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Chapter Eight
Output Feedback

One may separate the problem of physical realization into two stages: computation of the

“best approximation” x̂(t1) of the state from knowledge of y(t) for t ≤ t1 and computation of

u(t1) given x̂(t1).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 1960 [Kal60].

In this chapter we show how to use output feedback to modify the dynamics of
the system through the use of observers. We introduce the concept of observability
and show that if a system is observable, it is possible to recover the state from
measurements of the inputs and outputs to the system. We then show how to design
a controller with feedback from the observer state. A general controller with two
degrees of freedom is obtained by adding feedforward. We illustrate by outlining
a controller for a nonlinear system that also employs gain scheduling.

8.1 Observability

In Section 7.2 of the previous chapter it was shown that it is possible to find a state
feedback law that gives desired closed loop eigenvalues provided that the system
is reachable and that all the states are measured by sensors. For many situations, it
is highly unrealistic to assume that all the states are measured. In this section we
investigate how the state can be estimated by using a mathematical model and a
few measurements. It will be shown that computation of the states can be carried
out by a dynamical system called an observer.

Definition of Observability

Consider a system described by a set of differential equations

dx

dt
= Ax+Bu, y =Cx+Du, (8.1)

where x ∈ Rn is the state, u ∈ Rp the input, and y ∈ Rq the measured output. We
wish to estimate the state of the system from its inputs and outputs, as illustrated
in Figure 8.1. In some situations we will assume that there is only one measured
signal, i.e., that the signal y is a scalar and that C is a (row) vector. This signal may
be corrupted by noise w, although we shall start by considering the noise-free case.
We write x̂ for the state estimate given by the observer.

Definition 8.1 (Observability). A linear system is observable if for every T > 0 it
is possible to determine the state of the system x(T ) through measurements of y(t)
and u(t) on the interval [0,T ].
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Figure 8.1: Block diagram for an observer. The observer uses the process measurement y

(possibly corrupted by noise w) and the input u to estimate the current state of the process,
denoted x̂.

The definition above holds for nonlinear systems as well, and the results dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many important applications, even
outside feedback systems. If a system is observable, then there are no “hidden” dy-
namics inside it; we can understand everything that is going on through observation
(over time) of the inputs and outputs. As we shall see, the problem of observability
is of significant practical interest because it will determine if a set of sensors is
sufficient for controlling a system. Sensors combined with a mathematical model
of the system can also be viewed as a “virtual sensor” that gives information about
variables that are not measured directly. The process of reconciling signals from
many sensors using mathematical models is also called sensor fusion.

Testing for Observability

When discussing reachability in the previous chapter, we neglected the output and
focused on the state. Similarly, it is convenient here to initially neglect the input
and focus on the autonomous system

dx

dt
= Ax, y =Cx, (8.2)

where x ∈ Rn and y ∈ R. We wish to understand when it is possible to determine
the state from observations of the output.

The output itself gives the projection of the state onto vectors that are rows
of the matrix C. The observability problem can immediately be solved if n = q
(number of outputs equals number of states) and the matrix C is invertible. If the
matrix is not square and invertible, we can take derivatives of the output to obtain

dy

dt
=C

dx

dt
=CAx.

From the derivative of the output we thus get the projection of the state on vectors
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that are rows of the matrix CA. Proceeding in this way, we get at every time t
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(t)

ẏ(t)

ÿ(t)
...

y(n−1)(t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
CA

CA2

...
CAn−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x(t). (8.3)

We thus find that the state at time t can be determined from the output and its
derivatives at time t if the observability matrix

Wo =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
CA

CA2

...
CAn−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.4)

has full row rank (n independent rows). As in the case of reachability, it turns out
that we need not consider any derivatives higher than n−1 (this is an application
of the Cayley–Hamilton theorem [Exercise 7.10]).

The calculation can easily be extended to systems with inputs and many mea-
sured signals. The state is then given by a linear combination of inputs and outputs
and their higher derivatives. The observability criterion is unchanged. We leave
this case as an exercise for the reader.

In practice, differentiation of the output can give large errors when there is
measurement noise, and therefore the method sketched above is not particularly
practical. We will address this issue in more detail in the next section, but for now
we have the following basic result.

Theorem 8.1 (Observability rank condition). A linear system of the form (8.1) is
observable if and only if the observability matrix Wo is full row rank.

Proof. The sufficiency of the observability rank condition follows from the analy- !
sis above. To prove necessity, suppose that the system is observable but Wo is not
full row rank. Let v∈Rn, v ≠ 0, be a vector in the null space of Wo, so that Wov= 0.
(Such a v exists using the fact that the row and column rank of a matrix are always
equal.) If we let x(0) = v be the initial condition for the system and choose u = 0,
then the output is given by y(t) =CeAtv. Since eAt can be written as a power series
in A and since An and higher powers can be rewritten in terms of lower powers of
A (by the Cayley–Hamilton theorem), it follows that y(t) will be identically zero
(the reader should fill in the missing steps). However, if both the input and output
of the system are zero, then a valid estimate of the state is x̂ = 0 for all time, which
is clearly incorrect since x(0) = v ≠ 0. Hence by contradiction we must have that
Wo is full row rank if the system is observable.
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Figure 8.2: An unobservable system. Two identical subsystems have outputs that add to-
gether to form the overall system output. The individual states of the subsystem cannot be
determined since the contributions of each to the output are not distinguishable. The circuit
diagram on the right is an example of such a system.

Example 8.1 Compartment model
Consider the two-compartment model in Figure 4.18a, but assume that only the
concentration in the first compartment can be measured. The system is described
by the linear system

dc

dt
=

⎧
⎪⎪⎩
−k0− k1 k1

k2 −k2

⎫
⎪⎪⎭c+

⎧
⎪⎪⎩

b0

0

⎫
⎪⎪⎭u, y =

⎧
⎩1 0

⎫
⎭c.

The first compartment represents the drug concentration in the blood plasma, and
the second compartment the drug concentration in the tissue where it is active. To
determine if it is possible to find the concentration in the tissue compartment from
a measurement of blood plasma, we investigate the observability of the system by
forming the observability matrix

Wo =

⎧
⎪⎪⎩

C
CA

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

1 0
−k0− k1 k1

⎫
⎪⎪⎭ .

The rows are linearly independent if k1 ≠ 0, and under this condition it is thus
possible to determine the concentration of the drug in the active compartment from
measurements of the drug concentration in the blood. ∇

It is useful to have an understanding of the mechanisms that make a system
unobservable. Such a system is shown in Figure 8.2. The system is composed of
two identical systems whose outputs are subtracted. It seems intuitively clear that
it is not possible to deduce the states from the output since we cannot deduce the
individual output contributions from the difference. This can also be seen formally
(Exercise 8.3).
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Figure 8.3: Block diagram of a system in observable canonical form. The states of the
system are represented by individual integrators whose inputs are a weighted combination
of the next integrator in the chain, the first state (rightmost integrator), and the system input.
The output is a combination of the first state and the input.

Observable Canonical Form

As in the case of reachability, certain canonical forms will be useful in studying
observability. A linear single-input, single-output state space system is in observ-
able canonical form if its dynamics are given by

dz

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1 1 0 · · · 0
−a2 0 1 0

...
. . .

−an−1 0 0 1
−an 0 0 · · · 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

z+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1

b2
...

bn−1

bn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
⎧
⎩1 0 0 · · · 0

⎫
⎭z+d0 u.

This definition can be extended to systems with many inputs; the only difference
is that the vector multiplying u is replaced by a matrix.

Figure 8.3 is a block diagram for a system in observable canonical form. As
in the case of reachable canonical form, we see that the coefficients in the system
description appear directly in the block diagram. The characteristic polynomial for
a system in observable canonical form is

λ (s) = sn +a1sn−1 + · · ·+an−1s+an. (8.5)

It is possible to reason about the observability of a system in observable canonical
form by studying the block diagram. If the input u and the output y are available,
the state z1 can clearly be computed. Differentiating z1, we obtain the input to the
integrator that generates z1, and we can now obtain z2 = ż1 +a1z1−b1u. Proceed-
ing in this way, we can compute all states. The computation will, however, require
that the signals be differentiated.

To check observability more formally, we compute the observability matrix for
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a system in observable canonical form, which is given by

W̃o =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 . . . 0
−a1 1 0 . . . 0
−a2

1−a2 −a1 1 0
...

...
. . .

...
∗ ∗ . . . 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where * represents an entry whose exact value is not important. The columns of
this matrix are linearly independent (since it is lower triangular), and hence Wo is
invertible. A straightforward but tedious calculation shows that the inverse of the
observability matrix has a simple form given by

W̃−1
o =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
. . .

...
an−1 an−2 an−3 · · · 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

As in the case of reachability, it turns out that a system is observable if and only
if there exists a transformation T that converts the system into observable canonical
form. This is useful for proofs since it lets us assume that a system is in observable
canonical form without any loss of generality. The observable canonical form may
be poorly conditioned numerically.

