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Preface to the Second Edition

The second edition of Feedback Systems contains a variety of changes

that are based on feedback on the first edition, particularly in its use

for introductory courses in control. One of the primary comments

from users of the text was that the use of control tools for design

purposes occurred only after several chapters of analytical tools, leaving

the instructor having to try to convince students that the techniques

would soon be useful. In our own teaching, we find that we often

use design examples in the first few weeks of the class and use this

to motivate the various techniques that follow. This approach has

been particularly useful in engineering courses, where students are often

eager to apply the tools to examples as part of gaining insight into

the methods. We also found that universities that have a laboratory

component attached to their controls class need to introduce some basic

design techniques early, so that students can be implementing control

laws in the laboratory in the early weeks of the course.

To help emphasize this more design-oriented flow, we have added

a new chapter on “Feedback Principles” that illustrates some simple
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design principles and tools that can be used to show students what

types of problems can be solved using feedback. This new chapter uses

simple models, simulations, and elementary analysis techniques, so that

it should be accessible to students from a variety of engineering and

scientific backgrounds. For courses in which students have already been

exposed to the basic ideas of feedback, perhaps in an earlier discipline-

specific course, this new chapter can easily be skipped without any loss

of continuity.

We have also rearranged some of the material in the final chapters

of the book, moving material on fundamental limits from the chap-

ters on frequency domain design (Chapter 11 in the original text, now

Chapter 12) and robust performance (Chapter 12 in the original text,

now Chapter 13) into a separate chapter on fundamental limits (Chap-

ter 14). This new chapter also contains some additional material on

techniques for robust pole placement as well as on limits imposed by

nonlinearities.

In addition to these relatively large changes, we have made many

other smaller changes based on the feedback we have received from

early adopters of the text. We have added some material on the Routh–

Hurwitz criterion and root locus plots, to at least serve as “hooks” for

instructors who wish to cover that material in more detail. We have

also made some notational changes throughout, most notably changing

the symbols for disturbance and noise signals to v and w, respectively.
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The notation in the biological examples has also been updated to match

the notation used in the textbook by Del Vecchio and Murray [69].

Overall, we have tried to maintain the style and organization of

the book in a manner that is consistent with our goals for the first

edition. In particular, we have targeted the material toward a wide

range of audiences rather than any specific discipline. One consequence

is that instructors who are teaching department-specific courses many

find there are other texts that are better suited to these audiences.

A few books that have been written over the past few years that are

tuned to non-traditional audiences, including Janert [130] (computer

science), Del Vecchio and Murray [69] (biology), and Bechhoefer [31]

(physics). In addition, the textbook Feedback Control for Everyone

by Albertos and Mareels [7] provides a readable introduction requiring

minimal mathematical background.

Finally, we are indebted to numerous individuals who have taught

out of the text and sent us feedback on changes that would better

serve their needs. In addition to the many individuals listed in the

preface to the first edition, we would like to also thank Kalle Åström,

Bo Bernhardsson, Karl Berntorp, Constantine Caramanis, Shuo Han,

Björn Olofsson, Noah Olsman, Richard Pates, Jason Rolfe, Clancy

Rowley, and André Tits for their feedback, insights, and contributions.

Vickie Kearn, our recently-retired editor at Princeton University Press,

has continued to serve as an enthusiastic advocate for our efforts and
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we particularly appreciate her support over the years in our vision for

the book and for her advocacy of making the material available for free

download.

Karl Johan Åström Richard M. Murray

Lund, Sweden Pasadena, California



Preface to the First Edition

This book provides an introduction to the basic principles and tools

for the design and analysis of feedback systems. It is intended to serve

a diverse audience of scientists and engineers who are interested in un-

derstanding and utilizing feedback in physical, biological, information

and social systems. We have attempted to keep the mathematical pre-

requisites to a minimum while being careful not to sacrifice rigor in

the process. We have also attempted to make use of examples from a

variety of disciplines, illustrating the generality of many of the tools

while at the same time showing how they can be applied in specific

application domains.

A major goal of this book is to present a concise and insightful view

of the current knowledge in feedback and control systems. The field of

control started by teaching everything that was known at the time and,

as new knowledge was acquired, additional courses were developed to

cover new techniques. A consequence of this evolution is that intro-

ductory courses have remained the same for many years, and it is often

necessary to take many individual courses in order to obtain a good
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perspective on the field. In developing this book, we have attempted to

condense the current knowledge by emphasizing fundamental concepts.

We believe that it is important to understand why feedback is useful,

to know the language and basic mathematics of control and to grasp

the key paradigms that have been developed over the past half century.

It is also important to be able to solve simple feedback problems using

back-of-the-envelope techniques, to recognize fundamental limitations

and difficult control problems and to have a feel for available design

methods.

This book was originally developed for use in an experimental course

at Caltech involving students from a wide set of backgrounds. The

course was offered to undergraduates at the junior and senior levels

in traditional engineering disciplines, as well as first- and second-year

graduate students in engineering and science. This latter group in-

cluded graduate students in biology, computer science and physics.

Over the course of several years, the text has been classroom tested at

Caltech and at Lund University, and the feedback from many students

and colleagues has been incorporated to help improve the readability

and accessibility of the material.

Because of its intended audience, this book is organized in a slightly

unusual fashion compared to many other books on feedback and con-

trol. In particular, we introduce a number of concepts in the text that

are normally reserved for second-year courses on control and hence of-
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ten not available to students who are not control systems majors. This

has been done at the expense of certain traditional topics, which we

felt that the astute student could learn independently and are often

explored through the exercises. Examples of topics that we have in-

cluded are nonlinear dynamics, Lyapunov stability analysis, the matrix

exponential, reachability and observability, and fundamental limits of

performance and robustness. Topics that we have deemphasized in-

clude root locus techniques, lead/lag compensation and detailed rules

for generating Bode and Nyquist plots by hand.

Several features of the book are designed to facilitate its dual func-

tion as a basic engineering text and as an introduction for researchers

in natural, information and social sciences. The bulk of the material

is intended to be used regardless of the audience and covers the core

principles and tools in the analysis and design of feedback systems. Ad- �

vanced sections, marked by the “dangerous bend” symbol shown here,

contain material that requires a slightly more technical background, of

the sort that would be expected of senior undergraduates in engineer-

ing. A few sections are marked by two dangerous bend symbols and

are intended for readers with more specialized backgrounds, identified

at the beginning of the section. To limit the length of the text, sev-

eral standard results and extensions are given in the exercises, with

appropriate hints toward their solutions.

To further augment the printed material contained here, a compan-
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ion web site has been developed and is available from the publisher’s

web page:

https://press.princeton.edu/titles/8701.html

The web site contains a database of frequently asked questions, supple-

mental examples and exercises, and lecture material for courses based

on this text. The material is organized by chapter and includes a

summary of the major points in the text as well as links to external re-

sources. The web site also contains the source code for many examples

in the book, as well as utilities to implement the techniques described

in the text. Most of the code was originally written using MATLAB

M-files but was also tested with LabView MathScript to ensure com-

patibility with both packages. Many files can also be run using other

scripting languages such as Octave, SciLab, SysQuake and Xmath.

The first half of the book focuses almost exclusively on state space

control systems. We begin in Chapter 3* with a description of mod-

eling of physical, biological and information systems using ordinary

differential equations and difference equations. Chapter 4 presents a

number of examples in some detail, primarily as a reference for prob-

lems that will be used throughout the text. Following this, Chapter 5

looks at the dynamic behavior of models, including definitions of sta-

bility and more complicated nonlinear behavior. We provide advanced

*Chapter numbers reflect those in the second edition.

https://press.princeton.edu/titles/8701.html
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sections in this chapter on Lyapunov stability analysis because we find

that it is useful in a broad array of applications and is frequently a

topic that is not introduced until later in one’s studies.

The remaining three chapters of the first half of the book focus on

linear systems, beginning with a description of input/output behavior

in Chapter 6. In Chapter 7, we formally introduce feedback systems by

demonstrating how state space control laws can be designed. This is

followed in Chapter 8 by material on output feedback and estimators.

Chapters 7 and 8 introduce the key concepts of reachability and ob-

servability, which give tremendous insight into the choice of actuators

and sensors, whether for engineered or natural systems.

The second half of the book presents material that is often consid-

ered to be from the field of “classical control.” This includes the trans-

fer function, introduced in Chapter 9, which is a fundamental tool for

understanding feedback systems. Using transfer functions, one can be-

gin to analyze the stability of feedback systems using frequency domain

analysis, including the ability to reason about the closed loop behavior

of a system from its open loop characteristics. This is the subject of

Chapter 10, which revolves around the Nyquist stability criterion.

In Chapters 11 and 12, we again look at the design problem, focus-

ing first on proportional-integral-derivative (PID) controllers and then

on the more general process of loop shaping. PID control is by far the

most common design technique in control systems and a useful tool
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for any student. The chapter on frequency domain design introduces

many of the ideas of modern control theory, including the sensitivity

function. In Chapter 13, we combine the results from the second half

of the book to analyze some of the fundamental trade-offs between ro-

bustness and performance. This is also a key chapter illustrating the

power of the techniques that have been developed and serving as an

introduction for more advanced studies.

The book is designed for use in a 10- to 15-week course in feedback

systems that provides many of the key concepts needed in a variety

of disciplines. For a 10-week course, Chapters 1–3, 5–7 and 9–12 can

each be covered in a week’s time, with the omission of some topics

from the final chapters. A more leisurely course, spread out over 14–15

weeks, could cover the entire book, with 2 weeks on modeling (Chap-

ters 3 and 2)—particularly for students without much background in

ordinary differential equations—and 2 weeks on robust performance

(Chapter 13).

The mathematical prerequisites for the book are modest and in

keeping with our goal of providing an introduction that serves a broad

audience. We assume familiarity with the basic tools of linear algebra,

including matrices, vectors and eigenvalues. These are typically cov-

ered in a sophomore-level course on the subject, and the textbooks by

Apostol [12], Arnold [15] and Strang [233] can serve as good references.

Similarly, we assume basic knowledge of differential equations, includ-
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ing the concepts of homogeneous and particular solutions for linear

ordinary differential equations in one variable. Apostol [12] and Boyce

and DiPrima [53] cover this material well. Finally, we also make use of

complex numbers and functions and, in some of the advanced sections,

more detailed concepts in complex variables that are typically covered

in a junior-level engineering or physics course in mathematical meth-

ods. Apostol [11] or Stewart [232] can be used for the basic material,

with Ahlfors [6], Marsden and Hoffman [177], or Saff and Snider [212]

being good references for the more advanced material. We have chosen

not to include appendices summarizing these various topics since there

are a number of good books available.

One additional choice that we felt was important was the decision

not to rely on a knowledge of Laplace transforms in the book. While

their use is by far the most common approach to teaching feedback sys-

tems in engineering, many students in the natural and information sci-

ences may lack the necessary mathematical background. Since Laplace

transforms are not required in any essential way, we have included them

only in an advanced section intended to tie things together for students

with that background. Of course, we make tremendous use of trans-

fer functions, which we introduce through the notion of response to

exponential inputs, an approach we feel is more accessible to a broad

array of scientists and engineers. For classes in which students have

already had Laplace transforms, it should be quite natural to build on
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this background in the appropriate sections of the text.
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback gov-

erns how we grow, respond to stress and challenge, and regulate

factors such as body temperature, blood pressure, and cholesterol

level. The mechanisms operate at every level, from the interac-

tion of proteins in cells to the interaction of organisms in complex

ecologies.

M. B. Hoagland and B. Dodson, The Way Life Works, 1995 [118].

In this chapter we provide an introduction to the basic concept of

feedback and the related engineering discipline of control. We focus on

both historical and current examples, with the intention of providing

the context for current tools in feedback and control.

1.1 WHAT IS FEEDBACK?

A dynamical system is a system whose behavior changes over time, of-

ten in response to external stimulation or forcing. The term feedback
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u
System 2System 1

y

(a) Closed loop

y

System 2System 1

ur

(b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of sys-

tem 1 is used as the input of system 2, and the output of system 2

becomes the input of system 1, creating a closed loop system. (b) The

interconnection between system 2 and system 1 is removed, and the

system is said to be open loop.

refers to a situation in which two (or more) dynamical systems are con-

nected together such that each system influences the other and their

dynamics are thus strongly coupled. Simple causal reasoning about

a feedback system is difficult because the first system influences the

second and the second system influences the first, leading to a circular

argument. A consequence of this is that the behavior of feedback sys-

tems is often counter-intuitive, and it is therefore necessary to resort

to formal methods to understand them.

Figure 1.1 illustrates in block diagram form the idea of feedback.

We often use the terms open loop and closed loop when referring to such

systems. A system is said to be a closed loop system if the systems

are interconnected in a cycle, as shown in Figure 1.1a. If we break the

interconnection, we refer to the configuration as an open loop system,

as shown in Figure 1.1b. Note that since the system is in a feedback

loop, the choice of system 1 versus system 2 is somewhat arbitrary. It
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just depends where you want to start describing how the system works.

As the quote at the beginning of this chapter illustrates, a major

source of examples of feedback systems is biology. Biological systems

make use of feedback in an extraordinary number of ways, on scales

ranging from molecules to cells to organisms to ecosystems. One ex-

ample is the regulation of glucose in the bloodstream through the pro-

duction of insulin and glucagon by the pancreas. The body attempts

to maintain a constant concentration of glucose, which is used by the

body’s cells to produce energy. When glucose levels rise (after eating

a meal, for example), the hormone insulin is released and causes the

body to store excess glucose in the liver. When glucose levels are low,

the pancreas secretes the hormone glucagon, which has the opposite

effect. Referring to Figure 1.1, we can view the liver as system 1 and

the pancreas as system 2. The output from the liver is the glucose

concentration in the blood, and the output from the pancreas is the

amount of insulin or glucagon produced. The interplay between in-

sulin and glucagon secretions throughout the day helps to keep the

blood-glucose concentration constant, at about 90 mg per 100 mL of

blood.

An early engineering example of a feedback system is a centrifugal

governor, in which the shaft of a steam engine is connected to a flyball

mechanism that is itself connected to the throttle of the steam engine,

as illustrated in Figure 1.2. The system is designed so that as the
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Figure 1.2: The centrifugal governor and the steam engine. The

centrifugal governor on the left consists of a set of flyballs that spread

apart as the speed of the engine increases. The steam engine on the

right uses a centrifugal governor (above and to the left of the flywheel)

to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip

Taylor [1828].)

speed of the engine increases (perhaps because of a lessening of the

load on the engine), the flyballs spread apart and a linkage causes the

throttle on the steam engine to be closed. This in turn slows down

the engine, which causes the flyballs to come back together. We can

model this system as a closed loop system by taking system 1 as the

steam engine and system 2 as the governor. When properly designed,

the flyball governor maintains a constant speed of the engine, roughly

independent of the loading conditions. The centrifugal governor was an

enabler of the successful Watt steam engine, which fueled the industrial

revolution.

The examples given so far all deal with negative feedback, in which
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we attempt to react to disturbances in such a way that their effects

decrease. Positive feedback is the opposite, where the increase in some

variable or signal leads to a situation in which that quantity is fur-

ther increased through feedback. This has a destabilizing effect and

is usually accompanied by a saturation that limits the growth of the

quantity. Although often considered undesirable, this behavior is used

in biological (and engineering) systems to obtain a very fast response

to a condition or signal. Encouragement is a type of positive feedback

that is very useful in both industry and academia. Another common

use of positive feedback is in the design of systems with oscillatory

dynamics.

Feedback has many interesting properties that can be exploited in

designing systems. As in the case of glucose regulation or the flyball

governor, feedback can make a system resilient to external influences. It

can also be used to create linear behavior out of nonlinear components,

a common approach in electronics. More generally, feedback allows a

system to be insensitive both to external disturbances and to variations

in its individual elements.

Feedback has potential disadvantages as well. It can create dy-

namic instabilities in a system, causing oscillations or even runaway

behavior. Another drawback, especially in engineering systems, is that

feedback can introduce unwanted sensor noise into the system, requir-

ing careful filtering of signals. It is for these reasons that a substantial
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portion of the study of feedback systems is devoted to developing an

understanding of dynamics and a mastery of techniques in dynamical

systems.

Feedback systems are ubiquitous in both natural and engineered

systems. Control systems maintain the environment, lighting, and

power in our buildings and factories; they regulate the operation of

our cars, consumer electronics, and manufacturing processes; they en-

able our transportation and communications systems; and they are

critical elements in our military and space systems. For the most part

they are hidden from view, buried within the code of embedded micro-

processors, executing their functions accurately and reliably. Feedback

has also made it possible to increase dramatically the precision of in-

struments such as atomic force microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintains thermal,

chemical, and biological conditions through feedback. At the other

end of the size scale, global climate dynamics depend on the feedback

interactions between the atmosphere, the oceans, the land, and the

sun. Ecosystems are filled with examples of feedback due to the com-

plex interactions between animal and plant life. Even the dynamics of

economies are based on the feedback between individuals and corpora-

tions through markets and the exchange of goods and services.
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1.2 WHAT IS FEEDFORWARD?

Feedback is reactive: there must be an error before corrective actions

are taken. However, in some circumstances it is possible to measure a

disturbance before it enters the system, and this information can then

be used to take corrective action before the disturbance has influenced

the system. The effect of the disturbance is thus reduced by measuring

it and generating a control signal that counteracts it. This way of

controlling a system is called feedforward. Feedforward is particularly

useful in shaping the response to command signals, which are used as

external inputs to the control system, because command signals are

always available. Since feedforward attempts to match two signals, it

requires good process models; otherwise the corrections may have the

wrong size or may be badly timed.

Figure 1.3 illustrates the difference between feedforward and feed-

back control. In both figures there is a reference signal r that describes

the desired output of the process P and a disturbance signal v that rep-

resents an external perturbation to the process. In a feedback system,

we measure the output y of the system and the controller C attempts

to adjust the input to the process in a manner that causes the process

output to maintain the desired the reference value. In a feedforward

system, we instead measure the reference r and disturbance v and com-

pute an input to the process that will create the desired output. Notice

that the feedback controller does not directly measure the disturbance
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Figure 1.3: Feedback system versus feedforward system. In both sys-

tems we have a process P and a controller C. The feedback controller

(a) measures the output y to determine the effect of the disturbance v,

while the feedforward controller (b) measures the disturbance directly,

but does not directly measure the process output.

v while the feedforward controller does not measure the actual output

y.

The ideas of feedback and feedforward are very general and appear

in many different fields. In economics, feedback and feedforward are

analogous to a market-based economy versus a planned economy. In

business, a feedforward strategy corresponds to running a company

based on extensive strategic planning, while a feedback strategy cor-

responds to a reactive approach. In biology, feedforward has been

suggested as an essential element for motion control in humans that

is tuned during training. Experience indicates that it is often advan-

tageous to combine feedback and feedforward, and the correct balance

requires insight and understanding of their respective properties, which

are summarized in Table 1.1.
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Table 1.1: Properties of feedback and feedforward.

Feedback Feedforward

Closed loop Open loop

Acts on deviations Acts on plans

Robust to model uncertainty Sensitive to model uncertainty

Risk for instability No risk for instability

1.3 WHAT IS CONTROL?

The term control has many meanings and often varies between commu-

nities. In this book, we define control to be the use of algorithms and

feedback in engineered systems. Thus, control includes such examples

as feedback loops in electronic amplifiers, setpoint controllers in chem-

ical and materials processing, “fly-by-wire” systems on aircraft, and

even router protocols that control traffic flow on the Internet. Emerg-

ing applications include high-confidence software systems, autonomous

vehicles and robots, real-time resource management systems, and bi-

ologically engineered systems. At its core, control is an information

science and includes the use of information in both analog and digital

representations.

A modern controller senses the operation of a system, compares it

against the desired behavior, computes corrective actions based on a

model of the system’s response to external inputs, and actuates the
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system to effect the desired change. This basic feedback loop of sens-

ing, computation, and actuation is the central concept in control. The

key issues in designing control logic are ensuring that the dynamics of

the closed loop system are stable (bounded disturbances give bounded

errors) and that they have additional desired behavior (good distur-

bance attenuation, fast responsiveness to changes in operating point,

etc). These properties are established using a variety of modeling and

analysis techniques that capture the essential dynamics of the system

and permit the exploration of possible behaviors in the presence of

uncertainty, noise, and component failure.

A typical example of a control system is shown in Figure 1.4.

The basic elements of sensing, computation, and actuation are clearly

seen. In modern control systems, computation is typically implemented

on a digital computer, requiring the use of analog-to-digital (A/D)

and digital-to-analog (D/A) converters. Uncertainty enters the system

through noise in sensing and actuation subsystems, external distur-

bances that affect the underlying system operation, and uncertain dy-

namics in the system (parameter errors, unmodeled effects, etc). The

algorithm that computes the control action as a function of the sensor

values is often called a control law. The system can be influenced exter-

nally by an operator who introduces command signals to the system.

These command signals can be reference values for the system output

or may be more general descriptions of the task the the control system
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Output

Clock

operator input

D/A Computer A/D Filter

external disturbancesnoise

Σ Actuators System

Controller

noise

Σ

Process

Sensors

Figure 1.4: Components of a computer-controlled system. The up-

per dashed box represents the process dynamics, which includes the

sensors and actuators in addition to the dynamical system being con-

trolled. Noise and external disturbances can perturb the dynamics

of the process. The controller is shown in the lower dashed box. It

consists of a filter and analog-to-digital (A/D) and digital-to-analog

(D/A) converters, as well as a computer that implements the control

algorithm. A system clock controls the operation of the controller,

synchronizing the A/D, D/A, and computing processes. The opera-

tor input is also fed to the computer as an external input.

is supposed to implement.

Control engineering relies on and shares tools from physics (dynam-

ics and modeling), computer science (information and software), and

operations research (optimization, probability theory, and game the-

ory), but it is also different from these subjects in both insights and

approach.
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Perhaps the strongest area of overlap between control and other

disciplines is in the modeling of physical systems, which is common

across all areas of engineering and science. One of the fundamental

differences between control-oriented modeling and modeling in other

disciplines is the way in which interactions between subsystems are

represented. Control relies on a type of input/output modeling that

allows many new insights into the behavior of systems, such as distur-

bance attenuation and stable interconnection. Model reduction, where

a simpler (lower-fidelity) description of the dynamics is derived from

a high-fidelity model, is also naturally described in an input/output

framework. Perhaps most importantly, modeling in a control context

allows the design of robust interconnections between subsystems, a fea-

ture that is crucial in the operation of all large engineered systems.

Control is also closely associated with computer science since virtu-

ally all modern control algorithms for engineering systems are imple-

mented in software. However, control algorithms and software can be

very different from traditional computer software because of the cen-

tral role of the dynamics of the system and the real-time nature of the

implementation.
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1.4 USES OF FEEDBACK AND CONTROL

Feedback has many interesting and useful properties. It makes it possi-

ble to design precise systems from imprecise components and to make

relevant quantities in a system change in a prescribed fashion. An

unstable system can be stabilized using feedback, and the effects of

external disturbances can be reduced. Feedback also offers new de-

grees of freedom to a designer by exploiting sensing, actuation, and

computation. In this section we briefly survey some of the important

applications and trends for feedback in the world around us. Consider-

ably more detail is available in several reports describing advances and

directions in the field of control [157, 187, 188, 213].

Power Generation and Transmission

Access to electrical power has been one of the major drivers of tech-

nological progress in modern society. Much of the early development

of control was driven by the generation and distribution of electrical

power. Control is mission critical for power systems, and there are

many control loops in individual power stations. Control is also impor-

tant for the operation of the whole power network since it is difficult

to store energy and it is thus necessary to match production to con-

sumption. Power management is a straightforward regulation problem

for a system with one generator and one power consumer, but it is

more difficult in a highly distributed system with many generators and
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Figure 1.5: A small portion of the European power network. In 2016

European power suppliers operated a single interconnected network

covering a region from the Arctic to the Mediterranean and from the

Atlantic to the Urals. The installed power was more than 800 GW

(8×1011 W) serving more than 500 million citizens. (Source: ENTSO-

E http://www.entsoe.eu)

long distances between consumption and generation. Power demand

can change rapidly in an unpredictable manner, and combining gen-

erators and consumers into large networks makes it possible to share

loads among many suppliers and to average consumption among many

customers. Large transcontinental and transnational power systems

have therefore been built, such as the one show in Figure 1.5.

http://www.entsoe.eu


INTRODUCTION 15

Telecommunications

When telecommunications emerged in the early 20th century there was

a strong need to amplify signals to enable telephone communication

over long distances. The only amplifier available at the time was based

on vacuum tubes. Since the properties of vacuum tubes are nonlin-

ear and time varying, the amplifiers created a lot of distortion. A

major advance was made when Black invented the negative feedback

amplifier [45, 46], which made it possible to obtain stable amplifiers

with linear characteristics. Research on feedback amplifiers also gener-

ated fundamental understanding of feedback in the form of Nyquist’s

stability criterion [192] and Bode’s methods for design of feedback am-

plifiers and his theorems on fundamental limits [51]. Feedback is used

extensively in cellular phones and networks, and the future 5G com-

munication networks will permit execution of real-time control systems

over the networks [243].

Aerospace and Transportation

In aerospace, control has been a key technological capability tracing

back to the beginning of the 20th century. Indeed, the Wright brothers

are correctly famous not for demonstrating simply powered flight but

controlled powered flight. Their early Wright Flyer incorporated mov-

ing control surfaces (vertical fins and canards) and warpable wings that

allowed the pilot to regulate the aircraft’s flight. In fact, the aircraft
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itself was not stable, so continuous pilot corrections were mandatory.

This early example of controlled flight was followed by a fascinating

success story of continuous improvements in flight control technology,

culminating in the high-performance, highly reliable automatic flight

control systems we see in modern commercial and military aircraft to-

day.

Materials and Processing

The chemical industry is responsible for the remarkable progress in

developing new materials that are key to our modern society. In addi-

tion to the continuing need to improve product quality, several other

factors in the process control industry are drivers for the use of con-

trol. Environmental statutes continue to place stricter limitations on

the production of pollutants, forcing the use of sophisticated pollution

control devices. Environmental safety considerations have led to the

design of smaller storage capacities to diminish the risk of major chem-

ical leakage, requiring tighter control on upstream processes and, in

some cases, supply chains. And large increases in energy costs have

encouraged engineers to design plants that are highly integrated, cou-

pling many processes that used to operate independently. All of these

trends increase the complexity of these processes and the performance

requirements for the control systems, making control system design

increasingly challenging.
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Instrumentation

The measurement of physical variables is of prime interest in science

and engineering. Consider, for example, an accelerometer, where early

instruments consisted of a mass suspended on a spring with a deflec-

tion sensor. The precision of such an instrument depends critically on

accurate calibration of the spring and the sensor. There is also a de-

sign compromise because a weak spring gives high sensitivity but low

bandwidth. A different way of measuring acceleration is to use force

feedback. The spring is replaced by a voice coil that is controlled so that

the mass remains at a constant position. The acceleration is propor-

tional to the current through the voice coil. In such an instrument, the

precision depends entirely on the calibration of the voice coil and does

not depend on the sensor, which is used only as the feedback signal.

The sensitivity/bandwidth compromise is also avoided.

Another important application of feedback is in instrumentation for

biological systems. Feedback is widely used to measure ion currents in

cells using a device called a voltage clamp, which is illustrated in Fig-

ure 1.6. Hodgkin and Huxley used the voltage clamp to investigate

propagation of action potentials in the giant axon of the squid. In

1963 they shared the Nobel Prize in Medicine with Eccles for “their

discoveries concerning the ionic mechanisms involved in excitation and

inhibition in the peripheral and central portions of the nerve cell mem-

brane.” A refinement of the voltage clamp called a patch clamp made
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Electrode
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Figure 1.6: The voltage clamp method for measuring ion currents

in cells using feedback. A pipette is used to place an electrode in a

cell (left) and maintain the potential of the cell at a fixed level. The

internal voltage in the cell is vi, and the voltage of the external fluid

is ve. The feedback system (right) controls the current I into the cell

so that the voltage drop across the cell membrane ∆v = vi − ve is

equal to its reference value ∆vr. The current I is then equal to the

ion current.

it possible to measure exactly when a single ion channel is opened

or closed. This was developed by Neher and Sakmann, who received

the 1991 Nobel Prize in Medicine “for their discoveries concerning the

function of single ion channels in cells.”

Robotics and Intelligent Machines

The goal of cybernetic engineering, already articulated in the 1940s

and even before, has been to implement systems capable of exhibiting

highly flexible or “intelligent” responses to changing circumstances [21].

In 1948 the MIT mathematician Norbert Wiener gave a widely read

account of cybernetics [253]. A more mathematical treatment of the el-

ements of engineering cybernetics was presented by H. S. Tsien in 1954,
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Figure 1.7: Autonomous vehicles. The figure on the left is a DJI

Phantom 3 drone, which is able to maintain its position using GPS

and inertial sensors. The figure on the right is an autonomous car

that was developed by nuTonomy and is capable of driving on city

streets by using sophisticated sensing and decision-making (control)

software (photo courtesy Hyundai-Aptiv Autonomous Driving Joint

Venture, LLC).

driven by problems related to the control of missiles [242]. Together,

these works and others of that time form much of the intellectual basis

for modern work in robotics and control.

Two recent areas of advancement in robotics and autonomous sys-

tems are (consumer) drones and autonomous cars, some examples of

which are shown in Figure 1.7. Quadrocopters such as the DJI Phan-

tom make use of GPS receivers, accelerometers, magnetometers, and

gyros to provide stable flight and also use stabilized camera platforms

to provide high quality images and movies. Autonomous vehicles, such

as the Google autonomous car project (now Waymo), make use of a

variety of laser rangefinders, cameras, and radars to perceive their envi-

ronment and then use sophisticated decision-making and control algo-
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rithms to enable them to safely drive in a variety of traffic conditions,

from high-speed freeways to crowded city streets.

Networks and Computing Systems

Control of networks is a large research area spanning many topics,

including congestion control, routing, data caching, and power man-

agement. Several features of these control problems make them very

challenging. The dominant feature is the extremely large scale of the

system: the Internet is probably the largest feedback control system

humans have ever built. Another is the decentralized nature of the

control problem: decisions must be made quickly and based only on

local information. Stability is complicated by the presence of varying

time lags, as information about the network state can be observed or

relayed to controllers only after a delay, and the effect of a local control

action can be felt throughout the network only after substantial delay.

Related to the control of networks is control of the servers that

sit on these networks. Computers are key components of the systems

of routers, web servers, and database servers used for communication,

electronic commerce, advertising, and information storage. A typical

example of a multilayer system for e-commerce is shown in Figure 1.8a.

The system has several tiers of servers. The edge server accepts incom-

ing requests and routes them to the HTTP server tier where they are

parsed and distributed to the application servers. The processing for
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Reply

Request

Reply
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Clients

(a) Multitiered Internet services

(b) Individual server

Figure 1.8: A multitier system for services on the Internet. In the

complete system shown schematically in (a), users request information

from a set of computers (tier 1), which in turn collect information from

other computers (tiers 2 and 3). The individual server shown in (b)

has a set of reference parameters set by a (human) system operator,

with feedback used to maintain the operation of the system in the

presence of uncertainty. (Based on Hellerstein et al. [116].)

different requests can vary widely, and the application servers may also

access external servers managed by other organizations. Control of an

individual server in a layer is illustrated in Figure 1.8b. A quantity rep-

resenting the quality of service or cost of operation—such as response

time, throughput, service rate, or memory usage—is measured in the

computer. The control variables might represent incoming messages ac-

cepted, priorities in the operating system, or memory allocation. The

feedback loop then attempts to maintain quality-of-service variables
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within a target range of values.

Economics

The economy is a large dynamical system with many actors: govern-

ments, organizations, companies, and individuals. Governments con-

trol the economy through laws and taxes, the central banks by set-

ting interest rates, and companies by setting prices and making invest-

ments. Individuals control the economy through purchases, savings,

and investments. Many efforts have been made to model and control

the system both at the macro level and at the micro level, but this

modeling is difficult because the system is strongly influenced by the

behaviors of the different actors in the system.

The financial system can be viewed as a global controller for the

economy. Unfortunately this important controller does not always

function as desired, as expressed in the following quote by Paul Krug-

man [152]:

We have magneto trouble, said John Maynard Keynes at the

start of the Great Depression: most of the economic engine was

in good shape, but a crucial component, the financial system, was

not working. He also said this: “We have involved ourselves in

a colossal muddle, having blundered in the control of a delicate

machine, the working of which we do not understand.” Both

statements are as true now as they were then.
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Factory Warehouse Distributors

Consumers
Advertisement

Retailers

Figure 1.9: Supply chain dynamics (after Forrester [88]). Products

flow from the producer to the customer through distributors and re-

tailers as indicated by the solid lines. There are typically many facto-

ries and warehouses and even more distributors and retailers. Dashed

lines represent feedback and feedforward information flowing between

the various agents in the chain. Multiple feedback loops are present

as each agent tries to maintain the proper inventory level.

One of the reasons why it is difficult to model economic systems is

that conservation laws for important variables are missing. A typical

example is that the value of a company as expressed by its stock can

change rapidly and erratically. There are, however, some areas with

conservation laws that permit accurate modeling. One example is the

flow of products from a manufacturer to a retailer, as illustrated in Fig-

ure 1.9. The products are physical quantities that obey a conservation

law, and the system can be modeled by accounting for the number of

products in the different inventories. There are considerable economic

benefits in controlling supply chains so that products are available to

customers while minimizing products that are in storage. Realistic sup-

ply chain problems are more complicated than indicated in the figure
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because there may be many different products, there may be differ-

ent factories that are geographically distributed, and the factories may

require raw material or subassemblies.

Feedback in Nature

Many problems in the natural sciences involve understanding aggre-

gate behavior in complex large-scale systems. This behavior emerges

from the interaction of a multitude of simpler systems with intricate

patterns of information flow. Representative examples can be found in

fields ranging from embryology to seismology. Researchers who special-

ize in the study of specific complex systems often develop an intuitive

emphasis on analyzing the role of feedback (or interconnection) in fa-

cilitating and stabilizing aggregate behavior. We briefly highlight three

application areas here.

A major theme currently of interest to the biology community is

the science of reverse (and eventually forward) engineering of biolog-

ical control networks such as the one shown in Figure 1.10. There

are a wide variety of biological phenomena that provide a rich source

of examples of control, including gene regulation and signal transduc-

tion; hormonal, immunological, and cardiovascular feedback mecha-

nisms; muscular control and locomotion; active sensing, vision, and

proprioception; attention and consciousness; and population dynamics

and epidemics. Each of these (and many more) provide opportunities
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Figure 1.10: The wiring diagram of the growth-signaling circuitry

of the mammalian cell [113]. The major pathways that are thought

to play a role in cancer are indicated in the diagram. Lines represent

interactions between genes and proteins in the cell. Lines ending

in arrowheads indicate activation of the given gene or pathway; lines

ending in a T-shaped head indicate repression. (Used with permission

of Elsevier Ltd. and the authors.)

to figure out what works, how it works, and what we can do to affect

it.

In contrast to individual cells and organisms, emergent properties

of aggregations and ecosystems inherently reflect selection mechanisms

that act on multiple levels, and primarily on scales well below that of

the system as a whole. Because ecosystems are complex, multiscale dy-

namical systems, they provide a broad range of new challenges for the
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modeling and analysis of feedback systems. Recent experience in ap-

plying tools from control and dynamical systems to bacterial networks

suggests that much of the complexity of these networks is due to the

presence of multiple layers of feedback loops that provide robust func-

tionality to the individual cell [145, 230, 259]. Yet in other instances,

events at the cell level benefit the colony at the expense of the indi-

vidual. Systems level analysis can be applied to ecosystems with the

goal of understanding the robustness of such systems and the extent

to which decisions and events affecting individual species contribute to

the robustness and/or fragility of the ecosystem as a whole.

In nature, development of organisms and their control systems have

often developed in synergy. The development of birds is an interesting

example, as noted by John Maynard Smith in 1952 [224]: .

[T]he earliest birds, pterosaurs, and flying insects were stable.

This is believed to be because in the absence of a highly evolved

sensory and nervous system they would have been unable to fly if

they were not. ... To a flying animal there are great advantages

to be gained by instability. The greater manoeuvrability is of

equal importance to an animal which catches its food in the air

and to the animals upon which it preys. ... It appears that in the

birds and at least in some insects [...] the evolution of the sensory

and nervous systems rendered the stability found in earlier forms

no longer necessary.
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1.5 FEEDBACK PROPERTIES

Feedback is a powerful idea which, as we have seen, is used extensively

in natural and technological systems. The principle of feedback is sim-

ple: base correcting actions on the difference between desired and ac-

tual performance. In engineering, feedback has been rediscovered and

patented many times in many different contexts. The use of feedback

has often resulted in vast improvements in system capability, and these

improvements have sometimes been revolutionary, as discussed above.

The reason for this is that feedback has some truly remarkable proper-

ties. In this section we will discuss some of the properties of feedback

that can be understood intuitively. This intuition will be formalized in

subsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness to uncertainty.

For example, by measuring the difference between the sensed value of a

regulated signal and its desired value, we can supply a corrective action

to partially compensate for the effect of disturbances. This is precisely

the effect that Watt exploited in his use of the centrifugal governor

on steam engines. Another use of feedback is to provide robustness

to variations in the process dynamics. If the system undergoes some

change that affects the regulated signal, then we sense this change and

try to force the system back to the desired operating point, even if
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Figure 1.11: A feedback system for controlling the velocity of a

vehicle. In the block diagram on the left, the velocity of the vehicle is

measured and compared to the desired velocity within the “Compute”

block. Based on the difference in the actual and desired velocities, the

throttle (or brake) is used to modify the force applied to the vehicle

by the engine, drivetrain, and wheels. The figure on the right shows

how the velocity changes when the car travels on a horizontal road

and the slope of the road changes to a constant uphill slope. The

three different curves correspond to differing masses of the vehicle,

between 1200 and 2000 kg, demonstrating that feedback can indeed

compensate for the changing slope and that the closed loop system is

robust to a large change in the vehicle characteristics.

the process parameters are not directly measured. In this way, a feed-

back system provides robust performance in the presence of uncertain

dynamics.

As an example, consider the simple feedback system shown in Fig-

ure 1.11. In this system, the velocity of a vehicle is controlled by

adjusting the amount of gas flowing to the engine. Simple proportional-
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integral (PI) feedback is used to make the amount of gas depend on

both the error between the current and the desired velocity and the

integral of that error. The plot on the right shows the effect of this

feedback when the vehicle travels on a horizontal road and it encoun-

ters an uphill slope. When the slope changes, the car decelerates due

to gravity forces and the velocity initially decreases. The velocity error

is sensed by the controller, which acts to restore the velocity to the

desired value by increasing the throttle. The figure also shows what

happens when the same controller is used for a different masses of the

car, which might result from having a different number of passengers or

towing a trailer. Notice that the steady-state velocity of the vehicle al-

ways approaches the desired velocity and achieves that velocity within

approximately 15 s, independent of the mass (which varies by a factor

of ± 25%), Thus feedback improves both performance and robustness

of the system.

Another early example of the use of feedback to provide robustness

is the negative feedback amplifier. When telephone communications

were developed, amplifiers were used to compensate for signal attenua-

tion in long lines. A vacuum tube was a component that could be used

to build amplifiers. Distortion caused by the nonlinear characteristics

of the tube amplifier together with amplifier drift were obstacles that

prevented the development of line amplifiers for a long time. A major

breakthrough was the invention of the feedback amplifier in 1927 by
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Harold S. Black, an electrical engineer at Bell Telephone Laboratories.

Black used negative feedback, which reduces the gain but makes the am-

plifier insensitive to variations in tube characteristics. This invention

made it possible to build stable amplifiers with linear characteristics

despite the nonlinearities of the vacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a system. Through

feedback, we can alter the behavior of a system to meet the needs of

an application: systems that are unstable can be stabilized, systems

that are sluggish can be made responsive, and systems that have drift-

ing operating points can be held constant. Control theory provides a

rich collection of techniques to analyze the stability and dynamic re-

sponse of complex systems and to place bounds on the behavior of such

systems by analyzing the gains of linear and nonlinear operators that

describe their components.

An example of the use of control in the design of dynamics comes

from the area of flight control. The following quote, from a lecture

presented by Wilbur Wright to the Western Society of Engineers in

1901 [180], illustrates the role of control in the development of the

airplane:

Men already know how to construct wings or airplanes, which

when driven through the air at sufficient speed, will not only
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sustain the weight of the wings themselves, but also that of the

engine, and of the engineer as well. Men also know how to build

engines and screws of sufficient lightness and power to drive these

planes at sustaining speed ... Inability to balance and steer still

confronts students of the flying problem ... When this one feature

has been worked out, the age of flying will have arrived, for all

other difficulties are of minor importance.

The Wright brothers thus realized that control was a key issue to

enable flight. They resolved the compromise between stability and

maneuverability by building an airplane, the Wright Flyer, that was

unstable but maneuverable. The Flyer had a rudder in the front of the

airplane, which made the plane very maneuverable. A disadvantage

was the necessity for the pilot to keep adjusting the rudder to fly the

plane: if the pilot let go of the stick, the plane would crash. Other

early aviators tried to build stable airplanes. These would have been

easier to fly, but because of their poor maneuverability they could not

be brought up into the air. The Wright Brothers were well aware of the

compromise between stability and maneuverability when the designed

they Wright Flyer [77] and they made the first successful flight at Kitty

Hawk in 1903. Modern fighter airplanes are also unstable in certain

flight regimes, such as take-off and landing.

Since it was quite tiresome to fly an unstable aircraft, there was

strong motivation to find a mechanism that would stabilize an aircraft.
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Such a device, invented by Sperry, was based on the concept of feed-

back. Sperry used a gyro-stabilized pendulum to provide an indication

of the vertical. He then arranged a feedback mechanism that would

pull the stick to make the plane go up if it was pointing down, and vice

versa. The Sperry autopilot was the first use of feedback in aeronauti-

cal engineering, and Sperry won a prize in a competition for the safest

airplane in Paris in 1914. Figure 1.12 shows the Curtiss seaplane and

the Sperry autopilot. The autopilot is a good example of how feed-

back can be used to stabilize an unstable system and hence “design

the dynamics” of the aircraft.

Creating Modularity

Feedback can be used to create modularity and shape well-defined rela-

tions between inputs and outputs in a structured hierarchical manner.

A modular system is one in which individual components can be re-

placed without having to modify the entire system. By using feedback,

it is possible to allow components to maintain their input/output prop-

erties in a manner that is robust to changes in its interconnections. A

typical example is the electrical drive system shown in Figure 1.13,

which has an architecture with three cascaded loops. The innermost

loop is a current loop, where the current controller (CC) drives the

amplifier so that the current to the motor tracks a commanded value

(often called the “setpoint”). The middle feedback loop uses a velocity
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Figure 1.12: Aircraft autopilot system. The Sperry autopilot (left)

contained a set of four gyros coupled to a set of air valves that con-

trolled the wing surfaces. The 1912 Curtiss used an autopilot to sta-

bilize the roll, pitch, and yaw of the aircraft and was able to maintain

level flight as a mechanic walked on the wing (right) [124].

controller (VC) to drive the setpoint of the current controller so that ve-

locity follows its commanded value. The outer loop drives the setpoint

of the velocity loop to follow the setpoint of the position controller PC.

The control architecture with nested loops shown in Figure 1.13 is

common. It simplifies design, commissioning, and operation. Consider



34 CHAPTER 1

PC
Σ

Σ

ir

CC
VC

Amplifier

Current loop

Velocity loop

Position loop

Motor
1

s

i v y

F
pr

vr

Figure 1.13: Block diagram of a system for position control. The

system has three cascaded loops for control of current, velocity, and

position. Each loop has an externally supplied reference value (de-

noted by the subscript ‘r’) that sets the nominal value of the input

to the loop, which is added to output from next outermost loop to

determine the commanded value for the loop (called the “setpoint”).

for example the design of the velocity loop. With a well-designed cur-

rent controller the motor current follows the setpoint of the controller

CC. Since the motor torque is proportional to the current, the dynamics

relating motor velocity to the input of the current controller is approx-

imately an integrator. This simplified model can be used to design

the velocity loop so that effects of friction and other disturbances are

reduced. With a well-designed velocity loop, the design of the position

loop is also simple. The loops can also be tuned sequentially starting

with the inner loop.

This architecture illustrates how feedback can be used to simplify

the overall design of the controller by breaking the problem into stages.

This architecture also provides a level of modularity since each design

stage depends only on the closed loop behavior of the system. If we
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replace the motor when a new motor, then by redesigning the current

controller (CC) to give the same closed loop performance, we can leave

the outer level loops unchanged. Similarly, if we need to redesign one

of the outer layer controllers for an application with different specifica-

tions, we can often make use of an existing inner loop design (as long

as the existing design provide enough performance to satisfy the outer

loop requirements).

Challenges of Feedback

While feedback has many advantages, it also has some potential draw-

backs. Chief among these is the possibility of instability if the system

is not designed properly. We are all familiar with the effects of positive

feedback when the amplification on a microphone is turned up too high

in a room. This is an example of feedback instability, something that

we obviously want to avoid. This is tricky because we must design

the system not only to be stable under nominal conditions but also to

remain stable under all possible perturbations of the dynamics.

