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Chapter Two
Feedback Principles

Feedback - it is the fundamental principle that underlies all self-regulating systems, not only

machines but also the processes of life and the tides of human affairs.

A. Tustin, “Feedback”, Scientific American, 1952 [Tus52].

This chapter presents some examples that illustrate fundamental properties
of feedback: disturbance attenuation, command signal following, robustness and
shaping of behavior. Simple methods for analysis and design of low order sys-
tems are introduced. After reading this chapter, readers should have some insight
into the power of feedback, they should know about transfer functions and block
diagrams and be able to design simple feedback systems. The basic concepts de-
scribed in this chapter are explained in more detail in the remainder of the text,
and this chapter can be skipped for readers who prefer to move directly to the
more detailed analysis and design techniques.

2.1 Mathematical Models

The fundamental properties of feedback will be illustrated using a collection of
examples. We need a modest set of concepts and tools to analyze simple feedback
systems: linear differential equations, transfer functions, block diagrams and block
diagram algebra. In addition we need a simulation tool. In this section we will
introduce some of these tools.

Linear Differential Equations and Transfer Functions

In many practical situations, the input/output behavior of a system can be modeled
by a linear differential equation of the form

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = b1

dn−1u

dtn−1
+ · · ·+bnu. (2.1)

where u is the input, y is the output and the coefficients ak and bk are real num-
bers. The model (2.1) is more general than the model given by equation (3.7) in
Section 3.2 because the right hand side has terms with derivatives of the input u.
The differential equation (2.1) is characterized by two polynomials

a(s) = sn +a1sn−1 + · · ·+an, b(s) = b1sn−1 +b2sn−2 + · · ·+bn, (2.2)

where a(s) is the characteristic polynomial of the differential equation (2.1).
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Figure 2.1: Examples of exponential signals. The top row corresponds to exponential signals
with a real exponent, and the bottom row corresponds to those with complex exponents. The
dashed line in the last two cases denotes the bounding envelope for the oscillatory signals.
In each case, if the real part of the exponent is negative then the signal decays, while if the
real part is positive then it grows.

The solution to equation (2.1) is the sum of two terms: the general solution to
the homogeneous equation, which does not depend on the input, and a particular
solution, which depends on the input. The homogeneous equation associated with
equation (2.1) is

dny

dtn
+a1

dn−1y

dtn−1
+ . . .+any = 0. (2.3)

Letting sk represent the roots of the characteristic equation a(s) = 0, the solution
to equation (2.3) is

y(t) =
n

∑
k=1

Ckeskt (2.4)

if the characteristic does not have multiple roots sk. The parameters C1, . . . ,Cn are
constants that can be determined from the initial conditions.

Since the coefficients ak are real, the roots of the characteristic equation are ei-
ther real-valued or occur in complex conjugate pairs. A real root sk of the character-
istic equation corresponds to the exponential function eskt . This function decreases
over time if sk is negative, is constant if sk = 0 and increases if sk is positive, as
shown in the top row of Figure 2.1. For real roots sk the parameter T = 1/sk is the
time constant.

A complex root sk = σ ± iω corresponds to the time functions

eσt sin(ωt), eσt cos(ωt),
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which have oscillatory behavior, as illustrated in the bottom row of Figure 2.1. The
sine terms are shown as solid lines and the cosine terms as dashed lines; they have
zero crossings with the spacing π/ω . The dotted lines show the envelopes, which
correspond to the exponential function ±eσt .

When the characteristic equation (2.4) has multiple roots, the solutions to the
homogeneous equation (2.3) take the form

y(t) =
m

∑
k=1

Ck(t)e
skt , (2.5)

where Ck(t) is a polynomial with degree less than the multiplicity of the root sk.
The solution (2.5) has ∑m

k=1(degCk +1) = n free parameters.
Having explored the solution to the homogeneous equation, we now turn to the

input-dependent part of the solution. The solution to equation (2.1) for an expo-
nential input is of particular interest. We set u(t) = est and investigate if there is a
unique particular solution of the form y(t) = G(s)est . Assuming this to be the case,
we find

du

dt
= sest ,

d2u

dt2
= s2est , · · ·

dnu

dtn
= snest

dy

dt
= sG(s)est ,

d2y

dt2
= s2G(s)est , · · ·

dny

dtn
= snG(s)est .

(2.6)

Inserting these expressions into the differential equation (2.1) gives

(sn +a1sn−1 + · · ·+an)G(s)est = (b1sn−1 +b2sn−2 + · · ·+bn)e
st ,

and hence

G(s) =
b1sn−1 +b2sn−2 + · · ·+bn

sn +a1sn−1 + · · ·+an
=

b(s)

a(s)
. (2.7)

This function is called the transfer function of the system. It describes a particular
solution to the differential equation for the input est and it is a convenient way to
characterize the system described by the differential equation.

To further show the relation between the transfer function and the differential
equation, introduce the differential operator p = d

dt and the notation pk = dk

dtk . The
differential equation (2.1) can be written as

pny+a1 pn−1y+ · · ·any = b1 pn−1u+b2 pn−1u+ · · ·+bnu,

or
(pn +a1 pn−1 + · · ·+an)y = (b1 pn−1 +b2 pn−2 + · · ·+bn)u.

The relation between the transfer function (2.7) and the differential equation (2.1)
is clear: the transfer function (2.7) can be obtained by inspection from the differen-
tial equation (2.1), and conversely the differential equation can be obtained from
the transfer function. The transfer function can thus be regarded as a shorthand
notation for the differential equation (2.1).

To deal with oscillatory signals, like those shown in Figure 2.1, it is convenient
to allow s to be a complex number. The transfer function is a function G : C→ C
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that maps complex numbers to complex numbers. The roots of the characteristic
equation a(s) = 0 are called poles of the transfer function. A pole sk appears as
exponent in the general solution to the homogeneous equation (2.4). The roots of
the polynomial b(s) are called zeros of the transfer function. The reason is that if
b(sk) = 0 it follows that G(sk) = 0, and the particular solution for the input eskt is
zero. A system theoretic interpretation is that the transmission of the exponential
signal eskt is blocked by the zero s = sk.

The particular solution for a constant input u(t) = 1 is y(t) = G(0) = bn/an.
The quantity G(0) is called the zero frequency gain or the static gain. Letting arg
represent the argument (phase) of a complex number and | · | the magnitude, the
particular solution for the input u = cos(ωt) = Reeiωt is

y(t) = Re
(
G(iω)eiωt

)
= Re

(
|G(iω)|eiargG(iω)eiωt

)

= |G(iω)|Reei(argG(iω)+ωt) = |G(iω)|cos(ωt + argG(iω)).

The input is thus amplified by |G(iω)| and the phase shift between input and output
is argG(iω). The functions G(iω), |G(iω)| and argG(iω) are called the frequency
response, gain and phase and the transfer function G. The gain and the phase are
also called magnitude and angle.

The actual response to a sine or a cosine function is the sum of a particular
solution and the general solution to the homogeneous equation (2.4) or (2.5). The
coefficients in the general solution can be determined from the initial conditions.
If all roots of the characteristic equation have negative real parts, all solutions to
the homogeneous equation go to zero as t→ ∞ and the general solution converges
to the particular solution as time increases.

The transfer function G(s) is a useful representation of the differential equa-
tion (2.1) and of the system modeled by the differential equation. The transfer
function has many physical interpretations that can be exploited for analysis and
design. The transfer function makes it possible to apply algebra to determine rela-
tions between signals in a complex system. The transfer function can also convey a
great deal of intuition: G(0) is the steady state gain for constant inputs and the fre-
quency response G(iω) capture the steady state response to sinusoidal functions.
The frequency response of a stable system can be determined experimentally by
exploring the response of a system to sinusoidal signals. The approximations of
G(s) for small and large s capture the propagation of slow and fast signals respec-
tively. Consider for example the spring-mass system in equation (3.16), with input
u and output q, which has the transfer function

G(s) =
1

ms2 + cs+ k.

