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Richard M. Murray

Version v3.1.5 (2020-07-24)

This is the electronic edition of Feedback Systems and is available from
http://fbsbook.org. Hardcover editions may be purchased from Princeton

University Press, http://press.princeton.edu/titles/8701.html.

This manuscript is for personal use only and may not be reproduced, in whole or
in part, without written consent from the publisher (see

http://press.princeton.edu/permissions.html).

http://fbsbook.org
http://press.princeton.edu/titles/8701.html


Chapter 5

Dynamic Behavior

It Don’t Mean a Thing (If It Ain’t Got That Swing).

Duke Ellington (1899–1974).

In this chapter we present a broad discussion of the behavior of dynamical
systems focused on systems modeled by nonlinear differential equations. This allows
us to consider equilibrium points, stability, limit cycles, and other key concepts in
understanding dynamic behavior. We also introduce some methods for analyzing
the global behavior of solutions.

5.1 Solving Differential Equations

In the previous two chapters we saw that one of the methods of modeling dynamical
systems is through the use of ordinary differential equations (ODEs). A state space,
input/output system has the form

dx

dt
= f(x, u), y = h(x, u), (5.1)

where x = (x1, . . . , xn) ∈ Rn is the state, u ∈ Rp is the input, and y ∈ Rq is the
output. The smooth maps f : Rn × Rp → Rn and h : Rn × Rp → Rq represent
the dynamics and measurements for the system. In general, they can be nonlinear
functions of their arguments. Systems with many inputs and many outputs are
called multi-input, multi-output systems (MIMO) systems. We will usually focus
on single-input, single-output (SISO) systems, for which p = q = 1.

We begin by investigating systems in which the input has been set to a function
of the state, u = α(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equations in this case become

dx

dt
= f(x,α(x)) =: F (x). (5.2)

To understand the dynamic behavior of this system, we need to analyze the
features of the solutions of equation (5.2). While in some simple situations we can
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write down the solutions in analytical form, often we must rely on computational
approaches. We begin by describing the class of solutions for this problem.

We say that x(t) is a solution of the differential equation (5.2) on the time
interval t0 ∈ R to tf ∈ R if

dx(t)

dt
= F (x(t)) for all t0 < t < tf.

A given differential equation may have many solutions. We will most often be
interested in the initial value problem, where x(t) is prescribed at a given time
t0 ∈ R and we wish to find a solution valid for all future time t > t0.

We say that x(t) is a solution of the differential equation (5.2) with initial value
x0 ∈ Rn at t0 ∈ R if

x(t0) = x0 and
dx(t)

dt
= F (x(t)) for all t0 < t < tf.

For most differential equations we will encounter, there is a unique solution that is
defined for t0 ≤ t < tf. The solution may be defined for all time t > t0, in which
case we take tf = ∞. Because we will primarily be interested in solutions of the
initial value problem for differential equations, we will usually refer to this simply
as the solution of a differential equation.

We will typically assume that t0 is equal to 0. In the case when F is independent
of time (as in equation (5.2)), we can do so without loss of generality by choosing
a new independent (time) variable, τ = t− t0 (Exercise 5.1).

Example 5.1 Damped oscillator
Consider a damped linear oscillator with dynamics of the form

q̈ + 2ζω0q̇ + ω2
0q = 0,

where q is the displacement of the oscillator from its rest position. These dynamics
are equivalent to those of a spring–mass system, as shown in Exercise 3.5. We
assume that ζ < 1, corresponding to a lightly damped system (the reason for this
particular choice will become clear later). We can rewrite this in state space form
by setting x1 = q and x2 = q̇/ω0, giving

dx1

dt
= ω0x2,

dx2

dt
= −ω0x1 − 2ζω0x2.

In vector form, the right-hand side can be written as

F (x) =


 ω0x2

−ω0x1 − 2ζω0x2


 .

The solution to the initial value problem can be written in a number of different
ways and will be explored in more detail in Chapter 6. Here we simply assert that
the solution can be written as

x1(t) = e−ζω0t

(
x10 cosωdt+

1

ωd
(ω0ζx10 + x20) sinωdt

)
,

x2(t) = e−ζω0t

(
x20 cosωdt−

1

ωd
(ω2

0x10 + ω0ζx20) sinωdt

)
,
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Figure 5.1: Response of the damped oscillator to the initial condition x0 = (1, 0).
The solution is unique for the given initial conditions and consists of an oscillatory
solution for each state, with an exponentially decaying magnitude.

where x0 = (x10, x20) is the initial condition and ωd = ω0

√
1− ζ2. This solution

can be verified by substituting it into the differential equation. We see that the so-
lution is explicitly dependent on the initial condition, and it can be shown that this
solution is unique. A plot of the initial condition response is shown in Figure 5.1.
We note that this form of the solution holds only for 0 < ζ < 1, corresponding to
an “underdamped” oscillator. ∇

!
Without imposing some mathematical conditions on the function F , the differ-

ential equation (5.2) may not have a solution for all t, and there is no guarantee
that the solution is unique. We illustrate these possibilities with two examples.

Example 5.2 Finite escape time
Let x ∈ R and consider the differential equation

dx

dt
= x2 (5.3)

with the initial condition x(0) = 1. By differentiation we can verify that the
function

x(t) =
1

1− t

satisfies the differential equation and that it also satisfies the initial condition. A
graph of the solution is given in Figure 5.2a; notice that the solution goes to infinity
as t goes to 1. We say that this system has finite escape time. Thus the solution
exists only in the time interval 0 ≤ t < 1. ∇

Example 5.3 Nonunique solution
Let x ∈ R and consider the differential equation

dx

dt
= 2

√
x (5.4)

with initial condition x(0) = 0. We can show that the function

x(t) =

{
0 if 0 ≤ t ≤ a,

(t− a)2 if t > a
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Figure 5.2: Existence and uniqueness of solutions. Equation (5.3) has a solution
only for time t < 1, at which point the solution goes to infinity, as shown in (a).
Equation (5.4) is an example of a system with many solutions, as shown in (b). For
each value of a, we get a different solution starting from the same initial condition.

satisfies the differential equation for all values of the parameter a ≥ 0. To see this,
we differentiate x(t) to obtain

dx

dt
=

{
0 if 0 ≤ t ≤ a,

2(t− a) if t > a,

and hence ẋ = 2
√
x for all t ≥ 0 with x(0) = 0. A graph of some of the possible

solutions is given in Figure 5.2b. Notice that in this case there are many solutions
to the differential equation. ∇

These simple examples show that there may be difficulties even with simple
differential equations. Existence and uniqueness can be guaranteed by requiring
that the function F have the property that for some fixed c ∈ R,

‖F (x)− F (y)‖ < c‖x− y‖ for all x, y,

which is called Lipschitz continuity. A sufficient condition for a function to be
Lipschitz is that the Jacobian ∂F/∂x is uniformly bounded for all x. The difficulty
in Example 5.2 is that the derivative ∂F/∂x becomes large for large x, and the
difficulty in Example 5.3 is that the derivative ∂F/∂x is infinite at the origin.

5.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is important in understanding some of
the key concepts of stability in nonlinear dynamics. We will focus on an important
class of systems known as planar dynamical systems. These systems have two state
variables x ∈ R2, allowing their solutions to be plotted in the (x1, x2) plane. The
basic concepts that we describe hold more generally and can be used to understand
dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems with state
x ∈ R2 is to plot the phase portrait of the system, briefly introduced in Chapter 3.
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Figure 5.3: Phase portraits. (a) This plot shows the vector field for a planar
dynamical system. Each arrow shows the velocity at that point in the state space.
(b) This plot includes the solutions (sometimes called streamlines) from different
initial conditions, with the vector field superimposed.

We start by introducing the concept of a vector field. For a system of ordinary
differential equations

dx

dt
= F (x),

the right-hand side of the differential equation defines at every x ∈ Rn a velocity
F (x) ∈ Rn. This velocity tells us how x changes and can be represented as a vector
F (x) ∈ Rn.

For planar dynamical systems, each state corresponds to a point in the plane
and F (x) is a vector representing the velocity of that state. We can plot these
vectors on a grid of points in the plane and obtain a visual image of the dynamics
of the system, as shown in Figure 5.3a. The points where the velocities are zero
are of particular interest since they define stationary points of the flow: if we start
at such a state, we stay at that state.

A phase portrait is constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a set of initial conditions,
we plot the solution of the differential equation in the plane R2. This corresponds
to following the arrows at each point in the phase plane and drawing the resulting
trajectory. By plotting the solutions for several different initial conditions, we ob-
tain a phase portrait, as shown in Figure 5.3b. Phase portraits are also sometimes
called phase plane diagrams.

Phase portraits give insight into the dynamics of the system by showing the
solutions plotted in the (two-dimensional) state space of the system. For example,
we can see whether all trajectories tend to a single point as time increases or whether
there are more complicated behaviors. In the example in Figure 5.3, corresponding
to a damped oscillator, the solutions approach the origin for all initial conditions.
This is consistent with our simulation in Figure 5.1, but it allows us to infer the
behavior for all initial conditions rather than a single initial condition. However,
the phase portrait does not readily tell us the rate of change of the states (although
this can be inferred from the lengths of the arrows in the vector field plot).
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Figure 5.4: Equilibrium points for an inverted pendulum. An inverted pendulum
is a model for a class of balance systems in which we wish to keep a system upright,
such as a rocket (a). Using a simplified model of an inverted pendulum (b), we can
develop a phase portrait that shows the dynamics of the system (c). The system
has multiple equilibrium points, marked by the solid dots along the x2 = 0 line.

