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Chapter Three
Feedback Principles

Feedback - it is the fundamental principle that underlies all self-regulating systems, not only

machines but also the processes of life and the tides of human affairs.

A. Tustin, “Feedback”, Scientific American, 1952, [Tus52].

This chapter presents examples that illustrate fundamental properties of feed-
back: disturbance attenuation, command signal following, robustness and shaping
of behavior. Simple methods for analysis and design of low order systems are in-
troduced. After reading this chapter, readers should have some insight into the
power of feedback, they should know about transfer functions and block diagrams
and be able to design simple feedback systems.

3.1 Mathematical Models

The fundamental properties of feedback will be illustrated using a collection of
examples. We need a modest set of concepts and tools to analyze simple feedback
systems: linear differential equations, transfer functions, block diagrams and block
diagram algebra. In addition we need a simulation tool. In this section we will
introduce some of these tools, refining them in further chapters.

Linear Differential Equations and Transfer Functions

In many practical situations, the input/output behavior of a system can be modeled
by a linear differential equation of the form

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = b1

dn−1u

dtn−1
+ · · ·+bnu. (3.1)

where u is the input, y is the output and the coefficients ak and bk are real num-
bers. The model (3.1) is more general than the model given by equation (2.7) in
Section 2.2 because the right hand side has terms with derivatives of the input u.
The differential equation (3.1) is characterized by two polynomials

a(s) = sn +a1sn−1 + · · ·+an, b(s) = b1sn−1 +b2sn−2 + · · ·+bn, (3.2)

where a(s) is the characteristic polynomial of the differential equation (3.1).
The solution to equation (3.1) is the sum of two terms: the general solution to

the homogeneous equation, which does not depend on the input, and a particular
solution, which depends on the input. The homogeneous equation associated with
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Figure 3.1: The exponential function y(t) = est . The top row shows the function for real s,
the bottom row shows the function for complex s = σ + iω . The left column shows Res < 0,
the center column Res = 0 and the right column Res > 0.

equation (3.1) is

dny

dtn
+a1

dn−1y

dtn−1
+ . . .+any = 0, (3.3)

and its general solution is a sum of exponentials, where the exponents are the roots
sk of the characteristic equation a(s) = 0. If there are no multiple roots sk the
solution is

y(t) =
n

∑
k=1

Ckeskt , (3.4)

where Ck are arbitrary constants. The solution has n free parameters C1, . . . ,Cn.
Since the coefficients ak are real, the roots of the characteristic equation are

real or complex conjugated pairs. A real root sk of the characteristic equation cor-
responds to the exponential function eskt . This function decreases over time if sk is
negative, it is constant if sk = 0, and it increases if sk is positive, as shown in the
top row of Figure 3.1. For real roots sk the parameter T = 1/sk is the time constant.

A complex root sk = σ ± iω corresponds to the time functions

eσt sin(ωt), eσt cos(ωt),

which have oscillatory behavior, as illustrated in the bottom row of Figure 3.1. The
sine terms are shown in full lines and the cosine terms in dashed lines, they have
zero crossings with the spacing π/ω . The dotted lines shows the envelopes, which
correspond to the exponential function ±eσt .

When the characteristic equation (3.4) has multiple roots, the solutions to the
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homogeneous equation (3.3) are

y(t) =
m

∑
k=1

Ck(t)e
skt , (3.5)

where Ck(t) is a polynomial with degree less than the multiplicity of the root sk.
The solution (3.5) has ∑m

k=1(degCk +1) = n free parameters.
Having explored the solution to the homogeneous equation, we now turn to the

input-dependent part of the solution. The solution to equation (3.1) for an expo-
nential input is of particular interest. We set u(t) = est and investigate if there is a
unique particular solution of the form y(t) = G(s)est . Assuming this to be the case,
we find

du

dt
= sest ,

d2u

dt2
= s2est , · · ·

dnu

dtn
= snest

dy

dt
= sG(s)est ,

d2y

dt2
= s2G(s)est , · · ·

dny

dtn
= snG(s)est .

(3.6)

Inserting these expression in the differential equation (3.1) gives

(sn +a1sn−1 + · · ·+an)G(s)est = (b1sn−1 +b2sn−2 + · · ·+bn)e
st ,

and hence

G(s) =
b1sn−1 +b2sn−2 + · · ·+bn

sn +a1sn−1 + · · ·+an
=

b(s)

a(s)
. (3.7)

This function is called the transfer function of the system. It describes a particular
solution to the differential equation for the input est and it is a convenient way to
characterize the system described by the differential equation.

To further show the relation between the transfer function and the differential
equation, introduce the differential operator p = d

dt and the notation pk = dk

dtk . The
differential equation (3.1) can be written as

pny+a1 pn−1y+ · · ·any = b1 pn−1u+b2 pn−1u+ · · ·+bnu,

or
(pn +a1 pn−1 + · · ·+an)y = (b1 pn−1 +b2 pn−2 + · · ·+bn)u.

The relation between the transfer function (3.7) and the differential equation (3.1)
is clear: the transfer function (3.7) can be obtained by inspection from the differen-
tial equation (3.1), and conversely the differential equation can be obtained from
the transfer function. The transfer function can thus be regarded as a shorthand
notation for the differential equation (3.1).

To deal with oscillatory signals, like those shown in Figure 3.1, it is convenient
to allow s to be a complex number. The transfer function is a function G : C→ C

that maps complex numbers to complex numbers. The roots of the characteristic
equation a(s) = 0 are called poles of the transfer function. A pole sk appears as
exponent in the general solution to the homogeneous equation (3.4). The roots of
the polynomial b(s) are called zeros of the transfer function. The reason is that if
b(sk) = 0 it follows that G(sk) = 0, and the particular solution for the input eskt is
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zero. A system theoretic interpretation is that the transmission of the exponential
signal eskt is blocked by the zero s = sk.

The particular solution for a constant input u(t)= 1 is y(t)=G(0)= bn/an. The
quantity G(0) is called the zero frequency gain or the static gain. The particular
solution for the input u = cos(ωt) = Reeiωt is

y(t) = Re
(
G(iω)eiωt

)
= Re

(
|G(iω)|eiargG(iω)eiωt

)

= |G(iω)|Reei(argG(iω)+ωt) = |G(iω)|cos(ωt + argG(iω)).

The input is thus amplified by the |G(iω)| and the phase shift between input and
output is argG(iω), where arg denotes the angle of a complex variable. The func-
tions G(iω), |G(iω)| and argG(iω) are called the frequency response, gain and
phase. The gain and the phase are also called magnitude and angle.

The actual response to a sine or a cosine function is the sum of a particular
solution and the general solution to the homogeneous equation (3.4) or (3.5). The
coefficients in the general solution can be determined from the initial conditions.
If all roots of the characteristic equation have negative real parts, all solutions to
the homogeneous equation go to zero and the general solution converges to the
particular solution as time increases.

