical operations and
are often combined with continuous state models (differential or different equa-
tions) to create a hybrid system model. The study of hybrid systems is beyond
the scope of this text, but excellent references include Lee and Seshia [LS15] and
Alur [Alu15].

Simulation and Analysis

State space models can be used to answer many questions. One of the most com-
mon, as we have seen in the previous examples, involves predicting the evolution
of the system state from a given initial condition. While for simple models this can
be done in closed form, more often it is accomplished through computer simula-
tion.

Consider again the damped spring–mass system from Section 3.1, but this time
with an external force applied, as shown in Figure 3.10. We wish to predict the
motion of the system for a periodic forcing function, with a given initial condition,
and determine the amplitude, frequency and decay rate of the resulting motion.

We choose to model the system with a linear ordinary differential equation.
Using Hooke’s law to model the spring and assuming that the damper exerts a
force that is proportional to the velocity of the system, we have

mq̈+ cq̇+ kq = u, (3.16)

where m is the mass, q is the displacement of the mass, c is the coefficient of
viscous friction, k is the spring constant and u is the applied force. In state space
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Figure 3.10: A driven spring–mass system with damping. Here we use a linear damping
element with coefficient of viscous friction c. The mass is driven with a sinusoidal force of
amplitude A.

form, using x = (q, q̇) as the state and choosing y = q as the output, we have

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎩

x2

−
c

m
x2−

k

m
x1 +

u

m

⎫
⎪⎪⎪⎪⎪⎪⎭
, y = x1.

We see that this is a linear second-order differential equation with one input u and
one output y.

We now wish to compute the response of the system to an input of the form u =
Asinωt. Although it is possible to solve for the response analytically, we instead
make use of a computational approach that does not rely on the specific form of
this system. Consider the general state space system

dx

dt
= f (x,u).

Given the state x at time t, we can approximate the value of the state at a short time
h > 0 later by assuming that the rate of change f (x,u) is constant over the interval
t to t +h. This gives

x(t +h) = x(t)+h f (x(t),u(t)). (3.17)

Iterating this equation, we can thus solve for x as a function of time. This approx-
imation is known as Euler integration and is in fact a difference equation if we let
h represent the time increment and write x[k] = x(kh), as we saw in Example 3.5.
Although modern simulation tools such as MATLAB and Mathematica use more
accurate methods than Euler integration, they still have some of the same basic
trade-offs.

Returning to our specific example, Figure 3.11 shows the results of computing
x(t) using equation (3.17), along with the analytical computation. We see that as
h gets smaller, the computed solution converges to the exact solution. The form
of the solution is also worth noticing: after an initial transient, the system settles
into a periodic motion. The portion of the response after the transient is called the
steady-state response to the input.

In addition to generating simulations, models can also be used to answer other
types of questions. Two that are central to the methods described in this text con-
cern the stability of an equilibrium point and the input/output frequency response.
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Figure 3.11: Simulation of the forced spring–mass system with different simulation time
constants. The solid line represents the analytical solution. The dashed lines represent the
approximate solution via the method of Euler integration, using decreasing step sizes.

We illustrate these two computations through the examples below and return to the
general computations in later chapters.

Returning to the damped spring–mass system, the equations of motion with no
input forcing are given by

dx

dt
=

⎧
⎪⎪⎪⎪⎩

x2

−
c

m
x2−

k

m
x1

⎫
⎪⎪⎪⎪⎭ , (3.18)

where x1 is the position of the mass (relative to the rest position) and x2 is its
velocity. We wish to show that if the initial state of the system is away from the
rest position, the system will return to the rest position eventually (we will later
define this situation to mean that the rest position is asymptotically stable). While
we could heuristically show this by simulating many, many initial conditions, we
seek instead to prove that this is true for any initial condition.

To do so, we construct a function V : Rn→ R that maps the system state to a
positive real number. For mechanical systems, a convenient choice is the energy of
the system,

V (x) =
1

2
kx2

1 +
1

2
mx2

2. (3.19)

If we look at the time derivative of the energy function, we see that

dV

dt
= kx1ẋ1 +mx2ẋ2 = kx1x2 +mx2(−

c

m
x2−

k

m
x1) =−cx2

2,

which is always either negative or zero. Hence V (x(t)) is never increasing and,
using a bit of analysis that we will see formally later, the individual states must
remain bounded.

If we wish to show that the states eventually return to the origin, we must use
a slightly more detailed analysis. Intuitively, we can reason as follows: suppose
that for some period of time, V (x(t)) stops decreasing. Then it must be true that
V̇ (x(t)) = 0, which in turn implies that x2(t) = 0 for that same period. In that case,
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ẋ2(t) = 0, and we can substitute into the second line of equation (3.18) to obtain

0 = ẋ2 =−
c

m
x2−

k

m
x1 =−

k

m
x1.

Thus we must have that x1 also equals zero, and so the only time that V (x(t)) can
stop decreasing is if the state is at the origin (and hence this system is at its rest
position). Since we know that V (x(t)) is never increasing (because V̇ ≤ 0), we
therefore conclude that the origin is stable (for any initial condition).

This type of analysis, called Lyapunov stability analysis, is considered in detail
in Chapter 5. It shows some of the power of using models for the analysis of system
properties.

Another type of analysis that we can perform with models is to compute the
output of a system to a sinusoidal input, known as the frequency response. We
again consider the spring–mass system, but this time keeping the input and leaving
the system in its original form:

mq̈+ cq̇+ kq = u. (3.20)

We wish to understand how the system responds to a sinusoidal input of the form

u(t) = Asinωt.

We will see how to do this analytically in Chapter 7, but for now we make use of
simulations to compute the answer.

We first begin with the observation that if q(t) is the solution to equation (3.20)
with input u(t), then applying an input 2u(t) will give a solution 2q(t) (this is easily
verified by substitution). Hence it suffices to look at an input with unit magnitude,
A = 1. A second observation, which we will prove in Chapter 6, is that the long-
term response of the system to a sinusoidal input is itself a sinusoid at the same
frequency, and so the output has the form

q(t) = g(ω)sin(ωt +ϕ(ω)),

where g(ω) is called the gain of the system and ϕ(ω) is called the phase (or phase
offset).

To compute the frequency response numerically, we can simulate the system
at a set of frequencies ω1, . . . ,ωN and plot the gain and phase at each of these
frequencies. An example of this type of computation is shown in Figure 3.12. For
linear systems the frequency response does not depend on the amplitude A of the
input signal. Frequency response can also be applied to nonlinear systems but the
gain and phase then depend on the A.

3.3 Modeling Methodology

To deal with large, complex systems, it is useful to have different representations
of the system that capture the essential features and hide irrelevant details. In all
branches of science and engineering it is common practice to use some graphical
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Figure 3.12: A frequency response (gain only) computed by measuring the response of
individual sinusoids. The figure on the left shows the response of the system as a function
of time to a number of different unit magnitude inputs (at different frequencies). The figure
on the right shows this same data in a different way, with the magnitude of the response
plotted as a function of the input frequency. The filled circles correspond to the particular
frequencies shown in the time responses.

description of systems, called schematic diagrams. They can range from stylistic
pictures to drastically simplified standard symbols. These pictures make it possi-
ble to get an overall view of the system and to identify the individual components.
Examples of such diagrams are shown in Figure 3.13. Schematic diagrams are
useful because they give an overall picture of a system, showing different subpro-
cesses and their interconnection and indicating variables that can be manipulated
and signals that can be measured.

Block Diagrams

A special graphical representation called a block diagram has been developed in
control engineering. The purpose of a block diagram is to emphasize the informa-
tion flow and to hide details of the system. In a block diagram, different process
elements are shown as boxes, and each box has inputs denoted by lines with arrows
pointing toward the box and outputs denoted by lines with arrows going out of the
box. The inputs denote the variables that influence a process, and the outputs de-
note the signals that we are interested in or signals that influence other subsystems.
Block diagrams can also be organized in hierarchies, where individual blocks may
themselves contain more detailed block diagrams.

Figure 3.14 shows some of the notation that we use for block diagrams. Sig-
nals are represented as lines, with arrows to indicate inputs and outputs. The first
diagram is the representation for a summation of two signals. An input/output
response is represented as a rectangle with the system name (or mathematical de-
scription) in the block. Two special cases are a proportional gain, which scales the
input by a multiplicative factor, and an integrator, which outputs the integral of the
input signal.

Figure 3.15 illustrates the use of a block diagram, in this case for modeling the
flight response of a fly. The flight dynamics of an insect are incredibly intricate,
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Figure 3.13: Schematic diagrams for different disciplines. Each diagram is used to illustrate
the dynamics of a control system: (a) electrical schematics for a power system [Kun93], (b) a
biological circuit diagram for a synthetic clock circuit [ASMN03], (c) a process diagram for
a distillation column [SEM04] and (d) a Petri net description of a communication protocol.
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Figure 3.14: Standard block diagram elements. The arrows indicate the the inputs and out-
puts of each element, with the mathematical operation corresponding to the blocked labeled
at the output. The system block (f) represents the full input/output response of a dynamical
system.



3.3. MODELING METHODOLOGY 3-25

Wind

ΣΣ
Ref (a) Sensory

Motor

System

(b) Wing

Aero-

dynamics

(c) Body

Dynamics

(d) Drag

Aero-

dynamics

(e) Vision

System
−1

Figure 3.15: A block diagram representation of the flight control system for an insect flying
against the wind. The mechanical portion of the model consists of the rigid-body dynamics
of the fly, the drag due to flying through the air and the forces generated by the wings. The
motion of the body causes the visual environment of the fly to change, and this information
is then used to control the motion of the wings (through the sensory motor system), closing
the loop.

involving careful coordination of the muscles within the fly to maintain stable flight
in response to external stimuli. One known characteristic of flies is their ability to
fly upwind by making use of the optical flow in their compound eyes as a feedback
mechanism. Roughly speaking, the fly controls its orientation so that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose the overall dynamics
of the system into a series of interconnected subsystems (or blocks). Referring to
Figure 3.15, we can model the insect navigation system through an interconnection
of five blocks. The sensory motor system (a) takes the information from the visual
system (e) and generates muscle commands that attempt to steer the fly so that the
point of contraction is centered. These muscle commands are converted into forces
through the flapping of the wings (b) and the resulting aerodynamic forces that are
produced. The forces from the wings are combined with the drag on the fly (d) to
produce a net force on the body of the fly. The wind velocity enters through the
drag aerodynamics. Finally, the body dynamics (c) describe how the fly translates
and rotates as a function of the net forces that are applied to it. The insect position,
speed and orientation are fed back to the drag aerodynamics and vision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicated subsystem. For
example, the visual system of a fruit fly consists of two complicated compound
eyes (with about 700 elements per eye), and the sensory motor system has about
200,000 neurons that are used to process information. A more detailed block dia-
gram of the insect flight control system would show the interconnections between
these elements, but here we have used one block to represent how the motion of
the fly affects the output of the visual system, and a second block to represent how
the visual field is processed by the fly’s brain to generate muscle commands. The
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choice of the level of detail of the blocks and what elements to separate into dif-
ferent blocks often depends on experience and on the questions that one wants to
answer using the model. One of the powerful features of block diagrams is their
ability to hide information about the details of a system that may not be needed to
gain an understanding of the essential dynamics of the system.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, we need to
form the differential equations that describe the complete system. In many cases
the equations can be obtained by combining the differential equations that describe
each subsystem and substituting variables. This simple procedure cannot be used
when there are closed loops of subsystems that all have a direct connection be-
tween inputs and outputs, known as an algebraic loop. A direct connection means
that a change in the output u gives an instantaneous change in the output y. The
systems (3.5) and (3.6) have no direct connection if hu(x,u) = 0 and D = 0 respec-
tively.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx

dt
= f (x,u), y = h(x), (3.21)

and a proportional controller described by u = −ky. There is no direct term since
the function h does not depend on u. In that case we can obtain the equation for
the closed loop system simply by replacing u by −ky =−kh(x) in equation (3.21)
to give

dx

dt
= f (x,−kh(x)), y = h(x),

which is an ordinary differential equation.
The situation is more complicated if there is a direct term. If y = h(x,u), then

replacing u by −ky gives

dx

dt
= f (x,−ky), y = h(x,−ky).

To obtain a differential equation for x, the algebraic equation y = h(x,−ky) must
be first be solved to give y = α(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. The resulting model
becomes a set of differential algebraic equation, similar to equation 3.4. Resolving
algebraic loops is a nontrivial problem because it requires the symbolic solution of
algebraic equations. Most block diagram-oriented modeling languages cannot han-
dle algebraic loops, and they simply give a diagnosis that such loops are present.
In the era of analog computing, algebraic loops were eliminated by introducing
fast dynamics between the loops. This created differential equations with fast and
slow modes that are difficult to solve numerically. Advanced modeling languages
like Modelica use several sophisticated methods to resolve algebraic loops.
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Modeling from Experiments

Since control systems are provided with sensors and actuators, it is also possible
to obtain models of system dynamics from experiments on the process. The mod-
els are restricted to input/output models since only these signals are accessible to
experiments, but modeling from experiments can also be combined with modeling
from physics through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the response to a
step change in the control signal. Such an experiment begins by setting the control
signal to a constant value; then when steady state is established, the control signal
is changed quickly to a new level and the output is observed. The experiment
gives the step response of the system, and the shape of the response gives useful
information about the dynamics. It immediately gives an indication of the response
time, and it tells if the system is oscillatory or if the response is monotone.

Example 3.7 Spring–mass system
The dynamics of the spring–mass system in Section 3.1 are given by

mq̈+ cq̇+ kq = u. (3.22)

We wish to determine the constants m, c and k by measuring the response of the
system to a step input of magnitude F0.

We will show in Chapter 7 that when c2 < 4km, the step response for this system
from the rest configuration is given by

q(t) =
F0

k

(

1−
1

ωd

√
k

m
exp
(
−

ct

2m

)
sin(ωdt +ϕ)

)

,

ωd =

√
4km− c2

2m
, ϕ = tan−1

(√
4km− c2

c

)

.

From the form of the solution, we see that the shape of the step response is deter-
mined by the parameters of the system. Hence, by measuring certain features of
the step response we can determine the parameter values.

Figure 3.16 shows the response of the system to a step of magnitude F0 = 20 N,
along with some measurements. We start by noting that the steady-state position
of the mass (after the oscillations die down) is a function of the spring constant k:

q(∞) =
F0

k
, (3.23)

where F0 is the magnitude of the applied force (F0 = 1 for a unit step input). The
parameter 1/k is called the gain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2π

T
=

√
4km− c2

2m
. (3.24)

Finally, the rate of decay of the oscillations is given by the exponential factor in
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Figure 3.16: Step response for a spring–mass system. The magnitude of the step input is
F0 = 20 N. The period of oscillation T is determined by looking at the time between two
subsequent local maxima in the response. The period combined with the steady-state value
q(∞) and the relative decrease between local maxima can be used to estimate the parameters
in a model of the system.

the solution. Measuring the amount of decay between two peaks, we have

log
(

q(t1)−
F0

k

)
− log

(
q(t2)−

F0

k

)
=

c

2m
(t2− t1). (3.25)

Using this set of three equations, we can solve for the parameters and determine
that for the step response in Figure 3.16 we have m ≈ 250 kg, c ≈ 60 N s/m and
k ≈ 40 N/m. ∇

Modeling from experiments can also be done using many other signals. Sinu-
soidal signals are commonly used (particularly for systems with fast dynamics) and
precise measurements can be obtained by exploiting correlation techniques. An in-
dication of nonlinearities can be obtained by repeating experiments with input sig-
nals having different amplitudes. Modeling based on sinusoidal signal is very time
consuming for systems with slow dynamics. In such situations it is advantageous
to used signals that switch between two different levels. There is a whole subfield
of control called system identification that deals with experimental determination
of models. Questions like optimal inputs, experiments in open and closed loop,
model accuracy and fundamental limitations are dealt with extensively.

Normalization and Scaling

When deriving a model, it is often useful to introduce dimension-free variables.
Such a procedure can often simplify the equations for a system by reducing the
number of parameters. It can also reveal interesting properties of the model. It is
also useful to normalize variables by scaling to improve numerics and allow faster
and more accurate simulations.

The procedure of scaling is straightforward in principle: choose units for each
independent variable and introduce new variables by dividing the variables by the
chosen normalization unit. We illustrate the procedure with two examples.
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Example 3.8 Spring–mass system
Consider again the spring–mass system introduced earlier. Neglecting the damp-
ing, the system is described by

mq̈+ kq = u.

The model has two parameters m and k. To normalize the model we introduce
dimension-free variables x = q/l and τ = ω0t, where ω0 =

√
k/m and l is the

chosen length scale. We scale force by mlω2
0 and introduce v = u/(mlω2

0 ). The
scaled equation then becomes

d2x

dτ2
=

d2q/l

d(ω0t)2
=

1

mlω2
0

(−kq+u) =−x+ v,

which is the normalized undamped spring–mass system. Notice that the normal-
ized model has no parameters, while the original model had two parameters m
and k. Introducing the scaled, dimension-free state variables z1 = x = q/l and
z2 = dx/dτ = q̇/(lω0), the model can be written as

d

dt

⎧
⎪⎪⎩

z1

z2

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0 1
−1 0

⎫
⎪⎪⎭
⎧
⎪⎪⎩

z1

z2

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

0
v

⎫
⎪⎪⎭ .

This simple linear equation describes the dynamics of any spring–mass system,
independent of the particular parameters, and hence gives us insight into the fun-
damental dynamics of this oscillatory system. To recover the physical frequency
of oscillation or its magnitude, we must invert the scaling we have applied. ∇

Example 3.9 Balance system
Consider the balance system described in Section 3.1. Neglecting damping by
putting c = 0 and γ = 0 in equation (3.9), the model can be written as

(M+m)
d2 p

dt2
−ml cosθ

d2θ

dt2
+ml sinθ

(dθ

dt

)2
= F,

−ml cosθ
d2 p

dt2
+(J+ml2)

d2θ

dt2
−mgl sinθ = 0.

Let ω0 =
√

mgl/(J+ml2), choose the length scale as l, let the time scale be 1/ω0,
choose the force scale as (M+m)lω2

0 and introduce the scaled variables τ = ω0t,
x = p/l and u = F/((M+m)lω2

0 ). The equations then become

d2x

dτ2
−α cosθ

d2θ

dτ2
+α sinθ

(dθ

dτ

)2
= u, −β cosθ

d2x

dτ2
+

d2θ

dτ2
− sinθ = 0,

where α = m/(M+m) and β = ml2/(J+ml2). Notice that the original model has
five parameters m, M, J, l and g but the normalized model has only two parameters
α and β . If M≫ m and ml2≫ J, we get α ≈ 0 and β ≈ 1 and the model can be
approximated by

d2x

dτ2
= u,

d2θ

dτ2
− sinθ = ucosθ .
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The model can be interpreted as a mass combined with an inverted pendulum
driven by the same input. ∇

For large systems scaling is not so easy, there are many choices and good selec-
tion of variables and normalization units require good understanding of the physics
of the system and the numerical methods that will be used for analysis, scaling of
large systems is therefor still an art.

3.4 Modeling Examples

In this section we introduce additional examples that illustrate some of the differ-
ent types of systems for which one can develop differential equation and difference
equation models. These examples are specifically chosen from a range of differ-
ent fields to highlight the broad variety of systems to which feedback and control
concepts can be applied. A more detailed set of applications that serve as running
examples throughout the text are given in Chapter 4.

Motion Control Systems

Motion control systems involve the use of computation and feedback to control the
movement of a mechanical system. Motion control systems range from nanoposi-
tioning systems (atomic force microscopes, adaptive optics), to control systems
for the read/write heads in a disk drive of a CD player, to manufacturing systems
(transfer machines and industrial robots), to automotive control systems (antilock
brakes, suspension control, traction control), to air and space flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 3.10 Vehicle steering
A common problem in motion control is to control the trajectory of a vehicle
through an actuator that causes a change in the orientation. A steering wheel on an
automobile and the front wheel of a bicycle are two examples, but similar dynam-
ics occur in the steering of ships or control of the pitch dynamics of an aircraft.
In many cases, we can understand the basic behavior of these systems through the
use of a simple model that captures the basic kinematics of the system.

Consider a vehicle with two wheels as shown in Figure 3.17. For the purpose
of steering we are interested in a model that describes how the velocity of the
vehicle depends on the steering angle δ . To be specific, let b be the wheel base and
consider the velocity v at the center of mass, a distance a from the rear wheel, as
shown in Figure 3.17. Let x and y be the coordinates of the center of mass, θ the
heading angle and α the angle between the velocity vector v and the centerline of
the vehicle. The point O is at the intersection of the normals to the front and rear
wheels. The distance from O to the center of mass is ra.

Assuming no slipping of the wheels the motion is a rotation around the point O
in the figure. Since b = ra tanδ and a = ra tanα , it follows that tanα = (a/b) tanδ
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Figure 3.17: Vehicle steering dynamics. The left figure shows an overhead view of a vehicle
with four wheels. The wheel base is b and the center of mass at a distance a forward of the
rear wheels. By approximating the motion of the front and rear pairs of wheels by a single
front wheel and a single rear wheel, we obtain an abstraction called the bicycle model, shown
on the right. The steering angle is δ and the velocity at the center of mass has the angle α
relative the length axis of the vehicle. The position of the vehicle is given by (x,y) and the
orientation (heading) by θ .

and we get the following relation between α and the steering angle δ :

α = arctan
(a tanδ

b

)
. (3.26)

Assume that the wheels are rolling without slip and that the velocity of the rear
wheel is v0. The vehicle speed at its center of mass is v = v0/cosα , and we find
that the motion of this point is given by

dx

dt
= vcos(α +θ) = v0

cos(α +θ)

cosα
,

dy

dt
= vsin(α +θ) = v0

sin(α +θ)

cosα
.

(3.27)

To see how the angle θ is influenced by the steering angle, we observe from Fig-
ure 3.17 that the vehicle rotates with the angular velocity v0/ra around the point
O. Hence

dθ

dt
=

v0

ra
=

v0

b
tanδ . (3.28)

Equations (3.26)–(3.28) can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the road and that the two front
wheels can be approximated by a single wheel at the center of the car. This model
is often called the bicycle model. The assumption of no slip can be relaxed by
adding an extra state variable, giving a more realistic model. Such a model also
describes the steering dynamics of ships as well as the pitch dynamics of aircraft
and missiles. It is also possible to choose coordinates so that the reference point is
at the rear wheels (corresponding to setting α = 0), a model often referred to as
the Dubins car [Dub57].

Figure 3.17 represents the situation when the vehicle moves forward and has
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Figure 3.18: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) redirects its
engine thrust downward so that it can “hover” above the ground. Some air from the engine
is diverted to the wing tips to be used for maneuvering. As shown in (b), the net thrust on
the aircraft can be decomposed into a horizontal force F1 and a vertical force F2 acting at a
distance r from the center of mass.

front-wheel steering. The figure shows that the model also applies to rear wheel
steering if the sign of the velocity is reversed. ∇

Example 3.11 Vectored thrust aircraft
Consider the motion of vectored thrust aircraft, such as the Harrier “jump jet”
shown Figure 3.18a. The Harrier is capable of vertical takeoff by redirecting its
thrust downward and through the use of smaller maneuvering thrusters located on
its wings. A simplified model of the Harrier is shown in Figure 3.18b, where we
focus on the motion of the vehicle in a vertical plane through the wings of the
aircraft. We resolve the forces generated by the main downward thruster and the
maneuvering thrusters as a pair of forces F1 and F2 acting at a distance r below the
aircraft (determined by the geometry of the thrusters).

Let (x,y,θ) denote the position and orientation of the center of mass of the
aircraft. Let m be the mass of the vehicle, J the moment of inertia, g the gravita-
tional constant and c the damping coefficient. Then the equations of motion for the
vehicle are given by

mẍ = F1 cosθ −F2 sinθ − cẋ,

mÿ = F1 sinθ +F2 cosθ −mg− cẏ,

Jθ̈ = rF1.

(3.29)

It is convenient to redefine the inputs so that the origin is an equilibrium point
of the system with zero input. Letting u1 = F1 and u2 = F2−mg, the equations
become

mẍ =−mgsinθ − cẋ+u1 cosθ −u2 sinθ ,

mÿ = mg(cosθ −1)− cẏ+u1 sinθ +u2 cosθ ,

Jθ̈ = ru1.

(3.30)
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Figure 3.19: Schematic diagram of a queuing system. Messages arrive at rate λ and are
stored in a queue. Messages are processed and removed from the queue at rate µ . The average
length of the queue is given by x ∈ R.

These equations describe the motion of the vehicle as a set of three coupled second-
order differential equations. ∇

Information Systems

Information systems range from communication systems like the Internet to soft-
ware systems that manipulate data or manage enterprise-wide resources. Feedback
is present in all these systems, and designing strategies for routing, flow control and
buffer management is a typical problem. Many results in queuing theory emerged
from design of telecommunication systems and later from development of the In-
ternet and computer communication systems [BG87, Kle75, Sch87]. Management
of queues to avoid congestion is a central problem and we will therefore start by
discussing the modeling of queuing systems.

Example 3.12 Queuing systems
A schematic picture of a simple queue is shown in Figure 3.19. Requests arrive
and are then queued and processed. There can be large variations in arrival rates
and service rates, and the queue length builds up when the arrival rate is larger
than the service rate. When the queue becomes too large, service is denied using
an admission control policy.

The system can be modeled in many different ways. One way is to model each
incoming request, which leads to an event-based model where the state is an integer
that represents the queue length. The queue changes when a request arrives or a
request is serviced. The statistics of arrival and servicing are typically modeled as
random processes. In many cases it is possible to determine statistics of quantities
like queue length and service time, but the computations can be quite complicated.

A significant simplification can be obtained by approximating the discrete queue
length by a continuous variable. Instead of keeping track of each request we instead
view service and requests as continuous flows. The model obtained is called a flow
model because of the analogy with fluid dynamics where motion of molecules are
replace by continuous flows. Hence, if the queue length x is a continuous vari-
able and the arrivals and services are flows with rates λ and µ , the system can be
modeled by the first-order differential equation

dx

dt
= λ −µ = λ −µmax f (x), x≥ 0, (3.31)
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Figure 3.20: Queuing dynamics. (a) The steady-state queue length as a function of λ/µmax.
(b) The behavior of the queue length when there is a temporary overload in the system. The
solid line shows a realization of an event-based simulation, and the dashed line shows the
behavior of the flow model (3.32). The maximum service rate is µmax = 1, and the arrival
rate starts at λ = 0.5. The arrival rate is increased to λ = 4 at time 20, and it returns to
λ = 0.5 at time 25.

proposed by Agnew [Agn76]. The service rate µ depends on the queue length; if
there are no capacity restrictions we have µ = x/T where T is the time it takes to
serve one customer. The service rate thus increases linearly with the queue length.
In reality the growth will be slower because longer queues require more resources,
and the service rate has an upper limit µmax. These effects are captured by by
modeling the service rate as µmax f (x) in equation (3.32). The function f (x) is
monotone, approximately linear for small x and f (∞) = 1.

For a particular queue, the function can be determined empirically by mea-
suring the queue length for different arrival and service rates. A simple choice is
f (x) = x/(1+ x), which gives the model

dx

dt
= λ −µmax

x

x+1
. (3.32)

It was shown by Tipper [TS90], that if arrival and service processes are Poisson
processes, then average queue length is given by equation (3.32). Furthermore the
equation equation (3.32) is a good approximation even for short queue lengths.

To explore the properties of the model (3.32) we will first investigate the equi-
librium value of the queue length when the arrival rate λ is constant. Setting the
derivative dx/dt to zero in equation (3.32) and solving for x, we find that the queue
length x approaches the steady-state value

xe =
λ

µmax−λ
. (3.33)

Figure 3.20a shows the steady-state queue length as a function of λ/µmax, the
effective service rate excess. Notice that the queue length increases rapidly as λ
approaches µmax. To have a queue length less than 20 requires λ/µmax < 0.95.
The average time to service a request can be shown to be Ts = (x+1)/µmax, and it
increases dramatically as λ approaches µmax.

Figure 3.20b illustrates the behavior of the server in a typical overload situation.
The figure shows that the queue builds up quickly and clears very slowly. Since the
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Figure 3.21: Illustration of feedback in the virtual memory system of the IBM/370. (a) The
effect of feedback on execution times in a simulation, following [BG68]. Results with no
feedback are shown with o, and results with feedback with x. Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three states are obtained based
on process measurements.

response time is proportional to queue length, it means that the quality of service
is poor for a long period after an overload. This behavior is called the rush-hour
effect and has been observed in web servers and many other queuing systems such
as automobile traffic.

The dashed line in Figure 3.20b shows the behavior of the flow model, which
describes the average queue length. The simple model captures behavior qualita-
tively, but there are variations from sample to sample when the queue length is
short. ∇

Many complex systems use discrete control actions. Such systems can be mod-
eled by characterizing the situations that correspond to each control action, as il-
lustrated in the following example.

Example 3.13 Virtual memory paging control
An early example of the use of feedback in computer systems was applied in the
operating system OS/VS for the IBM 370 [BG68, Cro75]. The system used virtual
memory, which allows programs to address more memory than is physically avail-
able as fast memory. Data in current fast memory (random access memory, RAM)
is accessed directly, but data that resides in slower memory (disk) is automatically
loaded into fast memory. The system is implemented in such a way that it appears
to the programmer as a single large section of memory. The system performed very
well in many situations, but very long execution times were encountered in over-
load situations, as shown by the open circles in Figure 3.21a. The difficulty was
resolved with a simple discrete feedback system. The load of the central process-
ing unit (CPU) was measured together with the number of page swaps between
fast memory and slow memory. The operating region was classified as being in
one of three states: normal, underload or overload. The normal state is character-
ized by high CPU activity, the underload state is characterized by low CPU activity
and few page replacements, the overload state has moderate to low CPU load but
many page replacements; see Figure 3.21b. The boundaries between the regions
and the time for measuring the load were determined from simulations using typ-
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ical loads. The control strategy was to do nothing in the normal load condition,
to exclude a process from memory in the overload condition and to allow a new
process or a previously excluded process in the underload condition. The crosses
in Figure 3.21a show the effectiveness of the simple feedback system in simulated
loads. Similar principles are used in many other situations, e.g., in fast, on-chip
cache memory.

∇

Example 3.14 Consensus protocols in sensor networks
Sensor networks are used in a variety of applications where we want to collect
and aggregate information over a region of space using multiple sensors that are
connected together via a communications network. Examples include monitoring
environmental conditions in a geographical area (or inside a building), monitoring
the movement of animals or vehicles and monitoring the resource loading across
a group of computers. In many sensor networks the computational resources are
distributed along with the sensors, and it can be important for the set of distributed
agents to reach a consensus about a certain property, such as the average tempera-
ture in a region or the average computational load among a set of computers.

To illustrate how such a consensus might be achieved, we consider the problem
of computing the average value of a set of numbers that are locally available to the
individual agents. We wish to design a “protocol” (algorithm) such that all agents
will agree on the average value. We consider the case in which all agents cannot
necessarily communicate with each other directly, although we will assume that
the communications network is connected (meaning that no two groups of agents
are completely isolated from each other). Figure 3.22a shows a simple situation of
this type.

We model the connectivity of the sensor network using a graph, with nodes
corresponding to the sensors and edges corresponding to the existence of a di-
rect communications link between two nodes. For any such graph, we can build
an adjacency matrix, where each row and column of the matrix corresponds to a
node and a 1 in the respective row and column indicates that the two nodes are
connected. For the network shown in Figure 3.22a, the corresponding adjacency
matrix is

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
0 1 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We use the notation Ni to represent the set of neighbors of a node i. For example,
in the network shown in Figure 3.22a N2 = {1,3,4,5} and N3 = {2,4}.

To solve the consensus problem, let xi be the state of the ith sensor, correspond-
ing to that sensor’s estimate of the average value that we are trying to compute. We
initialize the state to the value of the quantity measured by the individual sensor.
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Figure 3.22: Consensus protocols for sensor networks. (a) A simple sensor network with
five nodes. In this network, node 1 communicates with node 2 and node 2 communicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the convergence of the consensus
protocol (3.34) to the average value of the initial conditions.

The consensus protocol (algorithm) can now be realized as a local update law

xi[k+1] = xi[k]+ γ ∑
j∈Ni

(x j[k]− xi[k]). (3.34)

This protocol attempts to compute the average by updating the local state of each
agent based on the value of its neighbors. The combined dynamics of all agents
can be written in the form

x[k+1] = x[k]− γ(D−A)x[k], (3.35)

where A is the adjacency matrix and D is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constant γ describes the
rate at which the estimate of the average is updated based on information from
neighboring nodes. The matrix L := D−A is called the Laplacian of the graph.

The equilibrium points of equation (3.35) are the set of states such that xe[k+
1] = xe[k]. It can be shown that if the network is connected, xe = (α,α, . . . ,α) is an
equilibrium state for the system, corresponding to each sensor having an identical
estimate α for the average. Furthermore, we can show that α is indeed the average
value of the initial states. Since there can be cycles in the graph, it is possible that
the state of the system could enter into an infinite loop and never converge to the
desired consensus state. A formal analysis requires tools that will be introduced
later in the text, but it can be shown that for any connected graph we can always
find a γ such that the states of the individual agents converge to the average. A
simulation demonstrating this property is shown in Figure 3.22b. Although we
have focused here on consensus to the average value of a set of measurements,
other consensus states can be achieved through choice of appropriate feedback
laws. Examples include finding the maximum or minimum value in a network,
counting the number of nodes in a network or computing higher-order statistical
moments of a distributed quantity [OSFM07]. ∇
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Figure 3.23: Biological circuitry. The cell on the left is a bovine pulmonary cell, stained so
that the nucleus, actin and chromatin are visible. The figure on the right gives an overview
of the process by which proteins in the cell are made. RNA is transcribed from DNA by
an RNA polymerase enzyme. The RNA is then translated into a polypeptide chain by a
molecular machine called a ribosome, and then the polypeptide chain folds into a protein
molecule.

Biological Systems

Biological systems provide perhaps the richest source of feedback and control ex-
amples. The basic problem of homeostasis, in which a quantity such as temperature
or blood sugar level is regulated to a fixed value, is but one of the many types of
complex feedback interactions that can occur in molecular machines, cells, organ-
isms and ecosystems.

Example 3.15 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNA) is generated from
a segment of DNA. The promoter region of a gene allows transcription to be con-
trolled by the presence of other proteins, called transcription factors, which bind
to the promoter region and either repress or activate RNA polymerase, the enzyme
that produces an mRNA transcript from DNA. The mRNA is then translated into
a protein according to its nucleotide sequence. This process is illustrated in Fig-
ure 3.23.

A simple model of the transcriptional regulation process is through the use
of a Hill function [dJ02, Mur04]. Consider the regulation of a protein A with a
concentration given by pa and a corresponding mRNA concentration ma. Let B
be a second protein with concentration pb that represses the production of protein
A through transcriptional regulation. The resulting dynamics of pa and ma can be
written as

dma

dt
=

αab

1+ kab p
nab
b

+αa0− γama,
d pa

dt
= βama−δa pa, (3.36)

where αab + αa0 is the unregulated transcription rate, γa represents the rate of
degradation of mRNA, αab, kab and nab are parameters that describe how B re-
presses A, βa represents the rate of production of the protein from its correspond-
ing mRNA and δa represents the rate of degradation of the protein A. The pa-
rameter αa0 describes the “leakiness” of the promoter, and nab is called the Hill
coefficient and relates to the cooperativity of the promoter.
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Figure 3.24: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, showing
the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

A similar model can be used when a protein activates the production of another
protein rather than repressing it. In this case, the equations have the form

dma

dt
=

αabkab p
nab
b

1+ kab p
nab
b

+αa0− γama,
d pa

dt
= βama−δa pa, (3.37)

where the variables are the same as described previously. Note that in the case of
the activator, if pb is zero, then the production rate is αa0 ≪ αab (versus αab +
αa0 for the repressor). As pb gets large, the first term in the expression for ṁa

approaches 1 and the transcription rate becomes αab + αa0 (versus αa0 for the
repressor). Thus we see that the activator and repressor act in opposite fashion
from each other.

As an example of how these models can be used, we consider the model of a
“repressilator,” originally due to Elowitz and Leibler [EL00]. The repressilator is
a synthetic circuit in which three proteins each repress another in a cycle. This is
shown schematically in Figure 3.24a, where the three proteins are TetR, λ cI and
LacI. The basic idea of the repressilator is that if TetR is present, then it represses
the production of λ cI. If λ cI is absent, then LacI is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, then λ cI
is no longer repressed, and so on. If the dynamics of the circuit are designed prop-
erly, the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (3.36), with A and
B replaced by the appropriate combination of TetR, cI and LacI. The state of the
system is then given by x= (mTetR, pTetR,mcI, pcI,mLacI, pLacI). Figure 3.24b shows
the traces of the three protein concentrations for parameters n = 2, α = 0.5, k =
6.25× 10−4, α0 = 5× 10−4, γ = 5.8× 10−3, β = 0.12 and δ = 1.2× 10−3 with
initial conditions x(0) = (1,0,0,200,0,0) (following [EL00]). ∇

Example 3.16 Wave propagation in neuronal networks
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The dynamics of the membrane potential in a cell are a fundamental mechanism
in understanding signaling in cells, particularly in neurons and muscle cells. The
Hodgkin–Huxley equations give a simple model for studying propagation waves
in networks of neurons. The model for a single neuron has the form

C
dV

dt
=−INa− IK− Ileak + Iinput,

where V is the membrane potential, C is the capacitance, INa and IK are the current
caused by the transport of sodium and potassium across the cell membrane, Ileak

is a leakage current and Iinput is the external stimulation of the cell. Each current
obeys Ohm’s law, i.e.,

I = g(V −E),

where g is the conductance, which is different for different ions, and E is the
equilibrium voltage. The equilibrium voltage is given by Nernst’s law,

E =
RT

nF
log

ce

ci
,

where R is Boltzmann’s constant, T is the absolute temperature, F is Faraday’s
constant, n is the charge (or valence) of the ion and ci and ce are the ion concentra-
tions inside the cell and in the external fluid. At 20 ◦C we have RT/F = 20 mV.

The Hodgkin–Huxley model was originally developed as a means to predict
the quantitative behavior of the squid giant axon [HH52]. Hodgkin and Huxley
shared the 1963 Nobel Prize in Physiology (along with J. C. Eccles) for analysis
of the electrical and chemical events in nerve cell discharges. The voltage clamp
described in Section 1.3 was a key element in Hodgkin and Huxley’s experiments.

∇

3.5 Further Reading

Modeling is ubiquitous in engineering and science and has a long history in applied
mathematics. For example, the Fourier series was introduced by Fourier when he
modeled heat conduction in solids [Fou07]. Models of dynamics have been de-
veloped in many different fields, including mechanics [Arn78, Gol53], heat con-
duction [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, Ell94], robotics [MLS94,
SV89], circuits [Gui63], power systems [Kun93], acoustics [Ber54] and microme-
chanical systems [Sen01]. Control theory requires modeling from many differ-
ent domains, and most control theory texts contain several chapters on model-
ing using ordinary differential equations and difference equations (see, for ex-
ample, [FPEN05]). A classic book on the modeling of physical systems, espe-
cially mechanical, electrical and thermofluid systems, is Cannon [Can03]. The
book by Aris [Ari94] is highly original and has a detailed discussion of the use
of dimension-free variables. Two of the authors’ favorite books on modeling of
biological systems are J. D. Murray [Mur04] and Wilson [Wil99]. A good source
for system identification in Ljung [Lju99].
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Exercises

3.1 (Chain of integrators form) Consider the linear ordinary differential equa-
tion (3.7). Show that by choosing a state space representation with x1 = y, the
dynamics can be written as

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0

0
. . .

. . . 0
0 · · · 0 1
−an −an−1 −a1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
...
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, C =

⎧
⎩1 . . . 0 0

⎫
⎭ .

This canonical form is called the chain of integrators form.

3.2 (Inverted pendulum) Use the equations of motion for a balance system to derive
a dynamic model for the inverted pendulum described in Example 3.2 and verify
that the dynamics are given by equation (3.10).

3.3 (Discrete-time dynamics) Consider the following discrete-time system

x[k+1] = Ax[k]+Bu[k], y[k] =Cx[k],

where

x =

⎧
⎪⎪⎩

x1

x2

⎫
⎪⎪⎭ , A =

⎧
⎪⎪⎩

a11 a12

0 a22

⎫
⎪⎪⎭ , B =

⎧
⎪⎪⎩

0
1

⎫
⎪⎪⎭ , C =

⎧
⎩1 0

⎫
⎭ .

In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions and the inputs.

(a) For the case when a12 = 0 and u = 0, give a closed form expression for the
output of the system.

(b) A discrete system is in equilibrium when x[k+1] = x[k] for all k. Let u = r be
a constant input and compute the resulting equilibrium point for the system. Show
that if |aii| < 1 for all i, all initial conditions give solutions that converge to the
equilibrium point.

(c) Write a computer program to plot the output of the system in response to a unit
step input, u[k] = 1, k ≥ 0. Plot the response of your system with x[0] = 0 and A
given by a11 = 0.5, a12 = 1 and a22 = 0.25.

3.4 (Keynesian economics) Keynes’ simple model for an economy is given by

Y [k] =C[k]+ I[k]+G[k],

where Y , C, I and G are gross national product (GNP), consumption, investment
and government expenditure for year k. Consumption and investment are modeled
by difference equations of the form

C[k+1] = aY [k], I[k+1] = b(C[k+1]−C[k]),

where a and b are parameters. The first equation implies that consumption in-
creases with GNP but that the effect is delayed. The second equation implies that
investment is proportional to the rate of change of consumption.
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Show that the equilibrium value of the GNP is given by

Ye =
1

1−a
Ge,

where the parameter 1/(1− a) is the Keynes multiplier (the gain from G to Y ).
With a = 0.75 an increase of government expenditure will result in a fourfold
increase of GNP. Also show that the model can be written as the following discrete-
time state model:

⎧
⎪⎪⎩

C[k+1]
I[k+1]

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

a a
ab−b ab

⎫
⎪⎪⎭
⎧
⎪⎪⎩

C[k]
I[k]

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

a
ab

⎫
⎪⎪⎭G[k],

Y [k] =C[k]+ I[k]+G[k].

3.5 (Least squares system identification) Consider a nonlinear differential equation!
that can be written in the form

dx

dt
=

M

∑
i=1

αi fi(x),

where fi(x) are known nonlinear functions and αi are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estimates) of the full state x at
time instants t1, t2, . . . , tN , with N > M. Show that the parameters αi can be esti-
mated by finding the least squares solution to a linear equation of the form

Hα = b,

where α ∈ RM is the vector of all parameters and H ∈ RN×M and b ∈ RN are
appropriately defined.

3.6 (Normalized oscillator dynamics) Consider a damped spring–mass system with
dynamics

mq̈+ cq̇+ kq = F.

Let ω0 =
√

k/m be the natural frequency and ζ = c/(2
√

km) be the damping
ratio.

(a) Show that by rescaling the equations, we can write the dynamics in the form

q̈+2ζ ω0q̇+ω2
0 q = ω2

0 u, (3.38)

where u = F/k. This form of the dynamics is that of a linear oscillator with natural
frequency ω0 and damping ratio ζ .

(b) Show that the system can be further normalized and written in the form

dz1

dτ
= z2,

dz2

dτ
=−z1−2ζ z2 + v. (3.39)

The essential dynamics of the system are governed by a single damping parameter
ζ . The Q-value defined as Q = 1/2ζ is sometimes used instead of ζ .
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3.7 (Electric generator) An electric generator connected to a strong power grid can
be modeled by a momentum balance for the rotor of the generator:

J
d2ϕ

dt2
= Pm−Pe = Pm−

EV

X
sinϕ,

where J is the effective moment of inertia of the generator, ϕ the angle of rota-
tion, Pm the mechanical power that drives the generator, Pe is the active electrical
power, E the generator voltage, V the grid voltage and X the reactance of the
line. Assuming that the line dynamics are much faster than the rotor dynamics,
Pe =V I = (EV/X)sinϕ , where I is the current component in phase with the volt-
age E and ϕ is the phase angle between voltages E and V . Show that the dynamics
of the electric generator has a normalized form that is similar to the dynamics of a
pendulum with forcing at the pivot.

3.8 (Admission control for a queue) Consider the queuing system described in
Example 3.12. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx

dt
= λu−µmax

x

x+1
, u = sat(0,1)(k(r− x)), (3.40)

where the controller is a simple proportional control with saturation (sat(a,b) is
defined by equation (4.9)) and r is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rush-hour effect and explain
how the choice of r affects the system dynamics.

3.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A

B

u2
B

u2

u1

A

Using the models from Example 3.15—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady state quickly—
show that the dynamics can be written in normalized coordinates as

dz1

dτ
=

µ

1+ zn
2

− z1− v1,
dz2

dτ
=

µ

1+ zn
1

− z2− v2, (3.41)

where z1 and z2 are scaled versions of the protein concentrations and the time scale
has also been changed. Show that µ ≈ 200 using the parameters in Example 3.15,
and use simulations to demonstrate the switch-like behavior of the system.
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3.10 (Motor drive) Consider a system consisting of a motor driving two masses
that are connected by a torsional spring, as shown in the diagram below.

Motor
I

J1

1

1

J2

ω

ϕ 2ϕ

2ω

This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current I, the dynamics
of the system can be described by the equations

J1
d2ϕ1

dt2
+ c
(dϕ1

dt
−

dϕ2

dt

)
+ k(ϕ1−ϕ2) = kII,

J2
d2ϕ2

dt2
+ c
(dϕ2

dt
−

dϕ1

dt

)
+ k(ϕ2−ϕ1) = Td ,

(3.42)

where ϕ1 and ϕ2 are the angles of the two masses, ωi = dϕi/dt are their velocities,
Ji represents moments of inertia, c is the damping coefficient, k represents the shaft
stiffness, kI is the torque constant for the motor, and Td is the disturbance torque
applied at the end of the shaft. Similar equations are obtained for a robot with
flexible arms and for the arms of DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized) state
variables x1 =ϕ1, x2 =ϕ2, x3 =ω1/ω0, and x4 =ω2/ω0, where ω0 =

√
k(J1 + J2)/(J1J2)

is the undamped natural frequency of the system when the control signal is zero.



Chapter Four
Examples

... Don’t apply any model until you understand the simplifying assumptions on which it is

based, and you can test their validity. Catch phrase: use only as directed. Don’t limit yourself

to a single model: More than one model may be useful for understanding different aspects of

the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70].

In this chapter we present a collection of examples spanning many different
fields of science and engineering. These examples are used throughout the text
and in exercises to illustrate different concepts.

4.1 Cruise Control

The cruise control system of a car is a common feedback system encountered in
everyday life. The system attempts to maintain a constant velocity in the presence
of disturbances primarily caused by changes in the slope of a road. The controller
compensates for these unknowns by measuring the speed of the car and adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figure 4.1. Let v be
the speed of the car and vr the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type described briefly in Chapter 1,
receives the signals v and vr and generates a control signal u that is sent to an
actuator that controls the throttle position. The throttle in turn controls the torque
T delivered by the engine, which is transmitted through the gears and the wheels,
generating a force F that moves the car. There are disturbance forces Fd due to
variations in the slope of the road, the rolling resistance and aerodynamic forces.
The cruise controller also has a human–machine interface that allows the driver
to set and modify the desired speed. There are also functions that disconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engine, transmission,
wheels and car body—and a detailed model can be very complicated. In spite of
this, the model required to design the cruise controller can be quite simple.

To develop a mathematical model we start with a force balance for the car body.
Let v be the speed of the car, m the total mass (including passengers), F the force
generated by the contact of the wheels with the road, and Fd the disturbance force
due to gravity, friction and aerodynamic drag. The equation of motion of the car is
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Figure 4.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torque T that is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environment, such as aerodynamic
drag and gravitational forces on hills, the net force causes the car to move. The velocity of
the car v is measured by a control system that adjusts the throttle through an actuation mech-
anism. A driver interface allows the system to be turned on and off and the reference speed
vr to be established.

simply

m
dv

dt
= F−Fd . (4.1)

The force F is generated by the engine, whose torque is proportional to the
rate of fuel injection, which is itself proportional to a control signal 0 ≤ u ≤ 1
that controls the throttle position. The torque also depends on engine speed ω . A
simple representation of the torque at full throttle is given by the torque curve

T (ω) = Tm

(

1−β

(
ω

ωm
−1

)2
)

, (4.2)

where the maximum torque Tm is obtained at engine speed ωm. Typical parameters
are Tm = 190 Nm, ωm = 420 rad/s (about 4000 RPM) and β = 0.4. Let n be the gear
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Figure 4.2: Torque curves for typical car engine. The graph on the left shows the torque
generated by the engine as a function of the angular velocity of the engine, while the curve
on the right shows torque as a function of car speed for different gears.
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Figure 4.3: Car with cruise control encountering a sloping road. A schematic diagram is
shown in (a), and (b) shows the response in speed and throttle when a slope of 4◦ is encoun-
tered. The hill is modeled as a net change of 4◦ in hill angle θ , with a linear change in the
angle between t = 5 and t = 6. The PI controller has proportional gain is kp = 0.5, and the
integral gain is ki = 0.1.

ratio and r the wheel radius. The engine speed is related to the velocity through the
expression

ω =
n

r
v =: αnv,

and the driving force can be written as

F =
nu

r
T (ω) = αnuT (αnv).

Typical values of αn for gears 1 through 5 are α1 = 40, α2 = 25, α3 = 16, α4 = 12
and α5 = 10. The inverse of αn has a physical interpretation as the effective wheel
radius. Figure 4.2 shows the torque as a function of engine speed and vehicle
speed. The figure shows that the effect of the gear is to “flatten” the torque curve
so that an almost full torque can be obtained almost over the whole speed range.

The disturbance force Fd has three major components: Fg, the forces due to
gravity; Fr, the forces due to rolling friction; and Fa, the aerodynamic drag. Letting
the slope of the road be θ , gravity gives the force Fg = mgsinθ , as illustrated in
Figure 4.3a, where g = 9.8 m/s2 is the gravitational constant. A simple model of
rolling friction is

Fr = mgCr sgn(v),

where Cr is the coefficient of rolling friction and sgn(v) is the sign of v (±1) or
zero if v = 0. A typical value for the coefficient of rolling friction is Cr = 0.01.
Finally, the aerodynamic drag is proportional to the square of the speed:

Fa =
1

2
ρCdA|v|v,

where ρ is the density of air, Cd is the shape-dependent aerodynamic drag coef-
ficient and A is the frontal area of the car. Typical parameters are ρ = 1.3 kg/m3,
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Cd = 0.32 and A = 2.4 m2.
Summarizing, we find that the car can be modeled by

m
dv

dt
= αnuT (αnv)−mgCr sgn(v)−

1

2
ρCdAv2−mgsinθ , (4.3)

where the function T is given by equation (4.2). The model (4.3) is a dynamical
system of first order. The state is the car velocity v, which is also the output. The
input is the signal u that controls the throttle position, and the disturbance is the
force Fd , which depends on the slope of the road. The system is nonlinear because
of the torque curve, the gravity term and the nonlinear character of rolling friction
and aerodynamic drag. There can also be variations in the parameters; e.g., the
mass of the car depends on the number of passengers and the load being carried in
the car.

We add to this model a feedback controller that attempts to regulate the speed
of the car in the presence of disturbances. We shall use a proportional-integral
controller, which has the form

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ .

This controller can itself be realized as an input/output dynamical system by defin-
ing a controller state z and implementing the differential equation

dz

dt
= vr− v, u = kp(vr− v)+ kiz, (4.4)

where vr is the desired (reference) speed. As discussed briefly in Section 1.5, the
integrator (represented by the state z) ensures that in steady state the error will be
driven to zero, even when there are disturbances or modeling errors. (The design
of PI controllers is the subject of Chapter 11.) Figure 4.3b shows the response of
the closed loop system, consisting of equations (4.3) and (4.4), when it encounters
a hill. The figure shows that even if the hill is so steep that the throttle changes
from 0.17 to almost full throttle, the largest speed error is less than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (4.3). It may seem
surprising that such a seemingly complicated system can be described by the sim-
ple model (4.3). It is important to make sure that we restrict our use of the model
to the uncertainty lemon conceptualized in Figure 3.5b. The model is not valid for
very rapid changes of the throttle because we have ignored the details of the engine
dynamics, neither is it valid for very slow changes because the properties of the
engine will change over the years. Nevertheless the model is very useful for the
design of a cruise control system. As we shall see in later chapters, the reason for
this is the inherent robustness of feedback systems: even if the model is not per-
fectly accurate, we can use it to design a controller and make use of the feedback
in the controller to manage the uncertainty in the system.

The cruise control system also has a human–machine interface that allows the
driver to communicate with the system. There are many different ways to imple-
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Figure 4.4: Finite state machine for cruise control system. The figure on the left shows
some typical buttons used to control the system. The controller can be in one of four modes,
corresponding to the nodes in the diagram on the right. Transition between the modes is
controlled by pressing one of the five buttons on the cruise control interface: on, off, set,
resume or cancel.

ment this system; one version is illustrated in Figure 4.4. The system has four
buttons: on-off, set/decelerate, resume/accelerate and cancel. The operation of the
system is governed by a finite state machine that controls the modes of the PI con-
troller and the reference generator. Implementation of controllers and reference
generators will be discussed more fully in Chapter 11.

The use of control in automotive systems goes well beyond the simple cruise
control system described here. Applications include emissions control, traction
control, power control (especially in hybrid vehicles) and adaptive cruise control.
Many automotive applications are discussed in detail in the book by Kiencke and
Nielsen [KN00] and in the survey papers by Powers et al. [BP96, PN00].

4.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the feature that one of its key
properties is due to a feedback mechanism that is created by the design of the
front fork. A detailed model of a bicycle is complex because the system has many
degrees of freedom and the geometry is complicated. However, a great deal of
insight can be obtained from simple models.

To derive the equations of motion we assume that the bicycle rolls on the hori-
zontal xy plane. Introduce a coordinate system that is fixed to the bicycle with the
ξ -axis through the contact points of the wheels with the ground, the η-axis hor-
izontal and the ζ -axis vertical, as shown in Figure 4.5. Let v0 be the velocity of
the bicycle at the rear wheel, b the wheel base, ϕ the tilt angle and δ the steering
angle. The coordinate system rotates around the point O with the angular veloc-
ity ω = v0δ/b, and an observer fixed to the bicycle experiences forces due to the
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pendulum, as shown
in the rear view in Figure 4.5b. To model the tilt, consider the rigid body obtained
when the wheels, the rider and the front fork assembly are fixed to the bicycle
frame. Let m be the total mass of the system, J the moment of inertia of this body
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Figure 4.5: Schematic views of a bicycle. The steering angle is δ , and the roll angle is ϕ .
The center of mass has height h and distance a from a vertical through the contact point P1

of the rear wheel. The wheel base b is the distance between P1 and P2, and the trail c is the
distance between P2 and P3.

with respect to the ξ -axis and D the product of inertia with respect to the ξ ζ axes.
Furthermore, let the ξ and ζ coordinates of the center of mass with respect to the
rear wheel contact point, P1, be a and h, respectively. We have J ≈ mh2 and D =
mah. The torques acting on the system are due to gravity and centripetal action.
Assuming that the steering angle δ is small, the equation of motion becomes

J
d2ϕ

dt2
−

Dv0

b

dδ

dt
= mghsinϕ +

mv2
0h

b
δ . (4.5)

The term mghsinϕ is the torque generated by gravity. The terms containing δ and
its derivative are the torques generated by steering, with the term (Dv0/b)dδ/dt
due to inertial forces and the term (mv2

0h/b)δ due to centripetal forces.
The steering angle is influenced by the torque the rider applies to the handle

bar. Because of the tilt of the steering axis and the shape of the front fork, the
contact point of the front wheel with the road P2 is behind the axis of rotation of
the front wheel assembly, as shown in Figure 4.5c. The distance c between the
contact point of the front wheel P2 and the projection of the axis of rotation of
the front fork assembly P3 is called the trail. The steering properties of a bicycle
depend critically on the trail. A large trail increases stability but makes the steering
less agile.

A consequence of the design of the front fork is that the steering angle δ is
influenced both by steering torque T and by the tilt of the frame ϕ . This means
that a bicycle with a front fork is a feedback system as illustrated by the block
diagram in Figure 4.6. The steering angle δ influences the tilt angle ϕ , and the
tilt angle influences the steering angle, giving rise to the circular causality that is
characteristic of reasoning about feedback. For a front fork with a positive trail,
the bicycle will steer into the lean, creating a centrifugal force that attempts to
diminish the lean. Under certain conditions, the feedback can actually stabilize the
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ϕFront
Fork

T
δ

Frame

Figure 4.6: Block diagram of a bicycle with a front fork. The steering torque applied to the
handlebars is T , the roll angle is ϕ and the steering angle is δ . Notice that the front fork
creates a feedback from the roll angle ϕ to the steering angle δ that under certain conditions
can stabilize the system.

bicycle. A crude empirical model is obtained by assuming that the block B can be
modeled as the static system

δ = k1T − k2ϕ. (4.6)

This model neglects the dynamics of the front fork, the tire–road interaction and
the fact that the parameters depend on the velocity. A more accurate model, called
the Whipple model, is obtained using the rigid-body dynamics of the front fork and
the frame. Assuming small angles, this model becomes

M

⎧
⎪⎪⎩

ϕ̈
δ̈

⎫
⎪⎪⎭+Cv0

⎧
⎪⎪⎩

ϕ̇
δ̇

⎫
⎪⎪⎭+(K0 +K2v2

0)

⎧
⎪⎪⎩

ϕ
δ

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0
T

⎫
⎪⎪⎭ , (4.7)

where the elements of the 2×2 matrices M, C, K0 and K2 depend on the geometry
and the mass distribution of the bicycle. Note that this has a form somewhat similar
to that of the spring–mass system introduced in Chapter 3 and the balance system
in Example 3.1. Even this more complex model is inaccurate because the interac-
tion between the tire and the road is neglected; taking this into account requires two
additional state variables. Again, the uncertainty lemon in Figure 3.5b provides a
framework for understanding the validity of the model under these assumptions.

Interesting presentations on the development of the bicycle are given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (4.7) was presented
in a paper by Whipple in 1899 [Whi99]. More details on bicycle modeling are
given in the paper [ÅKL05], which has many references.

4.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementation of Black’s feedback
amplifier. It is a universal component that is widely used for instrumentation, con-
trol and communication. It is also a key element in analog computing. Schematic
diagrams of the operational amplifier are shown in Figure 4.7. The amplifier has
one inverting input (v−), one noninverting input (v+) and one output (vout). There
are also connections for the supply voltages, e− and e+, and a zero adjustment
(offset null). A simple model is obtained by assuming that the input currents i−
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Figure 4.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all connections. (c) Only the
signal connections.

and i+ are zero and that the output is given by the static relation

vout = sat(vmin,vmax)

(
k(v+− v−)

)
, (4.8)

where sat denotes the saturation function

sat(a,b)(x) =

⎧
⎪⎨

⎪⎩

a if x < a

x if a≤ x≤ b

b if x > b.

(4.9)

We assume that the gain k is large, in the range of 106–108, and the voltages vmin

and vmax satisfy
e− ≤ vmin < vmax ≤ e+

and hence are in the range of the supply voltages. More accurate models are ob-
tained by replacing the saturation function with a smooth function as shown in
Figure 4.8. For small input signals the amplifier characteristic (4.8) is linear:

vout = k(v+− v−) =:−kv. (4.10)

Since the open loop gain k is very large, the range of input signals where the system
is linear is very small.

vmin

vout

v+− v−

vmax

Figure 4.8: Input/output characteristics of an operational amplifier. The differential input is
given by v+−v−. The output voltage is a linear function of the input in a small range around
0, with saturation at vmin and vmax. In the linear regime the op amp has high gain.
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Figure 4.9: Stable amplifier using an op amp. The circuit (a) uses negative feedback around
an operational amplifier and has a corresponding block diagram (b). The resistors R1 and R2

determine the gain of the amplifier.

A simple amplifier is obtained by arranging feedback around the basic opera-
tional amplifier as shown in Figure 4.9a. To model the feedback amplifier in the
linear range, we assume that the current i0 = i−+ i+ is zero and that the gain of
the amplifier is so large that the voltage v = v−− v+ is also zero. It follows from
Ohm’s law that the currents through resistors R1 and R2 are given by

v1

R1
=−

v2

R2
,

and hence the closed loop gain of the amplifier is

v2

v1
=−kcl, where kcl =

R2

R1
. (4.11)

A more accurate model is obtained by continuing to neglect the current i0 but
assuming that the voltage v is small but not negligible. The current balance is then

v1− v

R1
=

v− v2

R2
. (4.12)

Assuming that the amplifier operates in the linear range and using equation (4.10),
the gain of the closed loop system becomes

kcl =−
v2

v1
=

R2

R1

kR1

R1 +R2 + kR1
(4.13)

If the open loop gain k of the operational amplifier is large, the closed loop gain
kcl is the same as in the simple model given by equation (4.11). Notice that the
closed loop gain depends only on the passive components and that variations in k
have only a marginal effect on the closed loop gain. For example if k = 106 and
R2/R1 = 100, a variation of k by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nice illustration of how feedback
can be used to make precise systems from uncertain components. In this particular
case, feedback is used to trade high gain and low robustness for low gain and high
robustness. Equation (4.13) was the formula that inspired Black when he invented
the feedback amplifier [Bla34] (see the quote at the beginning of Chapter 13).

It is instructive to develop a block diagram for the feedback amplifier in Fig-
ure 4.9a. To do this we will represent the pure amplifier with input v and output v2
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Figure 4.10: Circuit diagram of a PI controller obtained by feedback around an operational
amplifier. The capacitor C is used to store charge and represents the integral of the input.

as one block. To complete the block diagram, we must describe how v depends on
v1 and v2. Solving equation (4.12) for v gives

v =
R2

R1 +R2
v1 +

R1

R1 +R2
v2 =

R1

R1 +R2

(R2

R1
v1 + v2

)
,

and we obtain the block diagram shown in Figure 4.9b. The diagram clearly shows
that the system has feedback and that the gain from v2 to v is R1/(R1 +R2), which
can also be read from the circuit diagram in Figure 4.9a. If the loop is stable and
the gain of the amplifier is large, it follows that the error e is small, and we find that
v2 = −(R2/R1)v1. Notice that the resistor R1 appears in two blocks in the block
diagram. This situation is typical in electrical circuits, and it is one reason why
block diagrams are not always well suited for some types of physical modeling.

The simple model of the amplifier given by equation (4.10) provides qualitative
insight, but it neglects the fact that the amplifier is a dynamical system. A more
realistic model is

dvout

dt
=−avout−bv. (4.14)

The parameter b that has dimensions of frequency and is called the gain-bandwidth
product of the amplifier. Whether a more complicated model is used depends on
the questions to be answered and the required size of the uncertainty lemon. The
model (4.14) is still not valid for very high or very low frequencies since drift
causes deviations at low frequencies and there are additional dynamics that appear
at frequencies close to b. The model is also not valid for large signals—an upper
limit is given by the voltage of the power supply, typically in the range of 5–10 V—
neither is it valid for very low signals because of electrical noise. These effects can
be added, if needed, but increase the complexity of the analysis.

The operational amplifier is very versatile, and many different systems can be
built by combining it with resistors and capacitors. In fact, any linear system can
be implemented by combining operational amplifiers with resistors and capacitors.
Exercise 4.5 shows how a second-order oscillator is implemented, and Figure 4.10
shows the circuit diagram for an analog proportional-integral controller. To de-
velop a simple model for the circuit we assume that the current i0 is zero and that
the open loop gain k is so large that the input voltage v is negligible. The current i
through the capacitor is i =Cdvc/dt, where vc is the voltage across the capacitor.
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Since the same current goes through the resistor R1, we get

i =
v1

R1
=C

dvc

dt
,

which implies that

vc(t) =
1

C

∫
i(t)dt =

1

R1C

∫ t

0
v1(τ)dτ .

The output voltage is thus given by

v2(t) =−R2i− vc =−
R2

R1
v1(t)−

1

R1C

∫ t

0
v1(τ)dτ ,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [Lun05,
Phi48], and their usage is described in many textbooks (e.g., [CD75]). Good infor-
mation is also available from suppliers [Jun02, Man02].

4.4 Computing Systems and Networks

The application of feedback to computing systems follows the same principles as
the control of physical systems, but the types of measurements and control inputs
that can be used are somewhat different. Measurements (sensors) are typically
related to resource utilization in the computing system or network and can in-
clude quantities such as the processor load, memory usage or network bandwidth.
Control variables (actuators) typically involve setting limits on the resources avail-
able to a process. This might be done by controlling the amount of memory, disk
space or time that a process can consume, turning on or off processing, delaying
availability of a resource or rejecting incoming requests to a server process. Pro-
cess modeling for networked computing systems is also challenging, and empirical
models based on measurements are often used when a first-principles model is not
available.

Web Server Control

Web servers respond to requests from the Internet and provide information in the
form of web pages. Modern web servers start multiple processes to respond to
requests, with each process assigned to a single source until no further requests are
received from that source for a predefined period of time. Processes that are idle
become part of a pool that can be used to respond to new requests. To provide a
fast response to web requests, it is important that the web server processes do not
overload the server’s computational capabilities or exhaust its memory. Since other
processes may be running on the server, the amount of available processing power
and memory is uncertain, and feedback can be used to provide good performance
in the presence of this uncertainty.
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Figure 4.11: Feedback control of a web server. Connection requests arrive on an input queue,
where they are sent to a server process. A finite state machine keeps track of the state of the
individual server processes and responds to requests. A control algorithm can modify the
server’s operation by controlling parameters that affect its behavior, such as the maximum
number of requests that can be serviced at a single time (MaxClients) or the amount of
time that a connection can remain idle before it is dropped (KeepAlive).

Figure 4.11 illustrates the use of feedback to modulate the operation of an
Apache web server. The web server operates by placing incoming connection re-
quests on a queue and then starting a subprocess to handle requests for each ac-
cepted connection. This subprocess responds to requests from a given connection
as they come in, alternating between a Busy state and a Wait state. (Keeping the
subprocess active between requests is known as the persistence of the connection
and provides a substantial reduction in latency to requests for multiple pieces of
information from a single site.) If no requests are received for a sufficiently long
period of time, controlled by the KeepAlive parameter, then the connection is
dropped and the subprocess enters an Idle state, where it can be assigned another
connection. A maximum of MaxClients simultaneous requests will be served,
with the remainder remaining on the incoming request queue.

The parameters that control the server represent a trade-off between perfor-
mance (how quickly requests receive a response) and resource usage (the amount
of processing power and memory used by the server). Increasing the MaxClients
parameter allows connection requests to be pulled off of the queue more quickly
but increases the amount of processing power and memory usage that is required.
Increasing the KeepAlive timeout means that individual connections can remain
idle for a longer period of time, which decreases the processing load on the ma-
chine but increases the length of the queue (and hence the amount of time required
for a user to initiate a connection). Successful operation of a busy server requires
a proper choice of these parameters, often based on trial and error.

To model the dynamics of this system in more detail, we create a discrete-time
model with states given by the average processor load xcpu and the percentage
memory usage xmem. The inputs to the system are taken as the maximum number
of clients umc and the keep-alive time uka. If we assume a linear model around the
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equilibrium point, the dynamics can be written as
⎧
⎪⎪⎩

xcpu[k+1]
xmem[k+1]

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

A11 A12

A21 A22

⎫
⎪⎪⎭
⎧
⎪⎪⎩

xcpu[k]
xmem[k]

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

B11 B12

B21 B22

⎫
⎪⎪⎭
⎧
⎪⎪⎩

uka[k]
umc[k]

⎫
⎪⎪⎭ , (4.15)

where the coefficients of the A and B matrices can be determined based on empiri-
cal measurements or detailed modeling of the web server’s processing and memory
usage. Using system identification, Diao et al. [DGH+02, HDPT04] identified the
linearized dynamics as

A =

⎧
⎪⎪⎩

0.54 −0.11
−0.026 0.63

⎫
⎪⎪⎭ , B =

⎧
⎪⎪⎩
−85 4.4
−2.5 2.8

⎫
⎪⎪⎭×10−4,

where the system was linearized about the equilibrium point

xcpu = 0.58, uka = 11 s, xmem = 0.55, umc = 600.

This model shows the basic characteristics that were described above. Looking
first at the B matrix, we see that increasing the KeepAlive timeout (first col-
umn of the B matrix) decreases both the processor usage and the memory usage
since there is more persistence in connections and hence the server spends a longer
time waiting for a connection to close rather than taking on a new active connec-
tion. The MaxClients connection increases both the processing and memory
requirements. Note that the largest effect on the processor load is the KeepAlive
timeout. The A matrix tells us how the processor and memory usage evolve in a re-
gion of the state space near the equilibrium point. The diagonal terms describe how
the individual resources return to equilibrium after a transient increase or decrease.
The off-diagonal terms show that there is coupling between the two resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later examples that it can
be used to modify the parameters controlling the server in real time and provide
robustness with respect to uncertainties in the load on the machine. Similar types
of mechanisms have been used for other types of servers. It is important to re-
member the assumptions on the model and their role in determining when the
model is valid. In particular, since we have chosen to use average quantities over
a given sample time, the model will not provide an accurate representation for
high-frequency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decentralized, efficient and ex-
pandable communication system. The system consists of a large number of inter-
connected gateways. A message is split into several packets which are transmitted
over different paths in the network, and the packages are rejoined to recover the
message at the receiver. An acknowledgment (“ack”) message is sent back to the
sender when a packet is received. The operation of the system is governed by a
simple but powerful decentralized control structure that has evolved over time.
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Figure 4.12: Internet congestion control. (a) Source computers send information to routers,
which forward the information to other routers that eventually connect to the receiving com-
puter. When a packet is received, an acknowledgment packet is sent back through the routers
(not shown). The routers buffer information received from the sources and send the data
across the outgoing link. (b) The equilibrium buffer size be for a set of N identical comput-
ers sending packets through a single router with drop probability ρ .

The system has two control mechanisms called protocols: the Transmission
Control Protocol (TCP) for end-to-end network communication and the Internet
Protocol (IP) for routing packets and for host-to-gateway or gateway-to-gateway
communication. The current protocols evolved after some spectacular congestion
collapses occurred in the mid 1980s, when throughput unexpectedly could drop by
a factor of 1000 [Jac95]. The control mechanism in TCP is based on conserving
the number of packets in the loop from the sender to the receiver and back to the
sender. The sending rate is increased exponentially when there is no congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we model three separate
elements of the system: the rate at which packets are sent by individual sources
(computers), the dynamics of the queues in the links (routers) and the admission
control mechanism for the queues. Figure 4.12a is a block diagram of the system.

The current source control mechanism on the Internet is a protocol known as
TCP/Reno [LPD02]. This protocol operates by sending packets to a receiver and
waiting to receive an acknowledgment from the receiver that the packet has arrived.
If no acknowledgment is sent within a certain timeout period, the packet is retrans-
mitted. To avoid waiting for the acknowledgment before sending the next packet,
Reno transmits multiple packets up to a fixed window around the latest packet that
has been acknowledged. If the window length is chosen properly, packets at the be-
ginning of the window will be acknowledged before the source transmits packets
at the end of the window, allowing the computer to continuously stream packets at
a high rate.

To determine the size of the window to use, TCP/Reno uses a feedback mech-
anism in which (roughly speaking) the window size is increased by 1 every time a
packet is acknowledged and the window size is cut in half when packets are lost.
This mechanism allows a dynamic adjustment of the window size in which each
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computer acts in a greedy fashion as long as packets are being delivered but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed by describing the
dynamics of the window size. Suppose we have N computers and let wi be the
current window size (measured in number of packets) for the ith computer. Let
qi represent the end-to-end probability that a packet will be dropped someplace
between the source and the receiver. We can model the dynamics of the window
size by the differential equation

dwi

dt
= (1−qi)

ri(t− τi)

wi
+qi(−

wi

2
ri(t− τi)), ri =

wi

τi
, (4.16)

where τi is the end-to-end transmission time for a packet to reach is destination and
the acknowledgment to be sent back and ri is the resulting rate at which packets
are cleared from the list of packets that have been received. The first term in the
dynamics represents the increase in window size when a packet is received, and
the second term represents the decrease in window size when a packet is lost.
Notice that ri is evaluated at time t− τi, representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the router queue and the
admission control mechanism for the queue. Assume that we have L links in the
network and use l to index the individual links. We model the queue in terms of
the current number of packets in the router’s buffer bl and assume that the router
can contain a maximum of bl,max packets and transmits packets at a rate cl , equal
to the capacity of the link. The buffer dynamics can then be written as

dbl

dt
= sl− cl, sl = ∑

{i: l∈Li}
ri(t− τ f

li), (4.17)

where Li is the set of links that are being used by source i, τ f
li is the time it takes a

packet from source i to reach link l and sl is the total rate at which packets arrive
at link l.

The admission control mechanism determines whether a given packet is ac-
cepted by a router. Since our model is based on the average quantities in the net-
work and not the individual packets, one simple model is to assume that the proba-
bility that a packet is dropped depends on how full the buffer is: pl = ml(bl ,bmax).
For simplicity, we will assume for now that pl = ρlbl (see Exercise 4.6 for a more
detailed model). The probability that a packet is dropped at a given link can be
used to determine the end-to-end probability that a packet is lost in transmission:

qi = 1−∏
l∈Li

(1− pl)≈ ∑
l∈Li

pl(t− τb
li), (4.18)

where τb
li is the backward delay from link l to source i and the approximation is

valid as long as the individual drop probabilities are small. We use the backward
delay since this represents the time required for the acknowledgment packet to be
received by the source.
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Together, equations (4.16), (4.17) and (4.18) represent a model of congestion
control dynamics. We can obtain substantial insight by considering a special case
in which we have N identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be ignored, in which case
the dynamics can be reduced to the form

dwi

dt
=

1

τ
−

ρc(2+w2
i )

2
,

db

dt
=

N

∑
i=1

wi

τ
− c, τ =

b

c
, (4.19)

where wi ∈ R, i = 1, . . . ,N, are the window sizes for the sources of data, b ∈ R

is the current buffer size of the router, ρ controls the rate at which packets are
dropped and c is the capacity of the link connecting the router to the computers.
The variable τ represents the amount of time required for a packet to be processed
by a router, based on the size of the buffer and the capacity of the link. Substituting
τ into the equations, we write the state space dynamics as

dwi

dt
=

c

b
−ρc

(
1+

w2
i

2

)
,

db

dt
=

N

∑
i=1

cwi

b
− c. (4.20)

More sophisticated models can be found in [HMTG00, LPD02].
The nominal operating point for the system can be found by setting ẇi = ḃ= 0:

0 =
c

b
−ρc

(
1+

w2
i

2

)
, 0 =

N

∑
i=1

cwi

b
− c.

Exploiting the fact that all of the source dynamics are identical, it follows that all
of the wi should be the same, and it can be shown that there is a unique equilibrium
satisfying the equations

wi,e =
be

N
=

cτe

N
,

1

2ρ2N2
(ρbe)

3 +(ρbe)−1 = 0. (4.21)

The solution for the second equation is a bit messy but can easily be determined
numerically. A plot of its solution as a function of 1/(2ρ2N2) is shown in Fig-
ure 4.12b. We also note that at equilibrium we have the following additional equal-
ities:

τe =
be

c
=

Nwe

c
, qe = N pe = Nρbe, re =

we

τe
. (4.22)

Figure 4.13 shows a simulation of 60 sources communicating across a single
link, with 20 sources dropping out at t = 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Note that the buffer size and
window sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [Tan96]. A good presentation of the ideas behind the control princi-
ples for the Internet is given by one of its designers, Van Jacobson, in [Jac95]. F.
Kelly [Kel85] presents an early effort on the analysis of the system. The books by
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Figure 4.13: Internet congestion control for N identical sources across a single link. As
shown on the left, multiple sources attempt to communicate through a router across a single
link. An “ack” packet sent by the receiver acknowledges that the message was received;
otherwise the message packet is resent and the sending rate is slowed down at the source.
The simulation on the right is for 60 sources starting random rates, with 20 sources dropping
out at t = 500 ms. The buffer size is shown at the top, and the individual source rates for 6
of the sources are shown at the bottom.

Hellerstein et al. [HDPT04] and Janert [Jan14] give many examples of the use of
feedback in computer systems.

4.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Heinrich Rohrer
for their design of the scanning tunneling microscope. The idea of the instrument
is to bring an atomically sharp tip so close to a conducting surface that tunneling
occurs. An image is obtained by traversing the tip across the sample and measuring
the tunneling current as a function of tip position. This invention has stimulated
the development of a family of instruments that permit visualization of surface
structure at the nanometer scale, including the atomic force microscope (AFM),
where a sample is probed by a tip on a cantilever. An AFM can operate in two
modes. In tapping mode the cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. In contact mode the cantilever is in contact with the
sample, and its bending is controlled by feedback. In both cases control is actuated
by a piezo element that controls the vertical position of the cantilever base (or the
sample). The control system has a direct influence on picture quality and scanning
rate.

A schematic picture of an atomic force microscope is shown in Figure 4.14a. A
microcantilever with a tip having a radius of the order of 10 nm is placed close to
the sample. The tip can be moved vertically and horizontally using a piezoelectric
scanner. It is clamped to the sample surface by attractive van der Waals forces and
repulsive Pauli forces. The cantilever tilt depends on the topography of the surface
and the position of the cantilever base, which is controlled by the piezo element.
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Figure 4.14: Atomic force microscope. (a) A schematic diagram of an atomic force micro-
scope, consisting of a piezo drive that scans the sample under the AFM tip. A laser reflects
off of the cantilever and is used to measure the detection of the tip through a feedback con-
troller. (b) An AFM image of strands of DNA. (Image courtesy Veeco Instruments.)

The tilt is measured by sensing the deflection of the laser beam using a photodiode.
The signal from the photodiode is amplified and sent to a controller that drives
the amplifier for the vertical position of the cantilever. By controlling the piezo
element so that the deflection of the cantilever is constant, the signal driving the
vertical deflection of the piezo element is a measure of the atomic forces between
the cantilever tip and the atoms of the sample. An image of the surface is obtained
by scanning the cantilever along the sample. The resolution makes it possible to
see the structure of the sample on the atomic scale, as illustrated in Figure 4.14b,
which shows an AFM image of DNA.

The horizontal motion of an AFM is typically modeled as a spring–mass sys-
tem with low damping. The vertical motion is more complicated. To model the
system, we start with the block diagram shown in Figure 4.15. Signals that are
easily accessible are the input voltage u to the power amplifier that drives the piezo
element, the voltage v applied to the piezo element and the output voltage y of the
signal amplifier for the photodiode. The controller is a PI controller implemented
by a computer, which is connected to the system by analog-to-digital (A/D) and
digital-to-analog (D/A) converters. The deflection of the cantilever ϕ is also shown
in the figure. The desired reference value for the deflection is an input to the com-
puter.

There are several different configurations that have different dynamics. Here
we will discuss a high-performance system from [SÅD+07] where the cantilever
base is positioned vertically using a piezo stack. We begin the modeling with a
simple experiment on the system. Figure 4.16a shows a step response of a scanner
from the input voltage u to the power amplifier to the output voltage y of the signal
amplifier for the photodiode. This experiment captures the dynamics of the chain
of blocks from u to y in the block diagram in Figure 4.15. Figure 4.16a shows that
the system responds quickly but that there is a poorly damped oscillatory mode
with a period of about 35 µs. A primary task of the modeling is to understand the
origin of the oscillatory behavior. To do so we will explore the system in more
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Figure 4.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempts to keep the can-
tilever deflection equal to its reference value. Cantilever deflection is measured, amplified
and converted to a digital signal, then compared with its reference value. A correcting sig-
nal is generated by the computer, converted to analog form, amplified and sent to the piezo
element.

detail.
The natural frequency of the clamped cantilever is typically several hundred

kilohertz, which is much higher than the observed oscillation of about 30 kHz.
As a first approximation we will model it as a static system. Since the deflections
are small, we can assume that the bending ϕ of the cantilever is proportional to the
difference in height between the cantilever tip at the probe and the piezo scanner. A
more accurate model can be obtained by modeling the cantilever as a spring–mass
system of the type discussed in Chapter 3.

Figure 4.16a also shows that the response of the power amplifier is fast. The
photodiode and the signal amplifier also have fast responses and can thus be mod-
eled as static systems. The remaining block is a piezo system with suspension.
A schematic mechanical representation of the vertical motion of the scanner is
shown in Figure 4.16b. We will model the system as two masses separated by an
ideal piezo element. The mass m1 is half of the piezo system, and the mass m2 is
the other half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crystal generates a force
F between the masses and that there is a damping c in the spring. Let the positions
of the center of the masses be z1 and z2. A momentum balance gives the following
model for the system:

m1
d2z1

dt2
= F, m2

d2z2

dt2
=−c2

dz2

dt
− k2z2−F.

Let the elongation of the piezo element l = z1− z2 be the control variable and the
height z1 of the cantilever base be the output. Eliminating the variable F in the
equations above and substituting z1− l for z2 gives the model

(m1 +m2)
d2z1

dt2
+ c2

dz1

dt
+ k2z1 = m2

d2l

dt2
+ c2

dl

dt
+ k2l. (4.23)

Summarizing, we find that a simple model of the system is obtained by mod-
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Figure 4.16: Modeling of an atomic force microscope. (a) A measured step response. The
top curve shows the voltage u applied to the drive amplifier (50 mV/div), the middle curve
is the output Vp of the power amplifier (500 mV/div) and the bottom curve is the output y

of the signal amplifier (500 mV/div). The time scale is 25 µs/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical positioner and the piezo
crystal.

eling the piezo by (4.23) and all the other blocks by static models. Introducing
the linear equations l = k3u and y = k4z1, we now have a complete model relat-
ing the output y to the control signal u. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the power amplifier. As in the
previous examples, the concept of the uncertainty lemon in Figure 3.5b provides
a framework for describing the uncertainty: the model will be accurate up to the
frequencies of the fastest modeled modes and over a range of motion in which
linearized stiffness models can be used.

The experimental results in Figure 4.16a can be explained qualitatively as fol-
lows. When a voltage is applied to the piezo, it expands by l0, the mass m1 moves
up and the mass m2 moves down instantaneously. The system settles after a poorly
damped oscillation.

It is highly desirable to design a control system for the vertical motion so
that it responds quickly with little oscillation. The instrument designer has sev-
eral choices: to accept the oscillation and have a slow response time, to design a
control system that can damp the oscillations or to redesign the mechanics to give
resonances of higher frequency. The last two alternatives give a faster response and
faster imaging.

Since the dynamic behavior of the system changes with the properties of the
sample, it is necessary to tune the feedback loop. In simple systems this is currently
done manually by adjusting parameters of a PI controller. There are interesting
possibilities for making AFM systems easier to use by introducing automatic tun-
ing and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamental to solid state physics, see
Kittel [Kit95]. The model discussed in this section is based on Schitter [Sch01].
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Figure 4.17: Abstraction used to compartmentalize the body for the purpose of describing
drug distribution (based on Teorell [Teo37]). The body is abstracted by a number of com-
partments with perfect mixing, and the complex transport processes are approximated by
assuming that the flow is proportional to the concentration differences in the compartments.
The constants ki parameterize the rates of flow between different compartments.

4.6 Drug Administration

The phrase “Take two pills three times a day” is a recommendation with which we
are all familiar. Behind this recommendation is a solution of an open loop control
problem. The key issue is to make sure that the concentration of a medicine in
a part of the body is sufficiently high to be effective but not so high that it will
cause undesirable side effects. The control action is quantized, take two pills, and
sampled, every 8 hours. The prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and weight of the patient.

Drug administration is a control problem. To solve it we must understand how
a drug spreads in the body after it is administered. This topic, called pharmacoki-
netics, is now a discipline of its own, and the models used are called compart-
ment models. They go back to the 1920s when Widmark modeled the propagation
of alcohol in the body [WT24]. Compartment models are now important for the
screening of all drugs used by humans. The schematic diagram in Figure 4.17 il-
lustrates the idea of a compartment model. The body is viewed as a number of
compartments like blood plasma, kidney, liver and tissues that are separated by
membranes. It is assumed that there is perfect mixing so that the drug concentra-
tion is constant in each compartment. The complex transport processes are approx-
imated by assuming that the flow rates between the compartments are proportional
to the concentration differences in the compartments.

To describe the effect of a drug it is necessary to know both its concentration
and how it influences the body. The relation between concentration c and its effect
e is typically nonlinear. A simple model is

e =
c

c0 + c
emax. (4.24)

The effect is linear for low concentrations, and it saturates at high concentrations.
The relation can also be dynamic, and it is then called pharmacodynamics.
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Compartment Models

The simplest dynamic model for drug administration is obtained by assuming that
the drug is evenly distributed in a single compartment after it has been adminis-
tered and that the drug is removed at a rate proportional to the concentration. The
compartments behave like stirred tanks with perfect mixing. Let c be the concen-
tration, V the volume and q the outflow rate. Converting the description of the
system into differential equations gives the model

V
dc

dt
=−qc, c≥ 0. (4.25)

This equation has the solution c(t) = c0e−qt/V = c0e−kt , which shows that the con-
centration decays exponentially with the time constant T =V/q after an injection.
The input is introduced implicitly as an initial condition in the model (4.25). More
generally, the way the input enters the model depends on how the drug is adminis-
tered. For example, the input can be represented as a mass flow into the compart-
ment where the drug is injected. A pill that is dissolved can also be interpreted as
an input in terms of a mass flow rate.

The model (4.25) is called a a one-compartment model or a single-pool model.
The parameter q/V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasma. By measuring the con-
centration at a few times, the initial concentration can be obtained by extrapolation.
If the total amount of injected substance is known, the volume V can then be de-
termined as V = m/c0; this volume is called the apparent volume of distribution.
This volume is larger than the real volume if the concentration in the plasma is
lower than in other parts of the body. The model (4.25) is very simple, and there
are large individual variations in the parameters. The parameters V and q are often
normalized by dividing by the weight of the person. Typical parameters for aspirin
are V = 0.2 L/kg and q = 0.01 (L/h)/kg. These numbers can be compared with a
blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, an intracellular fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/min/kg.

The simple one-compartment model captures the gross behavior of drug distri-
bution, but it is based on many simplifications. Improved models can be obtained
by considering the body as composed of several compartments. Examples of such
systems are shown in Figure 4.18, where the compartments are represented as cir-
cles and the flows by arrows.

Modeling will be illustrated using the two-compartment model in Figure 4.18a.
We assume that there is perfect mixing in each compartment and that the transport
between the compartments is driven by concentration differences. We further as-
sume that a drug with concentration c0 is injected in compartment 1 at a volume
flow rate of u and that the concentration in compartment 2 is the output. Let c1 and
c2 be the concentrations of the drug in the compartments, and let V1 and V2 be the
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Figure 4.18: Schematic diagrams of compartment models. (a) A simple two-compartment
model. Each compartment is labeled by its volume, and arrows indicate the flow of chemical
into, out of and between compartments. (b) A system with six compartments used to study
the metabolism of thyroid hormone [God83]. The notation ki j denotes the transport from
compartment j to compartment i.

volumes of the compartments. The mass balances for the compartments are

V1
dc1

dt
= q(c2− c1)−q0c1 + c0u, c1 ≥ 0,

V2
dc2

dt
= q(c1− c2), c2 ≥ 0,

y = c2,

(4.26)

where q represents flow rate between the compartments and q0 represents the flow
rate out of compartment 1 that is not going to compartment 2. Introducing the vari-
ables k0 = q0/V1, k1 = q/V1, k2 = q/V2 and b0 = c0/V1 and using matrix notation,
the model can be written as

dc

dt
=

⎧
⎪⎪⎩
−k0− k1 k1

k2 −k2

⎫
⎪⎪⎭c+

⎧
⎪⎪⎩

b0

0

⎫
⎪⎪⎭u, y =

⎧
⎩0 1

⎫
⎭c. (4.27)

Comparing this model with its graphical representation in Figure 4.18a, we find
that the mathematical representation (4.27) can be written by inspection.

It should also be emphasized that simple compartment models such as the one
in equation (4.27) have a limited range of validity. Low-frequency limits exist be-
cause the human body changes with time, and since the compartment model uses
average concentrations, they will not accurately represent rapid changes. There are
also nonlinear effects that influence transportation between the compartments.

Compartment models are widely used in medicine, engineering and environ-
mental science. An interesting property of these systems is that variables like con-
centration and mass are always positive. An essential difficulty in compartment
modeling is deciding how to divide a complex system into compartments. Com-
partment models can also be nonlinear, as illustrated in the next section.
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Figure 4.19: Insulin–glucose dynamics. (a) Sketch of body parts involved in the control of
glucose. (b) Schematic diagram of the system. (c) Responses of insulin and glucose when
glucose in injected intravenously. From [PB86].

Insulin–glucose Dynamics

It is essential that the blood glucose concentration in the body is kept within a
narrow range (0.7–1.1 g/L). Glucose concentration is influenced by many factors
like food intake, digestion and exercise. A schematic picture of the relevant parts
of the body is shown in Figures 4.19a and b.

There is a sophisticated mechanism that regulates glucose concentration. Glu-
cose concentration is maintained by the pancreas, which secretes the hormones
insulin and glucagon. Glucagon is released into the bloodstream when the glucose
level is low. It acts on cells in the liver that release glucose. Insulin is secreted
when the glucose level is high, and the glucose level is lowered by causing the
liver and other cells to take up more glucose. In diseases like juvenile diabetes the
pancreas is unable to produce insulin and the patient must inject insulin into the
body to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are complicated; dynamics
with time scales that range from seconds to hours have been observed. Models of
different complexity have been developed. The models are typically tested with
data from experiments where glucose is injected intravenously and insulin and
glucose concentrations are measured at regular time intervals.

