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Preface to the Second Edition

The second edition of Feedback Systems contains a variety of changes that are
based on feedback on the first edition, particularly in its use for introductory
courses in control. One of the primary comments from users of the text was that
the use of control tools for design purposes occured only after several chapters of
analytical tools, leaving the instructor having to try to convince students that the
techniques would soon be useful. In our own teaching, we find that we often use
design examples in the first few weeks of the class and use this to motivate the
various techniques that follow. This approach has been particularly useful in engi-
neering courses, where students are often eager to apply the tools to examples as
part of gaining insight into the methods. We also found that universities that have a
laboratory component attached to their controls class need to introduce some basic
design techniques early, so that students can be implementing control laws in the
laboratory in the early weeks of the course.

To help emphasize this more design-oriented flow, we have rearranged the ma-
terial in the first third of the book. Chapter 3 in the original text, which introduced
a number of examples in some detail, has been moved to an appendix, where it
can be assigned as needed when specific examples arise. In its place, we have put
a new chapter on “Feedback Principles” that illustrates some simple design prin-
ciples and tools that can be used to show students what types of problems can
be solved using feedback. This new chapter uses simple models, simulations and
elementary analysis techniques, so that it should be accessible to students from a
variety of engineering and scientific backgrounds. For courses in which students
have already been exposed to the basic ideas of feedback, perhaps in an earlier
discipline-specific course, this new chapter can easily be skipped without any loss
of continuity.

In addition to this relatively large change in the first portion of the book, we
have also taken the opportunity to make other smaller changes based on the feed-
back we have received from early adopters of the text.

We are indebted to numerous individuals who have taught out of the text and
sent us feedback on changes that would better serve their needs. In addition to the
many individuals listed in the preface to the first edition, we would like to also
thank Constantine Caramanis, Clancy Rowley and André Tits for their feedback
and insights.

Karl Johan Astrom Richard M. Murray
Lund, Sweden Pasadena, California






Chapter Three
Feedback Principles

Feedback - it is the fundamental principle that underlies all self-regulating systems, not only
machines but also the processes of life and the tides of human affairs.

A. Tustin, “Feedback”, Scientific American, 1952, [189].

This chapter presents examples that illustrate fundamental properties of feed-
back: disturbance attenuation, command signal following, robustness and shaping
of behavior. Simple methods for analysis and design of low order systems are in-
troduced. After reading this chapter, readers should have some insight into the
power of feedback, they should know about transfer functions and block diagrams
and be able to design simple feedback systems.

3.1 Mathematical Models

The fundamental properties of feedback will be illustrated using a collection of
examples. We need a modest set of concepts and tools to analyze simple feedback
systems: linear differential equations, transfer functions, block diagrams and block
diagram algebra. In addition we need a simulation tool. In this section we will
introduce some of these tools, refining them in further chapters.

Linear Differential Equations and Transfer Functions

In many practical situations, the input/output behavior of a system can be modeled
by a linear differential equation of the form

dny dn—l y d 1 u

din T g T Ay =y
where the coefficients a; and by, are real numbers. The model (3.1) is more general
than the model given by equation (2.7) in Section 2.2 because the right hand side
has terms with derivatives of the input. The differential equation (3.1) is character-
ized by two polynomials

(l(S) _ Sn_|_a1sl’l*1 +... +an’ b(s) = blsnil +b2Sn72+ te ‘I‘bna (32)

where a(s) is the characteristic polynomial of the differential equation (3.1).

The solution to equation (3.1) is the sum of two terms: the general solution to
the homogeneous equation, which does not depend on the input, and a particular
solution, which depends on the input. The particular solution is not unique unless
initial conditions or other conditions are imposed.

+ o+ bpu. 3.1)
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Real roots s < 0 Real root s = 0 Real roots s > 0

=050 0 1 ~ o5t

Complex roots ¢ < 0 Complex roots ¢ =0

. 1F o~ ]
\
05\ 1 /\
BN \ Y = 0
10 T A 2 NS
T
\ Ab M N

2 4 0 2 4
t t t

(a)Res <0 (b)Res =0 (c)Res >0

Figure 3.1: The exponential function y(r) = ¢*. The top row shows the function for real s,
the bottom row shows the function for complex s = ¢ + i®. The left column shows Res < 0,
the center column Re s = 0 and the right column Res > 0.

The homogeneous equation associated with equation (3.1) is

n n—1

d"y y

I +aj g +...4ay=0, 3.3)
and its general solution is a sum of exponentials, where the exponents are the roots
si of the characteristic equation a(s) = 0. If there are no multiple roots s; the
solution is

n
(1) =) G, (3.4)
k=1
where Cy, are arbitrary constants. The solution has n free parameters Cy,...,C,.

Since the coefficients gy are real, the roots of the characteristic equation are
real or complex conjugated pairs. A real root sy of the characteristic equation cor-
responds to the exponential function e**’. This function decreases over time if sy, is
negative, it is constant if s, = 0, and it increases if sy is positive, as shown in the
top row of Figure 3.1. For real roots sy the parameter T = 1/s; is the time constant.

A complex root s, = ¢ £ i@ corresponds to the time functions

% sin (wt), e® cos (mt),

which have oscillatory behavior, as illustrated in the bottom row of Figure 3.1.
The damped sine is shown in full lines and the damped cosine in dashed lines. The
dotted lines shows the envelopes, which correspond to the exponential function
+e%". The distance between zero crossings is 7/, and the ratio of successive
peaks is ¢297/@,

When the characteristic equation (3.4) has multiple roots, the solutions to the
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homogeneous equation (3.3) are
n
y(1) =Y Clt)e™, (3.5)
k=1

where Ci(t) is a polynomial with degree less than the multiplicity of the root sy.
The solution (3.5) has n free parameters which can be determined from initial
conditions.

Having explored the solution to the homogeneous equation, we now turn to the
input-dependent part of the solution. The solution to equation (3.1) for an expo-
nential input is of particular interest. We set u(r) = ¢* and investigate if there is a
unique particular solution of the form y(z) = G(s)e*. Assuming this to be the case,
we find

du du d"u

i se', 2= e, Y s"e a6
% =s5G(s)e”, Z? = 5°G(s)e", % =5"G(s)e"
The differential equation (3.1) then becomes
(s"+ars" 4 4a,)G(s)e" = (bys" +bys" 244 by,
and hence
Gls) = bis" L4 brs" 24+ b, _ b(s) 37

sttaps 4 ta,  als)
This function is called the transfer function of the system. It describes a particular
solution to the differential equation for the input ¢** and it is a convenient way to
characterize the system described by the differential equation.

To further show the relation between the transfer function and the differential
equation, introduce the differential operator p = d/dt. We have p? = d*/dt* and
the differential equation (3.1) can be written as

Ply+arp" 'yt any =b1p"utbyp" ut -+ byu,

or
(P"+arp” '+ tan)y = (bip" +bap" P+ by

The relation between the transfer function (3.7) and the differential equation (3.1)
is clear: the transfer function (3.7) can be obtained by inspection from the differen-
tial equation (3.1), and conversely the differential equation can be obtained from
the transfer function. The transfer function can thus be regarded as a shorthand
notation for the differential equation (3.1).

