
Feedback Systems

An Introduction for Scientists and Engineers

SECOND EDITION

Karl Johan Åström
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Chapter 12

Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with
sensitivity deteriorations in another frequency range, and the price is
higher if the plant is open loop unstable. This applies to every controller,
no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [Ste03].

In this chapter we continue to explore the use of frequency domain techniques
with a focus on the design of feedback systems. We begin with a more thorough
description of the performance specifications for control systems and then introduce
the concept of “loop shaping” as a mechanism for designing controllers in the fre-
quency domain. Additional techniques discussed in this chapter include feedforward
compensation, the root locus method, and nested controller design.

12.1 Sensitivity Functions

In the previous chapter, we used proportional-integral-derivative (PID) feedback as
a mechanism for designing a feedback controller for a given process. In this chapter
we will expand our approach to include a richer repertoire of controllers and tools
for shaping the frequency response of the closed loop system.

One of the key ideas in this chapter is that we can design the behavior of the
closed loop system by focusing on the open loop transfer function. This same
approach was used in studying stability using the Nyquist criterion: we plotted the
Nyquist plot for the open loop transfer function to determine the stability of the
closed loop system. From a design perspective, the use of loop analysis tools is very
powerful: since the loop transfer function is L = PC, if we can specify the desired
performance in terms of properties of L, we can directly see the impact of changes
in the controller C. This is much easier, for example, than trying to reason directly
about the tracking response of the closed loop system, whose transfer function is
given by Gyr = PC/(1 + PC).

We will start by investigating some key properties of a closed loop control sys-
tem. A block diagram of a basic two degree-of-freedom control system is shown in
Figure 12.1. The system loop is composed of two components: the process and the
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Figure 12.1: Block diagram of a control system with two degrees of freedom.
The controller has a feedback block C and a feedforward block F . The external
signals are the reference signal r, the load disturbance v, and the measurement
noise w. The measured output is y, and the control signal is u.

controller. The two degree-of-freedom controller itself has two blocks: the feedback
block C and the feedforward block F . There are two disturbances acting on the
process, the load disturbance v and the measurement noise w. The load disturbance
represents disturbances that drive the process away from its desired behavior, while
the measurement noise represents disturbances that corrupt information about the
process given by the sensors. For example, in a cruise control system the major
load disturbances are changes in the slope of the road, and measurement noise is
caused by the electronics that convert pulses measured on a rotating shaft to a
velocity signal. The load disturbances typically have low frequencies, lower than
the controller bandwidth, while measurement noise typically has higher frequen-
cies. It is assumed that load disturbances enter at the process input and that the
measurement noise acts at the process output. This is a simplification since distur-
bances may enter the process in many different ways and there may be dynamics
in the sensors. These assumptions allow us to streamline the presentation without
significant loss of generality.

The process output η is the variable that we want to control, and our ultimate
goal is to make η track a reference signal r. To shape the response to reference
signals, it is common to use a feedforward block to generate a desired (or model)
reference signal ym that represents the actual signal we attempt to track. Control
is based on the difference between the model reference ym and the measured signal
y, where the measurements are corrupted by measurement noise w. The process
is influenced by the controller via the control variable u. The process is thus a
system with three inputs (the control variable u, the load disturbance v, and the
measurement noise w) and one output (the measured signal y). The controller is
a system with two inputs (the measured signal y and the reference signal r) and
one output (the control signal u). Note that the control signal u is an input to
the process and the output of the controller, and that the measured signal y is the
output of the process and an input to the controller.

Since the control system in Figure 12.1 is composed of linear elements, the
relations between the signals in the diagram can be expressed in terms of the transfer
functions. The overall system has three external inputs: the reference r, the load
disturbance v, and the measurement noise w. Any of the remaining signals can be
relevant for design, but the most common ones are the error e, the control input
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Table 12.1: Transfer functions relating the signals of the control system in Fig-
ure 12.1. The external inputs are the reference signal r, load disturbance v, and
measurement noise w, represented by each row. The columns represent the mea-
sured signal y, control input u, error e, process input µ, and process output η that
are most relevant for system performance.

y u e µ η

PCF
1 + PC

CF
1 + PC

F
1 + PC

CF
1 + PC

PCF
1 + PC

r

P
1 + PC

−PC
1 + PC

−P
1 + PC

1
1 + PC

P
1 + PC

v

1
1 + PC

−C
1 + PC

−1
1 + PC

−C
1 + PC

−PC
1 + PC

w

u, and the output y. In addition, the process input and output, µ and η, are also
useful. Table 12.1 summarizes the transfer functions between the external inputs
(rows) and remaining signals (columns).

Although there are 15 entries in the table, many transfer functions appear more
than once. For most control designs we focus on the following subset, which we call
the Gang of Six:

Gyr =
PCF

1 + PC
, −Guv =

PC

1 + PC
, Gyv =

P

1 + PC
,

Gur =
CF

1 + PC
, −Guw =

C

1 + PC
, Gyw =

1

1 + PC
.

(12.1)

The transfer functions in the first column of equation (12.1) give the responses of
the process output y and the control signal u to the reference signal r. The second
column gives the responses of the control variable u to the load disturbance v and
the measurement noise w, and the final column gives the responses of the measured
signal y to those two inputs. (Note that the sign convention in equation (12.1) is
chosen for later convenience and does not affect the magnitude of the Gang of Six
transfer functions.)

The response of the system to load disturbances and measurement noise is of
particular importance and these transfer functions are referred to as sensitivity
functions. They represent the sensitivity of the system to the various inputs, and
they have specific names:

S =
1

1 + PC
sensitivity
function

PS =
P

1 + PC

load (or input)
sensitivity
function

T =
PC

1 + PC

complementary
sensitivity
function

CS =
C

1 + PC

noise (or output)
sensitivity
function

(12.2)

Because these transfer functions are particularly important in feedback control
design, they are called the Gang of Four, and they have many interesting properties
that will be discussed in detail in the rest of the chapter. Good insight into these
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properties is essential in understanding the performance of feedback systems for the
purposes of both analysis and design.

While the Gang of Four capture the response to disturbances, we are also in-
terested in the response of the system to the reference signal r. The remaining
two elements in the full Gang of Six capture the relationship between the reference
signal and the measured output y plus the control input u:

Gyr =
PCF

1 + PC
, Gur =

CF

1 + PC
.

We see that F can be used to design these responses and provides a second degree of
freedom in addition to the feedback controller C. In practice, it is common to first
design the feedback controller C using the Gang of Four to provide good response
with respect to load disturbances and measurement noise, and then use F and the
remaining transfer functions as part of the full Gang of Six to obtain good reference
tracking.

In addition to the Gang of Six, one other signal that can be important is the
error between the reference r and the process output η (prior to the addition of
measurement noise), which satisfies

ε = r − η =

(
1− PCF

1 + PC

)
r − P

1 + PC
v − PC

1 + PC
w

= (1− TF )r − PSv − Tw.

The signal ε is not actually present in our diagram, but is the true error that
represents the tracking deviation. We see that it consists of a particular combination
of transfer functions chosen from the Gang of Six.

The special case of F = 1 is called a system with (pure) error feedback because
all control actions are based on feedback from the error. In this case the transfer
functions given by equations (12.1) and (12.2) are the same and the system is
completely characterized by the Gang of Four. In addition, the true tracking error
becomes

ε = Sr − PSv − Tw.

Notice that we have less freedom in design of a system with error feedback be-
cause the feedback controller C must now deal with both disturbance attenuation,
robustness, and reference signal tracking.

The transfer functions in equation (12.2) have many interesting properties. For
example, it follows from equation (12.2) that S + T = 1, which explains why T is
called the complementary sensitivity function. The loop transfer function PC will
typically go to zero for large s, which implies that T goes to zero and S goes to
one as s goes to infinity. Thus, it will not be possible to track very high-frequency
reference signals (|Gyr| = |FT | → 0) and any high-frequency noise will propagate
unfiltered to the error (|Gew| = |S| → 1). For controllers with integral action and
processes with non-vanishing zero frequency gain, the loop transfer function PC
goes to infinity for small s, which implies that S goes to zero and T goes to one
as s goes to zero. Low-frequency signals are thus tracked well (|Gyr| = |FT | → 0),
and low-frequency disturbances can be completely attenuated (|Gev| = |PS| → 0).
Many more properties of the sensitivity functions will be discussed in detail later
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in this chapter and in Chapters 13 and 14. Good insight into these properties is
essential in understanding the performance of feedback systems for the purposes
of both analysis and design. The transfer functions are also used to formulate
specifications on control systems.

In Chapter 10 we focused on the loop transfer function, and we found that its
properties gave useful insights into the properties of a system. The loop transfer
function does not, however, always give a complete characterization of the closed
loop system. In particular, it can happen that there are pole/zero cancellations in
the product of P and C such that 1 + PC has no unstable poles, but one of the
other Gang of Four transfer functions might be unstable. The following example
illustrates this difficulty.