For small s we have G(s) ≈ 1/k. The corresponding input/output relation is q =
(1/k)u which implies that for low frequency inputs, the system behaves like a
spring driven by a force. For large s we have G(s) ≈ 1/(ms2). The corresponding
differential equation is mq̈ = u, and for high frequency inputs the system behaves
like mass driven by a force (a double integrator). A more eleborate treatment of
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transfer functions and the frequency response will be given in later chapters, par-
ticularly in Chapter 9.

Stability: The Routh-Hurwitz Criterion

When using feedback there is always the danger that the system may become un-
stable, and it is therefore important to have a stability criterion. The differential
equation (2.1) is called stable if all solutions of the homogeneous equation (2.3)
go to zero for any initial condition. It follows from equation (2.5) that this requires
that all the roots of the characteristic equation

a(s) = sn +a1sn−1 + · · ·+an = 0,

have negative real parts. The Routh-Hurwitz criterion is a stability criterion that
does not require explicit calculation of the roots, because it gives conditions in
terms of the coefficients of the characteristic polynomial..

We illustrate the Routh-Hurwitz criterion by describing it for first, second and
third order differential equations. A first order differential equation is stable if
the coefficient a1 of the characteristic polynomial is positive, since the zero of the
characteristic polynomial will be s=−a1 < 0. A second order polynomial is stable
if and only if the coefficients a1 and a2 are all positive. Since the roots are

s =
1

2

(
−a1 ±

√
a2

1−4a2

)
,

it is easy to verify that the real parts are negative if and only if a1 > 0 and a2 > 0.
A third order differential equation is more complicated, but the roots can be shown
to have negative real parts if and only if

a1, a2, a3 > 0, and a1a2 > a3. (2.8)

The corresponding conditions for a fourth order differential equation are

a1, a2, a3 > 0, a1a2 > a3, and a1a2a3 > a2
1 a4 +a2

3. (2.9)

The Routh-Hurwitz criterion [Gan60] gives similar conditions for arbitrarily high
order polynomials. Stability of a linear differential equation can thus be investi-
gated just by analyzing the signs of various combinations of the coefficients of the
characteristic polynomial.

Block Diagrams and Transfer Functions

As described in Chapter 3, control systems are often described using block dia-
grams. Figure 2.2 shows a block diagram of a typical control system. The control
system takes a reference signal r and compares it to the system output y (assumed
to be in the same units). The resulting error is fed to a controller, whose output u
drives the process. We also model process disturbances using the signal v, which
we assume enters in the same location as the controller input. If each block is mod-
eled as a linear differential equation (2.1), we need to find the differential equation
that relates the signals in the complete system. A block can be considered as a


 The Routh-Hurwitz stability criterion has an interesting history Ben79. Maxwell found that stability of simple feedback loops could be determined by investigating if all roots of the characteristic equation are in the left half plane. He derived the condition for third order equations and consulted his Cambridge colleague Routh, who gave the general solution. The Swiss turbine engineer Stodola at ETH was faced with the same problem when working with water turbines for electricity generation. He turned to his colleague Hurwitz, who solved the problem independently of Routh, using different techniques. The result is generally known as the Routh-Hurwitz criterion. 
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Figure 2.2: Block diagram of simple feedback system. The controller transfer function is
C(s) and the process transfer function is P(s). The process output is y, the external signals
are the reference r and the load disturbance v.

filter that generates the output from the input, and the block is characterized by its
transfer function, which is a nice shorthand notation for the differential equation
describing the input/output relation.

Assume that the disturbance v in Figure 2.2 is zero and that we want to find the
differential equation that describes how the output y is influenced by the reference
signal r. Let the transfer functions of the controller and the process be character-
ized by the polynomials bc(s), ac(s), bp(s) and ap(s), so that

C(s) =
bc(s)

ac(s)
, P(s) =

bp(s)

ap(s)
. (2.10)

The corresponding differential equations are

ac(p)u(t) = bc(p)
(
r(t)− y(t)

)
, ap(p)y(t) = bp(p)u(t),

where we recall that pk = dk

dtk . Multiplying the first equation by ap(p) and the

second with ac(p) we find that

ac(p)ap(p)y(t) = ac(p)bp(p)u(t) = bp(p)bc(p)
(
r(t)− y(t)

)
.

Solving for y(t) gives
(
ac(p)ap(p)+bp(p)bc(p)

)
y(t) = bp(p)bc(p)r(t), (2.11)

which is the differential equation that relates the output to the reference. We see
that the polynomial notation makes it easy to manipulate differential equations.
Forming linear combinations of differential equations and their derivatives corre-
sponds to polynomial multiplication.

The differential equation (2.11) corresponds to the transfer function

Gyr =
bp(s)bc(s)

ac(s)ap(s)+bp(s)bc(s)
=

P(s)C(s)

1+P(s)C(s)
, (2.12)

where we use the notation Gyr for the transfer function from r to y. Proceeding
in the same way we obtain the following transfer functions for other input/output
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paairs:

Gur =
C(s)

1+P(s)C(s)
, Gyv =

P(s)

1+P(s)C(s)
, Guv =

−P(s)C(s)

1+P(s)C(s)
. (2.13)

Instead of manipulating the differential equations we can also determine trans-
fer functions by tracing signals around the loop. Assume, for example that we
would like to determine the transfer function Gyv(s), then let the input be an expo-
nential signal v(t) = est . The output is then y(t) =Gyv(s)est . Tracing signals around
the loop in the block diagram in Figure 2.2 gives

y(t) = Gyv(s)e
st = P(s)est −P(s)C(s)y(t) = P(s)est −P(s)C(s)Gyv(s)e

st

and hence
Gyv(s)e

st = P(s)est −P(s)C(s)Gyv(s)e
st

and solving for Gyv(s) gives the expression (2.13).
By using polynomials and transfer functions the relations between signals in

a feedback system can thus be obtained by algebra. In fact, the transfer functions
relating two signals can be obtained from the block diagram by inspection. The
denominator is always 1+P(s)C(s) and the numerator is a product of the transfer
functions between the signals. For example, the transfer functions from distur-
bance v to control u in Figure 2.2 are P(s), −1 and C(s) and so the numerator for
Guv is −P(s)C(s)

2.2 Using Feedback to Improve Disturbance Attenuation

Reducing the effects of disturbances is a primary use of feedback. It was used by
James Watt to make steam engines run at constant speed in spite of varying load
and by electrical engineers to make generators driven by water turbines deliver
electricity with constant frequency and voltage. Feedback is commonly used to
alleviate disturbances in the process industry, for machine tools and for engine and
cruise control in cars. In humans the pupillary reflex is used to make sure that the
light intensity of the retina is reasonably constant in spite of large variations in
the ambient light. The human body exploits feedback to keep body temperature,
blood pressure and other important variables constant. Keeping variables close to
a desired, constant reference values in spite of disturbances is called a regulation
problem.

Disturbance attenuation will be illustrated by control of a process whose dy-
namics can be approximated by a first order system. A block diagram of the sys-
tem is shown in Figure 2.2. Since we will focus on the effects of a load disturbance
v we will assume that the reference r is zero. The transfer functions Gyv and Guv

relating the output y and the control u to the load disturbance are given by equa-
tion (2.13). For simplicity we will assume that the process is modeled by the first
order differential equation

dy

dt
+ay = bu, a > 0, b > 0.
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The corresponding transfer function is

P(s) =
b

s+a
. (2.14)

A first order system is a reasonable model of a physical system if the storage of
mass, momentum or energy can be captured by a single state variable. Typical
examples are the velocity of a car on a road, the angular velocity of a rotating
system and the level of a tank.