To deal with oscillatory signals, like those shown in Figure 3.1, it is convenient
to allow s to be a complex number. The transfer function is a function G: C — C
that maps complex numbers to complex numbers. The roots of the characteristic
equation a(s) = 0 are called poles of the transfer function. A pole s; appears as
exponent in the general solution to the homogeneous equation (3.4). The roots of
the polynomial b(s) are called zeros of the transfer function. The reason is that if
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b(s;) = 0 it follows that G(s¢) = 0, and the particular solution for the input e* is
zero. A system theoretic interpretation is that the transmission of the exponential
signal ¢** is blocked by the zero s = sy.

The particular solution for a constant input u(¢) = 1 is y(¢) = G(0). The quantity
G(0) is called the zero frequency gain or the static gain. The particular solution for
a sinusoidal input u = cos(®t) = Ree'® is

¥(t) = Re (G(iw) &™) = Re (|G(iw)| e/ EC1®) pior)
= |G(iw)|Re @0+ — |G (im)|cos(wt 4 arg G(iw)).

The input is thus amplified by the |G(i®)| and the phase shift between input and
output is arg G(i®), where arg denotes the angle of a complex variable. The func-
tions G(iw), |G(iw)| and arg G(iw) are called the frequency response, gain and
phase. The gain and the phase are also called magnitude and angle.

The actual response to a sine or a cosine function is the sum of a particular
solution and the general solution to the homogeneous equation (3.4) or (3.5). The
coefficients in the general solution can be determined from the initial conditions.
If all roots of the characteristic equation have negative real parts, all solutions to
the homogeneous equation go to zero and the general solution converges to the
particular solution as time increases.

The transfer function is a useful representation of a linear time-invariant sys-
tem. It has many physical interpretations that can be exploited for analysis and
design. The transfer function makes it possible to apply algebra to manipulate dy-
namical systems and to get insight into their behavior. The transfer function can
also convey a great deal of intuition: G(0) is the steady state gain for constant in-
puts and frequency response G(i®) captures the steady state response to sinusoidal
functions. The frequency response can be determined experimentally by exploring
the response of a system to sinusoidal signals. The approximations of G(s) for
small and large s captures the propagation of slow and fast signals respectively.
Consider for example the spring-mass system in equation (2.14), with input u and
output g, which has the transfer function

1

Gls) = ms®+cs+k
For small s we have G(s) ~ 1/k. The corresponding input-output relation is ¢ =
(1/k)u and the system behaves like a spring for low frequency input. For large
s we have G(s) ~ 1/(ms?). The corresponding differential equation is mg = u,
and the system behaves like mass (a double integrator) for high frequency inputs.
Approximations of transfer functions will be discussed more in Section 8.4.
More detailed discussions of transfer functions and the frequency response will
be given in later chapters, particularly in Chapter 8.

Transfer Functions and Laplace Transforms

We have defined transfer functions as a particular solution for the exponential input
¢*'. Transfer functions can also be conveniently defined using Laplace transforms.
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Let u(¢) be the input to the system (3.1) and let y(z) be the corresponding output
when the initial conditions are zero. Furthermore let U (s) and Y (s) be the Laplace
transforms of the input and the output

U(s) = /0 Ty, Y(s) = /0 " e ty()dt.

Y(s)
Uls)

The transfer function of the system is then simply G(s) =

Stability: The Routh-Hurwitz Criterion

When using feedback there is always the danger that the system may become un-
stable. It is therefore important to have a stability criterion. The differential equa-
tion (3.1) is called stable if all solutions of the homogeneous equation (3.3) go to
zero after a perturbation. It follows from equation (3.5) that this requires that all
the roots of the characteristic equation

a(s)=s"+a;s" '+ 4a,=0,

have negative real parts. The Routh-Hurwitz criterion is a stability criterion that
does not require calculation of the roots, because it gives conditions in terms of
the coefficients of the characteristic polynomial..

A first order differential equation is stable if the coefficient a; of the character-
istic polynomial is positive, since the zero of the characteristic polynomial will be
s = —aj < 0. A second order polynomial is stable if the coefficients a; and a; are
all positive. Since the roots are

1
s:i(—alzlz\/a%—4a2),

it is easy to verify that the real parts are negative if and only if a; > 0 and a» > 0.
A third order differential equation is more complicated, but the roots can be shown
to have negative real parts if the coefficients a, a; and as are all positive and if

ajax > as. (3.8)
A fourth order differential equation is stable if all coefficients are positive and if
ayaz > as, ajarasz > Cl% ag —i—a%. 3.9)

The Routh-Hurwitz criterion [78] gives similar conditions for arbitrarily high or-
der polynomials. Stability of a linear differential equation can thus be investigated
just by analyzing the signs of various combinations of the coefficients of the char-
acteristic polynomial.

Block Diagrams and Transfer Functions

Figure 3.2 shows a block diagram of a typical control system. If each block is
modeled as a high order differential equation (3.1), we need to find the differential
equation that relates the signals in the complete system. A block can be considered



 The Routh-Hurwitz stability criterion has an interesting history Ben79. Maxwell found that stability of simple feedback loops could be determined by investigating if all roots of the characteristic equation are in the left half plane. He derived the condition for third order equations and consulted his Cambridge colleague Routh, who gave the general solution. The Swiss turbine engineer Stodola at ETH was faced with the same problem when working with water turbines for electricity generation. He turned to his colleague Hurwitz, who solved the problem independently of Routh, using different techniques. The result is generally known as the Routh-Hurwitz criterion. 
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\

O Pls)

I

Figure 3.2: Block diagram of simple feedback system. The controller transfer function is
C(s) and the process transfer function is P(s). The process output is y, the external signals
are the reference r and the load disturbance v.

|

as a filter that generates the output from the input and the block is characterized by
its transfer function, which is a nice shorthand notation for the differential equation
describing the input-output relation.

Assume that the disturbance v is zero and that we want to find the differential
equation that describes how the output y is influenced by the reference signal r.
Let the transfer functions of the controller and the process be characterized by the
polynomials b.(s), ac(s), b,(s) and a,(s), so that

O

The corresponding differential equations are

ac(p)u(t) =be(p) (r(t) =y(1)),  ap(p)y(t) = bp(p)u(),

where we have introduced p = % to simplify the notation. Multiplying the first
equation by a,(p) and the second with a.(p) we find that

ac(p)ap(p)y(t) = ac(p)bp(p)u(t) = bp(p)be(p) (r(t) —y(t)).
Solving for y(z) gives

(ac(p)ap(p) +by(p)be(p)) (1) = bp(p) be(p) (1), 3.11)

which is the differential equation that relates the output to the reference. We see
that the polynomial notation makes it easy to manipulate differential equations.
Forming linear combinations of differential equations and their derivatives corre-
sponds to polynomial multiplication.