Example 12.1 The loop transfer function gives only limited insight
Consider a process with the transfer function P (s) = 1/(s − a) controlled by a PI
controller with error feedback having the transfer function C(s) = k(s− a)/s. The
loop transfer function is L = k/s, and the sensitivity functions are

S =
1

1 + PC
=

s

s+ k
, PS =

P

1 + PC
=

s

(s− a)(s+ k)
,

CS =
C

1 + PC
=

k(s− a)

s+ k
, T =

PC

1 + PC
=

k

s+ k
.

Notice that the factor s − a is canceled when computing the loop transfer func-
tion and that this factor also does not appear in the sensitivity functions S and
T . However, cancellation of the factor is very serious if a > 0 since the transfer
function PS relating load disturbances to process output is then unstable. A small
disturbance v then leads to an unbounded output, which is clearly not desirable.

∇

If all four of the transfer functions in equation (12.2) are stable we say that the
feedback system is internally stable. In addition, if there is a feedforward controller
F then it should also be stable in order for the full system to be internally stable.
For more general systems, which may contain additional transfer functions and
feedback loops, the system is internally stable if all possible input/output transfer
functions are stable. For simplicity we will often say that a closed loop system is
stable when we mean that it is internally stable.

As mentioned previously, the system in Figure 12.1 represents a special case because !
it is assumed that the load disturbance enters at the process input and that the
measured output is the sum of the process variable and the measurement noise.
Disturbances can enter in many different ways, and the sensors may have dynamics.
A more abstract way to capture the general case is shown in Figure 12.2, which has
only two blocks representing the process (P) and the controller (C). The process has
two inputs, the control signal u and a vector of disturbances χ, and three outputs,
the measured signal y, the reference signal r, and a vector of signals ξ that is used
to specify performance. The system in Figure 12.1 can be captured by choosing
χ = (r, v, w) and ξ = (e, µ, η, ε). The process transfer function P describes the
effect of χ and u on ξ, y, and r, and the controller transfer function C describes
how u is related to y and r (see Exercise 12.2). Restricting the signal ξ to contain
the errors e and ε, the control problem can be formulated as finding a controller
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Figure 12.2: A more general representation of a feedback system. The process
input u represents the control signal, which can be manipulated, and the process
input χ represents the other signals that influence the process. The process output
consists of the measured variable(s) y, the reference signal r, and the signal vector
ξ representing the other signals of interest in the control design.

C so that the gain of the transfer function from the disturbance χ = (r, v, w) to
the generalized control error ξ = (e, ε) is as small as possible (discussed further in
Section 13.4).

Processes with multiple inputs and outputs can be handled by regarding u and
y as vectors. Representations at these higher levels of abstraction are useful for the
development of theory because they make it possible to focus on fundamentals and
to solve general problems with a wide range of applications. However, care must
be exercised to maintain the coupling to the real-world control problems we intend
to solve and we must keep in mind that matrix multiplication is not commutative.

12.2 Performance Specifications

A key element of the control design process is how we specify the desired perfor-
mance of a system. Specifications capture robustness to process variations as well
performance in terms of the ability to follow reference signals and attenuate load
disturbances without injecting too much measurement noise. The specifications
are expressed in terms of transfer functions such as the Gang of Six and the loop
transfer function, and are often represented by features of the transfer functions or
their time and frequency responses.

Robustness to process variations was discussed extensively in Section 10.3, where
we introduced gain margin gm, phase margin ϕm, and stability margin sm, as shown
in Figure 10.11. The largest value of the sensitivity function Ms = 1/sm is another
robustness measure, as illustrated in Figure 12.3a.

To provide specifications it is desirable to capture the characteristic properties
of a system with a few parameters. Features of step responses that we have already
seen are overshoot, rise time, and settling time, as shown in Figure 6.9. Com-
mon features of frequency responses include peak value(s), peak frequency, gain
crossover frequency, and bandwidth. Other features of the frequency response in-
clude the maximum value of sensitivity function Ms (occurring at frequency ωms)
and the maximum value of the complementary sensitivity function Mt (occurring at
frequency ωmt). The sensitivity crossover frequency ωsc is defined as the frequency
where the magnitude of the sensitivity function S(jω) is 1. The various crossover
frequencies and the bandwidth are only well defined if the curves are monotone; if
this is not the case the lowest such frequency is typically used.
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Figure 12.3: Illustration of specifications in frequency domain. (a) Gain curve
of sensitivity function; the maximum sensitivity Ms is a robustness measure. (b)
Gain curve of the transfer function Gyr with peak value Mr, peak frequency ωmr,
and bandwidth ωb.

There are interesting relationships between specifications in the time and fre-
quency domains. Roughly speaking, the behavior of time responses for short times
is related to the behavior of frequency responses at high frequencies, and vice versa.
The precise relations are given by the Laplace transform. There are also useful re-
lationships between features in the time and frequency domain; typical examples
are given in Tables 7.1 and 7.2 in Section 7.3.

In the remainder of this section we consider the different types of responses that
are commonly used in control design and describe the types of specifications that
are relevant for each.

Response to Reference Signals

Consider the basic feedback loop in Figure 12.1. The responses of the output y
and the control signal u to the reference r are described by the transfer functions
Gyr = PCF/(1 + PC) and Gur = CF/(1 + PC) (F = 1 for systems with pure
error feedback). Specifications can be expressed in terms of features of the transfer
function Gyr, such as the peak (or resonant) value Mr, the peak frequency ωmr,
and the bandwidth ωb, as shown in Figure 12.3b.

In the special case where F = 1, the transfer function Gyr is equal to the
complementary sensitivity function T . However, in many cases it is useful to retain
the ability to shape the input/output response by using F $= 1. This distinction is
captured in the use of the full Gang of Six rather than just the Gang of Four.

The transfer function Gyr typically has unit zero frequency gain because we
want to design the system so that the response to a step input has zero steady-
state error. The behavior of the transfer function at low frequencies determines
the tracking error for slow reference signals. We can capture this analytically by
making the following series expansion of the transfer function from reference r to
output e for small s:

Ger(s) ≈ e1s+ e2s
2 + · · · ,

where the coefficients ek are called error coefficients. If the reference signal is r(t),
the tracking error is then

e(t) = r(t)− y(t) = Gerr = e1
dr

dt
+ e2

d2r

d2t
+ · · · .
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Figure 12.4: Reference signal responses for Example 12.2. The responses in
process output y and control signal u to a unit step in the reference signal r are
shown in (a), and the gain curves of Gyr and Gur are shown in (b). Results for
PI control with error feedback are shown by solid lines, and the dashed lines show
results for a controller with a feedforward compensator. The bandwidth of the
closed loop systems is marked in the plot of Gyr with open circles (◦).

It follows that a ramp input r(t) = v0t gives a steady-state tracking error v0e1, and
we can conclude that the steady-state tracking error is zero if e1 = 0. A system
with e1 = 0 has the steady-state error e(t) = 2ae2 for the input r(t) = a0t2. The
equation also supports the insight that the behavior at low frequencies (small s)
corresponds to the behavior at large times, a consequence of the final value theorem
(discussed briefly at the end of Section 9.3).

It has long been a practice to focus on the output when we give specifications.
However, it is useful to also consider the response of the control signal because this
allows us to judge the magnitude and rate of the control signal required to obtain
the output response. This is illustrated in the following example.

Example 12.2 Reference signal tracking for a third-order system
Consider a process with the transfer function P (s) = (s+ 1)−3 and a PI controller
with error feedback having the gains kp = 0.6 and ki = 0.5. The responses are
illustrated in Figure 12.4. The solid lines show results for a proportional-integral
(PI) controller with error feedback. The dashed lines show results for a controller
with feedforward controller

F =
Gyr(1 + PC)

PC
=

2s4 + 6s3 + 6s2 + 3.2s+ 1

0.15s4 + 1.025s3 + 2.55s2 + 2.7s+ 1
,

designed to give the closed loop transfer function Gyr = (0.5s+1)−3. Looking at the
time responses, we find that the controller with feedforward gives a faster response
with no overshoot. However, much larger control signals are required to obtain
the fast response. The initial value of the control signal for the controller with
feedforward is 13.3, compared to 0.6 for the regular PI controller. The controller
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with feedforward has a larger bandwidth (marked with ◦) and no resonant peak.
The transfer function Gur also has higher gain at high frequencies. ∇

We can get some insight into the relationship between time and frequency re-
sponses from Figure 12.4. The figures in the top row show the unit step response
and the frequency response for the transfer function Gyr, and the lower plots show
the same quantities for Gur. The dashed time and frequency responses have no
peaks while the solid responses have peaks. The peaks are related in the sense
that a large overshoot in the time response corresponds to a large resonant peak
in the frequency response. The time responses in the bottom plot of Figure 12.4
have the initial values 8 (dashed) and 6 (solid), and the frequency responses have
the same final values. In general, it can be shown using the Laplace transform (or
appropriate exponential responses) and the initial and final value theorems that for
a unit reference signal r(t) we have that u(t) → Gur(0) as t → ∞ and if x(0) = 0
then u(0) = Gur(∞).

