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Chapter Twelve
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with sensitivity deteriora-

tions in another frequency range, and the price is higher if the plant is open-loop unstable.

This applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [Ste03].

In this chapter we continue to explore the use of frequency domain techniques
with a focus on the design of feedback systems. We begin with a more thorough de-
scription of the performance specifications for control systems and then introduce
the concept of “loop shaping” as a mechanism for designing controllers in the fre-
quency domain. We also introduce some fundamental limitations to performance
for systems with time delays and right half-plane poles and zeros.

12.1 Sensitivity Functions

In the previous chapter, we considered the use of proportional-integral-derivative
(PID) feedback as a mechanism for designing a feedback controller for a given
process. In this chapter we will expand our approach to include a richer repertoire
of tools for shaping the frequency response of the closed loop system.

One of the key ideas in this chapter is that we can design the behavior of the
closed loop system by focusing on the open loop transfer function. This same ap-
proach was used in studying stability using the Nyquist criterion: we plotted the
Nyquist plot for the open loop transfer function to determine the stability of the
closed loop system. From a design perspective, the use of loop analysis tools is
very powerful: since the loop transfer function is L = PC, if we can specify the
desired performance in terms of properties of L, we can directly see the impact of
changes in the controller C. This is much easier, for example, than trying to rea-
son directly about the tracking response of the closed loop system, whose transfer
function is given by Gyr = PC/(1+PC).

We will start by investigating some key properties of the feedback loop. A block
diagram of a basic feedback loop is shown in Figure 12.1. The system loop is com-
posed of two components: the process and the controller. The controller itself has
two blocks: the feedback block C and the feedforward block F . There are two
disturbances acting on the process, the load disturbance v and the measurement
noise w. The load disturbance represents disturbances that drive the process away
from its desired behavior, while the measurement noise represents disturbances
that corrupt information about the process given by the sensors. For example in
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Figure 12.1: Block diagram of a basic feedback loop with two degrees of freedom. The
controller has a feedback block C and a feedforward block F . The external signals are the
reference signal r, the load disturbance v and the measurement noise w. The process output
is η , and the control signal is u.

cruise control the major load disturbance is changes in the slope of the road and
measurement noise is caused by the electronics that convert pulses measured on
a rotating shaft to a velocity signal. The load disturbances typically have low fre-
quencies, lower than the servo bandwidth, while measurement noise typically has
higher frequencies. In the figure, the load disturbance is assumed to act on the
process input. This is a simplification since disturbances often enter the process in
many different ways, but it allows us to streamline the presentation without signif-
icant loss of generality.

The process output η is the real variable that we want to control. Control is
based on the measured signal y, where the measurements are corrupted by mea-
surement noise w. The process is influenced by the controller via the control vari-
able u. The process is thus a system with three inputs—the control variable u, the
load disturbance v and the measurement noise w—and one output—the measured
signal y. The controller is a system with two inputs and one output. The inputs
are the measured signal y and the reference signal r, and the output is the control
signal u. Note that the control signal u is an input to the process and the output of
the controller, and that the measured signal y is the output of the process and an
input to the controller.

The feedback loop in Figure 12.1 is influenced by three external signals, the
reference r, the load disturbance v and the measurement noise w. Any of the re-
maining signals can be of interest in controller design, depending on the particular
application. Since the system is linear, the relations between the inputs and the in-
teresting signals can be expressed in terms of the transfer functions. The following
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relations are obtained from the block diagram in Figure 12.1:
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In addition, we can write the transfer function for the error between the reference
r and the output η (not an explicit signal in the diagram), which satisfies

ε = r−η =
(

1−
PCF

1+PC

)
r+

−P

1+PC
v+

PC

1+PC
w.

Notice that many of the transfer functions in (12.1) are the same. Only four
transfer functions are required to describe how the system reacts to load distur-
bances and measurement noise, three additional transfer functions are required to
describe how the system responds to reference signals.

The special case of F = 1 is called a system with (pure) error feedback because
all control actions are based on feedback from the error. In this case the system
(12.1) is completely characterized by four transfer functions, which are called the
sensitivity functions:

S =
1

1+PC
sensitivity
function

PS =
P

1+PC

load
sensitivity
function

T =
PC

1+PC

complementary
sensitivity
function

CS =
C

1+PC

noise
sensitivity
function

(12.2)

These transfer functions and their equivalent systems are called the Gang of Four.
The load sensitivity function is sometimes called the input sensitivity function and
the noise sensitivity function is sometimes called the output sensitivity function.
These transfer functions have many interesting properties that will be discussed
in detail in the rest of the chapter. Good insight into these properties is essential
in understanding the performance of feedback systems for the purposes of both
analysis and design. The transfer functions are also used to formulate requirements
on the closed loop system.

When F ̸= 1 there are three additional transfer functions in (12.1).

PS =
P

1+PC
, CSF =

PCT

1+PC
, T F =

PCF

1+PC
(12.3)

To summarize we find that the closed loop system can be characterized by seven
transfer functions given by (12.2) and (12.3), which we call the Gang of Seven.
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The closed loop system is stable if all transfer functions (12.2) are stable, which
is called internal stability. If there are no pole-zero cancellations in the product PC
the closed loop system is stable if the rational function 1+PC has all its zeros in
the left half plane.

Analyzing the Gang of Seven, we find that the feedback controller C influences
the effects of load disturbances and measurement noise. Notice that measurement
noise enters the process via the feedback. In Section 13.2 it will be shown that
the controller influences the sensitivity of the closed loop to process variations.
The feedforward part F of the controller influences only the response to command
signals.

In Chapter 10 we focused on the loop transfer function, and we found that its
properties gave useful insights into the properties of a system. To make a proper
assessment of a feedback system it is necessary to consider the properties of all the
transfer functions (12.2) and (12.3) in the Gang of Seven (or the Gang of Four, if
there is no feedforward controller), as illustrated in the following example.

Example 12.1 The loop transfer function gives only limited insight
Consider a process with the transfer function P(s) = 1/(s− a) controlled by a PI
controller with error feedback having the transfer function C(s) = k(s−a)/s. The
loop transfer function is L = k/s, and the sensitivity functions are

T =
PC

1+PC
=

k

s+ k
, PS =

P

1+PC
=

s

(s−a)(s+ k)
,

CS =
C

1+PC
=

k(s−a)

s+ k
, S =

1

1+PC
=

s

s+ k
.

Notice that the factor s−a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivity function or the comple-
mentary sensitivity function. However, cancellation of the factor is very serious if
a > 0 since the transfer function PS relating load disturbances to process output is
then unstable. In particular, a small disturbance v can lead to an unbounded output,
which is clearly not desirable. ∇

The system in Figure 12.1 represents a special case because it is assumed that
the load disturbance enters at the process input and that the measured output is the
sum of the process variable and the measurement noise. Disturbances can enter in
many different ways, and the sensors may have dynamics. A more abstract way
to capture the general case is shown in Figure 12.2, which has only two blocks
representing the process (P) and the controller (C ). The process has two inputs,
the control signal u and a vector of disturbances w, and two outputs, the measured
signal y and a vector of signals z that is used to specify performance. The system
in Figure 12.1 can be captured by choosing w = (r,d,n) and z = (e,u,ν ,η ,ε).
The process transfer function P from w to z is a 5× 3 matrix, and the controller
transfer function C from y,r to u is a 2×1 matrix; compare with Exercise 12.3.

Processes with multiple inputs and outputs can also be considered by regarding
u and y as vectors. Representations at these higher levels of abstraction are useful
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Figure 12.2: A more general representation of a feedback system. The process input u repre-
sents the control signal, which can be manipulated, and the process input w represents other
signals that influence the process. The process output y is the vector of measured variables
and z are other signals of interest.

for the development of theory because they make it possible to focus on fundamen-
tals and to solve general problems with a wide range of applications. However, care
must be exercised to maintain the coupling to the real-world control problems we
intend to solve.

12.2 Feedforward Design

Most of our analysis and design tools up to this point have focused on the role of
feedback and its effect on the dynamics of the system. Feedforward is a simple
and powerful technique that complements feedback. It can be used both to im-
prove the response to reference signals and to reduce the effect of measurable dis-
turbances. Feedforward compensation admits perfect elimination of disturbances,
but it is much more sensitive to process variations than feedback compensation. A
general scheme for feedforward was discussed in Section 8.5 using Figure 8.10.
A simple form of feedforward for PID controllers was discussed in Section 11.5.
The controller in Figure 12.1 also has a feedforward block to improve response to
command signals. An alternative version of feedforward is shown in Figure 12.3,
which we will use in this section to understand some of the trade-offs between
feedforward and feedback.

uff
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Figure 12.3: Block diagram of a system with feedforward compensation for improved re-
sponse to reference signals and measured disturbances (2 DOF system). Three feedforward
elements are present: Fm(s) sets the desired output value, Fu(s) generates the feedforward
command ufr and Fd(s) attempts to cancel disturbances.
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Controllers with two degrees of freedom (feedforward and feedback) have the
advantage that the response to reference signals can be designed independently of
the design for disturbance attenuation and robustness. We will first consider the
response to reference signals, and we will therefore initially assume that the load
disturbance v is zero. Let Fm represent the ideal response of the system to reference
signals. The feedforward compensator is characterized by the transfer functions
Fu and Fm. When the reference is changed, the transfer function Fu generates the
signal ufr, which is chosen to give the desired output when applied as input to the
process. Under ideal conditions the output y is then equal to ym, the error signal
is zero and there will be no feedback action. If there are disturbances or modeling
errors, the signals ym and y will differ. The feedback then attempts to bring the
error to zero.

