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Chapter 2

Feedback Principles

Feedback – it is the fundamental principle that underlies all self-regulating
systems, not only machines but also the processes of life and the tides
of human affairs.

A. Tustin, “Feedback”, Scientific American, 1952 [Tus52].

This chapter presents examples that illustrate fundamental properties of feed-
back: disturbance attenuation, reference signal tracking, robustness to uncertainty,
and shaping of behavior. The analysis is based on simple static and dynamical mod-
els. After reading this chapter, readers should have some insight into the power of
feedback, they should know about transfer functions and block diagrams, and they
should be able to design simple feedback systems. The basic concepts described
in this chapter are explained in more detail in the remainder of the text, and this
chapter can be skipped for readers who prefer to move directly to the more detailed
analysis and design techniques.

2.1 Nonlinear Static Models

We will start by capturing the behavior of a process and a controller using static
models. Although these models are very simple, they give significant insight about
the fundamental properties of feedback: negative feedback increases the range of
linearity, it improves reference signal tracking, and it reduces the gain and the
effects of disturbances and parameter variations. Moderate positive feedback has
the opposite properties: it shrinks the range of linearity and increases the gain of
the system. At a critical value the gain becomes infinite and the system behaves like
a relay; larger values of the gain give hysteretic behavior. Although static models
give some insight, they cannot capture dynamic phenomena like stability. Positive
feedback combined with dynamics often leads to instability and oscillations, as will
be discussed toward the end of the chapter.

Consider the closed loop system whose block diagram is shown in Figure 2.1.
The closed loop system has a reference (or command) signal r that gives the desired
system output. The controller C has an input e that is the difference between the
reference r and the process output y, and the output of the controller is the control
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Figure 2.1: Block diagram of simple, static feedback system. The controller is a
constant gain k > 0 and the process is modeled by a nonlinear function F (x). The
process output is y, the control signal is u, the external signals are the reference
r, and the load disturbance v. The sign in the lower block indicates whether the
feedback is positive (+) or negative (−).

signal u. There is also a load disturbance v at the process input that perturbs the
system. Although we will mostly deal with negative feedback, this simple model
also permits analysis of positive feedback.

The process P is modeled as a function that is linear for inputs that are less
than one in magnitude and saturates for inputs of magnitude larger than one. The
controller is modeled by a constant gain k. Formally the process and the controller
are described by the functions

y = F (x) = sat(x) =






−1 if x ≤ −1,

x if |x| < 1,

1 if x ≥ 1,

and u = ke. (2.1)

The process is linear for |x| < 1, which is called the linear range. In this region
we have y = x and the process gain is 1. The controller gain is k because the
controller’s output u is k times its input e.

The open loop system is the combination of the controller and the process when
there is no feedback. Neglecting the disturbance v, it follows from equation (2.1)
that the input/output relation for the open loop system is

y = F (kr) = sat(kr). (2.2)

It has the gain k and linear range |r| < 1/k.

Response to Reference Signals

To explore how well the system output y can follow the reference signal r we assume
that the load disturbance v in Figure 2.1 is zero. We will first consider negative
feedback by setting the gain in the lower block of Figure 2.1 to −1. It follows from
Figure 2.1 and equation (2.1) that the closed loop system is described by

y = sat(u), u = k(r − y). (2.3)

Eliminating u in these equations we obtain

y = sat(k(r − y)). (2.4)

To find the relation between the reference r and the output y we have to solve an
algebraic equation. In the linear range |k(r − y)| < 1 we have y = k

k+1r. When
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Figure 2.2: Input/output behavior of the system: (a) for large negative feedback
(b) positive feedback k < 1 and (c) large positive feedback. The solid line is the
response of the closed loop system and the dashed line is the response of the open
loop system. Redrawn from [SDF18, Figure 20.5].

|k(r − y)| ≥ 1 the output saturates and we obtain y = ±1 (depending on the sign
of k(r − y)). It can be shown that the overall input/output relationship satisfies

y = sat
( k

k + 1
r
)
=






−1 if r ≤ −k+1
k ,

k
k+1r if |r| < k+1

k ,

1 if r ≥ k+1
k .

(2.5)

The linear range for the closed loop system is |r| < k+1
k . Comparing with equa-

tion (2.2) we find that negative feedback widens the linear range of the system by a
factor of k+1 compared to the open loop system. This is illustrated in Figure 2.2a,
which shows the input/output relations of the open loop system (dashed) and the
closed loop system (solid).

Robustness to Parameter Uncertainty

Next we will investigate the sensitivity of the closed loop system to gain variations.
The sensitivity of a system describes how changes in the system parameters affect
the performance of the system. For the open loop system in the linear range we
have y = kr and it thus follows that

dy

dk
= r =

y

k
=⇒ dy

y
=

dk

k
. (2.6)

The relative change of the output is thus equal to the relative change of the param-
eter and we say that the sensitivity is 1. Thus, for the open loop system, a change
in k of 10% will lead to a change in the output of 10%.

For the closed loop system with an input in the linear range, it follows from
equation (2.5) that

dy

dk
=

r

k + 1
− kr

(k + 1)2
=

r

(k + 1)2
=

y

k(k + 1)
,

and hence
dy

y
=

1

k + 1

dk

k
. (2.7)
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A comparison with equation (2.6) shows that negative feedback with gain k reduces
the sensitivity to gain variations by a factor of k+1. If k is 100, for example, a 10%
change in k would lead to less than a 0.1% change in y, so the closed loop system
is much less sensitive to parameter variation.

This type of analysis can also be used to investigate the effect of positive feed-
back. If the −1 in the feedback loop in Figure 2.1 is replaced by +1, equation (2.5)
becomes

y = sat
( k

−k + 1
r
)
. (2.8)

Notice that the gain of the closed loop system is positive and larger than the open
gain for k < 1, as shown in Figure 2.2b. The linear range is |r| < (1 − k)/k.
A comparison with the open loop system in equation (2.2) shows that positive
feedback with k < 1 shrinks the linear range by a factor of 1−k. As k approaches 1
the closed loop gain approaches infinity, the range shrinks to zero, and the system
behaves like a relay.

For positive feedback with k > 1 it follows from equation (2.8) that the closed
loop gain is negative, as shown in Figure 2.2c, and that it approaches −1 as k
approaches infinity. Positive feedback with large gains creates an input/output
characteristic with multiple output values possible for inputs in the range |r| <
k/(k + 1) and the closed loop system behaves like a switch with hysteresis. This
concept is explored in more detail in Section 2.6, and it is shown that if the process
has dynamics then all points where the input/output characteristics have negative
slope are unstable.

We will mostly deal with negative feedback but there are systems that employ
positive feedback, as illustrated in the following example.

Example 2.1 The Superregenerative Amplifier
Edwin Armstrong constructed a “superregenerative” radio receiver with only one
vacuum tube in 1914, when he was still an undergraduate at Columbia University.
The superregenerative amplifier can be modeled as an amplifier with open loop
gain k and a saturated output, combined with a positive feedback loop, as shown
in Figure 2.1. Using equation (2.8), we can compute the gain of the closed loop
system to be kcl = k/(1 − k). A very large closed loop gain can be obtained by
selecting a feedback gain k that is just below 1. Choosing k = 0.999 gives kcl = 999,
which is a gain increase of almost three orders of magnitude.

The drawback of using positive feedback is that the system is highly sensitive
and the gain has to be adjusted carefully to avoid oscillations. For example, if the
gain k is 0.99 instead of 0.999 (a difference of less than 1%), then the closed loop
gain becomes kcl = 99, a difference of 10X (or 1000%). The oscillatory nature of
this circuit requires the use of a more advanced (dynamic) model for analysis of the
amplifier.

