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Chapter Eleven
PID Control

Based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and

paper industries, 97% of regulatory controllers utilize a PID feedback control algorithm.

L. Desborough and R. Miller, 2002 [DM02a].

Proportional-integral-derivative (PID) control is by far the most common way
of using feedback in engineering systems. In this chapter we will present the ba-
sic properties of PID control and the methods for choosing the parameters of the
controllers. We also analyze the effects of actuator saturation, an important feature
of many feedback systems, and describe methods for compensating for it. Finally,
we will discuss the implementation of PID controllers as an example of how to
implement feedback control systems using analog or digital computation.

11.1 Basic Control Functions

The PID controller was introduced in Section 1.6, where Figure 1.15 illustrates
that control action is composed of three terms: the proportional term (P), which
depends on the present error; the integral term (I), which depends on past errors;
and the derivative term (D), which depends on anticipated future errors. A major
difference between a PID controller and an advanced controller based on feed-
back from estimated states (see Section 8.5) is that the observer-based controller
predicts the future state of the system using a mathematical model, while the PID
controller makes use of linear extrapolation of the measured output. A PI controller
does not make use of any prediction of the future state of the system.

A survey of controllers for more than 100 boiler-turbine units in the Guang-
dong Province in China is a typical illustration of the prevalence of PID-based
control: 94.4% of all controllers were PI, 3.7% PID, and 1.9% used advanced
control [SLL16]. The reasons why derivative action is used in only 4% of all con-
trollers are that the benefits of prediction are significant primarily for processes
that permit large controller gains. For many systems, prediction by linear extrapo-
lation can generate large undesired control signals because measurement noise is
amplified. In addition care must be taken to find a proper prediction horizon. Tem-
perature control is a typical case where derivative action can be beneficial: sensors
have low noise levels and controllers can have high gain.

PID control appears in simple dedicated systems and in large factories with
thousands of controllers: as stand-alone controllers, as elements of hierarchical,
distributed control systems, and as components of embedded systems. Advanced
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Figure 11.1: Block diagrams of closed loop systems with ideal PID controllers. Both con-
trollers have one output, the control signal u. The controller in (a), which is based on error
feedback, has one input, the control error e = r−y. For this controller proportional, integral,
and derivative action acts on the error e = r−y. The two degree-of-freedom controller in (b)
has two inputs, the reference r and the process output y. Integral action acts on the error, but
proportional and derivative action act on only the process output y.

control systems are implemented as hierarchical systems, where high-level con-
trollers give setpoints to PID controllers in a lower layer. The PID controllers are
directly connected to the sensors and actuators of the process. The importance
of PID controllers thus has not decreased with the adoption of advanced control
methods, because the performance of the system depends critically on the behavior
of the PID controllers [DM02a]. There is also growing evidence that PID control
appears in biological systems [YHSD00b].

Block diagrams of closed loop systems with PID controllers are shown in Fig-
ure 11.1. The command signal r is called the reference signal in regulation prob-
lems, or the setpoint in the literature of PID control. The control signal u for the
system in Figure 11.1a is formed entirely from the error e; there is no feedforward
term (which would correspond to kfr in the state feedback case). A common al-
ternative in which proportional and derivative action do not act on the reference
is shown in Figure 11.1b; combinations of the schemes will be discussed in Sec-
tion 11.5.

The input/output relation for an ideal PID controller with error feedback is

u = kpe+ ki

∫ t

0
e(τ)dτ + kd

de

dt
= kp

(
e+

1

Ti

∫ t

0
e(τ)dτ +Td

de

dt

)
. (11.1)

The control action is thus the sum of three terms: proportional feedback, the in-
tegral term, and derivative action. For this reason PID controllers were originally
called three-term controllers. The controller parameters are the proportional gain
kp, the integral gain ki, and the derivative gain kd. The controller can also be pa-
rameterized with the time constants Ti = kp/ki and Td = kd/kp, called integral time
(constant) and derivative time (constant). The parameters Ti and Td have dimen-
sions of time and can naturally be related to the time constants of the controller.



11.1. BASIC CONTROL FUNCTIONS 11-3

0 10 20
0

0.5

1

1.5

0 10 20
−2

0

2

4

Time t

O
u

tp
u

t
y

In
p

u
t

u

kp

kp

(a) Proportional control

0 10 20
0

0.5

1

1.5

0 10 20
−2

0

2

4

Time t
O

u
tp

u
t

y
In

p
u

t
u ki

ki

(b) PI control

0 10 20
0

0.5

1

1.5

0 10 20
−2

0

2

4

Time t

O
u

tp
u

t
y

In
p

u
t

u

kd

kd

(c) PID control

Figure 11.2: Responses to step changes in the reference value for a system with a propor-
tional controller (a), PI controller (b) and PID controller (c). The process has the transfer
function P(s) = 1/(s+ 1)3, the proportional controller has parameters kp = 1, 2 and 5, the
PI controller has parameters kp = 1, ki = 0, 0.2, 0.5, and 1, and the PID controller has pa-
rameters kp = 2.5, ki = 1.5 and kd = 0, 1, 2, and 4.

The PID controllers are often implemented at a low level, where actuator con-
straints are important. Let umin and umax be the limits of the control signal. The
ratio of the maximum variation of the control signal umax−umin and the measured
signal ymax− ymin gives a natural scaling for controller gain, and the quantity

PB =
umax−umin

ymax− ymin
·

1

kp
,

is called the normalized proportional band. If the signals have the same span the
proportional band is simply 1/kp.

The controller (11.1) is an idealized representation. It is a useful abstraction for
understanding the PID controller, but several modifications must be made to obtain
a controller that is practically useful. Before discussing these practical issues we
will develop some intuition about PID control.

We start by considering pure proportional feedback. Figure 11.2a shows the re-
sponses of the process output to a unit step in the reference value for a system with
pure proportional control at different gain settings. In the absence of a feedforward
term, the output never reaches the reference, and hence we are left with nonzero
steady-state error. Letting the process transfer function be P(s), with proportional
feedback we have C(s) = kp and the transfer function from reference to error is

Ger(s) =
1

1+C(s)P(s)
=

1

1+ kpP(s)
. (11.2)
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Assuming that the closed loop is stable, the steady-state error for a unit step is

Ger(0) =
1

1+C(0)P(0)
=

1

1+ kpP(0)
.

For the system in Figure 11.2a with gains kp = 1, 2, and 5, the steady-state error is
0.5, 0.33, and 0.17. The error decreases with increasing gain, but the system also
becomes more oscillatory. The system becomes unstable for kp = 8. Notice in the
figure that the initial value of the control signal equals the controller gain.

To avoid having a steady-state error, the proportional term can be changed to

u(t) = kpe(t)+uff, (11.3)

where uff is a feedforward term that is adjusted to give the desired steady-state
value. If the reference value r is constant and we choose uff = r/P(0) = kfr, then
the steady-state output will be exactly equal to the reference value, as it was in the
state space case, provided that there are no disturbances. However, this requires
exact knowledge of the zero frequency gain P(0), which is usually not available.
The parameter uff, called reset, was adjusted manually in early controllers. Another
alternative to avoid a steady state error is to multiply the reference by 1+ kpP(0),
but this also requires precise knowledge of P(0).

