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Chapter Four
Examples

... Don’t apply any model until you understand the simplifying assumptions on which it is

based, and you can test their validity. Catch phrase: use only as directed. Don’t limit yourself

to a single model: More than one model may be useful for understanding different aspects of

the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70].

In this chapter we present a collection of examples spanning many different
fields of science and engineering. These examples are used throughout the text
and in exercises to illustrate different concepts. First-time readers may wish to
focus on only a few examples with which they have had the most prior experience
or insight to understand the concepts of state, input, output, and dynamics in a
familiar setting.

4.1 Cruise Control

The cruise control system of a car is a common feedback system encountered in
everyday life. The system attempts to maintain a constant velocity in the presence
of disturbances primarily caused by changes in the slope of a road. The controller
compensates for these unknowns by measuring the speed of the car and adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figure 4.1. Let v be
the speed of the car and vr the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type described briefly in Chapter 1,
receives the signals v and vr and generates a (normalized) control signal u that is
sent to an actuator that controls the throttle position. The throttle in turn controls
the torque T delivered by the engine, which is transmitted through the gears and
the wheels, generating a force F that moves the car. There are disturbance forces Fd

due to variations in the slope of the road, the rolling resistance, and aerodynamic
forces. The cruise controller also has a human–machine interface that allows the
driver to set and modify the desired speed. There are also functions that disconnect
the cruise control when the brake is touched.

The system has many individual components—actuator, engine, transmission,
wheels, and car body—and a detailed model can be very complicated. In spite of
this, the model required to design the cruise controller can be quite simple.

To develop a mathematical model we start with a force balance for the car body.
Let v be the speed of the car, m the total mass (including passengers), F the force
generated by the contact of the wheels with the road, and Fd the disturbance force



4-2 CHAPTER 4. EXAMPLES

Gears &

Actuator

vr

Controller

Body
Throttle &

Engine

Fd

v

cancel

resume/accel

set/decel

on/off

Driver

Interface

T F

u

Wheels

Figure 4.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torque T that is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environment, such as aerodynamic
drag and gravitational forces on hills, the net force causes the car to move. The velocity of
the car v is measured by a control system that adjusts the throttle through an actuation mech-
anism. A driver interface allows the system to be turned on and off and the reference speed
vr to be established.

due to gravity, friction, and aerodynamic drag. The equation of motion of the car
is simply

m
dv

dt
= F−Fd. (4.1)

The force F is generated by the engine, whose torque is proportional to the
rate of fuel injection, which is itself proportional to a control signal 0 ≤ u ≤ 1
that controls the throttle position. The torque also depends on engine speed ω . A
simple representation of the torque at full throttle is given by the torque curve

T (ω) = Tm

(

1−β

(
ω

ωm
−1

)2
)

, (4.2)

where the maximum torque Tm is obtained at engine speed ωm. Typical parameters
are Tm = 190 Nm, ωm = 420 rad/s (about 4000 RPM), and β = 0.4. Let n be
the gear ratio and r the wheel radius. The engine speed is related to the velocity
through the expression

ω =
n

r
v =: αnv,

and the driving force can be written as

F =
nu

r
T (ω) = αnuT (αnv).

Typical values of αn for gears 1 through 5 are α1 = 40, α2 = 25, α3 = 16, α4 = 12,
and α5 = 10. The inverse of αn has a physical interpretation as the effective wheel
radius. Figure 4.2 shows the torque as a function of engine speed and vehicle
speed. The figure shows that the effect of the gear is to “flatten” the torque curve
so that an almost full torque can be obtained almost over the whole speed range.

The disturbance force Fd has three major components: Fg, the forces due to
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(a) Torque versus engine speed
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(b) Torque versus car speed

Figure 4.2: Torque curves for typical car engine. The graph on the left shows the torque
generated by the engine as a function of the angular velocity of the engine, while the curve
on the right shows torque as a function of car speed for different gears.

gravity; Fr, the forces due to rolling friction; and Fa, the aerodynamic drag. Letting
the slope of the road be θ , gravity gives the force Fg = mgsinθ , as illustrated in
Figure 4.3a, where g = 9.8 m/s2 is the gravitational constant. A simple model of
rolling friction is

Fr = mgCr sgn(v),

where Cr is the coefficient of rolling friction and sgn(v) is the sign of v (±1) or
zero if v = 0. A typical value for the coefficient of rolling friction is Cr = 0.01.
Finally, the aerodynamic drag is proportional to the square of the speed:

Fa =
1

2
ρCdA|v|v,

where ρ is the density of air, Cd is the shape-dependent aerodynamic drag coeffi-
cient, and A is the frontal area of the car. Typical parameters are ρ = 1.3 kg/m3,
Cd = 0.32, and A = 2.4 m2.

Summarizing, we find that the car’s speed can be modeled by

m
dv

dt
= αnuT (αnv)−mgCr sgn(v)−

1

2
ρCdA|v|v−mgsinθ , (4.3)

where the function T is given by equation (4.2). The model (4.3) is a dynamical
system of first order. The state is the car velocity v, which is also the output. The
input is the signal u that controls the throttle position, and the disturbance is the
force Fd, which depends on the slope of the road. The system is nonlinear because
of the torque curve, the gravity term, and the nonlinear character of rolling friction
and aerodynamic drag. There can also be variations in the parameters; e.g., the
mass of the car depends on the number of passengers and the load being carried in
the car.

We add to this model a feedback controller that attempts to regulate the speed
of the car in the presence of disturbances. We shall use a proportional-integral
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(b) Closed loop response

Figure 4.3: Car with cruise control encountering a sloping road. A schematic diagram is
shown in (a), and (b) shows the response in speed and throttle when a slope of 4◦ is encoun-
tered. The hill is modeled as a net change of 4◦ in hill angle θ , with a linear change in the
angle between t = 5 and t = 6. The PI controller has proportional gain kp = 0.5 and integral
gain ki = 0.1.

controller, which has the form

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ .

This controller can itself be realized as an input/output dynamical system by defin-
ing a controller state z and implementing the differential equation

dz

dt
= vr− v, u = kp(vr− v)+ kiz, (4.4)

where vr is the desired (reference) speed. As discussed briefly in Section 1.6, the
integrator (represented by the state z) ensures that in steady state the error will be
driven to zero, even when there are disturbances or modeling errors. (The design
of PI controllers is the subject of Chapter 11.) Figure 4.3b shows the response of
the closed loop system, consisting of equations (4.3) and (4.4), when it encounters
a hill. The figure shows that even if the hill is so steep that the throttle changes
from 0.17 to almost full throttle, the largest speed error is less than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (4.3). It may seem
surprising that such a seemingly complicated system can be described by the sim-
ple model (4.3). It is important to make sure that we restrict our use of the model
to the uncertainty lemon conceptualized in Figure 3.5b. The model is not valid for
very rapid changes of the throttle because we have ignored the details of the engine
dynamics, neither is it valid for very slow changes because the properties of the
engine will change over the years. Nevertheless the model is very useful for the
design of a cruise control system. As we shall see in later chapters, the reason for
this is the inherent robustness of feedback systems: even if the model is not per-
fectly accurate, we can use it to design a controller and make use of the feedback
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Figure 4.4: Finite state machine for cruise control system. The figure on the left shows
some typical buttons used to control the system. The controller can be in one of four modes,
corresponding to the nodes in the diagram on the right. Transition between the modes is
controlled by pressing one of the five buttons on the cruise control interface: on, off, set,
resume, or cancel.

in the controller to manage the uncertainty in the system.
The cruise control system also has a human–machine interface that allows the

driver to communicate with the system. There are many different ways to imple-
ment this system; one version is illustrated in Figure 4.4. The system has four
buttons: on-off, set/decelerate, resume/accelerate, and cancel. The operation of the
system is governed by a finite state machine that controls the modes of the PI con-
troller and the reference generator. Implementation of controllers and reference
generators will be discussed more fully in Chapter 11.