Despite its limitations, this type of amplifier is still used in simple walkie-talkies,
garage door openers, and toys. ∇

Load Disturbance Attenuation

Another use of feedback is to reduce the effects of external disturbances, represented
by the signal v in Figure 2.1. For the open loop system, the output when v &= 0 is
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given by
y = sat(kr + v).

In the linear region we thus have a gain of 1 between v and y, so that disturbances
are passed through with no attenuation.

To investigate the effect of feedback on load disturbances we consider the system
in Figure 2.1 with negative feedback and, for simplicity, we set the reference signal
r to be zero. The relationship between the load disturbance v and the output y is
given by y = sat(v − ky), which is again an algebraic equation. In the linear range
we get y = v/(k + 1) and more generally it can be shown that

y = sat
( v

k + 1

)
. (2.9)

In the linear region, negative feedback thus reduces the effect of load disturbances
by the factor k + 1.

Combining these three sets of analyses, we see that negative feedback increases the
range of linearity of the system, decreases the sensitivity of the system to parameter
uncertainty, and attenuates load disturbances. The trade-off is that the closed
loop gain is decreased. Positive feedback has the opposite effect: it can increase
the closed loop gain, but at the cost of increased sensitivity and amplification of
disturbances.

2.2 Linear Dynamical Models

The analysis in the previous section was based on static models and the dynamics
of the process were neglected. We will now introduce a set of concepts and tools to
analyze the effects of dynamics. To do this we will introduce block diagrams, linear
differential equations, and transfer functions. The block diagram is an abstraction
that describes a system as an interconnection of blocks, whose input/output behav-
ior is described by differential equations. The transfer function, which is a function
of complex variables, is a convenient representation of the differential equations
describing the dynamics of the system. Transfer functions make it possible for us
to find the relations between the signals of a complex system represented by block
diagrams using simple algebra. The values of the transfer function on the imagi-
nary axis gives the steady-state response to sinusoidal signals, which means that the
transfer function can be determined experimentally from the steady-state response
to sinusoidal signals.

Linear Differential Equations and Transfer Functions

In many practical situations, the input/output behavior of a system can be modeled
by a linear differential equation of the form

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b0

dmu

dtm
+ b1

dm−1u

dtm−1
+ · · ·+ bmu, (2.10)

where u is the input, y is the output, and the coefficients ak and bk are real numbers.
The differential equation (2.10) is characterized by two polynomials

a(s) = sn + a1s
n−1 + · · ·+ an, b(s) = b0s

m + b1s
m−1 + · · ·+ bm, (2.11)
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where a(s) is the characteristic polynomial of the differential equation (2.10). We
assume that the polynomials a(s) and b(s) do not have common roots. (The con-
sequences of having common roots is discussed in Section 8.3.)

Equation (2.10) represents a time-invariant system because if the pair u(t),
y(t) satisfies the equation so does u(t + τ), y(t + τ). The equation is also linear
because if u1(t), y1(t), and u2(t), y2(t) satisfy the equation so does αu1(t)+βu2(t),
αy1(t) + βy2(t), where α and β are real numbers. Systems that are linear and
time-invariant are often called LTI systems. We can visualize these systems as
being characterized by a huge table of corresponding input/output signal pairs. An
interesting property of an LTI system is that it can be characterized by a single
carefully chosen pair, for example the response of the system to a step input.

The solution to equation (2.10) is the sum of two terms: the general solution to
the homogeneous equation, which does not depend on the input, and a particular
solution, which depends on the input. The homogeneous equation associated with
equation (2.10) is

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = 0. (2.12)

Letting sk represent the roots of the characteristic equation a(s) = 0, the solution
to equation (2.12) is of the form

y(t) =
n∑

k=1

Cke
skt (2.13)

if the characteristic polynomial does not have repeated roots. The coefficients
C1, . . . , Cn can be determined from the initial conditions at t = 0.

Since the coefficients ak are real, the roots of the characteristic equation are
either real-valued or occur in complex conjugate pairs. A real root sk of the char-
acteristic polynomial corresponds to the exponential function eskt. This function
decreases over time if sk is negative, is constant if sk = 0, and increases if sk is
positive, as shown in the top row of Figure 2.3. For real roots sk the parameter
T = 1/sk is called the time constant, because it describes how quickly the signal
decays.

A complex root sk = σ ± iω corresponds to the time functions

eσt sin (ωt), eσt cos (ωt),

which have oscillatory behavior, as illustrated in the bottom row of Figure 2.3. The
sine terms are shown as solid lines; they have zero crossings with the spacing π/ω.
The dashed lines show the envelopes, which correspond to the exponential function
±eσt.

When the characteristic equation has repeated roots, the solutions to the ho-
mogeneous equation (2.12) take the form

y(t) =
m∑

k=1

Ck(t)e
skt, (2.14)

where Ck(t) is a polynomial with degree less than the multiplicity of the root
sk. The solution (2.14) has

∑m
k=1(degCk + 1) = n free parameters. This case is

considered in more detail in Section 6.2.
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Figure 2.3: Examples of exponential signals. The top row corresponds to expo-
nential signals with a real exponent, and the bottom row corresponds to those with
complex exponents. The dashed line in the last two cases denotes the bounding
envelope for the oscillatory signals. In each case, if the real part of the exponent
is negative then the signal decays, while if the real part is positive then it grows.

Having explored the solution to the homogeneous equation, we now turn to
the input-dependent part of the solution. The solution to equation (2.10) for an
exponential input is of particular interest, as will be shown in the following. We set
u(t) = est, where s &= sk is a complex number, and investigate if there is a unique
particular solution of the form y(t) = G(s)est. Assuming this to be the case, we
find

du

dt
= sest,

d2u

dt2
= s2est, · · · dmu

dtm
= smest

dy

dt
= sG(s)est,

d2y

dt2
= s2G(s)est, · · · dny

dtn
= snG(s)est.

(2.15)

Inserting these expressions into the differential equation (2.10) gives

(sn + a1s
n−1 + · · ·+ an)G(s)est = (b0s

m + b1s
m−1 + · · ·+ bm)est

and hence

G(s) =
b0sm + b1sm−1 + · · ·+ bm
sn + a1sn−1 + · · ·+ an

=
b(s)

a(s)
. (2.16)

This function is called the transfer function of the system. It describes a particular
solution to the differential equation for the input est. Combining this with the
solution to the homogeneous equation, we find that a solution to the differential
equation (2.10) for the exponential input u(t) = est is

y(t) =
m∑

k=1

Ck(t)e
skt +G(s)est. (2.17)
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The relation between the transfer function (2.16) and the differential equa-
tion (2.10) is clear: the transfer function (2.16) can be obtained by inspection
from the differential equation (2.10), and conversely the differential equation can
be obtained from the transfer function if the polynomials a(s) and b(s) do not have
common factors. The transfer function G(s) can thus be regarded as a shorthand
notation for the differential equation (2.10). It is a complete characterization of
the differential equation even if it was derived as the response to a specific input
u(t) = est. We note that the input and the initial conditions must both be given to
obtain the full solution of the differential equation, given by equation (2.17), also
referred to as the response of the system.

To deal with oscillatory signals, like those shown in the bottom row of Figure 2.3,
we allow s to be a complex number. The transfer function G is then a function that
maps complex numbers to complex numbers. We let arg represent the argument
(phase, angle) of a complex number and | · | the magnitude, and note that the
complex response to an input u = eiωt = cosωt + i sinωt is given by G(iω)eiωt.
Using just the imaginary parts of the signals, it follows that the particular solution
for the input u = sin(ωt) = Im eiωt is

y(t) = Im
(
G(iω) eiωt

)
= Im

(
|G(iω)| ei argG(iω) eiωt

)

= |G(iω)| Im ei(argG(iω)+ωt) = |G(iω)| sin(ωt+ argG(iω)).

