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Chapter Fourteen
Fundamental Limits

Many people have seen theoretical advantages in the facts that front-drive rear-steering re-

cumbent bicycles would have simpler transmissions than rear-drive recumbents and could

have the center of mass nearer to the front wheel than the rear. The U.S. Department of

Transportation commissioned the construction of a safe motorcycle with this configuration.

It turned out to be safe in an unexpected way: No one could ride it.

F. R. Whitt and D. G. Wilson, Bicycling Science [?]

In this chapter we will discuss properties that limit performance and robust-
ness of a control system. They include nonlinear behaviors that appear at large and
small signal levels and linear non-minimum phase behaviors. Large signal limits
are caused by limited rate and power of actuators, or constraints required to pro-
tect the process. Small signal limits are caused by measurement noise, friction,
and quantization in converters. Non-minimum phase dynamics, due to time delays
and right half-plane poles and zeros, impose severe limits. We will also discuss
consequences of the limits for loop shaping and pole placement design.

14.1 Effects of Design Decisions

A designer should be aware of the fundamental limits of feedback systems and be
able to deal with them at an early stage of process design. Awareness of the limits
and co-design of the process and the controller are good ways to avoid potential
difficulties both for system and control designers.

The limits alluded to in the chapter quote are due to time delays and poles and
zeros in the right half-plane. A typical case is that a process with a right half-plane
pole/zero pair cannot be controlled robustly if the pole is close to the zero.

The poles of a system depend on the intrinsic dynamics of the system; they
represent the modes of the system and they are given by the eigenvalues of the
dynamics matrix A of the linearized model. Sensors and actuators have no effect
on the poles; the only way to change poles is by feedback or by redesign of the
process. Note that this does not imply that unstable systems should always be
avoided, because instability may actually have advantages; typical examples are
when high maneuverability is desired, as in high-performance aircraft.

The zeros of a system depend on how the sensors and actuators are connected
to the process. Zeros can be changed by moving or adding sensors and actuators,
which is often simpler than redesigning the process dynamics. Time delays may
appear in the process, in communication channels, and in computations.
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14.2 Nonlinear Effects

Although we focus primarily on linear systems in this chapter, there are some
nonlinearities that must be considered when designing a control system. Limits
on actuation power set bounds on response speed. Nonlinearities due to friction,
round-off error in A/D and D/A converters, and numerical representations in com-
putation bound the precision that can be obtained in regulation and tracking.

Actuation Limits

Many limits are associated with constraints on how large signals and variables can
be. Motors have limited torque, amplifiers have limits on currents, and pumps have
limited flow. There are also limits due to equipment protection: the temperature of
a component must not be too high and compressor stall must be avoided, for exam-
ple. Limits may appear as restrictions on the amplitude and the rate of change of
the control signal. There may also be restrictions on internal process variables and
their rates. We begin with an example where actuators do not have the sufficient
power to counteract the load disturbances disturbances.

Example 14.1 Current limits in servo systems
Response time is a common requirement for motor drives. The achievable response
time depends critically on actuation power and physical limits of the process. To
determine the response time we can compute the minimum time to make transi-
tions from one state to the other, subject to the physical constraints on the process
and the actuator.

Consider a simple servo system where the actuator is a current-driven voice
coil. The system can be modeled by

m
d2x

dt2
= F = kI, (14.1)

where m is the mass of the system, x is the position of the mass, F is the force, I
is the current through the voice coil, and k is the motor constant. The maximum
acceleration amax = Fmax/m = kImax/m is given by the maximum current Imax.
There is also a limit on the maximum velocity: for a voice coil drive the maximum
velocity is vmax =Vmax/k, where Vmax is the largest supply voltage.

If there is no limit on the velocity, the problem of moving the mass from one
position to another in minimum time is simply to apply maximum acceleration
until the mid position is reached and then apply maximum deceleration, so-called
“bang-bang” control. If there is a velocity limit, the maximum acceleration is only
applied until the maximum velocity is reached. The minimum time solution is il-
lustrated in Figure 14.1. When the acceleration a is constant, the velocity increases
as v(t) = at and the position is x(t) = at2/2 = v2(t)/(2a). A straightforward cal-
culation shows that the minimum time for a transition over a distance ℓ with zero
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(b) Velocity saturation

Figure 14.1: Minimum time transition for a servo system. (a) The case of short movements
when the velocity does not reach the saturation limit. The control is of the “bang-bang” type
where maximum current is applied to accelerate or brake. (b) Illustration of what happens
for large motions. Full acceleration amax = 500 m/s2 is applied until t = 5 ms when max-
imum velocity vmax = 2 m/s is reached and the drive circuit saturates. The current is then
zero until time t = 10 ms when full braking current is applied. The parameter values are
m = 2.5×10−3 kg, k = 2.5 N/A = 2.5 Vs/m, Imax = 0.5 A, and Vmax = 5 V.

velocity at start and end is

t =

{
2
√
ℓ/amax if ℓ≤ v2

max/amax,

ℓ/vmax + vmax/amax if ℓ> v2
max/amax.

(14.2)

We can derive requirements on the actuator from this equation. ∇

This simple example can be solved analytically. Software for computing mini-
mum time control is readily available for more complex systems.

Measurement Noise and Friction

There are many sources of measurement noise: the physics of the sensor, the elec-
tronics, the transmission equipment, and the A/D and D/A converters. The con-
troller in a closed loop system feeds measurement noise into the system, creating
variations in all variables. Variations in the output limits regulation and tracking
performance. Variations in the control signal causes wear or even saturation of
the actuator, and cannot be permitted to be too large. Since measurement noise is
typically dominated by high frequencies, it limits the high frequency gain of the
controller, the bandwidth, and thus the response time of the closed loop system.

The effects of measurement noise and quantization can be estimated using lin-
ear methods by calculating the transfer function from the noise sources to the con-
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v = ṗ
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(a) Balance system with state feedback

v

G(s)

F
Friction

(b) Transformed diagram

Figure 14.2: Block diagrams of a balance system with state feedback and friction. Figure
(a) is a detailed block diagram, which shows the the balance system with inputs u and F and
outputs p, θ , v = ṗ, θ̇ . Figure (b) shows the block diagram obtained after transformations.
It has two blocks: the nonlinear friction block a linear block with the transfer function G(s)
from friction force F to velocity v.

trol signal and the process variables, and they can be alleviated by filtering and a
controller with high-frequency roll-off. Quantization can be approximated as noise
with a variance of δ 2/12, where δ is the quantization level.

Friction typically generates oscillations that limit regulation and tracking per-
formance. Similar oscillations can be caused by quantization. Oscillations can
be reduced by nonlinear friction compensation. Friction is inherently a nonlin-
ear phenomenon, and accurate analysis requires nonlinear methods. Some insight
can, however, be derived using the describing function method discussed in Sec-
tion 10.5. We illustrate with an example.

Example 14.2 Effect of friction in a cart-pendulum system
The cart-pendulum or balance system was introduced in Example 3.2 and we de-
signed a state feedback for it in Example 7.7. Experiments with cart-pendulum
systems have shown that friction on the cart creates oscillations. To explore this
we will investigate the effects of friction by simulation and analysis.

A block diagram of the system with friction is shown in Figure 14.2a. To sim-
ulate the system we use Coulomb’s model for friction, where the friction force is
F is given by

F =−µfMtgsgn(v), (14.3)

where µf = 0.001 is the coefficient for rolling friction, Mt is the total mass, g is
the acceleration of gravity, and v is the cart velocity. We use the parameter values
from Example 3.2, and the controller is the state space feedback in Example 7.7
with the slower closed loop poles. Results of a simulation of the system are shown
in Figure 14.3a. The upper plots in the figure show the cart position p (left) and
the pendulum angle θ (right), and the lower plots show the cart velocity v = ṗ
(left) and the angular velocity of the pendulum θ̇ (right). The plots show clearly
that there are oscillations with period Tp = 37 s. The oscillation of the cart velocity
has the amplitude a ≈ 0.52 m/s. The waveforms of the oscillations are far from
sinusoidal, as can be seen in the plots on the right in Figure 14.3a.