The block diagram in Figure 11.1bb for PID control is a special case of Fig-
ure 12.3. The block diagram of Figure 12.1 is equivalent to Figure 12.3 as far as
responses to reference signals are concerned if FC = Fu +FmC. The architecture
Figure 12.1 has fewer blocks but it has the disadvantage that F must be changed if
the controller C is changed.

To make a formal analysis, we compute the transfer function from reference
input to process output:

Gyr(s) =
P(CFm +Fu)

1+PC
= Fm +

PFu−Fm

1+PC
, (12.4)

where P = P2P1. The first term represents the desired transfer function. The second
term can be made small in two ways. Feedforward compensation can be used to
make PFu−Fm small, or feedback compensation can be used to make 1+PC large.
Perfect feedforward compensation is obtained by choosing

Fu =
Fm

P
. (12.5)

Design of feedforward using transfer functions is thus a very simple task. Notice
that the feedforward compensator Fu contains an inverse model of the process dy-
namics.

Feedback and feedforward have different properties. Feedforward action is ob-
tained by matching two transfer functions, requiring precise knowledge of the pro-
cess dynamics, while feedback attempts to make the error small by dividing it by
a large quantity. For a controller having integral action, the loop gain is large for
low frequencies, and it is thus sufficient to make sure that the condition for ideal
feedforward holds at higher frequencies. This is easier than trying to satisfy the
condition (12.5) for all frequencies.

We will now consider reduction of the effects of the load disturbance v in Fig-
ure 12.3 by feedforward control. We assume that the disturbance signal is mea-
sured and that the disturbance enters the process dynamics in a known way (cap-
tured by P1 and P2). The effect of the disturbance can be reduced by feeding the
measured signal through a dynamical system with the transfer function Fd . Assum-
ing that the reference r is zero, we can use block diagram algebra to find that the
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transfer function from the disturbance to the process output is

Gyv =
P2(1+P1Fd)

1+PC
, (12.6)

where P = P2P1. The effect of the disturbance can be reduced by making 1+FdP1

small (feedforward) or by making 1+PC large (feedback). Perfect compensation
is obtained by choosing

Fd =−P−1
1 , (12.7)

requiring inversion of the transfer function P1.
As in the case of reference tracking, disturbance attenuation can be accom-

plished by combining feedback and feedforward control. Since low-frequency dis-
turbances can be eliminated by feedback, we require the use of feedforward only
for high-frequency disturbances, and the transfer function Fd in equation (12.7)
can then be computed using an approximation of P1 for high frequencies.

Equations (12.5) and (12.7) give analytic expressions for the feedforward com-
pensator. To obtain a transfer function that can be implemented without difficulties
we require that the feedforward compensator be stable and that it does not require
differentiation. Therefore there may be constraints on possible choices of the de-
sired response Fm, and approximations are needed if the process has zeros in the
right half-plane or time delays.

Example 12.2 Vehicle steering
A linearized model for vehicle steering was given in Example 7.4. The normalized
transfer function from steering angle δ to lateral deviation y is P(s) = (γs+1)/s2.
For a lane transfer system we would like to have a nice response without overshoot,
and we therefore choose the desired response as Fm(s) = a2/(s+ a)2, where the
response speed or aggressiveness of the steering is governed by the parameter a.
Equation (12.5) gives

Fu =
Fm

P
=

a2s2

(γs+1)(s+a)2
,

which is a stable transfer function as long as γ > 0. Figure 12.4 shows the responses
of the system for a = 0.5. The figure shows that a lane change is accomplished in
about 10 vehicle lengths with smooth steering angles. The largest steering angle
is slightly larger than 0.1 rad (6◦). Using the scaled variables, the curve showing
lateral deviations (y as a function of t) can also be interpreted as the vehicle path
(y as a function of x) with the vehicle length as the length unit. ∇

A major advantage of controllers with two degrees of freedom that combine
feedback and feedforward is that the control design problem can be split in two
parts. The feedback controller C can be designed to give good robustness and ef-
fective disturbance attenuation, and the feedforward part can be designed indepen-
dently to give the desired response to command signals.



12-8 CHAPTER 12. FREQUENCY DOMAIN DESIGN

(a) Overhead view

0 2 4 6 8 10
−5

0

5

0 2 4 6 8 10
−1

0

1

y
[m

]
δ

[r
ad

]

Normalized time t

(b) Position and steering

Figure 12.4: Feedforward control for vehicle steering. The plot on the left shows the trajec-
tory generated by the controller for changing lanes. The plots on the right show the lateral
deviation y (top) and the steering angle δ (bottom) for a smooth lane change control using
feedforward (based on the linearized model).

12.3 Performance Specifications

A key element of the control design process is how we specify the desired per-
formance of the system. It is also important for users to understand performance
specifications so that they know what to ask for and how to test a system. Specifi-
cations are often given in terms of robustness to process variations and responses
to reference signals and disturbances. They can be given in terms of both time
and frequency responses. Specifications for the step response to reference signals
were given in Figure 6.9 in Section 6.3 and in Section 7.3. Robustness specifica-
tions based on frequency domain concepts were provided in Section 10.3 and will
be considered further in Chapter 13. The specifications discussed previously were
based on the loop transfer function. Since we found in Section 12.1 that a single
transfer function did not always characterize the properties of the closed loop com-
pletely, we will give a more complete discussion of specifications in this section,
based on the full Gang of Seven.

The transfer function gives a good characterization of the linear behavior of a
system. To provide specifications it is desirable to capture the characteristic prop-
erties of a system with a few parameters. Common features of step responses are
overshoot, rise time and settling time, as shown in Figure 6.9. Common features of
frequency responses are resonant peak, peak frequency, gain crossover frequency
and bandwidth. A resonant peak is a maximum of the gain, and the peak frequency
is the corresponding frequency. The gain crossover frequency is the frequency
where the open loop gain is equal one. The bandwidth is defined as the frequency
range where the closed loop gain is 1/

√
2 of the low-frequency gain (low-pass),

mid-frequency gain (band-pass) or high-frequency gain (high-pass). The crossover
frequency and the bandwidth are only well defined if the curves are monotone, if
this is not the case the bandwidth is typically defined as the lowest frequency.

There are interesting relations between specifications in the time and frequency
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Figure 12.5: Reference signal responses. The responses in process output y and control
signal u to a unit step in the reference signal r are shown in (a), and the gain curves of Gyr

and Gur are shown in (b). Results with PI control with error feedback are shown by solid
lines, and the dashed lines show results for a controller with a feedforward compensator.

domains. Roughly speaking, the behavior of time responses for short times is re-
lated to the behavior of frequency responses at high frequencies, and vice versa.
The precise relations are given by the Laplace transform.

Response to Reference Signals

Consider the basic feedback loop in Figure 12.1. The response to reference signals
is described by the transfer functions Gyr = PCF/(1+PC) and Gur = CF/(1+
PC) (F = 1 for systems with error feedback). Notice that it is useful to consider
both the response of the output and that of the control signal. In particular, the
control signal response allows us to judge the magnitude and rate of the control
signal required to obtain the output response.

Example 12.3 Third-order system
Consider a process with the transfer function P(s) = (s+1)−3 and a PI controller
with error feedback having the gains kp = 0.6 and ki = 0.5. The responses are illus-
trated in Figure 12.5. The solid lines show results for a proportional-integral (PI)
controller with error feedback. The dashed lines show results for a controller with
feedforward designed to give the transfer function Gyr = (0.5s+ 1)−3. Looking
at the time responses, we find that the controller with feedforward gives a faster
response with no overshoot. However, much larger control signals are required to
obtain the fast response. The largest value of the control signal is 8, compared to
1.2 for the regular PI controller. The controller with feedforward has a larger band-
width (marked with ◦) and no resonant peak. The transfer function Gur also has
higher gain at high frequencies. ∇
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Figure 12.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function (a) can be used to calculate the properties of the
sensitivity function through the relation S = 1/(1+L). The sensitivity crossover frequency
ωsc and the frequency ωms where the sensitivity has its largest value are indicated in the
sensitivity plot. The Nyquist plot (b) shows the same information in a different form. All
points inside the dashed circle have sensitivities greater than 1.

