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Chapter 11

PID Control

Based on a survey of over eleven thousand controllers in the refining,
chemicals and pulp and paper industries, 97% of regulatory controllers
utilize a PID feedback control algorithm.

L. Desborough and R. Miller, 2002 [DM02a].

Proportional-integral-derivative (PID) control is by far the most common way
of using feedback in engineering systems. In this chapter we present the basic
properties of PID control and the methods for choosing the parameters of the
controllers. We also analyze the effects of actuator saturation, an important feature
of many feedback systems, and describe methods for compensating for it. Finally,
we discuss the implementation of PID controllers as an example of how to implement
feedback control systems using analog or digital computation.

11.1 Basic Control Functions

The PID controller was introduced in Section 1.6, where Figure 1.15 illustrates
that control action is composed of three terms: the proportional term (P), which
depends on the present error; the integral term (I), which depends on past errors;
and the derivative term (D), which depends on anticipated future errors. A major
difference between a PID controller and an advanced controller based on feedback
from estimated states (see Section 8.5) is that the observer-based controller predicts
the future state of the system using a mathematical model, while the PID controller
makes use of linear extrapolation of the measured output. A PI controller does not
make use of any prediction of the future state of the system.

A survey of controllers for more than 100 boiler-turbine units in the Guangdong
Province in China is a typical illustration of the prevalence of PID-based control:
94.4% of all controllers were PI, 3.7% PID, and 1.9% used advanced control [SLL16].
The reasons why derivative action is used in only 4% of all controllers are that
the benefits of prediction are significant primarily for processes that permit large
controller gains. For many systems, prediction by linear extrapolation can generate
large undesired control signals because measurement noise is amplified. In addition
care must be taken to find a proper prediction horizon. Temperature control is a
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Figure 11.1: Block diagrams of closed loop systems with ideal PID controllers.
Both controllers have one output, the control signal u. The controller in (a), which
is based on error feedback, has one input, the control error e = r − y. For this
controller proportional, integral, and derivative action acts on the error e = r− y.
The two degree-of-freedom controller in (b) has two inputs, the reference r and the
process output y. Integral action acts on the error, but proportional and derivative
action act on only the process output y.

typical case where derivative action can be beneficial: sensors have low noise levels
and controllers can have high gain.

PID control appears in simple dedicated systems and in large factories with
thousands of controllers: as stand-alone controllers, as elements of hierarchical,
distributed control systems, and as components of embedded systems. Advanced
control systems are implemented as hierarchical systems, where high-level con-
trollers give setpoints to PID controllers in a lower layer. The PID controllers are
directly connected to the sensors and actuators of the process. The importance
of PID controllers thus has not decreased with the adoption of advanced control
methods, because the performance of the system depends critically on the behavior
of the PID controllers [DM02a]. There is also growing evidence that PID control
appears in biological systems [YHSD00].

Block diagrams of closed loop systems with PID controllers are shown in Fig-
ure 11.1. The command signal r is called the reference signal in regulation problems
or the setpoint in the literature of PID control. The control signal u for the system
in Figure 11.1a is formed entirely from the error e; there is no feedforward term
(which would correspond to kfr in the state feedback case). A common alternative
in which proportional and derivative action do not act on the reference is shown in
Figure 11.1b; combinations of the schemes will be discussed in Section 11.5.

The input/output relation for an ideal PID controller with error feedback is

u = kpe+ ki

∫ t

0
e(τ) dτ + kd

de

dt
= kp

(
e+

1

Ti

∫ t

0
e(τ) dτ + Td

de

dt

)
. (11.1)

The control action is thus the sum of three terms: proportional feedback, the
integral term, and derivative action. For this reason PID controllers were originally
called three-term controllers.

The controller parameters are the proportional gain kp, the integral gain ki,
and the derivative gain kd. The gain kp is sometimes expressed in terms of the
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Figure 11.2: Responses to step changes in the reference value for a system with
a proportional controller (a), PI controller (b), and PID controller (c). The pro-
cess has the transfer function P (s) = 1/(s + 1)3, the proportional controller has
parameters kp = 1, 2, and 5, the PI controller has parameters kp = 1, ki = 0, 0.2,
0.5, and 1, and the PID controller has parameters kp = 2.5, ki = 1.5, and kd = 0,
1, 2, and 4.

proportional band, defined as PB = 100/kp. A proportional band of 10% thus
implies that the controller operates linearly for only 10% of the span of the measured
signal. The controller can also be parameterized with the time constants Ti =
kp/ki and Td = kd/kp, called the integral time (constant) and the derivative time
(constant). The parameters Ti and Td have dimensions of time and can naturally
be related to the time constants of the controller.

The controller (11.1) is an idealized representation. It is a useful abstraction
for understanding the PID controller, but several modifications must be made to
obtain a controller that is practically useful. Before discussing these practical issues
we will develop some intuition about PID control.

We start by considering pure proportional feedback. Figure 11.2a shows the re-
sponses of the process output to a unit step in the reference value for a system with
pure proportional control at different gain settings. In the absence of a feedforward
term, the output never reaches the reference, and hence we are left with nonzero
steady-state error. Letting the process transfer function be P (s), with proportional
feedback we have C(s) = kp and the transfer function from reference to error is

Ger(s) =
1

1 + C(s)P (s)
=

1

1 + kpP (s)
. (11.2)

Assuming that the closed loop is stable, the steady-state error for a unit step is

Ger(0) =
1

1 + C(0)P (0)
=

1

1 + kpP (0)
.

For the system in Figure 11.2a with gains kp = 1, 2, and 5, the steady-state error
is 0.5, 0.33, and 0.17. The error decreases with increasing gain, but the system also
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becomes more oscillatory. The system becomes unstable for kp = 8. Notice in the
figure that the initial value of the control signal equals the controller gain.

To avoid having a steady-state error, the proportional term can be changed to

u(t) = kpe(t) + uff, (11.3)

where uff is a feedforward term that is adjusted to give the desired steady-state
value. If the reference value r is constant and we choose uff = r/P (0) = kfr,
then the steady-state output will be exactly equal to the reference value, as it was
in the state space case, provided that there are no disturbances. However, this
requires exact knowledge of the zero frequency gain P (0), which is usually not
available. The parameter uff, called the reset value, was adjusted manually in early
controllers. Another alternative to avoid a steady-state error is to multiply the
reference by 1 + kpP (0), but this also requires precise knowledge of P (0).

As we saw in Section 7.4, integral action guarantees that the process output agrees
with the reference in steady state and provides an alternative to the feedforward
term. Since this result is so important, we will provide a general proof. Consider the
controller given by equation (11.1) with ki != 0. Assume that u(t) and e(t) converge
to steady-state values u = u0 and e = e0. It then follows from equation (11.1) that

u0 = kpe0 + ki lim
t→∞

∫ t

0
e(t)dt.