The differential equation (3.11) corresponds to the transfer function

bp(s)be(s) __P(s)C(s)

(3.10)

.= = 3.12
" ac(s)ap(s) +by(s)be(s) 1+ P(s)C(s) (3.12)
Proceeding in the same way we obtain the following transfer functions
C(s) P(s) —P(5)C(s)
Gy=——"~"", Gy =—""7""", Gy=——""~—~. (3.13
1+ P(s)C(s) M1 P(s)C(s) "1 P(s)C(s) (313)

By using polynomials and transfer functions the relations between signals in a
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feedback system can be obtained by algebra. The transfer functions relating two
signals can be obtained from the block diagram by inspection. The denominator is
always 1+ P(s)C(s) and the numerator is a product of the transfer functions be-
tween the signals, for example, the transfer functions from disturbance v to control
u in Figure 3.2 are P(s), —1 and C(s).

3.2 Using Feedback to Improve Disturbance Attenuation

Reducing the effects of disturbances is a primary use of feedback. It was used by
James Watt to make steam engines run at constant speed in spite of varying load
and by electrical engineers to make generators driven by water turbines deliver
electricity with constant frequency and voltage. Feedback is commonly used in
process control, in machine tool control, in power generation, and for engine and
cruise control in cars. In humans the pupillary reflex is used to make sure that the
light intensity of the retina is reasonably constant in spite of large variations in
the ambient light. The human body exploits feedback to keep body temperature,
blood pressure and other important variables constant. Keeping variables close to
a desired, constant reference values in spite of disturbances is called a regulation
problem.

Disturbance attenuation will be illustrated by control of a process whose dy-
namics can be approximated by a first order system. A block diagram of the sys-
tem is shown in Figure 3.2. Since we will focus on the effects of a load disturbance
v we will assume that the reference r is zero. The transfer functions G,, and G,,
relating the output y and the control u to the load disturbance are given by equa-
tion (3.13). For simplicity we will assume that the process is modeled by the first
order differential equation

d
d—);Jray:bu, a>0, b>0.
A straightforward calculation gives the transfer function
b
P(s) = . 3.14
()= - (3.14)

A first order system is a reasonable model of a physical system if the storage of
mass, momentum or energy can be captured by one state variable. Typical exam-
ples are the velocity of a car on a road, the angular velocity of rotating system and
the level of a tank.

Proportional Control

We will first investigate the case of proportional (P) control, when the control
signal is proportional to the output error: u = kje, see Section 1.4. The controller
transfer function is then C(s) = k,. The effect of the disturbance on the output is
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0 2 4 6 8 0 2 4 6 8
at at
(a) Proportional control (P) (b) Proportional-Integral control (PI)

Figure 3.3: Responses of open and closed loop system with proportional control (a) and PI
control (b). The process transfer function is P = 2/(s + 1). The controller gains for propor-
tional control are k, = 0, 0.5, 1 and 2. The PI controller is designed using equation (3.20)
with { =0.707 and @, = 0.707, 1 and 2, which gives the controller parameters k,=0,0.207,
0.914 and k; = 0.25, 0.50 and 2.

described by the transfer function

b

G =
w(s) s+a+ bk,
The relation between the disturbance v and the output y is thus given by the differ-
ential equation
dy

I + (a+bkp)y = bv.

The closed loop system is stable if a + bk, > 0. A constant disturbance v = v then
gives an output that approaches the steady state value

Vo
yo =Gy, (0) = a+ bk, Vo,

exponentially with the time constant 7 = 1/(a + bk,). Without feedback k, = 0
and a constant disturbance vy thus gives the steady state error vy/a. The error
decreases when using feedback if k, > 0.

We have thus shown that a constant disturbance gives an error that can be re-
duced by feedback using a proportional controller. The error decreases with in-
creasing controller gain. Figure 3.3 shows the responses for a few values of con-
troller gain k.
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Proportional-Integral (Pl) Control

The PI controller, introduced in Section 1.4, is described by

u(t) = kpe(r) + K /0 "e(1)dx. (3.15)

To determine the transfer function of the controller we differentiate, hence

du de

iy ST

ar var e
and we find by inspection that the transfer function is C(s) = kj, + k;/s. To inves-
tigate the effect of the disturbance v on the output we use the block diagram in
Figure 3.2 and we find by inspection that the transfer function from v to y is

P
P& _ ) . (3.16)
1+P(s)C(s)  s*>+ (a+bky)s+bk;

The relation between the load disturbance and the output is thus given by the dif-
ferential equation

Gy (s)

2
%+(a+bkp)%+bkiy: % (3.17)
Notice that, since the disturbance enters as a derivative in the right hand side, a
constant disturbance gives no steady state error. The same conclusion can be drawn
from the observation that G,,(0) = 0. Compare with the discussion of integral
action and steady state error in Section 1.4.
To find suitable values of the controller parameters k, and k; we consider the

characteristic polynomial of the differential equation (3.17),
ac(s) = s> + (a+bky)s + bk;. (3.18)

We can assign arbitrary roots to the characteristic polynomial by choosing the
controller gains k), and k;, and we choose controller parameters that give the char-
acteristic polynomial

(s+0+in)(s+0—iw)=s>+205+ 0>+ 0. (3.19)

This polynomial has roots at s = —¢ =i ®. The general solution to the homoge-
neous equation is then a linear combination of the terms
e %'sin(wt), e %'sin(wt),

which are damped sine and cosine functions, as shown in the lower left plot in
Figure 3.1. The coefficient o determines the decay rate and the parameter @ gives
the frequency of the decaying oscillation. Identifying coefficients of equal powers
of s in the polynomials (3.18) and (3.19) gives

20 —a o’ + w?
ky, = b ki = by

Instead of parameterizing the closed loop system in terms of o and ® it is
common practice to use the undamped natural frequency @. = v/ 6%+ ®* and the

(3.20)
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damping ratio { = o /®,. The closed loop characteristic polynomial is then
ac(s) = s + 205+ 6% 4+ 0* = 5> + 2 a5 + P

This parameterization has the advantage that { determines the shape of the re-
sponse and that @, gives the response speed.

Figure 3.3 shows the output y and the control signal u for { = 0.707 and dif-
ferent values of w.. Proportional control gives a steady-state error which decreases
with increasing controller gain. With PI control the steady-state error is zero. Both
the decay rate and the peak error decrease when the design parameter @, is in-
creased. Larger controller gains give smaller errors and control signals that react
faster to the disturbance. To achieve the benefits of large control gains the model
must be accurate over wide frequency ranges.

In summary, we find that the analysis gives a simple way to find the parameters
of PI controllers for processes whose dynamics can be approximated by a first
order system. The technique can be generalized to more complicated systems but
the controller will be more complex.

Unmodeled Dynamics

The design we have made indicate that there are no limits to the performance that
can be achieved. Figure 3.3 shows that arbitrarily fast response can be obtained
simply by making w. sufficiently large. In reality there are of course limitations
to what can be achieved. One reason is that the controller gains increase with
@, the integral gain is k; = ch /b. A large value of @, thus gives large controller
gains and the actuator may saturate. Another reason is that the model (3.14) is a
simplification, it is only valid in a given frequency range. If the model is instead

b

P(s) = ST (3.21)

where the term 1 4 s7 represents dynamics in sensors or actuators or other dynam-
ics that was neglected when deriving (3.14), so-called unmodeled dynamics, the
closed loop characteristic polynomial for the closed loop system becomes

aq = s(s+a)(1+5T) +kps+ki = s°T +s*(1 +aT) + 28 s + 0.

