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This document describes the speed control system that is used as a running
example through the text. Material that is pulled from the book is colored
in black and marked by a heading indicating where the material came from.
Material in green is contained only in this document. Additional supplemental
information that may appear in some of textbook materials (extra text, solutions,
etc) is colored in blue. Equation and figure numbers of the form m.nn refer to
the main text. .

1 Introduction

cruise-introSection 1.5 In this system, the velocity of a vehicle is controlled by adjusting
the amount of gas flowing to the engine. Simple proportional-integral (PI) feed-
back is used to make the amount of gas depend on both the error between the
current and the desired velocity and the integral of that error. The plot on the
right shows the effect of this feedback when the vehicle travels on a horizontal
road and it encounters an uphill slope. When the slope changes, the car deceler-
ates due to gravity forces and the velocity initially increases. The velocity error
is sensed by the controller, which acts to restore the velocity to the desired value
by increasing the throttle. The figure also shows what happens when the same
controller is used for a different masses of the car, which might result from having
a different number of passengers or towing a trailer. Notice that the steady-state
velocity of the vehicle always approaches the desired velocity and achieves that
velocity within approximately 15 s, independent of the mass (which varies by a
factor of ± 25%), Thus feedback improves both performance and robustness of
the system.

cruise-redesignExercise 1.4 Download the MATLAB code used to produce simulations for
the cruise control system in Figure 1 from the companion web site. Using trial
and error, change the parameters of the control law so that the overshoot in
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(b) Response to change in road slope

Figure 1: A feedback system for controlling the velocity of a vehicle. In the block
diagram on the left, the velocity of the vehicle is measured and compared to the
desired velocity within the “Compute” block. Based on the difference in the actual
and desired velocities, the throttle (or brake) is used to modify the force applied
to the vehicle by the engine, drivetrain, and wheels. The figure on the right shows
how the velocity changes when the car travels on a horizontal road and the slope of
the road changes to a constant uphill slope. The three different curves correspond
to differing masses of the vehicle, between 1200 and 2000 kg, demonstrating that
feedback can indeed compensate for the changing slope and that the closed loop
system is robust to a large change in the vehicle characteristics.

speed is not more than 1 m/s for a vehicle with mass m = 1200 kg. Does the
same controller work if we set m = 2000 kg?

Solution. [Cole Lepine, Feb 08] Although there are more than one set of param-
eters that work, here are ones that do: kp = 2 and ki = 0.1. Figure 2 shows a
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Figure 2: Step response for the redesigned cruise control system in Exercise 1.4.
This shows that the overshoot is less than 1 m/s for the given gains.

graph of how the system responds to a change in reference speed from 20 m/s to
30 m/s at t = 20 s. The MATLAB code used to generate the plot is

plot(Time, Vel);

xlabel(’time (sec)’);
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ylabel(’speed (m/s)’);

(to be used after running the SIMULINK model).

cruise-mlintroExercise 1.9 Download the file “cruise_ctrl.mdl” from the companion web
site. It contains a SIMULINK model of a simple cruise controller, similar to the
one described in Section 1.5. Figure out how to run the example and plot the
vehicle’s speed as a function of time.

(a) Leaving the control gains at their default values, plot the response of the
system to a step input and measure the time it takes for the system error
to settle to within 5% of commanded change in speed (i.e., 0.5 m/s).

(b) By manually tuning the control gains, design a controller that settles at
least 50% faster than the default controller. Include the gains you used, a
plot of the closed loop response, and describe any undesirable features in
the solution you obtain.

All plots should included a title, labeled axes (with units), and reasonable axis
limits.

Instructor note:The exercise is a variation of Exercise 1.4 above. The pur-
pose of these problem is to give students some familiarity with MATLAB and
SIMULINK. The instructor may want to indicate in the problem that students
shouldn’t worry if they don’t yet know how the control law works or why it does
what it does.

Solution. [Caltech CDS 101/110 TAs, 2004–2006; Cole Lepine, Feb 08]

(a) The red curve in Figure 3 depicts speed as a function of time for the default
gains. It was created by first running the simulation, then in the MATLAB
command window running the command:

plot(Time, Vel);

xlabel(’time (sec)’);

ylabel(’speed (m/s)’);

We calculate the settling time by finding the first time after which the
system remains within the five percent bound specified. This occurs at
about 34 second and can be found after running the simulation with the
commands:

settle = find (abs(flipud(Vel) - 30) > .5);

timerev = flipud(Time);

timerev(settle(1));
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Figure 3: Response of cruise control system to step input. The red curve shows
the response using original controller gains for Exercise 1.9. This shows that the
settling time is about 15 s for the given gains. The blue curve show the modified
gains, which give a settling time is about 7 s.

This searches through the velocity vector backwards to find the first out
of bounds value, and then computes the time at which that point occurs.
Finally we subtract the time at which the system input began, i.e. t = 20 s,
and obtain a settling time of 14 s.

(b) We want to modify the control parameters so that the system settles 50%
faster, or within 7 s. In this example, increasing the proportional gain
resulted in faster, sharper response. Increasing the integral gain does not
have much effect on the responsiveness of the system, and for sufficiently
large values induces oscillatory behavior, which is undesirable.

A choice of gains that accomplishes the desired behavior is ki = 0.1 and
kp = 3.3. This has a settling time (calculated as above) of 7 s. The blue
curve in Figure 3 shows the system response for these gains. With the
exception of the fact that this performance may be difficult to achieve in
reality due to the constraints discussed below, there are no undersirable
features of the new response as compared to the default performance.

Of course, we can increase the proportional gain even further, and obtain
a faster response time. Extremely large values could result in extremely
fast response. This control strategy is limited by physical realism: there’s
only so much power an engine can provide, only so much traction on any
given surface, and only so much acceleration that a passenger (or designer)
will tolerate. Certainly, attempting a 10 m/s increase in speed in under a
second is an ambitious undertaking, even though it is easy enough to dial
up kp sufficiently in order to achieve this within our simple model.
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(b) State machine

Figure 4: Finite state machine for cruise control system. The figure on the
left shows some typical buttons used to control the system. The controller can
be in one of four modes, corresponding to the nodes in the diagram on the right.
Transition between the modes is controlled by pressing one of the four buttons on
the cruise control interface: on/off, set, resume, or cancel.

cruise-logicSection 1.7 The basic control function in a cruise controller, such as the one
shown in Figure 1, is to keep the velocity constant. It is typically done with
a PI controller. The controller normally operates in automatic mode but it is
is necessary to switch it off when braking, accelerating, or changing gears. The
cruise control system has a human–machine interface that allows the driver to
communicate with the system. There are many different ways to implement this
system; one version is illustrated in Figure 4a. The system has four buttons:
on/off, coast/set, resume/accelerate, and cancel. The operation of the system is
governed by a finite state machine that controls the modes of the PI controller
and the reference generator, as shown in Figure 4b.

The finite state machine has four modes: off, standby, cruise, and hold. The
state changes depending on actions of the driver who can brake, accelerate,
and operate using the buttons. The on/off switch moves the states between
off and standby. From standby the system can be moved to cruise by pushing
the set/coast button. The velocity reference is set as the velocity of the car when
the button is released. In the cruise state the operator can change the velocity
reference; it is increased using the resume/accelerate button and decreased using
the set/coast button. If the driver accelerates by pushing the gas pedal the speed
increases, but it will go back to the set velocity when the gas pedal is released. If
the driver brakes then the car slows, and the cruise controller goes into hold but
it remembers the setpoint of the controller. It can be brought to the cruise state
by pushing the resume/accelerate button. The system also moves from cruise
mode to standby if the cancel button is pushed. The reference for the velocity
controller is remembered. The system goes into off mode by pushing on/off when
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the system is engaged.
The PI controller is designed to have good regulation properties and to give

good transient performance when switching between resume and control modes.

2 Feedback Principles

cruise-fbkparamExercise 2.18 Consider the cruise control example discussed in Section 1.5,
with RMM:

Nonstandard use of
parameters
compared to other
cruise control
examples [RMM, 18
Aug 2019]

mv̇ = −av + u + w

where u is the control input (force applied by engine) and w the disturbance
input (force applied by hill, etc.), which will be ignored below (w = 0). An open

loop control strategy to achieve a given reference speed vref would be to choose

u = âvref

where â is your estimate of a, which may not be accurate.