The dashed time response is faster than the solid time response and the dashed
frequency response has larger bandwidth than the solid frequency response. The
product of the rise time of the unit step response and the bandwidth of a transfer
function (the rise time-bandwidth product) is a dimension-free variable that is a
useful characteristic. The time responses in Figure 12.4 have rise times of Tr = 1.7
(dashed) and 3.0 (solid), and the corresponding bandwidths are ωb = 1.9 (dashed)
and 0.8 (solid), which gives the products Tr ωb = 3.2 (dashed) and 2.4 (solid). A
similar observation can be made from Tables 7.1 and 7.2 in Section 7.3, which
gives Tr ωb ≈ 2.7–2.8. It thus appears that the product of the rise time of the step
response and the bandwidth of the frequency response is approximately constant
(Tr ωb ≈ 3). It can be shown that the rise time-bandwidth product increases if
the frequency response has a faster roll-off (see Exercise 12.5, which uses a slightly
different definition of bandwidth).

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to compare the output of the closed
loop system in Figure 12.1 with the output of the corresponding open loop system,
which can be obtained by setting C = 0 in the figure. With identical disturbances
for the open and closed loop systems, the output of the closed loop system can
be obtained simply by sending the open loop output through a system with the
transfer function S (Exercise 12.6). The sensitivity S function thus directly shows
how feedback influences the response of the output to disturbances both in the
form of load disturbances and measurement noise. Disturbances with frequencies
such that |S(iω)| < 1 are attenuated, but disturbances with frequencies such that
|S(iω)| > 1 are amplified by feedback. The sensitivity crossover frequency ωsc is
the (lowest) frequency where |S(iω)| = 1, as shown in Figure 12.5a.

Since the sensitivity function is related to the loop transfer function by S =
1/(1 + L), disturbance attenuation can be visualized graphically by the Nyquist
plot of the loop transfer function, as shown in Figure 12.5b. The complex number
1+L(iω), which is the inverse of the sensitivity function S(iω), can be represented
as the vector from the point −1 to the point L(iω) on the Nyquist curve. The
sensitivity is thus less than 1 for all points outside a circle with radius 1 and center
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Figure 12.5: Illustration of sensitivity to disturbances. The gain curves of the
sensitivity function S and the loop transfer function L are shown in (a). The
Nyquist plot of the loop transfer function L is shown in (b). Disturbances with
frequencies less than the sensitivity crossover frequency, to the left of ωsc in (a)
and inside the dashed circle in (b), are attenuated by feedback. Disturbances with
frequencies higher than ωsc are amplified. The largest amplification occurs for the
frequency ωms, where the sensitivity has its largest value Ms, the point where the
Nyquist curve is closest to the critical point −1 in (b).

at −1. Disturbances with frequencies in this range are attenuated by the feedback,
while disturbances with frequencies corresponding to points inside the circle are
amplified.

The maximum sensitivity Ms, which occurs at the frequency ωms, is a measure
of the largest amplification of the disturbances. The sensitivity crossover frequency
ωsc and the maximum sensitivity Ms are two parameters that give a gross char-
acterization of load disturbance attenuation. For systems where the phase margin
is ϕm = 60◦, it can be shown that the sensitivity crossover frequency ωsc is equal
to the gain crossover frequency ωgc and the complementary sensitivity function
crossover frequency ωtc. Notice that the maximum magnitude of 1/(1+L(iω)) cor-
responds to the minimum of |1 + L(iω)|, which is the stability margin sm defined
in Section 10.3, so that Ms = 1/sm. The maximum sensitivity is therefore also a
robustness measure.

The transfer function Gyv from load disturbance v to process output y for the
system in Figure 12.1 is

Gyv =
P

1 + PC
= PS =

T

C
. (12.3)

Load disturbances typically have low frequencies. For small s (low frequencies)
we have T ≈ 1 which gives Gyv ≈ 1/C. For processes with P (0) $= 0 and con-
trollers with integral action we have C(s) ≈ ki/s for small s and Gyv ≈ s/ki. A
controller with integral action thus attenuates disturbances with low frequencies
effectively, and the integral gain ki is a measure of disturbance attenuation. For
high frequencies we have S ≈ 1 which implies that Gyv ≈ P for large s.

Measurement noise, which typically has high frequencies, generates rapid vari-
ations in the control variable that are detrimental because they cause wear in the
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Figure 12.6: Closed loop disturbance responses for Example 12.3. The closed
loop unit step response and frequency response for the transfer function Gyv from
load disturbance v to process output y are shown in (a) and the corresponding
responses for the transfer function Guw from measurement noise w to the control
signal u are shown in (b).

actuators and can even saturate an actuator. It is thus important to keep varia-
tions in the control signal due to measurement noise at reasonable levels—a typical
requirement is that the variations are only a fraction of the allowable range of
the control signal. The effects of measurement noise are captured by the transfer
function from the measurement noise to the control signal,

−Guw =
C

1 + PC
=

T

P
= CS. (12.4)

Under the assumption that S ≈ 1 for large s (high frequencies, which is appropriate
for measurement noise), we have −Guw ≈ C. The formula clearly shows it is useful
to filter the derivative so that the transfer function C(s) goes to zero for large s
(high-frequency roll-off).

Example 12.3 Disturbance attenuation for a third-order system
Consider a process with the transfer function P (s) = (s+1)−3 and a proportional-
integral-derivative (PID) controller with gains kp = 2, ki = 1.5, and kd = 2.0. We
augment the controller with a second-order noise filter with damping ratio 1/

√
2

and Tf = 0.1. The controller transfer function then becomes

C(s) =
kds2 + kps+ ki

s(s2T 2
f /2 + sTf + 1)

. (12.5)

The closed loop system responses are illustrated in Figure 12.6. The closed loop
response of the output y to a unit step in the load disturbance v in the upper part
of Figure 12.6a has a peak of 0.28 at time t = 2.73 s. The frequency response in
Figure 12.6a shows that the gain has a maximum of 0.58 at ω = 0.7 rad/s.

The closed loop response of the control signal u to a step in measurement noise
w is shown in Figure 12.6b. The high-frequency roll-off of the transfer function
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Figure 12.7: Specifications can be tested by injecting signals at test points δk
and measuring responses at sij . Compare with Figure 12.1.

Guw(iω) is due to filtering; without it the gain curve in Figure 12.6b would continue
to rise after 20 rad/s. The step response has a valley of −14 at t = 0.08 s. The
frequency response has a peak of 20 at ω = 14 rad/s. Notice that the peak occurs
at a frequency far above the peak of the response to load disturbances and far
above the gain crossover frequency ωgc = 0.78 rad/s. An approximation derived in
Exercise 12.7 gives max |CS(iω)| ≈ kd/Tf = 20 for ω =

√
2/Td = 14.1 rad/s. ∇

Figure 12.6 also gives insight into the relationship between the time and fre-
quency responses. The frequency response of the transfer functions Gyv and Guw

have band-pass characteristics and their gains go to zero for high and low frequen-
cies. A consequence is that the corresponding step responses are zero both for small
and large times. The frequency response Gyv in Figure 12.6a has a peak of 0.6 for
ωp = 0.7 and the time response has a peak of 0.3 for tp = 2.7, hence ωptp = 1.9.
Figure 12.6b shows that the low-frequency gain of the transfer function Guw and
steady-state time response are both 1, and the time response starts at zero because
the frequency response goes to zero at high frequencies. The frequency response has
a peak of 20 for ωp = 14 and the time response has a peak of 14 for tp = 0.08, hence
ωptp = 1.1. These observations support the simple rules for transfer functions with
a band-pass character: the product of the peak time of the step response and the
resonant peak of the frequency response is in the range of 1 to 2 (Exercise 12.8).

Measuring Specifications

Many specifications are expressed in terms of properties of the transfer functions in
the Gang of Six and they can easily be checked simply by computing the transfer
functions numerically. To test a real system it is necessary to provide the controller
with test points for injecting and measuring signals. Some possible test points are
shown in Figure 12.7. As an example, the transfer function Gyv, which characterizes
response of process output to load a disturbance, can be found by injecting a
signal at δ1 and measuring the output s21. A frequency analyzer that measures
the transfer function directly is very convenient for such a test. By measuring the
transfer functions we can ensure that robustness and performance are maintained
during the design phase and operation of a system.
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Figure 12.8: Gain plots of the loop transfer function (a) and the sensitivity
functions (b) for typical loop transfer functions. The plot on the left shows the gain
curve and the plots on the right show the sensitivity function and complementary
sensitivity function. The crossover frequency ωgc determines the attenuation of
load disturbances, bandwidth, and response time of the closed loop system. The
slope ngc of the gain curve of L(s) at the gain crossover frequency ωgc determines
the robustness of the closed loop systems (equation (12.6)). At low frequencies,
a large magnitude of L provides good load disturbance rejection and reference
tracking, while at high frequencies a small loop gain avoids injecting too much
measurement noise.