As we saw in Section 7.4, integral action guarantees that the process output agrees
with the reference in steady-state and provides an alternative to the feedforward
term. Since this result is so important, we will provide a general proof. Consider the
controller given by equation (11.1) with ki ≠ 0. Assume that u(t) and e(t) converge
to steady-state values u = u0 and e = e0. It then follows from equation (11.1) that

u0 = kpe0 + ki lim
t→∞

∫ t

0
e(t)dt.

The limit of the right hand side is not finite unless e(t) goes to zero, which implies
that e0 = 0. We can thus conclude that integral control has the property that if a
steady state exists, the error will always be zero. This property is sometimes called
the magic of integral action. Notice that we have not assumed that the process is
linear or time invariant. We have, however, assumed that there is an equilibrium.
It is much better to achieve zero steady-state error by integral action than by feed-
forward, which requires a precise knowledge of process parameters.

The effect of integral action can also be understood from frequency domain
analysis. The transfer function of the PID controller is

C(s) = kp +
ki

s
+ kds. (11.4)

The controller has infinite gain at zero frequency (C(0) = ∞), and it then follows
from equation (11.2) that Ger(0) = 0, which implies that there is no steady-state
error for a step input.

Integral action can also be viewed as a method for generating the feedforward
term uff in the proportional controller (11.3) automatically. This is shown in Fig-
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Figure 11.3: Implementation of integral and derivative action. The block diagram in (a)
shows how integral action is implemented using positive feedback with a first-order system,
sometimes called automatic reset. The block diagram in (b) shows how derivative action can
be implemented by taking differences between a static system and a first-order system.

ure 11.3a, where the controller output is low-pass-filtered and fed back with posi-
tive gain. This implementation, called automatic reset, was one of the early inven-
tions of integral control (it was much easier to implement a low-pass filter than to
implement an integrator). The transfer function of the system in Figure 11.3a is
obtained by block diagram algebra: we have

Gue = kp
1+ sTi

sTi
= kp +

kp

sTi
,

which is the transfer function for a PI controller.
The properties of integral action are illustrated in Figure 11.2b for a step input.

The proportional gain is constant, kp = 1, and the integral gains are ki = 0, 0.2,
0.5, and 1. The case ki = 0 corresponds to pure proportional control, with a steady-
state error of 50%. The steady-state error is eliminated when integral gain action
is used. The response creeps slowly toward the reference for small values of ki

and converges more quickly for larger integral gains, but the system also becomes
more oscillatory.

The integral gain ki is a useful measure for attenuation of load disturbances.
Consider a closed loop system under PID control, like the one in Figure 11.1. As-
sume that the system is stable and initially at rest with all signals being zero. Apply
a unit step load disturbance at the process input. After a transient, the process out-
put goes to zero and the controller output settles at a value that compensates for
the disturbance. Since e(t) goes to zero as t → ∞, it follows from equation (11.1)
that

u(∞) = ki

∫ ∞

0
e(t)dt.

The integrated error, IE, for a unit step load disturbance IE =
∫ ∞

0 e(t)dt is thus
inversely proportional to the integral gain ki and hence serves as a measure of the
effectiveness of disturbance attenuation. A large gain ki attenuates disturbances
effectively, but too large a gain gives oscillatory behavior, poor robustness, and
possibly instability.

We now return to the general PID controller and consider the effect of derivative
action. Recall that the original motivation for derivative feedback was to provide
predictive or anticipatory action. Notice that the combination of the proportional



11-6 CHAPTER 11. PID CONTROL

and the derivative terms can be written as

u = kpe+ kd
de

dt
= kp

(
e+Td

de

dt

)
= kpep,

where ep(t) can be interpreted as a prediction of the error at time t +Td by linear
extrapolation. The prediction time Td = kd/kp is the derivative time constant.

Derivative action can be implemented by taking the difference between the
signal and its low-pass filtered version as shown in Figure 11.3b. The transfer
function for the system is

Gue(s) = kp

(
1−

1

1+ sTd

)
= kp

sTd

1+ sTd
=

kds

1+ sTd
. (11.5)

The transfer function Gue(s) approximates a derivative for low frequencies because
for |s|≪ 1/Td we have G(s)≈ kpTds. The transfer function Gue acts like a differen-
tiator for signals with low frequencies and as a constant gain kp for high frequency
signals, so we can regard this as a filtered derivative.

Figure 11.2c illustrates the effect of derivative action: the system is oscillatory
when no derivative action is used, and it becomes more damped as the derivative
gain is increased. When the input is a step, the controller output generated by the
derivative term will be an impulse. This is clearly visible in Figure 11.2c. The im-
pulse can be avoided by using the controller configuration shown in Figure 11.1b.

Although PID control was developed in the context of engineering applications,
it also appears in nature. Disturbance attenuation by feedback in biological systems
is often called adaptation. A typical example is the pupillary reflex discussed in
Example 9.18, where it is said that the eye adapts to changing light intensity. Anal-
ogously, feedback with integral action is called perfect adaptation [YHSD00b]. In
biological systems proportional, integral, and derivative action are generated by
combining subsystems with dynamical behavior, similar to what is done in engi-
neering systems. For example, PI action can be generated by the interaction of
several hormones [ESGK02].

Example 11.1 PD action in the retina
The response of cone photoreceptors in the retina is an example where proportional
and derivative action is generated by a combination of cones and horizontal cells.
The cones are the primary receptors stimulated by light, which in turn stimulate the
horizontal cells, and the horizontal cells give inhibitory (negative) feedback to the
cones. A schematic diagram of the system is shown in Figure 11.4a. The system
can be modeled by ordinary differential equations by representing neuron signals
as continuous variables representing the average pulse rate. In [Wil99] it is shown
that the system can be represented by the differential equations

dx1

dt
=

1

Tc
(−x1− kx2 +u),

dx2

dt
=

1

Th
(x1− x2),

where u is the light intensity and x1 and x2 are the average pulse rates from the
cones and the horizontal cells. A block diagram of the system is shown in Fig-
ure 11.4b (compare with Figure 11.3a). The step response of the system given
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Figure 11.4: Schematic diagram of cone photoreceptors (C) and horizontal cells (H) in the
retina. In the schematic diagram in (a), excitatory feedback is indicated by arrows and in-
hibitory feedback by circles. A block diagram is shown in (b) and the step response in (c).

in Figure 11.4c shows that the system has a large initial response followed by a
lower, constant steady-state response typical of proportional and derivative action.
The parameters used in the simulation are k = 4, Tc = 0.025, and Th = 0.08. ∇

11.2 Simple Controllers for Complex Systems

Many of the design methods discussed in previous chapters have the property that
the complexity of the controller is a direct reflection of the complexity of the
model. When designing controllers by output feedback in Chapter 8, we found for
single-input, single-output systems that the order of the controller was the same as
the order of the model, possibly one order higher if integral action was required.
Applying these design methods to PID control requires that the models must be of
first or second order.