(a) Compute the steady-state response for both the open loop strategy above,
and for the feedback law

u = −kp(v − vref)

and compare the steady state (with w = 0) as a function of β = a/â when
kp = 10â. (You should solve the problem analytically, and then plot the
response vss/vref as a function of β.)

(b) Now consider a proportional-integral (PI) control law

u = −kp(v − vref) − ki

∫ t

0
(v − vref)dt

and again compute the steady-state solution (assuming stability) and com-
pare the response with the proportional gain case from above. (Note that
if you define q =

∫ t

0 (v − vref)dt then q̇ = v − vref .)

Solution. (a) In steady state, the time derivatives must be zero, thus vss = u/a.
For open loop control, then

vss = β−1vref

For the proportional feedback law, then from lecture notes,

vss =
kp

a + kp
vref

If kp = 10â, then vss = 10/(10 + β)vref
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(b) In steady state, the time derivatives must be zero, and q̇ = 0 implies vss =
vref in steady state for any value of ki, kp, a, m, assuming the system is
stable.

cruiseconExercise 2.6 A simple model for the relation between speed v and throttle u
for a car is given by the transfer function

Gvu =
b

s + a

where a = 0.01 rad/s and b = 1.32 m/s2 (see Section 4.1 and Example 6.11 for
more details). The control signal is normalized to the range 0 ≤ u ≤ 1. Design a
PI controller for the system that gives a closed loop system with the characteristic
polynomial

acl(s) = s2 + 2ζcωcs + ω2
c .

What are the consequences of choosing different values of the design parameters
ζc and ωc? Use your judgment to find suitable values. Hint: Investigate maximum
acceleration and maximum velocity for step changes in the velocity reference.

Solution. The transfer function of the process and the controller are

P (s) = Gvu =
b

s + a
, C(s) = kp +

ki
s

=
kps + ki

s

The loop transfer function is

P (s)C(s) =
b(kps + ki)

s(s + a)
,

and the closed loop characteristic polynomial is

s(s + a) + b(kps + ki) = s2 + (a + bkp)s + bki

Identification of the coefficients of this polynomial with those of acl gives

a + bkp = 2ζcωc, bki = ω2
c .

Solving these equations for the controller gains and inserting the numerical values
give RMM: Wrong

numerical valueskp = 2ζcωc − 0.025, ki = ω2
c

To find reasonable values we will first analyze the model

dv

dt
= −av + bu,
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with full throttle u = 1 the steady-state velocity is v = b
a

= 40 m/s = 144 km/hour.
The time constant of the open loop system is Tol = 1/a = 40 s.

Assume that the car is running at 20 m/s with half throttle u = 0.5. The
steady-state change in throttle ∆u required to obtain a velocity change ∆v is
∆u = a

b
∆v. The instantaneous change ∆u in throttle when commanding a speed

increase ∆v is kp∆v. Requiring that the initial change equals the steady-state
change gives kp = a/b = 0.025. To have a system with smooth response we
choose critical damping ζc = 1 which gives ωc = 0.05 and ki = 0.0025.

3 System Modeling

cruise-openvspiExercise 3.16 [Contributed by D. MacMartin, 2011] Consider the cruise-control
example discussed in class,† with RMM: Update to

refer to Intro?
Update parametersmv̇ = −av + u + w

where u is the control input (force applied by engine) and w the disturbance
input (force applied by hill, etc.), which will be ignored below (w = 0). An open

loop control strategy to achieve a given reference speed vref would be to choose

u = âvref

where â is your estimate of a, which may not be accurate.

(a) Compute the steady-state response for both the open loop strategy above,
and for the feedback law

u = −kp(v − vref)

and compare the steady-state (with w = 0) as a function of β = a/â when
kp = 10â. (You should solve the problem analytically, and then plot the
response vss/vref as a function of β.)

(b) Now consider a proportional-integral (PI) control law

u = −kp(v − vref) − ki

∫ t

0
(v − vref)dt

and again compute the steady-state solution (assuming stability) and com-
pare the response with the proportional gain case from above. (Note that
if you define q =

∫ t

0 (v − vref)dt then q̇ = v − vref .)
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(c) Next, simulate the response of the system (using ode45 in Matlab or similar)
with the PI control law above with m = 1, a = 0.1, w = 0, and “input”
to the system of vref = sin(ωt), for ω=0.01, 0.1, 1, and 10 rad/sec. In each
case, you should simulate at least 10 cycles; after some initial transient, the
response should be periodic. Compute the peak-to-peak amplitude of the
final period for the error v − vref , and plot this as a function of frequency
on a log-log scale, for the following control gains:

i. kp = 1, ki = 0

ii. kp = 1, ki = 1

iii. kp = 1, ki = 10

(If you want to see interesting behaviour, simulate the final case at ω =
3.3 rad/sec as well.)

Solution. (a) In steady state, the time derivatives must be zero, thus vss = u/a.
For open loop control, then

vss = β−1vref

For the proportional feedback law, then from lecture notes,

vss =
kp

a + kp
vref

If kp = 10â, then vss = 10/(10 + β)vref

(b) In steady state, the time derivatives must be zero, and q̇ = 0 implies vss =
vref in steady state for any value of ki, kp, a, m, assuming the system is
stable.

4 Examples

cruise-modelingSection 4.1 The cruise control system of a car is a common feedback system
encountered in everyday life. The system attempts to maintain a constant veloc-
ity in the presence of disturbances primarily caused by changes in the slope of a
road. The controller compensates for these unknowns by measuring the speed of
the car and adjusting the throttle appropriately.

To model the system we start with the block diagram in Figure 5. Let v be
the speed of the car and vr the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type described briefly in Chapter 1,
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Figure 5: Block diagram of a cruise control system for an automobile. The
throttle-controlled engine generates a torque T that is transmitted to the ground
through the gearbox and wheels. Combined with the external forces from the
environment, such as aerodynamic drag and gravitational forces on hills, the net
force causes the car to move. The velocity of the car v is measured by a control
system that adjusts the throttle through an actuation mechanism. A driver inter-
face allows the system to be turned on and off and the reference speed vr to be
established.

receives the signals v and vr and generates a (normalized) control signal u that
is sent to an actuator that controls the throttle position. The throttle in turn
controls the torque T delivered by the engine, which is transmitted through the
gears and the wheels, generating a force F that moves the car. There are distur-
bance forces Fd due to variations in the slope of the road, the rolling resistance,
and aerodynamic forces. The cruise controller also has a human–machine inter-
face that allows the driver to set and modify the desired speed. There are also
functions that disconnect the cruise control when the brake is touched.

The system has many individual components—actuator, engine, transmission,
wheels, and car body—and a detailed model can be very complicated. In spite
of this, the model required to design the cruise controller can be quite simple.

To develop a mathematical model we start with a force balance for the car
body. Letting m be the total mass of the car (including passengers), the equation
of motion of the car is simply

m
dv

dt
= F − Fd. (1)

Typical values for the mass of a car are in the range of 1000–2000 kg (we will use
1600 kg here).

The force F is generated by the engine, whose torque is proportional to the
rate of fuel injection, which is itself proportional to a control signal 0 ≤ u ≤ 1
that controls the throttle position. The torque also depends on engine speed ω.
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(a) Torque versus engine speed
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(b) Torque versus car speed

Figure 6: Torque curves for typical car engine. The graph on the left shows the
torque generated by the engine as a function of the angular velocity of the engine,
while the curve on the right shows torque as a function of car speed for different
gears.

A simple representation of the torque at full throttle is given by the torque curve

T (ω) = Tm

(
1 − β

(
ω

ωm
− 1

)2
)
, (2)

where the maximum torque Tm is obtained at engine speed ωm. Typical param-
eters are Tm = 190 Nm, ωm = 420 rad/s (about 4000 RPM), and β = 0.4. Let
n be the gear ratio and r the wheel radius. The engine speed is related to the
velocity through the expression

ω =
n

r
v =: αnv,

and the driving force can be written as

F =
nu

r
T (ω) = αnuT (αnv).