Proportional Control

We will first investigate the case of proportional (P) control, when the control sig-
nal is proportional to the output error: u = kpe, see Section 1.5. The controller
transfer function is then C(s) = kp. The process transfer function is given by equa-
tion (2.14) and the effect of the disturbance on the output is then described by the
transfer function (2.13):

Gyv(s) =
P(s)

1+P(s)C(s)
=

b
s+a

1+
bkp

s+a

=
b

s+a+bkp
.

The relation between the disturbance v and the output y is thus given by the differ-
ential equation

dy

dt
+(a+bkp)y = bv.

The closed loop system is stable if a+bkp > 0. A constant disturbance v = v0 then
gives an output that approaches the steady state value

y0 = Gyv(0) =
b

a+bkp
v0

exponentially with the time constant T = 1/(a+ bkp). Without feedback kp = 0
and a constant disturbance v0 thus gives the steady state error v0/a. The steady
state error thus decreases when using feedback if kp > 0.

We have thus shown that a constant disturbance gives an error that can be re-
duced by feedback using a proportional controller. The error decreases with in-
creasing controller gain. Figure 2.3a shows the responses for a few values of con-
troller gain kp.

Proportional-Integral (PI) Control

The PI controller, introduced in Section 1.5, is described by

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ . (2.15)

To determine the transfer function of the controller we differentiate, hence

du

dt
= kp

de

dt
+ kie
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Figure 2.3: Responses of open and closed loop system with proportional control (a) and PI
control (b). The process transfer function is P = 2/(s+1). The controller gains for propor-
tional control are kp = 0, 0.5, 1 and 2. The PI controller is designed using equation (2.20)
with ζc = 0.707 and ωc = 0.707, 1 and 2, which gives the controller parameters kp = 0,
0.207, 0.914 and ki = 0.25, 0.50 and 2.

and we find by inspection that the transfer function is C(s) = kp + ki/s. To inves-
tigate the effect of the disturbance v on the output we use the block diagram in
Figure 2.2 and we find by inspection that the transfer function from v to y is

Gyv(s) =
P(s)

1+P(s)C(s)
=

bs

s2 +(a+bkp)s+bki
. (2.16)

The relation between the load disturbance and the output is thus given by the dif-
ferential equation

d2y

dt2
+(a+bkp)

dy

dt
+bkiy = b

dv

dt
. (2.17)

Notice that, since the disturbance enters as a derivative on the right hand side, a
constant disturbance gives no steady state error. The same conclusion can be drawn
from the observation that Gyv(0) = 0. Compare with the discussion of integral
action and steady state error in Section 1.5.

To find suitable values of the controller parameters kp and ki, we consider the
characteristic polynomial of the differential equation (2.17),

acl(s) = s2 +(a+bkp)s+bki. (2.18)

We can assign arbitrary roots to the characteristic polynomial by choosing the
controller gains kp and ki, and we choose controller parameters that give the char-
acteristic polynomial

(s+σd + iωd)(s+σd− iωd) = s2 +2σds+σ2
d +ω2

d . (2.19)
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This polynomial has roots at s =−σd ± iωd . The general solution to the homoge-
neous equation is then a linear combination of the terms

e−σdt sin(ωdt), e−σdt cos(ωdt),

which are damped sine and cosine functions, as shown in the lower left plot in
Figure 2.1. The coefficient σd determines the decay rate and the parameter ωd

gives the frequency of the decaying oscillation. Identifying coefficients of equal
powers of s in the polynomials (2.18) and (2.19) gives

kp =
2σd−a

b
, ki =

σ2
d +ω2

d

b
. (2.20)

Instead of parameterizing the closed loop system in terms of σd and ωd it is

common practice to use the undamped natural frequency ωc =
√

σ2
d +ω2

d and the

damping ratio ζc = σd/ωc. The closed loop characteristic polynomial is then

acl(s) = s2 +2σds+σ2
d +ω2

d = s2 +2ζcωcs+ω2
c .

This parameterization has the advantage that ζc, which is in the range [−1,1],
determines the shape of the response and ωc gives the response speed.

Figure 2.3b shows the output y and the control signal u for ζc = 1/
√

2 = 0.707
and different values of ωc. Proportional control gives a steady-state error which
decreases with increasing controller gain kp. With PI control the steady-state error
is zero. Both the decay rate and the peak error decrease when the design parameter
ωc is increased. Larger controller gain give smaller errors and control signals that
react faster to the disturbance.

With the controller parameters (2.20) the transfer function (2.16) from distur-
bance v to process output becomes

Gyv(s) =
P(s)

1+P(s)C(s)
=

bs

s2 +2ζcωcs+ω2
c

.

For efficient attenuation of disturbances is desirable that |Gyv(iω)| is small for
all ω . For small values of ω we have |Gyv(iω)| ≈ bω/ωc, for large ω we have
|Gyv(iω)| ≈ b/ω . The largest value of |Gyv(iω)| is b/(2ζcωc) for ω = ωc. It thus
follows that a large value of ωc gives good load disturbance attenuation.

In summary, we find that the analysis gives a simple way to find the parameters
of PI controllers for processes whose dynamics can be approximated by a first
order system. The technique can be generalized to more complicated systems but
the controller will be more complex. To achieve the benefits of large control gains
the model must be accurate over wide frequency ranges, as will be discussed next.

Unmodeled Dynamics

The analysis we have made so far indicates that there are no limits to the perfor-
mance that can be achieved. Figure 2.3b shows that arbitrarily fast response can be
obtained simply by making ωc sufficiently large. In reality there are of course lim-
itations on what is achievable. One reason is that the controller gains increase with
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ωc, the proportional gain is kp = (2ζcωc−a)/b and the integral gain is ki = ω2
c /b.

A large value of ωc thus gives large controller gains and the control signal may
be so large that actuator saturates. Another reason is that the model (2.14) is a
simplification: it is only valid in a given frequency range. If the model is instead

P(s) =
b

(s+a)(1+ sT )
, (2.21)

where the term 1+ sT represents the dynamics of sensors, actuators or other dy-
namics that was neglected when deriving equation (2.14), so-called unmodeled
dynamics, the closed loop characteristic polynomial for the closed loop system
becomes

acl = s(s+a)(1+ sT )+ kps+ ki = s3T + s2(1+aT )+2ζcωcs+ω2
c .

It follows from the Routh-Hurwitz criterion (2.8) that the closed loop system is
stable if ω2

c T < 2ζcωc(1+aT ) or if

ωc <
2ζc(1+aT )

T
.

The frequency ωc and the achievable response time are thus limited by the un-
modeled dynamics represented by T . When models are developed for control it is
therefore important to also consider the unmodeled dynamics.

2.3 Using Feedback to Follow Command Signals

Another major application of feedback is to make a system output follow a com-
mand signal. This is called the servo problem. Cruise control and steering of a car,
tracking a satellite with an antenna or a star with a telescope are some examples.
Other examples appear in high performance audio amplifiers, machine tools and
industrial robots.

To illustrate command signal following we will consider the system in Fig-
ure 2.2 where the process is a first order system and the controller is a PI controller.
The transfer functions of the process and the controller are

P(s) =
b

s+a
, C(s) =

kps+ ki

s
. (2.22)

Since we will focus on following the command signal r we will neglect the load
disturbance, v = 0. It follows from equation (2.12) that the transfer function from
the command signal r to the output y is

Gyr(s) =
P(s)C(s)

1+P(s)C(s)
=

bkps+bki

s2 +(a+bkp)s+bki
. (2.23)

Since Gyr(0) = 1 it follows that r = y when r and y are constant, independent of the
values of the parameters a and b, as long as the closed loop is stable. The steady
state output is thus equal to the reference, a useful property of controllers with
integral action.
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Figure 2.4: Responses to a unit step change in the command signal for different values of
the design parameters ωc and ζc. The left figure shows responses for fixed ζc = 0.707 and
ωc = 1, 2 and 5. The right figure shows responses for ωc = 2 and ζc = 0.5, 0.707, and 1. The
process parameters are a = b = 1. The initial value of the control signal is kp.