Low-order models can be obtained from first principles. Any stable system
can be modeled by a static system if its inputs are sufficiently slow. Similarly a
first-order model is sufficient if the storage of mass, momentum, or energy can be
captured by only one variable; typical examples are the velocity of a car on a road,
angular velocity of a stiff rotational system, the level in a tank, and the concentra-
tion in a volume with good mixing. System dynamics are of second order if the
storage of mass, energy, and momentum can be captured by two state variables;
typical examples are the position and velocity of a car on the road, the orienta-
tion and angular velocity of satellites, the levels in two connected tanks, and the
concentrations in two-compartment models. A wide range of techniques for model
reduction are also available. In this section we will focus on design techniques
where we simplify the models to capture the essential properties that are needed
for PID design.

We begin by analyzing the case of integral control. Any stable system can be
controlled by an integral controller provided that the requirements on the closed
loop system are modest. To design a controller we approximate the transfer func-
tion of the process by a constant K = P(0), which will be reasonable for any stable
system at sufficiently low frequencies. The loop transfer function under integral
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control then becomes Kki/s, and the closed loop characteristic polynomial is sim-
ply s+Kki. Specifying performance by the desired time constant Tcl of the closed
loop system, we find that the integral gain can be chosen as ki = 1/(TclP(0)).

This simplified analysis requires that Tcl be sufficiently large that the process
transfer function can indeed be approximated by a constant. A reasonable criterion
is that Tcl > Tar, where Tar =−P′(0)/P(0) is known as the average residence time
of the open loop system.

To obtain controllers with higher performance we can approximate the process
dynamics by a first order system (rather than a constant):

P(s)≈ P(0)+P′(0)s≈
P(0)

1+ sTar
.

A reasonable design criterion is to obtain a step response with small overshoot and
reasonable response time. An integral controller with gain

ki =
1

2P(0)Tar
=−

1

2P′(0)
(11.6)

gives the loop transfer function

L(s) = P(s)C(s)≈
P(0)

1+ sTar

ki

s
=

1

2sTar(1+ sTar)
,

and the closed loop poles become s = (−0.5±0.5i)/Tar. Using the approximations
in Table 7.1, we see that this controller results in a rise time of approximately 2.2Tar

and settling time of approximately 5.6Tar with very small overshoot.

Example 11.2 Integral control of AFM in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force
microscope in tapping mode was discussed in Exercise 10.2. The transfer function
for the system dynamics is

P(s) =
a(1− e−sτ)

sτ(s+a)
,

where a = ζ ω0, τ = 2πn/ω0, and the gain has been normalized to 1. This transfer
function is unusual since there is a time delay term in the numerator.

To design a controller, we focus on the low frequency dynamics of the system.
We have P(0) = 1 and P′(0) =−τ/2−1/a=−(2+aτ)/(2a). For low frequencies
the loop transfer function can then be approximated by

L(s)≈
ki(P(0)+ sP′(0))

s
= kiP

′(0)+
kiP(0)

s
.

Using the design rule above we set ki = −P′(0)/2, which gives ki = a/(2+ aτ).
Nyquist and Bode plots for the resulting loop transfer function are shown in Fig-
ure 11.5. We see that the controller provides good performance at low frequency
and has good stability margins. Note that even though the system dynamics in-
clude a time-delay term, we were able to obtain good performance using a simple
integral controller and a simple set of calculations. ∇
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Figure 11.5: Nyquist (a) and Bode (b) plots of the loop transfer function for integral control
of an AFM in tapping mode. The integrating controller gives good robustness properties
based on a simple analysis. At high frequencies the Nyquist plot has an infinite number of
small loops with decreasing amplitude in the left half plane. These loops are not visible in
the Nyquist plot but they show up clearly in the Bode plot.

Another approach to designing simple controllers is to use the gains of the
controller to set the location of the closed loop poles. PI controllers give two gains
with which to tune the closed loop dynamics, and for simple models the closed
loop poles can be set using these gains.

Consider a first-order system with the transfer function

P(s) =
b

s+a
.

With a PI controller the closed loop system has the characteristic polynomial

s(s+a)+bkps+bki = s2 +(a+bkp)s+bki.

The closed loop poles can thus be assigned arbitrary values by proper choice of
the controller gains kp and ki. Requiring that the closed loop system have the char-
acteristic polynomial

p(s) = s2 +a1s+a2,

we find that the controller parameters are

kp =
a1−a

b
, ki =

a2

b
. (11.7)

If we require a response of the closed loop system that is slower than that of the
open loop system, a reasonable choice is a1 = a+α and a2 = αa, where α < a
determines the closed loop response. If a response faster than that of the open loop
system is required, a possible choice is a1 = 2ζ ωc and a2 = ω2

c , where ωc and ζc

are undamped natural frequency and damping ratio of the dominant mode.
The choice of ωc has a significant impact on the robustness of the system and

will be discussed in Section 14.6. An upper limit to ωc is given by highest fre-
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Figure 11.6: Cruise control using PI feedback. The step responses for the error and input
illustrate the effect of parameters ζ = 1 and ω0 on the response of a car with cruise control.
The slope of the road changes linearly from 0◦ to 4◦ between t = 5 and 6 s. (a) Responses
for ω0 = 0.5 and ζ = 0.5, 1, and 2. Choosing ζ = 1 gives no overshoot in the velocity v. (b)
Responses for ζ = 1 and ω0 = 0.2, 0.5, and 1.0.

quency where the model is valid. Large values of ωc will require fast control ac-
tions, and actuators may saturate if the value is too large. A first-order model is
unlikely to represent the true dynamics for high frequencies.

Example 11.3 Cruise control using PI feedback
Consider the problem of maintaining the speed of a car as it goes up a hill. In
Example 6.14 we found that there was little difference between the linear and non-
linear models when investigating PI control, provided that the throttle did not reach
the saturation limits. A simple linear model of a car was given in Example 6.11:

d(v− ve)

dt
=−a(v− ve)+b(u−ue)−gθ , (11.8)

where v is the velocity of the car, u is the input to the engine (throttle) and θ
is the slope of the hill. The parameters were a = 0.0101, b = 1.3203, g = 9.8,
ve = 20, and ue = 0.1616. This model will be used to find suitable parameters
of a vehicle speed controller. The transfer function from throttle to velocity is a
first-order system. Since the open loop dynamics are quite slow (1/a ≈ 100 s), it
is natural to specify a faster closed loop system by requiring that the closed loop
system be of second order with damping ratio ζ and undamped natural frequency
ω0. The controller gains are given by equation (11.7).