The input is thus amplified by |G(iω)| and the phase shift between input and output
is argG(iω). The functions G(iω), |G(iω)|, and argG(iω) are called the frequency
response, gain, and phase. Gain and phase are also called magnitude and angle.

When the input and the output are constant, u(t) = u0 and y(t) = y0, the
differential equation (2.10) has the particular solution y(t) = (bm/an)u0 = G(0)u0,
obtained by setting s = 0. The input is thus amplified by the factor G(0), which
is therefore called the zero frequency gain (or sometimes the static gain). If the
differential equation is stable then the solution will converge to G(0)u0 as t goes to
infinity.

The full response to an exponential input is the sum of a particular solution and
a solution to the homogeneous equation that is determined by the initial conditions,
as given in equation (2.17). An illustration is given in Figure 2.4 for the transfer
function G(s) = 1/(s + 1)2. The dashed line, which is a pure sine wave, is the
solution obtained when all Ck in equation (2.17) are zero. The solid line shows the
response obtained when the Ck are chosen so that y(0) and its derivatives y(k)(0),
k = 1, . . . , n − 1 are all zero. Since all roots of the characteristic polynomial have
negative real parts, the solution to the homogeneous equation (2.14) goes to zero
as t → ∞ and the general solution converges to the particular solution.

The transfer function has many interpretations that can be exploited for insight,
analysis, and design. The roots sk of the characteristic equation a(s) = 0 are called
poles of the transfer function: the transfer function is infinite for s = sk. The poles
sk appear as exponents in the general solution to the homogeneous equation, as
seen in equations (2.13) and (2.14). Systems with poles that are “lightly damped”
(Re(sk) is negative but close to zero) can exhibit resonances when a sinusoidal input
is applied whose frequency is near the imaginary part of sk.

The roots sj of the polynomial b(s) are called zeros of the transfer function.
The reason is that if b(sj) = 0 it follows that G(sj) = 0, and the particular solu-
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Figure 2.4: Two responses of a linear time-invariant system to a sinusoidal input.
The dashed line shows the output when the initial conditions are chosen so that
the output is purely sinusoidal. The solid line shows the response for the initial
conditions y(0) = 0 and y′(0) = 0. The transfer function is G(s) = 1/(s+ 1)2.

tion for the input eskt is then zero. A system theoretic interpretation is that the
transmission of the exponential signal esjt is blocked by the zero s = sj , which is
therefore also called a transmission zero.

The transfer function can also convey a great deal of intuition: G(0) is the zero
frequency gain for constant inputs and the frequency response G(iω) captures the
steady-state response to sinusoidal functions. The frequency response of a stable A○
system can be determined experimentally by exploring the steady-state response of
a system to sinusoidal signals. This is an alternative or a complement to physical
modeling. A more elaborate treatment of transfer functions and the frequency
response will be given in Chapter 9.

Stability: The Routh–Hurwitz Criterion

When using feedback there is always the danger that the system may become
unstable, and it is therefore important to have a stability criterion. The differential
equation (2.10) is called stable if all solutions of the homogeneous equation (2.12)
go to zero for any initial condition. It follows from equation (2.14) that this requires
that all the roots of the characteristic equation

a(s) = sn + a1s
n−1 + · · ·+ an = 0

have negative real parts.
It can often be difficult to analytically compute the roots of a high-order poly-

nomial. The Routh–Hurwitz criterion is a stability criterion that does not require
explicit calculation of the roots, because it gives conditions in terms of the coeffi-
cients of the characteristic polynomial.

We illustrate the Routh–Hurwitz criterion by describing it for low-order differ-
ential equations. A first-order differential equation is stable when the coefficient
a1 of the characteristic polynomial is positive, since the root of the characteristic

http://fbsbook.org
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polynomial will be s = −a1 < 0. A second-order polynomial has the roots

s =
1

2

(
−a1 ±

√
a21 − 4a2

)
,

and it is easy to verify that the real parts of the roots are both negative if and only
if a1 > 0 and a2 > 0. A third order differential equation is more complicated, but
the roots can be shown to have negative real parts if and only if

a1, a2, a3 > 0, and a1a2 > a3. (2.18)

The corresponding conditions for a fourth order differential equation are

a1, a2, a3, a4 > 0, a1a2 > a3, and a1a2a3 > a21 a4 + a23. (2.19)

The Routh–Hurwitz criterion [Gan60] gives similar conditions for arbitrarily high H○
order polynomials. Stability of a linear differential equation can thus be investi-
gated just by analyzing the signs of various combinations of the coefficients of the
characteristic polynomial.

Block Diagrams and Transfer Functions

As we saw already in Chapter 1, control systems are often described using block
diagrams, such as the ones shown in Figures 1.1 and 1.4. If the behavior of the
blocks are represented by transfer functions, the transfer function of a system can
be obtained simply by algebraic manipulations. It follows from equation (2.17) that
the transfer function can be derived from the particular solution for the input est.
To derive the transfer function for a system composed of several blocks, we assume
that the input signal is an exponential u(t) = est and compute the corresponding
particular solutions for all blocks.

Consider for example the system in Figure 2.5a, which is a series connec-
tion of two systems with the transfer functions G1(s) and G2(s). Let the in-
put of the system be u(t) = est and assume the system is stable so that we
focus just on the exponential response. The output of the first block is then
y1(t) = G1(s)est, which is also an exponential, and the output of the second system
is y(t) = G2(s)y1(s) = G2(s)G1(s)est = G2(s)G1(s)u(t). The transfer function of
the system is thus Gyu(s) = G2(s)G1(s), where we use the convention that the
right subscript is the input and the left subscript is the output, so that y = Gyuu.

Next we will consider parallel connections of systems as shown in Figure 2.5b.
Assuming that the input is u(t) = est, the exponential outputs of the blocks are
y1(t) = G1(s)est and y2(t) = Gs(s)est. The output of the system is then

y(t) = G1(s)e
st +G2(s)e

st =
(
G1(s) +G2(s)

)
est,

and the transfer function of a parallel connection of systems with the transfer
functions G(s) and G2(s) is thus Gyu(s) = G1(s) +G2(s).

Finally we will consider the feedback connection shown in Figure 2.5c. If the
input u(t) = est is an exponential we find

y(t) = G1(s)e(t) = G1(s)
(
u(t)−G2(s)y(t)

)
= G1(s)

(
est −G2(s)y(t)

)
.

http://fbsbook.org
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Figure 2.5: Interconnections of linear systems. Series (a), parallel (b) and feed-
back (c) connections are shown. The transfer functions for the composite systems
can be derived by algebraic manipulations assuming exponential functions for all
signals.

Solving for y(t) gives

y(t) =
G1(s)

1 +G1(s)G2(s)
est.

The transfer function of a feedback connection of systems with the transfer functions
G1(s) and G2(s) is thus

Gyu(s) =
G1(s)

1 +G1(s)G2(s)
. (2.20)

By using polynomials and transfer functions the relations between signals in a
feedback system can thus be obtained by algebra. With some practice the transfer
functions can often be obtained by inspection, as we explore in more detail in
Chapter 9.

Computations Using Transfer Functions

Many software packages for control system analysis and design permit direct ma-
nipulation of transfer functions. In MATLAB the transfer function

G(s) =
s+ 1

(s2 + 5s+ 6)

can be created by the commands s = tf(’s’) and G = (s + 1)/(s^2 + 5*s + 6). Given
two transfer functions G1 and G2, we can form series, parallel, and feedback inter-
connections using the commands Gs = series(G1, G2), Gp = parallel(G1, G2), and
Gf = feedback(G1, G2) (by default, MATLAB’s feedback() command uses nega-
tive feedback).