To determine suitable values of the controller parameters kp and ki we proceed
as in Section 2.2 by choosing controller parameters that makes the closed-loop
characteristic polynomial

acl(s) = s2 +(a+bkp)s+bki (2.24)

equal to s2+2ζcωcs+ω2
c with ζc > 0 and ωc > 0. Identifying coefficients of equal

powers of s in these polynomials give

kp =
2ζcωc−a

b
, ki =

ω2
c

b
, (2.25)

which is equivalent to equation (2.20). Notice that integral gain increases with the
square of ωc. Figure 2.4 shows the output signal y and the control signal u for
different values of the design parameters ζc and ωc. The response time decreases
with increasing ωc and the initial value of the control signal also increases because
it takes more effort to move rapidly. The overshoot decreases with increasing ζc.
For ωc = 2, the design choice ζc = 1 gives a short settling time and a response
without overshoot.

It is desirable that the output y will track the reference r for time-varying ref-
erences. This means that we would like the transfer function Gyr(s) to be close to
1 for large frequency ranges. With the controller parameters (2.25) it follows from
equation (2.23) that

Gyr(s) =
P(s)C(s)

1+P(s)C(s)
=

(2ζcωc−a)s+ω2
c

s2 +2ζcωcs+ω2
c

.

The magnitude will be close to 1 when ωc is large compared to s. It is thus de-
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Figure 2.5: Block diagram of a closed-loop system with a PI controller having an architec-
ture with two degrees of freedom.

sirable to have a large ωc to be able to track fast changes in the reference signal.
The frequency response of Gyr gives a quantitative representation of the tracking
abilities.

Controllers with Two Degrees of Freedom

The control law in Figure 2.2 has error feedback because the control signal u is
generated from the error e= r−y. With proportional control, a step in the reference
signal r gives an immediate step change in the control signal u. This rapid reaction
can be advantageous, but it may give large overshoot, which can be avoided by a
replacing the PI controller in equation (2.15) with a controller of the form

u(t) = kp

(
β r(t)− y(t)

)
+ ki

∫ t

0
(r(τ)− y(τ))dτ . (2.26)

In this modified PI algorithm, the proportional action only acts on the fraction β of
the reference signal. The signal transmission from reference r to u and from output
y to u can be represented by the transfer functions

Cur(s) = βkp +
ki

s
, Cuy(s) = kp +

ki

s
=C(s). (2.27)

The controller (2.26) is called a controller with two degrees of freedom since the
transfer functions Cur(s) and Cuy(s) are different.

A block diagram of a closed loop system with a PI controller having two de-
grees of freedom is shown in Figure 2.5. Let the process transfer function be
P(s) = b/(s + a). The transfer functions from reference r and disturbance v to
output y are

Gyr(s) =
bβkps+bki

s2 +(a+bkp)s+bki
, Gyv(s) =

s

s2 +(a+bkp)s+bki
. (2.28)

Comparing with the corresponding transfer function for a controller with error
feedback in equations (2.16) and (2.23) we find that the responses to the load
disturbances are the same but the response to reference values are different.
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Figure 2.6: Response to a step change in the command signal for a system with a PI con-
troller having two degrees of freedom. The process transfer function is P(s) = 1/s and the
controller gains are kp = 1.414, ki = 1 and β = 0, 0.5 and 1.

A simulation of the closed loop system for a = 0 and b = 1 is shown in Fig-
ure 2.6. The figure shows that the parameter β has a significant effect on the re-
sponses. Comparing the system with error feedback (β = 1) to the system with
smaller values of β we find that using a system with two degrees of freedom gives
the same settling time with less overshoot and gentler control actions.

The example shows that command signal response can be improved by using
a controller architecture having two degrees of freedom. In Section 2.7 we will
show that the responses to command signals and disturbances can be completely
separated by using a more general system architecture. To use a system with two
degrees of freedom both the reference signal r and the output signal y must be
measured. There are situations where only the error signal e = r− y can be mea-
sured, typical examples are DVD players, optical memories and atomic force mi-
croscopes.

2.4 Using Feedback to Provide Robustness

Feedback can be used to make good systems from poor components. The devel-
opment of the electric feedback amplifier for transmission of telephone signals is
an early example [Ben93]. Design of amplifiers with constant linear gain was a
major problem. The basic component in the amplifier was the vacuum tube, which
was nonlinear and time varying. A major accomplishment was the invention of
the feedback amplifier. The idea is to close a feedback loop by arranging a feed-
back loop around the vacuum tube, which gives a closed loop system with a linear
input/output relation having constant gain.

The idea to use feedback to linearize input/output characteristics and to make
it insensitive to process variations is common. The recipe is to localize the source
of the variations and to close feedback loops around them. This idea is used ex-
tensively to obtain linear amplifiers and actuators, and to reduce effects of friction
in mechanical systems. We will illustrate with a simple model of an electronic
amplifier.


 Black, the inventor of the negative feedback amplifier, had the following to say black1977: ``Few rosier dreams could be dreamt than that of an amplifier whose overall performance is perfectly constant, and in whose output distortion constitutes only one hundredth of a millionth of the total energy, although the component parts may be far from linear in their response and their gain may vary over a considerable range.'' 
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Figure 2.7: Responses of a static nonlinear system. The left figure shows the input/output re-
lation of the open-loop system and the right figure shows responses to the input signal (2.30).
The ideal response is shown solid bold lines. The nominal response of the nonlinear system
is shown using dashed bold lines and the responses for different parameter values are shown
using thin lines.

A Nonlinear Amplifier

Consider an amplifier with a static, nonlinear input/output relation with consider-
able variability as illustrated in Figure 2.7a. The nominal input/output character-
istics is shown as a dashed bold line and examples of variations as thin lines. The
nonlinearity in the figure is actually

y = f (u) = α(u+βu3), −3≤ u≤ 3. (2.29)

The nominal values corresponding to the dashed line are α = 0.2 and β = 1. The
variations of the parameters α and β are in the ranges 0.1 ≤ α ≤ 0.5, 0 ≤ β ≤ 2.
The responses of the system to the input u = r with

r(t) = sin(t)+ sin(πt)+ sin(π2t). (2.30)

are shown in Figure 2.7b. The desired response y = u is shown as a solid bold line
and responses for a range of parameters are shown with thin lines. The nominal
response of the nonlinear system is shown as a dashed bold line. It is distorted
due to the nonlinearity. Notice in particular the heavy distortion both for small and
large signal amplitudes. The behavior of the system is clearly not satisfactory.

The behavior of the system can be improved significantly by introducing feed-
back. A block diagram of a system with a simple integral controller is shown in
Figure 2.8. Figure 2.9 shows the behavior of the closed loop system with the same
parameter variations as in Figure 2.7. The input/output plot in Figure 2.9a is a
scatter plot of the inputs and the outputs of the feedback system. The input/output
relation is practically linear and close to the desired response. There is some vari-
ability because of the dynamics introduced by the feedback. Figure 2.9b shows the
responses to the reference signal; notice the dramatic improvement compared with
Figure 2.7b. The tracking error is shown in Figure 2.9c.



2-16 CHAPTER 2. FEEDBACK PRINCIPLES

r

Σ
e u y

ki

s
f (u)

−1

Figure 2.8: Block diagram of a nonlinear system with integral feedback.

Analysis
!

