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Chapter Three
System Modeling

... I asked Fermi whether he was not impressed by the agreement between our calculated

numbers and his measured numbers. He replied, “How many arbitrary parameters did you

use for your calculations?” I thought for a moment about our cut-off procedures and said,

“Four.” He said, “I remember my friend Johnny von Neumann used to say, with four param-

eters I can fit an elephant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for meson-proton scattering to
Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamics used to answer
questions via analysis and simulation. The model we choose depends on the ques-
tions we wish to answer, and so there may be multiple models for a single dy-
namical system, with different levels of fidelity depending on the phenomena of
interest. In this chapter we provide an introduction to the concept of modeling and
present some basic material on two specific methods commonly used in feedback
and control systems: differential equations and difference equations.

3.1 Modeling Concepts

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models
of dynamical systems describing the input/output behavior of systems, and we
will often work in “state space” form. As pointed out already in Chapter 1, when
using models it is important to keep in mind that they are an approximation of
the underlying system. Analysis and design using models must always be done
carefully to insure that the limits of the model are respected.

Roughly speaking, a dynamical system is one in which the effects of actions
do not occur immediately. For example, the velocity of a car does not change
immediately when the gas pedal is pushed nor does the temperature in a room
rise instantaneously when a heater is switched on. Similarly, a headache does not
vanish right after an aspirin is taken, requiring time for it to take effect. In business
systems, increased funding for a development project does not increase revenues in
the short term, although it may do so in the long term (if it was a good investment).
All of these are examples of dynamical systems, in which the behavior of the
system evolves with time.

In the remainder of this section we provide an overview of some of the key
concepts in modeling. The mathematical details introduced here are explored more
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Figure 3.1: Spring–mass system with nonlinear damping. The position of the mass is de-
noted by q, with q = 0 corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring constant k and a damper with force depen-
dent on the velocity q̇.

fully in the remainder of the chapter.

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary motion. The
basis was detailed observations of the planets by Tycho Brahe and the results of
Kepler, who found empirically that the orbits of the planets could be well described
by ellipses. Newton embarked on an ambitious program to try to explain why the
planets move in ellipses, and he found that the motion could be explained by his
law of gravitation and the formula stating that force equals mass times acceleration.
In the process he also invented calculus and differential equations.

One of the triumphs of Newton’s mechanics was the observation that the mo-
tion of the planets could be predicted based on the current positions and velocities
of all planets. It was not necessary to know the past motion. The state of a dynam-
ical system is a collection of variables that completely captures the past motion of
a system for the purpose of predicting future motion. For a system of planets the
state is simply the positions and the velocities of the planets. We call the set of all
possible states the state space.

A common class of mathematical models for dynamical systems is ordinary
differential equations (ODEs). In mechanics, one of the simplest such differential
equations is that of a spring–mass system with damping:

mq̈+ c(q̇)+ kq = 0. (3.1)

This system is illustrated in Figure 3.1. The variable q ∈ R represents the position
of the mass m with respect to its rest position. We use the notation q̇ to denote
the derivative of q with respect to time (i.e., the velocity of the mass) and q̈ to
represent the second derivative (acceleration). The spring is assumed to satisfy
Hooke’s law, which says that the force is proportional to the displacement. The
friction element (damper) is taken as a nonlinear function c(q̇), which can model
effects such as stiction and viscous drag. The position q and velocity q̇ represent
the instantaneous state of the system. We say that this system is a second-order
system since it has two states which we combine in the state vector x = (q, q̇).
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Figure 3.2: Illustration of a state model. A state model gives the rate of change of the state
as a function of the state. The plot on the left shows the evolution of the state as a function of
time. The plot on the right, called a phase portrait, shows the evolution of the states relative
to each other, with the velocity of the state denoted by arrows.

The evolution of the position and velocity can be described using either a time
plot or a phase portrait, both of which are shown in Figure 3.2. The time plot,
on the left, shows the values of the individual states as a function of time. The
phase portrait, on the right, shows the traces of some of the states from different
initial conditions: it illustrates how the states move in the state space. In the phase
portrait we have also shown arrows that represent the velocity ẋ of the state x
in a few points. The phase portrait gives a strong intuitive representation of the
equation as a vector field or a flow.While systems of second order (two states) can
be represented in this way, unfortunately it is difficult to visualize equations of
higher order using this approach.

The differential equation (3.1) is called an autonomous system because there
are no external influences. (Note that this usage of “autonomous” is slightly dif-
ferent than in the phrase “autonomous vehicle”.) Such a model is natural for use
in celestial mechanics because it is difficult to influence the motion of the planets.
In many examples, it is useful to model the effects of external disturbances or con-
trolled forces on the system. One way to capture this is to replace equation (3.1)
by

mq̈+ c(q̇)+ kq = u, (3.2)

where u represents the effect of external inputs. The model (3.2) is called a forced
or controlled differential equation. It implies that the rate of change of the state
can be influenced by the input u(t). Adding the input makes the model richer and
allows new questions to be posed. For example, we can examine what influence
external disturbances have on the trajectories of a system. Or, in the case where
the input variable is something that can be modulated in a controlled way, we can
analyze whether it is possible to “steer” the system from one point in the state
space to another through proper choice of the input.
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Figure 3.3: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one on the right is its
representation as a block diagram.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where the de-
sign of electronic amplifiers led to a focus on input/output behavior. A system was
considered a device that transforms inputs to outputs, as illustrated in Figure 3.3.
Conceptually an input/output model can be viewed as a giant table of inputs and
outputs. Given an input signal u(t) over some interval of time, the model should
produce the resulting output y(t).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio
or a television and break it down into manageable pieces such as the receiver,
demodulator, amplifier and speakers. Each of these pieces has a set of inputs and
outputs and, through proper design, these components can be interconnected to
form the entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully later in this chapter, but
roughly speaking a system is linear if the superposition (addition) of two inputs
yields an output that is the sum of the outputs that would correspond to individual
inputs being applied separately. A system is time-invariant if the output response
for a given input does not depend on when that input is applied.

Many electrical engineering systems can be modeled by linear time-invariant
systems, and hence a large number of tools have been developed to analyze them.
One such tool is the step response, which describes the relationship between an
input that changes from zero to a constant value abruptly (a step input) and the
corresponding output. As we shall see later in the text, the step response is very
useful in characterizing the performance of a dynamical system, and it is often used
to specify the desired dynamics. A sample step response is shown in Figure 3.4a.

Another way to describe a linear time-invariant system is to represent it by its
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Figure 3.4: Input/output response of a linear system. The step response (a) shows the output
of the system due to an input that changes from 0 to 1 at time t = 5 s. The frequency re-
sponse (b) shows the amplitude gain and phase change due to a sinusoidal input at different
frequencies.

response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged.
The results are based on the theory of complex variables and Laplace transforms.
The basic idea behind frequency response is that we can completely characterize
the behavior of a system by its steady-state response to sinusoidal inputs. Roughly
speaking, this is done by decomposing any arbitrary signal into a linear combi-
nation of sinusoids (e.g., by using the Fourier transform) and then using linearity
to compute the output by combining the response to the individual frequencies. A
sample frequency response is shown in Figure 3.4b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems. In the 1970s the development was
influenced by advances in automation, which emphasized the need to include logic
and sequencing.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general
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forms of equations. In control, the model given by equation (3.2) was replaced by

dx

dt
= f (x,u), y = h(x,u), (3.3)

where x is a vector of state variables, u is a vector of control signals and y is a vector
of measurements. The term dx/dt represents the derivative of the vector x with
respect to time, and f and h are (possibly nonlinear) mappings of their arguments
to vectors of the appropriate dimension. For mechanical systems, the state consists
of the position and velocity of the system, so that x = (q, q̇) in the case of a damped
spring–mass system. Note that in the control formulation we model dynamics as
first-order differential equations, but we will see that this can capture the dynamics
of higher-order differential equations by appropriate definition of the state and the
maps f and h.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 7 and 8.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
systems with uncertainty since state models are convenient to describe a nominal
model but uncertainties are easier to describe using input/output models (often via
a frequency response description). Uncertainty will be a constant theme through-
out the text and will be studied in particular detail in Chapter 13.

An interesting observation in the design of control systems is that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

Multidomain Modeling
!

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previ-
ous discussion of mechanical and electrical engineering. A difficulty in systems
engineering is that it is frequently necessary to deal with heterogeneous systems
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from many different domains, including chemical, electrical, mechanical and in-
formation systems.

To model such multidomain systems, we start by partitioning a system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how
the variables of the subsystem behave when the subsystems are interconnected.
These interfaces act by constraining variables within the individual subsystems to
be equal (such as mass, energy or momentum fluxes). The complete model is then
obtained by combining the descriptions of the subsystems and the interfaces.

Using this methodology it is possible to build up libraries of subsystems that
correspond to physical, chemical and informational components. The procedure
mimics the engineering approach where systems are built from subsystems that
are themselves built from smaller components. As experience is gained, the com-
ponents and their interfaces can be standardized and collected in model libraries.
In practice, it takes several iterations to obtain a good library that can be reused for
many applications.

State models or ordinary differential equations are not suitable for component-
based modeling of this form because states may disappear when components are
connected. This implies that the internal description of a component may change
when it is connected to other components. As an illustration we consider two ca-
pacitors in an electrical circuit. Each capacitor has a state corresponding to the
voltage across the capacitors, but one of the states will disappear if the capacitors
are connected in parallel. A similar situation happens with two rotating inertias,
each of which is individually modeled using the angle of rotation and the angular
velocity. Two states will disappear when the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations by differential
algebraic equations, which have the form

F(z, ż) = 0,

where z ∈ Rn. A simple special case is

ẋ = f (x,y), g(x,y) = 0, (3.4)

where z = (x,y) and F = (ẋ− f (x,y),g(x,y)). The key property is that the deriva-
tive ż is not given explicitly and there may be pure algebraic relations between the
components of the vector z. Modeling using differential algebraic equations is also
called equation-based modeling, acausal modeling or behavioral modeling.