The limit of the right hand side is not finite unless e(t) goes to zero, which implies
that e0 = 0. We can thus conclude that integral control has the property that if a
steady state exists, the error will always be zero. This property is sometimes called
the magic of integral action. Notice that we have not assumed that the process is
linear or time-invariant. We have, however, assumed that there is an equilibrium
point. It is much better to achieve zero steady-state error by integral action than
by feedforward, which requires a precise knowledge of process parameters.

The effect of integral action can also be understood from frequency domain
analysis. The transfer function of the PID controller is

C(s) = kp +
ki
s
+ kds. (11.4)

The controller has infinite gain at zero frequency (C(0) = ∞), and it then follows
from equation (11.2) that Ger(0) = 0, which implies that there is no steady-state
error for a step input.

Integral action can also be viewed as a method for generating the feedforward
term uff in the proportional controller (11.3) automatically. This is shown in Fig-
ure 11.3a, where the controller output is low-pass filtered and fed back with positive
gain. This implementation, called automatic reset, was one of the early inventions
of integral control (it was much easier to implement a low-pass filter than to imple-
ment an integrator). The transfer function of the system in Figure 11.3a is obtained
by block diagram algebra: we have

Gue = kp
1 + sTi

sTi
= kp +

kp
sTi

,
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Figure 11.3: Implementation of integral and derivative action. The block dia-
gram in (a) shows how integral action is implemented using positive feedback with
a first-order system, sometimes called automatic reset. The block diagram in (b)
shows how derivative action can be implemented by taking differences between a
static system and a first-order system.

which is the transfer function for a PI controller.
The properties of integral action are illustrated in Figure 11.2b for a step input.

The proportional gain is constant, kp = 1, and the integral gains are ki = 0, 0.2,
0.5, and 1. The case ki = 0 corresponds to pure proportional control, with a steady-
state error of 50%. The steady-state error is eliminated when integral gain action
is used. The response creeps slowly toward the reference for small values of ki and
converges more quickly for larger integral gains, but the system also becomes more
oscillatory.

The integral gain ki is a useful measure for attenuation of load disturbances.
Consider a closed loop system under PID control, like the one in Figure 11.1. As-
sume that the system is stable and initially at rest with all signals being zero. Apply
a unit step load disturbance at the process input. After a transient, the process
output goes to zero and the controller output settles at a value that compensates for
the disturbance. Since e(t) goes to zero as t → ∞, it follows from equation (11.1)
that

u(∞) = ki

∫ ∞

0
e(t)dt.

The integrated error, IE, for a unit step load disturbance IE =
∫∞
0 e(t)dt is thus

inversely proportional to the integral gain ki and hence serves as a measure of the
effectiveness of disturbance attenuation. A large gain ki attenuates disturbances
effectively, but too large a gain gives oscillatory behavior, poor robustness, and
possibly instability.

We now return to the general PID controller and consider the effect of derivative
action. Recall that the original motivation for derivative feedback was to provide
predictive or anticipatory action. Notice that the combination of the proportional
and the derivative terms can be written as

u = kpe+ kd
de

dt
= kp

(
e+ Td

de

dt

)
=: kpep,

where ep(t) can be interpreted as a prediction of the error at time t+ Td by linear
extrapolation. The prediction time Td = kd/kp is the derivative time constant.

Derivative action can be implemented by taking the difference between the signal
and its low-pass filtered version as shown in Figure 11.3b. The transfer function
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Figure 11.4: Schematic diagram of cone photoreceptors (C) and horizontal cells
(H) in the retina. In the schematic diagram in (a), excitatory feedback is indicated
by arrows and inhibitory feedback by circles. A block diagram is shown in (b) and
the step response in (c).

for the system is

Gue(s) = kp
(
1− 1

1 + sTd

)
= kp

sTd

1 + sTd
=

kds

1 + sTd
. (11.5)

The transfer function Gue(s) approximates a derivative for low frequencies because
for |s| % 1/Td we have G(s) ≈ kpTds = kds. The transfer function Gue acts
like a differentiator for signals with low frequencies and as a constant gain kp for
high-frequency signals, so we can regard this as a filtered derivative.

Figure 11.2c illustrates the effect of derivative action: the system is oscillatory
when no derivative action is used, and it becomes more damped as the derivative
gain is increased. When the input is a step, the controller output generated by
the derivative term will be an impulse. This is clearly visible in Figure 11.2c. The
impulse can be avoided by using the controller configuration shown in Figure 11.1b.

Although PID control was developed in the context of engineering applications,
it also appears in nature. Disturbance attenuation by feedback in biological sys-
tems is often called adaptation. A typical example is the pupillary reflex discussed
in Example 9.18, where it is said that the eye adapts to changing light intensity.
Analogously, feedback with integral action is called perfect adaptation [YHSD00].
In biological systems proportional, integral, and derivative action are generated by
combining subsystems with dynamical behavior, similar to what is done in engi-
neering systems. For example, PI action can be generated by the interaction of
several hormones [ESGK02].

Example 11.1 PD action in the retina
The response of cone photoreceptors in the retina is an example where proportional
and derivative action is generated by a combination of cones and horizontal cells.
The cones are the primary receptors stimulated by light, which in turn stimulate
the horizontal cells, and the horizontal cells give inhibitory (negative) feedback to
the cones. A schematic diagram of the system is shown in Figure 11.4a. The system
can be modeled by ordinary differential equations by representing neuron signals
as continuous variables representing the average pulse rate. In [Wil99] it is shown
that the system can be represented by the differential equations

dx1

dt
=

1

Tc
(−x1 − kx2 + u),

dx2

dt
=

1

Th
(x1 − x2),
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where u is the light intensity and x1 and x2 are the average pulse rates from
the cones and the horizontal cells. A block diagram of the system is shown in
Figure 11.4b. The step response of the system given in Figure 11.4c shows that
the system has a large initial response followed by a lower, constant steady-state
response typical of proportional and derivative action. The parameters used in the
simulation are k = 4, Tc = 0.025, and Th = 0.08. ∇

11.2 Simple Controllers for Complex Systems

Many of the design methods discussed in previous chapters have the property that
the complexity of the controller is a direct reflection of the complexity of the model.
When designing controllers by output feedback in Chapter 8, we found for single-
input, single-output systems that the order of the controller was the same as the
order of the model, possibly one order higher if integral action was required. Ap-
plying these design methods to PID control requires that the models must be of
first or second order.

Low-order models can be obtained from first principles. Any stable system
can be modeled by a static system if its inputs are sufficiently slow. Similarly
a first-order model is sufficient if the storage of mass, momentum, or energy can
be captured by only one variable; typical examples are the velocity of a car on
a road, the angular velocity of a stiff rotational system, the level in a tank, and
the concentration in a volume with good mixing. System dynamics are of second
order if the storage of mass, energy, and momentum can be captured by two state
variables; typical examples are the position and velocity of a car on the road, the
orientation and angular velocity of satellites, the levels in two connected tanks,
and the concentrations in two-compartment models. A wide range of techniques
for model reduction are also available. In this section we will focus on design
techniques where we simplify the models to capture the essential properties that
are needed for PID design.