Analysis of the closed loop system is difficult because it is nonlinear. We can how-
ever obtain significant insight by using approximations. We first observe that the
system is linear when β = 0. In other situations we will approximate the nonlin-
ear function by a straight line around an operating point u = u0. The slope of the
nonlinear function at u = u0 is f ′(u0) and we will approximate the process with a
linear system with the gain f ′(u0). The transfer functions of the process and the
controller are

P(s) = b = f ′(u0) = α(1+3βu2
0), C(s) =

ki

s
, (2.31)

where u0 denotes the operating condition. The process gain b = α(1+ 3βu2
0) is

in the range 0.1–27.5 depending on the values of α,β and u0. It follows from
equation (2.13) that the transfer functions relating the output y and the error e to
the reference signal are

Gyr(s) =
bki

s+bki
, Ger(s) = 1−Gyr =

s

s+bki
. (2.32)

The closed loop system is a first-order system with the pole s =−bki and the time
constant Tcl = 1/(bki). The integral gain is chosen as ki = 1000. The closed loop
pole ranges from 100 rad/s to 2.75×104 rad/s, which is fast compared to the high
frequency component 9.86 rad/s of the input signal.

The error for the approximated system is described by the differential equation

de

dt
=−bkie+

dr

dt
,

dr

dt
= cos(t)+π cos(πt)+π2 cos(π2t). (2.33)

The fast frequency component of the input (2.30) has the frequency π2 = 9.86; it
is slower than the process dynamics for all parameter variations. Neglecting the
term de/dt in equation (2.33) gives

e≈
1

bki

dr

dt
. (2.34)

The largest error is obtained when b has its smallest value 0.1. The error is then
approximately π2/(bki)cos(π2t)≈ 0.1cos(π2t), which is shown as the dashed line
in Figure 2.9c.

This analysis has shown that it is possible to design an integrating controller
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Figure 2.9: Responses of the system with integral feedback (ki = 1000). The left plot, is a
scatter plot of inputs and outputs. The center plot shows the response of the closed loop sys-
tem to the input signal r, and the right plot shows the control error. The parameter variations
are the same as in Figure 2.7. Notice the dramatic improvement compared to Figure 2.7b.
The dashed line in (c) corresponds to the approximate error based on linearization of the
nonlinearity.

for a system whose dynamics can be approximated by a static model. Design is es-
sentially the choice of a single parameter: the integral gain ki of the controller. The
closed loop transfer function from reference to output is given by equation (2.32)
where integral gain is ki = 1/(bTcl) where Tcl is the desired time constant of the
closed loop system. The integral gain is inversely proportional to Tcl and the largest
integral gain is limited by unmodeled dynamics.

This example illustrates that feedback can be used to design an amplifier that
has practically linear input/output relation even if the basic amplifier is nonlinear
with strongly varying characteristics.

2.5 Positive Feedback

Most of this book is focused on negative feedback because of its amazingly good
properties, which have been illustrated in the previous sections. In this section we
will discuss positive feedback, which has complementary properties. In spite of
this positive feedback has found good use in several contexts.

Systems with negative feedback can be well understood by linear analysis. To
understand systems with positive feedback it is necessary to consider nonlinear ef-
fects, because without the nonlinearities the instability caused by positive feedback
will grow without bounds. The nonlinear elements contribute to create interesting
and useful effects by limiting the signals.

Positive feedback is common: encouraging a student or a coworker when they
have performed well encourages them do to even better. In biology, it is standard
to distinguish inhibitory connections (negative feedback) from excitatory feedback
(positive feedback) as illustrated in Figure 2.10. Neurons use a combination of
positive and negative feedback to generate spikes.

Positive feedback may cause instabilities. Exponential growth is a typical ex-
ample of positive feedback, where the rate of change of a quantity x is proportional
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Figure 2.10: Schematic diagram of xxx which has both positive and negative feedback. An
exhibitory connection (positive feedback) is denoted with a line ending with an arrow, an
inhibitory interaction (negative feedback) iis denoted with an arrow ending with a circle.

to the x. Hence
dx

dt
= αx,

which implies that x(t) = eαt grows exponentially. In nature, exponential growth
of a species is limited by the finite amount of food. Another common example is
when a microphone is placed close to a speaker in public address systems, resulting
in a howling noise. Positive feedback can create stampedes in cattle heard, runs on
banks and boom-bust behavior. In all these cases there is exponential growth that
is finally limited by finite resources.

The notions of positive and negative feedback are highly intuitive but they are
also too simplistic. Their interpretation is clear when we are not considering dy-
namics. But if dynamics is considered the sign of the feedback will depend on the
frequency, and feedback can change from positive to negative when the frequency
changes. A good understanding of the dynamic case can be obtained by tracing
sinusoidal signals around the feedback loop as will be done in Section 10.2. We
then obtain a more sophisticated notion that a block with feedback is positive if the
input and output signals are in phase, and feedback is negative if signals are out of
phase. With the simple interpretation it appears that a system with negative feed-
back will always be stable and that a system with positive feedback will always be
unstable. None of these statements are true when dynamics are considered.

In spite of the drawbacks mentioned above, positive feedback has several useful
applications. A typical example is the generation of periodic signals as illustrated
by the following example.

Hewlett’s Oscillator

Since positive feedback tends to generate instability it can be use to construct os-
cillators. To limit the exponential growth it is necessary to introduce some nonlin-
earity that limits the amplitude of the oscillation. An example is given in a Fig-
ure 2.11 from William Hewlett’s 1939 PhD thesis at Stanford University. Hewlett
used two vacuum tubes with positive feedback and a nonlinear element in the form
of a lamp to maintain constant amplitude of the oscillation. The positive feedback
in the basic loop creates an oscillation. The resistance of the lamp decreases as
the signal amplitude increases and the amplitude is limited. Hewlett’s oscillator
was the beginning of a very successful company that Hewlett founded with David
Packard.

The Superregenerative Receiver

In the previous sections we have shown that negative feedback has some very
useful properties. The negative feedback amplifier was an enabler for long-distance
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Figure 2.11: Circuit diagram of William Hewlett’s oscillator that gives a stable oscillation
by using positve feedback and a nonlinearity (lamp) that stabilized the amplitude of the
oscillation, [].

telephony. A key idea was to design an amplifier with a very large open loop gain
and to reduce the gain by negative feedback. The result was an amplifier that is
robust and linear. Positive feedback has complementary properties: it is possible
to create high gain but the closed loop system is sensitive to parameter variations.

To undertstand that positive feedback can generate high gains we consider an
amplifer with gain Aol . Neglecting dynamics and closing a feedback loop around
the amplifier with positive feedback k gives a closed loop system with the closed
loop gain

Acl =
Aol

1− kAol
.

A very large closed loop gain Acl can be obtained by selecting a feedback gain k
that is just below the stability limit 1/Aol . Choosing the gain so that kAol = 0.999
gives Acl = 1000Aol . Using this idea, Armstrong constructed a superregenerative
radio receiver in 1914 when he was still undergraduate at Columbia University. He
built a radio receiver with only one vaccum tube. The drawback by using positive
feedback is that the system is highly sensitive and that the gain has to be adjusted
carefully to avoid oscillations. It is still used in simple walkie-takies, garage door
openers and toys.

Implementation of Integral Action

Positive feedback was used very in early controllers where integral action was
provided by positive feedback around a system with first order dynamics, as shown
in the block diagram of Figure 2.12. Intuitively the system can be explained as
follows. Proportional feedback typically gives a steady state error. This can be
overcome by adding a bias signal. In Figure 2.12 the bias is estimated by low pass
filtering the control signal and adding it back into to the signal path. The circuit
can be understood better by a little analysis. Using block diagram algebra we find
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Figure 2.12: Implementation of integral action by positive feedback .

that the transfer function of the system is

Gue =
kp

1−
1

1+ sT

= kp +
kp

sT
,

which is a transfer function of a PI controller. This way of implementing integral
action is still used in many systems. Notice that in this case the closed loop system
is in fact unstable since it has an integrator. Since this is the desired behavior
(integral action), it is not necessary to limit the signal.