We can make a simple physical argument to understand how friction may cause
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ṗ

θ̇
(a) Pendulum angle and cart velocity

Re

Im

ω = 0.21

(b) Nyquist plot of G

Figure 14.3: Time and frequency responses of the cart-pendulum system. Figure (a) shows
time responses when the pendulum has an initial misalignment. Figure (b) shows the fre-
quency response of the transfer function G(s) (solid line), given by (14.5), and the locus
of the negative inverse −1/N(a) (dashed line) of the describing function N(a) for friction,
which given by (14.4).

oscillation. The pendulum is unstable and will start to fall for any perturbation. The
control law then attempts to stabilize the system by applying a force to the cart,
but the cart will remain stationary until the pendulum has fallen so much that the
control signal is large enough to generate a force that is larger than the friction
force. The cart then moves, causing the pendulum to move towards the upright
position. The process will repeat itself creating an oscillation.

We will now use the describing function method, introduced in Section 10.5,
to understand the behavior of the system. To do this we first use block diagram
algebra to reduce Figure 14.2a to the two-block system in Figure 14.2b. One block
represents the nonlinear friction model (14.3), which has the describing function

N(a) =
4µfMtg

aπ
, (14.4)

where a is the amplitude of the input (cart velocity). The other block in Fig-
ure 14.2b represents the linear closed loop dynamics from friction force F to cart
velocity v, when friction is not present. It has the transfer function

G(s) =
0.01837s3−0.08s

s4 +1.046s3 +0.9109s2 +0.2552s+0.03781
. (14.5)

Figure 14.3b shows a Nyquist plot of the transfer function G (solid line) and
the negative inverse −1/N(a) of the describing function (dashed line). Recall
that the condition for oscillation is G(iω)N(a) = −1, which corresponds to an
intersection of the solid and dashed lines in the figure. The intersection occurs
for ω = 0.21, and 1/N(a) = 0.39. The describing function method then indicates
that there may be an oscillation with period Tp = 2π/0.21 = 30 s and amplitude
a = 4×0.39 µf Mt g/π = 0.43 m/s. Notice that the describing function method as-
sumes that the velocity variation is sinusoidal, which explains the difference from
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the values T = 37 s and a = 0.52 m/s obtained by simulation. ∇

14.3 Bode’s Integral Formula

One of the most important limits in feedback control design was obtained by Bode,
who showed that it was not possible to uniformly improve the performance of cer-
tain closed loop performance characteristics. Bode’s result makes use of the the
sensitivity function S introduced in Section 12.1, which gives an overview of per-
formance and robustness of a closed loop system. Specifically, it describes how dis-
turbances are attenuated by feedback and allows comparison of disturbance attenu-
ation of open and closed loop systems. We recall that disturbances with frequency
ω are attenuated by feedback if |S(iω)| < 1, and disturbances with frequencies
such that |S(iω)|> 1 are amplified. The maximum sensitivity Ms = maxω |S(iω)|
gives the largest amplification and is also a robustness measure, since 1/Ms is equal
to the stability margin sm (see Figure 10.12).

A key observation is that the sensitivity function cannot be made small over a
wide frequency range. There is an invariant (conserved quantity) called Bode’s in-
tegral formula that implies that reducing the sensitivity at one frequency increases
it at another, and the situation is worse if the process has right half-plane poles.
Control design is thus always a compromise. The following theorem captures lim-
its of performance under feedback.

Theorem 14.1 (Bode’s integral formula). Let S(s) be the sensitivity function of an
internally stable closed loop system with loop transfer function L(s). Assume that
the loop transfer function L(s) is such that sL(s) goes to zero as s→ ∞. Then the
sensitivity function has the property

∫ ∞

0
log |S(iω)|dω =

∫ ∞

0
log

1

|1+L(iω)|
dω = π ∑ pk. (14.6)

where the sum is over the right half-plane poles pk of L(s).

Equation (14.6) implies that if we design a controller that decreases the effect of
disturbances for some frequencies it will increase the effect for other frequencies
because the integral of log |S(iω)| remains constant. This property is sometimes
referred to as the waterbed effect. It also follows that systems with open loop poles
in the right half-plane have larger overall sensitivity than stable systems.

Equation (14.6) can be regarded as a conservation law: if the loop transfer
function has no poles in the right half-plane, the equation simplifies to

∫ ∞

0
log |S(iω)|dω = 0.

This formula can be given a nice geometric interpretation as illustrated in Fig-
ure 14.4, which shows log |S(iω)| as a function of ω . The area over the horizon-
tal axis must be equal to the area under the axis when the frequency is plotted
on a linear scale. Thus if we wish to make the sensitivity smaller up to some
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Figure 14.4: Interpretation of the waterbed effect. The function log |S(iω)| is plotted versus
ω in linear scales in (a). According to Bode’s integral formula (14.6), the area of log |S(iω)|
above zero must be equal to the area below zero. Gunter Stein’s interpretation of design as a
trade-off of sensitivities at different frequencies is shown in (b) (from [?]).

frequency ωsc, we must balance this by increased sensitivity above ωsc. Control
system design can be viewed as trading the disturbance attenuation at some fre-
quencies for disturbance amplification at other frequencies. Notice that the as-
sumption lims→∞ sL(s) = 0 is essential. Exercise 14.3 shows that without this as-
sumption the sensitivity can be made arbitrarily small. A modification that covers
lims→∞ sL(s) = k is given in Exercise 14.4.

An equation similar to equation (14.6) holds for the complementary sensitivity
function: ∫ ∞

0

log |T (iω)|
ω2

dω = π ∑
1

zi
, T (s) =

L(s)

1+L(s)
, (14.7)

where the summation is over all right half-plane zeros of the loop transfer function
L(s) = P(s)C(s) (Exercise 14.5). Notice that it follows from equation (14.7) that
slow right half-plane zeros are worse than fast ones, just as equation (14.6) implies
that fast right half-plane poles are worse than slow ones.

Example 14.3 The X-29 aircraft
As an illustration of Bode’s integral formula, we present an analysis of the control
system for the X-29 aircraft (see Figure 14.5a), which has an unusual configura-
tion of aerodynamic surfaces that is designed to enhance its maneuverability. This
analysis was originally carried out by Gunter Stein in his inaugural IEEE Bode
lecture “Respect the Unstable” [?].

To analyze the system, we make use of a small set of parameters that describe
the key properties of the system. A typical robustness requirement in aerospace
systems is that the phase margins should be at least ϕm = 45◦. The X-29 has lon-
gitudinal dynamics that are similar to inverted pendulum dynamics (Exercise 9.6).
It has a right half-plane pole at approximately p = 6 rad/s and a right half-plane
zero at z = 26 rad/s. The actuators that stabilize the pitch have a bandwidth of
ωa = 40 rad/s and the desired bandwidth of the pitch control loop is ω1 = 3 rad/s.
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(a) X-29 aircraft
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(b) Sensitivity analysis

Figure 14.5: X-29 flight control system. The aircraft makes use of forward swept wings and
a set of canards on the fuselage to achieve high maneuverability (a). The desired sensitivity
for the closed loop system is shown in (b). We seek to use our control authority to shape the
sensitivity curve so that we have low sensitivity (good performance) up to frequency ω1 by
creating higher sensitivity up to our actuator bandwidth ωa.

To evaluate the achievable performance, we search for a control law such that
the sensitivity function is small up to the desired bandwidth and not greater than
Ms beyond that frequency. Because of Bode’s integral formula, we know that Ms

must be greater than 1 at high frequencies to balance the small sensitivity at low
frequency. We thus ask if we can find a controller that has the shape shown in
Figure 14.5b with the smallest value of Ms. Note that the sensitivity above the fre-
quency ωa is 1 since we have no actuator authority above those frequencies. Thus,
we desire to design a closed loop system that has low sensitivity at frequencies
below ω1 and sensitivity that is not too large between ω1 and ωa.