We begin by analyzing the case of integral control. Any stable system can be
controlled by an integral controller provided that the requirements on the closed
loop system are modest. To design a controller we approximate the transfer function
of the process by a constant K = P (0), which will be reasonable for any stable
system at sufficiently low frequencies. The loop transfer function under integral
control then becomesKki/s, and the closed loop characteristic polynomial is simply
s+Kki. Specifying performance by the desired time constant Tcl of the closed loop
system, we find that the integral gain can be chosen as ki = 1/(TclP (0)).

This simplified analysis requires that Tcl be sufficiently large that the process
transfer function can indeed be approximated by a constant. A reasonable criterion
is that Tcl > Tar, where Tar = −P ′(0)/P (0) is known as the average residence time
of the open loop system.

To obtain controllers with higher performance we approximate the process dy-
namics by a first-order system (rather than a constant):

P (s) ≈ P (0)

1 + sTar
.

A reasonable design criterion is to obtain a step response with small overshoot and
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reasonable response time. An integral controller with gain

ki =
1

2P (0)Tar
, (11.6)

gives the loop transfer function

L(s) = P (s)C(s) ≈ P (0)

1 + sTar

ki
s

=
1

2sTar(1 + sTar)
,

and the closed loop poles become s = (−0.5± 0.5i)/Tar. Using the approximations
in Table 7.1 on page 7-20, we see that this controller has ω0 = 1/(Tar

√
2), which

gives a rise time of 3.1Tar, a settling time of 7.9Tar, and overshoot of 4%.

Example 11.2 Integral control of AFM in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force mi-
croscope in tapping mode was discussed in Exercise 10.2. The transfer function for
the system dynamics is

P (s) =
a(1− e−sτ )

sτ(s+ a)
,

where a = ζω0, τ = 2πn/ω0, and the gain has been normalized to 1. This transfer
function is unusual since there is a time-delay term in the numerator.

To design a controller, we focus on the low-frequency dynamics of the system.
We have P (0) = 1 and P ′(0) = −τ/2− 1/a = −(2 + aτ)/(2a). For low frequencies
the loop transfer function can then be approximated by

L(s) ≈ ki(P (0) + sP ′(0))

s
= kiP

′(0) +
kiP (0)

s
.

Using the design rule (11.6) we set ki = −1/(2P ′(0)), Nyquist and Bode plots
for the resulting loop transfer function are shown in Figure 11.5. We see that
the controller provides good performance at low frequency and has good stability
margins. Note that even though the system dynamics include a time-delay term,
we were able to obtain good performance using a simple integral controller and a
simple set of calculations. ∇

Another approach to designing simple controllers is to use the gains of the
controller to set the location of the closed loop poles. PI controllers give two gains
with which to tune the closed loop dynamics, and for simple models the closed loop
poles can be set using these gains.

Consider a first-order system with the transfer function

P (s) =
b

s+ a
.

With a PI controller the closed loop system has the characteristic polynomial

s(s+ a) + bkps+ bki = s2 + (a+ bkp)s+ bki.

The closed loop poles can thus be assigned arbitrary values by proper choice of
the controller gains kp and ki. Requiring that the closed loop system have the
characteristic polynomial

p(s) = s2 + a1s+ a2,
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Figure 11.5: Nyquist and Bode plots of the loop transfer function for integral
control of an AFM in tapping mode. The integrating controller gives good ro-
bustness properties based on a simple analysis. At high frequencies the Nyquist
plot has an infinite number of small loops with decreasing amplitude in the left
half-plane. These loops are not visible in the Nyquist plot but they show up clearly
in the Bode plot.

we find that the controller parameters are

kp =
a1 − a

b
, ki =

a2
b
. (11.7)

If we require a response of the closed loop system that is slower than that of the
open loop system, a reasonable choice is a1 = a + α and a2 = αa, where α < a
determines the closed loop response. If a response faster than that of the open loop
system is required, a possible choice is a1 = 2ζcωc and a2 = ω2

c , where ωc and ζc
are the undamped natural frequency and damping ratio of the dominant mode.

The choice of ωc has a significant impact on the robustness of the system and
will be discussed in Section 14.5. An upper limit to ωc is given by highest frequency
where the model is valid. Large values of ωc will require fast control actions, and
actuators may saturate if the value is too large. A first-order model is unlikely to
represent the true dynamics for high frequencies.

Example 11.3 Cruise control using PI feedback
Consider the problem of maintaining the speed of a car as it goes up a hill. In Exam-
ple 6.11 we found that there was little difference between the linear and nonlinear
models when investigating PI control, provided that the throttle did not reach the
saturation limits. A simple linear model of a car was given in Example 6.11:

d(v − ve)

dt
= −a(v − ve)− bg(θ − θe) + b(u− ue), (11.8)

where v is the velocity of the car, u is the input to the engine (throttle), and θ is
the slope of the hill. The parameters were a = 0.01, b = 1.32, bg = 9.8, ve = 20,
θe = 0, and ue = 0.1687. This model will be used to find suitable parameters
of a vehicle speed controller. The transfer function from throttle to velocity is a



11-10 CHAPTER 11. PID CONTROL

0 10 20 30 40
-2

-1

0

0 10 20 30 40

Time t [s]

0

0.2

0.4

0.6

0.8

v
−

v e
[m

/s
]

u
−

u
e

ζc

ζc

(a) ωc = 0.5, ζc = 0.5, 1, 2

0 10 20 30 40
-2

-1

0

0 10 20 30 40

Time t [s]

0

0.2

0.4

0.6

0.8

v
−

v e
[m

/s
]

u
−

u
e

ωc

ωc

(b) ζc = 1, ωc = 0.2, 0.5, 1

Figure 11.6: Cruise control using PI feedback. The step responses for the error
and input illustrate the effect of parameters ζc and ωc on the response of a car
with cruise control. The slope of the road changes linearly from 0◦ to 4◦ between
t = 5 and 6 s. (a) Responses for ωc = 0.5 and ζc = 0.5, 1, and 2. Choosing ζc ≥ 1
gives no overshoot in the velocity v. (b) Responses for ζc = 1 and ωc = 0.2, 0.5,
and 1.0.

first-order system. Since the open loop dynamics are quite slow (1/a ≈ 100 s), it
is natural to specify a faster closed loop system by requiring that the closed loop
system be of second order with damping ratio ζc and undamped natural frequency
ωc. The controller gains are given by equation (11.7).