Software packages can also be used to compute the response of a linear in-
put/output system, represented by its transfer function, to different types of in-
puts. A common input that is used for performance characterization is a signal
that is 0 for t ≤ 0 and then 1 for t > 0. This type of input is called a “step input”
and the response of the system to a step input is called the step response of the
system. A typical step response for a linear system is shown in Figure 2.6. Some
standard features of a step response are the rise time Tr, settling time Ts, overshoot
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Figure 2.6: Sample step response. The rise time Tr, overshoot Mp, settling time
Ts, and steady-state value yss describe important performance properties of the
signal.

Mp, and steady-state value yss, as illustrated in the figure. The step response for
a transfer function G is generated by the MATLAB command y = step(G). If we
want to specify the simulation time interval explicitly, we can instead use the com-
mand y = step(G, T). The response to a specific input signal can be generated by
y = lsim(G, u, t), where u and t are the input and time vectors. Having a transfer
function, it is thus very easy to generate time responses.

A detailed presentation of transfer functions will be given in Chapter 9, where
we will see that transfer functions can also be used to represent systems with time
delays and systems described by partial differential equations.

2.3 Using Feedback to Attenuate Disturbances

Reducing the effects of disturbances is a primary use of feedback. It was used by
James Watt to make steam engines run at constant speed in spite of varying load
and by electrical engineers to make generators driven by water turbines deliver
electricity with constant frequency and voltage. Feedback is commonly used to
alleviate effects of disturbances in the process industry, for machine tools, and for
engine and cruise control in cars. The human body exploits feedback to keep body
temperature, blood pressure, and other important variables constant. For example
the pupillary reflex guarantees that the light intensity of the retina is reasonably
constant in spite of large variations in the ambient light intensity. Keeping vari-
ables close to a desired, constant reference value in spite of disturbances is called a
regulation problem.

To discuss disturbance attenuation we consider the system shown in Figure 2.7.
Since we will focus on the effects of a load disturbance v we will assume for now that
the reference r is zero. To derive the transfer functions from the disturbance input
v to the process output y, which we write as Gyv, we assume that the disturbance
is an exponential function v = est. Applying block diagram algebra to Figure 2.7
gives

y(t) = P (s)est − P (s)C(s)y(t) =⇒ y(t) =
P (s)

1 + P (s)C(s)
est.
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Figure 2.7: Block diagram of a simple feedback system. The controller transfer
function is C(s) and the process transfer function is P (s). The process output is
y, the external signals are the reference r and the load disturbance v.

The transfer function relating the output y to the load disturbance v is thus

Gyv(s) =
P (s)

1 + P (s)C(s)
. (2.21)

To explore the use of feedback to improve disturbance attenuation, we will focus
on a simple process modeled by the first-order differential equation

dy

dt
+ ay = bu, a > 0, b > 0.

The corresponding transfer function is

P (s) =
b

s+ a
. (2.22)

This model is a reasonable approximation for a physical process if the storage of
mass, momentum, or energy can be captured by a single state variable. Typical
examples are the velocity of a car on a road, the angular velocity of a rotating
system, and the fluid level of a tank.

Proportional Control

We will first investigate the case of proportional control, when the control signal
is proportional to the output error: u = kpe, as introduced already in Section 1.6.
The controller transfer function is then C(s) = kp. The process transfer function
is given by equation (2.22) and the effect of the disturbance on the output is then
described by the transfer function (2.21):

Gyv(s) =
P (s)

1 + P (s)C(s)
=

b/(s+ a)

1 + bkp/(s+ a)
=

b

s+ (a+ bkp)
.

The relation between the disturbance v and the output y is thus given by the
differential equation

dy

dt
+ (a+ bkp)y = bv.

The closed loop system is stable if a+ bkp > 0. A constant disturbance v = v0 then
gives an output that exponentially approaches the value

y0 = Gyv(0)v0 =
b

a+ bkp
v0
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Figure 2.8: Step responses for a first-order, closed loop system with proportional
control (a) and PI control (b). The process transfer function is P = 2/(s + 1).
The controller gains for proportional control are kp = 0, 0.5, 1, and 2. The PI
controller is designed using equation (2.28) with ζc = 0.707 and ωc = 0.707, 1, and
2, which gives the controller parameters kp = 0, 0.207, and 0.914 and ki = 0.25,
0.50, and 2.

with the time constant T = 1/(a + bkp). Without feedback, kp = 0 and for a
constant disturbance v0, the output will instead approach bv0/a. The effect of the
disturbance is thus reduced if kp > 0.

We have thus shown that a constant disturbance gives an error that can be
reduced by feedback using a proportional controller. The error decreases with
increasing controller gain. Figure 2.8a shows the responses for a few values of the
controller gain kp.

Proportional-Integral (PI) Control

The PI controller, introduced in Section 1.6, is described by

u(t) = kpe(t) + ki

∫ t

0
e(τ) dτ. (2.23)

To determine the transfer function of the controller we differentiate to obtain

du

dt
= kp

de

dt
+ kie,

and we find that the transfer function is C(s) = kp+ ki/s. To investigate the effect
of the disturbance v on the output we use the block diagram in Figure 2.7, and the
transfer function from v to y is

Gyv(s) =
P (s)

1 + P (s)C(s)
=

bs

s2 + (a+ bkp)s+ bki
. (2.24)
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Using the relationship between transfer functions and differential equations given by
equations (2.10) and (2.16), it follows that the relation between the load disturbance
and the output is given by the differential equation

d2y

dt2
+ (a+ bkp)

dy

dt
+ bkiy = b

dv

dt
. (2.25)

Notice that since the disturbance enters as a derivative on the right hand side,
a constant disturbance gives no steady-state error. The same conclusion can be
drawn from the observation that Gyv(0) = 0. This is consistent with the discussion
of integral action and steady-state error in Section 1.6.

To find suitable values of the controller parameters kp and ki, we consider the
characteristic polynomial of the differential equation (2.25),

acl(s) = s2 + (a+ bkp)s+ bki. (2.26)

We can assign arbitrary roots to the characteristic polynomial by choosing the
controller gains kp and ki. The most common case is that we assign complex roots
that give the characteristic polynomial

(s+ σd + iωd)(s+ σd − iωd) = s2 + 2σds+ σ2
d + ω2

d. (2.27)

By construction, this polynomial has roots at s = −σd± iωd. The general solution
to the homogeneous equation is then a linear combination of the terms

e−σdt sin(ωdt), e−σdt cos(ωdt),

which are damped sine and cosine functions, as shown in the lower middle plot
in Figure 2.3. The coefficient σd determines the decay rate and the parameter
ωd, called the damped frequency, gives the frequency of the decaying oscillation.
Identifying coefficients of equal powers of s in the polynomials (2.26) and (2.27)
gives

kp =
2σd − a

b
, ki =

σ2
d + ω2

d

b
. (2.28)

We can thus choose the controller gains to give a desired closed loop response.
Instead of parameterizing the closed loop system in terms of σd and ωd it is

common practice to use the (undamped) natural frequency ωc =
√
σ2
d + ω2

d and the
damping ratio ζc = σd/ωc. The closed loop characteristic polynomial is then

acl(s) = s2 + 2σds+ σ2
d + ω2

d = s2 + 2ζcωcs+ ω2
c .

This parameterization has the advantage that ζc, which is in the range [−1, 1],
determines the shape of the response and ωc gives the response speed.