From Bode’s integral formula, we know that whatever controller we choose,
equation (14.6) must hold. We will assume that the sensitivity function is given by

|S(iω)|=

⎧
⎪⎨

⎪⎩

ω
ω1

Ms ω < ω1,

Ms ω1 ≤ ω < ωa,

1 ωa ≤ ω < ∞,

corresponding to Figure 14.5b. Bode’s integral becomes
∫ ∞

0
log |S(iω)|dω =

∫ ωa

0
log |S(iω)|dω

=
∫ ω1

0
log

ωMs

ω1
dω +(ωa−ω1) logMs = π p.

Integration by parts gives, after some calculation, −ω1 +ωa logMs = π p or

Ms = e(π p+ω1)/ωa .

This formula tells us what the achievable value of Ms will be for the given control
specifications. In particular, using p = 6 rad/s, ω1 = 3 rad/s and ωa = 40 rad/s,
we find that Ms = 1.75, which means that in the range of frequencies between ω1

and ωa, disturbances at the input to the process dynamics (such as wind) will be
amplified by a factor of 1.75 in terms of their effect on the aircraft. With Ms = 1.75
we can also obtain an estimate of the phase margin as ϕm ≥ 2arcsin1/(2Ms) =



14.3. BODE’S INTEGRAL FORMULA 14-9

γ
x+

x-

-

Res

Ims

iR

iR

(a) Closed contour

Meiθ

pk

θ

(b) Open loop pole

Figure 14.6: Contour used to prove Bode’s theorem. For each right half-plane pole pk of the
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33◦ (equation (10.6)), which indicates that the requirement ϕm = 45◦ may not be
achievable.

∇

Derivation of Bode’s Formula
!

Bode’s integral formula (Theorem 14.1) can be derived by contour integration. We
assume that the loop transfer function has distinct poles at s = pk in the right half-
plane and that L(s) goes to zero faster than 1/s for large values of s. Consider the
integral of the logarithm of the sensitivity function S(s) = 1/(1+L(s)) along the
contour D shown in Figure 14.6. The contour encloses the right half-plane except
for the points s = pk where the loop transfer function L(s) = P(s)C(s) has poles
and the sensitivity function S(s) therefore has singularities (only one pk is shown
in the figure). The direction of the contour is counterclockwise. The integral of the
logarithm of the sensitivity function around the contour Γ is given by

I =
∫

Γ
log(S(s))ds = I1 + I2 + I3 = 0.

The integral I is zero because the function logS(s) is analytic with no poles or
zeros inside the contour. The term I1 is the integral along the imaginary axis, the
term I2 is the integral along a large semicircle to the right with a radius R that we
will make infinitely large. The term I3 is the integral along two parallel horizontal
lines and a small circle enclosing pk as shown in Figure 14.6.

We now compute each of the terms in the contour integration. We have

I1 =−i

∫ R

−R
log(S(iω))dω =−2i

∫ R

0
log(|S(iω)|)dω

because the real part of logS(iω) is an even function and the imaginary part is an
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odd function. Furthermore we have

I2 =
∫

⊃
log(S(s))ds =−

∫

⊃
log(1+L(s))ds≈−

∫

⊃
L(s)ds,

where ⊃ represents the semicircular portion of Γ at radius R. Since L(s) goes to
zero faster than 1/s for large s, the integral goes to zero when the radius of the
semicircle goes to infinity.

Next we consider the integral I3. We split the contour into three parts: X+, γ ,
and X−, where X+ and X− are horizontal lines from the imaginary axis to pk, and γ
is a small circle with radius r around the point pk (see Figure 14.6b). We can write
the contour integral as

I3 =
∫

X+

logS(s)ds+
∫

γ
logS(s)ds+

∫

X−
logS(s)ds

The point pk is a pole of L(s) and hence a zero of S(s), which causes logS(s) to
become singular at pk. The contour γ for the middle integral is a small circle with
radius r around pk. The magnitude of the integrand is of the order logr and the
length of the path is 2πr, and it can be shown that the magnitude of the integral
goes to zero as the radius r goes to zero. At the same time, S(s) ≈ k(s− pk) near
pk, so the argument of logS(s) decreases by 2π as the contour encircles pk (in the
clockwise direction). On the contours X+ and X− we thus have

|SX+ |= |SX− |, argSX− = argSX+−2π.

Hence

log(SX+)− log(SX−) = log(|SX+ |)+ i arg(SX+)− log(|SX− |)− i arg(SX−) = 2πi.

Using the fact that the path X+ is traversed in the opposite direction from X−, the
first and third terms can be combined to give

∫

X+

logS(s)ds+
∫

X−
logS(s)ds =

∫

X+

(
logSX+(s)− logSX+(s)

)
ds.

The length of the path from the imaginary axis to pk is Re pk and we get
∫

X+

logS(s)ds+
∫

X−
logS(s)ds = 2πi ·Re pk.

Repeating the argument for all pk in the right half-plane, and letting the small
circles go to zero gives

I1 + I2 + I3 =−2i

∫ ∞

0
log |S(iω)|dω + i ∑

k

2π Re pk = 0.

Since the pk’s appear as complex conjugate pairs, we have ∑k Re pk =∑k pk, which
gives Bode’s formula (14.6).
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14.4 Gain Crossover Frequency Inequality

We will now investigate the effect of non-minimum phase process dynamics for
loop shaping design. The key idea of loop shaping design is to shape the loop
transfer function L(iω) = P(iω)C(iω) so that the closed loop system has good
performance and robustness. Good performance is obtained by making |L(iω)|
large for frequencies where we want disturbance attenuation and small for high
frequencies where measurement noise dominates. Recall from Figure 12.8 that
good robustness is obtained by shaping the loop transfer function around the gain
crossover frequency ωgc. The performance limits show up very clearly in the de-
sign.

To explore the limits due to right half-plane poles and zeros, we factor the
process transfer function as

P(s) = Pmp(s)Pap(s), (14.8)

where Pmp is the minimum phase factor and Pap is the non-minimum phase factor,
We do the factorization so that Pmp has all its poles and zeros in the open left half-
plane. The factorization is normalized so that |Pap(iω)|= 1, and the sign is chosen
so that Pap has negative phase. The transfer function Pap is called an all-pass system
because it has unit gain for all frequencies. For example

P(s) =
s−2

(s+1)(s−1)
=

s+2

(s+1)2
·
(s−2)(s+1)

(s+2)(s−1)
= Pmp(s) ·Pap(s). (14.9)

Since |Pap(iω)| = 1, the transfer functions P(s) and Pmp(s) have the same gain
curves but the transfer function P(s) has larger phase lag than Pmp(s).

Consider the closed loop system obtained with a controller with the transfer
function C(s). Requiring that the phase margin be ϕm, we get the inequality

argL(iωgc) = argPap(iωgc)+ argPmp(iωgc)+ argC(iωgc)≥−π +ϕm, (14.10)

where ωgc is the gain crossover frequency. Let ngc be the slope of the gain curve
of the loop transfer function L(s) = P(s)C(s) at the crossover frequency. Since
|Pap(iω)|= 1 it follows that

ngc =
d log |L(iω)|

d logω

∣∣∣∣∣
ω=ωgc

=
d log |Pmp(iω)C(iω)|

d logω

∣∣∣∣∣
ω=ωgc

.

Assuming that the controller C(s) has neither poles nor zeros in the right half-
plane, it then follows from Bode’s relations (equation (10.8) on page 10-19) that

argPmp(iω)+ argC(iω)≈ ngc
π

2
.

Combining this with equation (14.10) gives the following inequality for the allow-
able phase lag of the all-pass part at the gain crossover frequency, which we state
as a theorem.

