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Chapter Two
Feedback Principles

Feedback - it is the fundamental principle that underlies all self-regulating systems, not only

machines but also the processes of life and the tides of human affairs.

A. Tustin, “Feedback”, Scientific American, 1952 [Tus52].

This chapter presents examples that illustrate fundamental properties of feed-
back: disturbance attenuation, command signal following, robustness to uncer-
tainty, and shaping of behavior. The analysis is based on simple static and dy-
namical models. After reading this chapter, readers should have some insight into
the power of feedback, they should know about transfer functions and block di-
agrams, and they should be able to design simple feedback systems. The basic
concepts described in this chapter are explained in more detail in the remainder of
the text, and this chapter can be skipped for readers who prefer to move directly to
the more detailed analysis and design techniques.

2.1 Nonlinear Static Models

We will start by capturing the behavior of the process and the controller using static
models. Although these models are very simple, they give significant insight about
the fundamental properties of feedback: negative feedback increases the range of
linearity, it improves command signal following, and it reduces the gain and the
effects of disturbances and parameter variations. Moderate positive feedback has
the opposite properties: it shrinks the range of linearity and increases the gain of
the system. At a critical value the gain becomes infinite and the system behaves like
a relay; larger values of the gain gives hysteretic behavior. Although static models
give some insight, they cannot capture dynamic phenomena like stability. Positive
feedback combined with dynamics often leads to instability and oscillations, as
will be discussed toward the end of the chapter.

Consider the closed loop system whose block diagram is shown in Figure 2.1.
The closed loop system has a command signal or a reference r that gives the desired
system output. The controller C has an input e that is the difference between the
reference r and the process output y, and the output of the controller is the control
signal u. There is also a load disturbance v at the process input that perturbs the
system. Although we will mostly deal with negative feedback, this simple model
also permits analysis of positive feedback.

The process P is modeled as a function that is linear for inputs that are less
than one in magnitude and saturates for inputs of magnitude larger than one. The
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Figure 2.1: Block diagram of simple, static feedback system. The controller is a constant
gain k > 0 and the process is modeled by a nonlinear function F(w). The process output is
y, the control signal is u, the external signals are the reference r, and the load disturbance v.
The sign in the lower block indicates whether the feedback is positive (+) or negative (−).

controller is modeled by a constant gain k. Formally the process and the controller
are described by the functions

y = F(w) = sat(w) =

⎧
⎪⎨

⎪⎩

−1 if w≤−1,

w if |w|< 1,

1 if w≥ 1,

and u = ke. (2.1)

The process is linear for |w|< 1, which is called the linearity region. In this region
we have y = w and the process gain is 1. The controller gain is k because the
controller’s output u is k times its input e.

The open loop system is the combination of the controller and the process when
there is no feedback. Neglecting the disturbance v, it follows from equation (2.1)
that the input/output relation for the open loop system is

y = F(kr) = sat(kr). (2.2)

It has the gain k and the linearity region |r|< 1/k.

Response to Command Signals

To explore how well the system output y can follow the command signal r we
assume that the load disturbance v in Figure 2.1 is zero. We will first consider
negative feedback by setting the gain in the lower block of Figure 2.1 to −1. It
follows from Figure 2.1 and equation (2.1) that the closed loop system is described
by

y = sat(u), u = k(r− y). (2.3)

Eliminating u in these equations we obtain

y = sat(k(r− y)). (2.4)

To find the relation between the reference r and the output y we have to solve
an algebraic equation. In the linear range |k(r− y)| < 1 we have y = k

k+1 r. When
|k(r−y)|≥ 1 the output saturates and we obtain y =±1 (depending on the sign of
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Figure 2.2: Input/output behavior of the system: (a) for large negative feedback (b) posi-
tive feedback k < 1 and (c) large positive feedback. The solid line is the response of the
closed loop system and the dotted line is the response of the open loop system. Redrawn
from [SGA18, Figure 20.5].

k(r− y). It can be shown that the overall input/output relationship satisfies

y = sat
( k

k+1
r
)
=

⎧
⎪⎨

⎪⎩

−1 r ≤− k+1
k ,

k
k+1 r |r|< k+1

k ,

1 r ≥ k+1
k .

(2.5)

The linearity range for the closed loop system is |r|< k+1
k . Comparing with equa-

tion (2.2) we find that negative feedback widens the linear range of the system by a
factor of k+1 compared to the open loop system. This is illustrated in Figure 2.2a,
which shows the input/output relations of the open loop system (dashed) and the
closed loop system (solid).

Robustness to Parameter Uncertainty

Next we will investigate the sensitivity of the closed loop system to gain variations.
The sensitivity of a system describes how changes in the system parameters affect
the performance of the system. For the open loop system in the linear range we
have y = kw and it thus follows that

dy

dk
= w =

y

k
, ⇒

dy

y
=

dk

k
. (2.6)

The relative change of the output is thus equal to the relative change of the param-
eter and we say that the sensitivity is 1. Thus, for the open loop system, a change
in k of 10% will lead to a change in the output of 10%.

For the closed loop system with an input in the linear range, it follows from
equation (2.5) that

dy

dk
=

r

k+1
−

kr

(k+1)2
=

r

(k+1)2
=

y

k(k+1)
,

and hence
dy

y
=

1

k+1

dk

k
. (2.7)
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A comparison with equation (2.6) shows that negative feedback with gain k re-
duces the sensitivity to gain variations by a factor of k+1. If k is 100, for example,
a 10% change in k would lead to less than a 0.1% change in y, so the closed loop
system is much less sensitive to parameter variation.

This type of analysis can also be used to investigate the effect of positive feed-
back. If the−1 in the feedback loop in Figure 2.1 is replaced by +1, equation (2.5)
becomes

y = sat
( k

−k+1
r
)
. (2.8)

Notice that the gain of the closed loop system is positive and larger than the open
gain for k < 1, as shown in Figure 2.2b. The linearity range is |r| < (1− k)/k.
A comparison with the open loop system in equation (2.2) shows that positive
feedback with k < 1 shrinks the linearity range by a factor of 1−k. As k approaches
1 the closed loop gain approaches infinity, the range shrinks to zero, and the system
behaves like a relay.

For positive feedback with k > 1 it follows from equation (2.8) that the closed
loop gain is negative, as shown in Figure 2.2c, and that it approaches −1 as k ap-
proaches infinity. Positive feedback with large gains creates an input/output char-
acteristic with multiple output values possible for inputs in the range |r|< k/(k+1)
and the closed loop system behaves like a switch with hysteresis. This concept is
explored in more detail in Section 2.6, and it is shown that if the process has dy-
namics then all points where the input/output characteristics has negative slope are
unstable.

We will mostly deal with negative feedback but there are systems that employ
positive feedback, which is illustrated by the following example.

Example 2.1 The Superregenerative Amplifier
Armstrong constructed a “superregenerative” radio receiver with only one vacuum
tube in 1914, when he was still an undergraduate at Columbia University. The su-
perregenerative amplifier can be modeled as an amplifier with open loop gain k
and a saturated output, combined with a positive feedback loop, as shown in Fig-
ure 2.1. Using equation (2.8), we can compute the gain of the closed loop system
to be kcl = k/(1− k). A very large closed loop gain can be obtained by selecting a
feedback gain k that is just below 1. Choosing k = 0.999 gives kcl = 999, which is
a gain increase of almost three orders of magnitude.

The drawback by using positive feedback is that the system is highly sensitive
and that the gain has to be adjusted carefully to avoid oscillations. For example, if
the gain k is 0.99 instead of 0.999 (a difference of less than 1%), then the closed
loop gain becomes kcl = 99, a difference of 10X (or 1000%). The oscillatory nature
of this circuit requires the use of a more advanced (dynamic) model for analysis of
the amplifier.