8.2 State Estimation

Having defined the concept of observability, we now return to the question of how
to construct an observer for a system. We will look for observers that can be repre-
sented as a linear dynamical system that takes the inputs and outputs of the system
we are observing and produces an estimate of the system’s state. That is, we wish
to construct a dynamical system of the form

dx̂

dt
= Fx̂+Gu+Hy,

where u and y are the input and output of the original system and x̂ ∈ Rn is an
estimate of the state with the property that x̂(t)→ x(t) as t→ ∞.

The Observer

We consider the system in equation (8.1) with D set to zero to simplify the expo-
sition:

dx

dt
= Ax+Bu, y =Cx. (8.6)
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We can attempt to determine the state simply by simulating the equations with the
correct input. An estimate of the state is then given by

dx̂

dt
= Ax̂+Bu. (8.7)

To find the properties of this estimate, introduce the estimation error x̃ = x− x̂. It
follows from equations (8.6) and (8.7) that

dx̃

dt
= Ax̃.

If the dynamics matrix A has all its eigenvalues in the left half-plane, the error
x̃ will go to zero, and hence equation (8.7) is a dynamical system whose output
converges to the state of the system (8.6). However, the convergence might be
slower than desired.

The observer given by equation (8.7) uses only the process input u; the mea-
sured signal does not appear in the equation. We must also require that the system
be stable, and essentially our estimator converges because the transient dynamics
of both the observer and the estimator are going to zero. This is not very useful in
a control design context since we want to have our estimate converge quickly to
a nonzero state so that we can make use of it in our controller. We will therefore
attempt to modify the observer so that the output is used and its convergence prop-
erties can be designed to be fast relative to the system’s dynamics. This version
will also work for unstable systems.

Consider the observer

dx̂

dt
= Ax̂+Bu+L(y−Cx̂). (8.8)

This can be considered as a generalization of equation (8.7). Feedback from the
measured output is provided by adding the term L(y−Cx̂), which is proportional
to the difference between the observed output and the output predicted by the ob-
server. It follows from equations (8.6) and (8.8) that

dx̃

dt
= (A−LC)x̃.

If the matrix L can be chosen in such a way that the matrix A−LC has eigenval-
ues with negative real parts, the error x̃ will go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a state feedback and
finding the observer. State feedback design by eigenvalue assignment is equivalent
to finding a matrix K so that A−BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrix L so that A−LC has
given eigenvalues. Since the eigenvalues of a matrix and its transpose are the same
we can establish the following equivalences:

A↔ AT , B↔CT , K↔ LT , Wr↔W T
o . (8.9)
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The observer design problem is the dual of the state feedback design problem.
Using the results of Theorem 7.3, we get the following theorem on observer design.

Theorem 8.2 (Observer design by eigenvalue assignment). Consider the system
given by

dx

dt
= Ax+Bu, y =Cx, (8.10)

with one input and one output. Let λ (s) = sn + a1sn−1 + · · ·+ an−1s+ an be the
characteristic polynomial for A. If the system is observable, then the dynamical
system

dx̂

dt
= Ax̂+Bu+L(y−Cx̂) (8.11)

is an observer for the system, with L chosen as

L =W−1
o W̃o

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1−a1

p2−a2
...

pn−an

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.12)

and the matrices Wo and W̃o given by

Wo =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
CA

...

CAn−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, W̃o =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 · · · 0 0
a1 1 0 · · · 0 0
a2 a1 1 0 0
...

...
. . .

...
an−2 an−3 an−4 1 0
an−1 an−2 an−3 . . . a1 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−1

.

The resulting observer error x̃= x− x̂ is governed by a differential equation having
the characteristic polynomial

p(s) = sn + p1sn−1 + · · ·+ pn.

The dynamical system (8.11) is called an observer for (the states of) the sys-
tem (8.10) because it will generate an approximation of the states of the system
from its inputs and outputs. This form of an observer is a much more useful form
than the one given by pure differentiation in equation (8.3).

Example 8.2 Compartment model
Consider the compartment model in Example 8.1, which is characterized by the
matrices

A =

⎧
⎪⎪⎩
−k0− k1 k1

k2 −k2

⎫
⎪⎪⎭ , B =

⎧
⎪⎪⎩

b0

0

⎫
⎪⎪⎭ , C =

⎧
⎩1 0

⎫
⎭ .

The observability matrix was computed in Example 8.1, where we concluded that
the system was observable if k1 ≠ 0. The dynamics matrix has the characteristic
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Figure 8.4: Observer for a two compartment system. A two compartment model is shown
on the left. The observer measures the input concentration u and output concentration y = c1

to determine the compartment concentrations, shown on the right. The true concentrations
are shown by solid lines and the estimates generated by the observer by dashed lines.

polynomial

λ (s) = det

⎧
⎪⎪⎩

s+ k0 + k1 −k1

−k2 s+ k2

⎫
⎪⎪⎭= s2 +(k0 + k1 + k2)s+ k0k2.

Let the desired characteristic polynomial of the observer be s2 + p1s+ p2, and
equation (8.12) gives the observer gain

L =

⎧
⎪⎪⎩

1 0
−k0− k1 k1

⎫
⎪⎪⎭
−1⎧⎪⎪⎩

1 0
k0 + k1 + k2 1

⎫
⎪⎪⎭
−1⎧⎪⎪⎩

p1− k0− k1− k2

p2− k0k2

⎫
⎪⎪⎭

=

⎧
⎪⎪⎩

p1− k0− k1− k2

(p2− p1k2 + k1k2 + k2
2)/k1

⎫
⎪⎪⎭ .

Notice that the observability condition k1 ≠ 0 is essential. The behavior of the
observer is illustrated by the simulation in Figure 8.4b. Notice how the observed
concentrations approach the true concentrations. ∇

The observer is a dynamical system whose inputs are the process input u and the
process output y. The rate of change of the estimate is composed of two terms. One
term, Ax̂+Bu, is the rate of change computed from the model with x̂ substituted
for x. The other term, L(y− ŷ), is proportional to the difference e = y− ŷ between
measured output y and its estimate ŷ = Cx̂. The observer gain L is a matrix that
determines how the error e is weighted and distributed among the state estimates.
The observer thus combines measurements with a dynamical model of the system.
A block diagram of the observer is shown in Figure 8.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introduce the elements of the
observer gain L as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.
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Figure 8.5: Block diagram of the observer. The observer takes the signals y and u as inputs
and produces an estimate x. Notice that the observer contains a copy of the process model
that is driven by y− ŷ through the observer gain L.

Example 8.3 Vehicle steering
The normalized linear model for vehicle steering derived in Examples 6.13 and 7.4
gives the following state space model dynamics relating lateral path deviation y to
steering angle u:

dx

dt
=

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

γ
1

⎫
⎪⎪⎭u, y =

⎧
⎩1 0

⎫
⎭x. (8.13)

Recall that the state x1 represents the lateral path deviation and that x2 represents
the turning rate. We will now derive an observer that uses the system model to
determine the turning rate from the measured path deviation.

The observability matrix is

Wo =

⎧
⎪⎪⎩

1 0
0 1

⎫
⎪⎪⎭ ,

i.e., the identity matrix. The system is thus observable, and the eigenvalue assign-
ment problem can be solved. We have

A−LC =

⎧
⎪⎪⎩
−l1 1
−l2 0

⎫
⎪⎪⎭ ,

which has the characteristic polynomial

det(sI−A+LC) = det

⎧
⎪⎪⎩

s+ l1 −1
l2 s

⎫
⎪⎪⎭= s2 + l1s+ l2.

Assuming that we want to have an observer with the characteristic polynomial

s2 + p1s+ p2 = s2 +2ζoωos+ω2
o ,

the observer gains should be chosen as

l1 = p1 = 2ζoωo, l2 = p2 = ω2
o .
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Figure 8.6: Simulation of an observer for a vehicle driving on a curvy road. (a) The vehicle
trajectory, as viewed from above, with the lane boundaries shown as dashed lines. (b) The
response of the observer with an initial velocity error. The plots on the left show the lateral
deviation x1 and the lateral velocity x2 with solid lines and their estimates x̂1 and x̂2 with
dashed lines. The plots on the right show the estimation errors. The parameters used to
design the estimator were ωo = 1 and ζo = 0.7.

The observer is then

dx̂

dt
= Ax̂+Bu+L(y−Cx̂) =

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭ x̂+

⎧
⎪⎪⎩

γ
1

⎫
⎪⎪⎭u+

⎧
⎪⎪⎩

l1
l2

⎫
⎪⎪⎭(y− x̂1).