Typical values of αn for gears 1 through 5 are α1 = 40, α2 = 25, α3 = 16,
α4 = 12, and α5 = 10. The inverse of αn has a physical interpretation as the
effective wheel radius. Figure 6 shows the torque as a function of engine speed
and vehicle speed. The figure shows that the effect of the gear is to “flatten” the
torque curve so that nearly full torque can be obtained over almost the whole
speed range.

The disturbance force Fd has three major components: Fg, the forces due
to gravity; Fr, the forces due to rolling friction; and Fa, the aerodynamic drag.
Letting the slope of the road be θ, gravity gives the force Fg = mg sin θ, as
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(b) Closed loop response

Figure 7: Car with cruise control encountering a sloping road. A schematic
diagram is shown in (a), and (b) shows the response in speed and throttle when a
slope of 4◦ is encountered. The hill is modeled as a net change of 4◦ in hill angle
θ, with a linear change in the angle between t = 5 and t = 6. The PI controller
has proportional gain kp = 0.5 and integral gain ki = 0.1.

illustrated in Figure 7a,† where g = 9.8 m/s2 is the gravitational constant. A RMM: Check page
alignment in final
printing

simple model of rolling friction is

Fr = mgCr sgn(v),

where Cr is the coefficient of rolling friction and sgn(v) is the sign of v (±1) or
zero if v = 0. A typical value for the coefficient of rolling friction is Cr = 0.01.
Finally, the aerodynamic drag is proportional to the square of the speed:

Fa =
1

2
ρCdA|v|v,

where ρ is the density of air, Cd is the shape-dependent aerodynamic drag coeffi-
cient, and A is the frontal area of the car. Typical parameters are ρ = 1.3 kg/m3,
Cd = 0.32, and A = 2.4 m2.

Summarizing, we find that the car’s speed can be modeled by

m
dv

dt
= αnuT (αnv) −mgCr sgn(v) −

1

2
ρCdA|v|v −mg sin θ, (3)

where the function T is given by equation (2). The model (3) is a dynamical
system of first order. The state is the car velocity v, which is also the output.
The input is the signal u that controls the throttle position, and the disturbance
is the force Fd = mg sin θ, which depends on the slope of the road. The system
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is nonlinear because of the torque curve, the gravity term, and the nonlinear
character of rolling friction and aerodynamic drag. There can also be variations
in the parameters; e.g., the mass of the car depends on the number of passengers
and the load being carried in the car.

We add to this model a feedback controller that attempts to regulate the
speed of the car in the presence of disturbances. We use a proportional-integral
controller, which has the form

u(t) = kpe(t) + ki

∫ t

0
e(τ) dτ.

This controller can itself be realized as an input/output dynamical system by
defining a controller state z and implementing the differential equation

dz

dt
= vr − v, u = kp(vr − v) + kiz, (4)

where vr is the desired (reference) speed. As discussed briefly in Section 1.6,
the integrator (represented by the state z) ensures that in steady state the error
will be driven to zero, even when there are disturbances or modeling errors.
(The design of PI controllers is the subject of Chapter 11.) Figure 7b shows the
response of the closed loop system, consisting of equations (3) and (4), when
it encounters a hill. The figure shows that even if the hill is so steep that the
throttle changes from 0.17 to almost full throttle, the largest speed error is less
than 1 m/s, and the desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (3). It may seem
surprising that such a seemingly complicated system can be described by the
simple model (3). It is important to make sure that we restrict our use of the
model to the uncertainty lemon conceptualized in Figure 3.5b. The model is not
valid for very rapid changes of the throttle because we have ignored the details
of the engine dynamics, neither is it valid for very slow changes because the
properties of the engine will change over the years. Nevertheless the model is
very useful for the design of a cruise control system. As we shall see in later
chapters, the reason for this is the inherent robustness of feedback systems: even
if the model is not perfectly accurate, we can use it to design a controller and
make use of the feedback in the controller to manage the uncertainty in the
system.

The cruise control system also has a human–machine interface that allows
the driver to communicate with the system. There are many different ways to
implement this system; one version is illustrated in Figure 8. The system has four
buttons: on-off, set/decelerate, resume/accelerate, and cancel. The operation of
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(b) Finite state machine

Figure 8: Finite state machine for cruise control system. The figure on the left
shows some typical buttons used to control the system. The controller can be
in one of four modes, corresponding to the nodes in the diagram on the right.
Transition between the modes is controlled by pressing one of the five buttons on
the cruise control interface: on, off, set, resume, or cancel.

the system is governed by a finite state machine that controls the modes of the
PI controller and the reference generator.

Supplement

The controller can operate in two ways: in the normal cruise control mode and
in a tracking mode, where the integral is adjusted to match given process inputs
and outputs. The tracking mode is introduced to avoid switching transients
when the system is controlled manually. The generator for the reference signal
has three modes: a normal control mode when the output is controlled by the
set/accelerate and resume/decelerate buttons, a tracking mode, and a hold mode
where the reference is held constant.

To control the overall operation of the controller and reference generator, we
use a finite state machine with four states: off, standby, cruise, and hold. The
states of the controller and the reference generator in the different modes are given
in Figure 8. The cruise mode is the normal operating mode where the speed can
be then be decreased by pushing set/decelerate and increased by pushing the
resume/accelerate. When the system is switched on it goes to standby mode.
The cruise mode is activated by pushing the set/accelerate button. If the brake is
touched or if the gear is changed, the system goes into hold mode and the current
velocity is stored in the reference generator. The controller is then switched to
tracking mode and the reference generator is switched to hold mode, where it
holds the current velocity. Touching the resume button then switches the system
to cruise mode. The system can be switched to standby mode from any state by
pressing the cancel button.

The PI controller should be designed to have good regulation properties and
to give good transient performance when switching between resume and control
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modes. Implementation of controllers and reference generators will be discussed
more fully in Chapter 11.

The use of control in automotive systems goes well beyond the simple cruise
control system described here. Applications include emissions control, traction
control, power control (especially in hybrid vehicles), and adaptive cruise control.
Many automotive applications are discussed in detail in the book by Kiencke and
Nielsen [KN00] and in the survey papers by Powers et al. [BP96, PN00]. New
vehicles coming on the market also include many “self-driving” features, which
represent even more complex feedback systems.

cruise-hillsimExercise 4.1 Consider the cruise control example described in Section 4.1.
Build a simulation that re-creates the response to a hill shown in Figure 7b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of the hill.

Solution. [Cole Lepine, Feb. 2008] Figure 9a depicts speed as a function of time
with the default gains for a hill encounter at t = 5 s. The mass of the vehicle
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(a) Default games
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(b) Default games

Figure 9: Solution for Exercise 4.1. (a) The velocity responses for three vehicles
that encounter a hill of 4◦ at t = 5 s for Exercise 4.1. This shows that a given set
of gains provide decreasing performance for increasing mass. (b) Velocity response
of the three different vehicles with a controller that returns the speed to within
1% of the desired speed within 3 s after encountering a hill of 4◦ at t = 5 s.

is plotted in increasing order from m = 750 kg to m = 1250 kg. It was created
using the SIMULINK model cruise_ctrl.mdl, available on the companion web
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site. Figure 9b depicts speed as a function of time with the gains selected to
return the speed to within 1% of 20 m/s for each of the masses. The gains used
were kp = 1.5 ki = 0.1.

5 Dynamic Behavior

cruise-phaseplotExercise 5.3 Consider the cruise control system described in Section 4.1. Gen-
erate a phase portrait for the closed loop system on flat ground (θ = 0), in fourth
gear, using a PI controller (with kp = 0.5 and ki = 0.1), m = 1600 kg, and de-
sired speed 20 m/s. Your system model should include the effects of saturating
the input between 0 and 1.

(Hint: Keep in mind that when modeling feedback control, additional states Supplement

can arise that do not appear in the original dynamics. You should include the
MATLAB code used to generate your phase portrait.)