It follows from the Routh-Hurwitz criterion (3.8) that the closed loop system is
stable if 02T < 2{@.(1+aT) orif

) 2C(1;—aT)'

The frequency @, and the achievable response time are thus limited by the unmod-
eled dynamics represented by T'.
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3.3 Using Feedback to Follow Command Signals

Another major application of feedback is to make a system output follow a com-
mand signal. It is called the servo problem. Cruise control and steering of a car,
tracking a satellite with an antenna or a star with a telescope are some examples.
Other examples are high performance audio amplifiers, machine tools and indus-
trial robots.

To illustrate command signal following we will consider the system in Fig-
ure 3.2 where the process is a first order system and the controller is a PI controller.
The transfer functions of the process and the controller are

b k ki
P(s) pS+

= , C(s) = +——. 3.22

s+a (s) s ( )
Since we will focus on command signal following we will neglect the load distur-
bance, v = 0. It follows from equation (3.12) that the transfer function from the
command signal r to the output y is

o _ P(s)C(s) bk s + bk;
ls) = L+P(s)C(s) s+ (a+bkp)s +bk;’

Since Gy,(0) = 1 it follows that r = y when r and y are constant, independent of
the parameters a and b. The output is thus equal to the reference in steady state, a
useful property of controllers with integral action.

To determine suitable values of the controller parameters k, and k; we proceed
as in Section 3.2 by choosing controller parameters that makes the closed-loop
characteristic polynomial

(3.23)

ac(s) = s* + (a+bky)s + bk; (3.24)

equal to s> +2¢ w.s + w?. Identifying coefficients of equal powers of s in these
polynomials give

20w, —a »?
k,= ——F— k= —*<. 3.25

Notice that integral gain increases with the square of @.. Figure 3.4 shows the
output signal y and the control signal u for different values of the design parameters
¢ and .. The response time decreases with increasing @, and the initial value of
the control signal also increases because it takes more effort to move rapidly. The
overshoot decreases with increasing §. For @, = 2, the design choice { = 1 gives
a short settling time and a response without overshoot.

It is desirable that the output y will track the reference r for time-varying refer-
ences. This means that we would like the transfer function G, (s) to be close to 1
for large frequency ranges.With the chosen design we have

(28w, —a)s + »?
52+ 20 w5+ 02

Gyr(s) =

It is thus desirable to have a large @, to be able to track fast changes in the reference
signal. Plotting the frequency response of G,, gives a quantitative representation
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Figure 3.4: Responses to a step change in the command signal for different values of the
design parameters. The left figure shows responses for fixed { = 0.707 and @, = 1, 2 and
5. The right figure shows responses for @, = 2 and { = 0.5, 0.707, and 1. The process
parameters are a = b = 1.

of the tracking abilities.

Controllers with Two Degrees of Freedom

The control law in Figure 3.2 has error feedback because the control signal u is
generated from the error e = r —y. With proportional control, a step in the reference
signal gives an immediate step change in the control signal. This rapid reaction can
be an advantageous, but it may give a large overshoot, which can be avoided by a
replacing the PI controller in equation (3.15) with

) = ko (Br() —3(0) +i [ (1)~ y(0)r, (3.26)

In this modified PI algorithm, the proportional action only acts on the fraction 8 of

the reference signal. The transfer functions from reference r to # and from output

y to u are

ki k
)

Cuy(s) = kp+ — = C(s). (3.27)

N

Cur(s) = Bk, + "
The controller (3.26) is is called a controller with two degrees of freedom since the
transfer functions C,,(s) and Cyy(s) are different.

A block diagram of a closed loop system with a PI controller having two de-
grees of freedom is shown in Figure 3.5. Let the process transfer function be
P(s) = b/(s+ a). The transfer functions from reference r and disturbance v to
output y are

bBk,s + bk; s
) Gy(s) = .
52+ (a+bky,)s + bk; 52+ (a+ bky)s + bk;

Gyr(s) = (3.28)
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Figure 3.5: Block diagram of a closed-loop system with a PI controller having two degrees
of freedom.

Comparing with the corresponding transfer function for a controller with error
feedback in equations (3.16) and (3.23) we find that the responses to the load
disturbances are the same but the response to reference values are different.

A simulation of the closed loop system for @ = 0 and b = 1 is shown in Fig-
ure 3.6. The figure shows that the parameter 3 has a significant effect on the re-
sponses. Comparing the system with error feedback (B = 1) with the system with
smaller values of 8 we find that using a system with two degrees of freedom gives
the same settling time with less overshoot and gentler control actions.

The example shows that command signal response can be improved by using
a controller architecture having two degrees of freedom. In Section 3.6 we will
show that the responses to command signals and disturbances can be completely
separated by using a more general system architecture. To use a system with two
degrees of freedom both the reference signal and the command signals must be
available. There are situations where only the error signal can be measured, typical
examples are DVD players, optical memories and atomic force microscopes.

15 15
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0 2 4 6 8 10 0 2 4 6 8 10

Figure 3.6: Response to a step change in the command signal for a system with a PI con-
troller having two degrees of freedom. The process transfer function is P(s) = 1/s and the
controller gains are k, = 1.414, k; = 1 and p=0,0.5and 1.
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3.4 Using Feedback to Provide Robustness

Feedback can be used to make good systems from poor components. The devel-
opment of the electric feedback amplifier for transmission of telephone signals is
an early example [29]. Design of amplifiers with constant linear gain was a ma-
jor problem. The basic component in the amplifier was the vacuum tube, which
was nonlinear and time varying. A major accomplishment was the invention of
the feedback amplifier. The idea is to close a feedback loop by arranging a feed-
back loop around the vacuum tube, which gives a closed loop system with a linear
input/output relation with constant gain.

The idea to use feedback to linearize input/output characteristics and to make
it insensitive to process variations is common. The recipe is to localize the source
of the variations and to close feedback loops around them. This idea is used ex-
tensively to obtain linear amplifiers and actuators, and to reduce effects of friction
in mechanical systems. We will illustrate with a simple model of an electronic
amplifier.

A Nonlinear Amplifier

Consider an amplifier with a static, nonlinear input/output relation with consider-
able variability as illustrated in Figure 3.7a. The nominal input/output character-
istics is shown in heavy dashed line and examples of variations in thin lines. The
nonlinearity in the figure is actually

y=f)=oa(@+pu’), —3<u<3. (3.29)

The nominal values corresponding to the dashed line are &« = 0.2 and 8 = 1. The
variations of the parameters o and f3 are in the ranges 0.1 < @ < 0.5,0 < B <2.
The responses of the system to the input

r(t) = sin(t) + sin(mr) + sin(w’t). (3.30)

are shown in Figure 3.7b. The desired response y = u is shown in heavy full lines
and responses for a range of parameters are shown in thin lines. The nominal re-
sponse of the nonlinear system is shown in heavy dashed lines. It is distorted due to
the nonlinearity. Notice in particular the heavy distortion both for small and large
signal amplitudes. The behavior of the system is clearly not satisfactory.