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to compare the output of the
closed loop system in Figure 12.1 with the output of the corresponding open loop
system obtained by setting C = 0. If we let the disturbances for the open and closed
loop systems be identical, the output of the closed loop system is then obtained
simply by passing the open loop output through a system with the transfer func-
tion S. The sensitivity function tells how the variations in the output are influenced
by feedback (Exercise 12.7). Disturbances with frequencies such that |S(iω)| < 1
are attenuated, but disturbances with frequencies such that |S(iω)| > 1 are ampli-
fied by feedback. The maximum sensitivity Ms, which occurs at the frequency ωms,
is thus a measure of the largest amplification of the disturbances. The maximum
magnitude of 1/(1+L) corresponds to the minimum of |1+L|, which is precisely
the stability margin sm defined in Section 10.3, so that Ms = 1/sm. The maximum
sensitivity is therefore also a robustness measure.

If the sensitivity function is known, the potential improvements by feedback
can be evaluated simply by recording a typical output and filtering it through the
sensitivity function. A plot of the gain curve of the sensitivity function is a good
way to make an assessment of the disturbance attenuation. Since the sensitivity
function depends only on the loop transfer function, its properties can also be vi-
sualized graphically using the Nyquist plot of the loop transfer function. This is
illustrated in Figure 12.6. The complex number 1+L(iω) can be represented as
the vector from the point −1 to the point L(iω) on the Nyquist curve. The sensi-
tivity is thus less than 1 for all points outside a circle with radius 1 and center at
−1. Disturbances with frequencies in this range are attenuated by the feedback.

The transfer function Gyv from load disturbance v to process output y for the
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system in Figure 12.1 is

Gyv =
P

1+PC
= PS =

T

C
. (12.8)

Since load disturbances typically have low frequencies, it is natural to focus on
the behavior of the transfer function at low frequencies. Consider a system with
P(0) ̸= 0 and a controller with integral action with integral gainki. The controller
transfer function goes to infinity as ki/s for small s and we have the following
approximation:

Gyv =
T

C
≈

1

C
≈

s

ki
, (12.9)

The process transfer function P typically goes to zero for large s as does a well
designed controller C. The loop transfer function PC then also goes to zero and
the sensitivity function S goes to 1 for large s. We then have the approximation
Gyv ≈ P for large s.

Measurement noise, which typically has high frequencies, generates rapid vari-
ations in the control variable that are detrimental because they cause wear in many
actuators and can even saturate an actuator. It is thus important to keep variations
in the control signal due to measurement noise at reasonable levels—a typical re-
quirement is that the variations are only a fraction of the span of the control signal.
The variations can be influenced by filtering and by proper design of the high-
frequency properties of the controller.

The effects of measurement noise are captured by the transfer function from
the measurement noise to the control signal,

−Guw =
C

1+PC
=CS =

T

P
. (12.10)

For controllers with integral action the complementary sensitivity function is close
to 1 for low frequencies (ω < ωgc), and Guw can be approximated by −1/P. The
sensitivity function is close to 1 for high frequencies (ω > ωgc), and Guw can be
approximated by −C.

Example 12.4 Third-order system
Consider a process with the transfer function P(s) = (s+1)−3 and a proportional-
integral-derivative (PID) controller with gains kp = 0.6, ki = 0.5 and kd = 2.0. We

augment the controller using a second-order noise filter with damping ratio 1/
√

2
and Tf = 0.1. The controller transfer function then becomes

C(s) =
kds2 + kps+ ki

s(s2T 2
f /2+ sTf +1)

.

The closed loop system responses are illustrated in Figure 12.7. The closed loop re-
sponse of the output to a step in the load disturbance in the top part of Figure 12.7a
has a peak of 0.28 at time t = 2.73 s. The frequency response in Figure 12.7a shows
that the gain has a maximum of 0.58 at ω = 0.7 rad/s.
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Figure 12.7: Closed loop disturbance responses. The time and frequency responses of pro-
cess output y to load disturbance v are shown in (a) and the responses of control signal u to
measurement noise w are shown in (b).

The closed loop response of the control signal to a step in measurement noise
is shown in Figure 12.7b. The high-frequency roll-off of the transfer function
Guw(iω) is due to filtering; without it the gain curve in Figure 12.7b would con-
tinue to rise after 20 rad/s. The step response has a peak of 13 at t = 0.08 s. The
frequency response has its peak 20 at ω = 14 rad/s. Notice that the peak occurs
at a frequency far above the peak of the response to load disturbances and far
above the gain crossover frequency ωgc = 0.78 rad/s. An approximation derived in

Exercise 12.9 gives max |CS(iω)| ≈ kd/Tf = 20, which occurs at ω =
√

2/Td =
14.1 rad/s. ∇

12.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that it is based on the loop trans-
fer function, which is related to the controller transfer function through L = PC.
It is thus easy to see how the controller influences the loop transfer function. To
make an unstable system stable we simply have to bend the Nyquist curve away
from the critical point.

This simple idea is the basis of several different design methods collectively
called loop shaping. These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. One possibility is to determine
a loop transfer function that gives a closed loop system with the desired properties
and to compute the controller as C = L/P. This approach may lead to controllers
of high order and there are limitaions if the process transfer function has poles
and zeros in the right half plane as will be discussed in Section 12.6. Another is
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Figure 12.8: Gain curve and sensitivity functions for a typical loop transfer function. The
plot on the left shows the gain curve and the plots on the right show the sensitivity function
and complementary sensitivity function. The crossover frequency ωgc determines the atten-
uation of load disturbances, bandwidth and response time of the closed loop system. The
slope ngc determines the robustness of the closed loop systems, see (12.11). At low frequen-
cies, a large magnitude of L provides good load disturbance rejection and reference tracking,
while at high frequencies a small loop gain avoids injecting too much measurement noise.

to start with the process transfer function, change its gain and then add poles and
zeros until the desired shape is obtained. In this section we will explore different
loop-shaping methods for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfer function that gives good
performance and good stability margins. Figure 12.8 shows a typical loop trans-
fer function. Good robustness requires good stability margins (or good gain and
phase margins), which imposes requirements on the loop transfer function around
the crossover frequencies ωpc and ωgc. The gain of L at low frequencies must be
large in order to have good tracking of command signals and good attenuation
of low-frequency disturbances. Since S = 1/(1+L), it follows that for frequencies
where |L|> 101 disturbances will be attenuated by a factor of 100 and the tracking
error is less than 1%. It is therefore desirable to have a large crossover frequency
and a steep (negative) slope of the gain curve. The choice of gain crossover fre-
quency ωgc is a compromise among attenuation of load disturbances, injection
of measurement noise and robustness. The controller gain at low frequencies can
be increased by a controller with integral action, which is also called lag com-
pensation. To avoid injecting too much measurement noise into the system, the
controller transfer function should have low gain at high frequencies, a property
called high-frequency roll-off.

Bode’s relations (see Section 10.4) impose restrictions on the shape of the loop
transfer function. Equation (10.8) implies that the slope of the gain curve at gain
crossover cannot be too steep. If the gain curve has a constant slope, we have the



12-14 CHAPTER 12. FREQUENCY DOMAIN DESIGN

following relation between slope ngc and phase margin ϕm:

ngc =−2+
2ϕm

π
. (12.11)

This formula is a reasonable approximation when the gain curve does not deviate
too much from a straight line. It follows from equation (12.11) that the phase
margins 30◦, 45◦ and 60◦ correspond to the slopes −5/3, −3/2 and −4/3.

Loop shaping is a trial-and-error procedure. We typically start with a Bode
plot of the process transfer function. We then attempt to shape the loop trans-
fer function by changing the controller gain and adding poles and zeros to the
controller transfer function. Different performance specifications are evaluated for
each controller as we attempt to balance many different requirements by adjusting
controller parameters and complexity. Loop shaping is straightforward to apply to
single-input, single-output systems. It can also be applied to systems with one in-
put and many outputs by closing the loops one at a time. The only limitation for
minimum phase systems is that large phase leads and high controller gains may
be required to obtain closed loop systems with a fast response. Many specific pro-
cedures are available: they all require experience, but they also give good insight
into the conflicting requirements. There are fundamental limitations to what can
be achieved for systems that are not minimum phase; they will be discussed in the
next section.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfer function of the process
and add simple compensators with the transfer function

C(s) = k
s+a

s+b
, a > 0,b > 0. (12.12)

The compensator is called a lead compensator if a < b, and a lag compensator if
a > b. The PI controller is a special case of a lag compensator with b = 0, and the
ideal PD controller is a special case of a lead compensator with a = 0. Bode plots
of lead and lag compensators are shown in Figure 12.9. Lag compensation, which
increases the gain at low frequencies, is typically used to improve tracking per-
formance and disturbance attenuation at low frequencies. Compensators that are
tailored to specific disturbances can be also designed, as shown in Exercise 12.10.
Lead compensation is typically used to improve phase margin. The following ex-
amples give illustrations.