Solution. [CDS 101/110 TAs, 2004–06; Cole Lepine, Feb 08]

Include information on python version of solution (contributed by Scott Livingston)? RMM

The dynamics of the system are given in Section 3.1. These can be built into
a MATLAB model using the following code: haseplotodel.m

To generate a phase portrait, we use the MATLAB script provided on the course
web site: haseplot.m

Figure 10 shows the phase portrait for the system, along with a few trajectories
also plotted. The equilibrium point is at (v, z) = (20, 1), but it can be difficult
to determine that only using the phase portrait. Note the lack of symmetry due
to input saturation.

Instructor note:Max points is 10:

(a) 4: for understanding the dynamics

(b) 2: for saturation

(c) 2: for MATLAB code

(d) 2: for correct phase portrait

Common mistakes include: not plotting the full vector field, not including the
input saturation, or incorrectly choosing the state variables.
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Phase Portrait for Cruise Control with PI Controller

Figure 10: Phase curve of cruise control system for Exercise 5.3.

cruise-lyapunovExercise 5.29 Find a Lyapunov function for the cruise control system in Ex-
ercise 5.3, showing that the system is locally asymptotically stable at the desired
speed. If you like, you can use the specific parameters listed above, although it
is also possible to solve the problem leaving parameter values unspecified (with
some assumptions, which you should state).

Solution. [Original Contributor, Unknown, Edited by Cole Lepine, Feb 08] The
dynamics of the vehicle (on level ground, θ = 0) are given by † RMM: Update to

use standard
notationv̇ =

αn

m
uT (αnv) − c− bv2 = f(v, u)

where c = gCr > 0, b = 1
2mρCdA > 0,

u = sat

(
kp(vr − v) + ki

∫ t

0
(vr − v)dτ

)
,

where
Comment [RMM, 12
Aug 2017]: Changed
punctuation; check
(and make consis-
tent globally
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sat(x) =





0 if x < 0,

1 if x > 1,

x otherwise,

and T (αnv) = Tm

(
1 − β

(
αn

ωm

v − 1

)2
)
.

Note that T (αnv) > 0 for −15 < v < 67 m/s based on the parameters in the
problem. Thus, for v close to vr, T (αnv) > 0.

The full dynamic system of equations can be expressed as

v̇ = −c− bv2 + g(αnv) u

ż = vr − v

where g(αnv) = αn

m
T (αnv) > 0 near vr and z =

∫ t

0 (vr − v)dτ + C with C a
constant of integration. The equilibrium point of this system of equations is at

v∗ = vr and z∗ = C = c+bv2r
kigr

> 0 with gr = g(αnvr). The positive constant
C indicates a constant input from u is required to hold the vehicle at a desired
velocity in the presence of friction and drag. Based on the parameters of the
problem, at equilibrium v∗ = vr = 20 m/s, the input u is not saturated:

v̇∗ = 0 = −c− bv2r + g(αnvr) sat(kiC) ⇒ sat(kiC) = 0.1.

The dynamics can be rewritten about the equilibrium point by letting x1 =
v − v∗ and x2 = z − z∗.

ẋ1 = −c− b(x1 + v∗)2 + g(αn(x1 + v∗)) sat(−kpx1 + ki(x2 + z∗))

ẋ2 = −x1

where
g(αn(x1 + v∗)) =

αn

m
T (αn(x1 + v∗)) = gr − 2kex1 − kx21

with k = βTm
α3
n

mω2
m

, and e = v∗ − ωm

αn
. Near the equilibrium point, x1 and x2 are

small, thus the saturation is in the linear region. Utilizing this assumption, the
dynamics separate into linear and higher-order terms, and the constants cancel:

ẋ1 = −(2bv∗ + kpdr + 2kekiz
∗)x1 + kigrx2

−bx21 − 2ke(−kpx1 + kix2)x1 − k(−kpx1 + kix2 + kiz
∗)x21

ẋ2 = −x1.

ẋ = Ax + F̃ (x)

18



x =

(
x1
x2

)
,

A =

[
−(2bv∗ + kpdr + 2kekiz

∗) kidr
−1 0

]
=

[
−a1 a2
−1 0

]
,

F̃ (x) =

(
−bx21 − 2ke(−kpx1 + kix2)x1 − k(−kpx1 + kix2 + kiz

∗)x21
0

)
,

and a1 > 0, a2 > 0.
The linear portion of the dynamics, represented by A will be used to find a

Lyapunov function candidate V (x) = xTPx > 0 with P = P T > 0 from solution
of the Lyapunov equation

ATP + PA = Q.

For a guess with Q = −I ∈ R
2×2,

P =

[
a2+1
2a1a2

− 1
2a2

− 1
2a2

a2
2
+a2+a2

1

2a1a2

]
.

Further, det(P ) =
(a2+1)2+a2

1

4a2
l
a2

> 0 and trace(P ) =
a2
2
+2a2+a2

1
+1

2a1a2
> 0, thus P ≻ 0

as required.
A check if the candidate V (x) = xTPx is a Lyapunov function for the full

nonlinear system yields :

V̇ = (Ax + F̃ (x))TPx + xTP (Ax + F̃ (x))

= xT (ATP + PA)x + F̃ T (x)Px + xTPF̃ (x)

= xTQx + F̃ T (x)Px + xTPF̃ (x)

= −xTx + F̃ T (x)Px + xTPF̃ (x).

Since all terms in F̃ (x) are quadratic and higher order in x, then F̃ T (x)Px +
xTPF̃ (x) has all cubic and higher-order terms in x. Sufficiently close to equilib-
rium (x = 0) implies the quadratic terms are larger than the cubic and higher-
order terms, thus sufficiently close to x = 0 has V̇ < 0. Thus, V (x) = xTPx
is a Lyapunov function for the full nonlinear system, and the system is locally
asymptotically stable at the desired speed.

6 Linear Systems

cruise-linearize
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Example 6.11 The dynamics for the cruise control system are derived in Sec-
tion 4.1 and have the form

m
dv

dt
= αnuT (αnv) −mgCr sgn(v) −

1

2
ρCdAv|v| −mg sin θ, (5)

where the first term on the right-hand side of the equation is the force generated
by the engine and the remaining three terms are the rolling friction, aerodynamic
drag, and gravitational disturbance force. There is an equilibrium point (ve, ue)
when the force applied by the engine balances the disturbance forces.

To explore the behavior of the system near the equilibrium point we will
linearize the system. A Taylor series expansion of equation (5) around the equi-
librium point gives

d(v − ve)

dt
= −a(v − ve) − bg(θ − θe) + b(u− ue) + higher-order terms, (6)

where

a =
ρCdA|ve| − ueα

2
nT

′(αnve)

m
, bg = g cos θe, b =

αnT (αnve)

m
. (7)

Notice that the term corresponding to rolling friction disappears if v > 0. For a
car in fourth gear with ve = 20 m/s, θe = 0, and the numerical values for the car
from Section 4.1, the equilibrium value for the throttle is ue = 0.1687 and the
parameters are a = 0.01, b = 1.32, and bg = 9.8. This linear model describes how
small perturbations in the velocity about the nominal speed evolve in time.

We will later describe how to design a proportional-integral (PI) controller for
the system. Here we will simply assume that we have obtained a good controller
and we will compare the behaviors when the closed loop system is simulated using
the nonlinear model and the linear approximation. The simulation scenario is
that the car is running with constant speed on a horizontal road and the system
has stabilized so that the vehicle speed and the controller output are constant.
Figure 11 shows what happens when the car encounters a hill with a slope of
4◦ and a hill with a slope of 6◦ at time t =5 s. The results for the nonlinear
model are solid curves and those for the linear model are dashed curves. The
differences between the curves are very small (especially for θ = 4◦), and control
design based on the linearized model is thus validated.

cruise-jacobianExample 6.12 Consider again the cruise control system from Example 6.11
with θ taken as a constant θe. We can write the dynamics as a first-order,
nonlinear differential equation:

dx

dt
= f(x, u) =

αn

m
uT (αnx) − gCr sgn(x) −

1

2

ρCdA

m
x|x| − g sin θe,

y = h(x, u) = x,
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(b) Closed loop response

Figure 11: Simulated response of a vehicle with PI cruise control as it climbs
a hill with a slope of 4◦ (smaller velocity deviation/throttle) and unit6◦ (larger
velocity deviation/throttle). The solid line is the simulation based on a nonlinear
model, and the dashed line shows the corresponding simulation using a linear
model. The controller gains are kp = 0.5 and ki = 0.1 and include anti-windup
compensation (described in more detail in Example 11.6).

where x = v is the velocity of the vehicle and u is the throttle. We use the
velocity as the output of the system (since this is what we are trying to control).