12.3 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that it is based on the loop
transfer function L = PC, which is the product of the transfer functions of the
process and the controller. It is thus easy to see how the controller influences the
loop transfer function. For example, to make an unstable system stable we simply
have to bend the Nyquist curve away from the critical point. This simple idea is
the basis of several different design methods collectively called loop shaping. These
methods are based on choosing a compensator that gives a loop transfer function
with a desired shape. One possibility is to determine a loop transfer function that
gives a closed loop system with the desired properties and to compute the controller
as C = L/P . This approach may lead to controllers of high order and there are
limits if the process transfer function has poles and zeros in the right half-plane,
as discussed briefly in Section 12.4 and in more detail in Section 14.3. Another
possibility is to start with the process transfer function, change its gain to obtain
the desired bandwidth, and then add poles and zeros until the desired shape is
obtained. In this section we will explore different loop-shaping methods for control
law design.

Design Considerations

We will first discuss a suitable shape for the loop transfer function that gives good
performance and good stability margins. Figure 12.8 shows a typical loop transfer
function. Good performance requires that the loop transfer function is large for
frequencies where we desire good tracking of reference signals and good attenua-
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tion of low-frequency load disturbances. Since S = 1/(1 + L), it follows that for
frequencies where |L| > 100 disturbances will be attenuated by approximately a
factor of 100 or more and the tracking error is less than 1%. The transfer function
from measurement noise to control action is CS = C/(1 + L). To avoid injecting
too much measurement noise, which can create undesirable control actions, the
controller transfer function should have low gain at high frequencies, a property
called high-frequency roll-off. The loop transfer function should thus have roughly
the shape shown in Figure 12.8. It has unit gain at the gain crossover frequency
(|L(iωgc)| = 1), large gain for lower frequencies, and small gain for higher frequen-
cies.

Robustness is determined by the shape of the loop transfer function around
the crossover frequency. Good robustness requires good stability margins, which
imposes requirements on the loop transfer function around the gain crossover fre-
quency ωgc. It would be desirable to transition from high loop gain |L(iω))| at low
frequencies to low loop gain as quickly as possible, but robustness requirements
expressed via Bode’s relations (Section 10.4) impose restrictions on how fast the
gain can decrease. Equation (10.9) implies that the slope of the gain curve at ωgc

cannot be too steep. If the gain curve has a constant slope around ωgc, we have
the following relationship between slope ngc and phase margin ϕm (in degrees):

ngc ≈ −2 +
ϕm

90
, (12.6)

for a minimum-phase system. A steeper slope thus gives a smaller phase margin.
The equation is a reasonable approximation when the gain curve does not deviate
too much from a straight line. It follows from equation (12.6) that the phase
margins 30◦, 45◦, and 60◦ correspond to the slopes −5/3, −3/2, and −4/3, with a
steeper slope giving smaller phase margin. Time delays and poles and zeros in the
right half-plane impose further restrictions as will be discussed in Chapter 14.

Loop shaping is a trial-and-error procedure. We typically start with a Bode
plot of the process transfer function. Choosing the gain crossover frequency ωgc is a
major design decision and is a compromise between attenuation of load disturbances
and injection of measurement noise. Notice that the gain crossover frequency and
the sensitivity crossover frequencies are the same if the phase margin is ϕm = 60◦,
while for smaller phase margins we have ωgc < ωsc. Having determined the gain
crossover frequency we then attempt to shape the loop transfer function by changing
the controller gain and adding poles and zeros to the controller transfer function.
As we shall see, the controller gain at low frequencies can be increased by so-
called “lag compensation,” and the behavior around the crossover frequency can be
changed by so-called “lead compensation.” Different performance specifications are
evaluated for each controller as we attempt to balance many different requirements
by adjusting controller parameters and complexity.

Loop shaping is straightforward to apply to single-input, single-output systems.
It can also be applied to systems with one input and many outputs by closing
the loops one at a time. The only limitation for minimum phase systems is that
large phase leads and high controller gains may be required to obtain closed loop
systems with a fast response. Many specific procedures are available: they all
require experience, but they also give good insight into the conflicting specifications.
There are fundamental limits to what can be achieved for systems that are not
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Figure 12.9: Frequency response for lead and lag compensators C(s) = k(s +
a)/(s + b). Lead compensation (a) occurs when a < b and provides phase lead
between ω = a and ω = b. Lag compensation (b) corresponds to a > b and
provides low-frequency gain. PI control is a special case of lag compensation and
PD control is a special case of lead compensation. PI/PD frequency responses are
shown by dashed curves. The parameters are a = 0.25, b = 4, k = 16 in (a) and
a = 4, b = 0.25, k = 1 in (b).

minimum phase; they will be discussed in Section 14.3.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfer function of the process
and add simple compensators with transfer function

C(s) = k
s+ a

s+ b
, a > 0, b > 0. (12.7)

The compensator is called a lead compensator if a < b, and a lag compensator if
a > b. The PI controller is a special case of a lag compensator with b = 0. A lead
compensator is essentially the same as a PD controller with filtering. As described
in Section 11.5, we often use a filter for the derivative action of a PID controller
to limit the high-frequency gain. This same effect is present in a lead compensator
through the pole at s = b. Equation (12.7) is a first-order compensator and can
provide up to 90◦ of phase lead. Larger phase lead can be obtained by using a
higher-order lead compensator (Exercise 12.17):

C(s) = k
(s+ a)n

(s+ b)n
, a < b.

Bode plots of lead and lag compensators are shown in Figure 12.9. Lag com-
pensation, which increases the gain at low frequencies, is typically used to improve
tracking performance and disturbance attenuation at low frequencies. Lead com-
pensation is typically used to improve phase margin. If we set a < b in equa-
tion (12.7), we add phase lead in the frequency range between the pole/zero pair
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(and extending approximately 10× in frequency in each direction). By appropri-
ately choosing the location of this phase lead, we can provide additional phase
margin at the gain crossover frequency.

Lead compensation is associated with an increase of the high-frequency gain.
Let G(s) be a transfer function with G(0) > 0, with no poles and zeros in the right
half plane, and assume that lims→∞ G(s) = G(∞) > 0. Then

log
G(∞)

G(0)
=

2

π

∫ ∞

0
argG(iω) d logω =

2

π

∫ ∞

−∞
argG(ieu) du. (12.8)

This formula, which we call Bode’s phase area formula, implies that the logarithm
of the gain ratio G(∞)/G(0) for a transfer function is proportional to the area of
the phase curve in the Bode plot. The equation was derived by Bode [Bod45, page
286] using the theory of complex variables. Lead compensation thus requires high
gain at high frequencies and increases the sensitivity to measurement noise.

Lead and lag compensators can also be combined to form a lead-lag compensator
(Exercise 12.11). Compensators that are tailored to specific disturbances can be
also designed, as shown in Exercise 12.12. The following examples illustrate the
use of lag compensation (via PI control) and lead compensation (to increase phase
margin).

Example 12.4 Atomic force microscope in tapping mode
A simple model of the dynamics of the vertical motion of an atomic force microscope
in tapping mode was given in Exercise 10.2. The transfer function for the system
dynamics is

P (s) =
a(1− e−sτ )

sτ(s+ a)
,

and the parameters a = ζω0, τ = 2πn/ω0 are explained in Example 11.2. The gain
has been normalized to 1. A Bode plot of this transfer function for the parameters
a = 1 and τ = 0.25 is shown using dashed curves in Figure 12.10a. To improve the
attenuation of load disturbances we increase the low-frequency gain by introducing
an integral controller. The loop transfer function then becomes L = kiP (s)/s, and
we start by adjusting the gain ki so that the closed loop system is marginally stable,
giving ki = 8.3. The Bode plot is shown by the dash-dotted line in Figure 12.10a,
where the critical point is indicated by ◦. Notice the increase of the gain at low
frequencies. To obtain a reasonable phase margin we introduce proportional action
and we increase the proportional gain kp gradually until reasonable values of the
sensitivities are obtained. The value kp = 3.5 gives maximum sensitivity Ms = 1.6
and maximum complementary sensitivity Mt = 1.3. The loop transfer function is
shown in solid lines in Figure 12.10a. Notice the significant increase of the phase
margin compared with the purely integral controller (dash-dotted line).