Figure 11.6 shows the velocity and the throttle for a car that initially moves
on a horizontal road and encounters a hill with a slope of 4◦ at time t = 5 s. To
design a PI controller we choose ζc = 1 to obtain a response without overshoot,
as shown in Figure 11.6a. The choice of ωc is a compromise between response
speed and control actions: a large value gives a fast response, but it requires fast
control action. The trade-off is illustrated in Figure 11.6b. The largest velocity
error decreases with increasing ωc, but the control signal also changes more rapidly.
In the simple model (11.8) it was assumed that the force responds instantaneously
to throttle commands. For rapid changes there may be additional dynamics that
have to be accounted for. There are also physical limits to the rate of change of
the force, which also restricts the admissible value of ωc. A reasonable choice of ωc

is in the range 0.5–1.0. Notice in Figure 11.6 that even with ωc = 0.2 the largest
velocity error is only about 1.3 m/s. ∇

A PI controller can also be used for a process with second-order dynamics, but
there will be restrictions on the possible locations of the closed loop poles. Using a
PID controller, it is possible to control a system of second order in such a way that
the closed loop poles have arbitrary locations (Exercise 11.2).

Instead of finding a low-order model and designing controllers for them, we can
also use a high-order model and attempt to place only a few dominant poles. An
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Figure 11.7: Ziegler–Nichols step and frequency response experiments. The open
loop unit step response in (a) is characterized by the parameters a and τ . The
frequency response method (b) characterizes process dynamics by the point where
the Nyquist curve of the process transfer function first intersects the negative real
axis and the frequency ωc where this occurs.

integral controller has one parameter, and it is possible to position one pole. To
see this, consider a process with the transfer function P (s). The loop transfer
function with an integral controller is L(s) = kiP (s)/s. The roots of the closed
loop characteristic polynomial are the roots of s + kiP (s) = 0. Requiring that
s = −a be a root, the controller gain should be chosen as ki = a/P (−a). The pole
s = −a will be a dominant closed loop pole if a is smaller than the magnitude of
the other closed loop process poles. A similar approach can be applied to PI and
PID controllers (Exercise 11.3).

11.3 PID Tuning

Users of control systems are frequently faced with the task of adjusting the con-
troller parameters to obtain a desired behavior. There are many different ways to
do this. One approach is to go through the conventional steps of modeling and
control design as described in the previous section. A typical process may have
thousands of PID controllers. Since the PID controller has so few parameters a
number of special empirical methods have been developed for direct adjustment of
the controller parameters.

Ziegler–Nichols’ Tuning

The first tuning rules were developed by Ziegler and Nichols [ZN42] in the 1940s.
Their idea was to perform a simple experiment on the process and extract features
of process dynamics in the time and frequency domains.

The time domain method is based on a measurement of part of the open loop
unit step response of the process, as shown in Figure 11.7a. The step response is
measured by a bump test. The process is first brought to steady state, the input is
then changed by a suitable amount, and finally the output is measured and scaled
to correspond to a unit step input. Ziegler and Nichols characterized the step
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Table 11.1: Original Ziegler–Nichols tuning rules. (a) The step response method
gives the parameters in terms of the intercept a and the apparent time delay τ .
(b) The frequency response method gives controller parameters in terms of critical
gain kc and critical period Tc.

Type kp Ti Td

P 1/a

PI 0.9/a τ/0.3

PID 1.2/a τ/0.5 0.5τ

(a) Step response method

Type kp Ti Td

P 0.5kc

PI 0.45kc Tc/1.2

PID 0.6kc Tc/2 Tc/8

(b) Frequency response method

response by only two parameters a and τ , which are the intercepts of the steepest
tangent of the step response with the coordinate axes. The parameter τ is an
approximation of the time delay of the system and a/τ is the steepest slope of the
step response. Notice that it is not necessary to wait until steady state is reached to
be able to determine the parameters; it suffices to wait until the response has had
an inflection point. The suggested controller parameters are given in Table 11.1.
They were obtained by extensive simulation of a range of representative processes.
A controller was tuned manually for each process, and an attempt was then made
to correlate the controller parameters with a and τ .

In the frequency domain method, a controller is connected to the process, the
integral and derivative gains are set to zero, and the proportional gain is increased
until the system starts to oscillate. The critical value kc of the proportional gain is
observed together with the period of oscillation Tc. It follows from Nyquist’s sta-
bility criterion that the Nyquist contour for the loop transfer function L = kcP (s)
passes through the critical point at the frequency ωc = 2π/Tc. The experiment thus
gives the point on the Nyquist curve of the process transfer function P (s) where the
phase lag is 180◦, as shown in Figure 11.7b. The suggested controller parameters
are then given by Table 11.1b.

The Ziegler–Nichols methods had a huge impact when they were introduced
in the 1940s. The rules were simple to use and gave initial conditions for manual
tuning. The ideas were adopted by manufacturers of controllers for routine use.
The Ziegler–Nichols tuning rules unfortunately have two severe drawbacks: too
little process information is used, and the closed loop systems that are obtained
lack robustness.

Tuning Based on the FOTD Model

The Ziegler–Nichols methods use only two parameters to characterize process dy-
namics, a and τ for the step response method and kc and Tc for the frequency
domain method. Tuning of PID controllers can be improved if we characterize the
process by more parameters. The first-order and time-delay (FOTD) model

P (s) =
K

1 + sT
e−τs, τn =

τ

T + τ
, (11.9)



11.3. PID TUNING 11-13

is commonly used to approximate the step response of systems with essentially
monotone step responses. The parameter τn, which has values between 0 and 1,
is called the relative time delay or the normalized time delay. The dynamics are
characterized as being lag dominated if τn is close to zero, delay dominated if τn is
close to one, and balanced for intermediate values.

The parameters of the FOTD model can be determined from a bump test as
indicated in Figure 11.7a. The zero frequency gain K is the steady-state value of
the unit step response. The time delay τ is the intercept of the steepest tangent
with the time axis, as in the Ziegler–Nichols method. The time T63 is the time
where the output has reached 63% of its steady-state value and T is then given
by T = T63 − τ . Notice that it takes a longer time to find an FOTD model than
the Ziegler–Nichols model (a and τ) because to determine K it is necessary to wait
until the steady state has been reached.

There are many versions of improved tuning rules for the model (11.9). As an
illustration we give the following rules for PI control, based on [ÅH06]:

kp =
0.15τ + 0.35T

Kτ

(0.9T
Kτ

)
, ki =

0.46τ + 0.02T

Kτ2

(0.27T
Kτ2

)
, (11.10a)

kp = 0.16kc
(
0.45kc

)
, ki =

0.16kc + 0.72/K

Tc

(0.54kc
Tc

)
. (11.10b)

The values for the Ziegler–Nichols rule from Table 11.1 are given in parentheses.
Notice that the improved formulas typically give lower controller gains than the
original Ziegler–Nichols method.