The transfer function G(s) is a useful representation of the differential equation
(3.1) and of the system modeled by the differential equation. The transfer function
has many physical interpretations that can be exploited for analysis and design.
The transfer function makes it possible to apply algebra to manipulate dynamical
systems and to get insight into their behavior. The transfer function can also convey
a great deal of intuition: G(0) is the steady state gain for constant inputs and fre-
quency response G(iω) captures the steady state response to sinusoidal functions.
The frequency response of a stable system can be determined experimentally by
exploring the response of a system to sinusoidal signals. The approximations of
G(s) for small and large s captures the propagation of slow and fast signals respec-
tively. Consider for example the spring-mass system in equation (2.14), with input
u and output q, which has the transfer function

G(s) =
1

ms2 + cs+ k.

For small s we have G(s) ≈ 1/k. The corresponding input/output relation is q =
(1/k)u which implies that for low frequency inputs, the system behaves like a
spring driven by a force. For large s we have G(s) ≈ 1/(ms2). The corresponding
differential equation is mq̈ = u, and for high frequency inputs the system behaves
like mass driven by a force (a double integrator). Approximations of transfer func-
tions will be discussed more in Section 8.4.

More detailed discussions of transfer functions and the frequency response will
be given in later chapters, particularly in Chapter 8.
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Stability: The Routh-Hurwitz Criterion

When using feedback there is always the danger that the system may become un-
stable. It is therefore important to have a stability criterion. The differential equa-
tion (3.1) is called stable if all solutions of the homogeneous equation (3.3) go to
zero for any initial condition. It follows from equation (3.5) that this requires that
all the roots of the characteristic equation

a(s) = sn +a1sn−1 + · · ·+an = 0,

have negative real parts. The Routh-Hurwitz criterion is a stability criterion that
does not require calculation of the roots, because it gives conditions in terms of
the coefficients of the characteristic polynomial..

A first order differential equation is stable if the coefficient a1 of the character-
istic polynomial is positive, since the zero of the characteristic polynomial will be
s =−a1 < 0. A second order polynomial is stable if and only if the coefficients a1

and a2 are all positive. Since the roots are

s =
1

2

(
−a1 ±

√
a2

1 −4a2

)
,

it is easy to verify that the real parts are negative if and only if a1 > 0 and a2 > 0.
A third order differential equation is more complicated, but the roots can be shown
to have negative real parts if and only if

ak > 0 ∀k, a1a2 > a3. (3.8)

The corresponding conditions for a fourth order differential equation are

ak > 0 ∀k, a1a2 > a3, a1a2a3 > a2
1 a4 +a2

3. (3.9)

The Routh-Hurwitz criterion [Gan60] gives similar conditions for arbitrarily high
order polynomials. Stability of a linear differential equation can thus be investi-
gated just by analyzing the signs of various combinations of the coefficients of the
characteristic polynomial.

Block Diagrams and Transfer Functions

Figure 3.2 shows a block diagram of a typical control system. If each block is
modeled as a high order differential equation (3.1), we need to find the differential
equation that relates the signals in the complete system. A block can be considered
as a filter that generates the output from the input and the block is characterized by
its transfer function, which is a nice shorthand notation for the differential equation
describing the input/output relation.

Assume that the disturbance v is zero and that we want to find the differential
equation that describes how the output y is influenced by the reference signal r.
Let the transfer functions of the controller and the process be characterized by the


 The Routh-Hurwitz stability criterion has an interesting history Ben79. Maxwell found that stability of simple feedback loops could be determined by investigating if all roots of the characteristic equation are in the left half plane. He derived the condition for third order equations and consulted his Cambridge colleague Routh, who gave the general solution. The Swiss turbine engineer Stodola at ETH was faced with the same problem when working with water turbines for electricity generation. He turned to his colleague Hurwitz, who solved the problem independently of Routh, using different techniques. The result is generally known as the Routh-Hurwitz criterion. 
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Figure 3.2: Block diagram of simple feedback system. The controller transfer function is
C(s) and the process transfer function is P(s). The process output is y, the external signals
are the reference r and the load disturbance v.

polynomials bc(s), ac(s), bp(s) and ap(s), so that

C(s) =
bc(s)

ac(s)
, P(s) =

bp(s)

ap(s)
. (3.10)

The corresponding differential equations are

ac(p)u(t) = bc(p)(r(t)− y(t)), ap(p)y(t) = bp(p)u(t),

recall that pk = dk

dtk . Multiplying the first equation by ap(p) and the second with

ac(p) we find that

ac(p)ap(p)y(t) = ac(p)bp(p)u(t) = bp(p)bc(p)(r(t)− y(t)).

Solving for y(t) gives
(
ac(p)ap(p)+bp(p)bc(p)

)
y(t) = bp(p)bc(p)r(t), (3.11)

which is the differential equation that relates the output to the reference. We see
that the polynomial notation makes it easy to manipulate differential equations.
Forming linear combinations of differential equations and their derivatives corre-
sponds to polynomial multiplication.

The differential equation (3.11) corresponds to the transfer function

Gyr =
bp(s)bc(s)

ac(s)ap(s)+bp(s)bc(s)
=

P(s)C(s)

1+P(s)C(s)
, (3.12)

where we used the notation Gyr for the transfer function from r to y. Proceeding in
the same way we obtain the following transfer functions

Gur =
C(s)

1+P(s)C(s)
, Gyv =

P(s)

1+P(s)C(s)
, Guv =

−P(s)C(s)

1+P(s)C(s)
, (3.13)

By using polynomials and transfer functions the relations between signals in a
feedback system can be obtained by algebra. The transfer functions relating two
signals can be obtained from the block diagram by inspection. The denominator is
always 1+P(s)C(s) and the numerator is a product of the transfer functions be-
tween the signals, for example, the transfer functions from disturbance v to control
u in Figure 3.2 are P(s), −1 and C(s).
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Transfer Functions and Laplace Transforms

We have defined transfer functions as a particular solution for the exponential input
est . Transfer functions can also be conveniently defined using Laplace transforms.
Let u(t) be the input to the system (3.1) and let y(t) be the corresponding output
when the initial conditions are zero. Furthermore let U(s) and Y (s) be the Laplace
transforms of the input and the output

U(s) =
∫ ∞

0
e−stu(t)dt, Y (s) =

∫ ∞

0
e−sty(t)dt.

The transfer function of the system is then simply G(s) = Y (s)
U(s) .

3.2 Using Feedback to Improve Disturbance Attenuation

Reducing the effects of disturbances is a primary use of feedback. It was used by
James Watt to make steam engines run at constant speed in spite of varying load
and by electrical engineers to make generators driven by water turbines deliver
electricity with constant frequency and voltage. Feedback is commonly used in
process control, in machine tool control, in power generation, and for engine and
cruise control in cars. In humans the pupillary reflex is used to make sure that the
light intensity of the retina is reasonably constant in spite of large variations in
the ambient light. The human body exploits feedback to keep body temperature,
blood pressure and other important variables constant. Keeping variables close to
a desired, constant reference values in spite of disturbances is called a regulation
problem.

Disturbance attenuation will be illustrated by control of a process whose dy-
namics can be approximated by a first order system. A block diagram of the sys-
tem is shown in Figure 3.2. Since we will focus on the effects of a load disturbance
v we will assume that the reference r is zero. The transfer functions Gyv and Guv

relating the output y and the control u to the load disturbance are given by equa-
tion (3.13). For simplicity we will assume that the process is modeled by the first
order differential equation

dy

dt
+ay = bu, a > 0, b > 0.