The model (3.4) captures the examples of the parallel capacitors and the linked
rotating inertias. For example, when two capacitors are connected, we simply add
the algebraic equation expressing that the voltages across the capacitors are the
same.

Modelica is a language that has been developed to support component-based
modeling. Differential algebraic equations are used as the basic description, and
object-oriented programming is used to structure the models. Modelica is used to
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model the dynamics of technical systems in domains such as mechanical, electri-
cal, thermal, hydraulic, thermofluid and control subsystems. Modelica is intended
to serve as a standard format so that models arising in different domains can be
exchanged between tools and users. A large set of free and commercial Modelica
component libraries are available and are used by a growing number of people
in industry, research and academia. For further information about Modelica, see
http://www.modelica.org or Tiller [Til01].

Finite State Machines and Hybrid Systems
!

A final type of modeling has been developed within the computer-controlled sys-
tems community. A hybrid system (also called a cyberphysical system) is one that
combines continuous dynamics with discrete logic. The discrete portion of the sys-
tem represents logical variables that reside in a computer, such as the mode of a
system (on, off, degraded, etc.).

Discrete state dynamics are often represented using a finite state machine that
consists of a finite set of discrete states α ∈Q. We can think of α as the “mode” of
the system. The dynamics of a finite state machine are defined in terms of transi-
tions between the states. One convenient representation is as a guarded transition
system:

gi(α,β ) =⇒ α ′ = ri(α), i = 1, . . . ,N.

Here the function g is a Boolean (true/false) function that depends on the current
system mode α and an input β , which might represent an environmental event
(button press, component failure, etc). If the guard gi is true then the system transi-
tions from the current state α to a new state α ′, determined by the rule (transition
map) ri. A guarded transition system can have many different rules, depending on
the system state and external input.

It is also possible to combine systems that have finite states with those having
discrete states, creating a hybrid system. For example, if a system has a continuous
state x and discrete state α , we might write the overall system dynamics as

dx

dt
= fα(x,u,v), gi(x,α,β ) =⇒ α ′ = ri(x,α), i = 1, . . . ,N.

In this representation, the continuous dynamics (with state x) are governed by an
ordinary differential equation that may depend on the system mode α (indicated
by the subscript in fα ). The discrete transition system is also influenced by the
continuous state, so that the guards gi and rules ri now depend on the continuous
state.

Many other representations are possible for hybrid systems, including models
that allow a non-continuous change in the continuous variables when a change in
the discrete state occurs (so-called reset logic). Computer modeling packages for
hybrid systems include StateFlow (part of the MATLAB suite of tools), Modelica
and Ptolemy [Pto14].
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Figure 3.5: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relationship and the
dashed lines indicate the range of possible uncertainty. The uncertainty lemon [GPD59] in
(b) is one way to capture uncertainty in dynamical systems emphasizing that a model is valid
only in the amplitude and frequency ranges within the shaded region. In (c) a model is rep-
resented by a nominal model M and another model ∆ representing the uncertainty analogous
to the representation of parameter uncertainty.

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback, and it is there-
fore important to characterize uncertainty. When making measurements, there is a
good tradition to assign both a nominal value and a measure of uncertainty. It is
useful to apply the same principle to modeling, but unfortunately it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be characterized by a func-
tion, uncertainty can be expressed by an uncertainty band as illustrated in Fig-
ure 3.5a. At low signal levels there are uncertainties due to sensor resolution, fric-
tion and quantization. For example, some models for queuing systems or cells are
based on averages that exhibit significant variations for small populations. At large
signal levels there are saturations or even system failures. The signal ranges where
a model is reasonably accurate vary dramatically between applications, but it is
rare to find models that are accurate for signal ranges larger than 104.

Characterization of the uncertainty of a dynamic model is much more difficult.
We can try to capture uncertainties by assigning uncertainties to parameters of the
model, but this is often not sufficient. There may be errors due to phenomena that
have been neglected, e.g., small time delays. In control the ultimate test is how well
a control system based on the model performs, and time delays can be important.
There is also a frequency aspect. There are slow phenomena, such as aging, that
can cause changes or drift in the systems. There are also high-frequency effects: a
resistor will no longer be a pure resistance at very high frequencies, and a beam
has stiffness and will exhibit additional dynamics when subject to high-frequency
excitation. The uncertainty lemon [GPD59] shown in Figure 3.5b is one way to
conceptualize the uncertainty of a system. It illustrates that a model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in Chapter 13
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using figures such as Figure 3.5c. These tools make use of the concept of a transfer
function, which describes the frequency response of an input/output system. For
now, we simply note that one should always be careful to recognize the limits of
a model and not to make use of models outside their range of applicability. For
example, one can describe the uncertainty lemon and then check to make sure that
signals remain in this region. In early analog computing, a system was simulated
using operational amplifiers, and it was customary to give alarms when certain
signal levels were exceeded. Similar features can be included in digital simulation.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, we need to
form the differential equations that describe the complete system. In many cases
the equations can be obtained by combining the differential equations that describe
each subsystem and substituting variables. This simple procedure cannot be used
when there are closed loops of subsystems that all have a direct connection be-
tween inputs and outputs, known as an algebraic loop. A direct connection means
that a change in the output u gives an instantaneous change in the output y.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx

dt
= f (x,u), y = h(x), (3.5)

and a proportional controller described by u = −ky. There is no direct connec-
tion since the function h does not depend on u. In that case we can obtain the
equation for the closed loop system simply by replacing u by −ky = −kh(x) in
equation (3.5) to give

dx

dt
= f (x,−kh(x)), y = h(x),

which is an ordinary differential equation.
The situation is more complicated if there is a direct connection. If y = h(x,u),

then replacing u by −ky gives

dx

dt
= f (x,−ky), y = h(x,−ky).

To obtain a differential equation for x, the algebraic equation y = h(x,−ky) must
be first be solved to give y = α(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. The resulting model
becomes a set of differential algebraic equation, similar to equation 3.4. Resolving
algebraic loops is a nontrivial problem because it requires the symbolic solution of
algebraic equations. Most block diagram-oriented modeling languages cannot han-
dle algebraic loops, and they simply give a diagnosis that such loops are present.
In the era of analog computing, algebraic loops were eliminated by introducing
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fast dynamics between the loops. This created differential equations with fast and
slow modes that are difficult to solve numerically. Advanced modeling languages
like Modelica use several sophisticated methods to resolve algebraic loops.

3.2 State Space Models

In this section we introduce the two primary forms of models that we use in this
text: differential equations and difference equations. Both make use of the notions
of state, inputs, outputs and dynamics to describe the behavior of a system. We
also briefly discuss modeling of finite state systems.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a physical system the state
is composed of the variables required to account for storage of mass, momentum
and energy. A key issue in modeling is to decide how accurately this storage has
to be represented. The state variables are gathered in a vector x ∈ Rn called the
state vector. The control variables are represented by another vector u ∈ Rp, and
the measured signal by the vector y ∈Rq. A system can then be represented by the
differential equation

dx

dt
= f (x,u), y = h(x,u), (3.6)

where f : Rn×Rp→ Rn and h : Rn×Rp→ Rq are smooth mappings. We call a
model of this form a state space model.

The dimension of the state vector is called the order of the model. The model
given in equation (3.6) is called time-invariant because the functions f and h do
not depend explicitly on time t; there are more general time-varying systems where
the functions do depend on time. The model consists of two functions: the function
f gives the rate of change of the state vector as a function of state x and control u,
and the function h gives the measured values as functions of state x and control u.

A model is called a linear state space model (or often just a “linear system”) if
the functions f and h are linear in x and u. A linear state space model can thus be
represented by

dx

dt
= Ax+Bu, y =Cx+Du, (3.7)

where A, B, C and D are constant matrices. Such a model is said to be linear and
time-invariant, or LTI for short. (In this text we will usually omit the term time-
invariant and just say the model is linear.) The matrix A is called the dynamics
matrix, the matrix B is called the control matrix, the matrix C is called the sensor
matrix and the matrix D is called the direct term. Frequently models will not have a
direct term, indicating that the control signal does not influence the output directly.



3-12 CHAPTER 3. SYSTEM MODELING

A different form of linear differential equations, generalizing the second-order
dynamics from mechanics, is an equation of the form

dny

dtn
+a1

dn−1y

dtn−1
+ · · ·+any = u, (3.8)

where t is the independent (time) variable, y(t) is the dependent (output) variable
and u(t) is the input. The notation dky/dtk is used to denote the kth derivative
of y with respect to t, sometimes also written as y(k). The controlled differential
equation (3.8) is said to be an nth-order model. This model can be converted into
state space form by defining

x =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2
...

xn−1

xn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dn−1y/dtn−1

dn−2y/dtn−2

...
dy/dt

y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

and the state space equations become

d

dt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2
...

xn−1

xn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1x1− · · ·−anxn

x1
...

xn−2

xn−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
0
...
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, y = xn.

With the appropriate definitions of A, B, C and D, this equation is in linear state
space form.

An even more general model is obtained by letting the output be a linear com-
bination of the states of the model, i.e.,

y = b1x1 +b2x2 + · · ·+bnxn +du.

This model can be represented in state space as

d

dt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3
...

xn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1 −a2 . . . −an−1 −an

1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0
0
...
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =
⎧
⎩b1 b2 . . . bn

⎫
⎭x+du.

(3.9)

This particular form of a linear state space model is called reachable canonical
form and will be studied in more detail in later chapters. Many other representa-
tions for a model are possible and we shall see several of these in Chapters 6–8.
It is also possible to expand the form of equation (3.8) to allow derivatives of the
input to appear, as we saw briefly in Chapter 2.
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Figure 3.6: Balance systems. (a) Segway Personal Transporter, (b) Saturn rocket and (c)
inverted pendulum on a cart. Each of these examples uses forces at the bottom of the system
to keep it upright.