A relatively simple model called the minimal model was developed by Bergman
and coworkers [Ber89]. This models uses two compartments, one representing the
concentration of glucose in the bloodstream and the other representing the concen-
tration of insulin in the interstitial fluid. Insulin in the bloodstream is considered
an input. The reaction of glucose to insulin can be modeled by the equations

dx1

dt
=−(p1 + x2)x1 + p1ge,

dx2

dt
=−p2x2 + p3(u− ie), (4.28)
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where ge and ie represent the equilibrium values of glucose and insulin, x1 is the
concentration of glucose and x2 is proportional to the concentration of interstitial
insulin. Notice the presence of the term x2x1 in the first equation. Also notice
that the model does not capture the complete feedback loop because it does not
describe how the pancreas reacts to the glucose. Figure 4.19c shows a fit of the
model to a test on a normal person where glucose was injected intravenously at
time t = 0. The glucose concentration rises rapidly, and the pancreas responds with
a rapid spikelike injection of insulin. The glucose and insulin levels then gradually
approach the equilibrium values.

Models of the type in equation (4.28) and more complicated models having
many compartments have been developed and fitted to experimental data. A diffi-
culty in modeling is that there are significant variations in model parameters over
time and for different patients. For example, the parameter p1 in equation (4.28)
has been reported to vary with an order of magnitude for healthy individuals. The
models have been used for diagnosis and to develop schemes for the treatment
of persons with diseases. Attempts to develop a fully automatic artificial pancreas
have been hampered by the lack of reliable sensors.

The papers by Widmark and Tandberg [WT24] and Teorell [Teo37] are clas-
sics in pharmacokinetics, which is now an established discipline with many text-
books [Dos68, Jac72, GP82]. Because of its medical importance, pharmacoki-
netics is now an essential component of drug development. The book by Riggs
[Rig63] is a good source for the modeling of physiological systems, and a more
mathematical treatment is given in [KS01]. Compartment models are discussed
in [God83]. The problem of determining rate coefficients from experimental data
is discussed in [BÅ70] and [God83]. There are many publications on the insulin–
glucose model. The minimal model is discussed in [CT84, Ber89] and more recent
references are [MLK06, FCF+06].

4.7 Population Dynamics

Population growth is a complex dynamic process that involves the interaction of
one or more species with their environment and the larger ecosystem. The dynam-
ics of population groups are interesting and important in many different areas of
social and environmental policy. There are examples where new species have been
introduced into new habitats, sometimes with disastrous results. There have also
been attempts to control population growth both through incentives and through
legislation. In this section we describe some of the models that can be used to un-
derstand how populations evolve with time and as a function of their environments.

Logistic Growth Model

Let x be the population of a species at time t. A simple model is to assume that the
birth rates and mortality rates are proportional to the total population. This gives
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the linear model

dx

dt
= bx−dx = (b−d)x = rx, x≥ 0, (4.29)

where birth rate b and mortality rate d are parameters. The model gives an ex-
ponential increase if b > d or an exponential decrease if b < d. A more realistic
model is to assume that the birth rate decreases when the population is large. The
following modification of the model (4.29) has this property:

dx

dt
= rx(1−

x

k
), x≥ 0, (4.30)

where k is the carrying capacity of the environment. The model (4.30) is called
the logistic growth model.

Predator–Prey Models

A more sophisticated model of population dynamics includes the effects of com-
peting populations, where one species may feed on another. This situation, referred
to as the predator–prey problem, was introduced in Example 3.3, where we devel-
oped a discrete-time model that captured some of the features of historical records
of lynx and hare populations.

In this section, we replace the difference equation model used there with a more
sophisticated differential equation model. Let H(t) represent the number of hares
(prey) and let L(t) represent the number of lynxes (predator). The dynamics of the
system are modeled as

dH

dt
= rH

(
1−

H

k

)
−

aHL

c+H
, H ≥ 0,

dL

dt
= b

aHL

c+H
−dL, L≥ 0.

(4.31)

In the first equation, r represents the growth rate of the hares, k represents the
maximum population of the hares (in the absence of lynxes), a represents the in-
teraction term that describes how the hares are diminished as a function of the lynx
population and c controls the prey consumption rate for low hare population. In the
second equation, b represents the growth coefficient of the lynxes and d represents
the mortality rate of the lynxes. Note that the hare dynamics include a term that
resembles the logistic growth model (4.30).

Of particular interest are the values at which the population values remain con-
stant, called equilibrium points. The equilibrium points for this system can be de-
termined by setting the right-hand side of the above equations to zero. Letting He

and Le represent the equilibrium state, from the second equation we have

Le = 0 or H∗e =
cd

ab−d
. (4.32)

Substituting this into the first equation, we have that for Le = 0 either He = 0 or
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Figure 4.20: Simulation of the predator–prey system. The figure on the left shows a simu-
lation of the two populations as a function of time. The figure on the right shows the pop-
ulations plotted against each other, starting from different values of the population. The
oscillation seen in both figures is an example of a limit cycle. The parameter values used for
the simulations are a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125 and r = 1.6.

He = k. For Le ̸= 0, we obtain

L∗e =
rHe(c+He)

aHe

(
1−

He

k

)
=

bcr(abk− cd−dk)

(ab−d)2k
. (4.33)

Thus, we have three possible equilibrium points xe = (Le,He):

xe =

⎧
⎪⎪⎩

0
0

⎫
⎪⎪⎭ , xe =

⎧
⎪⎪⎩

k
0

⎫
⎪⎪⎭ , xe =

⎧
⎪⎪⎩

H∗e
L∗e

⎫
⎪⎪⎭ ,

where H∗e and L∗e are given in equations (4.32) and (4.33). Note that the equilib-
rium populations may be negative for some parameter values, corresponding to a
nonachievable equilibrium point.

Figure 4.20 shows a simulation of the dynamics starting from a set of popula-
tion values near the nonzero equilibrium values. We see that for this choice of pa-
rameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 3.7.

Volume I of the two-volume set by J. D. Murray [Mur04] give a broad coverage
of population dynamics.

Exercises

4.1 (Cruise control) Consider the cruise control example described in Section 4.1.
Build a simulation that re-creates the response to a hill shown in Figure 4.3b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of the hill.
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4.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
tion (4.5) can be approximated in state space form as

d

dt

⎧
⎪⎪⎩

x1

x2

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0 1
mgh/J 0

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x1

x2

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

Dv0/(bJ)
mv2

0h/(bJ)

⎫
⎪⎪⎭u,

y =
⎧
⎩1 0

⎫
⎭x,

where the input u is the steering angle δ and the output y is the tilt angle ϕ . What
do the states x1 and x2 represent?

4.3 (Bicycle steering) Combine the bicycle model given by equation (4.5) and the
model for steering kinematics in Example 3.10 to obtain a model that describes the
path of the center of mass of the bicycle.

4.4 (Operational amplifier circuit) Consider the op amp circuit shown below.

−

+
v1 vo

v3

v2

RaR1

R2

C2

C1

Rb

Show that the dynamics can be written in state space form as

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1

R1C1
−

1

RaC1
0

Rb

Ra

1

R2C2
−

1

R2C2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

R1C1

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

u, y =
⎧
⎩0 1

⎫
⎭x,

where u = v1 and y = v3. (Hint: Use v2 and v3 as your state variables.)

4.5 (Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

−

+

−

+

−

+ v1v3v2

R1R3R2

R4C2 C1

Show that the dynamics can be written in state space form as

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
R4

R1R3C1

−
1

R2C2
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x,

where the state variables represent the voltages across the capacitors x1 = v1 and
x2 = v2.
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4.6 (Congestion control using RED [LPW+02]) A number of improvements can
be made to the model for Internet congestion control presented in Section 4.4.
To ensure that the router’s buffer size remains positive, we can modify the buffer
dynamics to satisfy

dbl

dt
=

{
sl− cl bl > 0

sat(0,∞)(sl− cl) bl = 0.

In addition, we can model the drop probability of a packet based on how close we
are to the buffer limits, a mechanism known as random early detection (RED):

pl = ml(al) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 al(t)≤ blower
l

ρlri(t)−ρlb
lower
l blower

l < al(t)< b
upper
l

ηlri(t)− (1−2b
upper
l ) b

upper
l ≤ al(t)< 2b

upper
l

1 al(t)≥ 2b
upper
l ,

dal

dt
=−αlcl(al−bl),

where αl , b
upper
l , blower

l and p
upper
l are parameters for the RED protocol.

Using the model above, write a simulation for the system and find a set of
parameter values for which there is a stable equilibrium point and a set for which
the system exhibits oscillatory solutions. The following sets of parameters should
be explored:

N = 20,30, . . . ,60, blower
l = 40 pkts, ρl = 0.1,

c = 8,9, . . . ,15 pkts/ms, b
upper
l = 540 pkts, αl = 10−4,

τ = 55,60, . . . ,100 ms.

4.7 (Atomic force microscope with piezo tube) A schematic diagram of an AFM
where the vertical scanner is a piezo tube with preloading is shown below.

m1

k1

m2

c1

k2 c2

F

F

Show that the dynamics can be written as

(m1 +m2)
d2z1

dt2
+(c1 + c2)

dz1

dt
+(k1 + k2)z1 = m2

d2l

dt2
+ c2

dl

dt
+ k2l.

Are there parameter values that make the dynamics particularly simple?
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4.8 (Drug administration) The metabolism of alcohol in the body can be modeled
by the nonlinear compartment model

Vb
dcb

dt
= q(cl− cb)+qiv, Vl

dcl

dt
= q(cb− cl)−qmax

cl

c0 + cl
+qgi,

where Vb = 48 L and Vl = 0.6 L are the apparent volumes of distribution of body
water and liver water, cb and cl are the concentrations of alcohol in the compart-
ments, qiv and qgi are the injection rates for intravenous and gastrointestinal in-
take, q = 1.5 L/min is the total hepatic blood flow, qmax = 2.75 mmol/min and
c0 = 0.1 mmol/L. Simulate the system and compute the concentration in the blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

4.9 (Population dynamics) Consider the model for logistic growth given by equa-
tion (4.30). Show that the maximum growth rate occurs when the size of the pop-
ulation is half of the steady-state value.

4.10 (Fisheries management) The dynamics of a commercial fishery can be de-
scribed by the following simple model:

dx

dt
= f (x)−h(x,u), y = bh(x,u)− cu,

where x is the total biomass, f (x) = rx(1−x/k) is the growth rate and h(x,u)= axu
is the harvesting rate. The output y is the rate of revenue, and the parameters a, b
and c are constants representing the price of fish and the cost of fishing. Show that
there is an equilibrium where the steady-state biomass is xe = c/(ab). Compare
with the situation when the biomass is regulated to a constant value and find the
maximum sustainable return in that case.



Chapter Five
Dynamic Behavior

It Don’t Mean a Thing If It Ain’t Got That Swing.

Duke Ellington (1899–1974)

In this chapter we present a broad discussion of the behavior of dynamical sys-
tems focused on systems modeled by nonlinear differential equations. This allows
us to consider equilibrium points, stability, limit cycles and other key concepts in
understanding dynamic behavior. We also introduce some methods for analyzing
the global behavior of solutions.

5.1 Solving Differential Equations

In the previous two chapters we saw that one of the methods of modeling dynam-
ical systems is through the use of ordinary differential equations (ODEs). A state
space, input/output system has the form

dx

dt
= f (x,u), y = h(x,u), (5.1)

where x= (x1, . . . ,xn)∈Rn is the state, u∈Rp is the input and y∈Rq is the output.
The smooth maps f : Rn×Rp→Rn and h : Rn×Rp→Rq represent the dynamics
and measurements for the system. In general, they can be nonlinear functions of
their arguments. We will sometimes focus on single-input, single-output (SISO)
systems, for which p = q = 1.

We begin by investigating systems in which the input has been set to a function
of the state, u = α(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equations in this case become

dx

dt
= f (x,α(x)) =: F(x). (5.2)

To understand the dynamic behavior of this system, we need to analyze the
features of the solutions of equation (5.2). While in some simple situations we can
write down the solutions in analytical form, often we must rely on computational
approaches. We begin by describing the class of solutions for this problem.

We say that x(t) is a solution of the differential equation (5.2) on the time
interval t0 ∈ R to t f ∈ R if

dx(t)

dt
= F(x(t)) for all t0 < t < t f .
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A given differential equation may have many solutions. We will most often be
interested in the initial value problem, where x(t) is prescribed at a given time
t0 ∈ R and we wish to find a solution valid for all future time t > t0.

We say that x(t) is a solution of the differential equation (5.2) with initial value
x0 ∈ Rn at t0 ∈ R if

x(t0) = x0 and
dx(t)

dt
= F(x(t)) for all t0 < t < t f .

For most differential equations we will encounter, there is a unique solution that is
defined for t0 < t < t f . The solution may be defined for all time t > t0, in which
case we take t f = ∞. Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to this simply as the solution
of an ODE.

We will typically assume that t0 is equal to 0. In the case when F is independent
of time (as in equation (5.2)), we can do so without loss of generality by choosing
a new independent (time) variable, τ = t− t0 (Exercise 5.1).

Example 5.1 Damped oscillator
Consider a damped linear oscillator with dynamics of the form

q̈+2ζ ω0q̇+ω2
0 q = 0,

where q is the displacement of the oscillator from its rest position. These dynamics
are equivalent to those of a spring–mass system, as shown in Exercise 3.6. We
assume that ζ < 1, corresponding to a lightly damped system (the reason for this
particular choice will become clear later). We can rewrite this in state space form
by setting x1 = q and x2 = q̇/ω0, giving

dx1

dt
= ω0x2,

dx2

dt
=−ω0x1−2ζ ω0x2.

In vector form, the right-hand side can be written as

F(x) =

⎧
⎪⎪⎩

ω0x2

−ω0x1−2ζ ω0x2

⎫
⎪⎪⎭ .

The solution to the initial value problem can be written in a number of different
ways and will be explored in more detail in Chapter 6. Here we simply assert that
the solution can be written as

x1(t) = e−ζ ω0t

(
x10 cosωdt +

1

ωd
(ω0ζ x10 + x20)sinωdt

)
,

x2(t) = e−ζ ω0t

(
x20 cosωdt−

1

ωd
(ω2

0 x10 +ω0ζ x20)sinωdt

)
,

where x0 = (x10,x20) is the initial condition and ωd = ω0

√
1−ζ 2. This solution

can be verified by substituting it into the differential equation. We see that the so-
lution is explicitly dependent on the initial condition, and it can be shown that this
solution is unique. A plot of the initial condition response is shown in Figure 5.1.
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Figure 5.1: Response of the damped oscillator to the initial condition x0 = (1,0). The solu-
tion is unique for the given initial conditions and consists of an oscillatory solution for each
state, with an exponentially decaying magnitude.

We note that this form of the solution holds only for 0 < ζ < 1, corresponding to
an “underdamped” oscillator. ∇

!
Without imposing some mathematical conditions on the function F , the differ-

ential equation (5.2) may not have a solution for all t, and there is no guarantee
that the solution is unique. We illustrate these possibilities with two examples.

Example 5.2 Finite escape time
Let x ∈ R and consider the differential equation

dx

dt
= x2 (5.3)

with the initial condition x(0) = 1. By differentiation we can verify that the func-
tion

x(t) =
1

1− t

satisfies the differential equation and that it also satisfies the initial condition. A
graph of the solution is given in Figure 5.2a; notice that the solution goes to infinity
as t goes to 1. We say that this system has finite escape time. Thus the solution
exists only in the time interval 0≤ t < 1. ∇

Example 5.3 Nonunique solution
Let x ∈ R and consider the differential equation

dx

dt
= 2
√

x (5.4)

with initial condition x(0) = 0. We can show that the function

x(t) =

{
0 if 0≤ t ≤ a

(t−a)2 if t > a

satisfies the differential equation for all values of the parameter a≥ 0. To see this,
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Figure 5.2: Existence and uniqueness of solutions. Equation (5.3) has a solution only for
time t < 1, at which point the solution goes to ∞, as shown in (a). Equation (5.4) is an
example of a system with many solutions, as shown in (b). For each value of a, we get a
different solution starting from the same initial condition.

we differentiate x(t) to obtain

dx

dt
=

{
0 if 0≤ t ≤ a

2(t−a) if t > a,

and hence ẋ = 2
√

x for all t ≥ 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 5.2b. Notice that in this case there are many solutions
to the differential equation. ∇

These simple examples show that there may be difficulties even with simple
differential equations. Existence and uniqueness can be guaranteed by requiring
that the function F have the property that for some fixed c ∈ R,

∥F(x)−F(y)∥< c∥x− y∥ for all x,y,

which is called Lipschitz continuity. A sufficient condition for a function to be
Lipschitz is that the Jacobian ∂F/∂x is uniformly bounded for all x. The difficulty
in Example 5.2 is that the derivative ∂F/∂x becomes large for large x, and the
difficulty in Example 5.3 is that the derivative ∂F/∂x is infinite at the origin.

5.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is important in understanding some
of the key concepts of stability in nonlinear dynamics. We will focus on an im-
portant class of systems known as planar dynamical systems. These systems have
two state variables x ∈ R2, allowing their solutions to be plotted in the (x1,x2)
plane. The basic concepts that we describe hold more generally and can be used to
understand dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems with state
x ∈ R2 is to plot the phase portrait of the system, briefly introduced in Chapter 3.
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Figure 5.3: Phase portraits. (a) This plot shows the vector field for a planar dynamical sys-
tem. Each arrow shows the velocity at that point in the state space. (b) This plot includes the
solutions (sometimes called streamlines) from different initial conditions, with the vector
field superimposed.

We start by introducing the concept of a vector field. For a system of ordinary
differential equations

dx

dt
= F(x),

the right-hand side of the differential equation defines at every x ∈ Rn a velocity
F(x) ∈Rn. This velocity tells us how x changes and can be represented as a vector
F(x) ∈ Rn.

For planar dynamical systems, each state corresponds to a point in the plane and
F(x) is a vector representing the velocity of that state. We can plot these vectors
on a grid of points in the plane and obtain a visual image of the dynamics of the
system, as shown in Figure 5.3a. The points where the velocities are zero are of
particular interest since they define stationary points of the flow: if we start at such
a state, we stay at that state.

A phase portrait is constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a set of initial conditions, we
plot the solution of the differential equation in the plane R2. This corresponds to
following the arrows at each point in the phase plane and drawing the resulting tra-
jectory. By plotting the solutions for several different initial conditions, we obtain
a phase portrait, as show in Figure 5.3b. Phase portraits are also sometimes called
phase plane diagrams.

Phase portraits give insight into the dynamics of the system by showing the so-
lutions plotted in the (two-dimensional) state space of the system. For example, we
can see whether all trajectories tend to a single point as time increases or whether
there are more complicated behaviors. In the example in Figure 5.3, corresponding
to a damped oscillator, the solutions approach the origin for all initial conditions.
This is consistent with our simulation in Figure 5.1, but it allows us to infer the
behavior for all initial conditions rather than a single initial condition. However,
the phase portrait does not readily tell us the rate of change of the states (although
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Figure 5.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a model
for a class of balance systems in which we wish to keep a system upright, such as a rocket (a).
Using a simplified model of an inverted pendulum (b), we can develop a phase portrait that
shows the dynamics of the system (c). The system has multiple equilibrium points, marked
by the solid dots along the x2 = 0 line.

this can be inferred from the lengths of the arrows in the vector field plot).

Equilibrium Points and Limit Cycles

An equilibrium point of a dynamical system represents a stationary condition for
the dynamics. We say that a state xe is an equilibrium point for a dynamical system

dx

dt
= F(x)

if F(xe) = 0. If a dynamical system has an initial condition x(0) = xe, then it will
stay at the equilibrium point: x(t) = xe for all t ≥ 0, where we have taken t0 = 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.

Example 5.4 Inverted pendulum
Consider the inverted pendulum in Figure 5.4, which is a part of the balance system
we considered in Chapter 3. The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at the base of the rocket, we
seek to keep the rocket stabilized in the upright position. The state variables are
the angle θ = x1 and the angular velocity dθ/dt = x2, the control variable is the
acceleration u of the pivot and the output is the angle θ .

For simplicity we assume that mgl/Jt = 1, l/Jt = 1 and set c = γ/Jt , so that the
dynamics (equation (3.10)) become

dx

dt
=

⎧
⎪⎪⎩

x2

sinx1− cx2 +ucosx1

⎫
⎪⎪⎭ . (5.5)

This is a nonlinear time-invariant system of second order. This same set of equa-
tions can also be obtained by appropriate normalization of the system dynamics as
illustrated in Example 3.9.
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Figure 5.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different initial conditions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) shows a single solution
plotted as a function of time, with the limit cycle corresponding to a steady oscillation of
fixed amplitude.

We consider the open loop dynamics by setting u = 0. The equilibrium points
for the system are given by

xe =

⎧
⎪⎪⎩
±nπ

0

⎫
⎪⎪⎭ ,

where n = 0,1,2, . . . . The equilibrium points for n even correspond to the pendu-
lum pointing up and those for n odd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inputs) is shown in Figure 5.4c.
The phase portrait shows −2π ≤ x1 ≤ 2π , so five of the equilibrium points are
shown. ∇

Nonlinear systems can exhibit rich behavior. Apart from equilibria they can
also exhibit stationary periodic solutions. This is of great practical value in gen-
erating sinusoidally varying voltages in power systems or in generating periodic
signals for animal locomotion. A simple example is given in Exercise 5.12, which
shows the circuit diagram for an electronic oscillator. A normalized model of the
oscillator is given by the equation

dx1

dt
= x2 + x1(1− x2

1− x2
2),

dx2

dt
=−x1 + x2(1− x2

1− x2
2). (5.6)

The phase portrait and time domain solutions are given in Figure 5.5. The figure
shows that the solutions in the phase plane converge to a circular trajectory. In the
time domain this corresponds to an oscillatory solution. Mathematically the circle
is called a limit cycle. More formally, we call an nonconstant solution x(t) a limit
cycle of period T > 0 if x(t +T ) = x(t) for all t ∈ R.

There are methods for determining limit cycles for second-order systems, but
for general higher-order systems we have to resort to computational analysis. Com-
puter algorithms find limit cycles by searching for periodic trajectories in state
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Figure 5.6: Illustration of Lyapunov’s concept of a stable solution. The solution represented
by the solid line is stable if we can guarantee that all solutions remain within a tube of
diameter ε by choosing initial conditions sufficiently close the solution.

space that satisfy the dynamics of the system. In many situations, stable limit cy-
cles can be found by simulating the system with different initial conditions.

5.3 Stability

The stability of a solution determines whether or not solutions nearby the solution
remain close, get closer or move further away. We now give a formal definition of
stability and describe tests for determining whether a solution is stable.

Definitions

Let x(t;a) be a solution to the differential equation with initial condition a. A
solution is stable if other solutions that start near a stay close to x(t;a). Formally,
we say that the solution x(t;a) is stable if for all ε > 0, there exists a δ > 0 such
that

∥b−a∥< δ =⇒ ∥x(t;b)− x(t;a)∥< ε for all t > 0.

Note that this definition does not imply that x(t;b) approaches x(t;a) as time in-
creases but just that it stays nearby. Furthermore, the value of δ may depend on
ε , so that if we wish to stay very close to the solution, we may have to start very,
very close (δ ≪ ε). This type of stability, which is illustrated in Figure 5.6, is also
called stability in the sense of Lyapunov. If a solution is stable in this sense and the
trajectories do not converge, we say that the solution is neutrally stable.

An important special case is when the solution x(t;a) = xe is an equilibrium
solution. Instead of saying that the solution is stable, we simply say that the equi-
librium point is stable. An example of a neutrally stable equilibrium point is shown
in Figure 5.7. From the phase portrait, we see that if we start near the equilibrium
point, then we stay near the equilibrium point. Indeed, for this example, given any
ε that defines the range of possible initial conditions, we can simply choose δ = ε
to satisfy the definition of stability since the trajectories are perfect circles.

A solution x(t;a) is asymptotically stable if it is stable in the sense of Lyapunov
and also x(t;b) approaches x(t;a) as t approaches ∞ for b sufficiently close to a.
Hence, the solution x(t;a) is asymptotically stable if for every ε > 0 there exists a



5.3. STABILITY 5-9

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x 2
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Figure 5.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium point xe at the origin is stable since all trajectories that
start near xe stay near xe.

δ > 0 such that

∥b−a∥< δ =⇒ ∥x(t;b)− x(t;a)∥< ε and lim
t→∞
∥x(t;b)− x(t;a)∥= 0.

This corresponds to the case where all nearby trajectories converge to the stable
solution for large time. Figure 5.8 shows an example of an asymptotically stable
equilibrium point. Indeed, as seen in the phase portrait, not only do all trajectories
stay near the equilibrium point at the origin, but they also all approach the origin
as t gets large (the directions of the arrows on the phase portrait show the direction
in which the trajectories move).

A solution x(t;a) is unstable if it is not stable. More specifically, we say that a
solution x(t;a) is unstable if given some ε > 0, there does not exist a δ > 0 such
that if ∥b−a∥< δ , then ∥x(t;b)−x(t;a)∥< ε for all t. An example of an unstable
equilibrium point is shown in Figure 5.9.

The definitions above are given without careful description of their domain of
applicability. More formally, we define a solution to be locally stable (or locally
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Figure 5.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium point xe at the origin is asymptotically stable
since the trajectories converge to this point as t→ ∞.
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Figure 5.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point xe at the origin is unstable since not all trajectories
that start near xe stay near xe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

asymptotically stable) if it is stable for all initial conditions x ∈ Br(a), where

Br(a) = {x : ∥x−a∥< r}

is a ball of radius r around a and r > 0. A solution is globally asymptotically stable
if it is asymptotically stable for all r > 0.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if
some trajectories lead to the equilibrium point and others move away (this is the
situation pictured in Figure 5.9). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Figure 5.7) is called
a center.

Example 5.5 Congestion control
The model for congestion control in a network consisting of N identical computers
connected to a single router, described in more detail in Section 4.4, is given by

dw

dt
=

c

b
−ρc

(
1+

w2

2

)
,

db

dt
= N

wc

b
− c,

where w is the window size and b is the buffer size of the router. The equilibrium
points are given by

b = Nw with w

(
1+

w2

2

)
=

ρ

N
.

Phase portraits are shown in Figure 5.10 for two different sets of parameter values.
In each case we see that the system converges to an equilibrium point in which
the buffer is below its full capacity of 500 packets. The equilibrium size of the
buffer represents a balance between the transmission rates for the sources and the
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(a) ρ = 2×10−4, c = 10 pkts/ms
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(b) ρ = 4×10−4, c = 20 pkts/ms

Figure 5.10: Phase portraits for a congestion control protocol running with N = 60 identical
source computers. The equilibrium values correspond to a fixed window at the source, which
results in a steady-state buffer size and corresponding transmission rate. A faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

capacity of the link. We see from the phase portraits that the equilibrium points are
asymptotically stable since all initial conditions result in trajectories that converge
to these points. ∇

Stability of Linear Systems

A linear dynamical system has the form

dx

dt
= Ax, x(0) = x0, (5.7)

where A ∈ Rn×n is a square matrix, corresponding to the dynamics matrix of a
linear control system (3.6). For a linear system, the stability of the equilibrium at
the origin can be determined from the eigenvalues of the matrix A:

λ (A) := {s ∈ C : det(sI−A) = 0}.

The polynomial det(sI−A) is the characteristic polynomial and the eigenvalues
are its roots. We use the notation λ j for the jth eigenvalue of A, so that λ j ∈ λ (A).
In general λ can be complex-valued, although if A is real-valued, then for any
eigenvalue λ , its complex conjugate λ ∗ will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stability of a linear system
depends only on the matrix A, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
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are in diagonal form. In this case, the dynamics have the form

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 0
λ2

. . .

0 λn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x. (5.8)

It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of n individual systems ẋ j = λ jx j.
Each of these scalar solutions is of the form

x j(t) = eλ jt x j(0).

We see that the equilibrium point xe = 0 is stable if λ j ≤ 0 and asymptotically
stable if λ j < 0.

Another simple case is when the dynamics are in the block diagonal form

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 ω1 0 0
−ω1 σ1 0 0

0 0
. . .

...
...

0 0 σm ωm

0 0 −ωm σm

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x.

In this case, the eigenvalues can be shown to be λ j = σ j ± iω j. We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2 j−1(t) = eσ jt
(
x2 j−1(0)cosω jt + x2 j(0)sinω jt

)
,

x2 j(t) = eσ jt
(
−x2 j−1(0)sinω jt + x2 j(0)cosω jt

)
,

where j = 1,2, . . . ,m. We see that this system is asymptotically stable if and only
if σ j = Reλ j < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but many systems can
be transformed into these forms via coordinate transformations. One such class of
systems is those for which the dynamics matrix has distinct (nonrepeating) eigen-
values. In this case there is a matrix T ∈ Rn×n such that the matrix TAT−1 is
in (block) diagonal form, with the block diagonal elements corresponding to the
eigenvalues of the original matrix A (see Exercise 5.14). If we choose new coordi-
nates z = T x, then

dz

dt
= T ẋ = TAx = TAT−1z

and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as those of the original system
since if v is an eigenvector of A, then w = T v can be shown to be an eigenvec-
tor of TAT−1. We can reason about the stability of the original system by noting
that x(t) = T−1z(t), and so if the transformed system is stable (or asymptotically
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stable), then the original system has the same type of stability.
This analysis shows that for linear systems with distinct eigenvalues, the sta-

bility of the system can be completely determined by examining the real part of
the eigenvalues of the dynamics matrix. For more general systems, we make use
of the following theorem, proved in the next chapter:

Theorem 5.1 (Stability of a linear system). The system

dx

dt
= Ax

is asymptotically stable if and only if all eigenvalues of A all have a strictly neg-
ative real part and is unstable if any eigenvalue of A has a strictly positive real
part.

Note that it is not enough to have eigenvalues with Re(λ ) ≤ 0. As a simple
example, consider the system q̈ = 0, which can be written in state space form as

d

dt

⎧
⎪⎪⎩

x1

x2

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x1

x2

⎫
⎪⎪⎭ .

The system has eigenvalues λ = 0 but the solutions are not bounded since we have

x1(t) = x1,0 + x2,0t, x2(t) = x2,0.

Example 5.6 Compartment model
Consider the two-compartment module for drug delivery described in Section 4.6.
Using concentrations as state variables and denoting the state vector by x, the sys-
tem dynamics are given by

dx

dt
=

⎧
⎪⎪⎩
−k0− k1 k1

k2 −k2

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

b0

0

⎫
⎪⎪⎭u, y =

⎧
⎩0 1

⎫
⎭x,

where the input u is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measured output y. We wish to
design a feedback control law that maintains a constant output given by y = yd .

We choose an output feedback control law of the form

u =−k(y− yd)+ud ,

where ud is the rate of injection required to maintain the desired concentration
and k is a feedback gain that should be chosen such that the closed loop system is
stable. Substituting the control law into the system, we obtain

dx

dt
=

⎧
⎪⎪⎩
−k0− k1 k1−b0k

k2 −k2

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

b0

0

⎫
⎪⎪⎭(ud + kyd) =: Ax+Bue,

y =
⎧
⎩0 1

⎫
⎭x =: Cx.

The equilibrium concentration xe ∈ R2 is given by xe =−A−1Bue and

ye =−CA−1Bue =
b0k2

k0k2 +b0k2k
(ud + kyd).



5-14 CHAPTER 5. DYNAMIC BEHAVIOR

Choosing ud such that ye = yd provides the constant rate of injection required to
maintain the desired output. We can now shift coordinates to place the equilibrium
point at the origin, which yields (after some algebra)

dz

dt
=

⎧
⎪⎪⎩
−k0− k1 k1−b0k

k2 −k2

⎫
⎪⎪⎭z,

where z = x− xe. We can now apply the results of Theorem 5.1 to determine the
stability of the system. The eigenvalues of the system are given by the roots of the
characteristic polynomial

λ (s) = s2 +(k0 + k1 + k2)s+(k0k2 +b0k2k).

While the specific form of the roots is messy, it can be shown that the roots have
negative real part as long as the linear term and the constant term are both positive
(Exercise 5.16). Hence the system is stable for any k > 0. ∇

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible to deter-
mine the local stability of an equilibrium point by approximating the system by a
linear system. The following example illustrates the basic idea.

Example 5.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dx

dt
=

⎧
⎪⎪⎩

x2

sinx1− γx2

⎫
⎪⎪⎭ ,

where we have defined the state as x = (θ , θ̇). We first consider the equilibrium
point at x = (0,0), corresponding to the straight-up position. If we assume that the
angle θ = x1 remains small, then we can replace sinx1 with x1 and cosx1 with 1,
which gives the approximate system

dx

dt
=

⎧
⎪⎪⎩

x2

x1− γx2

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0 1
1 −γ

⎫
⎪⎪⎭x. (5.9)

Intuitively, this system should behave similarly to the more complicated model
as long as x1 is small. In particular, it can be verified that the equilibrium point
(0,0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (5.9)

We can also approximate the system around the stable equilibrium point at
x=(π,0). In this case we have to expand sinx1 and cosx1 around x1 = π , according
to the expansions

sin(π +θ) =−sinθ ≈−θ , cos(π +θ) =−cos(θ)≈−1.

If we define z1 = x1−π and z2 = x2, the resulting approximate dynamics are given
by

dz

dt
=

⎧
⎪⎪⎩

z2

−z1− γ z2

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0 1
−1 −γ

⎫
⎪⎪⎭z. (5.10)



5.3. STABILITY 5-15

−2

−1

0

1

2

x1

x2

0 π/2 π 2π3π/2

(a) Nonlinear model

−2

−1

0

1

2

z1

z2

−π −π/2 0 π/2 π

(b) Linear approximation

Figure 5.11: Comparison between the phase portraits for the full nonlinear systems (a) and
its linear approximation around the origin (b). Notice that near the equilibrium point at the
center of the plots, the phase portraits (and hence the dynamics) are almost identical.

Figure 5.11 shows the phase portraits for the original system and the approxi-
mate system around the corresponding equilibrium points. Note that z = (0,0) is
the equilibrium point for this system and that it has the same basic form as the
dynamics shown in Figure 5.8. The solutions for the original system and the ap-
proximate are very similar, although not exactly the same. It can be shown that
if a linear approximation has either asymptotically stable or unstable equilibrium
points, then the local stability of the original system must be the same (see Theo-
rem 5.3 on page 5-23 for the case of asymptotic stability). ∇

More generally, suppose that we have a nonlinear system

dx

dt
= F(x)

that has an equilibrium point at xe. Computing the Taylor series expansion of the
vector field, we can write

dx

dt
= F(xe)+

∂F

∂x

∣∣∣∣
xe

(x− xe)+higher-order terms in (x− xe).

Since F(xe) = 0, we can approximate the system by choosing a new state variable
z = x− xe and writing

dz

dt
= Az, where A =

∂F

∂x

∣∣∣∣
xe

. (5.11)

We call the system (5.11) the linear approximation of the original nonlinear system
or the linearization at xe.

The fact that a linear model can be used to study the behavior of a nonlin-
ear system near an equilibrium point is a powerful one. Indeed, we can take this
even further and use a local linear approximation of a nonlinear system to design
a feedback law that keeps the system near its equilibrium point (design of dy-
namics). Thus, feedback can be used to make sure that solutions remain close to
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the equilibrium point, which in turn ensures that the linear approximation used to
stabilize it is valid.

Linear approximations can also be used to understand the stability of nonequi-
librium solutions, as illustrated by the following example.

Example 5.8 Stability of limit cycles
Consider the system given by equation (5.6),

dx1

dt
= x2 + x1(1− x2

1− x2
2),

dx2

dt
=−x1 + x2(1− x2

1− x2
2),

whose phase portrait is shown in Figure 5.5. The differential equation has a peri-
odic solution

x1(t) = x1(0)cos t + x2(0)sin t, (5.12)

with x2
1(0)+ x2

2(0) = 1.
To explore the stability of this solution, we introduce polar coordinates r and

ϕ , which are related to the state variables x1 and x2 by

x1 = r cosϕ, x2 = r sinϕ.

Differentiation gives the following linear equations for ṙ and ϕ̇:

ẋ1 = ṙ cosϕ− rϕ̇ sinϕ, ẋ2 = ṙ sinϕ + rϕ̇ cosϕ.

Solving this linear system for ṙ and ϕ̇ gives, after some calculation,

dr

dt
= r(1− r2),

dϕ

dt
=−1. (5.13)

Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation for r has three equilibria: r = 0, r = 1 and r = −1 (not realiz-
able since r must be positive). We can analyze the stability of these equilibria by
linearizing the radial dynamics with F(r) = r(1− r2). The corresponding linear
dynamics are given by

dr̃

dt
=

∂F

∂ r̃

∣∣∣∣
re

r̃ = (1−3r2
e)r̃, re = 0, 1,

where r̃ = r− re represents the deviation from the equilibrium point. It follows
from the sign of (1−3r2

e) that the equilibrium r = 0 is unstable and the equilibrium
r = 1 is asymptotically stable for equation (5.13). Thus for any initial condition
r > 0 the solution goes to r = 1 as time goes to infinity, but if the system starts
with r = 0, it will remain at the equilibrium for all times. This implies that all
solutions to the original system that do not start at x1 = x2 = 0 will approach the
circle x2

1 + x2
2 = 1 as time increases.

To show the stability of the full solution (5.12), we must investigate the be-
havior of neighboring solutions with different initial conditions. We have already
shown that the radius r will approach that of the solution (5.12) as long as r(0)> 0.
The equation for the angle ϕ can be integrated analytically to give ϕ(t) = −t +



5.4. LYAPUNOV STABILITY ANALYSIS 5-17

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

x1

x2
0 5 10 15 20

−1
0
1
2

0 5 10 15 20
−1

0
1
2

x1

x2

Time t

Figure 5.12: Solution curves for a stable limit cycle. The phase portrait on the left shows that
the trajectory for the system rapidly converges to the stable limit cycle. The starting points
for the trajectories are marked by circles in the phase portrait. The time domain plots on
the right show that the states do not converge to the solution but instead maintain a constant
phase error.

ϕ(0), which shows that solutions starting at different angles ϕ will neither con-
verge nor diverge. Thus, the unit circle is attracting, but the solution (5.12) is only
stable, not asymptotically stable. The behavior of the system is illustrated by the
simulation in Figure 5.12. Notice that the solutions approach the circle rapidly, but
that there is a constant phase shift between the solutions. ∇

5.4 Lyapunov Stability Analysis
!

We now return to the study of the full nonlinear system

dx

dt
= F(x), x ∈ Rn. (5.14)

Having defined when a solution for a nonlinear dynamical system is stable, we
can now ask how to prove that a given solution is stable, asymptotically stable
or unstable. For physical systems, one can often argue about stability based on
dissipation of energy. The generalization of that technique to arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.

In this section we will describe techniques for determining the stability of so-
lutions for a nonlinear system (5.14). We will generally be interested in stability
of equilibrium points, and it will be convenient to assume that xe = 0 is the equi-
librium point of interest. (If not, rewrite the equations in a new set of coordinates
z = x− xe.)

Lyapunov Functions

A Lyapunov function V : Rn → R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, if we can find a nonnegative
function that always decreases along trajectories of the system, we can conclude
that the minimum of the function is a stable equilibrium point (locally).
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dx
dt

∂V
∂x

V (x) = c2
V (x) = c1 < c2

Figure 5.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov function V (x) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system will always cause V (x)
to decrease along the trajectory.

To describe this more formally, we start with a few definitions. Let Br = Br(0)
be a ball of radius r around the origin. We say that a continuous function V is
positive definite on Br if V (x) > 0 for all x ∈ Br, x ̸= 0 and V (0) = 0. Similarly, a
function is negative definite on Br if V (x) < 0 for all x ∈ Br, x ̸= 0 and V (0) = 0.
We say that a function V is positive semidefinite if V (x)≥ 0 for all x∈ Br, but V (x)
can be zero at points other than just x = 0.

To illustrate the difference between a positive definite function and a positive
semidefinite function, suppose that x ∈ R2 and let

V1(x) = x2
1, V2(x) = x2

1 + x2
2.

Both V1 and V2 are always nonnegative. However, it is possible for V1 to be zero
even if x ̸= 0. Specifically, if we set x = (0,c), where c∈R is any nonzero number,
then V1(x) = 0. On the other hand, V2(x) = 0 if and only if x = (0,0). Thus V1 is
positive semidefinite and V2 is positive definite.

We can now characterize the stability of an equilibrium point xe = 0 for the
system (5.14).

Theorem 5.2 (Lyapunov stability theorem). Let V be a function on Rn and let V̇
represent the time derivative of V along trajectories of the system dynamics (5.14):

V̇ =
∂V

∂x

dx

dt
=

∂V

∂x
F(x).

If there exists r > 0 such that V is positive definite and V̇ is negative semidefinite on
Br, then x = 0 is (locally) stable in the sense of Lyapunov. If V is positive definite
and V̇ is negative definite in Br, then x = 0 is (locally) asymptotically stable.

If V satisfies one of the conditions above, we say that V is a (local) Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined by V (x) = c,
c > 0, and for each c this gives a closed contour, as shown in Figure 5.13. The
condition that V̇ (x) is negative simply means that the vector field points toward
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lower-level contours. This means that the trajectories move to smaller and smaller
values of V and if V̇ is negative definite then x must approach 0.

Finding Lyapunov functions is not always easy. For example, consider the lin-
ear system

dx1

dt
= x2,

dx2

dt
=−αx2.

Example 5.9 Scalar nonlinear system
Consider the scalar nonlinear system

dx

dt
=

2

1+ x
− x.

This system has equilibrium points at x = 1 and x =−2. We consider the equilib-
rium point at x = 1 and rewrite the dynamics using z = x−1:

dz

dt
=

2

2+ z
− z−1,

which has an equilibrium point at z = 0. Now consider the candidate Lyapunov
function

V (z) =
1

2
z2,

which is globally positive definite. The derivative of V along trajectories of the
system is given by

V̇ (z) = zż =
2z

2+ z
− z2− z.

If we restrict our analysis to an interval Br, where r < 2, then 2+ z > 0 and we can
multiply through by 2+ z to obtain

2z− (z2 + z)(2+ z) =−z3−3z2 =−z2(z+3)< 0, z ∈ Br, r < 2.

It follows that V̇ (z)< 0 for all z ∈ Br, z ̸= 0, and hence the equilibrium point x = 1
is locally asymptotically stable. ∇

A slightly more complicated situation occurs if V̇ is negative semidefinite. In
this case it is possible that V̇ (x) = 0 when x ̸= 0, and hence x could stop decreasing
in value. The following example illustrates this case.

Example 5.10 Hanging pendulum
A normalized model for a hanging pendulum is

dx1

dt
= x2,

dx2

dt
=−sinx1,

where x1 is the angle between the pendulum and the vertical, with positive x1

corresponding to counterclockwise rotation. The equation has an equilibrium x1 =
x2 = 0, which corresponds to the pendulum hanging straight down. To explore the
stability of this equilibrium we choose the total energy as a Lyapunov function:

V (x) = 1− cosx1 +
1

2
x2

2 ≈
1

2
x2

1 +
1

2
x2

2.
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The Taylor series approximation shows that the function is positive definite for
small x. The time derivative of V (x) is

V̇ = ẋ1 sinx1 + ẋ2x2 = x2 sinx1− x2 sinx1 = 0.

Since this function is negative semidefinite, it follows from Lyapunov’s theorem
that the equilibrium is stable but not necessarily asymptotically stable. When per-
turbed, the pendulum actually moves in a trajectory that corresponds to constant
energy. ∇

Lyapunov functions are not always easy to find, and they are not unique. In
many cases energy functions can be used as a starting point, as was done in Ex-
ample 5.10. It turns out that Lyapunov functions can always be found for any
stable system (under certain conditions), and hence one knows that if a system
is stable, a Lyapunov function exists (and vice versa). Recent results using sum-
of-squares methods have provided systematic approaches for finding Lyapunov
systems [PPP02]. Sum-of-squares techniques can be applied to a broad variety of
systems, including systems whose dynamics are described by polynomial equa-
tions, as well as hybrid systems, which can have different models for different
regions of state space.

For a linear dynamical system of the form

dx

dt
= Ax,

it is possible to construct Lyapunov functions in a systematic manner. To do so, we
consider quadratic functions of the form

V (x) = xT Px,

where P ∈ Rn×n is a symmetric matrix (P = PT ). The condition that V be positive
definite on Br for some r > 0 is equivalent to the condition that P be a positive
definite matrix:

xT Px > 0, for all x ̸= 0,

which we write as P≻ 0. It can be shown that if P is symmetric, then P is positive
definite if and only if all of its eigenvalues are real and positive.

Given a candidate Lyapunov function V (x) = xT Px, we can now compute its
derivative along flows of the system:

V̇ =
∂V

∂x

dx

dt
= xT (AT P+PA)x =:−xT Qx.

The requirement that V̇ be negative definite on Br (for asymptotic stability) be-
comes a condition that the matrix Q be positive definite. Thus, to find a Lyapunov
function for a linear system it is sufficient to choose a Q ≻ 0 and solve the Lya-
punov equation:

AT P+PA =−Q. (5.15)

This is a linear equation in the entries of P, and hence it can be solved using
linear algebra. It can be shown that the equation always has a solution if all of
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Figure 5.14: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputs u1 and u2 interfere with this
repression, allowing the circuit dynamics to be modified. The equilibrium points for this
circuit can be determined by the intersection of the two curves shown in (b).

the eigenvalues of the matrix A are in the left half-plane. Moreover, the solution
P is positive definite if Q is positive definite. It is thus always possible to find
a quadratic Lyapunov function for a stable linear system. We will defer a proof
of this until Chapter 6, where more tools for analysis of linear systems will be
developed.

Knowing that we have a direct method to find Lyapunov functions for linear
systems, we can now investigate the stability of nonlinear systems. Consider the
system

dx

dt
= F(x) =: Ax+ F̃(x), (5.16)

where F(0) = 0 and F̃(x) contains terms that are second order and higher in the
elements of x. The function Ax is an approximation of F(x) near the origin, and
we can determine the Lyapunov function for the linear approximation and investi-
gate if it is also a Lyapunov function for the full nonlinear system. The following
example illustrates the approach.

Example 5.11 Genetic switch
Consider the dynamics of a set of repressors connected together in a cycle, as
shown in Figure 5.14a. The normalized dynamics for this system were given in
Exercise 3.9:

dz1

dτ
=

µ

1+ zn
2

− z1,
dz2

dτ
=

µ

1+ zn
1

− z2, (5.17)

where z1 and z2 are scaled versions of the protein concentrations, n > 0 and µ > 0
are parameters that describe the interconnection between the genes and we have
set the external inputs u1 and u2 to zero.

The equilibrium points for the system are found by equating the time deriva-
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tives to zero. We define

f (u) =
µ

1+un
, f ′(u) =

d f

du
=
−µnun−1

(1+un)2
,

so that our dynamics become

dz1

dτ
= f (z2)− z1,

dz2

dτ
= f (z1)− z2,

and the equilibrium points are defined as the solutions of the equations

z1 = f (z2), z2 = f (z1).

If we plot the curves (z1, f (z1)) and ( f (z2),z2) on a graph, then these equations
will have a solution when the curves intersect, as shown in Figure 5.14b. Because
of the shape of the curves, it can be shown that there will always be three solutions:
one at z1e = z2e, one with z1e < z2e and one with z1e > z2e. If µ ≫ 1, then we can
show that the solutions are given approximately by

z1e ≈ µ, z2e ≈
1

µn−1
; z1e = z2e; z1e ≈

1

µn−1
, z2e ≈ µ. (5.18)

To check the stability of the system, we write f (u) in terms of its Taylor series
expansion about ue:

f (u) = f (ue)+ f ′(ue) ·(u−ue)+
1

2
f ′′(ue) ·(u−ue)

2 +higher-order terms,

where f ′ represents the first derivative of the function, and f ′′ the second. Using
these approximations, the dynamics can then be written as

dw

dt
=

⎧
⎪⎪⎩
−1 f ′(z2e)

f ′(z1e) −1

⎫
⎪⎪⎭w+ F̃(w),

where w= z−ze is the shifted state and F̃(w) represents quadratic and higher-order
terms.

We now use equation (5.15) to search for a Lyapunov function. Choosing Q = I
and letting P ∈ R2×2 have elements pi j, we search for a solution of the equation

⎧
⎪⎪⎩
−1 f ′1
f ′2 −1

⎫
⎪⎪⎭
⎧
⎪⎪⎩

p11 p12

p12 p22

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

p11 p12

p12 p22

⎫
⎪⎪⎭
⎧
⎪⎪⎩
−1 f ′2
f ′1 −1

⎫
⎪⎪⎭=

⎧
⎪⎪⎩
−1 0
0 −1

⎫
⎪⎪⎭ ,

where f ′1 = f ′(z1e) and f ′2 = f ′(z2e). Note that we have set p21 = p12 to force P to
be symmetric. Multiplying out the matrices, we obtain

⎧
⎪⎪⎩
−2p11 +2 f ′1 p12 p11 f ′2−2p12 + p22 f ′1

p11 f ′2−2p12 + p22 f ′1 −2p22 +2 f ′2 p12

⎫
⎪⎪⎭=

⎧
⎪⎪⎩
−1 0
0 −1

⎫
⎪⎪⎭ ,

which is a set of linear equations for the unknowns pi j. We can solve these linear
equations to obtain

p11 =−
f ′1

2− f ′2 f ′1 +2

4( f ′1 f ′2−1)
, p12 =−

f ′1 + f ′2
4( f ′1 f ′2−1)

, p22 =−
f ′2

2− f ′1 f ′2 +2

4( f ′1 f ′2−1)
.
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To check that V (w) = wT Pw is a Lyapunov function, we must verify that V (w) is
positive definite function or equivalently that P≻ 0. Since P is a 2×2 symmetric
matrix, it has two real eigenvalues λ1 and λ2 that satisfy

λ1 +λ2 = trace(P), λ1 ·λ2 = det(P).

In order for P to be positive definite λ1 and λ2 must be positive, and we thus require
that

trace(P) =
f ′1

2−2 f ′2 f ′1+ f ′2
2 +4

4−4 f ′1 f ′2
> 0, det(P) =

f ′1
2−2 f ′2 f ′1+ f ′2

2+4

16−16 f ′1 f ′2
> 0.

We see that trace(P) = 4det(P) and the numerator of the expressions is just ( f1−
f2)2 + 4 > 0, so it suffices to check the sign of 1− f ′1 f ′2. In particular, for P to be
positive definite, we require that

f ′(z1e) f ′(z2e)< 1.

We can now make use of the expressions for f ′ defined earlier and evaluate at
the approximate locations of the equilibrium points derived in equation (5.18). For
the equilibrium points where z1e ̸= z2e, we can show that

f ′(z1e) f ′(z2e)≈ f ′(µ) f ′(
1

µn−1
) =
−µnµn−1

(1+µn)2
·
−µnµ−(n−1)2

(1+µ−n(n−1))2
≈ n2µ−n2+n.

Using n = 2 and µ ≈ 200 from Exercise 3.9, we see that f ′(z1e) f ′(z2e)≪ 1 and
hence P is a positive definite. This implies that V is a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the equilibria z1e ̸= z2e are stable for the system (5.17), we now
compute V̇ at the equilibrium point. By construction,

V̇ = wT(PA+ATP)w+ F̃T(w)Pw+wTPF̃(w)

=−wTw+ F̃T(w)Pw+wTPF̃(w).

Since all terms in F̃ are quadratic or higher order in w, it follows that F̃T(w)Pw
and wTPF̃(w) consist of terms that are at least third order in w. Therefore if w is
sufficiently close to zero, then the cubic and higher-order terms will be smaller
than the quadratic terms. Hence, sufficiently close to w = 0, V̇ is negative definite,
allowing us to conclude that these equilibrium points are both stable.

Figure 5.15 shows the phase portrait and time traces for a system with µ = 4,
illustrating the bistable nature of the system. When the initial condition starts with
a concentration of protein B greater than that of A, the solution converges to the
equilibrium point at (approximately) (1/µn−1,µ). If A is greater than B, then it
goes to (µ,1/µn−1). The equilibrium point with z1e = z2e is unstable. ∇

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.
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Figure 5.15: Dynamics of a genetic switch. The phase portrait on the left shows that the
switch has three equilibrium points, corresponding to protein A having a concentration
greater than, equal to or less than protein B. The equilibrium point with equal protein con-
centrations is unstable, but the other equilibrium points are stable. The simulation on the
right shows the time response of the system starting from two different initial conditions.
The initial portion of the curve corresponds to initial concentrations z(0) = (1,5) and con-
verges to the equilibrium where z1e < z2e. At time t = 10, the concentrations are perturbed
by +2 in z1 and −2 in z2, moving the state into the region of the state space whose solutions
converge to the equilibrium point where z2e < z1e.

Theorem 5.3. Consider the dynamical system (5.16) with F(0) = 0 and F̃ such
that lim∥F̃(x)∥/∥x∥ → 0 as ∥x∥ → 0. If the real parts of all eigenvalues of A are
strictly less than zero, then xe = 0 is a locally asymptotically stable equilibrium
point of equation (5.16).

This theorem implies that asymptotic stability of the linear approximation im-
plies local asymptotic stability of the original nonlinear system. The theorem is
very important for control because it implies that stabilization of a linear approxi-
mation of a nonlinear system results in a stable equilibrium for the nonlinear sys-
tem. The proof of this theorem follows the technique used in Example 5.11. A
formal proof can be found in [Kha01].

It can also be shown that if A has one or more eigenvalues with strictly positive
real part, then xe = 0 is an unstable equilibrium for the nonlinear system.

Krasovski–Lasalle Invariance Principle
!!

For general nonlinear systems, especially those in symbolic form, it can be dif-
ficult to find a positive definite function V whose derivative is strictly negative
definite. The Krasovski–Lasalle theorem enables us to conclude the asymptotic
stability of an equilibrium point under less restrictive conditions, namely, in the
case where V̇ is negative semidefinite, which is often easier to construct. It only
applies only to time-invariant or periodic systems, which are the cases we consider
here. This section makes use of some additional concepts from dynamical systems;
see Hahn [Hah67] or Khalil [Kha01] for a more detailed description.

We will deal with the time-invariant case and begin by introducing a few more
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definitions. We denote the solution trajectories of the time-invariant system

dx

dt
= F(x) (5.19)

as x(t;a), which is the solution of equation (5.19) at time t starting from a at t0 = 0.
The ω limit set of a trajectory x(t;a) is the set of all points z ∈ Rn such that there
exists a strictly increasing sequence of times tn such that x(tn;a)→ z as n→ ∞.
A set M ⊂ Rn is said to be an invariant set if for all b ∈ M, we have x(t;b) ∈ M
for all t ≥ 0. It can be proved that the ω limit set of every trajectory is closed and
invariant. We may now state the Krasovski–Lasalle principle.

Theorem 5.4 (Krasovski–Lasalle principle). Let V : Rn→ R be a locally positive
definite function such that on the compact set Ωr = {x ∈ Rn : V (x) ≤ r} we have
V̇ (x)≤ 0. Define

S = {x ∈Ωr : V̇ (x) = 0}.

As t → ∞, the trajectory tends to the largest invariant set inside S; i.e., its ω limit
set is contained inside the largest invariant set in S. In particular, if S contains no
invariant sets other than x = 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].
Lyapunov functions can often be used to design stabilizing controllers, as is

illustrated by the following example, which also illustrates how the Krasovski–
Lasalle principle can be applied.

Example 5.12 Inverted pendulum
Following the analysis in Example 3.9, an inverted pendulum can be described by
the following normalized model:

dx1

dt
= x2,

dx2

dt
= sinx1 +ucosx1, (5.20)

where x1 is the angular deviation from the upright position and u is the (scaled)
acceleration of the pivot, as shown in Figure 5.16a. The system has an equilib-
rium at x1 = x2 = 0, which corresponds to the pendulum standing upright. This
equilibrium is unstable.

To find a stabilizing controller we consider the following candidate for a Lya-
punov function:

V (x) = (cosx1−1)+a(1− cos2 x1)+
1

2
x2

2 ≈
(
a−

1

2

)
x2

1 +
1

2
x2

2.

The Taylor series expansion shows that the function is positive definite near the
origin if a > 0.5. The time derivative of V (x) is

V̇ =−ẋ1 sinx1 +2aẋ1 sinx1 cosx1 + ẋ2x2 = x2(u+2asinx1)cosx1.

Choosing the feedback law

u =−2asinx1− x2 cosx1
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Figure 5.16: Stabilized inverted pendulum. A control law applies a force u at the bottom
of the pendulum to stabilize the inverted position (a). The phase portrait (b) shows that
the equilibrium point corresponding to the vertical position is stabilized. The shaded region
indicates the set of initial conditions that converge to the origin. The ellipse corresponds to a
level set of a Lyapunov function V (x) for which V (x)> 0 and V̇ (x)< 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction of the equilibrium
point. The actual dynamics of the system evolve on a manifold (c).

gives

V̇ =−x2
2 cos2 x1.

It follows from Lyapunov’s theorem that the equilibrium is (locally) stable. How-
ever, since the function is only negative semidefinite, we cannot conclude asymp-
totic stability using Theorem 5.2. However, note that V̇ = 0 implies that x2 = 0 or
x1 = π/2±nπ .

If we restrict our analysis to a small neighborhood of the origin Ωr, r≪ π/2,
then we can define

S = {(x1,x2) ∈Ωr : x2 = 0}

and we can compute the largest invariant set inside S. For a trajectory to remain
in this set we must have x2 = 0 for all t and hence ẋ2(t) = 0 as well. Using the
dynamics of the system (5.20), we see that x2(t)= 0 and ẋ2(t)= 0 implies x1(t)= 0
as well. Hence the largest invariant set inside S is (x1,x2) = 0, and we can use the
Krasovski–Lasalle principle to conclude that the origin is locally asymptotically
stable. A phase portrait of the closed loop system is shown in Figure 5.16b.

In the analysis and the phase portrait, we have treated the angle of the pendulum
θ = x1 as a real number. In fact, θ is an angle with θ = 2π equivalent to θ = 0.
Hence the dynamics of the system actually evolves on a manifold (smooth surface)
as shown in Figure 5.16c. Analysis of nonlinear dynamical systems on manifolds
is more complicated, but uses many of the same basic ideas presented here. ∇
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5.5 Parametric and Nonlocal Behavior
!

Most of the tools that we have explored are focused on the local behavior of a
fixed system near an equilibrium point. In this section we briefly introduce some
concepts regarding the global behavior of nonlinear systems and the dependence
of a system’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear system we can start by finding
the equilibrium points. We can then proceed to analyze the local behavior around
the equilibria. The behavior of a system near an equilibrium point is called the
local behavior of the system.

The solutions of the system can be very different far away from an equilibrium
point. This is seen, for example, in the stabilized pendulum in Example 5.12. The
inverted equilibrium point is stable, with small oscillations that eventually con-
verge to the origin. But far away from this equilibrium point there are trajectories
that converge to other equilibrium points or even cases in which the pendulum
swings around the top multiple times, giving very long oscillations that are topo-
logically different from those near the origin.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figure 5.16b. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibria
that are attracting. This gives partial information about the behavior of the system.

One method for approximating the region of attraction is through the use of
Lyapunov functions. Suppose that V is a local Lyapunov function for a system
around an equilibrium point x0. Let Ωr be a set on which V (x) has a value less
than r,

Ωr = {x ∈ Rn : V (x)≤ r},

and suppose that V̇ (x) ≤ 0 for all x ∈ Ωr, with equality only at the equilibrium
point x0. Then Ωr is inside the region of attraction of the equilibrium point. Since
this approximation depends on the Lyapunov function and the choice of Lyapunov
function is not unique, it can sometimes be a very conservative estimate.

It is sometimes the case that we can find a Lyapunov function V such that V is
positive definite and V̇ is negative (semi-) definite for all x∈Rn. In many instances
it can then be shown that the region of attraction for the equilibrium point is the
entire state space, and the equilibrium point is globally asymptotically stable. More
detailed conditions for global stability can be found in [Kha01].

Example 5.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Example 5.12. The Lya-
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punov function for the system was

V (x) = (cosx1−1)+a(1− cos2 x1)+
1

2
x2

2.

With a > 0.5, V̇ was negative semidefinite for all x and nonzero when x1 ̸=±π/2.
Hence any x such that |x1|< π/2 and V (x)> 0 will be inside the invariant set de-
fined by the level curves of V (x). One of these level sets is shown in Figure 5.16b.

∇

Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context
of models by exploring how the location of equilibrium points, their stability, their
regions of attraction and other dynamic phenomena, such as limit cycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

dx

dt
= F(x,µ), x ∈ Rn, µ ∈ Rk, (5.21)

where x is the state and µ is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x,µ) = 0,

and as µ is varied, the corresponding solutions xe(µ) can also vary. We say that
the system (5.21) has a bifurcation at µ = µ∗ if the behavior of the system changes
qualitatively at µ∗. This can occur either because of a change in stability type or a
change in the number of solutions at a given value of µ .

Example 5.14 Predator–prey
Consider the predator–prey system described in Example 3.3 and modeled as a
continuous time system as described in Section 4.7. The dynamics of the system
are given by

dH

dt
= rH

(
1−

H

k

)
−

aHL

c+H
,

dL

dt
= b

aHL

c+H
−dL, (5.22)

where H and L are the numbers of hares (prey) and lynxes (predators) and a, b,
c, d, k and r are parameters that model a given predator–prey system (described
in more detail in Section 4.7). The system has an equilibrium point at He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behavior of the system,
we choose to focus on two specific parameters of interest: a, the interaction coef-
ficient between the populations and c, a parameter affecting the prey consumption
rate. Figure 5.17a is a numerically computed parametric stability diagram show-
ing the regions in the chosen parameter space for which the equilibrium point is
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Figure 5.17: Bifurcation analysis of the predator–prey system. (a) Parametric stability dia-
gram showing the regions in parameter space for which the system is stable. (b) Bifurcation
diagram showing the location and stability of the equilibrium point as a function of a. The
solid line represents a stable equilibrium point, and the dashed line represents an unstable
equilibrium point. The dashed-dotted lines indicate the upper and lower bounds for the limit
cycle at that parameter value (computed via simulation). The nominal values of the parame-
ters in the model are a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125 and r = 1.6.

stable (leaving the other parameters at their nominal values). We see from this fig-
ure that for certain combinations of a and c we get a stable equilibrium point, while
at other values this equilibrium point is unstable.

Figure 5.17b is a numerically computed bifurcation diagram for the system. In
this plot, we choose one parameter to vary (a) and then plot the equilibrium value
of one of the states (H) on the vertical axis. The remaining parameters are set to
their nominal values. A solid line indicates that the equilibrium point is stable; a
dashed line indicates that the equilibrium point is unstable. Note that the stability
in the bifurcation diagram matches that in the parametric stability diagram for
c = 50 (the nominal value) and a varying from 1.35 to 4. For the predator–prey
system, when the equilibrium point is unstable, the solution converges to a stable
limit cycle. The amplitude of this limit cycle is shown by the dashed-dotted line in
Figure 5.17b. ∇

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
changes as the parameters are varied. In such a case it is revealing to plot the
eigenvalues of the system as a function of the parameters. Such plots are called
root locus diagrams because they give the locus of the eigenvalues when param-
eters change. Bifurcations occur when parameter values are such that there are
eigenvalues with zero real part. Computing environments such LabVIEW, MAT-
LAB and Mathematica have tools for plotting root loci. A more detailed discussion
of the root locus is given in Section 12.5.

Example 5.15 Root locus diagram for a bicycle model
Consider the linear bicycle model given by equation (4.7) in Section 4.2. Introduc-
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Figure 5.18: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle velocity v0. The system
is stable when all eigenvalues have negative real part (shaded region). The plot in (b) shows
the locus of eigenvalues on the complex plane as the velocity v is varied and gives a different
view of the stability of the system. This type of plot is called a root locus diagram.

ing the state variables x1 = ϕ , x2 = δ , x3 = ϕ̇ and x4 = δ̇ and setting the steering
torque T = 0, the equations can be written as

dx

dt
=

⎧
⎪⎪⎪⎩

0 I

−M−1(K0 +K2v2
0) −M−1Cv0

⎫
⎪⎪⎪⎭x =: Ax,

where I is a 2×2 identity matrix and v0 is the velocity of the bicycle. Figure 5.18a
shows the real parts of the eigenvalues as a function of velocity. Figure 5.18b
shows the dependence of the eigenvalues of A on the velocity v0. The figures show
that the bicycle is unstable for low velocities because two eigenvalues are in the
right half-plane. As the velocity increases, these eigenvalues move into the left
half-plane, indicating that the bicycle becomes self-stabilizing. As the velocity is
increased further, there is an eigenvalue close to the origin that moves into the right
half-plane, making the bicycle unstable again. However, this eigenvalue is small
and so it can easily be stabilized by a rider. Figure 5.18a shows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. ∇

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters
of the system to eliminate extra parameters when possible. Computer programs
such as AUTO, LOCBIF and XPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations to design feedback laws
that stabilize an equilibrium point and provide a desired level of performance.
However, for some classes of problems the feedback controller must be nonlinear
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Figure 5.19: Headphones with noise cancellation. Noise is sensed by the exterior micro-
phone (a) and sent to a filter in such a way that it cancels the noise that penetrates the
headphone (b). The filter parameters a and b are adjusted by the controller. S represents the
input signal to the headphones.

to accomplish its function. By making use of Lyapunov functions we can often
design a nonlinear control law that provides stable behavior, as we saw in Exam-
ple 5.12.

One way to systematically design a nonlinear controller is to begin with a can-
didate Lyapunov function V (x) and a control system ẋ = f (x,u). We say that V (x)
is a control Lyapunov function if for every x there exists a u such that V̇ (x) =
∂V
∂x

f (x,u) < 0. In this case, it may be possible to find a function α(x) such that
u = α(x) stabilizes the system. The following example illustrates the approach.

Example 5.16 Noise cancellation
Noise cancellation is used in consumer electronics and in industrial systems to re-
duce the effects of noise and vibrations. The idea is to locally reduce the effect
of noise by generating opposing signals. A pair of headphones with noise can-
cellation such as those shown in Figure 5.19a is a typical example. A schematic
diagram of the system is shown in Figure 5.19b. The system has two microphones,
one outside the headphones that picks up exterior noise n and another inside the
headphones that picks up the signal e, which is a combination of the desired signal
S and the external noise that penetrates the headphone. The signal from the exterior
microphone is filtered and sent to the headphones in such a way that it cancels the
external noise that penetrates into the headphones. The parameters of the filter are
adjusted by a feedback mechanism to make the noise signal in the internal micro-
phone as small as possible. The feedback is inherently nonlinear because it acts by
changing the parameters of the filter.

To analyze the system we assume for simplicity that the propagation of external
noise into the headphones is modeled by a first-order dynamical system described
by

dz

dt
= a0z+b0n, (5.23)
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where z is the sound level and the parameters a0 < 0 and b0 are not known. Assume
that the filter is a dynamical system of the same type:

dw

dt
= aw+bn,

where the parameters a and b are adjustable. We wish to find a controller that
updates a and b so that they converge to the (unknown) parameters a0 and b0. If
a = a0 and b = b0 we have e = S and the noise effect of the noise is eliminated.
Assuming for simplicity that S = 0, introduce x1 = e = w− z, x2 = a− a0 and
x3 = b−b0; then

dx1

dt
= a0(w− z)+(a−a0)w+(b−b0)n = a0x1 + x2w+ x3n. (5.24)

We will achieve noise cancellation if we can find a feedback law for changing the
parameters a and b so that the error e goes to zero. To do this we choose

V (x1,x2,x3) =
1

2

(
αx2

1 + x2
2 + x2

3

)

as a candidate Lyapunov function for (5.24). The derivative of V is

V̇ = αx1ẋ1 + x2ẋ2 + x3ẋ3 = αa0x2
1 + x2(ẋ2 +αwx1)+ x3(ẋ3 +αnx1).

Choosing

ȧ = ẋ2 =−αwx1 =−αwe, ḃ = ẋ3 =−αnx1 =−αne, (5.25)

we find that V̇ =αa0x2
1 < 0, and it follows that the quadratic function will decrease

as long as e = x1 = w− z ̸= 0. The nonlinear feedback (5.25) thus attempts to
change the parameters so that the error between the signal and the noise is small.
Notice that feedback law (5.25) does not use the model (5.23) explicitly.

A simulation of the system is shown in Figure 5.20. In the simulation we have
represented the signal as a pure sinusoid and the noise as broad band noise. The fig-
ure shows the dramatic improvement with noise cancellation. The sinusoidal signal
is not visible without noise cancellation. The filter parameters change quickly from
their initial values a= b= 0. Filters of higher order with more coefficients are used
in practice. ∇

5.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [Str94] and the highly illustrated text
by Abraham and Shaw [AS82]. More technical treatments include Andronov, Vitt
and Khaikin [AVK87], Guckenheimer and Holmes [GH83] and Wiggins [Wig90].
For students with a strong interest in mechanics, the texts by Arnold [Arn87] and
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Figure 5.20: Simulation of noise cancellation. The top left figure shows the headphone sig-
nal without noise cancellation, and the bottom left figure shows the signal with noise cancel-
lation. The right figures show the parameters a and b of the filter.

Marsden and Ratiu [MR94] provide an elegant approach using tools from differ-
ential geometry. Finally, good treatments of dynamical systems methods in biol-
ogy are given by Wilson [Wil99] and Ellner and Guckenheimer [EG05]. There
is a large literature on Lyapunov stability theory, including the classic texts by
Malkin [Mal59], Hahn [Hah67] and Krasovski [Kra63]. We highly recommend
the comprehensive treatment by Khalil [Kha01].

Exercises

5.1 (Time-invariant systems) Show that if we have a solution of the differential
equation (5.1) given by x(t) with initial condition x(t0) = x0, then x̃(τ) = x(t− t0)
is a solution of the differential equation

dx̃

dτ
= F(x̃)

with initial condition x̃(0) = x0, where τ = t− t0.

5.2 (Flow in a tank) A cylindrical tank has cross section A m2, effective outlet
area a m2 and inflow qin m3/s. An energy balance shows that the outlet velocity
is v =

√
2gh m/s, where g m/s2 is the acceleration of gravity and h is the distance

between the outlet and the water level in the tank (in meters). Show that the system
can be modeled by

dh

dt
=−

a

A

√
2gh+

1

A
qin, qout = a

√
2gh.

Use the parameters A = 0.2, a = 0.01. Simulate the system when the inflow is zero
and the initial level is h = 0.2. Do you expect any difficulties in the simulation?
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5.3 (Cruise control) Consider the cruise control system described in Section 4.1.
Generate a phase portrait for the closed loop system on flat ground (θ = 0), in third
gear, using a PI controller (with kp = 0.5 and ki = 0.1), m = 1000 kg and desired
speed 20 m/s. Your system model should include the effects of saturating the input
between 0 and 1.

5.4 (Lyapunov functions) Consider the second-order system

dx1

dt
=−ax1,

dx2

dt
=−bx1− cx2,

where a,b,c > 0. Investigate whether the functions

V1(x) =
1

2
x2

1 +
1

2
x2

2, V2(x) =
1

2
x2

1 +
1

2
(x2 +

b

c−a
x1)

2

are Lyapunov functions for the system and give any conditions that must hold.

5.5 (Damped spring–mass system) Consider a damped spring–mass system with!
dynamics

mq̈+ cq̇+ kq = 0.

A natural candidate for a Lyapunov function is the total energy of the system, given
by

V =
1

2
mq̇2 +

1

2
kq2.

Use the Krasovski–Lasalle theorem to show that the system is asymptotically sta-
ble.

5.6 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise 3.7:

J
d2ϕ

dt2
= Pm−Pe = Pm−

EV

X
sinϕ.

The parameter

a =
Pmax

Pm
=

EV

XPm
(5.26)

is the ratio between the maximum deliverable power Pmax = EV/X and the me-
chanical power Pm.

(a) Consider a as a bifurcation parameter and discuss how the equilibria depend
on a.

(b) For a > 1, show that there is a center at ϕ0 = arcsin(1/a) and a saddle at
ϕ = π−ϕ0.

(c) Show that if Pm/J = 1 there is a solution through the saddle that satisfies

1

2

(dϕ

dt

)2
−ϕ +ϕ0−acosϕ−

√
a2−1 = 0. (5.27)

Use simulation to show that the stability region is the interior of the area enclosed
by this solution. Investigate what happens if the system is in equilibrium with a
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value of a that is slightly larger than 1 and a suddenly decreases, corresponding to
the reactance of the line suddenly increasing.

5.7 (Lyapunov equation) Show that Lyapunov equation (5.15) always has a solu-
tion if all of the eigenvalues of A are in the left half-plane. (Hint: Use the fact that
the Lyapunov equation is linear in P and start with the case where A has distinct
eigenvalues.)

5.8 (Congestion control) Consider the congestion control problem described in
Section 4.4. Confirm that the equilibrium point for the system is given by equa-
tion (4.21) and compute the stability of this equilibrium point using a linear ap-
proximation.

5.9 (Swinging up a pendulum) Consider the inverted pendulum, discussed in Ex-
ample 5.4, that is described by

θ̈ = sinθ +ucosθ ,

where θ is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function

V (θ , θ̇) = cosθ −1+
1

2
θ̇ 2,

show that the state feedback u = k(V0−V )θ̇ cosθ causes the pendulum to “swing
up” to the upright position.

5.10 (Root locus diagram) Consider the linear system

dx

dt
=

⎧
⎪⎪⎩

0 1
0 −3

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩
−1
4

⎫
⎪⎪⎭u, y =

⎧
⎩1 0

⎫
⎭x,

with the feedback u = −ky. Plot the location of the eigenvalues as a function the
parameter k.

5.11 (Discrete-time Lyapunov function) Consider a nonlinear discrete-time sys- !
tem with dynamics x[k+1] = f (x[k]) and equilibrium point xe = 0. Suppose there
exists a smooth, positive definite function V :Rn→R such that V ( f (x))−V (x)< 0
for x ̸= 0 and V(0) = 0. Show that xe = 0 is (locally) asymptotically stable.

5.12 (Operational amplifier oscillator) An op amp circuit for an oscillator was
shown in Exercise 4.5. The oscillatory solution for that linear circuit was stable
but not asymptotically stable. A schematic of a modified circuit that has nonlinear
elements is shown in the figure below. The modification is obtained by making a
feedback around each operational amplifier that has capacitors using multipliers.
The signal ae = v2

1 + v2
2/α2− v2

0 is the amplitude error. Show that the system is
modeled by

dv1

dt
=

R4

R1R3C1
v2 +

1

R11C1
v1(v

2
0− v2

1−
v2

2

α2
),

dv2

dt
=−

1

R2C2
v1 +

1

R22C2
v2(v

2
0− v2

1−
v2

2

α2
).
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Determine α so that the the circuit gives an oscillation with a stable limit cycle
with amplitude v0. (Hint: Use the results of Example 5.8.)

5.13 (Self-activating genetic circuit) Consider the dynamics of a genetic circuit that
implements self-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example 3.15, the dynamics for the system can be written as

dm

dt
=

α p2

1+ kp2
+α0− γm,

d p

dt
= βm−δ p, (5.28)

for p,m ≥ 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

5.14 (Diagonal systems) Let A ∈ Rn×n be a square matrix with real eigenvalues
λ1, . . . ,λn and corresponding eigenvectors v1, . . . ,vn.

(a) Show that if the eigenvalues are distinct (λi ̸= λ j for i ̸= j), then vi ̸= v j for
i ̸= j.

(b) Show that the eigenvectors form a basis for Rn so that any vector x can be
written as x = ∑αivi for αi ∈ R.

(c) Let T =
⎧
⎩v1 v2 . . . vn

⎫
⎭ and show that T−1AT is a diagonal matrix of the

form (5.8).

(d) Show that if some of the λi are complex numbers, then A can be written as

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

Λ1 0
. . .

0 Λk

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

where Λi = λ ∈ R or Λi =

⎧
⎪⎪⎩

σ ω
−ω σ

⎫
⎪⎪⎭ .

in an appropriate set of coordinates.

This form of the dynamics of a linear system is often referred to as block diagonal
form.

5.15 (Furuta pendulum) The Furuta pendulum, an inverted pendulum on a rotating
arm, is shown to the left in the figure below.
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Consider the situation when the pendulum arm is spinning with constant rate. The
system has multiple equilibrium points that depend on the angular velocity ω , as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

Jpθ̈ − Jpω2
0 sinθ cosθ −mpgl sinθ = 0,

where Jp is the moment of inertia of the pendulum with respect to its pivot, mp is
the pendulum mass, l is the distance between the pivot and the center of mass of
the pendulum and ω0 is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the condition(s) for stability of
each equilibrium point (in terms of ω0).

(b) Consider the angular velocity as a bifurcation parameter and verify the bifur-
cation diagram given above. This is an example of a pitchfork bifurcation.

5.16 (Routh-Hurwitz criterion) Consider a linear differential equation with the
characteristic polynomial

λ (s) = s2 +a1s+a2, λ (s) = s3 +a1s2 +a2s+a3.

Show that the system is asymptotically stable if and only if all the coefficients ai

are positive and if a1a2 > a3. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.





Chapter Six
Linear Systems

Few physical elements display truly linear characteristics. For example the relation between

force on a spring and displacement of the spring is always nonlinear to some degree. The

relation between current through a resistor and voltage drop across it also deviates from a

straight-line relation. However, if in each case the relation is reasonably linear, then it will

be found that the system behavior will be very close to that obtained by assuming an ideal,

linear physical element, and the analytical simplification is so enormous that we make linear

assumptions wherever we can possibly do so in good conscience.

Robert H. Cannon, Dynamics of Physical Systems, 1967 [Can03].

In Chapters 3–5 we considered the construction and analysis of differential
equation models for dynamical systems. In this chapter we specialize our results
to the case of linear, time-invariant input/output systems. Two central concepts
are the matrix exponential and the convolution equation, through which we can
completely characterize the behavior of a linear system. We also describe some
properties of the input/output response and show how to approximate a nonlinear
system by a linear one.

6.1 Basic Definitions

We have seen several instances of linear differential equations in the examples in
the previous chapters, including the spring–mass system (damped oscillator) and
the operational amplifier in the presence of small (nonsaturating) input signals.
More generally, many dynamical systems can be modeled accurately by linear dif-
ferential equations. Electrical circuits are one example of a broad class of systems
for which linear models can be used effectively. Linear models are also broadly
applicable in mechanical engineering, for example, as models of small deviations
from equilibria in solid and fluid mechanics. Signal-processing systems, including
digital filters of the sort used in CD and MP3 players, are another source of good
examples, although these are often best modeled in discrete time (as described in
more detail in the exercises).

In many cases, we create systems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linear behavior that led Harold
S. Black to the invention of the negative feedback amplifier. Almost all modern
signal processing systems, whether analog or digital, use feedback to produce lin-
ear or near-linear input/output characteristics. For these systems, it is often useful
to represent the input/output characteristics as linear, ignoring the internal details
required to get that linear response.
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For other systems, nonlinearities cannot be ignored, especially if one cares
about the global behavior of the system. The predator–prey problem is one exam-
ple of this: to capture the oscillatory behavior of the interdependent populations
we must include the nonlinear coupling terms. Other examples include switch-
ing behavior and generating periodic motion for locomotion. However, if we care
about what happens near an equilibrium point, it often suffices to approximate
the nonlinear dynamics by their local linearization, as we already explored briefly
in Section 5.3. The linearization is essentially an approximation of the nonlinear
dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systems more formally. Con-
sider a state space system of the form

dx

dt
= f (x,u), y = h(x,u), (6.1)

where x ∈ Rn, u ∈ Rp and y ∈ Rq. As in the previous chapters, we will usually
restrict ourselves to the single-input, single-output case by taking p = q = 1. We
also assume that all functions are smooth and that for a reasonable class of inputs
(e.g., piecewise continuous functions of time) the solutions of equation (6.1) exist
for all time.

It will be convenient to assume that the origin x = 0, u = 0 is an equilibrium
point for this system (ẋ = 0) and that h(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose that (xe,ue) ̸= (0,0) is an equilibrium point
of the system with output ye = h(xe,ue). Then we can define a new set of states,
inputs and outputs,

x̃ = x− xe, ũ = u−ue, ỹ = y− ye,

and rewrite the equations of motion in terms of these variables:

d

dt
x̃ = f (x̃+ xe, ũ+ue) =: f̃ (x̃, ũ),

ỹ = h(x̃+ xe, ũ+ue)− ye =: h̃(x̃, ũ).

In the new set of variables, the origin is an equilibrium point with output 0, and
hence we can carry out our analysis in this set of variables. Once we have obtained
our answers in this new set of variables, we simply “translate” them back to the
original coordinates using x = x̃+ xe, u = ũ+ue and y = ỹ+ ye.

Returning to the original equations (6.1), now assuming without loss of gen-
erality that the origin is the equilibrium point of interest, we write the output y(t)
corresponding to the initial condition x(0) = x0 and input u(t) as y(t;x0,u). Using
this notation, a system is said to be a linear input/output system if the following
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Figure 6.1: Superposition of homogeneous and particular solutions. The first row shows the
input, state and output corresponding to the initial condition response. The second row shows
the same variables corresponding to zero initial condition but nonzero input. The third row
is the complete solution, which is the sum of the two individual solutions.

conditions are satisfied:

(i) y(t;αx1 +βx2,0) = αy(t;x1,0)+βy(t;x2,0),

(ii) y(t;αx0,δu) = αy(t;x0,0)+δy(t;0,u),

(iii) y(t;0,δu1 + γu2) = δy(t;0,u1)+ γy(t;0,u2).

(6.2)

Thus, we define a system to be linear if the outputs are jointly linear in the initial
condition response (u = 0) and the forced response (x(0) = 0). Property (iii) is a
statement of the principle of superposition: the response of a linear system to the
sum of two inputs u1 and u2 is the sum of the outputs y1 and y2 corresponding to
the individual inputs.

The general form of a linear state space system is

dx

dt
= Ax+Bu, y =Cx+Du, (6.3)

where A∈Rn×n, B∈Rn×p, C ∈Rq×n and D∈Rq×p. In the special case of a single-
input, single-output system, B is a column vector, C is a row vector and D is scalar.
Equation (6.3) is a system of linear first-order differential equations with input u,
state x and output y. It is easy to show that given solutions x1(t) and x2(t) for this
set of equations, the corresponding outputs satisfy the linearity conditions (6.2).

We define xh(t) to be the solution with zero input (the homogeneous solution)
and the solution xp(t) to be the input dependent solution with zero initial condition
(the forced solution or a particular solution). Figure 6.1 illustrates how these two
individual solutions can be superimposed to form the complete solution.
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It is also possible to show that if a dynamical system with a finite number of
states is input/output linear in the sense we have described, it can always be repre-
sented by a state space equation of the form (6.3) through an appropriate choice of
state variables. In Section 6.2 we will give an explicit solution of equation (6.3),
but we illustrate the basic form through a simple example.

Example 6.1 Scalar system
Consider the first-order differential equation

dx

dt
= ax+u, y = x,

with x(0) = x0. Let u1 = Asinω1t and u2 = Bcosω2t. The homogeneous solution
is xh(t) = eatx0, and two particular solutions with x(0) = 0 are

xp1(t) =−A
−ω1eat +ω1 cosω1t +asinω1t

a2 +ω2
1

,

xp2(t) = B
aeat −acosω2t +ω2 sinω2t

a2 +ω2
2

.

Suppose that we now choose x(0) = αx0 and u = u1 +u2. Then the resulting solu-
tion is the weighted sum of the individual solutions:

x(t) = eat

(
αx0 +

Aω1

a2 +ω2
1

+
Ba

a2 +ω2
2

)

−A
ω1 cosω1t +asinω1t

a2 +ω2
1

+B
−acosω2t +ω2 sinω2t

a2 +ω2
2

.

(6.4)

To see this, substitute equation (6.4) into the differential equation. Thus, the prop-
erties of a linear system are satisfied. ∇

Time Invariance

Time invariance is an important concept that is used to describe a system whose
properties do not change with time. More precisely, for a time-invariant system
if the input u(t) gives output y(t), then if we shift the time at which the input
is applied by a constant amount a, u(t + a) gives the output y(t + a). Systems
that are linear and time-invariant, often called LTI systems, have the interesting
property that their response to an arbitrary input is completely characterized by
their response to step inputs or their response to short “impulses.”

To explore the consequences of time invariance, we first compute the response
to a piecewise constant input. Assume that the system is initially at rest and con-
sider the piecewise constant input shown in Figure 6.2a. The input has jumps at
times tk, and its values after the jumps are u(tk). The input can be viewed as a
combination of steps: the first step at time t0 has amplitude u(t0), the second step
at time t1 has amplitude u(t1)−u(t0), etc.

Assuming that the system is initially at an equilibrium point (so that the initial
condition response is zero), the response to the input can be obtained by superim-
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Figure 6.2: Response to piecewise constant inputs. A piecewise constant signal can be rep-
resented as a sum of step signals (a), and the resulting output is the sum of the individual
outputs (b).

posing the responses to a combination of step inputs. Let H(t) be the response to
a unit step applied at time 0. The response to the first step is then H(t− t0)u(t0),
the response to the second step is H(t − t1)

(
u(t1)− u(t0)

)
, and we find that the

complete response is given by

y(t) = H(t− t0)u(t0)+H(t− t1)
(
u(t1)−u(t0)

)
+ · · ·

=
(
H(t− t0)−H(t− t1)

)
u(t0)+

(
H(t− t1)−H(t− t2)

)
u(t1)+ · · ·

=
tn<t

∑
n=0

(
H(t− tn)−H(t− tn+1)

)
u(tn)

=
tn<t

∑
n=0

H(t− tn)−H(t− tn+1)

tn+1− tn
u(tn)

(
tn+1− tn

)
.

An example of this computation is shown in Figure 6.2b.
The response to a continuous input signal is obtained by taking the limit as

tn+1− tn→ 0, which gives

y(t) =
∫ t

0
H ′(t− τ)u(τ)dτ , (6.5)

where H ′ is the derivative of the step response, also called the impulse response.
The response of a linear time-invariant system to any input can thus be computed
from the step response. Notice that the output depends only on the input since we
assumed the system was initially at rest, x(0) = 0. We will derive equation (6.5) in
a slightly different way in the Section 6.3.
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6.2 The Matrix Exponential

Equation (6.5) shows that the output of a linear system with zero initial state can
be written as an integral over the inputs u(t). In this section and the next we derive
a more general version of this formula, which includes nonzero initial conditions.
We begin by exploring the initial condition response using the matrix exponential.

Initial Condition Response

We will now show explicitly show the output of a linear system depends on the in-
put and the initial conditions. We begin by considering the homogeneous response
corresponding to the system

dx

dt
= Ax. (6.6)

For the scalar differential equation

dx

dt
= ax, x ∈ R, a ∈ R,

the solution is given by the exponential

x(t) = eatx(0).

We wish to generalize this to the vector case, where A becomes a matrix. We define
the matrix exponential as the infinite series

eX = I +X +
1

2
X2 +

1

3!
X3 + · · ·=

∞

∑
k=0

1

k!
Xk, (6.7)

where X ∈Rn×n is a square matrix and I is the n×n identity matrix. We make use
of the notation

X0 = I, X2 = XX , Xn = Xn−1X ,

which defines what we mean by the “power” of a matrix. Equation (6.7) is easy
to remember since it is just the Taylor series for the scalar exponential, applied to
the matrix X . It can be shown that the series in equation (6.7) converges for any
matrix X ∈ Rn×n in the same way that the normal exponential is defined for any
scalar a ∈ R.

Replacing X in equation (6.7) by At, where t ∈ R, we find that

eAt = I +At +
1

2
A2t2 +

1

3!
A3t3 + · · ·=

∞

∑
k=0

1

k!
Aktk,

and differentiating this expression with respect to t gives

d

dt
eAt = A+A2t +

1

2
A3t2 + · · ·= A

∞

∑
k=0

1

k!
Aktk = AeAt . (6.8)

Multiplying by x(0) from the right, we find that x(t) = eAtx(0) is the solution to the
differential equation (6.6) with initial condition x(0). We summarize this important
result as a proposition.
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Proposition 6.1. The solution to the homogeneous system of differential equa-
tions (6.6) is given by

x(t) = eAtx(0).

Notice that the form of the solution is exactly the same as for scalar equations,
but we must put the vector x(0) on the right of the matrix eAt .

The form of the solution immediately allows us to see that the solution is linear
in the initial condition. In particular, if xh1(t) is the solution to equation (6.6) with
initial condition x(0) = x01 and xh2(t) with initial condition x(0) = x02, then the
solution with initial condition x(0) = αx01 +βx02 is given by

x(t) = eAt
(
αx01 +βx02

)
=
(
αeAtx01 +βeAtx02) = αxh1(t)+βxh2(t).

Similarly, we see that the corresponding output is given by

y(t) =Cx(t) = αyh1(t)+βyh2(t),

where yh1(t) and yh2(t) are the outputs corresponding to xh1(t) and xh2(t).
We illustrate computation of the matrix exponential by two examples.

Example 6.2 Double integrator
A very simple linear system that is useful in understanding basic concepts is the
second-order system given by

q̈ = u, y = q.

This system is called a double integrator because the input u is integrated twice to
determine the output y.

In state space form, we write x = (q, q̇) and

dx

dt
=

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

0
1

⎫
⎪⎪⎭u.