The use of control in automotive systems goes well beyond the simple cruise
control system described here. Applications include emissions control, traction
control, power control (especially in hybrid vehicles), and adaptive cruise control.
Many automotive applications are discussed in detail in the book by Kiencke and
Nielsen [KN00] and in the survey papers by Powers et al. [BP96, PN00]. New
vehicles coming on the market also include many “self-driving” features, which
represent even more complex feedback systems.

4.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the feature that one of its key
properties is due to a feedback mechanism that is created by the design of the
front fork. A detailed model of a bicycle is complex because the system has many
degrees of freedom and the geometry is complicated. However, a great deal of
insight can be obtained from simple models.

To derive the equations of motion we assume that the bicycle rolls on the hori-
zontal xy plane. Introduce a coordinate system that is fixed to the bicycle with the
ξ -axis through the contact points of the wheels with the ground, the η-axis hor-
izontal, and the ζ -axis vertical, as shown in Figure 4.5. Let v0 be the velocity of
the bicycle at the rear wheel, b the wheelbase, ϕ the tilt angle, and δ the steering
angle. The coordinate system rotates around the point O with the angular veloc-
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Figure 4.5: Schematic views of a bicycle. The steering angle is δ , and the roll angle is ϕ .
The center of mass has height h and distance a from a vertical through the contact point P1

of the rear wheel. The wheelbase b is the distance between P1 and P2, and the trail c is the
distance between P2 and P3.

ity ω = v0δ/b, and an observer fixed to the bicycle experiences forces due to the
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pendulum, as shown
in the rear view in Figure 4.5b. To model the tilt, consider the rigid body obtained
when the wheels, the rider, and the front fork assembly are fixed to the bicycle
frame. Let m be the total mass of the system, J the moment of inertia of this body
with respect to the ξ -axis, and D the product of inertia with respect to the ξ ζ axes.
Furthermore, let the ξ and ζ coordinates of the center of mass with respect to the
rear wheel contact point, P1, be a and h, respectively. We have J ≈ mh2 and D =
mah. The torques acting on the system are due to gravity and centripetal action.
Assuming that the steering angle δ is small, the equation of motion becomes

J
d2ϕ

dt2
−

Dv0

b

dδ

dt
= mghsinϕ +

mv2
0h

b
δ . (4.5)

The term mghsinϕ is the torque generated by gravity. The terms containing δ and
its derivative are the torques generated by steering, with the term (Dv0/b)dδ/dt
due to inertial forces and the term (mv2

0h/b)δ due to centripetal forces.
The steering angle is influenced by the torque the rider applies to the handle

bar. Because of the tilt of the steering axis and the shape of the front fork, the
contact point of the front wheel with the road P2 is behind the axis of rotation of
the front wheel assembly, as shown in Figure 4.5c. The distance c between the
contact point of the front wheel P2 and the projection of the axis of rotation of
the front fork assembly P3 is called the trail. The steering properties of a bicycle
depend critically on the trail. A large trail increases stability but makes the steering
less agile.

A consequence of the design of the front fork is that the steering angle δ is
influenced both by steering torque T and by the tilt of the frame ϕ . This means
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Figure 4.6: Block diagram of a bicycle with a front fork. The steering torque applied to the
handlebars is T , the roll angle is ϕ , and the steering angle is δ . Notice that the front fork
creates a feedback from the roll angle ϕ to the steering angle δ that under certain conditions
can stabilize the system.

that a bicycle with a front fork is a feedback system as illustrated by the block
diagram in Figure 4.6. The steering angle δ influences the tilt angle ϕ , and the
tilt angle influences the steering angle, giving rise to the circular causality that is
characteristic of reasoning about feedback. For a front fork with a positive trail,
the bicycle will steer into the lean, creating a centrifugal force that attempts to
diminish the lean.

Under certain conditions, the feedback can actually stabilize the bicycle. A
crude empirical model is obtained by assuming that the block B can be modeled as
the static system

δ = k1T − k2ϕ. (4.6)

Combining the model of the bicycle frame (4.5) with the model of the front fork (4.6),
we get the the following system model:

J
d2ϕ

dt2
+

Dv0k2

b

dϕ

dt
+
(mv2

0hk2

b
−mgh

)
ϕ =

Dv0k1

b

dT

dt
+

mv2
0hk1

b
T, (4.7)

where we have approximated sinϕ with ϕ . The left hand side of this equation looks
like the equation for a spring mass system, where the damping term is Dv0k2/b
and the spring term is mv2

0k2/b−mgh. Notice that the spring term is negative if

v0 = 0 and that it becomes positive for v >
√

gb/k2. We can thus conclude that the
bicycle is unstable for small velocities but that the feedback provided by the front
fork makes the bicycle stable if the velocity is sufficiently large.

The simple model given by equations (4.5) and (4.6) neglects the dynamics of
the front fork, the tire–road interaction, and the fact that the parameters depend on
the velocity. A more accurate model, called the Whipple model, is obtained using
the rigid-body dynamics of the front fork and the frame. Assuming small angles,
this model becomes

M

⎧
⎪⎪⎩

ϕ̈
δ̈

⎫
⎪⎪⎭+Cv0

⎧
⎪⎪⎩

ϕ̇
δ̇

⎫
⎪⎪⎭+(K0 +K2v2

0)

⎧
⎪⎪⎩

ϕ
δ

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0
T

⎫
⎪⎪⎭ , (4.8)

where the elements of the 2×2 matrices M, C, K0, and K2 depend on the geometry
and the mass distribution of the bicycle. Note that this has a form somewhat similar
to that of the spring–mass system introduced in Chapter 3 and the balance system
in Example 3.2. Even this more complex model is inaccurate because the interac-
tion between the tire and the road is neglected; taking this into account requires two
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Figure 4.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all connections. (c) Only the
signal connections.

additional state variables. Again, the uncertainty lemon in Figure 3.5b provides a
framework for understanding the validity of the model under these assumptions.

Interesting presentations on the development of the bicycle are given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (4.8) was presented
in a paper by Whipple in 1899 [Whi99]. More details on bicycle modeling are
given in the papers [ÅKL05, LS06], which has many additional references.

4.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementation of Black’s feedback
amplifier. It is a universal component that is widely used for instrumentation, con-
trol, and communication. It is also a key element in analog computing. Schematic
diagrams of the operational amplifier are shown in Figure 4.7. The amplifier has
one inverting input (v−), one noninverting input (v+), and one output (vout). There
are also connections for the supply voltages, e− and e+, and a zero adjustment (off-
set null). A simple model is obtained by assuming that the input currents i− and i+
are zero and that the output is given by the static relation

vout = sat(vmin,vmax)

(
k(v+− v−)

)
, (4.9)

where sat denotes the saturation function

sat(a,b)(x) =

⎧
⎪⎨

⎪⎩

a if x < a,

x if a≤ x≤ b,

b if x > b.