Example 3.1 Balance systems
An example of a type of system that can be modeled using ordinary differential
equations is the class of balance systems. A balance system is a mechanical sys-
tem in which the center of mass is balanced above a pivot point. Some common
examples of balance systems are shown in Figure 3.6. The Segway® Personal
Transporter (Figure 3.6a) uses a motorized platform to stabilize a person standing
on top of it. When the rider leans forward, the transportation device propels itself
along the ground but maintains its upright position. Another example is a rocket
(Figure 3.6b), in which a gimbaled nozzle at the bottom of the rocket is used to
stabilize the body of the rocket above it. Other examples of balance systems in-
clude humans or other animals standing upright or a person balancing a stick on
their hand.

Balance systems are a generalization of the spring–mass system we saw earlier.
We can write the dynamics for a mechanical system in the general form

M(q)q̈+C(q, q̇)+K(q) = B(q)u,

where M(q) is the inertia matrix for the system, C(q, q̇) represents the Coriolis
forces as well as the damping, K(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into the dynamics. Note
that q may be a vector, rather than just a scalar, and represents the configuration
variables of the system. The specific form of the equations can be derived using
Newtonian mechanics. Each of the terms depends on the configuration of the sys-
tem q and these terms are often nonlinear in the configuration variables.

Figure 3.6c shows a simplified diagram for a balance system consisting of an
inverted pendulum on a cart. To model this system, we choose state variables that
represent the position and velocity of the base of the system, p and ṗ, and the an-
gle and angular rate of the structure above the base, θ and θ̇ . We let F represent
the force applied at the base of the system, assumed to be in the horizontal direc-
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tion (aligned with p), and choose the position and angle of the system as outputs.
With this set of definitions, the dynamics of the system can be computed using
Newtonian mechanics and have the form

⎧
⎪⎪⎩

(M+m) −ml cosθ
−ml cosθ (J+ml2)

⎫
⎪⎪⎭
⎧
⎪⎪⎩

p̈

θ̈

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

cṗ+ml sinθ θ̇ 2

γθ̇ −mgl sinθ

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

F
0

⎫
⎪⎪⎭ , (3.10)

where M is the mass of the base, m and J are the mass and moment of inertia of the
system to be balanced, l is the distance from the base to the center of mass of the
balanced body, c and γ are coefficients of viscous friction and g is the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space form by defining the
state as x= (p,θ , ṗ, θ̇), the input as u=F and the output as y= (p,θ). If we define
the total mass and total inertia as

Mt = M+m, Jt = J+ml2,

the equations of motion then become

d

dt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
θ
ṗ

θ̇

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ

θ̇
−mlsθ θ̇ 2 +mg(ml2/Jt)sθ cθ − cṗ− (γ/Jt)mlcθ θ̇ +u

Mt −m(ml2/Jt)c2
θ

−ml2sθ cθ θ̇ 2 +Mtglsθ − clcθ ṗ− γ(Mt/m)θ̇ + lcθ u

Jt(Mt/m)−m(lcθ )2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

y =

⎧
⎪⎪⎩

p
θ

⎫
⎪⎪⎭ ,

where we have used the shorthand cθ = cosθ and sθ = sinθ .
In many cases, the angle θ will be very close to 0, and hence we can use the

approximations sinθ ≈ θ and cosθ ≈ 1. Furthermore, if θ̇ is small, we can ig-
nore quadratic and higher terms in θ̇ . Substituting these approximations into our
equations, we see that we are left with a linear state space equation

d

dt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
θ
ṗ

θ̇

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1

0 m2l2g/µ −cJt/µ −γlm/µ

0 Mtmgl/µ −clm/µ −γMt/µ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
θ
ṗ

θ̇

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

Jt/µ

lm/µ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

u,

y =

⎧
⎪⎪⎩

1 0 0 0
0 1 0 0

⎫
⎪⎪⎭x,

where µ = MtJt −m2l2. ∇

Example 3.2 Inverted pendulum
A variation of the previous example is one in which the location of the base p does
not need to be controlled. This happens, for example, if we are interested only in
stabilizing a rocket’s upright orientation without worrying about the location of the
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base of the rocket. The dynamics of this simplified system are given by

d

dt

⎧
⎪⎪⎩

θ
θ̇

⎫
⎪⎪⎭=

⎧
⎪⎪⎪⎪⎪⎩

θ̇
mgl

Jt
sinθ −

γ

Jt
θ̇ +

l

Jt
ucosθ

⎫
⎪⎪⎪⎪⎪⎭ , y = θ , (3.11)

where γ is the coefficient of rotational friction, Jt = J +ml2 and u is the force
applied at the base. This system is referred to as an inverted pendulum. ∇

Difference Equations

In some circumstances, it is more natural to describe the evolution of a system
at discrete instants of time rather than continuously in time. If we refer to each
of these times by an integer k = 0,1,2, . . . , then we can ask how the state of the
system changes for each k. Just as in the case of differential equations, we define
the state to be the set of variables that summarizes the past of the system for the
purpose of predicting its future. Systems described in this manner are referred to
as discrete-time systems.

The evolution of a discrete-time system can be written in the form

x[k+1] = f (x[k],u[k]), y[k] = h(x[k],u[k]), (3.12)

where x[k] ∈ Rn is the state of the system at time k (an integer), u[k] ∈ Rp is the
input and y[k] ∈ Rq is the output. As before, f and h are smooth mappings of the
appropriate dimension. We call equation (3.12) a difference equation since it tells
us how x[k+1] differs from x[k]. The state x[k] can be either a scalar- or a vector-
valued quantity; in the case of the latter we write x j[k] for the value of the jth state
at time k.

Just as in the case of differential equations, it is often the case that the equations
are linear in the state and input, in which case we can describe the system by

x[k+1] = Ax[k]+Bu[k], y[k] =Cx[k]+Du[k].

As before, we refer to the matrices A, B, C and D as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. The solution of a linear dif-
ference equation with initial condition x[0] and input u[0], . . . ,u[T ] is given by

x[k] = Akx[0]+
k−1

∑
j=0

Ak− j−1Bu[ j],

y[k] =CAkx[0]+
k−1

∑
j=0

CAk− j−1Bu[ j]+Du[k],

k > 0. (3.13)

Difference equations are also useful as an approximation of differential equa-
tions, as we will show later.

Example 3.3 Predator–prey
As an example of a discrete-time system, consider a simple model for a predator–
prey system. The predator–prey problem refers to an ecological system in which
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Figure 3.7: Predator versus prey. The photograph on the left shows a Canadian lynx and
a snowshoe hare, the lynx’s primary prey. The graph on the right shows the populations of
hares and lynxes between 1845 and 1935 in a section of the Canadian Rockies [Mac37]. The
data were collected on an annual basis over a period of 90 years. (Photograph copyright Tom
and Pat Leeson.)

we have two species, one of which feeds on the other. This type of system has
been studied for decades and is known to exhibit interesting dynamics. Figure 3.7
shows a historical record taken over 90 years for a population of lynxes versus a
population of hares [Mac37]. As can been seen from the graph, the annual records
of the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-time
model to keep track of the rate of births and deaths of each species. Letting H
represent the population of hares and L represent the population of lynxes, we can
describe the state in terms of the populations at discrete periods of time. Letting k
be the discrete-time index (e.g., the day or month number), we can write

H[k+1] = H[k]+br(u)H[k]−aL[k]H[k],

L[k+1] = L[k]+ cL[k]H[k]−d f L[k],
(3.14)

where br(u) is the hare birth rate per unit period and is a function of the food sup-
ply u, d f is the lynx mortality rate and a and c are the interaction coefficients. The
interaction term aL[k]H[k] models the rate of predation, which is assumed to be
proportional to the rate at which predators and prey meet and is hence given by the
product of the population sizes. The interaction term cL[k]H[k] in the lynx dynam-
ics has a similar form and represents the rate of growth of the lynx population. This
model makes many simplifying assumptions—such as the fact that hares decrease
in number only through predation by lynxes—but it often is sufficient to answer
basic questions about the system.

To illustrate the use of this system, we can compute the number of lynxes and
hares at each time point from some initial population. This is done by starting with
x[0] = (H0,L0) and then using equation (3.14) to compute the populations in the
following period. By iterating this procedure, we can generate the population over
time. The output of this process for a specific choice of parameters and initial con-
ditions is shown in Figure 3.8. While the details of the simulation are different
from the experimental data (to be expected given the simplicity of our assump-
tions), we see qualitatively similar trends and hence we can use the model to help
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Figure 3.8: Discrete-time simulation of the predator–prey model (3.14). Using the param-
eters a = c = 0.014, br(u) = 0.6 and d = 0.7 in equation (3.14) with daily updates, the
period and magnitude of the lynx and hare population cycles approximately match the data
in Figure 3.7.

explore the dynamics of the system. ∇

Example 3.4 E-mail server
The IBM Lotus server is a collaborative software system that administers users’
e-mail, documents and notes. Client machines interact with end users to provide
access to data and applications. The server also handles other administrative tasks.
In the early development of the system it was observed that the performance was
poor when the central processing unit (CPU) was overloaded because of too many
service requests, and mechanisms to control the load were therefore introduced.

The interaction between the client and the server is in the form of remote proce-
dure calls (RPCs). The server maintains a log of statistics of completed requests.
The total number of requests being served, called RIS (RPCs in server), is also
measured. The load on the server is controlled by a parameter called MaxUsers,
which sets the total number of client connections to the server. This parameter is
controlled by the system administrator. The server can be regarded as a dynami-
cal system with MaxUsers as the input and RIS as the output. The relationship
between input and output was first investigated by exploring the steady-state per-
formance and was found to be linear.

In [HDPT04] a dynamic model in the form of a first-order difference equation
is used to capture the dynamic behavior of this system. Using system identification
techniques, they construct a model of the form

y[k+1] = ay[k]+bu[k],

where u = MaxUsers−MaxUsers and y = RIS−RIS. The parameters a =
0.43 and b = 0.47 are parameters that describe the dynamics of the system around
the operating point, and MaxUsers = 165 and RIS = 135 represent the nomi-
nal operating point of the system. The number of requests was averaged over a
sampling period of 60 s. ∇

Another application of difference equation is in the implementation of control
systems on computers. Early controllers were analog physical systems, which can
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be modeled by differential equations. When implementing a controller described
by a differential equation using a computer it is necessary to do approximations.
A simple way is to approximate derivatives by finite differences, as illustrated by
the following example.