The dynamics matrix of a double integrator is

A =

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭ ,

and we find by direct calculation that A2 = 0 and hence

eAt =

⎧
⎪⎪⎩

1 t
0 1

⎫
⎪⎪⎭ .

Thus the homogeneous solution (u = 0) for the double integrator is given by

x(t) =

⎧
⎪⎪⎩

1 t
0 1

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x1(0)
x2(0)

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

x1(0)+ tx2(0)
x2(0)

⎫
⎪⎪⎭ ,

y(t) = x1(0)+ tx2(0).
∇

Example 6.3 Undamped oscillator
A model for an oscillator, such as the spring–mass system with zero damping, is

q̈+ω2
0 q = u.
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Putting the system into state space form using x1 = q, x2 = q̇/ω0, the dynamics
matrix for this system can be written as

A =

⎧
⎪⎪⎩

0 ω0

−ω0 0

⎫
⎪⎪⎭ and eAt =

⎧
⎪⎪⎩

cosω0t sinω0t
−sinω0t cosω0t

⎫
⎪⎪⎭ .

This expression for eAt can be verified by differentiation:

d

dt
eAt =

⎧
⎪⎪⎩
−ω0 sinω0t ω0 cosω0t
−ω0 cosω0t −ω0 sinω0t

⎫
⎪⎪⎭

=

⎧
⎪⎪⎩

0 ω0

−ω0 0

⎫
⎪⎪⎭
⎧
⎪⎪⎩

cosω0t sinω0t
−sinω0t cosω0t

⎫
⎪⎪⎭= AeAt .

The solution is then given by

x(t) = eAtx(0) =

⎧
⎪⎪⎩

cosω0t sinω0t
−sinω0t cosω0t

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x1(0)
x2(0)

⎫
⎪⎪⎭ .

The solution is more complicated if the system has damping:

q̈+2ζ ω0q̇+ω2
0 q = u.

If ζ < 1 we have

exp

⎧
⎪⎪⎩
−ζ ω0 ωd

−ωd −ζ ω0

⎫
⎪⎪⎭ t = e−ζ ω0t

⎧
⎪⎪⎩

cosωdt sinωdt
−sinωdt cosωdt

⎫
⎪⎪⎭ .

where ωd = ω0

√
1−ζ 2. The result can be proven by differentiating the exponen-

tial matrix. The corresponding results for ζ ≥ 1 are given in Exercise 6.4. ∇

An important class of linear systems are those that can be converted into diag-
onal form by a linear change of coordinates. Suppose that we are given a system

dx

dt
= Ax

such that all the eigenvalues of A are distinct. It can be shown (Exercise 5.14) that
there exists an invertible matrix T such that TAT−1 is diagonal. If we choose a set
of coordinates z = T x, then in the new coordinates the dynamics become

dz

dt
= T

dx

dt
= TAx = TAT−1z.

By definition of T , this system will be diagonal.
Now consider a diagonal matrix A and the corresponding kth power of At,

which is also diagonal:

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 0
λ2

. . .

0 λn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (At)k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ k
1 tk 0

λ k
2 tk

. . .

0 λ k
n tk

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,
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Figure 6.3: Representations of linear systems where the dynamics matrices are Jordan
blocks. A first-order Jordan block can be represented as an integrator with feedback λ , as
shown on the left. Second- and third-order Jordan blocks can be represented as series con-
nections of integrators with identical feedback, as shown on the right.

It follows from the series expansion that the matrix exponential is given by

eAt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eλ1t 0

eλ2t

. . .

0 eλnt

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

A similar expansion can be done in the case where the eigenvalues are complex,
using a block diagonal matrix, similar to what was done in Section 5.3.

Jordan Form
!

Some matrices with repeated eigenvalues cannot be transformed to diagonal form.
They can, however, be transformed to a closely related form, called the Jordan
form, in which the dynamics matrix has the eigenvalues along the diagonal. When
there are equal eigenvalues, there may be 1’s appearing in the superdiagonal indi-
cating that there is coupling between the states.

Specifically, we define a matrix to be in Jordan form if it can be written as

J =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1 0 . . . 0 0

0 J2
. . . 0 0

...
. . .

. . .
...

0 0 Jk−1 0
0 0 . . . 0 Jk

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, where Ji =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λi 1 0 . . . 0
0 λi 1 0
...

. . .
. . .

...
0 0 λi 1
0 0 . . . 0 λi

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6.9)

where λi is an eigenvalue of Ji. Each matrix Ji is called a Jordan block. A first-order
Jordan block can be represented as a system consisting of an integrator with feed-
back λ . A Jordan block of higher order can be represented as series connections
of such systems, as illustrated in Figure 6.3.

Theorem 6.2 (Jordan decomposition). Any matrix A ∈ Rn×n can be transformed
into Jordan form with the eigenvalues of A determining λi in the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Str88]. The special
case where the eigenvalues are distinct is examined in Exercise 5.14.
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Converting a matrix into Jordan form can be complicated, although MATLAB
can do this conversion for numerical matrices using the jordan function. There is
no requirement that the individual λi’s be distinct, and hence for a given eigenvalue
we can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the matrix can be computed
in terms of the Jordan blocks:

eJt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eJ1t 0 . . . 0

0 eJ2t
...

...
. . . 0

0 . . . 0 eJkt .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (6.10)

This follows from the block diagonal form of J. The exponentials of the Jordan
blocks can in turn be written as

eJit =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 t t2

2! . . . tn−1

(n−1)!

0 1 t . . . tn−2

(n−2)!
... 1

. . .
...

. . . t
0 . . . 0 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

eλit . (6.11)

When there are multiple eigenvalues, the invariant subspaces associated with
each eigenvalue correspond to the Jordan blocks of the matrix A. Note that some
eigenvalues of A may be complex, in which case the transformation T that converts
a matrix into Jordan form will also be complex. When λ has a nonzero imaginary
component, the solutions will have oscillatory components since

e(σ+iω)t = eσt(cosωt + isinωt).

We can now use these results to prove Theorem 5.1, which states that the equilib-
rium point xe = 0 of a linear system is asymptotically stable if and only if Reλi < 0
for all i.

Proof of Theorem 5.1. Let T ∈Cn×n be an invertible matrix that transforms A into
Jordan form, J = TAT−1. Using coordinates z = T x, we can write the solution z(t)
as

z(t) = eJtz(0),

where z(0) = T x(0), so that x(t) = T−1eJtz(0).
The solution z(t) can be written in terms of the elements of the matrix expo-

nential. From equation (6.11) these elements all decay to zero for arbitrary z(0) if
and only if Reλi < 0 for all i. Furthermore, if any λi has positive real part, then
there exists an initial condition z(0) such that the corresponding solution increases
without bound. Since we can scale this initial condition to be arbitrarily small, it
follows that the equilibrium point is unstable if any eigenvalue has positive real
part.
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The existence of a canonical form allows us to prove many properties of linear
systems by changing to a set of coordinates in which the A matrix is in Jordan
form. We illustrate this in the following proposition, which follows along the same
lines as the proof of Theorem 5.1.

Proposition 6.3. Suppose that the system

dx

dt
= Ax

has no eigenvalues with strictly positive real part and one or more eigenvalues
with zero real part. Then the system is stable if and only if the Jordan blocks cor-
responding to each eigenvalue with zero real part are scalar (1×1) blocks.

Proof. See Exercise 6.6b.

The following example illustrates the use of the Jordan form.

Example 6.4 Linear model of a vectored thrust aircraft
Consider the dynamics of a vectored thrust aircraft such as that described in Exam-
ple 3.11. Suppose that we choose u1 = u2 = 0 so that the dynamics of the system
become

dz

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z4

z5

z6

−gsinz3− c
m z4

g(cosz3−1)− c
m z5

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6.12)

where z = (x,y,θ , ẋ, ẏ, θ̇). The equilibrium points for the system are given by set-
ting the velocities ẋ, ẏ and θ̇ to zero and choosing the remaining variables to satisfy

−gsinz3,e = 0

g(cosz3,e−1) = 0
=⇒ z3,e = θe = 0.

This corresponds to the upright orientation for the aircraft. Note that xe and ye

are not specified. This is because we can translate the system to a new (upright)
position and still obtain an equilibrium point.

To compute the stability of the equilibrium point, we compute the linearization
using equation (5.11):

A =
∂F

∂ z

∣∣∣∣
ze

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g −c/m 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The eigenvalues of the system can be computed as

λ (A) = {0,0,0,0,−c/m,−c/m}.
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(a) Mode 1 (b) Mode 2

Figure 6.4: Modes of vibration for a system consisting of two masses connected by springs.
In (a) the masses move left and right in synchronization in (b) they move toward or against
each other.

We see that the linearized system is not asymptotically stable since not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense of Lyapunov, we must
make use of the Jordan form. It can be shown that the Jordan form of A is given by

J =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 −c/m

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Since the second Jordan block has eigenvalue 0 and is not a simple eigenvalue, the
linearization is unstable. ∇

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a description of the types of
behavior the system can exhibit. For oscillatory systems, the term mode is often
used to describe the vibration patterns that can occur. Figure 6.4 illustrates the
modes for a system consisting of two masses connected by springs. One pattern is
when both masses oscillate left and right in unison, and another is when the masses
move toward and away from each other.

The initial condition response of a linear system can be written in terms of a
matrix exponential involving the dynamics matrix A. The properties of the matrix A
therefore determine the resulting behavior of the system. Given a matrix A∈Rn×n,
recall that v is an eigenvector of A with eigenvalue λ if

Av = λv.

In general λ and v may be complex-valued, although if A is real-valued, then for
any eigenvalue λ its complex conjugate λ ∗ will also be an eigenvalue (with v∗ as
the corresponding eigenvector).

Suppose first that λ and v are a real-valued eigenvalue/eigenvector pair for A.
If we look at the solution of the differential equation for x(0) = v, it follows from
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Figure 6.5: The notion of modes for a second-order system with real eigenvalues. The left
figure shows the phase portrait and the modes corresponding to solutions that start on the
eigenvectors (bold lines). The corresponding time functions are shown on the right.

the definition of the matrix exponential that

eAtv =
(
I +At +

1

2
A2t2 + · · ·

)
v = v+λ tv+

λ 2t2

2
v+ · · ·= eλ tv.

The solution thus lies in the subspace spanned by the eigenvector. The eigenvalue
λ describes how the solution varies in time, and this solution is often called a mode
of the system. (In the literature, the term “mode” is also often used to refer to the
eigenvalue rather than the solution.)

If we look at the individual elements of the vectors x and v, it follows that

xi(t)

x j(t)
=

eλ tvi

eλ tv j
=

vi

v j
,

and hence the ratios of the components of the state x are constants for a (real)
mode. The eigenvector thus gives the “shape” of the solution and is also called
a mode shape of the system. Figure 6.5 illustrates the modes for a second-order
system consisting of a fast mode and a slow mode. Notice that the state variables
have the same sign for the slow mode and different signs for the fast mode.

The situation is more complicated when the eigenvalues of A are complex.
Since A has real elements, the eigenvalues and the eigenvectors are complex con-
jugates λ = σ ± iω and v = u± iw, which implies that

u =
v+ v∗

2
, w =

v− v∗

2i
.

Making use of the matrix exponential, we have

eAtv = eλ t(u+ iw) = eσt
(
(ucosωt−wsinωt)+ i(usinωt +wcosωt)

)
,
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from which it follows that

eAtu =
1

2

(
eAtv+ eAtv∗

)
= ueσt cosωt−weσt sinωt,

eAtw =
1

2i

(
eAtv− eAtv∗

)
= ueσt sinωt +weσt cosωt.

A solution with initial conditions in the subspace spanned by the real part u and
imaginary part w of the eigenvector will thus remain in that subspace. The solution
will be a logarithmic spiral characterized by σ and ω . We again call the solution
corresponding to λ a mode of the system, and v the mode shape.

If a matrix A has n distinct eigenvalues λ1, . . . ,λn, then the initial condition re-
sponse can be written as a linear combination of the modes. To see this, suppose
for simplicity that we have all real eigenvalues with corresponding unit eigenvec-
tors v1, . . . ,vn. From linear algebra, these eigenvectors are linearly independent,
and we can write the initial condition x(0) as

x(0) = α1v1 +α2v2 + · · ·+αnvn.

Using linearity, the initial condition response can be written as

x(t) = α1eλ1tv1 +α2eλ2tv2 + · · ·+αneλntvn.

Thus, the response is a linear combination of the modes of the system, with the
amplitude of the individual modes growing or decaying as eλit . The case for dis-
tinct complex eigenvalues follows similarly (the case for nondistinct eigenvalues is
more subtle and requires making use of the Jordan form discussed in the previous
section).

Example 6.5 Coupled spring–mass system
Consider the spring–mass system shown in Figure 6.4, but with the addition of
dampers on each mass. The equations of motion of the system are

mq̈1 =−2kq1− cq̇1 + kq2, mq̈2 = kq1−2kq2− cq̇2.

In state space form, we define the state to be x = (q1,q2, q̇1, q̇2), and we can rewrite
the equations as

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1

−
2k

m

k

m
−

c

m
0

k

m
−

2k

m
0 −

c

m

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x.

We now define a transformation z = T x that puts this system into a simpler form.
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Let z1 =
1
2(q1 +q2), z2 = ż1, z3 =

1
2(q1−q2) and z4 = ż3, so that

z = T x =
1

2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x.

In the new coordinates, the dynamics become

dz

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0

−
k

m
−

c

m
0 0

0 0 0 1

0 0 −
3k

m
−

c

m

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

z,

and we see that the system is in block diagonal form.
In the z coordinates, the states z1 and z2 parameterize one mode with eigen-

values λ ≈ −c/(2m)± i
√

k/m, and the states z3 and z4 another mode with λ ≈
−c/(2m)± i

√
3k/m. From the form of the transformation T we see that these

modes correspond exactly to the modes in Figure 6.4, in which q1 and q2 move ei-
ther toward or against each other. The real and imaginary parts of the eigenvalues
give the decay rates σ and frequencies ω for each mode. ∇

6.3 Input/Output Response

In the previous section we saw how to compute the initial condition response using
the matrix exponential. In this section we derive the convolution equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (6.3), repeated here:

dx

dt
= Ax+Bu, y =Cx+Du. (6.13)

Using the matrix exponential, the solution to equation (6.13) can be written as
follows.

Theorem 6.4. The solution to the linear differential equation (6.13) is given by

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Bu(τ)dτ . (6.14)

Proof. To prove this, we differentiate both sides and use the property (6.8) of the
matrix exponential. This gives

dx

dt
= AeAtx(0)+

∫ t

0
AeA(t−τ)Bu(τ)dτ +Bu(t) = Ax+Bu,
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Figure 6.6: Pulse response and impulse response. (a) The rectangles show pulses of width
5, 2.5 and 0.8, each with total area equal to 1. The arrow denotes an impulse δ (t) defined
by equation (6.17). The corresponding pulse responses for a linear system with eigenvalues
λ = {−0.08,−0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of duration 0.8.

which proves the result since the initial conditions are also met. Notice that the
calculation is essentially the same as for proving the result for a first-order equa-
tion.

It follows from equations (6.13) and (6.14) that the input/output relation for a
linear system is given by

y(t) =CeAtx(0)+
∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t). (6.15)

It is easy to see from this equation that the output is jointly linear in both the
initial conditions and the input, which follows from the linearity of matrix/vector
multiplication and integration.

Equation (6.15) is called the convolution equation, and it represents the general
form of the solution of a system of coupled linear differential equations. We see
immediately that the dynamics of the system, as characterized by the matrix A,
play a critical role in both the stability and performance of the system. Indeed,
the matrix exponential describes both what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can be given using the concept!
of the impulse response of a system. Consider the application of an input signal
u(t) given by the following equation:

u(t) = pε(t) =

⎧
⎪⎨

⎪⎩

0 t < 0

1/ε 0≤ t < ε

0 t ≥ ε .

(6.16)

This signal is a pulse of duration ε and amplitude 1/ε , as illustrated in Figure 6.6a.
We define an impulse δ (t) to be the limit of this signal as ε → 0:

δ (t) = lim
ε→0

pε(t). (6.17)
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This signal, sometimes called a delta function, is not physically achievable but
provides a convenient abstraction in understanding the response of a system. Note
that the integral of an impulse is 1:

∫ t

0
δ (τ)dτ =

∫ t

0
lim
ε→0

pε(t)dτ = lim
ε→0

∫ t

0
pε(t)dτ

= lim
ε→0

∫ ε

0
1/ε dτ = 1 t > 0.

In particular, the integral of an impulse over an arbitrarily short period of time that
includes the origin is identically 1.

We define the impulse response h(t) for a system as the output of the system
with zero initial condition and having an impulse as its input:

h(t) =
∫ t

0
CeA(t−τ)Bδ (τ)dτ =CeAtB, (6.18)

where the second equality follows from the fact that δ (t) is zero everywhere ex-
cept the origin and its integral is identically 1. We can now write the convolution
equation in terms of the initial condition response, the convolution of the impulse
response and the input signal, and the direct term:

y(t) =CeAtx(0)+
∫ t

0
h(t− τ)u(τ)dτ +Du(t). (6.19)

One interpretation of this equation, explored in Exercise 6.2, is that the response
of the linear system is the superposition of the response to an infinite set of shifted
impulses whose magnitudes are given by the input u(t). This is essentially the
argument used in analyzing Figure 6.2 and deriving equation (6.5). Note that the
second term in equation (6.19) is identical to equation (6.5), and it can be shown
that the impulse response is the derivative of the step response.

The use of pulses pε(t) as approximations of the impulse function δ (t) also
provides a mechanism for identifying the dynamics of a system from experiments.
Figure 6.6b shows the pulse responses of a system for different pulse widths. No-
tice that the pulse responses approach the impulse response as the pulse width
goes to zero. As a general rule, if the fastest eigenvalue of a stable system has real
part −σmax, then a pulse of length ε will provide a good estimate of the impulse
response if εσmax ≪ 1. Note that for Figure 6.6, a pulse width of ε = 1 s gives
εσmax = 0.62 and the pulse response is already close to the impulse response.

Coordinate Invariance

The components of the input vector u and the output vector y are determined by
the chosen inputs and outputs of a model, but the state variables depend on the
coordinate frame chosen to represent the state. This choice of coordinates affects
the values of the matrices A, B and C that are used in the model. (The direct term
D is not affected since it maps inputs to outputs.) We now investigate some of the
consequences of changing coordinate systems.
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Figure 6.7: Coupled spring mass system. Each mass is connected to two springs with stiff-
ness k and a viscous damper with damping coefficient c. The mass on the right is driven
through a spring connected to a sinusoidally varying attachment.

Introduce new coordinates z by the transformation z = T x, where T is an in-
vertible matrix. It follows from equation (6.3) that

dz

dt
= T (Ax+Bu) = TAT−1z+T Bu =: Ãz+ B̃u,

y =Cx+Du =CT−1z+Du =: C̃z+Du.

The transformed system has the same form as equation (6.3), but the matrices A, B
and C are different:

Ã = TAT−1, B̃ = T B, C̃ =CT−1. (6.20)

There are often special choices of coordinate systems that allow us to see a partic-
ular property of the system, hence coordinate transformations can be used to gain
new insight into the dynamics. The eigenvalues of Ã are the same as those of A, so
stability is not affected.

We can also compare the solution of the system in transformed coordinates to
that in the original state coordinates. We make use of an important property of the
exponential map,

eT ST−1
= TeST−1,

which can be verified by substitution in the definition of the matrix exponential.
Using this property, it is easy to show that

x(t) = T−1z(t) = T−1eÃtT x(0)+T−1
∫ t

0
eÃ(t−τ)B̃u(τ)dτ .

From this form of the equation, we see that if it is possible to transform A into
a form Ã for which the matrix exponential is easy to compute, we can use that
computation to solve the general convolution equation for the untransformed state
x by simple matrix multiplications. This technique is illustrated in the following
example.

Example 6.6 Coupled spring–mass system
Consider the coupled spring–mass system shown in Figure 6.7. The input to this
system is the sinusoidal motion of the position of the rightmost spring, and the
output is the position of each mass, q1 and q2. The equations of motion are given
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by
mq̈1 =−2kq1− cq̇1 + kq2, mq̈2 = kq1−2kq2− cq̇2 + ku.

In state space form, we define the state to be x = (q1,q2, q̇1, q̇2), and we can rewrite
the equations as

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1

−
2k

m

k

m
−

c

m
0

k

m
−

2k

m
0 −

c

m

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

0

k

m

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u.

This is a coupled set of four differential equations and is quite complicated to solve
in analytical form.

The dynamics matrix is the same as in Example 6.5, and we can use the coor-
dinate transformation defined there to put the system in block diagonal form:

dz

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0

−
k

m
−

c

m
0 0

0 0 0 1

0 0 −
3k

m
−

c

m

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

z+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
k

2m

0

−
k

2m

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u.

Note that the resulting matrix equations are block diagonal and hence decoupled.
We can solve for the solutions by computing the solutions of two sets of second-
order systems represented by the states (z1,z2) and (z3,z4). Indeed, the functional
form of each set of equations is identical to that of a single spring–mass system.
(The explicit solution is derived in Section 7.3.)

Once we have solved the two sets of independent second-order equations, we
can recover the dynamics in the original coordinates by inverting the state trans-
formation and writing x = T−1z. We can also determine the stability of the system
by looking at the stability of the independent second-order systems. ∇

Steady-State Response

Given a linear input/output system

dx

dt
= Ax+Bu, y =Cx+Du, (6.21)

the general form of the solution to equation (6.21) is given by the convolution
equation:

y(t) =CeAtx(0)+
∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t).

We see from the form of this equation that the solution consists of an initial condi-
tion response and an input response.
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Figure 6.8: Transient versus steady-state response. The input to a linear system is shown in
(a), and the corresponding output with x(0) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

The input response, corresponding to the last two terms in the equation above,
itself consists of two components—the transient response and the steady-state re-
sponse. The transient response occurs in the first period of time after the input
is applied and reflects the mismatch between the initial condition and the steady-
state solution. The steady-state response is the portion of the output response that
reflects the long-term behavior of the system under the given inputs. For inputs
that are periodic the steady-state response will often be periodic, and for constant
inputs the response will often be constant. An example of the transient and the
steady-state response for a periodic input is shown in Figure 6.8.

A particularly common form of input is a step input, which represents an abrupt
change in input from one value to another. A unit step (sometimes called the Heav-
iside step function) is defined as

u(t) = S(t) =

{
0 t = 0

1 t > 0.

The step response of the system (6.21) is defined as the output y(t) starting from
zero initial condition (or the appropriate equilibrium point) and given a step input.
We note that the step input is discontinuous and hence is not practically imple-
mentable. However, it is a convenient abstraction that is widely used in studying
input/output systems.

We can compute the step response to a linear system using the convolution
equation. Setting x(0) = 0 and using the definition of the step input above, we
have

y(t) =
∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t) =C

∫ t

0
eA(t−τ)Bdτ +D

=C

∫ t

0
eAσ Bdσ +D =C

(
A−1eAσ B

)∣∣σ=t

σ=0
+D

=CA−1eAtB−CA−1B+D.

If all eigenvalues of A have negative real parts (implying that the origin is a stable
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Figure 6.9: Sample step response. The rise time, overshoot, settling time and steady-state
value give the key performance properties of the signal.

equilibrium point in the absence of any input), then we can rewrite the solution as

y(t) =CA−1eAtB︸ ︷︷ ︸
transient

+D−CA−1B︸ ︷︷ ︸
steady-state

, t > 0. (6.22)

The first term is the transient response and decays to zero as t → ∞. The second
term is the steady-state response and represents the value of the output for large
time.

A sample step response is shown in Figure 6.9. Several key properties are used
when describing a step response. The steady-state value yss of a step response is
the final level of the output, assuming it converges. The rise time Tr is the amount
of time required for the signal to first go from 10% of its final value to 90% of
its final value. It is possible to define other limits as well, but in this book we
shall use these percentages unless otherwise indicated. The overshoot Mp is the
percentage of the final value by which the signal initially rises above the final
value. This usually assumes that future values of the signal do not overshoot the
final value by more than this initial transient, otherwise the term can be ambiguous.
Finally, the settling time Ts is the amount of time required for the signal to stay
within 2% of its final value for all future times. The settling time is also sometimes
defined as reaching 1% or 5% of the final value (see Exercise 6.7). In general these
performance measures can depend on the amplitude of the input step, but for linear
systems the last three quantities defined above are independent of the size of the
step.

Example 6.7 Compartment model
Consider the compartment model illustrated in Figure 6.10 and described in more
detail in Section ??. Assume that a drug is administered by constant infusion in
compartment V1 and that the drug has its effect in compartment V2. To assess how
quickly the concentration in the compartment reaches steady state we compute
the step response, which is shown in Figure 6.10b. The step response is quite slow,
with a settling time of 39 min. It is possible to obtain the steady-state concentration
much faster by having a faster injection rate initially, as shown in Figure 6.10c.
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Figure 6.10: Response of a compartment model to a constant drug infusion. A simple dia-
gram of the system is shown in (a). The step response (b) shows the rate of concentration
buildup in compartment 2. In (c) a pulse of initial concentration is used to speed up the
response.

The response of the system in this case can be computed by combining two step
responses (Exercise 6.3). ∇

Another common input signal to a linear system is a sinusoid (or a combination
of sinusoids). The frequency response of an input/output system measures the way
in which the system responds to a sinusoidal excitation on one of its inputs. As
we have already seen for scalar systems, the particular solution associated with
a sinusoidal excitation is itself a sinusoid at the same frequency. Hence we can
compare the magnitude and phase of the output sinusoid to the input.

To see this in more detail, we must evaluate the convolution equation (6.15) for
u = cosωt. This turns out to be a very messy calculation, but we can make use of
the fact that the system is linear to simplify the derivation. In particular, we note
that

cosωt =
1

2

(
eiωt + e−iωt

)
.

Since the system is linear, it suffices to compute the response of the system to the
complex input u(t) = est and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding to s = iω and s =−iω .

Applying the convolution equation to the input u = est we have

y(t) =CeAtx(0)+
∫ t

0
CeA(t−τ)Besτdτ +Dest

=CeAtx(0)+CeAt
∫ t

0
e(sI−A)τBdτ +Dest .

If we assume that none of the eigenvalues of A are equal to s = ±iω , then the
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matrix sI−A is invertible, and we can write

y(t) =CeAtx(0)+CeAt
(
(sI−A)−1e(sI−A)τB

)∣∣∣
t

0
+Dest

=CeAtx(0)+CeAt(sI−A)−1
(

e(sI−A)t − I
)

B+Dest

=CeAtx(0)+C(sI−A)−1estB−CeAt(sI−A)−1B+Dest ,

and we obtain

y(t) =CeAt
(

x(0)− (sI−A)−1B
)

︸ ︷︷ ︸
transient

+
(

C(sI−A)−1B+D
)

est

︸ ︷︷ ︸
steady-state

. (6.23)

Notice that once again the solution consists of both a transient component and a
steady-state component. The transient component decays to zero if the system is
asymptotically stable and the steady-state component is proportional to the (com-
plex) input u = est .

We can simplify the form of the solution slightly further by rewriting the steady-
state response as

yss(t) = Meiθ est = Me(st+iθ),

where
Meiθ =C(sI−A)−1B+D (6.24)

and M and θ represent the magnitude and phase of the complex number C(sI−
A)−1B+D. When s = iω , we say that M is the gain and θ is the phase of the
system at a given forcing frequency ω . Using linearity and combining the solutions
for s =+iω and s =−iω , we can show that if we have an input u = Au sin(ωt+ψ)
and an output y = Ay sin(ωt +ϕ), then

gain(ω) =
Ay

Au
= M, phase(ω) = ϕ−ψ = θ .

The steady-state solution for a sinusoid u = cosωt = sin(ωt +π/2) is now given
by

yss(t) = M cos(ωt +θ).

If the phase θ is positive, we say that the output leads the input, otherwise we say
it lags the input.

A sample steady-state sinusoidal response is illustrated in Figure 6.11a. The
dashed line shows the input sinusoid, which has amplitude 1. The output sinusoid
is shown as a solid line and has a different amplitude plus a shifted phase. The
gain is the ratio of the amplitudes of the sinusoids, which can be determined by
measuring the height of the peaks. The phase is determined by comparing the ratio
of the time between zero crossings of the input and output to the overall period of
the sinusoid:

θ =−2π ·
∆T

T
.
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Figure 6.11: Steady-state response of an asymptotically stable linear system to a sinusoid.
(a) A sinusoidal input of magnitude Au (dashed) gives a sinusoidal output of magnitude Ay

(solid), delayed by ∆T seconds. (b) Frequency response, showing gain and phase. The gain
is given by the ratio of the output amplitude to the input amplitude, M = Ay/Au. The phase
lag is given by θ =−2π∆T/T ; it is negative for the case shown because the output lags the
input.

A convenient way to view the frequency response is to plot how the gain and
phase in equation (6.24) depend on ω (through s = iω). Figure 6.11b shows an
example of this type of representation.

Example 6.8 Active band-pass filter
Consider the op amp circuit shown in Figure 6.12a. We can derive the dynamics of
the system by writing the nodal equations, which state that the sum of the currents
at any node must be zero. Assuming that v− = v+ = 0, as we did in Section 4.3,
we have

0 =
v1− v2

R1
−C1

dv2

dt
, 0 =C1

dv2

dt
+

v3

R2
+C2

dv3

dt
.

Choosing v2 and v3 as our states and using these equations, we obtain

dv2

dt
=

v1− v2

R1C1
,

dv3

dt
=
−v3

R2C2
−

v1− v2

R1C2
.

Rewriting these in linear state space form, we obtain

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1

R1C1
0

1

R1C2
−

1

R2C2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

R1C1

−1

R1C2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u, y =
⎧
⎩0 1

⎫
⎭x, (6.25)

where x = (v2,v3), u = v1 and y = v3.
The frequency response for the system can be computed using equation (6.24):

Me jθ =C(sI−A)−1B+D =−
R2

R1

R1C1s

(1+R1C1s)(1+R2C2s)
, s = iω.

The magnitude and phase are plotted in Figure 6.12b for R1 = 100 Ω, R2 = 5 kΩ
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Figure 6.12: Active band-pass filter. The circuit diagram (a) shows an op amp with two RC

filters arranged to provide a band-pass filter. The plot in (b) shows the gain and phase of the
filter as a function of frequency. Note that the phase starts at -90◦ due to the negative gain of
the operational amplifier.

and C1 =C2 = 100 µF. We see that the circuit passes through signalsith frequencies
at about 10 rad/s, but attenuates frequencies below 5 rad/s and above 50 rad/s. At
0.1 rad/s the input signal is attenuated by 20× (0.05). This type of circuit is called a
band-pass filter since it passes through signals in the band of frequencies between
5 and 50 rad/s. ∇

As in the case of the step response, a number of standard properties are defined
for frequency responses. The gain of a system at ω = 0 is called the zero frequency
gain and corresponds to the ratio between a constant input and the steady output:

M0 =−CA−1B+D

(compare to equation (6.20)). The zero frequency gain is well defined only if A is
invertible (i.e., if it does not have eigenvalues at 0). It is also important to note that
the zero frequency gain is a relevant quantity only when a system is stable about
the corresponding equilibrium point. So, if we apply a constant input u = r, then
the corresponding equilibrium point xe = −A−1Br must be stable in order to talk
about the zero frequency gain. (In electrical engineering, the zero frequency gain
is often called the DC gain. DC stands for direct current and reflects the common
separation of signals in electrical engineering into a direct current (zero frequency)
term and an alternating current (AC) term.)

The bandwidth ωb of a system is the frequency range over which the gain has
decreased by no more than a factor of 1/

√
2 from its reference value. For systems

with nonzero, finite zero frequency gain, the reference value is taken as the zero
frequency gain. For systems that attenuate low frequencies but pass through high
frequencies, the reference gain is taken as the high-frequency gain. For a system
such as the band-pass filter in Example 6.8, bandwidth is defined as the range of
frequencies where the gain is larger than 1/

√
2 of the gain at the center of the band.

(For Example 6.8 this would give a bandwidth of approximately 50 rad/s.)
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Figure 6.13: AFM frequency response. (a) A block diagram for the vertical dynamics of an
atomic force microscope in contact mode. The plot in (b) shows the gain and phase for the
piezo stack. The response contains two frequency peaks at resonances of the system, along
with an antiresonance at ω = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

Other important properties of the frequency response are the resonant peak Mr,
the largest value of the frequency response, and the peak frequency ωmr, the fre-
quency where the maximum occurs. These two properties describe the frequency
of the sinusoidal input that produces the largest possible output and the gain at the
frequency.

Example 6.9 Atomic force microscope in contact mode
Consider the model for the vertical dynamics of the atomic force microscope in
contact mode, discussed in Section 4.5. The basic dynamics are given by equa-
tion (4.23). The piezo stack can be modeled by a second-order system with un-
damped natural frequency ω3 and damping ratio ζ3. The dynamics are then de-
scribed by the linear system

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0
−k2/(m1 +m2) −c2/(m1 +m2) 1/m2 0

0 0 0 ω3

0 0 −ω3 −2ζ3ω3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

ω3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
m2

m1 +m2

⎧
⎪⎩ m1k2

m1 +m2

m1c2

m1 +m2
1 0

⎫
⎪⎭x,

where the input signal is the drive signal to the amplifier and the output is the elon-
gation of the piezo. The frequency response of the system is shown in Figure 6.13b.
The zero frequency gain of the system is M0 = 1. There are two resonant poles with
peaks Mr1 = 2.12 at ωmr1 = 238 krad/s and Mr2 = 4.29 at ωmr2 = 746 krad/s. The
bandwidth of the system, defined as the lowest frequency where the gain is

√
2 less

than the zero frequency gain, is ωb = 292 krad/s. There is also a dip in the gain
Md = 0.556 for ωmd = 268 krad/s. This dip, called an antiresonance, is associated
with a dip in the phase and limits the performance when the system is controlled
by simple controllers, as we will see in Chapter 11. ∇
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Sampling

It is often convenient to use both differential and difference equations in modeling
and control. For linear systems it is straightforward to transform from one to the
other. Consider the general linear system described by equation (6.13) and assume
that the control signal is constant over a sampling interval of constant length h. It
follows from equation (6.14) of Theorem 6.4 that

x(t +h) = eAhx(t)+
∫ t+h

t
eA(t+h−τ)Bu(τ)dτ = Φx(t)+Γu(t), (6.26)

where we have assumed that the discontinuous control signal is continuous from
the right. The behavior of the system at the sampling times t = kh is described by
the difference equation

x[k+1] = Φx[k]+Γu[k], y[k] =Cx[k]+Du[k], (6.27)

where

Φ = eAh, Γ =
(∫ h

0
eAs ds

)
B.

Notice that the difference equation (6.27) is an exact representation of the behavior
of the system at the sampling instants. Similar expressions can also be obtained if
the control signal is linear over the sampling interval.

The transformation from (6.26) to (6.27) is called sampling. The relations be-
tween the system matrices in the continuous and sampled representations are as
follows:

A =
1

h
logΦ, B =

(∫ h

0
eAs ds

)−1
Γ. (6.28)

Notice that if A is invertible, we have

Γ = A−1
(
eAh− I

)
B.

All continuous-time systems can be sampled to obtain a discrete-time version,
but there are discrete-time systems that do not have a continuous-time equivalent.
The precise condition is that the matrix Φ cannot have real eigenvalues on the
negative real axis.

Example 6.10 IBM Lotus server
In Example 3.4 we described how the dynamics of an IBM Lotus server were
obtained as the discrete-time system

y[k+1] = ay[k]+bu[k],

where a = 0.43, b = 0.47 and the sampling period is h = 60 s. A differential
equation model is needed if we would like to design control systems based on
continuous-time theory. Such a model is obtained by applying equation (6.28);
hence

A =
loga

h
=−0.0141, B =

(∫ h

0
eAt dt

)−1
b = 0.0116,
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and we find that the difference equation can be interpreted as a sampled version of
the ordinary differential equation

dx

dt
=−0.0141x+0.0116u.

∇

6.4 Linearization

As described at the beginning of the chapter, a common source of linear system
models is through the approximation of a nonlinear system by a linear one. These
approximations are aimed at studying the local behavior of a system, where the
nonlinear effects are expected to be small. In this section we discuss how to locally
approximate or convert a nonlinear system to a linear one, and what can be said
about the stability of the original system in each case. We begin with an illustration
of the basic concept using the cruise control example, which is described in more
detail in Chapter 4.

Example 6.11 Cruise control
The dynamics for the cruise control system are derived in Section 4.1 and have the
form

m
dv

dt
= αnuT (αnv)−mgCr sgn(v)−

1

2
ρCdAv2−mgsinθ , (6.29)

where the first term on the right-hand side of the equation is the force generated
by the engine and the remaining three terms are the rolling friction, aerodynamic
drag and gravitational disturbance force. There is an equilibrium (ve,ue) when the
force applied by the engine balances the disturbance forces.

To explore the behavior of the system near the equilibrium we will linearize the
system. A Taylor series expansion of equation (6.29) around the equilibrium gives

d(v− ve)

dt
= a(ve− v)−bg(θ −θe)+b(u−ue)+higher order terms, (6.30)

where

a =−
ueα2

n T ′(αnve)+ρCdAve

m
, bg = gcosθe, b =

αnT (αnve)

m
. (6.31)

Notice that the term corresponding to rolling friction disappears if v = 0. For a
car in fourth gear with ve = 20 m/s, θe = 0 and the numerical values for the car
from Section 4.1, the equilibrium value for the throttle is ue = 0.1687 and the
parameters are a = 0.0101, b = 1.32 and bg = 9.8. This linear model describes
how small perturbations in the velocity about the nominal speed evolve in time.

Figure 6.14 shows a simulation of a cruise controller with linear and nonlinear
models; the differences between the linear and nonlinear models are small, and
hence the linearized model provides a reasonable approximation. ∇
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Figure 6.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4◦. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controller gains are kp = 0.5
and ki = 0.1.

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, single-output nonlinear system

dx

dt
= f (x,u), x ∈ Rn,u ∈ R,

y = h(x,u), y ∈ R,
(6.32)

with an equilibrium point at x = xe, u = ue. Without loss of generality we can
assume that xe = 0 and ue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study the local behavior of the system around the equilibrium point (xe,ue),
we suppose that x− xe and u− ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with the (lower-order) lin-
ear terms. This is roughly the same type of argument that is used when we do
small-angle approximations, replacing sinθ with θ and cosθ with 1 for θ near
zero.

As we did in Chapter 5, we define a new set of state variables z, as well as
inputs v and outputs w:

z = x− xe, v = u−ue, w = y−h(xe,ue).

These variables are all close to zero when we are near the equilibrium point, and so
in these variables the nonlinear terms can be thought of as the higher-order terms
in a Taylor series expansion of the relevant vector fields (assuming for now that
these exist).
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Formally, the Jacobian linearization of the nonlinear system (6.32) is

dz

dt
= Az+Bv, w =Cz+Dv, (6.33)

where

A =
∂ f

∂x

∣∣∣∣
(xe,ue)

, B =
∂ f

∂u

∣∣∣∣
(xe,ue)

, C =
∂h

∂x

∣∣∣∣
(xe,ue)

, D =
∂h

∂u

∣∣∣∣
(xe,ue)

. (6.34)

The system (6.33) approximates the original system (6.32) when we are near the
equilibrium point about which the system was linearized. It follows from Theo-
rem 5.3 that if the linearization is asymptotically stable, then the equilibrium point
xe is locally asymptotically stable for the full nonlinear system.

It is important to note that we can define the linearization of a system only near
an equilibrium point. To see this, consider a polynomial system

dx

dt
= a0 +a1x+a2x2 +a3x3 +u,

where a0 ̸= 0. A set of equilibrium points for this system is given by (xe,ue) =
(xe,−a0−a1xe−a2x2

e−a3x3
e), and we can linearize around any of them. Suppose

that we try to linearize around the origin of the system x = 0, u = 0. If we drop the
higher-order terms in x, then we get

dx

dt
= a0 +a1x+u,

which is not the Jacobian linearization if a0 ̸= 0. The constant term must be kept,
and it is not present in (6.33). Furthermore, even if we kept the constant term in the
approximate model, the system would quickly move away from this point (since it
is “driven” by the constant term a0), and hence the approximation could soon fail
to hold.

Software for modeling and simulation frequently has facilities for performing
linearization symbolically or numerically. The MATLAB command trim finds
the equilibrium, and linmod extracts linear state space models from a SIMULINK
system around an operating point.

Example 6.12 Vehicle steering
Consider the vehicle steering system introduced in Example 3.10. The nonlinear
equations of motion for the system are given by equations (3.26)–(3.28) and can
be written as

d

dt

⎧
⎪⎪⎪⎪⎪⎩

x
y
θ

⎫
⎪⎪⎪⎪⎪⎭=

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

vcos(α(δ )+θ)
vsin(α(δ )+θ)

v0

b
tanδ

⎫
⎪⎪⎪⎪⎪⎪⎪⎭
, α(δ ) = arctan

(a tanδ

b

)
,

where x, y and θ are the position and orientation of the center of mass of the
vehicle, v0 is the velocity of the rear wheel, b is the distance between the front and
rear wheels, δ is the angle of the front wheel and v is the velocity of the center of
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mass. The function α(δ ) is the angle between the velocity vector and the vehicle’s
length axis.

We are interested in the motion of the vehicle about a straight-line path (θ = θ0)
with fixed velocity v0 ̸= 0. To find the relevant equilibrium point, we first set θ̇ = 0
and we see that we must have δ = 0, corresponding to the steering wheel being
straight. This also yields α = 0. Looking at the first two equations in the dynamics,
we see that the motion in the xy direction is by definition not at equilibrium since
ẋ2 + ẏ2 = v2 ̸= 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral deviation of the vehicle
from a straight line. For simplicity, we let θe = 0, which corresponds to driving
along the x axis. We can then focus on the equations of motion in the y and θ
directions. With some abuse of notation we introduce the state x= (y,θ) and u= δ .
The system is then in standard form with

f (x,u) =

⎧
⎪⎪⎪⎪⎪⎪⎩

vsin(α(u)+ x2)

v0

b
tanu

⎫
⎪⎪⎪⎪⎪⎪⎭
, α(u) = arctan

(a tanu

b

)
, h(x,u) = x1.

The equilibrium point of interest is given by x = (0,0) and u = 0. To compute
the linearized model around this equilibrium point, we make use of the formu-
las (6.34). A straightforward calculation yields

A =
∂ f

∂x

∣∣∣∣
x=0
u=0

=

⎧
⎪⎪⎩

0 v0

0 0

⎫
⎪⎪⎭ , B =

∂ f

∂u

∣∣∣∣
x=0
u=0

=

⎧
⎪⎪⎩

av0/b
v0/b

⎫
⎪⎪⎭ ,

C =
∂h

∂x

∣∣∣∣
x=0
u=0

=
⎧
⎩1 0

⎫
⎭ , D =

∂h

∂u

∣∣∣∣
x=0
u=0

= 0,

and the linearized system

dx

dt
= Ax+Bu, y =Cx+Du (6.35)

thus provides an approximation to the original nonlinear dynamics.
The linearized model can be simplified further by introducing normalized vari-

ables, as discussed in Section 3.3. For this system, we choose the wheel base b as
the length unit and the time unit as the time required to travel a wheel base. The
normalized state is thus z = (x1/b,x2), and the new time variable is τ = v0t/b. The
model (6.35) then becomes

dz

dτ
=

⎧
⎪⎪⎩

z2 + γu
u

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭z+

⎧
⎪⎪⎩

γ
1

⎫
⎪⎪⎭u, y =

⎧
⎩1 0

⎫
⎭z, (6.36)

where γ = a/b. The normalized linear model for vehicle steering with nonslipping
wheels is thus a linear system with only one parameter. ∇
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Feedback Linearization

Another type of linearization is the use of feedback to convert the dynamics of a
nonlinear system into those of a linear one. We illustrate the basic idea with an
example.

Example 6.13 Cruise control
Consider again the cruise control system from Example 6.11, whose dynamics are
given in equation (6.29):

m
dv

dt
= αnuT (αnv)−mgCr sgn(v)−

1

2
ρCdAv2−mgsinθ .

If we choose u as a feedback law of the form

u =
1

αnT (αnv)

(
u′+mgCr sgn(v)+

1

2
ρCdAv2

)
, (6.37)

then the resulting dynamics become

m
dv

dt
= u′+d, (6.38)

where d(t) =−mgsinθ(t) is the disturbance force due the slope of the road (which
may be changing as we drive). If we now define a feedback law for u′ (such as a
proportional-integral-derivative [PID] controller), we can use equation (6.37) to
compute the final input that should be commanded.

Equation (6.38) is a linear differential equation. We have essentially “inverted”
the nonlinearity through the use of the feedback law (6.37). This requires that we
have an accurate measurement of the vehicle velocity v as well as an accurate
model of the torque characteristics of the engine, gear ratios, drag and friction
characteristics and mass of the car. While such a model is not generally available
(remembering that the parameter values can change), if we design a good feedback
law for u′, then we can achieve robustness to these uncertainties. ∇

More generally, we say that a system of the form

dx

dt
= f (x,u), y = h(x),

is feedback linearizable if there exists a control law u=α(x,v) such that the result-
ing closed loop system is input/output linear with input v and output y, as shown
in Figure 6.15. To fully characterize such systems is beyond the scope of this text,
but we note that in addition to changes in the input, the general theory also allows
for (nonlinear) changes in the states that are used to describe the system, keeping
only the input and output variables fixed. More details of this process can be found
in the textbooks by Isidori [Isi95] and Khalil [Kha01].

One case that comes up relatively frequently, and is hence worth special mention,!
is the set of mechanical systems of the form

M(q)q̈+C(q, q̇) = B(q)u.
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Figure 6.15: Feedback linearization. A nonlinear feedback of the form u = α(x,v) is used
to modify the dynamics of a nonlinear process so that the response from the input v to the
output y is linear. A linear controller can then be used to regulate the system’s dynamics.

Here q ∈ Rn is the configuration of the mechanical system, M(q) ∈ Rn×n is the
configuration-dependent inertia matrix, C(q, q̇) ∈Rn represents the Coriolis forces
and additional nonlinear forces (such as stiffness and friction) and B(q) ∈ Rn×p is
the input matrix. If p = n, then we have the same number of inputs and config-
uration variables, and if we further have that B(q) is an invertible matrix for all
configurations q, then we can choose

u = B−1(q)
(
M(q)v+C(q, q̇)

)
. (6.39)

The resulting dynamics become

M(q)q̈ = M(q)v =⇒ q̈ = v,

which is a linear system. We can now use the tools of linear system theory to
analyze and design control laws for the linearized system, remembering to apply
equation (6.39) to obtain the actual input that will be applied to the system.

This type of control is common in robotics, where it goes by the name of com-
puted torque, and in aircraft flight control, where it is called dynamic inversion.
Some modeling tools like Modelica can generate the code for the inverse model
automatically. One caution is that feedback linearization can often cancel out ben-
eficial terms in the natural dynamics, and hence it must be used with care. Exten-
sions that do not require complete cancellation of nonlinearities are discussed in
Khalil [Kha01] and Krstić et al. [KKK95].

6.5 Further Reading

The majority of the material in this chapter is classical and can be found in most
books on dynamics and control theory, including early works on control such as
James, Nichols and Phillips [JNP47] and more recent textbooks such as Dorf and
Bishop [DB04], Franklin, Powell and Emami-Naeini [FPEN05] and Ogata [Oga01].
An excellent presentation of linear systems based on the matrix exponential is
given in the book by Brockett [Bro70], a more comprehensive treatment is given by
Rugh [Rug95] and an elegant mathematical treatment is given in Sontag [Son98].
Material on feedback linearization can be found in books on nonlinear control the-
ory such as Isidori [Isi95] and Khalil [Kha01]. The idea of characterizing dynamics
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by considering the responses to step inputs is due to Heaviside, he also introduced
an operator calculus to analyze linear systems. The unit step is therefore also called
the Heaviside step function. Analysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of lack of mathematical rigor,
as described in the biography by Nahin [Nah88]. The difficulties were cleared up
later by the mathematician Laurent Schwartz who developed distribution theory in
the late 1940s. In engineering, linear systems have traditionally been analyzed us-
ing Laplace transforms as described in Gardner and Barnes [GB42]. Use of the ma-
trix exponential started with developments of control theory in the 1960s, strongly
stimulated by a textbook by Zadeh and Desoer [ZD63]. Use of matrix techniques
expanded rapidly when the powerful methods of numeric linear algebra were pack-
aged in programs like LabVIEW, MATLAB and Mathematica.

Exercises

6.1 (Response to the derivative of a signal) Show that if y(t) is the output of a linear
system corresponding to input u(t), then the output corresponding to an input u̇(t)
is given by ẏ(t). (Hint: Use the definition of the derivative: ẏ(t) = limε→0

(
y(t +

ε)− y(t)
)
/ε .)

6.2 (Impulse response and convolution) Show that a signal u(t) can be decomposed!
in terms of the impulse function δ (t) as

u(t) =
∫ t

0
δ (t− τ)u(τ)dτ

and use this decomposition plus the principle of superposition to show that the
response of a linear system to an input u(t) (assuming a zero initial condition) can
be written as

y(t) =
∫ t

0
h(t− τ)u(τ)dτ ,

where h(t) is the impulse response of the system.

6.3 (Pulse response for a compartment model) Consider the compartment model
given in Example 6.7. Compute the step response for the system and compare
it with Figure 6.10b. Use the principle of superposition to compute the response
to the 5 s pulse input shown in Figure 6.10c. Use the parameter values k0 = 0.1,
k1 = 0.1, k2 = 0.5 and b0 = 1.5.

6.4 (Matrix exponential for second-order system) Assume that ζ > 1 and let ωd =
ω0

√
ζ 2−1. Show that

exp

⎧
⎪⎪⎩
−ζ ω0 ωd

ωd −ζ ω0

⎫
⎪⎪⎭ t = e−ζ ω0t

⎧
⎪⎪⎩

cosωdt sinωdt
sinωdt cosωdt

⎫
⎪⎪⎭ .

Also show that

exp

⎧
⎪⎪⎩
−ω0 ω0

0 −ω0

⎫
⎪⎪⎭ t = e−ω0t

⎧
⎪⎪⎩

1 ω0t
0 1

⎫
⎪⎪⎭ .
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6.5 (Lyapunov function for a linear system) Consider a linear system ẋ = Ax with
Reλ j < 0 for all eigenvalues λ j of the matrix A. Show that the matrix

P =
∫ ∞

0
eAT τQeAτ dτ

defines a Lyapunov function of the form V (x) = xT Px.

6.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan form that
is non-diagonal.

(a) Prove Proposition 6.3 by showing that if the system contains a real eigenvalue
λ = 0 with a nontrivial Jordan block, then there exists an initial condition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvalues with Reλ = 0 by !
using the block Jordan form

Ji =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ω 1 0
−ω 0 0 1

0 0 0 ω
0 0 −ω 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

6.7 (Rise time for a first-order system) Consider a first-order system of the form

τ
dx

dt
=−x+u, y = x.

We say that the parameter τ is the time constant for the system since the zero input
system approaches the origin as e−t/τ . For a first-order system of this form, show
that the rise time for a step response of the system is approximately 2τ , and that
1%, 2%, and 5% settling times approximately corresponds to 4.6τ , 4τ and 3τ .

6.8 (Discrete-time systems) Consider a linear discrete-time system of the form

x[k+1] = Ax[k]+Bu[k], y[k] =Cx[k]+Du[k].

(a) Show that the general form of the output of a discrete-time linear system is
given by the discrete-time convolution equation:

y[k] =CAkx[0]+
k−1

∑
j=0

CAk− j−1Bu[ j]+Du[k].

(b) Show that a discrete-time linear system is asymptotically stable if and only if
all the eigenvalues of A have a magnitude strictly less than 1.

6.9 (Keynesian economics) Consider the following simple Keynesian macroeco-
nomic model in the form of a linear discrete-time system discussed in Exercise 6.8:

⎧
⎪⎪⎩

C[t +1]
I[t +1]

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

a a
ab−b ab

⎫
⎪⎪⎭
⎧
⎪⎪⎩

C[t]
I[t]

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

a
ab

⎫
⎪⎪⎭G[t],

Y [t] =C[t]+ I[t]+G[t].
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Determine the eigenvalues of the dynamics matrix. When are the magnitudes of the
eigenvalues less than 1? Assume that the system is in equilibrium with constant
values capital spending C, investment I and government expenditure G. Explore
what happens when government expenditure increases by 10%. Use the values
a = 0.25 and b = 0.5.

6.10 Consider a scalar system

dx

dt
= 1− x3 +u.

Compute the equilibrium points for the unforced system (u = 0) and use a Taylor
series expansion around the equilibrium point to compute the linearization. Verify
that this agrees with the linearization in equation (6.33).

6.11 (Transcriptional regulation) Consider the dynamics of a genetic circuit that
implements self-repression: the protein produced by a gene is a repressor for that
gene, thus restricting its own production. Using the models presented in Exam-
ple 3.15, the dynamics for the system can be written as

dm

dt
=

α

1+ kp2
+α0− γm−u,

d p

dt
= βm−δ p, (6.40)

where u is a disturbance term that affects RNA transcription and m, p ≥ 0. Find
the equilibrium points for the system and use the linearized dynamics around each
equilibrium point to determine the local stability of the equilibrium point and the
step response of the system to a disturbance.



Chapter Seven
State Feedback

Intuitively, the state may be regarded as a kind of information storage or memory or ac-

cumulation of past causes. We must, of course, demand that the set of internal states Σ be

sufficiently rich to carry all information about the past history of Σ to predict the effect of the

past upon the future. We do not insist, however, that the state is the least such information

although this is often a convenient assumption.

R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, 1969 [KFA69].

This chapter describes how the feedback of a system’s state can be used to
shape the local behavior of a system. The concept of reachability is introduced and
used to investigate how to design the dynamics of a system through assignment
of its eigenvalues. In particular, it will be shown that under certain conditions it
is possible to assign the system eigenvalues arbitrarily by appropriate feedback of
the system state.

7.1 Reachability

One of the fundamental properties of a control system is what set of points in the
state space can be reached through the choice of a control input. It turns out that the
property of reachability is also fundamental in understanding the extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of the system and focusing on
the evolution of the state, given by

dx

dt
= Ax+Bu, (7.1)

where x ∈ Rn, u ∈ R, A is an n× n matrix and B a column vector. A fundamental
question is whether it is possible to find control signals so that any point in the state
space can be reached through some choice of input. To study this, we define the
reachable set R(x0,≤ T ) as the set of all points x f such that there exists an input
u(t), 0≤ t ≤ T that steers the system from x(0) = x0 to x(T ) = x f , as illustrated in
Figure 7.1a.

Definition 7.1 (Reachability). A linear system is reachable if for any x0,x f ∈ Rn

there exists a T > 0 and u : [0,T ]→R such that if x(0) = x0 then the corresponding
solution satisfies x(T ) = x f .
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x(T )

x0
R(x0,≤ T )

(a) Reachable set

E

(b) Reachability through control

Figure 7.1: The reachable set for a control system. The set R(x0,≤ T ) shown in (a) is the set
of points reachable from x0 in time less than T . The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontal arrows and the control
inputs drawn as vertical arrows. The set of achievable equilibrium points is the x axis. By
setting the control inputs as a function of the state, it is possible to steer the system to the
origin, as shown on the sample path.

The definition of reachability addresses whether it is possible to reach all points
in the state space in a transient fashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrium points of the system
(since we can remain at those points with constant input u). The set of all possible
equilibria for constant controls is given by

E = {xe : Axe +Bue = 0 for some ue ∈ R}.

This means that possible equilibria lie in a one- (or possibly higher) dimensional
subspace. If the matrix A is invertible, this subspace is one-dimensional and is
spanned by A−1B.

The following example provides some insight into the possibilities.

Example 7.1 Double integrator
Consider a linear system consisting of a double integrator whose dynamics are
given by

dx1

dt
= x2,

dx2

dt
= u.

Figure 7.1b shows a phase portrait of the system. The open loop dynamics (u = 0)
are shown as horizontal arrows pointed to the right for x2 > 0 and to the left for
x2 < 0. The control input is represented by a double-headed arrow in the vertical
direction, corresponding to our ability to set the value of ẋ2. The set of equilibrium
points E corresponds to the x1 axis, with ue = 0.

Suppose first that we wish to reach the origin from an initial condition (a,0).
We can directly move the state up and down in the phase plane, but we must rely
on the natural dynamics to control the motion to the left and right. If a > 0, we
can move toward the origin by first setting u < 0, which will cause x2 to become
negative. Once x2 < 0, the value of x1 will begin to decrease and we will move to
the left. After a while, we can set u2 to be positive, moving x2 back toward zero
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and slowing the motion in the x1 direction. If we bring x2 to a positive value, we
can move the system state in the opposite direction.

Figure 7.1b shows a sample trajectory bringing the system to the origin. Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since ẋ1 = 0 when x2 = 0), but if we go to any other point in the state
space, we can pass through the point only in a transient fashion. ∇

To find general conditions under which a linear system is reachable, we will
first give a heuristic argument based on formal calculations with impulse functions.
We note that if we can reach all points in the state space through some choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system (7.1) to an input u(t) is
given by

x(t) =
∫ t

0
eA(t−τ)Bu(τ)dτ . (7.2)

If we choose the input to be a impulse function δ (t) as defined in Section 6.3, the
state becomes

xδ =
∫ t

0
eA(t−τ)Bδ (τ)dτ = eAtB.

(Note that the state changes instantaneously in response to the impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise 6.1):

xδ̇ =
dxδ

dt
= AeAtB.

Continuing this process and using the linearity of the system, the input

u(t) = α1δ (t)+α2δ̇ (t)+α3δ̈ (t)+ · · ·+αnδ (n−1)(t)

gives the state

x(t) = α1eAtB+α2AeAtB+α3A2eAtB+ · · ·+αnAn−1eAtB.

Taking the limit as t goes to zero through positive values, we get

lim
t→0+

x(t) = α1B+α2AB+α3A2B+ · · ·+αnAn−1B.

On the right is a linear combination of the columns of the matrix

Wr =
⎧
⎩B AB · · · An−1B

⎫
⎭ . (7.3)

To reach an arbitrary point in the state space, we thus require that Wr is nonsingular
(and hence invertible). The matrix Wr is called the reachability matrix.

Although we have only considered the scalar input case, it turns out that this
same test works in the multi-input case, where we require that Wr be full rank (have
n linearly independent columns). In addition, it can be shown that only the terms
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up to An−1B must be computed; additional terms add no new directions to Wr (see
Exercise 7.10).

An input consisting of a sum of impulse functions and their derivatives is a very
violent signal. To see that an arbitrary point can be reached with smoother signals
we can make use of the convolution equation. Assuming that the initial condition
is zero, the state of a linear system is given by

x(t) =
∫ t

0
eA(t−τ)Bu(τ)dτ =

∫ t

0
eAτBu(t− τ)dτ .

It follows from the theory of matrix functions, specifically the Cayley–Hamilton
theorem (see Exercise 7.10), that

eAτ = Iα0(τ)+Aα1(τ)+ · · ·+An−1αn−1(τ),

where αi(τ) are scalar functions, and we find that

x(t) = B

∫ t

0
α0(τ)u(t− τ)dτ +AB

∫ t

0
α1(τ)u(t− τ)dτ

+ · · ·+An−1B

∫ t

0
αn−1(τ)u(t− τ)dτ .

Again we observe that the right-hand side is a linear combination of the columns
of the reachability matrix Wr given by equation (7.3). This basic approach leads to
the following theorem.

Theorem 7.1 (Reachability rank condition). A linear system of the form (7.1) is
reachable if and only if the reachability matrix Wr is invertible (full rank).

The formal proof of this theorem is beyond the scope of this text but follows
along the lines of the sketch above and can be found in most books on linear control
theory, such as Callier and Desoer [CD91] or Lewis [Lew03]. It is also interesting
to note that Theorem 7.1 makes no mention of the time T that was in our definition
of reachability. For a linear system, it turns out that we can find an input taking x0

to x f for any T > 0, though the size of the input required can be very large when
T is very small.

We illustrate the concept of reachability with the following example.

Example 7.2 Balance system
Consider the balance system introduced in Example 3.1 and shown in Figure 7.2.
Recall that this system is a model for a class of examples in which the center
of mass is balanced above a pivot point. One example is the Segway Personal
Transporter shown in Figure 7.2a, about which a natural question to ask is whether
we can move from one stationary point to another by appropriate application of
forces through the wheels.

The nonlinear equations of motion for the system are given in equation (3.9)
and repeated here:

(M+m)p̈−ml cosθ θ̈ =−cṗ−ml sinθ θ̇ 2 +F,

(J+ml2)θ̈ −ml cosθ p̈ =−γθ̇ +mgl sinθ .
(7.4)
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(a) Segway

M
F

p

θ
m

l

(b) Cart-pendulum system

Figure 7.2: Balance system. The Segway Personal Transporter shown in (a) is an example of
a balance system that uses torque applied to the wheels to keep the rider upright. A simplified
diagram for a balance system is shown in (b). The system consists of a mass m on a rod of
length l connected by a pivot to a cart with mass M.

For simplicity, we take c = γ = 0. Linearizing around the equilibrium point xe =
(p,0,0,0), the dynamics matrix and the control matrix are

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1

0 m2l2g/µ 0 0

0 Mtmgl/µ 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

Jt/µ

lm/µ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where µ = MtJt −m2l2, Mt = M+m and Jt = J+ml2. The reachability matrix is

Wr =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Jt/µ 0 gl3m3/µ2

0 lm/µ 0 gl2m2(m+M)/µ2

Jt/µ 0 gl3m3/µ2 0

lm/µ 0 gl2m2(m+M)/µ2 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (7.5)

The determinant of this matrix is

det(Wr) =
g2l4m4

(µ)4
̸= 0,

and we can conclude that the system is reachable. This implies that we can move
the system from any initial state to any final state and, in particular, that we can
always find an input to bring the system from an initial state to an equilibrium
point. ∇

It is useful to have an intuitive understanding of the mechanisms that make
a system unreachable. An example of such a system is given in Figure 7.3. The
system consists of two identical systems with the same input. We cannot separately
cause the first and the second systems to do something different since they have
the same input. Hence we cannot reach arbitrary states, and so the system is not
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M
F

1

p

θ 2θ
m m

l l S

S

Figure 7.3: An unreachable system. The cart–pendulum system shown on the left has a
single input that affects two pendula of equal length and mass. Since the forces affecting the
two pendula are the same and their dynamics are identical, it is not possible to arbitrarily
control the state of the system. The figure on the right is a block diagram representation of
this situation.

reachable (Exercise ??).
More subtle mechanisms for nonreachability can also occur. For example, if

there is a linear combination of states that always remains constant, then the system
is not reachable. To see this, suppose that there exists a row vector H such that

0 =
d

dt
Hx = H(Ax+Bu), for all x and u.

Then H is in the left null space of both A and B and it follows that

HWr = H
⎧
⎩B AB · · · An−1B

⎫
⎭= 0.

Hence the reachability matrix is not full rank. In this case, if we have an initial
condition x0 and we wish to reach a state x f for which Hx0 ̸= Hx f , then since
Hx(t) is constant, no input u can move the state from x0 to x f .

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient to change
coordinates and write the dynamics of the system in the transformed coordinates
z = T x. One application of a change of coordinates is to convert a system into a
canonical form in which it is easy to perform certain types of analysis.

A linear state space system is in reachable canonical form if its dynamics are
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zn−1∫

a1

Σ

Σ

b1

−1

∫
u

Σ

a2

Σ

. . .

. . .

. . .

b2

∫z1 z2

Σ

d

Σ

Σ

an−1 an

bnbn−1

∫

yΣ

zn

Figure 7.4: Block diagram for a system in reachable canonical form. The individual states
of the system are represented by a chain of integrators whose input depends on the weighted
values of the states. The output is given by an appropriate combination of the system input
and other states.

given by

dz

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1 −a2 −a3 . . . −an

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

z+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0
0
...
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
⎧
⎩b1 b2 b3 . . . bn

⎫
⎭z+du.

(7.6)

A block diagram for a system in reachable canonical form is shown in Figure 7.4.
We see that the coefficients that appear in the A and B matrices show up directly
in the block diagram. Furthermore, the output of the system is a simple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable canonical form is given
by

λ (s) = sn +a1sn−1 + · · ·+an−1s+an. (7.7)

The reachability matrix also has a relatively simple structure:

W̃r =
⎧
⎩B̃ ÃB̃ . . . Ãn−1B̃

⎫
⎭=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −a1 a2
1−a2 · · · ∗

0 1 −a1 · · · ∗
...

...
. . .

. . .
...

0 0 0 1 ∗
0 0 0 · · · 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where ∗ indicates a possibly nonzero term and we use a tilde to remind us that A
and B are in a special form. The matrix Wr is full rank since no column can be
written as a linear combination of the others because of the triangular structure of
the matrix.
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We now consider the problem of finding a change of coordinates such that
the dynamics of a system can be written in reachable canonical form. Let A,B
represent the dynamics of a given system and Ã, B̃ be the dynamics in reachable
canonical form. Suppose that we wish to transform the original system into reach-
able canonical form using a coordinate transformation z = T x. As shown in the
previous chapter, the dynamics matrix and the control matrix for the transformed
system are

Ã = TAT−1, B̃ = T B.

The reachability matrix for the transformed system then becomes

W̃r =
⎧
⎩B̃ ÃB̃ · · · Ãn−1B̃

⎫
⎭ .

Transforming each element individually, we have

ÃB̃ = TAT−1T B = TAB,

Ã2B̃ = (TAT−1)2T B = TAT−1TAT−1T B = TA2B,

...

ÃnB̃ = TAnB,

and hence the reachability matrix for the transformed system is

W̃r = T
⎧
⎩B AB · · · An−1B

⎫
⎭= TWr. (7.8)

If Wr is invertible, we can thus solve for the transformation T that takes the system
into reachable canonical form:

T = W̃rW
−1
r .

The following example illustrates the approach.

Example 7.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx

dt
=

⎧
⎪⎪⎩

α ω
−ω α

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

0
1

⎫
⎪⎪⎭u.

We wish to find the transformation that converts the system into reachable canon-
ical form:

Ã =

⎧
⎪⎪⎩
−a1 −a2

1 0

⎫
⎪⎪⎭ , B̃ =

⎧
⎪⎪⎩

1
0

⎫
⎪⎪⎭ .

The coefficients a1 and a2 can be determined from the characteristic polynomial
for the original system:

λ (s) = det(sI−A) = s2−2αs+(α2 +ω2) =⇒
a1 =−2α,

a2 = α2 +ω2.
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The reachability matrix for each system is

Wr =

⎧
⎪⎪⎩

0 ω
1 α

⎫
⎪⎪⎭ , W̃r =

⎧
⎪⎪⎩

1 −a1

0 1

⎫
⎪⎪⎭ .

The transformation T becomes

T = W̃rW
−1
r =

⎧
⎪⎪⎩
−(a1 +α)/ω 1

1/ω 0

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

α/ω 1

1/ω 0

⎫
⎪⎪⎭ ,

and hence the coordinates
⎧
⎪⎪⎩

z1

z2

⎫
⎪⎪⎭= T x =

⎧
⎪⎪⎩

αx1/ω + x2

x1/ω

⎫
⎪⎪⎭

put the system in reachable canonical form. ∇

We summarize the results of this section in the following theorem.

Theorem 7.2 (Reachable canonical form). Let A and B be the dynamics and con-
trol matrices for a reachable system and suppose that the characteristic polyno-
mial for A is given by

det(sI−A) = sn +a1sn−1 + · · ·+an−1s+an.

Then there exists a transformation z = T x such that in the transformed coordinates
the dynamics and control matrices are in reachable canonical form (7.6).

One important implication of this theorem is that for any reachable system, we
can assume without loss of generality that the coordinates are chosen such that the
system is in reachable canonical form. This is particularly useful for proofs, as we
shall see later in this chapter. However, for high-order systems, small changes in
the coefficients ai can give large changes in the eigenvalues. Hence, the reachable
canonical form is not always well conditioned and must be used with some care.

7.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variables that permits prediction
of the future evolution of a system given its future inputs. We now explore the
idea of designing the dynamics of a system through feedback of the state. We will
assume that the system to be controlled is described by a linear state model and
has a single input (for simplicity). The feedback control law will be developed step
by step using a single idea: the positioning of closed loop eigenvalues in desired
locations.

State Space Controller Structure

Figure 7.5 is a diagram of a typical control system using state feedback. The full
system consists of the process dynamics, which we take to be linear, the controller
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Controller

y
u

Σ Σkrr
ẋ = Ax+Bu

y =Cx+Du

Process
v

−K
x

Figure 7.5: A feedback control system with state feedback. The controller uses the system
state x and the reference input r to command the process through its input u. We model
disturbances via the additive input v.

elements K and kr, the reference input (or command signal) r and process dis-
turbances v. The goal of the feedback controller is to regulate the output of the
system y such that it tracks the reference input in the presence of disturbances and
also uncertainty in the process dynamics.

An important element of the control design is the performance specification.
The simplest performance specification is that of stability: given a constant ref-
erence r and in the absence of any disturbances, we would like the equilibrium
point of the system to be asymptotically stable. More sophisticated performance
specifications typically involve giving desired properties of the step or frequency
response of the system, such as specifying the desired rise time, overshoot and
settling time of the step response. Finally, we are often concerned with the dis-
turbance attenuation properties of the system: to what extent can we experience
disturbance inputs v and still hold the output y near the desired value?

Consider a system described by the linear differential equation

dx

dt
= Ax+Bu, y =Cx+Du, (7.9)

where we have ignored the disturbance signal v for now. Our goal is to drive the
output y to a given reference value r and hold it there.

We begin by assuming that all components of the state vector are measured.
Since the state at time t contains all the information necessary to predict the future
behavior of the system, the most general time-invariant control law is a function
of the state and the reference input:

u = α(x,r).

If the control law is restricted to be linear, it can be written as

u =−Kx+ krr, (7.10)

where r is the reference value, assumed for now to be a constant.
This control law corresponds to the structure shown in Figure 7.5. The nega-

tive sign is a convention to indicate that negative feedback is the normal situation.
The term krr represents a feedforward signal from the reference to the control.
The closed loop system obtained when the feedback (7.10) is applied to the sys-
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tem (7.9) is given by
dx

dt
= (A−BK)x+Bkrr. (7.11)

We attempt to determine the feedback gain K so that the closed loop system has
the characteristic polynomial

p(s) = sn + p1sn−1 + · · ·+ pn−1s+ pn. (7.12)

This control problem is called the eigenvalue assignment problem or pole place-
ment problem (we will define poles more formally in Chapter 9).

Note that kr does not affect the stability of the system (which is determined by
the eigenvalues of A−BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the closed loop system are given
by

xe =−(A−BK)−1Bkrr, ye =Cxe +Due,

hence kr should be chosen such that ye = r (the desired output value). Since kr is a
scalar, we can easily solve to show that if D = 0 (the most common case),

kr =−1/
(
C(A−BK)−1B

)
. (7.13)

Notice that kr is exactly the inverse of the zero frequency gain of the closed loop
system. The solution for D ̸= 0 is left as an exercise.

Using the gains K and kr, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to construct such a state feedback
control law, we begin with a few examples that provide some basic intuition and
insights.

Example 7.4 Vehicle steering
In Example 6.12 we derived a normalized linear model for vehicle steering. The
dynamics describing the lateral deviation were given by

A =

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭ , B =

⎧
⎪⎪⎩

γ
1

⎫
⎪⎪⎭ ,

C =
⎧
⎩1 0

⎫
⎭ , D = 0.

We want to design a controller that stabilizes the dynamics and tracks a given
reference value r of the lateral position of the vehicle. To do this we introduce the
feedback

u =−Kx+ krr =−k1x1− k2x2 + krr,

and the closed loop system becomes

dx

dt
= (A−BK)x+Bkrr =

⎧
⎪⎪⎩
−γk1 1− γk2

−k1 −k2

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

γkr

kr

⎫
⎪⎪⎭r,

y =Cx+Du =
⎧
⎩1 0

⎫
⎭x.

(7.14)
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Figure 7.6: State feedback control of a steering system. Step responses (from zero initial
condition) obtained with controllers designed with ζc = 0.7 and ωc = 0.5, 1 and 2 [rad/s] are
shown in (a). Notice that response speed increases with increasing ωc, but that large ωc also
give large initial control actions. Step responses obtained with a controller designed with
ωc = 1 and ζc = 0.5, 0.7 and 1 are shown in (b).

The closed loop system has the characteristic polynomial

det(sI−A+BK) = det

⎧
⎪⎪⎩

s+ γk1 γk2−1
k1 s+ k2

⎫
⎪⎪⎭= s2 +(γk1 + k2)s+ k1.

Suppose that we would like to use feedback to design the dynamics of the
system to have the characteristic polynomial

p(s) = s2 +2ζcωcs+ω2
c .

Comparing this polynomial with the characteristic polynomial of the closed loop
system, we see that the feedback gains should be chosen as

k1 = ω2
c , k2 = 2ζcωc− γω2

c .

Equation (7.13) gives kr = k1 = ω2
c , and the control law can be written as

u = k1(r− x1)− k2x2 = ω2
c (r− x1)− (2ζcωc− γω2

c )x2.

The step responses for the closed loop system for different values of the design
parameters are shown in Figure 7.6. The effect of ωc is shown in Figure 7.6a,
which shows that the response speed increases with increasing ωc. The responses
for ωc = 0.5 and 1 have reasonable overshoot. The settling time is about 15 car
lengths for ωc = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths for ωc = 1. The initial value of the control signal is u(0) = kr = ω2

c r, and
thus the achievable response time is limited by the available actuator signal. Notice
in particular the dramatic increase in control signal when ωc changes from 1 to 2.
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The effect of ζc is shown in Figure 7.6b. The response speed and the overshoot
increase with decreasing damping. Using these plots, we conclude that reasonable
values of the design parameters are to have ωc in the range of 0.5 to 1 and ζc ≈ 0.7.

∇

The example of the vehicle steering system illustrates how state feedback can
be used to set the eigenvalues of a closed loop system to arbitrary values. We see
that for this example we can set the eigenvalues to any location. We now show that
this is a general property for reachable systems.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system
are the coefficients of the characteristic polynomial. It is therefore natural to con-
sider systems in this form when solving the eigenvalue assignment problem.

Consider a system in reachable canonical form, i.e,

dz

dt
= Ãz+ B̃u =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1 −a2 −a3 . . . −an

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

z+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0
...
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u

y = C̃z =
⎧
⎩b1 b2 · · · bn

⎫
⎭z.

(7.15)

It follows from equation (7.7) that the open loop system has the characteristic
polynomial

det(sI−A) = sn +a1sn−1 + · · ·+an−1s+an.

Before making a formal analysis we can gain some insight by investigating the
block diagram of the system shown in Figure 7.4. The characteristic polynomial
is given by the parameters ak in the figure. Notice that the parameter ak can be
changed by feedback from state zk to the input u. It is thus straightforward to
change the coefficients of the characteristic polynomial by state feedback.

Returning to equations, introducing the control law

u =−K̃z+ krr =−k̃1z1− k̃2z2− · · ·− k̃nzn + krr, (7.16)

the closed loop system becomes

dz

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1− k̃1 −a2− k̃2 −a3− k̃3 . . . −an− k̃n

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

z+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kr

0
0
...
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

r,

y =
⎧
⎩b1 b2 · · · bn

⎫
⎭z.

(7.17)
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The feedback changes the elements of the first row of the A matrix, which corre-
sponds to the parameters of the characteristic polynomial. The closed loop system
thus has the characteristic polynomial

sn +(a1 + k̃1)s
n−1 +(a2 + k̃2)s

n−2 + · · ·+(an−1 + k̃n−1)s+an + k̃n.

Requiring this polynomial to be equal to the desired closed loop polynomial

p(s) = sn + p1sn−1 + · · ·+ pn−1s+ pn,

we find that the controller gains should be chosen as

k̃1 = p1−a1, k̃2 = p2−a2, . . . k̃n = pn−an.

This feedback simply replaces the parameters ai in the system (7.15) by pi. The
feedback gain for a system in reachable canonical form is thus

K̃ =
⎧
⎩p1−a1 p2−a2 · · · pn−an

⎫
⎭ . (7.18)

To have zero frequency gain equal to unity, we compute the equilibrium point
ze by setting the right hand side of equation (7.17) to zero and then compute the
corresponding output. It can be seen that ze,1, . . . ,ze,n−1 must all be zero are we are
left with

(−an− k̃n)ze,n + krr = 0 and ye = bnze,n.

It follows that in order for ye to be equal to r then the parameter kr should be
chosen as

kr =
an + k̃n

bn
=

pn

bn
. (7.19)

Notice that it is essential to know the precise values of parameters an and bn in
order to obtain the correct zero frequency gain. The zero frequency gain is thus
obtained by precise calibration. This is very different from obtaining the correct
steady-state value by integral action, which we shall see in later sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. To solve the problem in
the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

dx

dt
= Ax+Bu, y =Cx+Du. (7.20)

We can change the coordinates by a linear transformation z = T x so that the
transformed system is in reachable canonical form (7.15). For such a system the
feedback is given by equation (7.16), where the coefficients are given by equa-
tion (7.18). Transforming back to the original coordinates gives the control law

u =−K̃z+ krr =−K̃T x+ krr.
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The form of the controller is a feedback term −Kx and a feedforward term krr.

The results obtained can be summarized as follows.

Theorem 7.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation (7.20), with one input and one output. Let λ (s) = sn +a1sn−1 +
· · ·+ an−1s+ an be the characteristic polynomial of A. If the system is reachable,
then there exists a control law

u =−Kx+ krr

that gives a closed loop system with the characteristic polynomial

p(s) = sn + p1sn−1 + · · ·+ pn−1s+ pn

and unity zero frequency gain between r and y. The feedback gain is given by

K = K̃T =
⎧
⎩p1−a1 p2−a2 · · · pn−an

⎫
⎭W̃rW

−1
r , (7.21)

where ai are the coefficients of the characteristic polynomial of the matrix A and
the matrices Wr and W̃r are given by

Wr =
⎧
⎩B AB · · · An−1B

⎫
⎭ , W̃r =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 a1 a2 · · · an−1

0 1 a1 · · · an−2
...

. . .
. . .

...
0 0 · · · 1 a1

0 0 0 · · · 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−1

.

The reference gain is given by

kr =−1/
(
C(A−BK)−1B

)
.

For simple problems, the eigenvalue assignment problem can be solved by in-
troducing the elements ki of K as unknown variables. We then compute the char-
acteristic polynomial

λ (s) = det(sI−A+BK)

and equate coefficients of equal powers of s to the coefficients of the desired char-
acteristic polynomial

p(s) = sn + p1sn−1 + · · ·+ pn−1s+ pn.

This gives a system of linear equations to determine ki. The equations can always
be solved if the system is reachable, exactly as we did in Example 7.4.

Equation (7.21), which is called Ackermann’s formula [Ack72, Ack85], can
be used for numeric computations. It is implemented in the MATLAB function
acker. The MATLAB function place is preferable for systems of high order
because it is better conditioned numerically.

Example 7.5 Predator–prey
Consider the problem of regulating the population of an ecosystem by modulating
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the food supply. We use the predator–prey model introduced in Example 5.14 and
described in more detail in Section 4.7. The dynamics for the system are given by

dH

dt
= (r+u)H

(
1−

H

k

)
−

aHL

c+H
, H ≥ 0,

dL

dt
= b

aHL

c+H
−dL, L≥ 0.

We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a = 3.2, b = 0.6, c = 50,

d = 0.56, k = 125 r = 1.6.

We take the parameter r, corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term (r+u) in the first equation, where here
r represents a constant parameter (not the reference signal) and u represents the
controlled modulation. We choose the number of lynxes L as the output of our
system.

To control this system, we first linearize the system around the equilibrium
point of the system (He,Le), which can be determined numerically to be xe ≈
(20.6,29.5). This yields a linear dynamical system

d

dt

⎧
⎪⎪⎩

z1

z2

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0.13 −0.93
0.57 0

⎫
⎪⎪⎭
⎧
⎪⎪⎩

z1

z2

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

17.2
0

⎫
⎪⎪⎭v, w =

⎧
⎩0 1

⎫
⎭
⎧
⎪⎪⎩

z1

z2

⎫
⎪⎪⎭ ,

where z1 = H −He, z2 = L− Le and v = u. It is easy to check that the system
is reachable around the equilibrium (z,v) = (0,0), and hence we can assign the
eigenvalues of the system using state feedback.

Selecting the eigenvalues of the closed loop system requires balancing the abil-
ity to modulate the input against the natural dynamics of the system. This can be
done by the process of trial and error or by using some of the more systematic
techniques discussed in the remainder of the text. For now, we simply choose the
desired closed loop eigenvalues to be at λ = {−0.1,−0.2}. We can then solve for
the feedback gains using the techniques described earlier, which results in

K =
⎧
⎩0.025 −0.052

⎫
⎭ .

Finally, we solve for the reference gain kr, using equation (7.13) to obtain kr =
0.002.

Putting these steps together, our control law becomes

v =−Kz+ krLd ,

where Ld is the desired number of lynxes. In order to implement the control law,



7.3. DESIGN CONSIDERATIONS 7-17

0 20 40 60 80 100
0

20

40

60

80

Time (years)

Po
pu

la
tio

n

 

 
Hare
Lynx

(a) Initial condition response

0 50 100
0

20

40

60

80

100

Hares

Ly
nx

es

(b) Phase portrait

Figure 7.7: Simulation results for the controlled predator–prey system. The population of
lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled
system is shown in (b). Feedback is used to make the population stable at He = 20.6 and
Le = 30.

we must rewrite it using the original coordinates for the system, yielding

u = ue−K(x− xe)+ kr(Ld− ye)

=−
⎧
⎩0.025 −0.052

⎫
⎭
⎧
⎪⎪⎩

H−20.6
L−29.5

⎫
⎪⎪⎭+0.002(Ld−29.5).

This rule tells us how much we should modulate u as a function of the current
number of lynxes and hares in the ecosystem. Figure 7.7a shows a simulation of
the resulting closed loop system using the parameters defined above and starting
with an initial population of 15 hares and 20 lynxes. Note that the system quickly
stabilizes the population of lynxes at the reference value (Ld = 30). A phase por-
trait of the system is given in Figure 7.7b, showing how other initial conditions
converge to the stabilized equilibrium population. Notice that the dynamics are
very different from the natural dynamics (shown in Figure 4.20). ∇

The results of this section show that we can use state feedback to design the dy-
namics of a reachable system, under the strong assumption that we can measure all
of the states. We shall address the availability of the states in the next chapter, when
we consider output feedback and state estimation. In addition, Theorem 7.3, which
states that the eigenvalues can be assigned to arbitrary locations, is also highly ide-
alized and assumes that the dynamics of the process are known to high precision.
The robustness of state feedback combined with state estimators is considered in
Chapter 13 after we have developed the requisite tools.

7.3 Design Considerations

The location of the eigenvalues determines the behavior of the closed loop dynam-
ics, and hence where we place the eigenvalues is the main design decision to be
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made. As with all other feedback design problems, there are trade-offs among the
magnitude of the control inputs, the robustness of the system to perturbations and
the closed loop performance of the system. In this section we examine some of
these trade-offs starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class of
systems and build more intuition about the relationship between stability and per-
formance.

A canonical second-order system is a differential equation of the form

q̈+2ζ ω0q̇+ω2
0 q = kω2

0 u, y = q. (7.22)

In state space form, this system can be represented as

dx

dt
=

⎧
⎪⎪⎩

0 ω0

−ω0 −2ζ ω0

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

0
kω0

⎫
⎪⎪⎭u, y =

⎧
⎩1 0

⎫
⎭x, (7.23)

where x = (q, q̇/ω0) represents a normalized choice of states. The eigenvalues of
this system are given by

λ =−ζ ω0 ±ω0

√
(ζ 2−1),

and we see that the system is stable if ω0 > 0 and ζ > 0. Note that the eigenvalues
are complex if ζ < 1 and real otherwise. Equations (7.22) and (7.23) can be used
to describe many second-order systems, including damped oscillators, active filters
and flexible structures, as shown in the examples below.

The form of the solution depends on the value of ζ , which is referred to as the
damping ratio for the system. If ζ > 1, we say that the system is overdamped, and
the natural response (u = 0) of the system is given by

y(t) =
βx10 + x20

β −α
e−αt −

αx10 + x20

β −α
e−β t ,

where α = ω0(ζ +
√

ζ 2−1) and β = ω0(ζ −
√

ζ 2−1). We see that the response
consists of the sum of two exponentially decaying signals. If ζ = 1, then the system
is critically damped and solution becomes

y(t) = e−ζ ω0t
(
x10 +(x20 +ζ ω0x10)t

)
.

Note that this is still asymptotically stable as long as ω0 > 0, although the second
term within the outer parentheses is increasing with time (but more slowly than the
decaying exponential that is multiplying it).

Finally, if 0 < ζ < 1, then the solution is oscillatory and equation (7.22) is said
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Figure 7.8: Step response for a second-order system. Normalized step responses for the
system (7.23) for ζ = 0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizontal axis is in scaled units
ω0t; higher values of ω0 result in a faster response (rise time and settling time).

to be underdamped. The natural response of the system is given by

y(t) = e−ζ ω0t

(
x10 cosωdt +

(ζ ω0

ωd
x10 +

1

ωd
x20

)
sinωdt

)
,

where ωd = ω0

√
1−ζ 2 is called the damped frequency. For ζ ≪ 1, ωd ≈ ω0 de-

fines the oscillation frequency of the solution and ζ gives the damping rate relative
to ω0. The parameter ω0 is referred to as the natural frequency of the system,
stemming from the fact that for ζ = 0 the oscillation frequency is given by ω0.

Because of the simple form of a second-order system, it is possible to solve
for the step and frequency responses in analytical form. The solution for the step
response depends on the magnitude of ζ :

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k

(
1− e−ζ ω0t cosωdt− ζ√

1−ζ 2
e−ζ ω0t sinωdt

)
, ζ < 1;

k (1− e−ω0t(1+ω0t)) , ζ = 1;

k

(
1− 1

2

(
ζ√

ζ 2−1
+1
)

e−ω0t(ζ−
√

ζ 2−1)

+1
2

(
ζ√

ζ 2−1
−1
)

e−ω0t(ζ+
√

ζ 2−1)

)
, ζ > 1,

(7.24)

where we have taken x(0) = 0. Note that for the lightly damped case (ζ < 1) we
have an oscillatory solution at frequency ωd .

Step responses of systems with k = 1 and different values of ζ are shown in
Figure 7.8. The shape of the response is determined by ζ , and the speed of the
response is determined by ω0 (included in the time axis scaling): the response is
faster if ω0 is larger.

In addition to the explicit form of the solution, we can also compute the proper-
ties of the step response that were defined in Section 6.3. For example, to compute
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Table 7.1: Properties of the step response for a second-order system with 0 < ζ < 1.

Property Value ζ = 0.5 ζ = 1/
√

2 ζ = 1

Steady-state value k k k k

Rise time Tr ≈ 1/ω0 ·eϕ/ tanϕ 1.8/ω0 2.2/ω0 2.7/ω0

Overshoot Mp = e−πζ/
√

1−ζ 2
16% 4% 0%

Settling time (2%) Ts ≈ 4/ζ ω0 8.0/ω0 5.9/ω0 5.8/ω0

the maximum overshoot for an underdamped system, we rewrite the output as

y(t) = k

(

1−
1

√
1−ζ 2

e−ζ ω0t sin(ωdt +ϕ)

)

, (7.25)

where ϕ = arccosζ . The maximum overshoot will occur at the first time in which
the derivative of y is zero, at which time the fraction of the final value can be shown
to be

Mp = e−πζ/
√

1−ζ 2
.

Similar computations can be done for the other characteristics of a step response.
Table 7.1 summarizes the calculations.

The frequency response for a second-order system can also be computed ex-
plicitly and is given by

Me jθ =
kω2

0

(iω)2 +2ζ ω0(iω)+ω2
0

=
kω2

0

ω2
0 −ω2 +2iζ ω0ω

.

A graphical illustration of the frequency response is given in Figure 7.9. Notice the
resonant peak that increases with decreasing ζ . The peak is often characterized by
its Q-value, defined as Q = 1/2ζ . The properties of the frequency response for a
second-order system are summarized in Table 7.2.

Table 7.2: Properties of the frequency response for a second-order system with 0 < ζ < 1.

Property Value ζ = 0.1 ζ = 0.5 ζ = 1/
√

2

Zero frequency gain M0 k k k

Bandwidth ωb 1.54ω0 1.27ω0 ω0

Resonant peak gain Mr 1.54k 1.27k k

Resonant frequency ωmr ω0 0.707ω0 0
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Figure 7.9: Frequency response of a second-order system (7.23). (a) Eigenvalues as a func-
tion of ζ . (b) Frequency response as a function of ζ . The upper curve shows the gain ratio
M, and the lower curve shows the phase shift θ . For small ζ there is a large peak in the
magnitude of the frequency response and a rapid change in phase centered at ω = ω0. As ζ
is increased, the magnitude of the peak drops and the phase changes more smoothly between
0◦ and -180◦.

Example 7.6 Drug administration
To illustrate the use of these formulas, consider the two-compartment model for
drug administration, described in Section 4.6. The dynamics of the system are

dc

dt
=

⎧
⎪⎪⎩
−k0− k1 k1

k2 −k2

⎫
⎪⎪⎭c+

⎧
⎪⎪⎩

b0

0

⎫
⎪⎪⎭u, y =

⎧
⎩0 1

⎫
⎭c,

where c1 and c2 are the concentrations of the drug in each compartment, ki, i =
0, . . . ,2 and b0 are parameters of the system, u is the flow rate of the drug into
compartment 1 and y is the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in each compartment, and we
would like to design a feedback law to maintain the output at a given reference
value r.