In addition to the potential for instability, feedback inherently cou-

ples different parts of a system. One common problem is that feedback

often injects measurement noise into the system. Measurements must

be carefully filtered so that the actuation and process dynamics do not

respond to them, while at the same time ensuring that the measure-

ment signal from the sensor is properly coupled into the closed loop
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dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of em-

bedding a control system into a product. While the cost of sensing,

computation, and actuation has decreased dramatically in the past few

decades, the fact remains that control systems are often complicated,

and hence one must carefully balance the costs and benefits. An early

engineering example of this is the use of microprocessor-based feed-

back systems in automobiles.The use of microprocessors in automotive

applications began in the early 1970s and was driven by increasingly

strict emissions standards, which could be met only through electronic

controls. Early systems were expensive and failed more often than de-

sired, leading to frequent customer dissatisfaction. It was only through

aggressive improvements in technology that the performance, reliabil-

ity, and cost of these systems allowed them to be used in a transparent

fashion. Even today, the complexity of these systems is such that it is

difficult for an individual car owner to fix problems.

1.6 SIMPLE FORMS OF FEEDBACK

The idea of feedback to make corrective actions based on the differ-

ence between the desired and the actual values of a quantity can be

implemented in many different ways. The benefits of feedback can

be obtained by very simple feedback laws such as on-off control, pro-

portional control, and proportional-integral-derivative control. In this
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Figure 1.14: Input/output characteristics of on-off controllers. Each

plot shows the input on the horizontal axis and the corresponding

output on the vertical axis. Ideal on-off control is shown in (a), with

modifications for a dead zone (b) or hysteresis (c). Note that for on-

off control with hysteresis, the output depends on the value of past

inputs.

section we provide a brief preview of some of the topics that will be

studied more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

u =





umax if e > 0,

umin if e < 0,

(1.1)

where the control error e = r−y is the difference between the reference

(or command) signal r and the output of the system y, and u is the

actuation command. Figure 1.14a shows the relation between error

and control. This control law implies that maximum corrective action

is always used.
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The feedback in equation (1.1) is called on-off control. One of its

chief advantages is that it is simple and there are no parameters to

choose. On-off control often succeeds in keeping the process variable

close to the reference, such as the use of a simple thermostat to maintain

the temperature of a room. It typically results in a system where the

controlled variables oscillate, which is often acceptable if the oscillation

is sufficiently small.

Notice that in equation (1.1) the control variable is not defined when

the error is zero. It is common to make modifications by introducing

either a dead zone or hysteresis (see Figures 1.14b and 1.14c).

PID Control

The reason why on-off control often gives rise to oscillations is that the

system overreacts since a small change in the error makes the actuated

variable change over the full range. This effect is avoided in proportional

control, where the characteristic of the controller is proportional to the

control error for small errors. This can be achieved with the control

law

u =





umax if e ≥ emax,

kpe if emin < e < emax,

umin if e ≤ emin,

(1.2)

where kp is the controller gain, emin = umin/kp, and emax = umax/kp.

The interval (emin, emax) is called the linear range because the behavior



INTRODUCTION 39

of the controller is linear when the error is in this interval:

u = kp(r − y) = kpe if emin ≤ e ≤ emax. (1.3)

While a vast improvement over on-off control, proportional control

has the drawback that the process variable often deviates from its ref-

erence value. In particular, if some level of control signal is required

for the system to maintain a desired value, then we must have e 6= 0

in order to generate the requisite input.

This can be avoided by making the control action proportional to

the integral of the error:

u(t) = ki

∫ t

0

e(τ)dτ. (1.4)

This control form is called integral control, and ki is the integral gain.

It can be shown through simple arguments that a controller with in-

tegral action has zero steady-state error (Exercise 1.5). The catch is

that there may not always be a steady state because the system may

be oscillating. In addition, if the control action has magnitude limits,

as in equation (1.2), an effect known as “integrator windup” can occur

and may result in poor performance unless appropriate “anti-windup”

compensation is used. Despite the potential drawbacks, which can be

overcome with careful analysis and design, the benefits of integral feed-

back in providing zero error in the presence of constant disturbances

have made it one of the most used forms of feedback.
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An additional refinement is to provide the controller with an antic-

ipative ability by using a prediction of the error. A simple prediction

is given by the linear extrapolation

e(t+ Td) ≈ e(t) + Td
de(t)

dt
,

which predicts the error Td time units ahead. Combining proportional,

integral, and derivative control, we obtain a controller that can be

expressed mathematically as

u(t) = kpe(t) + ki

∫ t

0

e(τ) dτ + kd
de(t)

dt
. (1.5)

The control action is thus a sum of three terms: the present as repre-

sented by the proportional term, the past as represented by the integral

of the error, and the future as represented by a linear extrapolation

of the error (the derivative term). This form of feedback is called a

proportional-integral-derivative (PID) controller and its action is illus-

trated in Figure 1.15.

A PID controller is very useful and is capable of solving a wide range

of control problems. More than 95% of all industrial control problems

are solved by PID control, although many of these controllers are ac-

tually proportional-integral (PI) controllers because derivative action is

often not included [70].
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Time

Error Present

FuturePast

t t+ Td

Figure 1.15: Action of a PID controller. At time t, the proportional

term depends on the instantaneous value of the error. The integral

portion of the feedback is based on the integral of the error up to time

t (shaded portion). The derivative term provides an estimate of the

growth or decay of the error over time by looking at the rate of change

of the error. Td represents the approximate amount of time in which

the error is projected forward (see text).

1.7 COMBINING FEEDBACK WITH LOGIC

Continuous control is often combined with logic to cope with different

operating conditions. Logic is typically related to changes in operating

mode, equipment protection, manual interaction, and saturating actu-

ators. One situation is when there is one variable that is of primary

interest, but other variables may have to be controlled for equipment

protection. For example, when controlling a compressor the outflow is

the primary variable but it may be necessary to switch to a different

mode to avoid compressor stall, which may damage the compressor.

We illustrate some ways in which logic and feedback are combined by

a few examples.
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(a) User interface
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(b) State machine

Figure 1.16: Finite state machine for cruise control system. The

figure on the left shows some typical buttons used to control the sys-

tem. The controller can be in one of four modes, corresponding to

the nodes in the diagram on the right. Transition between the modes

is controlled by pressing one of the four buttons on the cruise control

interface: on/off, set, resume, or cancel.

Cruise control

The basic control function in a cruise controller, such as the one shown

in Figure 1.11, is to keep the velocity constant. It is typically done

with a PI controller. The controller normally operates in automatic

mode but it is is necessary to switch it off when braking, accelerating,

or changing gears. The cruise control system has a human–machine in-

terface that allows the driver to communicate with the system. There

are many different ways to implement this system; one version is illus-

trated in Figure 1.16a. The system has four buttons: on/off, coast/set,

resume/accelerate, and cancel. The operation of the system is governed

by a finite state machine that controls the modes of the PI controller

and the reference generator, as shown in Figure 1.16b.
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The finite state machine has four modes: off, standby, cruise, and

hold. The state changes depending on actions of the driver who can

brake, accelerate, and operate using the buttons. The on/off switch

moves the states between off and standby. From standby the system

can be moved to cruise by pushing the set/coast button. The velocity

reference is set as the velocity of the car when the button is released.

In the cruise state the operator can change the velocity reference; it is

increased using the resume/accelerate button and decreased using the

set/coast button. If the driver accelerates by pushing the gas pedal

the speed increases, but it will go back to the set velocity when the gas

pedal is released. If the driver brakes then the car slows, and the cruise

controller goes into hold but it remembers the setpoint of the controller.

It can be brought to the cruise state by pushing the resume/accelerate

button. The system also moves from cruise mode to standby if the

cancel button is pushed. The reference for the velocity controller is

remembered. The system goes into off mode by pushing on/off when

the system is engaged.

The PI controller is designed to have good regulation properties and

to give good transient performance when switching between resume and

control modes.
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Figure 1.17: Large computer “server farm.” The National Energy

Research Scientific Computing Center (NERSC) at Lawrence Berkeley

National Laboratory. (Figure courtesy U.S. Department of Energy)

Server Farms

Server farms consist of a large number of computers for providing In-

ternet services (cloud computing). Large server farms, such as the

one shown in Figure 1.17, may have thousands of processors. Power

consumption for driving the servers and for cooling them is a prime

concern. The cost for energy can be more than 40% of the operat-

ing cost for data centers [83]. The prime task of the server farm is

to respond to a strongly varying computing demand. There are con-

straints given by electricity consumption and the available cooling ca-
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pacity. The throughput of an individual server depends on the clock

rate, which can be changed by adjusting the voltage applied to the sys-

tem. Increasing the supply voltage increases the energy consumption

and more cooling is required.

Control of server farms is often performed using a combination of

feedback and logic. Capacity can be increased rapidly if a server is

switched on simply by increasing the voltage to a server, but a server

that is switched on consumes energy and requires cooling. To save

energy it is advantageous to switch off servers that are not required,

but it takes some time to switch on a new server. A control system for

a server farm requires individual control of the voltage and cooling of

each server and a strategy for switching servers on and off. Temper-

ature is also important. Overheating will reduce the life time of the

system and may even destroy it. The cooling system is complicated

because cooling air goes through the servers in series and parallel. The

measured value for the cooling system is therefore the server with the

highest temperature. Temperature control is accomplished by a com-

bination of feedforward logic to determine when servers are switched

on and off and feedback using PID control.

Air–Fuel Control

Air–fuel control is an important problem for ship boilers. The control

system consists of two loops for controlling air and oil flow and a su-
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Figure 1.18: Air–fuel controller based on selectors. The left fig-

ure shows the system architecture. The letters R and Y in the PI

controller denote the input ports for reference and measured signal

respectively. The right figure shows a simulation where the power

reference r is changed stepwise at t = 1 and t = 15. Notice that the

normalized air flow is larger than the normalized fuel flow both for

increasing and decreasing reference steps.

pervisory controller that adjusts the air–fuel ratio. The ratio should

be adjusted for optimal efficiency when the ships are on open sea but

it is necessary to run the system with air excess when the ships are in

the harbor, since generating black smoke will result in heavy penalties.

An elegant solution to the problem can be obtained by combining

PI controllers with maximum and minimum selectors, as shown in Fig-

ure 1.18a. A selector is a static system with several inputs and one

output: a maximum selector gives an output that is the largest of the

inputs, a minimum selector gives an output that is the smallest of the

inputs. Consider the situation when the power demand is increased:
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the reference r to the air controller is selected as the commanded power

level by the maximum selector, and the reference to the oil flow con-

troller is selected as the measured airflow. The oil flow will lag the air

flow and there will be air excess. When the commanded power level

is decreased, the reference of the oil flow controller is selected as the

power demand by the minimum selector and the reference for the air

flow controller is selected as the oil flow by the the maximum selector.

The system then operates with air excess when power is decreased.

The resulting response of the system for step changes in the de-

sired power level is shown in Figure 1.18b, verifying that the system

maintains air excess for both power increases and decreases.

Selectors are commonly used to implement logic in engines and

power systems. They are also used for systems that require very

high reliability: by introducing three sensors and only accepting values

where two sensors agree it is possible to guard for the failure of a single

sensor.

1.8 CONTROL SYSTEM ARCHITECTURES

Most of the control systems we are investigating in this book will be

relatively simple feedback loops. In this section we will try to give a

glimpse of the fact that in reality the simple loops combine to form a

complex system that often has a hierarchical structure with controllers,
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Figure 1.19: Layered decomposition of a control system.

logic, and optimization in different combinations. Figure 1.19 shows

one representation of such a hierarchy, exposing different “layers” of

the control system. The details of this class of systems is beyond the

scope of this text, but we present a few representative examples to

illustrate some basic points.

Freight Train Trip Optimizer

An example of two of the layers represented in Figure 1.19 can be see

in the control of modern locomotives developed by General Electric

(GE). Typical requirements for operating a freight train are to arrive

on time and to use as little fuel as possible. The key issue is to avoid
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Figure 1.20: Freight train trip optimizer. GE’s Trip Optimizer™

takes data about the train, the terrain, and the propulsion system and

computes the best speed for the train in order to reach the destination

on time while burning the least amount of diesel fuel. (Figure courtesy

GE.)

unnecessary braking. Figure 1.20 illustrates a system developed by

GE. At the low layer the train has a speed regulator and a simple

logic to avoid entering a zone where there is another train. The key

disturbance for the speed control is the slope of the ground. The speed

controller has a model of the track, a GPS sensor, and an estimator.

The setpoint for the speed controller is obtained from a trip optimizer,

which computes a driving plan that minimizes the fuel consumption

while arriving at the desired arrival time. The arrival time is provided

by a dispatch center, which in turn may use its own optimization.

These optimizations represent the second layer in Figure 1.19, with the

top layer (decision-making) provided by the human operator.

Diesel-electric freight locomotives pull massive loads of freight cars,

weighing more than 20,000 tons (US), and may be more than a mile in

length. A typical locomotive burns about 35,000 gallons per year and
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can save an average 10% using the Trip Optimizer autopilot, repre-

senting a substantial savings in cost, natural resources, and pollution.

Process Control Systems

Process control systems are used to monitor and regulate the manu-

facturing of a wide range of chemicals and materials. One example is

a paper factory, such as the one depicted in Figure 1.21. The factory

produces paper for a variety of purposes from logs of wood. There are

multiple fiber lines and paper machines, with a few dozen mechanical

and chemical production processes that convert the logs to a slurry of

fibers in different steps, and then paper machines that convert the fiber

slurry to paper. Each production unit has PI(D) controllers that con-

trol flow, temperature, and tank levels. The loops typically operate on

time scales from fractions of seconds to minutes. There is logic to make

sure that the process is safe and there is sequencing for start, stop, and

production changes. The setpoints of the low level control loops are

determined from production rates and recipes, sometimes using opti-

mization. The operation of the system is governed by a supervisory

system that measures tank levels and sets the production rates of the

different production units. This system performs optimization based

on demanded production, measurement of tank levels, and flows. The

optimization is performed at the time scale of minutes to hours, and
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Figure 1.21: Schematic diagram for a pulp and paper manufacturing

plant. The input to the plant is wood (upper left), which is then

processed through a number of stages to create paper products.

it is constrained by the production rates of the different production

units. Processes for continuous production in the chemical and phar-

maceutical industry are similar to the paper factory but the individual

production units may be very different.

One of the features of modern process control systems is that they



52 CHAPTER 1

Figure 1.22: Functional architecture of process control system, im-

plemented as a distributed control system (DCS). Figure courtesy of

ABB, Inc.

operate across many time and spatial scales. Modern process control

systems are also integrated with supply chains and product distribution

chains, leading to the use of production planning systems and enter-

prise resource management systems. An example of an architecture for

distributed control system (DCS), typical for complex manufacturing

systems, is shown in Figure 1.22.

Autonomous Driving

The cruise controller in Figure 1.11 relieves the driver of one task,

to keep constant speed, but a driver still has many tasks to perform:
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Figure 1.23: DARPA Grand Challenge. “Alice,” Team Caltech’s

entry in the 2005 and 2007 competitions and its networked control

architecture [66].

plan the route, avoid collisions, decide the proper speed, perform lane

changes, make turns, and keep proper distance to the car ahead. Car

manufacturers are continuously automating more and more of these

functions, going as far as automatic driving. As an example of a control

system for an autonomous vehicle is shown in Figure 1.23. This control

system is designed for driving in urban environments. The feedback

system fuses data from road and traffic sensors (cameras, laser range

finders, and radar) to create a multi-layer “map” of the environment

around the vehicle. This map is used to make decisions about actions

that the vehicle should take (drive, stop, change lanes) and plan a

specific path for the vehicle to follow. An optimization-based planner

is used to compute the trajectory for the vehicle to follow, which is

passed to a trajectory tracking (path following) module. A supervisory

control module performs higher-level tasks such as mission planning



54 CHAPTER 1

and contingency management (if a sensor or actuator fails).

We see that this architecture has the basic features shown in Fig-

ure 1.19. The control layers are shown in the planning and control

blocks, with the mission planner and traffic planner representing two

levels of discrete decision-making logic, the path planner representing a

trajectory optimization function, and then the lower layers of control.

Similarly, there are multiple layers of sensing, with low level infor-

mation, such as vehicle speed and position in the lane, being sent to

the trajectory tracking controller, while higher level information about

other vehicles on the road and their predicted motions is sent to the

trajectory, traffic, and mission planners.

1.9 FURTHER READING

The material in the first half of this chapter draws from the report of the

Panel on Future Directions on Control, Dynamics and Systems [187].

Several additional papers and reports have highlighted the successes of

control [191] and new vistas in control [56, 153, 157, 213, 257]. The

early development of control is described by Mayr [179] and in the

books by Bennett [34, 35], which cover the period 1800–1955. A fas-

cinating examination of some of the early history of control in the

United States has been written by Mindell [183]. A popular book that

describes many control concepts across a wide range of disciplines is
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Out of Control by Kelly [142].

There are many textbooks available that describe control systems

in the context of specific disciplines. For engineers, the textbooks by

Franklin, Powell, and Emami-Naeini [92], Dorf and Bishop [72], Kuo

and Golnaraghi [156], and Seborg, Edgar, and Mellichamp [219] are

widely used. More mathematically oriented treatments of control the-

ory include Sontag [225] and Lewis [162]. At the opposite end of the

spectrum, the textbook Feedback Control for Everyone [7] provides

a readable introduction with minimal mathematical background re-

quired. The books by Hellerstein et al. [116] and Janert [130] provide

descriptions of the use of feedback control in computing systems. A

number of books look at the role of dynamics and feedback in biological

systems, including Milhorn [182] (now out of print), J. D. Murray [186],

and Ellner and Guckenheimer [82]. The book by Fradkov [90] and the

tutorial article by Bechhoefer [30] cover many specific topics of interest

to the physics community.

Systems that combine continuous feedback with logic and sequenc-

ing are called hybrid systems. The theory required to properly model

and analyze such systems is outside the scope of this text, but a com-

prehensive description is given by Goebel, Sanfelice, and Teele [103]. It

is very common that practical control systems combine feedback con-

trol with logic sequencing and selectors; many examples are given by

Åström and T. Hägglund [19].
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EXERCISES

1.1 Identify five feedback systems that you encounter in your every-

day environment. For each system, identify the sensing mechanism,

actuation mechanism, and control law. Describe the uncertainty with

respect to which the feedback system provides robustness and/or the

dynamics that are changed through the use of feedback.

1.2 (Balance systems) Balance yourself on one foot with your eyes

closed for 15 s. Using Figure 1.4 as a guide, describe the control sys-

tem responsible for keeping you from falling down. Note that the “con-

troller” will differ from that in the diagram (unless you are an android

reading this in the far future).

1.3 (Eye motion) Perform the following experiment and explain your�

results: Holding your head still, move one of your hands left and right

in front of your face, following it with your eyes. Record how quickly

you can move your hand before you begin to lose track of it. Now hold

your hand still and shake your head left to right, once again recording

how quickly you can move before losing track of your hand. Explain

any difference in performance by comparing the control systems used

to implement these behaviors.

1.4 (Cruise control) Download the MATLAB code used to produce

simulations for the cruise control system in Figure 1.11 from the com-

panion web site. Using trial and error, change the parameters of the
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control law so that the overshoot in speed is not more than 1 m/s for

a vehicle with mass m = 1200 kg. Does the same controller work if we

set m = 2000 kg?

1.5 (Integral action) We say that a system with a constant input

reaches steady state if all system variables approach constant values

as time increases. Show that a controller with integral action, such as

those given in equations (1.4) and (1.5), gives zero error if the closed

loop system reaches steady state. Notice that there is no saturation in

the controller.

1.6 (Combining feedback with logic) Consider a system for cruise con-

trol where the overall function is governed by the state machine in

Figure 1.16. Assume that the system has a continuous input for vehi-

cle velocity, discrete inputs indicating braking and gear changes, and

a PI controller with inputs for the reference and measured velocities

and an output for the control signal. Sketch the actions that have to

be taken in the states of the finite state machine to handle the system

properly. Think about if you have to store some extra variables, and if

the PI controller has to be modified.

1.7 Search the web and pick an article in the popular press about a

feedback and control system. Describe the feedback system using the

terminology given in the article. In particular, identify the control sys-

tem and describe (a) the underlying process or system being controlled,
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along with the (b) sensor, (c) actuator, and (d) computational element.

If the some of the information is not available in the article, indicate

this and take a guess at what might have been used.



Chapter Two

Feedback Principles

Feedback – it is the fundamental principle that underlies all self-

regulating systems, not only machines but also the processes of

life and the tides of human affairs.

A. Tustin, “Feedback”, Scientific American, 1952 [244].

This chapter presents examples that illustrate fundamental prop-

erties of feedback: disturbance attenuation, reference signal tracking,

robustness to uncertainty, and shaping of behavior. The analysis is

based on simple static and dynamical models. After reading this chap-

ter, readers should have some insight into the power of feedback, they

should know about transfer functions and block diagrams, and they

should be able to design simple feedback systems. The basic concepts

described in this chapter are explained in more detail in the remainder

of the text, and this chapter can be skipped for readers who prefer to

move directly to the more detailed analysis and design techniques.
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2.1 NONLINEAR STATIC MODELS

We will start by capturing the behavior of a process and a controller

using static models. Although these models are very simple, they give

significant insight about the fundamental properties of feedback: neg-

ative feedback increases the range of linearity, it improves reference

signal tracking, and it reduces the gain and the effects of disturbances

and parameter variations. Moderate positive feedback has the opposite

properties: it shrinks the range of linearity and increases the gain of

the system. At a critical value the gain becomes infinite and the system

behaves like a relay; larger values of the gain gives hysteretic behavior.

Although static models give some insight, they cannot capture dynamic

phenomena like stability. Positive feedback combined with dynamics

often leads to instability and oscillations, as will be discussed toward

the end of the chapter.

Consider the closed loop system whose block diagram is shown in

Figure 2.1. The closed loop system has a reference (or command) signal

r that gives the desired system output. The controller C has an input

e that is the difference between the reference r and the process output

y, and the output of the controller is the control signal u. There is also

a load disturbance v at the process input that perturbs the system.

Although we will mostly deal with negative feedback, this simple model

also permits analysis of positive feedback.

The process P is modeled as a function that is linear for inputs
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Figure 2.1: Block diagram of simple, static feedback system. The

controller is a constant gain k > 0 and the process is modeled by a

nonlinear function F (x). The process output is y, the control signal is

u, the external signals are the reference r, and the load disturbance v.

The sign in the lower block indicates whether the feedback is positive

(+) or negative (−).

that are less than one in magnitude and saturates for inputs of magni-

tude larger than one. The controller is modeled by a constant gain k.

Formally the process and the controller are described by the functions

y = F (x) = sat(x) =





−1 if x ≤ −1,

x if |x| < 1,

1 if x ≥ 1,

and u = ke. (2.1)

The process is linear for |x| < 1, which is called the linear range. In

this region we have y = x and the process gain is 1. The controller

gain is k because the controller’s output u is k times its input e.

The open loop system is the combination of the controller and the

process when there is no feedback. Neglecting the disturbance v, it

follows from equation (2.1) that the input/output relation for the open
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loop system is

y = F (kr) = sat(kr). (2.2)

It has the gain k and linear range |r| < 1/k.

Response to Reference Signals

To explore how well the system output y can follow the reference signal

r we assume that the load disturbance v in Figure 2.1 is zero. We will

first consider negative feedback by setting the gain in the lower block

of Figure 2.1 to −1. It follows from Figure 2.1 and equation (2.1) that

the closed loop system is described by

y = sat(u), u = k(r − y). (2.3)

Eliminating u in these equations we obtain

y = sat(k(r − y)). (2.4)

To find the relation between the reference r and the output y we have

to solve an algebraic equation. In the linear range |k(r − y)| < 1 we

have y = k
k+1

r. When |k(r − y)| ≥ 1 the output saturates and we

obtain y = ±1 (depending on the sign of k(r − y). It can be shown
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Figure 2.2: Input/output behavior of the system: (a) for large neg-

ative feedback (b) positive feedback k < 1 and (c) large positive feed-

back. The solid line is the response of the closed loop system and

the dotted line is the response of the open loop system. Redrawn

from [221, Figure 20.5].

that the overall input/output relationship satisfies

y = sat
( k

k + 1
r
)
=





−1 if r ≤ −k+1
k
,

k
k+1

r if |r| < k+1
k
,

1 if r ≥ k+1
k
.

(2.5)

The linear range for the closed loop system is |r| < k+1
k
. Comparing

with equation (2.2) we find that negative feedback widens the linear

range of the system by a factor of k+1 compared to the open loop sys-

tem. This is illustrated in Figure 2.2a, which shows the input/output

relations of the open loop system (dashed) and the closed loop system

(solid).
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Robustness to Parameter Uncertainty

Next we will investigate the sensitivity of the closed loop system to

gain variations. The sensitivity of a system describes how changes in

the system parameters affect the performance of the system. For the

open loop system in the linear range we have y = kr and it thus follows

that

dy

dk
= r =

y

k
=⇒ dy

y
=
dk

k
. (2.6)

The relative change of the output is thus equal to the relative change

of the parameter and we say that the sensitivity is 1. Thus, for the

open loop system, a change in k of 10% will lead to a change in the

output of 10%.

For the closed loop system with an input in the linear range, it

follows from equation (2.5) that

dy

dk
=

r

k + 1
− kr

(k + 1)2
=

r

(k + 1)2
=

y

k(k + 1)
,

and hence

dy

y
=

1

k + 1

dk

k
. (2.7)

A comparison with equation (2.6) shows that negative feedback with

gain k reduces the sensitivity to gain variations by a factor of k + 1.

If k is 100, for example, a 10% change in k would lead to less than a

0.1% change in y, so the closed loop system is much less sensitive to

parameter variation.

This type of analysis can also be used to investigate the effect of
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positive feedback. If the −1 in the feedback loop in Figure 2.1 is re-

placed by +1, equation (2.5) becomes

y = sat
( k

−k + 1
r
)
. (2.8)

Notice that the gain of the closed loop system is positive and larger

than the open gain for k < 1, as shown in Figure 2.2b. The linear

range is |r| < (1 − k)/k. A comparison with the open loop system

in equation (2.2) shows that positive feedback with k < 1 shrinks the

linear range by a factor of 1−k. As k approaches 1 the closed loop gain

approaches infinity, the range shrinks to zero, and the system behaves

like a relay.

For positive feedback with k > 1 it follows from equation (2.8)

that the closed loop gain is negative, as shown in Figure 2.2c, and

that it approaches −1 as k approaches infinity. Positive feedback with

large gains creates an input/output characteristic with multiple output

values possible for inputs in the range |r| < k/(k+1) and the closed loop

system behaves like a switch with hysteresis. This concept is explored

in more detail in Section 2.6, and it is shown that if the process has

dynamics then all points where the input/output characteristics have

negative slope are unstable.

We will mostly deal with negative feedback but there are systems

that employ positive feedback, as illustrated in the following example.

Example 2.1 The Superregenerative Amplifier
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Edwin Armstrong constructed a “superregenerative” radio receiver with

only one vacuum tube in 1914, when he was still an undergraduate at

Columbia University. The superregenerative amplifier can be modeled

as an amplifier with open loop gain k and a saturated output, com-

bined with a positive feedback loop, as shown in Figure 2.1. Using

equation (2.8), we can compute the gain of the closed loop system to

be kcl = k/(1−k). A very large closed loop gain can be obtained by se-

lecting a feedback gain k that is just below 1. Choosing k = 0.999 gives

kcl = 999, which is a gain increase of almost three orders of magnitude.

The drawback of using positive feedback is that the system is highly

sensitive and the gain has to be adjusted carefully to avoid oscillations.

For example, if the gain k is 0.99 instead of 0.999 (a difference of less

than 1%), then the closed loop gain becomes kcl = 99, a difference of

10X (or 1000%). The oscillatory nature of this circuit requires the use

of a more advanced (dynamic) model for analysis of the amplifier.

Despite its limitations, this type of amplifier is still used in simple

walkie-talkies, garage door openers, and toys. ∇

Load Disturbance Attenuation

Another use of feedback is to reduce the effects of external disturbances,

represented by the signal v in Figure 2.1. For the open loop system,
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the output when v 6= 0 is given by

y = sat(kr + v).

In the linear region we thus have a gain of 1 between v and y, so that

disturbances are passed through with no attenuation.

To investigate the effect of feedback on load disturbances we con-

sider the system in Figure 2.1 with negative feedback and, for sim-

plicity, we set the reference signal r to be zero. The relationship

between the load disturbance v and the the output y is given by

y = sat(v − ky), which is again an algebraic equation. In the lin-

ear range we get y = v/(k + 1) and more generally it can be shown

that

y = sat
( v

k + 1

)
. (2.9)

In the linear region, negative feedback thus reduces the effect of load

disturbances by the factor k + 1.

Combining these three sets of analyses, we see that negative feedback

increases the range of linearity of the system, decreases the sensitivity of

the system to parameter uncertainty, and attenuates load disturbances.

The trade-off is that the closed loop gain is decreased. Positive feedback

has the opposite effect: it can increase the closed loop gain, but at the

cost of increased sensitivity and amplification of disturbances.
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2.2 LINEAR DYNAMICAL MODELS

The analysis in the previous section was based on static models and

the dynamics of the process were neglected. We will now introduce a

set of concepts and tools to analyze the effects of dynamics. To do

this we will introduce block diagrams, linear differential equations, and

transfer functions. The block diagram is an abstraction that describes

a system as an interconnection of blocks, whose input/output behavior

is described by differential equations. The transfer function, which is

a function of complex variables, is a convenient representation of the

differential equations describing the dynamics of the system. Transfer

functions make it possible for us to find the relations between the sig-

nals of a complex system represented by block diagrams using simple

algebra. The values of the transfer function on the imaginary axis gives

the steady-state response to sinusoidal signals, which means that the

transfer function can be determined experimentally from the steady-

state response to sinusoidal signals.

Linear Differential Equations and Transfer Functions

In many practical situations, the input/output behavior of a system

can be modeled by a linear differential equation of the form

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b0

dmu

dtm
+ b1

dm−1u

dtm−1
+ · · ·+ bmu, (2.10)
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where u is the input, y is the output, and the coefficients ak and bk are

real numbers. The differential equation (2.10) is characterized by two

polynomials

a(s) = sn+a1s
n−1+· · ·+an, b(s) = b0s

m+b1s
m−1+· · ·+bm, (2.11)

where a(s) is the characteristic polynomial of the differential equa-

tion (2.10). We assume that the polynomials a(s) and b(s) do not have

common roots. (The consequences of having common roots is discussed

in Section 8.3.)

Equation (2.10) represents a time-invariant system because if the

pair u(t), y(t) satisfies the equation so does u(t + τ), y(t + τ). The

equation is also linear because if u1(t), y1(t), and u2(t), y2(t) satisfy the

equation so does αu1(t)+βu2(t), αy1(t)+βy2(t), where α and β are real

numbers. Systems that are linear and time-invariant are often called

LTI systems. We can visualize these systems as being characterized by

a huge table of corresponding input/output signal pairs. An interesting

property of an LTI system is that it can be characterized by a single

carefully chosen pair, for example the response of the system to a step

input.

The solution to equation (2.10) is the sum of two terms: the general

solution to the homogeneous equation, which does not depend on the

input, and a particular solution, which depends on the input. The
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homogeneous equation associated with equation (2.10) is

dny

dtn
+ a1

dn−1y

dtn−1
+ . . .+ any = 0. (2.12)

Letting sk represent the roots of the characteristic equation a(s) = 0,

the solution to equation (2.12) is of the form

y(t) =
n∑

k=1

Cke
skt (2.13)

if the characteristic polynomial does not have repeated roots. The

coefficients C1, . . . , Cn can be determined from the initial conditions at

t = 0.

Since the coefficients ak are real, the roots of the characteristic equa-

tion are either real-valued or occur in complex conjugate pairs. A real

root sk of the characteristic polynomial corresponds to the exponential

function eskt. This function decreases over time if sk is negative, is

constant if sk = 0, and increases if sk is positive, as shown in the top

row of Figure 2.3. For real roots sk the parameter T = 1/sk is called

the time constant, because it describes how quickly the signal decays.

A complex root sk = σ ± iω corresponds to the time functions

eσt sin (ωt), eσt cos (ωt),

which have oscillatory behavior, as illustrated in the bottom row of

Figure 2.3. The sine terms are shown as solid lines; they have zero

crossings with the spacing π/ω. The dashed lines show the envelopes,

which correspond to the exponential function ±eσt.
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Figure 2.3: Examples of exponential signals. The top row corre-

sponds to exponential signals with a real exponent, and the bottom

row corresponds to those with complex exponents. The dashed line

in the last two cases denotes the bounding envelope for the oscillatory

signals. In each case, if the real part of the exponent is negative then

the signal decays, while if the real part is positive then it grows.

When the characteristic equation has repeated roots, the solutions

to the homogeneous equation (2.12) take the form

y(t) =
m∑

k=1

Ck(t)e
skt, (2.14)

where Ck(t) is a polynomial with degree less than the multiplicity of the

root sk. The solution (2.14) has
∑m

k=1(degCk+1) = n free parameters.

This case is considered in more detail in Section 6.2.

Having explored the solution to the homogeneous equation, we now
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turn to the input-dependent part of the solution. The solution to equa-

tion (2.10) for an exponential input is of particular interest, as will be

shown in the following. We set u(t) = est, where s 6= sk is a complex

number, and investigate if there is a unique particular solution of the

form y(t) = G(s)est. Assuming this to be the case, we find

du

dt
= sest,

d2u

dt2
= s2est, · · · dmu

dtm
= smest

dy

dt
= sG(s)est,

d2y

dt2
= s2G(s)est, · · · dny

dtn
= snG(s)est.

(2.15)

Inserting these expressions into the differential equation (2.10) gives

(sn + a1s
n−1 + · · ·+ an)G(s)e

st = (b0s
m + b1s

m−1 + · · ·+ bm)e
st

and hence

G(s) =
b0s

m + b1s
m−1 + · · ·+ bm

sn + a1sn−1 + · · ·+ an
=
b(s)

a(s)
. (2.16)

This function is called the transfer function of the system. It describes

a particular solution to the differential equation for the input est. Com-

bining this with the solution to the homogeneous equation, we find that

a solution to the differential equation (2.10) for the exponential input

u(t) = est is

y(t) =
m∑

k=1

Ck(t)e
skt +G(s)est. (2.17)

The relation between the transfer function (2.16) and the differen-

tial equation (2.10) is clear: the transfer function (2.16) can be obtained

by inspection from the differential equation (2.10), and conversely the

differential equation can be obtained from the transfer function if the



FEEDBACK PRINCIPLES 73

polynomials a(s) and b(s) do not have common factors. The transfer

function G(s) can thus be regarded as a shorthand notation for the

differential equation (2.10). It is a complete characterization of the

differential equation even if it was derived as the response to a specific

input u(t) = est. We note that the input and the initial conditions

must both be given to obtain the full solution of the differential equa-

tion, given by equation (2.17), also referred to as the response of the

system.

To deal with oscillatory signals, like those shown in the bottom row

of Figure 2.3, we allow s to be a complex number. The transfer function

G is then a function that maps complex numbers to complex numbers.

We let arg represent the argument (phase, angle) of a complex number

and | · | the magnitude, and note that the complex response to an input

u = eiωt = cosωt + i sinωt is given by G(iωt)eiωt. Using just the

imaginary parts of the signals, it follows that the particular solution

for the input u = sin(ωt) = Im eiωt is

y(t) = Im
(
G(iω) eiωt

)
= Im

(
|G(iω)| ei argG(iω) eiωt

)

= |G(iω)| Im ei(argG(iω)+ωt) = |G(iω)| sin(ωt+ argG(iω)).

The input is thus amplified by |G(iω)| and the phase shift between

input and output is argG(iω). The functions G(iω), |G(iω)|, and

argG(iω) are called the frequency response, gain, and phase. Gain

and phase are also called magnitude and angle.
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Figure 2.4: Two responses of a linear time-invariant system to a

sinusoidal input. The dashed line shows the output when the initial

conditions are chosen so that the output is purely sinusoidal. The

solid line shows the response for the initial conditions y(0) = 0 and

y′(0) = 0. The transfer function is G(s) = 1/(s+ 1)2.

When the input and the output are constant, u(t) = u0 and y(t) =

y0, the differential equation (2.10) has the particular solution y(t) =

(bn/an)u0 = G(0)u0, obtained by setting s = 0. The input is thus

amplified by the factorG(0), which is therefore called the zero frequency

gain (or sometimes the static gain). If the differential equation is stable

then the solution will converge to G(0)u0 as t goes to infinity.

The full response to an exponential input is the sum of a particular

solution and a solution to the homogeneous equation that is determined

by the initial conditions, as given in equation (2.17). An illustration

is given in Figure 2.4 for the transfer function G(s) = 1/(s+ 1)2. The

dashed line, which is a pure sine wave, is the solution obtained when all

Ck in equation (2.17) are zero. The solid line shows the response ob-
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tained when the Ck are chosen so that y(0) and its derivatives y(k)(0),

k = 1, . . . , n− 1 are all zero. Since all roots of the characteristic poly-

nomial have negative real parts, the solution to the homogeneous equa-

tion (2.14) goes to zero as t → ∞ and the general solution converges

to the particular solution.

The transfer function has many interpretations that can be ex-

ploited for insight, analysis, and design. The roots sk of the char-

acteristic equation a(s) = 0 are called poles of the transfer function:

the transfer function is infinite for s = sk. The poles sk appear as ex-

ponents in the general solution to the homogeneous equation, as seen

in equations (2.13) and (2.14). Systems with poles that are “lightly

damped” (Re(sk) is negative but close to zero) can exhibit resonances

when a sinusoidal input is applied whose frequency is near the imagi-

nary part of sk.

The roots sj of the polynomial b(s) are called zeros of the transfer

function. The reason is that if b(sj) = 0 it follows that G(sj) = 0, and

the particular solution for the input eskt is then zero. A system theoretic

interpretation is that the transmission of the exponential signal esjt is

blocked by the zero s = sj, which is therefore also called a transmission

zero.

The transfer function can also convey a great deal of intuition: G(0)

is the zero frequency gain for constant inputs and the frequency re-

sponse G(iω) captures the steady-state response to sinusoidal func-
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tions. The frequency response of a stable system can be determined

experimentally by exploring the steady-state response of a system to

sinusoidal signals. This is an alternative or a complement to physical

modeling. A more elaborate treatment of transfer functions and the

frequency response will be given in Chapter 9.

Stability: The Routh–Hurwitz Criterion

When using feedback there is always the danger that the system may

become unstable, and it is therefore important to have a stability cri-

terion. The differential equation (2.10) is called stable if all solutions

of the homogeneous equation (2.12) go to zero for any initial condition.

It follows from equation (2.14) that this requires that all the roots of

the characteristic equation

a(s) = sn + a1s
n−1 + · · ·+ an = 0

have negative real parts.

It can often be difficult to analytically compute the roots of a high-

order polynomial. The Routh–Hurwitz criterion is a stability criterion

that does not require explicit calculation of the roots, because it gives

conditions in terms of the coefficients of the characteristic polynomial.

We illustrate the Routh–Hurwitz criterion by describing it for low-

order differential equations. A first-order differential equation is stable

when the coefficient a1 of the characteristic polynomial is positive, since
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the root of the characteristic polynomial will be s = −a1 < 0. A

second-order polynomial has the roots

s =
1

2

(
−a1 ±

√
a21 − 4a2

)
,

and it is easy to verify that the real parts of the roots are both negative

if and only if a1 > 0 and a2 > 0. A third order differential equation

is more complicated, but the roots can be shown to have negative real

parts if and only if

a1, a2, a3 > 0, and a1a2 > a3. (2.18)

The corresponding conditions for a fourth order differential equation

are

a1, a2, a3, a4 > 0, a1a2 > a3, and a1a2a3 > a21 a4 + a23. (2.19)

The Routh–Hurwitz criterion [96] gives similar conditions for arbitrar-

ily high order polynomials. Stability of a linear differential equation

can thus be investigated just by analyzing the signs of various combi-

nations of the coefficients of the characteristic polynomial.

Block Diagrams and Transfer Functions

As we saw already in Chapter 1, control systems are often described

using block diagrams, such as the ones shown in Figures 1.1 and 1.4.

If the behavior of the blocks are represented by transfer functions, the

transfer function of a system can be obtained simply by algebraic ma-
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nipulations. It follows from equation (2.17) that the transfer function

can be derived from the particular solution for the input est. To de-

rive the transfer function for a system composed of several blocks, we

assume that the input signal is an exponential u(t) = est and compute

the corresponding particular solutions for all blocks.

Consider for example the system in Figure 2.5a, which is a series

connection of two systems with the transfer functions G1(s) and G2(s).

Let the input of the system be u(t) = est and assume the system is

stable so that we focus just on the exponential response. The output of

the first block is then y1(t) = G1(s)e
st, which is also an exponential, and

the output of the second system is y(t) = G2(s)y1(s) = G2(s)G1(s)e
st =

G2(s)G1(s)u(t). The transfer function of the system is thus Gyu(s) =

G2(s)G1(s), where we use the convention that the right subscript is the

input and the left subscript is the output, so that y = Gyuu.

Next we will consider parallel connections of systems as shown in

Figure 2.5b. Assuming that the input is u(t) = est, the exponential

outputs of the blocks are y1(t) = G1(s)e
st and y2(t) = Gs(s)e

st. The

output of the system is then

y(t) = G1(s)e
st +G2(s)e

st =
(
G1(s) +G2(s)

)
est,

and the transfer function of a parallel connection of systems with the

transfer functions G(s) and G2(s) is thus Gyu(s) = G1(s) +G2(s).

Finally we will consider the feedback connection shown in Fig-
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Figure 2.5: Interconnections of linear systems. Series (a), parallel

(b) and feedback (c) connections are shown. The transfer functions

for the composite systems can be derived by algebraic manipulations

assuming exponential functions for all signals.

ure 2.5c. If the input u(t) = est is an exponential we find

y(t) = G1(s)e(t) = G1(s)
(
u(t)−G2(s)y(t)

)
= G1(s)

(
est −G2(s)y(t)

)
.

Solving for y(t) gives

y(t) =
G1(s)

1 +G1(s)G2(s)
est.

The transfer function of a feedback connection of systems with the

transfer functions G1(s) and G2(s) is thus

Gyu(s) =
G1(s)

1 +G1(s)G2(s)
. (2.20)

By using polynomials and transfer functions the relations between

signals in a feedback system can thus be obtained by algebra. With

some practice the transfer functions can often be obtained by inspec-

tion, as we explore in more detail in Chapter 9.
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Computations Using Transfer Functions

Many software packages for control system analysis and design permit

direct manipulation of transfer functions. In MATLAB the transfer

function

G(s) =
s+ 1

(s2 + 5s+ 6)

can be created by the commands s = tf(’s’) and G = (s + 1)/(s^2 + 5*s + 6).

Given two transfer functions G1 and G2, we can form series, parallel, and

feedback interconnections using the commands Gs = series(G1, G2),

Gp = parallel(G1, G2), and Gf = feedback(G1, G2) (by default, MAT-

LAB’s feedback() command uses negative feedback).

Software packages can also be used to compute the response of a

linear input/output system, represented by its transfer function, to dif-

ferent types of inputs. A common input that is used for performance

characterization is a signal that is 0 for t ≤ 0 and then 1 for t > 0. This

type of input is called a “step input” and the response of the system

to a step input is called the step response of the system. A typical step

response for a linear system is shown in Figure 2.6. Some standard fea-

tures of a step response are the rise time Tr, settling time Ts, overshoot

Mp, and steady-state value yss, as illustrated in the figure. The step

response for a transfer function G is generated by the MATLAB com-

mand y = step(G). If we want to specify the simulation time interval ex-

plicitly, we can instead use the command y = step(G, T). The response

to a specific input signal can be generated by y = lsim(G, u, t), where
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Figure 2.6: Sample step response. The rise time Tr, overshoot Mp,

settling time Ts, and steady-state value yss describe important perfor-

mance properties of the signal.

u and t are the input and time vectors. Having a transfer function, it

is thus very easy to generate time responses.

A detailed presentation of transfer functions will be given in Chap-

ter 9, where we will see that transfer functions can also be used to

represent systems with time delays and systems described by partial

differential equations.

2.3 USING FEEDBACK TO ATTENUATE DISTURBANCES

Reducing the effects of disturbances is a primary use of feedback. It

was used by James Watt to make steam engines run at constant speed

in spite of varying load and by electrical engineers to make generators

driven by water turbines deliver electricity with constant frequency and

voltage. Feedback is commonly used to alleviate effects of disturbances

in the process industry, for machine tools, and for engine and cruise
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Figure 2.7: Block diagram of a simple feedback system. The con-

troller transfer function is C(s) and the process transfer function is

P (s). The process output is y, the external signals are the reference

r and the load disturbance v.

control in cars. The human body exploits feedback to keep body tem-

perature, blood pressure, and other important variables constant. For

example the pupillary reflex guarantees that the light intensity of the

retina is reasonably constant in spite of large variations in the ambient

light intensity. Keeping variables close to a desired, constant reference

value in spite of disturbances is called a regulation problem.

To discuss disturbance attenuation we consider the system shown in

Figure 2.7. Since we will focus on the effects of a load disturbance v we

will assume for now that the reference r is zero. To derive the transfer

functions from the disturbance input v to the process output y, which

we write as Gyv, we assume that the disturbance is an exponential

function v = est. Applying block diagram algebra to Figure 2.7 gives

y(t) = P (s)est − P (s)C(s)y(t) =⇒ y(t) =
P (s)

1 + P (s)C(s)
est.