Figure 2.8b shows the output y and the control signal u for ζc = 1/
√
2 ≈ 0.707

and different values of the design parameter ωc. Proportional control gives a steady-
state error that decreases with increasing controller gain kp. With PI control the
steady-state error is zero. Both the decay rate and the peak error decrease when
the design parameter ωc is increased. Larger controller gains give smaller errors
and control signals that react more quickly to the disturbance.
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With the controller parameters (2.28), the transfer function (2.24) from distur-
bance v to process output y becomes

Gyv(s) =
P (s)

1 + P (s)C(s)
=

bs

s2 + 2ζcωcs+ ω2
c

.

For efficient attenuation of disturbances, it is desirable that |Gyv(iω)| is small for
all ω. For small values of ω we have |Gyv(iω)| ≈ bω/ω2

c , while for large ω we have
|Gyv(iω)| ≈ b/ω. The largest value of |Gyv(iω)| is b/(2ζcωc) for ω = ωc. It thus
follows that a large value of ωc gives good load disturbance attenuation.

In summary, we find that transfer function analysis gives a simple way to find the
parameters of PI controllers for processes whose dynamics can be approximated by
a first-order system. The technique can be generalized to more complicated systems
but the controller will be more complex. To achieve the benefits of large control
gains the model must be accurate over wide frequency ranges, as will be discussed
next.

Unmodeled Dynamics

The analysis we have made so far indicates that there are no limits to the perfor-
mance that can be achieved. Figure 2.8b shows that arbitrarily fast response can
be obtained simply by making ωc sufficiently large. In reality there are of course
limits on what is achievable. One reason is that the controller gains increase with
ωc: the proportional gain is kp = (2ζcωc − a)/b and the integral gain is ki = ω2

c/b.
A large value of ωc thus gives large controller gains and the control signal may
saturate. Another reason is that the model (2.22) is a simplification: it is only
valid in a given frequency range. If the model is instead

P (s) =
b

(s+ a)(1 + sT )
, (2.29)

where the term 1 + sT represents the dynamics of sensors, actuators, or other
dynamics that were neglected when deriving equation (2.22)—so-called unmodeled
dynamics—the closed loop characteristic polynomial for the closed loop system
becomes

acl = s(s+ a)(1 + sT ) + b(kps+ ki) = s3T + s2(1 + aT ) + 2ζcωcs+ ω2
c .

It follows from the Routh–Hurwitz criterion (2.18) that the closed loop system is
stable if ω2

cT < 2ζcωc(1 + aT ) or if

ωcT < 2ζc(1 + aT ).

The frequency ωc and the achievable response time are thus limited by the unmod-
eled dynamics represented by T , which typically is smaller than the time constant
1/a of the process. When models are developed for control it is therefore important
to also consider the unmodeled dynamics.

The fact that unmodeled dynamics limit the performance of a feedback system
is an important property and must be considered during the system design. It is
common to use simplified models when designing components of complex systems



2.4. USING FEEDBACK TO TRACK REFERENCE SIGNALS 2-17

and if the unmodeled dynamics of those components (or the other subsystems they
interact with) are not properly taken into account, the implementation of the system
can display poor behavior (of which instability is one extreme example). As we shall
see in later chapters, it is the ability to reason about the effects of uncertainty that
makes control theory a particularly powerful mathematical tool for systems design.

2.4 Using Feedback to Track Reference Signals

Another major application of feedback is to make a system output follow a ref-
erence value, which is called the servo problem. Cruise control, steering of a car,
and tracking a satellite with an antenna or a star with a telescope are some exam-
ples. Other examples are high performance audio amplifiers, machine tools, and
industrial robots.

To illustrate reference signal tracking we will consider the system in Figure 2.7
where the process is a first-order system and the controller is a PI controller with
proportional gain kp and integral gain ki. The transfer functions of the process and
the controller are

P (s) =
b

s+ a
, C(s) =

kps+ ki
s

. (2.30)

Since we will focus on following the reference signal r, we will neglect the load
disturbance and set v = 0. Applying block diagram algebra to the system in
Figure 2.7, we find that the transfer function from the reference signal r to the
output y is

Gyr(s) =
P (s)C(s)

1 + P (s)C(s)
=

bkps+ bki
s2 + (a+ bkp)s+ bki

. (2.31)

Since Gyr(0) = 1 it follows that r = y when r and y are constant, independent of
the values of the parameters a and b, as long as the closed loop system is stable.
The steady-state output is thus equal to the reference, a consequence of the integral
action in the controller.

To determine suitable values of the controller parameters kp and ki, we pro-
ceed as in Section 2.3 by choosing controller parameters that make the closed loop
characteristic polynomial

acl(s) = s2 + (a+ bkp)s+ bki (2.32)

equal to s2 + 2ζcωcs+ ω2
c with ζc > 0 and ωc > 0. Identifying coefficients of equal

powers of s in these polynomials gives

kp =
2ζcωc − a

b
, ki =

ω2
c

b
, (2.33)

which is equivalent to equation (2.28). Notice that integral gain increases with the
square of ωc. Figure 2.9 shows the output signal y and the control signal u for
different values of the design parameters ζc and ωc. The response time decreases
with increasing ωc and the initial value of the control signal also increases because
it takes more effort to move rapidly. The overshoot decreases with increasing ζc.
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Figure 2.9: Responses to a unit step change in the reference signal for different
values of the design parameters ωc and ζc. The left figure shows responses for fixed
ζc = 0.707 and ωc = 1, 2, and 5. The right figure shows responses for ωc = 2 and
ζc = 0.5, 0.707, and 1. The process parameters are a = b = 1. The initial value of
the control signal is kp.

For ωc = 2, the design choice ζc = 1 gives a short settling time and a response
without overshoot.

It is desirable that the output y will track the reference signal r for time-varying
references. This means that we would like the transfer function Gyr(s) to be close
to 1 for large frequency ranges. With the controller parameters (2.33), it follows
from equation (2.31) that

Gyr(s) =
P (s)C(s)

1 + P (s)C(s)
=

(2ζcωc − a)s+ ω2
c

s2 + 2ζcωcs+ ω2
c

.

Since Gyr(0) = 1, tracking of constant inputs is perfect. In addition, if s = iω
is smaller in magnitude than ωc, then using some approximations it can be shown
that Gyr(s) will be close to one. The frequency ωc thus determines the upper bound
of the frequency of reference signals that can be tracked with small error, and this
bound is referred to as the bandwidth of the closed loop system. The frequency
response of Gyr therefore provides a quantitative representation of the tracking
abilities.

Controllers with Two Degrees of Freedom

The control law in Figure 2.7 has error feedback because the control signal u is
generated from the error e = r − y. With proportional control, a step in the
reference signal r gives an immediate step change in the control signal u. This
rapid reaction can be advantageous, but it may give large overshoot, which can be
avoided by a replacing the PI controller in equation (2.23) with a controller of the
form

u(t) = kp
(
βr(t)− y(t)

)
+ ki

∫ t

0
(r(τ)− y(τ)) dτ. (2.34)
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Figure 2.10: Block diagram of a closed loop system with a PI controller having
an architecture with two degrees of freedom.

In this modified PI algorithm, the proportional action only acts on the fraction β
of the reference signal. The signal transmissions from reference r to u and from
output y to u can be represented by the (open loop) transfer functions

Cur(s) = βkp +
ki
s
, −Cuy(s) = kp +

ki
s

= C(s). (2.35)

The controller (2.34) is called a controller with two degrees of freedom since the
transfer functions Cur(s) and Cuy(s) are different.