Equilibrium Points and Limit Cycles

An equilibrium point of a dynamical system represents a stationary condition for
the dynamics. We say that a state xe is an equilibrium point for a dynamical system

dx

dt
= F (x)

if F (xe) = 0. If a dynamical system has an initial condition x(0) = xe, then it will
stay at the equilibrium point: x(t) = xe for all t ≥ 0, where we have taken t0 = 0.

Equilibrium points are one of the most important features of a dynamical system
since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one, or more equilibrium points.

Example 5.4 Inverted pendulum
Consider the inverted pendulum in Figure 5.4, which is a part of the balance system
we considered in Chapter 3. The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at the base of the rocket, we
seek to keep the rocket stabilized in the upright position. The state variables are
the angle θ = x1 and the angular velocity dθ/dt = x2, the control variable is the
acceleration u of the pivot, and the output is the angle θ.

For simplicity we assume that mgl/Jt = 1, l/Jt = 1 and set c = γ/Jt, so that
the dynamics (equation (3.10)) become

dx

dt
=


 x2

sinx1 − cx2 + u cosx1


 . (5.5)

This is a nonlinear time-invariant system of second order. This same set of equations
can also be obtained by appropriate normalization of the system dynamics, as
illustrated in Example 3.10.

We consider the open loop dynamics by setting u = 0. The equilibrium points
for the system are given by

xe =


±nπ

0


 ,
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Figure 5.5: Phase portrait and time domain simulation for a system with a limit
cycle. The phase portrait (a) shows the states of the solution plotted for different
initial conditions. The limit cycle corresponds to a closed loop trajectory. The
simulation (b) shows a single solution plotted as a function of time, with the limit
cycle corresponding to a steady oscillation of fixed amplitude.

where n = 0, 1, 2, . . . . The equilibrium points for n even correspond to the pendu-
lum pointing up and those for n odd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inputs) is shown in Figure 5.4c.
The phase portrait shows −2π ≤ x1 ≤ 2π, so five of the equilibrium points are
shown. ∇

Nonlinear systems can exhibit rich behavior. Apart from equilibrium points they
can also exhibit stationary periodic solutions. This is of great practical value in
generating sinusoidally varying voltages in power systems or in generating periodic
signals for animal locomotion. A simple example is given in Exercise 5.11, which
shows the circuit diagram for an electronic oscillator. A normalized model of the
oscillator is given by the equation

dx1

dt
= x2 + x1(1− x2

1 − x2
2),

dx2

dt
= −x1 + x2(1− x2

1 − x2
2). (5.6)

The phase portrait and time domain solutions are given in Figure 5.5. The figure
shows that the solutions in the phase plane converge to a circular trajectory. In the
time domain this corresponds to an oscillatory solution. Mathematically the circle
is called a limit cycle. More formally, we call a nonconstant solution xp(t) a limit
cycle of period T > 0 if xp(t + T ) = xp(t) for all t ∈ R and nearby trajectories
converge to xp( · ) as t → ∞ (stable limit cycle) or t → −∞ (unstable limit cycle).

There are methods for determining limit cycles for second-order systems, but for
general higher-order systems we have to resort to computational analysis. Com-
puter algorithms find limit cycles by searching for periodic trajectories in state
space that satisfy the dynamics of the system. In many situations, stable limit
cycles can be found by simulating the system with different initial conditions.
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Figure 5.6: Illustration of Lyapunov’s concept of a stable solution. The solution
represented by the solid line is stable if we can guarantee that all solutions remain
within a tube of diameter ε by choosing initial conditions sufficiently close the
solution.

5.3 Stability

The stability of a solution determines whether or not solutions nearby the solution
remain close, get closer, or move further away. We now give a formal definition of
stability and describe tests for determining whether a solution is stable.

Definitions

Let x(t; a) be a solution to the differential equation with initial condition a. A
solution is stable if other solutions that start near a stay close to x(t; a). Formally,
we say that the solution x(t; a) is stable if for all ε > 0, there exists a δ > 0 such
that

‖b− a‖ < δ =⇒ ‖x(t; b)− x(t; a)‖ < ε for all t > 0.

Note that this definition does not imply that x(t; b) approaches x(t; a) as time
increases but just that it stays nearby. Furthermore, the value of δ may depend on
ε, so that if we wish to stay very close to the solution, we may have to start very,
very close (δ , ε). This type of stability, which is illustrated in Figure 5.6, is also
called stability in the sense of Lyapunov. If a solution is stable in this sense and
the trajectories do not converge, we say that the solution is neutrally stable.

An important special case is when the solution x(t; a) = xe is an equilibrium
solution. In this case the condition for stability becomes

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ε for all t > 0. (5.7)

Instead of saying that the solution is stable, we simply say that the equilibrium
point is stable. An example of a neutrally stable equilibrium point is shown in
Figure 5.7. From the phase portrait, we see that if we start near the equilibrium
point, then we stay near the equilibrium point. Furthermore, if we choose an initial
condition from within the inner dashed circle (of radius δ) then all trajectories will
remain inside the region defined by the outer dashed circle (of radius ε). Note,
however, that trajectories may not remain confined inside the individual circles
(and hence we must choose δ < ε).
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Figure 5.7: Phase portrait and time domain simulation for a system with a single
stable equilibrium point. The equilibrium point xe at the origin is stable since all
trajectories that start near xe stay near xe.

A solution x(t; a) is asymptotically stable if it is stable in the sense of Lyapunov
and, in addition, x(t; b) approaches x(t; a) as t approaches infinity for b sufficiently
close to a. Hence, the solution x(t; a) is asymptotically stable if for every ε > 0
there exists a δ > 0 such that

‖b− a‖ < δ =⇒ ‖x(t; b)− x(t; a)‖ < ε and lim
t→∞

‖x(t; b)− x(t; a)‖ = 0.

This corresponds to the case where all nearby trajectories converge to the stable
solution for large time. In the case of an equilibrium solution xe, we can write this
condition as

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ε and lim
t→∞

x(t) = xe. (5.8)

Figure 5.8 shows an example of an asymptotically stable equilibrium point. Indeed,
as seen in the phase portrait, not only do all trajectories stay near the equilibrium
point at the origin, but they also all approach the origin as t gets large (the direc-
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ẋ2 = −x1 − x2

0 2 4 6 8 10
-0.5

0

0.5

1
x1 x2

S
ta
te
s
x
1
,x

2

Time t

Figure 5.8: Phase portrait and time domain simulation for a system with a single
asymptotically stable equilibrium point. The equilibrium point xe at the origin is
asymptotically stable since the trajectories converge to this point as t → ∞.
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Figure 5.9: Phase portrait and time domain simulation for a system with a single
unstable equilibrium point. The equilibrium point xe at the origin is unstable since
not all trajectories that start near xe stay near xe. The sample trajectory on the
right shows that the trajectories very quickly depart from zero.

tions of the arrows on the phase portrait show the direction in which the trajectories
move).

A solution x(t; a) is unstable if it is not stable. More specifically, we say that a
solution x(t; a) is unstable if given some ε > 0, there does not exist a δ > 0 such
that if ‖b− a‖ < δ, then ‖x(t; b)− x(t; a)‖ < ε for all t. An example of an unstable
equilibrium point xe is shown in Figure 5.9. Note that no matter how small we
make δ, there is always an initial condition with ‖x(0) − xe‖ < δ that flows away
from xe.

The definitions above are given without careful description of their domain of
applicability. More formally, we define a solution to be locally stable (or locally
asymptotically stable) if it is stable for all initial conditions x ∈ Br(a), where

Br(a) = {x : ‖x− a‖ < r}

is a ball of radius r around a and r > 0. A solution is globally asymptotically stable
if it is asymptotically stable for all r > 0.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either
a source, if all trajectories lead away from the equilibrium point, or a saddle, if
some trajectories lead to the equilibrium point and others move away (this is the
situation pictured in Figure 5.9). Finally, an equilibrium point that is stable but
not asymptotically stable (i.e., neutrally stable, such as the one in Figure 5.7) is
called a center.

Example 5.5 Congestion control
The TCP protocol is used to adjust the rate of packet transmission on the Inter-
net. Stability of this system is important to insure smooth and efficient flow of
information across the network.

The model for congestion control in a network consisting of N identical com-
puters connected to a single router, described in more detail in Section 4.4, is given
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(a) ρ = 2× 10−4, c = 10 pkts/ms
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(b) ρ = 4× 10−4, c = 20 pkts/ms

Figure 5.10: Phase portraits for a congestion control protocol running with
N = 60 identical source computers. The equilibrium values correspond to a fixed
window at the source, which results in a steady-state buffer size and corresponding
transmission rate. A faster link (b) uses a smaller buffer size since it can handle
packets at a higher rate.

by
dw

dt
=

c

b
− ρc

(
1 +

w2

2

)
,

db

dt
= N

wc

b
− c,

where w is the window size and b is the buffer size of the router. The equilibrium
points are given by

be = Nwe, where we

(
1 +

w2
e

2

)
=

1

Nρ
.