The corresponding transfer function is

P(s) =
b

s+a
. (3.14)

A first order system is a reasonable model of a physical system if the storage
of mass, momentum or energy can be captured by a single state variable. Typical
examples are the velocity of a car on a road, the angular velocity of rotating system
and the level of a tank.
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Proportional Control

We will first investigate the case of proportional (P) control, when the control
signal is proportional to the output error: u = kpe, see Section 1.4. The controller
transfer function is then C(s) = kp. The process transfer function is given by (3.14)
and he effect of the disturbance on the output is then described by the transfer
function (3.13)

Gyv(s) =
P(s)

1+P(s)C(s)
=

b
s+a

1+
bkp

s+a

=
b

s+a+bkp
.

The relation between the disturbance v and the output y is thus given by the differ-
ential equation

dy

dt
+(a+bkp)y = bv.

The closed loop system is stable if a+bkp > 0. A constant disturbance v = v0 then
gives an output that approaches the steady state value

y0 = Gyv(0) =
b

a+bkp
v0,

exponentially with the time constant T = 1/(a+ bkp). Without feedback kp = 0
and a constant disturbance v0 thus gives the steady state error v0/a. The steady
state error thus decreases when using feedback if kp > 0.

We have thus shown that a constant disturbance gives an error that can be re-
duced by feedback using a proportional controller. The error decreases with in-
creasing controller gain. Figure 3.3 shows the responses for a few values of con-
troller gain kp.

Proportional-Integral (PI) Control

The PI controller, introduced in Section 1.4, is described by

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ . (3.15)

To determine the transfer function of the controller we differentiate, hence

du

dt
= kp

de

dt
+ kie

and we find by inspection that the transfer function is C(s) = kp + ki/s. To inves-
tigate the effect of the disturbance v on the output we use the block diagram in
Figure 3.2 and we find by inspection that the transfer function from v to y is

Gyv(s) =
P(s)

1+P(s)C(s)
=

s

s2 +(a+bkp)s+bki
. (3.16)
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Figure 3.3: Responses of open and closed loop system with proportional control (a) and PI
control (b). The process transfer function is P = 2/(s+1). The controller gains for propor-
tional control are kp = 0, 0.5, 1 and 2. The PI controller is designed using equation (3.20)
with ζ = 0.707 and ωc = 0.707, 1 and 2, which gives the controller parameters kp = 0, 0.207,
0.914 and ki = 0.25, 0.50 and 2.

The relation between the load disturbance and the output is thus given by the dif-
ferential equation

d2y

dt2
+(a+bkp)

dy

dt
+bkiy =

dv

dt
. (3.17)

Notice that, since the disturbance enters as a derivative in the right hand side, a
constant disturbance gives no steady state error. The same conclusion can be drawn
from the observation that Gyv(0) = 0. Compare with the discussion of integral
action and steady state error in Section 1.4.

To find suitable values of the controller parameters kp and ki we consider the
characteristic polynomial of the differential equation (3.17),

acl(s) = s2 +(a+bkp)s+bki. (3.18)

We can assign arbitrary roots to the characteristic polynomial by choosing the
controller gains kp and ki, and we choose controller parameters that give the char-
acteristic polynomial

(s+σ + iω)(s+σ − iω) = s2 +2σs+σ2 +ω2. (3.19)

This polynomial has roots at s = −σ ± iω . The general solution to the homoge-
neous equation is then a linear combination of the terms

e−σt sin(ωt), e−σt cos(ωt),

which are damped sine and cosine functions, as shown in the lower left plot in
Figure 3.1. The coefficient σ determines the decay rate and the parameter ω gives
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the frequency of the decaying oscillation. Identifying coefficients of equal powers
of s in the polynomials (3.18) and (3.19) gives

kp =
2σ −a

b
, ki =

σ2 +ω2

b
. (3.20)

Instead of parameterizing the closed loop system in terms of σ and ω it is
common practice to use the undamped natural frequency ωc =

√
σ2 +ω2 and the

damping ratio ζ = σ/ωc. The closed loop characteristic polynomial is then

acl(s) = s2 +2σs+σ2 +ω2 = s2 +2ζ ωcs+ω2
c .

This parameterization has the advantage that ζ determines the shape of the re-
sponse and that ωc gives the response speed.

Figure 3.3 shows the output y and the control signal u for ζ = 1/
√

2 = 0.707
and different values of ωc. Proportional control gives a steady-state error which
decreases with increasing controller gain kp. With PI control the steady-state error
is zero. Both the decay rate and the peak error decrease when the design parameter
ωc is increased. Larger controller gain give smaller errors and control signals that
react faster to the disturbance.

In summary, we find that the analysis gives a simple way to find the parameters
of PI controllers for processes whose dynamics can be approximated by a first
order system. The technique can be generalized to more complicated systems but
the controller will be more complex. To achieve the benefits of large control gains
the model must be accurate over wide frequency ranges as will be discussed next.

Unmodeled Dynamics

The analysis we have made so far indicates that there are no limits to the perfor-
mance that can be achieved. Figure 3.3 shows that arbitrarily fast response can
be obtained simply by making ωc sufficiently large. In reality there are of course
limitations to what can be achieved. One reason is that the controller gains in-
crease with ωc, the proportional gain is kp = (2ζ ωc −a)/b and the integral gain is
ki = ω2

c /b. A large value of ωc thus gives large controller gains and the control sig-
nal may be so large that actuator saturates. Another reason is that the model (3.14)
is a simplification, it is only valid in a given frequency range. If the model is instead

P(s) =
b

(s+a)(1+ sT )
, (3.21)

where the term 1+sT represents dynamics in sensors or actuators or other dynam-
ics that was neglected when deriving (3.14), so-called unmodeled dynamics, the
closed loop characteristic polynomial for the closed loop system becomes

acl = s(s+a)(1+ sT )+ kps+ ki = s3T + s2(1+aT )+2ζ ωcs+ω2
c .
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It follows from the Routh-Hurwitz criterion (3.8) that the closed loop system is
stable if ω2

c T < 2ζ ωc(1+aT ) or if

ωc <
2ζ (1+aT )

T
.

The frequency ωc and the achievable response time are thus limited by the unmod-
eled dynamics represented by T .

3.3 Using Feedback to Follow Command Signals

Another major application of feedback is to make a system output follow a com-
mand signal. It is called the servo problem. Cruise control and steering of a car,
tracking a satellite with an antenna or a star with a telescope are some examples.
Other examples are high performance audio amplifiers, machine tools and indus-
trial robots.

To illustrate command signal following we will consider the system in Fig-
ure 3.2 where the process is a first order system and the controller is a PI controller.
The transfer functions of the process and the controller are

P(s) =
b

s+a
, C(s) =

kps+ ki

s
. (3.22)

Since we will focus on following the command signal r we will neglect the load
disturbance, v = 0. It follows from equation (3.12) that the transfer function from
the command signal r to the output y is

Gyr(s) =
P(s)C(s)

1+P(s)C(s)
=

bkps+bki

s+(a+bkp)s+bki
. (3.23)

Since Gyr(0) = 1 it follows that r = y when r and y are constant, independent of the
values of the parameters a and b, as long as the closed loop is stable. The steady
state output is thus equal to the reference, a useful property of controllers with
integral action.