Example 3.5 Difference approximation of a PI controller
Consider the PI controller

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ = kpe(t)+ x(t), x = ki

∫ t

0
e(τ)dτ ,

where the controller state is given by the differential equation

dx

dt
= kie(t) (3.15)

Assume that the error is measured at regular sampling intervals t = h,2h,3h, . . ..
Approximating the derivative in equation (3.15) by differences gives

x(kh+h)− x(kh)

h
= kie(kh),

and the controller is then given by the difference equation

x[k+1] = x[k]+hki e[k], u[k] = kpe[k]+ x[k],

where x[k] = x(kh), e[k] = e(kh) and u[k] = u(kh) represent the discrete-time state,
error and input sampled at each time interval. This controller is easy to implement
on a computer since it consists of just addition and multiplication. ∇

The approximation in the example works well provided that the sampling in-
terval is so short that the variable e(t) changes very little over a sampling interval.

Finite State Machines
!

A finite state machine is a model in which the states of the system are chosen
from a finite list of “modes”. The dynamics of a finite state machine are given
by transitions between these modes, possibly in response to external signals. We
illustrate this concept with a simple example.

Example 3.6 Traffic light controller
Consider a finite state machine model of a traffic light control system, as shown
in Figure 3.6. We represent the state of the system in terms of the set of traffic
lights that are turned on (either east–west or north–south). In addition, once a light
is turned on it should stay that way for a certain minimum time, and then only
change when a car comes up to the intersection in the opposite direction. This
gives us two states for each direction of the lights: waiting for a car to arrive and
waiting for the timer to expire. Thus, we have four states for the system, as shown
in Figure 3.6.

The dynamics for the light describe how the system transitions from one state
to another. Starting at the left most state, we assume that the lights are set to allow
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Figure 3.9: A simple model for a traffic light. The diagram on the right is a finite state
machine model of the traffic light controller.

traffic in the north–south direction. When a car arrives on the east–west street, we
transition to the state at the top of the diagram, where a timer is started. Once the
timer reaches the designated amount of time, we transition to the state on the right
side of the diagram and turn on the lights in the east–west direction. From here we
wait until a car arrives on the north–south street and continue the cycle.

Viewed as a control system, this model has a state space consisting of four
discrete states: north–south waiting, north–south countdown, east–west waiting,
and east–west countdown. The inputs to the controller consist of the signals that
indicate whether a car is present at the roads leading up to the intersection. The
outputs from the controller are the signals that change the colors of the traffic light.
Finally, the dynamics of the controller are the transition diagram that controls how
the states (or modes) of the system change in time. ∇

More formally, a finite state machine can be represented as a finite set of dis-
crete states α ∈ Qsys, where Qsys is a discrete set. The dynamics of the system
are described by transitions between the discrete states, as in the finite state ma-
chine described in the previous example. These transitions can depend on external
inputs or measurements and can generate output actions on transition into or out
of a given state. If we let β ∈ Qin represent (discrete) input events (button press,
component failure, etc) and γ ∈ Qout represent (discrete) output actions (such as
turning off of device), then the dynamics of the finite state machine can be written
as a guarded command system

gi(α,β ) =⇒
α ′ = ri(α,β ),

γ = ai(α,β ),
i = 1, . . . ,N. (3.16)

Here the function g is a Boolean (true/false) function that depends on the current
system mode α and an external input β . If the guard gi is true then the system
transitions from the current state α to a new state α ′, determined by the rule (tran-
sition map) ri and the external input. The output action γ is similarly dependent on
the current state and external input. A guarded transition system can have many
different rules, depending on the system state and external input.

The dynamics of a transition system is similar in many ways to the discrete
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Figure 3.10: A driven spring–mass system with damping. Here we use a linear damping
element with coefficient of viscous friction c. The mass is driven with a sinusoidal force of
amplitude A.

time dynamics in equation (3.12). The major difference is that the transitions do
not necessarily occur at regularly spaced intervals of time. Indeed, there is no strict
notion of time in a transition system as we have described it here: it is only the
sequence of events that is kept track of (through the evolution of the discrete state).

Specifications for finite transition systems are often written as logical functions
describing the conditions that should be imposed on the system. For example, we
might wish to say that if a specific sensor is not operating, then the system cannot
transition to a mode that requires the use of that sensor. This could be written as
the logical formula

α ∈ {states with sensor k not functioning} =⇒ α ′ ̸∈ {states requiring sensor k}.

The formula of the form p =⇒ q where p and q are Boolean propositions can be
written as the logical function (!p) ||(p&&q), which asserts that if proposition p is
true then proposition q must be true. In the sensor example, p and q are represented
by whether the system mode α is in some set of states.

Finite state machines are very useful for describing logical operations and
are often combined with continuous state models (differential or different equa-
tions) to create a hybrid system model. The study of hybrid systems is beyond
the scope of this text, but excellent references include Lee and Seshia [LS15] and
Alur [Alu15].

Simulation and Analysis

State space models can be used to answer many questions. One of the most com-
mon, as we have seen in the previous examples, involves predicting the evolution
of the system state from a given initial condition. While for simple models this can
be done in closed form, more often it is accomplished through computer simula-
tion.

Consider again the damped spring–mass system from Section 3.1, but this time
with an external force applied, as shown in Figure 3.10. We wish to predict the
motion of the system for a periodic forcing function, with a given initial condition,
and determine the amplitude, frequency and decay rate of the resulting motion.

We choose to model the system with a linear ordinary differential equation.
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Using Hooke’s law to model the spring and assuming that the damper exerts a
force that is proportional to the velocity of the system, we have

mq̈+ cq̇+ kq = u, (3.17)

where m is the mass, q is the displacement of the mass, c is the coefficient of
viscous friction, k is the spring constant and u is the applied force. In state space
form, using x = (q, q̇) as the state and choosing y = q as the output, we have

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎩

x2

−
c

m
x2−

k

m
x1 +

u

m

⎫
⎪⎪⎪⎪⎪⎪⎭
, y = x1.

We see that this is a linear second-order differential equation with one input u and
one output y.

We now wish to compute the response of the system to an input of the form u =
Asinωt. Although it is possible to solve for the response analytically, we instead
make use of a computational approach that does not rely on the specific form of
this system. Consider the general state space system

dx

dt
= f (x,u).

Given the state x at time t, we can approximate the value of the state at a short time
h > 0 later by assuming that the rate of change f (x,u) is constant over the interval
t to t +h. This gives

x(t +h) = x(t)+h f (x(t),u(t)). (3.18)

Iterating this equation, we can thus solve for x as a function of time. This approx-
imation is known as Euler integration and is in fact a difference equation if we let
h represent the time increment and write x[k] = x(kh), as we saw in Example 3.5.
Although modern simulation tools such as MATLAB and Mathematica use more
accurate methods than Euler integration, they still have some of the same basic
trade-offs.

Returning to our specific example, Figure 3.11 shows the results of computing
x(t) using equation (3.18), along with the analytical computation. We see that as
h gets smaller, the computed solution converges to the exact solution. The form
of the solution is also worth noticing: after an initial transient, the system settles
into a periodic motion. The portion of the response after the transient is called the
steady-state response to the input.

In addition to generating simulations, models can also be used to answer other
types of questions. Two that are central to the methods described in this text con-
cern the stability of an equilibrium point and the input/output frequency response.
We illustrate these two computations through the examples below and return to the
general computations in later chapters.

Returning to the damped spring–mass system, the equations of motion with no
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Figure 3.11: Simulation of the forced spring–mass system with different simulation time
constants. The solid line represents the analytical solution. The dashed lines represent the
approximate solution via the method of Euler integration, using decreasing step sizes.

input forcing are given by

dx

dt
=

⎧
⎪⎪⎪⎪⎩

x2

−
c

m
x2−

k

m
x1

⎫
⎪⎪⎪⎪⎭ , (3.19)

where x1 is the position of the mass (relative to the rest position) and x2 is its
velocity. We wish to show that if the initial state of the system is away from the
rest position, the system will return to the rest position eventually (we will later
define this situation to mean that the rest position is asymptotically stable). While
we could heuristically show this by simulating many, many initial conditions, we
seek instead to prove that this is true for any initial condition.

To do so, we construct a function V : Rn→ R that maps the system state to a
positive real number. For mechanical systems, a convenient choice is the energy of
the system,

V (x) =
1

2
kx2

1 +
1

2
mx2

2. (3.20)

If we look at the time derivative of the energy function, we see that

dV

dt
= kx1ẋ1 +mx2ẋ2 = kx1x2 +mx2(−

c

m
x2−

k

m
x1) =−cx2

2,

which is always either negative or zero. Hence V (x(t)) is never increasing and,
using a bit of analysis that we will see formally later, the individual states must
remain bounded.

If we wish to show that the states eventually return to the origin, we must use
a slightly more detailed analysis. Intuitively, we can reason as follows: suppose
that for some period of time, V (x(t)) stops decreasing. Then it must be true that
V̇ (x(t)) = 0, which in turn implies that x2(t) = 0 for that same period. In that case,
ẋ2(t) = 0, and we can substitute into the second line of equation (3.19) to obtain

0 = ẋ2 =−
c

m
x2−

k

m
x1 =−

k

m
x1.
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Thus we must have that x1 also equals zero, and so the only time that V (x(t)) can
stop decreasing is if the state is at the origin (and hence this system is at its rest
position). Since we know that V (x(t)) is never increasing (because V̇ ≤ 0), we
therefore conclude that the origin is stable (for any initial condition).

This type of analysis, called Lyapunov stability analysis, is considered in detail
in Chapter 5. It shows some of the power of using models for the analysis of system
properties.

Another type of analysis that we can perform with models is to compute the
output of a system to a sinusoidal input, known as the frequency response. We
again consider the spring–mass system, but this time keeping the input and leaving
the system in its original form:

mq̈+ cq̇+ kq = u. (3.21)

We wish to understand how the system responds to a sinusoidal input of the form

u(t) = Asinωt.