Since w(1+w2/2) is monotone, there is only one equilibrium point. Phase portraits
are shown in Figure 5.10 for two different sets of parameter values. In each case we
see that the system converges to an equilibrium point in which the buffer is below its
full capacity of 500 packets. The equilibrium size of the buffer represents a balance
between the transmission rates for the sources and the capacity of the link. We
see from the phase portraits that the equilibrium points are asymptotically stable
since all initial conditions result in trajectories that converge to these points. ∇

Stability of Linear Systems

A linear dynamical system has the form

dx

dt
= Ax, x(0) = x0, (5.9)

where A ∈ Rn×n is a square matrix, corresponding to the dynamics matrix of a
linear control system (3.6). For a linear system, the stability of the equilibrium
point at the origin can be determined from the eigenvalues of the matrix A:

λ(A) := {s ∈ C : det(sI −A) = 0}.
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The polynomial det(sI−A) is the characteristic polynomial and the eigenvalues are
its roots. We use the notation λj for the jth eigenvalue of A, so that λj ∈ λ(A).
In general λ can be complex-valued, although if A is real-valued, then for any
eigenvalue λ, its complex conjugate λ∗ will also be an eigenvalue. The origin is
always an equilibrium point for a linear system. Since the stability of a linear
system depends only on the matrix A, we find that stability is a property of the
system. For a linear system we can therefore talk about the stability of the system
rather than the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
are in diagonal form. In this case, the dynamics have the form

dx

dt
=




λ1
λ2

0

0
. . .

λn




x. (5.10)

It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of n individual systems ẋj = λjxj .
Each of these scalar solutions is of the form

xj(t) = eλjtxj(0).

We see that the equilibrium point xe = 0 is stable if λj ≤ 0 and asymptotically
stable if λj < 0.

Another simple case is when the dynamics are in the block diagonal form

dx

dt
=




σ1 ω1

−ω1 σ1
0

. . .

0 σm ωm

−ωm σm




x.

In this case, the eigenvalues can be shown to be λj = σj ± iωj . We once again can
separate the state trajectories into independent solutions for each pair of states,
and the solutions are of the form

x2j−1(t) = eσjt
(
x2j−1(0) cosωjt+ x2j(0) sinωjt

)
,

x2j(t) = eσjt
(
−x2j−1(0) sinωjt+ x2j(0) cosωjt

)
,

where j = 1, 2, . . . ,m. We see that this system is asymptotically stable if and only
if σj = Reλj < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but many systems
can be transformed into these forms via coordinate transformations. One such
class of systems is those for which the dynamics matrix has distinct (nonrepeating)
eigenvalues. In this case there is a matrix T ∈ Rn×n such that the matrix TAT−1

is in (block) diagonal form, with the block diagonal elements corresponding to
the eigenvalues of the original matrix A (see Exercise 5.14). If we choose new
coordinates z = Tx, then

dz

dt
= T ẋ = TAx = TAT−1z
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and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as those of the original system
since if v is an eigenvector of A, then w = Tv can be shown to be an eigenvector
of TAT−1. We can reason about the stability of the original system by noting
that x(t) = T−1z(t), and so if the transformed system is stable (or asymptotically
stable), then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stabil-
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:

Theorem 5.1 (Stability of a linear system). The system

dx

dt
= Ax

is asymptotically stable if and only if all eigenvalues of A have a strictly negative
real part and is unstable if any eigenvalue of A has a strictly positive real part.

Note that it is not enough to have eigenvalues with Re(λ) ≤ 0. As a simple
example, consider the system q̈ = 0, which can be written in state space form as

d

dt


x1

x2


 =


0 1
0 0




x1

x2


 .

The system has eigenvalues λ = 0 but the solutions are not bounded since we have

x1(t) = x1,0 + x2,0t, x2(t) = x2,0.

Example 5.6 Compartment model
Consider the two-compartment module for drug delivery described in Section 4.6.
Using concentrations as state variables and denoting the state vector by x, the
system dynamics are given by

dx

dt
=


−k0 − k1 k1

k2 −k2


x+


b0

0


u, y =


0 1


x,

where the input u is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measured output y. We wish to
design a feedback control law that maintains a constant output given by y = yd.

We choose an output feedback control law of the form

u = −k(y − yd) + ud,

where ud is the rate of injection required to maintain the desired concentration
y = yd, and k is a feedback gain that should be chosen such that the closed loop
system is stable. Substituting the control law into the system, we obtain

dx

dt
=


−k0 − k1 k1 − b0k

k2 −k2


x+


b0

0


 (ud + kyd) =: Ax+Bue,

y =

0 1


x =: Cx.
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The equilibrium concentration xe ∈ R2 can be obtained by solving the equation
Axe +Bue = 0 and some simple algebra yields

x1,e = x2,e = yd, ue = ud =
k0
b0

yd.

To analyze the system around the equilibrium point, we choose new coordinates
z = x − xe. In these coordinates the equilibrium point is at the origin and the
dynamics become

dz

dt
=


−k0 − k1 k1 − b0k

k2 −k2


 z.

We can now apply the results of Theorem 5.1 to determine the stability of the
system. The eigenvalues of the system are given by the roots of the characteristic
polynomial

λ(s) = s2 + (k0 + k1 + k2)s+ (k0k2 + b0k2k).

While the specific form of the roots is messy, it can be shown using the Routh–
Hurwitz criterion that the roots have negative real part as long as the linear term
and the constant term are both positive (see Section 2.2, page 2-9). Hence the
system is stable for any k > 0. ∇

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible to determine
the local stability of an equilibrium point by approximating the system by a linear
system. The following example illustrates the basic idea.

Example 5.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dx

dt
=


 x2

sinx1 − cx2


 ,

where we have defined the state as x = (θ, θ̇). We first consider the equilibrium
point at x = (0, 0), corresponding to the straight-up position. If we assume that
the angle θ = x1 remains small, then we can replace sinx1 with x1 and cosx1 with
1, which gives the approximate system

dx

dt
=


 x2

x1 − cx2


 =


0 1
1 −c


x. (5.11)

Intuitively, this system should behave similarly to the more complicated model as
long as x1 is small. In particular, it can be verified that the equilibrium point
(0, 0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (5.11).

We can also approximate the system around the stable equilibrium point at
x = (π, 0). In this case we have to expand sinx1 and cosx1 around x1 = π,
according to the expansions

sin(π + θ) = − sin θ ≈ −θ, cos(π + θ) = − cos(θ) ≈ −1.
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Figure 5.11: Comparison between the phase portraits for the full nonlinear sys-
tem (a) and its linear approximation around the origin (b). Notice that near the
equilibrium point at the center of the plots, the phase portraits (and hence the
dynamics) are almost identical.

If we define z1 = x1−π and z2 = x2, the resulting approximate dynamics are given
by

dz

dt
=


 z2
−z1 − c z2


 =


 0 1
−1 −c


 z. (5.12)

It can be shown that the eigenvalues of the dynamics matrix have negative real
parts, confirming that the downward equilibrium point is asymptotically stable.

Figure 5.11 shows the phase portraits for the original system and the approxi-
mate system around the stable equilibrium point. Note that z = (0, 0) is the equi-
librium point for this system and that it has the same basic form as the dynamics
shown in Figure 5.8. The solutions for the original system and the approximate are
very similar, although not exactly the same. It can be shown that if a linear ap-
proximation has either asymptotically stable or unstable equilibrium points, then
the local stability of the original system must be the same (see Theorem 5.3 on
page 5-26 for the case of asymptotic stability). ∇

More generally, suppose that we have a nonlinear system

dx

dt
= F (x)

that has an equilibrium point at xe. Computing the Taylor series expansion of the
vector field, we can write

dx

dt
= F (xe) +

∂F

∂x

∣∣∣∣
xe

(x− xe) + higher-order terms in (x− xe).

Since F (xe) = 0, we can approximate the system by choosing a new state variable
z = x− xe and writing

dz

dt
= Az, where A =

∂F

∂x

∣∣∣∣
xe

. (5.13)
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We call the system (5.13) the linear approximation of the original nonlinear system
or the linearization at xe. The following example illustrates the idea.

Example 5.8 Stability a tanker
The normalized steering dynamics of a large ship can be modeled by the following
equations:

dv

dt
= a1v + a2r + αv|v|+ b1δ,

dr

dt
= a3v + a4r + b2δ,

where v is the component of the velocity vector that is orthogonal to the ship direc-
tion, r is the turning rate, and δ is the rudder angle. The variables are normalized
by using the ship length l as the length unit and the time to travel one ship length
as the time unit. The mass is normalized by ρl3/2, where ρ is the density of water.
The normalized parameters are a1 = −0.6, a2 = −0.3, a3 = −5, a4 = −2, α = −2,
b1 = 0.1, and b2 = −0.8.