The transfer function relating the output y to the load disturbance v
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is thus

Gyv(s) =
P (s)

1 + P (s)C(s)
. (2.21)

To explore the use of feedback to improve disturbance attenuation, we

will focus on a simple process modeled by the first-order differential

equation

dy

dt
+ ay = bu, a > 0, b > 0.

The corresponding transfer function is

P (s) =
b

s+ a
. (2.22)

This model is a reasonable approximation for a physical process if the

storage of mass, momentum, or energy can be captured by a single

state variable. Typical examples are the velocity of a car on a road,

the angular velocity of a rotating system, and the fluid level of a tank.

Proportional Control

We will first investigate the case of proportional control, when the

control signal is proportional to the output error: u = kpe, as intro-

duced already in Section 1.6. The controller transfer function is then

C(s) = kp. The process transfer function is given by equation (2.22)

and the effect of the disturbance on the output is then described by

the transfer function (2.21):

Gyv(s) =
P (s)

1 + P (s)C(s)
=

b/(s+ a)

1 + bkp/(s+ a)
=

b

s+ (a+ bkp)
.
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The relation between the disturbance v and the output y is thus given

by the differential equation

dy

dt
+ (a+ bkp)y = bv.

The closed loop system is stable if a+ bkp > 0. A constant disturbance

v = v0 then gives an output that exponentially approaches the value

y0 = Gyv(0)v0 =
b

a+ bkp
v0

with the time constant T = 1/(a+ bkp). Without feedback, kp = 0 and

for a constant disturbance v0, the output will instead approach bv0/a.

The effect of the disturbance is thus reduced if kp > 0.

We have thus shown that a constant disturbance gives an error

that can be reduced by feedback using a proportional controller. The

error decreases with increasing controller gain. Figure 2.8a shows the

responses for a few values of the controller gain kp.

Proportional-Integral (PI) Control

The PI controller, introduced in Section 1.6, is described by

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ. (2.23)

To determine the transfer function of the controller we differentiate to

obtain

du

dt
= kp

de

dt
+ kie,
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Figure 2.8: Step responses for a first-order, closed loop system with

proportional control (a) and PI control (b). The process transfer func-

tion is P = 2/(s + 1). The controller gains for proportional control

are kp = 0, 0.5, 1, and 2. The PI controller is designed using equa-

tion (2.28) with ζc = 0.707 and ωc = 0.707, 1, and 2, which gives the

controller parameters kp = 0, 0.207, and 0.914 and ki = 0.25, 0.50,

and 2.

and we find that the transfer function is C(s) = kp+ki/s. To investigate

the effect of the disturbance v on the output we use the block diagram

in Figure 2.7, and the transfer function from v to y is

Gyv(s) =
P (s)

1 + P (s)C(s)
=

bs

s2 + (a+ bkp)s+ bki
. (2.24)

Using the relationship between transfer functions and differential equa-

tions given by equations (2.10) and (2.16), it follows that the relation

between the load disturbance and the output is given by the differential
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equation

d2y

dt2
+ (a+ bkp)

dy

dt
+ bkiy = b

dv

dt
. (2.25)

Notice that since the disturbance enters as a derivative on the right

hand side, a constant disturbance gives no steady-state error. The

same conclusion can be drawn from the observation that Gyv(0) = 0.

This is consistent with the discussion of integral action and steady-state

error in Section 1.6.

To find suitable values of the controller parameters kp and ki, we

consider the characteristic polynomial of the differential equation (2.25),

acl(s) = s2 + (a+ bkp)s+ bki. (2.26)

We can assign arbitrary roots to the characteristic polynomial by choos-

ing the controller gains kp and ki. The most common case is that we

assign complex roots that give the characteristic polynomial

(s+ σd + i ωd)(s+ σd − i ωd) = s2 + 2σds+ σ2
d + ω2

d. (2.27)

By construction, this polynomial has roots at s = −σd± i ωd. The gen-

eral solution to the homogeneous equation is then a linear combination

of the terms

e−σdt sin(ωdt), e−σdt cos(ωdt),

which are damped sine and cosine functions, as shown in the lower

middle plot in Figure 2.3. The coefficient σd determines the decay rate

and the parameter ωd, called the damped frequency, gives the frequency
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of the decaying oscillation. Identifying coefficients of equal powers of s

in the polynomials (2.26) and (2.27) gives

kp =
2σd − a

b
, ki =

σ2
d + ω2

d

b
. (2.28)

We can thus choose the controller gains to give a desired closed loop

response.

Instead of parameterizing the closed loop system in terms of σd

and ωd it is common practice to use the (undamped) natural frequency

ωc =
√
σ2
d + ω2

d and the damping ratio ζc = σd/ωc. The closed loop

characteristic polynomial is then

acl(s) = s2 + 2σds+ σ2
d + ω2

d = s2 + 2ζcωcs+ ω2
c .

This parameterization has the advantage that ζc, which is in the range

[−1, 1], determines the shape of the response and ωc gives the response

speed.

Figure 2.8b shows the output y and the control signal u for ζc =

1/
√
2 ≈ 0.707 and different values of the design parameter ωc. Propor-

tional control gives a steady-state error that decreases with increasing

controller gain kp. With PI control the steady-state error is zero. Both

the decay rate and the peak error decrease when the design parameter

ωc is increased. Larger controller gains give smaller errors and control

signals that react more quickly to the disturbance.

With the controller parameters (2.28), the transfer function (2.24)



88 CHAPTER 2

from disturbance v to process output y becomes

Gyv(s) =
P (s)

1 + P (s)C(s)
=

bs

s2 + 2ζcωcs+ ω2
c

.

For efficient attenuation of disturbances, it is desirable that |Gyv(iω)| is

small for all ω. For small values of ω we have |Gyv(iω)| ≈ bω/ω2
c , while

for large ω we have |Gyv(iω)| ≈ b/ω. The largest value of |Gyv(iω)| is

b/(2ζcωc) for ω = ωc. It thus follows that a large value of ωc gives good

load disturbance attenuation.

In summary, we find that transfer function analysis gives a simple

way to find the parameters of PI controllers for processes whose dy-

namics can be approximated by a first-order system. The technique can

be generalized to more complicated systems but the controller will be

more complex. To achieve the benefits of large control gains the model

must be accurate over wide frequency ranges, as will be discussed next.

Unmodeled Dynamics

The analysis we have made so far indicates that there are no limits to

the performance that can be achieved. Figure 2.8b shows that arbi-

trarily fast response can be obtained simply by making ωc sufficiently

large. In reality there are of course limits on what is achievable. One

reason is that the controller gains increase with ωc: the proportional

gain is kp = (2ζcωc − a)/b and the integral gain is ki = ω2
c/b. A large

value of ωc thus gives large controller gains and the control signal may
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saturate. Another reason is that the model (2.22) is a simplification:

it is only valid in a given frequency range. If the model is instead

P (s) =
b

(s+ a)(1 + sT )
, (2.29)

where the term 1+sT represents the dynamics of sensors, actuators, or

other dynamics that were neglected when deriving equation (2.22)—so-

called unmodeled dynamics—the closed loop characteristic polynomial

for the closed loop system becomes

acl = s(s+ a)(1 + sT ) + b(kps+ ki) = s3T + s2(1 + aT ) + 2ζcωcs+ ω2
c .

It follows from the Routh–Hurwitz criterion (2.18) that the closed loop

system is stable if ω2
cT < 2ζcωc(1 + aT ) or if

ωcT < 2ζc(1 + aT ).

The frequency ωc and the achievable response time are thus limited by

the unmodeled dynamics represented by T , which typically is smaller

than the time constant 1/a of the process. When models are developed

for control it is therefore important to also consider the unmodeled

dynamics.

The fact that unmodeled dynamics limit the performance of a feed-

back system is an important property and must be considered during

the system design. It is common to use simplified models when design-

ing components of complex systems and if the unmodeled dynamics

of those components (or the other subsystems they interact with) are
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not properly taken into account, the implementation of the system can

display poor behavior (of which instability is one extreme example).

As we shall see in later chapters, it is the ability to reason about the

effects of uncertainty that makes control theory a particularly powerful

mathematical tool for systems design.

2.4 USING FEEDBACK TO TRACK REFERENCE SIGNALS

Another major application of feedback is to make a system output

follow a reference value, which is called the servo problem. Cruise

control, steering of a car, and tracking a satellite with an antenna or

a star with a telescope are some examples. Other examples are high

performance audio amplifiers, machine tools, and industrial robots.

To illustrate reference signal tracking we will consider the system in

Figure 2.7 where the process is a first-order system and the controller

is a PI controller with proportional gain kp and integral gain ki. The

transfer functions of the process and the controller are

P (s) =
b

s+ a
, C(s) =

kps+ ki
s

. (2.30)

Since we will focus on following the reference signal r, we will neglect

the load disturbance and set v = 0. Applying block diagram algebra

to the system in Figure 2.7, we find that the transfer function from the
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reference signal r to the output y is

Gyr(s) =
P (s)C(s)

1 + P (s)C(s)
=

bkps+ bki
s2 + (a+ bkp)s+ bki

. (2.31)

Since Gyr(0) = 1 it follows that r = y when r and y are constant,

independent of the values of the parameters a and b, as long as the

closed loop system is stable. The steady-state output is thus equal to

the reference, a consequence of the integral action in the controller.

To determine suitable values of the controller parameters kp and

ki, we proceed as in Section 2.3 by choosing controller parameters that

make the closed loop characteristic polynomial

acl(s) = s2 + (a+ bkp)s+ bki (2.32)

equal to s2+2ζcωcs+ω
2
c with ζc > 0 and ωc > 0. Identifying coefficients

of equal powers of s in these polynomials gives

kp =
2ζcωc − a

b
, ki =

ω2
c

b
, (2.33)

which is equivalent to equation (2.28). Notice that integral gain in-

creases with the square of ωc. Figure 2.9 shows the output signal y

and the control signal u for different values of the design parameters ζc

and ωc. The response time decreases with increasing ωc and the initial

value of the control signal also increases because it takes more effort to

move rapidly. The overshoot decreases with increasing ζc. For ωc = 2,

the design choice ζc = 1 gives a short settling time and a response

without overshoot.
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Figure 2.9: Responses to a unit step change in the reference signal

for different values of the design parameters ωc and ζc. The left figure

shows responses for fixed ζc = 0.707 and ωc = 1, 2, and 5. The right

figure shows responses for ωc = 2 and ζc = 0.5, 0.707, and 1. The

process parameters are a = b = 1. The initial value of the control

signal is kp.

It is desirable that the output y will track the reference signal r for

time-varying references. This means that we would like the transfer

function Gyr(s) to be close to 1 for large frequency ranges. With the

controller parameters (2.33), it follows from equation (2.31) that

Gyr(s) =
P (s)C(s)

1 + P (s)C(s)
=

(2ζcωc − a)s+ ω2
c

s2 + 2ζcωcs+ ω2
c

.

Since Gyr(0) = 1, tracking of constant inputs is perfect. In addition, if

s = iω is smaller in magnitude than ωc, then using some approxima-

tions it can be shown that Gyr(s) will be close to one. The frequency

ωc thus determines the upper bound of the frequency of reference sig-

nals that can be tracked with small error, and this bound is referred
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to as the bandwidth of the closed loop system. The frequency response

of Gyr therefore provides a quantitative representation of the tracking

abilities.

Controllers with Two Degrees of Freedom

The control law in Figure 2.7 has error feedback because the control

signal u is generated from the error e = r − y. With proportional

control, a step in the reference signal r gives an immediate step change

in the control signal u. This rapid reaction can be advantageous, but

it may give large overshoot, which can be avoided by a replacing the

PI controller in equation (2.23) with a controller of the form

u(t) = kp
(
βr(t)− y(t)

)
+ ki

∫ t

0

(r(τ)− y(τ)) dτ. (2.34)

In this modified PI algorithm, the proportional action only acts on

the fraction β of the reference signal. The signal transmissions from

reference r to u and from output y to u can be represented by the (open

loop) transfer functions

Cur(s) = βkp +
ki
s
, −Cuy(s) = kp +

ki
s
= C(s). (2.35)

The controller (2.34) is called a controller with two degrees of freedom

since the transfer functions Cur(s) and Cuy(s) are different.

A block diagram of a closed loop system with a PI controller having

two degrees of freedom is shown in Figure 2.10. Let the process transfer

function be P (s) = b/(s + a). The transfer functions from reference r
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Figure 2.10: Block diagram of a closed loop system with a PI con-

troller having an architecture with two degrees of freedom.

and disturbance v to output y are

Gyr(s) =
bβkps+ bki

s2 + (a+ bkp)s+ bki
, Gyv(s) =

bs

s2 + (a+ bkp)s+ bki
.

(2.36)

Comparing with the corresponding transfer function for a controller

with error feedback in equations (2.24) and (2.31), we find that the

response to the load disturbances is the same but the response to ref-

erence signals is different.

A simulation of the closed loop system for a = 0 and b = 1 is shown

in Figure 2.11. The figure shows that the parameter β has a significant

effect on the responses. Comparing the system with error feedback

(β = 1) to the system with smaller values of β we find that using a

system with two degrees of freedom gives less overshoot and gentler

control actions.

The example shows that reference signal response can be improved

by using a controller architecture having two degrees of freedom. In

Section 12.4 we will further show that the responses to reference signals
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Figure 2.11: Response to a step change in the reference signal for

a system with a PI controller having two degrees of freedom. The

process transfer function is P (s) = 1/s and the controller gains are

kp = 1.414, ki = 1, and β = 0, 0.5, and 1.

and disturbances can be completely separated by using a more general

system architecture. To use a system with two degrees of freedom

both the reference signal r and the output signal y must be measured.

There are situations where only the error signal e = r − y can be

measured; typical examples are DVD players, optical memories, and

atomic force microscopes. In these cases, only single degree of freedom

(error feedback) controllers can be used.

2.5 USING FEEDBACK TO PROVIDE ROBUSTNESS

Feedback can be used to make good systems from imprecise compo-

nents. Black’s invention of the feedback amplifier for the telephone

network is an early example [46]. Black used negative feedback to

design extremely good amplifiers with linear characteristics from com-

ponents with nonlinear and time-varying properties. Since signals are

transmitted over long distances they must be amplified. At the time,
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the thermionic valve—a type of vacuum tube invented by Lee de Forest

in 1906—was the only available technology for amplifying electric sig-

nals until the transistor was in invented in 1947. Vacuum tubes were

the key to develop radio, telephony, and electronics in the first half of

the 20th century. They are still used by some hi-fi aficionados in high

quality audio amplifiers.

Vacuum tubes can give high gain but they have nonlinear and time

varying input/output characteristics that distort the transmitted sig-

nals. Bode [52] expressed the problem as follows:

Most of you with hi-fi systems are no doubt proud of the quality

of your amplifiers, but I doubt whether many of you would care to

listen to the sound after the signal had gone in succession through

several dozen or several hundred even of your fine amplifiers.

The effect is illustrated in Exercise 2.9.

Black’s idea to develop a good amplifier was to close a loop with

negative feedback around the tube amplifier. In this way he could

obtain a closed loop system with a linear input/output relation having

constant gain. The general recipe is to localize the nonlinearities and

the source of process variations, and to close feedback loops around

them.



FEEDBACK PRINCIPLES 97

Reducing Effects of Parameter Variations and Nonlinearities

Consider an amplifier with a static, nonlinear input/output relation

with considerable parameter variability, as illustrated in Figure 2.12a.

The nominal input/output characteristic is shown as a dashed bold line

and examples of variations as thin lines. The nonlinearity in the figure

is given by

y = F (u) = α(u+ βu3), −3 ≤ u ≤ 3. (2.37)

The nominal values corresponding to the dashed line are α = 0.2 and

β = 1. The variations of the parameters α and β are in the ranges

0.1 ≤ α ≤ 0.5, 0 ≤ β ≤ 2. The responses of the system to the input

u(t) = sin(t) + sin(πt) + sin(π2t) (2.38)

are shown in Figure 2.12b. The desired response y = u is shown as a

solid bold line and responses for a range of parameters are shown with

thin lines. The nominal response of the nonlinear system is shown as a

dashed bold line, and we see that it is distorted due to the nonlinearity.

Notice in particular the heavy distortion for both small and large signal

amplitudes.

The behavior of the system is clearly not satisfactory, but it can be

improved significantly by introducing feedback. A block diagram of a

system with a simple integral controller is shown in Figure 2.13, where

the reference input is now taken as r. Figure 2.14 shows the behavior
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Figure 2.12: Responses of a static nonlinear system. The left figure

shows the input/output relations of the open loop systems and the

right figure shows responses to the input signal (2.38). The ideal

response is shown with solid bold lines. The nominal response of the

nonlinear system is shown using dashed bold lines and the responses

for different parameter values are shown using thin lines. Notice the

large variability in the responses.

of the closed loop system with the same parameter variations as in

Figure 2.12. The input/output plot in Figure 2.14a is a scatter plot of

the inputs and the outputs of the feedback system. The input/output

relation is practically linear and close to the desired response. There is

some variability because of the dynamics introduced by the feedback.

−1

u
Σ

er
C = ki

s

y

P = F (u)

Figure 2.13: Block diagram of a nonlinear system with integral

feedback.



FEEDBACK PRINCIPLES 99

-2 0 2

-2

0

2
O
u
tp
u
t
y

Input u

(a) I/O relation-

ships

0 1 2

0

2

4

Time t
O
u
tp
u
t
y

(b) Output signals

0 1 2
-0.2

-0.1

0

0.1

0.2

Time t

E
rr
or

e

(c) Error

Figure 2.14: Responses of the systems with integral feedback (ki =

1000). The left figure shows the input/output relationships for the

closed loop systems, and the center figure shows responses to the input

signal (2.38) (compare to the corresponding responses in Figure 2.12a

and b). The right figure shows the individual errors (solid lines) and

the approximate error given by equation (2.42) (dashed line).

Figure 2.14b shows the responses to the reference signal; notice the

dramatic improvement compared with Figure 2.12b. The tracking error

is shown in Figure 2.14c.

Nonlinear Analysis and Approximations
�

Analysis of a closed loop system with nonlinearities is often difficult.

We can, however, obtain significant insight by using approximations.

We illustrate a few ideas using the nonlinear amplifier example.

We first observe that the system is linear when β = 0. In other

situations we can approximate the nonlinear function by a straight line

around an operating point u = u0. The slope of the nonlinear function

at u = u0 is F ′(u0) and we will approximate the process with a linear
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system with the gain F ′(u0). The transfer functions of the process and

the controller are

P (s) = F ′(u0) = α(1 + 3βu20) = b, C(s) =
ki
s
, (2.39)

where u0 denotes the operating condition. It follows from equation (2.21)

that the transfer functions relating the output y and the error e to the

reference signal r are

Gyr(s) =
bki

s+ bki
, Ger(s) = 1−Gyr =

s

s+ bki
. (2.40)

The closed loop system is a first-order system with the pole s = −bki.

The process gain b = α(1 + 3βu20) depends on the values of α, β,

and u0, and its smallest value is 0.1. If the integral gain is chosen as

ki = 1000, the smallest value of the closed loop pole is 100 rad/s, which

is fast compared to the high-frequency component π2 rad/s of the input

signal. It follows from equation (2.40) that the error e(t) is given by

the differential equation

de

dt
= −bkie+

dr

dt
,

dr

dt
= cos(t) + π cos(πt) + π2 cos(π2t). (2.41)

Neglecting the term de/dt in equation (2.41) gives

e(t) ≈ 1

bki

dr

dt
≈ π2

bki
cos(π2t). (2.42)

An estimate of the largest error e(t) ≈ 0.1 cos(π2t) is obtained for the

smallest value of b = 0.1. It is shown as a dashed line in Figure 2.14c,

and we see that it gives a good estimate of the maximum error across
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the uncertain parameter space.

This analysis is based on the assumption that the amplifier can

be modeled by a constant gain. The closed loop system is however a

dynamic system because the controller is an integrator. It follows from

equation (2.40) that the closed loop dynamics have the time constant

Tcl = 1/(bki). If the amplifier has dynamics, its time constant must

thus be small compared to Tcl in order to provide good tracking. It

follows that the largest admissible integral gain ki is determined by the

unmodeled dynamics.

This example illustrates that feedback can be used to design an

amplifier that has practically linear input/output relation even if the

basic amplifier is nonlinear with strongly varying characteristics.

2.6 POSITIVE FEEDBACK

Most of this book is focused on negative feedback because of its amaz-

ingly good properties, which have been illustrated in the previous sec-

tions. In this section we will briefly discuss positive feedback, which

has complementary properties. In spite of this, positive feedback has

found good use in several contexts.

Systems with negative feedback can be well understood by linear

analysis. To understand systems with positive feedback it is necessary

to consider nonlinear effects, because without the nonlinearities the
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Figure 2.15: Schematic diagram of the neural network that con-

trols swimming motions in the marine mollusk Tritonia, which has

both positive and negative feedback [256]. An excitatory connection

(positive feedback) is denoted with a line ending with an arrow, an

inhibitory interaction (negative feedback) is denoted with an arrow

ending with a circle. (Figure adapted from [256].)

instability caused by positive feedback will grow without bound. The

nonlinear elements can create interesting and useful effects by limiting

the signals.

Positive feedback is common in many settings. Encouraging a stu-

dent or a coworker when they have performed well encourages them do

to even better. In biology, it is standard to distinguish inhibitory con-

nections (negative feedback) from excitatory feedback (positive feed-

back) as illustrated in Figure 2.15. Neurons use a combination of pos-

itive and negative feedback to generate spikes.

Positive feedback may cause instabilities. Exponential growth, where

the rate of change of a quantity x is proportional to x,

dx

dt
= αx,
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is a typical example, which results in an unbounded solution x(t) = eαt.

In nature, exponential growth of a species is limited by the finite

amount of food. Another common example is when a microphone is

placed close to a speaker in public address systems, resulting in a howl-

ing noise. Positive feedback can create stampedes in cattle herds, runs

on banks, and boom-bust behavior. In all these cases there is exponen-

tial growth that is finally limited by finite resources.

The notions of positive and negative feedback are clear if the feed-

back is static, as we saw for example in Section 2.1. If the feedback is

dynamic its action can change from positive to negative depending on

the frequency of the signals and hence more care is required. Use of

positive feedback will be illustrated by a few examples.

Hewlett’s Oscillator

William Hewlett used positive and negative feedback very cleverly to

design a stable oscillator in his master’s thesis from Stanford University

in 1939. The oscillator was the first product made by Hewlett-Packard,

the company that Hewlett founded with David Packard in 1939 [200].

Electronic circuits in the 1930s and 1940s were based on vacuum

tube technology. The simplest vacuum tube amplifier has three elec-

trodes: a cathode, grid, and anode enclosed in a glass tube with vac-

uum. The cathode, which is heated with a filament, emits free elec-

trons. A current is created by applying a high positive voltage between
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(a) Hewlett’s oscillator

(b) Operational amplifier

version

Figure 2.16: Circuit diagrams of William Hewlett’s oscillator. (a)

Original system with vacuum tubes. (b) Equivalent realization with

an operational amplifier.

the anode and the cathode. The current can be regulated by changing

the voltage on a grid positioned between the anode and the cathode.

The current depends on the voltage difference between the grid and

the cathode, Vg − Vc. Increasing this voltage difference increases the

current. The vacuum tube amplifier can be regarded as a valve for

controlling a current by applying a voltage to the grid.

A schematic diagram of Hewlett’s oscillator is shown in Figure 2.16a.

Signals are amplified by two vacuum tubes and there are two feedback

loops. One loop provides positive feedback from the anode of the second
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tube to the grid of the first tube via the network R1, C1, R2, C2. The

second feedback loop provides negative feedback from the output of the

second tube to the cathode of the first tube via the resistor Rf and the

lamp which has resistance Rb. With a proper gain the positive feedback

loop generates an oscillation with the frequency ω = 1/
√
R1R2C1C2.

The gain is given by the negative feedback loop from the anode of the

second loop to the cathode of the first loop, through the resistor Rf

and the lamp Rb. This loop has nonlinear gain because the resistance

Rb of the lamp increases with increasing temperature. An increase of

the amplitude of Vout increases the current through the lamp, which re-

duces the gain. The result is that an oscillation with stable amplitude

and frequency is obtained.

The feedback loops are more clearly visible in the implementation of

the oscillator based on an operational amplifier, shown in Figure 2.16b.

Implementation of Integral Action by Positive Feedback

Early feedback controllers made of use of integral action that was im-

plementing by using positive feedback around a system with first order

dynamics, as shown in the block diagram of Figure 2.17. Intuitively

the system can be explained as follows. Proportional feedback typi-

cally gives a steady-state error. This can be overcome by adding a bias

signal that cancels the steady-state error. In Figure 2.17 the bias is
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1

1 + sTi

Σkp
e u

Figure 2.17: Implementation of integral action by positive feedback.

estimated by low-pass filtering the control signal and adding it back

into to the signal path. This serves to compensate for any error that

is present.

The circuit can be understood better by a little analysis. Using

block diagram algebra we find that the transfer function of the system

is

Gue =
kp

1− 1/(1 + sTi)
= kp +

kp
sTi

,

which is a transfer function of a PI controller. This way of implementing

integral action is still used in many industrial regulators.

Positive Feedback Combined with Saturation

Systems with interesting and useful properties can be obtained by com-

bining linear and nonlinear components with positive feedback. In this

section we consider an example of a simple form of memory imple-

mented using a feedback circuit.

Consider the system in Figure 2.18, which consists of a linear block

with first-order dynamics and a nonlinear block with positive feedback.

Assume that the nonlinearity is
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F (x)
y

Σ
r

b

s+ a

+1

x

Figure 2.18: Block diagram of system with positive feedback and

saturation. The parameters are a = 1 and b = 10.

y = F (x) =
x

1 + |x| , which gives x = F−1(y) =
y

1− |y| .

The system is described by the differential equation

dx

dt
= −ax+b(r+y) = b(r−G(y)), G(y) :=

aF−1(y)

b
−y =

ay

b(1− |y|)−y.

Rewriting the dynamics in terms of the variable y = F (x), we get the

following relation between the input r and the output y:

dy

dt
=
dF (x)

dt
=
dF (x)

dx

∣∣∣∣
F−1(y)

·
dx

dt
= F ′(F−1(y)

)
· b(r −G(y)). (2.43)

The function F is monotone with F ′(x) > 0 for all x and so the equi-

librium points for a constant input r are given by the solutions of

r = G(y). The graph of the function G is shown in Figure 2.19a

for a = 1 and b = 4. The function G(y) has a local maximum

rmax = (1 −
√
a/b)2 = 0.25 at y = −1 +

√
a/b = −0.5 and a local

minimum rmin = −0.25 at y = 0.5. The set of possible equilibrium

points for the system can be determined from Figure 2.19a by fixing

r and identifying all values of y that satisfy r = G(y). There is one

unique equilibrium if |r| > 0.25, two equilibrium points if |r| = 0.25

and three equilibrium points if |r| < 0.25.
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Figure 2.19: System with positive feedback and saturation. (a) For

a fixed reference value r, the intersections with the curve r = G(y)

corresponds to equilibrium points for the system. Equilibrium points

at selected values of r are shown by circles (note that for some ref-

erence values there are multiple equilibrium points). Arrows indicate

the sign of the derivative of y away from the equilibrium points, with

the solid portions of r = G(y) representing stable equilibrium points

and dashed portions representing unstable equilibrium points. (b)

The hysteretic input/output map given by the y = G†(r), showing

that some values of r have single equilibrium points while others have

two possible (stable) steady-state output values. (c) Simulation of

the system dynamics showing the reference r (dashed curve) and the

output y (solid curve).
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The differential equation (2.43) is of first order and the equilibrium

point ye is stable if G
′(ye) is positive and unstable if G′(ye) is negative.

Stable equilibrium points are shown in solid lines and unstable equilib-

rium points by dashed lines in Figure 2.19a. The differential equation

thus has two stable equilibrium points when rmin < r < rmax and one

stable equilibrium point when |r| ≥ rmax.

To understand the behavior of the system, we will explore what

happens when the reference is changed. If the reference r is zero there

are two stable equilibrium points, as can be seen in Figure 2.19a by

looking at the horizontal line at r = 0 (labeled C). We assume that the

system is at the stable left equilibrium point, where y is negative. If

the reference is increased, the equilibrium point moves slightly to the

right. When the reference reaches the value 0.25, which corresponds

an unstable equilibrium, the solution moves towards the right stable

equilibrium point, where y is positive, as indicated by the line marked

B in Figure 2.19a. If the value of r is increased further, the output y

also increases. The static input/output relation is thus given by the

“inverse function” y = G†(r), which gives the value(s) of the stable

output values as a function of r. The system has hysteretic behavior

as shown in Figure 2.19b, where the dashed line indicates the switches

between the branches of the solution curves, and they occur at r =

±rmax = ±0.25.

The temporal behavior of the system is illustrated by the simula-
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tions in Figure 2.19c, where the input r is dashed and the output y is

solid. The shapes of the signals depend on the parameters; the values

a = 5, b = 50 were used in the figure to give more distinct switches.

The hysteresis width is 2rmax and the parameter a gives the sharpness

of the corners of the output. The circuit shown in the Figure 2.18 is

commonly used as a trigger to detect changes in a signal (known as

a Schmitt trigger). It is also used as a memory element in solid state

memories, illustrating that feedback can be used to obtain discrete

behavior.

2.7 FURTHER READING

The books by Bennett [34, 35] and Mindel [183, 184] give interest-

ing perspective on the development of control. Much of the mate-

rial touched upon in this chapter is referred to as “classical control”;

see [62], [129], and [241] for early texts on this material. A more thor-

ough introduction to the principles of feedback with minimal mathe-

matical prerequisites is available in the textbook Feedback Control for

Everyone [7]. The notion of controllers with two degrees of freedom

was introduced by Horowitz [120].

The analysis introduced here will be elaborated in the rest of the

book. Transfer functions and other descriptions of dynamics are dis-

cussed in Chapters 3 and 9, methods to investigate stability in Chap-
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ters 5 and 10. The simple method to find parameters of controllers

based on matching of coefficients of the closed loop characteristic poly-

nomial is developed further in Chapters 7, 8, and 13. Feedforward

control is discussed in Sections 8.5 and 12.4.

EXERCISES

2.1 (Transfer functions and differential equations) Let y ∈ R and u ∈

R. Solve the differential equations

dy

dt
+ ay = bu,

d2y

dt2
+ 2

dy

dt
+ y = 2

du

dt
+ u,

for t > 0. Determine the responses to a unit step u(t) = 1 and the

exponential signal u(t) = est when the initial condition is zero. Derive

the transfer functions of the systems.

2.2 (Effect of zeros on time responses) Let y0(t) be the response of a

system with the transfer function G0(s) to a given input. The transfer

function G(s) = (1 + sT )G0(s) has the same zero frequency gain but

it has an additional zero at z = −1/T . Let y(t) be the response of the

system with the transfer function G(s) and show that

y(t) = y0(t) + T
dy0
dt
, (2.44)

Next consider the system with the transfer function

G(s) =
s+ a

a(s2 + 2s+ 1)
,
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which has unit zero-frequency-gain (G(0) = 1). Use the result in equa-

tion (2.44) to explore the effect of a zero at s = −1/T on the step

response of a system.

2.3 (PI control) Consider a closed loop system with process dynamics

and a PI controller modeled by

dy

dt
+ ay = bu, u = kp(r − y) + ki

∫ t

0

(
r(τ)− y(τ)) dτ,

where r is the reference, u is the control variable, and y is the process

output.

a) Derive a differential equation relating the output y to the reference

r by direct manipulation of the equations and compute the transfer

function Hyr(s). Make the derivations both by direct manipulation of

the differential equations and by polynomial algebra.

b) Draw a block diagram of the system and derive the transfer func-

tions of the process P (s) and the controller C(s).

c) Use block diagram algebra to compute the transfer function from

reference r to output y of the closed loop system and verify that your

answer matches your answer in part (a).

2.4 (Zero frequency gain) Consider the system described by the differ-

ential equation (2.10) and the transfer function (2.16). Determine the

zero frequency gain of the system by computing the particular solution
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of (2.10) for a constant input u(t) = u0. Compare with the value of

G(0).

2.5 (Pupil response) The dynamics of the pupillary reflex can be ap-

proximated by a linear system with the transfer function

P (s) =
0.2(1− 0.1s)

(1 + 0.1s)3
.

Assume that the nervous system that controls the pupil opening is

modeled as a proportional controller with the gain k. Use the Routh–

Hurwitz criterion to determine the largest gain that gives a stable closed

loop system.

2.6 (Parameter sensitivity) Consider the feedback system in Figure 2.7.

Let the disturbance v = 0, P (s) = 1 and C(s) = ki/s. Determine the

transfer function Gyr from reference r to output y. Also determine how

much Gyr is changed when the process gain changes by 10%.

2.7 (PID control design) The calculations in Section 2.3 can be inter-

preted as a design method for a PI controller for a first-order system.

A similar calculation can be made for PID control of a second-order

system. Let the transfer functions of the process and the controller be

P (s) =
b

s2 + a1s+ a2
, C(s) = kp +

ki
s
+ kds.

Show that the controller parameters

kp =
(1 + 2αζc)ω

2
c − a2

b
, ki =

αω3
c

b
, kd =

(α + 2ζc)ωc − a1
b

.
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give a closed loop system with the characteristic polynomial

(s2 + 2ζcωcs+ ω2
c )(s+ αωc).

2.8 (Linear behavior via feedback) Consider an open loop system with

the nonlinear input/output relation y = F (u). Assume that the system

is closed with the proportional controller u = k(r − y). Show that the

input/output relation of the closed loop system is

y +
1

k
F−1(y) = r.

Estimate the largest deviation from ideal linear response y = r. Illus-

trate by plotting the input output responses for a) F (u) =
√
u and b)

F (u) = u2 with 0 ≤ u ≤ 1 and k = 5, 10, and 100.

2.9 (Nonlinear distortion) The following MATLAB commands will load

and play Handel’s Messiah

load handel % Load Handel’s Messiah

sound(y, Fs); pause % Play the original music through speaker

Write a MATLAB function that implements a nonlinear amplifier with

static gain

y = 2(z + az(1− z)− 0.5), z = (x+ 1)/2,

where x is the original signal (assumed to take values between −1 and

1) and a is the amplifier gain. Compare the sound that is obtained
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when the music is then sent through two amplifiers with the given

nonlinearity and gain a = 1 versus when the music is sent through the

same two amplifiers with feedback k = 10.

2.10 (Queing systems) Consider a queuing system modeled by

dx

dt
= λ− µmax

x

x+ 1
,

where λ is the acceptance rate of jobs and x is the length of the queue.

The model is nonlinear and the dynamics of the system changes signif-

icantly with the queuing length (see Example 3.15 for a more detailed

discussion). Investigate the situation when a PI controller is used for

admission control. Let r be the rate of arrival of job requests and model

the (average) arrival intensity λ as

λ = kp(r − x) + ki

∫ t

(r(t)− x(t))dt.

The controller parameters are determined from the approximate model

dx

dt
= λ.

Find controller parameters that give the closed loop characteristic poly-

nomial s2+2s+1 for the approximate model. Investigate the behavior

of the control strategy for the full nonlinear model by simulation for

the input r = 5 + 4 sin(0.1t).





Chapter Three

System Modeling

... I asked Fermi whether he was not impressed by the agreement

between our calculated numbers and his measured numbers. He

replied, “How many arbitrary parameters did you use for your

calculations?” I thought for a moment about our cut-off proce-

dures and said, “Four.” He said, “I remember my friend Johnny

von Neumann used to say, with four parameters I can fit an ele-

phant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for

meson-proton scattering to Enrico Fermi in 1953 [79].

A model is a precise representation of a system’s dynamics used to

answer questions via analysis and simulation. The model we choose

depends on the questions we wish to answer, and so there may be

multiple models for a single dynamical system, with different levels of

fidelity depending on the phenomena of interest. In this chapter we

provide an introduction to the concept of modeling and present some
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basic material on two specific methods commonly used in feedback and

control systems: differential equations and difference equations.

3.1 MODELING CONCEPTS

A model is a mathematical representation of a physical, biological, or

information system. Models allow us to reason about a system and

make predictions about how a system will behave. In this text, we

will mainly be interested in models of dynamical systems describing

the input/output behavior of systems, and we will often work in “state

space” form. As pointed out already in Chapter 1, when using models

it is important to keep in mind that they are an approximation of the

underlying system. Analysis and design using models must always be

done carefully to ensure that the limits of the model are respected.

Roughly speaking, a dynamical system is one in which the effects

of actions do not occur immediately. For example, the velocity of a

car does not change immediately when the gas pedal is pushed nor

does the temperature in a room rise instantaneously when a heater

is switched on. Similarly, a headache does not vanish right after an

aspirin is taken, requiring time for it to take effect. In business systems,

increased funding for a development project does not increase revenues

in the short term, although it may do so in the long term (if it was a

good investment). All of these are examples of dynamical systems, in
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which the behavior of the system evolves with time.

In the remainder of this section we provide an overview of some of

the key concepts in modeling. The mathematical details introduced

here are explored more fully in the remainder of the chapter.

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary

motion. The basis was detailed observations of the planets by Tycho

Brahe and the results of Kepler, who found empirically that the orbits

of the planets could be well described by ellipses. Newton embarked

on an ambitious program to try to explain why the planets move in

ellipses, and he found that the motion could be explained by his law

of gravitation and the formula stating that force equals mass times

acceleration. In the process he also invented calculus and differential

equations.

One of the triumphs of Newton’s mechanics was the observation

that the motion of the planets could be predicted based on the current

positions and velocities of all planets. It was not necessary to know

the past motion. The state of a dynamical system is a collection of

variables that completely captures the past motion of a system for the

purpose of predicting future motion. For a system of planets the state

is simply the positions and the velocities of the planets. We call the

set of all possible states the state space.



120 CHAPTER 3

rest position

m

k

c(q̇)

q

Figure 3.1: Spring–mass system with nonlinear damping. The posi-

tion of the mass is denoted by q, with q = 0 corresponding to the rest

position of the spring. The forces on the mass are generated by a lin-

ear spring with spring constant k and a damper with force dependent

on the velocity q̇.

A common class of mathematical models for dynamical systems

is ordinary differential equations (ODEs). In mechanics, one of the

simplest such differential equations is that of a spring–mass system

with damping:

mq̈ + c(q̇) + kq = 0. (3.1)

This system is illustrated in Figure 3.1. The variable q ∈ R represents

the position of the mass m with respect to its rest position. We use

the notation q̇ to denote the derivative of q with respect to time (i.e.,

the velocity of the mass) and q̈ to represent the second derivative (ac-

celeration). The spring is assumed to satisfy Hooke’s law, which says

that the force is proportional to the displacement. The friction element

(damper) is taken as a nonlinear function c(q̇), which can model effects

such as Coulomb friction and viscous drag. The position q and veloc-

ity q̇ represent the instantaneous state of the system. We say that this
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(b) Phase portrait

Figure 3.2: Illustration of a state model. A state model gives the

rate of change of the state as a function of the state. The plot on

the left shows the evolution of the state as a function of time. The

plot on the right, called a phase portrait, shows the evolution of the

states relative to each other, with the velocity of the state denoted by

arrows.

system is a second-order system since it has two states that we combine

in the state vector x = (q, q̇).

The evolution of the position and velocity can be described using

either a time plot or a phase portrait, both of which are shown in

Figure 3.2. The time plot, on the left, shows the values of the individual

states as a function of time. The phase portrait, on the right, shows

the traces of some of the states from different initial conditions: it

illustrates how the states move in the state space. In the phase portrait

we have also shown arrows that represent the velocity ẋ of the state x in

a few points. The phase portrait gives a strong intuitive representation

of the equation as a vector field or a flow. While systems of second
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order (two states) can be represented in this way, unfortunately it is

difficult to visualize equations of higher order using this approach.

The differential equation (3.1) is called an autonomous system be-

cause there are no external influences. (Note that this usage of “au-

tonomous” is slightly different than in the phrase “autonomous vehi-

cle.”) Such a model is natural for use in celestial mechanics because it

is difficult to influence the motion of the planets. In many examples it is

useful to model the effects of external disturbances or controlled forces

on the system. One way to capture this is to replace equation (3.1) by

mq̈ + c(q̇) + kq = u, (3.2)

where u represents the effect of external inputs. The model (3.2) is

called a forced or controlled differential equation. It implies that the

rate of change of the state can be influenced by the input u(t). Adding

the input makes the model richer and allows new questions to be posed.

For example, we can examine what influence external disturbances have

on the trajectories of a system. Or, in the case where the input variable

is something that can be modulated in a controlled way, we can analyze

whether it is possible to “steer” the system from one point in the state

space to another through proper choice of the input.
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The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where

the design of electronic amplifiers led to a focus on input/output behav-

ior. A system was considered a device that transforms inputs to out-

puts, as illustrated in Figure 3.3. Conceptually an input/output model

can be viewed as a giant table of input and output signals. Given an

input signal u(t) over some interval of time, the model should produce

the resulting output y(t).

The input/output framework is used in many engineering disciplines

since it allows us to decompose a system into individual components

connected through their inputs and outputs. Thus, we can take a

complicated system such as a radio or a television and break it down

into manageable pieces such as the receiver, demodulator, amplifier,

and speakers. Each of these pieces has a set of inputs and outputs

and, through proper design, these components can be interconnected

to form the entire system.

The input/output view is particularly useful for the special class of

linear time-invariant systems. This term will be defined more carefully

later in this chapter, but roughly speaking a system is linear if the

superposition (addition) of two inputs yields an output that is the sum

of the outputs that would correspond to individual inputs being applied

separately. A system is time-invariant if the output response for a given

input does not depend on when that input is applied.
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Figure 3.3: Illustration of the input/output view of a dynamical

system. The figure on the left shows a detailed circuit diagram for

an electronic amplifier; the one on the right is its representation as a

block diagram.

Many electrical engineering systems can be modeled by linear time-

invariant systems and hence a large number of tools have been de-

veloped to analyze them. One such tool is the step response, which
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Figure 3.4: Input/output response of a linear system. The step

response (a) shows the output of the system due to an input that

changes from 0 to 1 at time t = 5 s. The frequency response (b)

shows the amplitude gain and phase change due to a sinusoidal input

at different frequencies.

describes the relationship between an input that changes from zero to

a constant value abruptly (a step input) and the corresponding output.

As we shall see later in the text, the step response is very useful in char-

acterizing the performance of a dynamical system, and it is often used

to specify the desired dynamics. A sample step response is shown in

Figure 3.4a.
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Another way to describe a linear time-invariant system is to rep-

resent it by its response to sinusoidal input signals. This is called the

frequency response, and a rich, powerful theory with many concepts

and strong, useful results has emerged. The results are based on the

theory of complex variables and Laplace transforms. The basic idea

behind frequency response is that we can completely characterize the

behavior of a system by its steady-state response to sinusoidal inputs.

Roughly speaking, this is done by decomposing any arbitrary signal

into a linear combination of sinusoids (e.g., by using the Fourier trans-

form) and then using linearity to compute the output by combining the

response to the individual frequencies. A sample frequency response is

shown in Figure 3.4b.

The input/output view lends itself naturally to experimental de-

termination of system dynamics, where a system is characterized by

recording its response to particular inputs, e.g., a step or a set of sinu-

soids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach

to dynamics was strongly influenced by the electrical engineering (in-

put/output) view. A second wave of developments in control, starting

in the late 1950s, was inspired by mechanics, where the state space per-

spective was used. The emergence of space flight is a typical example,
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where precise control of the orbit of a spacecraft is essential. These

two points of view gradually merged into what is today the state space

representation of input/output systems. In the 1970s the development

was influenced by advances in automation, which emphasized the need

to include logic and sequencing.

The development of state space models involved modifying the mod-

els from mechanics to include external actuators and sensors and uti-

lizing more general forms of equations. In control, the model given by

equation (3.2) was replaced by

dx

dt
= f(x, u), y = h(x, u), (3.3)

where x is a vector of state variables, u is a vector of control signals, and

y is a vector of measurements. The term dx/dt represents the deriva-

tive of the vector x with respect to time, and f and h are (possibly

nonlinear) mappings of their arguments to vectors of the appropriate

dimension. For mechanical systems, the state consists of the position

and velocity of the system, so that x = (q, q̇) in the case of a damped

spring–mass system. Note that in the control formulation we model

dynamics as first-order differential equations, but we will see that this

can capture the dynamics of higher-order differential equations by ap-

propriate definition of the state and the maps f and h.

Adding inputs and outputs has increased the richness of the classical

problems and led to many new concepts. For example, it is natural to
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ask if possible states x can be reached with the proper choice of u

(reachability) and if the measurement y contains enough information

to reconstruct the state (observability). These topics will be addressed

in greater detail in Chapters 7 and 8.

A final development in building the control point of view was the

emergence of disturbances and model uncertainty as critical elements

in the theory. The simple way of modeling disturbances as determinis-

tic signals like steps and sinusoids has the drawback that such signals

cannot be predicted precisely. A more realistic approach is to model

disturbances as random signals. This viewpoint gives a natural connec-

tion between prediction and control. The dual views of input/output

representations and state space representations are particularly use-

ful when modeling systems with uncertainty since state models are

convenient to describe a nominal model but uncertainties are easier

to describe using input/output models (often via a frequency response

description). Uncertainty will be a constant theme throughout the text

and will be studied in particular detail in Chapter 13.