We choose ζ = 0.9 to minimize the overshoot and additionally require the rise
time to be Tr = 10 min. Using the formulas in Table 7.1, this gives a value for
ω0 = 0.22. We can now compute the gains to place the eigenvalues at this location.
Setting u =−Kx+ krr, the closed loop eigenvalues for the system satisfy

λ (s) =−0.2±0.096i.

Choosing k1 = −0.2 and k2 = 0.2 gives the desired closed loop behavior. Equa-
tion (7.13) gives the reference gain kr = 0.065. The response of the controller is
shown in Figure 7.10 and compared with an open loop strategy involving admin-
istering periodic doses of the drug. ∇

Higher-Order Systems

Our emphasis so far has considered only second-order systems. For higher-order
systems, eigenvalue assignment is considerably more difficult, especially when
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Figure 7.10: Open loop versus closed loop drug administration. Comparison between drug
administration using a sequence of doses versus continuously monitoring the concentrations
and adjusting the dosage continuously. In each case, the concentration is (approximately)
maintained at the desired level, but the closed loop system has substantially less variability
in drug concentration.

trying to account for the many trade-offs that are present in a feedback design.
One of the other reasons why second-order systems play such an important

role in feedback systems is that even for more complicated systems the response is
often characterized by the dominant eigenvalues. To define these more precisely,
consider a stable system with eigenvalues λ j, j = 1, . . . ,n. We say that a complex
conjugate pair of eigenvalues λ , λ ∗ is a dominant pair if they are the closest pair
to the imaginary axis. In the case when multiple eigenvalues pairs are the same
distance to the imaginary axis, a second criterion is to look at the relative damping
of the system modes. We define the damping ratio for a complex eigenvalue λ to
be

ζ =
−Reλ

|λ |
.

Given multiple complex conjugate pairs with the same real part, the dominant pair
will the set with the lowest damping ratio.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be
the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
pair of eigenvalues:

dz

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
λ ∗

J2

. . .

Jk

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

z+Bu, y =Cz.
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(Note that the state z may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of the responses from each of
the individual Jordan subsystems. As we see from Figure 7.8, for ζ < 1 the sub-
system with the slowest response is precisely the one with the whose eigenvalues
are closest to the imaginary axis. Hence, when we add the responses from each of
the individual subsystems, it is the dominant pair of eigenvalues that will be the
primary factor after the initial transients due to the other terms in the solution die
out. While this simple analysis does not always hold (e.g., if some nondominant
terms have larger coefficients because of the particular form of the system), it is
often the case that the dominant eigenvalues determine the (step) response of the
system.

The only formal requirement for eigenvalue assignment is that the system be
reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will
be discussed in depth in Chapters 12 and 13.

We illustrate some of the main ideas using the balance system as an example.

Example 7.7 Balance system
Consider the problem of stabilizing a balance system, whose dynamics were given
in Example 7.2. The dynamics are given by

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1

0 m2l2g/µ −cJt/µ −γJt lm/µ

0 Mtmgl/µ −clm/µ −γMt/µ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

Jt/µ

lm/µ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where Mt =M+m, Jt = J+ml2, µ =MtJt−m2l2 and we have left c and γ nonzero.
We use the following parameters for the system (corresponding roughly to a human
being balanced on a stabilizing cart):

M = 10 kg, m = 80 kg, c = 0.1 N s/m,

J = 100 kg m2/s2, l = 1 m, γ = 0.01 N m s,
g = 9.8 m/s2.

The eigenvalues of the open loop dynamics are given by λ ≈ 0,−0.0011,−2.68,2.68.
We have verified already in Example 7.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and provide a desired level of
performance.

To decide where to place the closed loop eigenvalues, we note that the closed
loop dynamics will roughly consist of two components: a set of fast dynamics
that stabilize the pendulum in the inverted position and a set of slower dynamics
that control the position of the cart. For the fast dynamics, we look to the natural
period of the pendulum (in the hanging-down position), which is given by ω0 =√

mgl/(J+ml2)≈ 2.1 rad/s. To provide a fast response we choose a damping ratio
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(a) λ1,2 =−1±2i
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(b) λ1,2 =−0.33±0.66i

Figure 7.11: State feedback control of a balance system. The step response of a controller
designed to give fast performance is shown in (a). Although the response characteristics
(top left) look very good, the input magnitude (bottom left) is very large. A less aggressive
controller is shown in (b). Here the response time is slowed down, but the input magnitude
is much more reasonable. Both step responses are applied to the linearized dynamics.

of ζ = 0.5 and try to place the first pair of eigenvalues at λ1,2 ≈ −ζ ω0 ± iω0 ≈
−1± 2i, where we have used the approximation that

√
1−ζ 2 ≈ 1. For the slow

dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s.
This gives eigenvalues λ3,4 =−0.35±0.35i.

The controller consists of a feedback on the state and a feedforward gain for
the reference input. The feedback gain is given by

K =
⎧
⎩−15.6 1730 −50.1 443

⎫
⎭ ,

which can be computed using Theorem 7.3 or using the MATLAB place com-
mand. The feedforward gain is kr = −1/(C(A−BK)−1B) = −15.6. The step re-
sponse for the resulting controller (applied to the linearized system) is given in
Figure 7.11a. While the step response gives the desired characteristics, the input
required (bottom left) is excessively large, almost three times the force of gravity
at its peak.

To provide a more realistic response, we can redesign the controller to have
slower dynamics. We see that the peak of the input force occurs on the fast time
scale, and hence we choose to slow this down by approximately a factor of 3,
leaving the damping ratio unchanged. We also slow down the second set of eigen-
values, with the intuition that we should move the position of the cart more slowly
than we stabilize the pendulum dynamics. Leaving the damping ratio for the slow
dynamics unchanged at 0.7 and changing the frequency to 1 (corresponding to a
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rise time of approximately 10 s), the desired eigenvalues become

λ = {−0.33±0.66i,−0.18±0.18i}.

The performance of the resulting controller is shown in Figure 7.11b. ∇

As we see from this example, it can be difficult to decide where to place the
eigenvalues using state feedback. This is one of the principal limitations of this
approach, especially for systems of higher dimension. Optimal control, such as the
linear quadratic regulator problem discussed next, is one approach that is available.
One can also focus on the frequency response for performing the design, which is
the subject of Chapters 9–13.

Linear Quadratic Regulators
!

As an alternative to selecting the closed loop eigenvalue locations to accomplish a
certain objective, the gains for a state feedback controller can instead be chosen is
by attempting to optimize a cost function. This can be particularly useful in helping
balance the performance of the system with the magnitude of the inputs required
to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problem is one of the
most common optimal control problems. Given a multi-input linear system

dx

dt
= Ax+Bu, x ∈ Rn, u ∈ Rp,

we attempt to minimize the quadratic cost function

J̃ =
∫ ∞

0

(
xT Qxx+uT Quu

)
dt, (7.26)

where Qx ≽ 0 and Qu ≻ 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimensions. This cost function represents a trade-off between the
distance of the state from the origin and the cost of the control input. By choosing
the matrices Qx and Qu, we can balance the rate of convergence of the solutions
with the cost of the control.

The solution to the LQR problem is given by a linear control law of the form

u =−Q−1
u BT Px,

where P ∈ Rn×n is a positive definite, symmetric matrix that satisfies the equation

PA+AT P−PBQ−1
u BT P+Qx = 0. (7.27)

Equation (7.27) is called the algebraic Riccati equation. If the system is reachable,
it can be shown that there is a unique positive definite matrix P satisfying equa-
tion (7.27) that makes the closed loop system stable. The MATLAB command lqr
returns the optimal controller given A, B, Qx and Qu.

One of the key questions in LQR design is how to choose the weights Qx and
Qu. To guarantee that a solution exists, we must have Qx ≽ 0 and Qu ≻ 0. In addi-
tion, there are certain “observability” conditions on Qx that limit its choice. Here
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we assume Qx ≻ 0 to ensure that solutions to the algebraic Riccati equation always
exist.

To choose specific values for the cost function weights Qx and Qu, we must use
our knowledge of the system we are trying to control. A particularly simple choice
is to use diagonal weights

Qx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

q1 0
. . .

0 qn

⎫
⎪⎪⎪⎪⎪⎪⎪⎭
, Qu =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

ρ1 0
. . .

0 ρn

⎫
⎪⎪⎪⎪⎪⎪⎪⎭
.

For this choice of Qx and Qu, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we can
take states that should remain small and attach higher weight values to them. Sim-
ilarly, we can penalize an input versus the states and other inputs through choice
of the corresponding input weight ρ .

Example 7.8 Vectored thrust aircraft
Consider the original dynamics of the system (3.29), written in state space form as

dz

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z4

z5

z6

− c
m z4

−g− c
m z5

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

1
m cosθ F1− 1

m sinθ F2

1
m sinθ F1 +

1
m cosθ F2

r
J F1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(see also Example 6.4). The system parameters are m = 4 kg, J = 0.0475 kg m2,
r = 0.25 m, g = 9.8 m/s2, c = 0.05 N s/m, which corresponds to a scaled model of
the system. The equilibrium point for the system is given by F1 = 0, F2 = mg and
ze = (xe,ye,0,0,0,0). To derive the linearized model near an equilibrium point, we
compute the linearization according to equation (6.34):

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g −c/m 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0
0 0
0 0

1/m 0
0 1/m

r/J 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

C =

⎧
⎪⎪⎩

1 0 0 0 0 0
0 1 0 0 0 0

⎫
⎪⎪⎭ , D =

⎧
⎪⎪⎩

0 0
0 0

⎫
⎪⎪⎭ .

Letting ξ = z− ze and v = F−Fe, the linearized system is given by

dξ

dt
= Aξ +Bv, y =Cξ .

It can be verified that the system is reachable.
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Figure 7.12: Step response for a vectored thrust aircraft. The plot in (a) shows the x and y

positions of the aircraft when it is commanded to move 1 m in each direction. In (b) the x

motion is shown for control weights ρ = 1, 102, 104. A higher weight of the input term in
the cost function causes a more sluggish response.

To compute a linear quadratic regulator for the system, we write the cost func-
tion as

J =
∫ ∞

0
(ξ T Qξ ξ + vT Qvv)dt,

where ξ = z− ze and v = F −Fe again represent the local coordinates around the
desired equilibrium point (ze,Fe). We begin with diagonal matrices for the state
and input costs:

Qξ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, Qv =

⎧
⎪⎪⎩

ρ 0
0 ρ

⎫
⎪⎪⎭ .

This gives a control law of the form v = −Kξ , which can then be used to derive
the control law in terms of the original variables:

F = v+Fe =−K(z− ze)+Fe.

As computed in Example 6.4, the equilibrium points have Fe = (0,mg) and ze =
(xe,ye,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure 7.12a for ρ = 1. The response can be tuned by adjusting
the weights in the LQR cost. Figure 7.12b shows the response in the x direction
for different choices of the weight ρ .

∇

Linear quadratic regulators can also be designed for discrete-time systems, as
illustrated by the following example.

Example 7.9 Web server control
Consider the web server example given in Section 4.4, where a discrete-time model
for the system was given. We wish to design a control law that sets the server
parameters so that the average server processor load is maintained at a desired
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Figure 7.13: Feedback control of a web server. The controller sets the values of the web
server parameters based on the difference between the nominal parameters (determined by
krr) and the current load ycpu. The disturbance v represents the load due to other processes
running on the server. Note that the measurement is taken after the disturbance so that we
measure the total load on the server.

level. Since other processes may be running on the server, the web server must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 7.13. We focus
on the special case where we wish to control only the processor load using both
the KeepAlive and MaxClients parameters. We also include a “disturbance”
on the measured load that represents the use of the processing cycles by other
processes running on the server. The system has the same basic structure as the
generic control system in Figure 7.5, with the variation that the disturbance enters
after the process dynamics.

The dynamics of the system are given by a set of difference equations of the
form

x[k+1] = Ax[k]+Bu[k], ycpu[k] = xcpu[k]+dcpu[k],

where x= (xcpu,xmem) is the state of the web server, u= (uka,umc) is the input, dcpu

is the processing load from other processes on the computer and ycpu is the total
processor load. The matrices A ∈R2×2 and B ∈R2×2 are described in Section 4.4.

We choose our controller to be a feedback controller of the form

u =−K

⎧
⎪⎪⎩

ycpu

xmem

⎫
⎪⎪⎭+ krrcpu,

where rcpu is the desired processor load. Note that we have used the measured
processor load ycpu instead of the CPU state xcpu to ensure that we adjust the system
operation based on the actual load. (This modification is necessary because of the
nonstandard way in which the disturbance enters the process dynamics.)

The feedback gain matrix K can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, with the cost function given
by

Qx =

⎧
⎪⎪⎩

5 0
0 1

⎫
⎪⎪⎭ , Qu =

⎧
⎪⎪⎩

1/502 0
0 1/10002

⎫
⎪⎪⎭ .

The cost function for the state Qx is chosen so that we place more emphasis on
the processor load versus the memory use. The cost function for the inputs Qu is
chosen so as to normalize the two inputs, with a KeepAlive timeout of 50 s hav-
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Figure 7.14: Web server with LQR control. The plot in (a) shows the state of the system un-
der a change in external load applied at k = 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce the effect of the disturbance
by approximately 40%.

ing the same weight as a MaxClients value of 1000. These values are squared
since the cost associated with the inputs is given by uT Quu. Using the dynamics in
Section 4.4 and the dlqr command in MATLAB, the resulting gains become

K =

⎧
⎪⎪⎩
−22.3 10.1
382.7 77.7

⎫
⎪⎪⎭ .

As in the case of a continuous-time control system, the reference gain kr is
chosen to yield the desired equilibrium point for the system. Setting x[k + 1] =
x[k] = xe, the steady-state equilibrium point and output for a given reference input
r are given by

xe = (A−BK)xe +Bkrr, ye =Cxe.

This is a matrix equation in which kr is a column vector that sets the two inputs
values based on the desired reference. If we take the desired output to be of the
form ye = (r,0), then we must solve

⎧
⎪⎪⎩

1
0

⎫
⎪⎪⎭=C(A−BK− I)−1Bkr.

Solving this equation for kr, we obtain

kr =
((

C(A−BK− I)−1B
))−1

⎧
⎪⎪⎩

1
0

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

49.3
539.5

⎫
⎪⎪⎭ .

The dynamics of the closed loop system are illustrated in Figure 7.14. We apply
a change in load of dcpu = 0.3 at time t = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desired load at 0.57. Note that
both the KeepAlive and MaxClients parameters are adjusted. Although the
load is decreased, it remains approximately 0.2 above the desired steady state.
(Better results can be obtained using the techniques of the next section.) ∇
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7.4 Integral Action

Controllers based on state feedback achieve the correct steady-state response to
command signals by careful calibration of the gain kr. However, one of the pri-
mary uses of feedback is to allow good performance in the presence of uncertainty,
and hence requiring that we have an exact model of the process is undesirable. An
alternative to calibration is to make use of integral feedback, in which the con-
troller uses an integrator to provide zero steady-state error. The basic concept of
integral feedback was introduced in Section 1.5; here we provide a more complete
description and analysis.

The basic approach in integral feedback is to create a state within the controller
that computes the integral of the error signal, which is then used as a feedback
term. We do this by augmenting the description of the system with a new state z:

d

dt

⎧
⎪⎪⎩

x
z

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

Ax+Bu
y− r

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

Ax+Bu
Cx− r

⎫
⎪⎪⎭ . (7.28)

The state z is seen to be the integral of the difference between the the actual output
y and desired output r. Note that if we find a controller u = ϕ(x,z) that stabilizes
the system, then we will necessarily have ż = 0 in steady state and hence y = r in
steady state.

Given the augmented system, we design a state space controller in the usual
fashion, with a control law of the form

u =−Kx− kiz+ krr, (7.29)

where K is the usual state feedback term, ki is the integral term and kr is used to
set the nominal input for the desired steady state. The resulting equilibrium point
for the system is given as

xe =−(A−BK)−1B(krr− kize), Cxe = r,

which comes from setting the right hand side of equation (7.28) to zero and sub-
stituting u from equation (7.29). Note that the value of ze is not specified but rather
will automatically settle to the value that makes ż = y− r = 0, which implies that
at equilibrium the output will equal the reference value. This holds independently
of the specific values of A, B and K as long as the system is stable (which can be
done through appropriate choice of K and ki).

The final control law is given by

u =−Kx− kiz+ krr,
dz

dt
= y− r,

where we have now included the dynamics of the integrator as part of the specifica-
tion of the controller. This type of control law is known as a dynamic compensator
since it has its own internal dynamics. The following example illustrates the basic
approach.

Example 7.10 Cruise control
Consider the cruise control example introduced in Section 1.4 and considered fur-
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ther in Example 6.11 (see also Section 4.1). The linearized dynamics of the process
around an equilibrium point ve, ue are given by

dx

dt
= ax−bgθ +bw, y = v = x+ ve,

where x = v−ve, w = u−ue, m is the mass of the car and θ is the angle of the road.
The constant a depends on the throttle characteristic and is given in Example 6.11.

If we augment the system with an integrator, the process dynamics become

dx

dt
= ax−bgθ +bw,

dz

dt
= y− vr = ve + x− vr,

or, in state space form,

d

dt

⎧
⎪⎪⎩

x
z

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

a 0
1 0

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x
z

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

b
0

⎫
⎪⎪⎭w+

⎧
⎪⎪⎩
−bg

0

⎫
⎪⎪⎭θ +

⎧
⎪⎪⎩

0
ve− vr

⎫
⎪⎪⎭ .

Note that when the system is at equilibrium, we have that ż = 0, which implies that
the vehicle speed v = ve +x should be equal to the desired reference speed vr. Our
controller will be of the form

dz

dt
= y− vr, w =−kpx− kiz+ krvr,

and the gains kp, ki and kr will be chosen to stabilize the system and provide the
correct input for the reference speed.

Assume that we wish to design the closed loop system to have the characteristic
polynomial

λ (s) = s2 +a1s+a2.

Setting the disturbance θ = 0, the characteristic polynomial of the closed loop
system is given by

det
(
sI− (A−BK)

)
= s2 +(bkp−a)s+bki,

and hence we set

kp =
a1 +a

b
, ki =

a2

b
, kr =−1/

(
C(A−BK)−1B

)
=

a

b
.

The resulting controller stabilizes the system and hence brings ż = y− vr to zero,
resulting in perfect tracking. Notice that even if we have a small error in the values
of the parameters defining the system, as long as the closed loop eigenvalues are
still stable, then the tracking error will approach zero. Thus the exact calibration
required in our previous approach (using kr) is not needed here. Indeed, we can
even choose kr = 0 and let the feedback controller do all of the work. However, kr

does influence the transient response to command signals and setting it properly
will generally give a more favorable response.

Integral feedback can also be used to compensate for constant disturbances.
Figure 7.15 shows the results of a simulation in which the car encounters a hill
with angle θ = 4◦ at t = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that the car’s velocity converges
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Figure 7.15: Velocity and throttle for a car with cruise control based on proportional
(dashed) and PI control (solid). The PI controller is able to adjust the throttle to compen-
sate for the effect of the hill and maintain the speed at the reference value of vr = 20 m/s.
The controller gains are kp = 0.5 and ki = 0.1.

to the reference speed. This ability to handle constant disturbances is a general
property of controllers with integral feedback (see Exercise 7.4). ∇

7.5 Further Reading

The importance of state models and state feedback was discussed in the seminal
paper by Kalman [Kal60], where the state feedback gain was obtained by solving
an optimization problem that minimized a quadratic loss function. The notions
of reachability and observability (Chapter 8) are also due to Kalman [Kal61b]
(see also [Gil63, KHN63]). Kalman defines controllability and reachability as the
ability to reach the origin and an arbitrary state, respectively [KFA69]. We note that
in most textbooks the term “controllability” is used instead of “reachability,” but
we prefer the latter term because it is more descriptive of the fundamental property
of being able to reach arbitrary states. Most undergraduate textbooks on control
contain material on state space systems, including, for example, Franklin, Powell
and Emami-Naeini [FPEN05] and Ogata [Oga01]. Friedland’s textbook [Fri04]
covers the material in the previous, current and next chapter in considerable detail,
including the topic of optimal control.

Exercises

7.1 (Double integrator) Consider the double integrator. Find a piecewise constant
control strategy that drives the system from the origin to the state x = (1,1).

7.2 (Reachability from nonzero initial state) Extend the argument in Section 7.1 to
show that if a system is reachable from an initial state of zero, it is reachable from
a nonzero initial state.

7.3 (Unreachable systems) Consider the system shown in Figure 7.3. Write the
dynamics of the two systems as

dx

dt
= Ax+Bu,

dz

dt
= Az+Bu.
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If x and z have the same initial condition, they will always have the same state
regardless of the input that is applied. Show that this violates the definition of
reachability and further show that the reachability matrix Wr is not full rank.

7.4 (Integral feedback for rejecting constant disturbances) Consider a linear system
of the form

dx

dt
= Ax+Bu+Fd, y =Cx

where u is a scalar and v is a disturbance that enters the system through a distur-
bance vector F ∈Rn. Assume that the matrix A is invertible and the zero frequency
gain CA−1B is nonzero. Show that integral feedback can be used to compensate for
a constant disturbance by giving zero steady-state output error even when d ̸= 0.

7.5 (Rear-steered bicycle) A simple model for a bicycle was given by equation (4.5)
in Section 4.2. A model for a bicycle with rear-wheel steering is obtained by revers-
ing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.

7.6 (Characteristic polynomial for reachable canonical form) Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (7.7) and that

dnzk

dtn
+a1

dn−1zk

dtn−1
+ · · ·+an−1

dzk

dt
+anzk =

dn−ku

dtn−k
,

where zk is the kth state.

7.7 (Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

W̃−1
r =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 a1 a2 · · · an

0 1 a1 · · · an−1

0 0 1
. . .

...
...

. . . a1

0 0 0 · · · 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

7.8 (Non-maintainable equilibria) Consider the normalized model of a pendulum
on a cart

d2x

dt2
= u,

d2θ

dt2
=−θ +u,

where x is cart position and θ is pendulum angle. Can the angle θ = θ0 for θ0 ̸= 0
be maintained?

7.9 (Eigenvalue assignment for unreachable system) Consider the system

dx

dt
=

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

1
0

⎫
⎪⎪⎭u, y =

⎧
⎩1 0

⎫
⎭x,
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with the control law
u =−k1x1− k2x2 + krr.

Compute the rank of the reachability matrix for the system and show that eigen-
values of the system cannot be assigned to arbitrary values.

7.10 (Cayley–Hamilton theorem) Let A ∈ Rn×n be a matrix with characteristic
polynomial λ (s) = det(sI−A) = sn + a1sn−1 + · · ·+ an−1s+ an. Assume that the
matrix A can be diagonalized and show that it satisfies

λ (A) = An +a1An−1 + · · ·+an−1A+anI = 0,

Use the result to show that Ak, k ≥ n, can be rewritten in terms of powers of A of
order less than n.

7.11 (Dominant pairs)

7.12 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise ??. Using the following normalized parameters,

J1 = 10/9, J2 = 10, c = 0.1, k = 1, kI = 1,

verify that the eigenvalues of the open loop system are 0,0,−0.05± i. Design a
state feedback that gives a closed loop system with eigenvalues−2,−1 and−1± i.
This choice implies that the oscillatory eigenvalues will be well damped and that
the eigenvalues at the origin are replaced by eigenvalues on the negative real axis.
Simulate the responses of the closed loop system to step changes in the command
signal for θ2 and a step change in a disturbance torque on the second rotor.

7.13 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (4.7) in Section 4.2. Using the parameters from the companion web site, the
model is unstable at the velocity v= 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 1.30± 4.60i. Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 and −1± i. Simulate the response of
the system to a step change in the steering reference of 0.002 rad.

7.14 (Atomic force microscope) Consider the model of an AFM in contact mode
given in Example 6.9:

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0
−k2/(m1 +m2) −c2/(m1 +m2) 1/m2 0

0 0 0 ω3

0 0 −ω3 −2ζ3ω3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

ω3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
m2

m1 +m2

⎧
⎪⎩ m1k2

m1 +m2

m1c2

m1 +m2
1 0

⎫
⎪⎭x.

Use the MATLAB script afm_data.m from the companion web site to generate the
system matrices.

(a) Compute the reachability matrix of the system and numerically determine its
rank. Scale the model by using milliseconds instead of seconds as time units. Re-
peat the calculation of the reachability matrix and its rank.
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(b) Find a state feedback controller that gives a closed loop system with complex
poles having damping ratio 0.707. Use the scaled model for the computations.

(c) Compute state feedback gains using linear quadratic control. Experiment by
using different weights. Compute the gains for q1 = q2 = 0,q3 = q4 = 1 and ρ1 =
0.1 and explain the result. Choose q1 = q2 = q3 = q4 = 1 and explore what happens
to the feedback gains and closed loop eigenvalues when you change ρ1. Use the
scaled system for this computation.

7.15 Consider the second-order system

d2y

dt2
+0.5

dy

dt
+ y = a

du

dt
+u.

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response is a. Discuss what it means
when a < 0.

(b) Show that there are points on the unit step response that are invariant with a.
Discuss qualitatively the effect of the parameter a on the solution.

(c) Simulate the system and explore the effect of a on the rise time and overshoot.

7.16 (Bryson’s rule) Bryson and Ho [BH75] have suggested the following method
for choosing the matrices Qx and Qu in equation (7.26). Start by choosing Qx

and Qu as diagonal matrices whose elements are the inverses of the squares of
the maxima of the corresponding variables. Then modify the elements to obtain a
compromise among response time, damping and control effort. Apply this method
to the motor drive in Exercise 7.12. Assume that the largest values of the ϕ1 and
ϕ2 are 1, the largest values of ϕ̇1 and ϕ̇2 are 2 and the largest control signal is 10.
Simulate the closed loop system for ϕ2(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonal elements for Qx and Qu.





Chapter Eight
Output Feedback

One may separate the problem of physical realization into two stages: computation of the

“best approximation” x̂(t1) of the state from knowledge of y(t) for t ≤ t1 and computation of

u(t1) given x̂(t1).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 1960 [Kal60].

In this chapter we show how to use output feedback to modify the dynamics
of the system through the use of observers. We introduce the concept of observ-
ability and show that if a system is observable, it is possible to recover the state
from measurements of the inputs and outputs to the system. We then show how to
design a controller with feedback from the observer state. An important concept
is the separation principle quoted above, which is also proved. The structure of
the controllers derived in this chapter is quite general and is used by many other
design methods.

8.1 Observability

In Section 7.2 of the previous chapter it was shown that it is possible to find a state
feedback law that gives desired closed loop eigenvalues provided that the system
is reachable and that all the states are measured by sensors. For many situations, it
is highly unrealistic to assume that all the states are measured. In this section we
investigate how the state can be estimated by using a mathematical model and a
few measurements. It will be shown that computation of the states can be carried
out by a dynamical system called an observer.

Definition of Observability

Consider a system described by a set of differential equations

dx

dt
= Ax+Bu, y =Cx+Du, (8.1)

where x ∈ Rn is the state, u ∈ Rp the input and y ∈ Rq the measured output. We
wish to estimate the state of the system from its inputs and outputs, as illustrated
in Figure 8.1. In some situations we will assume that there is only one measured
signal, i.e., that the signal y is a scalar and that C is a (row) vector. This signal may
be corrupted by noise w, although we shall start by considering the noise-free case.
We write x̂ for the state estimate given by the observer.
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u
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x̂

Process

ẋ = Ax+Bu

y =Cx+Du

y

Figure 8.1: Block diagram for an observer. The observer uses the process measurement y

(possibly corrupted by noise w) and the input u to estimate the current state of the process,
denoted x̂.

Definition 8.1 (Observability). A linear system is observable if for any T > 0 it is
possible to determine the state of the system x(T ) through measurements of y(t)
and u(t) on the interval [0,T ].

The definition above holds for nonlinear systems as well, and the results dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many important applications, even
outside feedback systems. If a system is observable, then there are no “hidden” dy-
namics inside it; we can understand everything that is going on through observation
(over time) of the inputs and outputs. As we shall see, the problem of observability
is of significant practical interest because it will determine if a set of sensors is
sufficient for controlling a system. Sensors combined with a mathematical model
of the system can also be viewed as a “virtual sensor” that gives information about
variables that are not measured directly. The process of reconciling signals from
many sensors using mathematical models is also called sensor fusion.

Testing for Observability

When discussing reachability in the previous chapter, we neglected the output and
focused on the state. Similarly, it is convenient here to initially neglect the input
and focus on the autonomous system

dx

dt
= Ax, y =Cx. (8.2)

We wish to understand when it is possible to determine the state from observations
of the output.

The output itself gives the projection of the state onto vectors that are rows of
the matrix C. The observability problem can immediately be solved if the matrix
C is invertible. If the matrix is not invertible, we can take derivatives of the output
to obtain

dy

dt
=C

dx

dt
=CAx.

From the derivative of the output we thus get the projection of the state on vectors
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that are rows of the matrix CA. Proceeding in this way, we get at every time t
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(t)

ẏ(t)

ÿ(t)
...

y(n−1)(t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
CA

CA2

...
CAn−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x(t). (8.3)

We thus find that the state at time t can be determined from the output and its
derivatives at time t if the observability matrix

Wo =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
CA

CA2

...
CAn−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.4)

has n independent rows. As in the case of reachability, it turns out that we need
not consider any derivatives higher than n−1 (this is an application of the Cayley–
Hamilton theorem [Exercise 7.10]).

The calculation can easily be extended to systems with inputs. The state is then
given by a linear combination of inputs and outputs and their higher derivatives.
The observability criterion is unchanged. We leave this case as an exercise for the
reader.

In practice, differentiation of the output can give large errors when there is
measurement noise, and therefore the method sketched above is not particularly
practical. We will address this issue in more detail in the next section, but for now
we have the following basic result.

Theorem 8.1 (Observability rank condition). A linear system of the form (8.1) is
observable if and only if the observability matrix Wo is invertible (full rank).

Proof. The sufficiency of the observability rank condition follows from the analy- !
sis above. To prove necessity, suppose that the system is observable but Wo is not
invertible. Let v ∈ Rn, v ̸= 0, be a vector in the null space of Wo, so that Wov = 0.
If we let x(0) = v be the initial condition for the system and choose u = 0, then
the output is given by y(t) = CeAtv. Since eAt can be written as a power series in
A and since An and higher powers can be rewritten in terms of lower powers of
A (by the Cayley–Hamilton theorem), it follows that y(t) will be identically zero
(the reader should fill in the missing steps. However, if both the input and output
of the system are 0, then a valid estimate of the state is x̂ = 0 for all time, which is
clearly incorrect since x(0) = v ̸= 0. Hence by contradiction we must have that Wo

is invertible if the system is observable.

Example 8.1 Compartment model
Consider the two-compartment model in Figure 4.18a, but assume that only the
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Figure 8.2: An unobservable system. Two identical subsystems have outputs that add to-
gether to form the overall system output. The individual states of the subsystem cannot be
determined since the contributions of each to the output are not distinguishable. The circuit
diagram on the right is an example of such a system.

concentration in the first compartment can be measured. The system is described
by the linear system

dc

dt
=

⎧
⎪⎪⎩
−k0− k1 k1

k2 −k2

⎫
⎪⎪⎭c+

⎧
⎪⎪⎩

b0

0

⎫
⎪⎪⎭u, y =

⎧
⎩1 0

⎫
⎭c.

The first compartment represents the drug concentration in the blood plasma, and
the second compartment the drug concentration in the tissue where it is active. To
determine if it is possible to find the concentration in the tissue compartment from
a measurement of blood plasma, we investigate the observability of the system by
forming the observability matrix

Wo =

⎧
⎪⎪⎩

C
CA

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

1 0
−k0− k1 k1

⎫
⎪⎪⎭ .

The rows are linearly independent if k1 ̸= 0, and under this condition it is thus
possible to determine the concentration of the drug in the active compartment from
measurements of the drug concentration in the blood. ∇

It is useful to have an understanding of the mechanisms that make a system
unobservable. Such a system is shown in Figure 8.2. The system is composed of
two identical systems whose outputs are subtracted. It seems intuitively clear that
it is not possible to deduce the states from the output since we cannot deduce the
individual output contributions from the difference. This can also be seen formally
(Exercise 8.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms will be useful in studying
observability. A linear single-input, single-output state space system is in observ-
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Figure 8.3: Block diagram of a system in observable canonical form. The states of the
system are represented by individual integrators whose inputs are a weighted combination
of the next integrator in the chain, the first state (rightmost integrator) and the system input.
The output is a combination of the first state and the input.

able canonical form if its dynamics are given by

dz

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1 1 0 · · · 0
−a2 0 1 0

...
. . .

−an−1 0 0 1
−an 0 0 · · · 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

z+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1

b2
...

bn−1

bn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
⎧
⎩1 0 0 · · · 0

⎫
⎭z+d0 u.

The definition can be extended to systems with many inputs; the only difference is
that the vector multiplying u is replaced by a matrix.

Figure 8.3 is a block diagram for a system in observable canonical form. As
in the case of reachable canonical form, we see that the coefficients in the system
description appear directly in the block diagram. The characteristic polynomial for
a system in observable canonical form is

λ (s) = sn +a1sn−1 + · · ·+an−1s+an. (8.5)

It is possible to reason about the observability of a system in observable canonical
form by studying the block diagram. If the input u and the output y are available,
the state z1 can clearly be computed. Differentiating z1, we obtain the input to the
integrator that generates z1, and we can now obtain z2 = ż1 +a1z1−b1u. Proceed-
ing in this way, we can compute all states. The computation will, however, require
that the signals be differentiated.

To check observability more formally, we compute the observability matrix for
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a system in observable canonical form, which is given by

W̃o =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 . . . 0
−a1 1 0 . . . 0
−a2

1−a2 −a1 1 0
...

...
. . .

...
∗ ∗ . . . 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where * represents an entry whose exact value is not important. The rows of this
matrix are linearly independent (since it is lower triangular), and hence Wo is in-
vertible. A straightforward but tedious calculation shows that the inverse of the
observability matrix has a simple form given by

W̃−1
o =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
. . .

...
an−1 an−2 an−3 · · · 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

As in the case of reachability, it turns out that if a system is observable if and
only if there always exists a transformation T that converts the system into observ-
able canonical form. This is useful for proofs since it lets us assume that a system
is in observable canonical form without any loss of generality. The observable
canonical form may be poorly conditioned numerically.

8.2 State Estimation

Having defined the concept of observability, we now return to the question of how
to construct an observer for a system. We will look for observers that can be repre-
sented as linear dynamical systems that take the inputs and outputs of the system
we are observing and produces an estimate of the system’s state. That is, we wish
to construct a dynamical system of the form

dx̂

dt
= Fx̂+Gu+Hy,

where u and y are the input and output of the original system and x̂ ∈ Rn is an
estimate of the state with the property that x̂(t)→ x(t) as t→ ∞.

The Observer

We consider the system in equation (8.1) with D set to zero to simplify the expo-
sition:

dx

dt
= Ax+Bu, y =Cx. (8.6)
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We can attempt to determine the state simply by simulating the equations with the
correct input. An estimate of the state is then given by

dx̂

dt
= Ax̂+Bu. (8.7)

To find the properties of this estimate, introduce the estimation error x̃ = x− x̂. It
follows from equations (8.6) and (8.7) that

dx̃

dt
= Ax̃.

If matrix A has all its eigenvalues in the left half-plane, the error x̃ will go to zero,
and hence equation (8.7) is a dynamical system whose output converges to the
state of the system (8.6). However, the convergence might be slower than desired.

The observer given by equation (8.7) uses only the process input u; the mea-
sured signal does not appear in the equation. We must also require that the system
be stable, and essentially our estimator converges because the state of both the
observer and the estimator are going to zero. This is not very useful in a control
design context since we want to have our estimate converge quickly to a nonzero
state so that we can make use of it in our controller. We will therefore attempt to
modify the observer so that the output is used and its convergence properties can
be designed to be fast relative to the system’s dynamics. This version will also
work for unstable systems.

Consider the observer

dx̂

dt
= Ax̂+Bu+L(y−Cx̂). (8.8)

This can be considered as a generalization of equation (8.7). Feedback from the
measured output is provided by adding the term L(y−Cx̂), which is proportional
to the difference between the observed output and the output predicted by the ob-
server. It follows from equations (8.6) and (8.8) that

dx̃

dt
= (A−LC)x̃.

If the matrix L can be chosen in such a way that the matrix A−LC has eigenval-
ues with negative real parts, the error x̃ will go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a state feedback and
finding the observer. State feedback design by eigenvalue assignment is equivalent
to finding a matrix K so that A−BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrix L so that A−LC has
given eigenvalues. Since the eigenvalues of a matrix and its transpose are the same
we can establish the following equivalences:

A↔ AT , B↔CT , K↔ LT , Wr↔W T
o .

The observer design problem is the dual of the state feedback design problem.
Using the results of Theorem 7.3, we get the following theorem on observer design.
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Theorem 8.2 (Observer design by eigenvalue assignment). Consider the system
given by

dx

dt
= Ax+Bu, y =Cx, (8.9)

with one input and one output. Let λ (s) = sn + a1sn−1 + · · ·+ an−1s+ an be the
characteristic polynomial for A. If the system is observable, then the dynamical
system

dx̂

dt
= Ax̂+Bu+L(y−Cx̂) (8.10)

is an observer for the system, with L chosen as

L =W−1
o W̃o

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1−a1

p2−a2
...

pn−an

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.11)

and the matrices Wo and W̃o given by

Wo =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
CA

...

CAn−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, W̃o =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 · · · 0 0
a1 1 0 · · · 0 0
a2 a1 1 0 0
...

...
. . .

...
an−2 an−3 an−4 1 0
an−1 an−2 an−3 . . . a1 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−1

.

The resulting observer error x̃= x− x̂ is governed by a differential equation having
the characteristic polynomial

p(s) = sn + p1sn−1 + · · ·+ pn.

The dynamical system (8.10) is called an observer for (the states of) the sys-
tem (8.9) because it will generate an approximation of the states of the system
from its inputs and outputs. This form of an observer is a much more useful form
than the one given by pure differentiation in equation (8.3).

Example 8.2 Compartment model
Consider the compartment model in Example 8.1, which is characterized by the
matrices

A =

⎧
⎪⎪⎩
−k0− k1 k1

k2 −k2

⎫
⎪⎪⎭ , B =

⎧
⎪⎪⎩

b0

0

⎫
⎪⎪⎭ , C =

⎧
⎩1 0

⎫
⎭ .

The observability matrix was computed in Example 8.1, where we concluded that
the system was observable if k1 ̸= 0. The dynamics matrix has the characteristic
polynomial

λ (s) = det

⎧
⎪⎪⎩

s+ k0 + k1 −k1

−k2 s+ k2

⎫
⎪⎪⎭= s2 +(k0 + k1 + k2)s+ k0k2.
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Figure 8.4: Observer for a two compartment system. A two compartment model is shown
on the left. The observer measures the input concentration u and output concentration y = c1

to determine the compartment concentrations, shown on the right. The true concentrations
are shown by solid lines and the estimates generated by the observer by dashed lines.

Let the desired characteristic polynomial of the observer be s2 + p1s+ p2, and
equation (8.11) gives the observer gain

L =

⎧
⎪⎪⎩

1 0
−k0− k1 k1

⎫
⎪⎪⎭
−1⎧⎪⎪⎩

1 0
k0 + k1 + k2 1

⎫
⎪⎪⎭
−1⎧⎪⎪⎩

p1− k0− k1− k2

p2− k0k2

⎫
⎪⎪⎭

=

⎧
⎪⎪⎩

p1− k0− k1− k2

(p2− p1k2 + k1k2 + k2
2)/k1

⎫
⎪⎪⎭ .

Notice that the observability condition k1 ̸= 0 is essential. The behavior of the
observer is illustrated by the simulation in Figure 8.4b. Notice how the observed
concentrations approach the true concentrations. ∇

The observer is a dynamical system whose inputs are the process input u and the
process output y. The rate of change of the estimate is composed of two terms. One
term, Ax̂+Bu, is the rate of change computed from the model with x̂ substituted
for x. The other term, L(y− ŷ), is proportional to the difference e = y− ŷ between
measured output y and its estimate ŷ=Cx̂. The observer gain L is a matrix that tells
how the error e is weighted and distributed among the states. The observer thus
combines measurements with a dynamical model of the system. A block diagram
of the observer is shown in Figure 8.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introduce the elements of the
observer gain L as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.

Example 8.3 Vehicle steering
The normalized linear model for vehicle steering derived in Examples 6.12 and 7.4
gives the following state space model dynamics relating lateral path deviation y to
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˙̂x
Σ

Σ

x̂

x̂

ŷ

y

u

L −1

B
∫

C

A

Figure 8.5: Block diagram of the observer. The observer takes the signals y and u as inputs
and produces an estimate x. Notice that the observer contains a copy of the process model
that is driven by y− ŷ through the observer gain L.

steering angle u:

dx

dt
=

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

γ
1

⎫
⎪⎪⎭u, y =

⎧
⎩1 0

⎫
⎭x. (8.12)

Recall that the state x1 represents the lateral path deviation and that x2 represents
the turning rate. We will now derive an observer that uses the system model to
determine the turning rate from the measured path deviation.

The observability matrix is

Wo =

⎧
⎪⎪⎩

1 0
0 1

⎫
⎪⎪⎭ ,

i.e., the identity matrix. The system is thus observable, and the eigenvalue assign-
ment problem can be solved. We have

A−LC =

⎧
⎪⎪⎩
−l1 1
−l2 0

⎫
⎪⎪⎭ ,

which has the characteristic polynomial

det(sI−A+LC) = det

⎧
⎪⎪⎩

s+ l1 −1
l2 s

⎫
⎪⎪⎭= s2 + l1s+ l2.

Assuming that we want to have an observer with the characteristic polynomial

s2 + p1s+ p2 = s2 +2ζoωos+ω2
o ,

the observer gains should be chosen as

l1 = p1 = 2ζoωo, l2 = p2 = ω2
o .

The observer is then

dx̂

dt
= Ax̂+Bu+L(y−Cx̂) =

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭ x̂+

⎧
⎪⎪⎩

γ
1

⎫
⎪⎪⎭u+

⎧
⎪⎪⎩

l1
l2

⎫
⎪⎪⎭(y− x̂1).
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Figure 8.6: Simulation of an observer for a vehicle driving on a curvy road (left). The ob-
server has an initial velocity error. The plots on the middle show the lateral deviation x1, the
lateral velocity x2 by solid lines and their estimates x̂1 and x̂2 by dashed lines. The plots on
the right show the estimation errors.

A simulation of the observer for a vehicle driving on a curvy road is simulated
in Figure 8.6. The vehicle length is the time unit in the normalized model. The
figure shows that the observer error settles in about 3 vehicle lengths. ∇

For systems of high order we have to use numerical calculations. The duality
between the design of a state feedback and the design of an observer means that the
computer algorithms for state feedback can also be used for the observer design;
we simply use the transpose of the dynamics matrix and the output matrix. The
MATLAB command acker, which essentially is a direct implementation of the
calculations given in Theorem 8.2, can be used for systems with one output. The
MATLAB command place can be used for systems with many outputs. It is also
better conditioned numerically.

8.3 Control Using Estimated State

In this section we will consider a state space system of the form

dx

dt
= Ax+Bu, y =Cx. (8.13)

Notice that we have assumed that there is no direct term in the system (D = 0).
This is often a realistic assumption. The presence of a direct term in combination
with a controller having proportional action creates an algebraic loop, which will
be discussed in Section 9.4. The problem can be solved even if there is a direct
term, but the calculations are more complicated.

We wish to design a feedback controller for the system where only the output
is measured. As before, we will assume that u and y are scalars. We also assume
that the system is reachable and observable. In Chapter 7 we found a feedback of
the form

u =−Kx+ krr
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for the case that all states could be measured, and in Section 8.2 we developed
an observer that can generate estimates of the state x̂ based on inputs and outputs.
In this section we will combine the ideas of these sections to find a feedback that
gives desired closed loop eigenvalues for systems where only outputs are available
for feedback.

If all states are not measurable, it seems reasonable to try the feedback

u =−Kx̂+ krr, (8.14)

where x̂ is the output of an observer of the state, i.e.,

dx̂

dt
= Ax̂+Bu+L(y−Cx̂). (8.15)

It is not clear that such a combination will have the desired effect. To explore this,
note that since the system (8.13) and the observer (8.15) are both of state dimension
n, the closed loop system has state dimension 2n with state (x, x̂). The evolution
of the states is described by equations (8.13)–(8.15). To analyze the closed loop
system, we change coordinates and replace the estimated state variable x̂ by the
estimation error

x̃ = x− x̂. (8.16)

Subtraction of equation (8.15) from equation (8.13) gives

dx̃

dt
= Ax−Ax̂−L(Cx−Cx̂) = Ax̃−LCx̃ = (A−LC)x̃.

Returning to the process dynamics, introducing u from equation (8.14) into
equation (8.13) and using equation (8.16) to eliminate x̂ gives

dx

dt
= Ax+Bu = Ax−BKx̂+Bkrr = Ax−BK(x− x̃)+Bkrr

= (A−BK)x+BKx̃+Bkrr.

The closed loop system is thus governed by

d

dt

⎧
⎪⎪⎩

x
x̃

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

A−BK BK
0 A−LC

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x
x̃

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

Bkr

0

⎫
⎪⎪⎭r. (8.17)

Notice that the state x̃, representing the observer error, is not affected by the ref-
erence signal r. This is desirable since we do not want the reference signal to
generate observer errors.

Since the dynamics matrix is block diagonal, we find that the characteristic
polynomial of the closed loop system is

λ (s) = det(sI−A+BK)det(sI−A+LC).

This polynomial is a product of two terms: the characteristic polynomial of the
closed loop system obtained with state feedback and the characteristic polynomial
of the observer error. The feedback (8.14) that was motivated heuristically thus
provides a neat solution to the eigenvalue assignment problem. The result is sum-
marized as follows.
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Theorem 8.3 (Eigenvalue assignment by output feedback). Consider the system

dx

dt
= Ax+Bu, y =Cx.

The controller described by

dx̂

dt
= Ax̂+Bu+L(y−Cx̂) = (A−BK−LC)x̂+Bkrr+Ly,

u =−Kx̂+ krr

gives a closed loop system with the characteristic polynomial

λ (s) = det(sI−A+BK)det(sI−A+LC).

This polynomial can be assigned arbitrary roots if the system is reachable and
observable.

The controller has a strong intuitive appeal: it can be thought of as being com-
posed of two parts: state feedback and an observer. The controller is now a dynam-
ical systems with internal state dynamics generated by the observer. The control
action makes use of feedback from the estimated states x̂. The feedback gain K can
be computed as if all state variables can be measured, and it depends on only A and
B. The observer gain L depends on only A and C. The property that the eigenvalue
assignment for output feedback can be separated into an eigenvalue assignment for
a state feedback and an observer is called the separation principle.

A block diagram of the controller is shown in Figure 8.7. Notice that the con-
troller contains a dynamical model of the plant. This is called the internal model
principle: the controller contains a model of the process being controlled.

Example 8.4 Vehicle steering
Consider again the normalized linear model for vehicle steering in Example 7.4.
The dynamics relating the steering angle u to the lateral path deviation y is given by
the state space model (8.12). Combining the state feedback derived in Example 7.4
with the observer determined in Example 8.3, we find that the controller is given
by

dx̂

dt
= Ax̂+Bu+L(y−Cx̂) =

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭ x̂+

⎧
⎪⎪⎩

γ
1

⎫
⎪⎪⎭u+

⎧
⎪⎪⎩

l1
l2

⎫
⎪⎪⎭(y− x̂1),

u =−Kx̂+ krr = k1(r− x̂1)− k2x̂2.

Elimination of the variable u gives

dx̂

dt
= (A−BK−LC)x̂+Ly+Bkrr

=

⎧
⎪⎪⎩
−l1− γk1 1− γk2

−k1− l2 −k2

⎫
⎪⎪⎭ x̂+

⎧
⎪⎪⎩

l1
l2

⎫
⎪⎪⎭y+

⎧
⎪⎪⎩

γ
1

⎫
⎪⎪⎭k1r,

where we have set kr = k1 as described in Example 7.4. The controller is a dynam-
ical system of second order, with two inputs y and r and one output u. Figure 8.8
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Figure 8.7: Block diagram of an observer-based control system. The observer uses the mea-
sured output y and the input u to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. The controller consists of the
observer and the state feedback; the observer is identical to that in Figure 8.5.

shows a simulation of the system when the vehicle is driven along a curvy road.
Since we are using a normalized model, the length unit is the vehicle length and the
time unit is the time it takes to travel one vehicle length. The estimator is initialized
with all states equal to zero but the real system has an initial velocity of 0.5. The
figures show that the estimates converge quickly to their true values. The vehicle
tracks the desired path, which is in the middle of the road, but there are errors
because the road is irregular. The tracking error can be improved by introducing
feedforward (Section 8.5). ∇

8.4 Kalman Filtering
!!

One of the principal uses of observers in practice is to estimate the state of a sys-
tem in the presence of noisy measurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamical systems is beyond the scope
of this text. In this section, we present a brief introduction to the use of stochastic
systems analysis for constructing observers. We work primarily in discrete time
to avoid some of the complications associated with continuous-time random pro-
cesses and to keep the mathematical prerequisites to a minimum. This section as-
sumes basic knowledge of random variables and stochastic processes; see Kumar
and Varaiya [KV86] or Åström [Åst06] for the required material.
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Figure 8.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane boundaries (dotted), the vehicle
position (solid) and its estimate (dashed), the upper right plot shows the velocity (solid) and
its estimate (dashed), and the lower right plot shows the control signal using state feedback
(solid) and the control signal using the estimated state (dashed).

Consider a discrete-time linear system with dynamics

x[k+1] = Ax[k]+Bu[k]+Fv[k], y[k] =Cx[k]+w[k], (8.18)

where v[k] and w[k] are Gaussian white noise processes satisfying

E(v[k]) = 0, E(w[k]) = 0,

E(v[k]vT [ j]) =

{
0 k ̸= j

Rv k = j,
E(w[k]wT [ j]) =

{
0 k ̸= j

Rw k = j,

E(v[k]wT [ j]) = 0.

(8.19)

E(v[k]) represents the expected value of v[k] and E(v[k]vT [ j]) is the correlation
matrix. The matrices Rv and Rw are the covariance matrices for the process dis-
turbance v and measurement noise w. We assume that the initial condition is also
modeled as a Gaussian random variable with

E(x[0]) = x0, E(x[0]xT [0]) = P0. (8.20)

We would like to find an estimate x̂[k] that minimizes the mean square error
E((x[k]− x̂[k])(x[k]− x̂[k])T ) given the measurements {y(τ) : 0≤ τ ≤ t}. We con-
sider an observer in the same basic form as derived previously:

x̂[k+1] = Ax̂[k]+Bu[k]+L[k](y[k]−Cx̂[k]). (8.21)

The following theorem summarizes the main result.

Theorem 8.4 (Kalman, 1961). Consider a random process x[k] with dynamics
given by equation (8.18) and noise processes and initial conditions described by
equations (8.19) and (8.20). The observer gain L that minimizes the mean square
error is given by

L[k] = AP[k]CT (Rw +CP[k]CT )−1,
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where
P[k+1] = (A−LC)P[k](A−LC)T +FRvFT +LRwLT

P0 = E(x[0]xT [0]).
(8.22)

Before we prove this result, we reflect on its form and function. First, note
that the Kalman filter has the form of a recursive filter: given mean square error
P[k] = E((x[k]− x̂[k])(x[k]− x̂[k])T ) at time k, we can compute how the estimate
and error change. Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate x̂[k] and the error covariance
P[k], so we can see how reliable the estimate is. It can also be shown that the
Kalman filter extracts the maximum possible information about output data. If we
form the residual between the measured output and the estimated output,

e[k] = y[k]−Cx̂[k],

we can show that for the Kalman filter the correlation matrix is

Re( j,k) = E(e[ j]eT [k]) =W [k]δ jk, δ jk =

{
1 j = k

0 j ̸= k.

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used even if the process,
noise or disturbances are time-varying. When the system is time-invariant and if
P[k] converges, then the observer gain is constant:

L = APCT (Rw +CPCT ),

where P satisfies

P = APAT +FRvFT −APCT
(
Rw +CPCT

)−1
CPAT .

We see that the optimal gain depends on both the process noise and the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choose state feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is
solved by the dlqe command in MATLAB.

Proof of theorem. We wish to minimize the mean square of the error E((x[k]−
x̂[k])(x[k]− x̂[k])T ). We will define this quantity as P[k] and then show that it sat-
isfies the recursion given in equation (8.22). By definition,

P[k+1] = E((x[k+1]− x̂[k+1])(x[k+1]− x̂[k+1])T )

= (A−LC)P[k](A−LC)T +FRvFT +LRwLT

= AP[k]AT +FRvFT −AP[k]CT LT −LCP[k]AT

+L(Rw +CP[k]CT )LT .
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Letting Rε = (Rw +CP[k]CT ), we have

P[k+1] = AP[k]AT +FRvFT −AP[k]CT LT −LCP[k]AT +LRεLT

= AP[k]AT +FRvFT +
(
L−AP[k]CT R−1

ε

)
Rε
(
L−AP[k]CT R−1

ε

)T

−AP[k]CT R−1
ε CPT [k]AT .

To minimize this expression, we choose L = AP[k]CT R−1
ε , and the theorem is

proved.

The Kalman filter can also be applied to continuous-time stochastic processes.
The mathematical derivation of this result requires more sophisticated tools, but
the final form of the estimator is relatively straightforward.

Consider a continuous stochastic system

dx

dt
= Ax+Bu+Fv, E(v(s)vT (t)) = Rv(t)δ (t− s),

y =Cx+w, E(w(s)wT (t)) = Rw(t)δ (t− s),

where δ (τ) is the unit impulse function. Assume that the disturbance v and noise
w are zero mean and Gaussian (but not necessarily time-invariant):

pdf(v) =
1

n
√

2π
√

detRv

e−
1
2 vT R−1

v v, pdf(w) =
1

n
√

2π
√

detRw

e−
1
2 wT R−1

w w.

We wish to find the estimate x̂(t) that minimizes the mean square error E((x(t)−
x̂(t))(x(t)− x̂(t))T ) given {y(τ) : 0≤ τ ≤ t}.

Theorem 8.5 (Kalman–Bucy, 1961). The optimal estimator has the form of a lin-
ear observer

dx̂

dt
= Ax̂+Bu+L(y−Cx̂),

where L(t) = P(t)CT R−1
w and P(t) = E((x(t)− x̂(t))(x(t)− x̂(t))T ) and satisfies

dP

dt
= AP+PAT −PCT R−1

w (t)CP+FRv(t)F
T , P[0] = E(x[0]xT [0]).

As in the discrete case, when the system is time-invariant and if P(t) converges,
the observer gain is constant:

L = PCT R−1
w where AP+PAT −PCT R−1

w CP+FRvFT = 0.

The second equation is the algebraic Riccati equation.

Example 8.5 Vectored thrust aircraft
We consider the lateral dynamics of the system, consisting of the subsystems
whose states are given by z = (x,θ , ẋ, θ̇). The dynamics of the system can be ob-
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Figure 8.9: Kalman filter design for a vectored thrust aircraft. In the first design (a) only
the lateral position of the aircraft is measured. Adding a direct measurement of the roll
angle produces a much better observer (b). The initial condition for both simulations is
(0.1,0.0175,0.01,0) and the controller gains are .

tained from Example 7.8 by extracting only the relevant states and outputs, giving

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1
0 −g −c/m 0
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

r/J

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, C =

⎧
⎩0 0 0 1

⎫
⎭ .

To design a Kalman filter for the system, we must include a description of the
process disturbances and the sensor noise. We thus augment the system to have the
form

dz

dt
= Az+Bu+Fv, y =Cz+w,

where F represents the structure of the disturbances (including the effects of non-
linearities that we have ignored in the linearization), v represents the disturbance
source (modeled as zero mean, Gaussian white noise) and w represents that mea-
surement noise (also zero mean, Gaussian and white).

For this example, we choose F as the identity matrix and choose disturbances
vi, i = 1, . . . ,n, to be independent random variables with covariance given by Rii =
0.1, Ri j = 0, i ̸= j. The sensor noise is a single random variable which we model as
white noise having covariance Rw = 10−4. Using the same parameters as before,
the resulting Kalman gain is given by

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

37.0
−46.9

185
−31.6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

The performance of the estimator is shown in Figure 8.9a. We see that while the
estimator converges to the system state, it contains significant overshoot in the
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state estimate, which can lead to poor performance in a closed loop setting.
To improve the performance of the estimator, we explore the impact of adding

a new output measurement. Suppose that instead of measuring just the output po-
sition x, we also measure the orientation of the aircraft θ . The output becomes

y =

⎧
⎪⎪⎩

1 0 0 0
0 1 0 0

⎫
⎪⎪⎭z+

⎧
⎪⎪⎩

w1

w2

⎫
⎪⎪⎭ ,

and if we assume that w1 and w2 are independent white noise sources each with
covariance Rwi = 10−4, then the optimal estimator gain matrix becomes

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32.6 −0.150
−0.150 32.6

32.7 −9.79
−0.0033 31.6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

These gains provide good immunity to noise and high performance, as illustrated
in Figure 8.9b. Note that the system trajectories are different in (a) and (b) since
different estimates are used in each case (this difference is most noticeable in the
θ trajectory. ∇

8.5 A General Controller Structure

State estimators and state feedback are important components of a controller. In
this section, we will add feedforward to arrive at a general controller structure that
appears in many places in control theory and is the heart of most modern control
systems. We will also briefly sketch how computers can be used to implement a
controller based on output feedback.

Feedforward

In this chapter and the previous one we have emphasized feedback as a mechanism
for minimizing tracking error; reference values were introduced simply by adding
them to the state feedback through a gain kr. A more sophisticated way of doing
this is shown by the block diagram in Figure 8.10, where the controller consists of
three parts: an observer that computes estimates of the states based on a model and
measured process inputs and outputs, a state feedback, and a trajectory generator
that generates the desired behavior of all states xd and a feedforward signal uff.
Under the ideal conditions of no disturbances and no modeling errors the signal uff

generates the desired behavior xd when applied to the process. The signals xd and
uff can be generated from the reference input r by making use of the model of the
process dynamics.

To get some insight into the behavior of the system, we assume that there are no
disturbances and that the system is in equilibrium with a constant reference signal
and with the observer state x̂ equal to the process state x. When the reference
signal is changed, the signals uff and xd will change. The observer tracks the state
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x̂
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Figure 8.10: Block diagram of a controller based on a structure with two degrees of freedom
which combines feedback and feedforward. The controller consists of a trajectory generator,
state feedback and an observer. The trajectory generation subsystem computes a feedforward
command uff along with the desired state xd . The state feedback controller uses the estimated
state and desired state to compute a corrective input ufb.

perfectly because the initial state was correct. The estimated state x̂ is thus equal to
the desired state xd , and the feedback signal ufb = K(xd− x̂) will also be zero. All
action is thus created by the signals from the trajectory generator. If there are some
disturbances or some modeling errors, the feedback signal will attempt to correct
the situation.

This controller is said to have two degrees of freedom because the responses
to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).

For an analytic description we start with the full nonlinear dynamics of the
process

dx

dt
= f (x,u), y = h(x,u). (8.23)

Assume that the trajectory generator is able to compute a desired trajectory (xd ,uff)
that satisfies the dynamics (8.23) and satisfies r = h(xd ,uff). To design the con-
troller, we construct the error system. Let z = x− xd and v = u−uff and compute
the dynamics for the error:

ż = ẋ− ẋd = f (x,u)− f (xd ,uff)

= f (z+ xd ,v+uff)− f (xd ,uff) =: F(z,v,xd(t),uff(t)).

In general, this system is time-varying. Note that z corresponds to −e in Fig-
ure 8.10 due to the convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around z = 0:

dz

dt
≈ A(t)z+B(t)v, A(t) =

∂F

∂ z

∣∣∣∣
(xd(t),uff(t))

, B(t) =
∂F

∂v

∣∣∣∣
(xd(t),uff(t))

.

It is often the case that A(t) and B(t) depend only on xd , in which case it is conve-
nient to write A(t) = A(xd) and B(t) = B(xd).

Assume now that xd and uff are either constant or slowly varying (with respect
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to the performance criterion). This allows us to consider just the (constant) linear
system given by (A(xd),B(xd)). If we design a state feedback controller K(xd) for
each xd , then we can regulate the system using the feedback

v =−K(xd)z.

Substituting back the definitions of z and v, our controller becomes

u =−K(xd)(x− xd)+uff.

This form of controller is called a gain scheduled linear controller with feedfor-
ward uff.

Finally, we consider the observer. The full nonlinear dynamics can be used for
the prediction portion of the observer and the linearized system for the correction
term:

dx̂

dt
= f (x̂,u)+L(x̂)(y−h(x̂,u)),

where L(x̂) is the observer gain obtained by linearizing the system around the cur-
rently estimated state. This form of the observer is known as an extended Kalman
filter and has proved to be a very effective means of estimating the state of a non-
linear system.

There are many ways to generate the feedforward signal, and there are also
many different ways to compute the feedback gain K and the observer gain L.
Note that once again the internal model principle applies: the controller contains a
model of the system to be controlled through the observer.

Example 8.6 Vehicle steering
To illustrate how we can use a two degree-of-freedom design to improve the per-
formance of the system, consider the problem of steering a car to change lanes on
a road, as illustrated in Figure 8.11a.

We use the non-normalized form of the dynamics, which were derived in Exam-
ple 3.10. Using the center of the rear wheels as the reference (α = 0), the dynamics
can be written as

dx

dt
= cosθv,

dy

dt
= sinθv,

dθ

dt
=

v

b
tanδ ,

where v is the forward velocity of the vehicle, θ is the heading angle and δ is the
steering angle. To generate a trajectory for the system, we note that we can solve
for the states and inputs of the system given x(t), y(t) by solving the following sets
of equations:

ẋ = vcosθ , ẍ = v̇cosθ − vθ̇ sinθ ,

ẏ = vsinθ , ÿ = v̇sinθ + vθ̇ cosθ ,

θ̇ = (v/b) tanδ .

(8.24)

This set of five equations has five unknowns (θ , θ̇ , v, v̇ and δ ) that can be solved
using trigonometry and linear algebra given the path variables x(t), y(t) and their
time derivatives. It follows that we can compute a feasible state trajectory for the
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Figure 8.11: Trajectory generation for changing lanes. We wish to change from the left lane
to the right lane over a distance of 30 m in 4 s. The planned trajectory in the xy plane is shown
in (a) and the lateral position y and the steering angle δ over the maneuver time interval are
shown in (b).

.

system given any path x(t), y(t). (This special property of a system is known as
differential flatness [FLMR92, FLMR95].)

To find a trajectory from an initial state (x0,y0,θ0) to a final state (x f ,y f ,θ f ) at
a time T , we look for a path x(t),y(t) that satisfies

x(0) = x0, x(T ) = x f ,

y(0) = y0, y(T ) = y f ,

ẋ(0)sinθ0− ẏ(0)cosθ0 = 0, ẋ(T )sinθ f − ẏ(T )cosθ f = 0,

ẏ(0)sinθ0 + ẋ(0)cosθ0 = v0, ẏ(T )sinθ f + ẋ(T )cosθ f = v f .

(8.25)

One such trajectory can be found by choosing x(t) and y(t) to have the form

xd(t) = α0 +α1t +α2t2 +α3t3, yd(t) = β0 +β1t +β2t2 +β3t3.

Substituting these equations into equation (8.25), we are left with a set of linear
equations that can be solved for αi,βi, i = 0,1,2,3. This gives a feasible trajectory
for the system by using equation (8.24) to solve for θd , vd and δd .

Figure 8.11b shows a sample trajectory generated by a set of higher-order equa-
tions that also set the initial and final steering angle to zero. Notice that the feedfor-
ward input is quite different from 0, allowing the controller to command a steering
angle that executes the turn in the absence of errors. ∇

Kalman’s Decomposition of a Linear System
!

In this chapter and the previous one we have seen that two fundamental properties
of a linear input/output system are reachability and observability. It turns out that
these two properties can be used to classify the dynamics of a system. The key
result is Kalman’s decomposition theorem, which says that a linear system can be
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Figure 8.12: Kalman’s decomposition of a linear system. The decomposition in (a) is for a
system with distinct eigenvalues and the one in (b) is the general case. The system is bro-
ken into four subsystems, representing the various combinations of reachable and observable
states. The input/output relationship only depends on the subset of states that are both reach-
able and observable.

divided into four subsystems: Σro which is reachable and observable, Σrō which is
reachable but not observable, Σr̄o which is not reachable but is observable and Σr̄ō

which is neither reachable nor observable.
We will first consider this in the special case of systems where the matrix A has

distinct eigenvalues. In this case we can find a set of coordinates such that the A
matrix is diagonal and, with some additional reordering of the states, the system
can be written as

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aro 0 0 0
0 Arō 0 0
0 0 Ar̄o 0
0 0 0 Ar̄ō

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bro

Brō

0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
⎧
⎩Cro 0 Cr̄o 0

⎫
⎭x+Du.

(8.26)

All states xk such that Bk ̸= 0 are reachable, and all states such that Ck ̸= 0 are
observable. If we set the initial state to zero (or equivalently look at the steady-
state response if A is stable), the states given by xr̄o and xr̄ō will be zero and xrō

does not affect the output. Hence the output y can be determined from the system

dxro

dt
= Aroxro +Brou, y =Croxro +Du.

Thus from the input/output point of view, it is only the reachable and observable
dynamics that matter. A block diagram of the system illustrating this property is
given in Figure 8.12a.

The general case of the Kalman decomposition is more complicated and re-
quires some additional linear algebra; see the original paper by Kalman, Ho and
Narendra [KHN63]. The key result is that the state space can still be decomposed
into four parts, but there will be additional coupling so that the equations have the
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form

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aro 0 ∗ 0
∗ Arō ∗ ∗
0 0 Ar̄o 0
0 0 ∗ Ar̄ō

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bro

Brō

0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
⎧
⎩Cro 0 Cr̄o 0

⎫
⎭x,

(8.27)

where ∗ denotes block matrices of appropriate dimensions. If xr̄o(0) = 0 then the
input/output response of the system is given by

dxro

dt
= Aroxro +Brou, y =Croxro +Du, (8.28)

which are the dynamics of the reachable and observable subsystem Σro. A block
diagram of the system is shown in Figure 8.12b.

The following example illustrates Kalman’s decomposition.

Example 8.7 System and controller with feedback from observer states
Consider the system

dx

dt
= Ax+Bu, y =Cx.

The following controller, based on feedback from the observer state, was given in
Theorem 8.3:

dx̂

dt
= Ax̂+Bu+L(y−Cx̂), u =−Kx̂+ krr.

Introducing the states x and x̃ = x− x̂, the closed loop system can be written as

d

dt

⎧
⎪⎪⎩

x
x̃

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

A−BK BK
0 A−LC

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x
x̃

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

Bkr

0

⎫
⎪⎪⎭r, y =

⎧
⎩C 0

⎫
⎭
⎧
⎪⎪⎩

x
x̃

⎫
⎪⎪⎭ ,

which is a Kalman decomposition like the one shown in Figure 8.12b with only
two subsystems Σro and Σr̄o. The subsystem Σro, with state x, is reachable and
observable, and the subsystem Σr̄o, with state x̃, is not reachable but observable.
It is natural that the state x̃ is not reachable from the reference signal r because it
would not make sense to design a system where changes in the command signal
could generate observer errors. The relationship between the reference r and the
output y is given by

dx

dt
= (A−BK)x+Bkrr, y =Cx,

which is the same relationship as for a system with full state feedback. ∇

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves or other physical devices. Since in modern engi-
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Figure 8.13: Components of a computer-controlled system. The controller consists of
analog-to-digital (A/D) and digital-to-analog (D/A) converters, as well as a computer that
implements the control algorithm. A system clock controls the operation of the controller,
synchronizing the A/D, D/A and computing processes. The operator input is also fed to the
computer as an external input.

neering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by the A/D con-
verter, the control signal is computed and the resulting output is converted to ana-
log form for the actuators, as shown in Figure 8.13. To illustrate the main princi-
ples of how to implement feedback in this environment, we consider the controller
described by equations (8.14) and (8.15), i.e.,

dx̂

dt
= Ax̂+Bu+L(y−Cx̂), u =−Kx̂+ krr.

The second equation consists only of additions and multiplications and can thus
be implemented directly on a computer. The first equation can be implemented by
approximating the derivative by a difference

dx̂

dt
≈

x̂(tk+1)− x̂(tk)

h
= Ax̂(tk)+Bu(tk)+L

(
y(tk)−Cx̂(tk)

)
,

where tk are the sampling instants and h = tk+1− tk is the sampling period. Rewrit-
ing the equation to isolate x̂(tk+1), we get the difference equation

x̂(tk+1) = x̂(tk)+h
(
Ax̂(tk)+Bu(tk)+L

(
y(tk)−Cx̂(tk)

))
. (8.29)

The calculation of the estimated state at time tk+1 requires only addition and mul-
tiplication and can easily be done by a computer. A section of pseudocode for the
program that performs this calculation is

% Control algorithm - main loop
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r = adin(ch1) % read reference

y = adin(ch2) % get process output

u = K*(xd - xhat) + uff % compute control variable

daout(ch1, u) % set analog output

xhat = xhat + h*(A*x+B*u+L*(y-C*x)) % update state estimate

The program runs periodically at a fixed rate h. Notice that the number of com-
putations between reading the analog input and setting the analog output has been
minimized by updating the state after the analog output has been set. The pro-
gram has an array of states xhat that represents the state estimate. The choice of
sampling period requires some care.

There are more sophisticated ways of approximating a differential equation
by a difference equation. If the control signal is constant between the sampling
instants, it is possible to obtain exact equations; see [ÅW97].

There are several practical issues that also must be dealt with. For example, it
is necessary to filter measured signals before they are sampled so that the filtered
signal has little frequency content above fs/2, where fs is the sampling frequency.
This avoids a phenomena known as aliasing. If controllers with integral action
are used, it is also necessary to provide protection so that the integral does not
become too large when the actuator saturates. This issue, called integrator windup,
is studied in more detail in Chapter 11. Care must also be taken so that parameter
changes do not cause disturbances.

8.6 Further Reading

The notion of observability is due to Kalman [Kal61b] and, combined with the dual
notion of reachability, it was a major stepping stone toward establishing state space
control theory beginning in the 1960s. The observer first appeared as the Kalman
filter, in the paper by Kalman [Kal61a] on the discrete-time case and Kalman and
Bucy [KB61] on the continuous-time case. Kalman also conjectured that the con-
troller for output feedback could be obtained by combining a state feedback with
an observer; see the quote in the beginning of this chapter. This result was formally
proved by Josep and Tou [JT61] and Gunckel and Franklin [GF71]. The combined
result is known as the linear quadratic Gaussian control theory; a compact treat-
ment is given in the books by Anderson and Moore [AM90] and Åström [Åst06].
Much later it was shown that solutions to robust control problems also had a sim-
ilar structure but with different ways of computing observer and state feedback
gains [DGKF89]. The general controller structure discussed in Section 8.5, which
combines feedback and feedforward, was described by Horowitz in 1963 [Hor63].
The particular form in Figure 8.10 appeared in [ÅW97], which also treats digital
implementation of the controller. The hypothesis that motion control in humans
is based on a combination of feedback and feedforward was proposed by Ito in
1970 [Ito70].
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Exercises

8.1 (Coordinate transformations) Consider a system under a coordinate transfor-
mation z = T x, where T ∈Rn×n is an invertible matrix. Show that the observability
matrix for the transformed system is given by W̃o =WoT−1 and hence observability
is independent of the choice of coordinates.

8.2 Show that the system depicted in Figure 8.2 is not observable.

8.3 (Observable canonical form) Show that if a system is observable, then there
exists a change of coordinates z = T x that puts the transformed system into ob-
servable canonical form.

8.4 (Bicycle dynamics) The linearized model for a bicycle is given in equation (4.5),
which has the form

J
d2ϕ

dt2
−

Dv0

b

dδ

dt
= mghϕ +

mv2
0h

b
δ ,

where ϕ is the tilt of the bicycle and δ is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.

8.5 (Integral action) The model (8.1) assumes that the input u = 0 corresponds
to x = 0. In practice, it is very difficult to know the value of the control signal
that gives a precise value of the state or the output because this would require a
perfectly calibrated system. One way to avoid this assumption is to assume that the
model is given by

dx

dt
= Ax+B(u+u0), y =Cx+Du,

where u0 is an unknown constant that can be modeled as du0/dt = 0. Consider
u0 as an additional state variable and derive a controller based on feedback from
the observed state. Show that the controller has integral action and that it does not
require a perfectly calibrated system.

8.6 (Vectored thrust aircraft) The lateral dynamics of the vectored thrust aircraft !
example described in Example 7.8 can be obtained by considering the motion
described by the states z = (x,θ , ẋ, θ̇). Construct an estimator for these dynam-
ics by setting the eigenvalues of the observer into a Butterworth pattern with
λbw =−3.83±9.24i, −9.24±3.83i. Using this estimator combined with the state
space controller computed in Example 7.8, plot the step response of the closed
loop system.

8.7 (Uniqueness of observers) Show that the design of an observer by eigenvalue
assignment is unique for single-output systems. Construct examples that show that
the problem is not necessarily unique for systems with many outputs.
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8.8 (Observers using differentiation) Consider the linear system (8.2), and assume
that the observability matrix Wo is invertible. Show that

x̂ =W−1
o

⎧
⎩y ẏ ÿ · · · y(n−1)

⎫
⎭T

is an observer. Show that it has the advantage of giving the state instantaneously
but that it also has some severe practical drawbacks.

8.9 (Observer for Teorell’s compartment model) Teorell’s compartment model,!
shown in Figure 4.17, has the following state space representation:

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k1 0 0 0 0
k1 −k2− k4 0 k3 0
0 k4 0 0 0
0 k2 0 −k3− k5 0
0 0 0 k5 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

where representative parameters are k1 = 0.02, k2 = 0.1, k3 = 0.05, k4 = k5 =
0.005. The concentration of a drug that is active in compartment 5 is measured in
the bloodstream (compartment 2). Determine the compartments that are observable
from measurement of concentration in the bloodstream and design an estimator
for these concentrations base on eigenvalue assignment. Choose the closed loop
eigenvalues−0.03,−0.05 and−0.1. Simulate the system when the input is a pulse
injection.

8.10 (Observer design for motor drive) Consider the normalized model of the
motor drive in Exercise 3.10 where the open loop system has the eigenvalues
0,0,−0.05± i. A state feedback that gave a closed loop system with eigenval-
ues in −2, −1 and −1± i was designed in Exercise 7.12. Design an observer for
the system that has eigenvalues −4, −2 and −2± 2i. Combine the observer with
the state feedback from Exercise 7.12 to obtain an output feedback and simulate
the complete system.

8.11 (Feedforward design for motor drive) Consider the normalized model of the
motor drive in Exercise 3.10. Design the dynamics of the block labeled “trajec-
tory generation” in Figure 8.10 so that the dynamics relating the output η to the
reference signal r has the dynamics

d3ym

dt3
+am1

d2ym

dt2
+am2

dym

dt
+am3ym = am3r, (8.30)

with parameters am1 = 2.5ωm, am2 = 2.5ω2
m and am3 =ω3

m. Discuss how the largest
value of the feedforward signal for a unit step in the command signal depends on
ωm.

8.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (4.7) in Section 4.2. A state feedback for the system was designed in Exer-
cise 7.13. Design an observer and an output feedback for the system.
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8.13 (Discrete-time random walk) Suppose that we wish to estimate the position!
of a particle that is undergoing a random walk in one dimension (i.e., along a line).
We model the position of the particle as

x[k+1] = x[k]+u[k],

where x is the position of the particle and u is a white noise processes with E{u[i]}=
0 and E{u[i]u[ j]} = Ruδ (i− j). We assume that we can measure x subject to ad-
ditive, zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the particle as a function of k.

(b) Construct a Kalman filter to estimate the position of the particle given the
noisy measurements of its position. Compute the steady-state expected value and
covariance of the error of your estimate.

(c) Suppose that E{u[0]} = µ ̸= 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

8.14 (Kalman decomposition) Consider a linear system characterized by the ma-
trices

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 1 −1 2
1 −3 0 2
1 1 −4 2
0 1 −1 −1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
2
2
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, C =

⎧
⎩0 1 −1 0

⎫
⎭ , D = 0.

Construct a Kalman decomposition for the system. (Hint: Try to diagonalize.)





Chapter Nine
Transfer Functions

The typical regulator system can frequently be described, in essentials, by differential equa-

tions of no more than perhaps the second, third or fourth order. . . . In contrast, the order of

the set of differential equations describing the typical negative feedback amplifier used in

telephony is likely to be very much greater. As a matter of idle curiosity, I once counted to

find out what the order of the set of equations in an amplifier I had just designed would have

been, if I had worked with the differential equations directly. It turned out to be 55.

Hendrik Bode, 1960 [Bod60].

This chapter introduces the concept of the transfer function, which is a compact
description of the input/output relation for a linear time invariant system. To sim-
plify the writing we will often drop time invariant in the text. Combining transfer
functions with block diagrams gives a powerful method for dealing with complex
linear systems. The relationship between transfer functions and other descriptions
of system dynamics is also discussed.

9.1 Frequency Domain Modeling

Figure 9.1 is a block diagram for a typical control system, consisting of a process
to be controlled and a controller that combines feedback and feedforward. We
saw in the previous two chapters how to analyze and design such systems using
state space descriptions of the blocks. As mentioned in Chapter 3, an alternative
approach is to focus on the input/output characteristics of the system. Since it is the
inputs and outputs that are used to connect the systems, one could expect that this

Controller
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yν η
Σ

Process
dynamics
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u

Reference Feedback
shaping controller

F
e
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r

Figure 9.1: A block diagram for a feedback control system. The reference signal r is fed
through a reference shaping block, which generates a signal which is compared with the
output y to form the error e. The control signal u is generated by the controller which has the
error as the input. The load disturbance v and the measurement noise w are external signals.
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point of view would allow an understanding of the overall behavior of the system.
Transfer functions are the main tool in implementing this point of view for linear
systems.

The basic idea of the transfer function comes from looking at the frequency
response of a system. Suppose that we have an input signal that is periodic. Then
we can decompose this signal into the sum of a set of sines and cosines,

u(t) =
∞

∑
k=0

ak sin(kωt)+bk cos(kωt),

where ω is the fundamental frequency of the periodic input. The input u(t) gener-
ates corresponding sine and cosine outputs (in steady state), with possibly shifted
magnitude and phase. The gain and phase at each frequency are determined by the
frequency response given in equation (6.24):

G(s) =C(sI−A)−1B+D, (9.1)

where we set s = i(kω) for each k = 1, . . . ,∞ and i =
√
−1. If we know the steady-

state frequency response G(s), we can thus compute the response to any (periodic)
signal using superposition. The transfer function generalizes this notion to allow
a broader class of input signals besides periodic ones. As we shall see in the next
section, the transfer function represents the response of the system to an exponen-
tial input, u = est . It turns out that the form of the transfer function is precisely
the same as that of equation (9.1). This should not be surprising since we derived
equation (9.1) by writing sinusoids as sums of complex exponentials. The transfer
function can also be introduced as is the ratio of the Laplace transforms of output
and input when the state is zero, although one does not have to understand the
details of Laplace transforms in order to make use of transfer functions.

Modeling a system through its response to sinusoidal and exponential signals
is known as frequency domain modeling. This terminology stems from the fact that
we represent the dynamics of the system in terms of the generalized frequency s
rather than the time domain variable t. The transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a particularly convenient
representation in manipulating and analyzing complex linear feedback systems.
As we shall see, there are graphical representations of transfer functions (Bode
and Nyquist plots) that capture interesting properties of the underlying dynamics.
Transfer functions also make it possible to express the changes in a system be-
cause of modeling error, which is essential when considering sensitivity to process
variations of the sort discussed in Chapter 13. More specifically, using transfer
functions, it is possible to analyze what happens when dynamic models are ap-
proximated by static models or when high-order models are approximated by low-
order models. One consequence is that we can introduce concepts that express the
degree of stability of a system.

While many of the concepts for state space modeling and analysis apply di-
rectly to nonlinear systems, frequency domain analysis applies primarily to linear
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systems. The notions of gain and phase can, however, be generalized to nonlinear
systems and, in particular, propagation of sinusoidal signals through a nonlinear
system can approximately be captured by an analog of the frequency response
called the describing function. These extensions of frequency response will be dis-
cussed in Section 10.5.

9.2 Determining the Transfer Function

As we have seen in previous chapters, the input/output dynamics of a linear sys-
tem have two components: the initial condition response and the forced response,
which depends on the system input. The forced response can be completely char-
acterized by the transfer function. In Section 2.1 we briefly introduced the transfer
function as the response to an exponential function est . In this section we will
compute transfer functions for general linear systems and we will show that the
transfer function is indeed a complete characterization of the input/output behav-
ior of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we will make use of a
special type of signal, called an exponential signal, of the form est , where s =
σ + iω is a complex number. Exponential signals play an important role in linear
systems. They appear in the solution of differential equations and in the impulse
response of linear systems, and many signals can be represented as exponentials
or sums of exponentials. For example, a constant signal is simply eαt with α = 0.
Damped sine and cosine signals can be represented by

e(σ+iω)t = eσteiωt = eσt(cosωt + isinωt),

where σ < 0 determines the decay rate. Figure 9.2 gives examples of signals that
can be represented by complex exponentials; many other signals can be repre-
sented by linear combinations of these signals.

As in the case of the sinusoidal signals we considered in Section 6.3, we will
allow complex-valued signals in the derivation that follows, although in practice
we always add together combinations of signals that result in real-valued functions.

In Section 2.1 we showed that the transfer function G(s) of a linear time-
invariant system can be obtained by computing a particular solution of the form
yp(t) = G(s)est when the input is u(t) = est , where s is a complex number. For
example, the system

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = b0

dmu

dtm
+b1

dm−1u

dtm−1
+ · · ·+bmu,

has the transfer function

G(s) =
b0sm +b1sm−2 + · · ·+bm

sn +a1sn−1 + · · ·+an
;
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Figure 9.2: Examples of exponential signals. The top row corresponds to exponential signals
with a real exponent, and the bottom row corresponds to those with complex exponents. The
dashed line in the last two cases denotes the bounding envelope for the oscillatory signals.
In each case, if the real part of the exponent is negative then the signal decays, while if the
real part is positive then it grows.

see equations (2.2) and (2.7).
To find the transfer function for the state space system

dx

dt
= Ax+Bu, y =Cx+Du, (9.2)

we let the input be the exponential signal u(t) = est and assume that s ̸∈ λ (A). The
state is then given by

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Besτ dτ = eAtx(0)+ eAt(sI−A)−1

(
e(sI−A)t− I

)
B.

The output y of equation (9.2) then becomes

y(t) =Cx(t)+Du(t)

= CeAtx(0)
︸ ︷︷ ︸

initial state response

+
(

C(sI−A)−1B+D
)

est −CeAt(sI−A)−1B
︸ ︷︷ ︸

input response

=CeAt
(

x(0)− (sI−A)−1B
)

︸ ︷︷ ︸
transient response

+
(

C(sI−A)−1B+D
)

est

︸ ︷︷ ︸
pure exponential response

.

(9.3)

and the transfer function from u to y of the system (9.2) is the coefficient of the
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term est , hence
G(s) =C(sI−A)−1B+D. (9.4)

Compare this with the definition of frequency response given by equations (6.23)
and (6.24).

An important point in the derivation of the transfer function is the fact that
we have restricted s so that s ̸= λ j(A), the eigenvalues of A. At those values of s,
we see that the response (9.3) of the system is singular (since sI−A then is not
invertible). The transfer function can, however, be extended to all values of s by
analytic continuation.

To give some insight we will now discuss the equation (9.3). We first notice that
the output y(t) can be separated in terms in two ways with different interpretations.
The response of the system to initial conditions is CeAtx(0). Recall that eAt can be
written in terms of the eigenvalues of A (using the Jordan form in the case of
repeated eigenvalues), and hence the transient response is a linear combination of
terms of the form p j(t)eλ jt , where λ j are eigenvalues of A and p j(t) is a polynomial
whose degree is less than the multiplicity of the eigenvalue, see Exercise 9.2.

The response to the input u(t) = est contains a mixture of terms p j(t)eλ jt and
the exponential function

yp(t) =
(
C(sI−A)−1B+D

)
est , (9.5)

which is a particular solution to the differential equation (9.2). We call this solu-
tion the pure exponential solution because had only one exponential est . It follows
from equation (9.3) that the output y(t) is equal to the pure exponential solution
yp(t) if the initial condition is chosen as

x(0) = (sI−A)−1B. (9.6)

If the system (9.2) is aymptotically stable, then eAt → 0 as t→∞. If in addition
the input u(t) is a constant u(t) = e0· t or a sinusoid u(t) = eiω the response then
goes to a constant or sinusoidal steady state solution, see equation (6.23).

To simplify manipulation of the equations describing linear time invariant sys-
tems, we introduce E as the class of time functions of the form X(s)est , where the
parameters s is a complex variable and X(s) is a complex function (vector valued
if f is a vector). It follows from equations (9.3, 9.4) that if a system with transfer
function G(s) has the input u ∈ E then there is a particular solution such that the
output is y = Gu. This solution is the actual response of the system if the ini-
tial condition is chosen as equation (9.6). Since the transfer function of a system
is given by the pure exponential response, we can derive transfer functions using
exponential signals, and we will use the notation

y = Gu, u,y ∈ E , (9.7)

but we must always be aware of the meaning of this notation.

Example 9.1 Damped oscillator
Consider the response of a damped linear oscillator, whose state space dynamics
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were studied in Section 7.3:

dx

dt
=

⎧
⎪⎪⎩

0 ω0

−ω0 −2ζ ω0

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

0
kω0

⎫
⎪⎪⎭u, y =

⎧
⎩1 0

⎫
⎭x. (9.8)

This system is asymptotically stable if ζ > 0, and so we can look at the steady-state
response to an input u = est ,

Gyu(s) =C(sI−A)−1B =
⎧
⎩1 0

⎫
⎭
⎧
⎪⎪⎩

s −ω0

ω0 s+2ζ ω0

⎫
⎪⎪⎭
−1⎧⎪⎪⎩

0
kω0

⎫
⎪⎪⎭

=
⎧
⎩1 0

⎫
⎭
(

1

s2 +2ζ ω0s+ω2
0

⎧
⎪⎪⎩

s+2ζ ω0 −ω0

ω0 s

⎫
⎪⎪⎭
)⎧
⎪⎪⎩

0
kω0

⎫
⎪⎪⎭

=
kω2

0

s2 +2ζ ω0s+ω2
0

.

(9.9)

The steady-state response to a step input is obtained by setting s = 0 which gives

u = 1 =⇒ y = Gyu(0)u = k.

If we wish to compute the steady-state response to a sinusoid, we write

u = sinωt =
1

2

(
ie−iωt − ieiωt

)
,

y =
1

2

(
iGyu(−iω)e−iωt − iGyu(iω)eiωt

)
.

We can now write G(iω) in terms of its magnitude and phase,

G(iω) =
kω2

0

−ω2 +(2ζ ω0ω)i+ω2
0

= Meiθ ,

where the magnitude (or gain) M and phase θ are given by

M =
kω2

0√
(ω2

0 −ω2)2 +(2ζ ω0ω)2
,

sinθ

cosθ
=
−2ζ ω0ω

ω2
0 −ω2

.

We can also make use of the fact that G(−iω) is given by its complex conjugate
G∗(iω), and it follows that G(−iω) = Me−iθ . Substituting these expressions into
our output equation, we obtain

y =
1

2

(
i(Me−iθ )e−iωt − i(Meiθ )eiωt

)

= M ·
1

2

(
ie−i(ωt+θ)− iei(ωt+θ)

)
= M sin(ωt +θ).

The responses to other signals can be computed by writing the input as an appro-
priate combination of exponential responses and using linearity. ∇

Example 9.2 Electrical circuit elements
Modeling of electrical circuits is a common use of transfer functions. Consider, for
example, a resistor modeled by Ohm’s law V = IR, where V is the voltage across
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Figure 9.3: Stable amplifier based on negative feedback around an operational amplifier.
The block diagram on the left shows a typical amplifier with low-frequency gain R2/R1. If
we model the dynamic response of the op amp as G(s) = ak/(s+a), then the gain falls off at
frequency ω = aR1k/R2, as shown in the gain curves on the right. The frequency response
is computed for k = 107, a = 10 rad/s, R2 =106 Ω, and R1 = 1, 102, 104 and 106 Ω.

the resistor, I is the current through the resistor and R is the resistance value. If we
consider current to be the input and voltage to be the output, the resistor has the
transfer function Z(s) = R. Z(s) is also called the impedance of the circuit element.

Next we consider an inductor whose input/output characteristic is given by

L
dI

dt
=V.