Setting the rudder angle δ = 0, we find that the equilibrium points are given by
the equations

a1v + a2r + αv|v| = 0, a3v + a4r = 0.

Elimination of the variable r in these equations gives

(a1a4 − a2a3)v + αa4v|v| = 0

There are three equilibrium solutions: ve = 0 and ve = ±0.075. Linearizing the
equation gives a second-order system with dynamics matrices

A0 =


−0.6 −0.3

−5 −2


 , A1 =


−0.9 −0.3

−5 −2


 .

The linearized matrix A0, for the equilibrium point ve = 0, has the characteristic
polynomial s2 +2.6s− 0.3, which has one root in the right half-plane. The equilib-
rium point is thus unstable. The matrix A1, for the equilibrium points ve = ±0.075,
has the characteristic polynomial s2+2.9s+0.3, which has all roots in the left half-
plane. These equilibrium points are stable.

Summarizing, we find that the equilibrium point ve = re = 0, which corresponds
to the ship moving forward at constant speed, is unstable. The other equilibrium
points, ve = −0.075, re = 0.1875 and ve = 0.075, re = −0.1875, are stable (see
Figure 5.12a). These equilibrium points correspond to the tanker moving in a
circle to the left or to the right. Hence if the rudder is set to δ = 0 and the ship is
moving forward it will either turn to the right or to the left and approach one of
the stable equilibrium points. Which way it goes depends on the exact value of the
initial condition. The trajectories are shown in Figure 5.12b. ∇

The fact that a linear model can be used to study the behavior of a nonlinear
system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equilib-
rium point, which in turn ensures that the linear approximation used to stabilize
it is valid.
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Figure 5.12: Stability analysis for a tanker. The rudder characteristics are shown
in (a), where the equilibrium points are marked by circles, and the tanker trajec-
tories are shown in (b).

Stability of Limit Cycles

Stability of nonequilibrium solutions can also be investigated, as illustrated by the
following example.

Example 5.9 Stability of an oscillation
Consider the system given by equation (5.6),

dx1

dt
= x2 + x1(1− x2

1 − x2
2),

dx2

dt
= −x1 + x2(1− x2

1 − x2
2),

whose phase portrait is shown in Figure 5.5. The differential equation has a periodic
solution

xp =


x1(0) cos t+ x2(0) sin t
x2(0) cos t− x1(0) sin t


 , (5.14)

with x2
1(0) + x2

2(0) = 1. Notice that the nonlinear terms disappear on the periodic
solution.

To explore the stability of this solution, we introduce polar coordinates r ≥ 0
and ϕ, which are related to the state variables x1 and x2 by

x1 = r cosϕ, x2 = r sinϕ.

Differentiation gives the following linear equations for ṙ and ϕ̇:

ẋ1 = ṙ cosϕ− rϕ̇ sinϕ, ẋ2 = ṙ sinϕ+ rϕ̇ cosϕ.

Solving this linear system for ṙ and ϕ̇ gives, after some calculation,

dr

dt
= r(1− r2),

dϕ

dt
= −1. (5.15)

Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation for r has two equilibrium points: r = 0 and r = 1 (notice that
r is assumed to be nonnegative). The derivative dr/dt is positive for 0 < r < 1
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Figure 5.13: Solution curves for a stable limit cycle. The phase portrait on the
left shows that the trajectory for the system rapidly converges to the stable limit
cycle. The starting points for the trajectories are marked by circles in the phase
portrait. The time domain plots on the right show that the states do not converge
to the solution but instead maintain a constant phase error.

and negative for r > 1. The variable r will therefore increase if 0 < r < 1 and
decrease if r > 1, and we find that the equilibrium point r = 0 is unstable and the
equilibrium point r = 1 is stable. Solutions with initial conditions different from 0
will thus all converge to the stable equilibrium point r = 1 as time increases.

To study the stability of the full system, we must also investigate the behavior of
angle ϕ. The equation for ϕ̇ can be integrated analytically to give ϕ(t) = −t+ϕ(0),
which shows that solutions starting at different initial angles ϕ(0) will grow linearly
with time, remaining separated by a constant amount. The solution r = 1, ϕ = −t
is thus stable but not asymptotically stable. The unit circle in the phase plane is
attracting, in the sense that all solutions with r(0) > 0 converge to the unit circle,
as illustrated in the simulation in Figure 5.13. Notice that the solutions approach
the circle rapidly, but that there is a constant phase shift between the solutions.

∇

5.4 Lyapunov Stability Analysis !

We now return to the study of the full nonlinear system

dx

dt
= F (x), x ∈ Rn. (5.16)

Having defined when a solution for a nonlinear dynamical system is stable, we
can now ask how to prove that a given solution is stable, asymptotically stable,
or unstable. For physical systems, one can often argue about stability based on
dissipation of energy. The generalization of that technique to arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.

In this section we will describe techniques for determining the stability of solu-
tions for a nonlinear system (5.16). We will generally be interested in stability of
equilibrium points, and it will be convenient to assume that xe = 0 is the equilib-



5.4. LYAPUNOV STABILITY ANALYSIS 5-19

rium point of interest. (If not, rewrite the equations in a new set of coordinates
z = x− xe.)

Lyapunov Functions

A Lyapunov function V : Rn → R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, if we can find a nonnegative
function that always decreases along trajectories of the system, we can conclude
that the minimum of the function is a stable equilibrium point (locally).

To describe this more formally, we start with a few definitions. Let Br = Br(0)
be a ball of radius r around the origin. We say that a continuous function V is
positive definite on Br if V (x) > 0 for all x ∈ Br, x .= 0 and V (0) = 0. Similarly, a
function is negative definite on Br if V (x) < 0 for all x ∈ Br, x .= 0 and V (0) = 0.
We say that a function V is positive semidefinite if V (x) ≥ 0 for all x ∈ Br, but
V (x) can be zero at points other than just x = 0.

To illustrate the difference between a positive definite function and a positive
semidefinite function, suppose that x ∈ R2 and let

V1(x) = x2
1, V2(x) = x2

1 + x2
2.

Both V1 and V2 are always nonnegative. However, it is possible for V1 to be zero
even if x .= 0. Specifically, if we set x = (0, c), where c ∈ R is any nonzero number,
then V1(x) = 0. On the other hand, V2(x) = 0 if and only if x = (0, 0). Thus V1 is
positive semidefinite and V2 is positive definite.

We can now characterize the stability of an equilibrium point xe = 0 for the
system (5.16).

Theorem 5.2 (Lyapunov stability theorem). Let V be a function on Rn and let V̇
represent the time derivative of V along trajectories of the system dynamics (5.16):

V̇ =
∂V

∂x

dx

dt
=
∂V

∂x
F (x).

If there exists r > 0 such that V is positive definite and V̇ is negative semidefinite
on Br, then x = 0 is (locally) stable in the sense of Lyapunov. If V is positive
definite and V̇ is negative definite in Br, then x = 0 is (locally) asymptotically
stable.

If V satisfies one of the conditions above, we say that V is a (local) Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined by V (x) = c,
c > 0, and for each c this gives a closed contour, as shown in Figure 5.14. The
condition that V̇ (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories move to smaller and smaller
values of V and if V̇ is negative definite then x must approach 0.

Finding Lyapunov functions is not always easy. For example, consider the linear
system

dx1

dt
= x2,

dx2

dt
= −x1 − αx2, α > 0.
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V (x) = c1 < c2

∂V
∂x

V (x) = c2

dx
dt

Figure 5.14: Geometric illustration of Lyapunov’s stability theorem. The closed
contours represent the level sets of the Lyapunov function V (x) = c. If dx/dt
points inward to these sets at all points along the contour, then the trajectories of
the system will always cause V (x) to decrease along the trajectory.

Since the system is linear, it can be easily verified that the eigenvalues of the
corresponding dynamics matrix are given by

λ =
−α±

√
α2 − 4

2
.

These eigenvalues always have negative real part for α > 0 and hence the system
is asymptotically stable. It follows that x(t) → 0 and t → ∞ and so a natural
Lyapunov function candidate would be the squared magnitude of the state:

V (x) =
1

2
x2
1 +

1

2
x2
2.

Taking the time derivative of this function and evaluating along the trajectories of
the system we find that

V̇ (x) = −αx2
2.

But this function is not positive definite, as can be seen by evaluating V̇ at the point
x = (1, 0), which gives V̇ (x) = 0. Hence even though the system is asymptotically
stable, a Lyapunov function that proves stability is not as simple as the squared
magnitude of the state.

We now consider some additional examples.

Example 5.10 Scalar nonlinear system
Consider the scalar nonlinear system

dx

dt
=

2

1 + x
− x.

This system has equilibrium points at x = 1 and x = −2. We consider the equilib-
rium point at x = 1 and rewrite the dynamics using z = x− 1:

dz

dt
=

2

2 + z
− z − 1,

which has an equilibrium point at z = 0. Now consider the candidate Lyapunov
function

V (z) =
1

2
z2,
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which is globally positive definite. The derivative of V along trajectories of the
system is given by

V̇ (z) = zż =
2z

2 + z
− z2 − z.