Figure 11.6 shows the velocity and the throttle for a car that initially moves
on a horizontal road and encounters a hill with a slope of 4◦ at time t = 6 s. To
design a PI controller we choose ζ = 1 to obtain a response without overshoot,
as shown in Figure 11.6a. The choice of ω0 is a compromise between response
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speed and control actions: a large value gives a fast response, but it requires fast
control action. The trade-off is illustrated in Figure 11.6b. The largest velocity er-
ror decreases with increasing ω0, but the control signal also changes more rapidly.
In the simple model (11.8) it was assumed that the force responds instantaneously
to throttle commands. For rapid changes there may be additional dynamics that
have to be accounted for. There are also physical limits to the rate of change of the
force, which also restricts the admissible value of ω0. A reasonable choice of ω0

is in the range 0.5–1.0. Notice in Figure 11.6 that even with ω0 = 0.2 the largest
velocity error is only 1 m/s. ∇

A PI controller can also be used for a process with second-order dynamics, but
there will be restrictions on the possible locations of the closed loop poles. Using
a PID controller, it is possible to control a system of second order in such a way
that the closed loop poles have arbitrary locations (Exercise 11.2).

Instead of finding a low-order model and designing controllers for them, we
can also use a high-order model and attempt to place only a few dominant poles.
An integral controller has one parameter, and it is possible to position one pole.
To see this, consider a process with the transfer function P(s). The loop transfer
function with an integral controller is L(s) = kiP(s)/s. The roots of the closed loop
characteristic polynomial are the roots of s+kiP(s) = 0. Requiring that s=−a be a
root, the controller gain should be chosen as ki = a/P(−a). The pole s=−a will be
a dominant closed loop pole if a is smaller than the magnitude of the other closed
loop process poles. A similar approach can be applied to PI and PID controllers
(Exercise 11.3).

11.3 PID Tuning

Users of control systems are frequently faced with the task of adjusting the con-
troller parameters to obtain a desired behavior. There are many different ways to
do this. One approach is to go through the conventional steps of modeling and
control design as described in the previous section. A typical process may have
thousands of PID controllers. Since the PID controller has so few parameters a
number of special empirical methods have been developed for direct adjustment of
the controller parameters.

Ziegler–Nichols’ Tuning

The first tuning rules were developed by Ziegler and Nichols [ZN42] in the 1940s.
Their idea was to perform a simple experiment on the process and extract features
of process dynamics in the time and frequency domains.

The time domain method is based on a measurement of part of the open loop
unit step response of the process, as shown in Figure 11.7a. The step response is
measured by a bump test. The process is first brought to steady-state, the input is
then changed by a suitable amount, and finally the output is measured and scaled



11-12 CHAPTER 11. PID CONTROL

tτ

y

−a

K

0.63K

T63

(a) Step response method

Re P(iω)

Im P(iω)

ω = ωc

(b) Frequency response method

Figure 11.7: Ziegler–Nichols step and frequency response experiments. The open loop unit
step response in (a) is characterized by the parameters a and τ . The frequency response
method (b) characterizes process dynamics by the point where the Nyquist curve of the
process transfer function first intersects the negative real axis and the frequency ωc where
this occurs.

to correspond to a unit step input. Ziegler and Nichols characterized the step re-
sponse by only two parameters a and τ , which are the intercepts of the steepest
tangent of the step response with the coordinate axes. The parameter τ is an ap-
proximation of the time delay of the system and a/τ is the steepest slope of the
step response. Notice that it is not necessary to wait until steady state is reached to
be able to determine the parameters; it suffices to wait until the response has had
an inflection point. The suggested controller parameters are given in Table 11.1.
They were obtained by extensive simulation of a range of representative processes.
A controller was tuned manually for each process, and an attempt was then made
to correlate the controller parameters with a and τ .

In the frequency domain method, a controller is connected to the process, the
integral and derivative gains are set to zero, and the proportional gain is increased
until the system starts to oscillate. The critical value kc of the proportional gain
is observed together with the period of oscillation Tc. It follows from Nyquist’s
stability criterion that the Nyquist contour for the loop transfer function L = kcP(s)

Table 11.1: Ziegler–Nichols tuning rules. (a) The step response method gives the parameters
in terms of the intercept a and the apparent time delay τ . (b) The frequency response method
gives controller parameters in terms of critical gain kc and critical period Tc.

Type kp Ti Td

P 1/a

PI 0.9/a 3τ

PID 1.2/a 2τ 0.5τ

(a) Step response method

Type kp Ti Td

P 0.5kc

PI 0.4kc 0.8Tc

PID 0.6kc 0.5Tc 0.125Tc

(b) Frequency response method
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passes through the critical point at the frequency ωc = 2π/Tc. The experiment thus
gives the point on the Nyquist curve of the process transfer function P(s) where the
phase lag is 180◦, as shown in Figure 11.7b. The suggested controller parameters
are then given by Table 11.1b.

The Ziegler–Nichols methods had a huge impact when they were introduced
in the 1940s. The rules were simple to use and gave initial conditions for manual
tuning. The ideas were adopted by manufacturers of controllers for routine use.
The Ziegler–Nichols tuning rules unfortunately have two severe drawbacks: too
little process information is used, and the closed loop systems that are obtained
lack robustness.

Tuning Based on the FOTD Model

The Ziegler–Nichols methods use only two parameters to characterize process dy-
namics, a and τ for the step response method and kc and Tc for the frequency
domain method. Tuning of PID controllers can be improved if we characterize the
process by more parameters. The first order and time delay (FOTD) model

P(s) =
K

1+ sT
e−τs, τn =

τ

T + τ
, (11.9)

is commonly used to approximate the step response of systems with essentially
monotone step responses. The parameter τn, which has values between 0 and 1,
is called the relative time delay or the normalized time delay. The dynamics are
characterized as being lag dominated if τn is close to zero, delay dominated if τn

is close to one, and balanced for intermediate values.
The parameters of the FOTD model can be determined from a bump test as

indicated in Figure 11.7a. The zero frequency gain K is the steady-state value of
the unit step response. The time delay τ is the intercept of the steepest tangent with
the time axis, as in the Ziegler–Nichols method. The time T63 is the time where the
output has reached 63% of its steady-state value and T is then given by T = T63−τ .
Notice that it takes longer time to find an FOTD model than the Ziegler–Nichols
model (a and τ) because to determine K it is necessary to wait until the steady state
has been reached.

There are many versions of improved tuning rules for the model (11.9). As an
illustration we give the following rules for PI control, based on [ÅH06]:

kp =
0.15τ +0.35T

Kτ

(0.9T

Kτ

)
, ki =

0.46τ +0.02T

Kτ2

(0.3T

Kτ2

)
, (11.10a)

kp = 0.22kc−
0.07

K

(
0.4kc

)
, ki =

0.16kc

Tc
+

0.62

KTc

(0.5kc

Tc

)
. (11.10b)

The values for the Ziegler–Nichols rule from Table 11.1 are given in parentheses.
Notice that the improved formulas typically give lower controller gains than the
Ziegler–Nichols method.
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Figure 11.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step responses (b)
for PI control of the vertical motion of an atomic force microscope in tapping mode. Results
with Ziegler–Nichols tuning are shown by dashed lines, and modified Ziegler–Nichols tuning
is shown by solid lines. The Nyquist plot of the process transfer function is shown by dotted
lines.