A block diagram of a closed loop system with a PI controller having two degrees
of freedom is shown in Figure 2.10. Let the process transfer function be P (s) =
b/(s + a). The transfer functions from reference r and disturbance v to output y
are

Gyr(s) =
bβkps+ bki

s2 + (a+ bkp)s+ bki
, Gyv(s) =

bs

s2 + (a+ bkp)s+ bki
. (2.36)

Comparing with the corresponding transfer function for a controller with error
feedback in equations (2.24) and (2.31), we find that the response to the load
disturbances is the same but the response to reference signals is different.

A simulation of the closed loop system for a = 0 and b = 1 is shown in Fig-
ure 2.11. The figure shows that the parameter β has a significant effect on the
responses. Comparing the system with error feedback (β = 1) to the system with
smaller values of β we find that using a system with two degrees of freedom gives
less overshoot and gentler control actions.
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Figure 2.11: Response to a step change in the reference signal for a system with
a PI controller having two degrees of freedom. The process transfer function is
P (s) = 1/s and the controller gains are kp = 1.414, ki = 1, and β = 0, 0.5, and 1.
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The example shows that reference signal response can be improved by using a
controller architecture having two degrees of freedom. In Section 12.4 we will further
show that the responses to reference signals and disturbances can be completely
separated by using a more general system architecture. To use a system with
two degrees of freedom both the reference signal r and the output signal y must
be measured. There are situations where only the error signal e = r − y can
be measured; typical examples are DVD players, optical memories, and atomic
force microscopes. In these cases, only single degree of freedom (error feedback)
controllers can be used.

2.5 Using Feedback to Provide Robustness

Feedback can be used to make good systems from imprecise components. Black’s
invention of the feedback amplifier for the telephone network is an early exam-
ple [Bla77]. Black used negative feedback to design extremely good amplifiers with
linear characteristics from components with nonlinear and time-varying properties.
Since signals are transmitted over long distances they must be amplified. At the
time, the thermionic valve—a type of vacuum tube invented by Lee de Forest in
1906—was the only available technology for amplifying electric signals until the
transistor was in invented in 1947. Vacuum tubes were the key to develop radio,
telephony, and electronics in the first half of the 20th century. They are still used
by some hi-fi aficionados in high quality audio amplifiers.

Vacuum tubes can give high gain but they have nonlinear and time varying
input/output characteristics that distort the transmitted signals. Bode [Bod60]
expressed the problem as follows:

Most of you with hi-fi systems are no doubt proud of the quality of your
amplifiers, but I doubt whether many of you would care to listen to the
sound after the signal had gone in succession through several dozen or
several hundred even of your fine amplifiers.

The effect is illustrated in Exercise 2.9.
Black’s idea to develop a good amplifier was to close a loop with negative feed- H○

back around the tube amplifier. In this way he could obtain a closed loop system
with a linear input/output relation having constant gain. The general recipe is to
localize the nonlinearities and the source of process variations, and to close feedback
loops around them.

Reducing Effects of Parameter Variations and Nonlinearities

Consider an amplifier with a static, nonlinear input/output relation with consider-
able parameter variability, as illustrated in Figure 2.12a. The nominal input/output
characteristic is shown as a dashed bold line and examples of variations as thin lines.
The nonlinearity in the figure is given by

y = F (u) = α(u+ βu3), −3 ≤ u ≤ 3. (2.37)

The nominal values corresponding to the dashed line are α = 0.2 and β = 1. The
variations of the parameters α and β are in the ranges 0.1 ≤ α ≤ 0.5, 0 ≤ β ≤ 2.

http://fbsbook.org
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Figure 2.12: Responses of a static nonlinear system. The left figure shows the in-
put/output relations of the open loop systems and the right figure shows responses
to the input signal (2.38). The ideal response is shown with solid bold lines. The
nominal response of the nonlinear system is shown using dashed bold lines and
the responses for different parameter values are shown using thin lines. Notice the
large variability in the responses.

The responses of the system to the input

u(t) = sin(t) + sin(πt) + sin(π2t) (2.38)

are shown in Figure 2.12b. The desired response y = u is shown as a solid bold line
and responses for a range of parameters are shown with thin lines. The nominal
response of the nonlinear system is shown as a dashed bold line, and we see that
it is distorted due to the nonlinearity. Notice in particular the heavy distortion for
both small and large signal amplitudes.

The behavior of the system is clearly not satisfactory, but it can be improved
significantly by introducing feedback. A block diagram of a system with a simple
integral controller is shown in Figure 2.13, where the reference input is now taken
as r. Figure 2.14 shows the behavior of the closed loop system with the same pa-
rameter variations as in Figure 2.12. The input/output plot in Figure 2.14a is a
scatter plot of the inputs and the outputs of the feedback system. The input/output
relation is practically linear and close to the desired response. There is some vari-
ability because of the dynamics introduced by the feedback. Figure 2.14b shows
the responses to the reference signal; notice the dramatic improvement compared
with Figure 2.12b. The tracking error is shown in Figure 2.14c.

−1

u
Σ

er
C = ki

s

y
P = F (u)

Figure 2.13: Block diagram of a nonlinear system with integral feedback.
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Figure 2.14: Responses of the systems with integral feedback (ki = 1000). The
left figure shows the input/output relationships for the closed loop systems, and
the center figure shows responses to the input signal (2.38) (compare to the corre-
sponding responses in Figure 2.12a and b). The right figure shows the individual
errors (solid lines) and the approximate error given by equation (2.42) (dashed
line).

Nonlinear Analysis and Approximations !

Analysis of a closed loop system with nonlinearities is often difficult. We can,
however, obtain significant insight by using approximations. We illustrate a few
ideas using the nonlinear amplifier example.

We first observe that the system is linear when β = 0. In other situations
we can approximate the nonlinear function by a straight line around an operating
point u = u0. The slope of the nonlinear function at u = u0 is F ′(u0) and we will
approximate the process with a linear system with the gain F ′(u0). The transfer
functions of the process and the controller are

P (s) = F ′(u0) = α(1 + 3βu2
0) =: b, C(s) =

ki
s
, (2.39)

where u0 denotes the operating condition. It follows from equation (2.21) that the
transfer functions relating the output y and the error e to the reference signal r are

Gyr(s) =
bki

s+ bki
, Ger(s) = 1−Gyr =

s

s+ bki
. (2.40)

The closed loop system is a first-order system with the pole s = −bki. The process
gain b = α(1 + 3βu2

0) depends on the values of α, β, and u0, and its smallest value
is 0.1. If the integral gain is chosen as ki = 1000, the smallest value of the closed
loop pole is 100 rad/s, which is fast compared to the high-frequency component
π2 rad/s of the input signal. It follows from equation (2.40) that the error e(t) is
given by the differential equation

de

dt
= −bkie+

dr

dt
,

dr

dt
= cos(t) + π cos(πt) + π2 cos(π2t). (2.41)

Neglecting the term de/dt in equation (2.41) gives

e(t) ≈ 1

bki

dr

dt
≈ π2

bki
cos(π2t). (2.42)
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Figure 2.15: Schematic diagram of the neural network that controls swimming
motions in the marine mollusk Tritonia, which has both positive and negative
feedback. An excitatory connection (positive feedback) is denoted with a line
ending with an arrow, an inhibitory interaction (negative feedback) is denoted
with an arrow ending with a circle. (Figure adapted from [Wil99].)

An estimate of the largest error e(t) ≈ 0.1 cos(π2t) is obtained for the smallest value
of b = 0.1. It is shown as a dashed line in Figure 2.14c, and we see that it gives a
good estimate of the maximum error across the uncertain parameter space.