A simulation of the observer for a vehicle driving on a curvy road is shown in
Figure 8.6. Figure 8.6a shows the trajectory of the vehicle on the road, as viewed
from above. The response of the observer is shown in Figure 8.6a, where time is
normalized to the vehicle length. We see that the observer error settles in about 3
vehicle lengths. ∇

To compute the observer gains for systems of high order we have to use nu-
merical calculations. The duality between the design of a state feedback and the
design of an observer means that the computer algorithms for state feedback can
also be used for the observer design; we simply use the transpose of the dynamics
matrix and the output matrix. The MATLAB command acker, which essentially
is a direct implementation of the calculations given in Theorem 8.2, can be used
for systems with one output. The MATLAB command place can be used for
systems with many outputs. It is also better conditioned numerically.

Requirements on a control system typically involve performance and robust-
ness. Choosing a fast observer gives fast convergence but the observer gains will
be high and the estimated state will be sensitive to measurement noise. If noise
characteristics are known it is possible to find the best compromise, as will be
discussed in Section 8.4, the observer is then called a Kalman filter.
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8.3 Control Using Estimated State

In this section we will consider a state space system of the form

dx

dt
= Ax+Bu, y =Cx. (8.14)

We wish to design a feedback controller for the system where only the output is
measured. Notice that we have assumed that there is no direct term in the system
(D = 0), which is often a realistic assumption. The presence of a direct term in
combination with a controller having proportional action creates an algebraic loop,
which will be discussed in Section 9.4. The problem can still be solved even if there
is a direct term, but the calculations are more complicated.

As before, we will assume that u and y are scalars. We also assume that the
system is reachable and observable. In Chapter 7 we found a feedback of the form

u =−Kx+ kfr

for the case that all states could be measured, and in Section 8.2 we developed
an observer that can generate estimates of the state x̂ based on inputs and outputs.
In this section we will combine the ideas of these sections to find a feedback that
gives desired closed loop eigenvalues for systems where only outputs are available
for feedback.

If all states are not measurable, it seems reasonable to try the feedback

u =−Kx̂+ kfr, (8.15)

where x̂ is the output of an observer of the state, i.e.,

dx̂

dt
= Ax̂+Bu+L(y−Cx̂). (8.16)

It is not clear that such a combination will have the desired effect. To explore this,
note that since the system (8.14) and the observer (8.16) are both of state dimension
n, the closed loop system has state dimension 2n with state (x, x̂). The evolution
of the states is described by equations (8.14)–(8.16). To analyze the closed loop
system, we change coordinates and replace the estimated state variable x̂ by the
estimation error

x̃ = x− x̂. (8.17)

Subtraction of equation (8.16) from equation (8.14) gives

dx̃

dt
= Ax−Ax̂−L(Cx−Cx̂) = Ax̃−LCx̃ = (A−LC)x̃.

Returning to the process dynamics, introducing u from equation (8.15) into
equation (8.14) and using equation (8.17) to eliminate x̂ gives

dx

dt
= Ax+Bu = Ax−BKx̂+Bkfr = Ax−BK(x− x̃)+Bkfr

= (A−BK)x+BKx̃+Bkfr.
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The closed loop system is thus governed by

d

dt

⎧
⎪⎪⎩

x
x̃

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

A−BK BK
0 A−LC

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x
x̃

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

Bkf

0

⎫
⎪⎪⎭r. (8.18)

Notice that the state x̃, representing the observer error, is not affected by the ref-
erence signal r. This is desirable since we do not want the reference signal to
generate observer errors.

Since the dynamics matrix is block diagonal, we find that the characteristic
polynomial of the closed loop system is

λ (s) = det(sI−A+BK)det(sI−A+LC).

This polynomial is a product of two terms: the characteristic polynomial of the
closed loop system obtained with state feedback and the characteristic polynomial
of the observer error. The feedback (8.15) that was motivated heuristically thus
provides an elegant solution to the eigenvalue assignment problem. The result is
summarized as follows.

Theorem 8.3 (Eigenvalue assignment by output feedback). Consider the system

dx

dt
= Ax+Bu, y =Cx.

The controller described by

dx̂

dt
= Ax̂+Bu+L(y−Cx̂) = (A−BK−LC)x̂+Bkfr+Ly,

u =−Kx̂+ kfr

gives a closed loop system with the characteristic polynomial

λ (s) = det(sI−A+BK)det(sI−A+LC).

This polynomial can be assigned arbitrary roots if the system is reachable and
observable.

The controller has a strong intuitive appeal: it can be thought of as being com-
posed of two parts: state feedback and an observer. The controller is now a dynam-
ical system with internal state dynamics generated by the observer. The control
action makes use of feedback from the estimated states x̂. The feedback gain K
can be computed as if all state variables can be measured, and it depends only
on A and B. The observer gain L depends only on A and C. The property that the
eigenvalue assignment for output feedback can be separated into an eigenvalue
assignment for a state feedback and an observer is called the separation principle.

A block diagram of the controller is shown in Figure 8.7. Notice that the con-
troller contains a dynamical model of the plant. This is called the internal model
principle: the controller contains a model of the process being controlled.

Requirements on a control system typically involve performance and robust-
ness. It is not obvious how such properties are reflected in the closed loop eigen-
values. It is therefore important to evaluate the design for example by plotting time
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−ŷ

Σ
ẋ
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Figure 8.7: Block diagram of an observer-based control system. The observer uses the mea-
sured output y and the input u to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. The controller consists of the
observer and the state feedback; the observer is identical to that in Figure 8.5.

responses to get more insight into the properties of the design. Additional discus-
sion is presented in Section 14.6, where we consider the robustness of eigenvalue
assignment (pole placement) design and also give some design rules.

Example 8.4 Vehicle steering
Consider again the normalized linear model for vehicle steering in Example 7.4.
The dynamics relating the steering angle u to the lateral path deviation y is given by
the state space model (8.13). Combining the state feedback derived in Example 7.4
with the observer determined in Example 8.3, we find that the controller is given
by

dx̂

dt
= Ax̂+Bu+L(y−Cx̂) =

⎧
⎪⎪⎩

0 1
0 0

⎫
⎪⎪⎭ x̂+

⎧
⎪⎪⎩

γ
1

⎫
⎪⎪⎭u+

⎧
⎪⎪⎩

l1
l2

⎫
⎪⎪⎭(y− x̂1),

u =−Kx̂+ kfr = k1(r− x̂1)− k2x̂2.

Elimination of the variable u gives

dx̂

dt
= (A−BK−LC)x̂+Ly+Bkfr

=

⎧
⎪⎪⎩
−l1− γk1 1− γk2

−k1− l2 −k2

⎫
⎪⎪⎭ x̂+

⎧
⎪⎪⎩

l1
l2

⎫
⎪⎪⎭y+

⎧
⎪⎪⎩

γ
1

⎫
⎪⎪⎭k1r,

where we have set kf = k1 as described in Example 7.4. The controller is a dynam-
ical system of second order, with two inputs y and r and one output u. Figure 8.8
shows a simulation of the system when the vehicle is driven along a curvy road.
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Figure 8.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane boundaries (dotted), the vehicle
position (solid), and its estimate (dashed), the upper right plot shows the velocity (solid) and
its estimate (dashed), and the lower right plot shows the control signal using state feedback
(solid) and the control signal using the estimated state (dashed).

Since we are using a normalized model, the length unit is the vehicle length and the
time unit is the time it takes to travel one vehicle length. The estimator is initialized
with all states equal to zero but the real system has an initial velocity of 0.5. The
figures show that the estimates converge quickly to their true values. The vehicle
tracks the desired path, which is in the middle of the road, but there are errors
because the road is irregular. The tracking error can be improved by introducing
feedforward (Section 8.5). ∇

Kalman’s Decomposition of a Linear System
!

In this chapter and the previous one we have seen that two fundamental properties
of a linear input/output system are reachability and observability. It turns out that
these two properties can be used to classify the dynamics of a system. The key
result is Kalman’s decomposition theorem, which says that a linear system can be
divided into four subsystems: Σro which is reachable and observable, Σro which is
reachable but not observable, Σro which is not reachable but is observable, and Σro

which is neither reachable nor observable.
We will first consider this in the special case of systems with one input and one

output, and where the matrix A has distinct eigenvalues. In this case we can find
a set of coordinates such that the A matrix is diagonal and, with some additional
reordering of the states, the system can be written as

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aro 0 0 0
0 Aro 0 0
0 0 Aro 0
0 0 0 Aro

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bro

Bro

0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
⎧
⎩Cro 0 Cro 0

⎫
⎭x+Du.

(8.19)
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(a) Distinct eigenvalues

u
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Σro

Σro

Σro
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(b) General case

Figure 8.9: Kalman’s decomposition of a linear system. The decomposition in (a) is for a
system with distinct eigenvalues and the one in (b) is the general case. The system is bro-
ken into four subsystems, representing the various combinations of reachable and observable
states. The input/output relationship only depends on the subset of states that are both reach-
able and observable.