Example 12.5 Atomic force microscope in tapping mode
A simple model of the dynamics of the vertical motion of an atomic force micro-
scope in tapping mode was given in Exercise 10.2. The transfer function for the
system dynamics is

P(s) =
a(1− e−sτ)

sτ(s+a)
,
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Figure 12.9: Frequency response for lead and lag compensators C(s) = k(s+ a)/(s+ b).
Lead compensation (a) occurs when a< b and provides phase lead between ω = a and ω = b.
Lag compensation (b) corresponds to a > b and provides low-frequency gain. PI control is
a special case of lag compensation and PD control is a special case of lead compensation.
PI/PD frequency responses are shown by dashed curves.

and the parameters a = ζ ω0, τ = 2πn/ω0 are explained in XXX. The gain has
been normalized to 1. A Bode plot of this transfer function for the parameters
a = 1 and τ = 0.25 is shown in dashed curves in Figure 12.10a. To improve the
attenuation of load disturbances we increase the low-frequency gain by introducing
an integral controller. The loop transfer function then becomes L = kiP(s)/s, and
we start by adjusting the gain ki so that the closed loop system is marginally stable,
giving ki = 8.3. The Bode plot is shown by the dash-dotted line in Figure 12.10a,
where the critical point is indicated by ◦. Notice the increase of the gain at low
frequencies. To obtain a reasonable phase margin we introduce proportional action
and we increase the proportional gain kp gradually until reasonable values of the
sensitivities are obtained. The value kp = 3.5 gives maximum sensitivity Ms = 1.6
and maximum complementary sensitivity Mt = 1.3. The loop transfer function is
shown in solid lines in Figure 12.10a. Notice the significant increase of the phase
margin compared with the purely integral controller (dash-dotted line).

To evaluate the design we also compute the gain curves of the transfer functions
in the Gang of Four. They are shown in Figure 12.10b. The peaks of the sensitivity
curves are reasonable, and the plot of PS shows that the largest value of PS is 0.3,
which implies that the load disturbances are well attenuated. The plot of CS shows
that the largest noise gain |C(iω)S(iω)| is 6. The controller has a gain kp = 3.5
at high frequencies, and hence we may consider adding high-frequency roll-off to
make CS smaller at high frequencies. ∇

A common problem in the design of feedback systems is that the phase margin
is too small, and phase lead must then be added to the system. If we set a < b in
equation (12.12), we add phase lead in the frequency range between the pole/zero
pair (and extending approximately 10× in frequency in each direction). By appro-
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Figure 12.10: Loop-shaping design of a controller for an atomic force microscope in tapping
mode. (a) Bode plots of the process (dashed), the loop transfer function for an integral con-
troller with critical gain (dash-dotted) and a PI controller (solid) adjusted to give reasonable
robustness. (b) Gain curves for the Gang of Four for the system.

priately choosing the location of this phase lead, we can provide additional phase
margin at the gain crossover frequency.

Because the phase of a transfer function is related to the slope of the magnitude,
increasing the phase requires increasing the gain of the loop transfer function over
the frequency range in which the lead compensation is applied. In Exercise 12.14
it is shown that the gain increases exponentially with the amount of phase lead. We
can also think of the lead compensator as changing the slope of the transfer func-
tion and thus shaping the loop transfer function in the crossover region (although
it can be applied elsewhere as well).

Example 12.6 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust aircraft such as the one il-
lustrated in Figure 12.11. Following Exercise 9.10, we model the system with a
second-order transfer function of the form

P(s) =
r

Js2
,

with the parameters given in Figure 12.11b. We take as our performance specifi-
cation that we would like less than 1% error in steady state for and less than 10%
tracking error up to 10 rad/s.

The open loop transfer function from F1 to θ is shown in Figure 12.12a. To
achieve our performance specification, we would like to have a gain of at least 10
at a frequency of 10 rad/s, requiring the gain crossover frequency to be at a higher
frequency. We see from the loop shape that in order to achieve the desired perfor-
mance we cannot simply increase the gain since this would give a very low phase
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F2

(a) Simplified model

Symbol Description Value

m Vehicle mass 4.0 kg

J Vehicle inertia, ϕ3 axis 0.0475 kg m2

r Force moment arm 25.0 cm

c Damping coefficient 0.05 kg m/s

g Gravitational constant 9.8 m/s2

(b) Parameter values

Figure 12.11: Roll control of a vectored thrust aircraft. (a) The roll angle θ is controlled by
applying maneuvering thrusters, resulting in a moment generated by F1. (b) The table lists
the parameter values for a laboratory version of the system.

margin. Instead, we must increase the phase at the desired crossover frequency.
To accomplish this, we use a lead compensator (12.12) with a = 2 and b = 50.

We then set the gain of the system to provide a large loop gain up to the desired
bandwidth, as shown in Figure 12.12b. We see that this system has a gain of greater
than 10 at all frequencies up to 10 rad/s and that it has more than 60◦ of phase
margin. ∇

The action of a lead compensator is essentially the same as that of the derivative
portion of a PID controller. As described in Section 11.5, we often use a filter for
the derivative action of a PID controller to limit the high-frequency gain. This same
effect is present in a lead compensator through the pole at s = b.

Equation (12.12) is a first-order compensator and can provide up to 90◦ of
phase lead. Larger phase lead can be obtained by using a higher-order lead com-
pensator (Exercise 12.14):

C(s) = k
(s+a)n

(s+b)n
, a < b.

12.5 The Root-Locus Method

In the design methods like pole placement in Sections 2.2, 2.3 and 8.3. we de-
signed controllers that give desired closed loop poles. The controllers were suffi-
ciently complex so that all closed loop poles could be specified. The complexity of
the controller is thus related to the complexity of the process. In a practice we may
have to use a simple controller for a complex process and it is then not possible to
find a controller that gives all closed poles their desired values. It is interesting to
explore what can be done with a controller having restricted complexity as was the
case for loop shaping in Section 12.4. The simplest case with only one selectable
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Figure 12.12: Control design for a vectored thrust aircraft using lead compensation. The
Bode plot for the open loop process P is shown in (a) and for the loop transfer function
L = PC using a lead compensator C in (b). Note the phase lead in the crossover region near
ω = 100 rad/s.

controller parameter can be investigated with the root locus method. The root locus
is a graph of the roots of the characteristic equation as a function of the parameter.
The method gives insight into the effects of the controller parameter. It is straight
forward to obtain the root locus by finding the roots of of the closed-loop char-
acteristic polynomial for different values of the parameter. There are also good
computer tools for generating the root locus. Of greater interest is that the general
shape of the root locus can be obtained with very little effort. The root locus also
gives considerable insight.

Proportional Control

To illustrate the root locus method we consider a process with the transfer function

P(s) =
b(s)

a(s)
=

b0sm +b1sm−1 + · · ·bm

sn +a1sn−1 + · · ·an
= b0

(s− z1)(s− z2) . . .(s− zm)

(s− p1)(s− p2) · · ·(s− pn)
.

The polynomial a(s) has degree n and the polynomial b(s) has degree m. We as-
sume that the integer npe = n−m, which is called the pole excess is positive or
zero. The controller is assumed to be a proportional controller with the transfer
function C(s) = k. We will explore the poles of the closed loop system when the
gain k of the proportional controller ranges from 0 to ∞.

The closed loop characteristic polynomial is

acl(s) = a(s)+ kb(s), (12.13)

and the closed loop poles are the roots of acl(s). The root-locus is a graph of the
roots of acl(s) as the gain k is varies from 0 to ∞. Since the polynomial acl(s) has
degree n the plot will have n branches.

The branches start from the open loop poles. When the gain is k zero we have
acl(s) = a(s) and the closed loop poles are equal to the open loop poles. When
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npe = 2 npe = 3 npe = 4

Figure 12.13: Asymptotes of of root locus for systems with pole excess npe = 2, 3 and 4.
There are npe asymptotes radiate from the point given by equation 12.15, and the angles
between the asymptotes are 2π/npe.

there are open loop poles with multiplicity n∗ the characteristic equation can be
written as

(s− pl)
n∗ ã(s)+ kb(s)≈ (s− p1)

n∗ ã(pl)+ kb(pl) = 0.

For small values of k the roots are s = pl +
n∗
√
−kb(pl)/ã(pl). The root locus has a

star pattern with n∗ branches emanating from the open loop pole s = pl . The angle
between two neighboring brances is 2π/n∗.

To explore what happens for large gain we approximate the characteristic equa-
tion (12.13) for large s and k, hence

acl(s) = b(s)
(a(s)

b(s)
+ k
)
≈ b(s)

(snpe

b0
+ k
)
. (12.14)

For large k the closed loop poles are approximately the roots of b(s) and npe
√
−b0k.

A better approximation of (12.14) is

s = s0 +
npe
√
−kb0, s0 =

1

npe

(
n

∑
k=1

pk−
m

∑
k=1

zk

)

, (12.15)

see Exercise 12.11. The asymptotes are thus npe lines that radiate from s = s0,
the center of mass of poles and zeros. When b0k > 0 the lines have the angles
(π +2lπ)/npe, l = 1, · · · ,npe with the real line. Figure 12.13 shows the asymptotes
of the root locus for large gain for different values of the pole excess npe.

Summarizing we find that he root locus thus has n branches that start at the
loop poles and end either at the open loop poles or at infinity. The branches that
ends at infinity have the star-patterned asymptotes given by (12.15). An immediate
consequence is that and open loop systems with right half plane zeros or a pole
excess larger than 2 will always be unstable for sufficiently large gains.