Theorem 14.2 (Gain crossover frequency inequality). Let P(s) = Pmp(s)Pap(s)
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Figure 14.7: Illustration of the gain crossover frequency inequality. (a) Gain curve of the
transfer function, with the slope of the curve at the gain crossover frequency ngc marked. (b)
Phase of the transfer function (solid) and its minimum phase component (dashed). The phase
margin ϕm, the phase lags ϕmp and ϕap of the minimum phase component, and the all-pass
component are shown in the figure.

where Pap is an all-pass transfer function containing the non-minimum phase por-
tion of P(s). If C(s) is a stabilizing compensator for the closed loop system with
no right half-plane poles and zeros and with phase margin ϕm, gain crossover fre-
quency ωgc, and gain crossover slope ngc, then the allowable phase lag for the
all-pass transfer function must satisfy the inequality

ϕap :=−argPap(iωgc)≤ π−ϕm +ngc
π

2
:= ϕ̄ap. (14.11)

The gain crossover frequency inequality is illustrated in Figure 14.7. The con-
dition (14.11) requires that the gain crossover frequency must be chosen so that the
phase lag of the all-pass factor is not too large. For systems with high robustness
requirements we may choose a phase margin of 60◦ (ϕm = π/3). To have a rea-
sonable flexibility in choosing the gain crossover frequency we choose ngc = −1,
which gives an admissible phase lag ϕ̄ap = π/6 = 0.52 rad (30◦) for the all-pass
component. For systems where we can accept a lower robustness we might choose
a phase margin of 45◦ (ϕm = π/4) and the slope ngc = −1/2, which gives an ad-
missible phase lag ϕ̄ap = π/2 = 1.57 rad (90◦).

The gain crossover frequency inequality (14.11) shows that non-minimum phase
components impose severe restrictions on possible crossover frequencies and that
there are systems that cannot be controlled with sufficient stability margins. We
illustrate the limits in a number of commonly encountered situations.

Example 14.4 Process with a zero in the right half-plane
The non-minimum phase part of the process transfer function for a system with a
right half-plane zero is

Pap(s) =
z− s

z+ s
,

where z > 0. Notice that we have z− s in the numerator instead of s− z to satisfy
the condition that Pap should have negative phase. The phase lag of the all-pass
factor is

ϕap =−argPap(iω) = 2arctan
ω

z
.
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Let the admissible phase lag of the all-pass factor be ϕ̄ap. The inequality (14.11)
then gives the following bound on the crossover frequency:

ωgc ≤ z tan(ϕap/2). (14.12)

With ϕap = π/3 we get ωgc < 0.6z. We can thus conclude that a right half-plane
zero limits the achievable gain crossover frequency ωgc, and slow right half-plane
zeros (z small) give lower crossover frequency than fast right half-plane zeros. ∇

Processes with zeros in the right half-plane are not uncommon, and are they are
inherent consequences of the physics, as in Exercise 14.6, which models hydro-
electric power generation. Another example is the shrink and swell phenomenon
in drum level control discussed in Example 3.14. In that example the zero in the
right half-plane is associated with the inverse response characteristic, where the
step response initially moves in the wrong direction. The effect also appears in
product development projects where the cost initially increases during the devel-
opment phase and then hopefully decreases to give profit when the product appears
on the market.

We next consider the case of right half-plane poles.

Example 14.5 Process with a pole in the right half-plane
The non-minimum phase part of the transfer function for a system with a pole in
the right half-plane is

Pap(s) =
s+ p

s− p
,

where p > 0. The sign of Pap is dictated by the condition that it should have nega-
tive phase. The phase lag of the non-minimum phase part is

ϕap =−argPap(iω) = 2arctan
p

ω
,

and the inequality (14.11) gives the following bound on the crossover frequency:

ωgc ≥
p

tan(ϕ̄ap/2)
, (14.13)

where ϕ̄ap is the admissible phase lag of the all-pass factor Pap. Right half-plane
poles thus require that the closed loop system has a sufficiently high gain crossover
frequency. With ϕ̄ap = π/3 we get ωgc > 1.7p. Fast right half-plane poles (p large)
therefore require a larger gain crossover frequency than slower right half-plane
poles. Robust control of unstable systems thus requires that the bandwidths of the
process the actuators and the sensors are sufficiently high. ∇

Example 14.6 Process with a right half-plane pole/zero pair
Consider a system with a right half-plane zero z and a right half-plane pole p. The
transfer function of the process and its all-pass factor are given by

P(s) =
a− z

s− p
, Pap(s) =

(z− s)(s+ p)

(z+ s)(s− p)
. (14.14)
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Figure 14.8: Illustration of the gain crossover frequency inequality for systems with a zero
and a pole in the right half-plane (a) and systems with a time delay and a right half-plane pole
(b). The figures show the phase lag ϕap of the all-pass factor Pap as a function of frequency
for the systems using equations (14.15) and (14.16). All systems have a right half-plane pole
at p = 1. The systems in (a) have zeros at z = 2, 5, 20 and 100, and the systems in (b) have
time delays τ = 0.02, 0.1, 0.5, and 1.

The all-pass factor has the phase lag

ϕap =−argPap(iω) = 2arctan(ω/z)+2arctan(p/ω), (14.15)

which is plotted in Figure 14.8a for z/p = 1,2,5,10,20,100. ∇

We will illustrate with some numerical values. If we require that the phase lag
ϕap of the non-minimum phase factor be less than 90◦, we must require that the
ratio z/p be larger than 6 (from Figure 14.8). The pole and the zero must thus be
sufficiently separated (Exercise 14.7). The values of the gain crossover frequency
ωgc are also quite restricted.

Notice that it follows from equation (14.15) that the phase lag of the all-pass
factor ϕap is greater than 180◦ if z > p. Equation (14.10) then implies that a system
with a right half-plane pole/zero pair cannot be stabilized by a controller that has
neither poles nor zeros in the right half plane. We will return to this issue later
when we have developed more tools.

Time delays also impose limits similar to those given by zeros in the right half-
plane. For a process with time delay, Pap(s) = eτs. Using the gain crossover fre-
quency inequality (14.11) we get ωgcτ ≤ ϕ̄ap, where τ is the time delay. Time
delays are thus similar to right half-plane zeros because they require that the band-
width and the crossover frequencies be sufficiently small.

Example 14.7 Process with a right half-plane pole and time delay
Consider a system with all-pass factor and phase lag given by

Pap(s) =
s+ p

s− p
e−τs, ϕap =−argPpτ(iω) = ωτ +2arctan(p/ω). (14.16)
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A plot of the phase lag of the all-pass factor is given in Figure 14.8b. The figure
shows that the behavior is similar to a system with a right half-plane pole/zero
pair. The phase lag ϕap has a minimum

√
τ(2− pτ)+ 2arctan

√
pτ/(2− pτ) for

ωτ =
√

pτ(2− pτ) (Exercise 14.8). It follows from equation (14.10) that a system
with a right half-plane pole p and a time delay τ cannot be stabilized by a controller
with no poles and zeros in the right half-plane if pτ ≥ 2. ∇

Systems with a pole/zero pair in the right half-plane are not common. In Ex-
ample 14.3 we encountered the X-29 aircraft (Exercise 14.11). The next example
is another illustration.

Example 14.8 Balance system
As an example of a system with both right half-plane poles and zeros, consider the
balance system with zero damping introduced in Example 3.2. The transfer func-
tions from force F to output angle θ and position p were derived in Example 9.11:

HθF(s) =
ml

(MtJt−m2l2)s2−mglMt
,

HpF(s) =
Jts

2−mgl

s2
(
(MtJt−m2l2)s2−mglMt

) .

Assume that we want to stabilize the pendulum by using the cart position as the
measured signal. The transfer function HpF from the input force F to the cart posi-

tion p has poles {0,0,±
√

mglMt/(MtJt−m2l2)} and zeros {±
√

mgl/Jt}. Using
the parameters in Example 7.7, the right half-plane pole is at p = 2.68 and the zero
is at z = 2.09. With the best choice of the gain crossover frequency, it follows from
equation (14.15) that the phase lag of the all-pass component Pap is 166◦, which
implies that it impossible to obtain a reasonable phase margin. The pole/zero ratio
is 1.28, which is far from the value 6 required to control the system robustly. Using
Figure 14.8, we see that the amount of achievable phase margin for the system is
very small if we desire a bandwidth in the range of 2–4 rad/s.

The right half-plane zero of the system can be eliminated by changing the out-
put of the system. For example, if we choose the output to correspond to a position
at a distance r along the pendulum, we have y= p−r sinθ and the transfer function
for the linearized output becomes

HyF(s) = HpF(s)− rHθF(s) =
(Jt−mlr)s2−mgl2

s2
(
(MtJt−m2l2)s2−mglMt

) .