All states xk such that Bk ≠ 0 are reachable, and all states such that Ck ≠ 0 are
observable. If we set the initial state to zero (or equivalently look at the steady-
state response if A is stable), the states given by xr̄o and xro will be zero and xrō

does not affect the output. Hence the output y can be determined from the system

dxro

dt
= Aroxro +Brou, y =Croxro +Du.

Thus from the input/output point of view, it is only the reachable and observable
dynamics that matter. A block diagram of the system illustrating this property is
given in Figure 8.9a.

The general case of the Kalman decomposition is more complicated and re-
quires some additional linear algebra; see the original paper by Kalman, Ho, and
Narendra [KHN63]. The key result is that the state space can still be decomposed
into four parts, but there will be additional coupling so that the equations have the
form

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aro 0 ∗ 0
∗ Aro ∗ ∗
0 0 Aro 0
0 0 ∗ Aro

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bro

Bro

0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
⎧
⎩Cro 0 Cro 0

⎫
⎭x,

(8.20)

where ∗ denotes block matrices of appropriate dimensions. If xro(0) = 0 then the
input/output response of the system is given by

dxro

dt
= Aroxro +Brou, y =Croxro +Du, (8.21)

which are the dynamics of the reachable and observable subsystem Σro. A block
diagram of the system is shown in Figure 8.9b.

The following example illustrates Kalman’s decomposition.
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Example 8.5 System and controller with feedback from observer states
Consider the system

dx

dt
= Ax+Bu, y =Cx.

The following controller, based on feedback from the observer state, was given in
Theorem 8.3:

dx̂

dt
= Ax̂+Bu+L(y−Cx̂), u =−Kx̂+ kfr.

Introducing the states x and x̃ = x− x̂, the closed loop system can be written as

d

dt

⎧
⎪⎪⎩

x
x̃

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

A−BK BK
0 A−LC

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x
x̃

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

Bkf

0

⎫
⎪⎪⎭r, y =

⎧
⎩C 0

⎫
⎭
⎧
⎪⎪⎩

x
x̃

⎫
⎪⎪⎭ ,

which is a Kalman decomposition like the one shown in Figure 8.9b with only
two subsystems Σro and Σro. The subsystem Σro, with state x, is reachable and
observable, and the subsystem Σro, with state x̃, is not reachable but observable.
It is natural that the state x̃ is not reachable from the reference signal r because it
would not make sense to design a system where changes in the command signal
could generate observer errors. The relationship between the reference r and the
output y is given by

dx

dt
= (A−BK)x+Bkfr, y =Cx,

which is the same relationship as for a system with full state feedback. ∇

8.4 Kalman Filtering
!!

One of the principal uses of observers in practice is to estimate the state of a sys-
tem in the presence of noisy measurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamical systems is beyond the scope
of this text. In this section, we present a brief introduction to the use of stochastic
systems analysis for constructing observers. We work primarily in discrete time
to avoid some of the complications associated with continuous-time random pro-
cesses and to keep the mathematical prerequisites to a minimum. This section as-
sumes basic knowledge of random variables and stochastic processes; see Kumar
and Varaiya [KV86] or Åström [Åst06] for the required material.

Discrete-Time Systems

Consider a discrete-time linear system with dynamics

x[k+1] = Ax[k]+Bu[k]+ v[k], y[k] =Cx[k]+w[k], (8.22)
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where v[k] and w[k] are Gaussian white noise processes satisfying

E(v[k]) = 0, E(w[k]) = 0,

E(v[k]vT [ j]) =

{
0 k ≠ j,

Rv k = j,
E(w[k]wT [ j]) =

{
0 k ≠ j,

Rw k = j,

E(v[k]wT [ j]) = 0.

(8.23)

E(v[k]) represents the expected value of v[k] and E(v[k]vT [ j]) is the covariance
matrix. The matrices Rv and Rw are the covariance matrices for the process distur-
bance v and measurement noise w. (Rv is allowed to be singular if the disturbances
do not affect all states.) We assume that the initial condition is also modeled as a
Gaussian random variable with

E(x[0]) = x0, E((x[0]− x0)(x[0]− x0)
T ) = P0. (8.24)

We would like to find an estimate x̂[k] that minimizes the mean square error

P[k] = E((x[k]− x̂[k])(x[k]− x̂[k])T ), (8.25)

given the measurements {y(κ) : 0≤ κ ≤ k}. We consider an observer in the same
basic form as derived previously:

x̂[k+1] = Ax̂[k]+Bu[k]+L[k](y[k]−Cx̂[k]). (8.26)

The following theorem summarizes the main result.

Theorem 8.4 (Kalman, 1961). Consider a random process x[k] with dynamics
given by equation (8.22) and noise processes and initial conditions described by
equations (8.23) and (8.24). The observer gain L that minimizes the mean square
error is given by

L[k] = AP[k]CT (Rw +CP[k]CT )−1,

where
P[k+1] = (A−LC)P[k](A−LC)T +Rv +LRwLT ,

P[0] = E((x[0] = x0)(x[0]− x0)
T ).

(8.27)

Before we prove this result, we reflect on its form and function. First, note
that the Kalman filter has the form of a recursive filter: given mean square error
P[k] = E((x[k]− x̂[k])(x[k]− x̂[k])T ) at time k, we can compute how the estimate
and error change. Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate x̂[k] and the error covariance
P[k], so we can see how reliable the estimate is. It can also be shown that the
Kalman filter extracts the maximum possible information about output data. If we
form the residual between the measured output and the estimated output,

e[k] = y[k]−Cx̂[k],
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we can show that for the Kalman filter the covariance matrix is

Re( j,k) = E(e[ j]eT [k]) =W [k]δ jk, δ jk =

{
1 j = k,

0 j ≠ k.

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used even if the process,
noise, or disturbances are time-varying. When the system is time-invariant and if
P[k] converges, then the observer gain is constant:

L = APCT (Rw +CPCT ),

where P satisfies

P = APAT +Rv−APCT
(
Rw +CPCT

)−1
CPAT .

We see that the optimal gain depends on both the process noise and the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choose state feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is
solved by the dlqe command in MATLAB.

Proof of theorem. We wish to minimize the mean square of the error E((x[k]−
x̂[k])(x[k]− x̂[k])T ). We will define this quantity as P[k] and then show that it sat-
isfies the recursion given in equation (8.27). By definition,

P[k+1] = E((x[k+1]− x̂[k+1])(x[k+1]− x̂[k+1])T )

= (A−LC)P[k](A−LC)T +Rv +LRwLT

= AP[k]AT +Rv−AP[k]CT LT −LCP[k]AT

+L(Rw +CP[k]CT )LT .

Letting Rε = (Rw +CP[k]CT ), we have

P[k+1] = AP[k]AT +Rv−AP[k]CT LT −LCP[k]AT +LRεLT

= AP[k]AT +Rv +
(
L−AP[k]CT R−1

ε

)
Rε
(
L−AP[k]CT R−1

ε

)T

−AP[k]CT R−1
ε CPT [k]AT .

To minimize this expression, we choose L = AP[k]CT R−1
ε , and the theorem is

proved.

Continuous-Time Systems

The Kalman filter can also be applied to continuous-time stochastic processes.
The mathematical derivation of this result requires more sophisticated tools, but
the final form of the estimator is relatively straightforward.
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Consider a continuous stochastic system

dx

dt
= Ax+Bu+ v, E(v(s)vT (t)) = Rvδ (t− s),

y =Cx+w, E(w(s)wT (t)) = Rwδ (t− s),
(8.28)

where δ (τ) is the unit impulse function, and the initial value is Gaussian with mean
x0 and covariance P0 = E((x(0)− x0)(x(0)− x0)) Assume that the disturbance v
and noise w are zero mean and Gaussian (but not necessarily time-invariant):

pdf(v) =
1

n
√

2π
√

detRv

e−
1
2 vT R−1

v v, pdf(w) =
1

q
√

2π
√

detRw

e−
1
2 wT R−1

w w. (8.29)

The model (8.28) is very general. We can model the dynamics both of the process
and the disturbances, as illustrated by the following example.

Example 8.6 Modeling of process and disturbances
Consider a process whose dynamics are described by

dx

dt
= x+u+ v, y = x+w.