If we restrict our analysis to an interval Br, where r < 2, then 2 + z > 0 and we
can multiply through by 2 + z to obtain

2z − (z2 + z)(2 + z) = −z3 − 3z2 = −z2(z + 3) < 0, z ∈ Br, r < 2.

It follows that V̇ (z) < 0 for all z ∈ Br, z .= 0, and hence the equilibrium point
x = 1 is locally asymptotically stable. ∇

A slightly more complicated situation occurs if V̇ is negative semidefinite. In
this case it is possible that V̇ (x) = 0 when x .= 0, and hence x could stop decreasing
in value. The following example illustrates this case.

Example 5.11 Hanging pendulum
A normalized model for a hanging pendulum is

dx1

dt
= x2,

dx2

dt
= − sinx1,

where x1 is the angle between the pendulum and the vertical, with positive x1

corresponding to counterclockwise rotation. The equation has an equilibrium point
x1 = x2 = 0, which corresponds to the pendulum hanging straight down. To explore
the stability of this equilibrium point we choose the total energy as a Lyapunov
function:

V (x) = 1− cosx1 +
1

2
x2
2 ≈ 1

2
x2
1 +

1

2
x2
2.

The Taylor series approximation shows that the function is positive definite for
small x. The time derivative of V (x) is

V̇ = ẋ1 sinx1 + ẋ2x2 = x2 sinx1 − x2 sinx1 = 0.

Since this function is negative semidefinite, it follows from Lyapunov’s theorem that
the equilibrium point is stable but not necessarily asymptotically stable. When per-
turbed, the pendulum actually moves in a trajectory that corresponds to constant
energy. ∇

As demonstrated already, Lyapunov functions are not always easy to find, and
they are also not unique. In many cases energy functions can be used as a starting
point, as was done in Example 5.11. It turns out that Lyapunov functions can
always be found for any stable system (under certain conditions), and hence one
knows that if a system is stable, a Lyapunov function exists (and vice versa).
Recent results using sum-of-squares methods have provided systematic approaches
for finding Lyapunov systems [PPP02]. Sum-of-squares techniques can be applied
to a broad variety of systems, including systems whose dynamics are described by
polynomial equations, as well as hybrid systems, which can have different models
for different regions of state space.

For a linear dynamical system of the form

dx

dt
= Ax,



5-22 CHAPTER 5. DYNAMIC BEHAVIOR

it is possible to construct Lyapunov functions in a systematic manner. To do so,
we consider quadratic functions of the form

V (x) = xTPx,

where P ∈ Rn×n is a symmetric matrix (P = PT ). The condition that V be
positive definite on Br for some r > 0 is equivalent to the condition that P be a
positive definite matrix:

xTPx > 0, for all x .= 0,

which we write as P / 0. It can be shown that if P is symmetric, then P is positive
definite if and only if all of its eigenvalues are real and positive.

Given a candidate Lyapunov function V (x) = xTPx, we can now compute its
derivative along flows of the system:

V̇ =
∂V

∂x

dx

dt
= xT (ATP + PA)x =: −xTQx.

The requirement that V̇ be negative definite on Br (for asymptotic stability) be-
comes a condition that the matrix Q be positive definite. Thus, to find a Lyapunov
function for a linear system it is sufficient to choose a Q / 0 and solve the Lyapunov
equation:

ATP + PA = −Q. (5.17)

This is a linear equation in the entries of P , and hence it can be solved using
linear algebra. It can be shown that the equation always has a solution if all of
the eigenvalues of the matrix A are in the left half-plane. Moreover, the solution
P is positive definite if Q is positive definite. It is thus always possible to find a
quadratic Lyapunov function for a stable linear system. We will defer a proof of this
until Chapter 6, where more tools for analysis of linear systems will be developed.

Example 5.12 Spring–mass system
Consider a simple spring–mass system, whose state space dynamics are given by

dx1

dt
= x2,

dx2

dt
= − k

m
x1 −

b

m
x2, m, b, k > 0.

Note that this is equivalent to the example we used on page 5-19 if k = m and
b/m = α.

To find a Lyapunov function for the system, we chooseQ = I and equation (5.17)
becomes

0 −k/m
1 −b/m




p11 p12
p12 p22


+


p11 p12
p12 p22




 0 1
−k/m −b/m


 =


−1 0

0 −1


 .

By evaluating each element of this matrix equation, we can obtain a set of linear
equations for pij :

−2k

m
p12 = −1, p11 −

b

m
p12 −

k

m
p22 = 0, 2p12 −

2b

m
p22 = −1.
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Figure 5.15: Stability of a genetic switch. The circuit diagram in (a) represents
two proteins that are each repressing the production of the other. The inputs u1

and u2 interfere with this repression, allowing the circuit dynamics to be modified.
The equilibrium points for this circuit can be determined by the intersection of the
two curves shown in (b).

These equations can be solved for p11, p12, and p22 to obtain

P =




b2 + k(k +m)

2bk

m

2k
m

2k

m(k +m)

2bk




.

Finally, it follows that

V (x) =
b2 + k(k +m)

2bk
x2
1 +

m

k
x1x2 +

m(k +m)

2bk
x2
2.

Notice that while it can be verified that this function is positive definite, its level
sets are rotated ellipses. ∇

Knowing that we have a direct method to find Lyapunov functions for linear sys-
tems, we can now investigate the stability of nonlinear systems. Consider the
system

dx

dt
= F (x) =: Ax+ F̃ (x), (5.18)

where F (0) = 0 and F̃ (x) contains terms that are second order and higher in the
elements of x. The function Ax is an approximation of F (x) near the origin, and we
can determine the Lyapunov function for the linear approximation and investigate if
it is also a Lyapunov function for the full nonlinear system. The following example
illustrates the approach.

Example 5.13 Genetic switch
Consider the dynamics of a set of repressors connected together in a cycle, as
shown in Figure 5.15a. The normalized dynamics for this system were given in
Exercise 3.10:

dz1
dτ

=
µ

1 + zn2
− z1,

dz2
dτ

=
µ

1 + zn1
− z2, (5.19)
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where z1 and z2 are scaled versions of the protein concentrations, n > 0 and µ > 0
are parameters that describe the interconnection between the genes, and we have
set the external inputs u1 and u2 to zero.

The equilibrium points for the system are found by equating the time derivatives
to zero. We define

f(u) =
µ

1 + un
, f ′(u) =

df

du
=

−µnun−1

(1 + un)2
,

so that our dynamics become

dz1
dτ

= f(z2)− z1,
dz2
dτ

= f(z1)− z2,

and the equilibrium points are defined as the solutions of the equations

z1 = f(z2), z2 = f(z1).

If we plot the curves (z1, f(z1)) and (f(z2), z2) on a graph, then these equations
will have a solution when the curves intersect, as shown in Figure 5.15b. Because
of the shape of the curves, it can be shown that there will always be three solutions:
one at z1e = z2e, one with z1e < z2e, and one with z1e > z2e. If µ 0 1, then we
can show that the solutions are given approximately by

z1e ≈ µ, z2e ≈
1

µn−1
; z1e = z2e; z1e ≈

1

µn−1
, z2e ≈ µ. (5.20)

To check the stability of the system, we write f(u) in terms of its Taylor series
expansion about ue:

f(u) = f(ue) + f ′(ue) · (u− ue) +
1

2
f ′′(ue) · (u− ue)

2 + higher-order terms,

where f ′ represents the first derivative of the function, and f ′′ the second. Using
these approximations, the dynamics can then be written as

dw

dt
=


 −1 f ′(z2e)
f ′(z1e) −1


w + F̃ (w),

where w = z−ze is the shifted state and F̃ (w) represents quadratic and higher-order
terms.

We now use equation (5.17) to search for a Lyapunov function. Choosing Q = I
and letting P ∈ R2×2 have elements pij , we search for a solution of the equation


−1 f ′

1

f ′
2 −1




p11 p12
p12 p22


+


p11 p12
p12 p22




−1 f ′

2

f ′
1 −1


 =


−1 0

0 −1


 ,

where f ′
1 = f ′(z1e) and f ′

2 = f ′(z2e). Note that we have set p21 = p12 to force P to
be symmetric. Multiplying out the matrices, we obtain


 −2p11 + 2f ′

1p12 p11f ′
2 − 2p12 + p22f ′

1

p11f ′
2 − 2p12 + p22f ′

1 −2p22 + 2f ′
2p12


 =


−1 0

0 −1


 ,
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which is a set of linear equations for the unknowns pij . We can solve these linear
equations to obtain

p11 = −f ′
1
2 − f ′

2f
′
1 + 2

4(f ′
1f

′
2 − 1)

, p12 = − f ′
1 + f ′

2

4(f ′
1f

′
2 − 1)

, p22 = −f ′
2
2 − f ′

1f
′
2 + 2

4(f ′
1f

′
2 − 1)

.

To check that V (w) = wTPw is a Lyapunov function, we must verify that V (w) is
a positive definite function or equivalently that P / 0. Since P is a 2×2 symmetric
matrix, it has two real eigenvalues λ1 and λ2 that satisfy

λ1 + λ2 = trace(P ), λ1 ·λ2 = det(P ).