If we choose r sufficiently large, then mlr− Jt > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary zeros. The gain crossover
frequency is determined by the right half-plane pole p =

√
mglMt/(MtJt−m2l2)

(Example 14.5). If our admissible phase lag for the non-minimum phase part is
ϕl = 45◦, then our gain crossover must satisfy

ωgc ≥
p

tan(ϕl/2)
= 6.48 rad/s.
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If the actuators have sufficiently high bandwidth, e.g., a factor of 10 above ωgc or
roughly 10 Hz, then we can provide robust tracking up to this frequency. ∇

14.5 The Maximum Modulus Principle

Significant insight into the fundamental limits imposed by poles and zeros in the
right half-plane and time delays can be obtained with simple calculations by using
the maximum modulus principle.

Theorem 14.3 (Maximum modulus principle). Let Ω⊂C be a nonempty, bounded,
open and connected set in the complex plane and let G : Ω̄→ C be continuous on
the closure of Ω and analytic on Ω. Then

sup
s∈Ω̄

|G(s)|= sup
s∈∂Ω

|G(s)|

This theorem can be used to give bounds on transfer functions, such as the
sensitivity functions, by using the Nyquist D contour as the boundary of the open
right half-plane. We state this result as a corollary.

Corollary. Let G(s) be an analytic transfer function on the closed, right half-
plane. Then |G(s)| assumes its largest value on the imaginary axis:

max
ω∈R

|G(iω)|≥ max
Res≥0

|G(s)|.

To see how this result can be applied, consider the transfer functions

S(s) =
1

1+P(s)C(s)
, T (s) =

P(s)C(s)

1+P(s)C(s)
,

and note that S(s)+ T (s) = 1. The zeros of the sensitivity function S(s) are the
poles of the process and the controller, and the zeros of the complementary sen-
sitivity function are the zeros of the process and the controller. We find from the
above equation that S(z) = 1 for zeros z of the process or the controller. Similarly
we have T (p) = 1 for poles p of the poles of the process or the controller.

We can use the maximum modulus principle to obtain requirements on distur-
bance attenuation and robustness, formulated as conditions on the sensitivity func-
tions. We will use the following nominal transfer functions to capture our desired
sensitivity requirements:

Sr(s) =
Ms s

s+a
, Tr(s) =

Mt b

s+b
. (14.17)

Bode plots of the gain curves of the transfer functions Sr(s) and Tr(s) are shown in
Figure 14.9a. We will consider requirements defined by

|S(iω)|≤ |Sr(iω)|, |T (iω)|≤ |Tr(iω)|, (14.18)

which guarantee that the maximum sensitivities are less than Ms or Mt. The sen-
sitivity crossover frequencies of the transfer functions (14.17) and the bandwidth
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Figure 14.9: Gain curves for the transfer functions (a) Sr(s) = Ms s/(s+a) and (b) Tr(s) =
Mt b/(s+ b), which give requirements for sensitivity and complementary sensitivity. The
plots are drawn for Ms = Mt = 2, the gain crossover frequencies are denoted by ◦, and the
bandwidth defined by T (ωb) = 1/

√
2 by +.

are given by

ωsc =
a

√
M2

s −1
, ωtc = b

√
M2

t −1, ωb = b

√
2M2

t −1, (14.19)

and they are marked with circles in Figure 14.9.
We will now use the maximum modulus principle to investigate the effects

of poles and zeros in the right half-plane, and to establish limits on achievable
performance.

Example 14.9 Process with a zero in the right half-plane
Assume that the process P(s) has a zero s = z in the right half-plane and no other
poles and zeros in the right half-plane. The sensitivity function is analytic in the
right half-plane for all controllers that stabilize the system, and equation (14.18)
implies that

max
ω

∣∣∣
S(iω)

Sr(iω)

∣∣∣≤ 1. (14.20)

The function S(s)/Sr(s) is analytic in the right half-plane and on the imaginary
axis. If the process has a zero s = z in the right half-plane the sensitivity function
has the property that S(z) = 1. Applying the maximum modulus principle to the
function S(s)/Sr(s) then gives

max
ω

∣∣∣
S(iω)

Sr(iω)

∣∣∣≥
∣∣∣

S(z)

Sr(z)

∣∣∣= S(z)
z+a

Msz
=

z+a

Msz
.

This inequality is compatible with equation (14.20) only if z+a≤ zMs, hence

a ≤ z(Ms−1), ωsc ≤ z

√
Ms−1

Ms +1
. (14.21)

A right half-plane zero z limits the sensitivity crossover frequency ωsc of the closed
loop system and thus also the range of frequencies over which the sensitivity can
be kept small (compare with Example 14.4). ∇
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If we make the calculations for a system with complex zeros s = zre ± i zim, we
obtain the following conditions (Exercise 14.12):

a ≤
√

M2
s z2

re +(M2
s −1)z2

im− zre,

ωsc =
a

√
M2

s −1
≤

√
M2

s z2
re +(M2

s −1)z2
im− zre

√
M2

s −1
,

(14.22)

which are equal to equation (14.21) for zim = 0.
Robust control of a process with right half-plane zeros thus requires that the

sensitivity crossover frequency ωsc is not too high (equations (14.21) and (14.22)).
If there are several right half-plane zeros the limit is given by the smallest bound.

A similar analysis based the complementary sensitivity function gives the con-
sequences of right half-plane poles (see Exercise 14.13). We conclude that robust
control in the presence of right half-plane poles requires that the complementary
sensitivity crossover frequency ωtc and the bandwidth ωb are sufficiently large.

Next we will consider the effect of both poles and zeros in the right half-plane.
Since robust control of a process with a right half-plane zero z requires that the sen-
sitivity crossover frequency (or the bandwidth) is sufficiently low and right half-
plane pole requires that the sensitivity crossover frequency is sufficiently high, we
may expect that systems with a right half-plane pole/zero pair cannot be controlled
robustly if the poles and zeros are close and we may expect that a system cannot
be controlled at all if p > z. Indeed, it can be shown (Exercise 12.14) that a process
cannot be stabilized by a stable controller if p > z. We will analyze the situation in
the next example.

Example 14.10 Process with poles and zeros in the right half-plane
Consider a process P(s) with the right half-plane zeros zk and the right half-plane
poles be pk. Introduce the polynomial n(s) with zeros s = zk and the polynomial
d(s) with zeros s = pk. The process transfer function can then be written as

P(s) =
n(s)

d(s)
P̄(s), (14.23)

where P̄(s) has no poles or zeros in the right half plane. Furthermore we consider
controllers that stabilize the process. The sensitivity function

S(s) =
1

1+P(s)C(s)
=

d(s)

d(s)+n(s)P̄(s)C(s)
,

has the zeros s = pk in the right half-plane, and we have S(zk) = 1 for all zeros zk

of the polynomial n(s). Introduce the weighting function

Wp(s) =
d(−s)

d(s)
.

The poles and zeros of this function are symmetric with respect to the imaginary
axis, which implies that |Wp(iω)| = 1. The function Wp(s)S(s) is analytic in the
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right half-plane, since the polynomial d(s) is canceled and d(−s) has all its roots
in the left half-plane. Since S(zk) = 1, it follows from the maximum modulus prin-
ciple that

Ms = max
ω

|S(iω)|= max
ω

|Wp(iω)S(iω)|≥ |Wp(zk)S(zk)|=
∣∣∣
d(−zk)

d(zk)

∣∣∣, (14.24)

which implies

Ms ≥max
k

∣∣∣
d(−zk)

d(zk)

∣∣∣. (14.25)

For a system with a pole/zero pair in the right half-plane we have n(s) = s− z and
d(s) = s− p. Since there is only one zero the above equation becomes

Ms ≥
∣∣∣
z+ p

z− p

∣∣∣, (14.26)

which implies that
z

p
≥

Ms +1

Ms−1
, or

z

p
≤

Ms−1

Ms +1
. (14.27)

∇

To find controllers with a maximum sensitivity less than Ms for a process with
a right half-plane pole/zero pair, it follows from equation (14.27) that the pole and
zero must be sufficiently separated. The zero/pole ratio must either be smaller than
(Ms−1)/(Ms +1) or larger than (Ms +1)/(Ms−1). For Ms = 2 the critical ratios
are 0.5 and 2 and for Ms = 1.4 they are 1/6 and 6.