The disturbance v is noisy sinusoidal disturbance with frequency ω0 and w is white
measurement noise. We model the oscillatory load disturbance as v = z1, where

d

dt

⎧
⎪⎪⎩

z1

z2

⎫
⎪⎪⎭=

⎧
⎪⎪⎩
−0.01ω0 ω0

−ω0 −0.01ω0

⎫
⎪⎪⎭
⎧
⎪⎪⎩

z1

z2

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

0
ω0

⎫
⎪⎪⎭e,

and e is zero mean white noise with covariance function rδ (t).
Augmenting the state with the states of the noise model by introducing the new

state ξ =
⎧
⎩x z1 z2

⎫
⎭T

we obtain the model

dξ

dt
=

⎧
⎪⎪⎪⎪⎪⎩

1 1 0
0 −0.01ω0 ω0

0 −ω0 −0.01ω0

⎫
⎪⎪⎪⎪⎪⎭ξ +

⎧
⎪⎪⎪⎪⎪⎩

1
0
0

⎫
⎪⎪⎪⎪⎪⎭u+ v, y =

⎧
⎩1 0 0

⎫
⎭ξ +w,

where v is white Gaussian noise with zero mean and the covariance Rvδ (t) with

Rv =

⎧
⎪⎪⎪⎪⎪⎩

0 0 0
0 0 0
0 0 ω2

0 r

⎫
⎪⎪⎪⎪⎪⎭ .

The model is in the standard form given by equations (8.28) and (8.29). ∇

We will now return to the filtering problem. Specifically, we wish to find the
estimate x̂(t) that minimizes the mean square error P(t) = E((x(t)− x̂(t))(x(t)−
x̂(t))T ) given {y(τ) : 0≤ τ ≤ t}.

Theorem 8.5 (Kalman–Bucy, 1961). The optimal estimator has the form of a lin-
ear observer

dx̂

dt
= Ax̂+Bu+L(y−Cx̂), x̂(0) = E(x(0)),



8.4. KALMAN FILTERING 8-21

where L = PCT R−1
w and P = E((x(t)− x̂(t))(x(t)− x̂(t))T ) and satisfies

dP

dt
=AP+PAT −PCT R−1

w CP+Rv, P(0) =E((x(0)−x0)(x(0)−x0)
T ). (8.30)

All matrices A, B, C, Rv, Rw, P and L can be time varying. The essential condi-
tion is that the Riccati equation (8.30) has a unique positive solution.

As in the discrete case, when the system is time-invariant and if P(t) converges,
the observer gain L = PCT R−1

w is constant and P is the solution to

AP+PAT −PCT R−1
w CP+Rv = 0, (8.31)

which is called the algebraic Riccati equation.
Notice that there are a strong similarities between the Riccati equations (8.30)

and (8.31) for the Kalman filtering problem and the corresponding equations (7.31)
and (7.33) for the linear quadratic regulator (LQR). We have the equivalences

A↔ AT , B↔CT , K↔ LT , P↔ S, Qx↔ Rv, Qu↔ Rw, (8.32)

which we can compare with equation (8.9). The MATLAB command kalman can
be used to compute optimal filter gains.

Example 8.7 Vectored thrust aircraft
The dynamics for a vectored thrust aircraft were considered in Examples 3.12
and 7.9. We consider the (linearized) lateral dynamics of the system, consisting
of the subsystems whose states are given by z = (x,θ , ẋ, θ̇). The dynamics of the
linearized system can be obtained from Example 7.9 by extracting only the relevant
states and outputs, giving

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1
0 −g −c/m 0
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

r/J

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, C =

⎧
⎩0 0 0 1

⎫
⎭ ,

where the linearized state ξ = z− ze represents the system state linearized around
the equilibrium point ze. To design a Kalman filter for the system, we must include
a description of the process disturbances and the sensor noise. We thus augment
the system to have the form

dξ

dt
= Aξ +Bu+Fv, y =Cξ +w,

where F represents the structure of the disturbances (including the effects of non-
linearities that we have ignored in the linearization), v represents the disturbance
source (modeled as zero mean, Gaussian white noise), and w represents that mea-
surement noise (also zero mean, Gaussian, and white).

For this example, we choose F as the identity matrix and choose disturbances v,
i= 1, . . . ,n, to be independent random variables with covariance given by Rii = 0.1,
Ri j = 0, i ≠ j. The sensor noise is a single random variable that we model as white
noise having covariance Rw = 10−4. Using the same parameters as before, the
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Figure 8.10: Kalman filter response for a (linearized) vectored thrust aircraft with distur-
bances and noise during the initial portion of a step response. In the first design (a) only
the lateral position of the aircraft is measured. Adding a direct measurement of the roll an-
gle produces a much better observer (b). The initial estimator state for both simulations is
(0.1,0.0175,0.01,0) and the controller gains are K = (−1,7.9,−1.6,2.1) and kf =−1.

resulting Kalman gain is given by

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

37.0
−46.9

185
−31.6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

The performance of the estimator is shown in Figure 8.10a. We see that while the
estimator roughly tracks the system state, it contains significant overshoot in the
state estimate and has significant error in the estimate for θ even after 2 seconds,
which can lead to poor performance in a closed loop setting.

To improve the performance of the estimator, we explore the impact of adding
a new output measurement. Suppose that instead of measuring just the output po-
sition x, we also measure the orientation of the aircraft θ . The output becomes

y =

⎧
⎪⎪⎩

1 0 0 0
0 1 0 0

⎫
⎪⎪⎭ξ +

⎧
⎪⎪⎩

w1

w2

⎫
⎪⎪⎭ ,

and if we assume that w1 and w2 are independent white noise sources each with
covariance Rwi = 10−4, then the optimal estimator gain matrix becomes

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32.6 −0.150
−0.150 32.6

32.7 −9.79
−0.0033 31.6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

These gains provide good immunity to noise and high performance, as illustrated
in Figure 8.10b. ∇
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Linear Quadratic Gaussian Control (LQG)
!

In Section 7.5 we considered optimization of the criterion (7.29) when the the
control u(t) could be a function of the state x(t). We will now explore the same
problem for the stochastic system (8.28) where the control u(t) is a function of the
output y(t).

Consider the system given by equation (8.28) where the initial state is Gaussian
with mean x0 and covariance P0 and the disturbances v and w are characterized by
(8.29). Assume that the requirement can be captured by the cost function

J = min
u

E

(∫ tf

0
(xT Qxx+uT Quu)dt + xT (tf)Qfx(tf),

)
(8.33)

where we minimize over all controls such that u(t) is a function of all measure-
ments y(τ),0≤ τ ≤ t obtained up to time t.

The optimal control law is simply u(t) = −Kx̂(t) where K = SBQ−1
u and S

is the solution of the Riccati equation (7.31) (for the linear quadratic regulator)
and x̂(t) is given by the Kalman filter (Theorem 8.5). The solution of the problem
can thus be separated into a deterministic control problem (LQR) and an optimal
filtering problem. This remarkable result is also known as the separation principle,
as mentioned briefly in Section 8.3.

The minimum cost function is

minJ = xT
0 S(0)x0 +Tr(S(0)P0)+

∫ tf

0
Tr(RvS)dt +

∫ tf

0
Tr(LT QuLP)dt,

where Tr is the trace of a matrix, the first two terms represent the cost of the mean
x0 and covariance P0 of the initial state, the third term represents the cost due to
the load disturbance, and the last term represents the cost of prediction. Notice that
the models we have used do not have a direct term in the output. The separation
theorem does not hold in this case because the nature of the disturbances is then
influenced by the feedback.

8.5 State Space Controller Design

State estimators and state feedback are important components of a controller. In
this section, we will add feedforward to arrive at a general controller structure that
appears in many places in control theory and is the heart of most modern control
systems. We will also briefly sketch how computers can be used to implement a
controller based on output feedback.

Two Degree-of-Freedom Controller Architecture

In this chapter and the previous one we have emphasized feedback as a mechanism
for minimizing tracking error; reference values were introduced simply by adding
them to the state feedback through a gain kf. A more sophisticated way of doing
this is shown by the block diagram in Figure 8.11, where the controller consists of
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Figure 8.11: Block diagram of a controller based on a structure with two degrees of freedom
that combines feedback and feedforward. The controller consists of a trajectory generator,
state feedback, and an observer. The trajectory generation subsystem computes a feedfor-
ward command uff along with the desired state xd. The state feedback controller uses the
estimated state and desired state to compute a corrective input ufb.

three parts: an observer that computes estimates of the states based on a model and
measured process inputs and outputs, a state feedback, and a trajectory generator
that computes the desired behavior of all states xd and a feedforward signal uff.
Under the ideal conditions of no disturbances and no modeling errors the signal uff

generates the desired behavior xd when applied to the process. The signals xd and
uff are generated from the task description td. In simple cases the task description
is simply the reference signal r, and xd and uff are generated by sending r through
linear systems. For motion control problems, such as vehicle steering and robotics,
the task description consists of the coordinates of a number of points (waypoints)
that the vehicle should pass. In other situations the task description could be to
transition from one state to another while optimizing some criterion.

To get some insight into the behavior of the system, consider the case when
there are no disturbances and the system is in equilibrium with a constant reference
signal and with the observer state x̂ equal to the process state x. When the reference
signal is changed, the signals uff and xd will change. The observer tracks the state
perfectly because the initial state was correct. The estimated state x̂ is thus equal to
the desired state xd, and the feedback signal ufb = K(xd− x̂) will also be zero. All
action is thus created by the signals from the trajectory generator. If there are some
disturbances or some modeling errors, the feedback signal will attempt to correct
the situation.