To determine suitable values of the controller parameters kp and ki we proceed
as in Section 3.2 by choosing controller parameters that makes the closed-loop
characteristic polynomial

acl(s) = s2 +(a+bkp)s+bki (3.24)

equal to s2 +2ζ ωcs+ω2
c with ζ > 0 and ω > 0. Identifying coefficients of equal

powers of s in these polynomials give

kp =
2ζ ωc −a

b
, ki =

ω2
c

b
. (3.25)

Notice that integral gain increases with the square of ωc. Figure 3.4 shows the
output signal y and the control signal u for different values of the design parameters
ζ and ωc. The response time decreases with increasing ωc and the initial value of
the control signal also increases because it takes more effort to move rapidly. The
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Figure 3.4: Responses to a step change in the command signal for different values of the
design parameters. The left figure shows responses for fixed ζ = 0.707 and ωc = 1, 2 and
5. The right figure shows responses for ωc = 2 and ζ = 0.5, 0.707, and 1. The process
parameters are a = b = 1.

overshoot decreases with increasing ζ . For ωc = 2, the design choice ζ = 1 gives
a short settling time and a response without overshoot.

It is desirable that the output y will track the reference r for time-varying ref-
erences. This means that we would like the transfer function Gyr(s) to be close to
1 for large frequency ranges. With the controller parameters (3.25) it follows from
Figure 3.2 that

Gyr(s) =
P(s)C(s)

1+P(s)C(s)
=

(2ζ ωc −a)s+ω2
c

s2 +2ζ ωcs+ω2
c

.

It is thus desirable to have a large ωc to be able to track fast changes in the reference
signal. The frequency response of Gyr gives a quantitative representation of the
tracking abilities.

Coontrollers with Two Degrees of Freedom

The control law in Figure 3.2 has error feedback because the control signal u is
generated from the error e= r−y. With proportional control, a step in the reference
signal r gives an immediate step change in the control signal u. This rapid reaction
can be advantageous, but it may give large overshoot, which can be avoided by a
replacing the PI controller in equation (3.15) with

u(t) = kp

(
β r(t)− y(t)

)
+ ki

∫ t

0
(r(τ)− y(τ))dτ , (3.26)

In this modified PI algorithm, the proportional action only acts on the fraction β of
the reference signal. The transfer functions from reference r to u and from output
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Figure 3.5: Block diagram of a closed-loop system with a PI controller having an architec-
ture with two degrees of freedom.

y to u are

Cur(s) = βkp +
ki

s
, Cuy(s) = kp +

ki

s
=C(s). (3.27)

The controller (3.26) is called a controller with two degrees of freedom since the
transfer functions Cur(s) and Cuy(s) are different.

A block diagram of a closed loop system with a PI controller having two de-
grees of freedom is shown in Figure 3.5. Let the process transfer function be
P(s) = b/(s + a). The transfer functions from reference r and disturbance v to
output y are

Gyr(s) =
bβkps+bki

s2 +(a+bkp)s+bki
, Gyv(s) =

s

s2 +(a+bkp)s+bki
. (3.28)

Comparing with the corresponding transfer function for a controller with error
feedback in equations (3.16) and (3.23) we find that the responses to the load
disturbances are the same but the response to reference values are different.

A simulation of the closed loop system for a = 0 and b = 1 is shown in Fig-
ure 3.6. The figure shows that the parameter β has a significant effect on the re-
sponses. Comparing the system with error feedback (β = 1) with the system with
smaller values of β we find that using a system with two degrees of freedom gives
the same settling time with less overshoot and gentler control actions.
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Figure 3.6: Response to a step change in the command signal for a system with a PI con-
troller having two degrees of freedom. The process transfer function is P(s) = 1/s and the
controller gains are kp = 1.414, ki = 1 and β = 0, 0.5 and 1.
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The example shows that command signal response can be improved by using
a controller architecture having two degrees of freedom. In Section 3.6 we will
show that the responses to command signals and disturbances can be completely
separated by using a more general system architecture. To use a system with two
degrees of freedom both the reference signal r and the output signal y must be
measured. There are situations where only the error signal e = r− y can be mea-
sured, typical examples are DVD players, optical memories and atomic force mi-
croscopes.

3.4 Using Feedback to Provide Robustness

Feedback can be used to make good systems from poor components. The devel-
opment of the electric feedback amplifier for transmission of telephone signals is
an early example [Ben93]. Design of amplifiers with constant linear gain was a
major problem. The basic component in the amplifier was the vacuum tube, which
was nonlinear and time varying. A major accomplishment was the invention of
the feedback amplifier. The idea is to close a feedback loop by arranging a feed-
back loop around the vacuum tube, which gives a closed loop system with a linear
input/output relation with constant gain.

The idea to use feedback to linearize input/output characteristics and to make
it insensitive to process variations is common. The recipe is to localize the source
of the variations and to close feedback loops around them. This idea is used ex-
tensively to obtain linear amplifiers and actuators, and to reduce effects of friction
in mechanical systems. We will illustrate with a simple model of an electronic
amplifier.

A Nonlinear Amplifier

Consider an amplifier with a static, nonlinear input/output relation with consider-
able variability as illustrated in Figure 3.7a. The nominal input/output character-
istics is shown in heavy dashed line and examples of variations in thin lines. The
nonlinearity in the figure is actually

y = f (u) = α(u+βu3), −3 ≤ u ≤ 3. (3.29)

The nominal values corresponding to the dashed line are α = 0.2 and β = 1. The
variations of the parameters α and β are in the ranges 0.1 ≤ α ≤ 0.5, 0 ≤ β ≤ 2.
The responses of the system to the input u = r with

r(t) = sin(t)+ sin(πt)+ sin(π2t). (3.30)

are shown in Figure 3.7b. The desired response y = u is shown in heavy full lines
and responses for a range of parameters are shown in thin lines. The nominal re-
sponse of the nonlinear system is shown in heavy dashed lines. It is distorted due to
the nonlinearity. Notice in particular the heavy distortion both for small and large
signal amplitudes. The behavior of the system is clearly not satisfactory.


 Black, the inventor of the negative feedback amplifier, had the following to say black1977: ``Few rosier dreams could be dreamt than that of an amplifier whose overall performance is perfectly constant, and in whose output distortion constitutes only one hundredth of a millionth of the total energy, although the component parts may be far from linear in their response and their gain may vary over a considerable range.'' 
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Figure 3.7: Responses of a static nonlinear system. The left figure shows the input/output
relation of the open-loop system and the right figure shows responses to the input signal
(3.30). The ideal response is shown in full thick lines. The nominal response of the nonlinear
system is shown in dashed thick lines and the responses for different parameter values are
shown in thin lines.