There are simple rules for sketching root loci. Let it suffice to mention a few
of them. The root locus has locally the symmetric star pattern at points where
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Figure 12.14: Examples of root loci for processes with the transfer functions Pa(s), Pb(s),
Pc(s) and Pd(s) given by equation (12.16).

there are multiple roots; the number of branches depend on the multiplicity of the
roots. For systems with kb0 > 0 the root locus has segments on the real line where
there are odd numbers of real poles and zeros to the right of the segment, see
Exercise 12.12. It is also straight forward to find direction where a branch of the
rool locus leaves a pole, see Exercise 12.13.

Figure 12.14 show root loci for systems with k > 0 and the transfer functions.

Pa(s) = k
s+1

s2
, Pb(s) = k

s+1

s(s+2)(s2 +2s+4)

Pc(s) = k
s+2

s(s2 +1)
, Pd(s) = k

s2 +2s+2

s(s2 +1)
.

(12.16)

The locus of Pa(s) in Figure 12.14a starts with two roots at the origin and the
pattern locally has the star configuration with n∗ = 2. As the gain increases the
locus bends because of the attraction of the zero. In this particular case the locus
is actually a circle around the zero s = −1. Two roots meet at the real axis, and
there is the typical star pattern. One root goes towards the zero and the other one
goes to infinity along the negative real axis as the gain k increases. The root locus
has the segment (−∞,−1] on the real axis. The locus in Figure 12.14b start at
the open loop poles s = −2,0 and −1± i

√
3. The pole excess is npe = 3 and the

asymptotes which originate from s0 = −1, have the corresponding pattern. The
locus in Figure 12.14c has vertical asymptotes since npe = 2, see Figure 12.13.
The asymptotes originate from s0 = 0.5. The root locus has the segment [−10])
on the real line. The locus in Figure 12.14d has three brances, one is the segment
(−∞,0] on the real line the other segment originate in the complex open loop poles
and end at the open loop zeros.

The root locus is useful for qualitative arguments. For example, it follows from
Figure Figure 12.13 that the closed loop system will always be unstable for suffi-
ciently large gains if the pole excess is larger than npe = 2 or if the process transfer
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function has zeros in the right half plane.
The root locus can also be used for design. Consider for example the system in

Figure 12.14c which can represent PI control of a system with the transfer function

P(s) =
1

s2 +1
, C(s) = k

s+2

s

The root locus in Figure 12.14c shows that the system is unstable for all values
of the controller gain and we can immediately conclude that the process cannot
be stabilized with a PI dontroller. To obtain a stable closed loop system we can
attempt to choose a PID controller with zeros to the left of the undamped poles,
for example

C(s) = k
s2 +2s+2

s
.

The root locus obtained with this controller is shown in Figure 12.14d.
We have illustrated the root locus with a closed loop system with a proportional

controller where the parameter is the gain. The root locus also be used to find the
effects of other parameters as was illustrated in Example 5.15.

12.6 Fundamental Limitations

Although loop shaping gives us a great deal of flexibility in designing the closed
loop response of a system, there are certain fundamental limits on what can be
achieved. We consider here some of the primary performance limitations that can
occur because of difficult dynamics; additional limitations related to robustness are
considered in the next chapter.

Right Half-Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to control. The limitations are
related to poles and zeros in the right half-plane and time delays. To explore the
limitations caused by poles and zeros in the right half-plane we factor the process
transfer function as

P(s) = Pmp(s)Pap(s), (12.17)

where Pmp is the minimum phase part and Pap is the nonminimum phase part, we
require that Pmp has all its zeros in the open left half plane. The factorization is
normalized so that |Pap(iω)| = 1, and the sign is chosen so that Pap has negative
phase. The transfer function Pap is called an all-pass system because it has unit
gain for all frequencies. We have for example

P(s) =
s−2

(s+1)(s−1)
=

s+2

(s+1)2

(s−2)(s+1)

(s+2)(s−1)
. (12.18)

The transfer function Pap does not influence the gain curve in the Bode plot but
it does influence the phase curve. Requiring that the phase margin be ϕm, we get

argL(iωgc) = argPap(iωgc)+ argPmp(iωgc)+ argC(iωgc)≥−π +ϕm, (12.19)
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where C is the controller transfer function. Let ngc be the slope of the gain curve
at the crossover frequency. Since |Pap(iω)|= 1, it follows that

ngc =
d log |L(iω)|

d logω

∣∣∣∣∣
ω=ωgc

=
d log |Pmp(iω)C(iω)|

d logω

∣∣∣∣∣
ω=ωgc

.

If the slope ngc is negative, it has to be larger than −2 for the closed loop system
to be stable. It follows from Bode’s relations, equation (10.8), that

argPmp(iω)+ argC(iω)≈ ngc
π

2
.

Combining this with equation (12.19) gives the following inequality for the allow-
able phase lag of the all-pass part at the gain crossover frequency:

− argPap(iωgc)≤ π−ϕm +ngc
π

2
=: ϕl . (12.20)

In addition we must require that the encirclement condition of the Nyquist theorem
is satisfied.

The condition (12.20), which we call the gain crossover frequency inequality,
shows that the gain crossover frequency must be chosen so that the phase lag of the
nonminimum phase component is not too large. For systems with high robustness
requirements we may choose a phase margin of 60◦ (ϕm = π/3) and a slope ngc =
−1, which gives an admissible phase lag ϕl = π/6 = 0.52 rad (30◦). For systems
where we can accept a lower robustness we may choose a phase margin of 45◦

(ϕm = π/4) and the slope ngc = −1/2, which gives an admissible phase lag ϕl =
π/2 = 1.57 rad (90◦).

The crossover frequency inequality (12.20), shows that nonminimum phase
components impose severe restrictions on possible crossover frequencies. It also
means that there are systems that cannot be controlled with sufficient stability mar-
gins. We illustrate the limitations in a number of commonly encountered situations.

Example 12.7 Zero in the right half-plane
The nonminimum phase part of the process transfer function for a system with a
right half-plane zero is

Pap(s) =
z− s

z+ s
,

where z> 0. Notice that we have z−s in the numerator instead of s−z to satisfy the
condition that Pap should have negative phase. The phase lag of the nonminimum
phase part is

−argPap(iω) = 2arctan
ω

z
.

Since the phase lag of Pap increases with frequency, the inequality (12.20) gives
the following bound on the crossover frequency:

ωgc < z tan(ϕ l/2). (12.21)
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With ϕl = π/3 we get ωgc < 0.6z. Slow right half-plane zeros (z small) therefore
give tighter restrictions on possible gain crossover frequencies than fast right half-
plane zeros. ∇

Time delays also impose limitations similar to those given by zeros in the right
half-plane. We can understand this intuitively from the Padé approximation

e−sτ ≈
1−0.5sτ

1+0.5sτ
=

2/τ− s

2/τ + s
.

A long time delay is thus approximately equivalent to a slow right half-plane zero
z = 2/τ .

Example 12.8 Pole in the right half-plane
The nonminimum phase part of the transfer function for a system with a pole in
the right half-plane is

Pap(s) =
s+ p

s− p
,

where p > 0. The sign of Pap is dictated by the condition that it should have nega-
tive pahse. The phase lag of the nonminimum phase part is

−argPap(iω) = 2arctan
p

ω
,

and the crossover frequency inequality becomes

ωgc >
p

tan(ϕ l/2)
. (12.22)

Right half-plane poles thus require that the closed loop system have a sufficiently
high gain crossover frequency, a consequence is that the actuators must be fast.
With ϕl = π/3 we get ωgc > 1.7p. Fast right half-plane poles (p large) therefore a
larger gain crossover frequency than slower right half-plane poles. The control of
unstable systems imposes minimum bandwidth requirements for process actuators
and sensors. ∇

We will now consider systems with a right half-plane zero z and a right half-
plane pole p. If p = z, there will be cancellation of an unstable system mode and
the system cannot be stabilized. A cancellation of an unstable pole means that the
system has an unstable mode that is not reachable and observable, see Section 8.5.
We can therefore expect that the system is difficult to control if the right half-plane
pole and zero are close. A straightforward way to use the crossover frequency in-
equality is to plot the phase of the nonminimum phase factor Pap of the process
transfer function. Such a plot, which can be incorporated in an ordinary Bode plot,
will immediately show the permissible gain crossover frequencies. An illustration
is given in Figure 12.15, which shows the phase of the transfer functions for sys-
tems with a right half-plane pole/zero pair and systems with a right half-plane pole
and a time delay. The transfer functions of the systems are

Pap(s) =
(bs−1)(s+1)

(bs+1)(s−1)
, Pap(s) =

s+1

s−1)
e−τs (12.23)
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Figure 12.15: Example limitations due to the gain crossover frequency inequality. The fig-
ures show the phase lag of the all-pass factor Pap as a function of frequency for the systems
(12.23). Since the phase lag of Pap at the gain crossover frequency cannot be too large, it
is necessary to choose the gain crossover frequency properly. All systems have a right half-
plane pole at s = 1. The system in (a) has zeros at s = 2, 5, 20 and 100 (solid lines) and at
s = 0.5, 0.2, 0.05 and 0.01 (dashed lines). The system in (b) has time delays τ = 0.02 0.1,
0.5 and 1.