Positive Feedback Combined with Saturation

Positive feedback is often combined with nonlinear elements as in Hewlett’s oscil-
lator. Figure 2.13, which shows the block diagram of a system with positive feed-
back and a nonlinearity in the form of a saturation is another example. The system
has a forward path with a gain followed by a block with first order dynamics and
a nonlinearity with saturation characteristics. We assume that the nonlinearity is
given by

y = f (x) =
x

1+ |x|
, x = f−1(y) =

y

1− |y|
. (2.35)

The system is described by the equations

dx

dt
=−ax+ k(r+ y) = k(r−G(y)), G(y) =

ay

k(1− |y|)
− y. (2.36)

Figure 2.13: Block diagram of system with positive feedback and saturation .



2.6. USING FEEDBACK TO SHAPE BEHAVIOR 2-21

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

y

r=
G
(y
)

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

r

y=
G
(r)

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

t

r,y

Figure 2.14: System with positive feedback and saturation, (a) show the function G(y) used
in the analysis, (b) shows the hysteretic input output map and (c) shows a simulation of the
system. The input is the dashed curve and the output is the solid line.

The equilibria for a constant input r are given by

r =−y+
a

k
f−1(y) = G(y) where G′(y) =−1+

a

k(1− |y|)2
. (2.37)

The graph of the function G is shown in Figure 2.13a for the parameters a = 1,
b = 1 and k = 10. The function is monotone if k ≤ a and there is a unique equi-
librium. If k > a the function G has a maximum rmax = 1 + a/k− 2

√
a/k at

y =−1/
√

1+a/k and a minimum rmin =−rmax at y = 1/
√

1+a/k. For constant
r the equation (2.37) has three solutions if rmin < r < rmax, and one equilibrium
if r < rmin or if r > rmax. It is easy to understand the behavior of the solutions to
differential equation (2.37), since it is of first order. Since x is a monotone function
of y it follows follows from equation (2.36) that dx/dt is positive to the left of an
equilibrium where G′(y) is positive, and positive to the left of the equilibrium. The
stable equilibria thus corresponds the values of y where the slope of G(y) is posi-
tive, they are marked with full lines in Figure 2.14a. The differential equation thus
has two stable equilibria when rmin < r < rmax and one stable equilibrium when
|r|> rmax. The input-output relation of the system will then have the hysteretic be-
havior shown in Figure 2.14b where the output switches between the values close
to ±1. Results of asimulation of the system is shown in Figure 2.14c. The shape
of the output signal depends on the parameters, the values a = 5, b = 1 and k = 50
were used in the figure. The parameter a influences the dynamics of the swith-
ing, the parameter b is half the hysteresis width and the parameter k influences the
sharpness of the switches..

The circuit shown in the Figure 2.13 is commonly used as a trigger to detect
changes in a signal (a Schmitt trigger). It is also used as a memory element in solid
state memories.

2.6 Using Feedback to Shape Behavior

The regulation and servo problems discussed in Sections 2.2 and 2.3 are classical
applications of feedback. In Section 2.4 it was shown that feedback can be used to
obtain essentially linear input/output behavior for a nonlinear system with strong
variability. In this section we will show how feedback can be used to shape the
dynamic behavior of a system.

Collision avoidance is a useful behavior of moving robots. Feedback is used in
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Figure 2.15: Schematic digram of two aircrafts. The aircraft at the top is stable because it
has the center of pressure CP behind the center of mass CM. The aircraft at the bottom is
unstable because the positions of center of mass and center of pressure are reversed.

automobiles to create behaviors that avoid locking brakes, skids and collision with
pedestrians. Feedback is used to make the dynamic behavior of airplanes invariant
to operating conditions. Feedback is also an essential element of human balancing
and locomotion.

Bacteria use simple feedback mechanisms to search for areas where there is
high concentration of food or light. The principle is to sense a variable and to
make exploratory moves to see if the concentration increases. A similar mechanism
can be used to avoid harmful substances. Optimization is also used in computer
systems to maintain high throughput of servers.

Stabilization

Stabilizing an unstable system is a typical example of how feedback can be used
to change behavior. Many systems are naturally unstable. The ability to stand up-
right, walk and run has given humans many advantages but it requires stabiliza-
tion. Stability and maneuverability are conflicting goals in vehicle design. The
ship designer Minorsky realized that there was a trade-off between maneuverable
and stability and he emphasized that a stable ship is difficult to steer. The Wright
Flyer, which was maneuverable but unstable, inspired Sperry to design an autopi-
lot. Feedback has been used extensively in aircraft, from simple systems for sta-
bility augmentation to systems that provide full autonomy.

Military airplanes gain significant competitive advantage by being made unsta-
ble. Schematic pictures of two airplanes are shown in Figure 2.15. The positions of
the center of mass CM and the center of pressure CP are key elements. To be stable
the center of pressure must be behind of the center of mass. The center of pressure
of an aircraft shifts backwards when a plane goes supersonic. If the plane is stable
at subsonic speeds it becomes even more stable at supersonic speeds because of
the long distance between CM and CP. Large forces and large control surfaces are
then required to maneuver the airplane and the plane will be more sluggish. A more
balanced design is obtained by placing the center of pressure in front of the cen-
ter of mass at subsonic speeds. Such an airplane will have superior performance,
but it is unstable at subsonic speeds, typically at takeoff and landing. The control
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system that stabilizes the aircraft in these operating conditions is mission-critical,
with strong requirements on robustness and reliability.

The evolutionary biologist John Maynard Smith [Smi52] has claimed that while
early flying animals were inherently stable they later developed unstable configura-
tions when their sensory and nervous systems became more sophisticated and able
to stabilize. The unstable configuration had significant advantages in manoevrabil-
ity both for predator and prey.

Keeping an inverted pendulum in the upright position is a prototype example
of stabilization. Consider the cart–pendulum system discussed in Examples 3.1
and 3.2. Neglecting damping, assuming that the cart is much heavier than the pen-
dulum and assuming that the tilt angle θ is small, equation (3.10) can be approxi-
mated by the differential equation

Jt θ̈ −mglθ = u. (2.38)

The transfer function of the open loop system is

Gθu =
1

Jts2−mgl
, acl(s) = Jts

2−mgl.

The system is unstable because it has a pole s =
√

mgl/Jt = ω0 in the right half
plane. It can be stabilized with a proportional-derivative (PD) controller that has
the transfer function

C(s) = kds+ kp. (2.39)

The closed-loop characteristic polynomial is

acl(s) = Jts
2 + kds+(kp−mgl),

and all of its roots are in the left half plane if kp > mgl.
One way to find controller parameters is to choose the controller gains so that

the characteristic polynomial has natural frequency ωc and damping ratio ζc, hence

kd = 2ζcωcJt , kp = Jtω
2
c +mgl.

Choosing ωc =ω0 moves the poles from ±ω0 in open loop to−ζcω0± i
√

1−ζ 2
c ω0

in closed loop. The controller gains are then kp = 2mgl and kd = 2ζc

√
mglJt . The

control law (2.39) stabilizes the pendulum but is does not stabilize the motion of
the cart. To do this it is necessary to introduce feedback from cart position and cart
velocity.

The Segway
!

The Segway discussed in Example 3.1 is essentially a pendulum on a cart and
can be modeled by equation (3.9) with an added torque τ on the pendulum that is
exerted by the person leaning on the platform. Neglecting the damping terms cṗ,
γθ̇ and linearizing equation (3.9) gives

Mt p̈−mlθ̈ = u, −ml p̈+ Jt θ̈ −mglθ =−τ ,
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where u is the horizontal force generated by the motor and τ is the torque generated
by the lean of the rider. Since the Segway is similar to the inverted pendulum on
a cart, we will explore if the feedback (2.39) can be used to stabilize the system.
The closed loop system is then described by

Mt p̈−mlθ̈ =−kd θ̇ − kpθ , −ml p̈+ Jt θ̈ −mglθ =−τ . (2.40)

Multiplying the first equation by ml, the second by Mt and adding the equations,
we obtain

(MtJt −m2l2)θ̈ +mlkd θ̇ +ml(kp−Mtg)θ =−Mtτ .