Despite its limitations, this type of amplifier is still used in simple walkie-
talkies, garage door openers, and toys. ∇
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Load Disturbance Attenuation

Another use of feedback is to reduce the effects of external disturbances, repre-
sented by the signal v in Figure 2.1. For the open loop system, the output when
v ≠ 0 is given by

y = sat(kr+ v).

In the linear region we thus have a gain of 1 between v and y, so that disturbances
are passed through with no attenuation.

To investigate the effect of feedback on load disturbances we consider the sys-
tem in Figure 2.1 with negative feedback and, for simplicity, we set the reference
signal r to be zero. The relationship between the load disturbance v and the the
output y is given by y = sat(v− ky), which is again an algebraic equation. In the
linear range we get y = v/(k+1) and more generally it can be shown that

y = sat
( v

k+1

)
. (2.9)

In the linear region, negative feedback thus reduces the effect of load disturbances
by the factor k+1. The analysis of the effects of positive feedback is discussed in
Exercise 2.1.

Combining these three sets of analyses, we see that negative feedback increases the
range of linearity of the system, decreases the sensitivity of the system to param-
eter uncertainty, and attenuates load disturbances. The trade-off is that the closed
loop gain is decreased. Positive feedback has the opposite effect: it can increase
the closed loop gain, but at the cost of increased sensitivity and amplification of
disturbances.

2.2 Linear Dynamical Models

The analysis in the previous section was based on static models and the dynamics
of the process were neglected. We will now introduce a set of concepts and tools to
analyze the effects of dynamics. To do this we will introduce block diagrams, linear
differential equations, and transfer functions. The block diagram is an abstraction
that describes a system as an interconnection of blocks, whose input/output behav-
ior is described by differential equations. The transfer function, which is a function
of complex variables, is a convenient representation of the differential equations
describing the dynamics of the system. Transfer functions make it possible for
us to find the relations between the signals of a complex system represented by
block diagrams using simple algebra. The values of the transfer function on the
imaginary axis gives the steady state response to sinusoidal signals, which means
that the transfer function can be determined experimentally from the steady state
response to sinusoidal signals.
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Linear Differential Equations and Transfer Functions

In many practical situations, the input/output behavior of a system can be modeled
by a linear differential equation of the form

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = b0

dmu

dtm
+b1

dm−1u

dtm−1
+ · · ·+bmu, (2.10)

where u is the input, y is the output, and the coefficients ak and bk are real numbers.
The differential equation (2.10) is characterized by two polynomials

a(s) = sn +a1sn−1 + · · ·+an, b(s) = b0sm +b1sm−1 + · · ·+bm, (2.11)

where a(s) is the characteristic polynomial of the differential equation (2.10). We
assume that the polynomials a(s) and b(s) do not have common roots. (The con-
sequences of having common roots is discussed in Section 8.3.)

Equation (2.10) represents a time invariant system because if the pair u(t),y(t)
satisfies the equation so does u(t+τ),y(t+τ). The equation is also linear because
if u1(t), y1(t), and u2(t),y2(t) satisfy the equation so does αu1(t)+βu2(t),αy1(t)+
βy2(t), where α and β are real numbers. Systems that are linear and time invariant
are often called LTI systems. We can visualize these systems as being characterized
by a huge table of corresponding input/output signal pairs. An interesting property
of an LTI system is that it can be characterized by a single carefully chosen pair,
for example the response of the system to a step input.

The solution to equation (2.10) is the sum of two terms: the general solution to
the homogeneous equation, which does not depend on the input, and a particular
solution, which depends on the input. The homogeneous equation associated with
equation (2.10) is

dny

dtn
+a1

dn−1y

dtn−1
+ . . .+any = 0. (2.12)

Letting sk represent the roots of the characteristic equation a(s) = 0, the solution
to equation (2.12) is of the form

y(t) =
n

∑
k=1

Ckeskt (2.13)

if the characteristic equation does not have repeated roots. The numbers C1, . . . ,Cn

can be determined from the initial conditions at t = 0.
Since the coefficients ak are real, the roots of the characteristic equation are ei-

ther real-valued or occur in complex conjugate pairs. A real root sk of the character-
istic equation corresponds to the exponential function eskt . This function decreases
over time if sk is negative, is constant if sk = 0, and increases if sk is positive, as
shown in the top row of Figure 2.3. For real roots sk the parameter T = 1/sk is
called the time constant, because it describes how quickly the signal decays.

A complex root sk = σ ± iω corresponds to the time functions

eσt sin(ωt), eσt cos(ωt),

which have oscillatory behavior, as illustrated in the bottom row of Figure 2.3.
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Figure 2.3: Examples of exponential signals. The top row corresponds to exponential signals
with a real exponent, and the bottom row corresponds to those with complex exponents. The
dashed line in the last two cases denotes the bounding envelope for the oscillatory signals.
In each case, if the real part of the exponent is negative then the signal decays, while if the
real part is positive then it grows.

The sine terms are shown as solid lines; they have zero crossings with the spacing
π/ω . The dashed lines show the envelopes, which correspond to the exponential
function ±eσt .

When the characteristic equation (2.13) has repeated roots, the solutions to the
homogeneous equation (2.12) take the form

y(t) =
m

∑
k=1

Ck(t)e
skt , (2.14)

where Ck(t) is a polynomial with degree less than the multiplicity of the root sk.
The solution (2.14) has ∑m

k=1(degCk +1) = n free parameters.
Having explored the solution to the homogeneous equation, we now turn to

the input-dependent part of the solution. The solution to equation (2.10) for an
exponential input is of particular interest, as will be shown in the following. We
set u(t) = est , where s ≠ sk is a complex number, and investigate if there is a unique
particular solution of the form y(t) =G(s)est . Assuming this to be the case, we find

du

dt
= sest ,

d2u

dt2
= s2est , · · ·

dmu

dtm
= smest

dy

dt
= sG(s)est ,

d2y

dt2
= s2G(s)est , · · ·

dny

dtn
= snG(s)est .

(2.15)
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Inserting these expressions into the differential equation (2.10) gives

(sn +a1sn−1 + · · ·+an)G(s)est = (b0sm +b1sm−1 + · · ·+bm)e
st

and hence

G(s) =
b0sm +b1sm−1 + · · ·+bm

sn +a1sn−1 + · · ·+an
=

b(s)

a(s)
. (2.16)

This function is called the transfer function of the system. It describes a particu-
lar solution to the differential equation for the input est . Combining this with the
solution to the homogeneous equation, we find that a solution to the differential
equation (2.10) for the exponential input u(t) = est is

y(t) =
m

∑
k=1

Ck(t)e
skt +G(s)est . (2.17)

The relation between the transfer function (2.16) and the differential equa-
tion (2.10) is clear: the transfer function (2.16) can be obtained by inspection from
the differential equation (2.10), and conversely the differential equation can be ob-
tained from the transfer function if the polynomials a(s) and b(s) do not have com-
mon factors. The transfer function can thus be regarded as a shorthand notation for
the differential equation (2.10). It is a complete characterization of the differential
equation even if it was derived as the response to a specific input u(t) = est . We
note that the input and the initial conditions must both be given to obtain the full
solution of the differential equation, also referred to as the response of the system.

To deal with oscillatory signals, like those shown in the bottom row of Fig-
ure 2.3, we allow s to be a complex number. The transfer function G is then a
function that maps complex numbers to complex numbers. We let arg represent
the argument (phase, angle) of a complex number and | · | the magnitude, and
note that the complex response to an input u = eiωt = cosωt + isinωt is given
by G(iωt)eiωt . Using just the imaginary parts of the signals, it follows that the
particular solution for the input u = sin(ωt) = Imeiωt is

y(t) = Im
(
G(iω)eiωt

)
= Im

(
|G(iω)|eiargG(iω)eiωt

)

= |G(iω)| Imei(argG(iω)+ωt) = |G(iω)|sin(ωt + argG(iω)).