We will see how to do this analytically in Chapter 7, but for now we make use of
simulations to compute the answer.

We first begin with the observation that if q(t) is the solution to equation (3.21)
with input u(t), then applying an input 2u(t) will give a solution 2q(t) (this is easily
verified by substitution). Hence it suffices to look at an input with unit magnitude,
A = 1. A second observation, which we will prove in Chapter 6, is that the long-
term response of the system to a sinusoidal input is itself a sinusoid at the same
frequency, and so the output has the form

q(t) = g(ω)sin(ωt +ϕ(ω)),

where g(ω) is called the gain of the system and ϕ(ω) is called the phase (or phase
offset).

To compute the frequency response numerically, we can simulate the system
at a set of frequencies ω1, . . . ,ωN and plot the gain and phase at each of these
frequencies. An example of this type of computation is shown in Figure 3.12. For
linear systems the frequency response does not depend on the amplitude A of the
input signal. Frequency response can also be applied to nonlinear systems but the
gain and phase then depend on the A.

3.3 Modeling Methodology

To deal with large, complex systems, it is useful to have different representations
of the system that capture the essential features and hide irrelevant details. In all
branches of science and engineering it is common practice to use some graphical
description of systems, called schematic diagrams. They can range from stylistic
pictures to drastically simplified standard symbols. These pictures make it possi-
ble to get an overall view of the system and to identify the individual components.
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Figure 3.12: A frequency response (gain only) computed by measuring the response of
individual sinusoids. The figure on the left shows the response of the system as a function
of time to a number of different unit magnitude inputs (at different frequencies). The figure
on the right shows this same data in a different way, with the magnitude of the response
plotted as a function of the input frequency. The filled circles correspond to the particular
frequencies shown in the time responses.
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Figure 3.13: Schematic diagrams for different disciplines. Each diagram is used to illustrate
the dynamics of a control system: (a) electrical schematics for a power system [Kun93], (b) a
biological circuit diagram for a synthetic clock circuit [ASMN03], (c) a process diagram for
a distillation column [SEM04] and (d) a Petri net description of a communication protocol.
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Figure 3.14: Standard block diagram elements. The arrows indicate the the inputs and out-
puts of each element, with the mathematical operation corresponding to the blocked labeled
at the output. The system block (f) represents the full input/output response of a dynamical
system.

Examples of such diagrams are shown in Figure 3.13. Schematic diagrams are
useful because they give an overall picture of a system, showing different subpro-
cesses and their interconnection and indicating variables that can be manipulated
and signals that can be measured.

Block Diagrams

A special graphical representation called a block diagram has been developed in
control engineering. The purpose of a block diagram is to emphasize the informa-
tion flow and to hide details of the system. In a block diagram, different process
elements are shown as boxes, and each box has inputs denoted by lines with arrows
pointing toward the box and outputs denoted by lines with arrows going out of the
box. The inputs denote the variables that influence a process, and the outputs de-
note the signals that we are interested in or signals that influence other subsystems.
Block diagrams can also be organized in hierarchies, where individual blocks may
themselves contain more detailed block diagrams.

Figure 3.14 shows some of the notation that we use for block diagrams. Sig-
nals are represented as lines, with arrows to indicate inputs and outputs. The first
diagram is the representation for a summation of two signals. An input/output
response is represented as a rectangle with the system name (or mathematical de-
scription) in the block. Two special cases are a proportional gain, which scales the
input by a multiplicative factor, and an integrator, which outputs the integral of the
input signal.

Figure 3.15 illustrates the use of a block diagram, in this case for modeling the
flight response of a fly. The flight dynamics of an insect are incredibly intricate,
involving careful coordination of the muscles within the fly to maintain stable flight
in response to external stimuli. One known characteristic of flies is their ability to
fly upwind by making use of the optical flow in their compound eyes as a feedback
mechanism. Roughly speaking, the fly controls its orientation so that the point of
contraction of the visual field is centered in its visual field.
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Figure 3.15: A block diagram representation of the flight control system for an insect flying
against the wind. The mechanical portion of the model consists of the rigid-body dynamics
of the fly, the drag due to flying through the air and the forces generated by the wings. The
motion of the body causes the visual environment of the fly to change, and this information
is then used to control the motion of the wings (through the sensory motor system), closing
the loop.

To understand this complex behavior, we can decompose the overall dynamics
of the system into a series of interconnected subsystems (or blocks). Referring to
Figure 3.15, we can model the insect navigation system through an interconnection
of five blocks. The sensory motor system (a) takes the information from the visual
system (e) and generates muscle commands that attempt to steer the fly so that the
point of contraction is centered. These muscle commands are converted into forces
through the flapping of the wings (b) and the resulting aerodynamic forces that are
produced. The forces from the wings are combined with the drag on the fly (d) to
produce a net force on the body of the fly. The wind velocity enters through the
drag aerodynamics. Finally, the body dynamics (c) describe how the fly translates
and rotates as a function of the net forces that are applied to it. The insect position,
speed and orientation are fed back to the drag aerodynamics and vision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicated subsystem. For
example, the visual system of a fruit fly consists of two complicated compound
eyes (with about 700 elements per eye), and the sensory motor system has about
200,000 neurons that are used to process information. A more detailed block dia-
gram of the insect flight control system would show the interconnections between
these elements, but here we have used one block to represent how the motion of
the fly affects the output of the visual system, and a second block to represent how
the visual field is processed by the fly’s brain to generate muscle commands. The
choice of the level of detail of the blocks and what elements to separate into dif-
ferent blocks often depends on experience and on the questions that one wants to
answer using the model. One of the powerful features of block diagrams is their
ability to hide information about the details of a system that may not be needed to
gain an understanding of the essential dynamics of the system.
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Modeling from Experiments

Since control systems are provided with sensors and actuators, it is also possible
to obtain models of system dynamics from experiments on the process. The mod-
els are restricted to input/output models since only these signals are accessible to
experiments, but modeling from experiments can also be combined with modeling
from physics through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the response to a
step change in the control signal. Such an experiment begins by setting the control
signal to a constant value; then when steady state is established, the control signal
is changed quickly to a new level and the output is observed. The experiment
gives the step response of the system, and the shape of the response gives useful
information about the dynamics. It immediately gives an indication of the response
time, and it tells if the system is oscillatory or if the response is monotone.

Example 3.7 Spring–mass system
The dynamics of the spring–mass system in Section 3.1 are given by

mq̈+ cq̇+ kq = u. (3.22)

We wish to determine the constants m, c and k by measuring the response of the
system to a step input of magnitude F0.

We will show in Chapter 7 that when c2 < 4km, the step response for this system
from the rest configuration is given by

q(t) =
F0

k

(

1−
1

ωd

√
k

m
exp
(
−

ct

2m

)
sin(ωdt +ϕ)

)

,

ωd =

√
4km− c2

2m
, ϕ = tan−1

(√
4km− c2

c

)

.

From the form of the solution, we see that the shape of the step response is deter-
mined by the parameters of the system. Hence, by measuring certain features of
the step response we can determine the parameter values.

Figure 3.16 shows the response of the system to a step of magnitude F0 = 20 N,
along with some measurements. We start by noting that the steady-state position
of the mass (after the oscillations die down) is a function of the spring constant k:

q(∞) =
F0

k
, (3.23)

where F0 is the magnitude of the applied force (F0 = 1 for a unit step input). The
parameter 1/k is called the gain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2π

T
=

√
4km− c2

2m
. (3.24)

Finally, the rate of decay of the oscillations is given by the exponential factor in
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Figure 3.16: Step response for a spring–mass system. The magnitude of the step input is
F0 = 20 N. The period of oscillation T is determined by looking at the time between two
subsequent local maxima in the response. The period combined with the steady-state value
q(∞) and the relative decrease between local maxima can be used to estimate the parameters
in a model of the system.

the solution. Measuring the amount of decay between two peaks, we have

log
(

q(t1)−
F0

k

)
− log

(
q(t2)−

F0

k

)
=

c

2m
(t2− t1). (3.25)

Using this set of three equations, we can solve for the parameters and determine
that for the step response in Figure 3.16 we have m ≈ 250 kg, c ≈ 60 N s/m and
k ≈ 40 N/m. ∇

Modeling from experiments can also be done using many other signals. Sinu-
soidal signals are commonly used (particularly for systems with fast dynamics)
and precise measurements can be obtained by exploiting correlation techniques.
An indication of nonlinearities can be obtained by repeating experiments with in-
put signals having different amplitudes. Modeling based on sinusoidal signals is
very time consuming for systems with slow dynamics. In such situations it is ad-
vantageous to used signals that switch between two different levels. There is a
whole subfield of control called system identification that deals with experimen-
tal determination of models. Questions like optimal inputs, experiments in open
and closed loop, model accuracy and fundamental limitations are dealt with exten-
sively.

Normalization and Scaling

When deriving a model, it is often useful to introduce dimension-free variables.
Such a procedure can often simplify the equations for a system by reducing the
number of parameters. It can also reveal interesting properties of the model. It is
also useful to normalize variables by scaling to improve numerics and allow faster
and more accurate simulations.

The procedure of scaling is straightforward in principle: choose units for each
independent variable and introduce new variables by dividing the variables by the
chosen normalization unit. We illustrate the procedure with two examples.
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Example 3.8 Spring–mass system
Consider again the spring–mass system introduced earlier. Neglecting the damp-
ing, the system is described by

mq̈+ kq = u.

The model has two parameters m and k. To normalize the model we introduce
dimension-free variables x = q/l and τ = ω0t, where ω0 =

√
k/m and l is the

chosen length scale. We scale force by mlω2
0 and introduce v = u/(mlω2

0 ). The
scaled equation then becomes

d2x

dτ2
=

d2q/l

d(ω0t)2
=

1

mlω2
0

(−kq+u) =−x+ v,

which is the normalized undamped spring–mass system. Notice that the normal-
ized model has no parameters, while the original model had two parameters m
and k. Introducing the scaled, dimension-free state variables z1 = x = q/l and
z2 = dx/dτ = q̇/(lω0), the model can be written as

d

dτ

⎧
⎪⎪⎩

z1

z2

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0 1
−1 0

⎫
⎪⎪⎭
⎧
⎪⎪⎩

z1

z2

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

0
v

⎫
⎪⎪⎭ .