The behavior of the system can be improved significantly by introducing feed-
back. A block diagram of a system with a simple integral controller is shown in
Figure 3.8. Figure 3.9 shows the behavior of the closed loop system with the same
parameter variations as in Figure 3.7. The input/output plot in Figure 3.9a is a
scatter plot of the inputs and the outputs of the feedback system. The input out-
put relation is practically linear and close to the desired response. There is some
variability because the feedback introduces dynamics. Figure 3.9b shows the re-
sponses to the reference signal, notice the dramatic improvement compared with
Figure 3.7b. Figure 3.9c shows the tracking error.



 Black, the inventor of the negative feedback amplifier, had the following to say black1977: ``Few rosier dreams could be dreamt than that of an amplifier whose overall performance is perfectly constant, and in whose output distortion constitutes only one hundredth of a millionth of the total energy, although the component parts may be far from linear in their response and their gain may vary over a considerable range.'' 
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(a) Input/output relationship (b) Output response

Figure 3.7: Response of a nonlinear system. The left figure shows the input/output relation
of the open-loop system and the right figure shows responses to the input signal. The nominal
response of the nonlinear system is shown in dashed thick lines and the variations of the
response due to parameter variations is shown in thin lines. The ideal response is shown in
full thick lines.

Analysis

Analysis of the closed loop system is difficult because it is nonlinear. We can how-
ever obtain significant insight by using approximations. We first observe that the
system is linear when 8 = 0. In other situations we will approximate the nonlin-
ear function by a straight line around an operating point u = ug. The slope of the
nonlinear function at u = ug is f’(up) and we will approximate the process with a
linear system with the gain f’(up). The transfer functions of the process and the
controller are

P(s)=b,  b=oa(l+3Bud), C(s):%, (3.31)

where ug denotes the operating condition. The process gain b = a(1 +3fu3) is
in the range 0.1-27.5 depending on the values of o, and ug. It follows from
equation (3.13) that the transfer functions relating the output y and the error e to
the reference signal are

Gy (s)

- bki N
- S—i—bki’

Ger(s) =1—G,, (3.32)

B S—Fbkl"

fu)

Figure 3.8: Block diagram of a nonlinear system with integral feedback.
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Figure 3.9: Responses of the system with integral feedback. The left plot, is a scatter plot of
inputs and outputs. The center plot shows the response of the closed loop system to the input

signal r, and the right plot shows the control error. The parameter variations are the same as
in Figure 3.7. Notice the dramatic improvement compared to Figure 3.7b

The closed loop system is a first-order system with the pole s = —bk; and the time
constant 7 = 1/(bk;). The integral gain is chosen as k; = 1000. The closed loop
pole ranges from 100 rad /s to 2.75 x 10* rad /s, which is fast compared to the high
frequency component 9.9 rad/s of the input signal.

The error for the approximated system is described by the differential equation

de dr dr 5 5
i —bkie + o i cos(t) + mcos(mt) + w~ cos(mwt). (3.33)

The fast frequency component of the input (3.30) has the frequency 7> = 9.8; it is
slower than the process dynamics for all parameter variations and we have

e~ — —. (3.34)

This estimate is shown as the dashed line in Figure 3.9c. The peak error is ap-
proximately 72 /(bk;) = 0.1 when bk; = 100. The error deviates significantly from
the estimate (3.34) because the system is nonlinear. It follows from (3.34) that the
error is smaller when bk; > 50, which explains why the dashed line in Figure 3.9¢
is an upper bound.

This analysis has given a simple procedure to design an integrating controller
for a system whose dynamics can be approximated by a static model. Design is
essentially the choice of a single parameter: the integral gain of the controller. The
closed loop transfer function from reference to output is given by equation (3.32)
where integral gain is k; = 1/(bT,;) where T,; is the desired time constant of the
closed loop system. The integral gain is inversely proportional to 7;; and the largest
integral gain is limited by unmodeled dynamics.

The example illustrates that feedback can be used to design an amplifier that
has practically linear input/output relation even if the basic amplifier is nonlinear
with strongly varying characteristics.



3.5. USING FEEDBACK TO SHAPE BEHAVIOR 75

Figure 3.10: Schematic digram of two aircrafts. The aircraft at the top is stable because it
has the center of pressure CP behind the center of mass CM. The aircraft at the bottom is
unstable because the positions of center of mass and center of pressure are reversed.

3.5 Using Feedback to Shape Behavior

The regulation and servo problems discussed in Sections 3.2 and 3.3 are classical
applications of feedback. In Section 3.4 it was shown that feedback can be used
to obtain stable linear input/output behavior for a nonlinear system with strong
variability. In this section we will show how feedback can be used to shape the
dynamic behavior of a system.

Collision avoidance is a useful behavior of moving robots. Feedback is used in
automobiles to create behaviors that avoid locking brakes, skids and collision with
pedestrians. Feedback is used to make the dynamic behavior of airplanes invariant
to operating conditions. Feedback is also an essential element of human balancing
and locomotion.

Bacteria use simple feedback mechanisms to search for areas where there is
high concentration of food or light. The principle is to sense a variable and to
make exploratory moves to see if the concentration increases. A similar mechanism
can be used to avoid harmful substances. Optimization is also used in computer
systems to maintain maximum throughput of servers.

Stabilization

Stabilizing an unstable system is a typical example of how feedback can be used
to change behavior. Many systems are naturally unstable. The ability to stand up-
right, walk and run has given humans many advantages but it requires stabiliza-
tion. Stability and maneuverability are conflicting goals in vehicle design. The
ship designer Minorsky realized that there was a trade-off between maneuverable
and stability and he emphasized that a stable ship is difficult to steer. The Wright
Flyer, which was maneuverable but unstable, inspired Sperry to design an autopi-
lot. Feedback has been used extensively in aircraft, from simple systems for sta-
bility augmentation to systems that provide full autonomy.

Military airplanes gain significant competitive advantage by making them un-
stable. Schematic pictures of two airplanes are shown in Figure 3.10. The positions
of the center of mass CM and the center of pressure CP are key elements. To be
stable the center of pressure must be behind of the center of mass. The center of
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pressure of an aircraft shifts backwards when a plane goes supersonic. If the plane
is stable at subsonic speeds it becomes even more stable at supersonic speeds be-
cause of the long distance between CM and CP. Large forces and large control
surfaces are then required to maneuver the airplane and the plane will be more
sluggish. A more balanced design is obtained by placing the center of pressure in
front of the center of mass at subsonic speeds. Such a plane will have superior per-
formance, but it is unstable at subsonic speeds, i.e. at takeoff and landing. When
the control system is mission critical there are strong demands on the robustness
and reliability of the control system.