Since MtJt −m2l2 = MtJ + nMl2 > 0, this differential equation is stable if kp >
Mtg. Solving for p̈ in equation (2.40) gives the following transfer functions from
torque τ to tilt angle θ and horizontal acceleration p̈:

Gp̈τ(s) =
m2l2s2−mlkds−mlkp

(MtJt −m2l2)s2 +mlkds+ml(kp−Mtg)
,

Gθτ(s) =
Mt

(MtJt −m2l2)s2 +mlkds+ml(kp−Mtg)
.

The feedback (2.39), which stabilizes the Segway, thus creates a behavior where
the horizontal acceleration p̈ of the Segway can be controlled by the torque τ ,
which can be generated by leaning on the Segway.

Impedance Control and Haptics

Changing behavior of a mechanical system is common in robotics and haptics.
Position control is not sufficient when industrial robots are used for grinding, pol-
ishing and assembly. The robot can be brought into proximity with the workspace
by position control but to carry out the operations it is desirable to shape how
the force depends on the distance between the tool and the workspace. A spring-
like behavior is an example. The general problem is to create a behavior speci-
fied by a given differential equation between force and motion, a procedure called
impedance control. Similar situations occur in teleoperation in hazardous environ-
ment or in telesurgery. In this situation the workpiece is operated remotely using a
joystick. It is useful for the operator to have some indication of the forces between
the tool and the workpiece. This can be accomplished by generating a force on the
operators joystick that mimics the force on the workpiece.

Figure 2.16 shows two haptic input devices. The systems are pen-like with
levers or gimbals containing angle sensors and force actuation. By sensing position
and orientation, and generating a force depending on position and velocity, it is
possible to create a behavior that simulates touching real or virtual objects. Forces
that simulate friction and surface structure can also be generated.

We illustrate the principle with a joystick having a low friction joint. Let J be
the moment of inertia, and let the actuation torque and the external torque from the
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Figure 2.16: Haptic devices, the left figure shows the PHANTOMTM and the right a system
is developed by Quanser.

operator be Ta and T , respectively. The equation of motion is

J
d2θ

dt2
= T +Ta.

By measuring the angle θ and its first two derivatives we can create the feedback

Ta = kp(θr−θ)− kd
dθ

dt
− ka

d2θ

dt2
.

The closed loop system is then

(J+ ka)
d2θ

dt2
+ kd

dθ

dt
+ kp(θ −θr) = T.

The feedback has thus provided virtual inertia J + ka, virtual damping kd and vir-
tual spring action kp. If no torque T is applied, the joystick will assume the orien-
tation given by the reference signal θr. If a the user applies a torque, the joystick
will behave like a damped spring-mass system.

2.7 Feedback and Feedforward

Feedback and feedforward have complementary properties as was discussed in
Section 1.4. Feedback only acts when there are deviations between the actual and
the desired behavior, feedforward acts on planned behavior. Feedback and feedfor-
ward can be combined to improve response to command signals and to reduce the
effect of disturbances that can be measured. In this section we will discuss design
of feedforward control.

Feedforward and System Inversion

To explore feedforward control we will first investigate command signal following.
Consider the system modeled by the differential equation (2.1):

dny

dtn
+a1

dn−1y

dtn−1
+ . . .+any = b1

dn−1u

dtn−1
+ . . .+bnu.
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Assume that we want to find a control signal u that gives the response yr. It follows
from equation (2.1) that the desired control signal satisfies

b1
dn−1u

dtn−1
+ . . .+bnu =

dnyr

dtn
+a1

dn−1yr

dtn−1
+ . . .+anyr, (2.41)

This equation is called the inverse of equation (2.1) because it is obtained by ex-
changing inputs and outputs. If the transfer function of the original system is P(s),
the transfer function of the inverse system is simply P−1(s).

There are problems with system inversion since the inverse may require differ-
entiations and it may be unstable. For example, if b1 ̸= 0 we have P−1(s) ≈ s/b1

for large s, which implies that to obtain a bounded control signal we must require
that the reference signal has a smooth first derivative. If b1 = 0 we must similarly
require that the reference signal has a smooth second derivative.

Difficulties with Feedforward Compensation

Let the process and the desired response have the transfer functions

P(s) =
1

(s+1)2
, Fm(s) =

ω2
c

s2 +2ζcωcs+ω2
c

.

The feedforward transfer function is then given by equation (??), hence

Ff(s) = P−1(s)Fm(s) =
ω2

c (s+1)2

s2 +2ζcωcs+ω2
c

. (2.42)

Notice that Ff(0) = 1 and Ff(∞) = ω2
c . The initial value of the control signal for a

unit step command is thus ω2
c and the final value is 1. Figure 2.17 shows the outputs

y and the feedforward signals uff for a unit step reference signal r and different
values of ωc. The parameter ωc determines the response speed and since Ff(∞) =
ω2

c , very large control signals are required fast responses, Achievable performance
is thus limited by the size of admissible control signals.

Let the process and the desired response be characterized by the transfer func-
tions

P(s) =
1− s

(s+1)2
, Fm(s) =

ω2
c (1− s)

s2 +2ζcωcs+ω2
c

.

Since the process has a right half plane zero at s = 1 the inverse model is unstable
and it follows from equation (??) that we must require that the transfer function
of the desired response has the same zero. Equation (??) gives the feedforward
transfer function

Ff(s) =
ω2

c (s+1)2

s2 +2ζcωcs+ω2
c

, (2.43)

which is the same as equation (2.42). Figure 2.18 shows the outputs y and the
feedforward signals uff for different values of ωc. The response to the command
signal goes in the wrong direction initially because of the right half plane zero
at s = 1. This effect, called inverse response, is barely noticeable if the response
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Figure 2.17: Outputs y (top plots) and feedforward signals uff (lower plots) for a unit step
command signal. The values of the design parameter is ωc = 0.2 (left) 1 (center) and 5
right. The outputs are identical apart from the time scale, but the control signals required to
generate the output differs significantly. The largest value of the feedforward signal uff is
ω2

c , and it increases significantly with increasing ωc.

is slow (ωc = 1) but increases with increasing response speed. For ωc = 5 the
undershoot is more than 200%. The right half plane zero thus severely limits the
response time.

The behavior of the control signal changes qualitatively with ωc. To understand
what happens we note that the zero frequency gain of the feedforward transfer
function (2.43) is Ff(0) = 1 and that its high frequency gain is Ff(∞) = ω2

c . For a
unit step reference signal r = 1, the initial value of the control signal is uff(0) = ω2

c

and the final value is uff(∞) = 1. For ωc = 0.2 the control signal grows from 0.04
to the final value 1 with a small overshoot. For ωc = 1 the control signal starts from
1 has an overshoot and settles on the final value 1. For ωc = 5 the control signals
starts at 25 and decays towards the final value 1 with an undershoot.

Sensitivity to Process Variations

Combining Feedforward with Feedback

Since feedback can give systems that are robust to model uncertainties it seems nat-
ural to combine feedforward with feedback. The architecture of such a controller is
shown in the block diagram of Figure 2.19. The controller has three blocks repre-
senting the feedback transfer function C(s) and the feedforward transfer functions
Fm and Ff.

The controller architecture in Figure 2.19 admits a decoupling of the response
to command signals and the response to disturbances. The feedback controller
C(s) is designed to give robustness to process variations and attenuation of load
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Figure 2.18: Outputs y (top plots) and feedforward signals uff (lower plots) for a unit step
command signal. The design parameter has the values ωc = 0.2 (left) 1 (center) and 0.5
(right) for a unit step command in the reference signal. The dashed curve shows the response
that could be achieved if the process did not have the right half plane zero.

disturbances. The desired response to command signals is obtained by design of
the feedforward transfer functions Ff and Fm.