This controller is said to have two degrees of freedom because the responses
to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).

Feedforward Design and Trajectory Generation

We will now discuss design of controllers with the architecture shown in Fig-
ure 8.11. For an analytic description we start with the full nonlinear dynamics
of the process

dx

dt
= f (x,u), y = h(x,u). (8.34)
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A feasible trajectory for the system (8.34) is a pair (xd(t),uff(t)) that satisfies the
differential equation and generates the desired trajectory:

ẋd(t) = f
(
xd(t),uff(t)

)
, r(t) = h

(
xd(t),uff(t)

)
.

The problem of finding a feasible trajectory for a system is called the trajectory
generation problem, with xd representing the desired state for the (nominal) system
and uff representing the desired input or the feedforward control. If we can find a
feasible trajectory for the system, we can search for controllers of the form u =
α(x,xd,uff) that track the desired reference trajectory.

In many applications, it is possible to attach a cost function to trajectories that
describe how well they balance trajectory tracking with other factors, such as the
magnitude of the inputs required. In such applications, it is natural to ask that we
find the optimal controller with respect to some cost function:

min
u( ·)

∫ T

0
L(x,u)dt +V

(
x(T )

)
,

subject to the constraint

ẋ = f (x,u), x ∈ Rn, u ∈ Rp.

Abstractly, this is a constrained optimization problem where we seek a feasible
trajectory (xd(t),uff(t)) that minimizes the cost function. Depending on the form
of the dynamics, this problem can be quite complex to solve, but there are good
numerical packages for solving such problems, including handling constraints on
the range of inputs as well as the allowable values of the state.

In some situations we can simplify the approach of generating feasible trajec-
tories by exploiting the structure of the system. The next example illustrates one
such approach.

Example 8.8 Vehicle steering
To illustrate how we can use a two degree-of-freedom design to improve the per-
formance of the system, consider the problem of steering a car to change lanes on
a road, as illustrated in Figure 8.12a.

We use the non-normalized form of the dynamics, which were derived in Exam-
ple 3.11. Using the center of the rear wheels as the reference (α = 0), the dynamics
can be written as

dx

dt
= vcosθ ,

dy

dt
= vsinθ ,

dθ

dt
=

v

b
tanδ ,

where v is the forward velocity of the vehicle, θ is the heading angle, and δ is the
steering angle. To generate a trajectory for the system, we note that we can solve
for the states and inputs of the system given x(t), y(t) by solving the following sets
of equations:

ẋ = vcosθ , ẍ = v̇cosθ − vθ̇ sinθ ,

ẏ = vsinθ , ÿ = v̇sinθ + vθ̇ cosθ ,

θ̇ = (v/b) tanδ .

(8.35)
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Figure 8.12: Trajectory generation for changing lanes. We wish to change from the right
lane to the left lane over a distance of 30 m in 4 s. The planned trajectory in the xy plane
is shown in (a) and the lateral position y and the steering angle δ over the maneuver time
interval are shown in (b).

.

This set of five equations has five unknowns (θ , θ̇ , v, v̇ and δ ) that can be solved
using trigonometry and linear algebra given the path variables x(t), y(t) and their
time derivatives. It follows that we can compute a feasible state trajectory for the
system given any path x(t), y(t). (This special property of a system is known as
differential flatness and is described in more detail below.)

To find a trajectory from an initial state (x0,y0,θ0) to a final state (xf,yf,θf) at
a time T , we look for a path x(t),y(t) that satisfies

x(0) = x0, x(T ) = xf,

y(0) = y0, y(T ) = yf,

ẋ(0)sinθ0− ẏ(0)cosθ0 = 0, ẋ(T )sinθf− ẏ(T )cosθf = 0,

ẏ(0)sinθ0 + ẋ(0)cosθ0 = v0, ẏ(T )sinθf + ẋ(T )cosθf = vf,

(8.36)

where v0 is the initial velocity and vf is the final velocity along the trajectory. One
such trajectory can be found by choosing x(t) and y(t) to have the form

xd(t) = α0 +α1t +α2t2 +α3t3, yd(t) = β0 +β1t +β2t2 +β3t3.

Substituting these equations into equation (8.36), we are left with a set of linear
equations that can be solved for αi,βi, i = 0,1,2,3. This gives a feasible trajectory
for the system by using equation (8.35) to solve for θd, vd, and δd.

Figure 8.12b shows a sample trajectory generated by a set of higher-order equa-
tions that also set the initial and final steering angle to zero. Notice that the feed-
forward input is different from zero, allowing the controller to command a steering
angle that executes the turn in the absence of errors. ∇

The concept of differential flatness that we exploited in the previous example
is a fairly general one and can be applied to many interesting trajectory generation
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problems. A nonlinear system (8.34) is differentially flat if there exists a flat output
z such that the state x and the input u can be expressed as functions of the flat output
z and a finite number of its derivatives:

x = β (z, ż, . . . ,z(q)), u = γ(z, ż, . . . ,z(q)). (8.37)

The number of flat outputs is always equal to the number of system inputs. The
vehicle steering model is differentially flat with the position of the rear wheels as
the flat output.

A broad class of systems that is differentially flat is the class of reachable lin-
ear systems. For the linear system given in equation (7.6), which is in reachable
canonical form, we have

z1 = z
(n−1)
n , z2 = z

(n−2)
n , . . . , zn−1 = żn,

u = z
(n)
n +a1z

(n−1)
n +a2z

(n−2)
n + · · ·+anzn,

and the nth component zn of the state vector is thus a flat output. Since any reach-
able system can be transformed to reachable canonical form, it follows that every
reachable linear system is differentially flat.

Note that no differential equations need to be integrated in order to compute the
feasible trajectories for a differentially flat system (unlike optimal control meth-
ods, which often involve parameterizing the input and then solving the differential
equations). The practical implication is that nominal trajectories and inputs that
satisfy the equations of motion for a differentially flat system can be computed
efficiently.

Disturbance Modeling and State Augmentation

We often have some information about load disturbances: they can be unknown
constants, drifting with unknown rates, sinusoidal with known or unknown fre-
quency, or stochastic signals. This information can be used by modeling the dis-
turbances by differential equations and augmenting the process state with the dis-
turbance states as was done in Section 7.4. We illustrate with a simple example.

Example 8.9 Integral action by state augmentation
Consider the system (8.1) and assume that there is a constant but unknown distur-
bance z acting additively on the process input. The system and the disturbance can
then be modeled by augmenting the state x with z. An unknown constant can be
modeled by the differential equation dz/dt = 0 and we obtain the following model
for the process and its environment:

d

dt

⎧
⎪⎪⎩

x
z

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

Ax+Bu
0

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

A 0
0 0

⎫
⎪⎪⎭x+

⎧
⎪⎪⎩

B
0

⎫
⎪⎪⎭u, y =

⎧
⎩C 0

⎫
⎭
⎧
⎪⎪⎩

x
z

⎫
⎪⎪⎭ .

Notice that the disturbance state z is not reachable from u, but because the distur-
bance enters at the process input it can be attenuated by the control law

u =−Kx̂− ẑ, (8.38)



8-28 CHAPTER 8. OUTPUT FEEDBACK

where x̂ and ẑ are estimates of the state x and the disturbance z. The estimated
disturbance can be obtained from the observer:

dx̂

dt
= Ax̂+Bu+Lx(y−Cx̂),

dẑ

dt
= Lz(y−Cx̂).

Integrating the last equation and inserting the expression for ẑ in the control law (8.38)
gives

u =−Kx̂−Lz

∫ t

0
(y(τ)−Cx̂(τ))dτ ,

which is a state feedback controller with integral action. Notice that the integral
action is created through estimation of a disturbance state. ∇

The idea of the example can be extended to many types of disturbances and we
emphasized that much can be gained from modeling a process and its environment
(disturbances acting on the process and measurement noise).

Feedback Design and Gain Scheduling

We now assume that the trajectory generator is able to compute a desired trajectory
(xd,uff) that satisfies the dynamics (8.34) and satisfies r = h(xd,uff). To design the
feedback controller, we construct the error system. Let ξ = x−xd and ufb = u−uff

and compute the dynamics for the error:

ξ̇ = ẋ− ẋd = f (x,u)− f (xd,uff)

= f (ξ + xd,v+uff)− f (xd,uff) =: F(ξ ,v,xd(t),uff(t)).

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around ξ = 0:

dξ

dt
≈ A(t)ξ +B(t)v, h(x,u)≈C(t)x(t)

A(t) =
∂F

∂ξ

∣∣∣∣
(xd(t),uff(t))

, B(t) =
∂F

∂v

∣∣∣∣
(xd(t),uff(t))

, C(t) =
∂h

∂ξ

∣∣∣∣
(xd(t),uff(t))

.