This simple linear equation describes the dynamics of any spring–mass system,
independent of the particular parameters, and hence gives us insight into the fun-
damental dynamics of this oscillatory system. To recover the physical frequency
of oscillation or its magnitude, we must invert the scaling we have applied. ∇

Example 3.9 Balance system
Consider the balance system described in Example 3.1. Neglecting damping by
putting c = 0 and γ = 0 in equation (3.10), the model can be written as

(M+m)
d2 p

dt2
−ml cosθ

d2θ

dt2
+ml sinθ

(dθ

dt

)2
= F,

−ml cosθ
d2 p

dt2
+(J+ml2)

d2θ

dt2
−mgl sinθ = 0.

Let ω0 =
√

mgl/(J+ml2), choose the length scale as l, let the time scale be 1/ω0,
choose the force scale as (M+m)lω2

0 and introduce the scaled variables τ = ω0t,
x = p/l and u = F/((M+m)lω2

0 ). The equations then become

d2x

dτ2
−α cosθ

d2θ

dτ2
+α sinθ

(dθ

dτ

)2
= u, −β cosθ

d2x

dτ2
+

d2θ

dτ2
− sinθ = 0,

where α = m/(M+m) and β = ml2/(J+ml2). Notice that the original model has
five parameters m, M, J, l and g but the normalized model has only two parameters
α and β . If M≫ m and ml2≫ J, we get α ≈ 0 and β ≈ 1 and the model can be
approximated by

d2x

dτ2
= u,

d2θ

dτ2
− sinθ = ucosθ .
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The model can be interpreted as a mass combined with an inverted pendulum
driven by the same input. ∇

For large systems scaling is not so easy: there are many choices and good selec-
tion of variables and normalization units require good understanding of the physics
of the system and the numerical methods that will be used for analysis, scaling of
large systems is therefor still an art.

3.4 Modeling Examples

In this section we introduce additional examples that illustrate some of the differ-
ent types of systems for which one can develop differential equation and difference
equation models. These examples are specifically chosen from a range of differ-
ent fields to highlight the broad variety of systems to which feedback and control
concepts can be applied. A more detailed set of applications that serve as running
examples throughout the text are given in Chapter 4.

Motion Control Systems

Motion control systems involve the use of computation and feedback to control the
movement of a mechanical system. Motion control systems range from nanoposi-
tioning systems (atomic force microscopes, adaptive optics), to control systems
for the read/write heads in a disk drive of a DVD player, to manufacturing systems
(transfer machines and industrial robots), to automotive control systems (antilock
brakes, suspension control, traction control), to air and space flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 3.10 Vehicle steering
A common problem in motion control is to control the trajectory of a vehicle
through an actuator that causes a change in the orientation. A steering wheel on an
automobile and the front wheel of a bicycle are two examples, but similar dynam-
ics occur in the steering of ships or control of the pitch dynamics of an aircraft.
In many cases, we can understand the basic behavior of these systems through the
use of a simple model that captures the basic kinematics of the system.

Consider a vehicle with two wheels as shown in Figure 3.17. For the purpose
of steering we are interested in a model that describes how the velocity of the
vehicle depends on the steering angle δ . To be specific, let b be the wheel base and
consider the velocity v at the center of mass, a distance a from the rear wheel, as
shown in Figure 3.17. Let x and y be the coordinates of the center of mass, θ the
heading angle and α the angle between the velocity vector v and the centerline of
the vehicle. The point O is at the intersection of the normals to the front and rear
wheels. The distance from O to the center of mass is ra.

Assuming no slipping of the wheels the motion is a rotation around the point O
in the figure. Since b = ra tanδ and a = ra tanα , it follows that tanα = (a/b) tanδ
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Figure 3.17: Vehicle steering dynamics. The left figure shows an overhead view of a vehicle
with four wheels. The wheel base is b and the center of mass at a distance a forward of the
rear wheels. By approximating the motion of the front and rear pairs of wheels by a single
front wheel and a single rear wheel, we obtain an abstraction called the bicycle model, shown
on the right. The steering angle is δ and the velocity at the center of mass has the angle α
relative the length axis of the vehicle. The position of the vehicle is given by (x,y) and the
orientation (heading) by θ .

and we get the following relation between α and the steering angle δ :

α = arctan
(a tanδ

b

)
. (3.26)

Assume that the wheels are rolling without slip and that the velocity of the rear
wheel is v0. The vehicle speed at its center of mass is v = v0/cosα , and we find
that the motion of this point is given by

dx

dt
= vcos(α +θ) = v0

cos(α +θ)

cosα
,

dy

dt
= vsin(α +θ) = v0

sin(α +θ)

cosα
.

(3.27)

To see how the angle θ is influenced by the steering angle, we observe from Fig-
ure 3.17 that the vehicle rotates with the angular velocity v0/ra around the point
O. Hence

dθ

dt
=

v0

ra
=

v0

b
tanδ . (3.28)

Equations (3.26)–(3.28) can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the road and that the two front
wheels can be approximated by a single wheel at the center of the car. This model
is often called the bicycle model. The assumption of no slip can be relaxed by
adding an extra state variable, giving a more realistic model. Such a model also
describes the steering dynamics of ships as well as the pitch dynamics of aircraft
and missiles. It is also possible to choose coordinates so that the reference point is
at the rear wheels (corresponding to setting α = 0), a model often referred to as
the Dubins car [Dub57] or the bicycle model.

Figure 3.17 represents the situation when the vehicle moves forward and has
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Figure 3.18: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) redirects its
engine thrust downward so that it can “hover” above the ground. Some air from the engine
is diverted to the wing tips to be used for maneuvering. As shown in (b), the net thrust on
the aircraft can be decomposed into a horizontal force F1 and a vertical force F2 acting at a
distance r from the center of mass.

front-wheel steering. The figure shows that the model also applies to rear wheel
steering if the sign of the velocity is reversed. ∇

Example 3.11 Vectored thrust aircraft
Consider the motion of vectored thrust aircraft, such as the Harrier “jump jet”
shown Figure 3.18a. The Harrier is capable of vertical takeoff by redirecting its
thrust downward and through the use of smaller maneuvering thrusters located on
its wings. A simplified model of the Harrier is shown in Figure 3.18b, where we
focus on the motion of the vehicle in a vertical plane through the wings of the
aircraft. We resolve the forces generated by the main downward thruster and the
maneuvering thrusters as a pair of forces F1 and F2 acting at a distance r below the
aircraft (determined by the geometry of the thrusters).

Let (x,y,θ) denote the position and orientation of the center of mass of the
aircraft. Let m be the mass of the vehicle, J the moment of inertia, g the gravita-
tional constant and c the damping coefficient. Then the equations of motion for the
vehicle are given by

mẍ = F1 cosθ −F2 sinθ − cẋ,

mÿ = F1 sinθ +F2 cosθ −mg− cẏ,

Jθ̈ = rF1.

(3.29)

It is convenient to redefine the inputs so that the origin is an equilibrium point
of the system with zero input. Letting u1 = F1 and u2 = F2−mg, the equations
become

mẍ =−mgsinθ − cẋ+u1 cosθ −u2 sinθ ,

mÿ = mg(cosθ −1)− cẏ+u1 sinθ +u2 cosθ ,

Jθ̈ = ru1.

(3.30)
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Figure 3.19: Schematic diagram of a queuing system. Messages arrive at rate λ and are
stored in a queue. Messages are processed and removed from the queue at rate µ . The average
length of the queue is given by x ∈ R.

These equations describe the motion of the vehicle as a set of three coupled second-
order differential equations. ∇

Information Systems

Information systems range from communication systems like the Internet to soft-
ware systems that manipulate data or manage enterprise-wide resources. Feedback
is present in all these systems, and designing strategies for routing, flow control and
buffer management is a typical problem. Many results in queuing theory emerged
from design of telecommunication systems and later from development of the In-
ternet and computer communication systems [BG87, Kle75, Sch87]. Management
of queues to avoid congestion is a central problem and we will therefore start by
discussing the modeling of queuing systems.

Example 3.12 Queuing systems
A schematic picture of a simple queue is shown in Figure 3.19. Requests arrive
and are then queued and processed. There can be large variations in arrival rates
and service rates, and the queue length builds up when the arrival rate is larger
than the service rate. When the queue becomes too large, service is denied using
an admission control policy.

The system can be modeled in many different ways. One way is to model each
incoming request, which leads to an event-based model where the state is an integer
that represents the queue length. The queue changes when a request arrives or a
request is serviced. The statistics of arrival and servicing are typically modeled as
random processes. In many cases it is possible to determine statistics of quantities
like queue length and service time, but the computations can be quite complicated.

A significant simplification can be obtained by approximating the discrete queue
length by a continuous variable. Instead of keeping track of each request we instead
view service and requests as continuous flows. The model obtained is called a flow
model because of the analogy with fluid dynamics where motion of molecules are
replace by continuous flows. Hence, if the queue length x is a continuous vari-
able and the arrivals and services are flows with rates λ and µ , the system can be
modeled by the first-order differential equation

dx

dt
= λ −µ = λ −µmax f (x), x≥ 0, (3.31)
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Figure 3.20: Queuing dynamics. (a) The steady-state queue length as a function of λ/µmax.
(b) The behavior of the queue length when there is a temporary overload in the system. The
solid line shows a realization of an event-based simulation, and the dashed line shows the
behavior of the flow model (3.32). The maximum service rate is µmax = 1, and the arrival
rate starts at λ = 0.5. The arrival rate is increased to λ = 4 at time 20, and it returns to
λ = 0.5 at time 25.

proposed by Agnew [Agn76]. The service rate µ depends on the queue length; if
there are no capacity restrictions we have µ = x/T where T is the time it takes to
serve one customer. The service rate thus increases linearly with the queue length.
In reality the growth will be slower because longer queues require more resources,
and the service rate has an upper limit µmax. These effects are captured by by
modeling the service rate as µmax f (x) in equation (3.32). The function f (x) is
monotone, approximately linear for small x and f (∞) = 1.