The input is thus amplified by |G(iω)| and the phase shift between input and output
is argG(iω). The functions G(iω), |G(iω)|, and argG(iω) are called the frequency
response, gain, and phase. Gain and phase are also called magnitude and angle.

When the input and the output are constant, u(t) = u0 and y(t) = y0, the dif-
ferential equation (2.10) has the particular solution y(t) = (bn/an)u0 = G(0)u0,
obtained by setting s = 0. The input is thus amplified by the factor G(0), which
is therefore called the zero frequency gain (or sometimes the static gain). If the
differential equation is stable the solution will converge to G(0)u0 as t goes to
infinity.

The full response to an exponential input is the sum of a particular solution and
a solution to the homogeneous equation that is determined by the initial conditions,
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Figure 2.4: Two responses of a linear time-invariant system to a sinusoidal input. The dashed
line shows the output when the initial conditions are chosen so that the output is purely
sinusoidal. The solid line shows the response response for the initial conditions y(0) = 0 and
y′(0) = 0. The transfer function G(s) = 1/(s+1)2.

as given in equation (2.17). An illustration is given in Figure 2.4 for the transfer
function G(s) = 1/(s+ 1)2. The dashed line, which is a pure sine wave, is the
solution obtained when all Ck in equation (2.17) are zero. The solid line shows the
response obtained when the Ck are chosen so that y(0) and its derivatives y(k)(0),
k = 1, . . . ,n− 1 are all zero. Since all roots of the characteristic equation have
negative real parts, the solution to the homogeneous equation (2.14) goes to zero
as t→ ∞ and the general solution converges to the particular solution.

The transfer function has many interpretations that can be exploited for insight,
analysis, and design. The roots sk of the characteristic equation a(s) = 0 are called
poles of the transfer function: the transfer function is infinite for s = sk. The poles
sk appear as exponents in the general solution to the homogeneous equation, as
seen in equations (2.13) and (2.14). Systems with poles that are “lightly damped”
(Re(sk) is negative but close to zero) can exhibit resonances when a sinusoidal
input is applied whose frequency is near the imaginary part of sk.

The roots s j of the polynomial b(s) are called zeros of the transfer function. The
reason is that if b(s j) = 0 it follows that G(s j) = 0, and the particular solution for
the input eskt is then zero. A system theoretic interpretation is that the transmission
of the exponential signal es jt is blocked by the zero s = s j, which is therefore also
called a transmission zero.

The transfer function can also convey a great deal of intuition: G(0) is the zero
frequency gain for constant inputs and the frequency response G(iω) captures the
steady state response to sinusoidal functions. The frequency response of a stable A⃝
system can be determined experimentally by exploring the steady state response
of a system to sinusoidal signals. This is an alternative or a complement to physi-
cal modeling. A more elaborate treatment of transfer functions and the frequency

http://fbsbook.org
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response will be given in Chapter 9.

Stability: The Routh–Hurwitz Criterion

When using feedback there is always the danger that the system may become un-
stable, and it is therefore important to have a stability criterion. The differential
equation (2.10) is called stable if all solutions of the homogeneous equation (2.12)
go to zero for any initial condition. It follows from equation (2.14) that this requires
that all the roots of the characteristic equation

a(s) = sn +a1sn−1 + · · ·+an = 0

have negative real parts.
It can often be difficult to analytically compute the roots of a high-order poly-

nomial. The Routh–Hurwitz criterion is a stability criterion that does not require
explicit calculation of the roots, because it gives conditions in terms of the coeffi-
cients of the characteristic polynomial.

We illustrate the Routh–Hurwitz criterion by describing it for low-order differ-
ential equations. A first-order differential equation is stable when the coefficient
a1 of the characteristic polynomial is positive, since the root of the characteristic
polynomial will be s =−a1 < 0. A second-order polynomial has the roots

s =
1

2

(
−a1 ±

√
a2

1−4a2

)
,

and it is easy to verify that the real parts of the roots are both negative if and only
if a1 > 0 and a2 > 0. A third order differential equation is more complicated, but
the roots can be shown to have negative real parts if and only if

a1, a2, a3 > 0, and a1a2 > a3. (2.18)

The corresponding conditions for a fourth order differential equation are

a1, a2, a3, a4 > 0, a1a2 > a3, and a1a2a3 > a2
1 a4 +a2

3. (2.19)

The Routh–Hurwitz criterion [Gan60] gives similar conditions for arbitrarily high H⃝
order polynomials. Stability of a linear differential equation can thus be investi-
gated just by analyzing the signs of various combinations of the coefficients of the
characteristic polynomial.

Block Diagrams and Transfer Functions

As we saw already in Chapter 1, control systems are often described using block
diagrams, such as the ones shown in Figures 1.1 and 1.4. If the behavior of the
blocks are represented by transfer functions, the transfer function of a system can
be obtained simply by algebraic manipulations. It follows from equation (2.17) that
the transfer function can be derived from the particular solution for the input est . To
derive the transfer function for a system composed of several blocks, we assume
that the input signal is an exponential u(t) = est and compute the corresponding
particular solutions for all blocks.

http://fbsbook.org
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Figure 2.5: Interconnections of linear systems. Series (a), parallel (b) and feedback (c) con-
nections are shown. The transfer functions for the composite systems can be derived by
algebraic manipulations assuming exponential functions for all signals.

Consider for example the system in Figure 2.5a, which is a series connection
of two systems with the transfer functions G1(s) and G2(s). Let the input of the
system be u(t) = est The output of the first block is then y1(t) = G1(s)est , which
is also an exponential, and the output of the second system is y(t) = G2(s)y1(s) =
G2(s)G1(s)est =G2(s)G1(s)u(t). The transfer function of the system is thus Gyu(s)=
G2(s)G1(s), where we use the convention that the right subscript is the input and
the left subscript is the output, so that y = Gyuu.

Next we will consider parallel connections of systems as shown in Figure 2.5b.
Assuming that the input is u(t) = est , the exponential outputs of the blocks are
y1(t) = G1(s)est and y2(t) = Gs(s)est . The output of the system is then

y(t) =
(
G1(s)e

st +G2(s)e
st
)
=
(
G1(s)+G2(s)

)
est ,

and the transfer function of a parallel connection of systems with the transfer func-
tions G(s) and G2(s) is thus Gyu(s) = G1(s)+G2(s).

Finally we will consider the feedback connection shown in Figure 2.5c. If the
input u(t) = est is an exponential we find

y(t) = G1(s)e(t) = G1(s)
(
u(t)−G2(s)y(t)

)
= G1(s)

(
est −G2(s)y(t)

)
.

Solving for y(t) gives

y(t) =
G1(s)

1+G1(s)G2(s)
est = Gyu(s)est .

The transfer function of a feedback connection of systems with the transfer func-
tions G1(s) and G2(s) is thus

Gyu(s) =
G1(s)

1+G1(s)G2(s)
. (2.20)

By using polynomials and transfer functions the relations between signals in a
feedback system can thus be obtained by algebra. With some practice the transfer
functions can often be obtained by inspection, as we explore in more detail in
Chapter 9.
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Figure 2.6: Sample step response. The rise time Tr, overshoot Mp, settling time Ts, and
steady-state value yss describe important performance properties of the signal.