Letting the current be I(t) = est , we find that the voltage is V (t) = Lsest and the
transfer function of an inductor is thus Z(s) = Ls. A capacitor is characterized by

C
dV

dt
= I,

and a similar analysis gives a transfer function from current to voltage of Z(s) =
1/(Cs). Using transfer functions, complex electrical circuits can be analyzed alge-
braically by using the complex impedance Z(s) just as one would use the resistance
value in a resistor network. ∇

Example 9.3 Operational amplifier circuit
To further illustrate the use of exponential signals, we consider the operational
amplifier circuit described in Section 4.3 and reproduced in Figure 9.3 (left). The
model in Section 4.3 is a simplification because the linear behavior of the ampli-
fier is modeled as a constant gain. In reality there are significant dynamics in the
amplifier, and the static model vout = −kv (equation (4.10)) should therefore be
replaced by a dynamic model vout =−Gv. A simple transfer function is

G(s) =
ak

s+a
. (9.10)

These dynamics correspond to a first-order system with time constant 1/a. The
parameter k is called the open loop gain, and the product ak is called the gain-
bandwidth product; typical values for these parameters are k = 107 and ak = 107–
109 rad/s.

If the input v1 is an exponential signal est , then there are solutions where all
signals in the circuit are exponentials, v,v1,v2 ∈ E , since all of the elements of the
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circuit are modeled as being linear. The equations describing the system can then
be manipulated algebraically.

Assuming that the current into the amplifier is zero, as is done in Section 4.3,
the current through the resistors R1 and R2 are the same, hence

v1− v

R1
=

v− v2

R2
, or (R1 +R2)v = R2v1 +R1v2

Combining the above equation with the open loop dynamics of the operational
amplifier (9.10), which can be written as v2 =−Gv in the simplified notation (9.7),
then give the following model for the closed loop system:

(R1 +R2)v = R2v1 +R1v2, v2 =−Gv, v,v1,v2 ∈ E . (9.11)

Eliminating v between these equations gives

v2 =
−R2G(s)

R1 +R2 +R1G(s)
v1 =

−R2ak

R1ak+(R1 +R2)(s+a)
v1.

and the transfer function of the closed loop system is

Gv2v1 =
−R2ak

R1ak+(R1 +R2)(s+a)
. (9.12)

The low-frequency gain is obtained by setting s = 0, hence

Gv2v1(0) =
−kR2

(k+1)R1 +R2
≈−

R2

R1
,

which is the result given by equation (4.11) in Section 4.3. The bandwidth of the
amplifier circuit is

ωb = a
R1(k+1)+R2

R1 +R2
≈ a

R1k

R2
for k≫ 1,

where the approximation holds for R2/R1≫ 1. The gain of the closed loop system
drops off at high frequencies as R2k/(ω(R1 +R2)). The frequency response of the
transfer function is shown in Figure 9.3 (right) for k = 107, a = 10 rad/s, R2 =
106 Ω and R1 = 1, 102, 104 and 106 Ω.

Note that in solving this example, we bypassed explicitly writing the signals as
v =Vest and instead worked directly with V , assuming it was an exponential. This
shortcut is handy in solving problems of this sort and when manipulating block
diagrams. A comparison with Section 4.3, where we make the same calculation
when G(s) is a constant, shows analysis of systems using transfer functions is as
easy as using static systems. The calculations are the same if the resistances R1

and R2 are replaced by impedances, as discussed in Example 9.2. ∇

Although we have focused thus far on ordinary differential equations, transfer!
functions can also be used for other types of linear systems. We illustrate this
by time delays and systems described by a partial differential equation.
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Example 9.4 Time Delay
Time delays appear in many systems: typical examples are delays in nerve prop-
agation, communication and mass transport. A system with a time delay has the
input/output relation

y(t) = u(t− τ). (9.13)

To obtain the corresponding transfer function we let the input be u(t) = est , the
output is then

y(t) = u(t− τ) = es(t−τ) = e−sτest = e−sτu(t).

and we find that the transfer function of a time delay is thus G(s) = e−sτ , which is
not a rational function. ∇

Example 9.5 Heat propagation
Consider the problem of one-dimensional heat propagation in a semi-infinite metal
rod. Assume that the input is the temperature at one end and that the output is the
temperature at a point along the rod. Let θ(x, t) be the temperature at position x
and time t. With a proper choice of length scales and units, heat propagation is
described by the partial differential equation

∂θ

∂ t
=

∂ 2θ

∂ 2x
, y(t) = θ(1, t) (9.14)

and the point of interest can be assumed to have x = 1. The boundary condition for
the partial differential equation is

θ(0, t) = u(t).

To determine the transfer function we choose the input as u(t) = est . Assume that
there is a solution to the partial differential equation of the form θ(x, t) = ψ(x)est

and insert this into equation (9.14) to obtain

sψ(x) =
d2ψ

dx2
,

with boundary condition ψ(0) = 1. This ordinary differential equation (with inde-
pendent variable x) has the solution

ψ(x) = Aex
√

s +Be−x
√

s.

Since the temperature of the rod is bounded we have A= 0, the boundary condition
gives B = 1, and the solution is then

y(t) = θ(1, t) = ψ(1)est = e−
√

sest = e−
√

su(t).

The system thus has the transfer function G(s) = e−
√

s. As in the case of a time
delay, the transfer function is not a rational function but is analytic except at s = 0.

∇

Transfer function for some common linear time-invariant systems are given in
Table 9.1.
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Table 9.1: Transfer functions for some common linear time-invariant systems.

Type System Transfer Function

Integrator ẏ = u
1

s

Differentiator y = u̇ s

First-order system ẏ+ay = u
1

s+a

Double integrator ÿ = u
1

s2

Damped oscillator ÿ+2ζ ω0ẏ+ω2
0 y = u

1

s2 +2ζ ω0s+ω2
0

State space systm ẋ = Ax+Bu,y =Cx+Du C(sI−A)−1B+D

PID controller y = kpu+ kdu̇+ ki
∫

u kp + kds+
ki

s

Time delay y(t) = u(t− τ) e−τs

Laplace Transforms
!

Traditionally, Laplace transforms were used to compute responses of linear sys-
tems to different stimuli. Today we can easily generate the responses using com-
puters. Laplace transforms were also used to derive transfer functions which we
illustrate in this section. Only a few elementary properties are needed for basic
control applications. Students who are not familiar with them can safely skip this
section. A good reference for the mathematical material in this section is the classic
book by Widder [Wid41].

Consider a function f (t), f : R+ → R, that is integrable and grows no faster
than es0t for some finite s0 ∈ R and large t. The Laplace transform maps f to a
function F = L f : C→ C of a complex variable. It is defined by

F(s) =
∫ ∞

0
e−st f (t)dt, Res > s0. (9.15)

The transform has some properties that makes it well suited to deal with linear
systems. First we observe that the transform is linear because

L (a f +bg) =
∫ ∞

0
e−st(a f (t)+bg(t))dt

= a

∫ ∞

0
e−st f (t)dt +b

∫ ∞

0
e−stg(t)dt = aL f +bL g.

(9.16)

Next we will calculate the Laplace transform of the integral of a function. Using
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integration by parts, we get

L

∫ t

0
f (τ)dτ =

∫ ∞

0

(
e−st

∫ t

0
f (τ)dτ

)
dt

=−
e−st

s

∫ t

0
f (τ)dτ

∣∣∣
∞

0
+
∫ ∞

0

e−sτ

s
f (τ)dτ =

1

s

∫ ∞

0
e−sτ f (τ)dτ ,

hence

L

∫ t

0
f (τ)dτ =

1

s
L f =

1

s
F(s). (9.17)

Integration of a time function thus corresponds to division of the corresponding
Laplace transform by s.

Since integration corresponds to division by s, we can expect that differenti-
ation corresponds to multiplication by s. This is not quite true as we will see by
calculating the Laplace transform of the derivative of a function. We have

L
d f

dt
=
∫ ∞

0
e−st f ′(t)dt = e−st f (t)

∣∣∣
∞

0
+ s

∫ ∞

0
e−st f (t)dt =− f (0)+ sL f ,

where the second equality is obtained using integration by parts. We thus obtain

L
d f

dt
= sL f − f (0) = sF(s)− f (0). (9.18)

Notice that the appearance of the initial value f (0) of the function. The formula (9.18)
is particularly simple if the initial conditions are zero, because if f (0)= 0 it follows
that differentiation of a function corresponds to multiplication of the transform by
s, compare with the differentiation of exponential signals.

Using Laplace transforms the transfer function for a linear time invariant sys-
tem can be defined as the ratio of the transform of the input and the output, when
the transforms are computed under the assumption that all initial conditions are
zero. We will now illustrate how Laplace transforms can be used to compute trans-
fer functions.

Example 9.6 Transfer function of state space model
Consider the state space system described by equation (9.2). Taking Laplace trans-
forms give

sX(s)− x(0) = AX(s)+BU(s) Y (s) =CX(s)+DU(s).

Elimination of X(s) gives

X(s) = (sI−A)−1x(0)+(sI−A)−1BU(s). (9.19)

When the initial condition x(0) is zero we have

X(s) = (sI−A)−1BU(s), Y (s) =
(

C(sI−A)−1B+D
)

U(s).

and the transfer function is G(s) =C(sI−A)−1B+D, compare with equation (9.4).
∇
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Example 9.7 Transfer function and impulse response
Consider a linear time-invariant system with zero initial state. We saw in Sec-
tion 6.3 that the relation between the input u and the output y is given by the
convolution integral

y(t) =
∫ ∞

0
h(t− τ)u(τ)dτ ,

where h(t) is the impulse response for the system. Taking the Laplace transform
of this expression gives

Y (s) =
∫ ∞

0
e−sty(t)dt =

∫ ∞

0
e−st

∫ ∞

0
h(t− τ)u(τ)dτ dt

=
∫ ∞

0

∫ t

0
e−s(t−τ)e−sτh(t− τ)u(τ)dτ dt

=
∫ ∞

0
e−sτu(τ)dτ

∫ ∞

0
e−sth(t)dt = H(s)U(s).

Thus, the input/output response is given by Y (s) = H(s)U(s), where H, U and Y
are the Laplace transforms of h, u and y.

The system theoretic interpretation is that the Laplace transform of the output
of a linear system is a product of two terms, the Laplace transform of the input
U(s) and the Laplace transform of the impulse response of the system H(s). A
mathematical interpretation is that the Laplace transform of a convolution is the
product of the transforms of the functions that are convolved. The fact that the
formula Y (s) = H(s)U(s) is much simpler than a convolution is one reason why
Laplace transforms have become popular in engineering. ∇

Coordinate Changes

The matrices A, B and C in equation (9.2) depend on the choice of coordinate
system for the states. Since the transfer function relates input to outputs, it should
be invariant to coordinate changes in the state space. To show this, consider the
model (9.2) and introduce new coordinates z by the transformation z = T x, where
T is a nonsingular matrix. The system is then described by

dz

dt
= T (Ax+Bu) = TAT−1z+T Bu =: Ãz+ B̃u,

y =Cx+Du =CT−1z+Du =: C̃z+Du.

This system has the same form as equation (9.2), but the matrices A, B and C are
different:

Ã = TAT−1, B̃ = T B, C̃ =CT−1. (9.20)

Computing the transfer function of the transformed model, we get

G̃(s) = C̃(sI− Ã)−1B̃+ D̃ =CT−1(sI−TAT−1)−1T B+D

=C
(
T−1(sI−TAT−1)T

)−1
B+D =C(sI−A)−1B+D = G(s),
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which is identical to the transfer function (9.4) computed from the system descrip-
tion (9.2). The transfer function is thus invariant to changes of the coordinates in
the state space.

9.3 Gain Poles and Zeros

The transfer function has many useful interpretations and the features of a transfer
function are often associated with important system properties. Three of the most
important features are the gain and the locations of the poles and zeros.

Gain

The zero frequency gain of a system is given by the magnitude of the transfer
function at s = 0. It represents the ratio of the steady-state value of the output with
respect to a step input (which can be represented as u = est with s = 0). For a state
space system, we computed the zero frequency gain in equation (6.22):

G(0) = D−CA−1B.

Consider a stable system modeled by the linear differential equation

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = b0

dmu

dtm
+b1

dm−1u

dtm−1
+ · · ·+bmu.

If we assume that the input and output of the system are constants y0 and u0, then
we find that any0 = bmu0, and the zero frequency gain is

G(0) =
y0

u0
=

bm

an
. (9.21)

Recall that in Section 6.3 equation (6.24) we introduced the notion of gain and
phase for the steady-state response G(iω) to sinusoidal signals.

Poles and Zeros

Next consider a linear system with the rational transfer function

G(s) =
b(s)

a(s)
.

The roots of the polynomial a(s) are called the poles of the system, and the roots
of b(s) are called the zeros of the system. A pole p corresponds to a mode of the
system with corresponding modal solution ept . The unforced motion of the system
after an arbitrary excitation is a weighted sum of modes.

Zeros have a different interpretation. Since the pure exponential output corre-
sponding to the input u(t) = est with a(s) ̸= 0 is G(s)est , it follows that the pure
exponential output is zero if b(s) = 0. Zeros of the transfer function thus block
transmission of the corresponding exponential signals.
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For a state space system with transfer function G(s) = C(sI−A)−1B+D, the
poles of the transfer function are the eigenvalues of the matrix A in the state space
model. One easy way to see this is to notice that the value of G(s) is unbounded
when s is an eigenvalue of a system since this is precisely the set of points where
the characteristic polynomial λ (s) = det(sI−A) = 0 (and hence sI−A is non-
invertible). It follows that the poles of a state space system depend only on the
matrix A, which represents the intrinsic dynamics of the system. We say that a
transfer function is stable if all of its poles have negative real part.

To find the zeros of a state space system, we observe that the zeros are complex
numbers s such that the input u(t) = U0est gives zero output. Inserting the pure
exponential response x(t) = X0est and setting y(t) = 0 in equation (9.2) gives

sestx0 = AX0est +BU0est 0 =CestX0 +DestU0,

which can be written as
⎧
⎪⎪⎩

A− sI B
C D

⎫
⎪⎪⎭
⎧
⎪⎪⎩

X0

U0

⎫
⎪⎪⎭est = 0.

This equation has a solution with nonzero X0, U0 only if the matrix on the left does
not have full column rank. The zeros are thus the values s such that the matrix

⎧
⎪⎪⎩

A− sI B
C D

⎫
⎪⎪⎭ (9.22)

loses rank.
Since the zeros depend on A, B, C and D, they therefore depend on how the

inputs and outputs are coupled to the states. Notice in particular that if the matrix
B has full row rank, then the matrix in equation (9.22) has n linearly independent
rows for all values of s. Similarly there are n linearly independent columns if the
matrix C has full column rank. This implies that systems where the matrix B or C
is square and full rank do not have zeros. In particular it means that a system has
no zeros if it is fully actuated (each state can be controlled independently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfer function is through
a pole zero diagram, as shown in Figure 9.4. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are multiple poles or zeros at
a fixed location, these are often indicated with overlapping crosses or circles (or
other annotations). Poles in the left half-plane correspond to stable modes of the
system, and poles in the right half-plane correspond to unstable modes. We thus
call a pole in the left-half plane a stable pole and a pole in the right-half plane an
unstable pole. A similar terminology is used for zeros, even though the zeros do
not directly relate to stability or instability of the system. Notice that the gain must
also be given to have a complete description of the transfer function.

Example 9.8 Balance system
Consider the dynamics for a balance system, shown in Figure 9.5. The transfer
function for a balance system can be derived directly from the second-order equa-
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Figure 9.4: A pole zero diagram for a transfer function with zeros at−5 and−1 and poles at
−3 and−2±2 j. The circles represent the locations of the zeros, and the crosses the locations
of the poles. A complete characterization requires we also specify the gain of the system.

tions, given in Example 3.1:

Mt
d2 p

dt2
−ml

d2θ

dt2
cosθ + c

d p

dt
+ml sinθ

(dθ

dt

)2
= F,

−ml cosθ
d2 p

dt2
+ Jt

d2θ

dt2
+ γ

dθ

dt
−mgl sinθ = 0.

If we assume that θ and θ̇ are small, we can approximate this nonlinear system by
a set of linear second-order differential equations,

Mt
d2 p

dt2
−ml

d2θ

dt2
+ c

d p

dt
= F,

−ml
d2 p

dt2
+ Jt

d2θ

dt2
+ γ

dθ

dt
−mglθ = 0.

If we let F be an exponential signal, the resulting response satisfies

Mts
2 p−mls2 θ + cs p = F,

Jts
2 θ −mls2 p+ γsθ −mgl θ = 0,

where all signals are exponential signals. The resulting transfer functions for the
position of the cart and the orientation of the pendulum are given by solving for p
and θ in terms of F to obtain

HθF =
mls

(MtJt −m2l2)s3 +(γMt + cJt)s2 +(cγ−Mtmgl)s−mglc
,

HpF =
Jts

2 + γs−mgl

(MtJt −m2l2)s4 +(γMt + cJt)s3 +(cγ−Mtmgl)s2−mglcs
,

where each of the coefficients is positive. The pole zero diagrams for these two
transfer functions are shown in Figure 9.5 using the parameters from Example 7.7.
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(a) Cart–pendulum system
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(b) Pole zero diagram for HθF
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(c) Pole zero diagram for HpF

Figure 9.5: Poles and zeros for a balance system. The balance system (a) can be modeled
around its vertical equilibrium point by a fourth order linear system. The poles and zeros for
the transfer functions HθF and HpF are shown in (b) and (c), respectively.

If we assume the damping is small and set c = 0 and γ = 0, we obtain

HθF =
ml

(MtJt −m2l2)s2−Mtmgl
,

HpF =
Jts

2−mgl

s2
(
(MtJt −m2l2)s2−Mtmgl

) .

This gives nonzero poles and zeros at

p =±
√

mglMt

MtJt −m2l2
≈±2.68, z =±

√
mgl

Jt
≈±2.09.

We see that these are quite close to the pole and zero locations in Figure 9.5. ∇

Pole/Zero Cancellations

Because transfer functions are often polynomials in s, it can sometimes happen
that the numerator and denominator have a common factor, which can be can-
celed. Sometimes these cancellations are simply algebraic simplifications, but in
other situations they can mask potential fragilities in the model. In particular, if a
pole/zero cancellation occurs because terms in separate blocks that just happen to
coincide, the cancellation may not occur if one of the systems is slightly perturbed.
In some situations this can result in severe differences between the expected be-
havior and the actual behavior.

Consider the block diagram in Figure 9.8 with F = 1 (no feedforward compen-
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sation) and let C and P be given by

C(s) =
nc(s)

dc(s)
, P(s) =

np(s)

dp(s)
.

The transfer function from r to e is then given by

Ger(s) =
1

1+PC
=

dc(s)dp(s)

dc(s)dp(s)+nc(s)np(s)
.

If there are common factors in the numerator and denominator polynomials, then
these terms can be factored out and eliminated from both the numerator and de-
nominator. For example, if the controller has a zero at s =−a and the process has
a pole at s =−a, then we will have

Ger(s) =
(s+a)dc(s)d′p(s)

(s+a)dc(s)d′p(s)+(s+a)n′c(s)np(s)
=

dc(s)d′p(s)

dc(s)d′p(s)+n′c(s)np(s)
,

where n′c(s) and d′p(s) represent the relevant polynomials with the term s+a fac-
tored out and it does not appear in the transfer function Ger.

Suppose instead that we compute the transfer function from v to e, which repre-
sents the effect of a disturbance on the error between the reference and the output.
This transfer function is given by

Gev(s) =−
dc(s)np(s)

(s+a)dc(s)d′p(s)+(s+a)n′c(s)np(s)
.

Notice that if a < 0, then the pole is in the right half-plane and the transfer function
Gev is unstable. Hence, even though the transfer function from r to e appears to be
okay (assuming a perfect pole/zero cancellation), the transfer function from v to e
can exhibit unbounded behavior. This unwanted behavior is typical of an unstable
pole/zero cancellation.

It turns out that the cancellation of a pole with a zero can also be understood in
terms of the state space representation of the systems. Reachability or observability
is lost when there are cancellations of poles and zeros (Exercise 9.11). A conse-
quence is that the transfer function represents the dynamics only in the reachable
and observable subsystem (see Section 8.5).

Another property of the transfer function is that it corresponds to the portion of !
the state space dynamics that is both reachable and observable. In particular, if
we make use of the Kalman decomposition (Section 8.5), then the transfer func-
tion depends only on the dynamics in the reachable and observable subspace Σro

(Exercise 9.7).

Example 9.9 Cruise control
The input/output response from throttle to velocity for the linearized model for a
car has the transfer function G(s) = b/(s+a). A simple (but not necessarily good)
way to design a PI controller is to choose the parameters of the PI controller as
ki = akp. The controller zero at s =−ki/kp =−a then cancels the process pole at
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Figure 9.6: Car with PI cruise control encountering a sloping road. The velocity error is
shown on the left and the throttle is shown on the right. Results with a PI controller with
kp = 0.5 and ki = 0.0051, where the process pole s =−0.0101, is shown by solid lines, and
a controller with kp = 0.5 and ki = 0.5 is shown by dashed lines. Compare with Figure 4.3b.

s =−a. The transfer function from reference to velocity is Gvr(s) = bkp/(s+bkp),
and control design is then simply a matter of choosing the gain kp. The closed loop
system dynamics are of first order with the time constant 1/bkp.

Figure 9.6 shows the velocity error when the car encounters an increase in the
road slope. A comparison with the controller used in Figure 4.3b (reproduced in
dashed curves) shows that the controller based on pole/zero cancellation has very
poor performance. The velocity error is larger, and it takes a long time to settle.

Notice that the control signal remains practically constant after t = 15 even
if the error is large after that time. To understand what happens we will analyze
the system. The parameters of the system are a = 0.0101 and b = 1.32, and the
controller parameters are kp = 0.5 and ki = 0.0051. The closed loop time constant
is 1/(bkp) = 2.5 s, and we would expect that the error would settle in about 10 s
(4 time constants). The transfer functions from road slope to velocity and control
signals are

Gvθ (s) =
bgs

(s+a)(s+bkp)
, Guθ (s) =

bkp

s+bkp
.

Notice that the canceled mode s = a = −0.0101 appears in Gvθ but not in Guθ .
The reason why the control signal remains constant is that the controller has a zero
at s =−0.0101, which cancels the slowly decaying process mode. Notice that the
error would diverge if the canceled pole was unstable. ∇

The lesson we can learn from this example is that it is a bad idea to try to
cancel unstable or slow process poles. A more detailed discussion of pole/zero
cancellations is given in Section 13.4.

9.4 Block Diagrams and Transfer Functions

The combination of block diagrams and transfer functions is a powerful way to
represent control systems. Transfer functions relating different signals in the sys-
tem can be derived by purely algebraic manipulations of the transfer functions of
the blocks using block diagram algebra. To show how this can be done, we will
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G1 G2

u y

(a) Gyu = G2G1

G2

Σ
u y

G1

(b) Gyu = G1 +G2

−G2

Σ
eu y

G1

(c) Gyu =
G1

1+G1G2

Figure 9.7: Interconnections of linear systems. Series (a), parallel (b) and feedback (c) con-
nections are shown. The transfer functions for the composite systems can be derived by
algebraic manipulations assuming exponential functions for all signals.

begin with simple combinations of systems. We will assume that all signals are
exponential signals E and we will use the compact notation y = Gu for the out-
put y ∈ E of a linear time-invariant system with the input u ∈ E and the transfer
function G, see equation (9.7) and recall its interpretation.

Consider a system that is a cascade combination of systems with the transfer
functions G1(s) and G2(s), as shown in Figure 9.7a. Let the input of the system be
u ∈ E . The output of the first block is then G1u ∈ E , which is also the input to the
second system. The output of the second system is then

y = G2(G1u) = (G2G1)u, u,y ∈ E . (9.23)

Let u = est be the input to the system, y be the pure exponential output, and e be
the pure exponential part of the intermediate signal given by the sum of u and the
output of the second block. The transfer function of the series connection is thus
G = G2G1, i.e., the product of the transfer functions. The order of the individual
transfer functions is due to the fact that we place the input signal on the right-hand
side of this expression, hence we first multiply by G1 and then by G2. Unfortu-
nately, this has the opposite ordering from the diagrams that we use, where we
typically have the signal flow from left to right, so one needs to be careful. The
ordering is important if either G1 or G2 is a vector-valued transfer function, as we
shall see in some examples.

Consider next a parallel connection of systems with the transfer functions G1

and G2, as shown in Figure 9.7b and assume that all signals are exponential signals.
The outputs of the first and second systems are simply G1u and G2u and the output
of the parallel conncection is

y = G1u+G2u = (G1 +G2)u, u,y ∈ E .

The transfer function for a parallel connection is thus G = G1 +G2.
Finally, consider a feedback connection of systems with the transfer functions

G1 and G2, as shown in Figure 9.7c. Writing the relations between the signals for
the different blocks and the summation unit, we find

y = G1e, e = u−G2y, y,e,u ∈ E . (9.24)
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Figure 9.8: Block diagram of a feedback system. The inputs to the system are the reference
signal r, the process disturbance v and the measurement noise w. The remaining signals in
the system can all be chosen as possible outputs, and transfer functions can be used to relate
the system inputs to the other labeled signals.

Elimination of e gives

y = G1(u−G2y) =⇒ (1+G1G2)y = G1u =⇒ y =
G1

1+G1G2
u.

The transfer function of the feedback connection is thus

G =
G1

1+G1G2
. (9.25)

These three basic interconnections can be used as the basis for computing transfer
functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figure 9.8, which was given at the beginning of the chapter.
The system has three blocks representing a process P, a feedback controller C and a
feedforward controller F . Together, C and F define the control law for the system.
There are three external signals: the reference (or command signal) r, the load
disturbance v and the measurement noise w. A typical problem is to find out how
the error e is related to the signals r, v and w.

To derive the transfer functions we are interested in we assume that all signals
are exponential signals E and we write the relations between the signals for each
block in hte block transfer function. Assume for example that we are interested in
the control error e. The summation point and the block F(s) gives

e = Fr− y, e,r,y ∈ E .

The signal y is the sum of w and η , where η is the output of the process P(s): .

y = n+η , η = P(v+u), u =Ce, y,n,η ,v,u,e ∈ E .

Combining these equations gives

e = Fr− y = Fr− (n+η) = Fr−
(
n+P(d +u)

)

= Fr−
(
n+P(d +Ce)

)
,
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Figure 9.9: Example of block diagram algebra. The results from multiplying the process and
controller transfer functions (from Figure 9.8) are shown in (a). Replacing the feedback loop
with its transfer function equivalent yields (b), and finally multiplying the two remaining
blocks gives the reference to output representation in (c).

and hence
e = Fr−w−Pv−PCe, e,r,w,v ∈ E .

Finally, solving this equation for e gives

e =
F

1+PC
r−

1

1+PC
w−

P

1+PC
v = Gerr+Geww+Gevv, (9.26)

and the error is thus the sum of three terms, depending on the reference r, the
measurement noise w and the load disturbance v. The functions

Ger =
F

1+PC
, Gew =

−1

1+PC
, Gev =

−P

1+PC
(9.27)

are transfer functions from reference r, noise w and disturbance v to the error e.
We can also derive transfer functions by manipulating the block diagrams di-

rectly, as illustrated in Figure 9.9. Suppose we wish to compute the transfer func-
tion between the reference r and the output y. We begin by combining the process
and controller blocks in Figure 9.8 to obtain the diagram in Figure 9.9a. We can
now eliminate the feedback loop using the algebra for a feedback interconnection
(Figure 9.9b) and then use the series interconnection rule to obtain

Gyr =
PCF

1+PC
. (9.28)

Similar manipulations can be used to obtain the other transfer functions (Exer-
cise 9.8).

The above analysis illustrates an effective way to manipulate the equations to
obtain the relations between inputs and outputs in a feedback system. The gen-
eral idea is to start with the variable of interest and to trace variables backwards
around the feedback loop. With some practice, equations (9.26) and (9.27) can be
written directly by inspection of the block diagram. Notice, for example, that all
terms in equation (9.27) have the same denominators and that the numerators are
the blocks that one passes through when going directly from input to output (ig-
noring the feedback). This type of rule can be used to compute transfer functions
by inspection, although for systems with multiple feedback loops it can be tricky
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to compute them without writing down the algebra explicitly.
Next we will investigate a system with a controller based on state feedback and

an observer shown in Figure 8.7. The process model is

dx

dt
= Ax+Bu, y =Cx,

and the controller (8.14) is given by

u =−Kx̂+ krr, (9.29)

where x̂ is the output of a state observer (8.15) given by

dx̂

dt
= Ax̂+Bu+L(y−Cx̂), u =−Kx̂+ krr. (9.30)

The controller is a system with one input u and two outputs the reference r and
the measured signal y. Using transfer functions and exponential signals it can be
represented as

u = Gurr+Guyy, u,r,y ∈ E . (9.31)

The transfer function, Guy, from y to u describes the feedback action and, Gur(s),
from r to u describes the feedforward action. We call these open loop transfer func-
tions because they represent the relationships between the signals without consid-
ering the dynamics of the process (e.g., removing P(s) from the system description
or cutting the loop at the process input or output). To derive the controller transfer
functions we rewrite equation (9.30) as

dx̂

dt
= (A−BK−LC)x̂+Bkrr+Ly, u =−Kx̂+ krr.

Let x,r,y be exponential signals, the above equation gives

(sI− (A−BK−LC))x̂ = Bkr +Ly, u =−Kx̂+ krr, x,r,y ∈ E ,

and we find that the controller transfer functions in equation (9.31) are

Gur = kr−K(sI−BK−KC)−1Bkr, Guy =−K(sI−BK−LC)−1L (9.32)

We illustrated with an example.

Example 9.10 Vehicle steering
Consider the linearized model for vehicle steering introduced in Example 6.12. In
Examples 7.4 and 8.3 we designed a state feedback controller and state estimator
for the system. A block diagram for the resulting control system is given in Fig-
ure 9.10. Note that we have split the estimator into two components, Gx̂u(s) and
Gx̂y(s), corresponding to its inputs u and y. Using the expressions for A, B, C and
L from Example 8.3, it follows from equation (9.32) that

Guy(s) =−
s(k1l1 + k2l2)+ k1l2

s2 + s(γk1 + k2 + l1)+ k1 + l2 + k2l1− γk2l2
=
−KGx̂y(s)

1+KGx̂u(s)
,
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Figure 9.10: Block diagram for a steering control system. The control system is designed to
maintain the lateral position of the vehicle along a reference curve (left). The structure of the
control system is shown on the right as a block diagram of transfer functions. The estimator
consists of two components that compute the estimated state x̂ from the combination of the
input u and output y of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commanded steering angle u.

and

Gur(s) =
kr(s2 + l1s+ l2)

s2 + s(γk1 + k2 + l1)+ k1 + l2 + k2l1− γk2l2
=

kr

1+KGx̂u(s)
,

where k1 and k2 are the state feedback gains and kr is the reference gain. The last
equalities are obtained applying block diagram algebra to Figure 9.10.

To compute the full closed loop dynamics, we begin by deriving the transfer
function for the process P(s). We can compute this directly from the state space
description, which was given in Example 6.12. Using that description, we have

P(s) = Gyu(s) =C(sI−A)−1B+D =
⎧
⎩1 0

⎫
⎭
⎧
⎪⎪⎩

s −1
0 s

⎫
⎪⎪⎭
−1⎧⎪⎪⎩

γ
1

⎫
⎪⎪⎭=

γs+1

s2
.

The transfer function for the full closed loop system between the input r and the
output y is then given by

Gyr =
P(s)Gur(s)

1−P(s)Guy(s)
=

kr(γs+1)

s2 +(k1γ + k2)s+ k1
.

Note that the observer gains l1 and l2 do not appear in this equation. This is
because we are considering steady-state analysis and, in steady state, the estimated
state exactly tracks the state of the system assuming perfect models. We will return
to this example in Chapter 13 to study the robustness of this particular approach.

∇
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9.5 The Bode Plot

The frequency response of a linear system can be computed from its transfer func-
tion by setting s = iω , corresponding to a complex exponential

u(t) = eiωt = cos(ωt)+ isin(ωt).

The resulting output has the form

y(t) = G(iω)eiωt = Mei(ωt+ϕ) = M cos(ωt +ϕ)+ iM sin(ωt +ϕ),

where M and ϕ are the gain and phase of G:

M = |G(iω)|, ϕ = arctan
ImG(iω)

ReG(iω)
.

The phase of G is also called the argument of G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single sinusoid (sin or cos) is
amplified by M and phase-shifted by ϕ . It will often be convenient to represent
the phase in degrees rather than radians. We will use the notation ∠G(iω) for
the phase in degrees and argG(iω) for the phase in radians. In addition, while
we always take argG(iω) to be in the range (−π,π], we will take ∠G(iω) to be
continuous, so that it can take on values outside the range of −180◦ to 180◦.

The frequency response G(iω) can thus be represented by two curves: the gain
curve and the phase curve. The gain curve gives |G(iω)| as a function of frequency
ω , and the phase curve gives ∠G(iω). One particularly useful way of drawing
these curves is to use a log/log scale for the gain plot and a log/linear scale for the
phase plot. This type of plot is called a Bode plot and is shown in Figure 9.11.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy to sketch and interpret.
Since the frequency scale is logarithmic, they cover the behavior of a linear system
over a wide frequency range.

Consider a transfer function that is a rational function of the form

G(s) =
b1(s)b2(s)

a1(s)a2(s)
.

We have

log |G(s)|= log |b1(s)|+ log |b2(s)|− log |a1(s)|− log |a2(s)|,

and hence we can compute the gain curve by simply adding and subtracting gains
corresponding to terms in the numerator and denominator. Similarly,

∠G(s) = ∠b1(s)+∠b2(s)−∠a1(s)−∠a2(s),

and so the phase curve can be determined in an analogous fashion. Since a poly-
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Figure 9.11: Bode plot of the transfer function C(s) = 20 + 10
s + 10s = 10

(s+1)2

s corre-
sponding to an ideal PID controller. The top plot is the gain curve and the bottom plot is the
phase curve. The dashed lines show straight-line approximations of the gain curve and the
corresponding phase curve.

nomial can be written as a product of terms of the type

k, s, s+a, s2 +2ζ ω0s+ω2
0 ,

it suffices to be able to sketch Bode diagrams for these terms. The Bode plot of a
complex system is then obtained by adding the gains and phases of the terms.

The function G(s) = sk is a simple transfer function, recall that k = 1 corre-
sponds to a differentiator and k = −1 to an integrator. The gain and phase of the
term are given by

log |G(iω)|= k logω, ∠G(iω) = 90k.

The gain curve is thus a straight line with slope k, and the phase curve is a constant
at 90◦×k. The case when k = 1 corresponds to a differentiator and has slope 1 with
phase 90◦. The case when k = −1 corresponds to an integrator and has slope −1
with phase −90◦. Bode plots of the various powers of k are shown in Figure 9.12.

Consider next the transfer function of a first-order system, given by

G(s) =
a

s+a
, a > 0.

We have

|G(s)|=
|a|

|s+a|
, ∠G(s) = ∠(a)−∠(s+a),

and hence

log |G(iω)|= loga−
1

2
log(ω2 +a2), ∠G(iω) =−

180

π
arctan

ω

a
.

The Bode plot is shown in Figure 9.13a, with the magnitude normalized by the
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Figure 9.12: Bode plots of the transfer functions G(s) = sk for k = −2,−1,0,1,2. On a
log-log scale, the gain curve is a straight line with slope k. The phase curves for the transfer
functions are constants, with phase equal to 90◦ × k

.

zero frequency gain. Both the gain curve and the phase curve can be approximated
by the following straight lines

log |G(iω)|≈

{
0 if ω < a

loga− logω if ω > a,

∠G(iω)≈

⎧
⎪⎨

⎪⎩

0 if ω < a/10

−45−45(logω− loga) a/10 < ω < 10a

−90 if ω > 10a,

which intersect at ω = a. The approximate gain curve consists of a horizontal line
up to frequency ω = a, called the breakpoint or corner frequency, after which the
curve is a line of slope −1 (on a log-log scale). The phase curve is zero up to
frequency a/10 and then decreases linearly by 45◦/decade up to frequency 10a, at
which point it remains constant at 90◦. Notice that a first-order system behaves like
a constant for low frequencies and like an integrator for high frequencies; compare
with the Bode plot in Figure 9.12.

Finally, consider the transfer function for a second-order system,

G(s) =
ω2

0

s2 +2ω0ζ s+ω2
0

,

for which we have

log |G(iω)|= 2logω0−
1

2
log
(
ω4 +2ω2

0 ω2(2ζ 2−1)+ω4
0

)
,

∠G(iω) =−
180

π
arctan

2ζ ω0ω

ω2
0 −ω2

,
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Figure 9.13: Bode plots for first- and second-order systems. (a) The first-order system
G(s) = a/(s+ a) can be approximated by asymptotic curves (dashed) in both the gain and
the frequency, with the breakpoint in the gain curve at ω = a and the phase decreasing by 90◦

over a factor of 100 in frequency. (b) The second-order system G(s)=ω2
0/(s

2+2ζ ω0s+ω2
0 )

has a peak at frequency a and then a slope of −2 beyond the peak; the phase decreases from
0◦ to−180◦. The height of the peak and the rate of change of phase depending on the damp-
ing ratio ζ (ζ = 0.02, 0.1, 0.2, 0.5 and 1.0 shown).

which intersect at ω = ω0. The gain curve has an asymptote with zero slope for
ω ≪ ω0. For large values of ω the gain curve has an asymptote with slope −2.
The largest gain Q = maxω |G(iω)| ≈ 1/(2ζ ), called the Q-value, is obtained for
ω ≈ ω0. The phase is zero for low frequencies and approaches 180◦ for large
frequencies. The curves can be approximated with the following piecewise linear
expressions

log |G(iω)|≈

{
0 if ω ≪ ω0

2 logω0−2logω if ω ≫ ω0,

∠G(iω)≈

{
0 if ω ≪ ω0

−180 if ω ≫ ω0.

The Bode plot is shown in Figure 9.13b. Note that the asymptotic approximation is
poor near ω =ω0 and that the Bode plot depends strongly on ζ near this frequency.

Given the Bode plots of the basic functions, we can now sketch the frequency
response for a more general system. The following example illustrates the basic
idea.

Example 9.11 Asymptotic approximation for a transfer function
Consider the transfer function given by

G(s) =
k(s+b)

(s+a)(s2 +2ζ ω0s+ω2
0 )
, a≪ b≪ ω0.
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Figure 9.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for

the transfer function G(s) = k(s+ b)/(s+ a)(s2 + 2ζ ω0s+ω2
0 ), where a≪ b≪ ω0. Each

segment in the gain and phase curves represents a separate portion of the approximation,
where either a pole or a zero begins to have effect. Each segment of the approximation is a
straight line between these points at a slope given by the rules for computing the effects of
poles and zeros.

The Bode plot for this transfer function appears in Figure 9.14, with the complete
transfer function shown as a solid line and the asymptotic approximation shown as
a dashed line.

We begin with the gain curve. At low frequency, the magnitude is given by

G(0) =
kb

aω2
0

.

When we reach ω = a, the effect of the pole begins and the gain decreases with
slope −1. At ω = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used until the effect of the
second-order pole is seen at ω =ω0, at which point the asymptote changes to slope
−2. We see that the gain curve is fairly accurate except in the region of the peak
due to the second-order pole (since for this case ζ is reasonably small).

The phase curve is more complicated since the effect of the phase stretches
out much further. The effect of the pole begins at ω = a/10, at which point we
change from phase 0 to a slope of −45◦/decade. The zero begins to affect the
phase at ω = b/10, producing a flat section in the phase. At ω = 10a the phase
contributions from the pole end, and we are left with a slope of +45◦/decade (from
the zero). At the location of the second-order pole, s≈ iω0, we get a jump in phase
of −180◦. Finally, at ω = 10b the phase contributions of the zero end, and we are
left with a phase of −180 degrees. We see that the straight-line approximation for
the phase is not as accurate as it was for the gain curve, but it does capture the
basic features of the phase changes as a function of frequency. ∇
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Figure 9.15: Bode plots for low-pass, band-pass and high-pass filters. The top plots are the
gain curves and the bottom plots are the phase curves. Each system passes frequencies in a
different range and attenuates frequencies outside of that range.

The Bode plot gives a quick overview of a system. Since any signal can be
decomposed into a sum of sinusoids, it is possible to visualize the behavior of a
system for different frequency ranges. The system can be viewed as a filter that can
change the amplitude (and phase) of the input signals according to the frequency
response. For example, if there are frequency ranges where the gain curve has
constant slope and the phase is close to zero, the action of the system for signals
with these frequencies can be interpreted as a pure gain. Similarly, for frequencies
where the slope is +1 and the phase close to 90◦, the action of the system can be
interpreted as a differentiator, as shown in Figure 9.12.

Three common types of frequency responses are shown in Figure 9.15. The
system in Figure 9.15a is called a low-pass filter because the gain is constant for
low frequencies and drops for high frequencies. Notice that the phase is zero for
low frequencies and −180◦ for high frequencies. The systems in Figure 9.15b and
c are called a band-pass filter and high-pass filter for similar reasons.

To illustrate how different system behaviors can be read from the Bode plots
we consider the band-pass filter in Figure 9.15b. For frequencies around ω = ω0,
the signal is passed through with no change in gain. However, for frequencies well
below or well above ω0, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frequencies below ω0/100
there is a phase lead of 90◦, and for frequencies above 100ω0 there is a phase lag
of 90◦. These actions correspond to differentiation and integration of the signal in
these frequency ranges.

Example 9.12 Transcriptional regulation
Consider a genetic circuit consisting of a single gene. We wish to study the re-
sponse of the protein concentration to fluctuations in the mRNA dynamics. We
consider two cases: a constitutive promoter (no regulation) and self-repression
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Figure 9.16: Noise attenuation in a genetic circuit. The open loop system (a) consists of a
constitutive promoter, while the closed loop circuit (b) is self-regulated with negative feed-
back (repressor). The frequency response for each circuit is shown in (c).

(negative feedback), illustrated in Figure 9.16. The dynamics of the system are
given by

dm

dt
= α(p)− γm− v,

d p

dt
= βm−δ p,

where v is a disturbance term that affects mRNA transcription.
For the case of no feedback we have α(p) = α0, and when u = 0 the system

has an equilibrium point at me = α0/γ , pe = βα0/(δγ). The open loop transfer
function from v to p is given by

Gol
pv(s) =

−β

(s+ γ)(s+δ )
.

For the case of negative regulation, we have

α(p) =
α1

1+ kpn
+α0,

and the equilibrium points satisfy

me =
δ

β
pe,

α

1+ kpn
e

+α0 = γme =
γδ

β
pe.

The resulting transfer function is given by

Gcl
pv(s) =

β

(s+ γ)(s+δ )+βσ
, σ =

nα1kpn−1
e

(1+ kpn
e)

2
.

Figure 9.16c shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). Notice that these curves are very similar to the frequency
response curves for the op amp shown in Figure 9.3. ∇
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Figure 9.17: Frequency response of a preloaded piezoelectric drive for an atomic force mi-
croscope. The Bode plot shows the response of the measured transfer function (solid) and
the fitted transfer function (dashed).

Transfer Functions from Experiments

The transfer function of a system provides a summary of the input/output response
and is very useful for analysis and design. Fortunately, we can often build an in-
put/output model for a given application by directly measuring the frequency re-
sponse and fitting a transfer function to it. To do so, we perturb the input to the
system using a sinusoidal signal at a fixed frequency. When steady state is reached,
the amplitude ratio and the phase lag give the frequency response for the excitation
frequency. The complete frequency response is obtained by sweeping over a range
of frequencies.

By using correlation techniques it is possible to determine the frequency re-
sponse very accurately, and an analytic transfer function can be obtained from the
frequency response by curve fitting. The success of this approach has led to in-
struments and software that automate this process, called spectrum analyzers. We
illustrate the basic concept through two examples.

Example 9.13 Atomic force microscope
To illustrate the utility of spectrum analysis, we consider the dynamics of the
atomic force microscope, described in Section 4.5. Experimental determination of
the frequency response is particularly attractive for this system because its dynam-
ics are very fast and hence experiments can be done quickly. A typical example
is given in Figure 9.17, which shows an experimentally determined frequency re-
sponse (solid line). In this case the frequency response was obtained in less than a
second. The transfer function

G(s) =
kω2

2 ω2
3 ω2

5 (s
2 +2ζ1ω1s+ω2

1 )(s
2 +2ζ4ω4s+ω2

4 )e
−sτ

ω2
1 ω2

4 (s
2 +2ζ2ω2s+ω2

2 )(s
2 +2ζ3ω3s+ω2

3 )(s
2 +2ζ5ω5s+ω2

5 )
,
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(a) Closed loop (b) Open loop (c) High gain

Figure 9.18: Light stimulation of the eye. In (a) the light beam is so large that it always
covers the whole pupil, giving closed loop dynamics. In (b) the light is focused into a beam
which is so narrow that it is not influenced by the pupil opening, giving open loop dynamics.
In (c) the light beam is focused on the edge of the pupil opening, which has the effect of
increasing the gain of the system since small changes in the pupil opening have a large effect
on the amount of light entering the eye. From Stark [Sta68].

with ωk = 2π fk and f1 = 2.42 kHz, ζ1 = 0.03, f2 = 2.55 kHz, ζ2 = 0.03, f3 =
6.45 kHz, ζ3 = 0.042, f4 = 8.25 kHz, ζ4 = 0.025, f5 = 9.3 kHz, ζ5 = 0.032, τ = 10−4 s
and k = 5, was fitted to the data (dashed line). The frequencies ω1 and ω4 as-
sociated with the zeros are located where the gain curve has minima, and the
frequencies ω2, ω3 and ω5 associated with the poles are located where the gain
curve has local maxima. The relative damping ratios are adjusted to give a good
fit to maxima and minima. When a good fit to the gain curve is obtained, the
time delay is adjusted to give a good fit to the phase curve. The piezo drive is
preloaded, and a simple model of its dynamics is derived in Exercise 4.7. The pole
at 2.55kHz corresponds to the trampoline mode derived in the exercise; the other
resonances are higher modes.

∇

Example 9.14 Pupillary light reflex dynamics
The human eye is an organ that is easily accessible for experiments. It has a control
system that adjusts the pupil opening to regulate the light intensity at the retina.

This control system was explored extensively by Stark in the 1960s [Sta68].
To determine the dynamics, light intensity on the eye was varied sinusoidally and
the pupil opening was measured. A fundamental difficulty is that the closed loop
system is insensitive to internal system parameters, so analysis of a closed loop
system thus gives little information about the internal properties of the system.
Stark used a clever experimental technique that allowed him to investigate both
open and closed loop dynamics. He excited the system by varying the intensity
of a light beam focused on the eye and measured pupil area, as illustrated in Fig-
ure 9.18. By using a wide light beam that covers the whole pupil, the measurement
gives the closed loop dynamics. The open loop dynamics were obtained by using
a narrow beam, which is small enough that it is not influenced by the pupil open-
ing. The result of one experiment for determining open loop dynamics is given
in Figure 9.19. Fitting a transfer function to the gain curve gives a good fit for
G(s) = 0.17/(1+0.08s)3. This curve gives a poor fit to the phase curve as shown
by the dashed curve in Figure 9.19. The fit to the phase curve is improved by
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Figure 9.19: Sample curves from an open loop frequency response of the eye (left) and a
Bode plot for the open loop dynamics (right). The solid curve shows a fit of the data using a
third-order transfer function with time delay. The dashed curve in the Bode plot is the phase
of the system without time delay, showing that the delay is needed to properly capture the
phase. (Figure redrawn from the data of Stark [Sta68].)

adding a 0.2s time delay, which leaves the gain curve unchanged while substan-
tially modifying the phase curve. The final fit gives the model

G(s) =
0.17

(1+0.08s)3
e−0.2s.

The Bode plot of this is shown with solid curves in Figure 9.19. Modeling of the
pupillary reflex from first principles is discussed in detail in [KS01]. ∇

Notice that for both the AFM drive and pupillary dynamics it is not easy to de-
rive appropriate models from first principles. In practice, it is often fruitful to use a
combination of analytical modeling and experimental identification of parameters.
Experimental determination of frequency response is less attractive for systems
with slow dynamics because the experiment takes a long time.

9.6 Further Reading

The idea of characterizing a linear system by its steady-state response to sinusoids
was introduced by Fourier in his investigation of heat conduction in solids [Fou07].
Much later, it was used by the electrical engineer Steinmetz who introduced the iω
method for analyzing electrical circuits. Transfer functions were introduced via the
Laplace transform by Gardner Barnes [GB42], who also used them to calculate the
response of linear systems. The Laplace transform was very important in the early
phase of control because it made it possible to find transients via tables (see, e.g.,
[JNP47]). Combined with block diagrams, transfer functions and Laplace trans-
forms provided powerful techniques for dealing with complex systems. Calcu-
lation of responses based on Laplace transforms is less important today, when
responses of linear systems can easily be generated using computers. There are
many excellent books on the use of Laplace transforms and transfer functions for
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modeling and analysis of linear input/output systems. Traditional texts on control
such as [DB04], [FPEN05] and [Oga01] are representative examples. Pole/zero
cancellation was one of the mysteries of early control theory. It is clear that com-
mon factors can be canceled in a rational function, but cancellations have system
theoretical consequences that were not clearly understood until Kalman’s decom-
position of a linear system was introduced [KHN63]. In the following chapters, we
will use transfer functions extensively to analyze stability and to describe model
uncertainty.

Exercises

9.1 Let G(s) be the transfer function for a linear system. Show that if we ap-
ply an input u(t) = Asin(ωt), then the steady-state output is given by y(t) =
|G(iω)|Asin(ωt + argG(iω)). (Hint: Start by showing that the real part of a com-
plex number is a linear operation and then use this fact.)

9.2 Consider the system
dx

dt
= ax+u.

Compute the exponential response of the system and use this to derive the transfer
function from u to x. Show that when s = a, a pole of the transfer function, the
response to the exponential input u(t) = est is x(t) = eatx(0)+ teat .

9.3 (Inverted pendulum) A model for an inverted pendulum was introduced in
Example 3.2. Neglecting damping and linearizing the pendulum around the upright
position gives a linear system characterized by the matrices

A =

⎧
⎪⎪⎩

0 1
mgl/Jt 0

⎫
⎪⎪⎭ , B =

⎧
⎪⎪⎩

0
1/Jt

⎫
⎪⎪⎭ , C =

⎧
⎩1 0

⎫
⎭ , D = 0.

Determine the transfer function of the system.

9.4 (Solutions corresponding to poles and zeros) Consider the differential equation

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = b1

dn−1u

dtn−1
+b2

dn−2u

dtn−2
+ · · ·+bnu.

(a) Let λ be a root of the characteristic polynomial

sn +a1sn−1 + · · ·+an = 0.

Show that if u(t) = 0, the differential equation has the solution y(t) = eλ t .

(b) Let κ be a zero of the polynomial

b(s) = b1sn−1 +b2sn−2 + · · ·+bn.

Show that if the input is u(t) = eκt , then there is a solution to the differential
equation that is identically zero.
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9.5 (Operational amplifier) Consider the operational amplifier described in Sec-
tion 4.3 and analyzed in Example 9.3. A PI controller can be constructed using
an op amp by replacing the resistor R2 with a resistor and capacitor in series, as
shown in Figure 4.10. The resulting transfer function of the circuit is given by

G(s) =−
(

R2 +
1

Cs

)
·

(
kCs(

(k+1)R1C+R2C
)
s+1

)

,

where k is the gain of the op amp, R1 and R2 are the resistances in the compensation
network and C is the capacitance.

(a) Sketch the Bode plot for the system under the assumption that k≫ R2 > R1.
You should label the key features in your plot, including the gain and phase at low
frequency, the slopes of the gain curve, the frequencies at which the gain changes
slope, etc.

(b) Suppose now that we include some dynamics in the amplifier, as outlined in
Example 8.1. This would involve replacing the gain k with the transfer function

H(s) =
k

1+ sT
.

Compute the resulting transfer function for the system (i.e., replace k with H(s))
and find the poles and zeros assuming the following parameter values

R2

R1
= 100, k = 106, R2C = 1, T = 0.01.

(c) Sketch the Bode plot for the transfer function in part (b) using straight line
approximations and compare this to the exact plot of the transfer function (using
MATLAB). Make sure to label the important features in your plot.

9.6 (Transfer function for state space system) Consider the linear state space sys-
tem

dx

dt
= Ax+Bu, y =Cx.

(a) Show that the transfer function is

G(s) =
b1sn−1 +b2sn−2 + · · ·+bn

sn +a1sn−1 + · · ·+an
,

where

b1=CB, b2=CAB+a1CB, . . . , bn=CAn−1B+a1CAn−2B+ · · ·+an−1CB

and λ (s) = sn +a1sn−1 + · · ·+an is the characteristic polynomial for A.

(b) Compute the transfer function for a linear system in reachable canonical form
and show that it matches the transfer function given above.
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9.7 (Kalman decomposition) Show that the transfer function of a system depends !
only on the dynamics in the reachable and observable subspace of the Kalman
decomposition. (Hint: Consider the representation given by equation (8.27).)

9.8 Using block diagram algebra, show that the transfer functions from v to y and
w to y in Figure 9.8 are given by

Gyv =
P

1+PC
Gyw =

1

1+PC
.

9.9 (Bode plot for a simple zero) Show that the Bode plot for transfer function
G(s) = (s+a)/a can be approximated by

log |G(iω)|≈

{
0 if ω < a

logω− loga if ω > a,

∠G(iω)≈

⎧
⎪⎨

⎪⎩

0 if ω < a/10

45+45(logω− loga) a/10 < ω < 10a

90 if ω > 10a.

9.10 (Vectored thrust aircraft) Consider the lateral dynamics of a vectored thrust
aircraft as described in Example 3.11. Show that the dynamics can be described
using the following block diagram:

1

ms2 + cs

θ
−mg Σ

ν
u1

r

Js2
x

Use this block diagram to compute the transfer functions from u1 to θ and x and
show that they satisfy

Hθu1
=

r

Js2
, Hxu1 =

Js2−mgr

Js2(ms2 + cs)
.

9.11 (Common poles) Consider a closed loop system of the form of Figure 9.8,!
with F = 1 and P and C having a pole/zero cancellation. Show that if each system
is written in state space form, the resulting closed loop system is not reachable and
not observable.

9.12 (Congestion control) Consider the congestion control model described in Sec-
tion 4.4. Let w represent the individual window size for a set of N identical sources,
q represent the end-to-end probability of a dropped packet, b represent the number
of packets in the router’s buffer and p represent the probability that a packet is
dropped by the router. We write w̄ = Nw to represent the total number of packets
being received from all N sources. Show that the linearized model can be described
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by the transfer functions

Gbw̄(s) =
e−τ f s

τes+ e−τ f s , Gw̄q(s) =−
N

qe(τes+qewe)
, Gpb(s) = ρ,

where (we,be) is the equilibrium point for the system, τe is the steady-state round-
trip time and τ f is the forward propagation time.

9.13 (Inverted pendulum with PD control) Consider the normalized inverted pen-
dulum system, whose transfer function is given by P(s)= 1/(s2−1) (Exercise 9.3).
A proportional-derivative control law for this system has transfer function C(s) =
kp + kds (see Table 9.1). Suppose that we choose C(s) = α(s− 1). Compute the
closed loop dynamics and show that the system has good tracking of reference
signals but does not have good disturbance rejection properties.

9.14 (Vehicle suspension [HB90]) Active and passive damping are used in cars to
give a smooth ride on a bumpy road. A schematic diagram of a car with a damping
system in shown in the figure below.

(Porter Class I race car driven by Todd Cuffaro)

xb

xw

xr

F +

-
Σ

F

Body

Actuator

Wheel

This model is called a quarter car model, and the car is approximated with two
masses, one representing one fourth of the car body and the other a wheel. The
actuator exerts a force F between the wheel and the body based on feedback from
the distance between the body and the center of the wheel (the rattle space).

Let xb, xw and xr represent the heights of body, wheel and road measured from
their equilibria. A simple model of the system is given by Newton’s equations for
the body and the wheel,

mbẍb = F, mwẍw =−F + kt(xr− xw),

where mb is a quarter of the body mass, mw is the effective mass of the wheel
including brakes and part of the suspension system (the unsprung mass) and kt is
the tire stiffness. For a conventional damper consisting of a spring and a damper,
we have F = k(xw− xb) + c(ẋw− ẋb). For an active damper the force F can be
more general and can also depend on riding conditions. Rider comfort can be
characterized by the transfer function Gaxr from road height xr to body acceler-
ation a = ẍb. Show that this transfer function has the property Gaxr(iωt) = kt/mb,
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where ωt =
√

kt/mw (the tire hop frequency). The equation implies that there are
fundamental limitations to the comfort that can be achieved with any damper.

9.15 (Vibration absorber) Damping vibrations is a common engineering problem.
A schematic diagram of a damper is shown below:

m1

k1

m2

c1

k2

F

x1

x2

The disturbing vibration is a sinusoidal force acting on mass m1, and the damper
consists of the mass m2 and the spring k2. Show that the transfer function from
disturbance force to height x1 of the mass m1 is

Gx1F =
m2s2 + k2

m1m2s4 +m2c1s3 +(m1k2 +m2(k1 + k2))s2 + k2c1s+ k1k2
.

How should the mass m2 and the stiffness k2 be chosen to eliminate a sinusoidal
oscillation with frequency ω0. (More details are vibration absorbers is given in the
classic text by Den Hartog [DH85, pp. 87–93].)



Chapter Ten
Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tests that it possessed the

advantages which he had predicted for it. In particular, its gain was constant to a high degree,

and it was linear enough so that spurious signals caused by the interaction of the various

channels could be kept within permissible limits. For best results the feedback factor µβ had

to be numerically much larger than unity. The possibility of stability with a feedback factor

larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 1956 [Nyq56].

In this chapter we study how the stability and robustness of closed loop systems
can be determined by investigating how sinusoidal signals of different frequencies
propagate around the feedback loop. This technique allows us to reason about
the closed loop behavior of a system through the frequency domain properties of
the open loop transfer function. The Nyquist stability theorem is a key result that
provides a way to analyze stability and introduce measures of degrees of stability.

10.1 The Loop Transfer Function

Understanding how the behavior of a closed loop system is influenced by the prop-
erties of its open loop is tricky. Indeed, as the quote from Nyquist above illustrates,
the behavior of feedback systems can often be puzzling. However, using the math-
ematical framework of transfer functions provides an elegant way to reason about
such systems, which we call loop analysis.

The basic idea of loop analysis is to trace how a sinusoidal signal propagates in
the feedback loop and explore the resulting stability by investigating if the propa-
gated signal grows or decays. This is easy to do because the transmission of sinu-
soidal signals through a linear dynamical system is characterized by the frequency
response of the system. The key result is the Nyquist stability theorem, which pro-
vides a great deal of insight regarding the stability of a system. Unlike proving sta-
bility with Lyapunov functions, studied in Chapter 5, the Nyquist criterion allows
us to determine more than just whether a system is stable or unstable. It provides a
measure of the degree of stability through the definition of stability margins. The
Nyquist theorem also indicates how an unstable system should be changed to make
it stable, which we shall study in detail in Chapters 11–13.

Consider the system in Figure 10.1a. The traditional way to determine if the
closed loop system is stable is to investigate if the closed loop characteristic poly-
nomial has all its roots in the left half-plane. If the process and the controller have
rational transfer functions P(s) = np(s)/dp(s) and C(s) = nc(s)/dc(s), then the
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−1

Σ
r e u

P(s)
y

C(s)

(a)

L(s)

−1

AB

(b)

Figure 10.1: The loop transfer function. The stability of the feedback system (a) can be
determined by tracing signals around the loop. Letting L = PC represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected at the point A has the
same magnitude and phase when it reaches point B.

closed loop system has the transfer function

Gyr(s) =
PC

1+PC
=

np(s)nc(s)

dp(s)dc(s)+np(s)nc(s)
,

and the characteristic polynomial is

λ (s) = dp(s)dc(s)+np(s)nc(s).

To check stability, we simply compute the roots of the characteristic polynomial
and verify that they each have negative real part. This approach is straightforward
but it gives little guidance for design: it is not easy to tell how the controller should
be modified to make an unstable system stable.

Nyquist’s idea was to first investigate conditions under which oscillations can
occur in a feedback loop. To study this, we introduce the loop transfer function
L(s) = P(s)C(s), which is the transfer function obtained by breaking the feedback
loop, as shown in Figure 10.1b. The loop transfer function is simply the transfer
function from the input at position A to the output at position B multiplied by −1
(to account for the usual convention of negative feedback).

Assume that a sinusoid of frequency ω0 is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequency ω0. It seems reasonable
that an oscillation can be maintained if the signal at B has the same amplitude and
phase as the injected signal because we can then disconnect the injected signal and
connect A to B. Tracing signals around the loop, we find that the signals at A and
B are identical if there is a frequency ω0 such that

L(iωc0 =−1, (10.1)

which then provides a condition for maintaining an oscillation. The condition
(10.1) implies that the Nyquist plot of the loop transfer function goes through the
point L = −1, which is called the critical point. Let ωc represent a frequency at
which ∠L(iωc) = 180◦, Intuitively it seems reasonable that the system is stable if
|L(iωc)| < 1, which means that the signal at point B will have smaller amplitude
than the injected signal. This is essentially true, but there are several subtleties that
require a proper mathematical analysis leading to Nyquist’s stability criterion.
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(a) Amplifier circuit

v2Z1

Z1 +Z2

e vZ2

Z1

v1 −G(s)Σ

(b) Block diagram

Figure 10.2: Loop transfer function for an op amp. The op amp circuit (a) has a nominal
transfer function v2/v1 = Z2(s)/Z1(s), where Z1 and Z2 are the impedances of the circuit
elements. The system can be represented by its block diagram (b), where we now include
the op amp dynamics G(s). The loop transfer function is L = Z1G/(Z1 +Z2).

Example 10.1 Operational amplifier circuit
Consider the op amp circuit in Figure 10.2a, where Z1 and Z2 are the transfer func-
tions of the feedback elements from voltage to current. There is feedback because
voltage v2 is related to voltage v through the transfer function−G describing the op
amp dynamics and voltage v is related to voltage v2 through the transfer function
Z1/(Z1 +Z2). The loop transfer function is thus

L =
GZ1

Z1 +Z2
. (10.2)

Assuming that the current I is zero, the current through the elements Z1 and Z2 is
the same, which implies

v1− v

Z1
=

v− v2

Z2
.

Solving for v gives

v =
Z2v1 +Z1v2

Z1 +Z2
=

Z2v1−Z1Gv

Z1 +Z2
=

Z2

Z1

L

G
v1−Lv.

Hence

v =
L

G(1+L)
v1.

Since v2 = −Gv the input/output relation for the circuiit is then described by the
transfer function

Gv2v1 =−
Z2

Z1

L

1+L
.

A block diagram is shown in Figure 10.2b. It follows from (10.1) that the condition
for oscillation of the op amp circuit is

L(iω) =
Z1(iω)G(iω)

Z1(iω)+Z2(iω)
=−1 (10.3)

∇

One of the powerful concepts embedded in Nyquist’s approach to stability anal-
ysis is that it allows us to study the stability of the feedback system by looking at
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Γ

(a) Nyquist D contour

Re

Im

L(iω)

−1

(b) Nyquist plot

Figure 10.3: The Nyquist contour Γ and the Nyquist plot. The Nyquist contour (a) encloses
the right half-plane, with a small semicircle around any poles of L(s) at the origin or on the
imaginary axis (illustrated here at the origin) and an arc whose radius R extends towards ∞.
The Nyquist plot (b) is the image of the loop transfer function L(s) when s traverses Γ in the
clockwise direction. The solid line corresponds to ω > 0, and the dashed line to ω < 0. The
gain and phase at the frequency ω are g = |L(iω)| and ϕ = ∠L(iω). The curve is generated
for L(s) = 1.4e−s/(s+1)2.

properties of the loop transfer function. The advantage of doing this is that it is
easy to see how the controller should be chosen to obtain a desired loop transfer
function. For example, if we change the gain of the controller, the loop transfer
function will be scaled accordingly and the critical point is avoided. A simple way
to stabilize an unstable system is to reduce the gain or to modify the controller so
that the critical point−1 is avoided. Different ways to do this, called loop shaping,
will be developed and will be discussed in Chapter 12.

10.2 The Nyquist Criterion

In this section we present Nyquist’s criterion for determining the stability of a
feedback system through analysis of the loop transfer function. We begin by intro-
ducing a convenient graphical tool, the Nyquist plot, and show how it can be used
to ascertain stability.

The Nyquist Plot

We saw in the previous chapter that the dynamics of a linear system can be rep-
resented by its frequency response and graphically illustrated by a Bode plot. To
study the stability of a system, we will make use of a different representation of
the frequency response called a Nyquist plot. The Nyquist plot of the loop transfer
function L(s) is formed by tracing s ∈ C around the Nyquist “D contour,” consist-
ing of the imaginary axis combined with an arc at infinity connecting the endpoints
of the imaginary axis. The contour, denoted as Γ∈C, is illustrated in Figure 10.3a.
The image of L(s) when s traverses Γ gives a closed curve in the complex plane
and is referred to as the Nyquist plot for L(s), as shown in Figure 10.3b. Note that
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if the transfer function L(s) goes to zero as s gets large (the usual case), then the
portion of the contour “at infinity” maps to the origin. Furthermore, the portion of
the plot corresponding to ω < 0 is the mirror image of the portion with ω > 0.

There is a subtlety in the Nyquist plot when the loop transfer function has
poles on the imaginary axis because the gain is infinite at the poles. To solve this
problem, we modify the contour Γ to include small deviations that avoid any poles
on the imaginary axis, as illustrated in Figure 10.3a (assuming a pole of L(s) at the
origin). The deviation consists of a small semicircle to the right of the imaginary
axis pole location.

When the loop transfer function has no poles in the right half plane the Nyquist
stability criterion is.

Theorem 10.1 (Simplified Nyquist criterion). Let L(s) be the loop transfer func-
tion for a negative feedback system (as shown in Figure 10.1a) and assume that L
has no poles in the open right half-plane (Res≥ 0). Then the closed loop system is
stable if and only if the closed contour given by Ω = {L(iω) :−∞ < ω < ∞}⊂ C

has no net encirclements of the critical point s =−1.

The following conceptual procedure can be used to determine that there are
no encirclements. Fix a pin at the critical point s = −1, orthogonal to the plane.
Attach a string with one end at the critical point and the other on the Nyquist plot.
Let the end of the string attached to the Nyquist curve traverse the whole curve.
There are no encirclements if the string does not wind up on the pin when the curve
is encircled.

Example 10.2 Third-order system
Consider a third-order transfer function

L(s) =
1

(s+a)3
.

To compute the Nyquist plot we start by evaluating points on the imaginary axis
s = iω , which yields

L(iω) =
1

(iω +a)3
=

(a− iω)3

(a2 +ω2)3
=

a3−3aω2

(a2 +ω2)3
+ i

ω3−3a2ω

(a2 +ω2)3
.

This is plotted in the complex plane in Figure 10.4, with the points corresponding
to ω > 0 drawn as a solid line and ω < 0 as a dashed line. Notice that these curves
are mirror images of each other.

To complete the Nyquist plot, we compute L(s) for s on the outer arc of the
Nyquist D contour. This arc has the form s = Reiθ for R→ ∞. This gives

L(Reiθ ) =
1

(Reiθ +a)3
→ 0 as R→ ∞.

Thus the outer arc of the D contour maps to the origin on the Nyquist plot. ∇

An alternative to computing the Nyquist plot explicitly is to determine the plot
from the frequency response (Bode plot), which gives the Nyquist curve for s= iω ,
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Figure 10.4: Nyquist plot for a third-order transfer function. The Nyquist plot consists of a

trace of the loop transfer function L(s) = 1/(s+a)3 with a = 0.6. The solid line represents
the portion of the transfer function along the positive imaginary axis, and the dashed line the
negative imaginary axis. The outer arc of the D contour maps to the origin.

ω > 0. We start by plotting L(iω) from ω = 0 to ω = ∞, which can be read off
from the magnitude and phase of the transfer function. We then plot L(Reiθ ) with
θ ∈ [−π/2,π/2] and R→ ∞, which goes to zero if the high frequency gain of
L(iω) goes to zero (iff L(s) is strictly proper). The remaining parts of the plot can
be determined by taking the mirror image of the curve thus far (normally plotted
using a dashed line). The plot can then be labeled with arrows corresponding to
a clockwise traversal around the D contour (the same direction in which the first
portion of the curve was plotted).

Example 10.3 Third-order system with a pole at the origin
Consider the transfer function

L(s) =
k

s(s+1)2
,

where the gain has the nominal value k = 1. The Bode plot is shown in Fig-
ure 10.5a. The system has a single pole at s = 0 and a double pole at s = −1.
The gain curve of the Bode plot thus has the slope −1 for low frequencies, and at
the double pole s = 1 the slope changes to−3. For small s we have L≈ k/s, which
means that the low-frequency asymptote intersects the unit gain line at ω = k. The
phase curve starts at−90◦ for low frequencies, it is−180◦ at the breakpoint ω = 1
and it is −270◦ at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquist plot, shown
in Figure 10.5b. It starts with a phase of −90◦ for low frequencies, intersects the
negative real axis at the breakpoint ω = 1 where L(i)=−0.5 and goes to zero along
the imaginary axis for high frequencies. The small half-circle of the D contour at
the origin is mapped on a large circle enclosing the right half-plane. The Nyquist
curve does not encircle the critical point, and it follows from the simplified Nyquist
theorem that the closed loop system is stable. Since L(i) = −k/2, we find the
closed loop system becomes unstable if the gain is increased to k = 2 or beyond.

∇
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Figure 10.5: Sketching Nyquist and Bode plots. The loop transfer function is L(s) =

1/(s(s + 1)2). The large semicircle is the map of the small semicircle of the D contour
around the pole at the origin. The closed loop is stable because the Nyquist curve does not
encircle the critical point. The point where the phase is −180◦ is marked with a circle in the
Bode plot.

The Nyquist criterion does not require that |L(iωc)|< 1 for all ωc correspond-
ing to a crossing of the negative real axis. Rather, it says that the number of en-
circlements must be zero, allowing for the possibility that the Nyquist curve could
cross the negative real axis and cross back at magnitudes greater than 1. The fact
that it was possible to have high feedback gains surprised the early designers of
feedback amplifiers, as mentioned in the quote in the beginning of this chapter.

One advantage of the Nyquist criterion is that it tells us how a system is in-
fluenced by changes of the controller parameters. For example, it is very easy to
visualize what happens when the gain is changed since this just scales the Nyquist
curve.

Example 10.4 Congestion control
Consider the Internet congestion control system described in Section 4.4. Suppose
we have N identical sources and a disturbance d representing an external data
source, as shown in Figure 10.6a. We let w represent the individual window size
for a source, q represent the end-to-end probability of a dropped packet, b represent
the number of packets in the router’s buffer and p represent the probability that a
packet is dropped by the router. We write w̄ for the total number of packets being
received from all N sources. We also include a time delay between the router and
the senders, representing the time delays between the sender and receiver.

To analyze the stability of the system, we use the transfer functions computed
in Exercise 9.12:

G̃bw̄(s) =
1

τes+ e−τ f s , Gwq(s) =−
1

qe(τes+qewe)
, Gpb(s) = ρ,

where (we,be) is the equilibrium point for the system, N is the number of sources,
τe is the steady-state round-trip time and τ f is the forward propagation time. We
use G̃bw̄ to represent the transfer function with the forward time delay removed
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Figure 10.6: Internet congestion control. A set of N sources using TCP/Reno send messages
through a single router with admission control (left). Link delays are included for the forward
and backward directions. The Nyquist plot for the loop transfer function is shown on the
right.

since this is accounted for as a separate block in Figure 10.6a. Similarly, Gwq =
Gw̄q/N since we have pulled out the multiplier N as a separate block as well.

The loop transfer function is given by

L(s) = ρ ·
N

τes+ e−τ f s ·
1

qe(τes+qewe)
e−τes.

Using the fact that qe ≈ 2N/w2
e = 2N3/(τec)2 and we = be/N = τec/N from equa-

tion (4.22), we can show that

L(s) = ρ ·
N

τes+ e−τ f s ·
c3τ3

e

2N3(cτ2
e s+2N2)

e−τes.

Note that we have chosen the sign of L(s) to use the same sign convention as in
Figure 10.1b. The exponential term representing the time delay gives significant
phase above ω = 1/τe, and the gain at the crossover frequency will determine
stability.

To check stability, we require that the gain be sufficiently small at crossover. If
we assume that the pole due to the queue dynamics is sufficiently fast that the TCP
dynamics are dominant, the gain at the crossover frequency ωc is given by

|L(iωc)|= ρ ·N ·
c3τ3

e

2N3cτ2
e ωc

=
ρc2τe

2N2ωc
.

Using the Nyquist criterion, the closed loop system will be unstable if this quantity
is greater than 1. In particular, for a fixed time delay, the system will become un-
stable as the link capacity c is increased. This indicates that the TCP protocol may
not be scalable to high-capacity networks, as pointed out by Low et al. [LPD02].
Exercise 10.7 provides some ideas of how this might be overcome. ∇
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Figure 10.7: Nyquist curve for the loop transfer function L(s) = 3(s+6)2

s(s+1)2 . The plot on the

right is an enlargement of the box around the origin of the plot on the left. The Nyquist
curve intersects the negative real axis twice but has no net encirclements of −1.

Conditional Stability

An unstable systems can often be stabilized simply by reducing the loop gain.
There are, however, situations where a system can be stabilized by increasing the
gain. This was first encountered by electrical engineers in the design of feedback
amplifiers, who coined the term conditional stability. The problem was actually a
strong motivation for Nyquist to develop his theory. We will illustrate this by an
example.

Example 10.5 Third-order system
Consider a feedback system with the loop transfer function

L(s) =
3(s+6)2

s(s+1)2
. (10.4)

The Nyquist plot of the loop transfer function is shown in Figure 10.7. Notice
that the Nyquist curve intersects the negative real axis twice. The first intersection
occurs at L =−12 for ω = 2, and the second at L =−4.5 for ω = 3. The intuitive
argument based on signal tracing around the loop in Figure 10.1b is misleading in
this case. Injection of a sinusoid with frequency 2 rad/s and amplitude 1 at A gives,
in steady state, an oscillation at B that is in phase with the input and has amplitude
12. Intuitively it seems unlikely that closing of the loop will result in a stable
system. However, it follows from Nyquist’s stability criterion that the system is
stable because there are no net encirclements of the critical point. Note, however,
that if we decrease the gain, then we can get an encirclement, implying that the
gain must be sufficiently large for stability. ∇

General Nyquist Criterion

Theorem 10.1 requires that L(s) have no poles in the closed right half-plane. In
some situations this is not the case and a more general result is required. Nyquist
originally considered this general case, which we summarize as a theorem.

Theorem 10.2 (Nyquist’s stability theorem). Consider a closed loop system with
the loop transfer function L(s) that has P poles in the region enclosed by the
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Figure 10.8: PD control of an inverted pendulum. (a) The system consists of a mass that
is balanced by applying a force at the pivot point. A proportional-derivative controller with
transfer function C(s) = k(s+ 2) is used to command u based on θ . (b) A Nyquist plot of
the loop transfer function for gain k = 1. There is one counterclockwise encirclement of the
critical point, giving N =−1 clockwise encirclements.

Nyquist contour. Let N be the net number of clockwise encirclements of −1 by
L(s) when s encircles the Nyquist contour Γ in the clockwise direction. The closed
loop system then has Z = N +P poles in the right half-plane.

The full Nyquist criterion states that if L(s) has P poles in the right half-plane,
then the Nyquist curve for L(s) should have P counterclockwise encirclements
of −1 (so that N = −P). In particular, this requires that |L(iωc)| > 1 for some ωc

corresponding to a crossing of the negative real axis. Care has to be taken to get the
right sign of the encirclements. The Nyquist contour has to be traversed clockwise,
which means that ω moves from −∞ to ∞ and N is positive if the Nyquist curve
winds clockwise. If the Nyquist curve winds counterclockwise, then N will be
negative (the desired case if P ̸= 0).

As in the case of the simplified Nyquist criterion, we use small semicircles
of radius r to avoid any poles on the imaginary axis. By letting r→ 0, we can use
Theorem 10.2 to reason about stability. Note that the image of the small semicircles
generates a section of the Nyquist curve with large magnitude, requiring care in
computing the winding number.

Example 10.6 Stabilized inverted pendulum
The linearized dynamics of a normalized inverted pendulum can be represented by
the transfer function P(s) = 1/(s2−1), where the input is acceleration of the pivot
and the output is the pendulum angle θ , as shown in Figure 10.8 (Exercise 9.3). We
attempt to stabilize the pendulum with a proportional-derivative (PD) controller
having the transfer function C(s) = k(s+2). The loop transfer function is

L(s) =
k(s+2)

s2−1
.

The Nyquist plot of the loop transfer function is shown in Figure 10.8b. We have
L(0) =−2k and L(∞) = 0. If k > 0.5, the Nyquist curve encircles the critical point
s =−1 in the counterclockwise direction when the Nyquist contour γ is encircled
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in the clockwise direction. The number of encirclements is thus N = −1. Since
the loop transfer function has one pole in the right half-plane (P = 1), we find that
Z = N +P = 0 and the system is thus stable for k > 0.5. If k < 0.5, there is no
encirclement and the closed loop will have one pole in the right half-plane. ∇

Derivation of Nyquist’s Stability Theorem
!

We will now prove the Nyquist stability theorem for a general loop transfer func-
tion L(s). This requires some results from the theory of complex variables, for
which the reader can consult Ahlfors [Ahl66]. Since some precision is needed in
stating Nyquist’s criterion properly, we will use a more mathematical style of pre-
sentation. We also follow the mathematical convention of counting encirclements
in the counterclockwise direction for the remainder of this section. The key result
is the following theorem about functions of complex variables.

Theorem 10.3 (Principle of variation of the argument). Let D be a closed and
bounded region in the complex plane and let Γ be the boundary of the region.
Assume the function f : C→C is analytic in D and on Γ, except at a finite number
of poles and zeros. Then the winding number wn is given by

wn =
1

2π
∆Γ arg f (z) =

1

2πi

∫

Γ

f ′(z)

f (z)
dz = Z−P,

where ∆Γ is the net variation in the angle when z traverses the contour Γ in the
counterclockwise direction, Z is the number of zeros in D and P is the number of
poles in D. Poles and zeros of multiplicity m are counted m times.

Proof. Assume that z = a is a zero of multiplicity m. In the neighborhood of z = a
we have

f (z) = (z−a)mg(z),

where the function g is analytic and different from zero. The ratio of the derivative
of f to itself is then given by

f ′(z)

f (z)
=

m

z−a
+

g′(z)

g(z)
,

and the second term is analytic at z = a. The function f ′/ f thus has a single pole
at z = a with the residue m. The sum of the residues at the zeros of the function is
Z. Similarly, we find that the sum of the residues for the poles is −P, and hence

Z−P =
1

2πi

∫

Γ

f ′(z)

f (z)
dz =

1

2πi

∫

Γ

d

dz
log f (z)dz =

1

2πi
∆Γ log f (z),

where ∆Γ again denotes the variation along the contour Γ. We have

log f (z) = log | f (z)|+ iarg f (z),

and since the variation of | f (z)| around a closed contour is zero it follows that

∆Γ log f (z) = i∆Γ arg f (z),
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and the theorem is proved.

This theorem is useful in determining the number of poles and zeros of a func-
tion of complex variables in a given region. By choosing an appropriate closed
region D with boundary Γ, we can determine the difference between the number
of poles and zeros through computation of the winding number.

Theorem 10.3 can be used to prove Nyquist’s stability theorem by choosing Γ
as the Nyquist contour shown in Figure 10.3a, which encloses the right half-plane.
To construct the contour, we start with part of the imaginary axis − jR ≤ s ≤ jR
and a semicircle to the right with radius R. If the function f has poles on the
imaginary axis, we introduce small semicircles with radii r to the right of the poles
as shown in the figure. The Nyquist contour is obtained by selecting R large enough
and r small enough so that all opne-loop right half-plane poles are enclosed. Note
that Γ has orientation opposite that shown in Figure 10.3a. (The convention in
engineering is to traverse the Nyquist contour in the clockwise direction since this
corresponds to moving upwards along the imaginary axis, which makes it easy to
sketch the Nyquist contour from a Bode plot.)

To see how we use the principle of variation of the argument to compute stabil-
ity, consider a closed loop system with the loop transfer function L(s). The closed
loop poles of the system are the zeros of the function f (s) = 1+L(s). To find the
number of zeros in the right half-plane, we investigate the winding number of the
function f (s) = 1+L(s) as s moves along the Nyquist contour Γ in the counter-
clockwise direction. The winding number can conveniently be determined from
the Nyquist plot. A direct application of Theorem 10.3 gives the Nyquist criterion,
taking care to flip the orientation. Since the image of 1+L(s) is a shifted version
of L(s), we usually state the Nyquist criterion as net encirclements of the −1 point
by the image of L(s).

10.3 Stability Margins

In practice it is not enough that a system is stable. There must also be some margins
of stability that describe how far from instability the system is and its robustness to
perturbations. There are many ways to express this, but one of the most common
is the use of gain and phase margins, inspired by Nyquist’s stability criterion. The
key idea is that it is easy to plot the loop transfer function L(s). An increase in
controller gain simply expands the Nyquist plot radially. An increase in the phase
of the controller twists the Nyquist plot. Hence from the Nyquist plot we can easily
pick off the amount of gain or phase that can be added without causing the system
to become unstable.

Formally, the gain margin gm of a closed-loop system is defined as the smallest
amount that the loop gain can be increased before the system goes unstable. For a
system whose phase decreases monotonically as a function of frequency starting
at 0◦, the gain margin can be computed based on the smallest frequency where the
phase of the loop transfer function L(s) is −180◦. Let ωpc represent this frequency,
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Figure 10.9: Stability margins. The gain margin gm and phase margin ϕm are shown on
the the Nyquist plot (a) and the Bode plot (b). The gain margin corresponds to the smallest
increase in gain that creates an encirclement, and the phase margin is the smallest change
in phase that creates an encirclement. The Nyquist plot also shows the stability margin sm,
which is the shortest distance to the critical point −1.

called the phase crossover frequency. Then the gain margin for the system is given
by

gm =
1

|L(iωpc)|
. (10.5)

Similarly, the phase margin is the amount of phase lag required to reach the sta-
bility limit. Let ωgc be the gain crossover frequency, the smallest frequency where
the loop transfer function L(s) has unit magnitude. Then for a system with mono-
tonically decreasing gain, the phase margin is given by

ϕm = π + argL(iωgc). (10.6)

These margins have simple geometric interpretations in the Nyquist plot, as
shown in Figure 10.9a, where we have plotted the portion of the curve correspond-
ing to ω > 0. The gain margin is given by the inverse of the distance to the nearest
point between −1 and 0 where the loop transfer function crosses the negative real
axis. The phase margin is given by the smallest angle on the unit circle between
−1 and the loop transfer function. When the gain or phase is monotonic, this geo-
metric interpretation agrees with the formulas above.

A drawback with gain and phase margins is that both have to be given to guar-
antee that the Nyquist curve is not close to the critical point. An alternative way
to express margins is by a single number, the stability margin sm, which is the
shortest distance from the Nyquist curve to the critical point. The gain and phase
margins can also be determined from the Bode plot as indicated in Figure 10.9.

Example 10.7 Third-order system
Consider a loop transfer function L(s) = 3/(s+ 1)3. The Nyquist and Bode plots
are shown in Figure 10.10. To compute the gain, phase and stability margins, we
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Figure 10.10: Stability margins for a third-order transfer function. The Nyquist plot on the
left allows the gain, phase and stability margins to be determined by measuring the distances
of relevant features. The gain and phase margins can also be read off of the Bode plot on the
right.

can use the Nyquist plot shown in Figure 10.10. This yields the following values:

gm = 2.67, ϕm = 41.7◦, sm = 0.464.

The gain and phase margins can also be determined from the Bode plot. ∇

The gain and phase margins are classical robustness measures that have been
used for a long time in control system design. The gain margin is well defined if
the Nyquist curve intersects the negative real axis once. Analogously, the phase
margin is well defined if the Nyquist curve intersects the unit circle at only one
point. Other more general robustness measures will be introduced in Chapter 13.

Even if both the gain and phase margins are reasonable, the system may still
not be robust, as is illustrated by the following example.

Example 10.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function

L(s) =
0.38(s2 +0.1s+0.55)

s(s+1)(s2 +0.06s+0.5)
.

A numerical calculation gives the gain margin as gm = 266, and the phase margin
is 70◦. These values indicate that the system is robust, but the Nyquist curve is
still close to the critical point, as shown in Figure 10.11. The stability margin is
sm = 0.27, which is very low. The closed loop system has two resonant modes, one
with damping ratio ζ = 0.81 and the other with ζ = 0.014. The step response of
the system is highly oscillatory, as shown in Figure 10.11c. ∇

When designing feedback systems, it will often be useful to define the robust-
ness of the system using gain, phase and stability margins. These numbers tell us
how much the system can vary from our nominal model and still be stable. Rea-
sonable values of the margins are phase margin ϕm = 30◦–60◦, gain margin gm =
2–5 and stability margin sm = 0.5–0.8.
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Figure 10.11: System with good gain and phase margins but a poor stability margin. Nyquist
(a) and Bode (b) plots of the loop transfer function and step response (c) for a system with
good gain and phase margins but with a poor stability margin. The Nyquist plot shows on
the portion of the curve corresponding to ω > 0.

There are also other stability measures, such as the delay margin, which is the
smallest time delay required to make the system unstable. For loop transfer func-
tions that decay quickly, the delay margin is closely related to the phase margin,
but for systems where the gain curve of the loop transfer function has several peaks
at high frequencies, the delay margin is a more relevant measure.

Example 10.9 Nanopositioning system for an atomic force microscope
Consider the system for horizontal positioning of the sample in an atomic force
microscope. The system has oscillatory dynamics, and a simple model is a spring–
mass system with low damping. The normalized transfer function is given by

P(s) =
ω2

0

s2 +2ζ ω0s+ω2
0

, (10.7)

where the damping ratio typically is a very small number, e.g., ζ = 0.1.
We will start with a controller that has only integral action. The resulting loop

transfer function is

L(s) =
kiω2

0

s(s2 +2ζ ω0s+ω2
0 )
,

where ki is the gain of the controller. Nyquist and Bode plots of the loop transfer
function are shown in Figure 10.12. Notice that the part of the Nyquist curve that
is close to the critical point −1 is approximately circular.

From the Bode plot in Figure 10.12b, we see that the phase crossover frequency
is ωpc = ω0, which will be independent of the gain ki. Evaluating the loop transfer
function at this frequency, we have L(iω0) = −ki/(2ζ ω0), which means that the
stability margin is sm = 1−ki/(2ζ ω0). To have a desired stability margin of sm the
integral gain should be chosen as

ki = 2ζ ω0(1− sm).
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Figure 10.12: Nyquist and Bode plots of the loop transfer function for the AFM sys-
tem (10.7) with an integral controller. The frequency in the Bode plot is normalized by
ω0. The parameters are ζ = 0.01 and ki = 0.008.

Figure 10.12 shows Nyquist and Bode plots for the system with gain margin
gm = 2.5 and stability margin sm = 0.6. The gain curve in the Bode plot is almost
a straight line for low frequencies and has a resonant peak at ω = ω0. The gain
crossover frequency is approximately equal to ki and the phase decreases mono-
tonically from −90◦ to −270◦: it is equal to −180◦ at ω = ω0. The curve can be
shifted vertically by changing ki: increasing ki shifts the gain curve upward and
increases the gain crossover frequency. ∇

10.4 Bode’s Relations and Minimum Phase Systems

An analysis of Bode plots reveals that there appears to be a relation between the
gain curve and the phase curve. Consider, for example, the Bode plots for the
differentiator and the integrator (shown in Figure 9.12). For the differentiator the
slope is +1 and the phase is a constant π/2 radians. For the integrator the slope is
−1 and the phase is −π/2. For the first-order system G(s) = s+a, the amplitude
curve has the slope 0 for small frequencies and the slope +1 for high frequencies,
and the phase is 0 for low frequencies and π/2 for high frequencies.

Bode investigated the relations between the curves for systems with no poles
and zeros in the right half-plane. He found that, for systems that do not have poles
or zeros in the right half plane, the phase was uniquely given by the shape of the
gain curve, and vice versa:

argG(iω0) =
π

2

∫ ∞

0
f (ω)

d log |G(iω)|
d logω

d logω ≈
π

2

d log |G(iω0)|
d logω0

, (10.8)

where f is the weighting kernel

f (ω) =
2

π2
log
∣∣∣
ω +ω0

ω−ω0

∣∣∣.

The phase curve is thus a weighted average of the derivative of the gain curve. If
the gain curve has constant slope n, the phase curve has constant value nπ/2.
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Figure 10.13: Bode plots of systems that are not minimum phase. (a) Time delay G(s) =

e−sT , (b) system with a right half-plane (RHP) zero G(s) = (a− s)/(a+ s) and (c) sys-
tem with right half-plane pole. The corresponding minimum phase system has the transfer
function G(s) = 1 in all cases, the phase curves for that system are shown as dashed lines.

Systems that do not have poles or zeros in the right half plane are called min-
imum phase systems because they have the smallest phase lag of all systems with
the same gain curve. We will now give a few examples of nonminimum phase
transfer functions.

The transfer function of a time delay of τ units is G(s) = e−sτ . This transfer
function has unit gain |G(iω)|= 1, and the phase is argG(iω) =−ωτ . The corre-
sponding minimum phase system with unit gain has the transfer function G(s) = 1.
The time delay thus has an additional phase lag of ωτ . Notice that the phase lag in-
creases linearly with frequency. Figure 10.13a shows the Bode plot of the transfer
function. (Because we use a log scale for frequency, the phase falls off exponen-
tially in the plot.)