To evaluate the design we also compute the gain curves of the transfer functions
in the Gang of Four. They are shown in Figure 12.10b. The peaks of the sensitivity
curves are reasonable, and the plot of PS shows that the largest value of PS is 0.3,
which implies that the load disturbances are well attenuated. The plot of CS shows
that the largest noise gain |C(iω)S(iω)| is 6. The controller has a gain kp = 3.5
at high frequencies, and hence we may consider adding high-frequency roll-off to
make CS smaller at high frequencies. ∇



12.3. FEEDBACK DESIGN VIA LOOP SHAPING 12-17

10-2

100

102

P(s)
PI
Integral

10-2 100 102
-270

-180

-90

0

Freq ω [rad/s]

|L
(i
ω
)|
,
|P

(i
ω
)|

∠
L
(i
ω
),

∠
P
(i
ω
)

(a) Loop shaping

10-2 100 102
10-1

100

10-2 100 102
10-2

10-1

100

10-2 100 102

100

101

10-2 100 102
10-1

100

Freq ω [rad/s]

Freq ω [rad/s]

Freq ω [rad/s]

Freq ω [rad/s]

|S
(i
ω
)|

|T
(i
ω
)|

|P
S
(i
ω
)|

|C
S
(i
ω
)|

(b) Gang of Four

Figure 12.10: Loop-shaping design of a controller for an atomic force microscope
in tapping mode. (a) Bode plots of the process (dashed), the loop transfer function
for an integral controller with critical gain (dash-dotted), and a PI controller (solid)
adjusted to give reasonable robustness. (b) Gain curves for the Gang of Four for
the system.

Example 12.5 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust aircraft such as the one il-
lustrated in Figure 12.11. Following Exercise 9.11, we model the system with a
second-order transfer function of the form

P (s) =
r

Js2
,

with the parameters given in Figure 12.11b. We take as our performance speci-
fication that we would like less than 1% error in steady state and less than 10%
tracking error up to 10 rad/s.

The open loop transfer function from F1 to θ is shown in Figure 12.12a. To
achieve our performance specification, we would like to have a gain of at least 10
at a frequency of 10 rad/s, requiring the gain crossover frequency to be at a higher
frequency. We see from the loop shape that in order to achieve the desired perfor-
mance we cannot simply increase the gain since this would give a very low phase
margin. Instead, we must increase the phase at the desired crossover frequency.

To accomplish this, we use a lead compensator (12.7) with a = 2, b = 50, and
k = 200. We then set the gain of the system to provide a large loop gain up to the
desired bandwidth, as shown in Figure 12.12b. We see that this system has a gain
of greater than 10 at all frequencies up to 10 rad/s and that it has more than 60◦

of phase margin. ∇
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(a) Simplified model

Symbol Description Value

m Vehicle mass 4.0 kg

J Vehicle inertia, ϕ3 axis 0.0475 kg m2

r Force moment arm 25.0 cm

c Damping coefficient 0.05 kg m/s

g Gravitational constant 9.8 m/s2

(b) Parameter values

Figure 12.11: Roll control of a vectored thrust aircraft. (a) The roll angle θ is
controlled by applying maneuvering thrusters, resulting in a moment generated by
F1. (b) The table lists the parameter values for a laboratory version of the system.

12.4 Feedforward Design

Feedforward is a simple and powerful technique that complements feedback. It can
be used both to improve the response to reference signals and to reduce the effect
of measurable disturbances. Design of feedforward for controllers based on state
feedback and observers was developed in Section 8.5 (Figure 8.11). Section 11.5 pre-
sented setpoint weighting as simple form of feedforward for PID controllers (equa-
tion (11.15)). In this section we will use transfer functions to develop more advanced
methods for feedforward design.

Combining Feedforward and Feedback

Figure 12.13 shows a block diagram of a system with feedback and feedforward
control. The process dynamics are separated into two blocks P1(s) and P2(s), where
the measured disturbance v enters at the input of the block P2, and we define P (s) =
P1(s)P2(s). The transfer function Fm represents the desired (model) response to
reference signals. There are two feedforward blocks with transfer functions Fr and
Fv to deal with the reference signal r and the measured disturbances v.

A major advantage of controllers with two degrees of freedom that combine
feedback and feedforward is that the control design problem can be split in two
parts. The feedback transfer function C can be designed to give good robustness
and effective disturbance attenuation, and the feedforward transfer functions Fr

and Fv can be designed independently to give the desired responses to reference
signals and to reduce effects of measured disturbances.

We will first explore the response to reference signals. The transfer function
Gyr(s) from reference input r to process output y in Figure 12.13 is

Gyr(s) =
P (CFm + Fr)

1 + PC
= TFm + SPFr = Fm + S(PFr − Fm) (12.9)
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Figure 12.12: Control design for a vectored thrust aircraft using lead compen-
sation. The Bode plot for the open loop process P is shown in (a) and (b) shows
the Bode plot for the loop transfer function L = PC, where C is the lead given
by equation (12.7) with a = 2, b = 50, and k = 200. Note the phase lead in the
crossover region near ω = 20 rad/s.

where S is the sensitivity function and T the complementary sensitivity function
(equation (12.2)) and we use the fact that T = 1 − S. We can make Gyr close to
the desired transfer function Fm in two different ways: by choosing the feedforward
transfer function Fr so that PFr−Fm is small, or by choosing the feedback transfer
function C so that the sensitivity S = 1/(1 + PC) is small. Perfect feedforward
compensation is obtained by choosing

Fr =
Fm

P1P2
=

Fm

P
, (12.10)

which gives Gyr = Fm. Notice that the feedforward compensator Fr contains an
inverse model of the process dynamics.

Next we will consider attenuation of disturbances that can be measured. The
transfer function from load disturbance v to process output y is given by

Gyv =
P2(1− P1Fv)

1 + PC
= P2S(1− P1Fv). (12.11)

The transfer function Gyv can be made small in two different ways: by choosing
the feedforward transfer function Fv so that 1− P1Fv is small, or by choosing the
feedback transfer function C so that the sensitivity S = 1/(1+PC) is small. Perfect
compensation is obtained by choosing

Fv =
1

P1
. (12.12)

Design of feedforward to improve responses to reference signals and disturbances
using transfer functions is thus a simple task, but it requires inversion of process
models. We illustrate with an example.

Example 12.6 Vehicle steering
A linearized model for vehicle steering was given in Example 7.4. The normalized
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Figure 12.13: Block diagram of a system with feedforward compensation for
improved response to reference signals and measured disturbances (2 degree-of-
freedom system). Three feedforward elements are present: Fm(s) sets the desired
output value, Fr(s) generates the feedforward command uff,r to improve reference
signal response and Fv(s) generates the feedforward signal uff,v that reduces the
effect of the measured disturbance v.

transfer function from steering angle δ to lateral deviation y is P (s) = (γs+1)/s2.
For a lane transfer system we would like to have a nice response without overshoot,
and we therefore choose the desired response as Fm(s) = ω2

c/(s + ωc)2, where the
response speed or aggressiveness of the steering is governed by the parameter ωc.
Equation (12.10) gives

Fr =
Fm

P
=

ω2
cs

2

(γs+ 1)(s+ ωc)2
,

which is a stable transfer function as long as γ > 0. Figure 12.14 shows the responses
of the system for ωc = 0.2. The figure shows that a lane change is accomplished
in about 20 vehicle lengths with smooth steering angles. The largest steering angle
is slightly larger than 0.2 rad (12◦). Using the scaled variables, the curve showing
lateral deviations (y as a function of t) can also be interpreted as the vehicle path
(y as a function of x) with the vehicle length as the length unit. ∇

Difficulties with Feedforward

The ideal feedforward compensators for Figure 12.13 are given by

Fr =
Fm

P1P2
, Fv =

1

P1
. (12.13)

Both transfer functions require inversion of process transfer functions and there can
be problems with inversion if the process transfer function has time delays, right
half-plane zeros, or high pole excess. Inversion of time delays requires prediction,
which cannot be done perfectly except in the situation when the command signal is
known in advance. If the process transfer function has zeros in the right half-plane,
the inverse process transfer function is unstable and approximate inverses may have
to be used. Finally, if the pole excess of the process transfer function is greater
than zero, then the inverse requires differentiation. In this case the reference signal
must then be sufficiently smooth and there may also be problems with noise.
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Figure 12.14: Feedforward control for vehicle steering. The plot in (a) shows the
trajectory generated by the controller for changing lanes. The plots in (b) show
the lateral deviation y (top) and the steering angle δ (bottom) for a smooth lane
change control using feedforward (based on the linearized model).

There is some extra freedom when finding the transfer function Fr because it
also contains the transfer function Fm, which specifies the ideal behavior. A stable
feedforward transfer function can be obtained if Fm has the same time delays and
right half-plane zeros as the process. We illustrate with an example.

Example 12.7 Feedforward for a process with a right half-plane zero
Let the process and the desired response have the transfer functions

P (s) =
1− s

(s+ 1)2
, Fm(s) =

ω2
m(1− s)

s2 + 2ζcωms+ ω2
m

.