Example 11.4 Atomic force microscope in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force
microscope in tapping mode was discussed in Example 11.2. The transfer function
is normalized by choosing 1/a as the time unit, yielding

P(s) =
1− e−sTn

sTn(s+1)
,

where Tn = 2nπa/ω0 = 2nπζ . The Nyquist plot of P(s) is shown as a dotted line
in Figure 11.8a for ζ = 0.002 and n = 20. The first intersection with the real axis
occurs at Res = −0.0461 for ωc = 13.1. The critical gain is thus kc = 21.7 and
the critical period is Tc = 0.48. Using the Ziegler–Nichols tuning rule, we find
the parameters kp = 8.87 and ki = 22.6 (Ti = 0.384) for a PI controller. With this
controller the stability margin is sm = 0.31, which is quite small. The step response
of the controller is shown using dashed lines in Figure 11.8. Notice in particular
that there is a large overshoot in the control signal.

The modified Ziegler–Nichols rule (11.10b) gives the controller parameters
kp = 3.47 and ki = 8.73 (Ti = 0.459) and the stability margin becomes sm = 0.61.
The step response with this controller is shown using solid lines in Figure 11.8.
A comparison of the responses obtained with the original Ziegler–Nichols rule
shows that the overshoot has been reduced. Notice that the control signal reaches
its steady-state value almost instantaneously. It follows from Example 11.2 that a
pure integral controller has the normalized gain ki = 1/(2+Tn) = 0.44, which is
more than an order of magnitude smaller than the integral gain of the PI controller.

∇

The tuning rules based on the FOTD model work well for PI controllers. Deriva-
tive action has little effect on processes with delay-dominated dynamics, but can
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Figure 11.9: Block diagram of a process with relay feedback (a) and typical signals (b). The
process output y is a solid line, and the relay output u is a dashed line. Notice that the signals
u and y have opposite phases.

give substantial performance for processes with lag-dominated dynamics. Tuning
of PID controllers for processes with lag-dominated dynamics cannot, however, be
based on the the FOTD model; see [ÅH06].

Relay Feedback

The Ziegler–Nichols frequency response method increases the gain of a propor-
tional controller until oscillation to determine the critical gain kc and the corre-
sponding critical period Tc or, equivalently, the point where the Nyquist curve in-
tersects the negative real axis. One way to obtain this information automatically
is to connect the process in a feedback loop with a nonlinear element having a
relay function as shown in Figure 11.9a. For many systems there will then be an
oscillation, as shown in Figure 11.9b, where the relay output u is a square wave
and the process output y is close to a sinusoid. Moreover, the fundamental sinu-
soidal components of the input and the output are 180◦ out of phase, which means
that the system oscillates with the critical period Tc. Notice that an oscillation with
constant period is established quickly.

To determine the critical gain kc we expand the square wave relay output in a
Fourier series. Notice in the figure that the process output is practically sinusoidal
because the process attenuates higher harmonics. It is then sufficient to consider
only the first harmonic component of the input. Letting d be the relay amplitude,
this component has amplitude 4d/π . If a is the amplitude of the process output, the
process gain at the critical frequency ωc = 2π/Tc is |P(iωc)| = πa/(4d) and the
critical gain is kc = 4d/(aπ) Having obtained the critical gain kc and the critical pe-
riod Tc, the controller parameters can then be determined using the Ziegler–Nichols
rules. Improved tuning can be obtained by fitting a model to the data obtained from
the relay experiment.

The relay experiment can be automated. Since the amplitude of the oscillation
is proportional to the relay output, it is easy to control it by adjusting the relay out-
put. Automatic tuning based on relay feedback is used in many commercial PID
controllers. Tuning is accomplished simply by pushing a button that activates re-
lay feedback. The relay amplitude is automatically adjusted to keep the oscillations
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sufficiently small, and the relay feedback is replaced by a PID controller when the
tuning is finished. The main advantage of relay tuning is that a short experiment
for identification of process dynamics is generated automatically. The original re-
lay autotuner has be improved significantly by using an asymmetric relay which
admits determination of more parameters.

11.4 Integral Windup

Many aspects of a control system can be understood from linear models. There are,
however, some nonlinear phenomena that must be taken into account. These are
typically limitations in the actuators: a motor has limited speed, a valve cannot be
more than fully opened or fully closed, etc. For a system that operates over a wide
range of conditions, it may happen that the control variable reaches the actuator
limits. When this happens, the feedback loop is broken and the system runs in
open loop because the actuator remains at its limit independently of the process
output as long as the actuator remains saturated. The integral term will also build
up since the error is typically nonzero. The integral term and the controller output
may then become very large. The control signal will then remain saturated even
when the error changes, and it may take a long time before the integrator and the
controller output come inside the saturation range. The consequence is that there
are large transients. This situation is referred to as integrator windup, illustrated in
the following example.

Example 11.5 Cruise control
The windup effect is illustrated in Figure 11.10a, which shows what happens when
a car encounters a hill that is so steep (6◦) that the throttle saturates when the cruise
controller attempts to maintain speed. When encountering the slope at time t = 5,
the velocity decreases and the throttle increases to generate more torque. However,
the torque required is so large that the throttle saturates. The error decreases slowly
because the torque generated by the engine is just a little larger than the torque
required to compensate for gravity. The error is large and the integral continues
to build up until the error reaches zero at time 25, but the controller output is still
larger than the saturation limit and the actuator remains saturated. The integral
term starts to decrease, and the velocity settles to the desired value at time t = 40.
Also notice the large overshoot. ∇

Stability theory can be used give some insight into the windup phenomena, as
we briefly sketch here. Consider a closed loop system where the controller has the
transfer function C(s) and the process has the transfer function P(s) and an input
saturation. We can redraw the block diagram so that the nonlinearity is isolated,
allowing the system to represented by two blocks: the saturation and a linear block
with the transfer function L(s) =P(s)C(s). The saturation is a sector-bounded non-
linearity modeled by equation (10.16) with klow = 0 and khigh = 1, and it follows
from the circle criterion that the closed loop system is stable if the Nyquist plot
of the loop transfer function L(iω) is to the right of the line Res = −1. If we use
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(b) Anti-windup

Figure 11.10: Simulation of PI cruise control with windup (a) and anti-windup (b). The
figure shows the speed v and the throttle u for a car that encounters a slope that is so steep
that the throttle saturates. The controller output is a dashed line. The controller parameters
are kp = 0.5, ki = 0.1 and kt = 2.0. The anti-windup compensator eliminates the overshoot
by preventing the error from building up in the integral term of the controller.

describing functions we find that oscillations may occur if the Nyquist curve L(iω)
intersects the negative real axis to the right of the critical point −1.