Consider a system with the transfer function G(s) = (a−s)/(a+s) with a > 0,
which has a zero s = a in the right half-plane. The transfer function has unit gain
|G(iω)| = 1, and the phase is argG(iω) = −2arctan(ω/a). The corresponding
minimum phase system with unit gain has the transfer function G(s) = 1. Fig-
ure 10.13b shows the Bode plot of the transfer function. A similar analysis of the
transfer function G(s) = (s+ a)/(s− a) with a > 0, which has a pole in the right
half-plane, shows that its phase is argG(iω) = −2arctan(a/ω). The Bode plot is
shown in Figure 10.13c.

The presence of poles and zeros in the right half-plane imposes severe limita-
tions on the achievable performance as will be discussed in Section 12.6. Dynam-
ics of this type should be avoided by redesign of the system. While the poles are
intrinsic properties of the system and they do not depend on sensors and actuators,
the zeros depend on how inputs and outputs of a system are coupled to the states.
Zeros can thus be changed by moving sensors and actuators or by introducing new
sensors and actuators. Nonminimum phase systems are unfortunately quite com-
mon in practice.
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Figure 10.14: Vehicle steering for driving in reverse. (a) Step responses from steering an-
gle to lateral translation for a simple kinematics model when driving forward (dashed) and
reverse (solid). With rear-wheel steering the center of mass first moves in the wrong direc-
tion and that the overall response with rear-wheel steering is significantly delayed compared
with that for front-wheel steering. (b) Frequency response for driving forward (dashed) and
reverse (solid). Notice that the gain curves are identical, but the phase curve for driving in
reverse has nonminimum phase.

The following example gives a system theoretic interpretation of the common
experience that it is more difficult to drive in reverse gear and illustrates some of
the properties of transfer functions in terms of their poles and zeros.

Example 10.10 Vehicle steering
The unnormalized transfer function from steering angle to lateral velocity for the
simple vehicle model is

G(s) =
av0s+ v2

0

bs
,

where v0 is the velocity of the vehicle and a,b> 0 (see Example 6.12). The transfer
function has a zero at s = v0/a. In normal driving this zero is in the left half-
plane, but it is in the right half-plane when driving in reverse, v0 < 0. The unit step
response is

y(t) =
av0

b
+

v2
0t

b
.

The lateral velocity thus responds immediately to a steering command. For reverse
steering v0 is negative and the initial response is in the wrong direction, a behavior
that is representative for nonminimum phase systems (called an inverse response).

Figure 10.14 shows the step response for forward and reverse driving. In this
simulation we have added an extra pole with the time constant T to approximately
account for the dynamics in the steering system. The parameters are a = b = 1,
T = 0.1, v0 = 1 for forward driving and v0 = −1 for reverse driving. Notice that
for t > t0 = a/v0, where t0 is the time required to drive the distance a, the step
response for reverse driving is that of forward driving with the time delay t0. The
position of the zero v0/a depends on the location of the sensor. In our calculation
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we have assumed that the sensor is at the center of mass. The zero in the transfer
function disappears if the sensor is located at the rear wheel. The difficulty with
zeros in the right half-plane can thus be visualized by a thought experiment where
we drive a car in forward and reverse and observe the lateral position through a
hole in the floor of the car. ∇

10.5 Generalized Notions of Gain and Phase
!

A key idea in frequency domain analysis is to trace the behavior of sinusoidal sig-
nals through a system. The concepts of gain and phase represented by the transfer
function are strongly intuitive because they describe amplitude and phase relations
between input and output. In this section we will see how to extend the concepts
of gain and phase to more general systems, including some nonlinear systems. We
will also show that there are analogs of Nyquist’s stability criterion if signals are
approximately sinusoidal.

System Gain

We begin by considering the case of a static linear system y = Au, where A is
a matrix whose elements are complex numbers. The matrix does not have to be
square. Let the inputs and outputs be vectors whose elements are complex numbers
and use the Euclidean norm

∥u∥=
√

Σ|ui|2. (10.9)

The norm of the output is
∥y∥2 = u∗A∗Au,

where ∗ denotes the complex conjugate transpose. The matrix A∗A is symmetric
and positive semidefinite, and the right-hand side is a quadratic form. The square
root of eigenvalues of the matrix A∗A are all real, and we have

∥y∥2 ≤ λ̄ (A∗A)∥u∥2,

where λ̄ denotes the largest eigenvalue. The gain of the system can then be defined
as the maximum ratio of the output to the input over all possible inputs:

γ = max
u

∥y∥
∥u∥

=
√

λ̄ (A∗A). (10.10)

The square root of the eigenvalues of the matrix A∗A are called the singular values
of the matrix A, and the largest singular value is denoted by σ̄(A).

To generalize this to the case of an input/output dynamical system, we need
to think of the inputs and outputs not as vectors of real numbers but as vectors of
signals. For simplicity, consider first the case of scalar signals and let the signal
space L2 be square-integrable functions with the norm

∥u∥2 =

√∫ ∞

0
|u|2(τ)dτ .



10-20 CHAPTER 10. FREQUENCY DOMAIN ANALYSIS

This definition can be generalized to vector signals by replacing the absolute value
with the vector norm (10.9). We can now formally define the gain of a system
taking inputs u ∈ L2 and producing outputs y ∈ L2 as

γ = sup
u∈L2

∥y∥
∥u∥

, (10.11)

where sup is the supremum, defined as the smallest number that is larger or equal
to its argument. The reason for using the supremum is that the maximum may not
be defined for u ∈ L2. This definition of the system gain is quite general and can
even be used for some classes of nonlinear systems, though one needs to be careful
about how initial conditions and global nonlinearities are handled.

The norm (10.11) has some nice properties in the case of linear systems. In
particular, given a single-input, single-output stable linear system with transfer
function G(s), it can be shown that the norm of the system is given by

γ = sup
ω

|G(iω)|=: ∥G∥∞. (10.12)

In other words, the gain of the system corresponds to the peak value of the fre-
quency response. This corresponds to our intuition that an input produces the
largest output when we are at the resonant frequencies of the system. ∥G∥∞ is
called the infinity norm of the transfer function G(s).

This notion of gain can be generalized to the multi-input, multi-output case as
well. For a linear multivariable system with a transfer function matrix G(s) we can
define the gain as

γ = ∥G∥∞ = sup
ω

σ̄(G(iω)). (10.13)

Thus we can combine the idea of the gain of a matrix with the idea of the gain of
a linear system by looking at the maximum singular value over all frequencies.

Small Gain and Passivity

For linear systems it follows from Nyquist’s theorem that the closed loop is stable
if the gain of the loop transfer function is less than 1 for all frequencies. This result
can be extended to a larger class of systems by using the concept of the system
gain defined in equation (10.11).

Theorem 10.4 (Small gain theorem). Consider the closed loop system shown in
Figure 10.15, where H1 and H2 are input/output stable systems and the signal
spaces are properly defined. Let the gains of the systems H1 and H2 be γ1 and γ2.
Then the closed loop system is input/output stable if γ1γ2 < 1, and the gain of the
closed loop system is

γ =
γ1

1− γ1γ2
.

Notice that if systems H1 and H2 are linear, it follows from the Nyquist stability
theorem that the closed loop is stable because if γ1γ2 < 1, the Nyquist curve is
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Figure 10.15: A feedback connection of two general nonlinear systems H1 and H2. The
stability of the system can be explored using the small gain theorem.

always inside the unit circle. The small gain theorem is thus an extension of the
Nyquist stability theorem.

Although we have focused on linear systems, the small gain theorem also holds
for nonlinear input/output systems. The definition of gain in equation (10.11) holds
for nonlinear systems as well, with some care needed in handling the initial condi-
tion.

The main limitation of the small gain theorem is that it does not consider the
phasing of signals around the loop, so it can be very conservative. To define the
notion of phase we require that there be a scalar product. For square-integrable
functions this can be defined as

⟨u,y⟩=
∫ ∞

0
u(τ)y(τ)dτ .

The phase ϕ between two signals can now be defined as

⟨u,y⟩= ∥u∥∥y∥cos(ϕ).

Systems where the phase between inputs and outputs is 90◦ or less for all inputs
are called passive systems. It follows from the Nyquist stability theorem that a
closed loop linear system is stable if the phase of the loop transfer function is
between −π and π . This result can be extended to nonlinear systems as well. It is
called the passivity theorem and is closely related to the small gain theorem. See
Khalil [Kha01] for a more detailed description.

Additional applications of the small gain theorem and its application to robust
stability are given in Chapter 13.

Describing Functions

For special nonlinear systems like the one shown in Figure 10.16a, which consists
of a feedback connection between a linear system and a static nonlinearity, it is
possible to obtain a generalization of Nyquist’s stability criterion based on the idea
of describing functions. Following the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that corresponds to the first harmonic.

To carry out this analysis, we have to analyze how a sinusoidal signal propa-
gates through a static nonlinear system. In particular we investigate how the first
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L(s)

−N( ·)
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(a) Block diagram

Re

Im

−1/N(a)

G(iω)

(b) Nyquist plot

Figure 10.16: Describing function analysis. A feedback connection between a static nonlin-
earity and a linear system is shown in (a). The linear system is characterized by its transfer
function L(s), which depends on frequency, and the nonlinearity by its describing function
N(a), which depends on the amplitude a of its input. The Nyquist plot of L(iω) and the plot
of the −1/N(a) are shown in (b). The intersection of the curves represents a possible limit
cycle.

harmonic of the output of the nonlinearity is related to its (sinusoidal) input. Let-
ting F represent the nonlinear function, we expand F(eiωt) in terms of its harmon-
ics:

F(aeiωt) =
∞

∑
n=0

Mn(a)e
i(nωt+ϕn(a)),

where Mn(a) and ϕn(a) represent the gain and phase of the nth harmonic, which
depend on the input amplitude since the function F is nonlinear. We define the
describing function to be the complex gain of the first harmonic:

N(a) = M1(a)e
iϕ1(a). (10.14)

The function can also be computed by assuming that the input is a sinusoid and
using the first term in the Fourier series of the resulting output.

Neglecting higher harmonics and arguing as we did when deriving Nyquist’s
stability criterion, we find that an oscillation can be maintained if

L(iω)N(a) =−1. (10.15)

This equation means that if we inject a sinusoid of amplitude a at A in Fig-
ure 10.16, the same signal will appear at B and an oscillation can be maintained
by connecting the points. Equation (10.15) gives two conditions for finding the
frequency ω of the oscillation and its amplitude a: the phase must be 180◦, and
the magnitude must be unity. A convenient way to solve the equation is to plot
L(iω) and−1/N(a) on the same diagram as shown in Figure 10.16b. The diagram
is similar to the Nyquist plot where the critical point −1 is replaced by the curve
−1/N(a) and a ranges from 0 to ∞.

It is possible to define describing functions for types of inputs other than si-
nusoids. Describing function analysis is a simple method, but it is approximate
because it assumes that higher harmonics can be neglected. Excellent treatments
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Figure 10.17: Describing function analysis for a relay with hysteresis. The input/output
relation of the hysteresis is shown in (a) and the input with amplitude a= 2, the output and its
first harmonic are shown in (b). The Nyquist plots of the transfer function L(s) = (s+1)−4

and the negative of the inverse describing function for the relay with b = 3 and c = 1 are
shown in (c).

of describing function techniques can be found in the texts by Atherton [Ath75]
and Graham and McRuer [GM61].

Example 10.11 Relay with hysteresis
Consider a linear system with a nonlinearity consisting of a relay with hystere-
sis. The output has amplitude b and the relay switches when the input is ±c, as
shown in Figure 10.17a. Assuming that the input is u = asin(ωt), we find that
the output is zero if a ≤ c, and if a > c, the output is a square wave with ampli-
tude b that switches at times ωt = arcsin(c/a) + nπ . The first harmonic is then
y(t) = (4b/π)sin(ωt−α), where sinα = c/a. For a > c the describing function
and its inverse are

N(a) =
4b

aπ

(√

1−
c2

a2
− i

c

a

)
,

1

N(a)
=

π
√

a2− c2

4b
+ i

πc

4b
,

where the inverse is obtained after simple calculations. Figure 10.17b shows the
response of the relay to a sinusoidal input with the first harmonic of the output
shown as a dashed line. Describing function analysis is illustrated in Figure 10.17c,
which shows the Nyquist plot of the transfer function L(s) = 2/(s+ 1)4 (dashed
line) and the negative inverse describing function of a relay with b = 1 and c = 0.5.
The curves intersect for a = 1 and ω = 0.77 rad/s, indicating the amplitude and
frequency for a possible oscillation if the process and the relay are connected in a
a feedback loop. ∇

10.6 Further Reading

Nyquist’s original paper giving his now famous stability criterion was published in
the Bell Systems Technical Journal in 1932 [Nyq32]. More accessible versions are
found in the book [BK64], which also includes other interesting early papers on
control. Nyquist’s paper is also reprinted in an IEEE collection of seminal papers
on control [Bas01]. Nyquist used +1 as the critical point, but Bode changed it to
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−1, which is now the standard notation. Interesting perspectives on early devel-
opments are given by Black [Bla77], Bode [Bod60] and Bennett [Ben93]. Nyquist
did a direct calculation based on his insight into the propagation of sinusoidal sig-
nals through systems; he did not use results from the theory of complex functions.
The idea that a short proof can be given by using the principle of variation of the
argument is presented in the delightful book by MacColl [Mac45]. Bode made
extensive use of complex function theory in his book [Bod45], which laid the
foundation for frequency response analysis where the notion of minimum phase
was treated in detail. A good source for complex function theory is the classic by
Ahlfors [Ahl66]. Frequency response analysis was a key element in the emergence
of control theory as described in the early texts by James et al. [JNP47], Brown and
Campbell [BC48] and Oldenburger [Old56], and it became one of the cornerstones
of early control theory. Frequency response methods underwent a resurgence when
robust control emerged in the 1980s, as will be discussed in Chapter 13.

Exercises

10.1 (Operational amplifier) Consider an op amp circuit with Z1 = Z2 that gives
a closed loop system with nominally unit gain. Let the transfer function of the
operational amplifier be

G(s) =
ka1a2

(s+a)(s+a1)(s+a2)
,

where a1,a2≫ a. Show that the condition for oscillation is k < a1 +a2 and com-
pute the gain margin of the system. Hint: Assume a = 0.

10.2 (Atomic force microscope) The dynamics of the tapping mode of an atomic
force microscope are dominated by the damping of the cantilever vibrations and
the system that averages the vibrations. Modeling the cantilever as a spring–mass
system with low damping, we find that the amplitude of the vibrations decays as
exp(−ζ ωt), where ζ is the damping ratio and ω is the undamped natural frequency
of the cantilever. The cantilever dynamics can thus be modeled by the transfer
function

G(s) =
a

s+a
,

where a= ζ ω0. The averaging process can be modeled by the input/output relation

y(t) =
1

τ

∫ t

t−τ
u(v)dv,

where the averaging time is a multiple n of the period of the oscillation 2π/ω . The
dynamics of the piezo scanner can be neglected in the first approximation because
they are typically much faster than a. A simple model for the complete system is
thus given by the transfer function

P(s) =
a(1− e−sτ)

sτ(s+a)
.
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Plot the Nyquist curve of the system and determine the gain of a proportional
controller that brings the system to the boundary of stability.

10.3 (Heat conduction) A simple model for heat conduction in a solid is given by
the transfer function

P(s) = ke−
√

s.

Sketch the Nyquist plot of the system. Determine the frequency where the phase
of the process is −180◦ and the gain at that frequency. Show that the gain required
to bring the system to the stability boundary is k = eπ .

10.4 (Vectored thrust aircraft) Consider the state space controller designed for !
the vectored thrust aircraft in Examples 7.8 and 8.5. The controller consists of
two components: an optimal estimator to compute the state of the system from
the output and a state feedback compensator that computes the input given the
(estimated) state. Compute the loop transfer function for the system and determine
the gain, phase and stability margins for the closed loop dynamics.

10.5 (Vehicle steering) Consider the linearized model for vehicle steering with a
controller based on state feedback discussed in Example 8.4. The transfer functions
for the process and controller are given by

P(s) =
γs+1

s2
, C(s) =

s(k1l1 + k2l2)+ k1l2

s2 + s(γk1 + k2 + l1)+ k1 + l2 + k2l1− γk2l2
,

as computed in Example 9.10. Let the process parameter be γ = 0.5 and assume
that the state feedback gains are k1 = 1 and k2 = 0.914 and that the observer gains
are l1 = 2.828 and l2 = 4. Compute the stability margins numerically.

10.6 (Stability margins for second-order systems) A process whose dynamics is
described by a double integrator is controlled by an ideal PD controller with the
transfer function C(s) = kds+ kp, where the gains are kd = 2ζ ω0 and kp = ω2

0 .
Calculate and plot the gain, phase and stability margins as a function ζ .

10.7 (Congestion control in overload conditions) A strongly simplified flow model
of a TCP loop under overload conditions is given by the loop transfer function

L(s) =
k

s
e−sτ ,

where the queuing dynamics are modeled by an integrator, the TCP window con-
trol is a time delay τ and the controller is simply a proportional controller. A major
difficulty is that the time delay may change significantly during the operation of
the system. Show that if we can measure the time delay, it is possible to choose a
gain that gives a stability margin of sm ≥ 0.6 for all time delays τ .

10.8 (Bode’s formula) Consider Bode’s formula (10.8) for the relation between
gain and phase for a transfer function that has all its singularities in the left half-
plane. Plot the weighting function and make an assessment of the frequencies
where the approximation argG≈ (π/2)d log |G|/d logω is valid.
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10.9 (Padé approximation to a time delay) Consider the transfer functions

G1(s) = e−sτ , G2(s) = e−sτ ≈
1− sτ/2

1+ sτ/2
. (10.16)

Show that the minimum phase properties of the transfer functions are similar for
frequencies ω < 1/τ . A long time delay τ is thus equivalent to a small right half-
plane zero. The approximation (10.16) is called a first-order Padé approximation.

10.10 (Inverse response) Consider a system whose input/output response is mod-
eled by G(s) = 6(−s+1)/(s2 +5s+6), which has a zero in the right half-plane.
Compute the step response for the system, and show that the output goes in the
wrong direction initially, which is also referred to as an inverse response. Com-
pare the response to a minimum phase system by replacing the zero at s = 1 with
a zero at s =−1.

10.11 (Describing function analysis) Consider the system with the block diagram
shown on the left below.

−1

Σ
r e u

P(s)
y

R( ·)

y

u
c

b

The block R is a relay with hysteresis whose input/output response is shown on the
right and the process transfer function is P(s) = e−sτ/s. Use describing function
analysis to determine frequency and amplitude of possible limit cycles. Simulate
the system and compare with the results of the describing function analysis.



Chapter Eleven
PID Control

Based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and

paper industries, 97% of regulatory controllers utilize PID feedback.

L. Desborough and R. Miller, 2002 [DM02].

This chapter treats the basic properties of proportional-integral-derivative (PID)
control and the methods for choosing the parameters of the controllers. We also
analyze the effects of actuator saturation and time delay, two important features of
many feedback systems, and describe methods for compensating for these effects.
Finally, we will discuss the implementation of PID controllers as an example of
how to implement feedback control systems using analog or digital computation.

11.1 Basic Control Functions

PID control, which was introduced in Section 1.5 and has been used in several ex-
amples, is by far the most common way of using feedback in engineering systems.
It appears in simple devices and in large factories with thousands of controllers.
PID controllers appear in many different forms: as stand-alone controllers, as part
of hierarchical, distributed control systems and built into embedded components.
Most PID controllers do not use derivative action, so they should strictly speaking
be called PI controllers; we will, however, use PID as a generic term for this class
of controller. There is also growing evidence that PID control appears in biological
systems [YHSD00].

Block diagrams of closed loop systems with PID controllers are shown in Fig-
ure 11.1. The control signal u for the system in Figure 11.1a is formed entirely
from the error e; there is no feedforward term (which would correspond to krr in
the state feedback case). A common alternative in which proportional and deriva-
tive action do not act on the reference is shown in Figure 11.1b; combinations of
the schemes will be discussed in Section 11.5. The command signal r is called
the reference signal in regulation problems, or the setpoint in the literature of PID
control. The input/output relation for an ideal PID controller with error feedback
is

u = kpe+ ki

∫ t

0
e(τ)dτ + kd

de

dt
= kp

(
e+

1

Ti

∫ t

0
e(τ)dτ +Td

de

dt

)
. (11.1)

The control action is thus the sum of three terms: proportional feedback, the in-
tegral term and derivative action. For this reason PID controllers were originally
called three-term controllers. The controller parameters are the proportional gain



11-2 CHAPTER 11. PID CONTROL

Controller

kp

kds

ki/s

Σ

−1

e
Σ

r u
P(s)

y

(a) PID using error feedback

Controller

kp

kds

ki/sΣ

Σ
u

r

y
P(s)

−1

(b) PID using two degrees of freedom

Figure 11.1: Block diagrams of closed loop systems with ideal PID controllers. Both con-
trollers have one output, the control signal u. The controller in (a), which is based on error
feedback, has one input, the control error e = r− y. For this controller proportional, integral
and derivative action acts on the error e = r−y. The two degree-of-freedom controller in (b)
has two inputs, the reference r and the process output y. Integral action acts on the error, but
proportional and derivative action act on the process output y.

kp, the integral gain ki and the derivative gain kd . The controller can also be pa-
rameterized with the time constants Ti = kp/ki and Td = kd/kp, called integral time
(constant) and derivative time (constant).

The controller (11.1) represents an idealized controller. It is a useful abstrac-
tion for understanding the PID controller, but several modifications must be made
to obtain a controller that is practically useful. Before discussing these practical
issues we will develop some intuition about PID control.

We start by considering pure proportional feedback. Figure 11.2a shows the re-
sponses of the process output to a unit step in the reference value for a system with
pure proportional control at different gain settings. In the absence of a feedforward
term, the output never reaches the reference, and hence we are left with nonzero
steady-state error. Letting the process transfer function be P(s), with proportional
feedback we have C(s) = kp and the transfer function from reference to error is

Ger(s) =
1+ kpP(s)

. (11.2)

Assuming that the closed loop is stable the steady-state error for a unit step is

Ger(0) =
1

1+ kpP(0)
.

For the system in Figure 11.2a with gains kp = 1, 2 and 5, the steady-state error is
0.5, 0.33 and 0.17. The error decreases with increasing gain, but the system also
becomes more oscillatory. The system becomes unstable for kp = 8. Notice in the
figure that the initial value of the control signal equals the controller gain.

To avoid having a steady-state error, the proportional term can be changed to

u(t) = kpe(t)+uff, (11.3)

where uff is a feedforward term that is adjusted to give the desired steady-state
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Figure 11.2: Responses to step changes in the reference value for a system with a propor-
tional controller (a), PI controller (b) and PID controller (c). The process has the transfer
function P(s) = 1/(s+ 1)3, the proportional controller has parameters kp = 1, 2 and 5, the
PI controller has parameters kp = 1, ki = 0, 0.2, 0.5 and 1, and the PID controller has param-
eters kp = 2.5, ki = 1.5 and kd = 0, 1, 2 and 4.

value. If r is constant and we choose uff = r/P(0) = krr, then the steady-state
output will be exactly equal to the reference value, as it was in the state space case,
provided that there are no disturbances. However, this requires exact knowledge
of the process dynamics, which is usually not available. The parameter uff, called
reset in the PID literature, must therefore be adjusted manually.

Another alternative to avoid a steady state error is to multiply the reference by
1+ kpP(0), but this also requires precise knowledge of the steady state gain of the
process.

As we saw in Section 7.4, integral action guarantees that the process output
agrees with the reference in steady-state and provides an alternative to the feed-
forward term. Since this result is so important, we will provide a general proof.
Consider the controller given by equation (11.1) with ki ̸= 0. Assume that u(t)
and e(t) converge to steady-state values u = u0 and e = e0. It then follows from
equation (11.1) that

u0 = kpe0 + ki lim
t→∞

∫ t

0
e(t)dt

The limit of the right hand side is not finite unless e(t) goes to zero which implies
that e0 = 0. We can thus conclude that with integral action the error will be zero
if it reaches a steady state. Notice that we have not assumed that the process is
linear or time invariant. We have, however, assumed that an equilibrium reached.
Analysis based on transfer functions require that the closed loop system is linear
and time invariant.

Using integral action to achieve zero steady-state error is much better than us-
ing feedforward, which requires a precise knowledge of process parameters.
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Figure 11.3: The block diagram in (a) shows how integral action is implemented using posi-

tive feedback with a first-order system, sometimes called automatic reset. The block diagram
in (b) shows how derivative action can be implemented by taking differences between a static
system and a first-order system.

The effect of integral action can also be understood from frequency domain
analysis. The transfer function of the PID controller is

C(s) = kp +
ki

s
+ kds. (11.4)

The controller has infinite gain at zero frequency (C(0) = ∞), and it then follows
from equation (??) that Gyr(0) = 1, which implies that there is no steady-state
error for a step input.

Integral action can also be viewed as a method for generating the feedforward
term uff in the proportional controller (11.3) automatically. This is shown in Fig-
ure 11.3a, where the controller output is low-pass-filtered and fed back with pos-
itive gain. This implementation, called automatic reset, was one of the early in-
ventions of integral control. The transfer function of the system in Figure 11.3a is
obtained by block diagram algebra; we have

Gue = kp
1+ sTi

sTi
= kp +

kp

sTi
,

which is the transfer function for a PI controller.
The properties of integral action are illustrated in Figure 11.2b for a step input.

The proportional gain is constant, kp = 1, and the integral gains are ki = 0, 0.2,
0.5 and 1. The case ki = 0 corresponds to pure proportional control, with a steady-
state error of 50%. The steady-state error is eliminated when integral gain action
is used. The response creeps slowly toward the reference for small values of ki and
goes faster for larger integral gains, but the system also becomes more oscillatory.

The integral gain ki is a useful measure for attenuation of load disturbances.
Consider a closed loop system under PID control, like the one in Figure 9.1. As-
sume that the system is stable and initially at rest with all signals being zero. Apply
a unit step load disturbance at the process input. After a transient the process out-
put goes to zero and the controller output settles at a value that compensates for
the disturbance. Since e(t) goes to zero as t→ ∞ it follows from (11.1) that

u(∞) = ki

∫ ∞

0
e(t)dt.

The integrated error
∫ ∞

0 e(t)dt is thus inversely proportional to the integral gain



11.1. BASIC CONTROL FUNCTIONS 11-5

ki. The integral gain is thus a measure of the effectiveness of disturbance attenua-
tion. A large gain ki attenuates disturbances effectively, but too large a gain gives
oscillatory behavior, poor robustness and possibly instability.

We now return to the general PID controller and consider the effect of the
derivative term kd . Recall that the original motivation for derivative feedback was
to provide predictive or anticipatory action. Notice that the combination of the
proportional and the derivative terms can be written as

u = kpe+ kd
de

dt
= kp

(
e+Td

de

dt

)
= kpep,

where ep(t) can be interpreted as a prediction of the error at time t +Td by linear
extrapolation. The prediction time Td = kd/kp is the derivative time constant of the
controller.

Derivative action can be implemented by taking the difference between the
signal and its low-pass filtered version as shown in Figure 11.3b. The transfer
function for the system is

Gue(s) = k
(

1−
1

1+ sT

)
= k

sT

1+ sT
=

kT s

1+ sT
. (11.5)

The transfer function Gue(s), approximates a derivative for low frequencies, be-
cause for |s|≪ 1/T we have G(s) ≈ kT s. The transfer function Gue acts like a
differentiator for signals with frequencies low frequencies and as a constant gain k
for high frequency signals.

Figure 11.2c illustrates the effect of derivative action: the system is oscillatory
when no derivative action is used, and it becomes more damped as the derivative
gain is increased. Performance deteriorates if the derivative gain is too high. When
the input is a step, the controller output generated by the derivative term will be
an impulse. This is clearly visible in Figure 11.2c. The impulse can be avoided by
using the controller configuration shown in Figure 11.1b.

Although PID control was developed in the context of engineering applications,
it also appears in nature. Disturbance attenuation by feedback in biological sys-
tems is often called adaptation. A typical example is the pupillary reflex discussed
in Example 9.14, where it is said that the eye adapts to changing light intensity.
Analogously, feedback with integral action is called perfect adaptation [YHSD00].
In biological systems proportional, integral and derivative action is generated by
combining subsystems with dynamical behavior similarly to what is done in en-
gineering systems. For example, PI action can be generated by the interaction of
several hormones [ESGK02].

Example 11.1 PD action in the retina
The response of cone photoreceptors in the retina is an example where proportional
and derivative action is generated by a combination of cones and horizontal cells.
The cones are the primary receptors stimulated by light, which in turn stimulate the
horizontal cells, and the horizontal cells give inhibitory (negative) feedback to the
cones. A schematic diagram of the system is shown in Figure 11.4a. The system
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Figure 11.4: Schematic diagram of cone photoreceptors (C) and horizontal cells (H) in the
retina. In the schematic diagram in (a), excitatory feedback is indicated by arrows and in-
hibitory feedback by circles. A block diagram is shown in (b) and the step response in (c).

can be modeled by ordinary differential equations by representing neuron signals
as continuous variables representing the average pulse rate. In [Wil99] it is shown
that the system can be represented by the differential equations

dx1

dt
=

1

Tc
(−x1− kx2 +u),

dx2

dt
=

1

Th
(x1− x2),

where u is the light intensity and x1 and x2 are the average pulse rates from the
cones and the horizontal cells. A block diagram of the system is shown in Fig-
ure 11.4b. The step response of the system shown in Figure 11.4c shows that the
system has a large initial response followed by a lower, constant steady-state re-
sponse typical of proportional and derivative action. The parameters used in the
simulation are k = 4, Tc = 0.025 and Th = 0.08. ∇

11.2 Simple Controllers for Complex Systems

Many of the design methods discussed in previous chapters have the property that
the complexity of the controller is a direct reflection of the complexity of the
model. When designing controllers by output feedback in Chapter 8, we found for
single-input, single-output systems that the order of the controller was the same as
the order of the model, possibly one order higher if integral action was required.
Applying these design methods to PID control will require that the models have to
be of first or second order; see Exercise ??.

Low-order models can be obtained from first principles. Any stable system
can be modeled by a static system if its inputs are sufficiently slow. Similarly a
first-order model is sufficient if the storage of mass, momentum or energy can be
captured by only one variable; typical examples are the velocity of a car on a road,
angular velocity of a stiff rotational system, the level in a tank and the concentra-
tion in a volume with good mixing. System dynamics are of second order if the
storage of mass, energy and momentum can be captured by two state variables;
typical examples are the position of a car on the road (position and velocity), the
stabilization of stiff satellites (angular orientation and angular velocity), the levels
in two connected tanks and two-compartment models. A wide range of techniques
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for model reduction are also available. In this chapter we will focus on design
techniques where we simplify the models to capture the essential properties that
are needed for PID design.

We begin by analyzing the case of integral control. A stable system can be con-
trolled by an integral controller provided that the requirements on the closed loop
system are modest. To design the controller we assume that the transfer function
of the process is a constant K = P(0). The loop transfer function under integral
control then becomes Kki/s, and the closed loop characteristic polynomial is sim-
ply s+Kki. Specifying performance by the desired time constant Tcl of the closed
loop system, we find that the integral gain is given by

ki =
1

TclP(0)
.

The analysis requires that Tcl be sufficiently large that the process transfer function
can be approximated by a constant.

For systems that are not well represented by a constant gain, we can obtain
a better approximation by using the Taylor series expansion of the loop transfer
function:

L(s) =
kiP(s)

s
≈

ki(P(0)+ sP′(0))

s
= kiP

′(0)+
kiP(0)

s
.

Choosing kiP
′(0) =−0.5 gives a system with good robustness, as will be discussed

in Section 13.5. The controller gain is then given by

ki =−
1

2P′(0)
, (11.6)

and the expected closed loop time constant is Tcl ≈−P′(0)/P(0).

Example 11.2 Integral control of AFM in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force
microscope in tapping mode was discussed in Exercise 10.2. The transfer function
for the system dynamics is

P(s) =
a(1− e−sτ)

sτ(s+a)
,

where a = ζ ω0, τ = 2πn/ω0 and the gain has been normalized to 1. We have
P(0) = 1 and P′(0) =−τ/2−1/a, and it follows from (11.6) that the integral gain
can be chosen as ki = a/(2+ aτ). Nyquist and Bode plots for the resulting loop
transfer function are shown in Figure 11.5. ∇

A first-order system has the transfer function

P(s) =
b

s+a
.

With a PI controller the closed loop system has the characteristic polynomial

s(s+a)+bkps+bki = s2 +(a+bkp)s+bki.
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Figure 11.5: Integral control for AFM in tapping mode. An integral controller is designed
based on the slope of the process transfer function at 0. The controller gives good robustness
properties based on a very simple analysis.

The closed loop poles can thus be assigned arbitrary values by proper choice of
the controller gains kp and ki. We illustrate the by an example.

Example 11.3 Cruise control using PI feedback
Consider the problem of maintaining the speed of a car as it goes up a hill. In
Example 6.14 we found that there was little difference between the linear and non-
linear models when investigating PI control, provided that the throttle did not reach
the saturation limits. A simple linear model of a car was given in Example 6.11:

d(v− ve)

dt
=−a(v− ve)+b(u−ue)−gθ , (11.7)

where v is the velocity of the car, u is the input from the engine throttle and θ
is the slope of the hill. The parameters were a = 0.0101, b = 1.3203, g = 9.8,
ve = 20 and ue = 0.1616. This model will be used to find suitable parameters of
a vehicle speed controller. The transfer function from throttle to velocity is a first-
order system. Since the open loop dynamics is so slow (1/a ≈ 100 sec.) , it is
natural to specify a faster closed loop system by requiring that the closed loop
system be of second-order with damping ratio ζ and undamped natural frequency
ω0. The controller gains are given by equation (??).

Figure 11.6 shows the velocity and the throttle for a car that initially moves
on a horizontal road and encounters a hill with a slope of 4◦ at time t = 6 s. To
design a PI controller we choose ζ = 1 to obtain a response without overshoot, as
shown in Figure 11.6a. The choice of ω0 is a compromise between response speed
and control actions: a large value gives a fast response, but it requires fast con-
trol action. The trade-off is illustrated in Figure 11.6b. The largest velocity error
decreases with increasing ω0, but the control signal also changes more rapidly. In
the simple model (11.7) it was assumed that the force responds instantaneously to
throttle commands. For rapid changes there may be additional dynamics that have
to be accounted for. There are also physical limitations to the rate of change of the
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Figure 11.6: Cruise control using PI feedback. The step responses for the error and input
illustrate the effect of parameters ζ = 1 and ω0 on the response of a car with cruise control.
The slope of the road changes linearly from 0◦ to 4◦ between t = 5 and 6 s. (a) Responses
for ω0 = 0.5 and ζ = 0.5, 1 and 2. Choosing ζ = 1 gives no overshoot in v. (b) Responses
for ζ = 1 and ω0 = 0.2, 0.5 and 1.0.

force, which also restricts the admissible value of ω0. A reasonable choice of ω0

is in the range 0.5–1.0. Notice in Figure 11.6 that even with ω0 = 0.2 the largest
velocity error is only 1 m/s. ∇

A PI controller can also be used for a process with second-order dynamics, but
there will be restrictions on the possible locations of the closed loop poles. Using
a PID controller, it is possible to control a system of second order in such a way
that the closed loop poles have arbitrary locations; see Exercise 11.2.

Instead of finding a low-order model and designing controllers for them, we
can also use a high-order model and attempt to place only a few dominant poles.
An integral controller has one parameter, and it is possible to position one pole.
Consider a process with the transfer function P(s). The loop transfer function with
an integral controller is L(s) = kiP(s)/s. The roots of the closed loop characteristic
polynomial are the roots of s+ kiP(s) = 0. Requiring that s = −a be a root, the
controller gain should be chosen as

ki =
a

P(−a)
. (11.8)

The pole s = −a will be a dominant closed-loop pole if a is small. A similar
approach can be applied to PI and PID controllers; see Exercise 11.3.
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Figure 11.7: Ziegler–Nichols step and frequency response experiments. The open-loop unit
step response in (a) is characterized by the parameters a and τ . The frequency response
method (b) characterizes process dynamics by the point where the Nyquist curve of the
process transfer function first intersects the negative real axis and the frequency ωc where
this occurs.

11.3 PID Tuning

Users of control systems are frequently faced with the task of adjusting the con-
troller parameters to obtain a desired behavior. There are many different ways to
do this. One approach is to go through the conventional steps of modeling and
control design as described in the previous section. Since the PID controller has
so few parameters, a number of special empirical methods have also been devel-
oped for direct adjustment of the controller parameters. The first tuning rules were
developed by Ziegler and Nichols [ZN42]. Their idea was to perform a simple
experiment, extract some features of process dynamics from the experiment and
determine the controller parameters from the features.

Ziegler–Nichols’ Tuning

In the 1940s, Ziegler and Nichols developed two methods for controller tuning
based on simple characterization of process dynamics in the time and frequency
domains.

The time domain method is based on a measurement of part of the open loop
unit step response of the process, as shown in Figure 11.7a. The step response is
measured by a bump test. The process is first brought to steady-state, the input is
then changed by a suitable amount, the output is measured and scaled to corre-
spond to a unit step input. Newton and Ziegler characterized the step response by
only two parameters a and τ , which are the intercepts of the steepest tangent of the
step response with the coordinate axes. The parameter τ is an approximation of the
time delay of the system and a/τ is the steepest slope of the step response. Notice
that it is not necessary to wait until steady state is reached to be able to determine
the parameters, it suffices to wait until the response has had an inflection point.
The suggested controller parameters are given in Table 11.1. They were obtained
by extensive simulation of a range of representative processes. A controller was
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Table 11.1: Ziegler–Nichols tuning rules. (a) The step response methods give the parameters
in terms of the intercept a and the apparent time delay τ . (b) The frequency response method
gives controller parameters in terms of critical gain kc and critical period Tc.

Type kp Ti Td

P 1/a

PI 0.9/a 3τ

PID 1.2/a 2τ 0.5τ

(a) Step response method

Type kp Ti Td

P 0.5kc

PI 0.4kc 0.8Tc

PID 0.6kc 0.5Tc 0.125Tc

(b) Frequency response method

tuned manually for each process, and an attempt was then made to correlate the
controller parameters with a and τ .

In the frequency domain method, a controller is connected to the process, the
integral and derivative gains are set to zero and the proportional gain is increased
until the system starts to oscillate. The critical value of the proportional gain kc

is observed together with the period of oscillation Tc. It follows from Nyquist’s
stability criterion that the loop transfer function L = kcP(s) intersects the critical
point at the frequency ωc = 2π/Tc. The experiment thus gives the point on the
Nyquist curve of the process transfer function where the phase lag is 180◦, as
shown in Figure 11.7b.

The Ziegler–Nichols methods had a huge impact when they were introduced
in the 1940s. The rules were simple to use and gave initial conditions for manual
tuning. The ideas were adopted by manufacturers of controllers for routine use.
The Ziegler–Nichols tuning rules unfortunately have two severe drawbacks: too
little process information is used, and the closed loop systems that are obtained
lack robustness.

The step response method can be improved significantly by characterizing the
unit step response by the FOTD (First Order and Time Delay) model

P(s) =
K

1+ sT
e−τs. (11.9)

This model is commonly used to approximate the step response of systems with
monotone step responses. The parameters of the model are be obtained from a
bump test as indicated in Figure 11.7a. The zero frequency gain K is the steady-
state value of the unit step response. The time delay τ is the intercept of the steepest
tangent with the time axis, as in the Ziegler-Nichols method. The time T63 is the
time where the output has reached 63% of its steady-state value and T is then given
by T = T63− τ . Notice that it takes longer time to find an FOTD model than the
Ziegler-Nichols model (a and τ) because to determine K it is necessary to wait
until the steady state has been reached, see Figure 11.7a

The frequency response method can be improved by measuring more points on
the Nyquist curve, e.g., the zero frequency gain K or the point where the process
has a 90◦ phase lag. This latter point can be obtained by connecting an integral
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Figure 11.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step responses (b)
for PI control of the vertical motion of an atomic force microscope in tapping mode. Results
with Ziegler–Nichols tuning are shown by dashed lines, and modified Ziegler–Nichols tuning
is shown by solid lines. The Nyquist plot of the process transfer function is shown by dotted
lines.

controller and increasing its gain until the system reaches the stability limit. The
experiment can also be automated by using relay feedback, as will be discussed
later in this section.

There are many versions of improved tuning rules. As an illustration we give
the following rules for PI control, based on [ÅH05]:

kp =
0.15τ +0.35T

Kτ

(0.9T

Kτ

)
, ki =

0.46τ +0.02T

Kτ2

(0.3T

Kτ2

)
, (11.10a)

kp = 0.22kc−
0.07

K

(
0.4kc

)
, ki =

0.16kc

Tc
+

0.62

KTc

(0.5kc

Tc

)
. (11.10b)

The values for the Ziegler–Nichols rule from Table 11.2a are given in parenthe-
ses. Notice that the improved formulas typically give lower controller gains than
the Ziegler–Nichols method. The integral gain is higher for systems where the
dynamics are delay-dominated, τ ≫ T .

Example 11.4 Atomic force microscope in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force
microscope in tapping mode was discussed in Example 11.2. The transfer function
is normalized by choosing 1/a as the time unit, yielding

P(s) =
1− e−sTn

sTn(s+1)
,

where Tn = 2nπa/ω0 = 2nπζ . The Nyquist plot of the transfer function is shown
(dotted line) in Figure 11.8a for ζ = 0.002 and n = 20. The first intersection with
the real axis occurs at Res = −0.0461 for ωc = 13.1. The critical gain is thus
kc = 21.7 and the critical period is Tc = 0.48. Using the Ziegler–Nichols tuning
rule, we find the parameters kp = 8.87 and ki = 22.6 (Ti = 0.384) for a PI controller.
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Figure 11.9: Block diagram of a process with relay feedback (a) and typical signals (b). The
process output y is a solid line, and the relay output u is a dashed line. Notice that the signals
u and y have opposite phases.

With this controller the stability margin is sm = 0.31, which is quite small. The
step response of the controller is shown (dashed lines) in Figure 11.8. Notice in
particular that there is a large overshoot in the control signal.

The modified Ziegler–Nichols rule (11.10b) gives the controller parameters
kp = 3.47 and ki = 8.73 (Ti = 0.459) and the stability margin becomes sm = 0.61.
The step response with this controller is shown in Figure 11.8. A comparison of the
responses obtained with the original Ziegler–Nichols rule shows that the overshoot
has been reduced. Notice that the control signal reaches its steady-state value al-
most instantaneously. It follows from Example 11.2 that a pure integral controller
has the normalized gain ki = 1/(2+ Tn) = 0.44 which is more than an order of
magnitude smaller than the integral gain of the PI controller.. ∇

Relay Feedback

The Ziegler–Nichols frequency response method increases the gain of a propor-
tional controller until oscillation to determine the critical gain kc and the corre-
sponding critical period Tc or, equivalently, the point where the Nyquist curve in-
tersects the negative real axis. One way to obtain this information automatically
is to connect the process in a feedback loop with a nonlinear element having a
relay function as shown in Figure 11.9a. For many systems there will then be an
oscillation, as shown in Figure 11.9b, where the relay output u is a square wave
and the process output y is close to a sinusoid. Moreover, the fundamental sinu-
soidal components of the input and the output are 180◦ out of phase, which means
that the system oscillates with the critical period Tc. Notice that an oscillation with
constant period is established quickly.

To determine the critical gain kc we expand the square wave relay output in a
Fourier series. Notice in the figure that the process output is practically sinusoidal
because the process attenuates higher harmonics effectively. It is then sufficient
to consider only the first harmonic component of the input. Letting d be the relay
amplitude, the first harmonic of the square wave input has amplitude 4d/π . If a
is the amplitude of the process output, the process gain at the critical frequency
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ωc = 2π/Tc is |P(iωc)|= πa/(4d) and the critical gain is

kc =
4d

aπ
. (11.11)

Having obtained the critical gain kc and the critical period Tc, the controller pa-
rameters can then be determined using the Ziegler–Nichols rules. Improved tuning
can be obtained by fitting a model to the data obtained from the relay experiment.

The relay experiment can be automated. Since the amplitude of the oscillation
is proportional to the relay output, it is easy to control it by adjusting the relay
output. Automatic tuning based on relay feedback is used in many commercial PID
controllers. Tuning is accomplished simply by pushing a button that activates relay
feedback. The relay amplitude is automatically adjusted to keep the oscillations
sufficiently small, and the relay feedback is replaced by a PID controller as soon
as the tuning is finished.

11.4 Integrator Windup

Many aspects of a control system can be understood from linear models. There are,
however, some nonlinear phenomena that must be taken into account. These are
typically limitations in the actuators: a motor has limited speed, a valve cannot be
more than fully opened or fully closed, etc. For a system that operates over a wide
range of conditions, it may happen that the control variable reaches the actuator
limits. When this happens, the feedback loop is broken and the system runs in
open loop because the actuator remains at its limit independently of the process
output as long as the actuator remains saturated. The integral term will also build
up since the error is typically nonzero. The integral term and the controller output
may then become very large. The control signal will then remain saturated even
when the error changes, and it may take a long time before the integrator and the
controller output come inside the saturation range. The consequence is that there
are large transients. This situation is referred to as integrator windup, illustrated in
the following example.

Example 11.5 Cruise control
The windup effect is illustrated in Figure 11.10a, which shows what happens when
a car encounters a hill that is so steep (6◦) that the throttle saturates when the cruise
controller attempts to maintain speed. When encountering the slope at time t = 5,
the velocity decreases and the throttle increases to generate more torque. However,
the torque required is so large that the throttle saturates. The error decreases slowly
because the torque generated by the engine is just a little larger than the torque
required to compensate for gravity. The error is large and the integral continues
to build up until the error reaches zero at time 30, but the controller output is still
larger than the saturation limit and the actuator remains saturated. The integral
term starts to decrease, and the velocity settles to the desired value at time t = 40.
Also notice the large overshoot. ∇
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(b) Anti-windup

Figure 11.10: Simulation of PI cruise control with windup (a) and anti-windup (b). The
figure shows the speed v and the throttle u for a car that encounters a slope that is so steep that
the throttle saturates. The controller output is a dashed line. The controller parameters are
kp = 0.5 and ki = 0.1. The anti-windup compensator eliminates the overshoot by preventing
the error for building up in the integral term of the controller.

There are many methods to avoid windup. One method is illustrated in Fig-
ure 11.11: the system has an extra feedback path that is generated by measuring
the actual actuator output, or the output of a mathematical model of the saturating
actuator, and forming an error signal es as the difference between the output of
the controller v and the actuator output u. The signal es is fed to the input of the
integrator through gain kt . The signal es is zero when there is no saturation and the
extra feedback loop has no effect on the system. When the actuator saturates, the
signal es is fed back to the integrator in such a way that es goes toward zero. This
implies that controller output is kept close to the saturation limit. The controller
output will then change as soon as the error changes sign and integral windup is
avoided.

The rate at which the controller output is reset is governed by the feedback
gain kt ; a large value of kt gives a short reset time. The parameter kt cannot be too
large because measurement noise can then cause an undesirable reset. A reasonable
choice is to choose kt as a multiple of 1/Ti = ki/kp.

The anti-windup scheme in Figure 11.11 assumes that the actuator output is
available to the controller, when this is not the case we will instead use a model of
the actuator as will be done in Section 11.5.

We illustrate how integral windup can be avoided by investigating the cruise
control system.

Example 11.6 Cruise control with anti-windup
Figure 11.10b shows what happens when a controller with anti-windup is applied
to the system simulated in Figure 11.10a. Because of the feedback from the ac-
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Figure 11.11: PID controller with a filtered derivative and anti-windup. The input to the
integrator (1/s) consists of the error term plus a “reset” based on input saturation. If the
actuator is not saturated, then es = u−ν , otherwise es will decrease the integrator input to
prevent windup.

tuator model, the output of the integrator is quickly reset to a value such that
the controller output is at the saturation limit. The behavior is drastically differ-
ent from that in Figure 11.10a and the large overshoot is avoided. The tracking
gain used in the simulation is kt = 2 which is an order of magnitude larger than
1/Ti = ki/kp = 0.2. ∇

Manual Control

Automatic control is often combined with manual control. This can be accom-
plished by providing the controller with a switch from manual to automatic. Man-
ual control is typically actuated using buttons for increasing and decreasing the
control signal. The control signal increases at constant rate when pushing the in-
crease button and it decreases at constant rate when the decrease button is pushed.
There are more sophisticated schemes where the rate increases when the switch is
pushed a longer time, like the search mechanism in an iPod.

Care has to be taken to avoid transients when switching modes. This can be
accomplished by the arrangement shown in Figure 11.12 where the integrator for
the PI controller is used both for manual and automatic control. In automatic mode
(A) the switch S connects the error signal to the input of the integrator. In manual
mode (M) the switch disconnects the error signal and connects the integral to the
increase-decrease buttons in manual mode. The switching transients will be small
since the output of the integrator is the same in manual and automatic mode. There
proportional term will create a switching transient if the error e is not zero when
the mode is changed.

Controller with a Tracking Mode

When continuous control is combined with logic it is important that the controller
state is handled properly when switching modes. In the controller with manual
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Figure 11.12: Block diagram of a PI controller that can switch between manual and auto-
matic control. Automatic mode is indicated by A and manual mode by M. Manual control is
executed by the buttons marked + and − which increase or decrease the control signal.

and automatic control in Figure 11.12 the problem was solved by using the same
integrator for manual and automatic control. This ensures that there will be no
switching transients. A general approach is to introduce a tracking mode in the
controller.

A block diagram of a controller with a tracking mode is shown in Figure 11.13.
The controller has modes for automatic control and tracking, selected by a switch.
In the automatic control mode (A) the controller works as a normal controller
which generates the control signal u from the reference r and the process output
y. The controller has two degrees of freedom and is governed by the differential
equation

a(p)u(t) = b(p)r(t)− c(p)y(t). (11.12)

In tracking mode (T) the output u of the controller is equal to the tracking signal w
and the behavior is governed by the differential equation

ao(p)z(t) = b(p)r(t)− c(p)y(t)+
(
ao(p)−a(p)

)
u(t), (11.13)

where the polynomial ao(s) is stable, monic, and of the same degree as a(s). If the
controller has integral action we have

a(0) = 0, b(0) = c(0), ao(0) ̸= 0.

In steady state where all signals are constant we have w = u. The controller can

b(s)

ao(s)

−
c(s)

ao(s)

ao(s)−a(s)

ao(s)

Σ
r

y

z

A

T
u

w

Figure 11.13: Block diagram of a controller with a tracking mode. The controller has three
continuous input signals: reference r, process output y and tracking signal w, and a switch
for selecting automatic A control or tracking T .
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then be switched to automatic mode without transients. The polynomial ao(s) de-
termines how quickly the state is reached. By continuity we have w(t) ≈ u(t) for
slowly varying signals.

When the controller is switched to automatic we set z = u and equation (11.13)
becomes

ao(p)u(t) = b(p)r(t)− c(p)y(t)+
(
ao(p)−a(p)

)
u(t),

which is identical to (11.12). We will illustrate with an example.

Example 11.7 PI controller with tracking mode
A PI controller with two degrees of freedom has the input/output relation

u(t) = kp

(
β r(t)− y(t)

)
+ ki

∫ t

0

(
r(τ)− y(τ)

)
dτ ,

which is equivalent to the differential equation

du

dt
=
(

kpβ
dr

dt
+ kir

)
−
(

kp
dy

dt
+ kiy

)
.

In tracking mode the controller is described by

dz

dt
+aoz =

(
kpβ

dr

dt
+ r
)
−
(

kp
dy

dt
+ kiy

)
+aou

(see Figure 11.13). A convenient way to combine automatic and tracking mode is
to represent the controller as

dz

dt
=
(

kpβ
dr

dt
+ r
)
−
(

kp
dy

dt
+ kiy

)
+ao(u− z)

u =

{
z automatic mode

w tracking mode
.

In this representation the controller is a first order system with one state z whose
dynamics has the characteristic polynomial s+ ao. In automatic mode the con-
troller output is equal to the state z. In the tracking mode the output is equal to the
external tracking signal w and the controller state z tracks the signal w. ∇

11.5 Implementation

There are many practical issues that have to be considered when implementing PID
controllers. They have been developed over time based on practical experience. In
this section we consider some of the most common. Similar considerations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivative has high gain for
high-frequency signals. This means that high-frequency measurement noise will
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generate large variations in the control signal. The effect of measurement noise
may be reduced by replacing the term kds by kds/(1+ sTf ), which can be inter-
preted as an ideal derivative of a low-pass filtered signal. The time constant of the
filter is typically chosen as Tf = (kd/kp)/N = Td/N, with N in the range 5–20.
Filtering is obtained automatically if the derivative is implemented by taking the
difference between the signal and its filtered version as shown in Figure 11.3b; see
also equation (11.5)).

Instead of filtering just the derivative, it is also possible to use an ideal con-
troller and filter the measured signal. Choosing a second order Butterworth filter
the transfer function the controller with the filter becomes

C(s) = kp

(
1+

1

sTi
+ sTd

)
1

1+ sTf +(sTf )2/2
. (11.14)

Setpoint Weighting

Figure 11.1 shows two configurations of a PID controller. The system in Fig-
ure 11.1a has a controller with error feedback where proportional, integral and
derivative action acts on the error. In the simulation of PID controllers in Fig-
ure 11.2c there is a large initial peak in the control signal, which is caused by the
derivative of the reference signal. The peak can be avoided by using the controller
in Figure 11.1b, where proportional and derivative action acts only on the process
output. An intermediate form is given by

u = kp

(
β r− y

)
+ ki

∫ t

0

(
r(τ)− y(τ)

)
dτ + kd

(
γ

dr

dt
−

dy

dt

)
, (11.15)

where the proportional and derivative actions act on fractions β and γ of the ref-
erence. Integral action has to act on the error to make sure that the error goes to
zero in steady state. The closed loop systems obtained for different values of β
and γ respond to load disturbances and measurement noise in the same way. The
response to reference signals is different because it depends on the values of β and
γ , which are called reference weights or setpoint weights. We illustrate the effect
of setpoint weighting by an example.

Example 11.8 Cruise control with setpoint weighting
Consider the PI controller for the cruise control system derived in Example 11.3.
Figure 11.14 shows the effect of setpoint weighting on the response of the system
to a reference signal. With β = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to the saturation limit. There is no
overshoot with β = 0 and the control signal is much smaller, clearly a much better
drive comfort. The frequency responses gives another view of the same effect. The
parameter β is typically in the range 0–1, and γ is normally zero to avoid large
transients in the control signal when the reference is changed. ∇

The controller given by equation (11.15) is a special case of the general con-
troller structure having two degrees of freedom, which was discussed in Sec-
tion 8.5.
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Figure 11.14: Time and frequency responses for PI cruise control with setpoint weighting.
Step responses are shown in (a), and the gain curves of the frequency responses in (b). The
controller gains are kp = 0.74 and ki = 0.19. The setpoint weights are β = 0, 0.5 and 1, and
γ = 0.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different technologies. Figure 11.15
shows how PI and PID controllers can be implemented by feedback around oper-
ational amplifiers.

To show that the circuit in Figure 11.15b is a PID controller we will use the
approximate relation between the input voltage e and the output voltage u of the
operational amplifier derived in Example 9.3,

u =−
Z2

Z1
e.

In this equation Z1 is the impedance between the negative input of the amplifier

−

+

R1 R C2 2

e

u

(a) PI controller

−

+

R1 R C2 2

C1

e

u

(b) PID controller

Figure 11.15: Schematic diagrams for PI and PID controllers using op amps. The circuit in
(a) uses a capacitor in the feedback path to store the integral of the error. The circuit in (b)
adds a filter on the input to provide derivative action.
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and the input voltage e, and Z2 is the impedance between the zero input of the
amplifier and the output voltage u. The impedances are given by

Z1(s) =
R1

1+R1C1s
, Z2(s) = R2 +

1

C2s
,

and we find the following relation between the input voltage e and the output volt-
age u:

u =−
Z2

Z1
e =−

R2

R1

(1+R1C1s)(1+R2C2s)

R2C2s
e.

This is the input/output relation for a PID controller of the form (11.1) with pa-
rameters

kp =
R1C1 +R2C2

R1C2
, Ti = R1C1 +R2C2, Td =

R1R2C1C2

R1C1 +R2C2
.

The corresponding results for a PI controller are obtained by setting C1 = 0 (re-
moving the capacitor).

Computer Implementation

In this section we briefly describe how a PID controller may be implemented us-
ing a computer. The computer typically operates periodically, with signals from
the sensors sampled and converted to digital form by the A/D converter, and the
control signal computed and then converted to analog form for the actuators. The
sequence of operation is as follows:

1. Wait for clock interrupt

2. Read input from sensor

3. Compute control signal

4. Send output to the actuator

5. Update controller state

6. Repeat

Notice that an output is sent to the actuators as soon as it is available. The time
delay is minimized by making the calculations in step 3 as short as possible and
performing all updates after the output is commanded. This simple way of reducing
the latency is, unfortunately, seldom used in commercial systems.

As an illustration we consider the PID controller in Figure 11.11, which has
a filtered derivative, setpoint weighting and protection against integral windup
(anti-windup). The controller is a continuous-time dynamical system. To imple-
ment it using a computer, the continuous-time system has to be approximated by a
discrete-time system.

In Figure 11.11, the signal v is the sum of the proportional, integral and deriva-
tive terms, and the controller output is u = sat(v), where sat is the saturation func-
tion that models the actuator. The proportional term P= kp(β r−y) is implemented
simply by replacing the continuous variables with their sampled versions. Hence

P(tk) = kp (β r(tk)− y(tk)) , (11.16)

where {tk} denotes the sampling instants, i.e., the times when the computer reads
its input. We let h represent the sampling time, so that tk+1 = tk + h. The integral
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term is obtained by approximating the integral with a sum,

I(tk+1) = I(tk)+ kihe(tk)+
h

Tt

(
sat(v)− v

)
, (11.17)

where Tt = h/kt represents the anti-windup term. The filtered derivative term D is
given by the differential equation

Tf
dD

dt
+D =−kdẏ.

Approximating the derivative with a backward difference gives

Tf
D(tk)−D(tk−1)

h
+D(tk) =−kd

y(tk)− y(tk−1)

h
,

which can be rewritten as

D(tk) =
Tf

Tf +h
D(tk−1)−

kd

Tf +h
(y(tk)− y(tk−1)) . (11.18)

The advantage of using a backward difference is that the parameter Tf /(Tf + h)
is nonnegative and less than 1 for all h > 0, which guarantees that the difference
equation is stable. Reorganizing equations (11.16)–(11.18), the PID controller can
be described by the following pseudocode:

% Precompute controller coefficients

bi=ki*h

ad=Tf/(Tf+h)

bd=kd/(Tf+h)

br=h/Tt

% Control algorithm - main loop

while (running) {

r=adin(ch1) % read setpoint from ch1

y=adin(ch2) % read process variable from ch2

P=kp*(b*r-y) % compute proportional part

D=ad*D-bd*(y-yold) % compute derivative part

v=P+I+D % compute temporary output

u=sat(v,ulow,uhigh) % simulate actuator saturation

daout(ch1) % set analog output ch1

I=I+bi*(r-y)+br*(u-v) % update integral state

yold=y % update derivative state

sleep(h) % wait until next update interval

}

Precomputation of the coefficients bi, ad, bd and br saves computer time in
the main loop. These calculations have to be done only when controller parameters
are changed. The main loop is executed once every sampling period. The program
has three states: yold, I, and D. One state variable can be eliminated at the cost
of less readable code. The latency between reading the analog input and setting
the analog output consists of four multiplications, four additions and evaluation
of the sat function. All computations can be done using fixed-point calculations
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if necessary. Notice that the code computes the filtered derivative of the process
output and that it has setpoint weighting and anti-windup protection.

11.6 Further Reading

The history of PID control is very rich and stretches back to the beginning of the
foundation of control theory. Very readable treatments are given by Bennett [Ben79,
Ben93] and Mindel [Min02]. The Ziegler–Nichols rules for tuning PID controllers,
first presented in 1942 [ZN42], were developed based on extensive experiments
with pneumatic simulators and Vannevar Bush’s differential analyzer at MIT. An
interesting view of the development of the Ziegler–Nichols rules is given in an in-
terview with Ziegler [Bli90]. An industrial perspective on PID control is given in
[Bia95], [Shi96] and [YH91] and in the paper [DM02] cited in the beginning of this
chapter. A comprehensive presentation of PID control is given in [ÅH05]. Interac-
tive learning tools for PID control can be downloaded from http://www.calerga.com/contrib.

Exercises

11.1 (Ideal PID controllers) Consider the systems represented by the block dia-
grams in Figure 11.1. Assume that the process has the transfer function P(s) =
b/(s+a) and show that the transfer functions from r to y are

(a) Gyr(s) =
bkds2 +bkps+bki

(1+bkd)s2 +(a+bkp)s+bki
,

(b) Gyr(s) =
bki

(1+bkd)s2 +(a+bkp)s+bki
.

Pick some parameters and compare the step responses of the systems.

11.2 Consider a second-order process with the transfer function

P(s) =
b

s2 +a1s+a2
.

The closed loop system with a PI controller is a third-order system. Show that
it is possible to position the closed loop poles as long as the sum of the poles
is −a1. Give equations for the parameters that give the closed loop characteristic
polynomial

(s+α0)(s
2 +2ζ0ω0s+ω2

0 ).

11.3 Consider a system with the transfer function P(s) = (s+ 1)−2. Find an in-
tegral controller that gives a closed loop pole at s = −a and determine the value
of a that maximizes the integral gain. Determine the other poles of the system

http://www.calerga.com/contrib
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and judge if the pole can be considered dominant. Compare with the value of the
integral gain given by equation (11.6).

11.4 (Ziegler–Nichols tuning) Consider a system with transfer function P(s) =
e−s/s. Determine the parameters of P, PI and PID controllers using Ziegler–Nichols
step and frequency response methods. Compare the parameter values obtained by
the different rules and discuss the results.

11.5 (Vehicle steering) Design a proportional-integral controller for the vehicle
steering system that gives the closed loop characteristic polynomial

s3 +2ω0s2 +2ω0s+ω3
0 .

11.6 (Congestion control) A simplified flow model for TCP transmission is de-
rived in [HMTG00, LPD02]. The linearized dynamics are modeled by the transfer
function

Gqp(s) =
b

(s+a1)(s+a2)
e−sτe ,

which describes the dynamics relating the expected queue length q to the ex-
pected packet drop p. The parameters are given by a1 = 2N2/(cτ2

e ), a2 = 1/τe

and b = c2/(2N). The parameter c is the bottleneck capacity, N is the number of
sources feeding the link and τe is the round-trip delay time. Use the parameter val-
ues N = 75 sources, C = 1250 packets/s and τe = 0.15 and find the parameters of
a PI controller using one of the Ziegler–Nichols rules and the corresponding im-
proved rule. Simulate the responses of the closed loop systems obtained with the
PI controllers.

11.7 (Motor drive) Consider the model of the motor drive in Exercise 3.10. De-
velop an approximate second-order model of the system and use it to design an
ideal PD controller that gives a closed loop system with eigenvalues in ζ ω0 ±
iω0

√
1−ζ 2. Add low-pass filtering as shown in equation (11.14) and explore

how large ω0 can be made while maintaining a good stability margin. Simulate
the closed loop system with the chosen controller and compare the results with the
controller based on state feedback in Exercise 7.12.

11.8 Consider the system in Exercise 11.7 investigate what happens if the second-
order filtering of the derivative is replace by a first-order filter.

11.9 (Tuning rules) Apply the Ziegler–Nichols and the modified tuning rules to
design PI controllers for systems with the transfer functions

P1 =
e−s

s
, P2 =

e−s

s+1
, P3 = e−s.

Compute the stability margins and explore any patterns.

11.10 (Windup and anti-windup) Consider a PI controller of the form C(s) =
1 + 1/s for a process with input that saturates when |u| > 1, and whose linear
dynamics are given by the transfer function P(s) = 1/s. Simulate the response of
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the system to step changes in the reference signal of magnitude 1, 2 and 3. Repeat
the simulation when the windup protection scheme in Figure 11.11 is used.

11.11 (Windup protection by conditional integration) Many methods have been
proposed to avoid integrator windup. One method called conditional integration
is to update the integral only when the error is sufficiently small. To illustrate this
method we consider a system with PI control described by

dx1

dt
= u, u = satu0(kpe+ kix2),

dx2

dt
=

{
e if |e|< e0

0 if |e|≥ e0,

where e = r− x. Plot the phase portrait of the system for the parameter values
kp = 1, ki = 1, u0 = 1 and e0 = 1 and discuss the properties of the system. The ex-
ample illustrates the difficulties of introducing ad hoc nonlinearities without care-
ful analysis.





Chapter Twelve
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with sensitivity deteriora-

tions in another frequency range, and the price is higher if the plant is open-loop unstable.

This applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [Ste03].

In this chapter we continue to explore the use of frequency domain techniques
with a focus on the design of feedback systems. We begin with a more thorough de-
scription of the performance specifications for control systems and then introduce
the concept of “loop shaping” as a mechanism for designing controllers in the fre-
quency domain. We also introduce some fundamental limitations to performance
for systems with time delays and right half-plane poles and zeros.

12.1 Sensitivity Functions

In the previous chapter, we considered the use of proportional-integral-derivative
(PID) feedback as a mechanism for designing a feedback controller for a given
process. In this chapter we will expand our approach to include a richer repertoire
of tools for shaping the frequency response of the closed loop system.

One of the key ideas in this chapter is that we can design the behavior of the
closed loop system by focusing on the open loop transfer function. This same ap-
proach was used in studying stability using the Nyquist criterion: we plotted the
Nyquist plot for the open loop transfer function to determine the stability of the
closed loop system. From a design perspective, the use of loop analysis tools is
very powerful: since the loop transfer function is L = PC, if we can specify the
desired performance in terms of properties of L, we can directly see the impact of
changes in the controller C. This is much easier, for example, than trying to rea-
son directly about the tracking response of the closed loop system, whose transfer
function is given by Gyr = PC/(1+PC).

We will start by investigating some key properties of the feedback loop. A block
diagram of a basic feedback loop is shown in Figure 12.1. The system loop is com-
posed of two components: the process and the controller. The controller itself has
two blocks: the feedback block C and the feedforward block F . There are two
disturbances acting on the process, the load disturbance v and the measurement
noise w. The load disturbance represents disturbances that drive the process away
from its desired behavior, while the measurement noise represents disturbances
that corrupt information about the process given by the sensors. For example in
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Figure 12.1: Block diagram of a basic feedback loop with two degrees of freedom. The
controller has a feedback block C and a feedforward block F . The external signals are the
reference signal r, the load disturbance v and the measurement noise w. The process output
is η , and the control signal is u.

cruise control the major load disturbance is changes in the slope of the road and
measurement noise is caused by the electronics that convert pulses measured on
a rotating shaft to a velocity signal. The load disturbances typically have low fre-
quencies, lower than the servo bandwidth, while measurement noise typically has
higher frequencies. In the figure, the load disturbance is assumed to act on the
process input. This is a simplification since disturbances often enter the process in
many different ways, but it allows us to streamline the presentation without signif-
icant loss of generality.

The process output η is the real variable that we want to control. Control is
based on the measured signal y, where the measurements are corrupted by mea-
surement noise w. The process is influenced by the controller via the control vari-
able u. The process is thus a system with three inputs—the control variable u, the
load disturbance v and the measurement noise w—and one output—the measured
signal y. The controller is a system with two inputs and one output. The inputs
are the measured signal y and the reference signal r, and the output is the control
signal u. Note that the control signal u is an input to the process and the output of
the controller, and that the measured signal y is the output of the process and an
input to the controller.

The feedback loop in Figure 12.1 is influenced by three external signals, the
reference r, the load disturbance v and the measurement noise w. Any of the re-
maining signals can be of interest in controller design, depending on the particular
application. Since the system is linear, the relations between the inputs and the in-
teresting signals can be expressed in terms of the transfer functions. The following
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relations are obtained from the block diagram in Figure 12.1:
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w

⎫
⎪⎪⎪⎪⎪⎭ . (12.1)

In addition, we can write the transfer function for the error between the reference
r and the output η (not an explicit signal in the diagram), which satisfies

ε = r−η =
(

1−
PCF

1+PC

)
r+

−P

1+PC
v+

PC

1+PC
w.

Notice that many of the transfer functions in (12.1) are the same. Only four
transfer functions are required to describe how the system reacts to load distur-
bances and measurement noise, three additional transfer functions are required to
describe how the system responds to reference signals.

The special case of F = 1 is called a system with (pure) error feedback because
all control actions are based on feedback from the error. In this case the system
(12.1) is completely characterized by four transfer functions, which are called the
sensitivity functions:

S =
1

1+PC
sensitivity
function

PS =
P

1+PC

load
sensitivity
function

T =
PC

1+PC

complementary
sensitivity
function

CS =
C

1+PC

noise
sensitivity
function

(12.2)

These transfer functions and their equivalent systems are called the Gang of Four.
The load sensitivity function is sometimes called the input sensitivity function and
the noise sensitivity function is sometimes called the output sensitivity function.
These transfer functions have many interesting properties that will be discussed
in detail in the rest of the chapter. Good insight into these properties is essential
in understanding the performance of feedback systems for the purposes of both
analysis and design. The transfer functions are also used to formulate requirements
on the closed loop system.

When F ̸= 1 there are three additional transfer functions in (12.1).

PS =
P

1+PC
, CSF =

PCT

1+PC
, T F =

PCF

1+PC
(12.3)

To summarize we find that the closed loop system can be characterized by seven
transfer functions given by (12.2) and (12.3), which we call the Gang of Seven.
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The closed loop system is stable if all transfer functions (12.2) are stable, which
is called internal stability. If there are no pole-zero cancellations in the product PC
the closed loop system is stable if the rational function 1+PC has all its zeros in
the left half plane.

Analyzing the Gang of Seven, we find that the feedback controller C influences
the effects of load disturbances and measurement noise. Notice that measurement
noise enters the process via the feedback. In Section 13.2 it will be shown that
the controller influences the sensitivity of the closed loop to process variations.
The feedforward part F of the controller influences only the response to command
signals.

In Chapter 10 we focused on the loop transfer function, and we found that its
properties gave useful insights into the properties of a system. To make a proper
assessment of a feedback system it is necessary to consider the properties of all the
transfer functions (12.2) and (12.3) in the Gang of Seven (or the Gang of Four, if
there is no feedforward controller), as illustrated in the following example.

Example 12.1 The loop transfer function gives only limited insight
Consider a process with the transfer function P(s) = 1/(s− a) controlled by a PI
controller with error feedback having the transfer function C(s) = k(s−a)/s. The
loop transfer function is L = k/s, and the sensitivity functions are

T =
PC

1+PC
=

k

s+ k
, PS =

P

1+PC
=

s

(s−a)(s+ k)
,

CS =
C

1+PC
=

k(s−a)

s+ k
, S =

1

1+PC
=

s

s+ k
.

Notice that the factor s−a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivity function or the comple-
mentary sensitivity function. However, cancellation of the factor is very serious if
a > 0 since the transfer function PS relating load disturbances to process output is
then unstable. In particular, a small disturbance v can lead to an unbounded output,
which is clearly not desirable. ∇

The system in Figure 12.1 represents a special case because it is assumed that
the load disturbance enters at the process input and that the measured output is the
sum of the process variable and the measurement noise. Disturbances can enter in
many different ways, and the sensors may have dynamics. A more abstract way
to capture the general case is shown in Figure 12.2, which has only two blocks
representing the process (P) and the controller (C ). The process has two inputs,
the control signal u and a vector of disturbances w, and two outputs, the measured
signal y and a vector of signals z that is used to specify performance. The system
in Figure 12.1 can be captured by choosing w = (r,d,n) and z = (e,u,ν ,η ,ε).
The process transfer function P from w to z is a 5× 3 matrix, and the controller
transfer function C from y,r to u is a 2×1 matrix; compare with Exercise 12.3.

Processes with multiple inputs and outputs can also be considered by regarding
u and y as vectors. Representations at these higher levels of abstraction are useful
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P

zw

C

yu

Figure 12.2: A more general representation of a feedback system. The process input u repre-
sents the control signal, which can be manipulated, and the process input w represents other
signals that influence the process. The process output y is the vector of measured variables
and z are other signals of interest.

for the development of theory because they make it possible to focus on fundamen-
tals and to solve general problems with a wide range of applications. However, care
must be exercised to maintain the coupling to the real-world control problems we
intend to solve.

12.2 Feedforward Design

Most of our analysis and design tools up to this point have focused on the role of
feedback and its effect on the dynamics of the system. Feedforward is a simple
and powerful technique that complements feedback. It can be used both to im-
prove the response to reference signals and to reduce the effect of measurable dis-
turbances. Feedforward compensation admits perfect elimination of disturbances,
but it is much more sensitive to process variations than feedback compensation. A
general scheme for feedforward was discussed in Section 8.5 using Figure 8.10.
A simple form of feedforward for PID controllers was discussed in Section 11.5.
The controller in Figure 12.1 also has a feedforward block to improve response to
command signals. An alternative version of feedforward is shown in Figure 12.3,
which we will use in this section to understand some of the trade-offs between
feedforward and feedback.

uff

Σ
e

Σ Σ
ν η

P1(s)

Fd(s)Fu(s) Σ

ufb
Fm(s) C(s)

−1

r

P2(s)
ym

ufr ufdistsym

y

v

Figure 12.3: Block diagram of a system with feedforward compensation for improved re-
sponse to reference signals and measured disturbances (2 DOF system). Three feedforward
elements are present: Fm(s) sets the desired output value, Fu(s) generates the feedforward
command ufr and Fd(s) attempts to cancel disturbances.
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Controllers with two degrees of freedom (feedforward and feedback) have the
advantage that the response to reference signals can be designed independently of
the design for disturbance attenuation and robustness. We will first consider the
response to reference signals, and we will therefore initially assume that the load
disturbance v is zero. Let Fm represent the ideal response of the system to reference
signals. The feedforward compensator is characterized by the transfer functions
Fu and Fm. When the reference is changed, the transfer function Fu generates the
signal ufr, which is chosen to give the desired output when applied as input to the
process. Under ideal conditions the output y is then equal to ym, the error signal
is zero and there will be no feedback action. If there are disturbances or modeling
errors, the signals ym and y will differ. The feedback then attempts to bring the
error to zero.

The block diagram in Figure 11.1bb for PID control is a special case of Fig-
ure 12.3. The block diagram of Figure 12.1 is equivalent to Figure 12.3 as far as
responses to reference signals are concerned if FC = Fu +FmC. The architecture
Figure 12.1 has fewer blocks but it has the disadvantage that F must be changed if
the controller C is changed.

To make a formal analysis, we compute the transfer function from reference
input to process output:

Gyr(s) =
P(CFm +Fu)

1+PC
= Fm +

PFu−Fm

1+PC
, (12.4)

where P = P2P1. The first term represents the desired transfer function. The second
term can be made small in two ways. Feedforward compensation can be used to
make PFu−Fm small, or feedback compensation can be used to make 1+PC large.
Perfect feedforward compensation is obtained by choosing

Fu =
Fm

P
. (12.5)

Design of feedforward using transfer functions is thus a very simple task. Notice
that the feedforward compensator Fu contains an inverse model of the process dy-
namics.

Feedback and feedforward have different properties. Feedforward action is ob-
tained by matching two transfer functions, requiring precise knowledge of the pro-
cess dynamics, while feedback attempts to make the error small by dividing it by
a large quantity. For a controller having integral action, the loop gain is large for
low frequencies, and it is thus sufficient to make sure that the condition for ideal
feedforward holds at higher frequencies. This is easier than trying to satisfy the
condition (12.5) for all frequencies.

We will now consider reduction of the effects of the load disturbance v in Fig-
ure 12.3 by feedforward control. We assume that the disturbance signal is mea-
sured and that the disturbance enters the process dynamics in a known way (cap-
tured by P1 and P2). The effect of the disturbance can be reduced by feeding the
measured signal through a dynamical system with the transfer function Fd . Assum-
ing that the reference r is zero, we can use block diagram algebra to find that the
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transfer function from the disturbance to the process output is

Gyv =
P2(1+P1Fd)

1+PC
, (12.6)

where P = P2P1. The effect of the disturbance can be reduced by making 1+FdP1

small (feedforward) or by making 1+PC large (feedback). Perfect compensation
is obtained by choosing

Fd =−P−1
1 , (12.7)

requiring inversion of the transfer function P1.
As in the case of reference tracking, disturbance attenuation can be accom-

plished by combining feedback and feedforward control. Since low-frequency dis-
turbances can be eliminated by feedback, we require the use of feedforward only
for high-frequency disturbances, and the transfer function Fd in equation (12.7)
can then be computed using an approximation of P1 for high frequencies.

Equations (12.5) and (12.7) give analytic expressions for the feedforward com-
pensator. To obtain a transfer function that can be implemented without difficulties
we require that the feedforward compensator be stable and that it does not require
differentiation. Therefore there may be constraints on possible choices of the de-
sired response Fm, and approximations are needed if the process has zeros in the
right half-plane or time delays.

Example 12.2 Vehicle steering
A linearized model for vehicle steering was given in Example 7.4. The normalized
transfer function from steering angle δ to lateral deviation y is P(s) = (γs+1)/s2.
For a lane transfer system we would like to have a nice response without overshoot,
and we therefore choose the desired response as Fm(s) = a2/(s+ a)2, where the
response speed or aggressiveness of the steering is governed by the parameter a.
Equation (12.5) gives

Fu =
Fm

P
=

a2s2

(γs+1)(s+a)2
,

which is a stable transfer function as long as γ > 0. Figure 12.4 shows the responses
of the system for a = 0.5. The figure shows that a lane change is accomplished in
about 10 vehicle lengths with smooth steering angles. The largest steering angle
is slightly larger than 0.1 rad (6◦). Using the scaled variables, the curve showing
lateral deviations (y as a function of t) can also be interpreted as the vehicle path
(y as a function of x) with the vehicle length as the length unit. ∇

A major advantage of controllers with two degrees of freedom that combine
feedback and feedforward is that the control design problem can be split in two
parts. The feedback controller C can be designed to give good robustness and ef-
fective disturbance attenuation, and the feedforward part can be designed indepen-
dently to give the desired response to command signals.
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(a) Overhead view
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Figure 12.4: Feedforward control for vehicle steering. The plot on the left shows the trajec-
tory generated by the controller for changing lanes. The plots on the right show the lateral
deviation y (top) and the steering angle δ (bottom) for a smooth lane change control using
feedforward (based on the linearized model).

12.3 Performance Specifications

A key element of the control design process is how we specify the desired per-
formance of the system. It is also important for users to understand performance
specifications so that they know what to ask for and how to test a system. Specifi-
cations are often given in terms of robustness to process variations and responses
to reference signals and disturbances. They can be given in terms of both time
and frequency responses. Specifications for the step response to reference signals
were given in Figure 6.9 in Section 6.3 and in Section 7.3. Robustness specifica-
tions based on frequency domain concepts were provided in Section 10.3 and will
be considered further in Chapter 13. The specifications discussed previously were
based on the loop transfer function. Since we found in Section 12.1 that a single
transfer function did not always characterize the properties of the closed loop com-
pletely, we will give a more complete discussion of specifications in this section,
based on the full Gang of Seven.

The transfer function gives a good characterization of the linear behavior of a
system. To provide specifications it is desirable to capture the characteristic prop-
erties of a system with a few parameters. Common features of step responses are
overshoot, rise time and settling time, as shown in Figure 6.9. Common features of
frequency responses are resonant peak, peak frequency, gain crossover frequency
and bandwidth. A resonant peak is a maximum of the gain, and the peak frequency
is the corresponding frequency. The gain crossover frequency is the frequency
where the open loop gain is equal one. The bandwidth is defined as the frequency
range where the closed loop gain is 1/

√
2 of the low-frequency gain (low-pass),

mid-frequency gain (band-pass) or high-frequency gain (high-pass). The crossover
frequency and the bandwidth are only well defined if the curves are monotone, if
this is not the case the bandwidth is typically defined as the lowest frequency.

There are interesting relations between specifications in the time and frequency
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Figure 12.5: Reference signal responses. The responses in process output y and control
signal u to a unit step in the reference signal r are shown in (a), and the gain curves of Gyr

and Gur are shown in (b). Results with PI control with error feedback are shown by solid
lines, and the dashed lines show results for a controller with a feedforward compensator.

domains. Roughly speaking, the behavior of time responses for short times is re-
lated to the behavior of frequency responses at high frequencies, and vice versa.
The precise relations are given by the Laplace transform.

Response to Reference Signals

Consider the basic feedback loop in Figure 12.1. The response to reference signals
is described by the transfer functions Gyr = PCF/(1+PC) and Gur = CF/(1+
PC) (F = 1 for systems with error feedback). Notice that it is useful to consider
both the response of the output and that of the control signal. In particular, the
control signal response allows us to judge the magnitude and rate of the control
signal required to obtain the output response.

Example 12.3 Third-order system
Consider a process with the transfer function P(s) = (s+1)−3 and a PI controller
with error feedback having the gains kp = 0.6 and ki = 0.5. The responses are illus-
trated in Figure 12.5. The solid lines show results for a proportional-integral (PI)
controller with error feedback. The dashed lines show results for a controller with
feedforward designed to give the transfer function Gyr = (0.5s+ 1)−3. Looking
at the time responses, we find that the controller with feedforward gives a faster
response with no overshoot. However, much larger control signals are required to
obtain the fast response. The largest value of the control signal is 8, compared to
1.2 for the regular PI controller. The controller with feedforward has a larger band-
width (marked with ◦) and no resonant peak. The transfer function Gur also has
higher gain at high frequencies. ∇
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Figure 12.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function (a) can be used to calculate the properties of the
sensitivity function through the relation S = 1/(1+L). The sensitivity crossover frequency
ωsc and the frequency ωms where the sensitivity has its largest value are indicated in the
sensitivity plot. The Nyquist plot (b) shows the same information in a different form. All
points inside the dashed circle have sensitivities greater than 1.

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to compare the output of the
closed loop system in Figure 12.1 with the output of the corresponding open loop
system obtained by setting C = 0. If we let the disturbances for the open and closed
loop systems be identical, the output of the closed loop system is then obtained
simply by passing the open loop output through a system with the transfer func-
tion S. The sensitivity function tells how the variations in the output are influenced
by feedback (Exercise 12.7). Disturbances with frequencies such that |S(iω)| < 1
are attenuated, but disturbances with frequencies such that |S(iω)| > 1 are ampli-
fied by feedback. The maximum sensitivity Ms, which occurs at the frequency ωms,
is thus a measure of the largest amplification of the disturbances. The maximum
magnitude of 1/(1+L) corresponds to the minimum of |1+L|, which is precisely
the stability margin sm defined in Section 10.3, so that Ms = 1/sm. The maximum
sensitivity is therefore also a robustness measure.

If the sensitivity function is known, the potential improvements by feedback
can be evaluated simply by recording a typical output and filtering it through the
sensitivity function. A plot of the gain curve of the sensitivity function is a good
way to make an assessment of the disturbance attenuation. Since the sensitivity
function depends only on the loop transfer function, its properties can also be vi-
sualized graphically using the Nyquist plot of the loop transfer function. This is
illustrated in Figure 12.6. The complex number 1+L(iω) can be represented as
the vector from the point −1 to the point L(iω) on the Nyquist curve. The sensi-
tivity is thus less than 1 for all points outside a circle with radius 1 and center at
−1. Disturbances with frequencies in this range are attenuated by the feedback.

The transfer function Gyv from load disturbance v to process output y for the
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system in Figure 12.1 is

Gyv =
P

1+PC
= PS =

T

C
. (12.8)

Since load disturbances typically have low frequencies, it is natural to focus on
the behavior of the transfer function at low frequencies. Consider a system with
P(0) ̸= 0 and a controller with integral action with integral gainki. The controller
transfer function goes to infinity as ki/s for small s and we have the following
approximation:

Gyv =
T

C
≈

1

C
≈

s

ki
, (12.9)

The process transfer function P typically goes to zero for large s as does a well
designed controller C. The loop transfer function PC then also goes to zero and
the sensitivity function S goes to 1 for large s. We then have the approximation
Gyv ≈ P for large s.

Measurement noise, which typically has high frequencies, generates rapid vari-
ations in the control variable that are detrimental because they cause wear in many
actuators and can even saturate an actuator. It is thus important to keep variations
in the control signal due to measurement noise at reasonable levels—a typical re-
quirement is that the variations are only a fraction of the span of the control signal.
The variations can be influenced by filtering and by proper design of the high-
frequency properties of the controller.

The effects of measurement noise are captured by the transfer function from
the measurement noise to the control signal,

−Guw =
C

1+PC
=CS =

T

P
. (12.10)

For controllers with integral action the complementary sensitivity function is close
to 1 for low frequencies (ω < ωgc), and Guw can be approximated by −1/P. The
sensitivity function is close to 1 for high frequencies (ω > ωgc), and Guw can be
approximated by −C.

Example 12.4 Third-order system
Consider a process with the transfer function P(s) = (s+1)−3 and a proportional-
integral-derivative (PID) controller with gains kp = 0.6, ki = 0.5 and kd = 2.0. We

augment the controller using a second-order noise filter with damping ratio 1/
√

2
and Tf = 0.1. The controller transfer function then becomes

C(s) =
kds2 + kps+ ki

s(s2T 2
f /2+ sTf +1)

.

The closed loop system responses are illustrated in Figure 12.7. The closed loop re-
sponse of the output to a step in the load disturbance in the top part of Figure 12.7a
has a peak of 0.28 at time t = 2.73 s. The frequency response in Figure 12.7a shows
that the gain has a maximum of 0.58 at ω = 0.7 rad/s.
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Figure 12.7: Closed loop disturbance responses. The time and frequency responses of pro-
cess output y to load disturbance v are shown in (a) and the responses of control signal u to
measurement noise w are shown in (b).

The closed loop response of the control signal to a step in measurement noise
is shown in Figure 12.7b. The high-frequency roll-off of the transfer function
Guw(iω) is due to filtering; without it the gain curve in Figure 12.7b would con-
tinue to rise after 20 rad/s. The step response has a peak of 13 at t = 0.08 s. The
frequency response has its peak 20 at ω = 14 rad/s. Notice that the peak occurs
at a frequency far above the peak of the response to load disturbances and far
above the gain crossover frequency ωgc = 0.78 rad/s. An approximation derived in

Exercise 12.9 gives max |CS(iω)| ≈ kd/Tf = 20, which occurs at ω =
√

2/Td =
14.1 rad/s. ∇

12.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that it is based on the loop trans-
fer function, which is related to the controller transfer function through L = PC.
It is thus easy to see how the controller influences the loop transfer function. To
make an unstable system stable we simply have to bend the Nyquist curve away
from the critical point.

This simple idea is the basis of several different design methods collectively
called loop shaping. These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. One possibility is to determine
a loop transfer function that gives a closed loop system with the desired properties
and to compute the controller as C = L/P. This approach may lead to controllers
of high order and there are limitaions if the process transfer function has poles
and zeros in the right half plane as will be discussed in Section 12.6. Another is
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Figure 12.8: Gain curve and sensitivity functions for a typical loop transfer function. The
plot on the left shows the gain curve and the plots on the right show the sensitivity function
and complementary sensitivity function. The crossover frequency ωgc determines the atten-
uation of load disturbances, bandwidth and response time of the closed loop system. The
slope ngc determines the robustness of the closed loop systems, see (12.11). At low frequen-
cies, a large magnitude of L provides good load disturbance rejection and reference tracking,
while at high frequencies a small loop gain avoids injecting too much measurement noise.

to start with the process transfer function, change its gain and then add poles and
zeros until the desired shape is obtained. In this section we will explore different
loop-shaping methods for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfer function that gives good
performance and good stability margins. Figure 12.8 shows a typical loop trans-
fer function. Good robustness requires good stability margins (or good gain and
phase margins), which imposes requirements on the loop transfer function around
the crossover frequencies ωpc and ωgc. The gain of L at low frequencies must be
large in order to have good tracking of command signals and good attenuation
of low-frequency disturbances. Since S = 1/(1+L), it follows that for frequencies
where |L|> 101 disturbances will be attenuated by a factor of 100 and the tracking
error is less than 1%. It is therefore desirable to have a large crossover frequency
and a steep (negative) slope of the gain curve. The choice of gain crossover fre-
quency ωgc is a compromise among attenuation of load disturbances, injection
of measurement noise and robustness. The controller gain at low frequencies can
be increased by a controller with integral action, which is also called lag com-
pensation. To avoid injecting too much measurement noise into the system, the
controller transfer function should have low gain at high frequencies, a property
called high-frequency roll-off.

Bode’s relations (see Section 10.4) impose restrictions on the shape of the loop
transfer function. Equation (10.8) implies that the slope of the gain curve at gain
crossover cannot be too steep. If the gain curve has a constant slope, we have the
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following relation between slope ngc and phase margin ϕm:

ngc =−2+
2ϕm

π
. (12.11)

This formula is a reasonable approximation when the gain curve does not deviate
too much from a straight line. It follows from equation (12.11) that the phase
margins 30◦, 45◦ and 60◦ correspond to the slopes −5/3, −3/2 and −4/3.