Stabilization of an inverted pendulum is a prototype example. Consider the
cart—pendulum discussed in Examples 2.1 and 2.2. Neglecting damping, assuming
that the cart is much heavier than the pendulum and assuming that the tilt angle 6
is small, equation (2.10) can be approximated by the differential equation

J;6 —mgl6 = u. (3.35)
The transfer function of the open loop system is
1 2
Geu = m, Clcl(S) = JtS —mgl

The system is unstable because it has a pole s = \/mgl/J; = @y in the right half
plane. It can be stabilized with a proportional-derivative (PD) controller that has

the transfer function
C(s) = —kgs —kp. (3.36)

The closed-loop characteristic polynomial is
aq(s) = Jis? +kys+ (kp, —mgl),

and all of its roots are in the left half plane if k, > mgl.
One way to find controller parameters is to choose the controller gains so that
the characteristic polynomial has natural frequency @, and damping ratio ¢, hence

kg =28acd,  k,=Ja}+mgl.
Choosing ®? = ax moves the open loop poles from +wy to —wy £iv/1 — {2 ay.
The controller gains are then k, = 2mgl and k; = 2{+/mglJ;. The control law

(3.36) stabilizes the pendulum but is does not stabilize the motion of the cart. To
do this it is necessary to introduce feedback from cart position and cart velocity.

The Segway

The Segway discussed in Example 2.1 is essentially a pendulum on a cart and
can be modeled by equation (2.9) with an added torque 7 on the pendulum that is
exerted by the person leaning on the platform. Hence

M,p—mlO = u, —mlp+J,0 —mgl = —,

where u is the force generated by the motor and 7 is the torque generated by the
lean of the rider. Since the Segway is similar to the inverted pendulum on a cart, we
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will explore if the feedback (3.36) can be used to stabilize the system. The closed
loop system is described by

M,p—mlb = —ks0 — k0, —mlp+J,0 —mgld = —.
Elimination of j gives
(MyJ; — m*1%)8 +mlky0 +ml(k, —M,g)8 = —M,T

Since M,J; > m?[?, the differential equation is stable if k, > M;g. To find out how
the tilt influences the forward motion we eliminate 0 and its derivatives and we
find that the transfer function relating forward acceleration to 7 is

—m? 5% + mlkgs + mlk), _k
(MyJ; —m212)s2 + mikgs +ml(k, —M,g) ~ k,— Mg

Gl'jq::_

where the approximation is valid for small s. The feedback (3.36), which stabi-
lizes the Segway, thus creates a behavior where the acceleration is proportional to
the torque 7. Stabilizing the tilt angle thus gives a mechanism where the forward
acceleration is proportional to the forward tilt torque.

Impedance Control and Haptics

Changing behavior of a mechanical system is common in robotics and haptics.
Position control is not sufficient when industrial robots are used for grinding, pol-
ishing and assembly. The robot can be brought into proximity with the workspace
by position control but to carry out the operations it is desirable to shape how
the force depends on the distance between the tool and the workspace. A spring-
like behavior is an example. The general problem is to create a behavior speci-
fied by a given differential equation between force and motion, a procedure called
impedance control. Similar situations occur in teleoperation in hazardous environ-
ment or in telesurgery. In this situation the workpiece is operated remotely using a
joystick. It is useful for the operator to have some indication of the forces between
the tool and the workpiece. This can be accomplished by generating a force on the
operators joystick that mimics the force on the workpiece.

Figure 3.11 shows two haptic input devices. The systems are pen-like with
levers or gimbals containing angle sensors and force actuation. By sensing position
and orientation, and generating a force depending on position and velocity, it is
possible to create a behavior that simulates touching real or virtual objects. Forces
that simulate friction and surface structure can also be generated.

We illustrate the principle with a joystick having a low friction joint. Let J be
the moment of inertia, and let the actuation torque and the external torque from the
operator be T and T, respectively. The equation of motion is

d’6
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Figure 3.11: Haptic devices, the left figure shows the PHANTOMTM and the right a system
is developed by Quanser.

By measuring the angle 0 and its first two derivatives we can create the feedback

do d’e
Ta:kp(er—e)—kdz—kaﬁ
The closed loop system is then
d’e do
J+ky)—— +ks—+k,(0-0,)=T.
(J+ka) - Fka— -+ Ky )

The feedback has thus provided virtual inertia k,, virtual damping k; and virtual
spring action k. If no torque is applied the joystick will assume the orientation
given by the reference signal 0,. If a the user applies a torque the joystick will
behave like a damped spring-mass system.

3.6 Feedback and Feedforward

Feedback and feedforward have complementary properties. Feedback only acts
when there are deviations between the actual and the desired behavior, feedfor-
ward acts on planned behavior. Some of the properties are summarized in Ta-
ble 3.1. In economics feedback represents a market economy and feedforward a
plan economy. Feedback and feedforward can be combined to improve response
to command signals and to reduce the effect of disturbances that can be measured.

Table 3.1: Properties of feedback and feedforward

Feedback Feedforward
Closed loop Open loop
Acts on deviations Acts on plans
Robust to model uncertainty Sensitive to model uncertainty
Risk for instability No risk for instability
Sensitive to measurement noise | Insensitive to measurement noise
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Figure 3.12: Obtaining a system with the desired transfer function G, (s) by pure feedfor-
ward. The process transfer function is P(s), the feedforward compensator has the transfer
function G(s) = P~ (s)Gm(s)

Feedforward and System Inversion

To explore feedforward control we will first investigate command signal following.
Consider the system modeled by the differential equation (3.1):

dny 4 ly 4 1 u

din gt e by =0y
Assume that we want to find a control signal u that gives the response y,. It follows
from (3.1) that the control signal is given by
dn—lu dnyr dn—lyr
T +...+bu= a +a g
This equation is called the inverse of equation (3.1) because it is obtained by ex-
changing inputs and outputs. If the transfer function of the original system is P(s),
the transfer function of the inverse system is simply P~!(s).

Consider a system with the transfer function P(s), and assume that we want to
find a feedforward controller so that the response to command signals is given by
the transfer function F,(s), as shown in Figure 3.12. The feedforward compensator
is then

+...+byu.

by + ... +ayy,, (3.37)

Gii(s) = P~ 1(s)Gm(s) (3.38)

because P(s)G(s) = Gm(s). Design of a feedforward compensator is thus closely
related to system inversion.

There are problems with system inversion since the inverse may require dif-
ferentiations and it may be unstable. If b # 0 we have G~!(s) ~ s/b; for large
s, which implies that to obtain a bounded control signal we must require that the
reference signal has a smooth first derivative. If b; = 0 we must similarly require
that the reference signal has a smooth second derivative.

Difficulties with Feedforward Compensation

Let the process and the desired response have the transfer functions

1 w?

P(s)= .  Fu(s)= e .
O =G = Sres e

The feedforward transfer function is then given by equation (3.38), hence

o oZ(s+1)
52420 wes + @2

Fr =P (s)E,(s)
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Figure 3.13: Outputs y (top plots) and feedforward signals (lower plots) for w, = 1 (left) 10
(center) and 100 right. The outputs are identical apart from the time scale, but the control
signals required to generate the output differs significantly. Notice that the largest value
increases significantly with increasing @,.