A calculation similar to the one in Example 14.10 for the complementary sen-
sitivity gives (Exercise 14.14)

Mt ≥max
k

∣∣∣
n(−pk)

n(pk)

∣∣∣. (14.28)

In the special case of a single pole/zero pair the condition becomes

Mt ≥
∣∣∣
z+ p

z− p

∣∣∣,
z

p
≥

Mt +1

Mt−1
, or

z

p
≤

Mt−1

Mt +1
. (14.29)

We illustrate the results with an example.

Example 14.11 Bicycle with rear-wheel steering
Figure 14.10 shows two bicycles with rear wheel steering. Bicycle dynamics were
discussed in Section 4.2, where the following model was obtained:

J
d2ϕ

dt2
−

Dv0

b

dδ

dt
= mghsinϕ +

mv2
0h

b
δ .

The wheelbase is b, the mass of the bicycle and the driver is m, and the distance
from the center of mass to ground is h. Furthermore, J is the moment of inertia
with respect to the line through the contact points of the wheels with the ground
and D is the inertia product. We have J ≈ mh2 and D≈ mah, where a the distance
between the projection of the center of mass on the ground and the contact point
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(a) Unrideable bicycle (b) Rideable bicycle

Figure 14.10: Two bicycles with rear wheel steering (a) is unrideable and (b) is rideable.
Figures courtesy of Richard Klein [?].

of the driving wheel. The model for a bicycle with rear wheel steering is obtained
simply by reversing the sign of the velocity and we get

mh2 d2ϕ

dt2
+

mhav0

b

dδ

dt
= mghsinϕ +

mv2
0h

b
δ .

The transfer function from steering angle δ to tilt angle ϕ is

Pϕδ =
−av0s+ v2

0

b(hs2−g)
=

av0

bh

−s+ v0/a

s2−g/h
.

The transfer function has a right half-plane pole p =
√

g/h and a right half-plane
zero at z = v0/a. The condition (14.27) then gives

z

p
=

v0

a

√
h

g
≥

Ms +1

Ms−1
, v0 ≥ a

√
g

h

Ms +1

Ms−1
.

The unstable pole p =
√

g/h does not depend on the velocity but the right half-
plane zero z = v0/a is proportional to the velocity. To ride the bicycle comfortably
the velocity must be sufficiently large. Evaluating the parameters for the bicycles
in Figure 14.10 with Ms = 2 we find v0 ≥ 9.4 m/s (34 km/h) for the bicycle in
Figure 14.10a and v0 ≥ 1.2 m/s (3.8 km/h) for the bicycle in Figure 14.10b. The
bicycle in Figure 14.10a has indeed proven to be unrideable, while the bicycle in
Figure 14.10b is rideable [?]. ∇

In view of the robustness results for systems with a single right half-plane pole
or single right half-plane zero, it is surprising that processes with p > z can be con-
trolled robustly. Recall from Section 14.4 that we demonstrated the system could
not be stabilized with a stable controller. A detailed discussion of stabilizability
is given by Youla [?], where it is proven that a system with right half-plane poles
and zeros can be stabilized with a stable controller if and only if the number of
poles between every pair of right half-plane zeros is even (see also Vidyasagar [?,
Theorem 3.1]). For a system with a single pole/zero pair, the result implies that a
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Table 14.1: Summary of limits by time delays and right half-plane poles and zeros, ωsc

and ωtc are the crossover frequencies for the sensitivity function and the complementary
sensitivity function.

Process feature Limits

Real right half-plane zero z ωsc ≤ z

√
Ms−1

Ms +1

Complex right half-plane zeros z = zre ± izim ωsc ≤

√
M2

s z2
re +(M2

s −1)z2
im− zre

√
M2

s −1

Real right half-plane pole p ωtc ≥ p

√
Mt +1

Mt−1

Complex right half-plane poles p = pre ± ipim ωtc ≥

√
M2

t p2
re +(M2

t −1)p2
im + pre

√
M2

t −1

Right half-plane pole/zero pair p,z Ms ≥
∣∣∣

p+ z

p− z

∣∣∣, Mt ≥
∣∣∣

p+ z

p− z

∣∣∣

Right half-plane poles and zeros d(s),n(s) Ms ≥maxk

∣∣∣
d(−zk)

d(zk)

∣∣∣, Mt ≥maxk

∣∣∣
n(−pk)

n(pk)

∣∣∣

Right half-plane pole p and time delay τ Mt ≥ epτ , Ms ≥ epτ −1

process with p > z requires a controller with a pole in the right half-plane, hence
an unstable controller! An example is given in Exercise ??. The root locus method
gives significant insight into these cases (Exercise 14.15).

The limits imposed by a time delay and a right half-plane pole are similar to the
limits by a right half-plane pole/zero pair. All limits are summarized in Table 14.1.

14.6 Robust Pole Placement

When using any design method that does not include requirements on robustness it
is necessary to check the robustness of the design. In this section we will show that
the insights into the roles of poles and zeros can give us a deeper understanding of
pole placement design. In particular we will show that it is necessary to take the
process zeros into account when choosing the desired closed loop poles. We will
first analyze examples where seemingly reasonable designs lead to closed loop
systems that are not robust. We will then we then present design rules for pole
(eigenvalue) placement that guarantee that the closed loop systems is robust.

Fast Stable Process Poles

We call a pole stable if it is in the left half-plane and unstable if it is in the right
half-plane, and we call it fast if its magnitude is larger than the intended closed
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Figure 14.11: Gain curves of the sensitivity function S for designs in Example 14.12. The
solid lines are the true sensitivities, and the dashed lines are the asymptotes. Notice the high
peak of the sensitivity function in (a) and that there is no peak in (b).

loop bandwidth. We will explore the effects of fast stable process poles on pole
placement design through a simple example that illustrates the basic design rule.

Example 14.12 Fast process poles
Consider a PI controller for a first-order system, where the process and the con-
troller have the transfer functions P(s) = b/(s+ a), with a > 0, and C(s) = kp +
ki/s. The loop transfer function is

L(s) =
b(kps+ ki)

s(s+a)
,

and the closed loop characteristic polynomial is

s(s+a)+b(kps+ ki) = s2 +(a+bkp)s+ kib.

If we specify that the desired closed loop poles should be −p1 and −p2, we find
that the controller parameters are given by

kp =
p1 + p2−a

b
, ki =

p1 p2

b
.

The sensitivity functions are then

S(s) =
s(s+a)

(s+ p1)(s+ p2)
, T (s) =

(p1 + p2−a)s+ p1 p2

(s+ p1)(s+ p2)
.

Assume that process pole a is faster than the closed loop poles p1 < p2 < a. The
proportional gain kp is then negative and the controller has a zero in the right half-
plane, an indication that the system may have bad properties. Consider the gain
|S(iω)| of the sensitivity function plotted in Figure 14.11a for a= b= 1, p1 = 0.05,
and p2 = 0.2. We have S(iω) ≈ 1 for high frequencies. Moving backwards in
frequency we find that the sensitivity increases around ω = a corresponding to the
fast process pole. The sensitivity continues to increase with decreasing frequency
and it does not decrease until the frequency is below the closed loop pole p2. The
net effect is a large sensitivity peak, approximately ω = a/

√
p1 p2 ≈ 10.

The problem with poor robustness can be avoided by choosing one closed loop
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pole equal to the process pole, i.e., p2 = a. The controller gains then become

kp =
p1

b
, ki =

ap1

b
,

which means that the fast process pole is canceled by a controller zero at s =−a.
The loop transfer function and the sensitivity functions are

L(s) =
bkp

s
, S(s) =

s

s+bkp
, T (s) =

bkp

s+bkp
.