Avoiding Windup

Windup occurs in all controllers with integral action. There are many methods
to avoid windup. One method is illustrated in Figure 11.11: the system has an
extra feedback path that is generated from a mathematical model of the saturating
actuator. The signal es is the difference between the outputs of the controller µ ,
and the actuator model u. It is fed to the input of the integrator through the gain kt.
The signal es is zero when there is no saturation and the extra feedback loop has
no effect on the system. When the actuator saturates, the signal es is fed back to
the integrator in such a way that es goes toward zero. This implies that controller
output is kept close to the saturation limit. The controller output will then change
as soon as the error changes sign and integral windup is avoided.

The rate at which the controller output is reset is governed by the feedback
gain kt; a large value of kt gives a short reset time. The parameter kt cannot be too
large because measurement noise can then cause an undesirable reset. A reasonable
choice is to choose kt as a multiple of the integral gain ki.

The controller also has an input uff for feedforward control. By entering the
feedforward signal as shown in Figure 11.11, the basic anti-windup scheme also
deals with saturations caused by the feedforward signal.

We illustrate how integral windup can be avoided by investigating the cruise
control system.
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−ẏf
um

Figure 11.11: PID controller with filtering, anti-windup, and manual control. The controller
has filtering of the measured signal, an input uff for feedforward signal, and another input
w for direct control of the output. The switch is in position A for normal operation; if it is
set to M the control variable is manipulated directly. The input to the integrator (1/s) has a
“reset” term that avoids integrator windup in addition to the normal P, I, and D terms. Notice
that the reference r only enters in the integral term.

Example 11.6 Cruise control with anti-windup
Figure 11.10b shows what happens when a controller with anti-windup is applied
to the system simulated in Figure 11.10a. Because of the feedback from the ac-
tuator model, the output of the integrator is quickly reset to a value such that the
controller output is at the saturation limit. The behavior is drastically different from
that in Figure 11.10a and the large overshoot is avoided. The tracking gain used
in the simulation is kt = 2 which is an order of magnitude larger than the integral
gain ki = 0.2. ∇

To explore if windup protection improves stability, we can redraw the block
diagram so that the nonlinearity is isolated. The closed loop system then consists
of a linear block and a static nonlinearity. With an ideal saturation, the nonlinearity
is a sector-bounded nonlinearity modeled by equation (10.16) with klow = 0 and
khigh = 1, and the linear part has the transfer function

G(s) =
sP(s)C(s)− kt

s+ kf
, : (11.11)

(Exercise 11.12). To use the circle criterion we first observe that the special form
of the nonlinearity implies that the circle reduces to the line Re s =−1. Applying
the circle criterion, we find that the system with windup protection is stable if the
Nyquist curve of the transfer function G(s) is to the right of the line Re s =−1.

Manual Control and Tracking

Automatic control is often combined with manual control, where the operation
modes are selected by a switch as illustrated in Figure 11.11. The switch is nor-
mally in the position A (automatic). Manual control is selected by moving the
switch to position M (manual) and the control variable is then manipulated di-
rectly, often by buttons for increasing and decreasing the control signal. For ex-
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Figure 11.12: Anti-windup for a general controller architecture. Compare with the corre-
sponding controller without anti-windup in Figure 8.11.

ample, in a cruise control system such as that shown in Figure 1.16a, the control
signal increases at constant rate when pushing the increase speed (accel) button
and it decreases at constant rate when the decrease speed (decel) button is pushed.
In Figure 11.11 the manipulated variable is denoted by um.

Care has to be taken to avoid transients when switching modes. This can be
accomplished by the arrangement shown in Figure 11.11. When the controller is
in manual mode the feedback through the gain kt adjusts the input to the integrator
so that the controller output ua tracks the manual input um, resulting in no transient
when switching to automatic control.

To see how the controller in Figure 11.11 is implemented, let the integrator
output be x. The controller is then described by

dx

dt
= ki(r− yf)+ kt(u−ua), ua = x− kpyf− kdẏf, u =

{
F(ua) automatic,

F(um) manual,

where F(x) is the function that represents the actuator model. The parameter kt is
typically larger than ki and it then follows that the controller output u tracks um in
manual mode (tracking would be ideal if the term ki(r− yf) is zero).

Anti-Windup for General Controllers

Anti-windup can also be extended to general control architectures such as the state-
space based designs studied in Chapters 7 and 8. For the case of an output feedback
controller with integral action via state augmentation (see Example 8.9), we mod-
ify the antiwindup compensation to adjust the entire controller state instead of just
the integrator state. The approach is particularly easy to understand for controllers
based on state feedback and an observer, like the one shown in Figure 8.11. With-
out modification, when a saturation occurs then the wrong information is sent to
the observer (the commanded input instead of the saturated input). To address this,
we simply introduce a model for the saturating actuator and feed its output to the
observer, as illustrated in Figure 11.12.

To investigate the stability of the controller with anti-windup, we observe that
if the observer model is designed so that the process actuator never saturates, the
block diagram of the closed loop system can be redrawn so that it consists of a
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nonlinear static block representing the actuator model F(x) and a linear block
representing the observer and the process. We can make use of the circle criterion
described in Section 10.5 to provide conditions for stability. The linear block has
the transfer function

H(s) = K[sI−A+KC]−1
(
B+LC[sI−A]−1B

)
,

where A, B, and C are the matrices of the state space model, K is the feedback
gain matrix, and L is the gain matrix of the Kalman filter. With a simple saturating
actuator, the nonlinearity is sector-bounded with klow = 0 and khigh = 1 in equa-
tion (10.16). It then follows from the circle criterion that the closed loop is stable
if the Nyquist plot of L(iω) is to the right of the line Re z = −1/khigh = −1, and
the winding number condition is satisfied.

Facilities for manual control and tracking with observers and state augmenta-
tion can be done in the same way as for the PID controller in Figure 11.11.

11.5 Implementation

There are many practical issues that have to be considered when implementing PID
controllers. They have been developed over time based on practical experience. In
this section we consider some of the most common. Similar considerations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivative has high gain for
high-frequency signals. This means that high-frequency measurement noise will
generate large variations in the control signal. The effect of measurement noise
may be reduced by replacing the term kds by kds/(1+ sTf), which can be inter-
preted as an ideal derivative of a low-pass filtered signal. The time constant of the
filter is typically chosen as Tf = (kd/kp)/N = Td/N, with N in the range 5–20.
Filtering is obtained automatically if the derivative is implemented by taking the
difference between the signal and its filtered version as shown in Figure 11.3b;
see also equation (11.5). Note that in the implementation in Figure 11.3b, the filter
time constant Tf is equal to the derivative time constant Td = T (N = 1).

Instead of filtering just the derivative, it is also possible to use an ideal con-
troller and filter the measured signal. Choosing a second-order filter, the transfer
function of the controller with the filter becomes

C(s) = kp

(
1+

1

sTi
+ sTd

)
1

1+ sTf +(sTf)2/2
. (11.12)

For the system in Figure 11.11, filtering is done in the box marked Gf(s), which
has the dynamics

d

dt

⎧
⎪⎪⎩

x1

x2

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0 1

−2T−2
f −2T−1

f

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x1

x2

⎫
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⎧
⎪⎪⎩

0

2T−2
f

⎫
⎪⎪⎭y. (11.13)
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The states are x1 = yf and x2 = dyf/dt. The filter thus gives filtered versions of
the measured signal and its derivative. The second-order filter also provides good
high-frequency roll-off, which improves robustness.