This analysis is based on the assumption that the amplifier can be modeled
by a constant gain. The closed loop system is however a dynamic system because
the controller is an integrator. It follows from equation (2.40) that the closed loop
dynamics have the time constant Tcl = 1/(bki). If the amplifier has dynamics,
its time constant must thus be small compared to Tcl in order to provide good
tracking. It follows that the largest admissible integral gain ki is determined by the
unmodeled dynamics.

This example illustrates that feedback can be used to design an amplifier that
has practically linear input/output relation even if the basic amplifier is nonlinear
with strongly varying characteristics.

2.6 Positive Feedback

Most of this book is focused on negative feedback because of its amazingly good
properties, which have been illustrated in the previous sections. In this section we
will briefly discuss positive feedback, which has complementary properties. In spite
of this, positive feedback has found good use in several contexts.

Systems with negative feedback can be well understood by linear analysis. To
understand systems with positive feedback it is necessary to consider nonlinear ef-
fects, because without the nonlinearities the instability caused by positive feedback
will grow without bound. The nonlinear elements can create interesting and useful
effects by limiting the signals.

Positive feedback is common in many settings. Encouraging a student or a
coworker when they have performed well encourages them do to even better. In
biology, it is standard to distinguish inhibitory connections (negative feedback)
from excitatory feedback (positive feedback) as illustrated in Figure 2.15. Neurons
use a combination of positive and negative feedback to generate spikes.

Positive feedback may cause instabilities. Exponential growth, where the rate
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Figure 2.16: Circuit diagrams of William Hewlett’s oscillator. (a) Original sys-
tem with vacuum tubes. (b) Equivalent realization with an operational amplifier.

of change of a quantity x is proportional to x,

dx

dt
= αx,

is a typical example, which results in an unbounded solution x(t) = eαt. In nature,
exponential growth of a species is limited by the finite amount of food. Another
common example is when a microphone is placed close to a speaker in public address
systems, resulting in a howling noise. Positive feedback can create stampedes in
cattle herds, runs on banks, and boom-bust behavior. In all these cases there is
exponential growth that is finally limited by finite resources.

The notions of positive and negative feedback are clear if the feedback is static,
as we saw for example in Section 2.1. If the feedback is dynamic its action can
change from positive to negative depending on the frequency of the signals and
hence more care is required. Use of positive feedback will be illustrated by a few
examples.

Hewlett’s Oscillator

William Hewlett used positive and negative feedback very cleverly to design a stable
oscillator in his master’s thesis from Stanford University in 1939. The oscillator
was the first product made by Hewlett-Packard, the company that Hewlett founded
with David Packard in 1939 [Pac13].

Electronic circuits in the 1930s and 1940s were based on vacuum tube technol-
ogy. The simplest vacuum tube amplifier has three electrodes: a cathode, grid,
and anode enclosed in a glass tube with vacuum. The cathode, which is heated
with a filament, emits free electrons. A current is created by applying a high pos-
itive voltage between the anode and the cathode. The current can be regulated
by changing the voltage on a grid positioned between the anode and the cathode.
The current depends on the voltage difference between the grid and the cathode,
Vg − Vc. Increasing this voltage difference increases the current. The vacuum tube
amplifier can be regarded as a valve for controlling a current by applying a voltage
to the grid.

A schematic diagram of Hewlett’s oscillator is shown in Figure 2.16a. Signals
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Figure 2.17: Implementation of integral action by positive feedback.

are amplified by two vacuum tubes and there are two feedback loops. One loop
provides positive feedback from the anode of the second tube to the grid of the first
tube via the network R1, C1, R2, C2. The second feedback loop provides negative
feedback from the output of the second tube to the cathode of the first tube via the
resistor Rf and the lamp which has resistance Rb. With a proper gain the positive
feedback loop generates an oscillation with the frequency ω = 1/

√
R1R2C1C2. The

gain is given by the negative feedback loop from the anode of the second loop to
the cathode of the first loop, through the resistor Rf and the lamp Rb. This loop
has nonlinear gain because the resistance Rb of the lamp increases with increasing
temperature. An increase of the amplitude of Vout increases the current through
the lamp, which reduces the gain. The result is that an oscillation with stable
amplitude and frequency is obtained.

The feedback loops are more clearly visible in the implementation of the oscil-
lator based on an operational amplifier, shown in Figure 2.16b.

Implementation of Integral Action by Positive Feedback

Early feedback controllers made use of integral action that was implemented by
using positive feedback around a system with first order dynamics, as shown in the
block diagram of Figure 2.17. Intuitively the system can be explained as follows.
Proportional feedback typically gives a steady-state error. This can be overcome by
adding a bias signal that cancels the steady-state error. In Figure 2.17 the bias is
estimated by low-pass filtering the control signal and adding it back into the signal
path. This serves to compensate for any error that is present.

The circuit can be understood better by a little analysis. Using block diagram
algebra we find that the transfer function of the system is

Gue =
kp

1− 1/(1 + sTi)
= kp +

kp
sTi

,

which is a transfer function of a PI controller. This way of implementing integral
action is still used in many industrial regulators.

Positive Feedback Combined with Saturation

Systems with interesting and useful properties can be obtained by combining linear
and nonlinear components with positive feedback. In this section we consider an
example of a simple form of memory implemented using a feedback circuit.

Consider the system in Figure 2.18, which consists of a linear block with first-
order dynamics and a nonlinear block with positive feedback. Assume that the
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Figure 2.18: Block diagram of system with positive feedback and saturation.
The parameters are a = 1 and b = 4.

nonlinearity is

y = F (x) =
x

1 + |x| , which gives x = F−1(y) =
y

1− |y| .

The system is described by the differential equation F○

dx

dt
= −ax+ b(r + y) = b(r −G(y)), G(y) :=

aF−1(y)

b
− y =

ay

b(1− |y|) − y.

Rewriting the dynamics in terms of the variable y = F (x), we get the following
relation between the input r and the output y:

dy

dt
=

dF (x)

dt
=

dF (x)

dx

∣∣∣∣
F−1(y)

·
dx

dt
= F ′(F−1(y)

)
· b(r −G(y)). (2.43)

The function F is monotone with F ′(x) > 0 for all x and so the equilibrium points
for a constant input r are given by the solutions of r = G(y). The graph of the
function G is shown in Figure 2.19a for a = 1 and b = 4. The function G(y) has
a local maximum rmax = (1 −

√
a/b)2 = 0.25 at y = −1 +

√
a/b = −0.5 and a

local minimum rmin = −0.25 at y = 0.5. The set of possible equilibrium points
for the system can be determined from Figure 2.19a by fixing r and identifying all
values of y that satisfy r = G(y). There is one unique equilibrium if |r| > 0.25, two
equilibrium points if |r| = 0.25, and three equilibrium points if |r| < 0.25.

The differential equation (2.43) is of first order and the equilibrium point ye is
stable if G′(ye) is positive and unstable if G′(ye) is negative. Stable equilibrium
points are shown in solid lines and unstable equilibrium points by dashed lines in
Figure 2.19a. The differential equation thus has two stable equilibrium points when
rmin < r < rmax and one stable equilibrium point when |r| ≥ rmax.