The behavior of the system can be improved significantly by introducing feed-
back. A block diagram of a system with a simple integral controller is shown in
Figure 3.8. Figure 3.9 shows the behavior of the closed loop system with the same
parameter variations as in Figure 3.7. The input/output plot in Figure 3.9a is a
scatter plot of the inputs and the outputs of the feedback system. The input/output
relation is practically linear and close to the desired response. There is some vari-
ability because of the dynamics introduced by the feedback. Figure 3.9b shows the
responses to the reference signal, notice the dramatic improvement compared with
Figure 3.7b. The tracking error is shown in Figure 3.9c.

Analysis
!

Analysis of the closed loop system is difficult because it is nonlinear. We can how-
ever obtain significant insight by using approximations. We first observe that the
system is linear when β = 0. In other situations we will approximate the nonlin-
ear function by a straight line around an operating point u = u0. The slope of the
nonlinear function at u = u0 is f ′(u0) and we will approximate the process with a
linear system with the gain f ′(u0). The transfer functions of the process and the

r

Σ
e u y

ki

s
f (u)

−1

Figure 3.8: Block diagram of a nonlinear system with integral feedback.
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Figure 3.9: Responses of the system with integral feedback. The left plot, is a scatter plot of
inputs and outputs. The center plot shows the response of the closed loop system to the input
signal r, and the right plot shows the control error. The parameter variations are the same as
in Figure 3.7. Notice the dramatic improvement compared to Figure 3.7b

controller are

P(s) = b = f ′(u0) = α(1+3βu2
0), C(s) =

ki

s
, (3.31)

where u0 denotes the operating condition. The process gain b = α(1+ 3βu2
0) is

in the range 0.1–27.5 depending on the values of α,β and u0. It follows from
equation (3.13) that the transfer functions relating the output y and the error e to
the reference signal are

Gyr(s) =
bki

s+bki
, Ger(s) = 1−Gyr =

s

s+bki
. (3.32)

The closed loop system is a first-order system with the pole s =−bki and the time
constant Tcl = 1/(bki). The integral gain is chosen as ki = 1000. The closed loop
pole ranges from 100 rad/s to 2.75×104 rad/s, which is fast compared to the high
frequency component 9.86 rad/s of the input signal.

The error for the approximated system is described by the differential equation

de

dt
=−bkie+

dr

dt
,

dr

dt
= cos(t)+π cos(πt)+π2 cos(π2t). (3.33)

The fast frequency component of the input (3.30) has the frequency π2 = 9.86; it
is slower than the process dynamics for all parameter variations. Neglecting the
term de/dt in (3.33) gives

e ≈
1

bki

dr

dt
. (3.34)

The largest error is obtained when b has ist smallest value 0.1. The error is then
approximately π2/(bki)cos(π2t)≈ 0.1cos(π2t) which is shown as the dashed line
in Figure 3.9c.

This analysis has shown that it is possible to design an integrating controller
for a system whose dynamics can be approximated by a static model. Design is es-
sentially the choice of a single parameter: the integral gain ki of the controller. The
closed loop transfer function from reference to output is given by equation (3.32)
where integral gain is ki = 1/(bTcl) where Tcl is the desired time constant of the
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closed loop system. The integral gain is inversely proportional to Tcl and the largest
integral gain is limited by unmodeled dynamics.

The example illustrates that feedback can be used to design an amplifier that
has practically linear input/output relation even if the basic amplifier is nonlinear
with strongly varying characteristics.

3.5 Using Feedback to Shape Behavior

The regulation and servo problems discussed in Sections 3.2 and 3.3 are classical
applications of feedback. In Section 3.4 it was shown that feedback can be used to
obtain essentially linear input/output behavior for a nonlinear system with strong
variability. In this section we will show how feedback can be used to shape the
dynamic behavior of a system.

Collision avoidance is a useful behavior of moving robots. Feedback is used in
automobiles to create behaviors that avoid locking brakes, skids and collision with
pedestrians. Feedback is used to make the dynamic behavior of airplanes invariant
to operating conditions. Feedback is also an essential element of human balancing
and locomotion.

Bacteria use simple feedback mechanisms to search for areas where there is
high concentration of food or light. The principle is to sense a variable and to
make exploratory moves to see if the concentration increases. A similar mechanism
can be used to avoid harmful substances. Optimization is also used in computer
systems to maintain maximum throughput of servers.

Stabilization
!

Stabilizing an unstable system is a typical example of how feedback can be used
to change behavior. Many systems are naturally unstable. The ability to stand up-
right, walk and run has given humans many advantages but it requires stabiliza-
tion. Stability and maneuverability are conflicting goals in vehicle design. The
ship designer Minorsky realized that there was a trade-off between maneuverable
and stability and he emphasized that a stable ship is difficult to steer. The Wright
Flyer, which was maneuverable but unstable, inspired Sperry to design an autopi-
lot. Feedback has been used extensively in aircraft, from simple systems for sta-
bility augmentation to systems that provide full autonomy.

Military airplanes gain significant competitive advantage by being made unsta-
ble. Schematic pictures of two airplanes are shown in Figure 3.10. The positions of
the center of mass CM and the center of pressure CP are key elements. To be stable
the center of pressure must be behind of the center of mass. The center of pressure
of an aircraft shifts backwards when a plane goes supersonic. If the plane is sta-
ble at subsonic speeds it becomes even more stable at supersonic speeds because
of the long distance between CM and CP. Large forces and large control surfaces
are then required to maneuver the airplane and the plane will be more sluggish.
A more balanced design is obtained by placing the center of pressure in front of
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CP
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Figure 3.10: Schematic digram of two aircrafts. The aircraft at the top is stable because it
has the center of pressure CP behind the center of mass CM. The aircraft at the bottom is
unstable because the positions of center of mass and center of pressure are reversed.

the center of mass at subsonic speeds. Such an airplane will have superior perfor-
mance, but it is unstable at subsonic speeds, typically at takeoff and landing. The
control system that stabilizes the aircraft in these operating conditions is mission
critical with strong requirements on robustness and reliability.

Keeping an inverted pendulum in the upright position is a prototype example
of stabilization. Consider the cart–pendulum discussed in Examples 2.1 and 2.2.
Neglecting damping, assuming that the cart is much heavier than the pendulum
and assuming that the tilt angle θ is small, equation (2.10) can be approximated
by the differential equation

Jt θ̈ −mglθ = u. (3.35)

The transfer function of the open loop system is

Gθu =
1

Jts2 −mgl
, acl(s) = Jts

2 −mgl.

The system is unstable because it has a pole s =
√

mgl/Jt = ω0 in the right half
plane. It can be stabilized with a proportional-derivative (PD) controller that has
the transfer function

C(s) = kd + kp. (3.36)

The closed-loop characteristic polynomial is

acl(s) = Jts
2 + kds+(kp −mgl),

and all of its roots are in the left half plane if kp > mgl.
One way to find controller parameters is to choose the controller gains so that

the characteristic polynomial has natural frequency ωc and damping ratio ζ , hence

kd = 2ζ ωcJt , kp = Jtω
2
c +mgl.