Setpoint Weighting

Figure 11.1 shows two configurations of a PID controller. The system in Fig-
ure 11.1a has a controller with error feedback where proportional, integral, and
derivative action acts on the error. In the simulation of PID controllers in Fig-
ure 11.2c there is a large initial peak in the control signal, which is caused by the
derivative of the reference signal. The peak can be avoided by using the controller
in Figure 11.1b, where proportional and derivative action acts only on the process
output. An intermediate form is given by

u = kp

(
β r− y

)
+ ki

∫ t

0

(
r(τ)− y(τ)

)
dτ + kd

(
γ

dr

dt
−

dy

dt

)
, (11.14)

where the proportional and derivative actions act on fractions β and γ of the refer-
ence. Integral action has to act on the error to make sure that the error goes to zero
in steady state. The closed loop systems obtained for different values of β and γ re-
spond to load disturbances and measurement noise in the same way. The response
to reference signals is different because it depends on the values of β and γ , which
are called reference weights or setpoint weights. A controller with β = γ = 0 is
sometimes called an I-PD controller, as seen Figure 11.1b. We illustrate the effect
of setpoint weighting by an example.

Example 11.7 Cruise control with setpoint weighting
Consider the PI controller for the cruise control system derived in Example 11.3.
Figure 11.13 shows the effect of setpoint weighting on the response of the system
to a reference signal. With β = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to the saturation limit. There is no
overshoot with β = 0 and the control signal is much smaller, clearly a much better
drive comfort. The frequency responses gives another view of the same effect. The
parameter β is typically in the range 0–1, and γ is normally zero to avoid large
transients in the control signal when the reference is changed. ∇

The controller given by equation (11.14) is a special case of the general con-
troller structure having two degrees of freedom, which was discussed in Sec-
tion 8.5.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different technologies. Figure 11.14
shows how PI and PID controllers can be implemented by feedback around oper-
ational amplifiers.

To show that the circuit in Figure 11.14b is a PID controller we will use the
approximate relation given by equation (4.14), which is valid when resistances Ri
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Figure 11.13: Step and frequency responses for PI cruise control with setpoint weighting.
Step responses are shown in (a) and the gain curves of the frequency responses in (b). The
controller gains are kp = 0.74 and ki = 0.19. The setpoint weights are β = 0, 0.5 and 1, and
γ = 0.

are replaced by impedances Zi. This gives the transfer function −Z2/Z1 for the
closed loop op amp circuit, noting that the gain of the operational amplifier is
negative. For the PI control in Figure 11.14a the impedances are

Z1 = R1, Z2 = R2 +
1

sC2
=

1+R2C2s

sC2
,

Z2

Z1
=

1+R2C2s

sR1C2
=

R2

R1
+

1

R1C2s
,

which shows that the circuit is an implementation of a PI controller with gains
kp = R2/R1 and ki = 1/(R1C2).

A similar calculation for the PID controller in Figure 11.14b gives

Z1(s) =
R1

1+R1C1s
, Z2(s) = R2 +

1

C2s
,

Z2

Z1
=

(1+R1C1s)(1+R2C2s)

R1C2s
,

−

+

R1 R C2 2

e

u

(a) PI controller

−

+

R1 R C2 2

C1

e

u

(b) PID controller

Figure 11.14: Schematic diagrams for PI and PID controllers using op amps. The circuit in
(a) uses a capacitor in the feedback path to store the integral of the error. The circuit in (b)
adds a filter on the input to provide derivative action.
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which shows that the circuit is an implementation of a PID controller with the
parameters

kp =
R1C1 +R2C2

R1C2
, Ti = R1C1 +R2C2, Td =

R1R2C1C2

R1C1 +R2C2
.

Computer Implementation

In this section we briefly describe how a PID controller may be implemented us-
ing a computer. The computer typically operates periodically, with signals from
the sensors sampled and converted to digital form by the A/D converter, and the
control signal computed and then converted to analog form for the actuators. The
sequence of operation is as follows:

1. Wait for clock interrupt

2. Read input from sensor

3. Compute control output

4. Send output to the actuator

5. Update controller state

6. Repeat

Notice that an output is sent to the actuators as soon as it is available. The time
delay is minimized by making the calculations in step 3 as short as possible and
performing all updates after the output is commanded. This simple way of reducing
the latency is, unfortunately, seldom used in commercial systems.

As an illustration we consider the PID controller in Figure 11.11, which has
a filtered derivative, setpoint weighting, and protection against integral windup
(anti-windup). The controller is a continuous-time dynamical system. To imple-
ment it using a computer, the continuous-time system has to be approximated by a
discrete-time system.

In Figure 11.11, the signal v is the sum of the proportional, integral, and deriva-
tive terms, and the controller output is u = sat(v), where sat is the saturation func-
tion that models the actuator. The proportional term P= kp(β r−y) is implemented
simply by replacing the continuous variables with their sampled versions. Hence

P(tk) = kp (β r(tk)− y(tk)) , (11.15)

where {tk} denotes the sampling instants, i.e., the times when the computer reads
its input. We let h represent the sampling time, so that tk+1 = tk + h. The integral
term is obtained by approximating the integral with a sum,

I(tk+1) = I(tk)+ kihe(tk)+
h

Tt

(
sat(v)− v

)
, (11.16)

where Tt = h/kt represents the anti-windup term. The filtered derivative term D is
given by the differential equation

Tf
dD

dt
+D =−kdẏ.
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Approximating the derivative with a backward difference gives

Tf
D(tk)−D(tk−1)

h
+D(tk) =−kd

y(tk)− y(tk−1)

h
,

which can be rewritten as

D(tk) =
Tf

Tf +h
D(tk−1)−

kd

Tf +h
(y(tk)− y(tk−1)) . (11.17)

The advantage of using a backward difference is that the parameter Tf/(Tf + h)
is nonnegative and less than 1 for all h > 0, which guarantees that the difference
equation is stable. Reorganizing equations (11.15)–(11.17), the PID controller can
be described by the following pseudocode:

% Precompute controller coefficients

bi=ki*h

ad=Tf/(Tf+h)

bd=kd/(Tf+h)

br=h/Tt

% Control algorithm - main loop

while (running) {

r=adin(ch1) % read setpoint from ch1

y=adin(ch2) % read process variable from ch2

P=kp*(b*r-y) % compute proportional part

D=ad*D-bd*(y-yold) % compute derivative part

v=P+I+D % compute temporary output

u=sat(v,ulow,uhigh) % simulate actuator saturation

daout(ch1) % set analog output ch1

I=I+bi*(r-y)+br*(u-v) % update integral state

yold=y % update derivative state

sleep(h) % wait until next update interval

}

Precomputation of the coefficients bi, ad, bd, and br saves computer time in
the main loop. These calculations have to be done only when controller parameters
are changed. The main loop is executed once every sampling period. The program
has three states: yold, I, and D. One state variable can be eliminated at the cost
of less readable code. The latency between reading the analog input and setting
the analog output consists of four multiplications, four additions, and evaluation
of the sat function. All computations can be done using fixed-point calculations
if necessary. Notice that the code computes the filtered derivative of the process
output and that it has setpoint weighting and anti-windup protection. Note also
that in this code we apply the actuator saturation inside the controller, rather than
measuring the actuator output as in Figure 11.11.