Computations Using Transfer Functions

Many software packages for control system analysis and design permit direct ma-
nipulation of transfer functions. In MATLAB the transfer function

G(s) =
s+1

(s2 +5s+6)

can be created by the commands s=tf(’s’) and G=(s+1)/(sˆ2+5*s+6).
Given two transfer functions G1 and G2, we can form series, parallel, and feed-
back interconnections using the commands Gs = series(G1, G2), Gp =

parallel(G1, G2), and Gf = feedback(G1, G2) (by default, MAT-
LAB’s feedback() command uses negative feedback).

Software packages can also be used to compute the response of a linear in-
put/output system, represented by its transfer function, to different types of inputs.
A common input that is used for performance characterization is a signal that is 0
for t ≤ 0 and then 1 for t > 0. This type of input is called a “step input” and the
response of the system to a step input is called the step response of the system.
A typical step response for a linear system is shown in Figure 2.6. Some stan-
dard features of a step response are the rise time Tr, settling time Ts, overshoot
Mp, and steady state value yss, as illustrated in the figure. The step response for a
transfer function G is generated by the MATLAB command y=step(G). If we
want to specify the simulation time interval explicitly, we can instead use the com-
mand y=step(G,T). The response to a specific input signal can be generated
by y=lsim(G,u,T). Having a transfer function, it is thus very easy to generate
time responses.

A detailed presentation of transfer functions will be given in Chapter 9, where
we will see that transfer functions can also be used to represent systems with time
delays and systems described by partial differential equations.
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Figure 2.7: Block diagram of a simple feedback system. The controller transfer function is
C(s) and the process transfer function is P(s). The process output is y, the external signals
are the reference r and the load disturbance v.

2.3 Using Feedback to Improve Disturbance Attenuation

Reducing the effects of disturbances is a primary use of feedback. It was used by
James Watt to make steam engines run at constant speed in spite of varying load
and by electrical engineers to make generators driven by water turbines deliver
electricity with constant frequency and voltage. Feedback is commonly used to
alleviate effects of disturbances in the process industry, for machine tools, and for
engine and cruise control in cars. The human body exploits feedback to keep body
temperature, blood pressure, and other important variables constant. For example
the pupillary reflex guarantees that the light intensity of the retina is reasonably
constant in spite of large variations in the ambient light intensity. Keeping variables
close to a desired, constant reference value in spite of disturbances is called a
regulation problem.

To discuss disturbance attenuation we consider the system shown in Figure 2.7.
Since we will focus on the effects of a load disturbance v we will assume for now
that the reference r is zero. To derive the transfer functions from the disturbance
input v to the process output y, which we write as Gyv, we assume that the dis-
turbance is an exponential function v = est . Applying block diagram algebra to
Figure 2.7 gives

y(t) = P(s)est −P(s)C(s)y(t) =⇒ y(t) =
P(s)

1+P(s)C(s)
est .

The transfer function relating the output y to the load disturbance v is thus

Gyv(s) =
P(s)

1+P(s)C(s)
. (2.21)

To explore the use of feedback to improve disturbance attenuation, we will focus
on a simple process modeled by the first order differential equation

dy

dt
+ay = bu, a > 0, b > 0.

The corresponding transfer function is

P(s) =
b

s+a
. (2.22)

This model is a reasonable approximation for a physical process if the storage of
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mass, momentum, or energy can be captured by a single state variable. Typical
examples are the velocity of a car on a road, the angular velocity of a rotating
system, and the fluid level of a tank.

Proportional Control

We will first investigate the case of proportional control, when the control signal
is proportional to the output error: u = kpe, as introduced already in Section 1.6.
The controller transfer function is then C(s) = kp. The process transfer function
is given by equation (2.22) and the effect of the disturbance on the output is then
described by the transfer function (2.21):

Gyv(s) =
P(s)

1+P(s)C(s)
=

b/(s+a)

1+bkp/(s+a)
=

b

s+(a+bkp)
.

The relation between the disturbance v and the output y is thus given by the differ-
ential equation

dy

dt
+(a+bkp)y = bv.

The closed loop system is stable if a+bkp > 0. A constant disturbance v = v0 then
gives an output that exponentially approaches the value

y0 = Gyv(0)v0 =
b

a+bkp
v0

with the time constant T = 1/(a+ bkp). Without feedback, kp = 0 and for a con-
stant disturbance v0, the output will instead approach bv0/a. The effect of the dis-
turbance is thus reduced if kp > 0.

We have thus shown that a constant disturbance gives an error that can be re-
duced by feedback using a proportional controller. The error decreases with in-
creasing controller gain. Figure 2.8a shows the responses for a few values of the
controller gain kp.

Proportional-Integral (PI) Control

The PI controller, introduced in Section 1.6, is described by

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ . (2.23)

To determine the transfer function of the controller we differentiate to obtain

du

dt
= kp

de

dt
+ kie,

and we find that the transfer function is C(s) = kp + ki/s. To investigate the effect
of the disturbance v on the output we use the block diagram in Figure 2.7, and the
transfer function from v to y is

Gyv(s) =
P(s)

1+P(s)C(s)
=

bs

s2 +(a+bkp)s+bki
. (2.24)
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Figure 2.8: Step responses for a first-order, closed loop system with proportional control
(a) and PI control (b). The process transfer function is P = 2/(s+ 1). The controller gains
for proportional control are kp = 0, 0.5, 1, and 2. The PI controller is designed using equa-
tion (2.28) with ζc = 0.707 and ωc = 0.707, 1, and 2, which gives the controller parameters
kp = 0, 0.207, and 0.914 and ki = 0.25, 0.50, and 2.

Using the relationship between transfer functions and differential equations given
by equations (2.10) and (2.16), it follows that the relation between the load distur-
bance and the output is given by the differential equation

d2y

dt2
+(a+bkp)

dy

dt
+bkiy = b

dv

dt
. (2.25)

Notice that since the disturbance enters as a derivative on the right hand side,
a constant disturbance gives no steady state error. The same conclusion can be
drawn from the observation that Gyv(0) = 0. This is consistent with the discussion
of integral action and steady state error in Section 1.6.

To find suitable values of the controller parameters kp and ki, we consider the
characteristic polynomial of the differential equation (2.25),

acl(s) = s2 +(a+bkp)s+bki. (2.26)

We can assign arbitrary roots to the characteristic polynomial by choosing the
controller gains kp and ki. The most common case is that we assign complex roots
that give the characteristic polynomial

(s+σd + iωd)(s+σd− iωd) = s2 +2σds+σ2
d +ω2

d . (2.27)

By construction, this polynomial has roots at s =−σd ± iωd. The general solution
to the homogeneous equation is then a linear combination of the terms

e−σdt sin(ωdt), e−σdt cos(ωdt),

which are damped sine and cosine functions, as shown in the lower middle plot
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in Figure 2.3. The coefficient σd determines the decay rate and the parameter ωd

gives the frequency of the decaying oscillation. Identifying coefficients of equal
powers of s in the polynomials (2.26) and (2.27) gives

kp =
2σd−a

b
, ki =

σ2
d +ω2

d

b
. (2.28)

We can thus choose the controller gains to give a desired closed lop response.
Instead of parameterizing the closed loop system in terms of σd and ωd it is

common practice to use the undamped natural frequency ωc =
√

σ2
d +ω2

d and the
damping ratio ζc = σd/ωc. The closed loop characteristic polynomial is then

acl(s) = s2 +2σds+σ2
d +ω2

d = s2 +2ζcωcs+ω2
c .

This parameterization has the advantage that ζc, which is in the range [−1,1],
determines the shape of the response and ωc gives the response speed.