(4.10)

We assume that the gain k is large, in the range of 106–108, and the voltages vmin

and vmax satisfy
e− ≤ vmin < vmax ≤ e+

and hence are in the range of the supply voltages. More accurate models are ob-
tained by replacing the saturation function with a smooth function as shown in
Figure 4.8. For small input signals the amplifier characteristic (4.9) is linear:

vout = k(v+− v−) =:−kv. (4.11)
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Figure 4.8: Input/output characteristics of an operational amplifier. The differential input is
given by v+−v−. The output voltage is a linear function of the input in a small range around
0, with saturation at vmin and vmax. In the linear regime the op amp has high gain.

Since the open loop gain k is very large, the range of input signals where the system
is linear is very small.

A simple amplifier is obtained by arranging feedback around the basic opera-
tional amplifier as shown in Figure 4.9a. To model the feedback amplifier in the
linear range, we assume that the current i0 = i−+ i+ is zero and that the gain of
the amplifier is so large that the voltage v = v−− v+ is also zero. It follows from
Ohm’s law that the currents through resistors R1 and R2 are given by

v1

R1
=−

v2

R2
,

and hence the closed loop gain of the amplifier is

v2

v1
=−kcl, where kcl =

R2

R1
. (4.12)

A more accurate model is obtained by continuing to neglect the current i0 but
assuming that the voltage v is small but not negligible. The current balance is then

v1− v

R1
=

v− v2

R2
. (4.13)

Assuming that the amplifier operates in the linear range and using equation (4.11),

v −

+
v1

v2

R1 R2

i0

(a) Amplifier circuit

v2R1

R1 +R2

e vR2

R1

v1
−kΣ

(b) Block diagram

Figure 4.9: Stable amplifier using an op amp. The circuit (a) uses negative feedback around
an operational amplifier and has a corresponding block diagram (b). The resistors R1 and R2

determine the gain of the amplifier.
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the gain of the closed loop system becomes

kcl =−
v2

v1
=

R2

R1

kR1

R1 +R2 + kR1
≈

R2

R1
(4.14)

If the open loop gain k of the operational amplifier is large, the closed loop gain
kcl is the same as in the simple model given by equation (4.12). Notice that the
closed loop gain depends only on the passive components and that variations in k
have only a marginal effect on the closed loop gain. For example if k = 106 and
R2/R1 = 100, a variation of k by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nice illustration of how feedback
can be used to make precise systems from uncertain components. In this particular
case, feedback is used to trade high gain and low robustness for low gain and high
robustness. Equation (4.14) was the formula that inspired Black when he invented
the feedback amplifier [Bla34] (see the quote at the beginning of Chapter 13).

It is instructive to develop a block diagram for the feedback amplifier in Fig-
ure 4.9a. To do this we will represent the pure amplifier with input v and output v2

as one block. To complete the block diagram, we must describe how v depends on
v1 and v2. Solving equation (4.13) for v gives

v =
R2

R1 +R2
v1 +

R1

R1 +R2
v2 =

R1

R1 +R2

(R2

R1
v1 + v2

)
,

and we obtain the block diagram shown in Figure 4.9b. The diagram clearly shows
that the system has feedback and that the gain from v2 to v is R1/(R1 +R2), which
can also be read from the circuit diagram in Figure 4.9a. If the loop is stable and
the gain of the amplifier is large, it follows that the error e is small, and we find that
v2 = −(R2/R1)v1. Notice that the resistor R1 appears in two blocks in the block
diagram. This situation is typical in electrical circuits, and it is one reason why
block diagrams are not always well suited for some types of physical modeling.

The simple model of the amplifier given by equation (4.11) provides qualitative
insight, but it neglects the fact that the amplifier is a dynamical system. A more
realistic model is

dvout

dt
=−avout−bv. (4.15)

The parameter b has dimensions of frequency and is called the gain-bandwidth
product of the amplifier. Whether a more complicated model is used depends on
the questions to be answered and the required size of the uncertainty lemon. The
model (4.15) is still not valid for very high or very low frequencies since drift
causes deviations at low frequencies and there are additional dynamics that appear
at frequencies close to b. The model is also not valid for large signals—an upper
limit is given by the voltage of the power supply, typically in the range of 5–10 V—
neither is it valid for very low signals because of electrical noise. These effects can
be added, if needed, but increase the complexity of the analysis.

The operational amplifier is very versatile, and many different systems can be
built by combining it with resistors and capacitors. In fact, any linear system can
be implemented by combining operational amplifiers with resistors and capacitors.
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Figure 4.10: Circuit diagram of a PI controller obtained by feedback around an operational
amplifier. The capacitor C is used to store charge and represents the integral of the input.

Exercise 4.5 shows how a second-order oscillator is implemented, and Figure 4.10
shows the circuit diagram for an analog proportional-integral controller. To de-
velop a simple model for the circuit we assume that the current i0 is zero and that
the open loop gain k is so large that the input voltage v is negligible. The current i
through the capacitor is i =Cdvc/dt, where vc is the voltage across the capacitor.
Since the same current goes through the resistor R1, we get

i =
v1

R1
=C

dvc

dt
,

which implies that

vc(t) =
1

C

∫
i(t)dt =

1

R1C

∫ t

0
v1(τ)dτ .

The output voltage is thus given by

v2(t) =−R2i− vc =−
R2

R1
v1(t)−

1

R1C

∫ t

0
v1(τ)dτ ,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [Lun05,
Phi48], and their usage is described in many textbooks (e.g., [CD75]). Good infor-
mation is also available from suppliers [Jun02, Man02].

4.4 Computing Systems and Networks

The application of feedback to computing systems follows the same principles as
the control of physical systems, but the types of measurements and control inputs
that can be used are somewhat different. Measurements (sensors) are typically
related to resource utilization in the computing system or network and can in-
clude quantities such as the processor load, memory usage, or network bandwidth.
Control variables (actuators) typically involve setting limits on the resources avail-
able to a process. This might be done by controlling the amount of memory, disk
space, or time that a process can consume, turning on or off processing, delaying
availability of a resource, or rejecting incoming requests to a server process. Pro-
cess modeling for networked computing systems is also challenging, and empirical
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Figure 4.11: Feedback control of a web server. Connection requests arrive on an input queue,
where they are sent to a server process. A finite state machine keeps track of the state of the
individual server processes and responds to requests. A control algorithm can modify the
server’s operation by controlling parameters that affect its behavior, such as the maximum
number of requests that can be serviced at a single time (MaxClients) or the amount of
time that a connection can remain idle before it is dropped (KeepAlive).

models based on measurements are often used when a first-principles model is not
available.

Web Server Control

Web servers respond to requests from the Internet and provide information in the
form of web pages. Modern web servers start multiple processes to respond to
requests, with each process assigned to a single source until no further requests are
received from that source for a predefined period of time. Processes that are idle
become part of a pool that can be used to respond to new requests. To provide a
fast response to web requests, it is important that the web server processes do not
overload the server’s computational capabilities or exhaust its memory. Since other
processes may be running on the server, the amount of available processing power
and memory is uncertain, and feedback can be used to provide good performance
in the presence of this uncertainty.