Figure 3.13 shows the outputs y and the feedforward signals ug for different values
of .. Notice that large control signals required naturally are required to obtain fast
responses. Achievable performance is thus limited by the size of admissible control
signals.

Another difficulty with feedforward is that the inverse process dynamics may
be unstable, and the feedforward signal may then be infinitely large as time in-
creases. To have a bounded feedforward signal it follows from equation (3.38) that
the transfer function G,, must have the same right half-plane zero as the process.
Right-half plane process zeros thus limit what can be achieved with feedforward.

Let the process and the desired response be characterized by the transfer func-
tions | 21 )

- o (1—s
PO =55 Y= arenrar

Since the process has a right half plane zero at s = 1 the inverse model is unstable
and it follows from equation (3.38) that we must require that the transfer function
of the desired response has the same zero. Equation (3.38) gives the feedforward
transfer function

_ oX(s+1)?
2420 wes + @2

F ff (S ) (3 39)
Figure 3.14 shows the outputs y and the feedforward signals for different values
of w.. The response to the command signal always goes in the wrong direction
initially because of the right half plane zero at s = 1. This effect, called inverse
response, is barely noticeable if the response is slow (@, = 1) but increases with
increasing response speed. For @, = 5 the undershoot is more than 200%. The
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Figure 3.14: Outputs y (top plots) and feedforward signals (lower plots) for @, = 1 (left) 10
(center) and 100 (right) for a unit step command in the reference signal. The dashed curve
shows the response that could be achieved if the process did not have the right half plane
Zero.

right half plane zero thus severely limits the response time. The behavior of the
control signal changes qualitatively with @,. To understand what happens we note
that the zero frequency gain of the transfer function (3.39) is F;(0) = 1 and that
the high frequency gain is Fi(c0) = @?. The initial value of the control signal is
thus ug(0) = Ff(c0)@? r and the final value is ug(c0) = F¢(0) r. For @. = 0.2 the
control signal grows from 0.04 to the final value 1 with a small overshoot. For
o, = 1 the control signal starts from 1 has an overshoot and settles on the final
value. For @, = 5 the control signals starts at 25 and decays towards the final value
1 with an undershoot.

Sensitivity to Process Variations

The transfer function from reference r to output y of a system with pure feedfor-
ward control is

Gyr(s) = P(s)Fi(s). (3.40)

To find the sensitivity of Gy, to variations in the process transfer function p we
take logarithm of equation (3.40) and differentiate to obtain

dGy.(s)  dP(s)
Guls) ~ Pl

(3.41)

The relative variations in the system with feedforward is the same as those in the
process and is thus sensitive to process variations.
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Figure 3.15: Block diagram of a closed loop system with a controller having an architecture
with two degrees of freedom. The signals y,, and ug are generated by feedforward from the
reference r. The feedback controller C(s) acts on the control error e = yp, — y and generates
the feedback control signal ug,.

Combining Feedforward with Feedback

Since feedback can give systems that are robust to model uncertainties it seems nat-
ural to combine feedforward with feedback. The architecture of such a controller is
shown in the block diagram of Figure 3.15. The controller has three blocks repre-
senting the feedback transfer function C(s) and the feedforward transfer functions
Fn, and F;. The desired response to command signals is y, = Fr, 7, which is the
reference signal to the controller C(s). The feedback signal ug, is generated by the
feedback controller C(s) that acts on the error e = yy, — y. The feedforward signal
ug = Fyr is designed to make the process give a response that is close to the desired
output y,,. The control signal is the sum of the feedforward us and the feedback
signals ug,. The controller architecture in Figure 3.15 is highly intuitive. The feed-
forward signal ug generates the ideal output y = yp,, the error is then zero and the
feedback signal uy, is zero. All control is thus handled by the feedforward action.
If there are modeling errors, the error e will not be zero and the feedback controller
C(s) will make corrections.

The controller in Figure 3.15 is a generalization of the controller with two
degrees of freedom introduced in Section 3.3 (see Figure 3.5). A nice property is
that it gives a separation of command signal following, robustness and disturbance
attenuation. Command signal following is dealt with by design of the feedforward
transfer functions Fy, and F;. Robustness and disturbance attenuation is dealt with
by design of the feedback transfer function C(s).

The transfer function from r to y for the system in Figure 3.15 is

P(F;+CEy) PF;— Fy,
Gy=——"—"""=Fpy+——. 3.42
7 1+PC m T pC (342)
The transfer function Gy, is equal to Gy, if Fy, and F; are chosen so that
Fin(s) = P(s)Fz(s). (3.43)

The process transfer function imposes limitations on the choice of the transfer
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Figure 3.16: Using Feedback and feedforward to reduce the effect of a disturbance v that
can be measured.

function Fy,. The transfer functions relating the output to disturbances are

B P(s) _ C(s)
Gyv(s) = W’ GuW(s) - _W

These transfer functions do not depend on the feedforward feedforward transfer
functions. The system controller shown in Figure 3.15 admits a decoupling of the
response to command signals to response to disturbances. The feedback controller
C(s) is designed to give robustness to process variations and attenuation of load
disturbances. The desired response to command signals is obtained by design of
the feedforward signal generator.

To investigate the effect of process uncertainty we consider the case of small
variations. Taking the logarithm of Gy, in equation (3.44) gives

log Gy, = log P +log (Fy + CFy) —log (1 4+ PC).

(3.44)

Differentiating with respect to P gives the following expression for the sensitivity
dGy(s) _dP(s)  C(s)dP(s) 1 dP(s)
Gyr(s) P(s) 1+P(s)C(s) 14+P(s)C(s) P(s)

The relative error in the closed loop transfer function G, (s) can thus be smaller

than the relative error in the process transfer function P(s) for frequencies where

P(s)C(s) is large. Compare with the corresponding expression (3.41) for pure feed-
forward. It is thus useful to combine feedback and feedforward.

(3.45)

Using Feedforward to Attenuate of Measured Disturbances

Feedforward can also be used to mitigate the effect of disturbances that can be
measured. Such a scheme is shown in Figure 3.16. The process transfer function P
is composed of two factors, P = P; P>. A measured disturbance v enters at the input
of process section P». The measured disturbance is fed to the process input via the
feedforward transfer function Fyy.

The transfer function from the disturbance v to process output y is

(1 —PFy)

Gy(s) = e (3.46)
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s SFkn

Primary Output
microphone N G(s)
A
Secondary n
————»  Filter = F(s)
microphone
(a) Schematic diagram (b) Block diagram

Figure 3.17: Schematic and block diagrams for noise cancellation.

This equation shows that there are two ways of reducing the disturbance. The trans-
fer function 1 — P Fyy can be made small by a proper choice of the feedforward
transfer function Fy. In feedback compensation the effect of the disturbance is
instead reduced by making the loop transfer function PC large. Feedforward to
makes the error small by subtraction. Feedback instead makes the error small by
dividing with 1+ PC. An immediate consequence is that feedforward is more sen-
sitive than feedback since we are trying to match two terms. Feedback gives better
robustness but there is a risk of instability. Feedback and feedforward are therefore
complementary, and we again can see that it is useful to combine them.