Example 11.4 Atomic force microscope in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force mi-
croscope in tapping mode was discussed in Example 11.2. The transfer function is
normalized by choosing 1/a as the time unit, yielding

P (s) =
1− e−sTn

sTn(s+ 1)
,

where Tn = 2nπa/ω0 = 2nπζ. The Nyquist plot of P (s) is shown as a dotted line
in Figure 11.8a for ζ = 0.002 and n = 20. The first intersection with the real axis
occurs at Re s = −0.0461 for ωc = 13.1. The critical gain is thus kc = 21.7 and
the critical period is Tc = 0.48. Using the Ziegler–Nichols tuning rule, we find the
parameters kp = 8.67 and ki = 22.6 (Ti = 0.384) for a PI controller. With this
controller the stability margin is sm = 0.31, which is quite small. The step response
of the controller is shown using dashed lines in Figure 11.8. Notice in particular
that there is a large overshoot in the control signal.

The modified Ziegler–Nichols rule (11.10b) gives the controller parameters kp =
3.47 and ki = 8.73 (Ti = 0.397) and the stability margin becomes sm = 0.61.
The step response with this controller is shown using solid lines in Figure 11.8. A
comparison of the responses obtained with the original Ziegler–Nichols rule shows
that the overshoot has been reduced. Notice that the control signal reaches its
steady-state value almost instantaneously. It follows from Example 11.2 that a
pure integral controller has the normalized gain ki = 1/(2 + Tn) = 0.44, which is
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Figure 11.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step
responses (b) for PI control of the vertical motion of an atomic force microscope
in tapping mode. Results with Ziegler–Nichols tuning are shown by dashed lines,
and modified Ziegler–Nichols tuning is shown by solid lines. The Nyquist plot of
the process transfer function is shown by dotted lines.

more than an order of magnitude smaller than the integral gain of the PI controller.
∇

The tuning rules based on the FOTD model work well for PI controllers. Deriva-
tive action has little effect on processes with delay-dominated dynamics, but can
give substantial performance for processes with lag-dominated dynamics. Tuning
of PID controllers for processes with lag-dominated dynamics cannot, however, be
based on the FOTD model; see [ÅH06].

Relay Feedback

The Ziegler–Nichols frequency response method increases the gain of a proportional
controller until oscillation to determine the critical gain kc and the corresponding
critical period Tc or, equivalently, the point where the Nyquist curve intersects the
negative real axis. One way to obtain this information automatically is to connect
the process in a feedback loop with a nonlinear element having a relay function
as shown in Figure 11.9a. For many systems there will then be an oscillation, as
shown in Figure 11.9b, where the relay output u is a square wave and the process
output y is close to a sinusoid. Moreover, the fundamental sinusoidal components
of the input and the output are 180◦ out of phase, which means that the system
oscillates with the critical period Tc. Notice that an oscillation with constant period
is established quickly.

To determine the critical gain kc we expand the square wave relay output in a
Fourier series. Notice in the figure that the process output is practically sinusoidal
because the process attenuates higher harmonics. It is then sufficient to consider
only the first harmonic component of the input. Letting d be the relay amplitude,
this component has amplitude 4d/π. If a is the amplitude of the process output,
the process gain at the critical frequency ωc = 2π/Tc is |P (iωc)| = πa/(4d) and the
critical gain is kc = 4d/(πa). Having obtained the critical gain kc and the critical
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Figure 11.9: Block diagram of a process with relay feedback (a) and typical
signals (b). The process output y is a solid line, and the relay output u is a dashed
line. Notice that the signals u and y have opposite phases.

period Tc, the controller parameters can then be determined using the Ziegler–
Nichols rules. Improved tuning can be obtained by fitting a model to the data
obtained from the relay experiment.

The relay experiment can be automated. Since the amplitude of the oscillation
is proportional to the relay output, it is easy to control it by adjusting the relay
output. Automatic tuning based on relay feedback is used in many commercial PID
controllers. Tuning is accomplished simply by pushing a button that activates relay
feedback. The relay amplitude is automatically adjusted to keep the oscillations
sufficiently small, and the relay feedback is replaced by a PID controller when the
tuning is finished. The main advantage of relay tuning is that a short experiment
for identification of process dynamics is generated automatically. The original relay
autotuner can be improved significantly by using an asymmetric relay, which admits
determination of more parameters [BHÅ16].

11.4 Integral Windup

Many aspects of a control system can be understood from linear models. However,
there are some nonlinear phenomena that must be taken into account. These are
typically limitations in the actuators: a motor has limited speed, a valve cannot be
more than fully opened or fully closed, etc. For a system that operates over a wide
range of conditions, it may happen that the control variable reaches the actuator
limits. When this happens, the feedback loop is broken and the system runs in
open loop because the actuator remains at its limit independently of the process
output as long as the actuator remains saturated. The integral term will also build
up since the error is typically nonzero. The integral term and the controller output
may then become very large. The control signal will then remain saturated even
when the error changes, and it may take a long time before the integrator and the
controller output come inside the saturation range. The consequence is that there
are large transients. This situation is referred to as integrator windup, illustrated
in the following example.

Example 11.5 Cruise control
The windup effect is illustrated in Figure 11.10a, which shows what happens when a
car encounters a hill that is so steep (6◦) that the throttle saturates when the cruise
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(b) Anti-windup

Figure 11.10: Simulation of PI cruise control with windup (a) and anti-windup
(b). The figure shows the speed v and the throttle u for a car that encounters
a slope that is so steep that the throttle saturates. The controller output is a
dashed line. The controller parameters are kp = 0.5, ki = 0.1 and kaw = 2.0. The
anti-windup compensator eliminates the overshoot by preventing the error from
building up in the integral term of the controller.

controller attempts to maintain speed. When encountering the slope at time t = 5,
the velocity decreases and the throttle increases to generate more torque. However,
the torque required is so large that the throttle saturates. The error decreases slowly
because the torque generated by the engine is just a little larger than the torque
required to compensate for gravity. The error is large and the integral continues to
build up until the error reaches zero at time 25, but the controller output is still
larger than the saturation limit and the actuator remains saturated. The integral
term starts to decrease and the velocity settles to the desired value at time t = 40.
Also notice the large overshoot. ∇

Avoiding Windup

Windup can occur in any controller with integral action. There are many methods
to avoid windup. One method for PID control is illustrated in Figure 11.11: the
system has an extra feedback path that is generated from a mathematical model
of the saturating actuator. The signal es is the difference between the outputs of
the controller ua and the actuator model u. It is fed to the input of the integrator
through the gain kaw. The signal es is zero when there is no saturation and the
extra feedback loop has no effect on the system. When the actuator saturates, the
signal es is fed back to the integrator in such a way that es goes toward zero. This
implies that controller output is kept close to the saturation limit. The controller
output will then change as soon as the error changes sign and integral windup is
avoided.