Figure 2.8b shows the output y and the control signal u for ζc = 1/
√

2 =
0.707 and different values of the design parameter ωc. Proportional control gives a
steady-state error that decreases with increasing controller gain kp. With PI control
the steady-state error is zero. Both the decay rate and the peak error decrease when
the design parameter ωc is increased. Larger controller gains give smaller errors
and control signals that react more quickly to the disturbance.

With the controller parameters (2.28), the transfer function (2.24) from distur-
bance v to process output y becomes

Gyv(s) =
P(s)

1+P(s)C(s)
=

bs

s2 +2ζcωcs+ω2
c

.

For efficient attenuation of disturbances, it is desirable that |Gyv(iω)| is small for
all ω . For small values of ω we have |Gyv(iω)| ≈ bω/ω2

c , while for large ω we
have |Gyv(iω)|≈ b/ω . The largest value of |Gyv(iω)| is b/(2ζcωc) for ω = ωc. It
thus follows that a large value of ωc gives good load disturbance attenuation.

In summary, we find that the analysis gives a simple way to find the parameters
of PI controllers for processes whose dynamics can be approximated by a first-
order system. The technique can be generalized to more complicated systems but
the controller will be more complex. To achieve the benefits of large control gains
the model must be accurate over wide frequency ranges, as will be discussed next.

Unmodeled Dynamics

The analysis we have made so far indicates that there are no limits to the perfor-
mance that can be achieved. Figure 2.8b shows that arbitrarily fast response can
be obtained simply by making ωc sufficiently large. In reality there are of course
limits on what is achievable. One reason is that the controller gains increase with
ωc: the proportional gain is kp = (2ζcωc−a)/b and the integral gain is ki = ω2

c /b.
A large value of ωc thus gives large controller gains and the control signal may
saturate. Another reason is that the model (2.22) is a simplification: it is only valid
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in a given frequency range. If the model is instead

P(s) =
b

(s+a)(1+ sT )
, (2.29)

where the term 1+ sT represents the dynamics of sensors, actuators, or other dy-
namics that were neglected when deriving equation (2.22)—so-called unmodeled
dynamics—the closed loop characteristic polynomial for the closed loop system
becomes

acl = s(s+a)(1+ sT )+ kps+ ki = s3T + s2(1+aT )+2ζcωcs+ω2
c .

It follows from the Routh–Hurwitz criterion (2.18) that the closed loop system is
stable if ω2

c T < 2ζcωc(1+aT ) or if

ωcT < 2ζc(1+aT ).

The frequency ωc and the achievable response time are thus limited by the unmod-
eled dynamics represented by T , which typically is smaller than the time constant
1/a of the process. When models are developed for control it is therefore important
to also consider the unmodeled dynamics.

The fact that unmodeled dynamics limit the performance of a feedback system
is an important property and must be considered during the system design. It is
common to use simplified models when designing components of complex systems
and if the unmodeled dynamics of those components (or the other subsystems they
interact with) are not properly taken into account, the implementation of the system
can display poor behavior (of which instability is one extreme example). As we
shall see in later chapters, it is the ability to reason about the effects of uncertainty
that makes control theory a particularly powerful mathematical tool for systems
design.

2.4 Using Feedback to Follow Command Signals

Another major application of feedback is to make a system output follow a ref-
erence value, which is called the servo problem. Cruise control, steering of a car,
and tracking a satellite with an antenna or a star with a telescope are some exam-
ples. Other examples are high performance audio amplifiers, machine tools, and
industrial robots.

To illustrate command signal following we will consider the system in Fig-
ure 2.7 where the process is a first-order system and the controller is a PI controller
with proportional gain kp and integral gain ki. The transfer functions of the process
and the controller are

P(s) =
b

s+a
, C(s) =

kps+ ki

s
. (2.30)

Since we will focus on following the command signal r, we will neglect the load
disturbance and set v = 0. Applying block diagram algebra to the system in Fig-
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Figure 2.9: Responses to a unit step change in the command signal for different values of
the design parameters ωc and ζc. The left figure shows responses for fixed ζc = 0.707 and
ωc = 1, 2, and 5. The right figure shows responses for ωc = 2 and ζc = 0.5, 0.707, and 1.
The process parameters are a = b = 1. The initial value of the control signal is kp.

ure 2.7, we find that the transfer function from the command signal r to the output
y is

Gyr(s) =
P(s)C(s)

1+P(s)C(s)
=

bkps+bki

s2 +(a+bkp)s+bki
. (2.31)

Since Gyr(0) = 1 it follows that r = y when r and y are constant, independent of the
values of the parameters a and b, as long as the closed loop is stable. The steady
state output is thus equal to the reference, a consequence of the integral action in
the controller.

To determine suitable values of the controller parameters kp and ki, we proceed
as in Section 2.3 by choosing controller parameters that make the closed-loop char-
acteristic polynomial

acl(s) = s2 +(a+bkp)s+bki (2.32)

equal to s2+2ζcωcs+ω2
c with ζc > 0 and ωc > 0. Identifying coefficients of equal

powers of s in these polynomials gives

kp =
2ζcωc−a

b
, ki =

ω2
c

b
, (2.33)

which is equivalent to equation (2.28). Notice that integral gain increases with the
square of ωc. Figure 2.9 shows the output signal y and the control signal u for
different values of the design parameters ζc and ωc. The response time decreases
with increasing ωc and the initial value of the control signal also increases because
it takes more effort to move rapidly. The overshoot decreases with increasing ζc.
For ωc = 2, the design choice ζc = 1 gives a short settling time and a response
without overshoot.
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Figure 2.10: Block diagram of a closed-loop system with a PI controller having an architec-
ture with two degrees of freedom.

It is desirable that the output y will track the reference signal r for time-varying
references. This means that we would like the transfer function Gyr(s) to be close
to 1 for large frequency ranges. With the controller parameters (2.33), it follows
from equation (2.31) that

Gyr(s) =
P(s)C(s)

1+P(s)C(s)
=

(2ζcωc−a)s+ω2
c

s2 +2ζcωcs+ω2
c

.

Since Gyr(0) = 1, tracking of constant inputs is perfect. In addition, if s = iω
is smaller in magnitude than ωc, then we see that Gyr(s) will be very close to
one. The frequency ωc thus determines the upper bound of the frequency of input
signals that can be tracked with small error, and this bound is referred to as the
bandwidth of the closed loop system. The frequency response of Gyr thus provides
a quantitative representation of the tracking abilities.

Controllers with Two Degrees of Freedom

The control law in Figure 2.7 has error feedback because the control signal u is
generated from the error e= r−y. With proportional control, a step in the reference
signal r gives an immediate step change in the control signal u. This rapid reaction
can be advantageous, but it may give large overshoot, which can be avoided by a
replacing the PI controller in equation (2.23) with a controller of the form

u(t) = kp

(
β r(t)− y(t)

)
+ ki

∫ t

0
(r(τ)− y(τ))dτ . (2.34)

In this modified PI algorithm, the proportional action only acts on the fraction β
of the reference signal. The signal transmissions from reference r to u and from
output y to u can be represented by the transfer functions

Cur(s) = βkp +
ki

s
, Cuy(s) = kp +

ki

s
=C(s). (2.35)

The controller (2.34) is called a controller with two degrees of freedom since the
transfer functions Cur(s) and Cuy(s) are different.

A block diagram of a closed loop system with a PI controller having two de-
grees of freedom is shown in Figure 2.10. Let the process transfer function be
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Figure 2.11: Response to a step change in the command signal for a system with a PI con-
troller having two degrees of freedom. The process transfer function is P(s) = 1/s and the
controller gains are kp = 1.414, ki = 1, and β = 0, 0.5, and 1.