In order for P to be positive definite λ1 and λ2 must be positive, and we thus
require that

trace(P ) =
f ′
1
2−2f ′

2f
′
1+f ′

2
2 + 4

4−4f ′
1f

′
2

> 0, det(P ) =
f ′
1
2−2f ′

2f
′
1+f ′

2
2+4

16− 16f ′
1f

′
2

> 0.

We see that trace(P ) = 4 det(P ) and the numerator of the expressions is just
(f1 − f2)2 + 4 > 0, so it suffices to check the sign of 1− f ′

1f
′
2. In particular, for P

to be positive definite, we require that

f ′(z1e)f
′(z2e) < 1.

We can now make use of the expressions for f ′ defined earlier and evaluate at
the approximate locations of the equilibrium points derived in equation (5.20). For
the equilibrium points where z1e .= z2e, we can show that

f ′(z1e)f
′(z2e) ≈ f ′(µ)f ′(

1

µn−1
) =

−µnµn−1

(1 + µn)2
·

−µnµ−(n−1)2

(1 + µ−n(n−1))2
≈ n2µ−n2+n.

Using n = 2 and µ ≈ 200 from Exercise 3.10, we see that f ′(z1e)f ′(z2e) , 1 and
hence P is positive definite. This implies that V is a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the equilibrium points z1e .= z2e are stable for the system (5.19),
we now compute V̇ at the equilibrium point. By construction,

V̇ = wT(PA+ATP )w + F̃T(w)Pw + wTPF̃ (w)

= −wTw + F̃T(w)Pw + wTPF̃ (w).

Since all terms in F̃ are quadratic or higher order in w, it follows that F̃T(w)Pw
and wTPF̃ (w) consist of terms that are at least third order in w. Therefore if w
is sufficiently close to zero, then the cubic and higher-order terms will be smaller
than the quadratic terms. Hence, sufficiently close to w = 0, V̇ is negative definite,
allowing us to conclude that these equilibrium points are both stable.

Figure 5.16 shows the phase portrait and time traces for a system with µ = 4,
illustrating the bistable nature of the system. When the initial condition starts
with a concentration of protein B greater than that of A, the solution converges to
the equilibrium point at (approximately) (1/µn−1, µ). If A is greater than B, then
it goes to (µ, 1/µn−1). The equilibrium point with z1e = z2e is unstable. ∇
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Figure 5.16: Dynamics of a genetic switch. The phase portrait on the left shows
that the switch has three equilibrium points, corresponding to protein A having a
concentration greater than, equal to, or less than protein B. The equilibrium point
with equal protein concentrations is unstable, but the other equilibrium points are
stable. The simulation on the right shows the time response of the system starting
from two different initial conditions. The initial portion of the curve corresponds
to initial concentrations z(0) = (1, 5) and converges to the equilibrium point where
z1e < z2e. At time t = 10, the concentrations are perturbed by +2 in z1 and −2
in z2, moving the state into the region of the state space whose solutions converge
to the equilibrium point where z2e < z1e.

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.

Theorem 5.3. Consider the dynamical system (5.18) with F (0) = 0 and F̃ such
that lim ‖F̃ (x)‖/‖x‖ → 0 as ‖x‖ → 0. If the real parts of all eigenvalues of A are
strictly less than zero, then xe = 0 is a locally asymptotically stable equilibrium
point of equation (5.18).

This theorem implies that asymptotic stability of the linear approximation im-
plies local asymptotic stability of the original nonlinear system. The theorem is very
important for control because it implies that stabilization of a linear approximation
of a nonlinear system results in a stable equilibrium point for the nonlinear system.
The proof of this theorem follows the technique used in Example 5.13. A formal
proof can be found in [Kha01].

It can also be shown that if A has one or more eigenvalues with strictly positive
real part, then xe = 0 is an unstable equilibrium point for the nonlinear system.

Krasovski–Lasalle Invariance Principle
!!For general nonlinear systems, especially those in symbolic form, it can be difficult

to find a positive definite function V whose derivative is strictly negative definite.
The Krasovski–Lasalle theorem enables us to conclude the asymptotic stability of
an equilibrium point under less restrictive conditions, namely, in the case where V̇
is negative semidefinite, which is often easier to construct. It only applies to time-
invariant or periodic systems, which are the cases we consider here. This section
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makes use of some additional concepts from dynamical systems; see Hahn [Hah67]
or Khalil [Kha01] for a more detailed description.

We will deal with the time-invariant case and begin by introducing a few more
definitions. We denote the solution trajectories of the time-invariant system

dx

dt
= F (x) (5.21)

as x(t; a), which is the solution of equation (5.21) at time t starting from a at t0 = 0.
The ω limit set of a trajectory x(t; a) is the set of all points z ∈ Rn such that there
exists a strictly increasing sequence of times tn such that x(tn; a) → z as n → ∞.
A set M ⊂ Rn is said to be an invariant set if for all b ∈ M , we have x(t; b) ∈ M
for all t ≥ 0. It can be proved that the ω limit set of every trajectory is closed and
invariant. We may now state the Krasovski–Lasalle principle.

Theorem 5.4 (Krasovski–Lasalle principle). Let V : Rn → R be a locally positive
definite function such that on the compact set Ωr = {x ∈ Rn : V (x) ≤ r} we have
V̇ (x) ≤ 0. Define

S = {x ∈ Ωr : V̇ (x) = 0}.
As t → ∞, the trajectory tends to the largest invariant set inside S; i.e., its ω limit
set is contained inside the largest invariant set in S. In particular, if S contains no
invariant sets other than x = 0, then 0 is asymptotically stable.

Proofs are given in [Kra63] and [LaS60].

Lyapunov functions can often be used to design stabilizing controllers, as is
illustrated by the following example, which also illustrates how the Krasovski–
Lasalle principle can be applied.

Example 5.14 Inverted pendulum
Following the analysis in Example 3.10, an inverted pendulum can be described by
the following normalized model:

dx1

dt
= x2,

dx2

dt
= sinx1 + u cosx1, (5.22)

where x1 is the angular deviation from the upright position and u is the (scaled)
acceleration of the pivot, as shown in Figure 5.17a. The system has an equilibrium
point at x1 = x2 = 0, which corresponds to the pendulum standing upright. This
equilibrium point is unstable.

To find a stabilizing controller we consider the following candidate for a Lya-
punov function:

V (x) = (cosx1 − 1) + a(1− cos2 x1) +
1

2
x2
2 ≈

(
a− 1

2

)
x2
1 +

1

2
x2
2.

The Taylor series expansion shows that the function is positive definite near the
origin if a > 0.5. The time derivative of V (x) is

V̇ = −ẋ1 sinx1 + 2aẋ1 sinx1 cosx1 + ẋ2x2 = x2(u+ 2a sinx1) cosx1.

Choosing the feedback law

u = −2a sinx1 − x2 cosx1
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Figure 5.17: Stabilized inverted pendulum. A control law applies a force u
at the bottom of the pendulum to stabilize the inverted position (a). The phase
portrait (b) shows that the equilibrium point corresponding to the vertical position
is stabilized. The shaded region indicates the set of initial conditions that converge
to the origin. The ellipse corresponds to a level set of a Lyapunov function V (x)
for which V (x) > 0 and V̇ (x) < 0 for all points inside the ellipse. This can be
used as an estimate of the region of attraction of the equilibrium point. The actual
dynamics of the system evolve on a manifold (c).

gives

V̇ = −x2
2 cos

2 x1.

It follows from Lyapunov’s theorem that the equilibrium point is (locally) sta-
ble. However, since the function is only negative semidefinite, we cannot conclude
asymptotic stability using Theorem 5.2. However, note that V̇ = 0 implies that
x2 = 0 or x1 = π/2± nπ.

If we restrict our analysis to a small neighborhood of the origin Ωr, r , π/2,
then we can define

S = {(x1, x2) ∈ Ωr : x2 = 0}

and we can compute the largest invariant set inside S. For a trajectory to remain
in this set we must have x2 = 0 for all t and hence ẋ2(t) = 0 as well. Using the
dynamics of the system (5.22), we see that x2(t) = 0 and ẋ2(t) = 0 implies x1(t) = 0
as well. Hence the largest invariant set inside S is (x1, x2) = 0, and we can use
the Krasovski–Lasalle principle to conclude that the origin is locally asymptotically
stable. A phase portrait of the closed loop system is shown in Figure 5.17b.

In the analysis and the phase portrait, we have treated the angle of the pendulum
θ = x1 as a real number. In fact, θ is an angle with θ = 2π equivalent to θ = 0.
Hence the dynamics of the system actually evolve on a manifold (smooth surface)
as shown in Figure 5.17c. Analysis of nonlinear dynamical systems on manifolds is
more complicated, but uses many of the same basic ideas presented here. ∇
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5.5 Parametric and Nonlocal Behavior !

Most of the tools that we have explored are focused on the local behavior of a
fixed system near an equilibrium point. In this section we briefly introduce some
concepts regarding the global behavior of nonlinear systems and the dependence of
a system’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear system we can start by finding
the equilibrium points. We can then proceed to analyze the local behavior around
the equilibrium points. The behavior of a system near an equilibrium point is called
the local behavior of the system.