The rate at which the controller output is reset is governed by the feedback gain
kaw; a large value of kaw gives a short reset time. The parameter kaw cannot be too
large because measurement noise can then cause an undesirable reset. A reasonable
choice is to choose kaw as a multiple of the integral gain ki.
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Figure 11.11: PID controller with filtering, anti-windup, and manual control.
The controller has filtering of the measured signal, an input uff for feedforward
signal, and another input um for direct control of the output. The switch is in
position A for normal operation; if it is set to M the control variable is manipulated
directly. The input to the integrator (1/s) has a “reset” term that avoids integrator
windup in addition to the normal P, I, and D terms. Notice that the reference r
only enters in the integral term.

The controller also has an input uff for feedforward control. By entering the
feedforward signal as shown in Figure 11.11, the basic anti-windup scheme also
deals with saturation caused by the feedforward signal.

We illustrate how integral windup can be avoided by investigating the cruise
control system.

Example 11.6 Cruise control with anti-windup
Figure 11.10b shows what happens when a controller with anti-windup is applied to
the system simulated in Figure 11.10a. Because of the feedback from the actuator
model, the output of the integrator is quickly reset to a value such that the controller
output is at the saturation limit. The behavior is drastically different from that in
Figure 11.10a and the large overshoot is avoided. The tracking gain used in the
simulation is kaw = 2 which is an order of magnitude larger than the integral gain
ki = 0.2. ∇

To explore if windup protection improves stability, we can redraw the block
diagram so that the nonlinearity is isolated. The closed loop system then consists
of a linear block and a static nonlinearity. With an ideal saturation, the nonlinearity
is a sector-bounded nonlinearity modeled by equation (10.17) with klow = 0 and
khigh = 1, and the linear part has the transfer function

H(s) =
sP (s)C(s)− kaw

s+ kaw
(11.11)

(Exercise 11.12). We can use the circle criterion in Section 10.5 to check stability
of the closed loop system. We first observe that the special form of the nonlinearity
implies that the circle reduces to the line Re s = −1. Applying the circle criterion,
we find that the system with windup protection is stable if the Nyquist curve of the
transfer function H(s) is to the right of the line Re s = −1. If we use describing
functions we find that oscillations may occur if the Nyquist curve H(iω) intersects
the negative real axis to the left of the critical point −1.
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Manual Control and Tracking

Automatic control is often combined with manual control, where the operation
modes are selected by a switch as illustrated in Figure 11.11. The switch is normally
in the position A (automatic). Manual control is selected by moving the switch to
position M (manual) and the control variable is then manipulated directly, often by
buttons for increasing and decreasing the control signal. For example, in a cruise
control system such as that shown in Figure 1.16a, the control signal increases at
constant rate when pushing the increase speed (accel) button and it decreases at
constant rate when the decrease speed (decel) button is pushed. In Figure 11.11
the manipulated variable is denoted by um.

Care has to be taken to avoid transients when switching modes. This can be
accomplished by the arrangement shown in Figure 11.11. When the controller
is in manual mode the feedback through the gain kaw adjusts the input to the
integrator so that the controller output ua tracks the manual input um, resulting
in no transient when switching to automatic control.

To see how the controller in Figure 11.11 is implemented, let the integrator
output be z. The controller is then described by

dx

dt
= ki(r− yf) + kaw(u− ua), ua = z − kpyf − kdẏf, u =

{
F (ua) automatic,

F (um) manual,

where F (u) is the function that represents the actuator model. The parameter kaw
is typically larger than ki and it then follows that the controller output u tracks
um in manual mode (tracking would be ideal if the term ki(r − yf) is zero).

Anti-Windup for General Controllers

Anti-windup can also be extended to general control architectures such as the state
space-based designs studied in Chapters 7 and 8. For the case of an output feedback
controller with integral action via state augmentation (see Example 8.9), we modify
the anti-windup compensation to adjust the entire controller state instead of just
the integrator state. The approach is particularly easy to understand for controllers
based on state feedback and an observer, like the one shown in Figure 8.11. Without
modification, when a saturation occurs then the wrong information is sent to the
observer (the commanded input instead of the saturated input). To address this,
we simply introduce a model for the saturating actuator and feed its output to the
observer, as illustrated in Figure 11.12.

To investigate the stability of the controller with anti-windup, we observe that
if the observer model is designed so that the process actuator never saturates, the
block diagram of the closed loop system can be redrawn so that it consists of a
nonlinear static block representing the actuator model F (x) and a linear block
representing the observer and the process. We can again make use of the circle
criterion described in Section 10.5 to provide conditions for stability. The linear
block has the transfer function

H(s) = K
(
sI −A+ LC

)−1(
B + LC[sI −A]−1B

)
, (11.12)

where A, B, and C are the matrices of the state space model, K is the feedback
gain matrix, and L is the gain matrix of the Kalman filter. With a simple satu-
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Figure 11.12: Anti-windup for a general controller architecture. Compare with
the corresponding controller without anti-windup in Figure 8.11.

rating actuator, the nonlinearity is sector-bounded with klow = 0 and khigh = 1 in
equation (10.17). It then follows from the circle criterion that the closed loop is
stable if the Nyquist plot of L(iω) is to the right of the line Re z = −1/khigh = −1,
and the winding number condition is satisfied.

Facilities for manual control and tracking with observers and state augmentation
can be done in the same way as for the PID controller in Figure 11.11.

11.5 Implementation

There are many practical issues that have to be considered when implementing PID
controllers. They have been developed over time based on practical experience. In
this section we consider some of the most common. Similar considerations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivative has high gain for
high-frequency signals. This means that high-frequency measurement noise will
generate large variations in the control signal. The effect of measurement noise
may be reduced by replacing the term kds by kds/(1 + sTf), which can be inter-
preted as an ideal derivative of a low-pass filtered signal. The time constant of the
filter is typically chosen as Tf = (kd/kp)/N = Td/N , with N in the range 5–20.
Filtering is obtained automatically if the derivative is implemented by taking the
difference between the signal and its filtered version as shown in Figure 11.3b; see
also equation (11.5). Note that in the implementation in Figure 11.3b, the filter
time constant Tf is equal to the derivative time constant Td (N = 1).

Instead of filtering just the derivative, it is also possible to use an ideal controller
and filter the measured signal. Choosing a second-order filter, the transfer function
of the controller with the filter becomes

C(s) = kp

(
1 +

1

sTi
+ sTd

)
1

1 + sTf + (sTf)2/2
. (11.13)

For the system in Figure 11.11, filtering is done in the box marked Gf(s), which
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
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The states are x1 = yf and x2 = dyf/dt. The filter thus gives filtered versions of
the measured signal and its derivative. The second-order filter also provides good
high-frequency roll-off, which improves robustness.