Loop shaping is a trial-and-error procedure. We typically start with a Bode
plot of the process transfer function. We then attempt to shape the loop trans-
fer function by changing the controller gain and adding poles and zeros to the
controller transfer function. Different performance specifications are evaluated for
each controller as we attempt to balance many different requirements by adjusting
controller parameters and complexity. Loop shaping is straightforward to apply to
single-input, single-output systems. It can also be applied to systems with one in-
put and many outputs by closing the loops one at a time. The only limitation for
minimum phase systems is that large phase leads and high controller gains may
be required to obtain closed loop systems with a fast response. Many specific pro-
cedures are available: they all require experience, but they also give good insight
into the conflicting requirements. There are fundamental limitations to what can
be achieved for systems that are not minimum phase; they will be discussed in the
next section.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfer function of the process
and add simple compensators with the transfer function

C(s) = k
s+a

s+b
, a > 0,b > 0. (12.12)

The compensator is called a lead compensator if a < b, and a lag compensator if
a > b. The PI controller is a special case of a lag compensator with b = 0, and the
ideal PD controller is a special case of a lead compensator with a = 0. Bode plots
of lead and lag compensators are shown in Figure 12.9. Lag compensation, which
increases the gain at low frequencies, is typically used to improve tracking per-
formance and disturbance attenuation at low frequencies. Compensators that are
tailored to specific disturbances can be also designed, as shown in Exercise 12.10.
Lead compensation is typically used to improve phase margin. The following ex-
amples give illustrations.

Example 12.5 Atomic force microscope in tapping mode
A simple model of the dynamics of the vertical motion of an atomic force micro-
scope in tapping mode was given in Exercise 10.2. The transfer function for the
system dynamics is

P(s) =
a(1− e−sτ)

sτ(s+a)
,
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Figure 12.9: Frequency response for lead and lag compensators C(s) = k(s+ a)/(s+ b).
Lead compensation (a) occurs when a< b and provides phase lead between ω = a and ω = b.
Lag compensation (b) corresponds to a > b and provides low-frequency gain. PI control is
a special case of lag compensation and PD control is a special case of lead compensation.
PI/PD frequency responses are shown by dashed curves.

and the parameters a = ζ ω0, τ = 2πn/ω0 are explained in XXX. The gain has
been normalized to 1. A Bode plot of this transfer function for the parameters
a = 1 and τ = 0.25 is shown in dashed curves in Figure 12.10a. To improve the
attenuation of load disturbances we increase the low-frequency gain by introducing
an integral controller. The loop transfer function then becomes L = kiP(s)/s, and
we start by adjusting the gain ki so that the closed loop system is marginally stable,
giving ki = 8.3. The Bode plot is shown by the dash-dotted line in Figure 12.10a,
where the critical point is indicated by ◦. Notice the increase of the gain at low
frequencies. To obtain a reasonable phase margin we introduce proportional action
and we increase the proportional gain kp gradually until reasonable values of the
sensitivities are obtained. The value kp = 3.5 gives maximum sensitivity Ms = 1.6
and maximum complementary sensitivity Mt = 1.3. The loop transfer function is
shown in solid lines in Figure 12.10a. Notice the significant increase of the phase
margin compared with the purely integral controller (dash-dotted line).

To evaluate the design we also compute the gain curves of the transfer functions
in the Gang of Four. They are shown in Figure 12.10b. The peaks of the sensitivity
curves are reasonable, and the plot of PS shows that the largest value of PS is 0.3,
which implies that the load disturbances are well attenuated. The plot of CS shows
that the largest noise gain |C(iω)S(iω)| is 6. The controller has a gain kp = 3.5
at high frequencies, and hence we may consider adding high-frequency roll-off to
make CS smaller at high frequencies. ∇

A common problem in the design of feedback systems is that the phase margin
is too small, and phase lead must then be added to the system. If we set a < b in
equation (12.12), we add phase lead in the frequency range between the pole/zero
pair (and extending approximately 10× in frequency in each direction). By appro-
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Figure 12.10: Loop-shaping design of a controller for an atomic force microscope in tapping
mode. (a) Bode plots of the process (dashed), the loop transfer function for an integral con-
troller with critical gain (dash-dotted) and a PI controller (solid) adjusted to give reasonable
robustness. (b) Gain curves for the Gang of Four for the system.

priately choosing the location of this phase lead, we can provide additional phase
margin at the gain crossover frequency.

Because the phase of a transfer function is related to the slope of the magnitude,
increasing the phase requires increasing the gain of the loop transfer function over
the frequency range in which the lead compensation is applied. In Exercise 12.14
it is shown that the gain increases exponentially with the amount of phase lead. We
can also think of the lead compensator as changing the slope of the transfer func-
tion and thus shaping the loop transfer function in the crossover region (although
it can be applied elsewhere as well).

Example 12.6 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust aircraft such as the one il-
lustrated in Figure 12.11. Following Exercise 9.10, we model the system with a
second-order transfer function of the form

P(s) =
r

Js2
,

with the parameters given in Figure 12.11b. We take as our performance specifi-
cation that we would like less than 1% error in steady state for and less than 10%
tracking error up to 10 rad/s.

The open loop transfer function from F1 to θ is shown in Figure 12.12a. To
achieve our performance specification, we would like to have a gain of at least 10
at a frequency of 10 rad/s, requiring the gain crossover frequency to be at a higher
frequency. We see from the loop shape that in order to achieve the desired perfor-
mance we cannot simply increase the gain since this would give a very low phase
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(a) Simplified model

Symbol Description Value

m Vehicle mass 4.0 kg

J Vehicle inertia, ϕ3 axis 0.0475 kg m2

r Force moment arm 25.0 cm

c Damping coefficient 0.05 kg m/s

g Gravitational constant 9.8 m/s2

(b) Parameter values

Figure 12.11: Roll control of a vectored thrust aircraft. (a) The roll angle θ is controlled by
applying maneuvering thrusters, resulting in a moment generated by F1. (b) The table lists
the parameter values for a laboratory version of the system.

margin. Instead, we must increase the phase at the desired crossover frequency.
To accomplish this, we use a lead compensator (12.12) with a = 2 and b = 50.

We then set the gain of the system to provide a large loop gain up to the desired
bandwidth, as shown in Figure 12.12b. We see that this system has a gain of greater
than 10 at all frequencies up to 10 rad/s and that it has more than 60◦ of phase
margin. ∇

The action of a lead compensator is essentially the same as that of the derivative
portion of a PID controller. As described in Section 11.5, we often use a filter for
the derivative action of a PID controller to limit the high-frequency gain. This same
effect is present in a lead compensator through the pole at s = b.

Equation (12.12) is a first-order compensator and can provide up to 90◦ of
phase lead. Larger phase lead can be obtained by using a higher-order lead com-
pensator (Exercise 12.14):

C(s) = k
(s+a)n

(s+b)n
, a < b.

12.5 The Root-Locus Method

In the design methods like pole placement in Sections 2.2, 2.3 and 8.3. we de-
signed controllers that give desired closed loop poles. The controllers were suffi-
ciently complex so that all closed loop poles could be specified. The complexity of
the controller is thus related to the complexity of the process. In a practice we may
have to use a simple controller for a complex process and it is then not possible to
find a controller that gives all closed poles their desired values. It is interesting to
explore what can be done with a controller having restricted complexity as was the
case for loop shaping in Section 12.4. The simplest case with only one selectable
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Figure 12.12: Control design for a vectored thrust aircraft using lead compensation. The
Bode plot for the open loop process P is shown in (a) and for the loop transfer function
L = PC using a lead compensator C in (b). Note the phase lead in the crossover region near
ω = 100 rad/s.

controller parameter can be investigated with the root locus method. The root locus
is a graph of the roots of the characteristic equation as a function of the parameter.
The method gives insight into the effects of the controller parameter. It is straight
forward to obtain the root locus by finding the roots of of the closed-loop char-
acteristic polynomial for different values of the parameter. There are also good
computer tools for generating the root locus. Of greater interest is that the general
shape of the root locus can be obtained with very little effort. The root locus also
gives considerable insight.

Proportional Control

To illustrate the root locus method we consider a process with the transfer function

P(s) =
b(s)

a(s)
=

b0sm +b1sm−1 + · · ·bm

sn +a1sn−1 + · · ·an
= b0

(s− z1)(s− z2) . . .(s− zm)

(s− p1)(s− p2) · · ·(s− pn)
.

The polynomial a(s) has degree n and the polynomial b(s) has degree m. We as-
sume that the integer npe = n−m, which is called the pole excess is positive or
zero. The controller is assumed to be a proportional controller with the transfer
function C(s) = k. We will explore the poles of the closed loop system when the
gain k of the proportional controller ranges from 0 to ∞.

The closed loop characteristic polynomial is

acl(s) = a(s)+ kb(s), (12.13)

and the closed loop poles are the roots of acl(s). The root-locus is a graph of the
roots of acl(s) as the gain k is varies from 0 to ∞. Since the polynomial acl(s) has
degree n the plot will have n branches.

The branches start from the open loop poles. When the gain is k zero we have
acl(s) = a(s) and the closed loop poles are equal to the open loop poles. When
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npe = 2 npe = 3 npe = 4

Figure 12.13: Asymptotes of of root locus for systems with pole excess npe = 2, 3 and 4.
There are npe asymptotes radiate from the point given by equation 12.15, and the angles
between the asymptotes are 2π/npe.

there are open loop poles with multiplicity n∗ the characteristic equation can be
written as

(s− pl)
n∗ ã(s)+ kb(s)≈ (s− p1)

n∗ ã(pl)+ kb(pl) = 0.

For small values of k the roots are s = pl +
n∗
√
−kb(pl)/ã(pl). The root locus has a

star pattern with n∗ branches emanating from the open loop pole s = pl . The angle
between two neighboring brances is 2π/n∗.

To explore what happens for large gain we approximate the characteristic equa-
tion (12.13) for large s and k, hence

acl(s) = b(s)
(a(s)

b(s)
+ k
)
≈ b(s)

(snpe

b0
+ k
)
. (12.14)

For large k the closed loop poles are approximately the roots of b(s) and npe
√
−b0k.

A better approximation of (12.14) is

s = s0 +
npe
√
−kb0, s0 =

1

npe

(
n

∑
k=1

pk−
m

∑
k=1

zk

)

, (12.15)

see Exercise 12.11. The asymptotes are thus npe lines that radiate from s = s0,
the center of mass of poles and zeros. When b0k > 0 the lines have the angles
(π +2lπ)/npe, l = 1, · · · ,npe with the real line. Figure 12.13 shows the asymptotes
of the root locus for large gain for different values of the pole excess npe.

Summarizing we find that he root locus thus has n branches that start at the
loop poles and end either at the open loop poles or at infinity. The branches that
ends at infinity have the star-patterned asymptotes given by (12.15). An immediate
consequence is that and open loop systems with right half plane zeros or a pole
excess larger than 2 will always be unstable for sufficiently large gains.

There are simple rules for sketching root loci. Let it suffice to mention a few
of them. The root locus has locally the symmetric star pattern at points where



12-20 CHAPTER 12. FREQUENCY DOMAIN DESIGN

−3 −2 −1 0

−2

−1

0

1

2

−4 −2 0
−4

−2

0

2

4

−2 0 2
−3

−2

−1

0

1

2

3

−3 −2 −1 0
−3

−2

−1

0

1

2

3

Pa(s) Pb(s) Pc(s) Pd(s)

Figure 12.14: Examples of root loci for processes with the transfer functions Pa(s), Pb(s),
Pc(s) and Pd(s) given by equation (12.16).

there are multiple roots; the number of branches depend on the multiplicity of the
roots. For systems with kb0 > 0 the root locus has segments on the real line where
there are odd numbers of real poles and zeros to the right of the segment, see
Exercise 12.12. It is also straight forward to find direction where a branch of the
rool locus leaves a pole, see Exercise 12.13.

Figure 12.14 show root loci for systems with k > 0 and the transfer functions.

Pa(s) = k
s+1

s2
, Pb(s) = k

s+1

s(s+2)(s2 +2s+4)

Pc(s) = k
s+2

s(s2 +1)
, Pd(s) = k

s2 +2s+2

s(s2 +1)
.

(12.16)

The locus of Pa(s) in Figure 12.14a starts with two roots at the origin and the
pattern locally has the star configuration with n∗ = 2. As the gain increases the
locus bends because of the attraction of the zero. In this particular case the locus
is actually a circle around the zero s = −1. Two roots meet at the real axis, and
there is the typical star pattern. One root goes towards the zero and the other one
goes to infinity along the negative real axis as the gain k increases. The root locus
has the segment (−∞,−1] on the real axis. The locus in Figure 12.14b start at
the open loop poles s = −2,0 and −1± i

√
3. The pole excess is npe = 3 and the

asymptotes which originate from s0 = −1, have the corresponding pattern. The
locus in Figure 12.14c has vertical asymptotes since npe = 2, see Figure 12.13.
The asymptotes originate from s0 = 0.5. The root locus has the segment [−10])
on the real line. The locus in Figure 12.14d has three brances, one is the segment
(−∞,0] on the real line the other segment originate in the complex open loop poles
and end at the open loop zeros.

The root locus is useful for qualitative arguments. For example, it follows from
Figure Figure 12.13 that the closed loop system will always be unstable for suffi-
ciently large gains if the pole excess is larger than npe = 2 or if the process transfer
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function has zeros in the right half plane.
The root locus can also be used for design. Consider for example the system in

Figure 12.14c which can represent PI control of a system with the transfer function

P(s) =
1

s2 +1
, C(s) = k

s+2

s

The root locus in Figure 12.14c shows that the system is unstable for all values
of the controller gain and we can immediately conclude that the process cannot
be stabilized with a PI dontroller. To obtain a stable closed loop system we can
attempt to choose a PID controller with zeros to the left of the undamped poles,
for example

C(s) = k
s2 +2s+2

s
.

The root locus obtained with this controller is shown in Figure 12.14d.
We have illustrated the root locus with a closed loop system with a proportional

controller where the parameter is the gain. The root locus also be used to find the
effects of other parameters as was illustrated in Example 5.15.

12.6 Fundamental Limitations

Although loop shaping gives us a great deal of flexibility in designing the closed
loop response of a system, there are certain fundamental limits on what can be
achieved. We consider here some of the primary performance limitations that can
occur because of difficult dynamics; additional limitations related to robustness are
considered in the next chapter.

Right Half-Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to control. The limitations are
related to poles and zeros in the right half-plane and time delays. To explore the
limitations caused by poles and zeros in the right half-plane we factor the process
transfer function as

P(s) = Pmp(s)Pap(s), (12.17)

where Pmp is the minimum phase part and Pap is the nonminimum phase part, we
require that Pmp has all its zeros in the open left half plane. The factorization is
normalized so that |Pap(iω)| = 1, and the sign is chosen so that Pap has negative
phase. The transfer function Pap is called an all-pass system because it has unit
gain for all frequencies. We have for example

P(s) =
s−2

(s+1)(s−1)
=

s+2

(s+1)2

(s−2)(s+1)

(s+2)(s−1)
. (12.18)

The transfer function Pap does not influence the gain curve in the Bode plot but
it does influence the phase curve. Requiring that the phase margin be ϕm, we get

argL(iωgc) = argPap(iωgc)+ argPmp(iωgc)+ argC(iωgc)≥−π +ϕm, (12.19)
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where C is the controller transfer function. Let ngc be the slope of the gain curve
at the crossover frequency. Since |Pap(iω)|= 1, it follows that

ngc =
d log |L(iω)|

d logω

∣∣∣∣∣
ω=ωgc

=
d log |Pmp(iω)C(iω)|

d logω

∣∣∣∣∣
ω=ωgc

.

If the slope ngc is negative, it has to be larger than −2 for the closed loop system
to be stable. It follows from Bode’s relations, equation (10.8), that

argPmp(iω)+ argC(iω)≈ ngc
π

2
.

Combining this with equation (12.19) gives the following inequality for the allow-
able phase lag of the all-pass part at the gain crossover frequency:

− argPap(iωgc)≤ π−ϕm +ngc
π

2
=: ϕl . (12.20)

In addition we must require that the encirclement condition of the Nyquist theorem
is satisfied.

The condition (12.20), which we call the gain crossover frequency inequality,
shows that the gain crossover frequency must be chosen so that the phase lag of the
nonminimum phase component is not too large. For systems with high robustness
requirements we may choose a phase margin of 60◦ (ϕm = π/3) and a slope ngc =
−1, which gives an admissible phase lag ϕl = π/6 = 0.52 rad (30◦). For systems
where we can accept a lower robustness we may choose a phase margin of 45◦

(ϕm = π/4) and the slope ngc = −1/2, which gives an admissible phase lag ϕl =
π/2 = 1.57 rad (90◦).

The crossover frequency inequality (12.20), shows that nonminimum phase
components impose severe restrictions on possible crossover frequencies. It also
means that there are systems that cannot be controlled with sufficient stability mar-
gins. We illustrate the limitations in a number of commonly encountered situations.

Example 12.7 Zero in the right half-plane
The nonminimum phase part of the process transfer function for a system with a
right half-plane zero is

Pap(s) =
z− s

z+ s
,

where z> 0. Notice that we have z−s in the numerator instead of s−z to satisfy the
condition that Pap should have negative phase. The phase lag of the nonminimum
phase part is

−argPap(iω) = 2arctan
ω

z
.

Since the phase lag of Pap increases with frequency, the inequality (12.20) gives
the following bound on the crossover frequency:

ωgc < z tan(ϕ l/2). (12.21)
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With ϕl = π/3 we get ωgc < 0.6z. Slow right half-plane zeros (z small) therefore
give tighter restrictions on possible gain crossover frequencies than fast right half-
plane zeros. ∇

Time delays also impose limitations similar to those given by zeros in the right
half-plane. We can understand this intuitively from the Padé approximation

e−sτ ≈
1−0.5sτ

1+0.5sτ
=

2/τ− s

2/τ + s
.

A long time delay is thus approximately equivalent to a slow right half-plane zero
z = 2/τ .

Example 12.8 Pole in the right half-plane
The nonminimum phase part of the transfer function for a system with a pole in
the right half-plane is

Pap(s) =
s+ p

s− p
,

where p > 0. The sign of Pap is dictated by the condition that it should have nega-
tive pahse. The phase lag of the nonminimum phase part is

−argPap(iω) = 2arctan
p

ω
,

and the crossover frequency inequality becomes

ωgc >
p

tan(ϕ l/2)
. (12.22)

Right half-plane poles thus require that the closed loop system have a sufficiently
high gain crossover frequency, a consequence is that the actuators must be fast.
With ϕl = π/3 we get ωgc > 1.7p. Fast right half-plane poles (p large) therefore a
larger gain crossover frequency than slower right half-plane poles. The control of
unstable systems imposes minimum bandwidth requirements for process actuators
and sensors. ∇

We will now consider systems with a right half-plane zero z and a right half-
plane pole p. If p = z, there will be cancellation of an unstable system mode and
the system cannot be stabilized. A cancellation of an unstable pole means that the
system has an unstable mode that is not reachable and observable, see Section 8.5.
We can therefore expect that the system is difficult to control if the right half-plane
pole and zero are close. A straightforward way to use the crossover frequency in-
equality is to plot the phase of the nonminimum phase factor Pap of the process
transfer function. Such a plot, which can be incorporated in an ordinary Bode plot,
will immediately show the permissible gain crossover frequencies. An illustration
is given in Figure 12.15, which shows the phase of the transfer functions for sys-
tems with a right half-plane pole/zero pair and systems with a right half-plane pole
and a time delay. The transfer functions of the systems are

Pap(s) =
(bs−1)(s+1)

(bs+1)(s−1)
, Pap(s) =

s+1

s−1)
e−τs (12.23)
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Figure 12.15: Example limitations due to the gain crossover frequency inequality. The fig-
ures show the phase lag of the all-pass factor Pap as a function of frequency for the systems
(12.23). Since the phase lag of Pap at the gain crossover frequency cannot be too large, it
is necessary to choose the gain crossover frequency properly. All systems have a right half-
plane pole at s = 1. The system in (a) has zeros at s = 2, 5, 20 and 100 (solid lines) and at
s = 0.5, 0.2, 0.05 and 0.01 (dashed lines). The system in (b) has time delays τ = 0.02 0.1,
0.5 and 1.

To illustrate the limitations we will introduce numerical values. If we require that
the phase lag ϕ l of the nonminimum phase factor be less than 90◦, we must require
that the ratio z/p be larger than 6 or smaller than 1/6 for systems with right half-
plane poles and zeros and that the product pτ be less than 0.3 for systems with
a time delay and a right half-plane pole. Notice the symmetry in the problem for
z > p and z < p: in either case the zeros and the poles must be sufficiently far apart
(Exercise 12.15). Also notice that possible values of the gain crossover frequency
ωgc are quite restricted.

Using the theory of functions of complex variables, it can be shown that for
systems with a right half-plane pole p and a right half-plane zero z (or a time delay
τ), any stabilizing controller gives sensitivity functions with the property

sup
ω

|S(iω)|≥
p+ z

|p− z|
, sup

ω
|T (iω)|≥ epτ . (12.24)

This result is proven in Exercise 12.16.
As the examples above show, right half-plane poles and zeros significantly limit

the achievable performance of a system, hence one would like to avoid these when-
ever possible. The poles of a system depend on the intrinsic dynamics of the sys-
tem and are given by the eigenvalues of the dynamics matrix A of a linear system.
Sensors and actuators have no effect on the poles; the only way to change poles
is to redesign the system. Notice that this does not imply that unstable systems
should be avoided. Unstable system may actually have advantages; one example is
high-performance supersonic aircraft.

The zeros of a system depend on how the sensors and actuators are coupled to
the states. The zeros depend on all the matrices A, B, C and D in a linear system.
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The zeros can thus be influenced by moving the sensors and actuators or by adding
sensors and actuators.

Example 12.9 Balance system
As an example of a system with both right half-plane poles and zeros, consider
the balance system with zero damping shown in Example 3.1, whose dynamics are
given by

HθF =
ml

−(MtJt −m2l2)s2 +mglMt
,

HpF =
−Jts

2 +mgl

s2
(
−(MtJt −m2l2)s2 +mglMt

) .

Assume that we want to stabilize the pendulum by using the cart position as the
measured signal. The transfer function from the input force F to the cart position
p has poles {0,0,±

√
mglMt/(MtJt −m2l2)} and zeros {±

√
mgl/Jt}. Using the

parameters in Example 7.7, the right half-plane pole is at p = 2.68 and the zero
is at z = 2.09. Equation (12.24) then gives |S(iω)| ≥ 8, which shows that it is not
possible to control the system robustly.

The right half-plane zero of the system can be eliminated by changing the out-
put of the system. For example, if we choose the output to correspond to a position
at a distance r along the pendulum, we have y= p−r sinθ and the transfer function
for the linearized output becomes

Hy,F = HpF − rHθF =
(mlr− Jt)s2 +mgl

s2
(
−(MtJt −m2l2)s2 +mglMt

) .

If we choose r sufficiently large, then mlr− Jt > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary zeros. The gain crossover
frequency inequality is then based just on the right half-plane pole (Example 12.8).
If our admissible phase lag for the nonminimum phase part is ϕl = 45◦, then our
gain crossover must satisfy

ωgc >
p

tan(ϕl/2)
= 6.48 rad/s.

If the actuators have sufficiently high bandwidth, e.g., a factor of 10 above ωgc or
roughly 10 Hz, then we can provide robust tracking up to this frequency. ∇

Bode’s Integral Formula

In addition to providing adequate phase margin for robust stability, a typical con-
trol design will have to satisfy performance conditions on the sensitivity functions
(Gang of Four). In particular, the sensitivity function S= 1/(1+PC) represents the
disturbance attenuation and also relates the tracking error e to the reference signal
r: we usually want the sensitivity to be small over the range of frequencies where
we want small tracking error and good disturbance attenuation. A basic problem
is to investigate if S can be made small over a large frequency range. We will start
by investigating an example.
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Example 12.10 System that admits small sensitivities
Consider a closed loop system consisting of a first-order process and a proportional
controller. Let the loop transfer function be

L(s) = PC =
k

s+1
,

where parameter k is the controller gain. The sensitivity function is

S(s) =
s+1

s+1+ k

and we have

|S(iω)|=

√
1+ω2

1+2k+ k2 +ω2
.

This implies that |S(iω)|< 1 for all finite frequencies and that the sensitivity can be
made arbitrarily small for any finite frequency by making k sufficiently large. ∇

The system in Example 12.10 is unfortunately an exception. The key feature
of the system is that the Nyquist curve of the process is completely contained
in the right half-plane. Such systems are called passive, their transfer functions
are positive real and their physics is associated with energy dissipation. For typ-
ical control systems there are severe constraints on the sensitivity function. The
following theorem, due to Bode, provides insights into the limits of performance
under feedback.

Theorem 12.1 (Bode’s integral formula). Let S(s) be the sensitivity function of
an internally stable system with loop transfer function L(s). Assume that the loop
transfer function L(s) is such that sL(s) goes to zero as s→ ∞, then the sensitivity
function satisfies the following integral:

∫ ∞

0
log |S(iω)|dω =

∫ ∞

0
log

1

|1+L(iω)|
dω = π ∑ pk. (12.25)

where the sum is over the right half plane poles pk of L(s).

Equation (12.25) implies that there are fundamental limitations to what can
be achieved by control and that control design can be viewed as a redistribution
of disturbance attenuation over different frequencies. In particular, this equation
shows that if the sensitivity function is made smaller for some frequencies, it must
increase at other frequencies so that the integral of log |S(iω)| remains constant.
This means that if disturbance attenuation is improved in one frequency range, it
will be worse in another, a property sometime referred to as the waterbed effect. It
also follows that systems with open loop poles in the right half-plane have larger
overall sensitivity than stable systems.

Equation (12.25) can be regarded as a conservation law: if the loop transfer
function has no poles in the right half-plane, the equation simplifies to

∫ ∞

0
log |S(iω)|dω = 0.
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Figure 12.16: Interpretation of the waterbed effect. The function log |S(iω)| is plotted versus
ω in linear scales in (a). According to Bode’s integral formula (12.25), the area of log |S(iω)|
above zero must be equal to the area below zero. Gunter Stein’s interpretation of design as a
trade-off of sensitivities at different frequencies is shown in (b) (from [Ste03]).

This formula can be given a nice geometric interpretation as illustrated in Fig-
ure 12.16, which shows log |S(iω)| as a function of ω . The area over the horizontal
axis must be equal to the area under the axis when the frequency is plotted on a
linear scale. Thus if we wish to make the sensitivity smaller up to some frequency
ωsc, we must balance this by increased sensitivity above ωsc. Control system de-
sign can be viewed as trading the disturbance attenuation at some frequencies for
disturbance amplification at other frequencies. Notice that the system in Exam-
ple 12.10 violates the condition that lims→∞ sL(s) = 0 and hence the integral for-
mula does not apply.

There is a result analogous to equation (12.25) for the complementary sensitiv-
ity function: ∫ ∞

0

log |T (iω)|
ω2

dω = π ∑
1

zi
, (12.26)

where the summation is over all right half-plane zeros. Notice that slow right half-
plane zeros are worse than fast ones and that fast right half-plane poles are worse
than slow ones.

Example 12.11 X-29 aircraft
As an example of the application of Bode’s integral formula, we present an anal-
ysis of the control system for the X-29 aircraft (see Figure 12.17a), which has an
unusual configuration of aerodynamic surfaces that are designed to enhance its
maneuverability. This analysis was originally carried out by Gunter Stein in his
article “Respect the Unstable” [Ste03], which is also the source of the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parameters that describe
the key properties of the system. The X-29 has longitudinal dynamics that are very
similar to inverted pendulum dynamics (Exercise 9.3) and, in particular, have a
pair of poles at approximately p = ±6 and a zero at z = 26. The actuators that
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Figure 12.17: X-29 flight control system. The aircraft makes use of forward swept wings and
a set of canards on the fuselage to achieve high maneuverability (a). The desired sensitivity
for the closed loop system is shown in (b). We seek to use our control authority to shape the
sensitivity curve so that we have low sensitivity (good performance) up to frequency ω1 by
creating higher sensitivity up to our actuator bandwidth ωa.

stabilize the pitch have a bandwidth of ωa = 40 rad/s and the desired bandwidth of
the pitch control loop is ω1 = 3 rad/s. Since the ratio of the zero to the pole is only
4.3, we may expect that it may be difficult to achieve the specifications.

To evaluate the achievable performance, we search for a control law such that
the sensitivity function is small up to the desired bandwidth and not greater than
Ms beyond that frequency. Because of the Bode integral formula, we know that
Ms must be greater than 1 at high frequencies to balance the small sensitivity at
low frequency. We thus ask if we can find a controller that has the shape shown
in Figure 12.17b with the smallest value of Ms. Note that the sensitivity above the
frequency ωa is not specified since we have no actuator authority at that frequency.
However, assuming that the process dynamics fall off at high frequency, the sen-
sitivity at high frequency will approach 1. Thus, we desire to design a closed loop
system that has low sensitivity at frequencies below ω1 and sensitivity that is not
too large between ω1 and ωa.

From Bode’s integral formula, we know that whatever controller we choose,
equation (12.25) must hold. We will assume that the sensitivity function is given
by

|S(iω)|=

{
ωMs
ω1

ω ≤ ω1

Ms ω1 ≤ ω ≤ ωa,

corresponding to Figure 12.17b. If we further assume that |L(s)| ≤ δ/ω2 for fre-
quencies larger than the actuator bandwidth, Bode’s integral becomes

∫ ∞

0
log |S(iω)|dω =

∫ ωa

0
log |S(iω)|dω

=
∫ ω1

0
log

ωMs

ω1
dω +(ωa−ω1) logMs = π p.

Evaluation of the integral gives −ω1 +ωa logMs = π p or

Ms = e(π p+ω1)/ωa .
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Figure 12.18: Contour used to prove Bode’s theorem. For each right half-plane pole we
create a path from the imaginary axis that encircles the pole as shown. To avoid clutter we
have shown only one of the paths that enclose one right half-plane.

This formula tells us what the achievable value of Ms will be for the given control
specifications. In particular, using p = 6, ω1 = 3 and ωa = 40 rad/s, we find that
Ms = 1.75, which means that in the range of frequencies between ω1 and ωa,
disturbances at the input to the process dynamics (such as wind) will be amplified
by a factor of 1.75 in terms of their effect on the aircraft.

Another way to view these results is to compute the phase margin that corre-
sponds to the given level of sensitivity. Since the peak sensitivity normally occurs
at or near the crossover frequency, we can compute the phase margin correspond-
ing to Ms = 1.75. As shown in Exercise 12.17, the maximum achievable phase
margin for this system is approximately 35◦, which is below the usual design limit
of 45◦ in aerospace systems. The zero at s= 26 limits the maximum gain crossover
that can be achieved. ∇

Derivation of Bode’s Formula
!

We now derive Bode’s integral formula (Theorem 12.1). This is a technical section
that requires some knowledge of the theory of complex variables, in particular
contour integration. Assume that the loop transfer function has distinct poles at
s = pk in the right half-plane and that L(s) goes to zero faster than 1/s for large
values of s.

Consider the integral of the logarithm of the sensitivity function S(s) = 1/(1+
L(s)) over the contour shown in Figure 12.18. The contour encloses the right half-
plane except for the points s = pk where the loop transfer function L(s) = P(s)C(s)
has poles and the sensitivity function S(s) has zeros. The direction of the contour
is counterclockwise.

The integral of the log of the sensitivity function around this contour is given
by

∫

Γ
log(S(s))ds =

∫ −iR

iR
log(S(s))ds+

∫

R
log(S(s))ds+∑

k

∫

γ
log(S(s))ds

= I1 + I2 + I3 = 0,
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where R is a large semicircle on the right and γk is the contour starting on the
imaginary axis at s = Im pk and a small circle enclosing the pole pk. The integral
is zero because the function logS(s) is analytic inside the contour. We have

I1 =−i

∫ R

−R
log(S(iω))dω =−2i

∫ R

0
log(|S(iω)|)dω

because the real part of logS(iω) is an even function and the imaginary part is an
odd function. Furthermore we have

I2 =
∫

R
log(S(s))ds =−

∫

R
log(1+L(s))ds≈−

∫

R
L(s)ds.

Since L(s) goes to zero faster than 1/s for large s, the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integral I3. For this purpose we split the contour into three
parts X+, γ and X−, as indicated in Figure 12.18. We can then write the integral as

I3 =
∫

X+

logS(s)ds+
∫

γ
logS(s)ds+

∫

X−
logS(s)ds.

The contour γ is a small circle with radius r around the pole pk. The magnitude of
the integrand is of the order logr, and the length of the path is 2πr. The integral
thus goes to zero as the radius r goes to zero. Since S(s)≈ k/(s− pk) close to the
pole, the argument of S(s) decreases by 2π as the contour encircles the pole. On
the contours X+ and X− we therefore have

|SX+ |= |SX− |, argSX− = argSX+−2π.

Hence
log(SX+)− log(SX−) = 2πi,

and we get ∫

X+

logS(s)ds+
∫

X−
logS(s)ds = 2π i Re pk.

Repeating the argument for all poles pk in the right half plane, letting the small
circles go to zero gives

I1 + I2 + I3 =−2i

∫ ∞

0
log |S(iω)|dω + i ∑

k

2π Re pk = 0.

Since complex poles appear as complex conjugate pairs, ∑k Re pk = ∑k pk, which
gives Bode’s formula (12.25).

12.7 Design Example

In this section we present a detailed example that illustrates the main design tech-
niques described in this chapter.

Example 12.12 Lateral control of a vectored thrust aircraft
The problem of controlling the motion of a vertical takeoff and landing (VTOL)
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Figure 12.19: Inner/outer control design for a vectored thrust aircraft. The inner loop Hi

controls the roll angle of the aircraft using the vectored thrust. The outer loop controller Co

commands the roll angle to regulate the lateral position. The process dynamics are decom-
posed into inner loop (Pi) and outer loop (Po) dynamics, which combine to form the full
dynamics for the aircraft.

.

aircraft was introduced in Example 3.11 and in Example 12.6, where we designed
a controller for the roll dynamics. We now wish to control the position of the
aircraft, a problem that requires stabilization of the attitude. The system thus has
two control loops.

To control the lateral dynamics of the vectored thrust aircraft, we make use of
a “inner/outer” loop design methodology, as illustrated in Figure 12.19. This dia-
gram shows the process dynamics and controller divided into two components: an
inner loop consisting of the roll dynamics and control and an outer loop consist-
ing of the lateral position dynamics and controller. This decomposition follows the
block diagram representation of the dynamics given in Exercise 9.10.

The approach that we take is to design a controller Ci for the inner loop so
that the resulting closed loop system Hi assures that the roll angle θ follows its
reference θr fast and accurately. We then design a controller for the lateral position
y that uses the approximation that we can directly control the roll angle as an
input θ to the dynamics controlling the position. Under the assumption that the
dynamics of the roll controller are fast relative to the desired bandwidth of the
lateral position control, we can then combine the inner and outer loop controllers
to get a single controller for the entire system. As a performance specification
for the entire system, we would like to have zero steady-state error in the lateral
position, a bandwidth of approximately 1 rad/s and a phase margin of 45◦.

For the inner loop, we choose our design specification to provide the outer loop
with accurate and fast control of the roll. The inner loop dynamics are given by

Pi = Hθu1
=

r

Js2
.

We choose the desired bandwidth to be 10 rad/s (10 times that of the outer loop)
and the low-frequency error to be no more than 5%. This specification is satisfied
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Figure 12.20: Outer loop control design for a vectored thrust aircraft. (a) The outer loop
approximates the roll dynamics as a state gain−mg. (b) The Bode plot for the roll dynamics,
indicating that this approximation is accurate up to approximately 10 rad/s.

using the lead compensator of Example 12.6 designed previously, so we choose

Ci(s) = k
s+a

s+b
, a = 2, b = 50, k = 1.

The closed loop dynamics for the system satisfy

Hi =
Ci

1+CiPi
−mg

CiPi

1+CiPi
=

Ci(1−mgPi)

1+CiPi
.

A plot of the magnitude of this transfer function is shown in Figure 12.20, and we
see that Hi ≈−mg =−39.2 is a good approximation up to 10 rad/s.

To design the outer loop controller, we assume the inner loop roll control is
perfect, so that we can take θd as the input to our lateral dynamics. Following the
diagram shown in Exercise 9.10, the outer loop dynamics can be written as

P(s) = Hi(0)Po(s) =
Hi(0)

ms2 + cs
,

where we replace Hi(s) with Hi(0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, this approximation may not
be valid, and so we must verify this when we complete our design.

Our control goal is now to design a controller that gives zero steady-state er-
ror in y for a step input and has a bandwidth of 1 rad/s. The outer loop process
dynamics are given by a double integrator, and we can again use a simple lead
compensator to satisfy the specifications. We also choose the design such that the
loop transfer function for the outer loop has |Lo| < 0.1 for ω > 10 rad/s, so that
the Hi high frequency dynamics can be neglected. We choose the controller to be
of the form

Co(s) =−ko
s+ao

s+bo
,

with the negative sign to cancel the negative sign in the process dynamics. To find
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Figure 12.21: Inner/outer loop controller for a vectored thrust aircraft. Bode plot (a) and
Nyquist plot (b) for the loop transfer function cut at θd , for the complete system. The system
has a phase margin of 68◦ and a gain margin of 6.2.

the location of the poles, we note that the phase lead flattens out at approximately
bo/10. We desire phase lead at crossover, and we desire the crossover at ωgc =
1 rad/s, so this gives bo = 10. To ensure that we have adequate phase lead, we must
choose ao such that bo/10 < 10ao < bo, which implies that ao should be between
0.1 and 1. We choose ao = 0.3. Finally, we need to set the gain of the system such
that at crossover the loop gain has magnitude 1. A simple calculation shows that
ko = 2 satisfies this objective. Thus, the final outer loop controller becomes

Co(s) =−2
s+0.3

s+10
.

Finally, we can combine the inner and outer loop controllers and verify that
the system has the desired closed loop performance. The Bode and Nyquist plots
corresponding to Figure 12.19 with inner and outer loop controllers are shown in
Figure 12.21, and we see that the specifications are satisfied. In addition, we show
the Gang of Four in Figure 12.22, and we see that the transfer functions between
all inputs and outputs are reasonable. The sensitivity to load disturbances PS is
large at low frequency because the controller does not have integral action.

The approach of splitting the dynamics into an inner and an outer loop is com-
mon in many control applications and can lead to simpler designs for complex
systems. Indeed, for the aircraft dynamics studied in this example, it is very chal-
lenging to directly design a controller from the lateral position y to the input u1.
The use of the additional measurement of θ greatly simplifies the design because
it can be broken up into simpler pieces. ∇

12.8 Further Reading

Design by loop shaping was a key element in the early development of control, and
systematic design methods were developed; see James, Nichols and Phillips [JNP47],
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Figure 12.22: Gang of Four for vectored thrust aircraft system.

Chestnut and Mayer [CM51], Truxal [Tru55] and Thaler [Tha89]. Loop shap-
ing is also treated in standard textbooks such as Franklin, Powell and Emami-
Naeini [FPEN05], Dorf and Bishop [DB04], Kuo and Golnaraghi [KG02] and
Ogata [Oga01]. Systems with two degrees of freedom were developed by Horowitz [Hor63],
who also discussed the limitations of poles and zeros in the right half-plane. Fun-
damental results on limitations are given in Bode [Bod45]; more recent presenta-
tions are found in Goodwin, Graebe and Salgado [GGS01]. The treatment in Sec-
tion 12.6 is based on [Åst00]. Much of the early work was based on the loop trans-
fer function; the importance of the sensitivity functions appeared in connection
with the development in the 1980s that resulted in H∞ design methods. A compact
presentation is given in the texts by Doyle, Francis and Tannenbaum [DFT92] and
Zhou, Doyle and Glover [ZDG96]. Loop shaping was integrated with the robust
control theory in McFarlane and Glover [MG90] and Vinnicombe [Vin01]. Com-
prehensive treatments of control system design are given in Maciejowski [Mac89]
and Goodwin, Graebe and Salgado [GGS01].

Exercises

12.1 Consider the system in Figure 12.1. Give all signal pairs that are related by
the transfer functions 1/(1+PC), P/(1+PC), C/(1+PC) and PC/(1+PC).

12.2 Consider the system in Example 12.1. Choose the parameters a = −1 and
compute the time and frequency responses for all the transfer functions in the Gang
of Four for controllers with k = 0.2 and k = 5.

12.3 (Equivalence of Figures 12.1 and 12.2) Consider the system in Figure 12.1
and let the outputs of interest be z = (η ,ν) and the major disturbances be w =
(n,d). Show that the system can be represented by Figure 12.2 and give the matrix
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transfer functions P and C . Verify that the elements of the closed loop transfer
function Hzw are the Gang of Four.

12.4 Consider the spring–mass system given by (3.16), which has the transfer
function

P(s) =
1

ms2 + cs+ k
.

Design a feedforward compensator that gives a response with critical damping
(ζ = 1).

12.5 (Sensitivity of feedback and feedforward) Consider the system in Figure 12.1
and let Gyr be the transfer function relating the measured signal y to the reference
r. Show that the sensitivities of Gyr with respect to the feedforward and feedback
transfer functions F and C are given by dGyr/dF =CP/(1+PC) and dGyr/dC =
FP/(1+PC)2 = GyrS/C.

12.6 (Equivalence of controllers with two degrees of freedom) Show that the sys-
tems in Figures 12.1 and 12.3 give the same responses to command signals if
FmC+Fu =CF .

12.7 (Disturbance attenuation) Consider the feedback system shown in Figure 12.1.
Assume that the reference signal is constant. Let yol be the measured output when
there is no feedback and ycl be the output with feedback. Show that Ycl(s) =
S(s)Yol(s), where S is the sensitivity function.

12.8 (Disturbance reduction through feedback) Consider a problem in which an
output variable has been measured to estimate the potential for disturbance attenu-
ation by feedback. Suppose an analysis shows that it is possible to design a closed
loop system with the sensitivity function

S(s) =
s

s2 + s+1
.

Estimate the possible disturbance reduction when the measured disturbance is

y(t) = 5sin(0.1 t)+3sin(0.17 t)+0.5cos(0.9 t)+0.1 t.

12.9 Show that the effect of high frequency measurement noise on the control
signal for the system in Example 12.4 can be approximated by

CS≈C =
kds

(sTf )2 /2+ sTf +1
,

and that the largest value of |CS(iω)| is kd/Tf which occurs for ω =
√

2/Tf .

12.10 (Attenuation of low-frequency sinusoidal disturbances) Integral action elim-
inates constant disturbances and reduces low-frequency disturbances because the
controller gain is infinite at zero frequency. A similar idea can be used to reduce the
effects of sinusoidal disturbances of known frequency ω0 by using the controller

C(s) = kp +
kss

s2 +2ζ ω0s+ω2
0

.
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This controller has the gain Cs(iω0) = kp + ks/(2ζ ) for the frequency ω0, which
can be large by choosing a small value of ζ . Assume that the process has the
transfer function P(s) = 1/s. Determine the Bode plot of the loop transfer function
and simulate the system. Compare the results with PI control.

12.11 (Asymptotes of root locus) Consider proportional control of a system with
the transfer function

P(s) =
b(s)

a(s)
=

b0sm +b1sm−1 + · · ·bm

sn +a1sn−1 + · · ·an
= b0

(s− z1)(s− z2) . . .(s− zm)

(s− p1)(s− p2) · · ·(s− pn)
.

Show that the root locus has asymptotes that are straight line that emerge from the
point

s0 =
1

ne

( n

∑
k=1

pk−
m

∑
k=1

zk

)
,

where ne = n−m is the pole excess of the transfer function.

12.12 (Real line segments of root locus) Consider proportional control a process
with a rational transfer function. Assume that bok > 0, show that the root locus has
segments on the real line there are an odd number of real poles and zeros to the
right the segment.

12.13 (Initial direction of root locus) Consider proportional control of a system
with the transfer function

P(s) =
b(s)

a(s)
=

b0sm +b1sm−1 + · · ·bm

sn +a1sn−1 + · · ·an
= b0

(s− z1)(s− z2) . . .(s− zm)

(s− p1)(s− p2) · · ·(s− pn)
.

Let p j be an isolated pole and assume that kbp > 0. Show that the root locus
starting at p j has the initial direction.

∠(s− p j) = π +Σm
k=1∠(p j− sk)−Σk ̸= j∠(p j− pk).

Give a geometric interpretation of the result.

12.14 Consider a lead compensator with the transfer function

Cn(s) =
(s

n
√

k+a

s+a

)n
,

which has zero frequency gain C(0) = 1 and high-frequency gain C(∞) = k. Show
that the gain required to give a given phase lead ϕ is

k =
(

1+2tan2(ϕ/n)+2tan(ϕ/n)
√

1+ tan2(ϕ/n)
)n

,

and that lim
n→∞

k = e2ϕ .

12.15 Consider a process with the loop transfer function

L(s) = k
z− s

s− p
,
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with positive z and p. Show that the system is stable if p/z < k < 1 or 1 < k < p/z,
and that the largest stability margin is sm = |p− z|/(p+ z) is obtained for k =
2p/(p+z). Determine the pole/zero ratios that gives the stability margin sm = 2/3.

12.16 Prove the inequalities given by equation (12.24). (Hint: Use the maximum !
modulus theorem.)

12.17 (Phase margin formulas) Show that the relationship between the phase mar-
gin and the values of the sensitivity functions at gain crossover is given by

|S(iωgc)|= |T (iωgc)|=
1

2sin(ϕm/2)
.

12.18 (Stabilization of an inverted pendulum with visual feedback) Consider sta-
bilization of an inverted pendulum based on visual feedback using a video camera
with a 50-Hz frame rate. Let the effective pendulum length be l. Assume that we
want the loop transfer function to have a slope of ngc = −1/2 at the crossover
frequency. Use the gain crossover frequency inequality to determine the minimum
length of the pendulum that can be stabilized if we desire a phase margin of 45◦.

12.19 (Rear-steered bicycle) Consider the simple model of a bicycle in Equa-
tion (4.5), which has one pole in the right half-plane. The model is also valid for
a bicycle with rear wheel steering, but the sign of the velocity is then reversed and
the system also has a zero in the right half-plane. Use the results of Exercise 12.15
to give a condition on the physical parameters that admits a controller with the
stability margin sm.

12.20 Prove the formula (12.26) for the complementary sensitivity. !





Chapter Thirteen
Robust Performance

However, by building an amplifier whose gain is deliberately made, say 40 decibels higher

than necessary (10000 fold excess on energy basis), and then feeding the output back on the

input in such a way as to throw away that excess gain, it has been found possible to effect

extraordinary improvement in constancy of amplification and freedom from non-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1934 [Bla34].

This chapter focuses on the analysis of robustness of feedback systems, a vast
topic for which we provide only an introduction to some of the key concepts. We
consider the stability and performance of systems whose process dynamics are
uncertain and derive fundamental limits for robust stability and performance. To
do this we develop ways to describe uncertainty, both in the form of parameter
variations and in the form of neglected dynamics. We also briefly mention some
methods for designing controllers to achieve robust performance.

13.1 Modeling Uncertainty

Harold Black’s quote above illustrates that one of the key uses of feedback is to
provide robustness to uncertainty (“constancy of amplification”). It is one of the
most useful properties of feedback and is what makes it possible to design feed-
back systems based on strongly simplified models.

One form of uncertainty in dynamical systems is parametric uncertainty in
which the parameters describing the system are not precisely known. A typical
example is the variation of the mass of a car, which changes with the number of
passengers and the weight of the baggage. When linearizing a nonlinear system,
the parameters of the linearized model also depend on the operating conditions.
It is straightforward to investigate the effects of parametric uncertainty simply by
evaluating the performance criteria for a range of parameters. Such a calculation
reveals the consequences of parameter variations. We illustrate by a simple exam-
ple.

Example 13.1 Cruise control
The cruise control problem is described in Section 4.1, and a PI controller was
designed in Example 11.3. To investigate the effect of parameter variations, we
will choose a controller designed for a nominal operating condition corresponding
to mass m = 1600 kg, fourth gear (α = 12) and speed ve = 25 m/s; the controller
gains are kp = 0.72 and ki = 0.18. Figure 13.1a shows the velocity error e and the
throttle u when encountering a hill with a 3◦ slope with masses in the range 1600<
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Figure 13.1: Responses of the cruise control system to a slope increase of 3◦ (a) and the
eigenvalues of the closed loop system (b). Model parameters are swept over a wide range.
The closed loop system is of second order.

m < 2000 kg, gear ratios 3–5 (α = 10, 12 and 16) and velocity 10 ≤ v ≤ 40 m/s.
The simulations were done using models that were linearized around the different
operating conditions. The figure shows that there are variations in the response but
that they are quite reasonable. The largest velocity error is in the range of 0.2–0.6
m/s, and the settling time is about 15 s. The control signal is marginally larger
than 1 in some cases, which implies that the throttle is fully open. A full nonlinear
simulation using a controller with windup protection is required if we want to
explore these cases in more detail. The closed loop system has two eigenvalues
Figure 13.1bb shows these eigenvalues for the different operating conditions. The
figure shows that the closed loop system is well damped in all cases. ∇

This example indicates that at least as far as parametric variations are con-
cerned, the design based on a simple nominal model will give satisfactory control.
The example also indicates that a controller with fixed parameters can be used in
all cases. Notice that we have not considered operating conditions in low gear and
at low speed, but cruise controllers are not typically used in these cases.

Unmodeled Dynamics

It is generally easy to investigate the effects of parametric variations. However,
there are other uncertainties that also are important, as discussed at the end of Sec-
tion 3.3. The simple model of the cruise control system captures only the dynamics
of the forward motion of the vehicle and the torque characteristics of the engine
and transmission. It does not, for example, include a detailed model of the engine
dynamics (whose combustion processes are extremely complex) or the slight de-
lays that can occur in modern electronically controlled engines (as a result of the
processing time of the embedded computers). These neglected mechanisms are
called unmodeled dynamics.

Unmodeled dynamics can be accounted for by developing a more complex
model. Such models are commonly used for controller development, but substan-
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Figure 13.2: Unmodeled dynamics in linear systems. Uncertainty can be represented using
additive perturbations (left), multiplicative perturbations (middle) or feedback perturbations
(right). The nominal system is P, and ∆, δ and ∆fb represent unmodeled dynamics.

tial effort is required to develop them. An alternative is to investigate if the closed
loop system is sensitive to generic forms of unmodeled dynamics. The basic idea
is to describe the unmodeled dynamics by including a transfer function in the sys-
tem description whose frequency response is bounded but otherwise unspecified.
For example, we might model the engine dynamics in the cruise control example
as a system that quickly provides the torque that is requested through the throt-
tle, giving a small deviation from the simplified model, which assumed the torque
response was instantaneous. This technique can also be used in many instances
to model parameter variations, allowing a quite general approach to uncertainty
management.

In particular, we wish to explore if additional linear dynamics may cause dif-
ficulties. A simple way is to assume that the transfer function of the process is
P(s)+∆, where P(s) is the nominal simplified transfer function and ∆ represents
the unmodeled dynamics in terms of additive uncertainty. Different representa-
tions of uncertainty are shown in Figure 13.2. The relations between the different
representations of unmodeled dynamics are

δ =
∆

P
, ∆ f b =−

∆

P(P+∆)
=−

δ

P(1+δ )
.

When Are Two Systems Similar? The Vinnicombe Metric
!

A fundamental issue in describing robustness is to determine when two systems are
close. Given such a characterization, we can then attempt to describe robustness
according to how close the actual system must be to the model in order to still
achieve the desired levels of performance. This seemingly innocent problem is
not as simple as it may appear. A naive approach is to say that two systems are
close if their open loop responses are close. Even if this appears natural, there are
complications, as illustrated by the following examples.

Example 13.2 Similar in open loop but large differences in closed loop
The systems with the transfer functions

P1(s) =
k

s+1
, P2(s) =

k

(s+1)(sT +1)2
(13.1)

have very similar open loop step responses for small values of T , as illustrated in
the top plot in Figure 13.3a, which is plotted for T = 0.025 and k = 100. The dif-
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Figure 13.3: Determining when two systems are close. The plots in (a) show a situation
when the open loop responses are almost identical, but the closed loop responses are very
different. The processes are given by equation (13.1) with k = 100 and T = 0.025. The plots
in (b) show the opposite situation: the systems are different in open loop but similar in closed
loop. The processes are given by equation (13.2) with k = 100.

ferences between the step responses are barely noticeable in the figure. The step re-
sponses with unit gain error feedback are shown in the bottom plot in Figure 13.3a.
Notice that one closed loop system is stable and the other one is unstable. ∇

Example 13.3 Different in open loop but similar in closed loop
Consider the systems

P1(s) =
k

s+1
, P2(s) =

k

s−1
. (13.2)

The open loop responses are very different because P1 is stable and P2 is unstable,
as shown in the top plot in Figure 13.3b. Closing a feedback loop with unit gain
around the systems, we find that the closed loop transfer functions are

T1(s) =
k

s+ k+1
, T2(s) =

k

s+ k−1
,

which are very close for large k, as shown in Figure 13.3b. ∇

These examples show that if our goal is to close a feedback loop, it may be
very misleading to compare the open loop responses of the system.

Inspired by these examples we introduce the Vinnicombe metric, which is a
distance measure that is appropriate for closed loop systems. Consider two systems
with the transfer functions P1 and P2, and define

d(P1,P2) = sup
ω

|P1(iω)−P2(iω)|
√

(1+ |P1(iω)|2)(1+ |P2(iω)|2)
, (13.3)
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Figure 13.4: Geometric interpretation of d(P1,P2). At each frequency, the points on the
Nyquist curve for P1 (solid) and P2 (dashed) are projected onto a sphere of radius 1 sitting
at the origin of the complex plane. The projection of the point 1− i is shown. The distance
between the two systems is defined as the maximum distance between the projections of
P1(iω) and P2(iω) over all frequencies ω . The figure is plotted for the transfer functions
P1(s) = 2/(s+1) and P2(s) = 2/(s−1). (Diagram courtesy G. Vinnicombe.)

which is a metric with the property 0 ≤ d(P1,P2) ≤ 1. The number d(P1,P2) can
be interpreted as the difference between the complementary sensitivity functions
for the closed loop systems that are obtained with unit feedback around P1 and P2;
see Exercise 13.3. The metric also has a nice geometric interpretation, as shown in
Figure 13.4, where the Nyquist plots of P1 and P2 are projected onto a sphere with
radius 1 sitting at the origin of the complex plane (called the Riemann sphere).
Points in the complex plane are projected onto the sphere by a line through the
point and the north pole (Figure 13.4). The distance d(P1,P2) is the longest chordal
distance between the projections of P1(iω) and P2(iω). The distance is small when
P1(iω) and P2(iω) are both small or both large.

The distance d(P1,P2) has one drawback for the purpose of comparing the be-
havior of systems under feedback. If P2 is perturbed continuously from P1 to P2,
there can be intermediate transfer functions P where d(P1,P) is 1 even if d(P1,P2)
is small (see Exercise 13.4). To explore when this could happen, we observe that

1−d2(P1,P) =
(1+P(iω)P1(−iω))(1+P(−iω)P1(iω))

(1+ |P1(iω)|2)(1+ |P(iω)|2)
.

The right-hand side is zero, and hence d(P1,P) = 1 if 1+P(iω)P1(−iω) = 0 for
some ω . To explore when this could occur, we investigate the behavior of the
function 1+P(s)P1(−s) when P is perturbed from P1 to P2. If the functions f1(s) =
1+P1(s)P1(−s) and f2(s)= 1+P2(s)P1(−s) do not have the same number of zeros
in the right half-plane, there is an intermediate P such that 1+P(iω)P1(−iω) = 0
for some ω . To exclude this case we introduce the set C as all pairs (P1,P2) such
that the functions f1 = 1+P1(s)P1(−s) and f2 = 1+P2(s)P1(−s) have the same
number of zeros in the right half-plane.

The Vinnicombe metric or ν-gap metric is defined as

δν(P1,P2) =

{
d(P1,P2), if (P1,P2) ∈ C

1, otherwise.
(13.4)
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Vinnicombe [Vin01] showed that δν(P1,P2) is a metric, he gave strong robustness
results based on the metric and he developed the theory for systems with many
inputs and many outputs. We illustrate its use by computing the metric for the
systems in the previous examples.

Example 13.4 Vinnicombe metric for Examples 13.2 and 13.3
For the systems in Example 13.2 we have

f1(s) = 1+P1(s)P1(−s) =
1+ k2− s2

1− s2
,

f2(s) = 1+P2(s)P1(−s) =
1+ k2 +2sT +(T 2−1)s2−2s3T − s4T 2

(1− s2)(1+2sT + s2T 2)
.

The function f1 has one zero in the right half-plane. A numerical calculation
for k = 100 and T = 0.025 shows that the function f2 has the roots 46.3, -86.3,
−20.0±60.0i. Both functions have one zero in the right half-plane, allowing us to
compute the norm (13.4). For T = 0.025 this gives δν(P1,P2) = 0.98, which is a
quite large value. To have reasonable robustness Vinnicombe recommended values
less than 1/3.

For the system in Example 13.3 we have

1+P1(s)P1(−s) =
1+ k2− s2

1− s2
, 1+P2(s)P1(−s) =

1− k2−2s+ s2

(s+1)2

These functions have the same number of zeros in the right half-plane if k > 1.
In this particular case the Vinnicombe metric is d(P1,P2) = 2k/(1+ k2) (Exer-
cise 13.4) and with k = 100 we get δν(P1,P2) = 0.02. Figure 13.4 shows the
Nyquist curves and their projections for k = 2. Notice that d(P1,P2) is very small
for small k even though the closed loop systems are very different. It is therefore
essential to consider the condition (P1,P2) ∈ C , as discussed in Exercise 13.4. ∇

13.2 Stability in the Presence of Uncertainty

Having discussed how to describe uncertainty and the similarity between two sys-
tems, we now consider the problem of robust stability: When can we show that
the stability of a system is robust with respect to process variations? This is an im-
portant question since the potential for instability is one of the main drawbacks of
feedback. Hence we want to ensure that even if we have small inaccuracies in our
model, we can still guarantee stability and performance of the closed loop system.

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant way to study the effects
of uncertainty for linear systems. A simple criterion is that the Nyquist curve be
sufficiently far from the critical point −1. Recall that the shortest distance from
the Nyquist curve to the critical point is sm = 1/Ms, where Ms is the maximum of
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Figure 13.5: Robust stability using the Nyquist criterion. The plot (a) shows that the shortest
distance to the critical point sm is a robustness measure. The plot (b) shows the Nyquist
curve of the nominal loop transfer function L, the circle shows its uncertainty due to additive
process variations ∆.

the sensitivity function and sm is the stability margin introduced in Section 10.3.
The maximum sensitivity Ms or the stability margin sm is thus a good robustness
measure, as illustrated in Figure 13.5a.

We will now derive explicit conditions on the controller C such that stability
i guaranteed for process perturbations where |Delta| is less than a given bound.
Consider a stable feedback system with a process P and a controller C. If the
process is changed from P to P+∆, the loop transfer function changes from PC
to PC +C∆, as illustrated in Figure 13.5b. If we have a bound on the size of ∆
(represented by the dashed circle in the figure), then the system remains stable as
long the perturbed loop tansfer funcion |1+(P+∆)C| never reaches the critical
point −1 point, since the number of encirclements of −1 remain unchanged.

Some additional assumptions are required for the analysis to hold. Most impor-
tantly, we require that the process perturbations ∆ be stable so that we do not in-
troduce any new right half-plane poles that would require additional encirclements
in the Nyquist criterion.

We will now compute an analytical bound on the allowable process distur-
bances. The distance from the critical point −1 to the loop transfer function L is
|1+ L|. This means that the perturbed Nyquist curve will not reach the critical
point −1 provided that |C∆|< |1+L|, which is guaranteed if

|∆|<
∣∣∣
1+PC

C

∣∣∣ or |δ |<
1

|T |
, where δ :=

∣∣∣
∆

P

∣∣∣. (13.5)

This condition must be valid for all points on the Nyquist curve, i.e, pointwise
for all frequencies. The condition for robust stability can thus be written as

|δ (iω)|=
∣∣∣
∆(iω)

P(iω)

∣∣∣<
1

|T (iω)|
for all ω ≥ 0. (13.6)

Notice that the condition is conservative because it follows from Figure 13.5 that
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the critical perturbation is in the direction toward the critical point −1. Larger
perturbations can be permitted in the other directions.

The condition in equation (13.6) allows us to reason about uncertainty without
exact knowledge of the process perturbations. Namely, we can verify stability for
any uncertainty ∆ that satisfies the given bound. From an analysis perspective,
this gives us a measure of the robustness for a given design. Conversely, if we
require robustness of a given level, we can attempt to choose our controller C such
that the desired level of robustness is available (by asking that T be small) in the
appropriate frequency bands.

Equation (13.6) is one of the reasons why feedback systems work so well in
practice. The mathematical models used to design control systems are often simpli-
fied, and the properties of a process may change during operation. Equation (13.6)
implies that the closed loop system will at least be stable for substantial variations
in the process dynamics.

It follows from equation (13.6) that the variations can be large for those fre-
quencies where T is small and that smaller variations are allowed for frequencies
where T is large. A conservative estimate of permissible process variations that
will not cause instability is given by

|δ (iω)|=
∣∣∣
∆(iω)

P(iω)

∣∣∣<
1

Mt
,

where Mt is the largest value of the complementary sensitivity

Mt = sup
ω

|T (iω)|=
∥∥∥

PC

1+PC

∥∥∥
∞
. (13.7)

Reasonable values of Mt are in the range of 1.2 to 2. It is shown in Exercise 13.5
that if Mt = 2 then pure gain variations of 50% or pure phase variations of 30◦ are
permitted without making the closed loop system unstable.

Example 13.5 Cruise control
Consider the cruise control system discussed in Section 4.1. The model of the car
in fourth gear at speed 25 m/s is

P(s) =
1.38

s+0.0142
,

and the controller is a PI controller with gains kp = 0.72 and ki = 0.18. Fig-
ure 13.6 plots the allowable size of the process uncertainty using the bound in
equation (13.6). At low frequencies, T (0) = 1 and so the perturbations can be as
large as the original process (|δ |= |∆/P|< 1). The complementary sensitivity has
its maximum Mt = 1.14 at ωmt = 0.35, and hence this gives the minimum allow-
able process uncertainty, with |δ |< 0.87 or |∆|< 3.47. Finally, at high frequencies,
T → 0 and hence the relative error can get very large. For example, at ω = 5 we
have |T (iω)|= 0.195, which means that the stability requirement is |δ |< 5.1. The
analysis clearly indicates that the system has good robustness and that the high-
frequency properties of the transmission system are not important for the design
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Figure 13.6: Robustness for a cruise controller. On the left the maximum relative error 1/|T |
(solid) and the absolute error |P|/|T | (dashed) for the process uncertainty ∆. The Nyquist
curve is shown on the right as a solid line. The dashed circles show permissible perturbations
in the process dynamics, |∆|= |P|/|T |, at the frequencies ω = 0, 0.0142 and 0.05.

of the cruise controller.
Another illustration of the robustness of the system is given in the right dia-

gram in Figure 13.6, which shows the Nyquist curve of the transfer function of the
process and the uncertainty bounds ∆ = |P|/|T | for a few frequencies. Note that
the controller can tolerate large amounts of uncertainty and still maintain stability
of the closed loop. ∇

The situation illustrated in the previous example is typical of many processes:
moderately small uncertainties are required only around the gain crossover fre-
quencies, but large uncertainties can be permitted at higher and lower frequencies.
A consequence of this is that a simple model that describes the process dynamics
well around the crossover frequency is often sufficient for design. Systems with
many resonant peaks are an exception to this rule because the process transfer
function for such systems may have large gains for higher frequencies also, as
shown for instance in Example 10.9.

The robustness condition given by equation (13.6) can be given another inter-
pretation by using the small gain theorem (Theorem 10.4). To apply the theorem
we start with block diagrams of a closed loop system with a perturbed process and
make a sequence of transformations of the block diagram that isolate the block
representing the uncertainty, as shown in Figure 13.7. The result is the two-block
interconnection shown in Figure 13.7c, which has the loop transfer function

L =
PC

1+PC

∆

P
= T δ .

Equation (13.6) implies that the largest loop gain is less than 1 and hence the
system is stable via the small gain theorem.

The small gain theorem can be used to check robust stability for uncertainty in
a variety of other situations. Table 13.1 summarizes a few of the common cases;
the proofs (all via the small gain theorem) are left as exercises.
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Figure 13.7: Illustration of robustness to process perturbations. A system with additive un-
certainty (left) can be manipulated via block diagram algebra to one with multiplicative
uncertainty δ = ∆/P (center). Additional manipulations isolate the uncertainty in a manner
that allows application of the small gain theorem (right)

The following example illustrates that it is possible to design systems that are
robust to parameter variations.

Example 13.6 Bode’s ideal loop transfer function
A major problem in the design of electronic amplifiers is to obtain a closed loop
system that is insensitive to changes in the gain of the electronic components.
Bode found that the loop transfer function L(s) = ks−n, with 1 ≤ n ≤ 5/3, was
an ideal loop transfer function. The gain curve of the Bode plot is a straight line
with slope −n and the phase is constant argL(iω) = −nπ/2. The phase margin
is thus ϕm = 90(2−n)◦ for all values of the gain k and the stability margin is
sm = sinπ(1−n/2). This transfer function cannot be realized with physical com-
ponents unless n is an integer, but it can be approximated over a given frequency
range with a proper rational function (Exercise 13.7) for any n. An operational am-
plifier circuit that has the approximate transfer function G(s) = k/(s+a) is a real-
ization of Bode’s ideal transfer function with n = 1, as described in Example 9.3.
Designers of operational amplifiers go to great efforts to make the approximation
valid over a wide frequency range. ∇

Youla Parameterization
!

Since stability is such an essential property, it is useful to characterize all con-
trollers that stabilize a given process. Such a representation, which is called a Youla
parameterization, is very useful when solving design problems because it makes it
possible to search over all stabilizing controllers without the need to test stability

Table 13.1: Conditions for robust stability for different types of uncertainty

Process Uncertainty Type Robust Stability

P+∆ Additive ∥CS∆∥∞ < 1

P(1+δ ) Multiplicative ∥T δ∥∞ < 1

P/(1+∆fb ·P) Feedback ∥PS∆fb∥∞ < 1
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Figure 13.8: Youla parameterization. Block diagrams of Youla parameterizations for a stable
system (a) and an unstable system (b). Notice that the signal v is zero in steady state.

explicitly.
We will first derive Youla’s parameterization for a stable process with a rational

transfer function P. A system with the complementary sensitivity function T can
be obtained by feedforward control with the stable transfer function Q if T = PQ.
Notice that T must have the same right half-plane zeros as P since Q is stable.
Now assume that we want to implement the complementary transfer function T
by using unit feedback with the controller C. Since T = PC/(1+PC) = PQ, it
follows that the controller transfer function is

C =
Q

1−PQ
. (13.8)

A straightforward calculation gives

S = 1−PQ, PS = P(1−PQ), CS = Q, T = PQ.

These transfer functions are all stable if P and Q are stable and the controller given
by equation (13.8) is thus stabilizing. Indeed, it can be shown that all stabilizing
controllers are in the form given by equation (13.8) for some choice of Q. The
parameterization is illustrated by the block diagrams in Figure 13.8a. Notice that
the signal ν is always zero.

A similar characterization can be obtained for unstable systems. Consider a
process with a rational transfer function P(s) = a(s)/b(s), where a(s) and b(s) are
polynomials. By introducing a stable polynomial c(s), we can write

P(s) =
b(s)

a(s)
=

B(s)

A(s)
,

where A(s) = a(s)/c(s) and B(s) = b(s)/c(s) are stable rational functions. Simi-
larly we introduce the controller C0(s) = G0(s)/F0(s), where F0(s) and G0(s) are
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Figure 13.9: Block diagram of a basic feedback loop. The external signals are the reference
signal r, the load disturbance v and the measurement noise w. The process output is y, and
the control signal is u. The process P may include unmodeled dynamics, such as additive
perturbations.

stable rational functions. We have

S0 =
1

1+P0C0
=

AF0

AF0 +BG0
, PS0 =

BF0

AF0 +BG0
,

C0S0 =
AG0

AF0 +BG0
, T0 =

BG0

AF0 +BG0
.

The controller C0 is stabilizing if and only if the rational function AF0 +BG0 does
not have any zeros in the right half plane. Let Q be a stable rational function and
consider the controller

C =
G0 +QA

F0−QB
. (13.9)

The Gang of Four for P and C is

S =
A(F0−QB)

AF0 +BG0
, PS =

B(F0−QB)

AF0 +BG0
,

CS =
A(G0 +QA)

AF0 +BG0
, T =

B(G0 +QA)

AF0 +BG0
.

All these transfer functions are stable because A,B,F0 and G0 are stable and AF0+
BG0 does not have any zeros in the right half plane. The controller C given by
(13.9) thus stabilizes the closed loop system for any stable Q. A block diagram of
the closed loop system with the controller C is shown in Figure 13.8b. Notice that
the signal ν is zero.

13.3 Performance in the Presence of Uncertainty

So far we have investigated the risk for instability and robustness to process un-
certainty. We will now explore how responses to load disturbances, measurement
noise and reference signals are influenced by process variations. To do this we will
analyze the system in Figure 13.9, which is identical to the basic feedback loop
analyzed in Chapter 12.
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Disturbance Attenuation

The sensitivity function S gives a rough characterization of the effect of feedback
on disturbances, as was discussed in Section 12.3. A more detailed characterization
is given by the transfer function from load disturbances to process output:

Gyv =
P

1+PC
= PS. (13.10)

Load disturbances typically have low frequencies, and it is therefore important that
the transfer function Gyv is small for low frequencies. For processes P with con-
stant low-frequency gain and a controller with integral action it follows from(13.10)
that Gyv ≈ s/ki. The integral gain ki is thus a simple measure of the attenuation of
low frequency load disturbances.

To find out how the transfer function Gyv is influenced by small variations in
the process transfer function we differentiate equation (13.10) with respect to P
yielding

dGyv

dP
=

1

(1+PC)2
=

SP

P(1+PC)
= S

Gyv

P
,

and it follows that
dGyv

Gyv
= S

dP

P
. (13.11)

The response to load disturbances is thus insensitive to process variations for fre-
quencies where |S(iω)| is small.

A drawback with feedback is that the controller feeds measurement noise into
the system. It is thus also important that the control actions generated by measure-
ment noise are not too large. It follows from Figure 13.9 that the transfer function
Guw from measurement noise to controller output is given by

Guw =−
C

1+PC
=−

T

P
. (13.12)

Since measurement noise typically has high frequencies, the transfer function Guw

should not be too large for high frequencies. The loop transfer function PC is typ-
ically small for high frequencies, which implies that Guw ≈C for large s. To avoid
injecting too much measurement noise the high frequency gain of the controller
transfer function C(s) should thus be small. This property is called high-frequency
roll-off. In PID control is is common practice to low-pass filter the measured sig-
nal; see Section 11.5.

To determine how the transfer function Guw is influenced by small variations in
the process transfer, we differentiate equation (13.12):

dGuw

dP
=

d

dP

(
−

C

1+PC

)
=

C

(1+PC)2
C =−T

Guw

P
.

Rearranging the terms gives

dGuw

Guw
=−T

dP

P
. (13.13)



13-14 CHAPTER 13. ROBUST PERFORMANCE

−

+
v

v

1

v2

R2R

G (s)

1

Rl

R2

R1
Σ Σ−G(s)

v2

d

vR1

R1+R2

ev1

Figure 13.10: Operational amplifier with uncertain dynamics. The circuit on the left is mod-
eled using the transfer function G(s) to capture its dynamic properties and it has a load at
the output. The block diagram on the right shows the input/output relationships. The load is
represented as a disturbance d applied at the output of G(s).

Since the complementary sensitivity function is also small for high frequencies,
we find that process uncertainty has little influence on the transfer function Guw

for frequencies where measurements are important.

Reference Signal Tracking

The transfer function from reference to output is given by

Gyr =
PCF

1+PC
= T F, (13.14)

which contains the complementary sensitivity function. To see how variations in P
affect the performance of the system, we differentiate equation (13.14) with respect
to the process transfer function:

dGyr

dP
=

CF

1+PC
−

PCFC

(1+PC)2
=

CF

(1+PC)2
= S

Gyr

P
,

and it follows that
dGyr

Gyr
= S

dP

P
. (13.15)

The relative error in the closed loop transfer function thus equals the product of
the sensitivity function and the relative error in the process. In particular, it follows
from equation (13.15) that the relative error in the closed loop transfer function is
small when the sensitivity is small. This is one of the useful properties of feedback.

As in the previous section, there are some mathematical assumptions that are
required for the analysis presented here to hold. As already stated, we require that
the perturbations ∆ be small (as indicated by writing dP). Second, we require that
the perturbations be stable, so that we do not introduce any new right half-plane
poles that would require additional encirclements in the Nyquist criterion. Also, as
before, this condition is conservative: it allows for any perturbation that satisfies
the given bounds, while in practice the perturbations may be more restricted.

Example 13.7 Operational amplifier circuit
To illustrate the use of these tools, consider the performance of an op amp-based
amplifier, as shown in Figure 13.10. We wish to analyze the performance of the
amplifier in the presence of uncertainty in the dynamic response of the op amp
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and changes in the loading on the output. We model the system using the block
diagram in Figure 13.10b, which is based on the derivation in Example 10.1.

Consider first the effect of unknown dynamics for the operational amplifier. Let
the dynamics of the op amp be modeled as v2 = −G(s)v, it then follows from the
block diagram in Figure 13.10b that the transfer function for the overall circuit is

Gv2v1 =−
R2

R1

G(s)

G(s)+R2/R1 +1
.

We see that if G(s) is large over the desired frequency range, then the closed loop
system is very close to the ideal response α = R2/R1. Assuming G(s) = b/(s+a),
where b is the gain-bandwidth product of the amplifier, as discussed in Exam-
ple 9.3, the sensitivity function and the complementary sensitivity function become

S =
s+a

s+a+αb
, T =

αb

s+a+αb
.

The sensitivity function around the nominal values tells us how the tracking re-
sponse response varies as a function of process perturbations:

dGyr

Gyr
= S

dP

P
.

We see that for low frequencies, where S is small, variations in the bandwidth a or
the gain-bandwidth product b will have relatively little effect on the performance
of the amplifier (under the assumption that b is sufficiently large).

To model the effects of an unknown load, we consider the addition of a dis-
turbance at the output of the system, as shown in Figure 13.10b. This disturbance
represents changes in the output voltage due to loading effects. The transfer func-
tion Gyd = S gives the response of the output to the load disturbance, and we see
that if S is small, then we are able to reject such disturbances. The sensitivity of Gyd

to perturbations in the process dynamics can be computed by taking the derivative
of Gyd with respect to P:

dGyd

dP
=

−C

(1+PC)2
=−

T

P
Gyd =⇒

dGyd

Gyd
=−T

dP

P
.

Thus we see that the relative changes in the disturbance rejection are roughly the
same as the process perturbations at low frequency (when T is approximately 1)
and drop off at higher frequencies. However, it is important to remember that Gyd

itself is small at low frequency, and so these variations in relative performance may
not be an issue in many applications. ∇

13.4 Robust Pole Placement

In Chapters 7 and 8 we saw how to design controllers by setting the locations
of the eigenvalues of the closed loop system. If we analyze the resulting system
in the frequency domain, the closed loop eigenvalues correspond to the poles of
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the closed loop transfer function and hence these methods are often referred to as
design by pole placement.

State space design methods, like many methods developed for control system
design, do not explicitly take robustness into account. In such cases it is essen-
tial to always investigate the robustness because there are seemingly reasonable
designs that give controllers with poor robustness. We illustrate this by analyzing
controllers designed by state feedback and observers. The closed loop poles can
be assigned to arbitrary locations if the system is observable and reachable. How-
ever, if we want to have a robust closed loop system, the poles and zeros of the
process impose severe restrictions on the location of the closed loop poles. Some
examples are first given; based on the analysis of these examples we then present
design rules for robust pole (eigenvalue) placement.

Slow Stable Process Zeros

We will first explore the effects of slow stable zeros, and we begin with a simple
example.

Example 13.8 Vehicle steering
Consider the linearized model for vehicle steering in Example 9.10, which has the
transfer function

P(s) =
0.5s+1

s2
.

A controller based on state feedback was designed in Example 7.4, and state feed-
back was combined with an observer in Example 8.4. The system simulated in
Figure 8.8 has closed loop poles specified by ωc = 0.3, ζc = 0.707, ωo = 7 and
ζo = 9. Assume that we want a faster closed loop system and choose ωc = 10,
ζc = 0.707, ωo = 20 and ζo = 0.707. Using the state representation in Example 8.3,
a pole placement design gives state feedback gains k1 = 100 and k2 =−35.86 and
observer gains l1 = 28.28 and l2 = 400. The controller transfer function is

C(s) =
−11516s+40000

s2 +42.4s+6657.9
.

Figure 13.11 shows Nyquist and Bode plots of the loop transfer function. The
Nyquist plot indicates that the robustness is poor since the loop transfer function is
very close to the critical point −1. The phase margin is 7◦ and the stability margin
is sm = 0.077. The poor robustness shows up in the Bode plot, where the gain
curve hovers around the value 1 and the phase curve is close to −180◦ for a wide
frequency range. More insight is obtained by analyzing the sensitivity functions,
shown by solid lines in Figure 13.12. The maximum sensitivities are Ms = 13 and
Mt = 12, indicating that the system has poor robustness.

At first sight it may be surprising that a controller where the nominal closed
system has well damped poles and zeros is so sensitive to process variations. We
have an indication that something is unusual because the controller has a slow zero
at s = 3.5, recall that the observer and controller poles have ωc = 10 and ωo = 20.
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Figure 13.11: Observer-based control of steering. The Nyquist plot (left) and Bode plot
(right) of the loop transfer function for vehicle steering with a controller based on state
feedback and an observer. The controller provides stable operation, but with very low gain
and phase margin.

To understand what happens, we will investigate the reason for the peaks of the
sensitivity functions.

Let the transfer functions of the process and the controller be

P(s) =
np(s)

dp(s)
, C(s) =

nc(s)

dc(s)
,

where np(s), nc(s), dp(s) and dc(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

T (s) =
PC

1+PC
=

np(s)nc(s)

dp(s)dc(s)+np(s)nc(s)
.

The poles of T (s) are the poles of the closed loop system and the zeros are the
zeros of the process and of the controller. A Bode plot of the gain curve of T is
shown in Figure 13.12a. We have T (0) = 1, because L(0) = P(0)C(0) = ∞, due
to the double integrator of P. The gain |T (iω)| increases for increasing ω due to
the process zero at ω = 2. It increases further at the controller zero at ω = 3.5,
and it does not start to decrease until the closed loop poles appear at ω = 10 and
ω = 20. The gain of the complementary sensitivity function has a peak indicating
poor sensitivity of the closed loop system.

The peak of the complementary sensitivity function can be avoided by assign-
ing a closed loop pole at the slow process zero or close to it. We can achieve this
by choosing ωc = 10 and ζc = 2.6, which gives closed loop poles at s = −2 and
s =−50. The controller transfer function then becomes

C(s) =
3628s+40000

s2 +80.28s+156.56
= 3628

s+11.02

(s+2)(s+78.28)
.

The sensitivity functions are shown by dashed lines in Figure 13.12b. The closed
loop system has the maximum sensitivities Ms = 1.34 and Mt = 1.41, which indi-
cate good robustness. Notice that the controller has a pole at s = −2 that cancels
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Figure 13.12: Gain curves of Bode plots for the sensitivity functions of observer-based
control of vehicle steering. The complementary sensitivity function is shown in (a) and the
sensitivity function in (b). The plots for the original controller with ωc = 10, ζc = 0.707,
ωo = 20, ζo = 0.707 is shown in solid lines and the improved controller with ωc = 10,
ζc = 2.6 is shown in dashed lines.

the slow process zero. The design can be done simply by first canceling the slow
stable process zero and then designing the controller. ∇

One lesson from the example is that it is necessary to choose closed loop poles
that are equal to or close to slow stable process zeros. Another lesson is that slow
unstable process zeros impose limitations on the achievable bandwidth, as already
noted in Section 12.6.

Fast Stable Process Poles

The next example shows the effect of fast stable poles.

Example 13.9 Fast system poles
Consider a PI controller for a first-order system, where the process and the con-
troller have the transfer functions P(s)= b/(s+a), with a ¿ 0, and C(s)= kp+ki/s.
The loop transfer function is

L(s) =
b(kps+ ki)

s(s+a)
,

and the closed loop characteristic polynomial is.

s(s+a)+b(kps+ ki) = s2 +(a+bkp)s+ kib

If we specify the desired closed loop poles should be −p1 and −p2, we find that
the controller parameters are given by

kp =
p1 + p2−a

b
, ki =

p1 p2

b
.

The sensitivity functions are then

S(s) =
s(s+a)

(s+ p1)(s+ p2)
, T (s) =

(p1 + p2−a)s+ p1 p2

(s+ p1)(s+ p2)
.

Assume that the process pole−a is much more negative than the closed loop poles
−p1 and −p2, say, p1 < p2≪ a. Notice that the proportional gain kp is negative
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Figure 13.13: Gain curves of Bode plots of the sensitivity function S for designs with p1 <
p2 < a (left) and a < p1 < p2 (right). The solid lines are the true sensitivities, and the dashed
lines are the asymptotes.

and that the controller has a zero in the right half-plane if a> p1+ p2, an indication
that the system has bad properties.

Next consider the sensitivity function, which is 1 for high frequencies. Fig-
ure 13.13a shows that the increases for ω = a corresponding to the process pole.
The sensitivity does not decrease until the breakpoints of closed loop poles are
reached, resulting in a large sensitivity peak that is approximately a/p2. The gain
of the sensitivity function is shown in Figure 13.13 for a = b = 1, p1 = 0.05 and
p2 = 0.2. Notice the high-sensitivity peak. For comparison we also show the gain
curve for the case when the closed loop poles (p1 = 5, p2 = 20) are faster than the
process pole (a = 1).

The problem with poor robustness can be avoided by choosing one closed loop
pole equal to the process pole, i.e., p2 = a. The controller gains then become

kp =
p1

b
, ki =

ap1

b
,

which means that the fast process pole is canceled by a controller zero at s =−a.
The loop transfer function and the sensitivity functions are

L(s) =
bkp

s
, S(s) =

s

s+bkp
, T (s) =

bkp

s+bkp
.

The maximum sensitivities are now less than 1 for all frequencies. Notice that this
is possible because the process transfer function goes to zero as s−1. ∇

Design Rules for Pole Placement

Based on the insight gained from the examples, it is now possible to obtain design
rules that give designs with good robustness. Consider the expression (13.7) for
maximum complementary sensitivity, repeated here:

Mt = sup
ω

|T (iω)|=
∥∥∥

PC

1+PC

∥∥∥
∞
.

Let ωgc be the desired gain crossover frequency. Assume that the process has ze-
ros that are slower than ωgc. The complementary sensitivity function is 1 for low
frequencies, and it increases for frequencies close to the process zeros unless there



13-20 CHAPTER 13. ROBUST PERFORMANCE

is a closed loop pole in the neighborhood. To avoid large values of the comple-
mentary sensitivity function we find that the closed loop system should therefore
have poles close to or equal to the slow stable zeros. This means that slow stable
zeros should be canceled by controller poles. Since unstable zeros cannot be can-
celed, the presence of slow unstable zeros means that achievable gain crossover
frequency must be smaller than the slowest unstable process zero.

Now consider process poles that are faster than the desired gain crossover fre-
quency. Consider the expression for the maximum of the sensitivity function:

Ms = sup
ω

|S(iω)|=
∥∥∥

1

1+PC

∥∥∥
∞
.

The sensitivity function is 1 for high frequencies. Moving from high to low fre-
quencies, the sensitivity function increases at the fast process poles. Large peaks
can result unless there are closed loop poles close to the fast process poles. To avoid
large peaks in the sensitivity the closed loop system should therefore have poles
that match the fast process poles. This means that the controller should cancel the
fast process poles by controller zeros. Since unstable modes cannot be canceled,
the presence of a fast unstable pole implies that the gain crossover frequency must
be sufficiently large.

To summarize, we obtain the following simple rule for choosing closed loop
poles: slow stable process zeros should be matched by slow closed loop poles,
and fast stable process poles should be matched by fast closed loop poles. Slow
unstable process zeros and fast unstable process poles impose severe limitations.

Example 13.10 Nanopositioning system for an atomic force microscope
A simple nanopositioner with the process transfer function

P(s) =
ω2

0

s2 +2ζ ω0s+ω2
0

was explored in Example 10.9. It was shown that the system could be controlled
using an integral controller. The closed-loop performance was poor because the
gain crossover frequency was limited to ωgc < 2ζ ω0(1− sm) to have good robust-
ness whith the integrating controller. It can be shown that little improvement is
obtained by using a PI controller. We will explore if better performance can be
obtained with PID control. For a modest performance increase, we will use the de-
sign rule derived in Example 13.9 that fast stable process poles should be canceled
by controller zeros. The controller transfer function should thus be chosen as

C(s) =
kds2 + kps+ ki

s
=

ki

s

s2 +2ζ ω0s+ω2
0

ω2
0

(13.16)

which gives kp = 2ζ ki/ω0 and kd = ki/ω2
0 . The loop transfer function becomes

L(s) = ki/s.
Figure 13.14 shows, in dashed lines, the gain curves for the Gang of Four for

a system designed with ki = 0.5. A comparison with Figure 10.12 shows that the
bandwidth is increased significantly from ωgc = 0.01 to ωgc = ki = 0.5. Since
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Figure 13.14: Nanopositioning system control via cancellation of the fast process pole. Gain
plots for the Gang of Four for PID control with second-order filtering (13.17) are shown
by solid lines, and the dashed lines show results for an ideal PID controller without filter-
ing (13.16).

the process pole is canceled, the system will, however, still be very sensitive to
load disturbances with frequencies close to the resonant frequency. The gain curve
of CS has a dip or a notch at the resonant frequency ω0, which implies that the
controller gain is very low for frequencies around the resonance. The gain curve
also shows that the system is very sensitive to high-frequency noise. The system
will likely be unusable because the gain goes to infinity for high frequencies.

The sensitivity to high frequency noise can be remedied by modifying the con-
troller to be

C(s) =
ki

s

s2 +2ζ ω0s+ω2
0

a2(1+ sTf +(sTf )2/2)
, (13.17)

which has high-frequency roll-off. Selection of the constant Tf for the filter is a
compromise between attenuation of high-frequency measurement noise and ro-
bustness. A large value of Tf reduces the effects of sensor noise significantly, but
it also reduces the stability margin. Since the gain crossover frequency without
filtering is ki, a reasonable choice is Tf = 0.2/ki, as shown by the solid curves in
Figure 13.14. The plots of |CS(iω)| and |S(iω)| show that the sensitivity to high-
frequency measurement noise is reduced dramatically at the cost of a marginal
increase of sensitivity. Notice that the poor attenuation of disturbances with fre-
quencies close to the resonance is not visible in the sensitivity function because of
the cancellation of the resonant poles.

The designs thus far have the drawback that load disturbances with frequencies
close to the resonance are not attenuated, since |S(iω0)| is close to one. We will
now consider a design that actively attenuates the poorly damped modes. We start
with an ideal PID controller where the design can be done analytically, and we add
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high-frequency roll-off. The loop transfer function obtained with this controller is

L(s) =
a2(kds2 + kps+ ki)

s(s2 +2ζ as+a2)
. (13.18)

The closed loop system is of third order, and its characteristic polynomial is

s3 +(kda2 +2ζ a)s2 +(kp +1)a2s+ kia
2. (13.19)

A general third-order polynomial can be parameterized as

s3 +(αc +2ζc)ωcs2 +(1+2αcζc)ω
2
c s+αcω3

c . (13.20)

The parameters αc and ζc give the relative configuration of the poles, and the pa-
rameter ωc gives their magnitudes, and therefore also the bandwidth of the system.

The identification of coefficients of equal powers of s with equation (13.19)
gives a linear equation for the controller parameters, which has the solution

kp =
(1+2αcζc)ω2

c

a2
−1, ki =

αcω3
c

ω2
0

, kd =
(αc +2ζc)ωc

a2
−

2ζc

ω0
.

(13.21)
To obtain a design with active damping, the closed loop bandwidth ωc should be at
least as fast as the resonant mode ω0. Adding high-frequency roll-off, the controller
becomes

C(s) =
kds2 + kps+ k

s(1+ sTf +(sTf )2/2)
. (13.22)

The value Tf = Td/10 = 0.1kd/k is a reasonable value for the filtering time con-
stant, larger values give better damping but less robustness.

Figure 13.15 shows the gain curves of the Gang of Four for designs with
ζc = 0.707, αc = 1 and ωc = ω0, 2ω0 and 4ω0. The figure shows that the largest
values of the sensitivity function and the complementary sensitivity function are
small. The gain curve for PS shows that the load disturbances are now well attenu-
ated over the whole frequency range, and attenuation increases with increasing ω0.
The gain curve for CS shows that large control signals are required to provide ac-
tive damping. The high gain of CS for high frequencies also shows that low-noise
sensors and actuators with a wide range are required. The largest gains for CS are
19, 103 and 434 for ω0 = a, 2a and 4a, respectively. There is clearly a trade-off be-
tween disturbance attenuation and controller gain. A comparison of Figures 13.14
and 13.15 illustrates the trade-offs between control action and disturbance attenu-
ation for the designs with cancellation of the fast process pole and active damping.