The solutions of the system can be very different far away from an equilibrium
point. This is seen, for example, in the stabilized pendulum in Example 5.14. The
inverted equilibrium point is stable, with small oscillations that eventually converge
to the origin. But far away from this equilibrium point there are trajectories that
converge to other equilibrium points or even cases in which the pendulum swings
around the top multiple times, giving very long oscillations that are topologically
different from those near the origin.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figure 5.17b. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibrium
points that are attracting. This gives partial information about the behavior of the
system.

One method for approximating the region of attraction is through the use of
Lyapunov functions. Suppose that V is a local Lyapunov function for a system
around an equilibrium point x0. Let Ωr be a set on which V (x) has a value less
than r,

Ωr = {x ∈ Rn : V (x) ≤ r},

and suppose that V̇ (x) ≤ 0 for all x ∈ Ωr, with equality only at the equilibrium
point x0. Then Ωr is inside the region of attraction of the equilibrium point. Since
this approximation depends on the Lyapunov function and the choice of Lyapunov
function is not unique, it can sometimes be a very conservative estimate.

It is sometimes the case that we can find a Lyapunov function V such that
V is positive definite and V̇ is negative (semi-) definite for all x ∈ Rn. In many
instances it can then be shown that the region of attraction for the equilibrium
point is the entire state space, and the equilibrium point is globally asymptotically
stable. More detailed conditions for global stability can be found in [Kha01] and
other textbooks.

Example 5.15 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Example 5.14. The Lyapunov
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function for the system was

V (x) = (cosx1 − 1) + a(1− cos2 x1) +
1

2
x2
2.

With a > 0.5, V̇ was negative semidefinite for all x and nonzero when x1 .= ±π/2.
Hence any x such that |x1| < π/2 and V (x) > 0 will be inside the invariant set
defined by the level curves of V (x). One of these level sets is shown in Figure 5.17b.

∇

Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context
of models by exploring how the location of equilibrium points, their stability, their
regions of attraction, and other dynamic phenomena, such as limit cycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

dx

dt
= F (x, µ), x ∈ Rn, µ ∈ Rk, (5.23)

where x is the state and µ is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F (x, µ) = 0,

and as µ is varied, the corresponding solutions xe(µ) can also vary. We say that
the system (5.23) has a bifurcation at µ = µ∗ if the behavior of the system changes
qualitatively at µ∗. This can occur either because of a change in stability type or
a change in the number of solutions at a given value of µ.

Example 5.16 Predator–prey
Consider the predator–prey system described in Example 3.4 and modeled as a
continuous time system as described in Section 4.7. The dynamics of the system
are given by

dH

dt
= rH

(
1− H

k

)
− aHL

c+H
,

dL

dt
= b

aHL

c+H
− dL, (5.24)

where H and L are the numbers of hares (prey) and lynxes (predators) and a, b,
c, d, k, and r are parameters that model a given predator–prey system (described
in more detail in Section 4.7). The system has an equilibrium point at He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behavior of the system, we
choose to focus on two specific parameters of interest: a, the interaction coefficient
between the populations and c, a parameter affecting the prey consumption rate.
Figure 5.18a is a numerically computed parametric stability diagram showing the
regions in the chosen parameter space for which the equilibrium point is stable
(leaving the other parameters at their nominal values). We see from this figure
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Figure 5.18: Bifurcation analysis of the predator–prey system. (a) Parametric
stability diagram showing the regions in parameter space for which the system is
stable. (b) Bifurcation diagram showing the location and stability of the equilib-
rium point as a function of a. The solid line represents a stable equilibrium point,
and the dashed line represents an unstable equilibrium point. The dash-dotted
lines indicate the upper and lower bounds for the limit cycle at that parameter
value (computed via simulation). The nominal values of the parameters in the
model are a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125, and r = 1.6.

that for certain combinations of a and c we get a stable equilibrium point, while at
other values this equilibrium point is unstable.

Figure 5.18b is a numerically computed bifurcation diagram for the system. In
this plot, we choose one parameter to vary (a) and then plot the equilibrium value
of one of the states (H) on the vertical axis. The remaining parameters are set to
their nominal values. A solid line indicates that the equilibrium point is stable; a
dashed line indicates that the equilibrium point is unstable. Note that the stability
in the bifurcation diagram matches that in the parametric stability diagram for
c = 50 (the nominal value) and a varying from 1.35 to 4. For the predator–prey
system, when the equilibrium point is unstable, the solution converges to a stable
limit cycle. The amplitude of this limit cycle is shown by the dash-dotted line in
Figure 5.18b. ∇

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium point remains fixed but the stability of the equilib-
rium point changes as the parameters are varied. In such a case it is revealing to
plot the eigenvalues of the system as a function of the parameters. Such plots are
called root locus diagrams because they give the locus of the eigenvalues when pa-
rameters change. Bifurcations occur when parameter values are such that there are
eigenvalues with zero real part. Computing environments such LABVIEW, MAT-
LAB, Mathematica, and Python have tools for plotting root loci. A more detailed
discussion of the root locus is given in Section 12.5.

Example 5.17 Root locus diagram for a bicycle model
Consider the linear bicycle model given by equation (4.8) in Section 4.2. Introducing
the state variables x1 = ϕ, x2 = δ, x3 = ϕ̇, and x4 = δ̇ and setting the steering
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Figure 5.19: Stability plots for a bicycle moving at constant velocity. The plot
in (a) shows the real part of the system eigenvalues as a function of the bicycle
velocity v0. The system is stable when all eigenvalues have negative real part
(shaded region). The plot in (b) shows the locus of eigenvalues on the complex
plane as the velocity v is varied and gives a different view of the stability of the
system. This type of plot is called a root locus diagram.

torque T = 0, the equations can be written as

dx

dt
=




0 I

−M−1(K0 +K2v20) −M−1Cv0


x =: Ax,

where I is a 2×2 identity matrix and v0 is the velocity of the bicycle. Figure 5.19a
shows the real parts of the eigenvalues as a function of velocity. Figure 5.19b shows
the dependence of the eigenvalues of A on the velocity v0. The figures show that the
bicycle is unstable for low velocities because two eigenvalues are in the right half-
plane. As the velocity increases, these eigenvalues move into the left half-plane,
indicating that the bicycle becomes self-stabilizing. As the velocity is increased
further, there is an eigenvalue close to the origin that moves into the right half-
plane, making the bicycle unstable again. However, this eigenvalue is small and
so it can easily be stabilized by a rider. Figure 5.19a shows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. ∇

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters of
the system to eliminate extra parameters when possible. Computer programs such
as AUTO, LOCBIF, and XPPAUT provide numerical algorithms for producing stability
and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations to design feedback laws
that stabilize an equilibrium point and provide a desired level of performance.
However, for some classes of problems the feedback controller must be nonlinear to
accomplish its function. By making use of Lyapunov functions we can often design
a nonlinear control law that provides stable behavior, as we saw in Example 5.14.
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Figure 5.20: Headphones with noise cancellation. Noise is sensed by the exterior
microphone (a) and sent to a filter in such a way that it cancels the noise that
penetrates the headphone (b). The filter parameters a and b are adjusted by the
controller. S represents the input signal to the headphones.

One way to systematically design a nonlinear controller is to begin with a can-
didate Lyapunov function V (x) and a control system ẋ = f(x, u). We say that
V (x) is a control Lyapunov function if for every x there exists a u such that
V̇ (x) = ∂V

∂x f(x, u) < 0. In this case, it may be possible to find a function α(x)
such that u = α(x) stabilizes the system. The following example illustrates the
approach.

Example 5.18 Noise cancellation
Noise cancellation is used in consumer electronics and in industrial systems to
reduce the effects of noise and vibrations. The idea is to locally reduce the effect of
noise by generating opposing signals. A pair of headphones with noise cancellation
such as those shown in Figure 5.20a is a typical example. A schematic diagram of
the system is shown in Figure 5.20b. The system has two microphones, one outside
the headphones that picks up exterior noise n and another inside the headphones
that picks up the signal e, which is a combination of the desired signal S and
the external noise that penetrates the headphone. The signal from the exterior
microphone is filtered and sent to the headphones in such a way that it cancels
the external noise that penetrates into the headphones. The parameters of the
filter are adjusted by a feedback mechanism to make the noise signal in the internal
microphone as small as possible. The feedback is inherently nonlinear because it
acts by changing the parameters of the filter.

To analyze the system we assume for simplicity that the propagation of external
noise into the headphones is modeled by the first-order dynamical system

dz

dt
= a0z + b0n, (5.25)

where n is the external noise signal, z is the sound level inside the headphones, and
the parameters a0 < 0 and b0 are not known. Assume that the filter is a dynamical
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system of the same type:
dw

dt
= aw + bn,

where the parameters a and b are adjustable. We wish to find a controller that
updates a and b so that they converge to the (unknown) parameters a0 and b0. If
a = a0 and b = b0 we have e = S and the noise effect of the noise is eliminated.
Assuming for simplicity that S = 0, introduce x1 = e = z − w, x2 = a − a0, and
x3 = b− b0. Then

dx1

dt
= a0(z − w) + (a− a0)w + (b− b0)n = a0x1 + x2w + x3n. (5.26)

We will achieve noise cancellation if we can find a feedback law for changing the
parameters a and b so that the error e goes to zero. To do this we choose

V (x1, x2, x3) =
1

2

(
αx2

1 + x2
2 + x2

3

)

as a candidate Lyapunov function for equation (5.26). The derivative of V is

V̇ = αx1ẋ1 + x2ẋ2 + x3ẋ3 = αa0x
2
1 + x2(ẋ2 + αwx1) + x3(ẋ3 + αnx1).