To understand the behavior of the system, we will explore what happens when
the reference is changed. If the reference r is zero there are two stable equilibrium
points, as can be seen in Figure 2.19a by looking at the horizontal line at r = 0
(labeled C). We assume that the system is at the stable left equilibrium point,
where y is negative. If the reference is increased, the equilibrium point moves
slightly to the right. When the reference reaches the value 0.25, which corresponds
an unstable equilibrium, the solution moves towards the right stable equilibrium
point, where y is positive, as indicated by the line marked B in Figure 2.19a. If the
value of r is increased further, the output y also increases. The static input/output
relation is thus given by the “inverse function” y = G†(r), which gives the value(s)
of the stable output values as a function of r. The system has hysteretic behavior

https://fbsbook.org/faq/colonequal.html
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Figure 2.19: System with positive feedback and saturation. (a) For a fixed refer-
ence value r, the intersections with the curve r = G(y) corresponds to equilibrium
points for the system. Equilibrium points at selected values of r are shown by
circles (note that for some reference values there are multiple equilibrium points).
Arrows indicate the sign of the derivative of y away from the equilibrium points,
with the solid portions of r = G(y) representing stable equilibrium points and
dashed portions representing unstable equilibrium points. (b) The hysteretic in-
put/output map given by y = G†(r), showing that some values of r have single
equilibrium points while others have two possible (stable) steady-state output val-
ues. (c) Simulation of the system dynamics showing the reference r (dashed curve)
and the output y (solid curve).

as shown in Figure 2.19b, where the dashed line indicates the switches between the
branches of the solution curves, and they occur at r = ±rmax = ±0.25.

The temporal behavior of the system is illustrated by the simulations in Fig-
ure 2.19c, where the input r is dashed and the output y is solid. The shapes of
the signals depend on the parameters; the values a = 5, b = 50 were used in the
figure to give more distinct switches. The hysteresis width is 2rmax and the param-
eter a gives the sharpness of the corners of the output. The circuit shown in the
Figure 2.18 is commonly used as a trigger to detect changes in a signal (known as
a Schmitt trigger). It is also used as a memory element in solid state memories,
illustrating that feedback can be used to obtain discrete behavior.
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2.7 Further Reading

The books by Bennett [Ben79, Ben93] and Mindel [Min02, Min08] give interesting
perspective on the development of control. Much of the material touched upon in
this chapter is referred to as “classical control”; see [CM51], [JNP47], and [Tru55]
for early texts on this material. A more thorough introduction to the principles
of feedback with minimal mathematical prerequisites is available in the textbook
Feedback Control for Everyone [AM10]. The notion of controllers with two degrees
of freedom was introduced by Horowitz [Hor63].

The analysis introduced here will be elaborated in the rest of the book. Transfer
functions and other descriptions of dynamics are discussed in Chapters 3 and 9,
methods to investigate stability in Chapters 5 and 10. The simple method to
find parameters of controllers based on matching of coefficients of the closed loop
characteristic polynomial is developed further in Chapters 7, 8, and 13. Feedforward
control is discussed in Sections 8.5 and 12.4.

Exercises

2.1 (Transfer functions and differential equations) Let y ∈ R and u ∈ R. Solve the
differential equations

dy

dt
+ ay = bu,

d2y

dt2
+ 2

dy

dt
+ y = 2

du

dt
+ u,

for t > 0. Determine the responses to a unit step u(t) = 1 and the exponential
signal u(t) = est when the initial condition is zero. Derive the transfer functions of
the systems.

2.2 (Effect of zeros on time responses) Let y0(t) be the response of a system with the
transfer functionG0(s) to a given input. The transfer functionG(s) = (1+sT )G0(s)
has the same zero frequency gain but it has an additional zero at z = −1/T . Let
y(t) be the response of the system with the transfer function G(s) and show that

y(t) = y0(t) + T
dy0
dt

. (2.44)

Next consider the system with the transfer function

G(s) =
s+ a

a(s2 + 2s+ 1)
,

which has unit zero-frequency-gain (G(0) = 1). Use the result in equation (2.44)
to explore the effect of a zero at s = −1/T on the step response of a system.

2.3 (PI control) Consider a closed loop system with process dynamics and a PI
controller modeled by

dy

dt
+ ay = bu, u = kp(r − y) + ki

∫ t

0

(
r(τ)− y(τ)) dτ,

where r is the reference, u is the control variable, and y is the process output.
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(a) Derive a differential equation relating the output y to the reference r by direct
manipulation of the equations and compute the transfer function Hyr(s). Make
the derivations both by direct manipulation of the differential equations and by
polynomial algebra.

(b) Draw a block diagram of the system and derive the transfer functions of the
process P (s) and the controller C(s).

(c) Use block diagram algebra to compute the transfer function from reference r
to output y of the closed loop system and verify that your answer matches your
answer in part (a).

2.4 (Zero frequency gain) Consider the system described by the differential equa-
tion (2.10) and the transfer function (2.16). Determine the zero frequency gain of
the system by computing the particular solution of equation (2.10) for a constant
input u(t) = u0. Compare with the value of G(0).

2.5 (Pupil response) The dynamics of the pupillary reflex can be approximated by
a linear system with the transfer function

P (s) =
0.2(1− 0.1s)

(1 + 0.1s)3
.

Assume that the nervous system that controls the pupil opening is modeled as
a proportional controller with the gain k. Use the Routh–Hurwitz criterion to
determine the largest gain that gives a stable closed loop system.

2.6 (Parameter sensitivity) Consider the feedback system in Figure 2.7. Let the
disturbance v = 0, P (s) = 1 and C(s) = ki/s. Determine the transfer function Gyr

from reference r to output y. Also determine how much Gyr is changed when the
process gain changes by 10%.

2.7 (PID control design) The calculations in Section 2.3 can be interpreted as a
design method for a PI controller for a first-order system. A similar calculation can
be made for PID control of a second-order system. Let the transfer functions of the
process and the controller be

P (s) =
b

s2 + a1s+ a2
, C(s) = kp +

ki
s
+ kds.

Show that the controller parameters

kp =
(1 + 2αζc)ω2

c − a2
b

, ki =
αω3

c

b
, kd =

(α+ 2ζc)ωc − a1
b

give a closed loop system with the characteristic polynomial

(s2 + 2ζcωcs+ ω2
c )(s+ αωc).
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2.8 (Linear behavior via feedback) Consider an open loop system with the nonlin-
ear input/output relation y = F (u). Assume that the system is closed with the
proportional controller u = k(r − y). Show that the input/output relation of the
closed loop system is

y +
1

k
F−1(y) = r.

Estimate the largest deviation from ideal linear response y = r. Illustrate by
plotting the input output responses for a) F (u) =

√
u and b) F (u) = u2 with

0 ≤ u ≤ 1 and k = 5, 10, and 100.

2.9 (Nonlinear distortion) The following MATLAB commands will load and play
Handel’s Messiah:

load handel % Load Handel’s Messiah
sound(y, Fs); pause % Play the original music through speaker

Write a MATLAB function that implements a nonlinear amplifier with static gain

y = 2(z + az(1− z)− 0.5), z = (x+ 1)/2,

where x is the original signal (assumed to take values between −1 and 1) and a
is the amplifier gain. Compare the sound that is obtained when the music is then
sent through two amplifiers with the given nonlinearity and gain a = 1 versus when
the music is sent through the same two amplifiers with feedback k = 10.

2.10 (Queing systems) Consider a queuing system modeled by

dx

dt
= λ− µmax

x

x+ 1
,

where λ is the acceptance rate of jobs and x is the length of the queue. The model
is nonlinear and the dynamics of the system changes significantly with the queuing
length (see Example 3.15 for a more detailed discussion). Investigate the situation
when a PI controller is used for admission control. Let r be the rate of arrival of
job requests and model the (average) arrival intensity λ as

λ = kp(r − x) + ki

∫ t

(r(t)− x(t))dt.

The controller parameters are determined from the approximate model

dx

dt
= λ.

Find controller parameters that give the closed loop characteristic polynomial s2 +
2s+ 1 for the approximate model. Investigate the behavior of the control strategy
for the full nonlinear model by simulation for the input r = 5 + 4 sin(0.1t).
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