If we linearize the dynamics of the system about an equilibrium point x =
ve > 0, u = ue, using the formulas above we obtain

A =
∂f

∂x

∣∣∣∣
(xe,ue)

=
ueα

2
nT

′(αnxe) − ρCdA|xe|

m
, B =

∂f

∂u

∣∣∣∣
(xe,ue)

=
αnT (αnxe)

m
,

C =
∂h

∂x

∣∣∣∣
(xe,ue)

= 1 D =
∂h

∂u

∣∣∣∣
(xe,ue)

= 0,

where we have used the fact that sgn(x) = 1 for x > 0. This matches the results
in Example 6.11, remembering that we have used x as the system state (vehicle
velocity).

cruise-fbklinExample 6.14 Consider again the cruise control system from Example 6.11,
whose dynamics are given in equation (5):

m
dv

dt
= αnuT (αnv) −mgCr sgn(v) −

1

2
ρCdAv|v| −mg sin θ.

21

cruise-fbklin


If we choose u as a feedback law of the form

u =
1

αnT (αnv)

(
ũ + mgCr sgn(v) +

1

2
ρCdAv|v|

)
, (8)

then the resulting dynamics become

m
dv

dt
= ũ + d, (9)

where d(t) = −mg sin θ(t) is the disturbance force due the slope of the road
(which may be changing as we drive). If we now define a feedback law for ũ (such
as a proportional-integral-derivative [PID] controller), we can use equation (8) to
compute the final input that should be commanded.

Equation (9) is a linear differential equation. We have essentially “inverted”
the nonlinearity through the use of the feedback law (8). This requires that we
have an accurate measurement of the vehicle velocity v as well as an accurate
model of the torque characteristics of the engine, gear ratios, drag and friction
characteristics, and mass of the car. While such a model is not generally available
(remembering that the parameter values can change), if we design a good feedback
law for ũ, then we can achieve robustness to these uncertainties.

7 State Feedback

cruise-integralExample 7.8 Consider the cruise control example introduced in Section 1.5
and considered further in Example 6.11 (see also Section 4.1). The linearized
dynamics of the process around an equilibrium point ve, ue are given by

dx

dt
= −ax− bgθ + bw, y = v = x + ve,

where x = v − ve, w = u − ue, m is the mass of the car, and θ is the angle of
the road. The constants a, b, and bg depend on the properties of the car and are
given in Example 6.11.

If we augment the system with an integrator, the process dynamics become

dx

dt
= −ax− bgθ + bw,

dz

dt
= y − vr = ve + x− vr,

or, in state space form,

d

dt


x
z


 =


−a 0

1 0




x
z


+


b

0


w +


−bg

0


 θ +


 0
ve − vr


 .
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Note that when the system is at equilibrium, we have that ż = 0, which implies
that the vehicle speed v = ve + x should be equal to the desired reference speed
vr. Our controller will be of the form

dz

dt
= y − vr, w = −kpx− kiz + kfvr,

and the gains kp, ki, and kf will be chosen to stabilize the system and provide
the correct input for the reference speed.

Assume that we wish to design the closed loop system to have the character-
istic polynomial

λ(s) = s2 + a1s + a2.

Setting the disturbance θ = 0, the characteristic polynomial of the closed loop
system is given by

det
(
sI − (A−BK)

)
= s2 + (bkp + a)s + bki,

and hence we set

kp =
a1 − a

b
, ki =

a2
b
, kf = −1/

(
C(A−BK)−1B

)
=

a1
b
.

The resulting controller stabilizes the system and hence brings ż = y − vr to
zero, resulting in perfect tracking. Notice that even if we have a small error
in the values of the parameters defining the system, as long as the closed loop
eigenvalues are still stable, then the tracking error will approach zero. Thus the
exact calibration required in our previous approach (using kf) is not needed here.
Indeed, we can even choose kf = 0 and let the feedback controller do all of the
work. However, kf does influence the transient response to command signals and
setting it properly will generally give a more favorable response.

Integral feedback can also be used to compensate for constant disturbances.
Figure 12 shows the results of a simulation in which the car encounters a hill
with angle θ = 4◦ at t = 5 s. The steady-state values of the throttle for a state
feedback controller and a controller with integral action are very close, but the
corresponding values of the car velocity are quite different. The reason for this
is that the zero frequency gain from throttle to velocity is −b/a = 130 is high.
The stability of the system is not affected by this external disturbance, and so
we once again see that the car’s velocity converges to the reference speed. This
ability to handle constant disturbances is a general property of controllers with
integral feedback (see Exercise 7.4).

cruise-norefgainExercise 7.23 Build a simulation for the speed controller designed in Exam-
ple 7.8 and show that even with kf = 0, the system still achieves zero steady-state
error.
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Figure 12: Velocity and throttle for a car with cruise control based on state
feedback (dashed) and state feedback with integral action (solid). The controller
with integral action is able to adjust the throttle to compensate for the effect
of the hill and maintain the speed at the reference value of vr = 20 m/s. The
controller gains are kp = 0.5 and ki = 0.1.

8 Output Feedback

9 Transfer Functions

cruise-pzcancelExample 9.12 A cruise control system can be modeled by the block diagram
in Figure 9.6, where y is the vehicle velocity, r the desired velocity, v the slope
of the road, and u the throttle. Furthermore F (s) = 1, and the input/output
response from throttle to velocity for the linearized model for a car has the
transfer function P (s) = b/(s + a). A simple (but not necessarily good) way to
design a PI controller is to choose the parameters of the PI controller as ki = akp.
The controller transfer function is then C(s) = kp + ki/s = kp(s + a)/s. It has
a zero at s = −ki/kp = −a that cancels the process pole at s = −a. We have
P (s)C(s) = bkp/s giving the transfer function from reference to vehicle velocity
as Gyr(s) = bkp/(s+ bkp), and control design is then simply a matter of choosing
the gain kp. The closed loop system dynamics are of second order with the time
constants 1/(bkp) and 1/a. Notice that the canceled pole 1/a is much slower than
the other pole.

Figure 13 shows the velocity error when the car encounters an increase in the
road slope. A comparison with the controller used in Figure 7b (reproduced in
dashed curves) shows that the controller based on pole/zero cancellation has very
poor performance. The velocity error is larger, and it takes a long time to settle.

Notice that the control signal remains practically constant after t = 15 even
if the error is large after that time. To understand what happens we will analyze
the system. The parameters of the system are a = 0.01 and b = 1.32, and the
controller parameters are kp = 0.5 and ki = 0.005. The closed loop time constant
is 1/(bkp) = 1.5 s, and we would expect that the error would settle in about 6 s (4
time constants). The transfer functions from road slope to velocity and control
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(b) Throttle commands

Figure 13: Car with PI cruise control encountering a sloping road. The velocity
error is shown on the left and the throttle is shown on the right. Results for a
PI controller with kp = 0.5 and ki = 0.005 are shown by solid lines, and for a
controller with kp = 0.5 and ki = 0.1 are shown by dashed lines. Compare with
Figure 7b.

signals are

Gyv(s) =
bgs

(s + a)(s + bkp)
, Guv(s) =

bkp
s + bkp

.