Since the process has a right half-plane zero at s = 1, the desired transfer function
Fm(s) must have the same zeros to avoid having an unstable feedforward transfer
function Fr. Equation (12.10) gives the feedforward transfer function:

Fr(s) =
ω2
m(s+ 1)2

s2 + 2ζcωms+ ω2
m

. (12.14)

Figure 12.15 shows the outputs y and the feedforward signals uff for different values
of ωm. The response to the reference signal goes in the wrong direction initially
because of the right half-plane zero at s = 1. This effect, called inverse response, is
barely noticeable if the response is slow (ωm = 1) but it increases with increasing
response speed. For ωm = 5 the undershoot is more than 200%. The large under-
shoot is an indication that a right half-plane zero limits the achievable bandwidth,
as will be discussed in depth in Chapter 14. A reasonable choice of ωm is in the
range 0.2 to 0.5. Notice that the same feedforward transfer function (12.14) is
obtained if the process and the desired model have the transfer functions

P (s) =
1

(s+ 1)2
, Fm(s) =

ω2
m

s2 + 2ζcωms+ ω2
m

.
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(c) ωm = 5

Figure 12.15: Feedforward control for a process with a right half-plane zero
(Example 12.7). Outputs y (upper plots) and feedforward signals uff (lower plots)
for a unit step command signal. The design parameter has the values ωm = 0.2, 1,
and 0.5 for a unit step command in the reference signal. The dashed curve shows
the response that could be achieved if the process did not have the right half-plane
zero.

The corresponding responses are shown as dashed lines in Figure 12.15. When there
is no right half-plane zero it is thus possible to obtain well-behaved, fast responses.

The control signals for different values of ωm differ significantly, as shown in the
bottom row of plots in Figure 12.15. Since r = 1 and the zero frequency gain of the
feedforward transfer function is Fr(0) = 1, the control signal goes to 1 as time goes
to infinity in all cases. The feedforward transfer function also has constant gain
Fr(∞) = ω2

m for high frequencies, which means that gain for high-frequency signals
is ω2

m and this can be undesirable if ωm is large. The initial response to a unit step
signal is then uff(0) = Fr(∞) = ω2

m (using the initial value theorem). For ωm = 0.2
the control signal grows from 0.04 to the final value 1 with a small overshoot. For
ωm = 1 the control signal starts from 1, has an overshoot, and then settles on the
final value 1. For ωm = 5 the control signal starts at 25 and decays towards the
final value 1 with an undershoot. ∇

Approximate Inverses

Processes with right half-plane zeros do not have stable inverses. To design feedfor-
ward compensators for such systems we need to use approximate inverses that are
stable. The following theorem, which is presented without proof, provides a means
of constructing such approximate inverses.

Theorem 12.1 (Approximate inverse). Let the rational transfer function G(s)
have all its poles in the left half-plane and no zeros on the imaginary axis. Factor
the transfer function as G(s) = G+(s)G−(s), where G+(s) has all its zeros in the
left half-plane and G−(s) has all its zeros in the right half-plane. An approximate
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stable inverse of G(s) that minimizes the mean square error for a step input is

G†(s) =
1

G+(s)G−(−s)
. (12.15)

We illustrate the theorem with an example.

Example 12.8 Approximate inverse for a system with a right half-plane
zero
Let the transfer functions of the process and the reference model (desired response)
be

P (s) =
1− s

(s+ 1)2
, Fm(s) =

ω2
m

s2 + 2ζcωms+ ω2
m

.

Note that in comparison to Example 12.7, we do not include the right half-plane
zero in Fm. The process transfer function can be factored as

P−(s) = 1− s, P+(s) =
1

(s+ 1)2
.

Theorem 12.1 then gives the following approximate inverse:

P †(s) =
1

P+(s)P−(−s)
=

(s+ 1)2

1 + s
= s+ 1.

The feedforward transfer function is then

Fr(s) = Fm(s)P
†(s) =

ω2
m(s+ 1)

s2 + 2ζcωms+ ω2
m

,

which is similar to equation (12.14) but no longer relies on cancellation of the
right half-plane zero to obtain a stable feedforward transfer function. The transfer
function from reference r to output y is then

Gyr(s) = P (s)Fr(s) =
1− s

(s2 + 2ζcωms+ ω2
m)(s+ 1)

.

Figure 12.16 shows the step responses for different values of ωm.
Comparing Figures 12.15 and 12.16 we find that there are small differences for

ωm = 0.2, but large differences for ωm = 5. Notice in particular the shapes of the
feedforward signals uff. The design based on the approximate inverse has smaller
undershoot but the time responses have somewhat longer settling times. ∇

In summary, we see that feedforward can be used to improve the response to
reference signals and to reduce the effects of load disturbances that can be measured.
There are limits if the process has time delays, right half-plane zeros, or high pole
excess. The zeros depend on the sensors and we can change them by moving or
adding sensors. In addition, we will see in Chapter 13 that feedforward controllers
can be sensitive to model uncertainty (Section 13.3 and Exercise 13.5), and hence
feedforward control is usually combined with feedback control to obtain robust
performance.
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Figure 12.16: Feedforward design based on an approximate inverse. Outputs
y (upper plots) and feedforward signals uff (lower plots) for a unit step reference
signal. The design parameter has the values ωm = 0.2, 1, and 0.5 for a unit step
command in the reference signal. The dashed curves show the responses for a
process without the right half-plane zero.

12.5 The Root Locus Method

In design methods such as eigenvalue assignment, discussed in Sections 7.2 and 8.3,
we designed controllers that give desired closed loop poles. The controllers were
sufficiently complex so that all closed loop poles could be specified. The complex-
ity of the controller is thus directly related to the complexity of the process. In
practice we may have to use a simple controller for a complex process, and it is
then not possible to find a controller that gives all closed poles their desired values.
It is interesting to explore what can be done with a controller having restricted
complexity as was the case for PID control in Chapter 11 and loop shaping in Sec-
tion 12.3. The simplest case with only one selectable controller parameter can be
investigated with the root locus method. The root locus is a graph of the roots of
the characteristic polynomial as a function of a parameter, and the method gives
insight into the effects of the controller parameter. It is straightforward to obtain
the root locus by finding the roots of the closed loop characteristic polynomial for
different values of the parameter. There are also good computer tools for generat-
ing the root locus. Of greater interest is the fact that the general shape of the root
locus can be obtained with very little effort, and that it often gives considerable
insight.

To illustrate the root locus method we consider a process with the transfer
function

P (s) =
b(s)

a(s)
=

b0sm + b1sm−1 + · · · bm
sn + a1sn−1 + · · · an

= b0
(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) · · · (s− pn)
.

The polynomial a(s) has degree n and the polynomial b(s) has degree m. We
assume that pole excess npe = n−m is positive or zero. The controller is assumed
to be a proportional controller with the transfer function C(s) = k. We will explore
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the poles of the closed loop system when the gain k of the proportional controller
ranges from 0 to ∞.

The closed loop characteristic polynomial is

acl(s) = a(s) + kb(s) (12.16)

and the closed loop poles are the roots of acl(s). The root locus is a graph of the
roots of acl(s) as the gain k is varied from 0 to ∞. Since the polynomial acl(s) has
degree n, the plot will have n branches.

When the gain k is zero we have acl(s) = a(s) and the closed loop poles are equal
to the open loop poles. When there are open loop poles at s = pl with multiplicity
m, the characteristic equation can be written as

(s− pl)
mã(s) + kb(s) ≈ (s− pl)

mã(pl) + kb(pl) = 0,

where ã(s) represents the polynomial a(s) with the poles at s = pl factored out. For
small values of k the roots of this equation are given by s = pl + m

√
−kb(pl)/ã(pl).

The root locus thus has a star pattern with m branches emanating from the open
loop pole s = pl. The angle between two neighboring branches is 2π/m.

To explore what happens for large gain we approximate the characteristic poly-
nomial (12.16) for large s and k, which gives

acl(s) = b(s)
(a(s)
b(s)

+ k
)
≈ b(s)

(snpe

b0
+ k
)
. (12.17)

For large k the closed loop poles are approximately the roots of b(s) and npe
√
−b0k.

A better approximation of the roots of equation (12.17) is

s = s0 +
npe
√

−kb0, s0 =
1

npe

(
n∑

k=1

pk −
m∑

k=1

zk

)

(12.18)

(Exercise 12.15). The asymptotes are thus npe lines that radiate from s = s0,
the center of mass of poles and zeros. When b0k > 0 the lines have the angles
(π + 2lπ)/npe, l = 1, . . . , npe with respect to the real line. Figure 12.17 shows the
asymptotes of the root locus for large gain for different values of the pole excess
npe.

Summarizing, we find that the root locus plot with the loop gain as the varied
parameter has n branches that start at the open loop poles and end either at the
open loop zeros or at infinity. The branches that end at infinity have star-patterned
asymptotes given by equation (12.18). An immediate consequence is that open loop
systems with right half-plane zeros or a pole excess larger than 2 will always be
unstable for sufficiently large gains.