Figure 14.11b shows the gain curve of the sensitivity function for the case when
the closed loop poles (p1 = 5, p2 = 20) are faster than the process pole (a = 1).
There is no peak of the sensitivity function in this case. ∇

Slow Stable Process Zeros

We call a zero stable if it is in the left half-plane and unstable if it is in the right
half-plane. Furthermore a zero is said to be slow if its magnitude is smaller than the
intended closed loop bandwidth. We will explore the effects of slow stable process
zeros in pole placement design, and we begin with a simple example.

Example 14.13 Vehicle steering
Consider the linearized model for vehicle steering in Example 9.10, which has the
transfer function

P(s) =
γs+1

s2
= γ

s+1/γ

s2
.

A controller based on state feedback was designed in Example 7.4, and state
feedback was combined with an observer in Example 8.4. The system simulated
in Figure 8.8 has closed loop poles specified by ωc = 0.3, ζc = 0.707, ωo = 7,
and ζo = 0.707. Assume that we want a faster closed loop system and choose
ωc = 10, ζc = 0.707, ωo = 20, and ζo = 0.707. Using the state representation in
Example 8.3, a pole placement design gives state feedback gains k1 = 100 and
k2 = −35.86 and observer gains l1 = 28.28 and l2 = 400. The controller transfer
function is

C(s) =
−11516s+40000

s2 +42.4s+6657.9
. (14.30)

Figure 14.12 shows Nyquist and Bode plots of the loop transfer function.
The Nyquist plot indicates that the robustness is poor since the loop transfer

function is very close to the critical point −1. The phase margin is 7◦ and the gain
margin is gm = 1.08, which means that the system becomes unstable if the gain is
increased by 8%. The poor robustness also shows up in the Bode plot, where the
gain curve hovers around the value 1 while the phase curve is close to −180◦ for
a wide frequency range (3-40 rad/s). Additional insight is obtained by analyzing
the sensitivity functions, shown as dashed lines in Figure 14.13. The maximum
sensitivities are Ms = 13 and Mt = 12.

It is surprising that the closed loop is so sensitive to process variations when
we have designed a controller so that the closed loop system has well-damped
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(a) Nyquist plot of L(s) = P(s)C(s)
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(b) Bode plot of L(s) = P(s)C(s)

Figure 14.12: Observer-based control of vehicle steering. Nyquist and Bode plots of the
loop transfer function for vehicle steering with a controller based on state feedback and an
observer. The controller provides stable operation, but with very poor robustness.

closed loop poles. We have an indication that something is unusual because the
design gives a controller that has a zero in the right half-plane at s = 3.5, while the
observer and controller have complex poles with ωc = 10 and ωo = 20. Recall the
results from Example 14.4, which indicate that robust control of a process with a
zero at s = 3.5 cannot have a gain crossover frequency larger than ωgc = 2.

To understand what happens in the example, we will investigate the reason for
the peaks of the sensitivity functions. Let the transfer functions of the process and
the controller be

P(s) =
np(s)

dp(s)
, C(s) =

nc(s)

dc(s)
, (14.31)

where np(s), nc(s), dp(s) and dc(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

T (s) =
P(s)C(s)

1+P(s)C(s)
=

np(s)nc(s)

dp(s)dc(s)+np(s)nc(s)
.

The poles of T (s) are the poles of the closed loop system and the zeros of T (s)
are the zeros of the process and the controller transfer functions. A plot of the gain
curve of T (s) for the original controller is shown as the solid line in the lower right
plot in Figure 14.13. We have T (0) = 1, because L(0) = P(0)C(0) = ∞ due to
the double integrator of P. The gain |T (iω)| increases for increasing ω due to the
process zero at ω = 2. It increases further at the controller zero at ω = 3.5, and it
does not start to decrease until the closed loop poles appear at ω = 10 and ω = 20.
The net result is a high peak of the gain of the complementary sensitivity function.

The peak in the complementary sensitivity function can be avoided by assign-
ing a closed loop pole at the slow process zero or close to it. We can achieve this
by choosing ωc = 10 and ζc = 2.6, which gives closed loop poles at s = −2 and
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Figure 14.13: Gain curves of the sensitivity functions for systems with observer-based con-
trol of vehicle steering. The plots for the original controller with ωc = 10, ζc = 0.707,
ωo = 20, ζo = 0.707 is shown in solid lines and the improved controller with ωc = 10,
ζc = 2.6 is shown in dashed lines.

s =−50. The controller transfer function then becomes

C(s) =
3628s+40000

s2 +80.28s+156.56
= 3628

s+11.02

(s+2)(s+78.28)
. (14.32)

Notice that the new controller has a pole at s = −2 that cancels the process zero.
Also notice the large differences in the zero frequency gains of the controllers
C(0) = 6.0 for the controller (14.30) and C(0) = 255 for the controller (14.32).
Cancellation of the slow zero gives a dramatic increase of the low frequency gain
of the controller. The gain curves for the sensitivity function of the improved con-
troller are shown with dashed lines in Figure 14.13. The closed loop system has the
maximum sensitivities Ms = 1.34 and Mt = 1.41, which indicate good robustness.

This example shows that a robust design can be obtained by first canceling
the slow stable process zero, designing the controller for the system without the
zero, and then adding the pole to the controller. Notice that the plot of |PS(iω)|
shows that the improved system, represented by the dashed lines, has much better
disturbance attenuation and the plot of |CS(iω)| shows that is it not as sensitive to
measurement noise. The large differences in low frequency gains of the controllers
are clearly visible in the gain curves for S and PS. ∇

We can learn several things from this example. First, that it is essential to eval-
uate the closed loop system for example by plotting the gain curves of the Gang
of Four. We have also seen that seemingly reasonable design methods do not nec-
essarily give robust closed loop systems. For designs based on pole placement it
is necessary to consider the open loop poles and zeros when specifying the de-
sired closed loop dynamics, and in particular robustness requires that there must
be closed loop poles that are equal to or close to slow stable process zeros. An-
other lesson is that slow unstable process zeros impose limits on the achievable
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bandwidth, as already noted in Section 14.5.
One potential issue with the choice of controller poles and zeros that exactly

cancel the open loop poles and zeros is that they may lead to undesirable dynamics
or lack of robustness (if there are model uncertainties). We address this important
issue in more detail below.

Design Rules for Robust Pole Placement

Based on the insight gained from the previous examples, we can now formulate
design rules that give controllers with good robustness for pole placement design.
Consider the expression (13.12) for maximum complementary sensitivity, repeated
here:

Mt = sup
ω

|T (iω)|=
∥∥∥

PC

1+PC

∥∥∥
∞
.

Let ωgc be the desired gain crossover frequency. Assume that the process has ze-
ros that are slower than ωgc. The complementary sensitivity function is 1 for low
frequencies, and it increases for frequencies close to the process zeros unless there
is a closed loop pole in the neighborhood (as seen, for instance, in Figure 14.13
of the previous example). To avoid large values of the complementary sensitivity
function we find that the closed loop system should therefore have poles close to
or equal to the slow stable zeros. This means that slow stable zeros should be can-
celed by controller poles. Since unstable zeros cannot be canceled, the presence
of slow unstable zeros means that achievable gain crossover frequency must be
smaller than the slowest unstable process zero.

Now consider process poles that are faster than the desired gain crossover fre-
quency. Consider the expression for the maximum of the sensitivity function:

Ms = sup
ω

|S(iω)|=
∥∥∥

1

1+PC

∥∥∥
∞
.

The sensitivity function is 1 for high frequencies. Moving from high to low fre-
quencies, the sensitivity function increases at the fast process poles. The sensitivity
function will have large peaks unless there are closed loop poles that are close to
the fast process poles. To avoid large peaks in the sensitivity the closed loop system
should therefore have poles close the fast process poles. One way to achieve this is
to have controller zeros close to the fast process pole. Since unstable modes cannot
be canceled, the presence of a fast unstable pole implies that the gain crossover fre-
quency must be sufficiently large, as was discussed in Section 14.4 (Example 14.5).