∇

13.5 Design for Robust Performance
!

Control design is a rich problem where many factors have to be taken into account.
Typical requirements are that load disturbances should be attenuated, the controller
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Figure 13.15: Nanopositioner control using active damping. Gain curves for the Gang
of Four for PID control of the nanopositioner designed for ωc = ω0 (dash-dotted), 2ω0

(dashed), and 4ω0 (solid). The controller has high-frequency roll-off and has been designed
to give active damping of the oscillatory mode. The different curves correspond to different
choices of magnitudes of the poles, parameterized by ωc in equation (13.19).

should inject only a moderate amount of measurement noise, the output should
follow variations in the command signal well and the closed loop system should be
insensitive to process variations. For the system in Figure 13.9 these requirements
can be captured by specifications on the sensitivity functions S and T and the
transfer functions Gyv, Guw, Gyr and Gur. Notice that it is necessary to consider
at least seven transfer functions, as discussed Section 12.1. The requirements are
mutually conflicting, and may be necessary to make trade-offs. The attenuation of
load disturbances will be improved if the bandwidth is increased, but so will the
noise injection.

It is highly desirable to have design methods that can guarantee robust perfor-
mance. Such design methods did not appear until the late 1980s. Many of these
design methods result in controllers having the same structure as the controller
based on state feedback and an observer. In this section we provide a brief review
of some of the techniques as a preview for those interested in more specialized
study.

Quantitative Feedback Theory

Quantitative feedback theory (QFT) is a graphical design method for robust loop
shaping that was developed by I. M. Horowitz [Hor91]. The idea is to first de-
termine a controller that gives a complementary sensitivity that is robust to pro-
cess variations and then to shape the response to reference signals by feedforward.
The idea is illustrated in Figure 13.16a, which shows the level curves of the gain
|T (iω)| of thecomplementary sensitivity function on a Nyquist plot. The com-
plementary sensitivity function has unit gain on the line ReL(iω) = −0.5. In the
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Figure 13.16: Hall and Nichols charts. The Hall chart is a Nyquist plot with curves for
constant gain and phase of the complementary sensitivity function T . The Nichols chart is the
conformal map of the Hall chart under the transformation N = logL (with the scale flipped).
The dashed curve is the line where |T (iω)| = 1, and the shaded region corresponding to
loop transfer functions whose complementary sensitivity changes by no more than ±10% is
shaded.

neighborhood of this line, significant variations in process dynamics only give
moderate changes in the complementary transfer function. The shaded part of the
figure corresponds to the region 0.9 < |T (iω)| < 1.1. To use the design method,
we represent the uncertainty for each frequency by a region and attempt to shape
the loop transfer function so that the variation in T is as small as possible. The
design is often performed using the Nichols chart shown in Figure 13.16b.

Linear Quadratic Control

One way to make the trade-off between the attenuation of load disturbances and
the injection of measurement noise is to design a controller that minimizes the loss
function

J =
∫ ∞

0

(
y2(t)+ρu2(t)

)
dt,

where ρ is a weighting parameter as discussed in Section 7.3. This loss function
gives a compromise between load disturbance attenuation and disturbance injec-
tion because it balances control actions against deviations in the output. If all state
variables are measured, the controller is a state feedback u = −Kx and it has the
same form as the controller obtained by eigenvalue assignment (pole placement)
in Section 7.2. However, the controller gain is obtained by solving an optimiza-
tion problem. It has been shown that this controller is very robust. It has a phase
margin of at least 60◦ and an infinite gain margin. The controller is called a lin-
ear quadratic control or LQ control because the process model is linear and the
criterion is quadratic.

When all state variables are not measured, the state can be reconstructed using
an observer, as discussed in Section 8.3. It is also possible to introduce process
disturbances and measurement noise explicitly in the model and to reconstruct
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Figure 13.17: H∞ robust control formulation. (a) General representation of a control problem
used in robust control. The input u represents the control signal, the input w represents the
external influences on the system, the output z is the generalized error and the output y is
the measured signal. (b) Special case of the basic feedback loop in Figure 13.9 where the
reference signal is zero. In this case we have w = (n,d) and z = (y,−u).

the states using a Kalman filter, as discussed briefly in Section 8.4. The Kalman
filter has the same structure as the observer designed by eigenvalue assignment in
Section 8.3, but the observer gains L are now obtained by solving an optimization
problem. The control law obtained by combining linear quadratic control with a
Kalman filter is called linear quadratic Gaussian control or LQG control. The
Kalman filter is optimal when the models for load disturbances and measurement
noise are Gaussian.

It is interesting that the solution to the optimization problem leads to a con-
troller having the structure of a state feedback and an observer. The state feedback
gains depend on the parameter ρ , and the filter gains depend on the parameters in
the model that characterize process noise and measurement noise (see Section 8.4).
There are efficient programs to compute these feedback and observer gains.

The nice robustness properties of state feedback are unfortunately lost when
the observer is added. There are parameters that give closed loop systems with
poor robustness, similar to Example 13.8. We can thus conclude that there is a
fundamental difference between using sensors for all states and reconstructing the
states using an observer.

H∞ Control
!

Robust control design is often called H∞ control for reasons that will be explained
shortly. The basic ideas are simple, but the details are complicated and we will
therefore just give the flavor of the results. A key idea is illustrated in Figure 13.17a,
where the closed loop system is represented by two blocks, the process P and the
controller C as discussed in Section 12.1. The process P has two inputs, the
control signal u, which can be manipulated by the controller, and the generalized
disturbance w, which represents all external influences, e.g., command signals and
disturbances. The process has two outputs, the generalized error z, which is a vec-
tor of error signals representing the deviation of signals from their desired values,
and the measured signal y, which can be used by the controller to compute u. For
a linear system and a linear controller the closed loop system can be represented
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by the linear system
z = H(P(s),C(s))w, (13.23)

which tells how the generalized error z depends on the generalized disturbances w.
The control design problem is to find a controller C such that the gain of the trans-
fer function H is small even when the process has uncertainties. There are many
different ways to specify uncertainty and gain, giving rise to different designs. The
names H2 and H∞ control correspond to the norms ∥H∥2 and ∥H∥∞.

To illustrate the ideas we will consider a regulation problem for a system where
the reference signal is assumed to be zero and the external signals are the load dis-
turbance v and the measurement noise w, as shown in Figure 13.17b. The general-
ized input is w = (−n,d). (The negative sign of w is not essential but is chosen to
obtain somewhat nicer equations.) The generalized error is chosen as z = (η ,ν),
where η is the process output and ν is the part of the load disturbance that is not
compensated by the controller. The closed loop system is thus modeled by

z =

⎧
⎪⎪⎩

y
−u

⎫
⎪⎪⎭=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1+PC

P

1+PC

C

1+PC

PC

1+PC

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎩

w
v

⎫
⎪⎪⎭= H(P,C)

⎧
⎪⎪⎩

w
v

⎫
⎪⎪⎭ , (13.24)

which is the same as equation (13.23). A straightforward calculation shows that

∥H(P,C))∥∞ = sup
ω

√
(1+ |P(iω)|2)(1+ |C(iω)|2)

|1+P(iω)C(iω)|
. (13.25)

There are numerical methods for finding a stabilizing controller such that ∥H(P,C)∥∞ <
γ , if such a controller exists. The best controller can then be found by iterating on
γ . The calculations can be made by solving algebraic Riccati equations, e.g., by
using the command hinfsyn in MATLAB. The controller has the same order as
the process and the same structure as the controller based on state feedback and an
observer; see Figure 8.7 and Theorem 8.3.

Notice that if we minimize ∥H(P,C)∥∞, we make sure that the transfer func-
tions Gyv = P/(1+PC), representing the transmission of load disturbances to the
output, and Guw = −C/(1+PC), representing how measurement noise is trans-
mitted to the control signal, are small. Since the sensitivity and the complementary
sensitivity functions are also elements of H(P,C), we have also guaranteed that
the sensitivities are less than γ . The design methods thus balance performance and
robustness.

There are strong robustness results associated with the H∞ controller. It follows
from equations (13.4) and (13.25) that

∥H(P,C)∥∞ =
1

δν(P,−1/C)
. (13.26)

The inverse of ∥H(P,C)∥∞ is thus equal to the Vinnicombe distance between P and
−1/C and can therefore be interpreted as a generalized stability margin. Compare
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Figure 13.18: Block diagrams of a system with disturbance weighting. The left figure pro-
vides a frequency weight on processes disturbances. Through block diagram manipulation,
this can be converted to the standard problem on the right.

this with sm, which we defined as the shortest distance between the Nyquist curve
of the loop transfer function and the critical point−1. It also follows that if we find
a controller C with ∥H(P,C)∥∞ < γ , then this controller will stabilize any process
P∗ such that δν(P,P∗)< 1/γ .

Disturbance Weighting

Minimizing the gain ∥H(P,C)∥∞ means that the gains of all individual signal trans-
missions from disturbances to outputs are less than γ for all frequencies of the in-
put signals. The assumption that the disturbances are equally important and that
all frequencies are also equally important is not very realistic; recall that load
disturbances typically have low frequencies and measurement noise is typically
dominated by high frequencies. It is straightforward to modify the problem so that
disturbances of different frequencies are given different emphasis, by introducing
a weighting filter on the load disturbance as shown in Figure 13.18. For example,
low-frequency load disturbances will be enhanced by choosing W as a low-pass
filter because the actual load disturbance is Wd̄.

By using block diagram manipulation as shown in Figure 13.18, we find that
the system with frequency weighting is equivalent to the system with no frequency
weighting in Figure 13.18 and the signals are related through

z̄ =

⎧
⎪⎪⎩

y
ū

⎫
⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1+ P̄C̄

P̄

1+ P̄C̄

C̄

1+ P̄C̄

P̄C̄

1+ P̄C̄

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎩

w
v̄

⎫
⎪⎪⎭= H(P̄,C̄)w̄, (13.27)

where P̄ = PW and C̄ = W−1C. The problem of finding a controller C̄ that min-
imizes the gain of H(P̄,C̄) is thus equivalent to the problem without disturbance
weighting; having obtained C̄, the controller for the original system is then C =
WC̄. Notice that if we introduce the frequency weighting W = k/s, we will auto-
matically get a controller with integral action.

Limits of Robust Design

There is a limit to what can be achieved by robust design. In spite of the nice prop-
erties of feedback, there are situations where the process variations are so large
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that it is not possible to find a linear controller that gives a robust system with
good performance. It is then necessary to use other types of controllers. In some
cases it is possible to measure a variable that is well correlated with the process
variations. Controllers for different parameter values can then be designed and the
corresponding controller can be chosen based on the measured signal. This type of
control design is called gain scheduling. The cruise controller is a typical example
where the measured signal could be gear position and velocity. Gain scheduling
is the common solution for high-performance aircraft where scheduling is done
based on Mach number and dynamic pressure. When using gain scheduling, it is
important to make sure that switches between the controllers do not create unde-
sirable transients (often referred to as bumpless transfer).

If it is not possible to measure variables related to the parameters, automatic
tuning and adaptive control can be used. In automatic tuning the process dynamics
are measured by perturbing the system, and a controller is then designed automat-
ically. Automatic tuning requires that parameters remain constant, and it has been
widely applied for PID control. It is a reasonable guess that in the future many
controllers will have features for automatic tuning. If parameters are changing, it
is possible to use adaptive methods where process dynamics are measured online.

13.6 Further Reading

The topic of robust control is a large one, with many articles and textbooks devoted
to the subject. Robustness was a central issue in classical control as described in
Bode’s classical book [Bod45]. Robustness was deemphasized in the euphoria of
the development of design methods based on optimization. The strong robustness
of controllers based on state feedback, shown by Anderson and Moore [AM90],
contributed to the optimism. The poor robustness of output feedback was pointed
out by Rosenbrock [RM71], Horowitz [Hor75] and Doyle [Doy78] and resulted
in a renewed interest in robustness. A major step forward was the development
of design methods where robustness was explicitly taken into account, such as
the seminal work of Zames [Zam81]. Robust control was originally developed
using powerful results from the theory of complex variables, which gave con-
trollers of high order. A major breakthrough was made by Doyle, Glover, Khar-
gonekar and Francis [DGKF89], who showed that the solution to the problem
could be obtained using Riccati equations and that a controller of low order could
be found. This paper led to an extensive treatment of H∞ control, including books
by Francis [Fra87], McFarlane and Glover [MG90], Doyle, Francis and Tannen-
baum [DFT92], Green and Limebeer [GL95], Zhou, Doyle and Glover [ZDG96],
Skogestand and Postlethwaite [SP05] and Vinnicombe [Vin01]. A major advan-
tage of the theory is that it combines much of the intuition from servomechanism
theory with sound numerical algorithms based on numerical linear algebra and op-
timization. The results have been extended to nonlinear systems by treating the
design problem as a game where the disturbances are generated by an adversary,
as described in the book by Basar and Bernhard [BB91]. Gain scheduling and
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adaptation are discussed in the book by Åström and Wittenmark [ÅW08].

Exercises

13.1 Consider systems with the transfer functions P1 = 1/(s+1) and P2 = 1/(s+
a). Show that P1 can be changed continuously to P2 with bounded additive and
multiplicative uncertainty if a > 0 but not if a < 0. Also show that no restriction
on a is required for feedback uncertainty.

13.2 Consider systems with the transfer functions P1 = (s+1)/(s+1)2 and P2 =
(s+ a)/(s+ 1)2. Show that P1 can be changed continuously to P2 with bounded
feedback uncertainty if a > 0 but not if a < 0. Also show that no restriction on a is
required for additive and multiplicative uncertainties.

13.3 (Difference in sensitivity functions) Let T (P,C) be the complementary sensi-
tivity function for a system with process P and controller C. Show that

T (P1,C)−T (P2,C) =
(P1−P2)C

(1+P1C)(1+P2C)
,

and derive a similar formula for the sensitivity function.

13.4 (The Riemann sphere) Consider systems with the transfer functions P1 = !
k/(s+1) and P2 = k/(s−1). Show that

d(P1,P2) =
2k

1+ k2
, δν(P1,P2) =

⎧
⎨

⎩

1, if k < 1
2k

1+ k2
otherwise.

Use the Riemann sphere to show geometrically that δν(P1,P2) = 1 if k < 1. (Hint:
It is sufficient to evaluate the transfer function for ω = 0.)

13.5 (Stability margins) Consider a feedback loop with a process and a controller
having transfer functions P and C. Assume that the maximum sensitivity is Ms = 2.
Show that the phase margin is at least 30◦ and that the closed loop system will be
stable if the gain is changed by 50%.

13.6 (Bode’s ideal loop transfer function) Make Bode and Nyquist plots of Bode’s
ideal loop transfer function. Show that the phase margin is ϕm =180◦–90◦n and
that the stability margin is sm = arcsinπ(1−n/2).

13.7 Consider a process with the transfer function P(s) = k/(s(s+1)), where the
gain can vary between 0.1 and 10. A controller that is robust to these gain variations
can be obtained by finding a controller that gives the loop transfer function L(s) =
1/(s
√

s). Suggest how the transfer function can be implemented by approximating
it by a rational function.

13.8 (Smith predictor) The Smith predictor, a controller for systems with time
delays, is a special version of Figure 13.8a with P(s) = e−sτP0(s) and C(s) =
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C0(s)/(1+C0(s)P(s)). The controller C0(s) is designed to give good performance
for the process P0(s). Show that the sensitivity functions are

S(s) =
1+(1− e−sτ)P0(s)C0(s)

1+P0(s)C0(s)
, T (s) =

P0(s)C0(s)

1+P0(s)C0(s)
e−sτ .

13.9 (Ideal delay compensator) Consider a process whose dynamics are a pure
time delay with transfer function P(s) = e−s. The ideal delay compensator is a
controller with the transfer function C(s) = 1/(1− e−s). Show that the sensitivity
functions are T (s) = e−s and S(s) = 1− e−s and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

13.10 (Vehicle steering) Consider the Nyquist curve in Figure 13.11. Explain why
part of the curve is approximately a circle. Derive a formula for the center and the
radius and compare with the actual Nyquist curve.

13.11 Consider a process with the transfer function

P(s) =
(s+3)(s+200)

(s+1)(s2 +10s+40)(s+40)
.

Discuss suitable choices of closed loop poles for a design that gives dominant poles
with undamped natural frequency 1 and 10.

13.12 (AFM nanopositioning system) Consider the design in Example 13.10 and
explore the effects of changing parameters α0 and ζ0.

13.13 (H∞ control) Consider the matrix H(P,C) in equation (13.24). Show that it
has the singular values

σ1 = 0, σ2 = σ̄ = sup
ω

√
(1+ |P(iω)|2)(1+ |C(iω)|2)

|1+P(iω)C(iω)|
= ∥H(P,C))∥∞.

Also show that σ̄ = 1/dν(P,−1/C), which implies that 1/σ̄ is a generalization of
the closest distance of the Nyquist plot to the critical point.

13.14 Show that

δv(P,−1/C) = inf
ω

|P(iω)+1/C(iω)|
√

(1+ |P(iω)|2)(1+1/|C(iω)|2)
=

1

∥H(P,C))∥∞
.

13.15 Consider the system

dx

dt
= Ax+Bu =

⎧
⎪⎪⎩
−1 0
1 0

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

a−1
1

⎫
⎪⎪⎭u, y =Cx =

⎧
⎩0 1

⎫
⎭y.

Design a state feedback that gives det(sI−BK) = s2 + 2ζcωcs+ω2
c , and an ob-

server with det(sI− LC) = s2 + 2ζoωos+ω2
o and combine them using the sepa-

ration principle to get an output feedback. Choose the numerical values a = 1.5,
ωc = 5, ζc = 0.6 and ωo = 10, ζo = 0.6. Compute the eigenvalues of the perturbed
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system when the process gain is increased by 2%. Also compute the loop transfer
function and the sensitivity functions. Is there a way to know beforehand that the
system will be highly sensitive?

13.16 (Robustness using the Nyquist criterion) Another view of robust perfor-
mance can be obtained through appeal to the Nyquist criterion. Let Smax(iω) rep-
resent a desired upper bound on our sensitivity function. Show that the system
provides this level of performance subject to additive uncertainty ∆ if the follow-
ing inequality is satisfied:

|1+ L̃|= |1+L+C∆|>
1

|Smax(iω)|
for all ω ≥ 0. (13.28)

Describe how to check this condition using a Nyquist plot.





Chapter Fourteen
Architecture and Design

A doctor can bury his mistakes, but an architect can only advise his clients to plant vines.

Frank Lloyd Wright

In this chapter we will put the simple feedback loops into the context of real
control systems systems. We will illustrate what control systems look like and
how they are designed. Some important observations are that real control systems
combine “continuous time feedback” with “discrete elements” such as logic and
finite state machines and that they interact withhumans. Design of safe systems is
an important issue which relates to requirements, modeling, design, verification,
implementation commissioning, operation and upgrading (in short systems engi-
neering). Think about different names and how to squeeze this into 25 pages.

14.1 Bottom-Up Architectures

The idea of building control systems bottom up by a loop-by-loop design emerged
in the process industry, orignially only a few loops were used but as systems and
ambitions grew the approach was extended, today it is used in large control sys-
tems with many thousand loops. The elements used to build the control systems are
controllers (often PID), filters, and nonlinear elements. The components can either
be separate pieces of hardware or function blocks implemented in software that
can be combined graphically in distributed control systems using cut and paste.
The system is built loop by loop by combining control principles such as feedback
and feedforward, which have been discussed extensively in Chapters ?? and ?? in
simple architectures. There are many other architectural structures (control prin-
ciples) such as cascade control, mid-range control, selector controland repetitive
control, model following, gain scheduling, adaptation and extremal control which
will be discussed in this section. An advantage with the bottom-up approach is that
the system can be commissioned and tuned loop by loop. There may be difficulties
when the loops are interacting. The disadvantage is that it is not easy to judge if
additional loops will bring benefits. The system can also be unwieldy when loops
are added.

Interaction

A drawback with the bottom up approach when the system is built loop by loop
is that there may be unintended interactions. It is therfore important to investigate
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when interactions. We will start by investigating a system with two inputs and two
outputs, let the transfer function and its inverse be

P(s) =

⎧
⎪⎪⎩

P11(s) P12(s)
P21(s) P22(s)

⎫
⎪⎪⎭ , P−1(s) =

1

detP(s)

⎧
⎪⎪⎩

P11(s) −P21(s)
−P12(s) P22(s)

⎫
⎪⎪⎭ , (14.1)

where detP(s) = P11(s)P22(s)−P12P22. Assume that we want to control the system
by two single loop controllers. The first problem is to decide if y1 should be con-
trolled by u1 or u2, this is called the pairing problem and the second problem is to
investigate if there will be interactions between the loops. Sometimes the solution
to the problem is clear from the physics of the process. The problem can resolved
by trial and error: design controller for the different alternatives and explore their
properties.

A clever idea that gives a lot of insight with modest calculations was proposed
by Bristol. Assume for simplicity that we are exploring the possibility of con-
trolling y1 by u1 and y2 by u2. Controllers can be designed based on the transfer
functions P11(s) and P22(s). The controller for the first loop will then work well if
the second loop is open but the question is how the second loop will influence the
second loop. Bristol proposed to look at the ratio

λ (s) =
P11(s)

P̄11
, (14.2)

where P̄11(s) is the tranfer function from u1 to y1 when the prefectly controlled
meaning y2 = 0. Assuming all signals are exponential functions we have for perfect
control of the second loop

y1 = P11u1 +P12u2, 0 = P21u1 +P22u2, y1,u1,u2 ∈ E .

Eliminating u2 in these equations give

y1 =
P11P22−P12P21

P22
u1,

and we find

P̄11 =
P11P22−P12P21

P22
, and λ =

P11P22

detP
. (14.3)

If |λ (iω)|> 1 is larger than one the interaction increases the gain and it decreases
the gain if |λ (iω)| > 1 . There is no interaction if λ (s) = 0, neither if λ (s) = 1
but the loops should then be reversed so that y1 is controlled by u2. There are
rules of thumb for interpreting the relative gain array, interactions can typically
be neglected for 3/4 < |λ (iω)| < 3/2, which means the controller must then be
designed to cope with an additive process uncertainty such that |∆/P| < 1/3, see
Figure 13.2. Decoupling or multivariable control should be considered outside this
range.

It follows from (14.1) that λ (s) is the procduct of the 11 elements of P and P−1

it turns out that the analysis can be generatlized to systems with n inputs and n
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Figure 14.1: Decoupling, (a) direct decoupling and (b) feedback decoupling.

outputs and the interactions can then be characterized by the matrix

Λ(s) = P(s)◦P−T (s) = P(s).∗P−T (s) (14.4)

where P−T (s) denotes the transpose of P−1(s) and ◦ denotes element by element
multiplication of matrices (Hadamard product). The matrix Λ(s), which was orig-
inally derived for the steady state case (s = 0) is called the relative gain array
(RGA) or Bristol’s RGA, it was later extended to dynamics.

The relative gain array has the nice property that it is dimension free and that
it gives insight into interactions and pairing of variables, by analysing the gain
|Λ(iω)| we also get insight into interactions at different frequencies. The RGA
also gives information about the variables that should be grouped for multivariable
control, see [?].

Decoupling

Decoupling is one way to deal to reduce the interactions between the loops. The
idea is to provide the controller with a compensator which reduces the interactions.
Two ways of making decoupling; direct decoupling and feedback decoupling are
illustrated in Figure 14.1. In direct decoupling the controller is provided with a post
compensator that reduces the effects of the interactions.s to design a controller that
reduces the effects of the interaction. In feedback decoupling the compensation is
instead arranged by feeding the output of one controller to the other controller and
vice versa. The expression for the compensator for direct decoupling is a compli-
cated expression in the process transfer funtion. The corresponding expressions for
feedback decoupling are much simpler. If the process transfer function is given by
(??) it becomes

Fd1 =−P−1
11 P12, Fd2 =−P−1

22 P21.

Feedback decoupling has another advantage. Since the controllers C1 and C2 act
directly on the actuators a conventional anti-windup scheme will work provided
that the cross-coupling signals are entered as feedforward signals in the controllers.
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Process

Inner loop

  y  u
    P1

    

P2

  y sp
  y s

Outer loop

  Cs  Cp

Figure 14.2: Block diagram of a system with cascade control. The system has one control
variable u and two measured signals: the primary output y and the secondary or auxiliary
output ys.

Cascade Control

Cascade control can be used when there is one control signal and several measure-
ment signals. The block diagram in Figure 14.2 is an example. The system in the
figure has two loops. The inner loop is called the secondary loop and the outer
loop is called the primary loop. The reason for this terminology is that the outer
loop deals with the primary measured signal. It is also possible to have a cascade
control with more nested loops. The ultimate case is state feedback when all states
are measured. . Cascade control was used in XXX where it was called inner-outer
loop design.

Cascade control is useful in when there is significant time delay or dynamics
between the input u and the primary output y, but significantly less dynamics be-
tween u and the secondary output ys, and when the major disturbances enter in
the block P1. Cascade control then admits tight feedback in the inner loop, which
reduces the effect of disturbances acting on P1. The benefits of cascade control are
illustrated by an example.

Example 14.1 Improved Load Disturbance Rejection
Consider the system shown in Figure 14.2 where the process transfer functions are

P1 =
1

s+1
P2 =

1

(s+1)3
.

There are significant dynamics from the control variable u to the primary output y,
the average residence time is 4 s. However, the secondary output ys responds much
faster than the primary output, the average residence time is 1 s. Thus, cascade
control can be expected to give improvements. A well tuned PI controller without
cascade control has the parameters kp = 0.2 and ki = 0.15. The dashed lines in
Figure 14.3 show the response to a unit step load disturbance at the process input
for this controller. Since the response of the secondary measured variable to the
control signal is quite fast, it is possible to use high loop gains in the secondary
loop. the responses shown in solid lines Figure 14.3 are obtained. The figure shows
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Figure 14.3: Responses to a load disturbance for a system with (solid line) and without
(dashed line) cascade control. The left plot shows the output and the right plot shows the
control signal. The conventional architecture is a PI controller (kp = 0.3, ki = 0.15 from y to
u. The cascade controller has a secondary loop with proportional control with gain kp = 4
and the outer outer loop is a PI controller with gains kp = 0.6 and ki = 0.3.

that the disturbance response is improved substantially by using cascade control.
Notice in particular that the control variable drops very much faster with cascade
control. The main reason for this is the fast inner feedback loop, which detects the
disturbance much faster than the outer loop. ∇

If integral action is used in both the secondary and primary control loops, it
is necessary to have a scheme to avoid integral windup. Anti-windup for the sec-
ondary controller can be done in the conventional way since the controller drives
the actuator directly. To provide anti-windup for the primary controller it must be
told when the secondary controller goes into anti-windup mode.

Cascade control is a convenient way to use extra measurements to improve
control performance. The following examples illustrate some applications.

Example 14.2 Valve Positioners
Control loops with pneumatic valves are a common inprocess control. The con-
trol signal drives the valve stem, but the relation between the control signal and
the valve opening is corrupted by driving pressure, friction and flow forces on
the valve. The effects of these disturbances can be reduced by providing a local
controller that adjusts the pressure by feedback from the valve opening. ∇

Parallel Systems

There are situations when several subsystems are used to control the same variable.
Typical examples are: temperature control using when several cooling or heating
devices and control of an electric car with one motor on each wheel. An extreme
example is control of a power grid shich may have hundreds of energy sources.
Care must be execised when making loop-by-loop design of such systems. We
illustrate by an a simple example.

Example 14.3 Cruise Control for Electric Car
Consider speed control of an electrical car with motors on each wheel, for sim-
plicity we will consider linear motion with only two motors, and we will use the
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simple model (4.1) in Section 4.1. Neglecting all disturbance forces Fd except the
force due to gravity; Fr the model (4.3) becomes

m
dv

dt
= F1 +F2−mgθ , (14.5)

where v is the speed of the car, θ the slope of the road, F1 and F2 the forces
generated by the drive motor.

We will first consider the case when both motors have proportional controllers.
Let vr be the desired (reference) speed, the controllers are then

F1 = kp1(vr− v), F2 = kp1(vr− v,) (14.6)

Combining equations (??) and (??) gives the following equation for the closed
loop system

m
dv

dt
= (kp1 + kp2)(vr− v)−mgθ .

If the slope θ is constant there will be a steady state error ess = vr− vss and the
steady-state controller outputs are u1ss = kp1eo and u2ss = kp1eo. The proportional
gains kp1 and kp2 thus determine how the compensation for the disturbance is
distributed among the motors.

Next we will consider the case when each motor is provided by a PI controller.
The closed loop system is then described by the equations

m
dv

dt
= (kp1 + kp2)(vr− v)+ ki1I1 + kI2I2 +mgθ ,

dI1

dt
= vr− v,

dI2

dt
= vr− v

(14.7)

This system is not stable, since d(I1−I2)
dt = 0 the system has an eigenvalue at the

origin. The system (14.7) has the inputs vr and θ the output y, it is of third order.
The system has a the Kalman Figure 8.12a, where the reachable and observable
subsystem Σro which is reachable and observable is of second order. The subsys-
tem Σr̄ō is neither reachable nor observable, its dynamics is an integrator and its
state can be chosen as I1− I2.

What happens physically is that if both wheel motors are provided with con-
trollers having controller with integral terms I1 and I2 of the controllers will drift
in such a way that their sum is constant. As a result one control signal will increase
and the other will decrease until saturation occurs. There is a very simple remedy,
use one single integrator and distribute the output of that integrator to both motors.

∇

The results of the example can be generalized, if parallel systems are controlled
by proportional controllers, then the controller gains determine how disturbance
attenuation is divided among the subsystems. Moreover, integral control cannot
be used in the individual subsystems, instead we can select one controller with
integral action or we can use a central integrator and distribut its output to the
controler of the subsystems.
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Figure 14.4: Block diagram of a two architectures with mid-range control. The system in
(a) is the basic architecture and (b) is a refined architecture that also uses feedforward.

Mid-Range Control

Cascade control is a strategy where there one control signal and several measure-
ment signals are used to meet the control objective. Midranging is an architecture
for the dual situation is when many control signals are used to control one mea-
sured output. Another view of midranging is that it applies to a special type of
parallel systems when one subsystem has a much larger control authority than the
other. Consider a system where a single variable y is controlled using two sub-
systes with individual control signals u1 and u2. Let the subsystems have transfer
functions P1 and P2, and assume that P1 is fast and accurate but with limited output
range (low control authority) and that P2 which has slow with a wide range (high
control authority). A block diagram of the system is shown in Figure ??. A block
diagram of the mid-range control strategy is given in Figure 14.4. The controller
C1 which drives P1 is the primary controller that has that controls the output y to
its desired reference r1. The second controller C2 drives the subsystem P2 which
has large range. The measured signal to C2 is the input u1 to the subsystem P2, and
the controller C2 attempts to keep the variable u1 in its mid range. Suppose that the
signal u1 is in the middle of its operating range and that only small disturbances are
acting on the system. In this case, the controller C1 manipulates u1 to reduce the
disturbance. For large disturbances, u1 may reach approach its limit, the controller
C2 then acts to assit in reducing the disurbances.

The block diagram in Figure ??b is an improvement of the basic mid-range
control architecture. The output of the controller C2 is fed as a feedforward signal
to the controller C1. The feedforward transfer function is

G f f (s) =−
P2(s)

P1(s)
.

Conventional anti-windup protection can be used in both controllers in Fig-
ure ??a but in the advances scheme in Figure ??b the feedforward signal is fed
into the feedforward summation point in the controller C1 to avoid windup of the
controller.
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Figure 14.5: Block diagram of a system with selector control. The primary controller is C

which attempts to keep y close to its reference value. The controllers Cmax and Cmin swithches
control objectie when the variable z is outside its pemissible range..

Selector Control

There are situations where several controlled process variables must be taken into
account. One variable is the primary controlled variable, but for equipment protec-
tion it is required that other process variables remain within given ranges. Selector
control can be used to achieve this.

A selector is a static device with many inputs and one output. There are two
types of selectors: maximum and minimum. For a maximum selector the output
is the largest of the input signals. The idea of selector control to use several con-
trollers and to have a selector that chooses the controller that is most appropriate.
One example of use is where the primary controlled variable is temperature and
we must ensure that pressure does not exceed a certain range for safety reasons,
another is compressor control where the objective is to maintain a pressure while
avoiding compressor surge.

The selector control architecture is illustrated in Figure 14.5. The primary con-
trolled variable is the process output y. There is an auxiliary measured variable
z that should be kept within the limits zmin and zmax. The primary controller C
has process variable y, set point ysp, and output un. There are also secondary con-
trollers with measured process variables that are the auxiliary variable z and with
set points that are bounds of the variable z. The outputs of these controllers are uh

and ul . The controller C is an ordinary PI or PID controller that gives good control
under normal circumstances. The output of the minimum selector is the smallest
of the input signals; the output of the maximum selector is the largest of the inputs.

Under normal circumstances the auxiliary variable is larger than the minimum
value zmin and smaller than the maximum value zmax. This means that the output
uh is large and the output ul is small. The maximum selector, therefore, selects un,
and the minimum selector also selects un. The system acts as if the maximum and
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minimum controller were not present. If the variable z reaches its upper limit, the
variable uh becomes small and is selected by the minimum selector. This means
that the control system now attempts to control the variable z and drive it towards
its limit. A similar situation occurs if the variable z becomes smaller than zmin.

In a system with selectors, only one control loop at a time is in operation. The
controllers can be tuned in the same way as single-loop controllers. There may be
some difficulties with conditions when the controller switches. With controllers
having integral action, it is also necessary to track the integral states of those con-
trollers that are not in operation. Selector control is very common in order to guar-
antee that variables remain within constraints. The technique is commonly used
in the power industry for control in boilers, power systems, and nuclear reactors.
The advantage is that it is built up of simple nonlinear components and PI and PID
controllers. An alternative to selector control is to make a combination of ordinary
controllers and logic. The following example illustrates the use of selector control.

So far we have only discussed maximum and minimum selectors, there are also
other types of selectors such as the median selector whose outpu is the current me-
dian of the input signals. A special case is the two-out-of-three selector, commonly
used for highly sensitive systems. To achieve high reliability it is possible to use
redundant sensors and controllers. By inserting median selectors it is possible to
have a system that will continue to function even if several components fail.

When using selector control it is important to have windup protection for con-
trollers that are not selected, a simple way to do this is to feed use the output of the
selected controller as the tracking signal for the other controllers.

Repetitive Control

Attenuation of disturbances is a major reason for using feedback. Section ?? it
was shown that attenuation of disturbances is captured by the transfer function
from load disturbance to process output is

Gyd =
P

1+PC
≈

1

C
, for |C(iω)|large, (14.8)

where P is the process transfer function and C the controller transfer function.
Having a large gain (while avoiding instability) is thus a god way to reduce the
effect of disturbances. A typical case is the use of integral action to reduce the
effect of low frequency disturbances.

In Section ?? is was shown that integral action could be implemented by pos-
itive feedback around a first order system as shown in Figure 14.6. The transfer
function and the input output relation for the system in the figure is

C =
1

1−G f
, u = e+G f u

Intuitively the system works as follows. The filter G f filters out the signal compo-
nent that we would like to eliminate, and the filtered output u of G f is fed back
to the input with positive feedback. The net effect is to create a high gain for the
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Figure 14.6: Block diagram of a controller with positive of a filtered output signal..

frequencies in the pass band of the filter G f . There are many possible choices of
the filter

Cconstant(s) =
1

1+ sT
, Gye = 1+

1

sT

Csinusoidal(s) =
2ζ ω0s

s2 +2ζ ω0s+ω2
0

, Gye =
2ζ ω0s

s2 +ω2
0

Cperiodic(s) = e−sτ , Gye =
k

1− e−sτ

(14.9)

The controller transfer functions have infinite gains for s = 0, s = iω0 and s =
2nπi/L, n = 0, 1, . . ., respectively. The controllers will therefore eliminate, con-
stant disturbances, sinusoidal disturbances with frequency ω+0 and periodic dis-
turbances with period τ . The input/output relation for Cperiodic is

u(t) = ke(t)+u(t− τ).

This control strategy which is called repetitive control has the property that action
at time t is thus a sum of the control error e(t) and the delayed control signal
u(t − τ). The controller will continue to make adjustments If there is a periodic
variation in the error e.

Example 14.4 An Extreme Case
Consider a the case of a process whose dynamics is a pure delay, the transfer
functions of the process and the controller are

P(s) = e−sτ , C(s) =
1

1− e−sτ
.

The loop transfer function

L(s) =
e−sτ

1− e−sτ

is periodic with period 2π/τ , and its gain is infinite for ω = 2nπ/τ . The Nyquist
plot of L is a vertical line through the point Gl = −0.5 and a half circle to the
right. This curve is transversed once for 0 ≤ ω ≤ 2π/τ and infinitely many times
when ω increases towards infinity. The system has the gain margin 2 and the phase
margin is 60◦. The sensitivity functions are

S(s) = 1− e−sτ , T (s) = e−sτ ,

and we find that Ms = 2 and Mt = 1.
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A superficial look at robustness measures like gain margin gm = 2, phase mar-
gin ϕm = 60◦, and maximum sensitivities Ms = 2 and Mt = 1 indicate that the sys-
tem is robust to process perturbations. The fact that T (iω) = 1 for all frequencies
is, however, an indication that the system has unusual properties. Further insight is
obtained by analysing the effect of parameter variations.

The system has only one parameter, the time delay τ , and to explore robustness
we will investigate the effects of variations in the time delay. Assume that the time
delay changes from τ to τ +δτ , then

e−s(τ+δτ) = e−sτe−sδτ = e−sτ + e−sτ(e−sδτ −1).

A variation in the time delay can thus be represented by the additive perturbation

∆P(s) = e−sτ(e−sδτ −1).

Hence |∆P(iω)|= |e−iωδτ −1|.
Since |P(iω)|= 1, the robustness inequality (??) becomes

|∆P(iω)|
|P(iω)|

= |e−iωδτ −1|<
1

|T (iω)|
= 1.

This inequality is not satisfied for any δτ > 0 because the left-hand side is 2 and
the right hand side is 1, and we cannot guarantee stability for an arbitrary small
perturbation in the time delay. ∇

The example shows that the effective attenuation of periodic disturbances comes
at the cost of the system being extremely sensitive to parameter variations. A com-
promise between disturbance attenuation can be made by replacing G f (s) in Fig-
ure ?? by αG f (s) with α < 1. The controllers obtained for constant, sinusoidal,
and periodic signals then become

Cconstant(s) =
1+ sT

1−α + sT

Csinusoidal(s) =
s2 +2ζ ω0s+ω2

0

s2 +2(1−α)ζ ω0s+ω2
0

Cperiodic(s) =
1

1−αe−sT
.

The largest gains of the transfer functions are 1/(1−α) in all cases. Choosing
α < 1 diminishes disturbance attenuation but improves the robustness.

Gain scheduling, Adaptation and Extremum Seeking

Feedback controllers can be designed to be robust to process variations, there is
however a limit to what can be achieved by feedback. Other controller architec-
tures are therefore use when there are large process variations. Gain scheduling
is a technique that can be used when there are measured variables (scheduling
variables) that correlate well with the process variations. A controller such as the
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ProcessController

Table

  y sp

  y
  u

Controller
parameters

Scheduling
variable

Figure 14.7: Block diagram of a system with gain scheduling.

one shown in the block diagram Figure 14.7 can the be used. The controller de-
sign can then be performed for many values of the scheduling variables that are
stored in a table. During operation table look up and interpolation are then used
to find controller parameters that are appropriate for the different operating condi-
tions. Systems with gain scheduling are routinely used for flight control where the
scheduling variables are Mach number and height. In process control flow rates
and production rates are typically used as scheduling variables.

Adaptive control where process parameters are estimated on line can also be
used when it is not possible to find scheduling variables, a block diagram is shown
in Figure 14.8

Among other useful control structures we can mention extremum seeking of
self-optimization. Instead of keeping the process output close to a specified refer-
ence value these controller these attempt to change the reference so that an objec-
tive function is minimized. To accomplish this it is necessary to change the refer-
ence value of the controller and observe the effect of the output. A simple scheme
idea is illustrated in Figure ??. The reference value of a controller is changed and
the behavior of the performance criterion is observed. The performance changes
very little close to the optimum. The changes are of performance are in phase with
the changes of the reference if the reference is too large and out of phase if the
reference is too low. The reference is changes to move towards the smallest value
of the objective function. Correlation methods can be used to filter out noise, since
the argument is based on a steady–state reasoning the frequency of the perturba-
tion signal must be chosen so low that process dynamics can be neglected. There
are many other more sophisticated schemes based on optimization and estimation.
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design
Controller

Controller Process

Controller
parameter

Parameter estimatesSpecifications

Self-tuning regulator

yu

  y sp

Parameter
estimation

Figure 14.8: Block diagram of an adaptive controller.

Figure 14.9: A simple principle for a self-optimizing controller. The figure shows the steady
state response of the the performance variable v as a funtion of the reference yr and the effect
of sinusoidal variations of the reference.
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Figure 14.10: Block diagram of a controller based on model following, state feedback, and
an observer.

14.2 Top-Down Architectures

• Introduction: controllers, logic

• Logic and FMS

• State Feedback and Observers

• State Based Control, FSM

• Model Predictive Control

Top-Down Solutions

Top-down paradigms often start with a problem formulation in terms of an opti-
mization problem. Paradigms that support a top-down approach are optimization,
state feedback, observers, predictive control, and linearization. In the top-down
approach it is natural to deal with many inputs and many outputs simultaneously.
Since this is not the main topic of this book we will only give a brief discus-
sion. The top-down approach often leads to the controller structure shown in Fig-
ure 14.10. In this system all measured process variables y together with the control
variables u are sent to an observer, which uses the sensor information and a mathe-
matical model to generate a vector x̂ of good estimates of internal process variables
and important disturbances. The estimated state x̂ is then compared with the ideal
state xm produced by the feedforward generator, and the difference is fed back to
the process. The feedforward generator also gives a feedforward signal u f f , which
is sent directly to the process inputs. The controller shown in Figure 14.10 is use-
ful for process segments where there are several inputs and outputs that interact,
but the system becomes very complicated when there is a large number of inputs
and outputs. In such a case it may be better to decompose the system into several
subsystems.

An advantage with the top-down approach is that the total behavior of the sys-
tem is taken into account. A systematic approach based on mathematical modeling
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and simulation makes it easy to understand the fundamental limitations. Commis-
sioning of the system is, however, difficult because many feedback loops have to
be closed simultaneously. When using the top-down approach it is therefore good
practice to first tune loops based on simulation, possibly also hardware in the loop
simulation.
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[Åst00] K. J. Åström. Limitations on control system performance. European Journal on Con-

trol, 6(1):2–20, 2000.
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[BÅ70] R. Bellman and K. J. Åström. On structural identifiability. Mathematical Biosciences,
7:329–339, 1970.

[Bas01] T. Basar, editor. Control Theory: Twenty-five Seminal Papers (1932–1981). IEEE Press,
New York, 2001.

[BB91] T. Basar and P. Bernhard. H∞-Optimal Control and Related Minimax Design Problems:

A Dynamic Game Approach. Birkhauser, Boston, 1991.

[BC48] G. S. Brown and D. P. Campbell. Principles of Servomechanims. Wiley, New York,
1948.

[BD04] W. E. Boyce and R. C. DiPrima. Elementary Differential Equations. Wiley, New York,
2004.

[Bec05] J. Bechhoefer. Feedback for physicists: A tutorial essay on control. Reviews of Modern

Physics, 77:783–836, 2005.

[Ben79] S. Bennett. A History of Control Engineering: 1800–1930. Peter Peregrinus, Stevenage,
1979.

[Ben93] S. Bennett. A History of Control Engineering: 1930–1955. Peter Peregrinus, Stevenage,
1993.

[Ber54] L. L. Beranek. Acoustics. McGraw-Hill, New York, 1954.

[Ber89] R. N. Bergman. Toward physiological understanding of glucose tolerance: Minimal
model approach. Diabetes, 38:1512–1527, 1989.

[BG68] B. Brawn and F. Gustavson. Program behavior in a paging environment. Proceedings

of the AFIPS Fall Joint Computer Conference, pages 1019–1032, 1968.

[BG87] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, Englewood Cliffs, 1987.

[BH75] A. E. Bryson, Jr. and Y.-C. Ho. Applied Optimal Control: Optimization, Estimation,

and Control. Wiley, New York, 1975.

[Bia95] B. Bialkowski. Process control sample problems. In N. J. Sell, editor, Process Control

Fundamentals for the Pulp & Paper Industry. Tappi Press, Norcross, GA, 1995.

[BK64] R. E. Bellman and R. Kalaba. Selected Papers on Mathematical Trends in Control

Theory. Dover, New York, 1964.

[Bla34] H. S. Black. Stabilized feedback amplifiers. Bell System Technical Journal, 13:1–2,
1934.

[Bla77] H. S. Black. Inventing the negative feedback amplifier. IEEE Spectrum, pages 55–60,
1977.

[Bla91] J. H. Blakelock. Automatic Control of Aircraft and Missiles. Addison-Wesley, Cam-
bridge, MA, 2nd edition, 1991.

[Bli90] G. Blickley. Modern control started with Ziegler-Nichols tuning. Control Engineering,
37:72–75, 1990.

[Bod45] H. W. Bode. Network Analaysis and Feedback Amplifier Design. Van Nostrand, New
York, 1945.

[Bod60] H. W. Bode. Feedback—The history of an idea. In Symposium on Active Networks and

Feedback Systems. Polytechnic Institute of Brooklyn, New York, 1960. Reprinted in
[BK64].



BIBLIOGRAPHY B-3

[BP96] M. B. Barron and W. F. Powers. The role of electronic controls for future automotive
mechatronic systems. IEEE Transactions on Mechatronics, 1(1):80–89, 1996.

[Bro70] R. W. Brockett. Finite Dimensional Linear Systems. Wiley, New York, 1970.

[Bro00] R. W. Brockett. New issues in the mathematics of control. In B. Engquist
and W. Schmid, editors, Mathematics Unlimited—2001 and Beyond, pages 189–220.
Springer-Verlag, Berlin, 2000.

[BRS60] J. F. Blackburn, G. Reethof, and J. L. Shearer. Fluid Power Control. MIT Press, Cam-
bridge, MA, 1960.

[Can03] R. H. Cannon. Dynamics of Physical Systems. Dover, New York, 2003. Originally
published by McGraw-Hill, 1967.

[CD75] R. F. Coughlin and F. F. Driscoll. Operational Amplifiers and Linear Integrated Circuits.
Prentice Hall, Englewood Cliffs, NJ, 6th edition, 1975.

[CD91] F. M. Callier and C. A. Desoer. Linear System Theory. Springer-Verlag, London, 1991.

[CEHM10] M. Campbell, M. Egerstedt, J. P. How, and R. M Murray. Autonomous driving in urban
environments: Approaches, lessons and challenges. Philosophical Transactions of the

Royal Society – A, 368(1928), 2010.

[CJ59] H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. Clarendon Press, Oxford,
UK, 2nd edition, 1959.

[CM51] H. Chestnut and R. W. Mayer. Servomechanisms and Regulating System Design, Vol.
1. Wiley, New York, 1951.

[Cro75] Crocus. Systemes d’Exploitation des Ordinateurs. Dunod, Paris, 1975.

[CT84] C. Cobelli and G. Toffolo. Model of glucose kinetics and their control by insulin, com-
partmental and non-compartmental approaches. Mathematical Biosciences, 72(2):291–
316, 1984.

[DB04] R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, Upper Saddle
River, NJ, 10th edition, 2004.

[DFT92] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback Control Theory. Macmil-
lan, New York, 1992.

[DGH+02] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury. Using MIMO feed-
back control to enforce policies for interrelated metrics with application to the Apache
web server. In Proceedings of the IEEE/IFIP Network Operations and Management

Symposium, pages 219–234, 2002.

[DGKF89] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space solutions
to standard H2 and H∞ control problems. IEEE Transactions on Automatic Control,
34(8):831–847, 1989.

[DH85] J. P. Den Hartog. Mechanical Vibrations. Dover, New York, 1985. Reprint of 4th ed.
from 1956; 1st ed. published in 1934.

[dJ02] H. de Jong. Modeling and simulation of genetic regulatory systems: A literature review.
Journal of Computational Biology, 9:67–103, 2002.

[DM02] L. Desborough and R. Miller. Increasing customer value of industrial control per-
formance monitoring—Honeywell’s experience. In Sixth International Conference on

Chemical Process Control. AIChE Symposium Series Number 326 (Vol. 98), 2002.

[DM14] D. Del Vecchio and R. M. Murray. Biomolecular Feedback Systems. Princeton Univer-
sity Press, 2014.

[Dos68] F. H. Dost. Grundlagen der Pharmakokinetik. Thieme Verlag, Stuttgart, 1968.



B-4 BIBLIOGRAPHY

[Doy78] J. C. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic

Control, 23(4):756–757, 1978.

[Dub57] L. E. Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal of

Mathematics, 79:497–516, 1957.

[Dys04] F. Dyson. A meeting with Enrico Fermi. Nature, 247(6972):297, 2004.

[EG05] S. P. Ellner and J. Guckenheimer. Dynamic Models in Biology. Princeton University
Press, Princeton, NJ, 2005.

[EKR03] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server clusters. In
Power-Aware Computer Systems, pages 179–197. Springer, 2003.

[EL00] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regula-
tors. Nature, 403(6767):335–338, 2000.

[Ell94] J. R. Ellis. Vehicle Handling Dynamics. Mechanical Engineering Publications, London,
1994.

[ESGK02] H. El-Samad, J. P. Goff, and M. Khammash. Calcium homeostasis and parturi-
ent hypocalcemia: An integral feedback perspective. Journal of Theoretical Biology,
214:17–29, 2002.

[FCF+06] P. G. Fabietti, V. Canonico, M. O. Federici, M. Benedetti, and E. Sarti. Control oriented
model of insulin and glucose dynamics in type 1 diabetes. Medical and Biological

Engineering and Computing, 44:66–78, 2006.

[FLMR92] M. Fliess, J. Levine, P. Martin, and P. Rouchon. On differentially flat nonlinear systems.
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[MÅB+03] R. M. Murray, K. J. Åström, S. P. Boyd, R. W. Brockett, and G. Stein. Future directions
in control in an information-rich world. Control Systems Magazine, April 2003.

[Mac37] D. A. MacLulich. Fluctuations in the Numbers of the Varying Hare (Lepus americanus).
University of Toronto Press, 1937.

[Mac45] L.A. MacColl. Fundamental Theory of Servomechanims. Van Nostrand, Princeton, NJ,
1945. Dover reprint 1968.

[Mac89] J. M. Maciejowski. Multivariable Feedback Design. Addison Wesley, Reading, MA,
1989.

[Mal59] J. G. Malkin. Theorie der Stabilität einer Bewegung. Oldenbourg, München, 1959.

[Man02] R. Mancini. Op Amps for Everyone. Texas Instruments, Houston. TX, 2002.

[May70] O. Mayr. The Origins of Feedback Control. MIT Press, Cambridge, MA, 1970.

[McF53] M. W. McFarland, editor. The Papers of Wilbur and Orville Wright. McGraw-Hill, New
York, 1953.

[MG90] D. C. McFarlane and K. Glover. Robust Controller Design Using Normalized Coprime

Factor Plant Descriptions. Springer, New York, 1990.

[MH98] J. E. Marsden and M. J. Hoffmann. Basic Complex Analysis. W. H. Freeman, New
York, 1998.

[Mil66] H. T. Milhorn. The Application of Control Theory to Physiological Systems. Saunders,
Philadelphia, 1966.

[Min02] D. A. Mindel. Between Human and Machine: Feedback, Control, and Computing Be-

fore Cybernetics. Johns Hopkins University Press, Baltimore, MD, 2002.

[Min08] D. A. Mindel. Digital Apollo: Human and Machine in Spaceflight. The MIT Press,
Cambridge, MA, 2008.

[MLK06] A. Makroglou, J. Li, and Y. Kuang. Mathematical models and software tools for the
glucose-insulin regulatory system and diabetes: An overview. Applied Numerical Math-

ematics, 56:559–573, 2006.

[MLS94] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manip-

ulation. CRC Press, 1994.

[MR94] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry. Springer-
Verlag, New York, 1994.

[Mur03] R. M. Murray, editor. Control in an Information Rich World: Report of the Panel on

Future Directions in Control, Dynamics and Systems. SIAM, Philadelphia, 2003.

http://LeeSeshia.org


B-8 BIBLIOGRAPHY

[Mur04] J. D. Murray. Mathematical Biology, Vols. I and II. Springer-Verlag, New York, 3rd
edition, 2004.

[Nah88] P. J. Nahin. Oliver Heaviside: Sage in Solitude: The Life, Work and Times of an Elec-

trical Genius of the Victorian Age. IEEE Press, New York, 1988.

[NS99] H. Nijmeijer and J. M. Schumacher. Four decades of mathematical system theory.
In J. W. Polderman and H. L. Trentelman, editors, The Mathematics of Systems and

Control: From Intelligent Control to Behavioral Systems, pages 73–83. University of
Groningen, 1999.

[Nyq32] H. Nyquist. Regeneration theory. Bell System Technical Journal, 11:126–147, 1932.

[Nyq56] H. Nyquist. The regeneration theory. In R. Oldenburger, editor, Frequency Response,
page 3. MacMillan, New York, 1956.

[Oga01] K. Ogata. Modern Control Engineering. Prentice Hall, Upper Saddle River, NJ, 4th
edition, 2001.

[Old56] R. Oldenburger, editor. Frequency Response. MacMillan, New York, 1956.

[OSFM07] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[PB86] G. Pacini and R. N. Bergman. A computer program to calculate insulin sensitivity and
pancreatic responsivity from the frequently sampled intraveneous glucose tolerance test.
Computer Methods and Programs in Biomedicine, 23:113–122, 1986.

[Phi48] G. A. Philbrick. Designing industrial controllers by analog. Electronics, 21(6):108–111,
1948.

[PN00] W. F. Powers and P. R. Nicastri. Automotive vehicle control challenges in the 21st
century. Control Engineering Practice, 8:605–618, 2000.

[PPP02] S. Prajna, A. Papachristodoulou, and P. A. Parrilo. SOSTOOLS: Sum
of squares optimization toolbox for MATLAB, 2002. Available from
http://www.cds.caltech.edu/sostools.

[Pto14] Claudius Ptolemaeus, editor. System Design, Modeling, and Simulation using Ptolemy

II. Ptolemy.org, 2014.

[Pyt] Python control systems library. Available from http://python-control.org.

[Rig63] D. S. Riggs. The Mathematical Approach to Physiological Problems. MIT Press, Cam-
bridge, MA, 1963.

[RM71] H. H. Rosenbrock and P. D. Moran. Good, bad or optimal? IEEE Transactions on

Automatic Control, AC-16(6):552–554, 1971.

[RST12] G. Rafal, R. G. Sanfelice, and A. Teel. Hybrid Dynamical Systems: Modeling, Stability,

and Robustness. Princeton University Press, 2012.

[Rug95] W. J. Rugh. Linear System Theory. Prentice Hall, Englewood Cliffs, NJ, 2nd edition,
1995.
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double integrator, 2-5, 6-7,
7-2, 9-10, 10-25

Doyle, J. C., xii, 12-34, 13-28
drug administration, see also

compartment models,
4-21–4-25, 4-30, 6-21,
7-20

duality, 8-7, 8-11
Dubins car, 3-31
dynamic compensator, 7-30

dynamic inversion, 6-33
dynamical systems, 1-1, 3-1,

5-1, 5-4, 5-32

linear, 5-11, 6-1
observer as a, 8-1
state of, 7-9
stochastic, 8-14
uncertainty in, 13-1–13-3
zz, see also differential

equations
dynamics matrix, 3-11, 3-14,

5-11, 6-12

Dyson, F., 3-1

e-commerce, 1-8
e-mail server, control of, 3-16,

6-27

economic systems, 1-9, 1-16,
3-41

ecosystems, see also

predator-prey system,
1-10, 4-25, 7-15

eigenvalue assignment, 7-11,
7-13–7-17, 7-23, 8-12,
11-8, 11-23

by output feedback, 8-13
for observer design, 8-8

eigenvalues, 5-11, 5-20, 5-29,
6-12, 9-5

and Jordan form, 6-9–6-11,
6-35

distinct, 5-35, 5-36, 6-8,
6-14, 8-23

dominant, 7-22
effect on dynamic behavior,

7-17–7-19, 7-21, 7-22, 9-5
for discrete-time systems,

6-35
invariance under coordinate

transformation, 5-12

relationship to modes,
6-12–6-15

relationship to poles, 9-13
relationship to stability,

5-23, 6-10, 6-11
eigenvectors, 5-12, 5-36, 6-12

relationship to mode shape,
6-13

electric car, 14-5
electric power, see power

systems (electric)
electrical circuits, see also

operational amplifier, 3-7,
3-24, 4-10, 6-1, 9-6

electrical engineering,
1-5–1-6, 3-4–3-5, 6-25,
10-9

elephant, modeling of an, 3-1
Elowitz, M. B., 3-39
encirclement, see also Nyquist

criterion, 10-5
environmental science, 1-3,

1-6
equation-based modeling, 3-7
equilibrium points, 4-26, 5-6,

5-11, 6-2, 6-29, 7-2
bifurcations of, 5-28
discrete time, 3-41
for closed loop system,

7-11, 7-30
for planar systems, 5-10
region of attraction,

5-26–5-28, 5-34
stability, 5-8

equipment protection, 14-8
error feedback, 2-14, 11-1,

11-2, 11-19, 12-3
estimators, see oserversI-1
Euler integration, 3-20, 3-21
exponential functions

simplified notation, 9-5
exponential input, 9-3
exponential signal, 9-4
exponential signals, 9-2–9-9,

9-13, 9-24
exponential signals E , 9-5
extended Kalman filter, 8-21
extremal control, 14-1
extremum seeking, 14-12

Falb, P. L., 7-1
Feedback, 2-1
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feedback, 1-1–1-3
as technology enabler, 1-3,

1-13
business, 1-16
combining with

feedforward, 2-29
drawbacks of, 1-3, 1-15,

11-18, 13-6, 13-13
economy, 1-16
in biological systems, see

also biological circuits,
1-1–1-3, 1-10, 1-26, 11-5

in engineered systems, see

control
in financial systems, 1-3
in nature, 1-3, 1-9–1-10,

4-25
positive, see positive

feedback
properties, 1-3, 1-5,

1-11–1-17, 12-1, 12-6,
13-1

robustness through, 1-11
versus feedforward, 1-16,

11-4, 12-6
feedback and feedforward,

2-26
feedback connection, 9-19,

10-21
feedback controller, 9-20, 12-1
feedback decoupling, 14-3
feedback linearization,

6-32–6-33
feedback loop, 1-4, 10-1, 12-1,

13-12
feedback uncertainty, 13-3,

13-10
feedback:positive, 2-18
feedforward, 1-15, 1-16,

8-19–8-22, 9-20, 12-1,
12-5, 12-7

business, 1-16
combining with feedback,

2-29
difficulties, 2-27
economy, 1-16
sensitivity to process

variations, 2-29
system inversion, 2-27

Fermi, E., 3-1
filters

active, 6-24

for disturbance weighting,
13-27

for measurement signals,
1-15, 8-26, 13-13

zz, see also band-pass
filters; high-filters;
low-pass filters

financial systems, see

economic systems
finite escape time, 5-3
finite state machine, 1-22, 3-8,

4-5, 4-12
first-order systems, 6-4, 6-35,

9-10, 9-25, 9-27
fisheries management, 4-30
flatness, see differential

flatness
flight control, 1-6, 1-13, 3-31,

6-33
X-29 aircraft, 12-27
zz, see also vectored thrust

aircraft
flow, of a vector field, 3-3, 5-5
flow in a tank, 5-33
flow model (queuing systems),

3-33, 10-25, 11-24
flyball governor, see

centrifugal governor
force feedback, 1-7
forced response, 6-3, 9-3
forced solution, 6-3
Forrester, J. W., 1-10
FOTD model, 11-11
Fourier, J. B. J., 3-40, 9-33
frequency domain, 9-1–9-3,

10-1, 10-19, 12-1
frequency response, 2-4, 3-5,

3-22, 3-23, 6-22–6-27,
9-2, 10-24, 11-11, 12-8

relationship to Bode plot,
9-24

relationship to Nyquist plot,
10-4, 10-5

second-order systems, 7-20,
9-29

system identification using,
9-31

fully actuated systems, 9-14
fundamental limits, see

control: fundamental
limitations

Furuta pendulum, 5-36

gain, 1-18, 2-4, 3-22, 4-8,
6-23, 6-24, 7-21, 9-3, 9-6,
9-13, 9-24, 10-12,
10-19–10-22, 13-1

H∞, 10-20, 13-26
observer, see observer gain
of a system, 10-19
reference, 7-30
state feedback, 7-11, 7-15,

7-30, 7-32
steady-state, 9-13
zero frequency, see zero

frequency gain
zz, see also integral gain

gain crossover frequency,
10-13, 12-8, 12-22, 13-19

gain crossover frequency
inequality, 12-22, 12-24

gain curve (Bode plot),
9-24–9-28, 10-16, 12-13

gain margin, 10-12–10-14
from Bode plot, 10-13
reasonable values, 10-14

gain scheduling, 8-21, 13-28,
14-1, 14-11–14-12

gain-bandwidth product, 4-10,
9-7, 13-15

Gang of Four, 12-3, 12-35,
13-12

Gang of Seven, 12-3, 12-8
gene regulation, 1-10, 3-38,

6-36, 9-29
general solution to the

homogeneous equation,
2-2

genetic switch, 3-43, 5-21
global behavior, 5-10,

5-27–5-30
Glover, K., 12-34, 13-28
glucose regulation, see

insulin-glucose dynamics
Golomb, S., 4-1
governor, see centrifugal

governor

H∞ control, 13-25–13-28,
13-30

haptics, 2-25
Harrier AV-8B aircraft, 3-32
heat propagation, 9-9
Heaviside, O., 6-34
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Heaviside step function, 6-20,
6-34

Hellerstein, J. L., 1-26, 4-17

high-frequency roll-off, 12-13,
13-13, 13-21

high-pass filter, 9-29

Hill function, 3-38

Hoagland, M. B., 1-1

Hodgkin-Huxley equations,
3-39

homeostasis, 1-3, 3-38

homogeneous equation, 2-2

homogeneous solution, 6-3,
6-6

Horowitz, I. M., 8-26, 12-34,
13-23, 13-28

human-machine interface,
1-22, 4-1, 4-4

hybrid system, 3-8, 3-19

hysteresis, 1-17, 10-23

identification, see system
identification

impedance, 9-7, 11-20
impedance control, 2-25

implementation, controllers,
see analog
implementation; computer
implementation

impulse function, 6-16, 6-34,
7-4

impulse response, 6-5, 6-16,
6-17, 9-12

inductor, transfer function for,
9-7

inertia matrix, 3-12, 6-33

infinity norm, 10-20, 13-26

information systems, see also

congestion control; web
server control, 1-8,
3-33–3-37

initial condition, 5-2, 5-5, 5-8,
6-2, 6-6, 6-7, 6-14, 8-15

initial condition response, 6-3,
6-6–6-9, 6-12, 6-14, 6-17,
9-3

initial value problem, 5-2
inner loop control, 12-31,

12-33

input sensitivity function, see

load sensitivity function

input/output models, see also

frequency response;
steady-state response; step
response, 1-5, 3-4, 3-5,
6-2, 6-15–6-28, 9-1, 10-19

and transfer functions, 9-12
and uncertainty, 3-10, 13-3
from experiments, 9-31
relationship to state space

models, 3-6, 5-1, 6-16
steady-state response, 6-19

input/output stable, 10-20
inputs, 3-3, 3-6
insect flight control, 3-23–3-26
instrumentation, 1-7, 4-7
insulin-glucose dynamics, 1-2,

4-24–4-25
integral action, 1-18, 1-19,

1-27, 2-20–2-21,
7-30–7-33, 11-1,
11-3–11-5, 11-7, 12-11

for bias compensation, 8-27
setpoint weighting, 11-19,

11-23
time constant, 11-2

integral gain, 1-18, 11-2, 11-4,
11-7

integrator, see also double
integrator, 3-23, 3-24, 6-9,
7-30, 7-31, 8-5, 9-10,
9-25, 10-16, 11-16

integrator windup, 1-18, 8-26,
11-14–11-16, 11-24,
11-25

conditional integration,
11-25

intelligent machines, see

robotics
internal model principle, 8-13,

8-21
internal stability, 12-4
Internet, see also congestion

control, 1-8, 1-9, 4-11,
4-13, 4-16, 4-29

Internet Protocol (IP), 4-13
invariant set, 5-25, 5-28
inverse, 2-27
inverse model, 6-32, 12-6
inverse response, 2-28, 10-18,

10-26
inverted pendulum, see also

balance systems,

3-13–3-14, 4-5, 5-6, 5-14,
5-25, 5-27, 5-35, 5-36,
10-10, 12-27

Jacobian linearization,
6-29–6-31

Janert, P. K., 1-26
Jordan block, 6-9
Jordan form, 6-9–6-12, 6-35,

7-22

Kalman, R. E., 7-1, 7-32, 8-1,
8-23, 8-26

Kalman decomposition,
8-22–8-24, 9-17, 9-34,
9-36

Kalman filter, 8-14–8-19,
8-26, 13-25

extended, 8-21
Kalman-Bucy filter, 8-17
Kelly, F. P., 4-16
Kepler, J., 3-2
Keynesian economic model,

3-41, 6-35
Krasovski-Lasalle principle,

5-24–5-25

LabVIEW, 5-29, 6-34
lag, see phase lag
lag compensation,

12-13–12-15
Laplace transform

computing transfer function
with, 9-11

Laplace transforms, xi,
9-10–9-12

Laplacian matrix, 3-37
Lasalle’s invariance principle,

see Krasovski-Lasalle
principle

lead, see phase lead
lead compensation,

12-14–12-17, 12-32,
12-36

limit cycle, 4-27, 5-7, 5-16,
5-17, 5-29, 10-22

linear quadratic control,
7-25–7-29, 8-16, 8-26,
13-24–13-25

linear systems, 3-4, 3-10, 4-10,
5-11, 6-1–6-34, 8-22, 9-4,
9-33, 10-20
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linear time-invariant systems,
3-4, 3-10, 6-4

linearity, 6-3, 9-24
linearization, 5-15, 5-23, 6-2,

6-28–6-33, 8-20, 8-21,
13-1

Lipschitz continuity, 5-4
load disturbances, see also

disturbances, 12-1, 13-13
load sensitivity function, 12-3
local behavior, 5-9, 5-15, 5-24,

5-27, 6-29
locally asymptotically stable,

5-9
logistic growth model, 4-25,

4-26, 4-30
loop analysis, 10-1, 12-1
loop gain, 10-12
loop shaping, 10-4,

12-12–12-17, 12-33,
13-23

design rules, 12-14
fundamental limitations,

12-21–12-30
zz, see also Bode’s loop

transfer function
loop transfer function, see also

Bode’s loop transfer
function, 10-1–10-4,
10-12, 10-20, 12-1, 12-4,
12-12, 12-13, 12-16,
12-26, 12-34

Lotus Notes server, see e-mail
server

low-order models, 11-6
low-pass filter, 9-29, 11-19
LQ control, see linear

quadratic control
LTI systems, see linear

time-invariant systems
Lyapunov equation, 5-20, 5-35
Lyapunov functions, 5-17,

5-18, 5-20, 5-21, 5-27,
5-34, 6-35

design of controllers using,
5-25, 5-31

existence of, 5-20
Lyapunov stability analysis,

3-22, 5-17–5-26, 5-33
discrete time, 5-35

magnitude, 2-4

manifold, 5-26
margins, see stability margins
materials science, 1-6
Mathematica, 3-20, 5-29, 6-34
MATLAB, 1-27, 3-20, 5-29,

6-34, 7-34
acker, 7-15, 8-11
dlqe, 8-16
dlqr, 7-29
hinfsyn, 13-26
jordan, 6-10
linmod, 6-30
lqr, 7-25
place, 7-15, 7-24, 8-11
trim, 6-30

matrix exponential, 6-6–6-9,
6-13, 6-15, 6-33, 6-34

coordinate transformations,
6-18

Jordan form, 6-10
second-order systems, 6-34

maximum complementary
sensitivity, 13-8, 13-19

maximum selector, 1-20, 14-8
maximum sensitivity, 12-10,

13-6, 13-20
measured signals, 3-6, 3-10,

5-1, 8-1, 8-14, 8-26, 12-2,
12-4, 13-25

measurement noise, 1-4, 1-15,
8-1, 8-3, 8-14, 8-15, 8-17,
9-20, 11-18, 12-1–12-3,
12-13, 13-13

response to, 12-11–12-12,
13-13–13-14

mechanical systems, 3-6, 3-12,
3-21, 3-30, 3-40, 6-32

mechanics, 3-2–3-3, 3-5, 5-32,
6-1

median selector, 14-9
mid-range control, 14-1, 14-7
minimal model

(insulin-glucose), see also

insulin-glucose dynamics,
4-24, 4-25

minimum phase, 10-17, 10-24,
12-21

minimum selector, 1-20, 14-8
model following, 14-1
Modelica, 3-7
modeling, 1-5, 3-1–3-10, 3-40,

4-1

control perspective, 3-5
discrete control, 3-35
discrete-time, 3-14–3-15,

6-27–6-28
frequency domain, 9-1–9-3
from experiments,

3-27–3-28
model reduction, 1-5
normalization and scaling,

3-28
of uncertainty, 3-9–3-10
simplified models, use of,

3-6, 11-7, 13-2, 13-8, 13-9
software for, 3-7, 6-30, 6-33
state space, 3-10–3-22
uncertainty, see uncertainty

modes, 6-12–6-14, 9-13
relationship to poles, 9-14

monotone step responses,
11-11

motion control systems,
3-30–3-33, 8-26

motors, electric, 3-44, 7-34,
8-28

multi-input, multi-output
systems, see also

input/output models,
10-20, 12-4, 12-14

multiplicative uncertainty,
13-3, 13-10

nanopositioner (AFM), 10-15,
13-20

natural frequency, 7-19
negative definite function, 5-18
negative feedback, 1-12, 1-16,

4-9, 7-10, 10-1, 11-5
Nernst’s law, 3-40
networking, see also

congestion control, 1-8,
3-24, 4-16

neural systems, 1-7, 3-25,
3-39, 11-5, 11-6

neutral stability, 5-8–5-10
Newton, I., 3-2
Nichols, N. B., 6-33, 11-10,

12-33
Nichols chart, 13-24
Nobel Prize, 1-7, 3-40, 4-17
noise, see disturbances;

measurement noise
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noise attenuation, 9-30,
12-11–12-12

noise cancellation, 5-31

noise sensitivity function, 12-3

nonlinear systems, 3-6, 5-1,
5-4, 5-7, 5-15, 5-17, 5-21,
5-27–5-32, 8-2, 8-20,
8-21, 10-20, 10-21

linear approximation, 5-15,
5-23, 6-29, 13-1

system identification, 3-42

nonminimum phase, see also

inverse response, 10-16,
10-17, 10-26,
12-21–12-23

nonunique solutions (ODEs),
5-3

normalized coordinates,
3-28–3-30, 3-42, 6-31

norms, 10-19–10-20

Nyquist, H., 10-1, 10-23

Nyquist criterion, 10-5, 10-7,
10-9, 10-12, 10-20, 10-21,
11-11

for robust stability, 13-6,
13-31

Nyquist D contour, 10-4,
10-10

Nyquist plot, 10-4–10-5,
10-12, 10-13, 11-11,
12-10, 13-24

observability, 3-6, 8-1–8-2,
8-22, 8-26

rank condition, 8-3

tests for, 8-2–8-3

unobservable systems, 8-4,
8-22–8-24, 9-36

observability matrix, 8-3, 8-5

observable canonical form,
8-4, 8-5, 8-27

observer gain, 8-7, 8-9–8-11,
8-13, 8-15–8-17

observers, 8-1, 8-6–8-9, 8-17,
8-21

block diagram, 8-2, 8-10

zz, see also Kalman filter

ODEs, see differential
equations

Ohm’s law, 3-40, 4-9, 9-6

on-off control, 1-17, 1-18

open loop, 1-1, 1-2, 4-8, 7-2,
9-22, 10-1, 11-14, 12-1,
12-10, 13-3

open loop gain, 9-7, 12-8

operational amplifiers,
4-7–4-11, 9-7, 11-20,
13-10

circuits, 4-28, 6-24, 10-2,
13-14

dynamic model, 4-10, 9-7

input/output characteristics,
4-8

oscillator using, 4-28, 5-35

static model, 4-8, 9-7

optimal control, 7-25, 8-15,
8-17, 13-25

order, of a model, 3-10, 3-11

ordinary differential equations,
see differential equations

oscillator dynamics, 4-28, 5-2,
5-3, 6-7, 6-8, 7-18, 9-5,
9-10

normal form, 3-42

zz, see also nanopositioner
(AFM); spring-mass
system

outer loop control,
12-31–12-33

output feedback, see also

control: using estimated
state; loop shaping; PID
control, 8-11, 8-12, 8-26

output sensitivity function, see

noise sensitivity function

outputs, see measured signals

overdamped oscillator, 7-18

overshoot, 6-21, 7-10, 7-20,
12-8

P control, 2-9, 2-10

Padé approximation, 10-26,
12-23

paging control (computing),
3-35

pairing problem, 14-2

parallel connection, 9-19

parallel systems, 14-5–14-6

parametric stability diagram,
5-28–5-30

parametric uncertainty, 3-9,
13-1

particular solution, see also

forced response, 2-2, 6-3,
6-22, 9-5

non
uniqueness, 2-2

transfer function, 2-3
passive systems, 10-21, 12-26
passivity theorem, 10-21
patch clamp, 1-7
PD control, 2-24, 11-4, 12-14,

12-15
peak frequency, 6-26, 12-8
pendulum dynamics, see also

inverted pendulum, 5-19
perfect adaptation, 11-5
perfect control, 14-2
performance, 4-12
performance limitations,

12-21, 12-26, 13-20,
13-27

due to right half-plane poles
and zeros, 10-17

zz, see also control:
fundamental limitations

performance specifications,
see also overshoot;
maximum sensitivity;
resonant peak; rise time;
settling time, 6-21, 7-10,
12-1, 12-8–12-12, 12-14,
13-12

periodic solutions, see

differential equations;
limit cycles

persistence, of a web
connection, 4-12, 4-13

Petri net, 3-24
pharmacokinetics, see also

drug administration, 4-21,
4-25

phase, see also minimum
phase; nonminimum
phase, 2-4, 3-22, 6-23,
6-24, 7-21, 9-3, 9-6, 9-24,
10-22

minimum vs. nonminimum,
10-16

phase crossover frequency,
10-13

phase curve (Bode plot),
9-24–9-26, 9-28

relationship to gain curve,
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10-16, 12-13
phase lag, 6-23, 6-24, 9-29,

10-17, 12-22, 12-24
phase lead, 6-23, 9-29, 12-17,

12-36
phase margin, 10-13, 10-14,

12-14, 12-15, 12-22,
12-37, 13-29

from Bode plot, 10-13
reasonable values, 10-14

phase portrait, 3-3, 5-4–5-6,
5-27

Philbrick, G. A., 4-11
photoreceptors, 11-5
physics, relationship to

control, 1-5
PI Control, 2-9
PI control, 1-12, 1-19, 2-10,

2-21, 4-1, 4-4, 11-4, 11-9,
12-14, 12-15

first-order system, 11-7,
13-18

PID control, 1-18–1-19,
11-1–11-23, 12-17

block diagram, 11-2, 11-4,
11-16

computer implementation,
11-21

ideal form, 11-1, 11-23
implementation, 11-4,

11-18–11-23
in biological systems, 11-5
op amp implementation,

11-20–11-21
tuning, 11-10–11-14
zz, see also derivative

action; integral action
pitchfork bifurcation, 5-37
planar dynamical systems, see

also second-order
systems, 5-5, 5-10

pole and zeros, 9-13–9-16
pole excess, 12-18
pole placement, see also

eigenvalue assignment,
7-11, 13-16, 13-19–13-20

robust, 13-15
pole zero diagram, 9-14
pole/zero cancellations,

9-16–9-18, 9-36, 13-20
poles, 2-5, 9-13, 9-14

dominant, see also dominant

eigenvalues (poles), 11-9
fast stable, 13-18, 13-20
pure imaginary, 10-5, 10-10
relationship to eigenvalues,

9-13
right half-plane, 9-14,

10-10, 10-17, 12-21,
12-23–12-24, 12-26,
12-36, 13-20

poles and zeros, 9-13
population dynamics, see also

predator-prey system,
4-25–4-27, 4-30

positive definite function,
5-18, 5-20, 5-24

positive definite matrix, 5-20,
7-25

positive feedback, 1-15–1-17,
2-18, 2-21, 5-36, 11-4

positive real (transfer
function), 12-26

power of a matrix, 6-6
power systems (electric),

1-5–1-6, 3-43, 5-7, 5-34
predator-prey system, 3-15,

4-26–4-27, 5-28, 7-15
prediction, in controllers, see

also derivative action,
1-18, 1-19, 8-21, 11-5,
13-29

prediction time, 11-5
principle of the argument, see

variation of the argument,
principle of

process control, 1-6, 3-24
proportional (P) control, 2-9
proportional control, see also

PID control, 1-18, 2-9,
11-1

proportional, integral,
derivative control, see PID
control

proportional-derivative (PD)
controller, 2-24

Proportional-Integral Control,
2-9

protocol, see congestion
control; consensus

pulse signal, see also impulse
function, 6-16, 6-17, 7-22

pupil response, 9-32, 11-5
pure exponential solution, 9-5

Q-value, 3-42, 7-20, 9-27
quantitative feedback theory

(QFT), 13-23–13-24
quarter car model, 9-37
queuing systems, 3-33–3-35,

3-43

random process, 3-33, 8-14,
8-15, 8-29

reachability, 3-6, 7-1–7-9,
7-32, 8-22

rank condition, 7-4
tests for, 7-3
unreachable systems, 7-5,

7-33, 8-22–8-24, 9-36
reachability matrix, 7-3, 7-8
reachable canonical form,

3-11, 7-6–7-9, 7-13, 7-14,
7-33

reachable set, 7-1
real-time systems, 1-5
reference signal, see also

command signals;
setpoint, 1-17, 7-10, 9-1,
9-20, 11-1, 11-19, 12-3,
12-5

effect on observer error,
8-12, 8-19, 8-24

response to, 12-8, 12-9,
12-35

tracking, 7-10, 8-19, 8-20,
12-13, 13-14

reference weighting, see

setpoint weighting
region of attraction, see

equilibrium points:
regions of attraction

regulation problem, 2-8
regulator, see control law
relay feedback, 10-23, 11-13
Reno (protocol), see Internet;

congestion control
repetitive control, 14-1, 14-9,

14-10
repressilator, 3-39
repressor, 1-11, 3-39, 3-43,

5-21, 6-36, 9-30
reset logic, 3-8
reset, in PID control, 11-3,

11-4
resonant frequency, 7-20,

10-20
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resonant peak, 6-26, 7-20,
12-8, 13-9

resource usage, in computing
systems, 3-34, 3-36, 4-11,
4-12

response, see input/output
models

retina, see also pupil response,
11-5

Riccati equation, 7-25, 8-17,
13-26, 13-28

Riemann sphere, 13-5
right half-plane poles and

zeros, see poles: right
half-plane; zeros: right
half-plane

rise time, 6-21, 7-10, 7-20,
12-8

robotics, 1-7–1-8, 6-33
robustness, 1-10–1-12, 12-8,

13-3, 13-28
performance, 13-12–13-15,

13-22–13-28
stability, 13-6–13-12
using gain and phase

margin, 10-14, 12-13
using maximum sensitivity,

12-10, 12-13, 13-7, 13-29,
13-31

using pole placement,
13-15–13-22

via gain and phase margin,
10-14

zz, see also uncertainty
roll-off, see high-frequency

roll-off
root locus, 12-17, 12-18

asymptotes, 12-36
initial direction, 12-36
real line segment, 12-36

root locus diagram, 5-29, 5-30
root locus method, 12-18
Routh-Hurwitz criterion, 2-5,

5-37
Routh-Hurwitz stability

criterion, 2-5
rush-hour effect, 3-35, 3-43

saddle (equilibrium point),
5-10

sampling, 6-27, 8-25, 8-26,
11-21

saturation function, see also

actuators: saturation, 3-24,
4-8, 11-21

scaling, see normalized
coordinates

scanning tunneling
microscope, 4-17

schematic diagrams, 3-23,
3-24, 4-7

Schitter, G., 4-20
second-order systems, 3-2,

6-34, 7-18–7-21, 7-35,
9-26, 9-27, 11-9

Segway, 2-24
Segway Personal Transporter,

3-12, 7-4
selector, 1-20
selector control, 14-1,

14-8–14-9
of air-fuel, 1-20

selector, maximum, 1-20
selector,minimum, 1-20
self-activation, 5-36
self-optimization, 14-12
self-repression, 6-36, 9-29
semidefinite function, 5-18
sensitivity crossover

frequency, 12-10
sensitivity function, 12-3,

12-10, 12-11, 12-13,
12-26, 13-7, 13-14, 13-20

and disturbance attenuation,
12-10, 12-26, 12-35

sensor matrix, 3-11, 3-14
sensor networks, 3-36
sensors, 1-3, 1-4, 8-2, 8-25,

10-17, 11-21, 12-1, 12-4,
12-23, 12-24, 13-25

effect on zeros, 10-17, 12-24
in computing systems, 4-11
zz, see also measured

signals
separation principle, 8-1, 8-13
series connection, 9-19
service rate (queuing systems),

3-33
servo problem, 2-12
setpoint, 11-1
setpoint weighting, 11-19,

11-23
settling time, 6-21, 6-35, 7-10,

7-20, 12-8

similarity of two systems,
13-3–13-6

simplified notation
exponential functions, 9-5

simulation, 3-10, 3-19–3-20
SIMULINK, 6-30
single-input, single-output

(SISO) systems, 5-1, 6-2,
6-3, 6-29, 8-4, 10-20

singular values, 10-19, 10-20,
13-30

sink (equilibrium point), 5-10
small gain theorem,

10-20–10-21, 13-9
Smith predictor, 13-29

ideal time delay, 14-10
social, 1-16
software tools for control, x
solution (ODE), see

differential equations:
solutions

source (equilibrium point),
5-10

spectrum analyzer, 9-31
Sperry autopilot, 1-13
split-range control, 14-7
spring-mass system, 3-2, 3-19,

3-21, 3-22, 4-18, 5-34
coupled, 6-14, 6-18
generalized, 3-12, 4-7
identification, 3-27
normalization, 3-28, 3-42
zz, see also oscillator

dynamics
Stability, 2-5

Rout-Hurwitz criterion, 2-5
stability, 1-3, 1-5, 1-12, 1-13,

2-5, 3-21, 5-4, 5-8–5-26
asymptotic stability, 5-8,

5-13
conditional, 10-9
in the sense of Lyapunov,

5-8
local versus global, 5-9,

5-16, 5-27
Lyapunov analysis, see

Lyapunov stability
analysis

neutrally stable, 5-8, 5-10
of a system, 5-11
of equilibrium points, 3-21,

5-8, 5-10, 5-17, 5-18, 5-23
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of feedback loop, see

Nyquist criterion
of limit cycles, 5-16
of linear systems,

5-11–5-14, 5-20, 6-10
of solutions, 5-8, 5-9, 5-17
of transfer functions, 9-14
robust, see robust stability
unstable solutions, 5-9
using eigenvalues, 5-23,

6-10, 6-11
using linear approximation,

5-14, 5-23, 6-30
using Routh-Hurwitz

criterion, 5-37
using state feedback,

7-9–7-29
zz, see also bifurcations;

equilibrium points
stability diagram, see

parametric stability
diagram

stability margin (quantity),
10-13, 10-14, 12-10,
12-37, 13-7, 13-26

reasonable values, 10-14
stability margins (concept),

10-12–10-16, 10-25,
12-13

stable, 2-5
stable pole, 9-14
stable zero, 9-14
Stark, L., 9-32
state, of a dynamical system,

3-2, 3-6, 3-10
state estimators, see observers
state feedback, see also

eigenvalue assignment;
linear quadratic control,
7-1–7-32, 8-7, 8-12,
8-19–8-21, 8-24–8-26,
13-16, 13-25, 14-4

state space, 3-2, 3-10–3-22,
7-9

state vector, 3-2, 3-10
static gain, 2-4
steady state solution, 9-5
steady-state gain, see zero

frequency gain, 9-13
steady-state response, 1-27,

3-20, 6-19–6-27, 7-11,
7-20, 9-2, 9-31, 9-33

steam engines, 1-2, 1-11
steering, see vehicle steering
Stein, G., xii, 1-1, 12-1, 12-27
step input, 3-4, 6-5, 6-20, 9-13
step response, 3-4, 3-5, 3-27,

3-28, 6-5, 6-17, 6-20,
6-21, 7-10, 7-19, 7-20,
11-10

stochastic systems, 8-14, 8-17
summing junction, 3-24
superposition, 3-4, 6-3, 6-17,

6-34, 9-2
supervisory control, see

decision making: higher
levels of

supply chains, 1-9, 1-10
supremum (sup), 10-20
switching behavior, 1-16,

3-43, 5-23, 5-24, 13-28
system identification, 3-27,

3-28, 3-42, 9-31
system inversion, 2-27

tapping mode, see atomic
force microscope

TCP/IP, see Internet;
congestion control

Teorell, T., 4-21, 4-25
the relative gain array, 14-3
three-term controllers, see also

PID control, 11-1
thrust vectored aircraft, see

vectored thrust aircraft
time constant, 2-2
time constant, first-order

system, 6-35
time delay, 1-8, 9-9, 9-10,

10-15, 10-17, 11-10,
11-11, 11-21, 12-23,
12-24

compensation for, 13-29,
13-30

Padé approximation, 10-26,
12-23

time plot, 3-3
time-invariant systems, 3-4,

3-10, 5-33, 6-4–6-5
tracking, see reference signal:

tracking
tracking mode, 11-17
trail (bicycle dynamics), 4-6
transcription factors, 3-38

transcriptional regulation, see

gene regulation
transfer function, 2-3
transfer function:looptracing,

9-21
transfer functions, 9-1–9-33

common systems, 9-10
derivation using exponential

signals, 9-4
for control systems, 9-20,

9-36
for electrical circuits, 9-6
for time delay, 9-9
frequency response, 9-2,

9-24
from experiments, 9-31
irrational, 9-9
linear input/output systems,

9-4, 9-10, 9-36
simplified notation, 9-5

transfer functions: , 9-12
transfer functions: Laplace

transforms, 9-11
transfer functions:impulse

response, 9-12
transfer functions:state space

model, 9-11
transient response, 3-20, 6-20,

6-21, 6-23, 7-2, 7-23
Transmission Control Protocol

(TCP), 4-13
transmission zero, 2-5
Tsien, H. S., 1-8
tuning rules, see

Ziegler-Nichols tuning,
11-24

Tustin, A., 2-1
two degree-of-freedom

control, 8-20, 11-2, 12-5,
12-7, 12-34, 12-35

two degrees of freedom, 2-14,
2-30

uncertainty, 1-4, 1-11–1-12,
3-6, 3-9–3-10, 7-30,
13-1–13-6

component or parameter
variation, 1-4, 3-9, 13-1

disturbances and noise, 1-4,
3-6, 7-10, 9-20, 12-1

unmodeled dynamics, 1-4,
3-9, 13-2, 13-8
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zz, see also additive
uncertainty; feedback
uncertainty; multiplicative
uncertainty

uncertainty band, 3-9
uncertainty lemon, 3-9, 4-4,

4-10, 4-20
undamped natural frequency,

2-11
underdamped oscillator, 5-3,

7-19, 7-20
unit step, 6-20
unmodeled dynamics, see

uncertainty: unmodeled
dynamics, 2-11, 2-12

effect for control, 2-12
unstable pole, see poles: right

half-plane
unstable pole/zero

cancellation, 9-17
unstable solution, for a

dynamical system, 5-9,
5-10, 5-13, 6-10, 9-14

unstable zero, see zeros: right
half-plane

variation of the argument,
principle of, 10-11, 10-24

vector field, 3-3, 5-5
vectored thrust aircraft,

3-32–3-33, 6-11, 7-26,
8-17, 9-36, 12-16, 12-30

vehicle steering, 3-30–3-32,
6-30, 7-11, 8-9, 8-13,
8-21, 9-22, 10-18, 10-25,
12-7, 13-16

ship dynamics, 3-30
vehicle suspension, see also

coupled spring-mass
system, 9-37

vertical takeoff and landing,
see vectored thrust aircraft

vibration absorber, 9-38
Vinnicombe, G., 12-34, 13-5,

13-6, 13-28
Vinnicombe metric,

13-3–13-6, 13-26
voltage clamp, 1-7, 3-40

waterbed effect, 12-26, 12-27
Watt governor, see centrifugal

governor
Watt steam engine, 1-3, 1-11
web server control, 4-11–4-13,

7-27
web site, companion, x
Whipple, F. J. W., 4-7
Wiener, N., 1-7
winding number, 10-11
window size (TCP), 4-14,

4-16, 5-10
windup, see integrator windup

cascade control, 14-5
selector control, 14-9

Wright, W., 1-13

Wright Flyer, 1-6, 1-13

X-29 aircraft, 12-27

Youla parameterization,
13-10–13-12

zero
blocking property, 2-5

zero frequency gain, 2-4, 6-25,
7-11, 7-14, 7-20, 9-13,
11-11

zeros, 2-5, 9-13
Bode plot for, 9-36
effect of sensors and

actuators on, 10-17,
10-18, 12-24

for a state space system,
9-14

right half-plane, 9-14,
10-17, 12-21–12-24,
12-27, 12-36, 13-20

signal-blocking property,
9-13

slow stable, 13-16, 13-18,
13-20

Ziegler, J. G., 11-10, 11-23
Ziegler-Nichols tuning,

11-10–11-13, 11-23
frequency response, 11-11
improved method, 11-11
step response, 11-10
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