There are simple rules for sketching the root locus. We describe here a few of
them. As discussed already, the root locus has a (locally) symmetric star pattern
at points where there are multiple roots; the number of branches depends on the
multiplicity of the roots. For systems with kb0 > 0 the root locus has segments on
the real line where there are odd numbers of real poles and zeros to the right of
the segment (Exercise 12.16). It is also straightforward to find directions where a
branch of the root locus leaves a pole, as discussed in Exercise 12.19.
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Figure 12.17: Asymptotes of the root locus for systems with pole excess npe = 2,
3, and 4. There are npe asymptotes that radiate from the point s = s0 given by
equation (12.18), and the angles between the asymptotes are 360◦/npe.

Figure 12.18 shows root loci for systems with k > 0 and the transfer functions

Pa(s) = k
s+ 1

s2
, Pb(s) = k

s+ 1

s(s+ 2)(s2 + 2s+ 4)
,

Pc(s) = k
s+ 1

s(s2 + 1)
, Pd(s) = k

s2 + 2s+ 2

s(s2 + 1)
.

(12.19)

The locus of Pa(s) in Figure 12.18a starts with two roots at the origin and the
pattern locally has the star configuration with m = 2. As the gain increases the
locus bends because of the attraction of the zero. In this particular case the locus
is actually a circle around the zero s = −1. Two roots meet at the real axis and
depart forming a star pattern. One root goes towards the zero and the other one
goes to infinity along the negative real axis as the gain k increases. The root locus
thus has the segment (−∞,−1] on the real axis. The locus in Figure 12.18b starts
at the open loop poles s = −2, 0, and −1 ± i

√
3. The pole excess is npe = 3 and

the asymptotes that originate from s0 = −1 have the corresponding pattern. The
locus in Figure 12.18c has vertical asymptotes since npe = 2 (see Figure 12.17).
The asymptotes originate from s0 = 0.5. The root locus has the segment [−1, 0] on
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Figure 12.18: Examples of root loci for processes with the transfer functions
Pa(s), Pb(s), Pc(s), and Pd(s) given by equation (12.19).
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the real line. The locus in Figure 12.18d has three branches: one is the segment
(−∞, 0] on the real line and the other two originate on the complex open loop poles
and end at the open loop zeros.

The root locus can also be used for design. Consider for example the system in
Figure 12.18c, which can represent PI control of a system with the transfer functions

P (s) =
1

s2 + 1
, C(s) = k

s+ 2

s
.

The root locus in Figure 12.18c shows that the system is unstable for all values
of the controller gain and we can immediately conclude that the process cannot
be stabilized with a PI controller. To obtain a stable closed loop system we can
attempt to choose a PID controller with zeros to the left of the undamped poles,
for example

C(s) = k
s2 + 2s+ 2

s
.

The root locus obtained with this controller is shown in Figure 12.18d. We see that
this system is stable for k > 0 and we can choose k to place the poles in reasonable
locations.

We have illustrated the root locus with a closed loop system with a proportional
controller where the parameter is the gain. The root locus can also be used to find
the effects of other parameters, as was illustrated in Example 5.17.

12.6 Design Example

In this final section we present a detailed example that illustrates some of the design
techniques described in this chapter.

Example 12.9 Lateral control of a vectored thrust aircraft
The problem of controlling the motion of a vertical takeoff and landing (VTOL)
aircraft was introduced in Example 3.12 and in Example 12.5, where we designed a
controller for the roll dynamics. We now wish to control the position of the aircraft,
a problem that requires stabilization of the attitude.

To control the lateral dynamics of the vectored thrust aircraft, we make use of an
“inner/outer” loop design methodology, as illustrated in Figure 12.19. This diagram
shows the process dynamics and controller divided into two components: an inner
loop consisting of the roll dynamics and controller and an outer loop consisting of
the lateral position dynamics and controller. This decomposition follows the block
diagram representation of the dynamics given in Exercise 9.11.

The approach that we take is to design a controller Ci for the inner loop so
that the resulting closed loop system Hi assures that the roll angle θ follows its
reference θr quickly and accurately. We then design a controller for the lateral
position y that uses the approximation that we can directly control the roll angle
as an input θ to the dynamics controlling the position. Under the assumption that
the dynamics of the roll controller are fast relative to the desired bandwidth of the
lateral position control, we can then combine the inner and outer loop controllers to
get a single controller for the entire system. As a performance specification for the
entire system, we would like to have zero steady-state error in the lateral position,
a bandwidth of approximately 1 rad/s, and a phase margin of 45◦.



12-28 CHAPTER 12. FREQUENCY DOMAIN DESIGN

−mgΣΣ
r θr

Hi

Co

−1

ν
Σ Po

y

u1

θ
Ci

−1

Pi

Figure 12.19: Inner/outer control design for a vectored thrust aircraft. The
inner loop Hi controls the roll angle of the aircraft using the vectored thrust. The
outer loop controller Co commands the roll angle to regulate the lateral position.
The process dynamics are decomposed into inner loop (Pi) and outer loop (Po)
dynamics, which combine to form the full dynamics for the aircraft.

.

For the inner loop, we choose our design specification to provide the outer loop
with accurate and fast control of the roll. The inner loop dynamics are given by

Pi(s) = Hθu1
(s) =

r

Js2
.

We choose the desired bandwidth to be 10 rad/s (10 times that of the outer loop)
and the low-frequency error to be no more than 5%. This specification is satisfied
using the lead compensator of Example 12.5 designed previously, so we choose

Ci(s) = k
s+ a

s+ b
, a = 2, b = 50, k = 200.

The closed loop dynamics for the system satisfy

Hi =
Ci

1 + CiPi
−mg

CiPi

1 + CiPi
=

Ci(1−mgPi)

1 + CiPi
.

A plot of the magnitude of this transfer function is shown in Figure 12.20b, and we
see that Hi ≈ −mg = −39.2 is a good approximation up to 10 rad/s.

To design the outer loop controller, we assume the inner loop roll control is
perfect, so that we can take θr as the input to our lateral dynamics. Following the
diagram shown in Exercise 9.11, the outer loop dynamics can be written as

P (s) = Hi(0)Po(s) =
Hi(0)

ms2 + cs
,

where we replace Hi(s) with Hi(0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, this approximation may not
be valid, and so we must verify this when we complete our design.

Our control goal is now to design a controller that gives zero steady-state error
in y for a step input and has a bandwidth of 1 rad/s. The outer loop process
dynamics are given by a double integrator, and we can again use a simple lead
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Figure 12.20: Outer loop control design for a vectored thrust aircraft. (a) The
outer loop approximates the roll dynamics as a state gain −mg. (b) The Bode
plot for the roll dynamics, indicating that this approximation is accurate up to
approximately 10 rad/s.

compensator to satisfy the specifications. We also choose the design such that the
loop transfer function for the outer loop has |Lo| < 0.1 for ω > 10 rad/s, so that
the Hi high-frequency dynamics can be neglected. We choose the controller to be
of the form

Co(s) = −ko
s+ ao
s+ bo

,

with the negative sign to cancel the negative sign in the process dynamics. To find
the location of the poles, we note that the phase lead flattens out at approximately
bo/10. We desire phase lead at crossover, and we desire the crossover at ωgc =
1 rad/s, so this gives bo = 10. To ensure that we have adequate phase lead, we
must choose ao such that bo/10 < 10ao < bo, which implies that ao should be
between 0.1 and 1. We choose ao = 0.3. Finally, we need to set the gain of the
system such that at the desired crossover frequency the loop gain has magnitude 1
or more. A simple calculation shows that ko = 2 satisfies this objective. Thus, the
final outer loop controller becomes

Co(s) = −2
s+ 0.3

s+ 10
.

Finally, we can combine the inner and outer loop controllers and verify that
the system has the desired closed loop performance. The Bode and Nyquist plots
corresponding to Figure 12.19 with inner and outer loop controllers are shown in
Figure 12.21, and we see that the specifications are satisfied. In addition, we show
the gain curves of the Gang of Four in Figure 12.22, and we see that the transfer
functions between all inputs and outputs are reasonable. The sensitivity to load
disturbances PS is large at low frequency because the controller does not have
integral action.

The approach of splitting the dynamics into an inner and an outer loop is com-
mon in many control applications and can lead to simpler designs for complex
systems. Indeed, for the aircraft dynamics studied in this example, it is very chal-
lenging to directly design a controller from the lateral position y to the input u1.
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Figure 12.21: Inner/outer loop controller for a vectored thrust aircraft. Bode
plot (a) and Nyquist plot (b) for the loop transfer function cut at θr, for the
complete system. The system has a phase margin of 68◦ and a gain margin of 6.2.