P(s) = b/(s + a). The transfer functions from reference r and disturbance v to
output y are

Gyr(s) =
bβkps+bki

s2 +(a+bkp)s+bki
, Gyv(s) =

bs

s2 +(a+bkp)s+bki
. (2.36)

Comparing with the corresponding transfer function for a controller with error
feedback in equations (2.24) and (2.31), we find that the responses to the load
disturbances is the same but the response to reference signals is different.

A simulation of the closed loop system for a = 0 and b = 1 is shown in Fig-
ure 2.11. The figure shows that the parameter β has a significant effect on the
responses. Comparing the system with error feedback (β = 1) to the system with
smaller values of β we find that using a system with two degrees of freedom gives
less overshoot and gentler control actions.

The example shows that command signal response can be improved by using
a controller architecture having two degrees of freedom. In Section 12.4 we will
further show that the responses to command signals and disturbances can be com-
pletely separated by using a more general system architecture. To use a system
with two degrees of freedom both the reference signal r and the output signal y
must be measured. There are situations where only the error signal e = r− y can
be measured; typical examples are DVD players, optical memories, and atomic
force microscopes. In these cases, only single degree of freedom (error feedback)
controllers can be used.

2.5 Using Feedback to Provide Robustness

Feedback can be used to make good systems from imprecise components. Black’s
invention of the feedback amplifier for the telephone network is an early exam-
ple [Bla77]. Black used negative feedback to design extremely good amplifiers
with linear characteristics from components with nonlinear and time-varying prop-
erties. Since signals are transmitted over long distances they must be amplified. At
the time, the thermionic valve—invented by Lee de Forest in 1906—was the only
available technology for amplifying electric signals until the transistor was in in-
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vented in 1947. Vacuum tubes were the key to develop radio, telephony, and elec-
tronics in the first half of the 20th century. They are still used by hi-fi aficionados
in high quality audio amplifiers.

Vacuum tubes can give high gain but they have nonlinear and time varying
input/output characteristics which distorts the transmitted signals. Bode [Bod60]
expressed the problem as follows:

Most of you with hi-fi systems are no doubt proud of the quality of
your amplifiers, but I doubt whether many of you would care to listen
to the sound after the signal had gone in succession through several
dozen or several hundred even of your fine amplifiers.

The effect is illustrated in Exercise 2.10.
Black’s idea to develop a good amplifier was to close a loop with negative feed- H⃝

back around the tube amplifier. In this way he could obtain a closed loop system
with a linear input/output relation having constant gain. The general recipe is to lo-
calize the nonlinearities and the source of process variations, and to close feedback
loops around them.

Reducing Effects of Parameter Variations and Nonlinearities

Consider an amplifier with a static, nonlinear input/output relation with consider-
able variability, as illustrated in Figure 2.12a. The nominal input/output character-
istics is shown as a dashed bold line and examples of variations as thin lines. The
nonlinearity in the figure is given by

y = F(u) = α(u+βu3), −3≤ u≤ 3. (2.37)

The nominal values corresponding to the dashed line are α = 0.2 and β = 1. The
variations of the parameters α and β are in the ranges 0.1 ≤ α ≤ 0.5, 0 ≤ β ≤ 2.
The responses of the system to the input

u(t) = sin(t)+ sin(πt)+ sin(π2t). (2.38)

are shown in Figure 2.12b. The desired response y = u is shown as a solid bold line
and responses for a range of parameters are shown with thin lines. The nominal
response of the nonlinear system is shown as a dashed bold line. It is distorted
due to the nonlinearity. Notice in particular the heavy distortion both for small and
large signal amplitudes.

The behavior of the system is clearly not satisfactory, but it can be improved
significantly by introducing feedback. A block diagram of a system with a sim-
ple integral controller is shown in Figure 2.13, where the reference input is now
taken as r. Figure 2.14 shows the behavior of the closed loop system with the same
parameter variations as in Figure 2.12. The input/output plot in Figure 2.14a is a
scatter plot of the inputs and the outputs of the feedback system. The input/output
relation is practically linear and close to the desired response. There is some vari-
ability because of the dynamics introduced by the feedback. Figure 2.14b shows

http://fbsbook.org
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Figure 2.12: Responses of a static nonlinear system. The left figure shows the input/output
relations of the open-loop systems and the right figure shows responses to the input sig-
nal (2.38). The ideal response is shown solid bold lines. The nominal response of the nonlin-
ear system is shown using dashed bold lines and the responses for different parameter values
are shown using thin lines. Notice the large variability in the responses.

the responses to the reference signal; notice the dramatic improvement compared
with Figure 2.12b. The tracking error is shown in Figure 2.14c.

Analysis
!

Analysis of the closed loop system is difficult because it is nonlinear. We can,
however, obtain significant insight by using approximations. We first observe that
the system is linear when β = 0. In other situations we can thus approximate the
nonlinear function by a straight line around an operating point u = u0. The slope
of the nonlinear function at u = u0 is f ′(u0) and we will approximate the process
with a linear system with the gain f ′(u0). The transfer functions of the process and
the controller are

P(s) = f ′(u0) = α(1+3βu2
0) = b, C(s) =

ki

s
, (2.39)

where u0 denotes the operating condition. It follows from equation (2.21) that the
transfer functions relating the output y and the error e to the reference signal r are

Gyr(s) =
bki

s+bki
, Ger(s) = 1−Gyr =

s

s+bki
. (2.40)

−1

u
Σ

er
C = ki

s P = f (u)
y

Figure 2.13: Block diagram of a nonlinear system with integral feedback.
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Figure 2.14: Responses of the systems with integral feedback (ki = 1000). The left figure
shows the input/output relationships for the open-loop systems, and the center figure shows
responses to the input signal (2.38) (compare to the corresponding responses in Figure 2.12a
and b). The right figure shows the individual errors (solid lines) and the approximate error
given by equation (2.42) (dashed line).

The closed loop system is a first-order system with the pole s =−bki. The process
gain b = α(1+3βu2

0) depends on the values of α , β , and u0, and its smallest value
is 0.1. If the integral gain is chosen as ki = 1000, the smallest value of the closed
loop pole is 100 rad/s, which is fast compared to the high frequency component
9.9 rad/s of the input signal. It follows from equation (2.40) that the error e(t) is
given by the differential equation

de

dt
=−bkie+

dr

dt
,

dr

dt
= cos(t)+π cos(πt)+π2 cos(π2t). (2.41)

The fast frequency component of the input (2.38) has the frequency π2 = 9.86; it
is slower than the process dynamics for all parameter variations. Neglecting the
term de/dt in equation (2.41) gives

e(t)≈
1

bki

dr

dt
≈

π2

bki
cos(π2t). (2.42)

An estimate of the largest error e(t) ≈ 0.1cos(π2t) is obtained for the smallest
value of b = 0.1. It is shown as a dashed line in Figure 2.14c, and we see that it
gives a good estimate of the maximum error across the uncertain parameter space.

This analysis is based on the assumption that the amplifier can be modeled by
a constant gain. The closed loop system is however a dynamic system because the
controller is an integrator. It follows from equation (2.40) that the closed loop dy-
namics have the time constant Tcl = 1/(bki). If the amplifier has dynamics, its time
constant must thus be small compared to Tcl in order to provide good tracking. It
follows that the largest admissible integral gain ki is determined by the unmodeled
dynamics.

This example illustrates that feedback can be used to design an amplifier that
has practically linear input/output relation even if the basic amplifier is nonlinear
with strongly varying characteristics.
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Figure 2.15: Schematic diagram of the neural network that controls swimming motions in
the marine mollusk Tritonia, which has both positive and negative feedback [Wil99]. An
excitatory connection (positive feedback) is denoted with a line ending with an arrow, an
inhibitory interaction (negative feedback) is denoted with an arrow ending with a circle.
(Figure adapted from [Wil99].)