Choosing

ȧ = ẋ2 = −αwx1 = −αwe, ḃ = ẋ3 = −αnx1 = −αne, (5.27)

we find that V̇ = αa0x2
1 < 0, and it follows that the quadratic function will decrease

as long as e = x1 = w − z .= 0. The nonlinear feedback (5.27) thus attempts to
change the parameters so that the error between the signal and the noise is small.
Notice that feedback law (5.27) does not use the model (5.25) explicitly.

A simulation of the system is shown in Figure 5.21. In the simulation we have
represented the signal as a pure sinusoid and the noise as broad band noise. The
figure shows the dramatic improvement with noise cancellation. The sinusoidal
signal is not visible without noise cancellation. The filter parameters change quickly
from their initial values a = b = 0. Filters of higher order with more coefficients
are used in practice. ∇

5.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [Str94] and the highly illustrated text by
Abraham and Shaw [AS82]. More technical treatments include Andronov, Vitt,
and Khaikin [AVK87], Guckenheimer and Holmes [GH83], and Wiggins [Wig90].
For students with a strong interest in mechanics, the texts by Arnold [Arn87] and
Marsden and Ratiu [MR94] provide an elegant approach using tools from differential
geometry. Finally, good treatments of dynamical systems methods in biology are
given by Wilson [Wil99] and Ellner and Guckenheimer [EG05]. There is a large lit-
erature on Lyapunov stability theory, including the classic texts by Malkin [Mal59],
Hahn [Hah67], and Krasovski [Kra63]. We highly recommend the comprehensive
treatment by Khalil [Kha01].
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Figure 5.21: Simulation of noise cancellation. The upper left figure shows the
headphone signal without noise cancellation, and the lower left figure shows the
signal with noise cancellation. The right figures show the parameters a and b of
the filter.

Exercises

5.1 (Time-invariant systems) Show that if we have a solution of the differential
equation (5.2) given by x(t) with initial condition x(t0) = x0, then x̃(τ) = x(t− t0)
is a solution of the differential equation

dx̃

dτ
= F (x̃)

with initial condition x̃(0) = x0, where τ = t− t0.

5.2 (Flow in a tank) Consider a cylindrical tank with cross sectional area A m2,
effective outlet area a m2, and inflow qin m3/s. An energy balance shows that the
outlet velocity is v =

√
2gh m/s, where g m/s2 is the acceleration of gravity and h

is the distance between the outlet and the water level in the tank (in meters). Show
that the system can be modeled by

dh

dt
= − a

A

√
2gh+

1

A
qin, qout = a

√
2gh.

Use the parameters A = 0.2, a = 0.01. Simulate the system when the inflow is zero
and the initial level is h = 0.2. Do you expect any difficulties in the simulation?

5.3 (Lyapunov functions) Consider the second-order system

dx1

dt
= −ax1,

dx2

dt
= −bx1 − cx2,

where a, b, c > 0. Investigate whether the functions

V1(x) =
1

2
x2
1 +

1

2
x2
2, V2(x) =

1

2
x2
1 +

1

2
(x2 +

b

c− a
x1)

2

are Lyapunov functions for the system and give any conditions that must hold.
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5.4 (Damped spring–mass system) Consider a damped spring–mass system with !
dynamics

mq̈ + cq̇ + kq = 0.

A natural candidate for a Lyapunov function is the total energy of the system,
given by

V =
1

2
mq̇2 +

1

2
kq2.

Use the Krasovski–Lasalle theorem to show that the system is asymptotically stable.

5.5 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise 3.8:

J
d2ϕ

dt2
= Pm − Pe = Pm − EV

X
sinϕ.

The parameter

a =
Pmax

Pm
=

EV

XPm

is the ratio between the maximum deliverable power Pmax = EV/X and the me-
chanical power Pm.

(a) Consider a as a bifurcation parameter and discuss how the equilibrium points
depend on a.

(b) For a > 1, show that there is a center at ϕ0 = arcsin(1/a) and a saddle at
ϕ = π − ϕ0.

(c) Assume a > 1 and show that there is a solution through the saddle that satisfies

J

2

(dϕ
dt

)2
− Pm(ϕ− ϕ0)−

EV

X
(cosϕ− cosϕ0) = 0. (5.28)

Set J/Pm = 1 and use simulation to show that the stability region is the interior
of the area enclosed by this solution. Investigate what happens if the system is in
equilibrium with a value of a that is slightly larger than 1 and a suddenly decreases,
corresponding to the reactance of the line suddenly increasing.

5.6 (Lyapunov equation) Show that Lyapunov equation (5.17) always has a solution
if all of the eigenvalues of A are in the left half-plane. (Hint: Use the fact that the
Lyapunov equation is linear in P and start with the case where A has distinct
eigenvalues.)

5.7 (Shaping behavior by feedback) An inverted pendulum can be modeled by the
differential equation

dx1

dt
= x2,

dx2

dt
= sinx1 + u cosx1,

where x1 is the angle of the pendulum clockwise), and x2 is its angular velocity
(see Example 5.14). Qualitatively discuss the behavior of the open loop system and
how the behavior changes when the feedback u = −2 sin(x) is introduced. (Hint:
Use phase portraits.)
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5.8 (Swinging up a pendulum) Consider the inverted pendulum, discussed in Ex-
ample 5.4, that is described by

θ̈ = sin θ + u cos θ,

where θ is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function

V (θ, θ̇) = cos θ − 1 +
1

2
θ̇2,

show that the state feedback u = k(V0 − V )θ̇ cos θ causes the pendulum to “swing
up” to the upright position.

5.9 (Root locus diagram) Consider the linear system

dx

dt
=


0 1
0 −3


x+


−1

4


u, y =


1 0


x,

with the feedback u = −ky. Plot the location of the eigenvalues as a function the
parameter k.

5.10 (Discrete-time Lyapunov function) Consider a nonlinear discrete-time system !
with dynamics x[k+1] = f(x[k]) and equilibrium point xe = 0. Suppose there exists
a smooth, positive definite function V : Rn → R such that V (f(x))− V (x) < 0 for
x .= 0 and V(0) = 0. Show that xe = 0 is (locally) asymptotically stable.

5.11 (Operational amplifier oscillator) An op amp circuit for an oscillator was
shown in Exercise 4.4. The oscillatory solution for that linear circuit was stable
but not asymptotically stable. A schematic of a modified circuit that has nonlinear
elements is shown in the figure below.

v1

v3v2 v1

v2

v1

v2

2
v0

2

2

R1R

R

R/α R

R R R

R2

R22 RC2

ae

R11

ae
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C1

−

+

−

+

−

+

−

+

−

+

The modification is obtained by making a feedback around each of the operational
amplifiers that has capacitors and making use of multipliers. The signal ae =
v21 + αv22 − v20 is the amplitude error. Show that the system is modeled by

dv1
dt

=
1

R1C1
v2 +

1

R11C1
v1(v

2
0 − v21 − αv22),

dv2
dt

= − 1

R2C2
v1 +

1

R22C2
v2(v

2
0 − v21 − αv22).
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Determine α so that the circuit gives an oscillation with a stable limit cycle with
amplitude v0. (Hint: Use the results of Example 5.9.)

5.12 (Congestion control) Consider the congestion control problem described in
Section 4.4. Confirm that the equilibrium point for the system is given by equa-
tion (4.22) and compute the stability of this equilibrium point using a linear ap-
proximation.

5.13 (Self-activating genetic circuit) Consider the dynamics of a genetic circuit that
implements self-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example 3.18, the dynamics for the system can be written as

dm

dt
=

αp2

1 + kp2
+ α0 − δm,

dp

dt
= κm− γp, (5.29)

for p,m ≥ 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

5.14 (Diagonal systems) Let A ∈ Rn×n be a square matrix with real eigenvalues
λ1, . . . ,λn and corresponding eigenvectors v1, . . . , vn. Assume that the eigenvalues
are distinct (λi .= λj for i .= j).

(a) Show that vi .= vj for i .= j.

(b) Show that the eigenvectors form a basis for Rn so that any vector x can be
written as x =

∑
αivi for αi ∈ R.

(c) Let T =

v1 v2 . . . vn


 and show that T−1AT is a diagonal matrix of

the form (5.10).

(d) Show that if some of the λi are complex numbers, then A can be written as

A =




Λ1 0
. . .

0 Λk




, where Λi = λ ∈ R or Λi =


 σ ω
−ω σ




in an appropriate set of coordinates.

This form of the dynamics of a linear system is often referred to as block diagonal
form.
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