The use of the additional measurement of θ greatly simplifies the design because it
can be broken up into simpler pieces. ∇

12.7 Further Reading

Loop shaping design emerged at Bell Labs in connection with the development of
Black’s [Bla34] electronic amplifier with negative feedback. Nyquist [Nyq32] de-
rived his stability criterion to understand and avoid instabilities or “singing,” as
it was called at the time. Bode [Bod40] used the theory of complex variables to
establish important fundamental results such as the relation between amplitude
and phase for a minimum phase system, the ideal loop transfer functions, and the
phase area formula. His results are nicely summarized in the book [Bod45]. Design
by loop shaping became a key element in the early development of control, and
many design methods were developed; see James, Nichols, and Phillips [JNP47],
Chestnut and Mayer [CM51], Truxal [Tru55], and Thaler [Tha89]. Loop shap-
ing is also treated in standard textbooks such as Franklin, Powell, and Emami-
Naeini [FPEN05], Dorf and Bishop [DB04], Kuo and Golnaraghi [KG02], and
Ogata [Oga01]. Horowitz [Hor63] developed the notion of systems with two de-
grees of freedom. Much of the early work was based on the loop transfer function;
the importance of the sensitivity functions appeared in connection with develop-
ments in the 1980s that resulted in H∞ design methods. A compact presentation is
given in the texts by Doyle, Francis, and Tannenbaum [DFT92] and Zhou, Doyle,
and Glover [ZDG96]. Loop shaping was integrated with robust control theory in
McFarlane and Glover [MG90] and Vinnicombe [Vin01]. Comprehensive treatments
of control system design are given in Maciejowski [Mac89] and Goodwin, Graebe,
and Salgado [GGS01]. There are fundamental limits to what can be achieved given
by nonlinearities of the process and the poles and zeros. These will be discussed in
Chapter 14.
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Figure 12.22: Gain curves for the Gang of Four for the vectored thrust aircraft
system.

Exercises

12.1 Consider the system in Example 12.1, where the process and controller transfer
functions are given by

P (s) = 1/(s− a), C(s) = k(s− a)/s.

Choose the parameter a = −1 and compute the time (step) and frequency responses
for all the transfer functions in the Gang of Four for controllers with k = 0.2 and
k = 5.

12.2 (Equivalence of Figures 12.1 and 12.2) Consider the system in Figure 12.1 and
let the outputs of interest be ξ = (µ, η) and the major disturbances be χ = (w, v).
Show that the system can be represented by Figure 12.2 and give the matrix transfer
functions P and C. Verify that the elements of the closed loop transfer function
Hξχ are the Gang of Four.

12.3 (Equivalence of controllers with two degrees of freedom) Show that the sys-
tems in Figures 12.1 and 12.13 give the same responses to command signals if
FmC + Fu = CF .

12.4 (Web server control) Feedback and feedforward are increasingly used for com-
plex computer systems such as web servers. Control of a single server is an example.
A model for a virtual server is given by equation (3.32),

dx

dt
= λ− µ,

where x is the queue length, λ is the arrival rate, and µ is the server rate. The
objective of control is to maintain a given queue length. The service rate µ can
be changed by dynamic voltage and frequency scaling (DVFS). Determine a PI
controller that gives a closed loop system with the characteristic polynomial s2 +
4s+ 4. Use feedforward in the form of setpoint weighting to reduce the overshoot
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for step changes in reference signals; simulate the closed loop system to determine
the setpoint weighting.

12.5 (Rise time-bandwidth product) Consider a stable system with the transfer !
function G(s) whose frequency response is an ideal low-pass filter with |G(iω)| = 1
for ω ≤ ωb and |G(iω)| = 0 for ω > ωb and which has low-pass character. Define
the rise time Tr as the inverse of the largest slope of the unit step response and
the bandwidth as ω̃b =

∫∞
0 |G(iω)|/G(0) dω. Show that with this definition of the

bandwidth the rise time-bandwidth product satisfies Tr ω̃b ≥ π.

12.6 (Disturbance attenuation) Consider the feedback system shown in Figure 12.1.
Assume that the reference signal is constant. Let yol be the measured output when
there is no feedback and ycl be the output with feedback. Show that ycl = S(s)yol,
where ycl and yol are exponential signals and S is the sensitivity function.

12.7 (Approximate expression for noise sensitivity) Show that the effect of high-
frequency measurement noise on the control signal for the system in Example 12.3
can be approximated by

CS ≈ C =
kds

(sTf)2 /2 + sTf + 1
,

and that the largest value of |CS(iω)| is kd/Tf which occurs for ω =
√
2/Tf.

12.8 (Peak frequency-peak time product) Consider the transfer function for a
second-order system

G(s) =
ω0s

s2 + 2ζω0s+ ω2
0

,

which has the unit step response

y(t) =
1√

1− ζ2
e−ζω0t sinω0t

√
1− ζ2.

Let Mr = maxω |G(iω)| be the largest gain of G(s), which is assumed to occur at
ωmr, and let yp = maxt y(t) be the largest value of y(t), which is assumed to occur
at tp. Show that

tpωmr =
arccos ζ√
1− ζ2

,
yp
Mr

= 2ζe−ζϕ,

and evaluate the right-hand sides of the above equations for ζ = 0.5, 0.707, and
1.0.

12.9 (Disturbance reduction through feedback) Consider a problem in which an
output variable has been measured to estimate the potential for disturbance atten-
uation by feedback. Suppose an analysis shows that it is possible to design a closed
loop system with the sensitivity function

S(s) =
s

s2 + s+ 1
.

Estimate the possible disturbance reduction when the measured disturbance re-
sponse is

y(t) = 5 sin (0.1 t) + 3 sin (0.17 t) + 0.5 cos (0.9 t) + 0.1 t.
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12.10 (Bode’s formula) Consider the lead compensator

G(s) = 16
s+ 0.25

s+ 4
.

Verify Bode’s phase area formula (12.8) and show that G(∞) = 16G(0) by numer-
ical integration.

12.11 (Lead-lag compensation) Lead and lag compensators can be combined into
a lead-lag compensator that has the transfer function

C(s) = k
(s+ a1)(s+ a2)

(s+ b1)(s+ b2)
.

Show that the controller reduces to a PID controller with special choice of param-
eters and give the relations between the parameters.

12.12 (Attenuation of low-frequency sinusoidal disturbances) Integral action elim-
inates constant disturbances and reduces low-frequency disturbances because the
controller gain is infinite at zero frequency. A similar idea can be used to reduce
the effects of sinusoidal disturbances of known frequency ω0 by using the controller

C(s) = kp +
kss

s2 + 2ζω0s+ ω2
0

.

This controller has the gain Cs(iω0) = kp+ks/(2ζ) for the frequency ω0, which can
be large by choosing a small value of ζ. Assume that the process has the transfer
function P (s) = 1/s. Determine the Bode plot of the loop transfer function and
simulate the system. Compare the results with PI control.

12.13 (Performance specifications and transfer functions) Find the transfer func-
tion of a second-order system that satisfies the following closed loop specifications:
zero steady-state error, 2% settling time less than 2 s, rise time less than 0.8 s, and
overshoot less than 3%.

12.14 Consider the spring–mass system given by equation (3.16), which has the
transfer function

P (s) =
1

ms2 + cs+ k
.

Design a feedforward compensator that gives a response with critical damping (ζ =
1).

12.15 (Asymptotes of root locus) Consider proportional control of a system with
the transfer function

P (s) =
b(s)

a(s)
=

b0sm + b1sm−1 + · · · bm
sn + a1sn−1 + · · · an

= b0
(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) · · · (s− pn)
.

Show that the root locus has asymptotes that are straight lines that emerge from
the point

s0 =
1

ne

( n∑

k=1

pk −
m∑

k=1

zk
)
,

where ne = n−m is the pole excess of the transfer function.
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12.16 (Real line segments of root locus) Consider proportional control of a process
with a rational transfer function. Assuming that b0k > 0, show that the root locus
has segments on the real line where there are an odd number of real poles and zeros
to the right of the segment.

12.17 Consider a lead compensator with the transfer function

Cn(s) =
(s n

√
k + a

s+ a

)n
,

which has zero frequency gain C(0) = 1 and high-frequency gain C(∞) = k. Show
that the gain required to provide a given phase lead ϕ is

k =
(
1 + 2 tan2(ϕ/n) + 2 tan(ϕ/n)

√
1 + tan2(ϕ/n)

)n
,

and that lim
n→∞

k = e2ϕ.

12.18 (Phase margin formulas) Show that the relationship between the phase mar-
gin and the values of the sensitivity functions at gain crossover is given by

|S(iωgc)| = |T (iωgc)| =
1

2 sin(ϕm/2)
.

12.19 (Initial direction of root locus) Consider proportional control of a system
with the transfer function

P (s) =
b(s)

a(s)
=

b0sm + b1sm−1 + · · · bm
sn + a1sn−1 + · · · an

= b0
(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) · · · (s− pn)
.

Let pj be an isolated pole and assume that kb0 > 0. Show that the root locus
starting at pj has the initial direction.

∠(s− pj) = π + Σm
k=1∠(pj − sk)− Σk %=j∠(pj − pk).

Give a geometric interpretation of the result.
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