To summarize, we obtain the following simple rule for choosing closed loop
poles: slow stable process zeros should be matched by slow closed loop poles,
and fast stable process poles should be matched by fast closed loop poles. Slow
unstable process zeros and fast unstable process poles impose severe limits.
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14.7 Further Reading

The effects of actuator limits are conveniently explored using optimal control the-
ory [?, ?], which permits solution of problems that are much more complicated
than the one in Figure 14.1. The limitations caused by right half-plane poles and
zeros were well known by Bode, who coined the term non-minimum phase to em-
phasize that such systems had much more phase lag than the equivalent minimum
phase systems [?]. The paper [?], which is based on the inaugural IEEE Bode
Lecture gives important insights into the effects of unstable poles and is strongly
recommended. Horowitz [?] also discussed the limits caused by poles and zeros
in the right half-plane. The section on the maximum modulus theorem is based
on [?]; more details are found in [?, ?]. The section on loop shaping design is
based on [?]. The design rules for pole placement are not widely known.

Exercises

14.1 (Large signals) Verify Figure 14.1 by hand calculation.

14.2 (Noise limits bandwidth) Consider PI control of an integrator, where the trans-
fer functions of the process and the controller are

P(s) =
1

s
, C(s) = kp +

ki

s
,

and kp = 2ζ ω0 and ki = ω2
0 , with ζ = 0.707. Assume that the inputs and outputs

range from 0 to 10 V, that there is measurement noise with a standard deviation of
10 mV, and that the largest permissible variation in the control signal due to noise
is 2 V. Show that the bandwidth, defined as ωbw = 2ω0, cannot be larger than 283.

14.3 (Effect of roll-off) Consider a closed loop system consisting of a first-order
process and a proportional controller. Let the loop transfer function be

L(s) = P(s)C(s) =
k

s+1
,

where parameter k > 0 is the controller gain. Show that the sensitivity function can
be made arbitrarily small.

14.4 (Bode’s integral) In Theorem 14.1 it was assumed that sL(s) goes to zero as
s→ ∞. Assume instead that limsL(s) = a and show that

∫ ∞

0
log |S(iω)|dω =

∫ ∞

0
log

1

|1+L(iω)|
dω = π ∑ pk−a

π

2
,

where pk are the poles of the loop transfer function L(s) in the right half-plane.

14.5 (Integral formula for complementary sensitivity) Prove the formula (14.7) for !
the complementary sensitivity.
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14.6 (Water turbine dynamics) Consider the problem of power generation in an
hydroelectric power station. Let the control signal be the opening area a at the
turbine entrance and ℓ be the length of the tube, which has area A. Formulate a
mathematical model for the system, then linearize the model around a nominal
valve opening u0 = a/A and a nominal power P0. Show that the transfer function
is

G(s) =
P0

a0

1−2u0sτ

1+u0sτ
,

where τ = ℓ/
√

2gh and g is the acceleration due to gravity.

14.7 (The pole/zero ratio) Consider a process with the loop transfer function

L(s) = k
z− s

s− p
,

with positive z and p. Show that the system is stable if p/z < k < 1 or 1 < k < p/z
and that the largest stability margin is sm = |p− z|/(p + z), which is obtained
for k = 2p/(p+ z). Determine the pole/zero ratios that give the stability margin
sm = 2/3.

14.8 (Phase lag of systems with right half-plane pole/zero pair and delay and right
half-plane pole) Consider the transfer functions for a process with a right half-
plane pole and right half-plane zero in Example 14.6 and a right half-plane pole
and a time delay in Example 14.7. The phase lags of their all-pass factors are given
in equations (14.15) and (14.16). Show that the largest phase lags are

ϕap1 =−argPpz(iω)≤ 2arctan
(
2
√

pz/|z− p|
)
,

ϕap2 =−argPpτ(iω)≤
√

pτ(2− pτ)+2arctan
√

pτ/(2p− pτ)

and that they occur for ω1 =
√

pz and ω2 =
√

2p/τ− p2 respectively.

14.9 Consider a process with the transfer function

P(s) =
(s+3)(s+200)

(s+1)(s2 +10s+40)(s+40)
.

Discuss suitable choices of closed loop poles for a design that gives dominant poles
with undamped natural frequency 1 and 10.

14.10 (Vehicle steering) Consider the Nyquist curve in Figure 14.12. Explain why
part of the curve is approximately a circle. Derive a formula for the center and the
radius and compare with the actual Nyquist curve.

14.11 (X-29) A simplified model of the X-29 aircraft in a certain flight condition
has a right-hand pole/zero pair with p = 6 rad/s and z = 26 rad/s. Estimate the
achievable stability margins and compare with the results in Example 14.3.

14.12 (Sensitivity inequalities) Prove the inequalities given by equation (14.22). !
(Hint: Use the maximum modulus theorem.)
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14.13 (Sensitivity limits due to poles in the right half-plane) Let Tr = Mt b/(s+b)
represent an upper bound on the desired sensitivity let ωtc represent the comple-
mentary sensitivity crossover frequency. Show that for a process P(s) with a right
half-plane pole s= p but no other singularities in the right half-plane, the following
inequalities hold:

b≥
pre +

√
M2

t p2
re +(M2

t −1)p2
im

M2
t −1

, ωtc ≤
pre +

√
M2

t p2
re +(M2

t −1)p2
im√

M2
t −1

.

(14.33)

14.14 (Maximum complementary sensitivity for multiple right half-plane poles
and zeros) Consider a process P(s) with the right half-plane zeros zk and right half- !
plane poles pk. Introduce the polynomial n(s) with zeros s= zk and the polynomial
d(s) with zeros s = pk. Show that the complementary sensitivity function has the
property

Mt ≥max
k

∣∣∣
n(−pk)

n(pk)

∣∣∣.

Also show that the equations (14.29) hold.

14.15 (Right half-plane pole/zero pair lag control) Consider a process with the
transfer functions

P(s) =
s− z

s− p
.

(a) Show that the system can be controlled by a controller with the transfer
function C(s) = b/(s− a). Design such a controller that gives the closed

loop poles s =−ζ ω0 ±ω0

√
1−ζ 2.

(b) Calculate the maximum sensitivities of the closed loop system as a function
of ωb and compare the bound imposed by the right half-plane poles and
zeros of the system. Discuss the differences between the cases z > p and
z < p.

(c) Plot the root locus of the process with the PI controller and describe quali-
tative the differences between the cases z > p and z < p. Use the numerical
values ω0 = 2,ζ = 1, p = 1,z = 5 and p = 5,z = 1.

14.16 (Time delay and a pole in the right half-plane) Consider a process with the
transfer function

P(s) =
e−sτ

s− p
P̄(s),

where P̄(s) has no poles and zeros in the right half-plane. Show that the sensitivity
functions have the properties listed in Table 14.1:

Mt ≥ epτ , Ms ≥ epτ −1.
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14.17 (Stabilization of an inverted pendulum with visual feedback) Consider sta-
bilization of an inverted pendulum based on visual feedback using a video camera
with a 50-Hz frame rate. Let the effective pendulum length be l. Assume that we
want the loop transfer function to have a slope of ngc = −1/2 at the crossover
frequency. Use the gain crossover frequency inequality to determine the minimum
length of the pendulum that can be stabilized if we desire a phase margin of 45◦.

14.18 (Design with poor robustness) Consider a process with the transfer function

P(s) =
1

s+1
.

Design a PI controller that gives a closed loop system with the characteristic poly-
nomial s2 + 0.2s+ 0.01. Plot the Nyquist curve of the loop transfer function and
determine the gain, phase, and stability margins.

14.19 (Right half-plane pole/zero pair PI control) Consider a process with the
transfer function

P(s) =
s− z

s− p
.

(a) Show that the system can be controlled by a PI controller and design a
PI controller that gives a closed loop system with poles at s = −ζ ω0 ±
ω0

√
1−ζ 2.

(b) Calculate the maximum sensitivity of the closed loop system as a function
of ω0 and compare with the bound imposed by the the right half-plane poles
and zeros of the system. Discuss the differences between the cases z > p and
z < p.

(c) Plot the root locus of the process with the PI controller and qualitatively
describe how it changes with the process pole and the process zero. Use the
numerical values ω0 = 1,ζ = 1, p = 1, z = 5 and p = 5, z = 1.
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