Figure 4.11 illustrates the use of feedback to modulate the operation of an
Apache web server. The web server operates by placing incoming connection re-
quests on a queue and then starting a subprocess to handle requests for each ac-
cepted connection. This subprocess responds to requests from a given connection
as they come in, alternating between a Busy state and a Wait state. (Keeping the
subprocess active between requests is known as the persistence of the connection
and provides a substantial reduction in latency to requests for multiple pieces of
information from a single site.) If no requests are received for a sufficiently long
period of time, controlled by the KeepAlive parameter, then the connection is
dropped and the subprocess enters an Idle state, where it can be assigned another
connection. A maximum of MaxClients simultaneous requests will be served,
with the remainder remaining on the incoming request queue.
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The parameters that control the server represent a trade-off between perfor-
mance (how quickly requests receive a response) and resource usage (the amount
of processing power and memory used by the server). Increasing the MaxClients
parameter allows connection requests to be pulled off of the queue more quickly
but increases the amount of processing power and memory usage that is required.
Increasing the KeepAlive timeout means that individual connections can remain
idle for a longer period of time, which decreases the processing load on the ma-
chine but increases the length of the queue (and hence the amount of time required
for a user to initiate a connection). Successful operation of a busy server requires
a proper choice of these parameters, often based on trial and error.

To model the dynamics of this system in more detail, we create a discrete-time
model with states given by the average processor load xcpu and the percentage
memory usage xmem. The inputs to the system are taken as the maximum number
of clients umc and the keep-alive time uka. If we assume a linear model around the
equilibrium point, the dynamics can be written as
⎧
⎪⎪⎩

xcpu[k+1]
xmem[k+1]

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

A11 A12

A21 A22

⎫
⎪⎪⎭
⎧
⎪⎪⎩

xcpu[k]
xmem[k]

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

B11 B12

B21 B22

⎫
⎪⎪⎭
⎧
⎪⎪⎩

uka[k]
umc[k]

⎫
⎪⎪⎭ , (4.16)

where the coefficients of the A and B matrices can be determined based on empiri-
cal measurements or detailed modeling of the web server’s processing and memory
usage. Using system identification, Diao et al. [DGH+02, HDPT04] identified the
linearized dynamics as

A =

⎧
⎪⎪⎩

0.54 −0.11
−0.026 0.63

⎫
⎪⎪⎭ , B =

⎧
⎪⎪⎩
−85 4.4
−2.5 2.8

⎫
⎪⎪⎭×10−4,

where the system was linearized about the equilibrium point

xcpu = 0.58, uka = 11 s, xmem = 0.55, umc = 600.

This model shows the basic characteristics that were described above. Looking
first at the B matrix, we see that increasing the KeepAlive timeout (first col-
umn of the B matrix) decreases both the processor usage and the memory usage
since there is more persistence in connections and hence the server spends a longer
time waiting for a connection to close rather than taking on a new active connec-
tion. The MaxClients connection increases both the processing and memory
requirements. Note that the largest effect on the processor load is the KeepAlive
timeout. The A matrix tells us how the processor and memory usage evolve in a re-
gion of the state space near the equilibrium point. The diagonal terms describe how
the individual resources return to equilibrium after a transient increase or decrease.
The off-diagonal terms show that there is coupling between the two resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later examples that it can
be used to modify the parameters controlling the server in real time and provide
robustness with respect to uncertainties in the load on the machine. Similar types
of mechanisms have been used for other types of servers. It is important to re-
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Figure 4.12: Internet congestion control. (a) Source computers send information to routers,
which forward the information to other routers that eventually connect to the receiving com-
puter. When a packet is received, an acknowledgment packet is sent back through the routers
(not shown). The routers buffer information received from the sources and send the data
across the outgoing link. (b) The equilibrium buffer size be for a set of N identical comput-
ers sending packets through a single router with drop probability ρ .

member the assumptions on the model and their role in determining when the
model is valid. In particular, since we have chosen to use average quantities over
a given sample time, the model will not provide an accurate representation for
high-frequency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decentralized, efficient, and ex-
pandable communication system. The system consists of a large number of inter-
connected gateways. A message is split into several packets that are transmitted
over different paths in the network, and the packages are rejoined to recover the
message at the receiver. An acknowledgment (“ack”) message is sent back to the
sender when a packet is received. The operation of the system is governed by a
simple but powerful decentralized control structure that has evolved over time.

The system has two control mechanisms called protocols: the Transmission
Control Protocol (TCP) for end-to-end network communication and the Internet
Protocol (IP) for routing packets and for host-to-gateway or gateway-to-gateway
communication. The current protocols evolved after some spectacular congestion
collapses occurred in the mid 1980s, when throughput unexpectedly could drop by
a factor of 1000 [Jac95]. The control mechanism in TCP is based on conserving
the number of packets in the loop from the sender to the receiver and back to the
sender. The sending rate is increased exponentially when there is no congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we model three separate
elements of the system: the rate at which packets are sent by individual sources
(computers), the dynamics of the queues in the links (routers), and the admission
control mechanism for the queues. Figure 4.12a is a block diagram of the system.



4.4. COMPUTING SYSTEMS AND NETWORKS 4-15

The current source control mechanism on the Internet is a protocol known as
TCP/Reno [LPD02]. This protocol operates by sending packets to a receiver and
waiting to receive an acknowledgment from the receiver that the packet has ar-
rived. If no acknowledgment is sent within a certain timeout period, the packet is
retransmitted. To avoid waiting for the acknowledgment before sending the next
packet, Reno transmits multiple packets up to a fixed window around the latest
packet that has been acknowledged. If the window size is chosen properly, packets
at the beginning of the window will be acknowledged before the source transmits
packets at the end of the window, allowing the computer to continuously stream
packets at a high rate.

To determine the size of the window to use, TCP/Reno uses a feedback mech-
anism in which (roughly speaking) the window size is increased at a fixed rate as
long as packets are acknowledged and the window size is cut in half when packets
are lost. This mechanism allows a dynamic adjustment of the window size in which
each computer acts in a greedy fashion as long as packets are being delivered but
backs off quickly when congestion occurs.

A model for the behavior of the source can be developed by describing the
dynamics of the window size. Suppose we have N computers and let wi be the
current window size (measured in number of packets) for the ith computer. Let
qi represent the end-to-end probability that a packet will be dropped someplace
between the source and the receiver. We can model the dynamics of the window
size by the differential equation

dwi

dt
= (1−qi)

ri(t− τ t
i )

wi
+qi(−

wi

2
ri(t− τ t

i )), ri =
wi

τ t
i

, (4.17)

where τ t
i is the end-to-end transmission time for a packet to reach is destination and

the acknowledgment to be sent back and ri is the resulting rate at which packets
are cleared from the list of packets that have been received. The first term in the
dynamics represents the increase in window size when a packet is received, and
the second term represents the decrease in window size when a packet is lost.
Notice that ri is evaluated at time t− τ t

i , representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the router queue and the
admission control mechanism for the queue. Assume that we have L links in the
network and use l to index the individual links. We model the queue in terms of
the current number of packets in the router’s buffer bl and assume that the router
can contain a maximum of bl,max packets and transmits packets at a rate cl , equal
to the capacity of the link. The buffer dynamics can then be written as