Notice that the slow canceled mode s = −a = −0.01 appears in Gyv but not in
Guv. The reason why the control signal remains constant is that the controller
has a zero at s = −0.01, which cancels the slowly decaying process mode. Notice
that the error would diverge if the canceled pole was unstable.

cruise-pictrlExercise 9.23 Consider the following simplified equations of motion for a cruise
control system (these are a linearization of the equations from Section 3.1 in
Åström and Murray):

m
dv

dt
= −cv + bτ + Fhill,

where m = 1000† kg is the mass of the vehicle, c = 50 N s/m is the viscous RMM: 1600?

damping coefficient, and b = 25 is the conversion factor between engine torque
and the force applied to the vehicle. We model the engine using a simple first-
order equation

dτ

dt
= a(−τ + Tu),

where a = 0.2 is the lag coefficient and T = 200 is the conversion factor between
the throttle input and the steady-state torque.

The simplest controller for this system is a proportional control, u = kpe,
where e = (r − v) (r is the reference speed).

(a) Draw a block diagram for the system, with the engine dynamics and the
vehicle dynamics in separate blocks and represented by transfer functions.
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Label the reference input to the closed loop system as r, the disturbance
due to the hill as d, and the output as y (= v).

(b) (MATLAB) Construct the transfer functions Her and Hyd for the closed
loop system and use MATLAB to generate the step response (step) and
frequency response (bode) for the each. Assume that kp = 0.5. Make sure
to use the transfer function computation.

(c) Consider a more sophisticated control law of the form

dxc
dt

= r − v, u = kpe + kixc.

This control law contains an “integral” term, which uses the controller state
xc to integrate the error. Compute the transfer functions for this control
law and redraw your block diagram from part (a) with the default controller
replaced by this one.

(d) (MATLAB) Using the gains kp = 0.5 and ki = 0.1, use MATLAB to com-
pute the transfer function from r to y and plot the step response and fre-
quency response for the system.

Solution. (a) We are asked to show an overall block diagram for the system,
with the engine and vehicle dynamics separated into two blocks. Each of
these subsystems has first-order dynamics, and we have seen in class how
to construct transfer functions for these kinds of systems, so we only show
the final result in Figure 14. The figure also shows the block diagram for
the modified controller. The overall system looks exactly as before except
with the new control block swapped in for the old one.

Note that we have moved the torque conversion constant b inside the vehi-
cle dynamics, and have necessarily moved the inverse of this out into the
disturbance channel to compensate.

(b) The transfer function from the reference to the error is 1 − Hyr, by con-
struction. The latter is:

kpKaT

ms2 + (ma + b)s + ab + kpKaT

Thus, we have:

Her =
ms2 + (ma + c)s + ac

ms2 + (ma + c)s + ac + kpabT
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RMM: Redo figure

1/b

aT/(s+a)
v yr e u tau

dEngine Dynamics Vehicle Dynamics

Controller

Modified Controller Block Diagram

e u
Kp + Ki/s

b/(ms+c)Kp

−

+

Figure 14: Block diagram of system and modified controller

The Bode plot is shown in Figure 15.

The transfer function from the disturbance to the output can be found
by observing that by setting the reference input r to zero, the system is
once again a simple feedback loop between d and y. The resulting transfer
function is

Hyd =
s + a

ms2 + (ma + c)s + ac + kpabT

and the step and frequency responses are shown in Figure 16.

(c) The transfer function of the controller is

Hue = −kp −
ki
s
.

You can replace −Kp by this new Hue in part (a).

(d) Figure 17 shows the new system response. The transfer function is:

Hyr =
abTkps + abTki

ms3 + (ma + c)s2 + (ac + abTkp)s + abTki
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Figure 15: Frequency and step response of Her
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Figure 16: Frequency and step response of Hyd
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10 Frequency Domain Analysis

cruise-pictrlExercise 9.23 In this problem we will design a PI controller for a cruise con-
trol system, building on the example shown in class. Use the following transfer
function to represent the vehicle and engine dynamics:

P (s) =
Tba/m

(s + a)(s + c/m)

where b = 25 is the transmission gain, T = 200 is the conversion factor between
the throttle input and steady-state torque, a = 0.2 is the engine lag coefficient,
m = 1000 kg is the mass of the car, and c = 50 N s/m is the viscous damping
coefficient.

(a) Consider a proportional controller for the car, u = kp(r − y). Assuming a
unity gain feedback controller, this gives

C(s) = kp.

Set kp = 0.1 and compute the steady-state error, gain and phase margins,
rise time, overshoot, and poles/zeros for the system. Remember that the
gain and phase margins are computed based on the loop transfer function
L(s) = P (s)C(s); the remaining quantities should be computed for the
closed loop system.

(b) Consider a proportional + integral controller for the car,

C(s) = kp +
ki
s
.

Fill in the following table (make sure to show your work), where gm is the
gain margin, ϕm the phase margin, SSerr the steady-state error, BW the
bandwidth (you can use the bandwidth command in Matlab, but you need
to do so for the closed loop system), Tr the rise time, and Mp the overshoot
(see Fig. 5.9 on p. 151 of the text, you do not need to be exact).

kp ki Stable? gm ϕm SSerr BW Tr Mp

0.5 0.1

0.05 1

0.05 0.001

0.005 0.001
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Figure 18: Bode Diagram and Pole-Zero map

For each entry in the table, plot the pole zero diagram (pzmap) for the
closed loop system and the step response. (Note that the steady-state error
is zero in each stable case, due to the integral term in the control law.)
(Suggestion: look for relationships between the various quantities you are
computing and plotting. This problem should give you some insight into
the relationship between some of the quantities.)

Solution. (a) The appropriate open and closed loop transfer functions are con-
structed via the attached MATLAB m-file. The gain and phase margins
are calculated using the command margin and are shown in Figure 18. The
steady-state error is 0.0909. The closed loop poles are s = −0.1250±0.3072i
and there are no closed loop zeroes (see Figure 18). Note: Several peo-
ple used the transfer function Hyr in their computations, which leads to
slightly different results throughout the exercise. This was accepted, but if
you are required to analyze the steady-state error, this means you need to
work with the Her closed loop transfer function!

Instructor note:4pts: each feature (ss error, gain margin, phase margin, rise
time, overshoot, poles and zeros) is 0.5 pts, 1 pt - demonstrating under-
standing of material(stability / other discussion)

(b) When a proportional + integral controller is used, the following table re-
sults. See attached m-file for the calculations. The pole-zero maps and the
step responses for each entry are shown in Figure 19.
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Note: Either the bandwidth defined by the loop cross-over frequency (ωcg,
e.g. from ’margin’) or the −3 dB on the closed loop system (e.g. from the
MATLAB command ’bandwidth’) is acceptable. The frequency at which
the phase crosses −180, ωpm should not be used to determine the band-
width.

kp ki St GM PM SSErr BW Tr Mp

.5 .1 Y ∞ 4.0498 0 1.0973 (bandwidth) 0.70621 (ωcg) 1.5 0.9

.05 1 N 0.0025 -72.8883 NA 1.0892 (bandwidth) 0.9931 (ωcg) 1 ∞

.05 .001 Y ∞ 57.1752 0 0.2845 (bandwidth) 0.1801 (ωcg) 8 0.065

.005 .001 Y ∞ 38.6908 0 0.1000 (bandwidth) 0.0624 (ωcg) 20 0.3

Instructor note:8 pts: 2 pts for each row; 0.5 pts each step plot; 0.5 pts
each pzmap

cruise-nyquistExercise 10.24 Consider the speed control system described in Section 4.1
and analyzed using state space techniques in Example 7.8. Using a modified PI
controller

RMM: Need to
provide the
controller
parameters

C(s) = Gue(s) = kp +
ki

s + β
=

kps + ki + kpβ

s + β

plot the Nyquist curve for the system and determine the gain, phase, and stability
margins.† RMM: Add engine

dynamics to make it
interesting?Solution. This exercise needs to be updated to use the dynamics described in the text RMM

The linearized dynamics around the equilibrium speed ve and throttle position
ue are given by

˙̃v = aṽ − bgθ + bũ

y = v = ṽ + ve,

where ṽ = v − ve, ũ = u− ue, m is the mass of the car and θ is the angle of the
road. The constant a < 0 depends on the throttle characteristic and is given in
Example 6.11.