To illustrate the limitations we will introduce numerical values. If we require that
the phase lag ϕ l of the nonminimum phase factor be less than 90◦, we must require
that the ratio z/p be larger than 6 or smaller than 1/6 for systems with right half-
plane poles and zeros and that the product pτ be less than 0.3 for systems with
a time delay and a right half-plane pole. Notice the symmetry in the problem for
z > p and z < p: in either case the zeros and the poles must be sufficiently far apart
(Exercise 12.15). Also notice that possible values of the gain crossover frequency
ωgc are quite restricted.

Using the theory of functions of complex variables, it can be shown that for
systems with a right half-plane pole p and a right half-plane zero z (or a time delay
τ), any stabilizing controller gives sensitivity functions with the property

sup
ω

|S(iω)|≥
p+ z

|p− z|
, sup

ω
|T (iω)|≥ epτ . (12.24)

This result is proven in Exercise 12.16.
As the examples above show, right half-plane poles and zeros significantly limit

the achievable performance of a system, hence one would like to avoid these when-
ever possible. The poles of a system depend on the intrinsic dynamics of the sys-
tem and are given by the eigenvalues of the dynamics matrix A of a linear system.
Sensors and actuators have no effect on the poles; the only way to change poles
is to redesign the system. Notice that this does not imply that unstable systems
should be avoided. Unstable system may actually have advantages; one example is
high-performance supersonic aircraft.

The zeros of a system depend on how the sensors and actuators are coupled to
the states. The zeros depend on all the matrices A, B, C and D in a linear system.
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The zeros can thus be influenced by moving the sensors and actuators or by adding
sensors and actuators.

Example 12.9 Balance system
As an example of a system with both right half-plane poles and zeros, consider
the balance system with zero damping shown in Example 3.1, whose dynamics are
given by

HθF =
ml

−(MtJt −m2l2)s2 +mglMt
,

HpF =
−Jts

2 +mgl

s2
(
−(MtJt −m2l2)s2 +mglMt

) .

Assume that we want to stabilize the pendulum by using the cart position as the
measured signal. The transfer function from the input force F to the cart position
p has poles {0,0,±

√
mglMt/(MtJt −m2l2)} and zeros {±

√
mgl/Jt}. Using the

parameters in Example 7.7, the right half-plane pole is at p = 2.68 and the zero
is at z = 2.09. Equation (12.24) then gives |S(iω)| ≥ 8, which shows that it is not
possible to control the system robustly.

The right half-plane zero of the system can be eliminated by changing the out-
put of the system. For example, if we choose the output to correspond to a position
at a distance r along the pendulum, we have y= p−r sinθ and the transfer function
for the linearized output becomes

Hy,F = HpF − rHθF =
(mlr− Jt)s2 +mgl

s2
(
−(MtJt −m2l2)s2 +mglMt

) .

If we choose r sufficiently large, then mlr− Jt > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary zeros. The gain crossover
frequency inequality is then based just on the right half-plane pole (Example 12.8).
If our admissible phase lag for the nonminimum phase part is ϕl = 45◦, then our
gain crossover must satisfy

ωgc >
p

tan(ϕl/2)
= 6.48 rad/s.

If the actuators have sufficiently high bandwidth, e.g., a factor of 10 above ωgc or
roughly 10 Hz, then we can provide robust tracking up to this frequency. ∇

Bode’s Integral Formula

In addition to providing adequate phase margin for robust stability, a typical con-
trol design will have to satisfy performance conditions on the sensitivity functions
(Gang of Four). In particular, the sensitivity function S= 1/(1+PC) represents the
disturbance attenuation and also relates the tracking error e to the reference signal
r: we usually want the sensitivity to be small over the range of frequencies where
we want small tracking error and good disturbance attenuation. A basic problem
is to investigate if S can be made small over a large frequency range. We will start
by investigating an example.
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Example 12.10 System that admits small sensitivities
Consider a closed loop system consisting of a first-order process and a proportional
controller. Let the loop transfer function be

L(s) = PC =
k

s+1
,

where parameter k is the controller gain. The sensitivity function is

S(s) =
s+1

s+1+ k

and we have

|S(iω)|=

√
1+ω2

1+2k+ k2 +ω2
.

This implies that |S(iω)|< 1 for all finite frequencies and that the sensitivity can be
made arbitrarily small for any finite frequency by making k sufficiently large. ∇

The system in Example 12.10 is unfortunately an exception. The key feature
of the system is that the Nyquist curve of the process is completely contained
in the right half-plane. Such systems are called passive, their transfer functions
are positive real and their physics is associated with energy dissipation. For typ-
ical control systems there are severe constraints on the sensitivity function. The
following theorem, due to Bode, provides insights into the limits of performance
under feedback.

Theorem 12.1 (Bode’s integral formula). Let S(s) be the sensitivity function of
an internally stable system with loop transfer function L(s). Assume that the loop
transfer function L(s) is such that sL(s) goes to zero as s→ ∞, then the sensitivity
function satisfies the following integral:

∫ ∞

0
log |S(iω)|dω =

∫ ∞

0
log

1

|1+L(iω)|
dω = π ∑ pk. (12.25)

where the sum is over the right half plane poles pk of L(s).

Equation (12.25) implies that there are fundamental limitations to what can
be achieved by control and that control design can be viewed as a redistribution
of disturbance attenuation over different frequencies. In particular, this equation
shows that if the sensitivity function is made smaller for some frequencies, it must
increase at other frequencies so that the integral of log |S(iω)| remains constant.
This means that if disturbance attenuation is improved in one frequency range, it
will be worse in another, a property sometime referred to as the waterbed effect. It
also follows that systems with open loop poles in the right half-plane have larger
overall sensitivity than stable systems.

Equation (12.25) can be regarded as a conservation law: if the loop transfer
function has no poles in the right half-plane, the equation simplifies to

∫ ∞

0
log |S(iω)|dω = 0.
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Figure 12.16: Interpretation of the waterbed effect. The function log |S(iω)| is plotted versus
ω in linear scales in (a). According to Bode’s integral formula (12.25), the area of log |S(iω)|
above zero must be equal to the area below zero. Gunter Stein’s interpretation of design as a
trade-off of sensitivities at different frequencies is shown in (b) (from [Ste03]).

This formula can be given a nice geometric interpretation as illustrated in Fig-
ure 12.16, which shows log |S(iω)| as a function of ω . The area over the horizontal
axis must be equal to the area under the axis when the frequency is plotted on a
linear scale. Thus if we wish to make the sensitivity smaller up to some frequency
ωsc, we must balance this by increased sensitivity above ωsc. Control system de-
sign can be viewed as trading the disturbance attenuation at some frequencies for
disturbance amplification at other frequencies. Notice that the system in Exam-
ple 12.10 violates the condition that lims→∞ sL(s) = 0 and hence the integral for-
mula does not apply.

There is a result analogous to equation (12.25) for the complementary sensitiv-
ity function: ∫ ∞

0

log |T (iω)|
ω2

dω = π ∑
1

zi
, (12.26)

where the summation is over all right half-plane zeros. Notice that slow right half-
plane zeros are worse than fast ones and that fast right half-plane poles are worse
than slow ones.

Example 12.11 X-29 aircraft
As an example of the application of Bode’s integral formula, we present an anal-
ysis of the control system for the X-29 aircraft (see Figure 12.17a), which has an
unusual configuration of aerodynamic surfaces that are designed to enhance its
maneuverability. This analysis was originally carried out by Gunter Stein in his
article “Respect the Unstable” [Ste03], which is also the source of the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parameters that describe
the key properties of the system. The X-29 has longitudinal dynamics that are very
similar to inverted pendulum dynamics (Exercise 9.3) and, in particular, have a
pair of poles at approximately p = ±6 and a zero at z = 26. The actuators that
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(a) X-29 aircraft
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Figure 12.17: X-29 flight control system. The aircraft makes use of forward swept wings and
a set of canards on the fuselage to achieve high maneuverability (a). The desired sensitivity
for the closed loop system is shown in (b). We seek to use our control authority to shape the
sensitivity curve so that we have low sensitivity (good performance) up to frequency ω1 by
creating higher sensitivity up to our actuator bandwidth ωa.

stabilize the pitch have a bandwidth of ωa = 40 rad/s and the desired bandwidth of
the pitch control loop is ω1 = 3 rad/s. Since the ratio of the zero to the pole is only
4.3, we may expect that it may be difficult to achieve the specifications.

To evaluate the achievable performance, we search for a control law such that
the sensitivity function is small up to the desired bandwidth and not greater than
Ms beyond that frequency. Because of the Bode integral formula, we know that
Ms must be greater than 1 at high frequencies to balance the small sensitivity at
low frequency. We thus ask if we can find a controller that has the shape shown
in Figure 12.17b with the smallest value of Ms. Note that the sensitivity above the
frequency ωa is not specified since we have no actuator authority at that frequency.
However, assuming that the process dynamics fall off at high frequency, the sen-
sitivity at high frequency will approach 1. Thus, we desire to design a closed loop
system that has low sensitivity at frequencies below ω1 and sensitivity that is not
too large between ω1 and ωa.