Choosing ωc =ω0 moves the poles from ±ω0 in open loop to −ζ ω0± i
√

1−ζ 2ω0

in closed loop. The controller gains are then kp = 2mgl and kd = 2ζ
√

mglJt . The
control law (3.36) stabilizes the pendulum but is does not stabilize the motion of
the cart. To do this it is necessary to introduce feedback from cart position and cart
velocity.
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The Segway

The Segway discussed in Example 2.1 is essentially a pendulum on a cart and
can be modeled by equation (2.9) with an added torque τ on the pendulum that is
exerted by the person leaning on the platform. Hence

Mt p̈−mlθ̈ = u, −ml p̈+ Jt θ̈ −mglθ =−τ ,

where u is the force generated by the motor and τ is the torque generated by the
lean of the rider. Since the Segway is similar to the inverted pendulum on a cart, we
will explore if the feedback (3.36) can be used to stabilize the system. The closed
loop system is described by

Mt p̈−mlθ̈ =−kd θ̇ − kpθ , −ml p̈+ Jt θ̈ −mglθ =−τ .

Elimination of p̈ gives

(MtJt −m2l2)θ̈ +mlkd θ̇ +ml(kp −Mtg)θ =−Mtτ

Since MtJt > m2l2, the differential equation is stable if kp > Mtg. To find out how
the tilt influences the forward motion we eliminate θ and its derivatives and we
find that the transfer function relating forward acceleration to τ is

Gp̈τ =−
−m2l2s2 +mlkds+mlkp

(MtJt −m2l2)s2 +mlkds+ml(kp −Mtg)
≈

kp

kp −Mtg

where the approximation is valid for small s. The feedback (3.36), which stabi-
lizes the Segway, thus creates a behavior where the acceleration is proportional to
the torque τ . Stabilizing the tilt angle thus gives a mechanism where the forward
acceleration is proportional to the forward tilt torque.

Impedance Control and Haptics

Changing behavior of a mechanical system is common in robotics and haptics.
Position control is not sufficient when industrial robots are used for grinding, pol-
ishing and assembly. The robot can be brought into proximity with the workspace
by position control but to carry out the operations it is desirable to shape how
the force depends on the distance between the tool and the workspace. A spring-
like behavior is an example. The general problem is to create a behavior speci-
fied by a given differential equation between force and motion, a procedure called
impedance control. Similar situations occur in teleoperation in hazardous environ-
ment or in telesurgery. In this situation the workpiece is operated remotely using a
joystick. It is useful for the operator to have some indication of the forces between
the tool and the workpiece. This can be accomplished by generating a force on the
operators joystick that mimics the force on the workpiece.

Figure 3.11 shows two haptic input devices. The systems are pen-like with
levers or gimbals containing angle sensors and force actuation. By sensing position
and orientation, and generating a force depending on position and velocity, it is
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Figure 3.11: Haptic devices, the left figure shows the PHANTOMTM and the right a system
is developed by Quanser.

possible to create a behavior that simulates touching real or virtual objects. Forces
that simulate friction and surface structure can also be generated.

We illustrate the principle with a joystick having a low friction joint. Let J be
the moment of inertia, and let the actuation torque and the external torque from the
operator be Ta and T , respectively. The equation of motion is

J
d2θ

dt2
= T +Ta.

By measuring the angle θ and its first two derivatives we can create the feedback

Ta = kp(θr −θ)− kd
dθ

dt
− ka

d2θ

dt2
.

The closed loop system is then

(J+ ka)
d2θ

dt2
+ kd

dθ

dt
+ kp(θ −θr) = T.

The feedback has thus provided virtual inertia ka, virtual damping kd and virtual
spring action kp. If no torque T is applied the joystick will assume the orientation
given by the reference signal θr. If a the user applies a torque the joystick will
behave like a damped spring-mass system.

3.6 Feedback and Feedforward

Feedback and feedforward have complementary properties. Feedback only acts
when there are deviations between the actual and the desired behavior, feedfor-
ward acts on planned behavior. Some of the properties are summarized in Ta-
ble 3.1. In economics feedback represents a market economy and feedforward a
plan economy. Feedback and feedforward can be combined to improve response
to command signals and to reduce the effect of disturbances that can be measured.
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Table 3.1: Properties of feedback and feedforward

Feedback Feedforward

Closed loop Open loop
Acts on deviations Acts on plans

Robust to model uncertainty Sensitive to model uncertainty
Risk for instability No risk for instability

Sensitive to measurement noise Insensitive to measurement noise

Feedforward and System Inversion

To explore feedforward control we will first investigate command signal following.
Consider the system modeled by the differential equation (3.1):

dny

dtn
+a1

dn−1y

dtn−1
+ . . .+any = b1

dn−1u

dtn−1
+ . . .+bnu.

Assume that we want to find a control signal u that gives the response yr. It follows
from (3.1) that the desired control signal satisfies

b1
dn−1u

dtn−1
+ . . .+bnu =

dnyr

dtn
+a1

dn−1yr

dtn−1
+ . . .+anyr, (3.37)

This equation is called the inverse of equation (3.1) because it is obtained by ex-
changing inputs and outputs. If the transfer function of the original system is P(s),
the transfer function of the inverse system is simply P−1(s).

Consider a system with the transfer function P(s), and assume that we want to
find a feedforward controller so that the response to command signals is given by
the transfer function Fm(s), as shown in Figure 3.12. The feedforward compensator
is then

Ff(s) = P−1(s)Fm(s) (3.38)

because P(s)Ff(s) = Fm(s). Design of a feedforward compensator is thus closely
related to system inversion.

There are problems with system inversion since the inverse may require dif-
ferentiations and it may be unstable. If b1 ̸= 0 we have P−1(s) ≈ s/b1 for large
s, which implies that to obtain a bounded control signal we must require that the
reference signal has a smooth first derivative. If b1 = 0 we must similarly require
that the reference signal has a smooth second derivative.

P
yur

Ff

Figure 3.12: Block diagram of a process with pure feedforward compensation. The process
transfer function is P(s), the feedforward compensator has the transfer function Ff(s) =
P−1(s)Fm(s) and the combined system has transfer function Fm(s).
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Figure 3.13: Outputs y (top plots) and feedforward signals u f f (lower plots) for ωc = 1 (left)
10 (center) and 100 right. The outputs are identical apart from the time scale, but the control
signals required to generate the output differs significantly. Notice that the largest value of
the feedforward signal u f f increases significantly with increasing ωc.

Difficulties with Feedforward Compensation

Let the process and the desired response have the transfer functions

P(s) =
1

(s+1)2
, Fm(s) =

ω2
c

s2 +2ζ ωcs+ω2
c

.

The feedforward transfer function is then given by equation (3.38), hence

Ff = P−1(s)Fm(s) =
ω2

c (s+1)2

s2 +2ζ ωcs+ω2
c

.

Figure 3.13 shows the outputs y and the feedforward signals uff for a unit step
reference signal r and different values of ωc. Notice that large control signals are
required to obtain fast responses. Achievable performance is thus limited by the
size of admissible control signals.

Another difficulty with feedforward is that the inverse process dynamics may
be unstable. To have a bounded feedforward signal it follows from equation (3.38)
that the desired transfer function Fm must have the same right half-plane zero as
the process transfer function P. Right-half plane process zeros thus limit what can
be achieved with feedforward.