Setpoint Weighting

Figure 11.1 shows two configurations of a PID controller. The system in Fig-
ure 11.1a has a controller with error feedback where proportional, integral, and
derivative action acts on the error. In the simulation of PID controllers in Fig-
ure 11.2c there is a large initial peak in the control signal, which is caused by the
derivative of the reference signal. The peak can be avoided by using the controller
in Figure 11.1b, where proportional and derivative action acts only on the process
output. An intermediate form is given by

u = kp
(
βr − y

)
+ ki

∫ t

0

(
r(τ)− y(τ)

)
dτ + kd

(
γ
dr

dt
− dy

dt

)
, (11.15)

where the proportional and derivative actions act on fractions β and γ of the ref-
erence. Integral action has to act on the error to make sure that the error goes
to zero in steady state. The closed loop systems obtained for different values of β
and γ respond to load disturbances and measurement noise in the same way. The
response to reference signals is different because it depends on the values of β and
γ, which are called reference weights or setpoint weights. Setpoint weighting is a
simple way to obtain two degree-of-freedom action in a PID controller. A controller
with β = γ = 0 is sometimes called an I-PD controller, as seen Figure 11.1b. We
illustrate the effect of setpoint weighting by an example.

Example 11.7 Cruise control with setpoint weighting
Consider the PI controller for the cruise control system derived in Example 11.3.
Figure 11.13 shows the effect of setpoint weighting on the response of the system
to a reference signal. With β = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to the saturation limit. There is no
overshoot with β = 0 and the control signal is much smaller, clearly a much better
drive comfort. The frequency responses gives another view of the same effect. The
parameter β is typically in the range 0–1, and γ is normally zero to avoid large
transients in the control signal when the reference is changed. ∇

The controller given by equation (11.15) is a special case of the general controller
structure having two degrees of freedom, which was discussed in Section 8.5.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different technologies. Figure 11.14 shows
how PI and PID controllers can be implemented by feedback around operational
amplifiers.
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Figure 11.13: Step and frequency responses for PI cruise control with setpoint
weighting. Step responses are shown in (a) and the gain curves of the frequency
responses in (b). The controller gains are kp = 0.74 and ki = 0.19. The setpoint
weights are β = 0, 0.5, and 1, and γ = 0.

To show that the circuit in Figure 11.14b is a PID controller we will use the
approximate relation given by equation (4.14), which is valid when resistances Ri

are replaced by impedances Zi (Exercise 10.1). This gives the transfer function
−Z2/Z1 for the closed loop op amp circuit, noting that the gain of the operational
amplifier is negative. For the PI control in Figure 11.14a the impedances are

Z1 = R1, Z2 = R2 +
1

sC2
=

1 +R2C2s

sC2
,

Z2

Z1
=

1 +R2C2s

sR1C2
=

R2

R1
+

1

R1C2s
,

which shows that the circuit is an implementation of a PI controller with gains
kp = R2/R1 and ki = 1/(R1C2).

−

+
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(a) PI controller
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(b) PID controller

Figure 11.14: Schematic diagrams for PI and PID controllers using op amps.
The circuit in (a) uses a capacitor in the feedback path to store the integral of the
error. The circuit in (b) adds a filter on the input to provide derivative action.
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A similar calculation for the PID controller in Figure 11.14b gives

Z1(s) =
R1

1 +R1C1s
, Z2(s) = R2 +

1

C2s
,

Z2

Z1
=

(1 +R1C1s)(1 +R2C2s)

R1C2s
,

which shows that the circuit is an implementation of a PID controller with the
parameters

kp =
R1C1 +R2C2

R1C2
, Ti = R1C1 +R2C2, Td =

R1R2C1C2

R1C1 +R2C2
.

Computer Implementation

In this section we briefly describe how a PID controller may be implemented using
a computer. The computer typically operates periodically, with signals from the
sensors sampled and converted to digital form by the A/D converter, and the control
signal computed and then converted to analog form for the actuators. The sequence
of operation is as follows:

1. Wait for clock interrupt

2. Read input from sensor

3. Compute control output

4. Send output to the actuator

5. Update controller state

6. Repeat

Notice that an output is sent to the actuators as soon as it is available. The time
delay is minimized by making the calculations in step 3 as short as possible and
performing all updates after the output is commanded. This simple way of reducing
the latency is, unfortunately, seldom used in commercial systems.

As an illustration we consider the PID controller in Figure 11.11, which has a
filtered derivative, setpoint weighting, and protection against integral windup (anti-
windup). The controller is a continuous-time dynamical system. To implement
it using a computer, the continuous-time system has to be approximated by a
discrete-time system.

In Figure 11.11, the signal ua is the sum of the proportional, integral, and
derivative terms, and the controller output is u = sat(ua), where sat is the satu-
ration function that models the actuator. The proportional term P = kp(βr − y)
is implemented simply by replacing the continuous variables with their sampled
versions. Hence

P (tk) = kp
(
βr(tk)− y(tk)

)
, (11.16)

where {tk} denotes the sampling instants, i.e., the times when the computer reads
its input. We let h represent the sampling time, so that tk+1 = tk+h. The integral
term is obtained by approximating the integral with a sum,

I(tk+1) = I(tk) + kih e(tk) +
h

Taw

(
sat(ua)− ua

)
, (11.17)

where Taw = h/kaw represents the anti-windup term. The filtered derivative term
D is given by the differential equation

Tf
dD

dt
+D = −kdẏ.
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Approximating the derivative with a backward difference gives

Tf
D(tk)−D(tk−1)

h
+D(tk) = −kd

y(tk)− y(tk−1)

h
,

which can be rewritten as

D(tk) =
Tf

Tf + h
D(tk−1)−

kd
Tf + h

(y(tk)− y(tk−1)) . (11.18)

The advantage of using a backward difference is that the parameter Tf/(Tf + h)
is nonnegative and less than 1 for all h > 0, which guarantees that the difference
equation is stable. Reorganizing equations (11.16)–(11.18), the PID controller can
be described by the following pseudocode:

% Precompute controller coefficients
bi = ki*h
ad = Tf/(Tf+h)
bd = kd/(Tf+h)
br = h/Taw

% Initalize variables
I = 0, yold = adin(ch2)

% Control algorithm - main loop
while (running) {
r = adin(ch1) % read setpoint from ch1
y = adin(ch2) % read process variable from ch2
P = kp*(b*r - y) % compute proportional part
D = ad*D - bd*(y-yold) % compute derivative part
ua = P + I + D % compute temporary output
u = sat(ua, ulow, uhigh) % simulate actuator saturation
daout(ch1) % set analog output ch1
I = I + bi*(r-y) + br*(u-ua) % update integral state
yold = y % update derivative state
sleep(h) % wait until next update interval

}

Precomputation of the coefficients bi, ad, bd, and br saves computer time in
the main loop. These calculations have to be done only when controller parameters
are changed. The main loop is executed once every sampling period. The program
has three states: yold, I, and D. One state variable can be eliminated at the cost
of less readable code. The latency between reading the analog input and setting
the analog output consists of four multiplications, four additions, and evaluation
of the sat function. All computations can be done using fixed-point calculations
if necessary and implemented on a programmable logical controller (PLC). Notice
that the code computes the filtered derivative of the process output and that it
has setpoint weighting and anti-windup protection. Note also that in this code
we apply the actuator saturation inside the controller, rather than measuring the
actuator output as in Figure 11.11.
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11.6 Further Reading