dbl

dt
= sl− cl, sl = ∑

{i: l∈Li}
ri(t− τ f

li), (4.18)

where Li is the set of links that are being used by source i, τ f
li is the time it takes a

packet from source i to reach link l, and sl is the total rate at which packets arrive
at link l.
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The admission control mechanism determines whether a given packet is ac-
cepted by a router. Since our model is based on the average quantities in the net-
work and not the individual packets, one simple model is to assume that the proba-
bility that a packet is dropped depends on how full the buffer is: pl = ml(bl ,bmax).
For simplicity, we will assume for now that pl = ρlbl (see Exercise 4.6 for a more
detailed model). The probability that a packet is dropped at a given link can be
used to determine the end-to-end probability that a packet is lost in transmission:

qi = 1−∏
l∈Li

(1− pl)≈ ∑
l∈Li

pl(t− τb
li), (4.19)

where τb
li is the backward delay from link l to source i and the approximation is

valid as long as the individual drop probabilities are small. We use the backward
delay since this represents the time required for the acknowledgment packet to be
received by the source.

Together, equations (4.17), (4.18), and (4.19) represent a model of congestion
control dynamics. We can obtain substantial insight by considering a special case
in which we have N identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be ignored, in which case
the dynamics can be reduced to the form

dwi

dt
=

1

τp
−

ρc(2+w2
i )

2
,

db

dt
=

N

∑
i=1

wi

τp
− c, τp =

b

c
, (4.20)

where wi ∈ R, i = 1, . . . ,N, are the window sizes for the sources of data, b ∈ R

is the current buffer size of the router, ρ controls the rate at which packets are
dropped, and c is the capacity of the link connecting the router to the computers.
The variable τp represents the amount of time required for a packet to be processed
by a router, based on the size of the buffer and the capacity of the link. Substituting
τp into the equations, we write the state space dynamics as

dwi

dt
=

c

b
−ρc

(
1+

w2
i

2

)
,

db

dt
=

N

∑
i=1

cwi

b
− c. (4.21)

More sophisticated models can be found in [HMTG00, LPD02] and are explored
in subsequent exercises and examples.

The nominal operating point for the system can be found by setting ẇi = ḃ= 0:

0 =
c

b
−ρc

(
1+

w2
i

2

)
, 0 =

N

∑
i=1

cwi

b
− c.

Exploiting the fact that all of the source dynamics are identical, it follows that all
of the wi should be the same, and it can be shown that there is a unique equilibrium
satisfying the equations

wi,e =
be

N
=

cτp
e

N
,

1

2ρ2N2
(ρbe)

3 +(ρbe)−1 = 0. (4.22)

The solution for the second equation is a bit messy but can easily be determined
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Figure 4.13: Internet congestion control for N identical sources across a single link. As
shown on the left, multiple sources attempt to communicate through a router across a single
link. An “ack” packet sent by the receiver acknowledges that the message was received;
otherwise the message packet is resent and the sending rate is slowed down at the source.
The simulation on the right is for 60 sources starting random rates, with 20 sources dropping
out at t = 500 ms. The buffer size is shown at the top, and the individual source rates for 6
of the sources are shown at the bottom.

numerically. A plot of its solution as a function of 1/(2ρ2N2) is shown in Fig-
ure 4.12b. We also note that at equilibrium we have the following additional equal-
ities:

τp
e =

be

c
=

Nwe

c
, qe = N pe = Nρbe, re =

we

τp
e
. (4.23)

Figure 4.13 shows a simulation of 60 sources communicating across a single
link, with 20 sources dropping out at t = 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Note that the buffer size and
window sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [Tan96]. A good presentation of the ideas behind the control princi-
ples for the Internet is given by one of its designers, Van Jacobson, in [Jac95]. F.
Kelly [Kel85] presents an early effort on the analysis of the system. The books by
Hellerstein et al. [HDPT04] and Janert [Jan14] give many examples of the use of
feedback in computer systems.

4.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Heinrich Rohrer
for their design of the scanning tunneling microscope. The idea of the instrument
is to bring an atomically sharp tip so close to a conducting surface that tunneling
occurs. An image is obtained by traversing the tip across the sample and measuring
the tunneling current as a function of tip position. This invention has stimulated
the development of a family of instruments that permit visualization of surface
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Figure 4.14: Atomic force microscope. (a) A schematic diagram of an atomic force micro-
scope, consisting of a piezo drive that scans the sample under the AFM tip. A laser reflects
off of the cantilever and is used to measure the detection of the tip through a feedback con-
troller. (b) An AFM image of strands of DNA. (Image courtesy Veeco Instruments.)

structure at the nanometer scale, including the atomic force microscope (AFM),
where a sample is probed by a tip on a cantilever. An AFM can operate in two
modes. In tapping mode the cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. In contact mode the cantilever is in contact with the
sample, and its bending is controlled by feedback. In both cases control is actuated
by a piezo element that controls the vertical position of the cantilever base (or the
sample). The control system has a direct influence on picture quality and scanning
rate.

A schematic picture of an atomic force microscope is shown in Figure 4.14a. A
microcantilever with a tip having a radius of the order of 10 nm is placed close to
the sample. The tip can be moved vertically and horizontally using a piezoelectric
scanner. It is clamped to the sample surface by attractive van der Waals forces and
repulsive Pauli forces. The cantilever tilt depends on the topography of the surface
and the position of the cantilever base, which is controlled by the piezo element.
The tilt is measured by sensing the deflection of the laser beam using a photodiode.
The signal from the photodiode is amplified and sent to a controller that drives
the amplifier for the vertical position of the cantilever. By controlling the piezo
element so that the deflection of the cantilever is constant, the signal driving the
vertical deflection of the piezo element is a measure of the atomic forces between
the cantilever tip and the atoms of the sample. An image of the surface is obtained
by scanning the cantilever along the sample. The resolution makes it possible to
see the structure of the sample on the atomic scale, as illustrated in Figure 4.14b,
which shows an AFM image of DNA.

The horizontal motion of an AFM is typically modeled as a spring–mass sys-
tem with low damping. The vertical motion is more complicated. To model the
system, we start with the block diagram shown in Figure 4.15. Signals that are
easily accessible are the input voltage u to the power amplifier that drives the piezo
element, the voltage v applied to the piezo element, and the output voltage y of the
signal amplifier for the photodiode. The controller is a PI controller implemented
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Figure 4.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempts to keep the can-
tilever deflection equal to its reference value. Cantilever deflection is measured, amplified,
and converted to a digital signal, then compared with its reference value. A correcting sig-
nal is generated by the computer, converted to analog form, amplified, and sent to the piezo
element.

by a computer, which is connected to the system by analog-to-digital (A/D) and
digital-to-analog (D/A) converters. The deflection of the cantilever ϕ is also shown
in the figure. The desired reference value for the deflection is an input to the com-
puter.

There are several different configurations that have different dynamics. Here we
will discuss a high-performance system from [SÅD+07] where the cantilever base
is positioned vertically using a piezo stack. We begin the modeling with a simple
experiment on the system. Figure 4.16a shows a step response of a scanner from
the power amplifier input voltage u to the output voltage y of the signal amplifier
for the photodiode. This experiment captures the dynamics of the chain of blocks
from u to y in the block diagram in Figure 4.15. Figure 4.16a shows that the system
responds quickly but that there is a poorly damped oscillatory mode with a period
of about 35 µs. A primary task of the modeling is to understand the origin of the
oscillatory behavior. To do so we will explore the system in more detail.