An interesting observation in the design of control systems is that

feedback systems can often be analyzed and designed based on com-

paratively simple models. The reason for this is the inherent robust-

ness of feedback systems. However, other uses of models may require

more complexity and more accuracy. One example is feedforward con-

trol strategies, where one uses a model to precompute the inputs that
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cause the system to respond in a certain way. Another area is system

validation, where one wishes to verify that the detailed response of the

system performs as it was designed. Because of these different uses

of models, it is common to use a hierarchy of models having different

complexity and fidelity.

Multidomain Modeling
�

Modeling is an essential element of many disciplines, but traditions

and methods from individual disciplines can differ from each other, as

illustrated by the previous discussion of mechanical and electrical en-

gineering. A difficulty in systems engineering is that it is frequently

necessary to deal with heterogeneous systems from many different do-

mains, including chemical, electrical, mechanical, and information sys-

tems.

To model such multidomain systems, we start by partitioning a sys-

tem into smaller subsystems. Each subsystem is represented by balance

equations for mass, energy, and momentum, or by appropriate descrip-

tions of information processing in the subsystem. The behavior at the

interfaces is captured by describing how the variables of the subsystem

behave when the subsystems are interconnected. These interfaces act

by constraining variables within the individual subsystems to be equal

(such as mass, energy, or momentum fluxes). The complete model is

then obtained by combining the descriptions of the subsystems and the
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interfaces.

Using this methodology it is possible to build up libraries of subsys-

tems that correspond to physical, chemical, and informational compo-

nents. The procedure mimics the engineering approach where systems

are built from subsystems that are themselves built from smaller com-

ponents. As experience is gained, the components and their interfaces

can be standardized and collected in model libraries. In practice, it

takes several iterations to obtain a good library that can be reused for

many applications.

State models or ordinary differential equations are not suitable for

component-based modeling of this form because states may disappear

when components are connected. This implies that the internal de-

scription of a component may change when it is connected to other

components. As an illustration we consider two capacitors in an elec-

trical circuit. Each capacitor has a state corresponding to the voltage

across the capacitors, but one of the states will disappear if the capac-

itors are connected in parallel. A similar situation happens with two

rotating inertias, each of which is individually modeled using the angle

of rotation and the angular velocity. Two states will disappear when

the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations by

differential algebraic equations, which have the form

F (z, ż) = 0,
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where z ∈ Rn. A simple special case is

ẋ = f(x, y), g(x, y) = 0, (3.4)

where z = (x, y) and F = (ẋ−f(x, y), g(x, y)). The key property is that

the derivative ż is not given explicitly and there may be pure algebraic

relations between the components of the vector z. Modeling using

differential algebraic equations is also called equation-based modeling,

acausal modeling, or behavioral modeling.

The model (3.4) captures the examples of the parallel capacitors

and the linked rotating inertias. For example, when two capacitors are

connected, we simply add the algebraic equation expressing that the

voltages across the capacitors are the same.

Modelica is a language that has been developed to support component-

based modeling. Differential algebraic equations are used as the basic

description, and object-oriented programming is used to structure the

models. Modelica is used to model the dynamics of technical systems

in domains such as mechanical, electrical, thermal, hydraulic, ther-

mofluid, and control subsystems. Modelica is intended to serve as a

standard format so that models arising in different domains can be ex-

changed between tools and users. A large set of free and commercial

Modelica component libraries are available and are used by a growing

number of people in industry, research, and academia. For further in-

formation about Modelica, see http://www.modelica.org or the books

http://www.modelica.org
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by Tiller [239] and Fritson [94].

Finite State Machines and Hybrid Systems
�

A final type of modeling has been developed within the computer-

controlled systems community. A hybrid system (also called a cy-

berphysical system) is one that combines continuous dynamics with

discrete logic. The discrete portion of the system represents logical

variables that reside in a computer, such as the mode of a system (on,

off, degraded, etc.).

Discrete state dynamics are often represented using a finite state

machine that consists of a finite set of discrete states α ∈ Q. We can

think of α as the “mode” of the system. The dynamics of a finite state

machine are defined in terms of transitions between the states. One

convenient representation is as a guarded transition system:

gi(α, β) =⇒ α′ = ri(α), i = 1, . . . , N.

Here the function g is a Boolean (true/false) function that depends

on the current system mode α and an input β, which might represent

an environmental event (button press, component failure, etc). If the

guard gi is true then the system transitions from the current state

α to a new state α′, determined by the rule (transition map) ri. A

guarded transition system can have many different rules, depending on

the system state and external input.



SYSTEM MODELING 133

It is also possible to combine systems that have continuous states

with those having discrete states, creating a hybrid system. For exam-

ple, if a system has a continuous state x and discrete state α, we might

write the overall system dynamics as

dx

dt
= fα(x, u), gi(x, α, β) =⇒ α′ = ri(x, α), i = 1, . . . , N.

In this representation, the continuous dynamics (with state x) are gov-

erned by an ordinary differential equation that may depend on the

system mode α (indicated by the subscript in fα). The discrete tran-

sition system is also influenced by the continuous state, so that the

guards gi and rules ri now depend on the continuous state.

Many other representations are possible for hybrid systems, includ-

ing models that allow a non-continuous change in the continuous vari-

ables when a change in the discrete state occurs (so-called reset logic).

Computer modeling packages for hybrid systems include StateFlow

(part of the MATLAB suite of tools), Modelica, and Ptolemy [205].

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback,

and it is therefore important to characterize uncertainty. When mak-

ing measurements, there is a good tradition to assign both a nominal

value and a measure of uncertainty. It is useful to apply the same prin-

ciple to modeling, but unfortunately it is often difficult to express the
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Figure 3.5: Characterization of model uncertainty. Uncertainty of

a static system is illustrated in (a), where the solid line indicates the

nominal input/output relationship and the dashed lines indicate the

range of possible uncertainty. The uncertainty lemon [100] in (b) is one

way to capture uncertainty in dynamical systems emphasizing that a

model is valid only in the amplitude and frequency ranges within the

shaded region. In (c) a model is represented by a nominal model M

and another model ∆ representing the uncertainty analogous to the

representation of parameter uncertainty.

uncertainty of a model quantitatively.

For a static system whose input/output relation can be character-

ized by a function, uncertainty can be expressed by an uncertainty band

as illustrated in Figure 3.5a. At low signal levels there are uncertainties

due to sensor resolution, friction, and quantization. For example, some

models for queuing systems or cells are based on averages that exhibit

significant variations for small populations. At large signal levels there

are saturations or even system failures. The signal ranges where a

model is reasonably accurate vary dramatically between applications,
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but it is rare to find models that are accurate for signal ranges larger

than 104.

Characterization of the uncertainty of a dynamical model is much

more difficult. We can try to capture uncertainties by assigning un-

certainties to parameters of the model, but this is often not sufficient.

There may be errors due to phenomena that have been neglected, e.g.,

small time delays. In control the ultimate test is how well a control

system based on the model performs, and time delays can be impor-

tant. There is also a frequency aspect. There are slow phenomena,

such as aging, that can cause changes or drift in the systems. There

are also high-frequency effects: a resistor will no longer be a pure resis-

tance at very high frequencies, and a beam has stiffness and will exhibit

additional dynamics when subject to high-frequency excitation. The

uncertainty lemon [100] shown in Figure 3.5b is one way to conceptu-

alize the uncertainty of a system. It illustrates that a model is valid

only in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in

Chapter 13 using figures such as Figure 3.5c. These tools make use

of the concept of a transfer function, which describes the frequency

response of an input/output system. For now, we simply note that one

should always be careful to recognize the limits of a model and not to

make use of models outside their range of applicability. For example,

one can describe the uncertainty lemon and then check to make sure
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that signals remain in this region. In early analog computing, a system

was simulated using operational amplifiers, and it was customary to

give alarms when certain signal levels were exceeded. Similar features

can be included in digital simulation.

3.2 STATE SPACE MODELS

In this section we describe the two primary forms of models that we use

in this text: differential equations and difference equations. Both make

use of the notions of state, inputs, outputs, and dynamics to describe

the behavior of a system. We also briefly discuss modeling of finite

state systems.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the

past of a system for the purpose of predicting the future. For a physical

system the state is composed of the variables required to account for

storage of mass, momentum, and energy. A key issue in modeling is

to decide how accurately this information has to be represented. The

state variables are gathered in a vector x ∈ Rn called the state vector.

The control variables are represented by another vector u ∈ Rp, and

the measured signal by the vector y ∈ Rq. A system can then be
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represented by the differential equation

dx

dt
= f(x, u), y = h(x, u), (3.5)

where f : Rn ×Rp → Rn and h : Rn ×Rp → Rq are smooth mappings.

We call a model of this form a state space model.

The dimension of the state vector is called the order of the model.

The model given in equation (3.5) is called time invariant because the

functions f and h do not depend explicitly on time t; there are more

general time-varying systems where the functions do depend on time.

The model consists of two functions: the function f gives the rate of

change of the state vector as a function of state x and control u, and

the function h gives the measured values as functions of state x and

control u.

A model is called a linear state space model (or often just a “linear

system”) if the functions f and h are linear in x and u. A linear state

space model can thus be represented by

dx

dt
= Ax+ Bu, y = Cx+Du, (3.6)

where A, B, C, and D are constant matrices. Such a model is said

to be linear and time-invariant, or LTI for short. (In this text we will

usually omit the term time-invariant and just say the model is linear.)

The matrix A is called the dynamics matrix, the matrix B is called

the control matrix, the matrix C is called the sensor matrix, and the
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matrix D is called the direct term. Frequently models will not have a

direct term, indicating that the control signal u does not influence the

output directly.

A different form of linear differential equations, generalizing the

second-order dynamics from mechanics, is an equation of the form

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = u, (3.7)

where t is the independent (time) variable, y(t) is the dependent (out-

put) variable and u(t) is the input. The notation dky/dtk is used to

denote the kth derivative of y with respect to t, sometimes also writ-

ten as y(k). The controlled differential equation (3.7) is said to be an

nth-order model. This model can be converted into state space form

by defining

x =




x1

x2

...

xn−1

xn




=




dn−1y/dtn−1

dn−2y/dtn−2

...

dy/dt

y




,
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and the state space equations become

d

dt




x1

x2

...

xn−1

xn




=




−a1x1 − · · · − anxn

x1

...

xn−2

xn−1




+




u

0

...

0

0




, y = xn.

With the appropriate definitions of A, B, C, and D, this equation is

in linear state space form.

An even more general model is obtained by letting the output be a

linear combination of the states of the model, i.e.,

y = b1x1 + b2x2 + · · ·+ bnxn + du.

This model can be represented in state space as

d

dt




x1

x2

x3

...

xn




=




−a1 −a2 . . . −an−1 −an

1 0 . . . 0 0

0 1 0 0

...
. . .

...

0 0 1 0




x+




1

0

0

...

0




u,

y =


b1 b2 . . . bn


 x+ du.

(3.8)

This particular form of a linear state space model is called reachable

canonical form and will be studied in more detail in later chapters.

Many other representations for a model are possible and we shall see
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several of these in Chapters 6–8. It is also possible to expand the form

of equation (3.7) to allow derivatives of the input to appear, as we saw

briefly in Chapter 2.

Example 3.1 Spring–mass system

As a simple example of converting a linear differential equation to state

space form, consider the externally-driven spring mass system whose

dynamics are given in equation (3.2):

mq̈ + c(q̇) + kq = u.

This has the same form as equation (3.7) where the output y is the

position q. The state of the system can then be written as

x =




x1

x2




=




q̇

q




and the state space equations are

d

dt




x1

x2




=




−c/m −k/m

1 0







x1

x2




+




1/m

0



u,

where we have further assumed that c(q̇) = cq̇ (corresponding to viscous

friction).

∇

Example 3.2 Balance systems

A more complex example of a type of system that can be modeled using

ordinary differential equations is the class of balance systems. A balance
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(a) Segway (b) Saturn rocket
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(c) Cart–pendulum system

Figure 3.6: Balance systems. (a) Segway® Personal Transporter,

(b) Saturn rocket, and (c) inverted pendulum on a cart. Each of these

examples uses forces at the bottom of the system to keep it upright.

system is a mechanical system in which the center of mass is balanced

above a pivot point. Some common examples of balance systems are

shown in Figure 3.6. The Segway® Personal Transporter (Figure 3.6a)

uses a motorized platform to stabilize a person standing on top of it.

When the rider leans forward, the transportation device propels itself

along the ground but maintains its upright position. Another example

is a rocket (Figure 3.6b), in which a gimballed nozzle at the bottom of

the rocket is used to stabilize the body of the rocket above it. Other

examples of balance systems include humans or other animals standing

upright or a person balancing a stick on their hand.

Balance systems are a generalization of the spring–mass system we

saw earlier. We can write the dynamics for a mechanical system in the
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general form

M(q)q̈ + C(q, q̇) +K(q) = B(q)u,

where M(q) is the inertia matrix for the system, C(q, q̇) represents the

Coriolis forces as well as the damping, K(q) gives the forces due to

potential energy, and B(q) describes how the external applied forces

couple into the dynamics. Note that q may be a vector, rather than

just a scalar, and represents the configuration variables of the system.

The specific form of the equations can be derived using Newtonian me-

chanics. Each of the terms depends on the configuration of the system

q and these terms are often nonlinear in the configuration variables.

Figure 3.6c shows a simplified diagram for a balance system con-

sisting of an inverted pendulum on a cart. To model this system, we

choose state variables that represent the position and velocity of the

base of the system, q and q̇, and the angle and angular rate of the

structure above the base, θ and θ̇. (Note the slight abuse of notation

in using q to represent the position and (q, θ) for the full set of config-

uration variables.) We let F represent the force applied at the base of

the system, assumed to be in the horizontal direction (aligned with q),

and choose the position and angle of the system as outputs. With this

set of definitions, the dynamics of the system can be computed using

Newtonian mechanics and have the form



(M +m) −ml cos θ

−ml cos θ (J +ml2)







q̈

θ̈




+




cq̇ +ml sin θ θ̇2

γθ̇ −mgl sin θ




=




F

0



, (3.9)
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where M is the mass of the base, m and J are the mass and moment

of inertia of the system to be balanced, l is the distance from the base

to the center of mass of the balanced body, c and γ are coefficients of

viscous friction, and g is the acceleration due to gravity.

We can rewrite the dynamics of the system in state space form by

defining the state as x = (q, θ, q̇, θ̇), the input as u = F , and the output

as y = (q, θ). If we define the total mass and total inertia as

Mt =M +m, Jt = J +ml2,

the equations of motion then become

d

dt




q

θ

q̇

θ̇




=




q̇

θ̇

−mlsθθ̇2 +mg(ml2/Jt)sθcθ − cq̇ − (γ/Jt)mlcθθ̇ + u

Mt −m(ml2/Jt)c2θ

−ml2sθcθθ̇2 +Mtglsθ − clcθq̇ − γ(Mt/m)θ̇ + lcθu

Jt(Mt/m)−m(lcθ)2




,

y =




q

θ



,

where we have used the shorthand cθ = cos θ and sθ = sin θ.

In many cases, the angle θ will be very close to 0, and hence we

can use the approximations sin θ ≈ θ and cos θ ≈ 1. Furthermore, if θ̇

is small, we can ignore quadratic and higher terms in θ̇. Substituting

these approximations into our equations, we see that we are left with
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a linear state space equation

d

dt




q

θ

q̇

θ̇




=




0 0 1 0

0 0 0 1

0 m2l2g/µ −cJt/µ −γlm/µ

0 Mtmgl/µ −clm/µ −γMt/µ







q

θ

q̇

θ̇




+




0

0

Jt/µ

lm/µ




u,

y =




1 0 0 0

0 1 0 0



x,

where µ =MtJt −m2l2. ∇

Example 3.3 Inverted pendulum

A variation of the previous example is one in which the location of the

base q does not need to be controlled. This happens, for example, if we

are interested only in stabilizing a rocket’s upright orientation without

worrying about the location of the base of the rocket. The dynamics

of this simplified system are given by

d

dt




θ

θ̇




=




θ̇

mgl

Jt
sin θ − γ

Jt
θ̇ +

l

Jt
u cos θ



, y = θ, (3.10)

where γ is the coefficient of rotational friction, Jt = J +ml2, and u is

the force applied at the base. This system is referred to as an inverted

pendulum. ∇
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Difference Equations

In some circumstances, it is more natural to describe the evolution of

a system at discrete instants of time rather than continuously in time.

If we refer to each of these times by an integer k = 0, 1, 2, . . . , then

we can ask how the state of the system changes for each k. Just as

in the case of differential equations, we define the state to be the set

of variables that summarizes the past of the system for the purpose of

predicting its future. Systems described in this manner are referred to

as discrete-time systems.

The evolution of a discrete-time system can be written in the form

x[k + 1] = f(x[k], u[k]), y[k] = h(x[k], u[k]), (3.11)

where x[k] ∈ Rn is the state of the system at time k (an integer),

u[k] ∈ Rp is the input, and y[k] ∈ Rq is the output. As before, f

and h are smooth mappings of the appropriate dimension. We call

equation (3.11) a difference equation since it tells us how x[k+1] differs

from x[k]. The state x[k] can be either a scalar- or a vector-valued

quantity; in the case of the latter we write xj[k] for the value of the

jth state at time k.

Just as in the case of differential equations, it is often the case that

the equations are linear in the state and input, in which case we can



146 CHAPTER 3

describe the system by

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k] +Du[k].

As before, we refer to the matrices A, B, C, and D as the dynamics

matrix, the control matrix, the sensor matrix, and the direct term. The

solution of a linear difference equation with initial condition x[0] and

input u[0], . . . , u[T ] can be computed using repeated substitution and

is given by

x[k] = Akx[0] +
k−1∑

j=0

Ak−j−1Bu[j],

y[k] = CAkx[0] +
k−1∑

j=0

CAk−j−1Bu[j] +Du[k],

k > 0. (3.12)

Difference equations are also useful as an approximation of differ-

ential equations, as we will show later.

Example 3.4 Predator–prey

As an example of a discrete-time system, consider a simple model for

a predator–prey system. The predator–prey problem refers to an eco-

logical system in which we have two species, one of which feeds on the

other. This type of system has been studied for decades and is known

to exhibit interesting dynamics. Figure 3.7 shows a historical record

taken over 90 years for a population of lynxes versus a population of

hares [172]. As can been seen from the graph, the annual records of

the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-
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Figure 3.7: Predator versus prey. The photograph on the left shows

a Canadian lynx and a snowshoe hare, the lynx’s primary prey. The

graph on the right shows the populations of hares and lynxes between

1845 and 1935 in a section of the Canadian Rockies [172]. The data

were collected on an annual basis over a period of 90 years. (Photo-

graph copyright Tom and Pat Leeson.)

time model to keep track of the rate of births and deaths of each species.

Letting H represent the population of hares and L represent the popu-

lation of lynxes, we can describe the state in terms of the populations

at discrete periods of time. Letting k be the discrete-time index (cor-

responding here to each day), we can write

H[k + 1] = H[k] + bh(u)H[k]− aL[k]H[k],

L[k + 1] = L[k] + cL[k]H[k]− dlL[k],
(3.13)

where bh(u) is the hare birth rate per unit period and is a function

of the food supply u, dl is the lynx mortality rate, and a and c are

the interaction coefficients. The interaction term aL[k]H[k] models

the rate of predation, which is assumed to be proportional to the rate

at which predators and prey meet and is hence given by the product

of the population sizes. The interaction term cL[k]H[k] in the lynx
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Figure 3.8: Discrete-time simulation of the predator–prey

model (3.13). Using the parameters a = c = 0.014, bh(u) = 0.6, and

dl = 0.7 in equation (3.13), the period and magnitude of the lynx and

hare population cycles approximately match the data in Figure 3.7.

dynamics has a similar form and represents the rate of growth of the

lynx population. This model makes many simplifying assumptions—

such as the fact that hares decrease in number only through predation

by lynxes—but it often is sufficient to answer basic questions about the

system.

To illustrate the use of this system, we can compute the number of

lynxes and hares at each time point from some initial population. This

is done by starting with x[0] = (H0, L0) and then using equation (3.13)

to compute the populations in the following period. By iterating this

procedure, we can generate the population over time. The output of

this process for a specific choice of parameters and initial conditions is

shown in Figure 3.8. While the details of the simulation are different

from the experimental data (to be expected given the simplicity of our

assumptions), we see qualitatively similar trends and hence we can use
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the model to help explore the dynamics of the system. ∇

Example 3.5 E-mail server

The IBM Lotus (now Domino) server is a collaborative software system

that administers users’ e-mail, documents, and notes. Client machines

interact with end users to provide access to data and applications. The

server also handles other administrative tasks. In the early develop-

ment of the system it was observed that the performance was poor

when the central processing unit (CPU) was overloaded because of too

many service requests, and mechanisms to control the load were there-

fore introduced.

The interaction between the client and the server is in the form of

remote procedure calls (RPCs). The server maintains a log of statis-

tics of completed requests. The total number of requests being served,

called RIS (RPCs in server), is also measured. The load on the server is

controlled by a parameter called MaxUsers, which sets the total num-

ber of client connections to the server. This parameter is controlled by

the system administrator. The server can be regarded as a dynamical

system with MaxUsers as the input and RIS as the output. The rela-

tionship between input and output was first investigated by exploring

the steady-state performance and was found to be linear.

In [116] a dynamical model in the form of a first-order difference

equation is used to capture the dynamic behavior of this system. Using
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system identification techniques, they construct a model of the form

y[k + 1] = ay[k] + bu[k],

where u = MaxUsers− MaxUsers and y = RIS− RIS. The parameters

a = 0.43 and b = 0.47 are parameters that describe the dynamics

of the system around the operating point, and MaxUsers = 165 and

RIS = 135 represent the nominal operating point of the system. The

number of requests was averaged over a sampling period of 60 s. ∇

Another application of difference equations is in the implementation

of control systems on computers. Early controllers were analog phys-

ical systems, which can be modeled by differential equations. When

implementing a controller described by a differential equation using a

computer it is necessary to do approximations. A simple way is to

approximate derivatives by finite differences, as illustrated by the fol-

lowing example.

Example 3.6 Difference approximation of a PI controller

Consider the proportional-integral (PI) controller

u(t) = kpe(t) + ki

∫ t

0

e(τ) dτ = kpe(t) + x(t), x(t) = ki

∫ t

0

e(τ) dτ,

where the controller state is given by the differential equation

dx

dt
= kie(t) (3.14)

Assume that the error is measured at regular sampling intervals t =
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h, 2h, 3h, . . .. Approximating the derivative in equation (3.14) by dif-

ferences gives

x(jh+ h)− x(jh)
h

= kie(jh),

and the controller is then given by the difference equation

x[j + 1] = x[j] + hkie[j], u[j] = kpe[j] + x[j],

where x[j] = x(jh), e[j] = e(jh), and u[j] = u(jh) represent the

discrete-time state, error, and input sampled at each time interval (and

we use j as our discrete time index here to avoid confusion with the

gains kp and ki). This controller is easy to implement on a computer

since it consists of just addition and multiplication. ∇

The approximation in the example works well provided that the

sampling interval is so short that the variable e(t) changes very little

over a sampling interval.

Finite State Machines
�

In addition to systems that can be modeled by continuous variables

(e.g., positions, velocities, voltages, temperatures), we often encounter

systems that have discrete states (e.g., on, off, standby, fault). A finite

state machine is a model in which the states of the system are chosen

from a finite list of “modes.” The dynamics of a finite state machine

are given by transitions between these modes, possibly in response to

external signals. We illustrate this concept with a simple example.
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Figure 3.9: A simple model for a traffic light. The diagram on the

right is a finite state machine model of the traffic light controller.

Example 3.7 Traffic light controller

Consider a finite state machine model of a traffic light control system,

as shown in Figure 3.9. We represent the state of the system in terms

of the set of traffic lights that are turned on (either east–west or north–

south). In addition, once a light is turned on it should stay that way

for a certain minimum time, and then only change when a car comes up

to the intersection in the opposite direction. This gives us two states

for each direction of the lights: waiting for a car to arrive and waiting

for the timer to expire. Thus, we have four states for the system, as

shown in Figure 3.9.

The dynamics for the light describe how the system transitions from

one state to another. Starting at the leftmost state, we assume that

the lights are set to allow traffic in the north–south direction. When

a car arrives on the east–west street, we transition to the state at the

top of the diagram, where a timer is started. Once the timer reaches
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the designated amount of time, we transition to the state on the right

side of the diagram and turn on the lights in the east–west direction.

From here we wait until a car arrives on the north–south street and

continue the cycle.

Viewed as a control system, this model has a state space consisting

of four discrete states: north–south waiting, north–south countdown,

east–west waiting, and east–west countdown. The inputs to the con-

troller consist of the signals that indicate whether a car is present at

the roads leading up to the intersection. The outputs from the con-

troller are the signals that change the colors of the traffic light. Finally,

the dynamics of the controller are the transition diagram that controls

how the states (or modes) of the system change in time. ∇

More formally, a finite state machine can be represented as a finite

set of discrete states α ∈ Qsys, where Qsys is a discrete set. The dy-

namics of the system are described by transitions between the discrete

states, as in the finite state machine described in the previous example.

These transitions can depend on external inputs or measurements and

can generate output actions on transition into or out of a given state.

If we let β ∈ Qin represent (discrete) input events (button press, com-

ponent failure, etc) and γ ∈ Qout represent (discrete) output actions

(such as turning off a device), then the dynamics of the finite state
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machine can be written as a guarded command system

gi(α, β) =⇒





α′ = ri(α, β),

γ = ai(α, β),

i = 1, . . . , N. (3.15)

Here the function gi is a Boolean (true/false) function that depends on

the current system mode α and an external input β. If the guard gi is

true then the system transitions from the current state α to a new state

α′, determined by the rule (transition map) ri and the external input.

The output action ai is similarly dependent on the current state and

external input. A guarded transition system can have many different

rules, depending on the system state and external input.

The dynamics of a transition system is similar in many ways to the

discrete time dynamics in equation (3.11). The major difference is that

the transitions do not necessarily occur at regularly spaced intervals of

time. Indeed, there is no strict notion of time in a transition system as

we have described it here: it is only the sequence of events that is kept

track of (through the evolution of the discrete state).

Specifications for finite transition systems are often written as log-

ical functions describing the conditions that should be imposed on the

system. For example, we might wish to say that if a specific sensor

is not operating, then the system cannot transition to a mode that

requires the use of that sensor. This could be written as the logical
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formula

α ∈ {states with sensor k not functioning} =⇒ α′ 6∈ {states requiring sensor k}.

The formula of the form p =⇒ q where p and q are Boolean proposi-

tions can be written as the logical function (!p) ||(p&&q), which asserts

that if proposition p is true then proposition q must be true. In the

sensor example, p and q are represented by whether the system mode

α is in some set of states.

Finite state machines are very useful for describing logical opera-

tions and are often combined with continuous state models (differential

or difference equations) to create a hybrid system model. The study of

hybrid systems is beyond the scope of this text, but excellent references

include Lee and Seshia [160] and Alur [8].

Simulation and Analysis

State space models can be used to answer many questions. One of the

most common, as we have seen in the previous examples, involves pre-

dicting the evolution of the system state from a given initial condition.

While for simple models this can be done in closed form, more often it

is accomplished through computer simulation.

Consider again the damped spring–mass system from Section 3.1,

but this time with an external force applied, as shown in Figure 3.10.

We wish to predict the motion of the system for a periodic forcing
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u(t) = A sin    tω

c

Figure 3.10: A driven spring–mass system with damping. Here we

use a linear damping element with coefficient of viscous friction c. The

mass is driven with a sinusoidal force of amplitude A.

function, with a given initial condition, and determine the amplitude,

frequency, and decay rate of the resulting motion.

We choose to model the system with a linear ordinary differential

equation. Using Hooke’s law to model the spring and assuming that

the damper exerts a force that is proportional to the velocity of the

system, we have

mq̈ + cq̇ + kq = u, (3.16)

where m is the mass, q is the displacement of the mass, c is the coeffi-

cient of viscous friction, k is the spring constant, and u is the applied

force. In state space form, using x = (q, q̇) as the state and choosing

y = q as the output, we have

dx

dt
=




x2

− c

m
x2 −

k

m
x1 +

u

m



, y = x1.

We see that this is a linear second-order differential equation with one

input u and one output y.
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We now wish to compute the response of the system to an input of

the form u = A sinωt. Although it is possible to solve for the response

analytically, we instead make use of a computational approach that

does not rely on the specific form of this system. Consider the general

state space system

dx

dt
= f(x, u).

Given the state x at time t, we can approximate the value of the state

at a short time h > 0 later by assuming that the rate of change f(x, u)

is constant over the interval t to t+ h. This gives

x(t+ h) = x(t) + hf(x(t), u(t)). (3.17)

Iterating this equation, we can thus solve for x as a function of time.

This approximation is known as Euler integration and is in fact a dif-

ference equation if we let h represent the time increment and write

x[k] = x(kh), as we saw in Example 3.6. Although modern simulation

tools such as MATLAB and Mathematica use more accurate methods

than Euler integration, they still have some of the same basic trade-offs.

Returning to our specific example, Figure 3.11 shows the results of

computing x(t) using equation (3.17), along with the analytical compu-

tation. We see that as h gets smaller, the computed solution converges

to the exact solution. The form of the solution is also worth noticing:

after an initial transient, the system settles into a periodic motion. The

portion of the response after the transient is called the steady-state re-
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Figure 3.11: Simulation of the forced spring–mass system with dif-

ferent simulation time constants. The solid line represents the ana-

lytical solution. The dashed lines represent the approximate solution

via the method of Euler integration, using decreasing step sizes.

sponse to the input.

In addition to generating simulations, models can also be used to an-

swer other types of questions. Two that are central to the methods

described in this text concern the stability of an equilibrium point and

the input/output frequency response. We illustrate these two compu-

tations through the examples below and return to the general compu-

tations in later chapters.

Returning to the damped spring–mass system, the equations of mo-

tion with no input forcing are given by

dx

dt
=




x2

− c

m
x2 −

k

m
x1



, (3.18)

where x1 is the position of the mass (relative to the rest position) and x2

is its velocity. We wish to show that if the initial state of the system is

away from the rest position, the system will return to the rest position
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eventually (we will later define this situation to mean that the rest

position is asymptotically stable). While we could heuristically show

this by simulating many, many initial conditions, we seek instead to

prove that this is true for any initial condition.

To do so, we construct a function V : Rn → R that maps the system

state to a positive real number. For mechanical systems, a convenient

choice is the energy of the system,

V (x) =
1

2
kx21 +

1

2
mx22. (3.19)

If we look at the time derivative of the energy function, we see that

dV

dt
= kx1ẋ1 +mx2ẋ2 = kx1x2 +mx2(−

c

m
x2 −

k

m
x1) = −cx22,

which is always either negative or zero. Hence V (x(t)) is never in-

creasing and, using a bit of analysis that we will see formally later, the

individual states must remain bounded.

If we wish to show that the states eventually return to the origin, we

must use a slightly more detailed analysis. Intuitively, we can reason as

follows: suppose that for some period of time, V (x(t)) stops decreasing.

Then it must be true that V̇ (x(t)) = 0, which in turn implies that

x2(t) = 0 for that same period. In that case, ẋ2(t) = 0, and we can

substitute into the second line of equation (3.18) to obtain

0 = ẋ2 = −
c

m
x2 −

k

m
x1 = −

k

m
x1.

Thus we must have that x1 also equals zero, and so the only time that
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V (x(t)) can stop decreasing is if the state is at the origin (and hence

this system is at its rest position). Since we know that V (x(t)) is never

increasing (because V̇ ≤ 0), we therefore conclude that the origin is

stable (for any initial condition).

This type of analysis, called Lyapunov stability analysis, is consid-

ered in detail in Chapter 5. It shows some of the power of using models

for the analysis of system properties.

Another type of analysis that we can perform with models is to compute

the output of a system to a sinusoidal input, known as the frequency

response. We again consider the spring–mass system, but this time

keeping the input and leaving the system in its original form:

mq̈ + cq̇ + kq = u. (3.20)

We wish to understand how the system responds to a sinusoidal input

of the form

u(t) = A sinωt.

We will see how to do this analytically in Chapter 7, but for now we

make use of simulations to compute the answer.

We first begin with the observation that if q(t) is the solution to

equation (3.20) with input u(t), then applying an input 2u(t) will give

a solution 2q(t) (this is easily verified by substitution). Hence it suffices

to look at an input with unit magnitude, A = 1. A second observation,

which we will prove in Chapter 6, is that the long-term response of the
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system to a sinusoidal input is itself a sinusoid at the same frequency,

and so the output has the form

q(t) = g(ω) sin(ωt+ ϕ(ω)),

where g(ω) is called the gain of the system and ϕ(ω) is called the phase

(or phase offset).

To compute the frequency response numerically, we can simulate the

system at a set of frequencies ω1, . . . , ωN and plot the gain and phase

at each of these frequencies. An example of this type of computation is

shown in Figure 3.12. For linear systems the frequency response does

not depend on the amplitude A of the input signal. Frequency response

can also be applied to nonlinear systems but the gain and phase then

depend on the A.

3.3 MODELING METHODOLOGY

To deal with large, complex systems, it is useful to have different repre-

sentations of the system that capture essential features and hide irrel-

evant details. In all branches of science and engineering it is common

practice to use some graphical description of systems, called schematic

diagrams. They can range from stylistic pictures to drastically simpli-

fied standard symbols. These pictures make it possible to get an overall

view of the system and to identify the individual components. Exam-

ples of such diagrams are shown in Figure 3.13. Schematic diagrams
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Figure 3.12: A frequency response (gain only) computed by mea-

suring the response of individual sinusoids. The figure on the left

shows the response of the system as a function of time to a number of

different unit magnitude inputs (at different frequencies). The figure

on the right shows this same data in a different way, with the mag-

nitude of the response plotted as a function of the input frequency.

The filled circles correspond to the particular frequencies shown in

the time responses.

are useful because they give an overall picture of a system, showing dif-

ferent subprocesses and their interconnection and indicating variables

that can be manipulated and signals that can be measured.

Block Diagrams

A special graphical representation called a block diagram has been de-

veloped in control engineering. The purpose of a block diagram is to

emphasize the information flow and to hide details of the system. In a

block diagram, different process elements are shown as boxes, and each
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Figure 3.13: Schematic diagrams for different disciplines. Each di-

agram is used to illustrate the dynamics of a control system: (a)

electrical schematics for a power system [155], (b) a biological cir-

cuit diagram for a synthetic clock circuit [26], (c) a process diagram

for a distillation column [219], and (d) a Petri net description of a

communication protocol.

box has inputs denoted by lines with arrows pointing toward the box

and outputs denoted by lines with arrows going out of the box. The

inputs denote the variables that influence a process, and the outputs

denote the signals that we are interested in or signals that influence

other subsystems. Block diagrams can also be organized in hierarchies,
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Figure 3.14: Standard block diagram elements. The arrows indicate

the the inputs and outputs of each element, with the mathematical

operation corresponding to the blocked labeled at the output. The

system block (f) represents the full input/output response of a dy-

namical system.

where individual blocks may themselves contain more detailed block

diagrams.

Figure 3.14 shows some of the notation that we use for block dia-

grams. Signals are represented as lines, with arrows to indicate inputs

and outputs. The first diagram is the representation for a summation

of two signals. An input/output response is represented as a rectan-

gle with the system name (or mathematical description) in the block.

Two special cases are a proportional gain, which scales the input by a

multiplicative factor, and an integrator, which outputs the integral of

the input signal.

Figure 3.15 illustrates the use of a block diagram, in this case for

modeling the flight response of a fly. The flight dynamics of an insect
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Figure 3.15: A block diagram representation of the flight control

system for an insect flying against the wind. The mechanical portion

of the model consists of the rigid-body dynamics of the fly, the drag

due to flying through the air, and the forces generated by the wings.

The motion of the body causes the visual environment of the fly to

change, and this information is then used to control the motion of the

wings (through the sensory motor system), closing the loop.

are incredibly intricate, involving careful coordination of the muscles

within the fly to maintain stable flight in response to external stimuli.

One known characteristic of flies is their ability to fly upwind by making

use of the optical flow in their compound eyes as a feedback mechanism.

Roughly speaking, the fly controls its orientation so that the point of

contraction of the visual field is centered in its visual field [207].

To understand this complex behavior, we can decompose the overall

dynamics of the system into a series of interconnected subsystems (or

blocks). Referring to Figure 3.15, we can model the insect navigation

system through an interconnection of five blocks. The sensory motor
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system (a) takes the information from the visual system (e) and gener-

ates muscle commands that attempt to steer the fly so that the point

of contraction is centered. These muscle commands are converted into

forces through the flapping of the wings (b) and the resulting aerody-

namic forces that are produced. The forces from the wings are com-

bined with the drag on the fly (d) to produce a net force on the body

of the fly. The wind velocity enters through the drag aerodynamics.

Finally, the body dynamics (c) describe how the fly translates and ro-

tates as a function of the net forces that are applied to it. The insect

position, speed, and orientation are fed back to the drag aerodynamics

and vision system blocks as inputs.

Each of the blocks in the diagram can itself be a complicated sub-

system. For example, the visual system of a fruit fly consists of two

complicated compound eyes (with about 700 elements per eye), and

the sensory motor system has about 200,000 neurons that are used

to process information. A more detailed block diagram of the insect

flight control system would show the interconnections between these

elements, but here we have used one block to represent how the motion

of the fly affects the output of the visual system, and a second block to

represent how the visual field is processed by the fly’s brain to generate

muscle commands. The choice of the level of detail of the blocks and

what elements to separate into different blocks often depends on expe-

rience and on the questions that one wants to answer using the model.
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One of the powerful features of block diagrams is their ability to hide

information about the details of a system that may not be needed to

gain an understanding of the essential dynamics of the system.

Algebraic Loops

When analyzing or simulating a system described by a block diagram,

we need to form the differential equations that describe the complete

system. In many cases the equations can be obtained by combining the

differential equations that describe each subsystem and substituting

variables. This simple procedure cannot be used when there are closed

loops of subsystems that all have a direct connection between inputs

and outputs, known as an algebraic loop. A direct connection means

that a change in the input u gives an instantaneous change in the

output y.

To see what can happen, consider a system with two blocks, a first-

order nonlinear system,

dx

dt
= f(x, u), y = h(x), (3.21)

and a proportional controller described by u = −ky. There is no direct

connection since the function h does not depend on u. In that case we

can obtain the equation for the closed loop system simply by replacing

u by −ky = −kh(x) in equation (3.21) to give

dx

dt
= f(x,−kh(x)), y = h(x),
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which is an ordinary differential equation.

The situation is more complicated if there is a direct connection. If

y = h(x, u), then replacing u by −ky gives

dx

dt
= f(x,−ky), y = h(x,−ky).

To obtain a differential equation for x, the algebraic equation y =

h(x,−ky) must first be solved to give y = α(x), which in general is a

complicated task.

When algebraic loops are present, it is necessary to solve algebraic

equations to obtain the differential equations for the complete system.

The resulting model becomes a set of differential algebraic equations,

similar to equation (3.4). Resolving algebraic loops is a nontrivial

problem because it requires the symbolic solution of algebraic equa-

tions. Most block diagram-oriented modeling languages cannot handle

algebraic loops, and they simply give a diagnosis that such loops are

present. In the era of analog computing, algebraic loops were elimi-

nated by introducing fast dynamics between the loops. This created

differential equations with fast and slow modes that are difficult to solve

numerically. Advanced modeling languages like Modelica use several

sophisticated methods to resolve algebraic loops.
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Modeling from Experiments

Since control systems are provided with sensors and actuators, it is

also possible to obtain models of system dynamics from experiments

on the process. The models are restricted to input/output models

since only these signals are accessible to experiments, but modeling

from experiments can also be combined with modeling from physics

through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the

response to a step change in the control signal. Such an experiment

begins by setting the control signal to a constant value. When the

output settles to a constant value (assuming the system is stable),

the control signal is changed quickly to a new level and the output is

observed. The experiment gives the step response of the system, and

the shape of the response gives useful information about the dynamics.

It immediately gives an indication of the response time, and it tells if

the system is oscillatory or if the response is monotone.

Example 3.8 Spring–mass system

The dynamics of the spring–mass system in Section 3.1 are given by

mq̈ + cq̇ + kq = u. (3.22)

We wish to determine the constants m, c, and k by measuring the

response of the system to a step input of magnitude F0.

We will show in Chapter 7 that when c2 < 4km, the step response
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Figure 3.16: Step response for a spring–mass system. The mag-

nitude of the step input is F0 = 20 N. The period of oscillation T

is determined by looking at the time between two subsequent local

maxima in the response. The period combined with the steady-state

value q(∞) and the relative decrease between local maxima can be

used to estimate the parameters in a model of the system.

for this system from the rest configuration is given by

q(t) =
F0

k

(
1− 1

ωd

√
k

m
exp
(
− ct

2m

)
sin(ωdt+ ϕ)

)
,

ωd =

√
4km− c2
2m

, ϕ = tan−1

(√
4km− c2

c

)
.

From the form of the solution, we see that the shape of the step response

is determined by the parameters of the system. Hence, by measuring

certain features of the step response we can determine the parameter

values.

Figure 3.16 shows the response of the system to a step of magnitude

F0 = 20 N, along with some measurements. We start by noting that

the steady-state position of the mass (after the oscillations die down)
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is a function of the spring constant k:

q(∞) =
F0

k
, (3.23)

where F0 is the magnitude of the applied force (F0 = 1 for a unit step

input). The parameter 1/k is called the gain of the system. The period

of the oscillation can be measured between two peaks and must satisfy

2π

T
=

√
4km− c2
2m

.

Finally, the rate of decay of the oscillations is given by the exponential

factor in the solution. Measuring the amount of decay between two

peaks, we have

log
(
q(t1)−

F0

k

)
− log

(
q(t2)−

F0

k

)
=

c

2m
(t2 − t1). (3.24)

Using this set of three equations, we can solve for the parameters and

determine that for the step response in Figure 3.16 we have m ≈ 250

kg, c ≈ 60 N s/m, and k ≈ 40 N/m. ∇

Modeling from experiments can also be done using many other sig-

nals. Sinusoidal signals are commonly used (particularly for systems

with fast dynamics) and precise measurements can be obtained by ex-

ploiting correlation techniques. An indication of nonlinearities can be

obtained by repeating experiments with input signals having different

amplitudes. Modeling based on sinusoidal signals is very time consum-

ing for systems with slow dynamics. In such situations it is advanta-
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geous to used signals that switch between two different levels. There is

a whole subfield of control called system identification that deals with

experimental determination of models. Questions like optimal inputs,

experiments in open and closed loop, model accuracy, and fundamental

limits are dealt with extensively.

Normalization and Scaling

When deriving a model, it is often useful to introduce dimension-free

variables. Such a procedure can often simplify the equations for a

system by reducing the number of parameters. It can also reveal inter-

esting properties of the model. It is also useful to normalize variables

by scaling to improve numerics and allow faster and more accurate

simulations.

The procedure of scaling is straightforward in principle: choose

units for each independent variable and introduce new variables by

dividing the variables by the chosen normalization unit. We illustrate

the procedure with two examples.

Example 3.9 Spring–mass system

Consider again the spring–mass system introduced earlier. Neglecting

the damping, the system is described by

mq̈ + kq = u.

The model has two parameters m and k. To normalize the model
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we introduce dimension-free variables x = q/l and τ = ω0t, where

ω0 =
√
k/m and l is the chosen length scale. We scale force by mlω2

0

and introduce v = u/(mlω2
0). The scaled equation then becomes

d2x

dτ 2
=

d2q/l

d(ω0t)2
=

1

mlω2
0

(−kq + u) = −x+ v,

which is the normalized undamped spring–mass system. Notice that

the normalized model has no parameters, while the original model had

two parameters m and k. Introducing the scaled, dimension-free state

variables z1 = x = q/l and z2 = dx/dτ = q̇/(lω0), the model can be

written as

d

dτ




z1

z2




=




0 1

−1 0







z1

z2




+




0

v



.

This simple linear equation describes the dynamics of any spring–mass

system, independent of the particular parameters, and hence gives us

insight into the fundamental dynamics of this oscillatory system. To

recover the physical frequency of oscillation or its magnitude, we must

invert the scaling we have applied. ∇

Example 3.10 Balance system

Consider the balance system described in Example 3.2. Neglecting

damping by putting c = 0 and γ = 0 in equation (3.9), the model can

be written as

(M +m)
d2q

dt2
−ml cos θd

2θ

dt2
+ml sin θ

(dθ
dt

)2
= F,

−ml cos θd
2q

dt2
+ (J +ml2)

d2θ

dt2
−mgl sin θ = 0.
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Let ω0 =
√
mgl/(J +ml2), choose the length scale as l, let the time

scale be 1/ω0, choose the force scale as (M +m)lω2
0, and introduce the

scaled variables τ = ω0t, x = q/l, and u = F/((M + m)lω2
0). The

equations then become

d2x

dτ 2
− α cos θ

d2θ

dτ 2
+ α sin θ

(dθ
dτ

)2
= u, −β cos θd

2x

dτ 2
+
d2θ

dτ 2
− sin θ = 0,

where α = m/(M+m) and β = ml2/(J+ml2). Notice that the original

model has five parameters m, M , J , l, and g but the normalized model

has only two parameters α and β. If M ≫ m and ml2 ≫ J , we get

α ≈ 0 and β ≈ 1, and the model can be approximated by

d2x

dτ 2
= u,

d2θ

dτ 2
− sin θ = u cos θ.