Feedforward is most effective when the disturbance v enters early in the pro-
cess. This occurs when most of the dynamics are in process section P,. When
P; =1, and therefore P, = P, the ideal feedforward compensator is realizable, and
the effects of the disturbance can be eliminated from the process output y. On the
other hand, when the dynamics enter late in the process, so that P; =~ P, the effects
of the disturbance are seen in the process output y at the same time as they appear
in the feedforward signal. In this case, there is no advantage of using feedforward
compared to feedback.

Noise cancellation is a common example of use of feedforward to cancel ef-
fects of disturbances. Consider, for example, a pilot that has to communicate in
a noisy cabin. The environmental noise will seriously deteriorate the communi-
cation because the pilots microphone will pick up ambient noise. The noise can
be reduced significantly by using two microphones as illustrated in Figure 3.17.
The primary microphone is directed towards the pilot. It picks up the pilots voice
and ambient noise. The second microphone is directed away from the pilot and it
picks up the ambient noise. The effect of the noise can be reduced by filtering the
signal from the secondary microphone and subtracting it from the signal from the
primary microphone. A block diagram of the system is shown in Figure 3.17b. The
transfer function G(s) represents the dynamics of the acoustic transmission from
the secondary microphone to the first microphone. The transfer function F(s) is
the transfer function of the filter. To cancel the effect of the noise the transfer func-
tion F(s) should be close to G(s). Since the noise transmission depends on the
situation, for example how the pilot turns his head, it is common to let the filter
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be adaptive so that it can adjust, as described later in Example 4.16. Noise cancel-
lation has many applications, in headphones, to create noise-free spaces by active
noise control, or to measure electrocardiogram and heartbeat of mother and fetus.

3.7 Further Reading

The books by Bennett [28, 29] and Mindel [146, 147] give interesting perspective
on the development of control. Much of the material touched upon in this chapter
is classical control see [107], [50] and [188].The notion of controllers with two de-
grees of freedom was introduced by Horowitz [99]. The analysis will be elaborated
in the rest of the book. Transfer functions and other descriptions of dynamics are
discussed in Chapters 5 and 8, methods to investigate stability in Chapter 9. The
simple method to find parameters of controllers based on matching of coefficients
of the closed loop characteristic polynomial is developed further in Chapters ??,
?? and 12. Feedforward control is discussed in Section 7.5.

Exercises

3.1 Lety € R and u € R. Solve the differential equations

dy d?y dy du
- — b —_— 27 = 27 .
ar T gp e Y= st

Determine the responses to a unit step u(7) = 1 and the exponential signal u(r) = e*
when the initial condition is zero. Derive the transfer functions of the systems.

3.2 Let yy(r) be the response of a system with the transfer function Go(s) to a given
input. The transfer function G(s) = (1 + s7)Go(s) has the same zero frequency
gain but it has an additional zero at z = —1/T. Let y(¢) be the response of the
system with the transfer function G(s), show that

dyo
¥(t) = yo(t) +T7yz’ (3.47)
Then cosider the system with the transfer function
s+a
G = ————
(s) a(s?+2s+1)’
which has unit zero-frequency-gain (G(0) = 1). Use the result in equation (3.47)
to explore the effect of the zero s = —a on the step response of a system.

3.3 Consider a process and a controller modeled by

dy

Yora=bu =kt /Ot(r(f) —y(0))dr,

where r is the reference, u the control variable and y the process output. Derive a
differential equation relating the output y to the difference by direct manipulation
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of the equations. Draw a block diagram of the system. Derive the transfer functions
of the process and the controller. Compute the transfer function from reference r to
output y of the closed loop system. Make the derivations both by direct manipula-
tion of the system equations and by polynomial algebra. Compare the results with
a direct determination of the transfer functions by inspection of the block diagram.

3.4 The dynamics of the pupillary reflex is approximated by a linear system with
the transfer function
~0.2(1—-0.1s)

) =501y

Assume that the nerve system that control the pupil opening is be modeled as a
proportional controller with the gain k. Use Routh-Hurwitz theorem to determine
the largest gain that gives a stable closed loop system.

3.5 A simple model for the relation between speed v and throttle u for a car is

given by the transfer function )

B s+a
where b = 1 m/s” and a = 0.025 rad/s, see Appendix A.3. The control signal is

normalized to the range 0 < u < 1. Design a PI controller for the system that gives
a closed loop system with the characteristic polynomial

G

aq(s) = s> + 2L s + .

What are the consequences of choosing different values of the design parameters
{ and @.. Use you judgment to find suitable values. Hint: Investigate maximum
acceleration and maximum velocity for step changes in the velocity reference.

3.6 Consider the feedback system in Figure 3.2. Let the disturbance v=0, P(s) = 1
and C(s) = k;/s. Determine the transfer function Gy, from reference r to output y.
Also determine how much G,, is changed when the process gain changes by 10%.

3.7 The calculations in Section 3.2 can be interpreted as a design method for a
PI controller for a first order system. A similar calculation can be made for PID
control of the second order system. Let the transfer functions of the process and
the controller be

b

Pls) = ——
(5) s2+ais+ay’

Show that the controller parameters

ki
C(S) == kp—|— ; —|—de.

(1+208)0? —ay aw? (o +28) e —ay
kp = b ; ki = kg = p )

give a closed loop system with the characteristic polynomial

(s> +28 s + @) (s + aw.).
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3.8 Consider an open loop system with the nonlinear input-output relation y =
f(u). Assume that the system is closed with the proportional controller u = k(r —
y). Show that the input-output relation of the closed loop system is

| B B
y-l-%f () =r.

Estimate the largest deviation from ideal linear response y = r. Illustrate by plotting
the input output responses for a) f(u) = /u and b) f(u) = u* with 0 < u < 1 and
k=15,10 and 100.

3.9 Consider the system in Section 3.2 where the controller was designed to give a
closed loop system characterized by @. = 1 and { = 0.707. The transfer functions
of the process and the controller are

2 0.2075+0.5
P(s) _ 000

RN C(s) E

The response of the closed loop system to command signals has a settling time
(time required to stay within 2% of the final value, see Figure 5.9) of 4/{ . ~
5.66 Assume that the attenuation of the load disturbances is satisfactory but that
we want a closed loop system system that responds five times faster to command
signals without overshoot. Determine the transfer functions of a controller with the
architecture in Figure 3.15 that gives a response to command signals with a first
order dynamics. Simulate the system in the nominal case of a perfect model and
explore the effects of modeling errors by simulation.

3.10 Consider a queuing system modeled by
dx X
—=A- —
dt umaxx +1

The model is nonlinear and the dynamics of the systems changes significantly with
the queuing length, see Example 2.11. Investigate the situation when a PI controller
is used for admission control. The arrival intensity A is then given by

t
A=ky(r—x)+hk / (r(t) — x(1))dt.
The controller parameters are determined from the approximate model
dx
|
dt
Find controller parameters that give the closed loop characteristic polynomial s> +

25+ 1 for the approximate model. Investigate the behavior of the control strategy
for the nonlinear model by simulation for the input r = 5 +4sin(0.17).
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