The transfer function from throttle to speed is given by

P (s) = Gyu(s) =
b

s + a
.
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(b) kp = .05 and ki = 1
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(c) kp = .05 and ki = .001
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Figure 19: Pole-zero map and step responses.

We consider a controller that is a modified version of the proportional-integral
(PI) controller given previously. Assume that the transfer function of the con-
troller is giving a loop transfer function of

L(s) = b
kps + ki + kpβ

(s + a)(s + β)
.

The Nyquist plot for the system, using a = 0.01, b = 1.32, kp = 0.5, ki = 0.1,
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and β = 0.1, is shown in Figure 20. We see from the Nyquist plot that the closed
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Figure 20: Stability margins for the cruise control system. The Nyquist plot on
the left shows the featured required to compute the gain, phase, and stability mar-
gins, following Figure 10.11. The gain and phase margin can also be determined
from the Bode plot, shown on the right.

loop system is stable, since there are no net encirclements of the −1 point.
To compute the gain, phase, and stability margins, we can use the Nyquist

plot as described in Figure 10.11a. This yields the following values:

gm =, ϕm =, sm = .

The gain and phase margin can also be determined from the Bode plot shown in
Figure 10.11b.

Add stability margin computation RMM

cruise-nyquist-altSupplemental Exercise Use the Nyquist theorem to analyze the stability of
the cruise control system in Example 7.8.† RMM: Confirm

this is the right
example to cite.

Solution. Figure 21 shows the image of the contour Γ under the map L. The loop
RMM: Add a Bode
plot to the left and
update caption to
relate the two

MISSING Error: File
../LoopAnalysis/exercises//cruise-
nyquist-alt.eps
missing

RMM: Decide how
to mark −1 point;
not done
consistently here.

Figure 21: The complete Nyquist curve for the loop transfer function L(s) =
k

s(s+1)2 . The curve is drawn for k < 2. The map of the positive imaginary axis

is shown in solid lines, the map of the negative imaginary axis and the small
semicircle at the origin in dashed lines.

transfer function does not have any poles in the region enclosed by the Nyquist
contour. By computing the phase of L, one can show that the Nyquist plot
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intersects the real axis for ω = 1 and the intersection is at −k/2. It follows from
Figure 21 that the number of counterclockwise† encirclements is zero if k < 2 and RMM: check

2 if k > 2. We can thus conclude that the closed loop system is stable if k < 2
and that the closed loop system has two roots in the right half-plane if k > 2.

Gain, phase, stability computations missing RMM

cruise-delayExercise 10.29 Continuing the previous problem, we will now insert a small
amount of time delay into the feedback path of the system. A pure time delay of
τ seconds satisfies the equation

y(t) = u(t− τ)

This system is a linear input/output system and it can be shown that its transfer
function is

G(s) = e−sτ .

Unfortunately, MATLAB is not able to perfectly represent a time delay in this
form, and so we have to use a “Padé approximation”, which gives a constant gain
transfer function with phase that approximates a time delay. Using a 2nd order
Padé approximation, we can approximate our time delay as

G(s) =
1 − τs/2 + (τs)2/12

1 + τs/2 + (τs)2/12

This function can be computed using the pade function in MATLAB (although
the numerator and denominator are scaled slightly differently).

Assume that there is a time delay of τ seconds, which we will insert between
the output of the plant and the controller

(a) For the case kp = 0.05, ki = 0.001, insert time delays of τ = 0.25 s and
τ = 0.75 s. Using a Padé approximation, compute the resulting gain and
phase margin for each case and compute the overshoot and settling time
(2%) for the step responses.

(b) Repeat part (a) using kp = 0.02, ki = 0.0005, and time delays of 0.75 s and
1.5 s.

Solution. The block diagram for the cruise control system with a time delay is
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yr

Tau^2/12.s  −Tau/2s+12

Tau^2/12.s  +Tau/2.s+12

Delay

Kp.s+Ki

s

Controller

ra/m

(s+a)(s+b/m)

Car + Motor

(a) Using a delay of τ = 0.25 s, we compute the gain margin (18.6 [25.4 dB])
and phase margin (54.59 deg) with the command margin (see attached m-
file). The overshoot (8%) and settling time (95 s) are calculated directly
from the step response of the closed loop system (see Figure 22). For a
delay of τ = 0.75 s, the corresponding gain and phase margins are 16.01dB
and 49.43 deg while the overshoot is 13% and the settling time is 95 s (see
Figure 23).

(b) Now we change the gains on the controller to kp = .02 and ki = 0.0005 and
insert a time delay of τ = 0.75 s. The resulting gain and phase margins
are 23.77dB and 78.35 deg while the overshoot is 0% and the settling time
is 128 s (see Figure ??) For a delay of τ = 1.5 s, the resulting gain and
phase margins are 17.99dB and 74.80 deg while the overshoot is 0% and
the settling time is 128 s (see Figure ??)

% Homework #6 Problem #3 (hw6p3.m)

% Abhishek Tiwari 23 Nov 03 (Update by John Carson 19 Nov 2006)

clear all global;

% Define dynamics from prob 2

T = 200; m = 1000; b =50; r= 25; a = 0.2;

% Part (a)

% Construct open and closed loop transfer functions

Kp = .05; Ki =.001;

P = tf([T*r*a/m],conv([1 a],[1 b/m]));

C = tf([Kp Ki],[1 0]);

[n25,d25] = pade(0.25,2);

[n75,d75] = pade(0.75,2);

D25 =tf(n25,d25); D75 =tf(n75,d75);

Lf = series(C,P);

L25 =series(Lf,D25); T25 =feedback(Lf,D25);
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Bode Diagram
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Figure 22: Bode and Step Responses for Gains of kp = .05 and ki = .001 and a
Delay of τ = 0.25 s

L75 =series(Lf,D75); T75 =feedback(Lf,D75);

% Plot results

figure(1); clf;

subplot(2,1,1); margin(L25); grid;

subplot(2,1,2); step(T25,100); grid;

title(’Step Response: Ts = 95 s, Mp = 8%’);

figure(2); clf;

subplot(2,1,1); margin(L75); grid;

subplot(2,1,2); step(T75,100); grid;

title(’Step Response: Ts = 95 s, Mp = 13%’);

% Part (b)

% Construct open and closed loop transfer functions

Kp = .02; Ki =0.0005;

P = tf([T*r*a/m],conv([1 a],[1 b/m]));

C = tf([Kp Ki],[1 0]);

[n150,d150] =pade(1.5,2);
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Bode Diagram
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Figure 23: Bode and Step Responses for of kp = .05 and ki = .001 and a Delay
of τ = 0.75 s

D150 = tf(n150,d150);

Lf = series(C,P);

L150 = series(Lf,D150); T150 =feedback(Lf,D150);

L75 =series(Lf,D75); T75 =feedback(Lf,D75);

% Plot results

figure(3); clf;

subplot(2,1,1); margin(L75); grid;

subplot(2,1,2); step(T75,130); grid;

title(’Step Response: Ts = 128 s, Mp = 0%’);

figure(4); clf;

subplot(2,1,1); margin(L150); grid;

subplot(2,1,2); step(T150,130); grid;

title(’Step Response: Ts = 128 s, Mp = 0%’);
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11 PID Control

cruise-pidExample 11.3 Consider the problem of maintaining the speed of a car as it
goes up a hill. In Example 11 we found that there was little difference between
the linear and nonlinear models when investigating PI control, provided that the
throttle did not reach the saturation limits. A simple linear model of a car was
given in Example 6.11:

d(v − ve)

dt
= −a(v − ve) + b(u− ue) − bgθ, (10)

where v is the velocity of the car, u is the input to the engine (throttle) and θ is
the slope of the hill. The parameters were a = 0.01, b = 1.32, bg = 9.8, ve = 20,
and ue = 0.1687. This model will be used to find suitable parameters of a vehicle
speed controller. The transfer function from throttle to velocity is a first-order
system. Since the open loop dynamics are quite slow (1/a ≈ 100 s), it is natural
to specify a faster closed loop system by requiring that the closed loop system be
of second order with damping ratio ζc and undamped natural frequency ωc. The
controller gains are given by equation (11.7).