The natural frequency of the clamped cantilever is typically several hundred
kilohertz, which is much higher than the observed oscillation of about 30 kHz.
As a first approximation we will model it as a static system. Since the deflections
are small, we can assume that the bending ϕ of the cantilever is proportional to the
difference in height between the cantilever tip at the probe and the piezo scanner. A
more accurate model can be obtained by modeling the cantilever as a spring–mass
system of the type discussed in Chapter 3.

Figure 4.16a also shows that the response of the power amplifier is fast. The
photodiode and the signal amplifier also have fast responses and can thus be mod-
eled as static systems. The remaining block is a piezo system with suspension.
A schematic mechanical representation of the vertical motion of the scanner is
shown in Figure 4.16b. We will model the system as two masses separated by an
ideal piezo element. The mass m1 is half of the piezo system, and the mass m2 is
the other half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crystal generates a force
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Figure 4.16: Modeling of an atomic force microscope. (a) A measured step response. The
top curve shows the voltage u applied to the drive amplifier (50 mV/div), the middle curve
is the output Vp of the power amplifier (500 mV/div) and the bottom curve is the output y

of the signal amplifier (500 mV/div). The time scale is 25 µs/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical positioner and the piezo
crystal.

F between the masses and that there is a damping c in the spring. Let the positions
of the center of the masses be z1 and z2. A momentum balance gives the following
model for the system:

m1
d2z1

dt2
= F, m2

d2z2

dt2
=−c2

dz2

dt
− k2z2−F.

Let the elongation of the piezo element l = z1− z2 be the control variable and the
height z1 of the cantilever base be the output. Eliminating the variable F in the
equations above and substituting z1− l for z2 gives the model

(m1 +m2)
d2z1

dt2
+ c2

dz1

dt
+ k2z1 = m2

d2l

dt2
+ c2

dl

dt
+ k2l. (4.24)

Summarizing, we find that a simple model of the system is obtained by mod-
eling the piezo by equation (4.24) and all the other blocks by static models. Intro-
ducing the linear equations l = k3u and y = k4z1, we now have a complete model
relating the output y to the control signal u. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the power amplifier. As in the
previous examples, the concept of the uncertainty lemon in Figure 3.5b provides
a framework for describing the uncertainty: the model will be accurate up to the
frequencies of the fastest modeled modes and over a range of motion in which
linearized stiffness models can be used.

The experimental results in Figure 4.16a can be explained qualitatively as fol-
lows. When a voltage is applied to the piezo, it expands by l0, the mass m1 moves
up, and the mass m2 moves down instantaneously. The system settles after a poorly
damped oscillation.

It is highly desirable to design a control system for the vertical motion so
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that it responds quickly with little oscillation. The instrument designer has sev-
eral choices: to accept the oscillation and have a slow response time, to design a
control system that can damp the oscillations, or to redesign the mechanics to give
resonances of higher frequency. The last two alternatives give a faster response and
faster imaging.

Since the dynamic behavior of the system changes with the properties of the
sample, it is necessary to tune the feedback loop. In simple systems this is currently
done manually by adjusting parameters of a PI controller. There are interesting
possibilities for making AFM systems easier to use by introducing automatic tun-
ing and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamental to solid state physics, see
Kittel [Kit95]. The model discussed in this section is based on Schitter [Sch01].

4.6 Drug Administration

The phrase “take two pills three times a day” is a recommendation with which we
are all familiar. Behind this recommendation is a solution of an open loop control
problem. The key issue is to make sure that the concentration of a medicine in
a part of the body is sufficiently high to be effective but not so high that it will
cause undesirable side effects. The control action is quantized, take two pills, and
sampled, every 8 hours. The prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and weight of the patient.

Drug administration is a control problem. To solve it we must understand how
a drug spreads in the body after it is administered. This topic, called pharmacoki-
netics, is now a discipline of its own, and the models used are called compart-
ment models. They go back to the 1920s when Widmark modeled the propagation
of alcohol in the body [WT24]. Compartment models are now important for the
screening of all drugs used by humans. The schematic diagram in Figure 4.17 il-
lustrates the idea of a compartment model. The body is viewed as a number of
compartments like blood plasma, kidney, liver, and tissues that are separated by
membranes. It is assumed that there is perfect mixing so that the drug concentra-
tion is constant in each compartment. The complex transport processes are approx-
imated by assuming that the flow rates between the compartments are proportional
to the concentration differences in the compartments.

To describe the effect of a drug it is necessary to know both its concentration
and how it influences the body. The relation between concentration c and its effect
e is typically nonlinear. A simple model is

e =
c

c0 + c
emax. (4.25)

The effect is linear for low concentrations, and it saturates at high concentrations.
The relation can also be dynamic, and it is then called pharmacodynamics.



4-22 CHAPTER 4. EXAMPLES

Chemical
inactivation
“fixation”

etc.
Subcutis

etc.

Blood circulation

Tissue boundaries

Dose N0 

k1 k4 k2 k3

k5

Figure 4.17: Abstraction used to compartmentalize the body for the purpose of describing
drug distribution (based on Teorell [Teo37]). The body is abstracted by a number of com-
partments with perfect mixing, and the complex transport processes are approximated by
assuming that the flow is proportional to the concentration differences in the compartments.
The constants ki parameterize the rates of flow between different compartments.

Compartment Models

The simplest dynamical model for drug administration is obtained by assuming
that the drug is evenly distributed in a single compartment after it has been ad-
ministered and that the drug is removed at a rate proportional to the concentration.
The compartments behave like stirred tanks with perfect mixing. Let c be the con-
centration, V the volume, and q the outflow rate. Converting the description of the
system into differential equations gives the model

V
dc

dt
=−qc, c≥ 0. (4.26)

This equation has the solution c(t) = c0e−qt/V = c0e−kt , which shows that the con-
centration decays exponentially with the time constant T =V/q after an injection.
The input is introduced implicitly as an initial condition in the model (4.26). More
generally, the way the input enters the model depends on how the drug is adminis-
tered. For example, the input can be represented as a mass flow into the compart-
ment where the drug is injected. A pill that is dissolved can also be interpreted as
an input in terms of a mass flow rate.

The model (4.26) is called a a one-compartment model or a single-pool model.
The parameter q/V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasma. By measuring the con-
centration at a few times, the initial concentration can be obtained by extrapolation.
If the total amount of injected substance is known, the volume V can then be de-
termined as V = m/c0.

The simple one-compartment model captures the gross behavior of drug distri-
bution, but it is based on many simplifications. Improved models can be obtained
by considering the body as composed of several compartments. Examples of such
systems are shown in Figure 4.18, where the compartments are represented as cir-
cles and the flows by arrows.
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Figure 4.18: Schematic diagrams of compartment models. (a) A simple two-compartment
model. Each compartment is labeled by its volume, and arrows indicate the flow of chemical
into, out of, and between compartments. (b) A system with six compartments used to study
the metabolism of thyroid hormone [God83]. The notation ki j denotes the transport from
compartment j to compartment i.