From Bode’s integral formula, we know that whatever controller we choose,
equation (12.25) must hold. We will assume that the sensitivity function is given
by

|S(iω)|=

{
ωMs
ω1

ω ≤ ω1

Ms ω1 ≤ ω ≤ ωa,

corresponding to Figure 12.17b. If we further assume that |L(s)| ≤ δ/ω2 for fre-
quencies larger than the actuator bandwidth, Bode’s integral becomes

∫ ∞

0
log |S(iω)|dω =

∫ ωa

0
log |S(iω)|dω

=
∫ ω1

0
log

ωMs

ω1
dω +(ωa−ω1) logMs = π p.

Evaluation of the integral gives −ω1 +ωa logMs = π p or

Ms = e(π p+ω1)/ωa .
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Figure 12.18: Contour used to prove Bode’s theorem. For each right half-plane pole we
create a path from the imaginary axis that encircles the pole as shown. To avoid clutter we
have shown only one of the paths that enclose one right half-plane.

This formula tells us what the achievable value of Ms will be for the given control
specifications. In particular, using p = 6, ω1 = 3 and ωa = 40 rad/s, we find that
Ms = 1.75, which means that in the range of frequencies between ω1 and ωa,
disturbances at the input to the process dynamics (such as wind) will be amplified
by a factor of 1.75 in terms of their effect on the aircraft.

Another way to view these results is to compute the phase margin that corre-
sponds to the given level of sensitivity. Since the peak sensitivity normally occurs
at or near the crossover frequency, we can compute the phase margin correspond-
ing to Ms = 1.75. As shown in Exercise 12.17, the maximum achievable phase
margin for this system is approximately 35◦, which is below the usual design limit
of 45◦ in aerospace systems. The zero at s= 26 limits the maximum gain crossover
that can be achieved. ∇

Derivation of Bode’s Formula
!

We now derive Bode’s integral formula (Theorem 12.1). This is a technical section
that requires some knowledge of the theory of complex variables, in particular
contour integration. Assume that the loop transfer function has distinct poles at
s = pk in the right half-plane and that L(s) goes to zero faster than 1/s for large
values of s.

Consider the integral of the logarithm of the sensitivity function S(s) = 1/(1+
L(s)) over the contour shown in Figure 12.18. The contour encloses the right half-
plane except for the points s = pk where the loop transfer function L(s) = P(s)C(s)
has poles and the sensitivity function S(s) has zeros. The direction of the contour
is counterclockwise.

The integral of the log of the sensitivity function around this contour is given
by

∫

Γ
log(S(s))ds =

∫ −iR

iR
log(S(s))ds+

∫

R
log(S(s))ds+∑

k

∫

γ
log(S(s))ds

= I1 + I2 + I3 = 0,
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where R is a large semicircle on the right and γk is the contour starting on the
imaginary axis at s = Im pk and a small circle enclosing the pole pk. The integral
is zero because the function logS(s) is analytic inside the contour. We have

I1 =−i

∫ R

−R
log(S(iω))dω =−2i

∫ R

0
log(|S(iω)|)dω

because the real part of logS(iω) is an even function and the imaginary part is an
odd function. Furthermore we have

I2 =
∫

R
log(S(s))ds =−

∫

R
log(1+L(s))ds≈−

∫

R
L(s)ds.

Since L(s) goes to zero faster than 1/s for large s, the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integral I3. For this purpose we split the contour into three
parts X+, γ and X−, as indicated in Figure 12.18. We can then write the integral as

I3 =
∫

X+

logS(s)ds+
∫

γ
logS(s)ds+

∫

X−
logS(s)ds.

The contour γ is a small circle with radius r around the pole pk. The magnitude of
the integrand is of the order logr, and the length of the path is 2πr. The integral
thus goes to zero as the radius r goes to zero. Since S(s)≈ k/(s− pk) close to the
pole, the argument of S(s) decreases by 2π as the contour encircles the pole. On
the contours X+ and X− we therefore have

|SX+ |= |SX− |, argSX− = argSX+−2π.

Hence
log(SX+)− log(SX−) = 2πi,

and we get ∫

X+

logS(s)ds+
∫

X−
logS(s)ds = 2π i Re pk.

Repeating the argument for all poles pk in the right half plane, letting the small
circles go to zero gives

I1 + I2 + I3 =−2i

∫ ∞

0
log |S(iω)|dω + i ∑

k

2π Re pk = 0.

Since complex poles appear as complex conjugate pairs, ∑k Re pk = ∑k pk, which
gives Bode’s formula (12.25).

12.7 Design Example

In this section we present a detailed example that illustrates the main design tech-
niques described in this chapter.

Example 12.12 Lateral control of a vectored thrust aircraft
The problem of controlling the motion of a vertical takeoff and landing (VTOL)
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Figure 12.19: Inner/outer control design for a vectored thrust aircraft. The inner loop Hi

controls the roll angle of the aircraft using the vectored thrust. The outer loop controller Co

commands the roll angle to regulate the lateral position. The process dynamics are decom-
posed into inner loop (Pi) and outer loop (Po) dynamics, which combine to form the full
dynamics for the aircraft.

.

aircraft was introduced in Example 3.11 and in Example 12.6, where we designed
a controller for the roll dynamics. We now wish to control the position of the
aircraft, a problem that requires stabilization of the attitude. The system thus has
two control loops.

To control the lateral dynamics of the vectored thrust aircraft, we make use of
a “inner/outer” loop design methodology, as illustrated in Figure 12.19. This dia-
gram shows the process dynamics and controller divided into two components: an
inner loop consisting of the roll dynamics and control and an outer loop consist-
ing of the lateral position dynamics and controller. This decomposition follows the
block diagram representation of the dynamics given in Exercise 9.10.

The approach that we take is to design a controller Ci for the inner loop so
that the resulting closed loop system Hi assures that the roll angle θ follows its
reference θr fast and accurately. We then design a controller for the lateral position
y that uses the approximation that we can directly control the roll angle as an
input θ to the dynamics controlling the position. Under the assumption that the
dynamics of the roll controller are fast relative to the desired bandwidth of the
lateral position control, we can then combine the inner and outer loop controllers
to get a single controller for the entire system. As a performance specification
for the entire system, we would like to have zero steady-state error in the lateral
position, a bandwidth of approximately 1 rad/s and a phase margin of 45◦.

For the inner loop, we choose our design specification to provide the outer loop
with accurate and fast control of the roll. The inner loop dynamics are given by

Pi = Hθu1
=

r

Js2
.

We choose the desired bandwidth to be 10 rad/s (10 times that of the outer loop)
and the low-frequency error to be no more than 5%. This specification is satisfied
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Figure 12.20: Outer loop control design for a vectored thrust aircraft. (a) The outer loop
approximates the roll dynamics as a state gain−mg. (b) The Bode plot for the roll dynamics,
indicating that this approximation is accurate up to approximately 10 rad/s.

using the lead compensator of Example 12.6 designed previously, so we choose

Ci(s) = k
s+a

s+b
, a = 2, b = 50, k = 1.

The closed loop dynamics for the system satisfy

Hi =
Ci

1+CiPi
−mg

CiPi

1+CiPi
=

Ci(1−mgPi)

1+CiPi
.

A plot of the magnitude of this transfer function is shown in Figure 12.20, and we
see that Hi ≈−mg =−39.2 is a good approximation up to 10 rad/s.

To design the outer loop controller, we assume the inner loop roll control is
perfect, so that we can take θd as the input to our lateral dynamics. Following the
diagram shown in Exercise 9.10, the outer loop dynamics can be written as

P(s) = Hi(0)Po(s) =
Hi(0)

ms2 + cs
,

where we replace Hi(s) with Hi(0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, this approximation may not
be valid, and so we must verify this when we complete our design.

Our control goal is now to design a controller that gives zero steady-state er-
ror in y for a step input and has a bandwidth of 1 rad/s. The outer loop process
dynamics are given by a double integrator, and we can again use a simple lead
compensator to satisfy the specifications. We also choose the design such that the
loop transfer function for the outer loop has |Lo| < 0.1 for ω > 10 rad/s, so that
the Hi high frequency dynamics can be neglected. We choose the controller to be
of the form

Co(s) =−ko
s+ao

s+bo
,

with the negative sign to cancel the negative sign in the process dynamics. To find
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Figure 12.21: Inner/outer loop controller for a vectored thrust aircraft. Bode plot (a) and
Nyquist plot (b) for the loop transfer function cut at θd , for the complete system. The system
has a phase margin of 68◦ and a gain margin of 6.2.

the location of the poles, we note that the phase lead flattens out at approximately
bo/10. We desire phase lead at crossover, and we desire the crossover at ωgc =
1 rad/s, so this gives bo = 10. To ensure that we have adequate phase lead, we must
choose ao such that bo/10 < 10ao < bo, which implies that ao should be between
0.1 and 1. We choose ao = 0.3. Finally, we need to set the gain of the system such
that at crossover the loop gain has magnitude 1. A simple calculation shows that
ko = 2 satisfies this objective. Thus, the final outer loop controller becomes

Co(s) =−2
s+0.3

s+10
.