Figure 24 shows the velocity and the throttle for a car that initially moves on a
horizontal road and encounters a hill with a slope of 4◦ at time t = 5 s. To design a
PI controller we choose ζc = 1 to obtain a response without overshoot, as shown
in Figure 24a. The choice of ωc is a compromise between response speed and
control actions: a large value gives a fast response, but it requires fast control
action. The trade-off is illustrated in Figure 24b. The largest velocity error
decreases with increasing ωc, but the control signal also changes more rapidly.
In the simple model (10) it was assumed that the force responds instantaneously
to throttle commands. For rapid changes there may be additional dynamics that
have to be accounted for. There are also physical limits to the rate of change of
the force, which also restricts the admissible value of ωc. A reasonable choice of
ωc is in the range 0.5–1.0. Notice in Figure 24 that even with ωc = 0.2 the largest
velocity error is only about 1.3 m/s.

With ωc = 0.5 and ζc = 1 we have kp = 0.276 and ki = 0.0693. An analysis of Supplement

the error equation† shows that the damping term, 0.004 + 3.61k, is dominated RMM: removed
equation referenceby the term 3.61k ≈ 1 introduced by the controller. The term 0.004, due to the

aerodynamic forces, is two orders of magnitude smaller and quite complicated to
compute (see Example 6.11). We may therefore conjecture that this term can
be neglected for the purpose of design of a speed controller. This observation
is an illustration of an important and surprising property of feedback, namely
that feedback systems can be designed based on simplified models. This will be
discussed in Chapter 13.
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Figure 24: Cruise control using PI feedback. The step responses for the error
and input illustrate the effect of parameters ζc and ωc on the response of a car
with cruise control. The slope of the road changes linearly from 0◦ to 4◦ between
t = 5 and 6 s. (a) Responses for ωc = 0.5 and ζc = 0.5, 1, and 2. Choosing ζc ≥ 1
gives no overshoot in the velocity v. (b) Responses for ζc = 1 and ωc = 0.2, 0.5,
and 1.0.

Another interpretation of the effect of the integral action can be given by
returning to the basic force balance model of the car

m
dv

dt
= F − Fd,

where m is the mass of the car, F is the applied force (from the engine) and Fd is
the disturbance force (aerodynamic drag and force of gravity). Since zero steady-
state error implies that v is constant, we see that the PI controller generates an
output force F that in steady state is equal to the drag force Fd. Since the error
is zero in steady state the controller output equals the output of the integrator
of the PI controller. The output of the integrator in the PI controller can thus
be interpreted as an estimator of the drag force.

cruise-windupExample 11.5 The windup effect is illustrated in Figure 25a, which shows
what happens when a car encounters a hill that is so steep (6◦) that the throttle
saturates when the cruise controller attempts to maintain speed. When encoun-
tering the slope at time t = 5, the velocity decreases and the throttle increases to
generate more torque. However, the torque required is so large that the throttle
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(b) Anti-windup

Figure 25: Simulation of PI cruise control with windup (a) and anti-windup (b).
The figure shows the speed v and the throttle u for a car that encounters a slope
that is so steep that the throttle saturates. The controller output is a dashed line.
The controller parameters are kp = 0.5, ki = 0.1 and kaw = 2.0. The anti-windup
compensator eliminates the overshoot by preventing the error from building up in
the integral term of the controller.

saturates. The error decreases slowly because the torque generated by the engine
is just a little larger than the torque required to compensate for gravity. The
error is large and the integral continues to build up until the error reaches zero
at time 25, but the controller output is still larger than the saturation limit and
the actuator remains saturated. The integral term starts to decrease, and the ve-
locity settles to the desired value at time t = 40. Also notice the large overshoot.

cruise-antiwindupExample 11.6 Figure 25b shows what happens when a controller with anti-
windup is applied to the system simulated in Figure 25a. Because of the feedback
from the actuator model, the output of the integrator is quickly reset to a value
such that the controller output is at the saturation limit. The behavior is dras-
tically different from that in Figure 25a and the large overshoot is avoided. The
tracking gain used in the simulation is kaw = 2 which is an order of magnitude
larger than the integral gain ki = 0.2.

cruise-spweightExample 11.7 Consider the PI controller for the cruise control system derived
in Example 11.3. Figure 26 shows the effect of setpoint weighting on the response
of the system to a reference signal. With β = 1 (error feedback) there is an
overshoot in velocity and the control signal (throttle) is initially close to the
saturation limit. There is no overshoot with β = 0 and the control signal is
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(b) Frequency responses

Figure 26: Step and frequency responses for PI cruise control with setpoint
weighting. Step responses are shown in (a) and the gain curves of the frequency
responses in (b). The controller gains are kp = 0.74 and ki = 0.19. The setpoint
weights are β = 0, 0.5 and 1, and γ = 0.

much smaller, clearly a much better drive comfort. The frequency responses
gives another view of the same effect. The parameter β is typically in the range
0–1, and γ is normally zero to avoid large transients in the control signal when
the reference is changed.

12 Frequency Domain Design

13 Robust Performance

cruise-parametricExample 13.1 The cruise control problem is described in Section 4.1, and a PI
controller was designed in Example 11.3. To investigate the effect of parameter
variations, we will choose a controller designed for a nominal operating condition
corresponding to mass m = 1600 kg, fourth gear (α = 12) and speed ve = 20 m/s;
the controller gains are kp = 0.5 and ki = 0.1. Figure 27a shows the velocity
error e and the throttle u when encountering a hill with a 4◦ slope with masses
in the range 1600 < m < 2000 kg, gear ratios 3–5 (α = 10, 12, and 16), and
velocity 10 ≤ v ≤ 40 m/s. The simulations were done using models that were
linearized around the different operating conditions. The figure shows that there
are variations in the response but that they are all quite reasonable. The largest
velocity error is in the range of 0.5–1.2 m/s, and the settling time is about 15
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Figure 27: Responses of the cruise control system to a slope increase of 4◦ (a)
and the eigenvalues of the closed loop system (b). Model parameters are swept
over a wide range. The closed loop system is of second order.

s. The control signal is larger than 1 in some cases, which implies that the
throttle is fully open. (A full nonlinear simulation using a controller with windup
protection is required if we want to explore these cases in more detail.) The closed
loop system has two eigenvalues, shown in Figure 27b for the different operating
conditions. We see that the closed loop system is well damped in all cases.

cruise-robstabExample 13.7 Using the parameters from Example 6.11, the model of the car
in fourth gear at speed 20 m/s is

P (s) =
1.32

s + 0.01
,

and the controller is a PI controller with gains kp = 0.5 and ki = 0.1. Fig-
ure 28 plots the allowable size of the process uncertainty using the bound in
equation (13.10).

At low frequencies, T (0) = 1 and so the perturbations can be as large as
the original process (|δ| = |∆/P | < 1). The complementary sensitivity has its
maximum Mt = 1.17 at ωmt = 0.26, and hence this gives the lowest allowable
process uncertainty, with |δ| < 0.86 or |∆| < 4.36. Finally, at high frequencies,
T → 0 and hence the relative error can get very large. For example, at ω =
5 rad/s we have |T (iω)| = 0.264, which means that the stability requirement is
|δ| < 3.8. The analysis clearly indicates that the system has good robustness and
that the high-frequency properties of the transmission system are not important
for the design of the cruise controller.
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Figure 28: Robustness for a cruise controller. (a) The maximum relative error
1/|T | (solid) and the absolute error |P |/|T | (dashed) for the process uncertainty
∆. (b) The Nyquist plot of the loop transfer function L (zoomed in to the region
around the critical point) is shown on the right as a solid line. The dashed circles
show allowable perturbations in the process dynamics, |C∆| = |CP |/|T |, at the
frequencies ω = 0.2, 0.4, and 2, which are marked with circles.

Another illustration of the robustness of the system is given in Figure 28b,
which shows the Nyquist curve of the loop transfer function L along with the
allowable perturbations. We see that the system can tolerate large amounts of
uncertainty and still maintain stability of the closed loop.

14 Fundamental Limits

15 Architecture
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