Modeling will be illustrated using the two-compartment model in Figure 4.18a.
We assume that there is perfect mixing in each compartment and that the transport
between the compartments is driven by concentration differences. We further as-
sume that a drug with concentration c0 is injected in compartment 1 at a volume
flow rate of u and that the concentration in compartment 2 is the output. Let c1 and
c2 be the concentrations of the drug in the compartments, and let V1 and V2 be the
volumes of the compartments. The mass balances for the compartments are

V1
dc1

dt
= q(c2− c1)−q0c1 + c0u, c1 ≥ 0,

V2
dc2

dt
= q(c1− c2), c2 ≥ 0,

y = c2,

(4.27)

where q represents flow rate between the compartments and q0 represents the flow
rate out of compartment 1 that is not going to compartment 2. Introducing the
variables k0 = q0/V1, k1 = q/V1, k2 = q/V2, and b0 = c0/V1 and using matrix
notation, the model can be written as

dc

dt
=

⎧
⎪⎪⎩
−k0− k1 k1

k2 −k2

⎫
⎪⎪⎭c+

⎧
⎪⎪⎩

b0

0

⎫
⎪⎪⎭u, y =

⎧
⎩0 1

⎫
⎭c. (4.28)

Comparing this model with its graphical representation in Figure 4.18a, we find
that the mathematical representation (4.28) can be written by inspection.

It should also be emphasized that simple compartment models such as the one
in equation (4.28) have a limited range of validity. Low-frequency limits exist be-
cause the human body changes with time, and since the compartment model uses
average concentrations, they will not accurately represent rapid changes. There are
also nonlinear effects that influence transportation between the compartments.
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Figure 4.19: Insulin–glucose dynamics. (a) Sketch of body parts involved in the control of
glucose. (b) Schematic diagram of the system. (c) Responses of insulin and glucose when
glucose in injected intravenously. From Pacini and Bergman [PB86].

Compartment models are widely used in medicine, engineering, and environ-
mental science. An interesting property of these systems is that variables like con-
centration and mass are always positive. An essential difficulty in compartment
modeling is deciding how to divide a complex system into compartments. Com-
partment models can also be nonlinear, as illustrated in the next section.

Insulin–Glucose Dynamics

It is essential that the blood glucose concentration in the body is kept within a
narrow range (0.7–1.1 g/L). Glucose concentration is influenced by many factors
like food intake, digestion, and exercise. A schematic picture of the relevant parts
of the body is shown in Figures 4.19a and b.

There is a sophisticated mechanism that regulates glucose concentration. Glu-
cose concentration is maintained by the pancreas, which secretes the hormones
insulin and glucagon. Glucagon is released into the bloodstream when the glucose
level is low. It acts on cells in the liver that release glucose. Insulin is secreted
when the glucose level is high, and the glucose level is lowered by causing the
liver and other cells to take up more glucose. In diseases like juvenile diabetes the
pancreas is unable to produce insulin and the patient must inject insulin into the
body to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are complicated; dynamics
with time scales that range from seconds to hours have been observed. Models of
different complexity have been developed. The models are typically tested with
data from experiments where glucose is injected intravenously and insulin and
glucose concentrations are measured at regular time intervals.

A relatively simple model called the minimal model was developed by Bergman
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and coworkers [Ber89]. This models uses two compartments, one representing the
concentration of glucose in the bloodstream and the other representing the concen-
tration of insulin in the interstitial fluid. Insulin in the bloodstream is considered
an input. The reaction of glucose to insulin can be modeled by the equations

dx1

dt
=−(p1 + x2)x1 + p1ge,

dx2

dt
=−p2x2 + p3(u− ie), (4.29)

where ge and ie represent the equilibrium values of glucose and insulin, x1 is the
concentration of glucose, and x2 is proportional to the concentration of interstitial
insulin. Notice the presence of the term x2x1 in the first equation. Also notice that
the model does not capture the complete feedback loop because it does not describe
how the pancreas reacts to the glucose. Figure 4.19c shows a fit of the model to a
test on a normal person where glucose was injected intravenously at time t = 0. The
glucose concentration rises rapidly, and the pancreas responds with a rapid spike-
like injection of insulin. The glucose and insulin levels then gradually approach
the equilibrium values.

Models of the type in equation (4.29) and more complicated models having
many compartments have been developed and fitted to experimental data. A diffi-
culty in modeling is that there are significant variations in model parameters over
time and for different patients. For example, the parameter p1 in equation (4.29)
has been reported to vary with an order of magnitude for healthy individuals. The
models have been used for diagnosis and to develop schemes for the treatment
of persons with diseases. Attempts to develop a fully automatic artificial pancreas
have been hampered by the lack of reliable sensors.

The papers by Widmark and Tandberg [WT24] and Teorell [Teo37] are classics
in pharmacokinetics, which is now an established discipline with many textbooks
[Dos68, Jac72, GP82]. Because of its medical importance, pharmacokinetics is
now an essential component of drug development. The book by Riggs [Rig63] is
a good source for the modeling of physiological systems, and a more mathemati-
cal treatment is given in [KS01]. Compartment models are discussed in [God83].
The problem of determining rate coefficients from experimental data is discussed
in [BÅ70] and [God83]. There are many publications on the insulin–glucose model.
The minimal model is discussed in [CT84, Ber89] and more recent references
are [MLK06, FCF+06].

4.7 Population Dynamics

Population growth is a complex dynamic process that involves the interaction of
one or more species with their environment and the larger ecosystem. The dynam-
ics of population groups are interesting and important in many different areas of
social and environmental policy. There are examples where new species have been
introduced into new habitats, sometimes with disastrous results. There have also
been attempts to control population growth both through incentives and through
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legislation. In this section we describe some of the models that can be used to un-
derstand how populations evolve with time and as a function of their environments.

Logistic Growth Model

Let x be the population of a species at time t. A simple model is to assume that the
birth rates and mortality rates are proportional to the total population. This gives
the linear model

dx

dt
= bx−dx = (b−d)x = rx, x≥ 0, (4.30)

where birth rate b and mortality rate d are parameters. The model gives an ex-
ponential increase if b > d or an exponential decrease if b < d. A more realistic
model is to assume that the birth rate decreases when the population is large. The
following modification of the model (4.30) has this property:

dx

dt
= rx(1−

x

k
), x≥ 0, (4.31)

where k is the carrying capacity of the environment. The model (4.31) is called
the logistic growth model.

Predator–Prey Models

A more sophisticated model of population dynamics includes the effects of com-
peting populations, where one species may feed on another. This situation, referred
to as the predator–prey problem, was introduced in Example 3.4, where we devel-
oped a discrete-time model that captured some of the features of historical records
of lynx and hare populations.

In this section, we replace the difference equation model used there with a more
sophisticated differential equation model. Let H(t) represent the number of hares
(prey) and let L(t) represent the number of lynxes (predator). The dynamics of the
system are modeled as

dH

dt
= rH

(
1−

H

k

)
−

aHL

c+H
, H ≥ 0,

dL

dt
= b

aHL

c+H
−dL, L≥ 0.

(4.32)

In the first equation, r represents the growth rate of the hares, k represents the
maximum population of the hares (in the absence of lynxes), a represents the in-
teraction term that describes how the hares are diminished as a function of the lynx
population, and c controls the prey consumption rate for low hare population. In
the second equation, b represents the growth coefficient of the lynxes and d repre-
sents the mortality rate of the lynxes. Note that the hare dynamics include a term
that resembles the logistic growth model (4.31).