The model can be interpreted as a mass combined with an inverted

pendulum driven by the same input. ∇

For large systems scaling is not so easy: there are many choices

and good selection of variables and normalization units require good

understanding of the physics of the system and the numerical methods

that will be used for analysis. Scaling of large systems is therefore still

an art.
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3.4 MODELING EXAMPLES

In this section we introduce additional examples that illustrate some

of the different types of systems for which one can develop differential

equation and difference equation models. These examples are specifi-

cally chosen from a range of different fields to highlight the broad vari-

ety of systems to which feedback and control concepts can be applied.

A more detailed set of applications that serve as running examples

throughout the text are given in Chapter 4.

Motion Control Systems

Motion control systems involve the use of computation and feedback

to control the movement of a mechanical system. Motion control sys-

tems range from nanopositioning systems (atomic force microscopes,

adaptive optics), to control systems for the read/write heads in a disk

drive of a DVD player, to manufacturing systems (transfer machines

and industrial robots), to automotive control systems (antilock brakes,

suspension control, traction control), to air and space flight control

systems (airplanes, satellites, rockets, and planetary rovers).

Example 3.11 Vehicle steering

A common problem in motion control is to control the trajectory of a

vehicle through an actuator that causes a change in the orientation. A

steering wheel on an automobile and the front wheel of a bicycle are
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two examples, but similar dynamics occur in the steering of ships or

control of the pitch dynamics of an aircraft. In many cases, we can

understand the basic behavior of these systems through the use of a

simple model that captures the basic kinematics of the system.

Consider a conventional vehicle with a fixed rear axle and a set of

front wheels that can be rotated, as shown in Figure 3.17. For the

purpose of steering we are interested in a model that describes how the

velocity of the vehicle depends on the steering angle δ. To be specific,

let b be the wheelbase and consider the velocity v at the center of mass,

a distance a from the rear wheel, as shown in Figure 3.17. Let x and y

be the coordinates of the center of mass, θ the heading angle, and α the

angle between the velocity vector v and the centerline of the vehicle.

The point O is at the intersection of the normals to the front and rear

wheels.

Assuming no slipping of the wheels, the motion of the vehicle is

given by a rotation around the point O in the figure. Letting the

distance from the center of rotation O to the contact point of the

rear wheel be rr, it the follows from Figure 3.17 that b = rr tan δ and

a = rr tanα, which implies that tanα = (a/b) tan δ, and we obtain the

following relation between α and the steering angle δ:

α = arctan
(a tan δ

b

)
. (3.25)

If the vehicle speed at its center of mass is v, the motion of the center
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Figure 3.17: Vehicle steering dynamics. The left figure shows an

overhead view of a vehicle with four wheels. The wheelbase is b and

the center of mass at a distance a forward of the rear wheels. By

approximating the motion of the front and rear pairs of wheels by a

single front wheel and a single rear wheel, we obtain an abstraction

called the bicycle model, shown on the right. The steering angle is

δ and the velocity at the center of mass has the angle α relative the

length axis of the vehicle. The position of the vehicle is given by (x, y)

and the orientation (heading) by θ.

of mass is then given by

dx

dt
= v cos (α + θ),

dy

dt
= v sin (α + θ).

(3.26)

To see how the heading angle θ is influenced by the steering angle,

we observe from Figure 3.17 that the distance from the center of mass

to the center of rotation O is rc = a/ sinα. The vehicle thus rotates
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around the point O with the angular velocity v/rc = (v/a) sinα. Hence

dθ

dt
=

v

rc
=
v sinα

a
=
v

a
sin

(
arctan

(a tan δ
b

))
≈ v

b
δ, (3.27)

where the approximation holds for small δ and α.

Equations (3.25)–(3.27) can be used to model an automobile under

the assumptions that there is no slip between the wheels and the road

and that the two front wheels can be approximated by a single wheel at

the center of the car. This model is often called the bicycle model. The

assumption of no slip can be relaxed by adding an extra state variable,

giving a more realistic model. Such a model also describes the steering

dynamics of ships as well as the pitch dynamics of aircraft and missiles.

It is also possible to choose coordinates so that the reference point is at

the rear wheels (corresponding to setting a = 0), a model often referred

to as the Dubins car [78].

Figure 3.17 represents the situation when the vehicle moves forward

and has front-wheel steering. The figure shows that the model also

applies to rear wheel steering if the sign of the velocity is reversed.

∇

Example 3.12 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such as the Harrier

“jump jet” shown Figure 3.18a. The Harrier is capable of vertical take-

off by redirecting its thrust downward and through the use of smaller

maneuvering thrusters located on its wings. A simplified model of the
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(a) Harrier “jump jet”
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θ
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(b) Simplified model

Figure 3.18: Vectored thrust aircraft. The Harrier AV-8B military

aircraft (a) redirects its engine thrust downward so that it can “hover”

above the ground. Some air from the engine is diverted to the wing

tips to be used for maneuvering. As shown in (b), the net thrust

on the aircraft can be decomposed into a horizontal force F1 and a

vertical force F2 acting at a distance r from the center of mass.

Harrier is shown in Figure 3.18b, where we focus on the motion of the

vehicle in a vertical plane through the wings of the aircraft. We resolve

the forces generated by the main downward thruster and the maneu-
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vering thrusters as a pair of forces F1 and F2 acting at a distance r

below the aircraft (determined by the geometry of the thrusters).

Let (x, y, θ) denote the position and orientation of the center of

mass of the aircraft. Let m be the mass of the vehicle, J the moment

of inertia, g the gravitational constant, and c the damping coefficient.

Then the equations of motion for the vehicle are given by

mẍ = F1 cos θ − F2 sin θ − cẋ,

mÿ = F1 sin θ + F2 cos θ −mg − cẏ,

Jθ̈ = rF1.

(3.28)

It is convenient to redefine the inputs so that the origin is an equilibrium

point of the system with zero input. Letting u1 = F1 and u2 = F2−mg,

the equations become

mẍ = −mg sin θ − cẋ+ u1 cos θ − u2 sin θ,

mÿ = mg(cos θ − 1)− cẏ + u1 sin θ + u2 cos θ,

Jθ̈ = ru1.

(3.29)

These equations describe the motion of the vehicle as a set of three

coupled second-order differential equations. ∇

Thermofluid Systems

Thermofluid systems are commonly used in process control, power gen-

eration, and for heating ventilation and air conditioning in buildings

and cars. The processes involve motion of fluids and transmission of
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(a) Water heater

(b) Thermal power generation

Figure 3.19: Two thermofluid systems. A schematic diagram of a

simple water heater a tank with a submerged electrical heater (a) and

schematic diagram of a drum boiler (b).

energy; typical processes include heat exchangers, evaporators, chillers,

and compressors. The dynamics are often complicated because of two-

phase flows, and accurate modeling often requires partial differential

equations and computational fluid dynamics. Two examples are given

in Figure 3.19.
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Example 3.13 Water heater

Consider the water heater in Figure 3.19a, which is a cylindrical tank

with cross section A. The mass of the water is m and its temperature

is T . The inflow and outflow rates are qin and qout, the temperature of

the inflow is Tin, and the temperature of the outflow is T . The total

mass is m = ρAh, where ρ is its the density, h is the water level, C is

the specific heat capacity for water, and mCT is the total energy. The

system can be modeled by a mass balance and an energy balance, and

we obtain

dm

dt
= qin − qout,

d(mCT )

dt
= P + qinCTin − qoutCT, (3.30)

where P is the power from the heater. Energy losses have been ne-

glected and it is assumed that all water in the tank has the same

temperature.

Assuming that C is constant and expanding the derivative for the

energy balance we obtain

d(mCT )

dt
=
dm

dt
CT +mC

dT

dt
= P + qinCTin − qoutCT.

Solving this equation for dT/dt and using the mass balance to elimi-

nate dm/dt, we find that the mass and energy balances expressed by

equation (3.30) can be written as

dm

dt
= qin − qout,

dT

dt
=
qin
m

(Tin − T ) +
1

mC
P. (3.31)

The state variables are the total mass m and the temperature T , the
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control (input) variables are the input power P and inflow rate qin, and

the disturbances are the temperature of the inflow Tin and the output

flow rate qout. ∇

Example 3.14 Drum Boiler

A drum boiler is a piece of equipment used to produce steam, for

example as part of a power generation system where the steam drives

a turbine connected to a generator. The drum in a drum boiler shares

many properties with the water heater but there are two significant

complications: the material constants ρ and C depend on the state,

and there is a mixture of water and steam in both the riser and the

drum. Modeling can still be done by mass and energy balances, but

the two-phase flow leads to significant complications, which we discuss

briefly (and informally) here. A diagram of a drum boiler is shown in

Figure 3.19b.

Control of the drum level is a key problem: if the level is too low the

tubes will burn through, and if the level is too high water may enter

the turbine and cause damage to the turbine blades. We will focus on

modeling of the drum level. Water entering the system is controlled

by the feedwater valve; water leaves the drum as steam through the

steam valve. Water circulates through the drum-downcomer-riser loop,

and it is heated in the riser tubes. The differences in densities in the

downcomer tubes and the riser tubes creates self-circulation. The figure

shows only one riser tube and one downcomer tube, but in the boiler
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we discuss there are 22 downcomer tubes and 788 riser tubes, and the

drum volume is 40 m3. There is pure water in the downcomer tubes

and at the bottom of the riser tubes. Steam is generated by heating the

tubes and the amount of steam increases along the riser tubes. There

is a mixture of steam and water in the drum.

Consider the situation when the system is in equilibrium and the

steam valve is suddenly opened. More steam then leaves the system,

and we may expect the drum level to decrease. This will not happen

because the pressure in the drum will decrease when steam leaves the

system. The air bubbles in the riser and the drum will then increase,

and the water level will initially increase. If we continue to keep the

steam valve open, the level will finally start to decrease. The dynamics

relating drum level to feedwater flow has a similar characteristic. If

feedwater flow is increased then the water temperature in the drum

will decrease, bubbles will collapse, and the drum level will initially de-

crease. This effect, which is called shrink and swell or inverse response,

makes it difficult to control the drum level.

The effect is illustrated in Figure 3.20, which shows simulated and

experimental data for a medium sized boiler. The inverse response

characteristics are clearly seen in the figure. The model used in the

simulation is a fifth-order model based on mass, energy, and momentum

balances; details are given in [18].

The inverse response character of the dynamics from feedwater to
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Figure 3.20: Model (dashed line) and plant data (solid line) for open

loop perturbations in steam flow rate at medium load. Notice that the

drum level increases initially when the steam flow is increased. The

experiment was performed by removing all controllers and introducing

a perturbation in the steam flow [18].

drum level makes it difficult to control the drum level. For this reason

the system is provided with sensors of steam flow and feedwater flow as

indicated in Figure 3.19b. The extra sensors make it possible to predict

whether the mass of water and steam in the system is decreasing or

increasing. We will discuss the consequences of having dynamics with

inverse response in Section 14.4. ∇
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messages

x

µλ

messages

Figure 3.21: Schematic diagram of a queuing system. Messages

arrive at rate λ and are stored in a queue. Messages are processed

and removed from the queue at rate µ. The average length of the

queue is given by x ∈ R.

Information Systems

Information systems range from communication systems like the Inter-

net to software systems that manipulate data or manage enterprise-

wide resources. Feedback is present in all these systems, and designing

strategies for routing, flow control, and buffer management is a typi-

cal problem. Many results in queuing theory emerged from design of

telecommunication systems and later from development of the Internet

and computer communication systems [43, 148, 218]. Management of

queues to avoid congestion is a central problem and we will therefore

start by discussing the modeling of queuing systems.

Example 3.15 Queuing systems

A schematic picture of a simple queue is shown in Figure 3.21. Requests

arrive and are then queued and processed. There can be large variations

in arrival rates and service rates, and the queue length builds up when

the arrival rate is larger than the service rate. When the queue becomes
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too large, service is denied using an admission control policy.

The system can be modeled in many different ways. One way is to

model each incoming request, which leads to an event-based, discrete-

state model where the state is an integer that represents the queue

length. The queue changes when a request arrives or a request is ser-

viced. The statistics of arrival and servicing are typically modeled as

random processes. In many cases it is possible to determine statistics

of quantities like queue length and service time, but the computations

can be quite complicated.

A significant simplification can be obtained by approximating the

discrete queue length by a continuous variable. Instead of keeping track

of each request we instead view service and requests as continuous flows.

The model obtained is called a flow model because of the analogy with

fluid dynamics where motion of molecules are replace by continuous

flows. Hence, if the queue length x is a continuous variable and the

arrivals and services are flows with rates λ and µ, the system can be

modeled by the first-order differential equation

dx

dt
= λ− µ = λ− µmaxf(x), x ≥ 0, (3.32)

as proposed by Agnew [5]. The service rate µ depends on the queue

length; if there are no capacity restrictions we have µ = x/T where T is

the time it takes to serve one customer. The service rate thus increases

linearly with the queue length. In reality the growth will be slower
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because longer queues require more resources, and the service rate has

an upper limit µmax. These effects are captured by modeling the ser-

vice rate as µmaxf(x), where function f(x) is monotone, approximately

linear for small x, and f(∞) = 1.

For a particular queue, the function f(x) can be determined empir-

ically by measuring the queue length for different arrival and service

rates. A simple choice is f(x) = x/(1 + x), which gives the model

dx

dt
= λ− µmax

x

x+ 1
. (3.33)

It was shown by Tipper [240] that if arrival and service processes

are Poisson processes, then average queue length is given by equa-

tion (3.33).

To explore the properties of the model (3.33) we will first investigate

the equilibrium value of the queue length when the arrival rate λ is

constant. Setting the derivative dx/dt to zero in equation (3.33) and

solving for x, we find that the queue length x approaches the steady-

state value

xe =
λ

µmax − λ
. (3.34)

Figure 3.22a shows the steady-state queue length as a function of

λ/µmax, the effective service rate excess. Notice that the queue length

increases rapidly as λ approaches µmax. To have a queue length less

than 20 requires λ/µmax < 0.95. The average time to service a request

can be shown to be Ts = (x+1)/µmax, and it increases dramatically as
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Figure 3.22: Queuing dynamics. (a) The steady-state queue length

as a function of λ/µmax. (b) The behavior of the queue length when

there is a temporary overload in the system. The solid line shows a

realization of an event-based simulation, and the dashed line shows

the behavior of the flow model (3.33). The maximum service rate is

µmax = 1, and the arrival rate starts at λ = 0.5. The arrival rate is

increased to λ = 4 at time 20, and it returns to λ = 0.5 at time 25.

λ approaches µmax.

Figure 3.22b illustrates the behavior of the server in a typical over-

load situation. The figure shows that the queue builds up quickly and

clears very slowly. Since the response time is proportional to queue

length, it means that the quality of service is poor for a long period

after an overload. This behavior is called the rush-hour effect and has

been observed in web servers and many other queuing systems such as

automobile traffic.

The dashed line in Figure 3.22b shows the behavior of the flow

model, which describes the average queue length. The simple model

captures behavior qualitatively, but there are variations from sample
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to sample when the queue length is short. ∇

Many complex systems use discrete control actions. Such systems

can be modeled by characterizing the situations that correspond to

each control action, as illustrated in the following example.

Example 3.16 Virtual memory paging control

An early example of the use of feedback in computer systems was ap-

plied in the operating system OS/VS for the IBM 370 [54, 67]. The

system used virtual memory, which allows programs to address more

memory than is physically available as fast memory. Data in current

fast memory (random access memory, RAM) is accessed directly, but

data that resides in slower memory (disk) is automatically loaded into

fast memory. The system is implemented in such a way that it appears

to the programmer as a single large section of memory. The system

performed very well in many situations, but very long execution times

were encountered in overload situations, as shown by the open circles

in Figure 3.23a. The difficulty was resolved with a simple discrete

feedback system. The load of the central processing unit (CPU) was

measured together with the number of page swaps between fast mem-

ory and slow memory. The operating region was classified as being in

one of three states: normal, underload, or overload. The normal state

is characterized by high CPU activity, the underload state is charac-

terized by low CPU activity and few page replacements, the overload
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Figure 3.23: Illustration of feedback in the virtual memory system

of the IBM/370. (a) The effect of feedback on execution times in a

simulation, following [54]. Results with no feedback are shown with

o, and results with feedback with x. Notice the dramatic decrease in

execution time for the system with feedback. (b) How the three states

are obtained based on process measurements.

state has moderate to low CPU load but many page replacements;

see Figure 3.23b. The boundaries between the regions and the time

for measuring the load were determined from simulations using typical

loads. The control strategy was to do nothing in the normal load con-

dition, to exclude a process from memory in the overload condition and

to allow a new process or a previously excluded process in the under-

load condition. The crosses in Figure 3.23a show the effectiveness of

the simple feedback system in simulated loads. Similar principles based

on crude quantization of the state and simple heuristic algorithms are

used in many other situations, e.g., in communication systems and in

web server control.

∇
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Example 3.17 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications where we want to

collect and aggregate information over a region of space using multi-

ple sensors that are connected together via a communications network.

Examples include monitoring environmental conditions in a geograph-

ical area (or inside a building), monitoring the movement of animals or

vehicles, and monitoring the resource loading across a group of com-

puters. In many sensor networks the computational resources are dis-

tributed along with the sensors, and it can be important for the set of

distributed agents to reach a consensus about a certain property, such

as the average temperature in a region or the average computational

load among a set of computers.

To illustrate how such a consensus might be achieved, we consider

the problem of computing the average value of a set of numbers that

are locally available to the individual agents. We wish to design a

“protocol” (algorithm) such that all agents will agree on the average

value. We consider the case in which all agents cannot necessarily

communicate with each other directly, although we will assume that

the communications network is connected (meaning that no two groups

of agents are completely isolated from each other). Figure 3.24a shows

a simple situation of this type.

We model the connectivity of the sensor network using a graph,

with nodes corresponding to the sensors and edges corresponding to
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Figure 3.24: Consensus protocols for sensor networks. (a) A simple

sensor network with five nodes. In this network, node 1 communi-

cates with node 2 and node 2 communicates with nodes 1, 3, 4, 5,

etc. (b) A simulation demonstrating the convergence of the consensus

protocol (3.35) to the average value of the initial conditions.

the existence of a direct communications link between two nodes. For

any such graph, we can build an adjacency matrix, where each row and

column of the matrix corresponds to a node and a 1 in the respective

row and column indicates that the two nodes are connected. For the

network shown in Figure 3.24a, the corresponding adjacency matrix is

A =




0 1 0 0 0

1 0 1 1 1

0 1 0 1 0

0 1 1 0 0

0 1 0 0 0




.

We use the notation Ni to represent the set of neighbors of a node i.

For example, in the network shown in Figure 3.24a N2 = {1, 3, 4, 5}

and N3 = {2, 4}.
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To solve the consensus problem, let xi be the state of the ith sensor,

corresponding to that sensor’s estimate of the average value that we are

trying to compute. We initialize the state to the value of the quantity

measured by the individual sensor. The consensus protocol (algorithm)

can now be realized as a local update law

xi[k + 1] = xi[k] + γ
∑

j∈Ni

(xj[k]− xi[k]). (3.35)

This protocol attempts to compute the average by updating the local

state of each agent based on the value of its neighbors. The combined

dynamics of all agents can be written in the form

x[k + 1] = x[k]− γ(D − A)x[k], (3.36)

where A is the adjacency matrix andD is a diagonal matrix with entries

corresponding to the number of neighbors of each node. The constant

γ describes the rate at which the estimate of the average is updated

based on information from neighboring nodes. The matrix L := D−A

is called the Laplacian of the graph.

The equilibrium points of equation (3.36) are the set of states such

that xe[k+1] = xe[k]. It can be shown that if the network is connected,

xe = (α, α, . . . , α) is an equilibrium state for the system, corresponding

to each sensor having an identical estimate α for the average. Further-

more, we can show that α is indeed the average value of the initial

states. Since there can be cycles in the graph, it is possible that the
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state of the system could enter into an infinite loop and never converge

to the desired consensus state. A formal analysis requires tools that

will be introduced later in the text, but it can be shown that for any

connected graph we can always find a γ such that the states of the

individual agents converge to the average. A simulation demonstrating

this property is shown in Figure 3.24b. Although we have focused here

on consensus to the average value of a set of measurements, other con-

sensus states can be achieved through choice of appropriate feedback

laws. Examples include finding the maximum or minimum value in

a network, counting the number of nodes in a network or computing

higher-order statistical moments of a distributed quantity [64, 197]. ∇

Biological Systems

Biological systems provide perhaps the richest source of feedback and

control examples. The basic problem of homeostasis, in which a quan-

tity such as temperature or blood sugar level is regulated to a fixed

value, is but one of the many types of complex feedback interactions

that can occur in molecular machines, cells, organisms, and ecosystems.

Example 3.18 Transcriptional regulation

Transcription is the process by which messenger RNA (mRNA) is gen-

erated from a segment of DNA. The promoter region of a gene allows

transcription to be controlled by the presence of other proteins, called

transcription factors, which bind to the promoter region and either
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Figure 3.25: Biological circuitry. The cell on the left is a bovine

pulmonary cell, stained so that the nucleus, actin, and chromatin are

visible. The figure on the right gives an overview of the process by

which proteins in the cell are made. RNA is transcribed from DNA

by an RNA polymerase enzyme. The RNA is then translated into

a polypeptide chain by a molecular machine called a ribosome, and

then the polypeptide chain folds into a protein molecule.

repress or activate RNA polymerase, the enzyme that produces an

mRNA transcript from DNA. The mRNA is then translated into a

protein according to its nucleotide sequence. This process is illustrated

in Figure 3.25.

A simple model of the transcriptional regulation process is through

the use of a Hill function [69, 186]. Consider the regulation of a protein

A with a concentration given by pa and a corresponding mRNA con-

centration ma. Let B be a second protein with concentration pb that

represses the production of protein A through transcriptional regula-
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tion. The resulting dynamics of pa and ma can be written as

dma

dt
=

αab

1 + kabp
nab

b

+ αa0 − δama,
dpa
dt

= κama − γapa, (3.37)

where αab + αa0 is the unregulated transcription rate, δa represents

the rate of degradation of mRNA, αab, kab, and nab are parameters

that describe how B represses A, κa represents the rate of production

of the protein from its corresponding mRNA, and γa represents the

rate of degradation of the protein A. The parameter αa0 describes the

“leakiness” of the promoter, and nab is called the Hill coefficient and

relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the production

of another protein rather than repressing it. In this case, the equations

have the form

dma

dt
=

αabkabp
nab

b

1 + kabp
nab

b

+ αa0 − δama,
dpa
dt

= κama − γapa, (3.38)

where the variables are the same as described previously. Note that

in the case of the activator, if pb is zero, then the production rate is

αa0 ≪ αab (versus αab + αa0 for the repressor). As pb gets large, the

first term in the expression for ṁa approaches 1 and the transcription

rate becomes αab+αa0 (versus αa0 for the repressor). Thus we see that

the activator and repressor act in opposite fashion from each other.

As an example of how these models can be used, we consider the

model of a “repressilator,” originally due to Elowitz and Leibler [84].
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Figure 3.26: The repressilator genetic regulatory network. (a) A

schematic diagram of the repressilator, showing the layout of the genes

in the plasmid that holds the circuit as well as the circuit diagram

(center). (b) A simulation of a simple model for the repressilator,

showing the oscillation of the individual protein concentrations. (Fig-

ure courtesy M. Elowitz.)

The repressilator is a synthetic circuit in which three proteins each re-

press another in a cycle. This is shown schematically in Figure 3.26a,

where the three proteins are TetR, λ cI, and LacI. The basic idea of the

repressilator is that if TetR is present, then it represses the production

of λ cI. If λ cI is absent, then LacI is produced (at the unregulated tran-

scription rate), which in turn represses TetR. Once TetR is repressed,

then λ cI is no longer repressed, and so on. If the dynamics of the

circuit are designed properly, the resulting protein concentrations will

oscillate.

We can model this system using three copies of equation (3.37), with

A and B replaced by the appropriate combination of TetR, cI, and LacI.
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(a) Small network of neurons (b) Synapse

Figure 3.27: Nerve cell physiology. The left figure shows a neuron

and the right figures illustrated the synaptic gap between an axon

terminal and a dendrite.

The state of the system is then given by x = (mTetR, pTetR,mcI, pcI,mLacI, pLacI).

Figure 3.26b shows the traces of the three protein concentrations for

parameters n = 2, α = 0.5, k = 6.25 × 10−4, α0 = 5 × 10−4, δ =

5.8 × 10−3, κ = 0.12, and γ = 1.2 × 10−3 with initial conditions

x(0) = (1, 200, 0, 0, 0, 0) (following [84]). ∇

Example 3.19 Nerve cells

Neurons are key elements of the control systems for all humans and an-

imals. There are different types of neurons: sensory neurons respond

to stimuli, motor neurons control muscles and other organs, and in-

terneurons that act as intermediaries in passing signals between other

neurons. Neurons are often connected to form networks; a human brain

has close to 100 billion neurons.

A neuron has three parts: the cell body (soma), the axon, and the

dendrites, as shown in Figure 3.27a. The cell body varies in size from 4
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to 100 µm and axons have lengths from one millimeter to a meter. The

cell has a membrane that separates it from the outside environment

(extracellular space), with molecular-scale channels that let ions pass

through the membrane, creating a voltage difference across the cell

membrane. An electric pulse (spike) is generated when the voltage

difference reaches a critical level. Pulse rates range from 1 Hz to 1 kHz

and the generated pulse travels along the axon to its terminals.

Neurons receive signals from other neurons through dendrites. There

are electrochemical reactions at the interface between an axon and a

dendrite of another cell that allows transmission between two neurons.

The axon terminal has vesicles that contain neurotransmitters, which

are released in the synaptic gap when the axon is stimulated by electri-

cal pulses, as illustrated in Figure 3.27b. The neurotransmitters stim-

ulate ion channels in the cell membrane, causing them to open. There

are many types of channels; two common ones are sodium (Na+) chan-

nels and potassium (K+) channels. The potassium channel has a slow

excitatory action, while the sodium channel has a fast excitatory and

a slow inhibitory action.

The dynamics of the neuron are a fundamental mechanism for

understanding signaling in cells. The Hodgkin–Huxley equation is a

model for neuron dynamics. It models the cell membrane as a capaci-

tor,

C
dV

dt
= INa+ + IK+ + Ileak + Iinput,
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where V is the membrane potential, C is the capacitance, INa+ and IK+

are the current caused by the transport of sodium and potassium ions

across the cell membrane, Ileak is a leakage current, and Iinput is the

external stimulation of the cell. Each current obeys Ohm’s law,

INa+ = gNa(ENa+−V ), IK+ = gK(EK+−V ), Ileak = gleak(Eleak−V ).

The conductances gNa, gK, and gleak depend on the voltage V through

the variables m, n, and h, where gNa is proportional to m3h, gK is

proportional to n4 and gleak is a constant. The variables m, n, and h

are given by the differential equations

dm

dt
=
ma(V )−m
τm(V )

,
dh

dt
=
ha(V )− h
τh(V )

,
dn

dt
=
na(V )− n
τn(V )

,

where the functions ma, ha, na, τm, τh, and τn are derived from experi-

mental data. The functions ma and na are monotone and increasing in

V , creating excitatory behavior. The function ha is monotone and de-

creasing, creating inhibitory behavior. The time constant τm is almost

an order of magnitude smaller than the time constants τh and τn.

The equilibrium voltages ENa+ and EK+ are given by Nernst’s law,

E =
RT

nF
log

ce
ci
,

where R is Boltzmann’s constant, T is the absolute temperature, F is

Faraday’s constant, n is the charge (or valence) of the ion, and ci and ce

are the ion concentrations inside the cell and in the external fluid. At

20 ◦C we have RT/F = 20 mV, ENa+ = 55 mV, and EK+ = −92 mV.
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Figure 3.28: Response of a neuron to a current input. The current

input is shown in (a) and the neuron voltage V in (b). The simulation

was done using the FitzHugh–Nagumo model (Exercise 3.11).

The Hodgkin-Huxley equations are complicated and contain many

widely different time scales, and many approximations have therefore

been proposed. One approximation is the FitzHugh–Nagumo model

(Exercise 3.11). A simulation of this model is shown in Figure 3.28 to

illustrate the behavior of a neuron to an external current stimulation.

The system is initially at rest with I = 0 and V = 0. A short current

pulse enters at time t = 5 ms, the neuron is excited, and responds by

sending out a spike. The neuron is then excited at time t = 30 ms and

the neuron then starts spiking. ∇

The Hodgkin–Huxley model was originally developed as a means

to predict the quantitative behavior of the squid giant axon [119].

Hodgkin and Huxley shared the 1963 Nobel Prize in Physiology (along

with J. C. Eccles) for analysis of the electrical and chemical events in

nerve cell discharges. The voltage clamp described in Section 1.4 was

used to determine the functions ma(V ), na(V ), and ha(V ). There are



SYSTEM MODELING 203

many variations of models for the dynamics of neurons based on the

Hodgkin–Huxley model; a recent reference is [202]. Some models com-

bine ordinary differential equations with discrete transitions, so–called

integrate-and-fire models or hybrid systems.

3.5 FURTHER READING

Modeling is ubiquitous in engineering and science and has a long history

in applied mathematics. For example, the Fourier series was introduced

by Fourier when he modeled heat conduction in solids [89]. A classic

book on the modeling of physical systems, especially mechanical, elec-

trical, and thermofluid systems, is Cannon [60]. The book by Aris [13]

is highly original and has a detailed discussion of the use of dimension-

free variables. Models of dynamics have been developed in many dif-

ferent fields, including mechanics [14, 104], heat conduction [61], flu-

ids [47], vehicles [1, 48, 81], robotics [189, 226], circuits [110], power

systems [155], acoustics [38], and micromechanical systems [220]. The

authors’ favorite books on modeling of biological systems are Keener

and Sneyd [139, 140], J. D. Murray [186], and Wilson [256]. Control re-

quires modeling from many different domains, and most control theory

texts contain several chapters on modeling using ordinary differential

equations and difference equations (see, for example, [92]). A good

source for system identification is Ljung [165].
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EXERCISES

3.1 (Chain of integrators form) Consider the linear ordinary differential

equation (3.7). Show that by choosing a state space representation with

x1 = y, the dynamics can be written as

A =




0 1 0

0
. . . . . . 0

0 · · · 0 1

−an −an−1 −a1




, B =




0

0

...

1




, C =


1 . . . 0 0


 .

This canonical form is called the chain of integrators form.

3.2 (Discrete-time dynamics) Consider the following discrete-time sys-

tem

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k],

where

x =




x1

x2



, A =




a11 a12

0 a22



, B =




0

1



, C =


1 0


 .

In this problem, we will explore some of the properties of this discrete-

time system as a function of the parameters, the initial conditions, and

the inputs.

a) For the case when a12 = 0 and u = 0, give a closed form expression

for the output of the system.

b) A discrete system is in equilibrium when x[k+1] = x[k] for all k. Let



SYSTEM MODELING 205

u = r be a constant input and compute the resulting equilibrium point

for the system. Show that if |aii| < 1 for all i, all initial conditions give

solutions that converge to the equilibrium point.

c) Write a computer program to plot the output of the system in re-

sponse to a unit step input, u[k] = 1, k ≥ 0. Plot the response of your

system with x[0] = 0 and A given by a11 = 0.5, a12 = 1, and a22 = 0.25.

3.3 (Keynesian economics) Keynes’ simple model for an economy is

given by

Y [k] = C[k] + I[k] +G[k],

where Y , C, I, and G are gross national product (GNP), consumption,

investment and government expenditure for year k. Consumption and

investment are modeled by difference equations of the form

C[k + 1] = aY [k], I[k + 1] = b(C[k + 1]− C[k]),

where a and b are parameters. The first equation implies that consump-

tion increases with GNP but that the effect is delayed. The second

equation implies that investment is proportional to the rate of change

of consumption.

Show that the equilibrium value of the GNP is given by

Ye =
1

1− aGe,

where the parameter 1/(1− a) is the Keynes multiplier (the gain from



206 CHAPTER 3

G to Y ). With a = 0.75 an increase of government expenditure will

result in a fourfold increase of GNP. Also show that the model can be

written as the following discrete-time state model:




C[k + 1]

I[k + 1]




=




a a

ab− b ab







C[k]

I[k]




+




a

ab



G[k],

Y [k] = C[k] + I[k] +G[k].

3.4 (Least squares system identification) Consider a nonlinear differ-�

ential equation that can be written in the form

dx

dt
=

M∑

i=1

αifi(x),

where fi(x) are known nonlinear functions and αi are unknown, but

constant, parameters. Suppose that we have measurements (or esti-

mates) of the full state x at time instants t1, t2, . . . , tN , with N > M .

Show that the parameters αi can be estimated by finding the least

squares solution to a linear equation of the form

Hα = b,

where α ∈ RM is the vector of all parameters and H ∈ RN×M and

b ∈ RN are appropriately defined.

3.5 (Normalized oscillator dynamics) Consider a damped spring–mass
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system with dynamics

mq̈ + cq̇ + kq = F.

Let ω0 =
√
k/m be the natural frequency and ζ = c/(2

√
km) be the

damping ratio.

a) Show that by rescaling the equations, we can write the dynamics in

the form

q̈ + 2ζω0q̇ + ω2
0q = ω2

0u, (3.39)

where u = F/k. This form of the dynamics is that of a linear oscillator

with natural frequency ω0 and damping ratio ζ.

b) Show that the system can be further normalized and written in the

form

dz1
dτ

= z2,
dz2
dτ

= −z1 − 2ζz2 + v. (3.40)

The essential dynamics of the system are governed by a single damping

parameter ζ. The Q-value, defined as Q = 1/2ζ, is sometimes used

instead of ζ.

3.6 (Dubins car) Show that the trajectory of a vehicle with reference

point chosen as the center of the rear wheels can be modeled by dy-

namics of the form

dx

dt
= v cos θ,

dy

dt
= v sin θ,

dθ

dt
=
v

b
tan δ,

where the variables and constants are defined as in Example 3.11.



208 CHAPTER 3

3.7 (Motor drive) Consider a system consisting of a motor driving two

masses that are connected by a torsional spring, as shown in the dia-

gram below.

Motor
I

J1

1

1

J2

ω

ϕ 2ϕ

2ω

This system can represent a motor with a flexible shaft that drives a

load. Assuming that the motor delivers a torque that is proportional

to the current I, the dynamics of the system can be described by the

equations

J1
d2ϕ1

dt2
+ c
(dϕ1

dt
− dϕ2

dt

)
+ k(ϕ1 − ϕ2) = kII,

J2
d2ϕ2

dt2
+ c
(dϕ2

dt
− dϕ1

dt

)
+ k(ϕ2 − ϕ1) = Td,

(3.41)

where ϕ1 and ϕ2 are the angles of the two masses, ωi = dϕi/dt are their

velocities, Ji represents moments of inertia, c is the damping coefficient,

k represents the shaft stiffness, kI is the torque constant for the motor,

and Td is the disturbance torque applied at the end of the shaft. Similar

equations are obtained for a robot with flexible arms and for the arms

of DVD and optical disk drives.

Derive a state space model for the system by introducing the (nor-

malized) state variables x1 = ϕ1, x2 = ϕ2, x3 = ω1/ω0, and x4 = ω2/ω0,

where ω0 =
√
k(J1 + J2)/(J1J2) is the undamped natural frequency of

the system when the control signal is zero.
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3.8 (Electric generator) An electric generator connected to a power grid

can be modeled by a momentum balance for the rotor of the generator:

J
d2ϕ

dt2
= Pm − Pe = Pm −

EV

X
sinϕ,

where J is the effective moment of inertia of the generator, ϕ is the

angle of rotation, Pm is the mechanical power that drives the generator,

Pe is the active electrical power, E is the generator voltage, V is the

grid voltage, and X is the reactance of the line. Assuming that the

line dynamics are much faster than the rotor dynamics, Pe = V I =

(EV/X) sinϕ, where I is the current component in phase with the

voltage E and ϕ is the phase angle between voltages E and V . Show

that the dynamics of the electric generator has a normalized form that

is similar to the dynamics of a pendulum with forcing at the pivot.

3.9 (Admission control for a queue) Consider the queuing system de-

scribed in Example 3.15. The long delays created by temporary over-

loads can be reduced by rejecting requests when the queue gets large.

This allows requests that are accepted to be serviced quickly and re-

quests that cannot be accommodated to receive a rejection quickly so

that they can try another server. Consider an admission control system

described by

dx

dt
= λu− µmax

x

x+ 1
, u = sat(0,1)(k(r − x)), (3.42)

where the controller is a simple proportional control with saturation
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(sat(a,b) is defined by equation (4.10)) and r is the desired (reference)

queue length. Use a simulation to show that this controller reduces

the rush-hour effect and explain how the choice of r affects the system

dynamics.

3.10 (Biological switch) A genetic switch can be formed by connecting

two repressors together in a cycle as shown below.

u1

A

B

u2 B

u2

u1

A

Using the models from Example 3.18—assuming that the parameters

are the same for both genes and that the mRNA concentrations reach

steady-state quickly—show that the dynamics can be written in nor-

malized coordinates as

dz1
dτ

=
µ

1 + zn2
− z1 − v1,

dz2
dτ

=
µ

1 + zn1
− z2 − v2, (3.43)

where z1 and z2 are scaled versions of the protein concentrations and

the time scale has also been changed. Show that µ ≈ 200 using the

parameters in Example 3.18, and use simulations to demonstrate the

switch-like behavior of the system.

3.11 (FitzHugh–Nagumo) The second-order FitzHugh–Nagumo equa-

tions

dV

dt
= 10(V − V 3/3−R + Iin),

dR

dt
= 0.8(1.25V −R + 1.5)
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are a simplified version of the Hodgkin–Huxley equations discussed in

Example 3.19. The variable V is the voltage across the axon membrane

and R is an auxiliary variable that approximates several ion currents

that flow across the membrane. Simulate the equations and reproduce

the simulation in Figure 3.28. Explore the effect of the input current

Iin.





Chapter Four

Examples

... Don’t apply any model until you understand the simplifying

assumptions on which it is based, and you can test their validity.

Catch phrase: use only as directed. Distinguish at all times be-

tween the model and the real world. Catch phrase: You will never

strike oil by drilling through the map!”

Saul Golomb, “Mathematical Models—Uses and Limitations,”

1970 [105].

In this chapter we present a collection of examples spanning many

different fields of science and engineering. These examples are used

throughout the text and in exercises to illustrate different concepts.

First-time readers may wish to focus on only a few examples with which

they have had the most prior experience or insight to understand the

concepts of state, input, output, and dynamics in a familiar setting.
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Gears &

Actuator

vr

Controller

Body
Throttle &

Engine

Fd

v

cancel

resume/accel

set/decel

on/off

Driver

Interface

T F

u

Wheels

Figure 4.1: Block diagram of a cruise control system for an auto-

mobile. The throttle-controlled engine generates a torque T that is

transmitted to the ground through the gearbox and wheels. Combined

with the external forces from the environment, such as aerodynamic

drag and gravitational forces on hills, the net force causes the car to

move. The velocity of the car v is measured by a control system that

adjusts the throttle through an actuation mechanism. A driver inter-

face allows the system to be turned on and off and the reference speed

vr to be established.

4.1 CRUISE CONTROL

The cruise control system of a car is a common feedback system en-

countered in everyday life. The system attempts to maintain a constant

velocity in the presence of disturbances primarily caused by changes in

the slope of a road. The controller compensates for these unknowns by

measuring the speed of the car and adjusting the throttle appropriately.

To model the system we start with the block diagram in Figure 4.1.

Let v be the speed of the car and vr the desired (reference) speed. The

controller, which typically is of the proportional-integral (PI) type de-
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scribed briefly in Chapter 1, receives the signals v and vr and generates

a (normalized) control signal u that is sent to an actuator that con-

trols the throttle position. The throttle in turn controls the torque T

delivered by the engine, which is transmitted through the gears and

the wheels, generating a force F that moves the car. There are distur-

bance forces Fd due to variations in the slope of the road, the rolling

resistance, and aerodynamic forces. The cruise controller also has a

human–machine interface that allows the driver to set and modify the

desired speed. There are also functions that disconnect the cruise con-

trol when the brake is touched.

The system has many individual components—actuator, engine,

transmission, wheels, and car body—and a detailed model can be very

complicated. In spite of this, the model required to design the cruise

controller can be quite simple.

To develop a mathematical model we start with a force balance

for the car body. Letting m be the total mass of the car (including

passengers), the equation of motion of the car is simply

m
dv

dt
= F − Fd. (4.1)

Typical values for the mass of a car are in the range of 1000–2000 kg

(we will use 1600 kg here).

The force F is generated by the engine, whose torque is proportional

to the rate of fuel injection, which is itself proportional to a control
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(b) Torque versus car speed

Figure 4.2: Torque curves for typical car engine. The graph on the

left shows the torque generated by the engine as a function of the

angular velocity of the engine, while the curve on the right shows

torque as a function of car speed for different gears.

signal 0 ≤ u ≤ 1 that controls the throttle position. The torque also

depends on engine speed ω. A simple representation of the torque at

full throttle is given by the torque curve

T (ω) = Tm

(
1− β

(
ω

ωm

− 1

)2
)
, (4.2)

where the maximum torque Tm is obtained at engine speed ωm. Typical

parameters are Tm = 190 Nm, ωm = 420 rad/s (about 4000 RPM), and

β = 0.4. Let n be the gear ratio and r the wheel radius. The engine

speed is related to the velocity through the expression

ω =
n

r
v =: αnv,

and the driving force can be written as

F =
nu

r
T (ω) = αnuT (αnv).
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Typical values of αn for gears 1 through 5 are α1 = 40, α2 = 25,

α3 = 16, α4 = 12, and α5 = 10. The inverse of αn has a physical

interpretation as the effective wheel radius. Figure 4.2 shows the torque

as a function of engine speed and vehicle speed. The figure shows that

the effect of the gear is to “flatten” the torque curve so that nearly full

torque can be obtained over almost the whole speed range.

The disturbance force Fd has three major components: Fg, the

forces due to gravity; Fr, the forces due to rolling friction; and Fa, the

aerodynamic drag. Letting the slope of the road be θ, gravity gives the

force Fg = mg sin θ, as illustrated in Figure 4.3a, where g = 9.8 m/s2

is the gravitational constant. A simple model of rolling friction is

Fr = mgCr sgn(v),

where Cr is the coefficient of rolling friction and sgn(v) is the sign of

v (±1) or zero if v = 0. A typical value for the coefficient of rolling

friction is Cr = 0.01. Finally, the aerodynamic drag is proportional to

the square of the speed:

Fa =
1

2
ρCdA|v|v,

where ρ is the density of air, Cd is the shape-dependent aerodynamic

drag coefficient, and A is the frontal area of the car. Typical parameters

are ρ = 1.3 kg/m3, Cd = 0.32, and A = 2.4 m2.
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(b) Closed loop response

Figure 4.3: Car with cruise control encountering a sloping road. A

schematic diagram is shown in (a), and (b) shows the response in

speed and throttle when a slope of 4◦ is encountered. The hill is

modeled as a net change of 4◦ in hill angle θ, with a linear change in

the angle between t = 5 and t = 6. The PI controller has proportional

gain kp = 0.5 and integral gain ki = 0.1.

Summarizing, we find that the car’s speed can be modeled by

m
dv

dt
= αnuT (αnv)−mgCr sgn(v)−

1

2
ρCdA|v|v −mg sin θ, (4.3)

where the function T is given by equation (4.2). The model (4.3) is a

dynamical system of first order. The state is the car velocity v, which

is also the output. The input is the signal u that controls the throttle

position, and the disturbance is the force Fd = mg sin θ, which depends

on the slope of the road. The system is nonlinear because of the torque

curve, the gravity term, and the nonlinear character of rolling friction

and aerodynamic drag. There can also be variations in the parameters;
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e.g., the mass of the car depends on the number of passengers and the

load being carried in the car.

We add to this model a feedback controller that attempts to reg-

ulate the speed of the car in the presence of disturbances. We use a

proportional-integral controller, which has the form

u(t) = kpe(t) + ki

∫ t

0

e(τ) dτ.

This controller can itself be realized as an input/output dynamical

system by defining a controller state z and implementing the differential

equation

dz

dt
= vr − v, u = kp(vr − v) + kiz, (4.4)

where vr is the desired (reference) speed. As discussed briefly in Sec-

tion 1.6, the integrator (represented by the state z) ensures that in

steady state the error will be driven to zero, even when there are dis-

turbances or modeling errors. (The design of PI controllers is the sub-

ject of Chapter 11.) Figure 4.3b shows the response of the closed loop

system, consisting of equations (4.3) and (4.4), when it encounters a

hill. The figure shows that even if the hill is so steep that the throttle

changes from 0.17 to almost full throttle, the largest speed error is less

than 1 m/s, and the desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (4.3). It

may seem surprising that such a seemingly complicated system can be

described by the simple model (4.3). It is important to make sure that



220 CHAPTER 4

we restrict our use of the model to the uncertainty lemon conceptualized

in Figure 3.5b. The model is not valid for very rapid changes of the

throttle because we have ignored the details of the engine dynamics,

neither is it valid for very slow changes because the properties of the

engine will change over the years. Nevertheless the model is very useful

for the design of a cruise control system. As we shall see in later

chapters, the reason for this is the inherent robustness of feedback

systems: even if the model is not perfectly accurate, we can use it to

design a controller and make use of the feedback in the controller to

manage the uncertainty in the system.