For a particular queue, the function can be determined empirically by mea-
suring the queue length for different arrival and service rates. A simple choice is
f (x) = x/(1+ x), which gives the model

dx

dt
= λ −µmax

x

x+1
. (3.32)

It was shown by Tipper [TS90], that if arrival and service processes are Poisson
processes, then average queue length is given by equation (3.32). Furthermore the
equation equation (3.32) is a good approximation even for short queue lengths.

To explore the properties of the model (3.32) we will first investigate the equi-
librium value of the queue length when the arrival rate λ is constant. Setting the
derivative dx/dt to zero in equation (3.32) and solving for x, we find that the queue
length x approaches the steady-state value

xe =
λ

µmax−λ
. (3.33)

Figure 3.20a shows the steady-state queue length as a function of λ/µmax, the
effective service rate excess. Notice that the queue length increases rapidly as λ
approaches µmax. To have a queue length less than 20 requires λ/µmax < 0.95.
The average time to service a request can be shown to be Ts = (x+1)/µmax, and it
increases dramatically as λ approaches µmax.

Figure 3.20b illustrates the behavior of the server in a typical overload situation.
The figure shows that the queue builds up quickly and clears very slowly. Since the
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Figure 3.21: Illustration of feedback in the virtual memory system of the IBM/370. (a) The
effect of feedback on execution times in a simulation, following [BG68]. Results with no
feedback are shown with o, and results with feedback with x. Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three states are obtained based
on process measurements.

response time is proportional to queue length, it means that the quality of service
is poor for a long period after an overload. This behavior is called the rush-hour
effect and has been observed in web servers and many other queuing systems such
as automobile traffic.

The dashed line in Figure 3.20b shows the behavior of the flow model, which
describes the average queue length. The simple model captures behavior qualita-
tively, but there are variations from sample to sample when the queue length is
short. ∇

Many complex systems use discrete control actions. Such systems can be mod-
eled by characterizing the situations that correspond to each control action, as il-
lustrated in the following example.

Example 3.13 Virtual memory paging control
An early example of the use of feedback in computer systems was applied in the
operating system OS/VS for the IBM 370 [BG68, Cro75]. The system used virtual
memory, which allows programs to address more memory than is physically avail-
able as fast memory. Data in current fast memory (random access memory, RAM)
is accessed directly, but data that resides in slower memory (disk) is automatically
loaded into fast memory. The system is implemented in such a way that it appears
to the programmer as a single large section of memory. The system performed very
well in many situations, but very long execution times were encountered in over-
load situations, as shown by the open circles in Figure 3.21a. The difficulty was
resolved with a simple discrete feedback system. The load of the central process-
ing unit (CPU) was measured together with the number of page swaps between
fast memory and slow memory. The operating region was classified as being in
one of three states: normal, underload or overload. The normal state is character-
ized by high CPU activity, the underload state is characterized by low CPU activity
and few page replacements, the overload state has moderate to low CPU load but
many page replacements; see Figure 3.21b. The boundaries between the regions
and the time for measuring the load were determined from simulations using typ-
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ical loads. The control strategy was to do nothing in the normal load condition,
to exclude a process from memory in the overload condition and to allow a new
process or a previously excluded process in the underload condition. The crosses
in Figure 3.21a show the effectiveness of the simple feedback system in simulated
loads. Similar principles are used in many other situations, e.g., in fast, on-chip
cache memory.

∇

Example 3.14 Consensus protocols in sensor networks
Sensor networks are used in a variety of applications where we want to collect
and aggregate information over a region of space using multiple sensors that are
connected together via a communications network. Examples include monitoring
environmental conditions in a geographical area (or inside a building), monitoring
the movement of animals or vehicles and monitoring the resource loading across
a group of computers. In many sensor networks the computational resources are
distributed along with the sensors, and it can be important for the set of distributed
agents to reach a consensus about a certain property, such as the average tempera-
ture in a region or the average computational load among a set of computers.

To illustrate how such a consensus might be achieved, we consider the problem
of computing the average value of a set of numbers that are locally available to the
individual agents. We wish to design a “protocol” (algorithm) such that all agents
will agree on the average value. We consider the case in which all agents cannot
necessarily communicate with each other directly, although we will assume that
the communications network is connected (meaning that no two groups of agents
are completely isolated from each other). Figure 3.22a shows a simple situation of
this type.

We model the connectivity of the sensor network using a graph, with nodes
corresponding to the sensors and edges corresponding to the existence of a di-
rect communications link between two nodes. For any such graph, we can build
an adjacency matrix, where each row and column of the matrix corresponds to a
node and a 1 in the respective row and column indicates that the two nodes are
connected. For the network shown in Figure 3.22a, the corresponding adjacency
matrix is

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
0 1 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We use the notation Ni to represent the set of neighbors of a node i. For example,
in the network shown in Figure 3.22a N2 = {1,3,4,5} and N3 = {2,4}.

To solve the consensus problem, let xi be the state of the ith sensor, correspond-
ing to that sensor’s estimate of the average value that we are trying to compute. We
initialize the state to the value of the quantity measured by the individual sensor.
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Figure 3.22: Consensus protocols for sensor networks. (a) A simple sensor network with
five nodes. In this network, node 1 communicates with node 2 and node 2 communicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the convergence of the consensus
protocol (3.34) to the average value of the initial conditions.

The consensus protocol (algorithm) can now be realized as a local update law

xi[k+1] = xi[k]+ γ ∑
j∈Ni

(x j[k]− xi[k]). (3.34)

This protocol attempts to compute the average by updating the local state of each
agent based on the value of its neighbors. The combined dynamics of all agents
can be written in the form

x[k+1] = x[k]− γ(D−A)x[k], (3.35)

where A is the adjacency matrix and D is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constant γ describes the
rate at which the estimate of the average is updated based on information from
neighboring nodes. The matrix L := D−A is called the Laplacian of the graph.

The equilibrium points of equation (3.35) are the set of states such that xe[k+
1] = xe[k]. It can be shown that if the network is connected, xe = (α,α, . . . ,α) is an
equilibrium state for the system, corresponding to each sensor having an identical
estimate α for the average. Furthermore, we can show that α is indeed the average
value of the initial states. Since there can be cycles in the graph, it is possible that
the state of the system could enter into an infinite loop and never converge to the
desired consensus state. A formal analysis requires tools that will be introduced
later in the text, but it can be shown that for any connected graph we can always
find a γ such that the states of the individual agents converge to the average. A
simulation demonstrating this property is shown in Figure 3.22b. Although we
have focused here on consensus to the average value of a set of measurements,
other consensus states can be achieved through choice of appropriate feedback
laws. Examples include finding the maximum or minimum value in a network,
counting the number of nodes in a network or computing higher-order statistical
moments of a distributed quantity [OSFM07]. ∇
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Figure 3.23: Biological circuitry. The cell on the left is a bovine pulmonary cell, stained so
that the nucleus, actin and chromatin are visible. The figure on the right gives an overview
of the process by which proteins in the cell are made. RNA is transcribed from DNA by
an RNA polymerase enzyme. The RNA is then translated into a polypeptide chain by a
molecular machine called a ribosome, and then the polypeptide chain folds into a protein
molecule.

Biological Systems

Biological systems provide perhaps the richest source of feedback and control ex-
amples. The basic problem of homeostasis, in which a quantity such as temperature
or blood sugar level is regulated to a fixed value, is but one of the many types of
complex feedback interactions that can occur in molecular machines, cells, organ-
isms and ecosystems.

Example 3.15 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNA) is generated from
a segment of DNA. The promoter region of a gene allows transcription to be con-
trolled by the presence of other proteins, called transcription factors, which bind
to the promoter region and either repress or activate RNA polymerase, the enzyme
that produces an mRNA transcript from DNA. The mRNA is then translated into
a protein according to its nucleotide sequence. This process is illustrated in Fig-
ure 3.23.

A simple model of the transcriptional regulation process is through the use
of a Hill function [dJ02, Mur04]. Consider the regulation of a protein A with a
concentration given by pa and a corresponding mRNA concentration ma. Let B
be a second protein with concentration pb that represses the production of protein
A through transcriptional regulation. The resulting dynamics of pa and ma can be
written as

dma

dt
=

αab

1+ kab p
nab
b

+αa0− γama,
d pa

dt
= βama−δa pa, (3.36)

where αab + αa0 is the unregulated transcription rate, γa represents the rate of
degradation of mRNA, αab, kab and nab are parameters that describe how B re-
presses A, βa represents the rate of production of the protein from its correspond-
ing mRNA and δa represents the rate of degradation of the protein A. The pa-
rameter αa0 describes the “leakiness” of the promoter, and nab is called the Hill
coefficient and relates to the cooperativity of the promoter.
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(b) Repressilator simulation

Figure 3.24: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, showing
the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

A similar model can be used when a protein activates the production of another
protein rather than repressing it. In this case, the equations have the form

dma

dt
=

αabkab p
nab
b

1+ kab p
nab
b

+αa0− γama,
d pa

dt
= βama−δa pa, (3.37)

where the variables are the same as described previously. Note that in the case of
the activator, if pb is zero, then the production rate is αa0 ≪ αab (versus αab +
αa0 for the repressor). As pb gets large, the first term in the expression for ṁa

approaches 1 and the transcription rate becomes αab + αa0 (versus αa0 for the
repressor). Thus we see that the activator and repressor act in opposite fashion
from each other.