2.6 Positive Feedback

Most of this book is focused on negative feedback because of its amazingly good
properties, which have been illustrated in the previous sections. In this section
we will briefly discuss positive feedback, which has complementary properties. In
spite of this, positive feedback has found good use in several contexts.

Systems with negative feedback can be well understood by linear analysis. To
understand systems with positive feedback it is necessary to consider nonlinear
effects, because without the nonlinearities the instability caused by positive feed-
back will grow without bound. The nonlinear elements can create interesting and
useful effects by limiting the signals.

Positive feedback is common in many settings. Encouraging a student or a
coworker when they have performed well encourages them do to even better. In
biology, it is standard to distinguish inhibitory connections (negative feedback)
from excitatory feedback (positive feedback) as illustrated in Figure 2.15. Neurons
use a combination of positive and negative feedback to generate spikes.

Positive feedback may cause instabilities. Exponential growth, where the rate
of change of a quantity x is proportional to x,

dx

dt
= αx,

is a typical example, which results in exponential growth x(t) = eαt . In nature,
exponential growth of a species is limited by the finite amount of food. Another
common example is when a microphone is placed close to a speaker in public ad-
dress systems, resulting in a howling noise. Positive feedback can create stampedes
in cattle herds, runs on banks, and boom-bust behavior. In all these cases there is
exponential growth that is finally limited by finite resources.

The notions of positive and negative feedback are clear if the feedback is static,
as we saw for example in Section 2.1. If the feedback is dynamic its action can
change from positive to negative depending on the frequency of the signals and
hence more care is required. Use of positive feedback will be illustrated by a few
examples.
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(a) Hewlett’s oscillator (b) Operational amplifier version

Figure 2.16: Circuit diagrams of William Hewlett’s oscillator. (a) Original system with vac-
uum tubes. (b) Equivalent realization with an operational amplifier.

Hewlett’s Oscillator

William Hewlett used positive and negative feedback very cleverly to design a sta-
ble oscillator in his master thesis from Stanford University in 1939. The oscillator
was the first product made by Hewlett-Packard, the company that Hewlett founded
with David Packard in 1939 [Pac13].

Electronic circuits in the 1930s and 1940s were based on vacuum tube technol-
ogy. The simplest vacuum tube amplifier has three electrodes: a cathode, grid, and
anode enclosed in a glass tube with vacuum. The cathode, which is heated with a
filament, emits free electrons. A current is created by applying a high positive volt-
age between the anode and the cathode. The current can be regulated by changing
the voltage on a grid positioned between the anode and the cathode. The current
depends on the voltage difference between the grid and the cathode, Vg−Vc. In-
creasing this voltage difference increases the current. The vacuum tube amplifier
can be regarded as a valve for controlling a current by applying a voltage to the
grid.

A schematic diagram of Hewlett’s oscillator is shown in Figure 2.16a. Signals
are amplified by two vacuum tubes and there are two feedback loops. One loop
provides positive feedback from the anode of the second tube to the grid of the first
tube via the network R1,C1,R2,C2. The second feedback loop provides negative
feedback from the output of the second tube to the cathode of the first tube via the
resistor Rf and the lamp which has resistance Rb. With a proper gain the positive
feedback loop generates an oscillation with the frequency ω = 1/

√
R1R2C1C2. The

gain is given by the negative feedback loop from the anode of the second loop to
the cathode of the first loop, through the resistor Rf and the lamp Rb. This loop
has nonlinear gain because the resistance Rb of the lamp increases with increasing
temperature. An increase of the amplitude of Vout increases the current through the
lamp, which reduces the gain. The result is that an oscillation with stable amplitude
and frequency is obtained.

The feedback loops are more clearly visible in the implementation of the oscil-
lator based on an operational amplifier, shown in Figure 2.16b.
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Figure 2.17: Implementation of integral action by positive feedback.

Implementation of Integral Action by Positive Feedback

Early feedback controllers made of use of integral action that was implementing by
using positive feedback around a system with first order dynamics, as shown in the
block diagram of Figure 2.17. Intuitively the system can be explained as follows.
Proportional feedback typically gives a steady state error. This can be overcome
by adding a bias signal that cancels the steady state error. In Figure 2.17 the bias
is estimated by low pass filtering the control signal and adding it back into to the
signal path. This serves to compensate for any error that is present.

The circuit can be understood better by a little analysis. Using block diagram
algebra we find that the transfer function of the system is

Gue =
kp

1−1/(1+ sT )
= kp +

kp

sT
,

which is a transfer function of a PI controller. This way of implementing integral
action is still used in many industrial regulators.

Positive Feedback Combined with Saturation

Systems with interesting and useful properties can be obtained by combining linear
and nonlinear components with positive feedback. In this section we consider an
example of a simple form of memory implemented using a feedback circuit.

Consider the system in Figure 2.18, which consists of a linear block with first-
order dynamics and a nonlinear block with positive feedback. Assume that the
nonlinearity is

y = F(x) =
x

1+ |x|
, which gives x = F−1(y) =

y

1− |y|
.

f (x)
y

Σ
r

b
s+a

+1

x

Figure 2.18: Block diagram of system with positive feedback and saturation. The parameters
are a = 1 and b = 10.
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Figure 2.19: System with positive feedback and saturation. (a) For a fixed reference value r,
the intersections with the curve r = G(y) corresponds to equilibrium points for the system.
Equilibrium points at selected values of r are shown by circles (note that for some refer-
ence values there are multiple equilibrium points). Arrows indicate the sign of the derivative
of y away from the equilibrium points, with the solid portions of r = G(y) representing
stable equilibria and dashed portions representing unstable equilibria. (b) The hysteretic in-
put/output map given by the y = G†(r), showing that some values of r have single equilib-
rium points while others have two possible (stable) steady state output values. (c) Simulation
of the system dynamics showing the reference r (dashed curve) and the output y (solid curve).

The system is described by the differential equation

dx

dt
=−ax+b(r+ y) = b(r−G(y)), G(y) =

aF−1(y)

b
− y =

ay

b(1− |y|)
− y.

Rewriting the dynamics in terms of the variable y = F(x), we get the following
relation between the input r and the output y:

dy

dt
=

dy

dx
·
dx

dt
=

dF−1(y)

dy
·b(r−G(y)). (2.43)

It can be shown that dF−1(y)/dy is everywhere nonzero and so the equilibria for a
constant input r are given by the solutions of r = G(y). The graph of the function
G is shown in Figure 2.19a for a = 1 and b = 4. The function G(y) has a local
maximum rmax = 1+ a/b− 2

√
a/b = 0.25 at y = −1/

√
1+a/b = −0.5 and a

local minimum rmin =−0.25 at y= 0.5. The set of possible equilibria as a function
of r is shown in Figure 2.19b. There is one unique equilibria if |r| > 0.25, two
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equilibria if |r|= 0.25 and three equilibria if |r|< 0.25.
The differential equation (2.43) is of first order and the equilibrium is stable if

g′(y0) is positive and unstable if g′(y0) is negative. Stable equilibria are shown in
solid lines and unstable equilibria by dashed lines in Figure 2.19a. The differen-
tial equation thus has two stable equilibria when rmin < r < rmax and one stable
equilibrium when |r|≥ rmax.

To understand the behavior of the system, we will explore what happens when
the reference is changed. If the reference r is zero there are two stable equilibria,
as can be seen in Figure 2.19a by looking at the horizontal line at r = 0 (labeled
C). We assume that the system is in the stable left equilibrium, where y is negative.
If the reference is increased, the equilibrium moves slightly to the right. When the
reference reaches the value 0.25, which corresponds an unstable equilibrium, the
solution moves towards the right stable equilibrium point, where y is positive, as
indicated by the line marked B in Figure 2.19a. If the value of r is increased further,
the output y also increases. The static input/output relation is thus given by the
“inverse function” y = G†(r), which gives the value(s) of the stable output values
as a function of r. The system has hysteretic behavior as shown in Figure 2.19b,
where the dashed line indicates the switches between the branches of the solution
curves, and they occur at r =±rmax =±0.25.