The history of PID control is very rich and stretches back to the early uses of feed-
back. Good presentations are given by Bennett [Ben79, Ben93] and Mindel [Min02].
Industrial perspectives on PID control are given in [Bia95], [Shi96], and [YH91],
which all mention that a significant fraction of PID controllers are poorly tuned.
PID algorithms have been used in many fields; an unconventional application is
to explain popular monetary policy rules [HSH15]. The Ziegler–Nichols rules for
tuning PID controllers, first presented in 1942 [ZN42], were developed based on
extensive experiments with pneumatic simulators and Vannevar Bush’s differential
analyzer at MIT. An interesting view of the development of the Ziegler–Nichols
rules is given in an interview with Ziegler [Bli90]. The book [O’D06] lists more
than 1730 tuning rules. A detailed discussion of methods for avoiding windup is
given in [ZT11], and a comprehensive treatment of PID control is given in Åström
and Hägglund [ÅH06]. Advanced relay autotuners are presented in Berner et
al. [BSÅH17]. Interactive learning tools for PID control can be downloaded from
http://www.calerga.com/contrib.

Exercises

11.1 (Ideal PID controllers) Consider the systems represented by the block dia-
grams in Figure 11.1. Assume that the process has the transfer function P (s) =
b/(s+ a) and show that the transfer functions from r to y are

(a) Gyr(s) =
bkds2 + bkps+ bki

(1 + bkd)s2 + (a+ bkp)s+ bki
,

(b) Gyr(s) =
bki

(1 + bkd)s2 + (a+ bkp)s+ bki
.

Pick some parameters and compare the step responses of the systems.

11.2 Consider a second-order process with the transfer function

P (s) =
b

s2 + a1s+ a2
.

The closed loop system with a PI controller is a third-order system. Show that
it is possible to position the closed loop poles as long as the sum of the poles is
−a1. Give equations for the parameters that give the closed loop characteristic
polynomial

(s+ αc)(s
2 + 2ζcωcs+ ω2

c ).

11.3 Consider a system with the transfer function P (s) = (s + 1)−2. Find an
integral controller that gives a closed loop pole at s = −a and determine the value
of a that maximizes the integral gain. Determine the other poles of the system
and judge if the pole can be considered dominant. Compare with the value of the
integral gain given by equation (11.6).

http://www.calerga.com/contrib
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11.4 (Tuning rules) Apply the Ziegler–Nichols and the modified tuning rules to
design PI controllers for systems with the transfer functions

P1 =
e−s

s
, P2 =

e−s

s+ 1
, P3 = e−s.

Compute the stability margins and explore any patterns.

11.5 (Ziegler–Nichols tuning) Consider a system with transfer function P (s) =
e−s/s. Determine the parameters of P, PI, and PID controllers using Ziegler–
Nichols step and frequency response methods. Compare the parameter values ob-
tained by the different rules and discuss the results.

11.6 (Vehicle steering) Design a proportional-integral controller for the vehicle
steering system that gives the closed loop characteristic polynomial

s3 + 2ωcs
2 + 2ω2

cs+ ω3
c .

11.7 (Average residence time with PID control) The average residence time is a
measure of the response time of the system. For a stable system with impulse
response h(t) and transfer function P (s) it can be defined as

Tar =

∫ ∞

0
th(t) dt = −P ′(0)

P (0)
.

Consider a stable system with P (0) != 0 and a PID controller having integral gain
ki = kp/Ti. Show that the average residence time of the closed loop system is given
by Tar = Ti/(P (0)kp).

11.8 (Web server control) Web servers can be controlled using a method known
as dynamic voltage frequency scaling in which the processor speed is regulated by
changing its supply voltage. A typical control goal is to maintain a given service
rate, which is approximately equal to maintaining a specified queue length. The
queue length x can be modeled by equation (3.32),

dx

dt
= λ− µ,

where λ is the arrival rate and µ is the service rate, which is manipulated by
changing the processor voltage. A PI controller for keeping queue length close to
xr is given by

µ = kp(x− βxr) + ki

∫ t

0
(x− xr) dt.

Choose the controller parameters kp and ki so that the closed loop system has the
characteristic polynomial s2 + 1.6s + 1, then adjust the setpoint weight β so that
the response to a step in the reference signal has 2% overshoot.

11.9 (Motor drive) Consider the model of the motor drive in Exercise 3.7 with
the parameter values given in Exercise 7.11. Develop an approximate second-order
model of the system and use it to design an ideal PD controller that gives a closed
loop system with eigenvalues −ζω0 ± iω0

√
1− ζ2. Add low-pass filtering as shown

in equation (11.13) and explore how large ω0 can be made while maintaining a good
stability margin. Simulate the closed loop system with the chosen controller and
compare the results with the controller based on state feedback in Exercise 7.11.
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11.10 (Windup and anti-windup) Consider a PI controller of the form C(s) =
1 + 1/s for a process with input that saturates when |u| > 1, and whose linear
dynamics are given by the transfer function P (s) = 1/s. Simulate the response of
the system to step changes in the reference signal of magnitude 1, 2, and 10. Repeat
the simulation when the windup protection scheme in Figure 11.11 is used.

11.11 (Windup protection by conditional integration) Many methods have been
proposed to avoid integrator windup. One method called conditional integration is
to update the integral only when the error is sufficiently small. To illustrate this
method we consider a system with PI control described by

dx1

dt
= u, u = satu0

(kpe+ kix2),
dx2

dt
=

{
e if |e| < e0,

0 if |e| ≥ e0,

where e = r − x. Plot the phase portrait of the system for the parameter values
kp = 1, ki = 1, u0 = 1, and e0 = 1 and discuss the properties of the system.
The example illustrates the difficulties of introducing ad hoc nonlinearities without
careful analysis.

11.12 (Windup stability) Consider a closed loop system with controller transfer
function C(s) and process transfer function P (s). Let the controller have windup
protection with the tracking constant kaw. Assume that the actuator model in the
anti-windup scheme is chosen so that the process never saturates.

(a) Use block diagram transformations to show that the closed loop system with
anti-windup can be represented as a connection of a linear block with transfer
function (11.11) and a nonlinear block representing the actuator model.

(b) Show that the closed loop system is stable if the Nyquist plot of the transfer
function (11.11) has the property ReH(iω) > −1.

(c) Assume that P (s) = kv/s and C(s) = kp + ki/s. Show that the system with
windup protection is stable if kaw > ki/kp.

(d) Use describing function analysis to show that without the anti-windup protec-
tion, the system may not be stable and estimate the amplitude and frequency of
the resulting oscillation.

(e) Build a simple simulation that verifies the results from part (d).

11.13 Consider the system in Exercise 11.9 and investigate what happens if the
second-order filtering of the derivative is replaced by a first-order filter.
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