The cruise control system also has a human–machine interface that

allows the driver to communicate with the system. There are many

different ways to implement this system; one version is illustrated in

Figure 4.4. The system has four buttons: on-off, set/decelerate, re-

sume/accelerate, and cancel. The operation of the system is governed

by a finite state machine that controls the modes of the PI controller

and the reference generator. Implementation of controllers and refer-

ence generators will be discussed more fully in Chapter 11.

The use of control in automotive systems goes well beyond the sim-

ple cruise control system described here. Applications include emissions

control, traction control, power control (especially in hybrid vehicles),

and adaptive cruise control. Many automotive applications are dis-

cussed in detail in the book by Kiencke and Nielsen [144] and in the



EXAMPLES 221

(a) Cruise control interface

cancel

StandbyOff

Cruise

Hold
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off

off
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(b) Finite state machine

Figure 4.4: Finite state machine for cruise control system. The

figure on the left shows some typical buttons used to control the sys-

tem. The controller can be in one of four modes, corresponding to

the nodes in the diagram on the right. Transition between the modes

is controlled by pressing one of the five buttons on the cruise control

interface: on, off, set, resume, or cancel.

survey papers by Powers et al. [27, 203]. New vehicles coming on the

market also include many “self-driving” features, which represent even

more complex feedback systems.

4.2 BICYCLE DYNAMICS

The bicycle is an interesting dynamical system with the feature that

one of its key properties is due to a feedback mechanism that is created

by the design of the front fork. A detailed model of a bicycle is complex

because the system has many degrees of freedom and the geometry is

complicated. However, a great deal of insight can be obtained from

simple models.

To derive the equations of motion we assume that the bicycle rolls
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on the horizontal xy plane. Introduce a coordinate system that is

fixed to the bicycle with the ξ-axis through the contact points of the

wheels with the ground, the η-axis horizontal, and the ζ-axis vertical,

as shown in Figure 4.5. Let v0 be the velocity of the bicycle at the rear

wheel, b the wheelbase, ϕ the tilt angle, and δ the steering angle. The

coordinate system rotates around the point O with the angular velocity

ω = v0δ/b, and an observer fixed to the bicycle experiences forces due

to the motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pendulum,

as shown in the rear view in Figure 4.5b. To model the tilt, consider

the rigid body obtained when the wheels, the rider, and the front fork

assembly are fixed to the bicycle frame. Let m be the total mass of the

system, J the moment of inertia of the body with respect to the ξ-axis,

and D the product of inertia with respect to the ξζ axes. Furthermore,

let the ξ and ζ coordinates of the center of mass with respect to the rear

wheel contact point, P1, be a and h, respectively. We have J ≈ mh2

and D = mah. The torques acting on the system are due to gravity

and centripetal action. Assuming that the steering angle δ is small, the

equation of motion becomes

J
d2ϕ

dt2
− Dv0

b

dδ

dt
= mgh sinϕ+

mv20h

b
δ. (4.5)

The term mgh sinϕ is the torque generated by gravity. The terms con-

taining δ and its derivative are the torques generated by steering, with
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Figure 4.5: Schematic views of a bicycle. The steering angle is δ,

and the roll angle is ϕ. The center of mass has height h and distance

a from a vertical through the contact point P1 of the rear wheel. The

wheelbase b is the distance between P1 and P2, and the trail c is the

distance between P2 and P3.

the term (Dv0/b) dδ/dt due to inertial forces and the term (mv20h/b) δ

due to centripetal forces.

The steering angle is influenced by the torque the rider applies to

the handle bar. Because of the tilt of the steering axis and the shape

of the front fork, the contact point of the front wheel with the road

P2 is behind the axis of rotation of the front wheel assembly, as shown

in Figure 4.5c. The distance c between the contact point of the front

wheel P2 and the projection of the axis of rotation of the front fork
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Figure 4.6: Block diagram of a bicycle with a front fork. The steering

torque applied to the handlebars is T , the roll angle is ϕ, and the

steering angle is δ. Notice that the front fork creates a feedback from

the roll angle ϕ to the steering angle δ that under certain conditions

can stabilize the system.

assembly P3 is called the trail. The steering properties of a bicycle

depend critically on the trail. A large trail increases stability but makes

the steering less agile.

A consequence of the design of the front fork is that the steering

angle δ is influenced both by steering torque T and by the tilt of the

frame ϕ. This means that a bicycle with a front fork is a feedback

system as illustrated by the block diagram in Figure 4.6. The steering

angle δ influences the tilt angle ϕ, and the tilt angle influences the

steering angle, giving rise to the circular causality that is characteristic

of reasoning about feedback. For a front fork with a positive trail,

the bicycle will steer into the lean, creating a centrifugal force that

attempts to diminish the lean.

Under certain conditions, the feedback can actually stabilize the

bicycle. A crude empirical model is obtained by assuming that the
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front fork can be modeled as the static system

δ = k1T − k2ϕ. (4.6)

Combining the model of the bicycle frame (4.5) with the model of the

front fork (4.6), we get the the following system model:

J
d2ϕ

dt2
+
Dv0k2
b

dϕ

dt
+
(mv20hk2

b
−mgh

)
ϕ =

Dv0k1
b

dT

dt
+
mv20hk1

b
T, (4.7)

where we have approximated sinϕ with ϕ. The left hand side of this

equation looks like the equation for a spring mass system, where the

damping term isDv0k2/b and the spring term ismv20k2/b−mgh. Notice

that the spring term is negative if v0 = 0 and that it becomes positive

for v >
√
gb/k2. We can thus conclude that the bicycle is unstable for

small velocities but that the feedback provided by the front fork makes

the bicycle stable if the velocity is sufficiently large.

The simple model given by equations (4.5) and (4.6) neglects the

dynamics of the front fork, the tire–road interaction, and the fact that

the parameters depend on the velocity. A more accurate model, called

the Whipple model, is obtained using the rigid-body dynamics of the

front fork and the frame. Assuming small angles, this model becomes

M




ϕ̈

δ̈




+ Cv0




ϕ̇

δ̇




+ (K0 +K2v
2
0)




ϕ

δ




=




0

T



, (4.8)

where the elements of the 2 × 2 matrices M , C, K0, and K2 depend

on the geometry and the mass distribution of the bicycle. Note that
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this has a form somewhat similar to that of the spring–mass system

introduced in Chapter 3 and the balance system in Example 3.2. Even

this more complex model is inaccurate because the interaction between

the tire and the road is neglected; taking this into account requires two

additional state variables. Again, the uncertainty lemon in Figure 3.5b

provides a framework for understanding the validity of the model under

these assumptions.

Interesting presentations on the development of the bicycle are given

in the books by D. Wilson [255] and Herlihy [117]. The model (4.8) was

presented in a paper by Whipple in 1899 [249]. More details on bicycle

modeling are given in the papers [20, 163], which has many additional

references.

4.3 OPERATIONAL AMPLIFIER CIRCUITS

An operational amplifier (op amp) is a modern implementation of

Black’s feedback amplifier. It is a universal component that is widely

used for instrumentation, control, and communication. It is also a key

element in analog computing. Schematic diagrams of the operational

amplifier are shown in Figure 4.7. The amplifier has one inverting in-

put (v−), one noninverting input (v+), and one output (vout). There

are also connections for the supply voltages, e− and e+, and a zero

adjustment (offset null). A simple model is obtained by assuming that
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e−

NC

e+
output

offset null

offset null

inverting input

non-inv. input

(a) Chip pinout

voutv−

v+
e−

e+i+

i−

(b) Full schematic

−

v+

v− vout

+

(c) Simple view

Figure 4.7: An operational amplifier and two schematic diagrams.

(a) The amplifier pin connections on an integrated circuit chip. (b) A

schematic with all connections. (c) Only the signal connections.

the input currents i− and i+ are zero and that the output is given by

the static relation

vout = sat(vmin,vmax)

(
k(v+ − v−)

)
, (4.9)

where sat denotes the saturation function

sat(a,b)(x) =





a if x < a,

x if a ≤ x ≤ b,

b if x > b.

(4.10)

We assume that the gain k is large, in the range of 106–108, and the

voltages vmin and vmax satisfy

e− ≤ vmin < vmax ≤ e+
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vmin

vout

v+ − v−

vmax

Figure 4.8: Input/output characteristics of an operational amplifier.

The differential input is given by v+ − v−. The output voltage is a

linear function of the input in a small range around 0, with saturation

at vmin and vmax. In the linear regime the op amp has high gain.

and hence are in the range of the supply voltages. More accurate

models are obtained by replacing the saturation function with a smooth

function as shown in Figure 4.8. For small input signals the amplifier

characteristic (4.9) is linear:

vout = k(v+ − v−) =: −kv. (4.11)

Since the open loop gain k is very large, the range of input signals

where the system is linear is very small.

A simple amplifier is obtained by arranging feedback around the

basic operational amplifier as shown in Figure 4.9a. To model the

feedback amplifier in the linear range, we assume that the current i0 =

i− + i+ is zero and that the gain of the amplifier is so large that the

voltage v = v− − v+ is also zero. It follows from Ohm’s law that the
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v −

+
v1

v2

R1 R2

i0

(a) Amplifier circuit

v2R1

R1 +R2

e v
R2

R1

v1
−kΣ

(b) Block diagram

Figure 4.9: Stable amplifier using an op amp. The circuit (a) uses

negative feedback around an operational amplifier and has a corre-

sponding block diagram (b). The resistors R1 and R2 determine the

gain of the amplifier.

currents through resistors R1 and R2 are given by

v1
R1

= − v2
R2

,

and hence the closed loop gain of the amplifier is

v2
v1

= −kcl, where kcl =
R2

R1

. (4.12)

A more accurate model is obtained by continuing to neglect the current

i0 but assuming that the voltage v is small but not negligible. The

current balance is then

v1 − v
R1

=
v − v2
R2

. (4.13)

Assuming that the amplifier operates in the linear range and using
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equation (4.11), the gain of the closed loop system becomes

kcl = −
v2
v1

=
R2

R1

kR1

R1 +R2 + kR1

≈ R2

R1

(4.14)

If the open loop gain k of the operational amplifier is large, the closed

loop gain kcl is the same as in the simple model given by equation (4.12).

Notice that the closed loop gain depends only on the passive compo-

nents and that variations in k have only a marginal effect on the closed

loop gain. For example if k = 106 and R2/R1 = 100, a variation of k

by 100% gives only a variation of 0.01% in the closed loop gain. The

drastic reduction in sensitivity is a nice illustration of how feedback can

be used to make precise systems from uncertain components. In this

particular case, feedback is used to trade high gain and low robustness

for low gain and high robustness. Equation (4.14) was the formula

that inspired Black when he invented the feedback amplifier [45] (see

the quote at the beginning of Chapter 13).

It is instructive to develop a block diagram for the feedback ampli-

fier in Figure 4.9a. To do this we will represent the pure amplifier with

input v and output v2 as one block. To complete the block diagram,

we must describe how v depends on v1 and v2. Solving equation (4.13)

for v gives

v =
R2

R1 +R2

v1 +
R1

R1 +R2

v2 =
R1

R1 +R2

(R2

R1

v1 + v2

)
,

and we obtain the block diagram shown in Figure 4.9b. The diagram
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clearly shows that the system has feedback and that the gain from v2

to v is R1/(R1+R2), which can also be read from the circuit diagram in

Figure 4.9a. If the loop is stable and the gain of the amplifier is large,

it follows that the error e is small, and we find that v2 = −(R2/R1)v1.

Notice that the resistor R1 appears in two blocks in the block diagram.

This situation is typical in electrical circuits, and it is one reason why

block diagrams are not always well suited for some types of physical

modeling.

The simple model of the amplifier given by equation (4.11) pro-

vides qualitative insight, but it neglects the fact that the amplifier is a

dynamical system. A more realistic model is

dvout
dt

= −avout − bv. (4.15)

The parameter b has dimensions of frequency and is called the gain-

bandwidth product of the amplifier. Whether a more complicated model

is used depends on the questions to be answered and the required size of

the uncertainty lemon. The model (4.15) is still not valid for very high

or very low frequencies since drift causes deviations at low frequencies

and there are additional dynamics that appear at frequencies close to

b. The model is also not valid for large signals—an upper limit is given

by the voltage of the power supply, typically in the range of 5–10 V—

neither is it valid for very low signals because of electrical noise. These

effects can be added, if needed, but increase the complexity of the
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v −

+
v1

v2

R1 R C2

i0

Figure 4.10: Circuit diagram of a PI controller obtained by feedback

around an operational amplifier. The capacitor C is used to store

charge and represents the integral of the input.

analysis.

The operational amplifier is very versatile, and many different sys-

tems can be built by combining it with resistors and capacitors. In

fact, any linear system can be implemented by combining operational

amplifiers with resistors and capacitors. Exercise 4.4 shows how a

second-order oscillator is implemented, and Figure 4.10 shows the cir-

cuit diagram for an analog proportional-integral controller. To develop

a simple model for the circuit we assume that the current i0 is zero and

that the open loop gain k is so large that the input voltage v is negli-

gible. The current i through the capacitor is i = Cdvc/dt, where vc is

the voltage across the capacitor. Since the same current goes through

the resistor R1, we get

i =
v1
R1

= C
dvc
dt
,

which implies that

vc(t) =
1

C

∫
i(t) dt =

1

R1C

∫ t

0

v1(τ)dτ.
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The output voltage is thus given by

v2(t) = −R2i− vc = −
R2

R1

v1(t)−
1

R1C

∫ t

0

v1(τ)dτ,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [169,

201], and their usage is described in many textbooks (e.g., [65]). Good

information is also available from suppliers [132, 176].

4.4 COMPUTING SYSTEMS AND NETWORKS

The application of feedback to computing systems follows the same

principles as the control of physical systems, but the types of mea-

surements and control inputs that can be used are somewhat different.

Measurements (sensors) are typically related to resource utilization in

the computing system or network and can include quantities such as

the processor load, memory usage, or network bandwidth. Control

variables (actuators) typically involve setting limits on the resources

available to a process. This might be done by controlling the amount

of memory, disk space, or time that a process can consume, turning

on or off processing, delaying availability of a resource, or rejecting in-

coming requests to a server process. Process modeling for networked

computing systems is also challenging, and empirical models based on

measurements are often used when a first-principles model is not avail-



234 CHAPTER 4

able.

Web Server Control

Web servers respond to requests from the Internet and provide infor-

mation in the form of web pages. Modern web servers start multiple

processes to respond to requests, with each process assigned to a sin-

gle source until no further requests are received from that source for

a predefined period of time. Processes that are idle become part of a

pool that can be used to respond to new requests. To provide a fast

response to web requests, it is important that the web server processes

do not overload the server’s computational capabilities or exhaust its

memory. Since other processes may be running on the server, the

amount of available processing power and memory is uncertain, and

feedback can be used to provide good performance in the presence of

this uncertainty.

Figure 4.11 illustrates the use of feedback to modulate the operation

of an Apache web server. The web server operates by placing incoming

connection requests on a queue and then starting a subprocess to han-

dle requests for each accepted connection. This subprocess responds to

requests from a given connection as they come in, alternating between

a Busy state and a Wait state. (Keeping the subprocess active between

requests is known as the persistence of the connection and provides a

substantial reduction in latency to requests for multiple pieces of infor-
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Figure 4.11: Feedback control of a web server. Connection requests

arrive on an input queue, where they are sent to a server process. A

finite state machine keeps track of the state of the individual server

processes and responds to requests. A control algorithm can modify

the server’s operation by controlling parameters that affect its behav-

ior, such as the maximum number of requests that can be serviced at

a single time (MaxClients) or the amount of time that a connection

can remain idle before it is dropped (KeepAlive).

mation from a single site.) If no requests are received for a sufficiently

long period of time, controlled by the KeepAlive parameter, then the

connection is dropped and the subprocess enters an Idle state, where

it can be assigned another connection. A maximum of MaxClients

simultaneous requests will be served, with the remainder remaining on

the incoming request queue.

The parameters that control the server represent a trade-off between

performance (how quickly requests receive a response) and resource

usage (the amount of processing power and memory used by the server).

Increasing the MaxClients parameter allows connection requests to
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be pulled off of the queue more quickly but increases the amount of

processing power and memory usage that is required. Increasing the

KeepAlive timeout means that individual connections can remain idle

for a longer period of time, which decreases the processing load on the

machine but increases the length of the queue (and hence the amount of

time required for a user to initiate a connection). Successful operation

of a busy server requires a proper choice of these parameters, often

based on trial and error.

To model the dynamics of this system in more detail, we create a

discrete-time model with states given by the average processor load xcpu

and the percentage memory usage xmem. The inputs to the system are

taken as the maximum number of clients umc and the keep-alive time

uka. If we assume a linear model around the equilibrium point, the

dynamics can be written as




xcpu[k + 1]

xmem[k + 1]




=




A11 A12

A21 A22







xcpu[k]

xmem[k]



+




B11 B12

B21 B22







uka[k]

umc[k]



,

(4.16)

where the coefficients of the A and B matrices can be determined based

on empirical measurements or detailed modeling of the web server’s

processing and memory usage. Using system identification, Diao et

al. [71, 116] identified the linearized dynamics as

A =




0.54 −0.11

−0.026 0.63



, B =




−85 4.4

−2.5 2.8



× 10−4,
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where the system was linearized about the equilibrium point

xcpu = 0.58, uka = 11 s, xmem = 0.55, umc = 600.

This model shows the basic characteristics that were described

above. Looking first at the B matrix, we see that increasing the

KeepAlive timeout (first column of the B matrix) decreases both the

processor usage and the memory usage since there is more persistence

in connections and hence the server spends a longer time waiting for

a connection to close rather than taking on a new active connection.

The MaxClients connection increases both the processing and mem-

ory requirements. Note that the largest effect on the processor load is

the KeepAlive timeout. The A matrix tells us how the processor and

memory usage evolve in a region of the state space near the equilibrium

point. The diagonal terms describe how the individual resources return

to equilibrium after a transient increase or decrease. The off-diagonal

terms show that there is coupling between the two resources, so that a

change in one could cause a later change in the other.

Although this model is very simple, we will see in later examples

that it can be used to modify the parameters controlling the server in

real time and provide robustness with respect to uncertainties in the

load on the machine. Similar types of mechanisms have been used for

other types of servers. It is important to remember the assumptions

on the model and their role in determining when the model is valid. In
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particular, since we have chosen to use average quantities over a given

sample time, the model will not provide an accurate representation for

high-frequency phenomena.

Congestion Control

The Internet was created to provide a large, highly decentralized, effi-

cient, and expandable communication system. The system consists of

a large number of interconnected gateways. A message is split into sev-

eral packets that are transmitted over different paths in the network,

and the packages are rejoined to recover the message at the receiver.

An acknowledgment (“ack”) message is sent back to the sender when

a packet is received. The operation of the system is governed by a sim-

ple but powerful decentralized control structure that has evolved over

time.

The system has two control mechanisms called protocols : the Trans-

mission Control Protocol (TCP) for end-to-end network communica-

tion and the Internet Protocol (IP) for routing packets and for host-

to-gateway or gateway-to-gateway communication. The current pro-

tocols evolved after some spectacular congestion collapses occurred in

the mid 1980s, when throughput unexpectedly could drop by a factor

of 1000 [127]. The control mechanism in TCP is based on conserving

the number of packets in the loop from the sender to the receiver and

back to the sender. The sending rate is increased when there is no
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Figure 4.12: Internet congestion control. (a) Source computers send

information to routers, which forward the information to other routers

that eventually connect to the receiving computer. When a packet is

received, an acknowledgment packet is sent back through the routers

(not shown). The routers buffer information received from the sources

and send the data across the outgoing link. (b) The equilibrium buffer

size be for a set of N identical computers sending packets through a

single router with drop probability ρb.

congestion, and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we model three

separate elements of the system: the rate at which packets are sent

by individual sources (computers), the dynamics of the queues in the

links (routers), and the admission control mechanism for the queues.

Figure 4.12a is a block diagram of the system.

The current source control mechanism on the Internet is a protocol

known as TCP/Reno [167]. This protocol operates by sending packets

to a receiver and waiting to receive an acknowledgment from the re-
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ceiver that the packet has arrived. If no acknowledgment is sent within

a certain timeout period, the packet is retransmitted. To avoid waiting

for the acknowledgment before sending the next packet, Reno transmits

multiple packets up to a fixed window around the latest packet that

has been acknowledged. If the window size is chosen properly, packets

at the beginning of the window will be acknowledged before the source

transmits packets at the end of the window, allowing the computer to

continuously stream packets at a high rate.

To determine the size of the window to use, TCP/Reno uses a

feedback mechanism in which (roughly speaking) the window size is

increased at a fixed rate as long as packets are acknowledged, and the

window size is cut in half when packets are lost. This mechanism allows

a dynamic adjustment of the window size in which each computer acts

in a greedy fashion as long as packets are being delivered but backs off

quickly when congestion occurs.

A model for the behavior of the source can be developed by describ-

ing the dynamics of the window size. Suppose we have N computers

(sources) and let wi be the current window size (measured in number

of packets) for the ith computer. Let qi represent the end-to-end prob-

ability that a packet will be dropped someplace between the source and

the receiver. We can model the dynamics of the window size wi by the
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differential equation

dwi
dt

= (1− qi)
ri(t− τi)

wi
− qi

(wi
2
ri(t− τi)

)
, ri =

wi
τi
, (4.17)

where τi is the round-trip time for a packet to reach its destination

and the acknowledgment to be sent back, and ri is the resulting rate

at which packets are cleared from the list of packets that have been

received. The first term in the dynamics represents the increase in

window size when a packet is received, and the second term repre-

sents the decrease in window size when a packet is lost. Notice that

ri is evaluated at time t− τi, representing the time required to receive

acknowledgments that a packet has arrived.

The link dynamics are controlled by the dynamics of the router

queue and the admission control mechanism for the queue. Assume

that we have L links in the network and use l to index the individual

links. We model the queue in terms of the current number of packets

in the router’s buffer bl and assume that the router transmits packets

at a rate cl, equal to the capacity of the link. The buffer dynamics can

then be written as

dbl
dt

=





sl − cl if bl > 0,

0 if bl = 0,

sl =
L∑

i=1

Rli ri(t− τ fli), (4.18)

where Rli = 1 if link l is used by source i and 0 otherwise, τ fli is the

time it takes a packet from source i to reach link l, and sl is the total

rate at which packets arrive at link l. The matrix R ∈ RL×N is called
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the routing matrix.

The admission control mechanism determines whether a given packet

is accepted by a router. Since our model is based on the average quan-

tities in the network and not the individual packets, one simple model

is to assume that the probability that a packet is dropped depends

on how full the buffer is. If we let bl,max be the maximum number

of packets that the router l can buffer, we write the drop probabil-

ity as pl = βl(bl, bl,max), where βl is a function with βl(0, bl,max) = 0

and βl(bl,max, bl,max) = 1. For simplicity, we will assume for now that

pl = ρlbl (see Exercise 4.5 for a more detailed model). The probability

that a packet is dropped at a given link can be used to determine the

end-to-end probability that a packet is lost in transmission:

qi = 1−
L∏

l=1

Rli(1− pl) ≈
L∑

l=0

Rli pl(t− τbil), (4.19)

where τbil is the backward delay from link l to source i and the approx-

imation is valid as long as the individual drop probabilities are small.

We use the backward delay since this represents the time required for

the acknowledgment packet to be received by the source.

Together, equations (4.17), (4.18), and (4.19) represent a model

of congestion control dynamics. We can obtain substantial insight by

considering a special case in which we have N identical sources and

one link. In addition, we assume for the moment that the forward and

backward time delays can be ignored and that none of the routers are
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saturated or empty, in which case the dynamics can be reduced to the

form

dwi
dt

=
1

τp
− ρc(2 + w2

i )

2
,

db

dt
=

N∑

i=1

wi
τp
− c, τp :=

b

c
, (4.20)

where wi ∈ R, i = 1, . . . , N , is a vector of window sizes for the sources

of data, b ∈ R is the current buffer size of the router, ρ controls the

rate at which packets are dropped, and c is the capacity of the link

connecting the router to the computers. The variable τp represents

the amount of time required for a packet to be processed by the router,

based on the size of the buffer and the capacity of the link. Substituting

τp into the equations, we write the state space dynamics as

dwi
dt

=
c

b
− ρc

(
1 +

w2
i

2

)
,

db

dt
=

N∑

i=1

cwi
b
− c. (4.21)

More sophisticated models can be found in [166, 167] and subsequent

exercises and examples.

The nominal operating point for the system can be found by setting

ẇi = ḃ = 0:

0 =
c

b
− ρc

(
1 +

w2
i

2

)
, 0 =

N∑

i=1

cwi
b
− c.

Exploiting the fact that all of the source dynamics are identical, it

follows that all of the wi should be the same, and it can be shown that

there is a unique equilibrium point satisfying the equations

wi,e =
be
N

=
cτpe
N
,

1

2ρ2N2
(ρbe)

3 + (ρbe)− 1 = 0. (4.22)
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Figure 4.13: Internet congestion control for N identical sources

across a single link. As shown on the left, multiple sources attempt to

communicate through a router across a single link. An “ack” packet

sent by the receiver acknowledges that the message was received; oth-

erwise the message packet is resent and the sending rate is slowed

down at the source. The simulation on the right is for 60 sources

starting at random rates (window sizes), with 20 sources dropping

out at t = 500 ms. The buffer size is shown at the top, and the

individual source rates for 6 of the sources are shown at the bottom.

The solution for the second equation is a bit messy but can easily

be determined numerically. A plot of its solution as a function of

1/(2ρ2N2) is shown in Figure 4.12b. We also note that at equilibrium

we have the following additional equalities:

τpe =
be
c
=
Nwe

c
, qe = Npe = Nρbe, re =

we

τpe
. (4.23)

Figure 4.13 shows a simulation of 60 sources communicating across

a single link, with 20 sources dropping out at t = 500 ms and the
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remaining sources increasing their rates (window sizes) to compensate.

Note that the buffer size and window sizes automatically adjust to

match the capacity of the link.

A comprehensive treatment of computer networks is given in the

textbook by Tannenbaum [236]. A good presentation of the ideas be-

hind the control principles for the Internet is given by one of its de-

signers, Van Jacobson, in [127]. F. Kelly [141] presents an early effort

on the analysis of the system. The books by Hellerstein et al. [116] and

Janert [130] give many examples of the use of feedback in computer

systems.

4.5 ATOMIC FORCE MICROSCOPY

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Hein-

rich Rohrer for their design of the scanning tunneling microscope. The

idea of the instrument is to bring an atomically sharp tip so close to

a conducting surface that tunneling occurs. An image is obtained by

traversing the tip across the sample and measuring the tunneling cur-

rent as a function of tip position. This invention has stimulated the

development of a family of instruments that permit visualization of

surface structure at the nanometer scale, including the atomic force

microscope (AFM), where a sample is probed by a tip on a cantilever.

An AFM can operate in two modes. In tapping mode the cantilever
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Figure 4.14: Atomic force microscope. (a) A schematic diagram

of an atomic force microscope, consisting of a piezo drive that scans

the sample under the AFM tip. A laser reflects off of the cantilever

and is used to measure the detection of the tip through a feedback

controller. (b) An AFM image of strands of DNA. (Image courtesy

Veeco Instruments.)

is vibrated, and the amplitude of vibration is controlled by feedback.

In contact mode the cantilever is in contact with the sample, and its

bending is controlled by feedback. In both cases control is actuated

by a piezo element that controls the vertical position of the cantilever

base (or the sample). Control design has a direct influence on picture

quality and scanning rate.

A schematic picture of an atomic force microscope is shown in Fig-

ure 4.14a. A microcantilever with a tip having a radius of the order of

10 nm is placed close to the sample. The tip can be moved vertically

and horizontally using a piezoelectric scanner. It is clamped to the

sample surface by attractive van der Waals forces and repulsive Pauli
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forces. The cantilever tilt depends on the topography of the surface

and the position of the cantilever base, which is controlled by the piezo

element. The tilt is measured by sensing the deflection of the laser

beam using a photodiode. The signal from the photodiode is ampli-

fied and sent to a controller that drives the amplifier for the vertical

position of the cantilever (z). By controlling the piezo element so that

the deflection of the cantilever is constant, the signal driving the ver-

tical deflection of the piezo element is a measure of the atomic forces

between the cantilever tip and the atoms of the sample. An image of

the surface is obtained by scanning the cantilever along the sample.

The resolution makes it possible to see the structure of the sample on

the atomic scale, as illustrated in Figure 4.14b, which shows an AFM

image of DNA.

The horizontal motion of an AFM is typically modeled as a spring–

mass system with low damping. The vertical motion is more compli-

cated. To model the system, we start with the block diagram shown

in Figure 4.15. Signals that are easily accessible are the input voltage

u to the power amplifier that drives the piezo element, the voltage v

applied to the piezo element, and the output voltage y of the signal am-

plifier for the photodiode. The controller is a PI controller implemented

by a computer, which is connected to the system by analog-to-digital

(A/D) and digital-to-analog (D/A) converters. The deflection of the

cantilever ϕ is also shown in the figure. The desired reference value for
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Figure 4.15: Block diagram of the system for vertical positioning of

the cantilever for an atomic force microscope in contact mode. The

control system attempts to keep the cantilever deflection equal to

its reference value. Cantilever deflection is measured, amplified, and

converted to a digital signal, then compared with its reference value.

A correcting signal is generated by the computer, converted to analog

form, amplified, and sent to the piezo element.

the deflection is an input to the computer.

There are several different configurations that have different dynam-

ics. Here we will discuss a high-performance system from [217] where

the cantilever base is positioned vertically using a piezo stack. We be-

gin the modeling with a simple experiment on the system. Figure 4.16a

shows a step response of a scanner from the power amplifier input volt-

age u to the output voltage y of the signal amplifier for the photodiode.

This experiment captures the dynamics of the chain of blocks from u

to y in the block diagram in Figure 4.15. Figure 4.16a shows that the

system responds quickly but that there is a poorly damped oscillatory

mode with a period of about 35 µs. A primary task of the modeling is

to understand the origin of the oscillatory behavior. To do so we will



EXAMPLES 249

u

y

Vp

(a) Step response

Piezo crystal

z1 z2

m1

m2

(b) Mechanical model

Figure 4.16: Modeling of an atomic force microscope. (a) A mea-

sured step response. The top curve shows the voltage u applied to the

drive amplifier (50 mV/div), the middle curve is the output Vp of the

power amplifier (500 mV/div), and the bottom curve is the output

y of the signal amplifier (500 mV/div). The time scale is 25 µs/div.

Data have been supplied by Georg Schitter. (b) A simple mechanical

model for the vertical positioner and the piezo crystal.

explore the system in more detail.

The natural frequency of the clamped cantilever is typically several

hundred kilohertz, which is much higher than the observed oscillation

of about 30 kHz. As a first approximation we will model it as a static

system. Since the deflections are small, we can assume that the bending

ϕ of the cantilever is proportional to the difference in height between

the cantilever tip at the probe and the piezo scanner. A more accurate

model can be obtained by modeling the cantilever as a spring–mass

system of the type discussed in Chapter 3.

Figure 4.16a also shows that the response of the power amplifier is
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fast. The photodiode and the signal amplifier also have fast responses

and can thus be modeled as static systems. The remaining block is a

piezo system with suspension. A schematic mechanical representation

of the vertical motion of the scanner is shown in Figure 4.16b. We will

model the system as two masses separated by an ideal piezo element.

The mass m1 is half of the piezo system, and the mass m2 is the other

half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crystal gen-

erates a force F between the masses and that there is a damping c2 in

the spring. Let the positions of the center of the masses be z1 and z2.

A momentum balance gives the following model for the system:

m1
d2z1
dt2

= F, m2
d2z2
dt2

= −c2
dz2
dt
− k2z2 − F.

Let the elongation of the piezo element l = z1−z2 be the control variable

and the height z1 of the cantilever base be the output. Eliminating the

variable F in the equations above and substituting z1 − l for z2 gives

the model

(m1 +m2)
d2z1
dt2

+ c2
dz1
dt

+ k2z1 = m2
d2l

dt2
+ c2

dl

dt
+ k2l. (4.24)

Summarizing, we find that a simple model of the system is obtained

by modeling the piezo by equation (4.24) and all the other blocks by

static models. Introducing the linear equations l = k3u and y = k4z1,

we now have a complete model relating the output y to the control
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signal u. A more accurate model can be obtained by introducing the

dynamics of the cantilever and the power amplifier. As in the previous

examples, the concept of the uncertainty lemon in Figure 3.5b provides

a framework for describing the uncertainty: the model will be accurate

up to the frequencies of the fastest modeled modes and over a range of

motion in which linearized stiffness models can be used.

The experimental results in Figure 4.16a can be explained qualita-

tively as follows. When a voltage is applied to the piezo, it expands

by l0, the mass m1 moves up, and the mass m2 moves down instanta-

neously. The system settles after a poorly damped oscillation.

It is highly desirable to design a control system for the vertical

motion so that it responds quickly with little oscillation. The instru-

ment designer has several choices: to accept the oscillation and have

a slow response time, to design a control system that can damp the

oscillations, or to redesign the mechanics to give resonances of higher

frequency. The last two alternatives give a faster response and faster

imaging.

Since the dynamic behavior of the system changes with the proper-

ties of the sample, it is necessary to tune the feedback loop. In simple

systems this is currently done manually by adjusting parameters of a PI

controller. There are interesting possibilities for making AFM systems

easier to use by introducing automatic tuning and adaptation.

The book by Sarid [214] gives a broad coverage of atomic force
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microscopes. The interaction of atoms close to surfaces is fundamental

to solid state physics, see Kittel [146]. The model discussed in this

section is based on Schitter [216].

4.6 DRUG ADMINISTRATION

The phrase “take two pills three times a day” is a recommendation with

which we are all familiar. Behind this recommendation is a solution

of an open loop control problem. The key issue is to make sure that

the concentration of a medicine in a part of the body is sufficiently

high to be effective but not so high that it will cause undesirable side

effects. The control action is quantized, take two pills, and sampled,

every 8 hours. The prescriptions are based on simple models captured

in empirical tables, and the dose is based on the age and weight of the

patient.

Drug administration is a control problem. To solve it we must un-

derstand how a drug spreads in the body after it is administered. This

topic, called pharmacokinetics, is now a discipline of its own, and the

models used are called compartment models. They go back to the 1920s

when Widmark modeled the propagation of alcohol in the body [252].

Compartment models are now important for the screening of all drugs

used by humans. The schematic diagram in Figure 4.17 illustrates the

idea of a compartment model. The body is viewed as a number of
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Figure 4.17: Abstraction used to compartmentalize the body for

the purpose of describing drug distribution (based on Teorell [237]).

The body is abstracted by a number of compartments with perfect

mixing, and the complex transport processes are approximated by

assuming that the flow is proportional to the concentration differences

in the compartments. The constants ki parameterize the rates of flow

between different compartments.

compartments like blood plasma, kidney, liver, and tissues that are

separated by membranes. It is assumed that there is perfect mixing

so that the drug concentration is constant in each compartment. The

complex transport processes are approximated by assuming that the

flow rates between the compartments are proportional to the concen-

tration differences in the compartments.

To describe the effect of a drug it is necessary to know both its

concentration and how it influences the body. The relation between

concentration c and its effect e is typically nonlinear. A simple model

is

e =
c

EC50 + c
emax. (4.25)
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The effect is linear for low concentrations, and it saturates at high

concentrations. The parameter EC50 represents the concentration of

the drug that gives half (50%) maximal response. The relation can

also be dynamic, and it is then called pharmacodynamics.

Compartment Models

The simplest dynamical model for drug administration is obtained by

assuming that the drug is evenly distributed in a single compartment af-

ter it has been administered and that the drug is removed at a rate pro-

portional to the concentration. The compartments behave like stirred

tanks with perfect mixing. Let c be the concentration, V the volume,

and q the outflow rate. Converting the description of the system into

differential equations gives the model

V
dc

dt
= −qc, c ≥ 0. (4.26)

This equation has the solution c(t) = c0e
−qt/V = c0e

−kt, which shows

that the concentration decays exponentially with the time constant T =

V/q after an injection. The input is introduced implicitly as an initial

condition in the model (4.26). More generally, the way the input enters

the model depends on how the drug is administered. For example, the

input can be represented as a mass flow into the compartment where

the drug is injected. A pill that is dissolved can also be interpreted as

an input in terms of a mass flow rate.
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The model (4.26) is called a one-compartment model or a single-

pool model. The parameter k = q/V is called the elimination rate

constant. This simple model is often used to model the concentration

in the blood plasma. By measuring the concentration at a few times,

the initial concentration can be obtained by extrapolation. If the total

amount of injected substance m is known, the volume V can then be

determined as V = m/c0.

The simple one-compartment model captures the gross behavior of

drug distribution, but it is based on many simplifications. Improved

models can be obtained by considering the body as composed of several

compartments. Examples of such systems are shown in Figure 4.18,

where the compartments are represented as circles and the flows by

arrows.

Modeling will be illustrated using the two-compartment model in

Figure 4.18a. We assume that there is perfect mixing in each compart-

ment and that the transport between the compartments is driven by

concentration differences. We further assume that a drug with concen-

tration c0 is injected in compartment 1 at a volume flow rate of u and

that the concentration in compartment 2 is the output. Let c1 and c2

be the concentrations of the drug in the compartments, and let V1 and

V2 be the volumes of the compartments. The mass balances for the
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Figure 4.18: Schematic diagrams of compartment models. (a) A

simple two-compartment model. Each compartment is labeled by its

volume, and arrows indicate the flow of chemical into, out of, and

between compartments. (b) A system with six compartments used

to study the metabolism of thyroid hormone [102]. The notation kij

denotes the transport from compartment j to compartment i.

compartments are

V1
dc1
dt

= q(c2 − c1)− q0c1 + c0u, c1 ≥ 0,

V2
dc2
dt

= q(c1 − c2), c2 ≥ 0,

y = c2,

(4.27)

where q represents flow rate between the compartments and q0 repre-

sents the flow rate out of compartment 1 that is not going to compart-

ment 2. Introducing the variables k0 = q0/V1, k1 = q/V1, k2 = q/V2,

and b0 = c0/V1 and using matrix notation, the model can be written
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as

dc

dt
=




−k0 − k1 k1

k2 −k2



c+




b0

0



u, y =


0 1


 c. (4.28)

Comparing this model with its graphical representation in Figure 4.18a,

we find that the mathematical representation (4.28) can be written by

inspection.

It should also be emphasized that simple compartment models such

as the one in equation (4.28) have a limited range of validity. Low-

frequency limits exist because the human body changes with time, and

since the compartment model uses average concentrations, they will

not accurately represent rapid changes. There are also nonlinear effects

that influence transportation between the compartments.

Compartment models are widely used in medicine, engineering, and

environmental science. An interesting property of these systems is

that variables like concentration and mass are always positive. An

essential difficulty in compartment modeling is deciding how to divide

a complex system into compartments. Compartment models can also

be nonlinear, as illustrated in the next section.

The papers by Widmark and Tandberg [252] and Teorell [237] are

classics in pharmacokinetics, which is now an established discipline

with many textbooks [73, 128, 101]. Because of its medical importance,

pharmacokinetics is now an essential component of drug development.

The book by Riggs [208] is a good source for the modeling of physiologi-
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Figure 4.19: Insulin–glucose dynamics. (a) Sketch of body parts

involved in the control of glucose. (b) Schematic diagram of the sys-

tem. (c) Responses of insulin and glucose when glucose in injected

intravenously. From Pacini and Bergman [199].

cal systems, and a more mathematical treatment is given in Keener and

Sneyd [139, 140]. Compartment models are discussed in Godfrey [102].

The problem of determining rate coefficients from experimental data is

discussed in Bellman and Åström [32] and Godfrey [102].

Insulin–Glucose Dynamics

Glucose provides energy to all cells in the body. It is influenced by many

factors: body constitution, food intake, digestion, stress, and exercise.

Healthy individuals have sophisticated mechanisms that regulate glu-

cose concentration in the blood. A schematic picture of the relevant

parts of the body involved are shown in Figures 4.19a and 4.19b. The

pancreas secretes the hormones insulin and glucagon. Glucagon is re-
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leased into the bloodstream when the glucose level is low. It acts on

cells in the liver that release glucose. Insulin is secreted when the glu-

cose level is high, and the glucose level is lowered by causing the liver

and other cells to take up more glucose. There are also other hormones

that influence glucose concentration. It is important that the blood

glucose concentration is regulated to be in the range 70–110 mg/L.

Diabetes is a disease where the body’s ability to produce or respond

to insulin is impaired, resulting in blood sugar levels that are too high.

There are several varieties of diabetes: production of insulin can be

impaired (type 1) or the ability of the body to absorb insulin can be

reduced (type 2). Long exposure to high blood sugar concentration is

serious and may result in cardiovascular diseases, stroke, chronic kidney

disease, foot ulcers, and blindness. Low blood sugar is also serious and

can give headaches, fatigue, dizziness, lethargy, and blurred vision.

Very low blood sugar levels can result in a coma.

The mechanisms that regulate glucose and insulin are complicated.

Models of different complexity have been developed. The models are

typically tested with data from experiments where glucose is injected

intravenously and insulin and glucose concentrations are measured at

regular time intervals, as shown in Figure 4.19c.

A simple minimal model was developed by Bergman and cowork-

ers [39, 40]. It is a compartment model with two state variables: con-

centration of glucose in the blood plasma G and the variable X repre-
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senting the effect of insulin on glucose removal, which is proportional

to the concentration of insulin I in the interstitial fluid. The minimal

model is given by the equations

dG

dt
= −p1(G−Ge)−XG+uG,

dX

dt
= −p2X + p3(I − Ie). (4.29)

The first equation is a compartment model for glucose. The right-

hand side has three terms: a linear clearance term that models glucose

removal at a rate proportional to G − Ge, the nonlinear term XG,

and the external input uG that represents injection of glucose. The

nonlinear term XG captures the fact that removal rate of glucose is

enhanced by insulin. The second equation represents how the variable

X depends on the insulin concentration I in the interstitial fluid. If

the external input uG is zero and I = Ie there is an equilibrium with

G = Ge and X = 0.

A model that is slightly more complicated than the minimal model

is given in Exercise 4.8 and includes a model for insulin dynamics.

Figure 4.19c shows a fit of the model to a test on a normal person

where glucose was injected intravenously at time t = 0 and samples of

concentrations of insulin and glucose are taken at different times. The

glucose concentration rises rapidly, and the pancreas responds with a

rapid spike-like injection of insulin. The glucose and insulin levels then

gradually approach the equilibrium values.

There are many more complicated models that capture dynamics of
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food intake and measurement dynamics [63, 85, 95, 173, 175]. The mod-

els are used in many different ways for insight, analysis, and treatment

of diabetes. A model for type 1 diabetes developed at the University

of Virginia [159] has been approved by the U. S. Food and Drug Ad-

ministration (FDA) as a replacement for animal testing of closed loop

control strategies for regulation of blood sugar (in silico testing).

A simple way to measure blood sugar is to analyze glucose concen-

tration in a drop of blood obtained by a fingerstick. Diabetic patients

can also be provided with a continuous glucose monitor (GCM), which

is a tiny sensor wire under the skin with an adhesive patch and a wire-

less transmitter. The sensor measures glucose concentration in the in-

terstitial fluid near the sensor wire; calibration is required to obtain the

glucose concentration in the bloodstream. The sensor is often placed in

the upper arm where it can be connected wirelessly to a smartphone.

An application on the phone can then generate advice on how much

insulin has to be injected, for example long-lasting insulin for main-

tenance of a base level and rapid-acting insulin taken at meal times.

The advice is based on a model of the glucose-insulin system that is

matched to the patient. Devices of this type are increasingly available

and widely used by patients with diabetes.

Patients with type 1 diabetes can also be provided with an artificial

pancreas, a fully automatic system that regulates the blood sugar [149,

63]. An artificial pancreas consists of a glucose monitor that measures
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blood sugar, an insulin infusion pump, and a control algorithm that

computes the amount of insulin to be injected based on the measured

blood sugar value. The Medtronic MiniMed 670G was approved by

FDA for use by adults in 2016 and for children over seven years old

in 2018. The system has a sampling period of 5 minutes and a PID

algorithm to control the injection rate [228]. Similar devices with model

predictive control have also been tested [37]. The glucose monitor

requires frequent observation, the wire has to be replaced regularly,

and the sensor must be calibrated frequently using a fingerstick. There

are extreme safety requirements on an artificial pancreas [36, 149], and

it is absolutely essential to ensure that the glucose level does not get

too low (hypoglycemia). All these additions make the system more

complicated.

4.7 POPULATION DYNAMICS

Population growth is a complex dynamic process that involves the in-

teraction of one or more species with their environment and the larger

ecosystem. The dynamics of population groups are interesting and

important in many different areas of social and environmental pol-

icy. There are examples where new species have been introduced into

new habitats, sometimes with disastrous results. There have also been

attempts to control population growth both through incentives and
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through legislation. In this section we describe some of the models

that can be used to understand how populations evolve with time and

as a function of their environments.