The temporal behavior of the system is illustrated by the simulations in Fig-
ure 2.19c, where the input r is dashed and the output y is solid. The shapes of the
signals depend on the parameters; the values a = 5, b = 50 were used in the fig-
ure. The hysteresis width is 2rmax and the parameter a gives the sharpness of the
corners of the output. The circuit shown in the Figure 2.18 is commonly used as a
trigger to detect changes in a signal (known as a Schmitt trigger). It is also used as
a memory element in solid state memories, illustrating that feedback can be used
to obtain discrete behavior.

2.7 Further Reading

The books by Bennett [Ben79, Ben93] and Mindel [Min02, Min08] give inter-
esting perspective on the development of control. Much of the material touched
upon in this chapter is classical control; see [CM51], [JNP47], and [Tru55]. A
more thorough introduction to the principles of feedback with minimal mathe-
matical prerequisites is available in the textbook Feedback Control for Every-
one [AM10]. The notion of controllers with two degrees of freedom was intro-
duced by Horowitz [Hor63].

The analysis introduced here will be elaborated in the rest of the book. Trans-
fer functions and other descriptions of dynamics are discussed in Chapters 3 and 9,
methods to investigate stability in Chapters 5 and 10. The simple method to find
parameters of controllers based on matching of coefficients of the closed loop char-
acteristic polynomial is developed further in Chapters 7, 8, and 13. Feedforward
control is discussed in Sections 8.5 and 12.4.
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Exercises

2.1 Consider the system in Figure 2.1, where F(w) = sat(w) with a negative sign
in the feedback. Assume that r = 0 and v = 1. Sketch the input/output relation for
k =−3,−2,−1,0,1,2.

2.2 Let y ∈ R and u ∈ R. Solve the differential equations

dy

dt
+ay = bu,

d2y

dt2
+2

dy

dt
+ y = 2

du

dt
+u,

for t > 0. Determine the responses to a unit step u(t) = 1 and the exponential
signal u(t) = est when the initial condition is zero. Derive the transfer functions of
the systems.

2.3 Let y0(t) be the response of a system with the transfer function G0(s) to a given
input. The transfer function G(s) = (1+ sT )G0(s) has the same zero frequency
gain but it has an additional zero at z = −1/T . Let y(t) be the response of the
system with the transfer function G(s) and show that

y(t) = y0(t)+T
dy0

dt
, (2.44)

Next consider the system with the transfer function

G(s) =
s+a

a(s2 +2s+1)
,

which has unit zero-frequency-gain (G(0) = 1). Use the result in equation (2.44)
to explore the effect of the zero s =−1/T on the step response of a system

2.4 Consider a closed loop system with process dynamics and a PI controller
modeled by

dy

dt
+ay = bu, u = kp(r− y)+ ki

∫ t

0
(r(τ)− y(τ))dτ ,

where r is the reference, u the control variable, and y the process output. a) Derive a
differential equation relating the output y to the difference by direct manipulation
of the equations. b) Draw a block diagram of the system. c) Derive the transfer
functions of the process and the controller. d) Compute the transfer function from
reference r to output y of the closed loop system. Make the derivations both by
direct manipulation of the system equations and by polynomial algebra. Compare
the results with a direct determination of the transfer functions by inspection of the
block diagram.

2.5 The dynamics of the pupillary reflex is approximated by a linear system with
the transfer function

P(s) =
0.2(1−0.1s)

(1+0.1s)3
.
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Assume that the nerve system that controls the pupil opening is modeled as a
proportional controller with the gain k. Use Routh–Hurwitz criterion to determine
the largest gain that gives a stable closed loop system.

2.6 A simple model for the relation between speed v and throttle u for a car is
given by the transfer function

Gvu =
b

s+a

where b = 1 m/s2 and a = 0.025 rad/s. The control signal is normalized to the
range 0 ≤ u ≤ 1. Design a PI controller for the system that gives a closed loop
system with the characteristic polynomial

acl(s) = s2 +2ζ ωcs+ω2
c .

What are the consequences of choosing different values of the design parameters
ζ and ωc? Use your judgment to find suitable values. Hint: Investigate maximum
acceleration and maximum velocity for step changes in the velocity reference.

2.7 Consider the feedback system in Figure 2.7. Let the disturbance v= 0, P(s)= 1
and C(s) = ki/s. Determine the transfer function Gyr from reference r to output y.
Also determine how much Gyr is changed when the process gain changes by 10%.

2.8 The calculations in Section 2.3 can be interpreted as a design method for a
PI controller for a first-order system. A similar calculation can be made for PID
control of the second order system. Let the transfer functions of the process and
the controller be

P(s) =
b

s2 +a1s+a2
, C(s) = kp +

ki

s
+ kds.

Show that the controller parameters

kp =
(1+2αζ )ω2

c −a2

b
, ki =

αω3
c

b
, kd =

(α +2ζ )ωc−a1

b
.

give a closed loop system with the characteristic polynomial

(s2 +2ζ ωcs+ω2
c )(s+αωc).

2.9 Consider an open loop system with the nonlinear input-output relation y =
F(u). Assume that the system is closed with the proportional controller u = k(r−
y). Show that the input-output relation of the closed loop system is

y+
1

k
F−1(y) = r.

Estimate the largest deviation from ideal linear response y= r. Illustrate by plotting
the input output responses for a) F(u) =

√
u and b) F(u) = u2 with 0≤ u≤ 1 and

k = 5,10 and 100.
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2.10 The effect of distortion in an amplifier can be illustrated by the following
MATLAB script:

load handel % Load Handel’s Messiah

sound(y, Fs); pause % Play the original music through speaker

% Music filtered through two cascaded open loop amplifiers

y1 = anm_ol(y, 1); y2 = amp_ol(y1, 1);

sound(y2, Fs); pause

% Music filtered through cascaded amplifiers with feedback k=100

y3 = amp_cl(y, 1, 100); y4 = amp_cl(y3, 1, 100);

sound(y4, Fs); pause

where the functions representing the open and closed loop amplifiers are:

% Nonlinear static amplifier

function y = amp_ol(x, a)

z = (x + 1)/2;

y = 2 * (z + a * z.*(1 - z) - 0.5);

end

% Nonlinear amplifier with negative feedback

function y = amp_cl(x, a, k)

y = x - (1/k) * (0.5 + x + a * (1 - x.ˆ2)/2);

end

The script operates as follows: A file with Handel’s Messiah is first loaded as y
and played. The music is then sent through two amplifiers with the nonlinearity
amp ol and played again. Finally, the music is sent through the same amplifiers
with feedback k = 10 amp cl and played. Listen to the music when you run the
script and explain the action of the filters on the music.

2.11 Consider a queuing system modeled by

dx

dt
= λ −µmax

x

x+1
.

The model is nonlinear and the dynamics of the system changes significantly with
the queuing length; see Example 3.14. Investigate the situation when a PI controller
is used for admission control. The arrival intensity λ is then given by

λ = kp(r− x)+ ki

∫ t

(r(t)− x(t))dt.

The controller parameters are determined from the approximate model

dx

dt
= λ .

Find controller parameters that give the closed loop characteristic polynomial s2+
2s+ 1 for the approximate model. Investigate the behavior of the control strategy
for the nonlinear model by simulation for the input r = 5+4sin(0.1t).
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