In general, this system is time-varying. Note that ξ corresponds to −e in Fig-
ure 8.11 due to the convention of using negative feedback in the block diagram.
We can now proceed to using LQR to compute the time-varying feedback gain
K(t) = Q−1

u (t)BT (t)S(t) by solving the Riccati differential equation (7.31) and the
Kalman filter gain L(t) = P(t)CT (t)R−1

w (t), where P(t) is obtained by solving the
Riccati equation (8.30).

Assume now that xd and uff are either constant or slowly varying (with respect
to the process dynamics). It is often the case that A(t), B(t) and C(t) depend only
on xd, in which case it is convenient to write A(t) =A(xd), B(t) =B(xd) and C(t) =
C(xd). This allows us to consider just the linear system given by A(xd), B(xd), and
C(xd). If we design a state feedback controller K(xd) for each xd, then we can
regulate the system using the feedback

ufb =−K(xd)ξ .



8.5. STATE SPACE CONTROLLER DESIGN 8-29

x

θ

ϕ

y

(a) Vehicle configuration

0 1 2 3 4 5

0

5

10

Time [s]

 

 

ẋ
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Figure 8.13: Vehicle steering using gain scheduling. (a) Vehicle configuration consists of the
x, y position of the vehicle, its angle with respect to the road, and the steering wheel angle.
(b) Step responses for the vehicle lateral position (solid) and forward velocity (dashed). Gain
scheduling is used to set the feedback controller gains for the different forward velocities.

Substituting back the definitions of ξ and ufb, our controller becomes

u = ufb +uff =−K(xd)(x− xd)+uff.

This form of controller is called a gain scheduled linear controller with feedfor-
ward uff.

Example 8.10 Steering control with velocity scheduling
Consider the problem of controlling the motion of a automobile so that it follows a
given trajectory on the ground, as shown in Figure 8.13a. We use the model derived
in Example 8.8. A simple feasible trajectory for the system is to follow a straight
line in the x direction at lateral position yr and fixed velocity vr. This corresponds to
a desired state xd = (vrt,yr,0) and nominal input uff = (vr,0). Note that (xd,uff) is
not an equilibrium point for the system, but it does satisfy the equations of motion.

Linearizing the system about the desired trajectory, we obtain

Ad =
∂ f

∂x

∣∣∣∣
(xd,uff)

=

⎧
⎪⎪⎪⎪⎪⎩

0 0 −sinθ
0 0 cosθ
0 0 0

⎫
⎪⎪⎪⎪⎪⎭

∣∣∣∣∣∣
(xd,uff)

=

⎧
⎪⎪⎪⎪⎪⎩

0 0 0
0 0 1
0 0 0

⎫
⎪⎪⎪⎪⎪⎭ ,

Bd =
∂ f

∂u

∣∣∣∣
(xd,uff)

=

⎧
⎪⎪⎪⎪⎪⎩

1 0
0 0
0 vr/l

⎫
⎪⎪⎪⎪⎪⎭ .

We form the error dynamics by setting e = x− xd and w = u−uff:

ėx = w1, ėy = eθ , ėθ =
vr

l
w2.

We see that the first state is decoupled from the second two states and hence we can
design a controller by treating these two subsystems separately. Suppose that we
wish to place the closed loop eigenvalues of the longitudinal dynamics (ex) at λ1
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and place the closed loop eigenvalues of the lateral dynamics (ey, eθ ) at the roots
of the polynomial equation s2 +a1s+a2 = 0. This can accomplished by setting

w1 =−λ1ex, w2 =
l

vr
(a1ey +a2eθ ).

Note that the gain l/vr depends on the velocity vr (or equivalently on the nominal
input uff), giving us a gain scheduled controller.

In the original inputs and state coordinates, the controller has the form

⎧
⎪⎪⎩

v
ϕ

⎫
⎪⎪⎭=−

⎧
⎪⎪⎪⎪⎪⎩

λ1 0 0

0
a1l

vr

a2l

vr

⎫
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
Kd

⎧
⎪⎪⎪⎪⎪⎩

x− vrt
y− yr

θ

⎫
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
e

+

⎧
⎪⎪⎩

vr

0

⎫
⎪⎪⎭

︸ ︷︷ ︸
uff

.

The form of the controller shows that at low speeds the gains in the steering an-
gle will be high, meaning that we must turn the wheel harder to achieve the same
effect. As the speed increases, the gains become smaller. This matches the usual
experience that at high speed a very small amount of actuation is required to con-
trol the lateral position of a car. Note that the gains go to infinity when the vehicle
is stopped (vr = 0), corresponding to the fact that the system is not reachable at
this point.

Figure 8.13b shows the response of the controller to a step change in lateral
position at three different reference speeds. Notice that the rate of the response
is constant, independent of the reference speed, reflecting the fact that the gain
scheduled controllers each set the closed loop eigenvalues to the same values. ∇

Nonlinear Estimation

Finally, we briefly comment on the observer represented in Figure 8.11. Since we
are now considering a nonlinear system that operate over a wide range of a state
space, it is desirable to use full nonlinear dynamics for the prediction portion of
the observer. This can then be combined with a linear correction term, so that the
observer has the form:

dx̂

dt
= f (x̂,u)+L(x̂)(y−h(x̂)).

The estimator gain L(x̂) is the observer gain obtained by linearizing the system
around the currently estimated state. This form of the observer is known as an
extended Kalman filter and has proved to be a very effective means of estimating
the state of a nonlinear system.

The combination of trajectory generation, trajectory tracking, and nonlinear
estimation provides a means for state space control of nonlinear systems. There are
many ways to generate the feedforward signal, and there are also many different
ways to compute the feedback gain K and the observer gain L. Note that once again
the internal model principle applies: the overall controller contains a model of the
system to be controlled and its environment through the observer.
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Figure 8.14: Components of a computer-controlled system. The controller consists of
analog-to-digital (A/D) and digital-to-analog (D/A) converters, as well as a computer that
implements the control algorithm. A system clock controls the operation of the controller,
synchronizing the A/D, D/A, and computing processes. The operator input is also fed to the
computer as an external input.

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves, or other physical devices. Since in modern engi-
neering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by the A/D con-
verter, the control signal is computed and the resulting output is converted to ana-
log form for the actuators, as shown in Figure 8.14. To illustrate the main princi-
ples of how to implement feedback in this environment, we consider the controller
described by equations (8.15) and (8.16), i.e.,

dx̂

dt
= Ax̂+Bu+L(y−Cx̂), u =−Kx̂+ kfr.

The second equation consists only of additions and multiplications and can thus
be implemented directly on a computer. The first equation can be implemented by
approximating the derivative by a difference

dx̂

dt
≈

x̂(tk+1)− x̂(tk)

h
= Ax̂(tk)+Bu(tk)+L

(
y(tk)−Cx̂(tk)

)
,

where tk are the sampling instants and h = tk+1− tk is the sampling period. Rewrit-
ing the equation to isolate x̂(tk+1), we get the difference equation

x̂(tk+1) = x̂(tk)+h
(
Ax̂(tk)+Bu(tk)+L

(
y(tk)−Cx̂(tk)

))
. (8.39)
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The calculation of the estimated state at time tk+1 requires only addition and mul-
tiplication and can easily be done by a computer. A section of pseudocode for the
program that performs this calculation is

% Control algorithm - main loop

r = adin(ch1) % read reference

y = adin(ch2) % get process output

(xd, uff) = trajgen(r) % generate feedforward

u = K*(xd - xhat) + uff % compute control variable

daout(ch1, u) % set analog output

xhat = xhat + h*(A*x+B*u+L*(y-C*x)) % update state estimate

The program runs periodically at a fixed sampling period h. Notice that the
number of computations between reading the analog input and setting the analog
output has been minimized by updating the state after the analog output has been
set. The program has an array of states xhat that represents the state estimate.
The choice of sampling period requires some care.

There are more sophisticated ways of approximating a differential equation
by a difference equation. If the control signal is constant between the sampling
instants, it is possible to obtain exact equations; see [ÅW97].

There are several practical issues that also must be dealt with. For example, it
is necessary to filter measured signals before they are sampled so that the filtered
signal has little frequency content above fs/2 (the Nyquist frequency), where fs =
1/h is the sampling frequency. This avoids a phenomenon known as aliasing. If
controllers with integral action are used, it is also necessary to provide protection
so that the integral does not become too large when the actuator saturates. This
issue, called integrator windup, is studied in more detail in Chapter 11. Care must
also be taken so that parameter changes do not cause disturbances.