Logistic Growth Model

Let x be the population of a species at time t. A simple model is to

assume that the birth rates and mortality rates are proportional to the

total population. This gives the linear model

dx

dt
= bx− dx = (b− d)x = rx, x ≥ 0, (4.30)

where birth rate b and mortality rate d are parameters. The model gives

an exponential increase if b > d or an exponential decrease if b < d. A

more realistic model is to assume that the birth rate decreases when

the population is large. The following modification of the model (4.30)

has this property:

dx

dt
= rx

(
1− x

k

)
, x ≥ 0, (4.31)

where k is the carrying capacity of the environment. The model (4.31)

is called the logistic growth model.

Predator–Prey Models

A more sophisticated model of population dynamics includes the effects

of competing populations, where one species may feed on another. This

situation, referred to as the predator–prey problem, was introduced in
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Example 3.4, where we developed a discrete-time model that captured

some of the features of historical records of lynx and hare populations.

In this section, we replace the difference equation model used there

with a more sophisticated differential equation model. Let H(t) repre-

sent the number of hares (prey) and let L(t) represent the number of

lynxes (predator). The dynamics of the system are modeled as

dH

dt
= rH

(
1− H

k

)
− aHL

c+H
, H ≥ 0,

dL

dt
= b

aHL

c+H
− dL, L ≥ 0.

(4.32)

In the first equation, r represents the growth rate of the hares, k repre-

sents the maximum population of the hares (in the absence of lynxes),

a represents the interaction term that describes how the hares are di-

minished as a function of the lynx population, and c controls the prey

consumption rate for low hare population. In the second equation,

b represents the growth coefficient of the lynxes and d represents the

mortality rate of the lynxes. Note that the hare dynamics include a

term that resembles the logistic growth model (4.31).

Of particular interest are the values at which the population values

remain constant, called equilibrium points. The equilibrium points for

this system can be determined by setting the right-hand side of the

above equations to zero. Letting He and Le represent the equilibrium

state, from the second equation we have

Le = 0 or H∗
e =

cd

ab− d. (4.33)
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Substituting this into the first equation, we have that for Le = 0 either

He = 0 or He = k. For Le 6= 0, we obtain

L∗
e =

rHe(c+He)

aHe

(
1− He

k

)
=
bcr(abk − cd− dk)

(ab− d)2k . (4.34)

Thus, we have three possible equilibrium points xe = (Le, He):

xe =




0

0



, xe =




k

0



, xe =




H∗
e

L∗
e



,

whereH∗
e and L

∗
e are given in equations (4.33) and (4.34). Note that the

equilibrium populations may be negative for some parameter values,

corresponding to a unachievable equilibrium point.

Figure 4.20 shows a simulation of the dynamics starting from a set

of population values near the nonzero equilibrium values. We see that

for this choice of parameters, the simulation predicts an oscillatory

population count for each species, reminiscent of the data shown in

Figure 3.7.

Volume I of the two-volume set by J. D. Murray [186] give a broad

coverage of population dynamics.

EXERCISES

4.1 (Cruise control) Consider the cruise control example described in

Section 4.1. Build a simulation that re-creates the response to a hill

shown in Figure 4.3b and show the effects of increasing and decreasing
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Figure 4.20: Simulation of the predator–prey system. The figure on

the left shows a simulation of the two populations as a function of time.

The figure on the right shows the populations plotted against each

other, starting from different values of the population. The oscillation

seen in both figures is an example of a limit cycle. The parameter

values used for the simulations are a = 3.2, b = 0.6, c = 50, d = 0.56,

k = 125, and r = 1.6.

the mass of the car by 25%. Redesign the controller (using trial and

error is fine) so that it returns to within 1% of the desired speed within

3 s of encountering the beginning of the hill.

4.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame

given by equation (4.5) can be approximated in state space form as

d

dt




x1

x2




=




0 1

mgh/J 0







x1

x2




+




Dv0/(bJ)

mv20h/(bJ)



u,

y =


1 0


 x,

where the input u is the steering angle δ and the output y is the tilt
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angle ϕ. What do the states x1 and x2 represent?

4.3 (Operational amplifier circuit) Consider the op amp circuit shown

below.

−

+
v1 vo

v3

v2

RaR1

R2

C2

C1

Rb

Show that the dynamics can be written in state space form as

dx

dt
=




− 1

R1C1

− 1

RaC1

0

−Rb

Ra

1

R2C2

− 1

R2C2



x+




1

R1C1

0



u, y =


0 1


 x,

where u = v1 and y = v3. (Hint: Use v2 and v3 as your state variables.)

4.4 (Operational amplifier oscillator) The op amp circuit shown below

is an implementation of an oscillator.

−

+

−

+

−

+ v1v3v2

R1R3R2

R4C2 C1

Show that the dynamics can be written in state space form as

dx

dt
=




0
R4

R1R3C1

− 1

R2C2

0



x,

where the state variables represent the voltages across the capacitors

x1 = v1 and x2 = v2.
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4.5 (Congestion control using RED [168]) A number of improvements

can be made to the congestion control model presented in Section 4.4.

To ensure that the router’s buffer size remains positive, we can modify

the buffer dynamics to satisfy

dbl
dt

=





sl − cl if 0 < bl < bl,max,

0 otherwise.

In addition, we can model the drop probability of a packet based on

how close a filtered estimate of the buffer size is to the buffer limits, a

mechanism known as random early detection (RED):

pl = βl(al) =





0 if al ≤ blowl ,

ρl(ai − blowl ) if blowl < al < bmid
l ,

ηl(ai − bmid
l ) + ρl(b

mid
l − blowl ) if bmid

l ≤ al < bmax
l ,

1 if al ≥ bmax
l ,

dal
dt

= −αlcl(al − bl),

where αl, ρl, ηl, b
low
l , bmid

l , and bmaxl are parameters for the RED proto-

col. The variable al is a smoothed version of the buffer size bl. Using

the model above, write a simulation for the system and find a set of

parameter values for which there is a stable equilibrium point and a

set for which the system exhibits oscillatory solutions. The following
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sets of parameters should be explored:

N = 20, 30, . . . , 60, blowl = 40 pkts, αl = 10−4,

c = 8, 9, . . . , 15 pkts/ms, bmid
l = 540 pkts, ρl = 0.0002,

τp = 55, 60, . . . , 100 ms bmax
l = 1080 pkts, ηl = 0.00167.

4.6 (Atomic force microscope with piezo tube) A schematic diagram

of an AFM where the vertical scanner is a piezo tube with preloading

is shown below.

Show that the dynamics can be written as

(m1 +m2)
d2z1
dt2

+ (c1 + c2)
dz1
dt

+ (k1 + k2)z1 = m2
d2l

dt2
+ c2

dl

dt
+ k2l,

where z1 is the displacement of the first mass and l = z1 − z2 is the

difference in displacement between the first and second masses. Are

there parameter values that make the dynamics particularly simple?

4.7 (Drug administration) The metabolism of alcohol in the body can

be modeled by the nonlinear compartment model

Vb
dcb
dt

= q(cl − cb) + qiv, Vl
dcl
dt

= q(cb − cl)− qmax
cl

c0 + cl
+ qgi,
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where Vb = 48 L and Vl = 0.6 L are the apparent volumes of distri-

bution of body water and liver water, cb and cl are the concentrations

of alcohol in the compartments, qiv and qgi are the injection rates for

intravenous and gastrointestinal intake, q = 1.5 L/min is the total hep-

atic blood flow, qmax = 2.75 mmol/min and c0 = 0.1 mmol/L. Simulate

the system and compute the concentration in the blood for oral and

intravenous doses of 12 g and 40 g of alcohol.

4.8 (Insulin-glucose dynamics) The following model for insulin glucose

dynamics by Gaetano and colleagues [95] has three states: glucose

concentration in the blood plasma G [mg/dL], insulin concentration

in the interstitial fluid I [µUI/ml], and X [min−1] that represents the

increased removal rate of glucose due to insulin. The state X is pro-

portional to the concentration of interstitial insulin. The dynamics

are:
dG

dt
= −(p1 +X)G+ p1Gb + uG

dX

dt
= −p2X + p3(I − Ib)

dI

dt
= p4 max(G− p5, 0)− p6(I − Ib) + uI.

Use the parameters

Gb = 87, Ib = 37.9, p1 = 0.05, p2 = 0.5, p3 = 10−4,

p4 = 10−5, p5 = 150, p6 = 0.05, p7 = 199.

Simulate the system with the initial conditions G(0) = 400, I(0) = 200

and X(0) = 0. This corresponds to a person having taken a large initial



EXAMPLES 271

dose of glucose.

4.9 (Fisheries management) Some features of the dynamics of a com-

mercial fishery can be described by the following simple model:

dx

dt
= f(x)− h(x, u), y = bh(x, u)− cu,

where x is the total biomass, f(x) = rx(1−x/k) is the growth rate, and

r and k are constant parameters. The harvesting rate is h(x, u) = axu,

where a is a constant parameter and u is the fishing effort. The output

y is the rate of revenue, where b and c are constants representing the

price of fish and the cost of fishing.

a) Find a sustainable equilibrium point where the revenue is as large

as possible. Determine the equilibrium value of the biomass and the

fishing effort at the equilibrium.

b) With the parameters a = 0.1, b = 1, c = 1, k = 100, and r = 0.2

the sustainable equilibrium point corresponds to xe = 55 and ue = 0.9.

For an individual fisherman it is profitable to fish as long as the rate of

revenue y = (abx−c)u is positive. Explore by simulation what happens

if the fishing intensity is much higher than the sustainable fishing rate

ue, say u = 3. Use the results to discuss the role of having a fishing

quota.





Chapter Five

Dynamic Behavior

It Don’t Mean a Thing (If It Ain’t Got That Swing).

Duke Ellington (1899–1974)

In this chapter we present a broad discussion of the behavior of

dynamical systems focused on systems modeled by nonlinear differen-

tial equations. This allows us to consider equilibrium points, stability,

limit cycles, and other key concepts in understanding dynamic behav-

ior. We also introduce some methods for analyzing the global behavior

of solutions.

5.1 SOLVING DIFFERENTIAL EQUATIONS

In the previous two chapters we saw that one of the methods of model-

ing dynamical systems is through the use of ordinary differential equa-

tions (ODEs). A state space, input/output system has the form

dx

dt
= f(x, u), y = h(x, u), (5.1)
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where x = (x1, . . . , xn) ∈ Rn is the state, u ∈ Rp is the input, and

y ∈ Rq is the output. The smooth maps f : Rn×Rp → Rn and h : Rn×

Rp → Rq represent the dynamics and measurements for the system. In

general, they can be nonlinear functions of their arguments. Systems

with many inputs and many outputs are called multi-input, multi-

output systems (MIMO) systems. We will usually focus on single-input,

single-output (SISO) systems, for which p = q = 1.

We begin by investigating systems in which the input has been

set to a function of the state, u = α(x). This is one of the simplest

types of feedback, in which the system regulates its own behavior. The

differential equations in this case become

dx

dt
= f(x, α(x)) =: F (x). (5.2)

To understand the dynamic behavior of this system, we need to

analyze the features of the solutions of equation (5.2). While in some

simple situations we can write down the solutions in analytical form,

often we must rely on computational approaches. We begin by describ-

ing the class of solutions for this problem.

We say that x(t) is a solution of the differential equation (5.2) on

the time interval t0 ∈ R to tf ∈ R if

dx(t)

dt
= F (x(t)) for all t0 < t < tf.

A given differential equation may have many solutions. We will most
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often be interested in the initial value problem, where x(t) is prescribed

at a given time t0 ∈ R and we wish to find a solution valid for all future

time t > t0.

We say that x(t) is a solution of the differential equation (5.2) with

initial value x0 ∈ Rn at t0 ∈ R if

x(t0) = x0 and
dx(t)

dt
= F (x(t)) for all t0 < t < tf.

For most differential equations we will encounter, there is a unique

solution that is defined for t0 < t < tf. The solution may be defined

for all time t > t0, in which case we take tf = ∞. Because we will

primarily be interested in solutions of the initial value problem for

differential equations, we will usually refer to this simply as the solution

of a differential equation.

We will typically assume that t0 is equal to 0. In the case when F

is independent of time (as in equation (5.2)), we can do so without loss

of generality by choosing a new independent (time) variable, τ = t− t0

(Exercise 5.1).

Example 5.1 Damped oscillator

Consider a damped linear oscillator with dynamics of the form

q̈ + 2ζω0q̇ + ω2
0q = 0,

where q is the displacement of the oscillator from its rest position.

These dynamics are equivalent to those of a spring–mass system, as
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shown in Exercise 3.5. We assume that ζ < 1, corresponding to a lightly

damped system (the reason for this particular choice will become clear

later). We can rewrite this in state space form by setting x1 = q and

x2 = q̇/ω0, giving

dx1
dt

= ω0x2,
dx2
dt

= −ω0x1 − 2ζω0x2.

In vector form, the right-hand side can be written as

F (x) =




ω0x2

−ω0x1 − 2ζω0x2



.

The solution to the initial value problem can be written in a number

of different ways and will be explored in more detail in Chapter 6. Here

we simply assert that the solution can be written as

x1(t) = e−ζω0t

(
x10 cosωdt+

1

ωd

(ω0ζx10 + x20) sinωdt

)
,

x2(t) = e−ζω0t

(
x20 cosωdt−

1

ωd

(ω2
0x10 + ω0ζx20) sinωdt

)
,

where x0 = (x10, x20) is the initial condition and ωd = ω0

√
1− ζ2. This

solution can be verified by substituting it into the differential equation.

We see that the solution is explicitly dependent on the initial condition,

and it can be shown that this solution is unique. A plot of the initial

condition response is shown in Figure 5.1. We note that this form of the

solution holds only for 0 < ζ < 1, corresponding to an “underdamped”

oscillator. ∇
�

Without imposing some mathematical conditions on the function
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Figure 5.1: Response of the damped oscillator to the initial condition

x0 = (1, 0). The solution is unique for the given initial conditions and

consists of an oscillatory solution for each state, with an exponentially

decaying magnitude.

F , the differential equation (5.2) may not have a solution for all t, and

there is no guarantee that the solution is unique. We illustrate these

possibilities with two examples.

Example 5.2 Finite escape time

Let x ∈ R and consider the differential equation

dx

dt
= x2 (5.3)

with the initial condition x(0) = 1. By differentiation we can verify

that the function

x(t) =
1

1− t

satisfies the differential equation and that it also satisfies the initial

condition. A graph of the solution is given in Figure 5.2a; notice that

the solution goes to infinity as t goes to 1. We say that this system has

finite escape time. Thus the solution exists only in the time interval
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Figure 5.2: Existence and uniqueness of solutions. Equation (5.3)

has a solution only for time t < 1, at which point the solution goes

to infinity, as shown in (a). Equation (5.4) is an example of a system

with many solutions, as shown in (b). For each value of a, we get a

different solution starting from the same initial condition.

0 ≤ t < 1. ∇

Example 5.3 Nonunique solution

Let x ∈ R and consider the differential equation

dx

dt
= 2
√
x (5.4)

with initial condition x(0) = 0. We can show that the function

x(t) =





0 if 0 ≤ t ≤ a,

(t− a)2 if t > a

satisfies the differential equation for all values of the parameter a ≥ 0.
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To see this, we differentiate x(t) to obtain

dx

dt
=





0 if 0 ≤ t ≤ a,

2(t− a) if t > a,

and hence ẋ = 2
√
x for all t ≥ 0 with x(0) = 0. A graph of some of

the possible solutions is given in Figure 5.2b. Notice that in this case

there are many solutions to the differential equation. ∇

These simple examples show that there may be difficulties even

with simple differential equations. Existence and uniqueness can be

guaranteed by requiring that the function F have the property that for

some fixed c ∈ R,

‖F (x)− F (y)‖ < c‖x− y‖ for all x, y,

which is called Lipschitz continuity. A sufficient condition for a function

to be Lipschitz is that the Jacobian ∂F/∂x is uniformly bounded for all

x. The difficulty in Example 5.2 is that the derivative ∂F/∂x becomes

large for large x, and the difficulty in Example 5.3 is that the derivative

∂F/∂x is infinite at the origin.

5.2 QUALITATIVE ANALYSIS

The qualitative behavior of nonlinear systems is important in under-

standing some of the key concepts of stability in nonlinear dynamics.

We will focus on an important class of systems known as planar dynam-
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ical systems. These systems have two state variables x ∈ R2, allowing

their solutions to be plotted in the (x1, x2) plane. The basic concepts

that we describe hold more generally and can be used to understand

dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems

with state x ∈ R2 is to plot the phase portrait of the system, briefly

introduced in Chapter 3. We start by introducing the concept of a

vector field. For a system of ordinary differential equations

dx

dt
= F (x),

the right-hand side of the differential equation defines at every x ∈ Rn

a velocity F (x) ∈ Rn. This velocity tells us how x changes and can be

represented as a vector F (x) ∈ Rn.

For planar dynamical systems, each state corresponds to a point in

the plane and F (x) is a vector representing the velocity of that state.

We can plot these vectors on a grid of points in the plane and obtain

a visual image of the dynamics of the system, as shown in Figure 5.3a.

The points where the velocities are zero are of particular interest since

they define stationary points of the flow: if we start at such a state, we

stay at that state.

A phase portrait is constructed by plotting the flow of the vector
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Figure 5.3: Phase portraits. (a) This plot shows the vector field

for a planar dynamical system. Each arrow shows the velocity at

that point in the state space. (b) This plot includes the solutions

(sometimes called streamlines) from different initial conditions, with

the vector field superimposed.

field corresponding to the planar dynamical system. That is, for a set

of initial conditions, we plot the solution of the differential equation in

the plane R2. This corresponds to following the arrows at each point

in the phase plane and drawing the resulting trajectory. By plotting

the solutions for several different initial conditions, we obtain a phase

portrait, as show in Figure 5.3b. Phase portraits are also sometimes

called phase plane diagrams.

Phase portraits give insight into the dynamics of the system by

showing the solutions plotted in the (two-dimensional) state space of

the system. For example, we can see whether all trajectories tend to

a single point as time increases or whether there are more complicated

behaviors. In the example in Figure 5.3, corresponding to a damped



282 CHAPTER 5

oscillator, the solutions approach the origin for all initial conditions.

This is consistent with our simulation in Figure 5.1, but it allows us to

infer the behavior for all initial conditions rather than a single initial

condition. However, the phase portrait does not readily tell us the rate

of change of the states (although this can be inferred from the lengths

of the arrows in the vector field plot).

Equilibrium Points and Limit Cycles

An equilibrium point of a dynamical system represents a stationary

condition for the dynamics. We say that a state xe is an equilibrium

point for a dynamical system

dx

dt
= F (x)

if F (xe) = 0. If a dynamical system has an initial condition x(0) = xe,

then it will stay at the equilibrium point: x(t) = xe for all t ≥ 0, where

we have taken t0 = 0.

Equilibrium points are one of the most important features of a

dynamical system since they define the states corresponding to constant

operating conditions. A dynamical system can have zero, one, or more

equilibrium points.

Example 5.4 Inverted pendulum

Consider the inverted pendulum in Figure 5.4, which is a part of the

balance system we considered in Chapter 3. The inverted pendulum is
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Figure 5.4: Equilibrium points for an inverted pendulum. An in-

verted pendulum is a model for a class of balance systems in which we

wish to keep a system upright, such as a rocket (a). Using a simplified

model of an inverted pendulum (b), we can develop a phase portrait

that shows the dynamics of the system (c). The system has multiple

equilibrium points, marked by the solid dots along the x2 = 0 line.

a simplified version of the problem of stabilizing a rocket: by applying

forces at the base of the rocket, we seek to keep the rocket stabilized in

the upright position. The state variables are the angle θ = x1 and the

angular velocity dθ/dt = x2, the control variable is the acceleration u

of the pivot, and the output is the angle θ.

For simplicity we assume that mgl/Jt = 1, l/Jt = 1 and set c =
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γ/Jt, so that the dynamics (equation (3.10)) become

dx

dt
=




x2

sin x1 − cx2 + u cos x1



. (5.5)

This is a nonlinear time-invariant system of second order. This same

set of equations can also be obtained by appropriate normalization of

the system dynamics as illustrated in Example 3.10.

We consider the open loop dynamics by setting u = 0. The equi-

librium points for the system are given by

xe =




±nπ

0



,

where n = 0, 1, 2, . . . . The equilibrium points for n even correspond

to the pendulum pointing up and those for n odd correspond to the

pendulum hanging down. A phase portrait for this system (without

corrective inputs) is shown in Figure 5.4c. The phase portrait shows

−2π ≤ x1 ≤ 2π, so five of the equilibrium points are shown. ∇

Nonlinear systems can exhibit rich behavior. Apart from equilib-

rium points they can also exhibit stationary periodic solutions. This is

of great practical value in generating sinusoidally varying voltages in

power systems or in generating periodic signals for animal locomotion.

A simple example is given in Exercise 5.11, which shows the circuit di-

agram for an electronic oscillator. A normalized model of the oscillator
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Figure 5.5: Phase portrait and time domain simulation for a sys-

tem with a limit cycle. The phase portrait (a) shows the states of

the solution plotted for different initial conditions. The limit cycle

corresponds to a closed loop trajectory. The simulation (b) shows

a single solution plotted as a function of time, with the limit cycle

corresponding to a steady oscillation of fixed amplitude.

is given by the equation

dx1
dt

= x2 + x1(1− x21 − x22),
dx2
dt

= −x1 + x2(1− x21 − x22).

(5.6)

The phase portrait and time domain solutions are given in Figure 5.5.

The figure shows that the solutions in the phase plane converge to a

circular trajectory. In the time domain this corresponds to an oscilla-

tory solution. Mathematically the circle is called a limit cycle. More

formally, we call a nonconstant solution xp(t) a limit cycle of period

T > 0 if xp(t + T ) = xp(t) for all t ∈ R and nearby trajectories con-

verge to xp( · ) as t → ∞ (stable limit cycle) or t → −∞ (unstable

limit cycle).
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There are methods for determining limit cycles for second-order sys-

tems, but for general higher-order systems we have to resort to compu-

tational analysis. Computer algorithms find limit cycles by searching

for periodic trajectories in state space that satisfy the dynamics of

the system. In many situations, stable limit cycles can be found by

simulating the system with different initial conditions.

5.3 STABILITY

The stability of a solution determines whether or not solutions nearby

the solution remain close, get closer, or move further away. We now

give a formal definition of stability and describe tests for determining

whether a solution is stable.

Definitions

Let x(t; a) be a solution to the differential equation with initial con-

dition a. A solution is stable if other solutions that start near a stay

close to x(t; a). Formally, we say that the solution x(t; a) is stable if

for all ǫ > 0, there exists a δ > 0 such that

‖b− a‖ < δ =⇒ ‖x(t; b)− x(t; a)‖ < ǫ for all t > 0.

Note that this definition does not imply that x(t; b) approaches x(t; a)

as time increases but just that it stays nearby. Furthermore, the value

of δ may depend on ǫ, so that if we wish to stay very close to the
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Figure 5.6: Illustration of Lyapunov’s concept of a stable solution.

The solution represented by the solid line is stable if we can guarantee

that all solutions remain within a tube of diameter ǫ by choosing initial

conditions sufficiently close the solution.

solution, we may have to start very, very close (δ ≪ ǫ). This type

of stability, which is illustrated in Figure 5.6, is also called stability

in the sense of Lyapunov. If a solution is stable in this sense and the

trajectories do not converge, we say that the solution is neutrally stable.

An important special case is when the solution x(t; a) = xe is an

equilibrium solution. In this case the condition for stability becomes

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ǫ for all t > 0. (5.7)

Instead of saying that the solution is stable, we simply say that the

equilibrium point is stable. An example of a neutrally stable equilib-

rium point is shown in Figure 5.7. From the phase portrait, we see that

if we start near the equilibrium point, then we stay near the equilib-

rium point. Furthermore, if we choose an initial condition from within
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ẋ2 = −x1

0 2 4 6 8 10

-2

0

2 x1 x2

S
ta
te
s
x
1
,x

2
Time tFigure 5.7: Phase portrait and time domain simulation for a system

with a single stable equilibrium point. The equilibrium point xe at

the origin is stable since all trajectories that start near xe stay near

xe.

the inner dashed circle (of radius δ) then all trajectories will remain

inside the region defined by the outer dashed circle (of radius ǫ). Note,

however, that trajectories may not remain confined remain inside the

individual circles (and hence we must choose δ < ǫ).

A solution x(t; a) is asymptotically stable if it is stable in the sense

of Lyapunov and, in addition, x(t; b) approaches x(t; a) as t approaches

infinity for b sufficiently close to a. Hence, the solution x(t; a) is asymp-

totically stable if for every ǫ > 0 there exists a δ > 0 such that

‖b−a‖ < δ =⇒ ‖x(t; b)−x(t; a)‖ < ǫ and lim
t→∞
‖x(t; b)−x(t; a)‖ = 0.

This corresponds to the case where all nearby trajectories converge to

the stable solution for large time. In the case of an equilibrium solution
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Figure 5.8: Phase portrait and time domain simulation for a system

with a single asymptotically stable equilibrium point. The equilibrium

point xe at the origin is asymptotically stable since the trajectories

converge to this point as t→∞.

xe, we can write this condition as

‖x(0)−xe‖ < δ =⇒ ‖x(t)−xe‖ < ǫ and lim
t→∞

x(t) = xe. (5.8)

Figure 5.8 shows an example of an asymptotically stable equilibrium

point. Indeed, as seen in the phase portrait, not only do all trajectories

stay near the equilibrium point at the origin, but they also all approach

the origin as t gets large (the directions of the arrows on the phase

portrait show the direction in which the trajectories move).

A solution x(t; a) is unstable if it is not stable. More specifically, we

say that a solution x(t; a) is unstable if given some ǫ > 0, there does

not exist a δ > 0 such that if ‖b − a‖ < δ, then ‖x(t; b) − x(t; a)‖ < ǫ

for all t. An example of an unstable equilibrium point xe is shown in

Figure 5.9. Note that no matter how small we make δ, there is always

an initial condition with ‖x(0)− xe‖ < δ that flows away from xe.
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Figure 5.9: Phase portrait and time domain simulation for a system

with a single unstable equilibrium point. The equilibrium point xe at

the origin is unstable since not all trajectories that start near xe stay

near xe. The sample trajectory on the right shows that the trajectories

very quickly depart from zero.

The definitions above are given without careful description of their

domain of applicability. More formally, we define a solution to be

locally stable (or locally asymptotically stable) if it is stable for all initial

conditions x ∈ Br(a), where

Br(a) = {x : ‖x− a‖ < r}

is a ball of radius r around a and r > 0. A solution is globally asymp-

totically stable if it is asymptotically stable for all r > 0.

For planar dynamical systems, equilibrium points have been as-

signed names based on their stability type. An asymptotically stable

equilibrium point is called a sink or sometimes an attractor. An un-

stable equilibrium point can be either a source, if all trajectories lead

away from the equilibrium point, or a saddle, if some trajectories lead
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to the equilibrium point and others move away (this is the situation

pictured in Figure 5.9). Finally, an equilibrium point that is stable

but not asymptotically stable (i.e., neutrally stable, such as the one in

Figure 5.7) is called a center.

Example 5.5 Congestion control

The TCP protocol is used to adjust the rate of packet transmission on

the Internet. Stability of this system is important to insure smooth

and efficient flow of information across the network.

The model for congestion control in a network consisting of N iden-

tical computers connected to a single router, described in more detail

in Section 4.4, is given by

dw

dt
=
c

b
− ρc

(
1 +

w2

2

)
,

db

dt
= N

wc

b
− c,

where w is the window size and b is the buffer size of the router. The

equilibrium points are given by

be = Nwe, where we

(
1 +

w2
e

2

)
=

1

Nρ
.

Since w(1 + w2/2) is monotone, there is only one equilibrium point.

Phase portraits are shown in Figure 5.10 for two different sets of pa-

rameter values. In each case we see that the system converges to an

equilibrium point in which the buffer is below its full capacity of 500

packets. The equilibrium size of the buffer represents a balance be-

tween the transmission rates for the sources and the capacity of the
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(b) ρ = 4× 10−4, c = 20 pkts/ms

Figure 5.10: Phase portraits for a congestion control protocol run-

ning with N = 60 identical source computers. The equilibrium values

correspond to a fixed window at the source, which results in a steady-

state buffer size and corresponding transmission rate. A faster link

(b) uses a smaller buffer size since it can handle packets at a higher

rate.

link. We see from the phase portraits that the equilibrium points are

asymptotically stable since all initial conditions result in trajectories

that converge to these points.

∇

Stability of Linear Systems

A linear dynamical system has the form

dx

dt
= Ax, x(0) = x0, (5.9)

where A ∈ Rn×n is a square matrix, corresponding to the dynamics

matrix of a linear control system (3.6). For a linear system, the stabil-
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ity of the equilibrium point at the origin can be determined from the

eigenvalues of the matrix A:

λ(A) := {s ∈ C : det(sI − A) = 0}.

The polynomial det(sI − A) is the characteristic polynomial and the

eigenvalues are its roots. We use the notation λj for the jth eigenvalue

of A, so that λj ∈ λ(A). In general λ can be complex-valued, although

if A is real-valued, then for any eigenvalue λ, its complex conjugate λ∗

will also be an eigenvalue. The origin is always an equilibrium point

for a linear system. Since the stability of a linear system depends only

on the matrix A, we find that stability is a property of the system. For

a linear system we can therefore talk about the stability of the system

rather than the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system

matrices are in diagonal form. In this case, the dynamics have the form

dx

dt
=




λ1

λ2

0

0

. . .

λn




x. (5.10)

It is easy to see that the state trajectories for this system are inde-

pendent of each other, so that we can write the solution in terms of n

individual systems ẋj = λjxj. Each of these scalar solutions is of the
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form

xj(t) = eλjtxj(0).

We see that the equilibrium point xe = 0 is stable if λj ≤ 0 and

asymptotically stable if λj < 0.

Another simple case is when the dynamics are in the block diagonal

form

dx

dt
=




σ1 ω1

−ω1 σ1

0

. . .

0
σm ωm

−ωm σm




x.

In this case, the eigenvalues can be shown to be λj = σj± iωj. We once

again can separate the state trajectories into independent solutions for

each pair of states, and the solutions are of the form

x2j−1(t) = eσjt
(
x2j−1(0) cosωjt+ x2j(0) sinωjt

)
,

x2j(t) = eσjt
(
−x2j−1(0) sinωjt+ x2j(0) cosωjt

)
,

where j = 1, 2, . . . ,m. We see that this system is asymptotically stable

if and only if σj = Reλj < 0. It is also possible to combine real and

complex eigenvalues in (block) diagonal form, resulting in a mixture of

solutions of the two types.

Very few systems are in one of the diagonal forms above, but many

systems can be transformed into these forms via coordinate transfor-

mations. One such class of systems is those for which the dynamics
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matrix has distinct (nonrepeating) eigenvalues. In this case there is a

matrix T ∈ Rn×n such that the matrix TAT−1 is in (block) diagonal

form, with the block diagonal elements corresponding to the eigenval-

ues of the original matrix A (see Exercise 5.14). If we choose new

coordinates z = Tx, then

dz

dt
= T ẋ = TAx = TAT−1z

and the linear system has a (block) diagonal dynamics matrix. Further-

more, the eigenvalues of the transformed system are the same as those

of the original system since if v is an eigenvector of A, then w = Tv

can be shown to be an eigenvector of TAT−1. We can reason about

the stability of the original system by noting that x(t) = T−1z(t), and

so if the transformed system is stable (or asymptotically stable), then

the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues,

the stability of the system can be completely determined by examining

the real part of the eigenvalues of the dynamics matrix. For more

general systems, we make use of the following theorem, proved in the

next chapter:

Theorem 5.1 (Stability of a linear system). The system

dx

dt
= Ax

is asymptotically stable if and only if all eigenvalues of A have a strictly
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negative real part and is unstable if any eigenvalue of A has a strictly

positive real part.

Note that it is not enough to have eigenvalues with Re(λ) ≤ 0. As

a simple example, consider the system q̈ = 0, which can be written in

state space form as

d

dt




x1

x2




=




0 1

0 0







x1

x2



.

The system has eigenvalues λ = 0 but the solutions are not bounded

since we have

x1(t) = x1,0 + x2,0t, x2(t) = x2,0.

Example 5.6 Compartment model

Consider the two-compartment module for drug delivery described in

Section 4.6. Using concentrations as state variables and denoting the

state vector by x, the system dynamics are given by

dx

dt
=




−k0 − k1 k1

k2 −k2



x+




b0

0



u, y =


0 1


 x,

where the input u is the rate of injection of a drug into compartment

1 and the concentration of the drug in compartment 2 is the measured

output y. We wish to design a feedback control law that maintains a

constant output given by y = yd.
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We choose an output feedback control law of the form

u = −k(y − yd) + ud,

where ud is the rate of injection required to maintain the desired con-

centration y = yd, and k is a feedback gain that should be chosen such

that the closed loop system is stable. Substituting the control law into

the system, we obtain

dx

dt
=




−k0 − k1 k1 − b0k

k2 −k2



x+




b0

0




(ud + kyd) =: Ax+ Bue,

y =


0 1


 x =: Cx.

The equilibrium concentration xe ∈ R2 can be obtained by solving the

equation Axe + Bue = 0 and some simple algebra yields

x1,e = x2,e = yd, ue = ud =
k0
b0
yd.

To analyze the system around the equilibrium point, we choose new

coordinates z = x − xe. In these coordinates the equilibrium point is

at the origin and the dynamics become

dz

dt
=




−k0 − k1 k1 − b0k

k2 −k2



z.

We can now apply the results of Theorem 5.1 to determine the stability

of the system. The eigenvalues of the system are given by the roots of



298 CHAPTER 5

the characteristic polynomial

λ(s) = s2 + (k0 + k1 + k2)s+ (k0k2 + b0k2k).

While the specific form of the roots is messy, it can be shown using

the Routh–Hurwitz criterion that the roots have negative real part as

long as the linear term and the constant term are both positive (see

Section 2.2, page 76). Hence the system is stable for any k > 0. ∇

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible

to determine the local stability of an equilibrium point by approximat-

ing the system by a linear system. The following example illustrates

the basic idea.

Example 5.7 Inverted pendulum

Consider again an inverted pendulum whose open loop dynamics are

given by

dx

dt
=




x2

sin x1 − cx2



,

where we have defined the state as x = (θ, θ̇). We first consider the

equilibrium point at x = (0, 0), corresponding to the straight-up posi-

tion. If we assume that the angle θ = x1 remains small, then we can

replace sin x1 with x1 and cosx1 with 1, which gives the approximate
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system

dx

dt
=




x2

x1 − cx2




=




0 1

1 −c



x. (5.11)

Intuitively, this system should behave similarly to the more complicated

model as long as x1 is small. In particular, it can be verified that the

equilibrium point (0, 0) is unstable by plotting the phase portrait or

computing the eigenvalues of the dynamics matrix in equation (5.11)

We can also approximate the system around the stable equilibrium

point at x = (π, 0). In this case we have to expand sin x1 and cos x1

around x1 = π, according to the expansions

sin(π + θ) = − sin θ ≈ −θ, cos(π + θ) = − cos(θ) ≈ −1.

If we define z1 = x1 − π and z2 = x2, the resulting approximate dy-

namics are given by

dz

dt
=




z2

−z1 − c z2




=




0 1

−1 −c



z. (5.12)

It can be shown that the eigenvalues of the dynamics matrix have

negative real parts, confirming that the downward equilibrium point is

asymptotically stable.

Figure 5.11 shows the phase portraits for the original system and

the approximate system around the stable equilibrium point. Note that

z = (0, 0) is the equilibrium point for this system and that it has the

same basic form as the dynamics shown in Figure 5.8. The solutions for
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Figure 5.11: Comparison between the phase portraits for the full

nonlinear system (a) and its linear approximation around the ori-

gin (b). Notice that near the equilibrium point at the center of the

plots, the phase portraits (and hence the dynamics) are almost iden-

tical.

the original system and the approximate are very similar, although not

exactly the same. It can be shown that if a linear approximation has

either asymptotically stable or unstable equilibrium points, then the

local stability of the original system must be the same (see Theorem 5.3

on page 321 for the case of asymptotic stability). ∇

More generally, suppose that we have a nonlinear system

dx

dt
= F (x)

that has an equilibrium point at xe. Computing the Taylor series ex-

pansion of the vector field, we can write

dx

dt
= F (xe) +

∂F

∂x

∣∣∣∣
xe

(x− xe) + higher-order terms in (x− xe).
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Since F (xe) = 0, we can approximate the system by choosing a new

state variable z = x− xe and writing

dz

dt
= Az, where A =

∂F

∂x

∣∣∣∣
xe

. (5.13)

We call the system (5.13) the linear approximation of the original non-

linear system or the linearization at xe. The following example illus-

trates the idea.

Example 5.8 Stability a tanker

The normalized steering dynamics of a large ship can be modeled by

the following equations:

dv

dt
= a1v + a2r + αv|v|+ b1δ,

dr

dt
= a3v + a4r + b2δ,

where v is the component of the velocity vector that is orthogonal to

the ship direction, r is the turning rate, and δ is the rudder angle. The

variables are normalized by using the ship length l as the length unit

and the time to travel one ship length as the time unit. The mass is

normalized by ρl3/2, where ρ is the density of water. The normalized

parameters are a1 = −0.6, a2 = −0.3, a3 = −5, a4 = −2, α = −2,

b1 = 0.1, and b2 = −0.8.

Setting the rudder angle δ = 0, we find that the equilibrium points

are given by the equations

a1v + a2r + αv|v| = 0, a3v + a4r = 0.
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Elimination of the variable r in these equations gives

(a1a4 − a2a3)v + αa4v|v| = 0

There are three equilibrium solutions: ve = 0 and ve = ±0.075. Lin-

earizing the equation gives a second-order system with dynamics ma-

trices

A0 =




−0.6 −0.3

−5 −2



, A1 =




−0.9 −0.3

−5 −2



.

The linearized matrix A0, for the equilibrium point ve = 0, has the

characteristic polynomial s2 + 2.6s − 0.3, which has one root in the

right half-plane. The equilibrium point is thus unstable. The matrix

A1, for the equilibrium points ve = ±0.075, has the characteristic poly-

nomial s2 +2.9s+0.3, which has all roots in the left half-plane. These

equilibrium points are stable.

Summarizing, we find that the equilibrium point ve = re = 0, which

corresponds to the ship moving forward at constant speed, is unstable.

The other equilibrium points, ve = −0.075, re = 0.1875 and ve = 0.075,

re = −0.1875, are stable (see Figure 5.12a). These equilibrium points

correspond to the tanker moving in a circle to the left or to the right.

Hence if the rudder is set to δ = 0 and the ship is moving forward it

will either turn to the right or to the left and approach one of the stable

equilibrium points. Which way it goes depends on the exact value of

the initial condition. The trajectories are shown in Figure 5.12b. ∇
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Figure 5.12: Stability analysis for a tanker. The rudder character-

istics are shown in (a), where the equilibrium points are marked by

circles, and the tanker trajectories are shown in (b).

The fact that a linear model can be used to study the behavior of a

nonlinear system near an equilibrium point is a powerful one. Indeed,

we can take this even further and use a local linear approximation of

a nonlinear system to design a feedback law that keeps the system

near its equilibrium point (design of dynamics). Thus, feedback can be

used to make sure that solutions remain close to the equilibrium point,

which in turn ensures that the linear approximation used to stabilize

it is valid.

Stability of Limit Cycles

Stability of nonequilibrium solutions can also be investigated as illus-

trated by the following example.

Example 5.9 Stability of an oscillation
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Consider the system given by equation (5.6),

dx1
dt

= x2 + x1(1− x21 − x22),
dx2
dt

= −x1 + x2(1− x21 − x22),

whose phase portrait is shown in Figure 5.5. The differential equation

has a periodic solution

xp =




x1(0) cos t+ x2(0) sin t

x2(0) cos t− x1(0) sin t



, (5.14)

with x21(0) + x22(0) = 1. Notice that the nonlinear terms disappear on

the periodic solution.

To explore the stability of this solution, we introduce polar coordi-

nates r ≥ 0 and ϕ, which are related to the state variables x1 and x2

by

x1 = r cosϕ, x2 = r sinϕ.

Differentiation gives the following linear equations for ṙ and ϕ̇:

ẋ1 = ṙ cosϕ− rϕ̇ sinϕ, ẋ2 = ṙ sinϕ+ rϕ̇ cosϕ.

Solving this linear system for ṙ and ϕ̇ gives, after some calculation,

dr

dt
= r(1− r2), dϕ

dt
= −1. (5.15)

Notice that the equations are decoupled; hence we can analyze the

stability of each state separately.

The equation for r has two equilibrium points: r = 0 and r = 1

(notice that r is assumed to be non-negative). The derivative dr/dt
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is positive for 0 < r < 1 and negative for r > 1. The variable r will

therefore increase if 0 < r < 1 and decrease if r > 1, and we find that

the equilibrium point r = 0 is unstable and the equilibrium point r = 1

is stable. Solutions with initial conditions different from 0 will thus all

converge to the stable equilibrium point r = 1 as time increases.

To study the stability of the full system, we must also investigate the

behavior of angle ϕ. The equation for ϕ̇ can be integrated analytically

to give ϕ(t) = −t+ϕ(0), which shows that solutions starting at different

initial angles ϕ(0) will grow linearly with time, remaining separated by

a constant amount. The solution r = 1, ϕ = −t is thus stable but not

asymptotically stable. The unit circle in the phase plane is attracting, in

the sense that all solutions with r(0) > 0 converge to the unit circle, as

illustrated in the simulation in Figure 5.13. Notice that the solutions

approach the circle rapidly, but that there is a constant phase shift

between the solutions.

∇

5.4 LYAPUNOV STABILITY ANALYSIS
�

We now return to the study of the full nonlinear system

dx

dt
= F (x), x ∈ Rn. (5.16)
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Figure 5.13: Solution curves for a stable limit cycle. The phase

portrait on the left shows that the trajectory for the system rapidly

converges to the stable limit cycle. The starting points for the trajec-

tories are marked by circles in the phase portrait. The time domain

plots on the right show that the states do not converge to the solution

but instead maintain a constant phase error.

Having defined when a solution for a nonlinear dynamical system is

stable, we can now ask how to prove that a given solution is stable,

asymptotically stable, or unstable. For physical systems, one can often

argue about stability based on dissipation of energy. The generalization

of that technique to arbitrary dynamical systems is based on the use

of Lyapunov functions in place of energy.

In this section we will describe techniques for determining the sta-

bility of solutions for a nonlinear system (5.16). We will generally be

interested in stability of equilibrium points, and it will be convenient to

assume that xe = 0 is the equilibrium point of interest. (If not, rewrite

the equations in a new set of coordinates z = x− xe.)
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Lyapunov Functions

A Lyapunov function V : Rn → R is an energy-like function that can

be used to determine the stability of a system. Roughly speaking, if we

can find a nonnegative function that always decreases along trajectories

of the system, we can conclude that the minimum of the function is a

stable equilibrium point (locally).

To describe this more formally, we start with a few definitions. Let

Br = Br(0) be a ball of radius r around the origin. We say that a

continuous function V is positive definite on Br if V (x) > 0 for all

x ∈ Br, x 6= 0 and V (0) = 0. Similarly, a function is negative definite

on Br if V (x) < 0 for all x ∈ Br, x 6= 0 and V (0) = 0. We say that a

function V is positive semidefinite if V (x) ≥ 0 for all x ∈ Br, but V (x)

can be zero at points other than just x = 0.

To illustrate the difference between a positive definite function and

a positive semidefinite function, suppose that x ∈ R2 and let

V1(x) = x21, V2(x) = x21 + x22.

Both V1 and V2 are always nonnegative. However, it is possible for V1

to be zero even if x 6= 0. Specifically, if we set x = (0, c), where c ∈ R

is any nonzero number, then V1(x) = 0. On the other hand, V2(x) = 0

if and only if x = (0, 0). Thus V1 is positive semidefinite and V2 is

positive definite.

We can now characterize the stability of an equilibrium point xe = 0
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for the system (5.16).

Theorem 5.2 (Lyapunov stability theorem). Let V be a function on

Rn and let V̇ represent the time derivative of V along trajectories of

the system dynamics (5.16):

V̇ =
∂V

∂x

dx

dt
=
∂V

∂x
F (x).

If there exists r > 0 such that V is positive definite and V̇ is negative

semidefinite on Br, then x = 0 is (locally) stable in the sense of Lya-

punov. If V is positive definite and V̇ is negative definite in Br, then

x = 0 is (locally) asymptotically stable.

If V satisfies one of the conditions above, we say that V is a (local)

Lyapunov function for the system. These results have a nice geometric

interpretation. The level curves for a positive definite function are the

curves defined by V (x) = c, c > 0, and for each c this gives a closed

contour, as shown in Figure 5.14. The condition that V̇ (x) is negative

simply means that the vector field points toward lower-level contours.

This means that the trajectories move to smaller and smaller values of

V and if V̇ is negative definite then x must approach 0.

Finding Lyapunov functions is not always easy. For example, con-

sider the linear system

dx1
dt

= x2,
dx2
dt

= −x1 − αx2, α > 0.