11.6 Further Reading

The history of PID control is very rich and stretches back to the early uses of
feedback. Good presentations are given by Bennett [Ben79, Ben93] and Min-
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del [Min02]. An industrial perspective on PID control is given in [Bia95], [Shi96],
and [YH91], which all mention that a significant fraction of PID controllers are
poorly tuned. PID algorithms have been used in many fields; an unconventional
application is to explain popular monetary policy rules [HSH15]. The Ziegler–
Nichols rules for tuning PID controllers, first presented in 1942 [ZN42], were
developed based on extensive experiments with pneumatic simulators and Van-
nevar Bush’s differential analyzer at MIT. An interesting view of the development
of the Ziegler–Nichols rules is given in an interview with Ziegler [Bli90]. The
book [O’D06] lists more than 1730 tuning rules. A detailed discussion of meth-
ods for avoiding windup is given in [?], and a comprehensive treatment of PID
control is given in Åström and Hägglund [ÅH06]. Advanced relay autotuners are
presented in Berner et al. [BSÅH17].

Exercises

11.1 (Ideal PID controllers) Consider the systems represented by the block dia-
grams in Figure 11.1. Assume that the process has the transfer function P(s) =
b/(s+a) and show that the transfer functions from r to y are

(a) Gyr(s) =
bkds2 +bkps+bki

(1+bkd)s2 +(a+bkp)s+bki
,

(b) Gyr(s) =
bki

(1+bkd)s2 +(a+bkp)s+bki
.

Pick some parameters and compare the step responses of the systems.

11.2 Consider a second-order process with the transfer function

P(s) =
b

s2 +a1s+a2
.

The closed loop system with a PI controller is a third-order system. Show that
it is possible to position the closed loop poles as long as the sum of the poles
is −a1. Give equations for the parameters that give the closed loop characteristic
polynomial

(s+α0)(s
2 +2ζ0ω0s+ω2

0 ).

11.3 Consider a system with the transfer function P(s) = (s+ 1)−2. Find an in-
tegral controller that gives a closed loop pole at s = −a and determine the value
of a that maximizes the integral gain. Determine the other poles of the system
and judge if the pole can be considered dominant. Compare with the value of the
integral gain given by equation (11.6).

11.4 (Ziegler–Nichols tuning) Consider a system with transfer function P(s) =
e−s/s. Determine the parameters of P, PI, and PID controllers using Ziegler–Nichols
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step and frequency response methods. Compare the parameter values obtained by
the different rules and discuss the results.

11.5 (Vehicle steering) Design a proportional-integral controller for the vehicle
steering system that gives the closed loop characteristic polynomial

s3 +2ω0s2 +2ω0s+ω3
0 .

11.6 (Congestion control) A simplified flow model for TCP transmission is de-
rived in [HMTG00, LPD02]. The linearized dynamics are modeled by the transfer
function

Gbp(s) =
γ

(s+a1)(s+a2)
e−sτe ,

which describes the dynamics relating the expected buffer length b to the ex-
pected packet drop p. The parameters are given by a1 = 2N2/(cτ2

e ), a2 = 1/τe,
and γ = c2/(2N). The parameter c is the bottleneck capacity, N is the number of
sources feeding the link and τe is the round-trip delay time. Use the parameter val-
ues N = 75 sources, c = 1250 packets/s and τe = 0.15 sec and find the parameters
of a PI controller using one of the Ziegler–Nichols rules and the corresponding
improved rule. Simulate the responses of the closed loop systems obtained with
the PI controllers.

11.7 (Motor drive) Consider the model of the motor drive in Exercise 3.10 with
the parameter values given in Exercise 7.13. Develop an approximate second-
order model of the system and use it to design an ideal PD controller that gives
a closed loop system with eigenvalues −ζ ω0 ± iω0

√
1−ζ 2. Add low-pass fil-

tering as shown in equation (11.12) and explore how large ω0 can be made while
maintaining a good stability margin. Simulate the closed loop system with the cho-
sen controller and compare the results with the controller based on state feedback
in Exercise 7.13.

11.8 Consider the system in Exercise 11.7 and investigate what happens if the
second-order filtering of the derivative is replace by a first-order filter.

11.9 (Tuning rules) Apply the Ziegler–Nichols and the modified tuning rules to
design PI controllers for systems with the transfer functions

P1 =
e−s

s
, P2 =

e−s

s+1
, P3 = e−s.

Compute the stability margins and explore any patterns.

11.10 (Windup and anti-windup) Consider a PI controller of the form C(s) =
1 + 1/s for a process with input that saturates when |u| > 1, and whose linear
dynamics are given by the transfer function P(s) = 1/s. Simulate the response of
the system to step changes in the reference signal of magnitude 1, 2, and 10. Repeat
the simulation when the windup protection scheme in Figure 11.11 is used.

11.11 (Windup protection by conditional integration) Many methods have been
proposed to avoid integrator windup. One method called conditional integration
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is to update the integral only when the error is sufficiently small. To illustrate this
method we consider a system with PI control described by

dx1

dt
= u, u = satu0(kpe+ kix2),

dx2

dt
=

{
e if |e|< e0,

0 if |e|≥ e0,

where e = r− x. Plot the phase portrait of the system for the parameter values
kp = 1, ki = 1, u0 = 1, and e0 = 1 and discuss the properties of the system. The
example illustrates the difficulties of introducing ad hoc nonlinearities without
careful analysis.

11.12 (Windup stability) Consider a closed loop system with controller transfer
function C(s) and process transfer function P(s). Let the controller have windup
protection with the tracking constant kf. Assume that the model in the anti-windup
scheme is chosen so that the process never saturates.

(a) Show that the closed loop system is stable if the Nyquist plot of the transfer
function (11.11) has the property ReG(iω)>−1.

(b) Assume that P(s) = kv/s and C(s) = kp + kv/s. Show that the system with
windup protection is stable if kf > ki/kp.

(c) Use block diagram transformations to show that the closed loop system with
anti-windup can be represented as a connection of a linear block with trans-
fer function (11.11) and a nonlinear block representing the actuator model.

(d) Use describing function analysis to show that without the anti-windup pro-
tection, the system may not be stable and estimate the amplitude and fre-
quency of the resulting oscillation.

(e) Build a simple simulation that verifies the results from part 6d.
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