Let the process and the desired response be characterized by the transfer func-
tions

P(s) =
1− s

(s+1)2
, Fm(s) =

ω2
c (1− s)

s2 +2ζ ωcs+ω2
c

.

Since the process has a right half plane zero at s = 1 the inverse model is unstable
and it follows from equation (3.38) that we must require that the transfer function
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Figure 3.14: Outputs y (top plots) and feedforward signals u f f (lower plots) for ωc = 1
(left) 10 (center) and 100 (right) for a unit step command in the reference signal. The dashed
curve shows the response that could be achieved if the process did not have the right half
plane zero.

of the desired response has the same zero. Equation (3.38) gives the feedforward
transfer function

Ff(s) =
ω2

c (s+1)2

s2 +2ζ ωcs+ω2
c

. (3.39)

Figure 3.14 shows the outputs y and the feedforward signals u f f for different val-
ues of ωc. The response to the command signal goes in the wrong direction ini-
tially because of the right half plane zero at s = 1. This effect, called inverse re-
sponse, is barely noticeable if the response is slow (ωc = 1) but increases with
increasing response speed. For ωc = 5 the undershoot is more than 200%. The
right half plane zero thus severely limits the response time.

The behavior of the control signal changes qualitatively with ωc. To understand
what happens we note that the zero frequency gain of the feedforward transfer
function (3.39) is Ff(0) = 1 and that its high frequency gain is Ff(∞) = ω2

c . For a
unit step reference signal r = 1, the initial value of the control signal is uff(0) = ω2

c

and the final value is uff(∞) = 1. For ωc = 0.2 the control signal grows from 0.04
to the final value 1 with a small overshoot. For ωc = 1 the control signal starts from
1 has an overshoot and settles on the final value 1. For ωc = 5 the control signals
starts at 25 and decays towards the final value 1 with an undershoot.

Sensitivity to Process Variations

The transfer function from reference r to output y of a system with pure feedfor-
ward control is

Fm(s) = P(s)Ff(s). (3.40)
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Figure 3.15: Block diagram of a closed loop system where the controller has an architecture
with two degrees of freedom. The signals ym and uff are generated by feedforward from the
reference r. The feedback controller C(s) acts on the control error e = ym − y and generates
the feedback control signal ufb.

To find the sensitivity of Fm to variations in the process transfer function P we take
logarithm of equation (3.40) and differentiate to obtain

dFm(s)

Fm(s)
=

dP(s)

P(s)
. (3.41)

The relative variations in the system with feedforward is the same as those in the
process and is thus sensitive to process variations.

Combining Feedforward with Feedback

Since feedback can give systems that are robust to model uncertainties it seems nat-
ural to combine feedforward with feedback. The architecture of such a controller is
shown in the block diagram of Figure 3.15. The controller has three blocks repre-
senting the feedback transfer function C(s) and the feedforward transfer functions
Fm and Ff.

The desired response is given by the transfer function Fm. The controller archi-
tecture in Figure 3.15 is highly intuitive. The feedforward signal uff generates the
ideal output y = ym. If there are no disturbances and no modeling errors the error is
then zero and the feedback signal ufb is also zero. All control is thus handled by the
feedforward action. If there are disturbances and modeling errors, the error e will
not be zero and the feedback controller C(s) will make appropriate corrections.

The controller architecture in Figure 3.15 is a generalization of the controller
with two degrees of freedom introduced in Section 3.3 (see Figure 3.5). A nice
property is that it gives a separation of command signal following, robustness and
disturbance attenuation. Command signal following is dealt with by design of the
feedforward transfer functions Fm and Ff. Robustness and disturbance attenuation
is dealt with by design of the feedback transfer function C(s).

The transfer function from r to y for the system in Figure 3.15 is

Gyr =
P(Ff +CFm)

1+PC
= Fm +

PFf −Fm

1+PC
. (3.42)
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The transfer function Gyr is equal to Fm if the feedforward transfer function Ff is
chosen so that

Ff(s) = P(s)−1Fm(s). (3.43)

This condition is the same as the condition (3.38) for pure feedforward.
The transfer functions relating the output y and the feedback signal u f f to the

disturbances v are

Gyv(s) =
P(s)

1+P(s)C(s)
, Guv(s) =−

C(s)

1+P(s)C(s)
. (3.44)

These transfer functions do not depend on the feedforward feedforward transfer
functions.

The controller architecture in Figure 3.15 admits a decoupling of the response
to command signals to response to disturbances. The feedback controller C(s) is
designed to give robustness to process variations and attenuation of load distur-
bances. The desired response to command signals is obtained by design of the
feedforward transfer functions Ff and Fm..

To investigate the effect of process uncertainty on the response to reference
signals we consider the case of small variations. Taking the logarithm of Gyr in
equation (3.42) gives

logGyr = logP+ log(Ff +CFm)− log(1+PC).

Differentiating with respect to P gives the following expression for the sensitivity

dGyr(s)

Gyr(s)
=

dP(s)

P(s)
−

C(s)dP(s)

1+P(s)C(s)
=

1

1+P(s)C(s)

dP(s)

P(s)
. (3.45)

The relative error in the closed loop transfer function Gyr(s) can thus be smaller
than the relative error in the process transfer function P(s) for frequencies where
P(s)C(s) is large. Compare with the corresponding expression (3.41) for pure feed-
forward. It is thus useful to combine feedback and feedforward.

Using Feedforward to Attenuate of Measured Disturbances

Feedforward can also be used to mitigate the effect of disturbances that can be
measured. Such a scheme is shown in Figure 3.16. The process transfer function P
is composed of two factors, P = P1P2. A measured disturbance v enters at the input
of process section P2. The measured disturbance is fed to the process input via the
feedforward transfer function Fv.

The transfer function from the disturbance v to process output y is

Gyv(s) =
P2(1−P1Fv)

1+PC
. (3.46)

This equation shows that there are two ways of reducing the disturbance. The trans-
fer function 1−P1Fv can be made small by a proper choice of the feedforward
transfer function Fuv. In feedback compensation the effect of the disturbance is in-
stead reduced by making the loop transfer function PC large. Feedforward makes
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Controller

C

−Fv

P2P1

−1

ΣΣ Σ
r u

v

y

Figure 3.16: Block diagram of a system with a control architecture that combines feedback
with feedforward from a disturbance v that can be measured.

the error small by subtraction. Feedback instead makes the error small by divid-
ing with 1+PC. An immediate consequence is that feedforward is more sensitive
than feedback since we are trying to match two terms. Feedback gives better ro-
bustness but there is a risk of instability. Feedback and feedforward are therefore
complementary, and we again can see that it is useful to combine them.

Feedforward is most effective when the disturbance v enters early in the pro-
cess. This occurs when most of the dynamics are in process section P2. When
P2 = P, and therefore P2 = 1, the feedforward compensator is simply a propor-
tional controller.