As an example of how these models can be used, we consider the model of a
“repressilator,” originally due to Elowitz and Leibler [EL00]. The repressilator is
a synthetic circuit in which three proteins each repress another in a cycle. This is
shown schematically in Figure 3.24a, where the three proteins are TetR, λ cI and
LacI. The basic idea of the repressilator is that if TetR is present, then it represses
the production of λ cI. If λ cI is absent, then LacI is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, then λ cI
is no longer repressed, and so on. If the dynamics of the circuit are designed prop-
erly, the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (3.36), with A and
B replaced by the appropriate combination of TetR, cI and LacI. The state of the
system is then given by x= (mTetR, pTetR,mcI, pcI,mLacI, pLacI). Figure 3.24b shows
the traces of the three protein concentrations for parameters n = 2, α = 0.5, k =
6.25× 10−4, α0 = 5× 10−4, γ = 5.8× 10−3, β = 0.12 and δ = 1.2× 10−3 with
initial conditions x(0) = (1,200,0,0,0,0) (following [EL00]). ∇

Example 3.16 Wave propagation in neuronal networks
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The dynamics of the membrane potential in a cell are a fundamental mechanism
in understanding signaling in cells, particularly in neurons and muscle cells. The
Hodgkin–Huxley equations give a simple model for studying propagation waves
in networks of neurons. The model for a single neuron has the form

C
dV

dt
=−INa− IK− Ileak + Iinput,

where V is the membrane potential, C is the capacitance, INa and IK are the current
caused by the transport of sodium and potassium across the cell membrane, Ileak

is a leakage current and Iinput is the external stimulation of the cell. Each current
obeys Ohm’s law, i.e.,

I = g(V −E),

where g is the conductance, which is different for different ions, and E is the
equilibrium voltage. The equilibrium voltage is given by Nernst’s law,

E =
RT

nF
log

ce

ci
,

where R is Boltzmann’s constant, T is the absolute temperature, F is Faraday’s
constant, n is the charge (or valence) of the ion and ci and ce are the ion concentra-
tions inside the cell and in the external fluid. At 20 ◦C we have RT/F = 20 mV.

The Hodgkin–Huxley model was originally developed as a means to predict
the quantitative behavior of the squid giant axon [HH52]. Hodgkin and Huxley
shared the 1963 Nobel Prize in Physiology (along with J. C. Eccles) for analysis
of the electrical and chemical events in nerve cell discharges. The voltage clamp
described in Section 1.4 was a key element in Hodgkin and Huxley’s experiments.

∇

3.5 Further Reading

Modeling is ubiquitous in engineering and science and has a long history in applied
mathematics. For example, the Fourier series was introduced by Fourier when he
modeled heat conduction in solids [Fou07]. Models of dynamics have been de-
veloped in many different fields, including mechanics [Arn78, Gol53], heat con-
duction [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, Ell94], robotics [MLS94,
SV89], circuits [Gui63], power systems [Kun93], acoustics [Ber54] and microme-
chanical systems [Sen01]. Control theory requires modeling from many differ-
ent domains, and most control theory texts contain several chapters on model-
ing using ordinary differential equations and difference equations (see, for ex-
ample, [FPEN05]). A classic book on the modeling of physical systems, espe-
cially mechanical, electrical and thermofluid systems, is Cannon [Can03]. The
book by Aris [Ari94] is highly original and has a detailed discussion of the use
of dimension-free variables. Two of the authors’ favorite books on modeling of
biological systems are J. D. Murray [Mur04] and Wilson [Wil99]. A good source
for system identification in Ljung [Lju99].



EXERCISES 3-41

Exercises

3.1 (Chain of integrators form) Consider the linear ordinary differential equa-
tion (3.8). Show that by choosing a state space representation with x1 = y, the
dynamics can be written as

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0

0
. . .

. . . 0
0 · · · 0 1
−an −an−1 −a1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
...
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, C =

⎧
⎩1 . . . 0 0

⎫
⎭ .

This canonical form is called the chain of integrators form.

3.2 (Inverted pendulum) Use the equations of motion for a balance system to derive
a dynamic model for the inverted pendulum described in Example 3.2 and verify
that the dynamics are given by equation (3.11).

3.3 (Discrete-time dynamics) Consider the following discrete-time system

x[k+1] = Ax[k]+Bu[k], y[k] =Cx[k],

where

x =

⎧
⎪⎪⎩

x1

x2

⎫
⎪⎪⎭ , A =

⎧
⎪⎪⎩

a11 a12

0 a22

⎫
⎪⎪⎭ , B =

⎧
⎪⎪⎩

0
1

⎫
⎪⎪⎭ , C =

⎧
⎩1 0

⎫
⎭ .

In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions and the inputs.

(a) For the case when a12 = 0 and u = 0, give a closed form expression for the
output of the system.

(b) A discrete system is in equilibrium when x[k+1] = x[k] for all k. Let u = r be
a constant input and compute the resulting equilibrium point for the system. Show
that if |aii| < 1 for all i, all initial conditions give solutions that converge to the
equilibrium point.

(c) Write a computer program to plot the output of the system in response to a unit
step input, u[k] = 1, k ≥ 0. Plot the response of your system with x[0] = 0 and A
given by a11 = 0.5, a12 = 1 and a22 = 0.25.

3.4 (Keynesian economics) Keynes’ simple model for an economy is given by

Y [k] =C[k]+ I[k]+G[k],

where Y , C, I and G are gross national product (GNP), consumption, investment
and government expenditure for year k. Consumption and investment are modeled
by difference equations of the form

C[k+1] = aY [k], I[k+1] = b(C[k+1]−C[k]),

where a and b are parameters. The first equation implies that consumption in-
creases with GNP but that the effect is delayed. The second equation implies that
investment is proportional to the rate of change of consumption.
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Show that the equilibrium value of the GNP is given by

Ye =
1

1−a
Ge,

where the parameter 1/(1− a) is the Keynes multiplier (the gain from G to Y ).
With a = 0.75 an increase of government expenditure will result in a fourfold
increase of GNP. Also show that the model can be written as the following discrete-
time state model:

⎧
⎪⎪⎩

C[k+1]
I[k+1]

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

a a
ab−b ab

⎫
⎪⎪⎭
⎧
⎪⎪⎩

C[k]
I[k]

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

a
ab

⎫
⎪⎪⎭G[k],

Y [k] =C[k]+ I[k]+G[k].

3.5 (Least squares system identification) Consider a nonlinear differential equation!
that can be written in the form

dx

dt
=

M

∑
i=1

αi fi(x),

where fi(x) are known nonlinear functions and αi are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estimates) of the full state x at
time instants t1, t2, . . . , tN , with N > M. Show that the parameters αi can be esti-
mated by finding the least squares solution to a linear equation of the form

Hα = b,

where α ∈ RM is the vector of all parameters and H ∈ RN×M and b ∈ RN are
appropriately defined.

3.6 (Normalized oscillator dynamics) Consider a damped spring–mass system with
dynamics

mq̈+ cq̇+ kq = F.

Let ω0 =
√

k/m be the natural frequency and ζ = c/(2
√

km) be the damping
ratio.

(a) Show that by rescaling the equations, we can write the dynamics in the form

q̈+2ζ ω0q̇+ω2
0 q = ω2

0 u, (3.38)

where u = F/k. This form of the dynamics is that of a linear oscillator with natural
frequency ω0 and damping ratio ζ .

(b) Show that the system can be further normalized and written in the form

dz1

dτ
= z2,

dz2

dτ
=−z1−2ζ z2 + v. (3.39)

The essential dynamics of the system are governed by a single damping parameter
ζ . The Q-value defined as Q = 1/2ζ is sometimes used instead of ζ .
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3.7 (Electric generator) An electric generator connected to a strong power grid can
be modeled by a momentum balance for the rotor of the generator:

J
d2ϕ

dt2
= Pm−Pe = Pm−

EV

X
sinϕ,

where J is the effective moment of inertia of the generator, ϕ the angle of rota-
tion, Pm the mechanical power that drives the generator, Pe is the active electrical
power, E the generator voltage, V the grid voltage and X the reactance of the
line. Assuming that the line dynamics are much faster than the rotor dynamics,
Pe =V I = (EV/X)sinϕ , where I is the current component in phase with the volt-
age E and ϕ is the phase angle between voltages E and V . Show that the dynamics
of the electric generator has a normalized form that is similar to the dynamics of a
pendulum with forcing at the pivot.

3.8 (Admission control for a queue) Consider the queuing system described in
Example 3.12. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx

dt
= λu−µmax

x

x+1
, u = sat(0,1)(k(r− x)), (3.40)

where the controller is a simple proportional control with saturation (sat(a,b) is
defined by equation (4.9)) and r is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rush-hour effect and explain
how the choice of r affects the system dynamics.

3.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A

B

u2
B

u2

u1

A

Using the models from Example 3.15—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady state quickly—
show that the dynamics can be written in normalized coordinates as

dz1

dτ
=

µ

1+ zn
2

− z1− v1,
dz2

dτ
=

µ

1+ zn
1

− z2− v2, (3.41)

where z1 and z2 are scaled versions of the protein concentrations and the time scale
has also been changed. Show that µ ≈ 200 using the parameters in Example 3.15,
and use simulations to demonstrate the switch-like behavior of the system.
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3.10 (Motor drive) Consider a system consisting of a motor driving two masses
that are connected by a torsional spring, as shown in the diagram below.

Motor
I

J1

1

1

J2

ω

ϕ 2ϕ

2ω

This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current I, the dynamics
of the system can be described by the equations

J1
d2ϕ1

dt2
+ c
(dϕ1

dt
−

dϕ2

dt

)
+ k(ϕ1−ϕ2) = kII,

J2
d2ϕ2

dt2
+ c
(dϕ2

dt
−

dϕ1

dt

)
+ k(ϕ2−ϕ1) = Td ,

(3.42)

where ϕ1 and ϕ2 are the angles of the two masses, ωi = dϕi/dt are their velocities,
Ji represents moments of inertia, c is the damping coefficient, k represents the shaft
stiffness, kI is the torque constant for the motor, and Td is the disturbance torque
applied at the end of the shaft. Similar equations are obtained for a robot with
flexible arms and for the arms of DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized) state
variables x1 =ϕ1, x2 =ϕ2, x3 =ω1/ω0, and x4 =ω2/ω0, where ω0 =

√
k(J1 + J2)/(J1J2)

is the undamped natural frequency of the system when the control signal is zero.
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