Finally, we can combine the inner and outer loop controllers and verify that
the system has the desired closed loop performance. The Bode and Nyquist plots
corresponding to Figure 12.19 with inner and outer loop controllers are shown in
Figure 12.21, and we see that the specifications are satisfied. In addition, we show
the Gang of Four in Figure 12.22, and we see that the transfer functions between
all inputs and outputs are reasonable. The sensitivity to load disturbances PS is
large at low frequency because the controller does not have integral action.

The approach of splitting the dynamics into an inner and an outer loop is com-
mon in many control applications and can lead to simpler designs for complex
systems. Indeed, for the aircraft dynamics studied in this example, it is very chal-
lenging to directly design a controller from the lateral position y to the input u1.
The use of the additional measurement of θ greatly simplifies the design because
it can be broken up into simpler pieces. ∇

12.8 Further Reading

Design by loop shaping was a key element in the early development of control, and
systematic design methods were developed; see James, Nichols and Phillips [JNP47],
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Figure 12.22: Gang of Four for vectored thrust aircraft system.

Chestnut and Mayer [CM51], Truxal [Tru55] and Thaler [Tha89]. Loop shap-
ing is also treated in standard textbooks such as Franklin, Powell and Emami-
Naeini [FPEN05], Dorf and Bishop [DB04], Kuo and Golnaraghi [KG02] and
Ogata [Oga01]. Systems with two degrees of freedom were developed by Horowitz [Hor63],
who also discussed the limitations of poles and zeros in the right half-plane. Fun-
damental results on limitations are given in Bode [Bod45]; more recent presenta-
tions are found in Goodwin, Graebe and Salgado [GGS01]. The treatment in Sec-
tion 12.6 is based on [Åst00]. Much of the early work was based on the loop trans-
fer function; the importance of the sensitivity functions appeared in connection
with the development in the 1980s that resulted in H∞ design methods. A compact
presentation is given in the texts by Doyle, Francis and Tannenbaum [DFT92] and
Zhou, Doyle and Glover [ZDG96]. Loop shaping was integrated with the robust
control theory in McFarlane and Glover [MG90] and Vinnicombe [Vin01]. Com-
prehensive treatments of control system design are given in Maciejowski [Mac89]
and Goodwin, Graebe and Salgado [GGS01].

Exercises

12.1 Consider the system in Figure 12.1. Give all signal pairs that are related by
the transfer functions 1/(1+PC), P/(1+PC), C/(1+PC) and PC/(1+PC).

12.2 Consider the system in Example 12.1. Choose the parameters a = −1 and
compute the time and frequency responses for all the transfer functions in the Gang
of Four for controllers with k = 0.2 and k = 5.

12.3 (Equivalence of Figures 12.1 and 12.2) Consider the system in Figure 12.1
and let the outputs of interest be z = (η ,ν) and the major disturbances be w =
(n,d). Show that the system can be represented by Figure 12.2 and give the matrix
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transfer functions P and C . Verify that the elements of the closed loop transfer
function Hzw are the Gang of Four.

12.4 Consider the spring–mass system given by (3.16), which has the transfer
function

P(s) =
1

ms2 + cs+ k
.

Design a feedforward compensator that gives a response with critical damping
(ζ = 1).

12.5 (Sensitivity of feedback and feedforward) Consider the system in Figure 12.1
and let Gyr be the transfer function relating the measured signal y to the reference
r. Show that the sensitivities of Gyr with respect to the feedforward and feedback
transfer functions F and C are given by dGyr/dF =CP/(1+PC) and dGyr/dC =
FP/(1+PC)2 = GyrS/C.

12.6 (Equivalence of controllers with two degrees of freedom) Show that the sys-
tems in Figures 12.1 and 12.3 give the same responses to command signals if
FmC+Fu =CF .

12.7 (Disturbance attenuation) Consider the feedback system shown in Figure 12.1.
Assume that the reference signal is constant. Let yol be the measured output when
there is no feedback and ycl be the output with feedback. Show that Ycl(s) =
S(s)Yol(s), where S is the sensitivity function.

12.8 (Disturbance reduction through feedback) Consider a problem in which an
output variable has been measured to estimate the potential for disturbance attenu-
ation by feedback. Suppose an analysis shows that it is possible to design a closed
loop system with the sensitivity function

S(s) =
s

s2 + s+1
.

Estimate the possible disturbance reduction when the measured disturbance is

y(t) = 5sin(0.1 t)+3sin(0.17 t)+0.5cos(0.9 t)+0.1 t.

12.9 Show that the effect of high frequency measurement noise on the control
signal for the system in Example 12.4 can be approximated by

CS≈C =
kds

(sTf )2 /2+ sTf +1
,

and that the largest value of |CS(iω)| is kd/Tf which occurs for ω =
√

2/Tf .

12.10 (Attenuation of low-frequency sinusoidal disturbances) Integral action elim-
inates constant disturbances and reduces low-frequency disturbances because the
controller gain is infinite at zero frequency. A similar idea can be used to reduce the
effects of sinusoidal disturbances of known frequency ω0 by using the controller

C(s) = kp +
kss

s2 +2ζ ω0s+ω2
0

.



12-36 CHAPTER 12. FREQUENCY DOMAIN DESIGN

This controller has the gain Cs(iω0) = kp + ks/(2ζ ) for the frequency ω0, which
can be large by choosing a small value of ζ . Assume that the process has the
transfer function P(s) = 1/s. Determine the Bode plot of the loop transfer function
and simulate the system. Compare the results with PI control.

12.11 (Asymptotes of root locus) Consider proportional control of a system with
the transfer function

P(s) =
b(s)

a(s)
=

b0sm +b1sm−1 + · · ·bm

sn +a1sn−1 + · · ·an
= b0

(s− z1)(s− z2) . . .(s− zm)

(s− p1)(s− p2) · · ·(s− pn)
.

Show that the root locus has asymptotes that are straight line that emerge from the
point

s0 =
1

ne

( n

∑
k=1

pk−
m

∑
k=1

zk

)
,

where ne = n−m is the pole excess of the transfer function.

12.12 (Real line segments of root locus) Consider proportional control a process
with a rational transfer function. Assume that bok > 0, show that the root locus has
segments on the real line there are an odd number of real poles and zeros to the
right the segment.

12.13 (Initial direction of root locus) Consider proportional control of a system
with the transfer function

P(s) =
b(s)

a(s)
=

b0sm +b1sm−1 + · · ·bm

sn +a1sn−1 + · · ·an
= b0

(s− z1)(s− z2) . . .(s− zm)

(s− p1)(s− p2) · · ·(s− pn)
.

Let p j be an isolated pole and assume that kbp > 0. Show that the root locus
starting at p j has the initial direction.

∠(s− p j) = π +Σm
k=1∠(p j− sk)−Σk ̸= j∠(p j− pk).

Give a geometric interpretation of the result.

12.14 Consider a lead compensator with the transfer function

Cn(s) =
(s

n
√

k+a

s+a

)n
,

which has zero frequency gain C(0) = 1 and high-frequency gain C(∞) = k. Show
that the gain required to give a given phase lead ϕ is

k =
(

1+2tan2(ϕ/n)+2tan(ϕ/n)
√

1+ tan2(ϕ/n)
)n

,

and that lim
n→∞

k = e2ϕ .

12.15 Consider a process with the loop transfer function

L(s) = k
z− s

s− p
,
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with positive z and p. Show that the system is stable if p/z < k < 1 or 1 < k < p/z,
and that the largest stability margin is sm = |p− z|/(p+ z) is obtained for k =
2p/(p+z). Determine the pole/zero ratios that gives the stability margin sm = 2/3.

12.16 Prove the inequalities given by equation (12.24). (Hint: Use the maximum !
modulus theorem.)

12.17 (Phase margin formulas) Show that the relationship between the phase mar-
gin and the values of the sensitivity functions at gain crossover is given by

|S(iωgc)|= |T (iωgc)|=
1

2sin(ϕm/2)
.

12.18 (Stabilization of an inverted pendulum with visual feedback) Consider sta-
bilization of an inverted pendulum based on visual feedback using a video camera
with a 50-Hz frame rate. Let the effective pendulum length be l. Assume that we
want the loop transfer function to have a slope of ngc = −1/2 at the crossover
frequency. Use the gain crossover frequency inequality to determine the minimum
length of the pendulum that can be stabilized if we desire a phase margin of 45◦.

12.19 (Rear-steered bicycle) Consider the simple model of a bicycle in Equa-
tion (4.5), which has one pole in the right half-plane. The model is also valid for
a bicycle with rear wheel steering, but the sign of the velocity is then reversed and
the system also has a zero in the right half-plane. Use the results of Exercise 12.15
to give a condition on the physical parameters that admits a controller with the
stability margin sm.

12.20 Prove the formula (12.26) for the complementary sensitivity. !
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