Noise cancellation is a common example of use of feedforward to cancel ef-
fects of disturbances. Consider, for example, a pilot that has to communicate in
a noisy cabin. The environmental noise will seriously deteriorate the communi-
cation because the pilots microphone will pick up ambient noise. The noise can
be reduced significantly by using two microphones as illustrated in Figure 3.17.
The primary microphone is directed towards the pilot. It picks up the pilots voice
and ambient noise. The second microphone is directed away from the pilot and it
picks up the ambient noise. The effect of the noise can be reduced by filtering the
signal from the secondary microphone and subtracting it from the signal from the
primary microphone. A block diagram of the system is shown in Figure 3.17b. The
transfer function G(s) represents the dynamics of the acoustic transmission from
the secondary microphone to the first microphone. The transfer function F(s) is

Output
−

Filter
Secondary

microphone

microphone

Primary

(a) Schematic diagram

s+Gn
Σ −

G(s)

F(s)

s

n

ŝ

(b) Block diagram

Figure 3.17: Schematic and block diagrams for noise cancellation.
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the transfer function of the filter. To cancel the effect of the noise the transfer func-
tion F(s) should be close to G(s). Since the noise transmission depends on the
situation, for example how the pilot turns his head, it is common to let the filter
be adaptive so that it can adjust, as described later in Example 4.16. Noise cancel-
lation has many applications, in headphones, to create noise-free spaces by active
noise control, or to measure electrocardiogram and heartbeat of mother and fetus.

3.7 Further Reading

The books by Bennett [Ben79, Ben93] and Mindel [Min02, Min08] give interest-
ing perspective on the development of control. Much of the material touched upon
in this chapter is classical control see [JNP47], [CM51] and [Tru55].The notion
of controllers with two degrees of freedom was introduced by Horowitz [Hor63].
The analysis will be elaborated in the rest of the book. Transfer functions and other
descriptions of dynamics are discussed in Chapters 5 and 8, methods to investigate
stability in Chapter 9. The simple method to find parameters of controllers based on
matching of coefficients of the closed loop characteristic polynomial is developed
further in Chapters 6, 7 and 12. Feedforward control is discussed in Section 7.5.

Exercises

3.1 Let y ∈ R and u ∈ R. Solve the differential equations

dy

dt
+ay = bu,

d2y

dt2
+2

dy

dt
+ y = 2

du

dt
+u.

Determine the responses to a unit step u(t)= 1 and the exponential signal u(t)= est

when the initial condition is zero. Derive the transfer functions of the systems.

3.2 Let y0(t) be the response of a system with the transfer function G0(s) to a given
input. The transfer function G(s) = (1+ sT )G0(s) has the same zero frequency
gain but it has an additional zero at z = −1/T . Let y(t) be the response of the
system with the transfer function G(s), show that

y(t) = y0(t)+T
dy0

dt
, (3.47)

Then consider the system with the transfer function

G(s) =
s+a

a(s2 +2s+1)
,

which has unit zero-frequency-gain (G(0) = 1). Use the result in equation (3.47)
to explore the effect of the zero s =−1/T on the step response of a system

3.3 Consider a closed loop system with process and a PI controller modeled by

dy

dt
+ay = bu, u = kp(r− y)+ ki

∫ t

0
(r(τ)− y(τ))dτ ,
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where r is the reference, u the control variable and y the process output. Derive a
differential equation relating the output y to the difference by direct manipulation
of the equations. Draw a block diagram of the system. Derive the transfer functions
of the process and the controller. Compute the transfer function from reference r to
output y of the closed loop system. Make the derivations both by direct manipula-
tion of the system equations and by polynomial algebra. Compare the results with
a direct determination of the transfer functions by inspection of the block diagram.

3.4 The dynamics of the pupillary reflex is approximated by a linear system with
the transfer function

P(s) =
0.2(1−0.1s)

(1+0.1s)3
.

Assume that the nerve system that controls the pupil opening is modeled as a
proportional controller with the gain k. Use Routh-Hurwitz theorem to determine
the largest gain that gives a stable closed loop system.

3.5 A simple model for the relation between speed v and throttle u for a car is
given by the transfer function

Gvu =
b

s+a

where b = 1 m/s2 and a = 0.025 rad/s, see Appendix A.3. The control signal is
normalized to the range 0 ≤ u ≤ 1. Design a PI controller for the system that gives
a closed loop system with the characteristic polynomial

acl(s) = s2 +2ζ ωcs+ω2
c .

What are the consequences of choosing different values of the design parameters
ζ and ωc. Use you judgment to find suitable values. Hint: Investigate maximum
acceleration and maximum velocity for step changes in the velocity reference.

3.6 Consider the feedback system in Figure 3.2. Let the disturbance v= 0, P(s)= 1
and C(s) = ki/s. Determine the transfer function Gyr from reference r to output y.
Also determine how much Gyr is changed when the process gain changes by 10%.

3.7 The calculations in Section 3.2 can be interpreted as a design method for a
PI controller for a first order system. A similar calculation can be made for PID
control of the second order system. Let the transfer functions of the process and
the controller be

P(s) =
b

s2 +a1s+a2
, C(s) = kp +

ki

s
+ kds.

Show that the controller parameters

kp =
(1+2αζ )ω2

c −a2

b
, ki =

αω3
c

b
, kd =

(α +2ζ )ωc −a1

b
.

give a closed loop system with the characteristic polynomial

(s2 +2ζ ωcs+ω2
c )(s+αωc).
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3.8 Consider an open loop system with the nonlinear input-output relation y =
f (u). Assume that the system is closed with the proportional controller u = k(r−
y). Show that the input-output relation of the closed loop system is

y+
1

k
f−1(y) = r.

Estimate the largest deviation from ideal linear response y= r. Illustrate by plotting
the input output responses for a) f (u) =

√
u and b) f (u) = u2 with 0 ≤ u ≤ 1 and

k = 5,10 and 100.

3.9 Consider the system in Section 3.2 where the controller was designed to give a
closed loop system characterized by ωc = 1 and ζ = 0.707. The transfer functions
of the process and the controller are

P(s) =
2

s+1
, C(s) =

0.207s+0.5

s
.

The response of the closed loop system to command signals has a settling time
(time required to stay within 2% of the final value, see Figure 5.9) of 4/ζ ωc ≈
5.66 Assume that the attenuation of the load disturbances is satisfactory but that
we want a closed loop system system that responds five times faster to command
signals without overshoot. Determine the transfer functions of a controller with the
architecture in Figure 3.15 that gives a response to command signals with a first
order dynamics. Simulate the system in the nominal case of a perfect model and
explore the effects of modeling errors by simulation.

3.10 Consider a queuing system modeled by

dx

dt
= λ −µmax

x

x+1
.

The model is nonlinear and the dynamics of the system changes significantly with
the queuing length, see Example 2.11. Investigate the situation when a PI controller
is used for admission control. The arrival intensity λ is then given by

λ = kp(r− x)+ ki

∫ t

(r(t)− x(t))dt.

The controller parameters are determined from the approximate model

dx

dt
= λ .

Find controller parameters that give the closed loop characteristic polynomial s2+
2s+ 1 for the approximate model. Investigate the behavior of the control strategy
for the nonlinear model by simulation for the input r = 5+4sin(0.1t).
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