8.6 Further Reading

The notion of observability is due to Kalman [Kal61b] and, combined with the
dual notion of reachability, it was a major stepping stone toward establishing state
space control theory beginning in the 1960s. The observer first appeared as the
Kalman filter, in the paper by Kalman [Kal61a] for the discrete-time case and
Kalman and Bucy [KB61] for the continuous-time case. The fact that all eigen-
values can be placed by state feedback for a reachable system was first obtained
by Bertram in 1959 [KFA69, p. 49], and a formal proof was given by Rissa-
nen [Ris60]. Kalman also conjectured that the controller for output feedback could
be obtained by combining a state feedback with a Kalman filter; see the quote in the
beginning of this chapter. This result, which is known as the separation theorem is
mathematically subtle. Attempts of proof were made by Josep and Tou [JT61] and
Gunckel and Franklin [GF71], but a rigorous proof was given by Georgiou and
Lindquist [GL13] in 2013. The combined result is known as the linear quadratic
Gaussian control theory; a compact treatment is given in the books by Anderson
and Moore [AM90], Åström [Åst06], and Lindquist and Picci [LP15]. It was also
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shown that solutions to robust control problems had a similar structure but with
different ways of computing observer and state feedback gains [DGKF89]. The
importance of systems with two degrees of freedom that combine feedback and
feedforward was emphasized by Horowitz [Hor63]. The controller structure dis-
cussed in Section 8.5 is based on these ideas. The particular form in Figure 8.11
appeared in [ÅW97], where computer implementation of the controller was dis-
cussed in detail. The hypothesis that motion control in humans is based on a com-
bination of feedback and feedforward was proposed by Ito in 1970 [Ito70]. Dif-
ferentially flat systems were originally studied by Fliess et al. [FLMR92]; they are
very useful for trajectory generation.

Exercises

8.1 (Observability) Consider the system given by

dx

dt
= Ax+Bu, y =Cx,

where x∈Rn, u∈Rp, and y∈Rq. Show that the states can be determined from the
input u and the output y and their derivatives if the observability matrix Wo given
by equation (8.4) has n independent rows.

8.2 (Coordinate transformations) Consider a system under a coordinate transfor-
mation z = T x, where T ∈Rn×n is an invertible matrix. Show that the observability
matrix for the transformed system is given by W̃o =WoT−1 and hence observability
is independent of the choice of coordinates.

8.3 Show that the system depicted in Figure 8.2 is not observable.

8.4 (Observable canonical form) Show that if a system is observable, then there
exists a change of coordinates z = T x that puts the transformed system into ob-
servable canonical form.

8.5 (Bicycle dynamics) The linearized model for a bicycle is given in equation (4.5),
which has the form

J
d2ϕ

dt2
−

Dv0

b

dδ

dt
= mghϕ +

mv2
0h

b
δ ,

where ϕ is the tilt of the bicycle and δ is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.

8.6 (Integral action) The model (8.1) assumes that the input u = 0 corresponds
to x = 0. In practice, it is very difficult to know the value of the control signal
that gives a precise value of the state or the output because this would require a
perfectly calibrated system. One way to avoid this assumption is to assume that the
model is given by

dx

dt
= Ax+B(u+u0), y =Cx+Du,
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where u0 is an unknown constant that can be modeled as du0/dt = 0. Consider
u0 as an additional state variable and derive a controller based on feedback from
the observed state. Show that the controller has integral action and that it does not
require a perfectly calibrated system.

8.7 (Vectored thrust aircraft) The lateral dynamics of the vectored thrust aircraft !
example described in Example 7.9 can be obtained by considering the motion
described by the states z = (x,θ , ẋ, θ̇). Construct an estimator for these dynam-
ics by setting the eigenvalues of the observer into a Butterworth pattern with
λbw =−3.83±9.24i, −9.24±3.83i. Using this estimator combined with the state
space controller computed in Example 7.9, plot the step response of the closed
loop system.

8.8 (Uniqueness of observers) Show that the design of an observer by eigenvalue
assignment is unique for single-output systems. Construct examples that show that
the problem is not necessarily unique for systems with many outputs.

8.9 (Observers using differentiation) Consider the linear system (8.2), and assume
that the observability matrix Wo is invertible. Show that

x̂ =W−1
o

⎧
⎩y ẏ ÿ · · · y(n−1)

⎫
⎭T

is an observer. Show that it has the advantage of giving the state instantaneously
but that it also has some severe practical drawbacks.

8.10 (Observer for Teorell’s compartment model) Teorell’s compartment model, !
shown in Figure 4.17, has the following state space representation:

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k1 0 0 0 0
k1 −k2− k4 0 k3 0
0 k4 0 0 0
0 k2 0 −k3− k5 0
0 0 0 k5 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

where representative parameters are k1 = 0.02, k2 = 0.1, k3 = 0.05, k4 = k5 =
0.005. The concentration of a drug that is active in compartment 5 is measured in
the bloodstream (compartment 2). Determine the compartments that are observable
from measurement of concentration in the bloodstream and design an estimator
for these concentrations base on eigenvalue assignment. Choose the closed loop
eigenvalues −0.03, −0.05, and −0.1. Simulate the system when the input is a
pulse injection.

8.11 (Observer design for motor drive) Consider the normalized model of the
motor drive in Exercise 3.10 where the open loop system has the eigenvalues
0,0,−0.05± i. A state feedback that gave a closed loop system with eigenval-
ues in −2, −1, and −1± i was designed in Exercise 7.12. Design an observer for
the system that has eigenvalues −4, −2, and −2±2i. Combine the observer with
the state feedback from Exercise 7.12 to obtain an output feedback and simulate
the complete system.
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8.12 (Feedforward design for motor drive) Consider the normalized model of the
motor drive in Exercise 3.10. Design the dynamics of the block labeled “trajec-
tory generation” in Figure 8.11 so that the dynamics relating the output η to the
reference signal r has the dynamics

d3ym

dt3
+am1

d2ym

dt2
+am2

dym

dt
+am3ym = am3r, (8.40)

with parameters am1 = 2.5ωm, am2 = 2.5ω2
m, and am3 = ω3

m. Discuss how the
largest value of the feedforward signal for a unit step in the command signal de-
pends on ωm.

8.13 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (4.8) in Section 4.2. A state feedback for the system was designed in Exer-
cise 7.13. Design an observer and an output feedback for the system.

8.14 (Discrete-time random walk) Suppose that we wish to estimate the position !
of a particle that is undergoing a random walk in one dimension (i.e., along a line).
We model the position of the particle as

x[k+1] = x[k]+u[k],

where x is the position of the particle and u is a white noise processes with E{u[i]}=
0 and E{u[i]u[ j]} = Ruδ (i− j). We assume that we can measure x subject to ad-
ditive, zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the particle as a function of
k.

(b) Construct a Kalman filter to estimate the position of the particle given the
noisy measurements of its position. Compute the steady-state expected value
and covariance of the error of your estimate.

(c) Suppose that E{u[0]}= µ ≠ 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

8.15 (Kalman decomposition) Consider a linear system characterized by the ma-
trices

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 1 −1 2
1 −3 0 2
1 1 −4 2
0 1 −1 −1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
2
2
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, C =

⎧
⎩0 1 −1 0

⎫
⎭ , D = 0.

Construct a Kalman decomposition for the system. (Hint: Try to diagonalize.)

8.16 (Kalman filtering first order) Consider the system

dx

dt
= ax+ v, y = cx+w
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where all variables are scalar. The signals v and w are uncorrelated white noise
disturbances with zero mean values and covariance functions

E(v(s)vT (t)) = rvδ (t− s), E(w(s)wT (t)) = rwδ (t− s).

The initial condition is Gaussian with mean value x0 and covariance P0. Determine
the Kalman filter for the system and analyze what happens for large t.

8.17 (LQG first order) Consider the system

dx

dt
= ax+bu+ v, y = cx+w

where all variables are scalar and w are uncorrelated white noise disturbances with
zero mean values and covariance functions

E(v(s)vT (t)) = rvδ (t− s), E(w(s)wT (t)) = rwδ (t− s).

The initial condition is Gaussian with mean value x0 and covariance P0. Determine
a controller that minimizes the cost function

J = min
(

q0x2(t f )+
∫ t f

0

(
qxx2(t)+quu2(t)

)
dt
)
,

where q0,qx and qu are all positive. Explore the different contributions to the min-
imal loss and Investigate what happens when t f goes to infinity.

8.18 (Vertical alignment) In navigation systems it is important to align a system to
the vertical. This can be accomplished by measuring the vertical acceleration and
controlling the platform so that the measured acceleration is zero. A simplified
one-dimensional version of the problem can be modeled by

dϕ

dt
= u, u =−ky, y = ϕ +w,

where ϕ is the alignment error, u the control signal, y the measured signal, and w
the measurement noise, which is assumed to be white noise with zero mean and
covariance function E(w(s)wT (t)) = rwδ (t − s). The initial misalignment is as-
sumed to be a random variable with zero mean and the covariance P0. Determine a
time-varying gain k(t) such that the error goes to zero as fast as possible. Compare
this with a constant gain.
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