Feedforward is most effective when the disturbance v enters early in the pro-
cess. This occurs when most of the dynamics are in process section P2. When
P2 = P, and therefore P2 = 1, the feedforward compensator is simply a propor-
tional controller.

Noise cancellation is a common example of the use of feedforward to cancel
effects of disturbances. Consider, for example, a pilot that has to communicate in
a noisy cabin. The environmental noise will seriously deteriorate the communi-
cation because the pilots microphone will pick up ambient noise. The noise can
be reduced significantly by using two microphones as illustrated in Figure 2.20.
The primary microphone is directed towards the pilot. It picks up the pilots voice
and ambient noise. The second microphone is directed away from the pilot and it
picks up the ambient noise. The effect of the noise can be reduced by filtering the
signal from the secondary microphone and subtracting it from the signal from the
primary microphone. A block diagram of the system is shown in Figure 2.20b. The
transfer function G(s) represents the dynamics of the acoustic transmission from
the secondary microphone to the first microphone. The transfer function F(s) is
the transfer function of the filter. To cancel the effect of the noise the transfer func-
tion F(s) should be close to G(s). Since the noise transmission depends on the
situation, for example how the pilot turns his head, it is common to let the filter
be adaptive so that it can adjust, as described later in Example 5.16. Noise cancel-
lation has many applications, in headphones, to create noise-free spaces by active
noise control, or to measure electrocardiograms and the heartbeats of mother and
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Figure 2.19: Block diagram of a closed loop system where the controller has an architecture
with two degrees of freedom. The signals ym and uff are generated by feedforward from the
reference r. The feedback controller C(s) acts on the control error e = ym− y and generates
the feedback control signal ufb.

fetus.

2.8 Further Reading

The books by Bennett [Ben79, Ben93] and Mindel [Min02, Min08] give interest-
ing perspective on the development of control. Much of the material touched upon
in this chapter is classical control; see [CM51], [JNP47] and [Tru55]. The notion
of controllers with two degrees of freedom was introduced by Horowitz [Hor63].
The analysis will be elaborated in the rest of the book. Transfer functions and other
descriptions of dynamics are discussed in Chapters 6 and 9, methods to investi-
gate stability in Chapter 10. The simple method to find parameters of controllers
based on matching of coefficients of the closed loop characteristic polynomial is
developed further in Chapters 7, 8 and 13. Feedforward control is discussed in
Section 8.5 and Section 12.2.

Output
−
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microphone

microphone

Primary

(a) Schematic diagram

s+Gn
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ŝ

(b) Block diagram

Figure 2.20: Schematic and block diagrams for noise cancellation.
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Exercises

2.1 Let y ∈ R and u ∈ R. Solve the differential equations

dy

dt
+ay = bu,

d2y

dt2
+2

dy

dt
+ y = 2

du

dt
+u.

Determine the responses to a unit step u(t)= 1 and the exponential signal u(t)= est

when the initial condition is zero. Derive the transfer functions of the systems.

2.2 Let y0(t) be the response of a system with the transfer function G0(s) to a given
input. The transfer function G(s) = (1+ sT )G0(s) has the same zero frequency
gain but it has an additional zero at z = −1/T . Let y(t) be the response of the
system with the transfer function G(s) and show that

y(t) = y0(t)+T
dy0

dt
, (2.44)

Next consider the system with the transfer function

G(s) =
s+a

a(s2 +2s+1)
,

which has unit zero-frequency-gain (G(0) = 1). Use the result in equation (2.44)
to explore the effect of the zero s =−1/T on the step response of a system

2.3 Consider a closed loop system with process dynamics and a PI controller
modeled by

dy

dt
+ay = bu, u = kp(r− y)+ ki

∫ t

0
(r(τ)− y(τ))dτ ,

where r is the reference, u the control variable and y the process output. Derive a
differential equation relating the output y to the difference by direct manipulation
of the equations. Draw a block diagram of the system. Derive the transfer functions
of the process and the controller. Compute the transfer function from reference r to
output y of the closed loop system. Make the derivations both by direct manipula-
tion of the system equations and by polynomial algebra. Compare the results with
a direct determination of the transfer functions by inspection of the block diagram.

2.4 The dynamics of the pupillary reflex is approximated by a linear system with
the transfer function

P(s) =
0.2(1−0.1s)

(1+0.1s)3
.

Assume that the nerve system that controls the pupil opening is modeled as a
proportional controller with the gain k. Use Routh-Hurwitz theorem to determine
the largest gain that gives a stable closed loop system.

2.5 A simple model for the relation between speed v and throttle u for a car is
given by the transfer function

Gvu =
b

s+a



EXERCISES 2-31

where b = 1 m/s2 and a = 0.025 rad/s (see Section ??). The control signal is
normalized to the range 0≤ u≤ 1. Design a PI controller for the system that gives
a closed loop system with the characteristic polynomial

acl(s) = s2 +2ζ ωcs+ω2
c .

What are the consequences of choosing different values of the design parameters
ζ and ωc? Use your judgment to find suitable values. Hint: Investigate maximum
acceleration and maximum velocity for step changes in the velocity reference.

2.6 Consider the feedback system in Figure 2.2. Let the disturbance v= 0, P(s)= 1
and C(s) = ki/s. Determine the transfer function Gyr from reference r to output y.
Also determine how much Gyr is changed when the process gain changes by 10%.

2.7 The calculations in Section 2.2 can be interpreted as a design method for a
PI controller for a first order system. A similar calculation can be made for PID
control of the second order system. Let the transfer functions of the process and
the controller be

P(s) =
b

s2 +a1s+a2
, C(s) = kp +

ki

s
+ kds.

Show that the controller parameters

kp =
(1+2αζ )ω2

c −a2

b
, ki =

αω3
c

b
, kd =

(α +2ζ )ωc−a1

b
.

give a closed loop system with the characteristic polynomial

(s2 +2ζ ωcs+ω2
c )(s+αωc).

2.8 Consider an open loop system with the nonlinear input-output relation y =
f (u). Assume that the system is closed with the proportional controller u = k(r−
y). Show that the input-output relation of the closed loop system is

y+
1

k
f−1(y) = r.

Estimate the largest deviation from ideal linear response y= r. Illustrate by plotting
the input output responses for a) f (u) =

√
u and b) f (u) = u2 with 0≤ u≤ 1 and

k = 5,10 and 100.

2.9 Consider the system in Section 2.2 where the controller was designed to give a
closed loop system characterized by ωc = 1 and ζ = 0.707. The transfer functions
of the process and the controller are

P(s) =
2

s+1
, C(s) =

0.207s+0.5

s
.

The response of the closed loop system to step command signals has a settling time
(time required to stay within 2% of the final value, see Figure 6.9) of 4/ζ ωc ≈
5.66. Assume that the attenuation of the load disturbances is satisfactory but that
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we want a closed loop system system that responds five times faster to command
signals without overshoot. Determine the transfer functions of a controller with the
architecture in Figure 2.19 that gives a response to command signals with a first
order dynamics. Simulate the system in the nominal case of a perfect model and
explore the effects of modeling errors by simulation.

2.10 Consider a queuing system modeled by

dx

dt
= λ −µmax

x

x+1
.

The model is nonlinear and the dynamics of the system changes significantly with
the queuing length; see Example 3.12. Investigate the situation when a PI controller
is used for admission control. The arrival intensity λ is then given by

λ = kp(r− x)+ ki

∫ t

(r(t)− x(t))dt.

The controller parameters are determined from the approximate model

dx

dt
= λ .

Find controller parameters that give the closed loop characteristic polynomial s2+
2s+ 1 for the approximate model. Investigate the behavior of the control strategy
for the nonlinear model by simulation for the input r = 5+4sin(0.1t).
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