Of particular interest are the values at which the population values remain con-
stant, called equilibrium points. The equilibrium points for this system can be de-
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Figure 4.20: Simulation of the predator–prey system. The figure on the left shows a simu-
lation of the two populations as a function of time. The figure on the right shows the pop-
ulations plotted against each other, starting from different values of the population. The
oscillation seen in both figures is an example of a limit cycle. The parameter values used for
the simulations are a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125, and r = 1.6.

termined by setting the right-hand side of the above equations to zero. Letting He

and Le represent the equilibrium state, from the second equation we have

Le = 0 or H∗e =
cd

ab−d
. (4.33)

Substituting this into the first equation, we have that for Le = 0 either He = 0 or
He = k. For Le ≠ 0, we obtain

L∗e =
rHe(c+He)

aHe

(
1−

He

k

)
=

bcr(abk− cd−dk)

(ab−d)2k
. (4.34)

Thus, we have three possible equilibrium points xe = (Le,He):

xe =

⎧
⎪⎪⎩

0
0

⎫
⎪⎪⎭ , xe =

⎧
⎪⎪⎩

k
0

⎫
⎪⎪⎭ , xe =

⎧
⎪⎪⎩

H∗e
L∗e

⎫
⎪⎪⎭ ,

where H∗e and L∗e are given in equations (4.33) and (4.34). Note that the equilib-
rium populations may be negative for some parameter values, corresponding to a
nonachievable equilibrium point.

Figure 4.20 shows a simulation of the dynamics starting from a set of popula-
tion values near the nonzero equilibrium values. We see that for this choice of pa-
rameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 3.7.

Volume I of the two-volume set by J. D. Murray [Mur04] give a broad coverage
of population dynamics.

Exercises

4.1 (Cruise control) Consider the cruise control example described in Section 4.1.
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Build a simulation that re-creates the response to a hill shown in Figure 4.3b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of the hill.

4.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
tion (4.5) can be approximated in state space form as

d

dt

⎧
⎪⎪⎩

x1

x2

⎫
⎪⎪⎭=

⎧
⎪⎪⎩

0 1
mgh/J 0

⎫
⎪⎪⎭
⎧
⎪⎪⎩

x1

x2

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

Dv0/(bJ)
mv2

0h/(bJ)

⎫
⎪⎪⎭u,

y =
⎧
⎩1 0

⎫
⎭x,

where the input u is the steering angle δ and the output y is the tilt angle ϕ . What
do the states x1 and x2 represent?

4.3 (Bicycle steering) Combine the bicycle model given by equation (4.5) and the
model for steering kinematics in Example 3.11 to obtain a model that describes the
path of the center of mass of the bicycle.

4.4 (Operational amplifier circuit) Consider the op amp circuit shown below.

−

+
v1 vo

v3

v2

RaR1

R2

C2

C1

Rb

Show that the dynamics can be written in state space form as

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1

R1C1
−

1

RaC1
0

Rb

Ra

1

R2C2
−

1

R2C2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

R1C1

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

u, y =
⎧
⎩0 1

⎫
⎭x,

where u = v1 and y = v3. (Hint: Use v2 and v3 as your state variables.)

4.5 (Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

−

+

−

+

−

+ v1v3v2

R1R3R2

R4C2 C1
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Show that the dynamics can be written in state space form as

dx

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
R4

R1R3C1

−
1

R2C2
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x,

where the state variables represent the voltages across the capacitors x1 = v1 and
x2 = v2.

4.6 (Congestion control using RED [LPW+02]) A number of improvements can
be made to the model for Internet congestion control presented in Section 4.4.
To ensure that the router’s buffer size remains positive, we can modify the buffer
dynamics to satisfy

dbl

dt
=

{
sl− cl bl > 0,

sat(0,∞)(sl− cl) bl = 0.

In addition, we can model the drop probability of a packet based on how close we
are to the buffer limits, a mechanism known as random early detection (RED):

pl = ml(al) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 al(t)≤ blower
l ,

ρlri(t)−ρlb
lower
l blower

l < al(t)< b
upper
l ,

ηlri(t)− (1−2b
upper
l ) b

upper
l ≤ al(t)< 2b

upper
l ,

1 al(t)≥ 2b
upper
l ,

dal

dt
=−αlcl(al−bl),

where αl , b
upper
l , blower

l , and p
upper
l are parameters for the RED protocol. Using the

model above, write a simulation for the system and find a set of parameter values
for which there is a stable equilibrium point and a set for which the system exhibits
oscillatory solutions. The following sets of parameters should be explored:

N = 20,30, . . . ,60, blower
l = 40 pkts, ρl = 0.1,

c = 8,9, . . . ,15 pkts/ms, b
upper
l = 540 pkts, αl = 10−4,

τ = 55,60, . . . ,100 ms.

4.7 (Atomic force microscope with piezo tube) A schematic diagram of an AFM
where the vertical scanner is a piezo tube with preloading is shown below.
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F

Show that the dynamics can be written as

(m1 +m2)
d2z1

dt2
+(c1 + c2)

dz1

dt
+(k1 + k2)z1 = m2

d2l

dt2
+ c2

dl

dt
+ k2l.

Are there parameter values that make the dynamics particularly simple?

4.8 (Drug administration) The metabolism of alcohol in the body can be modeled
by the nonlinear compartment model

Vb
dcb

dt
= q(cl− cb)+qiv, Vl

dcl

dt
= q(cb− cl)−qmax

cl

c0 + cl
+qgi,

where Vb = 48 L and Vl = 0.6 L are the apparent volumes of distribution of body
water and liver water, cb and cl are the concentrations of alcohol in the compart-
ments, qiv and qgi are the injection rates for intravenous and gastrointestinal in-
take, q = 1.5 L/min is the total hepatic blood flow, qmax = 2.75 mmol/min and
c0 = 0.1 mmol/L. Simulate the system and compute the concentration in the blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

4.9 (Population dynamics) Consider the model for logistic growth given by equa-
tion (4.31). Show that the maximum growth rate occurs when the size of the pop-
ulation is half of the steady-state value.

4.10 (Fisheries management) Some features of the dynamics of a commercial fish-
ery can be described by the following simple model:

dx

dt
= f (x)−h(x,u), y = bh(x,u)− cu,

where x is the total biomass, f (x) = rx(1− x/k) is the growth rate, and r and k
are constant parameters. The harvesting rate is h(x,u) = axu, where a is a constant
parameter and u is the fishing effort. The output y is the rate of revenue, where b,
and c are constants representing the price of fish and the cost of fishing. Find a
sustainable equilibrium where the revenue is as large as possible. Determine the
equilibrium value of the biomass and the fishing effort at the equilbrium. With the
parameters a = 0.1, b = 1, c = 1, k = 100, and r = 0.2 the sustainable equilibrium
corresponds to xe = 55 and ue = 0.9. For an individual fisherman it is profitable to
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fish as long as the rate of revenue y = (abx−c)u is positive. Explore by simulation
what happens if the fishing intensity is much higher than the sustainable fishing
rate ue, say u = 3. Use the results to discuss the role of having a fishing quota.
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