Since the system is linear, it can be easily verified that the eigenvalues
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V (x) = c1 < c2

∂V
∂x

V (x) = c2

dx
dt

Figure 5.14: Geometric illustration of Lyapunov’s stability theorem.

The closed contours represent the level sets of the Lyapunov function

V (x) = c. If dx/dt points inward to these sets at all points along the

contour, then the trajectories of the system will always cause V (x) to

decrease along the trajectory.

of the corresponding dynamics matrix are given by

λ =
−α±

√
α2 − 4

2
.

These eigenvalues always have negative real part for α > 0 and hence

the system is asymptotically stable. It follows that x(t)→ 0 and t→∞

and so a natural Lyapunov function candidate would be the squared

magnitude of the state:

V (x) =
1

2
x21 +

1

2
x22.

Taking the time derivative of this function and evaluating along the

trajectories of the system we find that

V̇ (x) = −αx22.

But this function is not positive definite, as can be seen by evaluating
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V̇ at the point x = (1, 0), which gives V̇ (x) = 0. Hence even though

the system is asymptotically stable, a Lyapunov function that proves

stability is not as simple as the squared magnitude of the state.

We now consider some additional examples.

Example 5.10 Scalar nonlinear system

Consider the scalar nonlinear system

dx

dt
=

2

1 + x
− x.

This system has equilibrium points at x = 1 and x = −2. We consider

the equilibrium point at x = 1 and rewrite the dynamics using z = x−1:

dz

dt
=

2

2 + z
− z − 1,

which has an equilibrium point at z = 0. Now consider the candidate

Lyapunov function

V (z) =
1

2
z2,

which is globally positive definite. The derivative of V along trajecto-

ries of the system is given by

V̇ (z) = zż =
2z

2 + z
− z2 − z.

If we restrict our analysis to an interval Br, where r < 2, then 2+z > 0

and we can multiply through by 2 + z to obtain

2z − (z2 + z)(2 + z) = −z3 − 3z2 = −z2(z + 3) < 0, z ∈ Br, r < 2.
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It follows that V̇ (z) < 0 for all z ∈ Br, z 6= 0, and hence the equilibrium

point x = 1 is locally asymptotically stable. ∇

A slightly more complicated situation occurs if V̇ is negative semidef-

inite. In this case it is possible that V̇ (x) = 0 when x 6= 0, and hence x

could stop decreasing in value. The following example illustrates this

case.

Example 5.11 Hanging pendulum

A normalized model for a hanging pendulum is

dx1
dt

= x2,
dx2
dt

= − sin x1,

where x1 is the angle between the pendulum and the vertical, with

positive x1 corresponding to counterclockwise rotation. The equation

has an equilibrium point x1 = x2 = 0, which corresponds to the pendu-

lum hanging straight down. To explore the stability of this equilibrium

point we choose the total energy as a Lyapunov function:

V (x) = 1− cos x1 +
1

2
x22 ≈

1

2
x21 +

1

2
x22.

The Taylor series approximation shows that the function is positive

definite for small x. The time derivative of V (x) is

V̇ = ẋ1 sin x1 + ẋ2x2 = x2 sin x1 − x2 sin x1 = 0.

Since this function is negative semidefinite, it follows from Lyapunov’s

theorem that the equilibrium point is stable but not necessarily asymp-
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totically stable. When perturbed, the pendulum actually moves in a

trajectory that corresponds to constant energy. ∇

As demonstrated already, Lyapunov functions are not always easy

to find, and they are also not unique. In many cases energy functions

can be used as a starting point, as was done in Example 5.11. It turns

out that Lyapunov functions can always be found for any stable system

(under certain conditions), and hence one knows that if a system is sta-

ble, a Lyapunov function exists (and vice versa). Recent results using

sum-of-squares methods have provided systematic approaches for find-

ing Lyapunov systems [204]. Sum-of-squares techniques can be applied

to a broad variety of systems, including systems whose dynamics are

described by polynomial equations, as well as hybrid systems, which

can have different models for different regions of state space.

For a linear dynamical system of the form

dx

dt
= Ax,

it is possible to construct Lyapunov functions in a systematic manner.

To do so, we consider quadratic functions of the form

V (x) = xTPx,

where P ∈ Rn×n is a symmetric matrix (P = P T ). The condition

that V be positive definite on Br for some r > 0 is equivalent to the
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condition that P be a positive definite matrix:

xTPx > 0, for all x 6= 0,

which we write as P ≻ 0. It can be shown that if P is symmetric, then

P is positive definite if and only if all of its eigenvalues are real and

positive.

Given a candidate Lyapunov function V (x) = xTPx, we can now

compute its derivative along flows of the system:

V̇ =
∂V

∂x

dx

dt
= xT (ATP + PA)x =: −xTQx.

The requirement that V̇ be negative definite on Br (for asymptotic

stability) becomes a condition that the matrix Q be positive definite.

Thus, to find a Lyapunov function for a linear system it is sufficient to

choose a Q ≻ 0 and solve the Lyapunov equation:

ATP + PA = −Q. (5.17)

This is a linear equation in the entries of P , and hence it can be solved

using linear algebra. It can be shown that the equation always has a so-

lution if all of the eigenvalues of the matrix A are in the left half-plane.

Moreover, the solution P is positive definite if Q is positive definite.

It is thus always possible to find a quadratic Lyapunov function for

a stable linear system. We will defer a proof of this until Chapter 6,

where more tools for analysis of linear systems will be developed.
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Example 5.12 Spring–mass system

Consider a simple spring–mass system, whose state space dynamics are

given by

dx1
dt

= x2,
dx2
dt

= − k
m
x1 −

b

m
x2, m, b, k > 0.

Note that this is equivalent to the example we used on page 308 if

k = m and b/m = α.

To find a Lyapunov function for the system, we choose Q = −I and

equation (5.17) becomes




0 −k/m

1 −b/m







p11 p12

p12 p22



+




p11 p12

p12 p22







0 1

−k/m −b/m




=




−1 0

0 −1



.

By evaluating each element of this matrix equation, we can obtaining

a set of linear equations for pij:

−2k

m
p12 = −1, p11 −

b

m
p12 −

k

m
p22 = 0, 2p12 −

2b

m
p22 = −1.

These equations can be solved for p11, p12, and p22 to obtain

P =




b2 + k(k +m)

2bk

m

2k

m

2k

m(k +m)

2bk




Finally, it follows that

V (x) =
b2 + k(k +m)

2bk
x21 +

m

k
x1x2 +

m(k +m)

2bk
x22.

Notice that while it can be verified that this function is positive definite,

its level sets are rotated ellipses. ∇
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Knowing that we have a direct method to find Lyapunov functions

for linear systems, we can now investigate the stability of nonlinear

systems. Consider the system

dx

dt
= F (x) =: Ax+ F̃ (x), (5.18)

where F (0) = 0 and F̃ (x) contains terms that are second order and

higher in the elements of x. The function Ax is an approximation of

F (x) near the origin, and we can determine the Lyapunov function

for the linear approximation and investigate if it is also a Lyapunov

function for the full nonlinear system. The following example illustrates

the approach.

Example 5.13 Genetic switch

Consider the dynamics of a set of repressors connected together in a

cycle, as shown in Figure 5.15a. The normalized dynamics for this

system were given in Exercise 3.10:

dz1
dτ

=
µ

1 + zn2
− z1,

dz2
dτ

=
µ

1 + zn1
− z2, (5.19)

where z1 and z2 are scaled versions of the protein concentrations, n > 0

and µ > 0 are parameters that describe the interconnection between

the genes, and we have set the external inputs u1 and u2 to zero.

The equilibrium points for the system are found by equating the
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Figure 5.15: Stability of a genetic switch. The circuit diagram in (a)

represents two proteins that are each repressing the production of the

other. The inputs u1 and u2 interfere with this repression, allowing

the circuit dynamics to be modified. The equilibrium points for this

circuit can be determined by the intersection of the two curves shown

in (b).

time derivatives to zero. We define

f(u) =
µ

1 + un
, f ′(u) =

df

du
=
−µnun−1

(1 + un)2
,

so that our dynamics become

dz1
dτ

= f(z2)− z1,
dz2
dτ

= f(z1)− z2,

and the equilibrium points are defined as the solutions of the equations

z1 = f(z2), z2 = f(z1).

If we plot the curves (z1, f(z1)) and (f(z2), z2) on a graph, then these

equations will have a solution when the curves intersect, as shown in
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Figure 5.15b. Because of the shape of the curves, it can be shown that

there will always be three solutions: one at z1e = z2e, one with z1e < z2e

and one with z1e > z2e. If µ≫ 1, then we can show that the solutions

are given approximately by

z1e ≈ µ, z2e ≈
1

µn−1
; z1e = z2e; z1e ≈

1

µn−1
, z2e ≈ µ.

(5.20)

To check the stability of the system, we write f(u) in terms of its

Taylor series expansion about ue:

f(u) = f(ue)+f
′(ue) · (u−ue)+

1

2
f ′′(ue) · (u−ue)2+higher-order terms,

where f ′ represents the first derivative of the function, and f ′′ the

second. Using these approximations, the dynamics can then be written

as

dw

dt
=




−1 f ′(z2e)

f ′(z1e) −1



w + F̃ (w),

where w = z − ze is the shifted state and F̃ (w) represents quadratic

and higher-order terms.

We now use equation (5.17) to search for a Lyapunov function.

Choosing Q = I and letting P ∈ R2×2 have elements pij, we search for

a solution of the equation




−1 f ′
1

f ′
2 −1







p11 p12

p12 p22




+




p11 p12

p12 p22







−1 f ′
2

f ′
1 −1




=




−1 0

0 −1



,

where f ′
1 = f ′(z1e) and f ′

2 = f ′(z2e). Note that we have set p21 = p12
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to force P to be symmetric. Multiplying out the matrices, we obtain




−2p11 + 2f ′
1p12 p11f

′
2 − 2p12 + p22f

′
1

p11f
′
2 − 2p12 + p22f

′
1 −2p22 + 2f ′

2p12




=




−1 0

0 −1



,

which is a set of linear equations for the unknowns pij. We can solve

these linear equations to obtain

p11 = −
f ′
1
2 − f ′

2f
′
1 + 2

4(f ′
1f

′
2 − 1)

, p12 = −
f ′
1 + f ′

2

4(f ′
1f

′
2 − 1)

, p22 = −
f ′
2
2 − f ′

1f
′
2 + 2

4(f ′
1f

′
2 − 1)

.

To check that V (w) = wTPw is a Lyapunov function, we must verify

that V (w) is positive definite function or equivalently that P ≻ 0.

Since P is a 2× 2 symmetric matrix, it has two real eigenvalues λ1 and

λ2 that satisfy

λ1 + λ2 = trace(P ), λ1 ·λ2 = det(P ).

In order for P to be positive definite λ1 and λ2 must be positive, and

we thus require that

trace(P ) =
f ′
1
2−2f ′

2f
′
1+f

′
2
2 + 4

4−4f ′
1f

′
2

> 0, det(P ) =
f ′
1
2−2f ′

2f
′
1+f

′
2
2+4

16− 16f ′
1f

′
2

> 0.

We see that trace(P ) = 4 det(P ) and the numerator of the expressions

is just (f1− f2)2 + 4 > 0, so it suffices to check the sign of 1− f ′
1f

′
2. In

particular, for P to be positive definite, we require that

f ′(z1e)f
′(z2e) < 1.

We can now make use of the expressions for f ′ defined earlier and



DYNAMIC BEHAVIOR 319

evaluate at the approximate locations of the equilibrium points derived

in equation (5.20). For the equilibrium points where z1e 6= z2e, we can

show that

f ′(z1e)f
′(z2e) ≈ f ′(µ)f ′(

1

µn−1
) =
−µnµn−1

(1 + µn)2
·
−µnµ−(n−1)2

(1 + µ−n(n−1))2
≈ n2µ−n2+n.

Using n = 2 and µ ≈ 200 from Exercise 3.10, we see that f ′(z1e)f ′(z2e)≪

1 and hence P is positive definite. This implies that V is a positive

definite function and hence a potential Lyapunov function for the sys-

tem.

To determine if the equilibrium points z1e 6= z2e are stable for the

system (5.19), we now compute V̇ at the equilibrium point. By con-

struction,

V̇ = wT(PA+ ATP )w + F̃ T(w)Pw + wTPF̃ (w)

= −wTw + F̃ T(w)Pw + wTPF̃ (w).

Since all terms in F̃ are quadratic or higher order in w, it follows that

F̃ T(w)Pw and wTPF̃ (w) consist of terms that are at least third order

in w. Therefore if w is sufficiently close to zero, then the cubic and

higher-order terms will be smaller than the quadratic terms. Hence,

sufficiently close to w = 0, V̇ is negative definite, allowing us to con-

clude that these equilibrium points are both stable.

Figure 5.16 shows the phase portrait and time traces for a system

with µ = 4, illustrating the bistable nature of the system. When the

initial condition starts with a concentration of protein B greater than
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Figure 5.16: Dynamics of a genetic switch. The phase portrait on

the left shows that the switch has three equilibrium points, corre-

sponding to protein A having a concentration greater than, equal to,

or less than protein B. The equilibrium point with equal protein con-

centrations is unstable, but the other equilibrium points are stable.

The simulation on the right shows the time response of the system

starting from two different initial conditions. The initial portion of

the curve corresponds to initial concentrations z(0) = (1, 5) and con-

verges to the equilibrium point where z1e < z2e. At time t = 10, the

concentrations are perturbed by +2 in z1 and −2 in z2, moving the

state into the region of the state space whose solutions converge to

the equilibrium point where z2e < z1e.

that of A, the solution converges to the equilibrium point at (approxi-

mately) (1/µn−1, µ). If A is greater than B, then it goes to (µ, 1/µn−1).

The equilibrium point with z1e = z2e is unstable. ∇

More generally, we can investigate what the linear approximation

tells about the stability of a solution to a nonlinear equation. The
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following theorem gives a partial answer for the case of stability of an

equilibrium point.

Theorem 5.3. Consider the dynamical system (5.18) with F (0) = 0

and F̃ such that lim ‖F̃ (x)‖/‖x‖ → 0 as ‖x‖ → 0. If the real parts of

all eigenvalues of A are strictly less than zero, then xe = 0 is a locally

asymptotically stable equilibrium point of equation (5.18).

This theorem implies that asymptotic stability of the linear ap-

proximation implies local asymptotic stability of the original nonlinear

system. The theorem is very important for control because it implies

that stabilization of a linear approximation of a nonlinear system re-

sults in a stable equilibrium point for the nonlinear system. The proof

of this theorem follows the technique used in Example 5.13. A formal

proof can be found in [143].

It can also be shown that if A has one or more eigenvalues with

strictly positive real part, then xe = 0 is an unstable equilibrium point

for the nonlinear system.

Krasovski–Lasalle Invariance Principle
��

For general nonlinear systems, especially those in symbolic form, it

can be difficult to find a positive definite function V whose derivative

is strictly negative definite. The Krasovski–Lasalle theorem enables

us to conclude the asymptotic stability of an equilibrium point under
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less restrictive conditions, namely, in the case where V̇ is negative

semidefinite, which is often easier to construct. It only applies to time-

invariant or periodic systems, which are the cases we consider here.

This section makes use of some additional concepts from dynamical

systems; see Hahn [112] or Khalil [143] for a more detailed description.

We will deal with the time-invariant case and begin by introducing

a few more definitions. We denote the solution trajectories of the time-

invariant system

dx

dt
= F (x) (5.21)

as x(t; a), which is the solution of equation (5.21) at time t starting

from a at t0 = 0. The ω limit set of a trajectory x(t; a) is the set of all

points z ∈ Rn such that there exists a strictly increasing sequence of

times tn such that x(tn; a) → z as n → ∞. A set M ⊂ Rn is said to

be an invariant set if for all b ∈ M , we have x(t; b) ∈ M for all t ≥ 0.

It can be proved that the ω limit set of every trajectory is closed and

invariant. We may now state the Krasovski–Lasalle principle.

Theorem 5.4 (Krasovski–Lasalle principle). Let V : Rn → R be a

locally positive definite function such that on the compact set Ωr =

{x ∈ Rn : V (x) ≤ r} we have V̇ (x) ≤ 0. Define

S = {x ∈ Ωr : V̇ (x) = 0}.

As t → ∞, the trajectory tends to the largest invariant set inside S;

i.e., its ω limit set is contained inside the largest invariant set in S. In
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particular, if S contains no invariant sets other than x = 0, then 0 is

asymptotically stable.

Proofs are given in [150] and [158].

Lyapunov functions can often be used to design stabilizing con-

trollers, as is illustrated by the following example, which also illustrates

how the Krasovski–Lasalle principle can be applied.

Example 5.14 Inverted pendulum

Following the analysis in Example 3.10, an inverted pendulum can be

described by the following normalized model:

dx1
dt

= x2,
dx2
dt

= sin x1 + u cos x1, (5.22)

where x1 is the angular deviation from the upright position and u is

the (scaled) acceleration of the pivot, as shown in Figure 5.17a. The

system has an equilibrium point at x1 = x2 = 0, which corresponds to

the pendulum standing upright. This equilibrium point is unstable.

To find a stabilizing controller we consider the following candidate

for a Lyapunov function:

V (x) = (cos x1 − 1) + a(1− cos2 x1) +
1

2
x22 ≈

(
a− 1

2

)
x21 +

1

2
x22.

The Taylor series expansion shows that the function is positive definite

near the origin if a > 0.5. The time derivative of V (x) is

V̇ = −ẋ1 sin x1 + 2aẋ1 sin x1 cos x1 + ẋ2x2 = x2(u+ 2a sin x1) cos x1.
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Figure 5.17: Stabilized inverted pendulum. A control law applies

a force u at the bottom of the pendulum to stabilize the inverted

position (a). The phase portrait (b) shows that the equilibrium point

corresponding to the vertical position is stabilized. The shaded region

indicates the set of initial conditions that converge to the origin. The

ellipse corresponds to a level set of a Lyapunov function V (x) for which

V (x) > 0 and V̇ (x) < 0 for all points inside the ellipse. This can be

used as an estimate of the region of attraction of the equilibrium point.

The actual dynamics of the system evolve on a manifold (c).

Choosing the feedback law

u = −2a sin x1 − x2 cos x1

gives

V̇ = −x22 cos2 x1.

It follows from Lyapunov’s theorem that the equilibrium point is (lo-

cally) stable. However, since the function is only negative semidefinite,

we cannot conclude asymptotic stability using Theorem 5.2. However,
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note that V̇ = 0 implies that x2 = 0 or x1 = π/2± nπ.

If we restrict our analysis to a small neighborhood of the origin Ωr,

r ≪ π/2, then we can define

S = {(x1, x2) ∈ Ωr : x2 = 0}

and we can compute the largest invariant set inside S. For a trajectory

to remain in this set we must have x2 = 0 for all t and hence ẋ2(t) = 0

as well. Using the dynamics of the system (5.22), we see that x2(t) = 0

and ẋ2(t) = 0 implies x1(t) = 0 as well. Hence the largest invariant set

inside S is (x1, x2) = 0, and we can use the Krasovski–Lasalle principle

to conclude that the origin is locally asymptotically stable. A phase

portrait of the closed loop system is shown in Figure 5.17b.

In the analysis and the phase portrait, we have treated the angle

of the pendulum θ = x1 as a real number. In fact, θ is an angle with

θ = 2π equivalent to θ = 0. Hence the dynamics of the system actually

evolve on a manifold (smooth surface) as shown in Figure 5.17c. Anal-

ysis of nonlinear dynamical systems on manifolds is more complicated,

but uses many of the same basic ideas presented here. ∇

5.5 PARAMETRIC AND NONLOCAL BEHAVIOR
�

Most of the tools that we have explored are focused on the local be-

havior of a fixed system near an equilibrium point. In this section we
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briefly introduce some concepts regarding the global behavior of nonlin-

ear systems and the dependence of a system’s behavior on parameters

in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear system we can start

by finding the equilibrium points. We can then proceed to analyze the

local behavior around the equilibrium points. The behavior of a system

near an equilibrium point is called the local behavior of the system.

The solutions of the system can be very different far away from an

equilibrium point. This is seen, for example, in the stabilized pendulum

in Example 5.14. The inverted equilibrium point is stable, with small

oscillations that eventually converge to the origin. But far away from

this equilibrium point there are trajectories that converge to other equi-

librium points or even cases in which the pendulum swings around the

top multiple times, giving very long oscillations that are topologically

different from those near the origin.

To better understand the dynamics of the system, we can examine

the set of all initial conditions that converge to a given asymptotically

stable equilibrium point. This set is called the region of attraction

for the equilibrium point. An example is shown by the shaded region

of the phase portrait in Figure 5.17b. In general, computing regions

of attraction is difficult. However, even if we cannot determine the
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region of attraction, we can often obtain patches around the stable

equilibrium points that are attracting. This gives partial information

about the behavior of the system.

One method for approximating the region of attraction is through

the use of Lyapunov functions. Suppose that V is a local Lyapunov

function for a system around an equilibrium point x0. Let Ωr be a set

on which V (x) has a value less than r,

Ωr = {x ∈ Rn : V (x) ≤ r},

and suppose that V̇ (x) ≤ 0 for all x ∈ Ωr, with equality only at the

equilibrium point x0. Then Ωr is inside the region of attraction of the

equilibrium point. Since this approximation depends on the Lyapunov

function and the choice of Lyapunov function is not unique, it can

sometimes be a very conservative estimate.

It is sometimes the case that we can find a Lyapunov function V

such that V is positive definite and V̇ is negative (semi-) definite for

all x ∈ Rn. In many instances it can then be shown that the region

of attraction for the equilibrium point is the entire state space, and

the equilibrium point is globally asymptotically stable. More detailed

conditions for global stability can be found in [143] and other textbooks.

Example 5.15 Stabilized inverted pendulum

Consider again the stabilized inverted pendulum from Example 5.14.
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The Lyapunov function for the system was

V (x) = (cos x1 − 1) + a(1− cos2 x1) +
1

2
x22.

With a > 0.5, V̇ was negative semidefinite for all x and nonzero when

x1 6= ±π/2. Hence any x such that |x1| < π/2 and V (x) > 0 will be

inside the invariant set defined by the level curves of V (x). One of

these level sets is shown in Figure 5.17b. ∇

Bifurcations

Another important property of nonlinear systems is how their behavior

changes as the parameters governing the dynamics change. We can

study this in the context of models by exploring how the location of

equilibrium points, their stability, their regions of attraction, and other

dynamic phenomena, such as limit cycles, vary based on the values of

the parameters in the model.

Consider a differential equation of the form

dx

dt
= F (x, µ), x ∈ Rn, µ ∈ Rk, (5.23)

where x is the state and µ is a set of parameters that describe the

family of equations. The equilibrium solutions satisfy

F (x, µ) = 0,

and as µ is varied, the corresponding solutions xe(µ) can also vary. We
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say that the system (5.23) has a bifurcation at µ = µ∗ if the behavior of

the system changes qualitatively at µ∗. This can occur either because

of a change in stability type or a change in the number of solutions at

a given value of µ.

Example 5.16 Predator–prey

Consider the predator–prey system described in Example 3.4 and mod-

eled as a continuous time system as described in Section 4.7. The

dynamics of the system are given by

dH

dt
= rH

(
1− H

k

)
− aHL

c+H
,

dL

dt
= b

aHL

c+H
− dL, (5.24)

where H and L are the numbers of hares (prey) and lynxes (predators)

and a, b, c, d, k, and r are parameters that model a given predator–prey

system (described in more detail in Section 4.7). The system has an

equilibrium point at He > 0 and Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behavior of

the system, we choose to focus on two specific parameters of interest:

a, the interaction coefficient between the populations and c, a parame-

ter affecting the prey consumption rate. Figure 5.18a is a numerically

computed parametric stability diagram showing the regions in the cho-

sen parameter space for which the equilibrium point is stable (leaving

the other parameters at their nominal values). We see from this figure

that for certain combinations of a and c we get a stable equilibrium

point, while at other values this equilibrium point is unstable.
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Figure 5.18: Bifurcation analysis of the predator–prey system. (a)

Parametric stability diagram showing the regions in parameter space

for which the system is stable. (b) Bifurcation diagram showing the

location and stability of the equilibrium point as a function of a. The

solid line represents a stable equilibrium point, and the dashed line

represents an unstable equilibrium point. The dash-dotted lines indi-

cate the upper and lower bounds for the limit cycle at that parameter

value (computed via simulation). The nominal values of the parame-

ters in the model are a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125, and

r = 1.6.

Figure 5.18b is a numerically computed bifurcation diagram for the

system. In this plot, we choose one parameter to vary (a) and then

plot the equilibrium value of one of the states (H) on the vertical axis.

The remaining parameters are set to their nominal values. A solid line

indicates that the equilibrium point is stable; a dashed line indicates

that the equilibrium point is unstable. Note that the stability in the

bifurcation diagram matches that in the parametric stability diagram
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for c = 50 (the nominal value) and a varying from 1.35 to 4. For

the predator–prey system, when the equilibrium point is unstable, the

solution converges to a stable limit cycle. The amplitude of this limit

cycle is shown by the dash-dotted line in Figure 5.18b. ∇

A particular form of bifurcation that is very common when control-

ling linear systems is that the equilibrium point remains fixed but the

stability of the equilibrium point changes as the parameters are varied.

In such a case it is revealing to plot the eigenvalues of the system as a

function of the parameters. Such plots are called root locus diagrams

because they give the locus of the eigenvalues when parameters change.

Bifurcations occur when parameter values are such that there are eigen-

values with zero real part. Computing environments such LABVIEW,

MATLAB, Mathematica, and Python have tools for plotting root loci.

A more detailed discussion of the root locus is given in Section 12.5.

Example 5.17 Root locus diagram for a bicycle model

Consider the linear bicycle model given by equation (4.8) in Section 4.2.

Introducing the state variables x1 = ϕ, x2 = δ, x3 = ϕ̇, and x4 = δ̇ and

setting the steering torque T = 0, the equations can be written as

dx

dt
=




0 I

−M−1(K0 +K2v
2
0) −M−1Cv0



x =: Ax,

where I is a 2× 2 identity matrix and v0 is the velocity of the bicycle.

Figure 5.19a shows the real parts of the eigenvalues as a function of
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Figure 5.19: Stability plots for a bicycle moving at constant velocity.

The plot in (a) shows the real part of the system eigenvalues as a

function of the bicycle velocity v0. The system is stable when all

eigenvalues have negative real part (shaded region). The plot in (b)

shows the locus of eigenvalues on the complex plane as the velocity v

is varied and gives a different view of the stability of the system. This

type of plot is called a root locus diagram.

velocity. Figure 5.19b shows the dependence of the eigenvalues of A

on the velocity v0. The figures show that the bicycle is unstable for

low velocities because two eigenvalues are in the right half-plane. As

the velocity increases, these eigenvalues move into the left half-plane,

indicating that the bicycle becomes self-stabilizing. As the velocity is

increased further, there is an eigenvalue close to the origin that moves

into the right half-plane, making the bicycle unstable again. However,

this eigenvalue is small and so it can easily be stabilized by a rider. Fig-

ure 5.19a shows that the bicycle is self-stabilizing for velocities between

6 and 10 m/s. ∇
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Parametric stability diagrams and bifurcation diagrams can provide

valuable insights into the dynamics of a nonlinear system. It is usually

necessary to carefully choose the parameters that one plots, including

combining the natural parameters of the system to eliminate extra

parameters when possible. Computer programs such as AUTO, LOCBIF,

and XPPAUT provide numerical algorithms for producing stability and

bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations to design

feedback laws that stabilize an equilibrium point and provide a de-

sired level of performance. However, for some classes of problems the

feedback controller must be nonlinear to accomplish its function. By

making use of Lyapunov functions we can often design a nonlinear

control law that provides stable behavior, as we saw in Example 5.14.

One way to systematically design a nonlinear controller is to begin

with a candidate Lyapunov function V (x) and a control system ẋ =

f(x, u). We say that V (x) is a control Lyapunov function if for every x

there exists a u such that V̇ (x) = ∂V
∂x
f(x, u) < 0. In this case, it may

be possible to find a function α(x) such that u = α(x) stabilizes the

system. The following example illustrates the approach.

Example 5.18 Noise cancellation

Noise cancellation is used in consumer electronics and in industrial
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Figure 5.20: Headphones with noise cancellation. Noise is sensed

by the exterior microphone (a) and sent to a filter in such a way that

it cancels the noise that penetrates the headphone (b). The filter

parameters a and b are adjusted by the controller. S represents the

input signal to the headphones.

systems to reduce the effects of noise and vibrations. The idea is to

locally reduce the effect of noise by generating opposing signals. A

pair of headphones with noise cancellation such as those shown in Fig-

ure 5.20a is a typical example. A schematic diagram of the system is

shown in Figure 5.20b. The system has two microphones, one outside

the headphones that picks up exterior noise n and another inside the

headphones that picks up the signal e, which is a combination of the

desired signal S and the external noise that penetrates the headphone.

The signal from the exterior microphone is filtered and sent to the

headphones in such a way that it cancels the external noise that pen-

etrates into the headphones. The parameters of the filter are adjusted
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by a feedback mechanism to make the noise signal in the internal mi-

crophone as small as possible. The feedback is inherently nonlinear

because it acts by changing the parameters of the filter.

To analyze the system we assume for simplicity that the propagation

of external noise into the headphones is modeled by the first-order

dynamical system

dz

dt
= a0z + b0n, (5.25)

where n is the external noise signal, z is the sound level inside the

headphones, and the parameters a0 < 0 and b0 are not known. Assume

that the filter is a dynamical system of the same type:

dw

dt
= aw + bn,

where the parameters a and b are adjustable. We wish to find a con-

troller that updates a and b so that they converge to the (unknown)

parameters a0 and b0. If a = a0 and b = b0 we have e = S and the noise

effect of the noise is eliminated. Assuming for simplicity that S = 0,

introduce x1 = e = z − w, x2 = a− a0, and x3 = b− b0. Then

dx1
dt

= a0(z − w) + (a− a0)w + (b− b0)n = a0x1 + x2w + x3n. (5.26)

We will achieve noise cancellation if we can find a feedback law for

changing the parameters a and b so that the error e goes to zero. To

do this we choose

V (x1, x2, x3) =
1

2

(
αx21 + x22 + x23

)
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as a candidate Lyapunov function for equation (5.26). The derivative

of V is

V̇ = αx1ẋ1 + x2ẋ2 + x3ẋ3 = αa0x
2
1 + x2(ẋ2 + αwx1) + x3(ẋ3 + αnx1).

Choosing

ȧ = ẋ2 = −αwx1 = −αwe, ḃ = ẋ3 = −αnx1 = −αne, (5.27)

we find that V̇ = αa0x
2
1 < 0, and it follows that the quadratic function

will decrease as long as e = x1 = w − z 6= 0. The nonlinear feed-

back (5.27) thus attempts to change the parameters so that the error

between the signal and the noise is small. Notice that feedback law

(5.27) does not use the model (5.25) explicitly.

A simulation of the system is shown in Figure 5.21. In the simu-

lation we have represented the signal as a pure sinusoid and the noise

as broad band noise. The figure shows the dramatic improvement with

noise cancellation. The sinusoidal signal is not visible without noise

cancellation. The filter parameters change quickly from their initial

values a = b = 0. Filters of higher order with more coefficients are

used in practice. ∇
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Figure 5.21: Simulation of noise cancellation. The upper left figure

shows the headphone signal without noise cancellation, and the lower

left figure shows the signal with noise cancellation. The right figures

show the parameters a and b of the filter.

5.6 FURTHER READING

The field of dynamical systems has a rich literature that characterizes

the possible features of dynamical systems and describes how paramet-

ric changes in the dynamics can lead to topological changes in behav-

ior. Readable introductions to dynamical systems are given by Stro-

gatz [234] and the highly illustrated text by Abraham and Shaw [2].

More technical treatments include Andronov, Vitt, and Khaikin [10],

Guckenheimer and Holmes [109], and Wiggins [254]. For students with

a strong interest in mechanics, the texts by Arnold [15] and Marsden

and Ratiu [178] provide an elegant approach using tools from differen-

tial geometry. Finally, good treatments of dynamical systems methods

in biology are given by Wilson [256] and Ellner and Guckenheimer [82].
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There is a large literature on Lyapunov stability theory, including the

classic texts by Malkin [174], Hahn [112], and Krasovski [150]. We

highly recommend the comprehensive treatment by Khalil [143].

EXERCISES

5.1 (Time-invariant systems) Show that if we have a solution of the

differential equation (5.1) given by x(t) with initial condition x(t0) =

x0, then x̃(τ) = x(t− t0) is a solution of the differential equation

dx̃

dτ
= F (x̃)

with initial condition x̃(0) = x0, where τ = t− t0.

5.2 (Flow in a tank) Consider a cylindrical tank with cross sectional

area A m2, effective outlet area a m2, and inflow qin m3/s. An energy

balance shows that the outlet velocity is v =
√
2gh m/s, where g m/s2

is the acceleration of gravity and h is the distance between the outlet

and the water level in the tank (in meters). Show that the system can

be modeled by

dh

dt
= − a

A

√
2gh+

1

A
qin, qout = a

√
2gh.

Use the parameters A = 0.2, a = 0.01. Simulate the system when

the inflow is zero and the initial level is h = 0.2. Do you expect any

difficulties in the simulation?
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5.3 (Lyapunov functions) Consider the second-order system

dx1
dt

= −ax1,
dx2
dt

= −bx1 − cx2,

where a, b, c > 0. Investigate whether the functions

V1(x) =
1

2
x21 +

1

2
x22, V2(x) =

1

2
x21 +

1

2
(x2 +

b

c− ax1)
2

are Lyapunov functions for the system and give any conditions that

must hold.

5.4 (Damped spring–mass system) Consider a damped spring–mass �

system with dynamics

mq̈ + cq̇ + kq = 0.

A natural candidate for a Lyapunov function is the total energy of the

system, given by

V =
1

2
mq̇2 +

1

2
kq2.

Use the Krasovski–Lasalle theorem to show that the system is asymp-

totically stable.

5.5 (Electric generator) The following simple model for an electric gen-

erator connected to a strong power grid was given in Exercise 3.8:

J
d2ϕ

dt2
= Pm − Pe = Pm −

EV

X
sinϕ.

The parameter

a =
Pmax

Pm

=
EV

XPm
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is the ratio between the maximum deliverable power Pmax = EV/X

and the mechanical power Pm.

a) Consider a as a bifurcation parameter and discuss how the equilib-

rium points depend on a.

b) For a > 1, show that there is a center at ϕ0 = arcsin(1/a) and a

saddle at ϕ = π − ϕ0.

c) Assume a > 1 and show that there is a solution through the saddle

that satisfies

J

2

(dϕ
dt

)2
− Pm(ϕ− ϕ0)−

EV

X
(cosϕ− cosϕ0) = 0. (5.28)

Set J/Pm = 1 and use simulation to show that the stability region

is the interior of the area enclosed by this solution. Investigate what

happens if the system is in equilibrium with a value of a that is slightly

larger than 1 and a suddenly decreases, corresponding to the reactance

of the line suddenly increasing.

5.6 (Lyapunov equation) Show that Lyapunov equation (5.17) always

has a solution if all of the eigenvalues of A are in the left half-plane.

(Hint: Use the fact that the Lyapunov equation is linear in P and start

with the case where A has distinct eigenvalues.)

5.7 (Shaping behavior by feedback) An inverted pendulum can be



DYNAMIC BEHAVIOR 341

modeled by the differential equation

dx1
dt

= x2,
dx2
dt

= sin x1 + u cos x1,

where x1 is the angle of the pendulum clockwise), and x2 is its angular

velocity (see Example 5.14). Qualitatively discuss the behavior of the

open loop system and how the behavior changes when the feedback

u = −2 sin(x) is introduced. (Hint: use phase portraits.)

5.8 (Swinging up a pendulum) Consider the inverted pendulum, dis-

cussed in Example 5.4, that is described by

θ̈ = sin θ + u cos θ,

where θ is the angle between the pendulum and the vertical and the

control signal u is the acceleration of the pivot. Using the energy

function

V (θ, θ̇) = cos θ − 1 +
1

2
θ̇2,

show that the state feedback u = k(V0−V )θ̇ cos θ causes the pendulum

to “swing up” to the upright position.

5.9 (Root locus diagram) Consider the linear system

dx

dt
=




0 1

0 −3



x+




−1

4



u, y =


1 0


 x,

with the feedback u = −ky. Plot the location of the eigenvalues as a

function the parameter k.
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5.10 (Discrete-time Lyapunov function) Consider a nonlinear discrete-�

time system with dynamics x[k + 1] = f(x[k]) and equilibrium point

xe = 0. Suppose there exists a smooth, positive definite function

V : Rn → R such that V (f(x)) − V (x) < 0 for x 6= 0 and V(0) =

0. Show that xe = 0 is (locally) asymptotically stable.

5.11 (Operational amplifier oscillator) An op amp circuit for an os-

cillator was shown in Exercise 4.4. The oscillatory solution for that

linear circuit was stable but not asymptotically stable. A schematic of

a modified circuit that has nonlinear elements is shown in the figure

below.

v1

v3v2 v1

v2

v1

v2

2
v0

2

2

R1R

R

R/α R

R R R

R2

R22 RC2

a e

R11

a e

a e

C1

−

+

−

+

−

+

−

+

−

+

The modification is obtained by making a feedback around each of the

operational amplifiers that has capacitors and making use of multipli-

ers. The signal ae = v21 + αv22 − v20 is the amplitude error. Show that

the system is modeled by

dv1
dt

=
1

R1C1

v2 +
1

R11C1

v1(v
2
0 − v21 − αv22),

dv2
dt

= − 1

R2C2

v1 +
1

R22C2

v2(v
2
0 − v21 − αv22).
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Determine α so that the circuit gives an oscillation with a stable limit

cycle with amplitude v0. (Hint: Use the results of Example 5.9.)

5.12 (Congestion control) Consider the congestion control problem de-

scribed in Section 4.4. Confirm that the equilibrium point for the

system is given by equation (4.22) and compute the stability of this

equilibrium point using a linear approximation.

5.13 (Self-activating genetic circuit) Consider the dynamics of a ge-

netic circuit that implements self-activation: the protein produced by

the gene is an activator for the protein, thus stimulating its own pro-

duction through positive feedback. Using the models presented in Ex-

ample 3.18, the dynamics for the system can be written as

dm

dt
=

αp2

1 + kp2
+ α0 − δm,

dp

dt
= κm− γp, (5.29)

for p,m ≥ 0. Find the equilibrium points for the system and analyze

the local stability of each using Lyapunov analysis.

5.14 (Diagonal systems) Let A ∈ Rn×n be a square matrix with real

eigenvalues λ1, . . . , λn and corresponding eigenvectors v1, . . . , vn. As-

sume that the eigenvalues are distinct (λi 6= λj for i 6= j).

a) Show that vi 6= vj for i 6= j.

b) Show that the eigenvectors form a basis for Rn so that any vector

x can be written as x =
∑
αivi for αi ∈ R.
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c) Let T =


v1 v2 . . . vn


 and show that T−1AT is a diagonal

matrix of the form (5.10).

d) Show that if some of the λi are complex numbers, then A can be

written as

A =




Λ1 0

. . .

0 Λk




, where Λi = λ ∈ R or Λi =




σ ω

−ω σ



.

in an appropriate set of coordinates.

This form of the dynamics of a linear system is often referred to as

block diagonal form.



Chapter Six

Linear Systems

Few physical elements display truly linear characteristics. For

example the relation between force on a spring and displacement

of the spring is always nonlinear to some degree. The relation

between current through a resistor and voltage drop across it also

deviates from a straight-line relation. However, if in each case

the relation is reasonably linear, then it will be found that the

system behavior will be very close to that obtained by assuming

an ideal, linear physical element, and the analytical simplification

is so enormous that we make linear assumptions wherever we can

possibly do so in good conscience.

Robert H. Cannon, Dynamics of Physical Systems, 1967 [60].

In Chapters 3–5 we considered the construction and analysis of

differential equation models for dynamical systems. In this chapter we

specialize our results to the case of linear, time-invariant input/output

systems. Two central concepts are the matrix exponential and the
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convolution equation, through which we can completely characterize

the behavior of a linear system. We also describe some properties of

the input/output response and show how to approximate a nonlinear

system by a linear one.

6.1 BASIC DEFINITIONS

We have seen several instances of linear differential equations in the

examples in the previous chapters, including the spring–mass system

(damped oscillator) and the operational amplifier in the presence of

small (nonsaturating) input signals. More generally, many dynami-

cal systems can be modeled accurately by linear differential equations.

Electrical circuits are one example of a broad class of systems for which

linear models can be used effectively. Linear models are also broadly

applicable in mechanical engineering, for example, as models of small

deviations from equilibrium points in solid and fluid mechanics. Signal-

processing systems, including digital filters of the sort used in MP3

players and streaming audio, are another source of good examples, al-

though these are often best modeled in discrete time (as described in

more detail in the exercises).

In many cases, we create systems with a linear input/output re-

sponse through the use of feedback. Indeed, it was the desire for lin-

ear behavior that led Harold S. Black to the invention of the nega-
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tive feedback amplifier. Almost all modern signal processing systems,

whether analog or digital, use feedback to produce linear or near-linear

input/output characteristics. For these systems, it is often useful to

represent the input/output characteristics as linear, ignoring the inter-

nal details required to get that linear response.

For other systems, nonlinearities cannot be ignored, especially if

one cares about the global behavior of the system. The predator–prey

problem is one example of this: to capture the oscillatory behavior of

the interdependent populations we must include the nonlinear coupling

terms. Other examples include switching behavior and generating pe-

riodic motion for locomotion. However, if we care about what happens

near an equilibrium point, it often suffices to approximate the nonlin-

ear dynamics by their local linearization, as we already explored briefly

in Section 5.3. The linearization is essentially an approximation of the

nonlinear dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systems more for-

mally. Consider a state space system of the form

dx

dt
= f(x, u), y = h(x, u), (6.1)

where x ∈ Rn, u ∈ Rp, and y ∈ Rq. As in the previous chapters,

we will usually restrict ourselves to the single-input, single-output case
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by taking p = q = 1. We also assume that all functions are smooth

and that for a reasonable class of inputs (e.g., piecewise continuous

functions of time) the solutions of equation (6.1) exist for all time.

It will be convenient to assume that the origin x = 0, u = 0 is

an equilibrium point for this system (ẋ = 0) and that h(0, 0) = 0.

Indeed, we can do so without loss of generality. To see this, suppose

that (xe, ue) 6= (0, 0) is an equilibrium point of the system with output

ye = h(xe, ue). Then we can define a new set of states, inputs, and

outputs,

x̃ = x− xe, ũ = u− ue, ỹ = y − ye,

and rewrite the equations of motion in terms of these variables:

d

dt
x̃ = f(x̃+ xe, ũ+ ue) =: f̃(x̃, ũ),

ỹ = h(x̃+ xe, ũ+ ue)− ye =: h̃(x̃, ũ).

In the new set of variables, the origin is an equilibrium point with out-

put 0, and hence we can carry out our analysis in this set of variables.

Once we have obtained our answers in this new set of variables, we sim-

ply “translate” them back to the original coordinates using x = x̃+xe,

u = ũ+ ue, and y = ỹ + ye.

Returning to the original equations (6.1), now assuming without

loss of generality that the origin is the equilibrium point of interest, we

write the output y(t) corresponding to the initial condition x(0) = x0

and input u(t) as y(t; x0, u). Using this notation, a system is said to be
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a linear input/output system if the following conditions are satisfied:

(i) y(t;αx1 + βx2, 0) = αy(t; x1, 0) + βy(t; x2, 0),

(ii) y(t;αx0, δu) = αy(t; x0, 0) + δy(t; 0, u),

(iii) y(t; 0, δu1 + γu2) = δy(t; 0, u1) + γy(t; 0, u2).

(6.2)

Thus, we define a system to be linear if the outputs are jointly linear in

the initial condition response (u = 0) and the forced response (x(0) =

0). Property (iii) is a statement of the principle of superposition: the

response of a linear system to the sum of two inputs u1 and u2 is the

sum of the outputs y1 and y2 corresponding to the individual inputs.

The general form of a linear state space system is

dx

dt
= Ax+ Bu, y = Cx+Du, (6.3)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p. In the special

case of a single-input, single-output system, B is a column vector, C

is a row vector, and D is scalar. Equation (6.3) is a system of linear

first-order differential equations with input u, state x, and output y. It

is easy to show that given solutions x1(t) and x2(t) for this set of equa-

tions, the corresponding outputs satisfy the linearity conditions (6.2).

We define xh(t) to be the solution with zero input (the general

solution to the homogeneous system),

dxh
dt

= Axh, xh(0) = x0,

and the solution xp(t) to be the input dependent solution with zero
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Figure 6.1: Superposition of homogeneous and particular solutions.

The first row shows the input, state, and output corresponding to the

initial condition response. The second row shows the same variables

corresponding to zero initial condition but nonzero input. The third

row is the complete solution, which is the sum of the two individual

solutions.

initial condition (the particular solution or forced solution),

dxp
dt

= Axp + Bu, xp(0) = 0.

Figure 6.1 illustrates how these two individual solutions can be super-

imposed to form the complete solution.

It is also possible to show that if a dynamical system with a finite

number of states is input/output linear in the sense we have described,

it can always be represented by a state space equation of the form (6.3)

through an appropriate choice of state variables. In Section 6.2 we will

give an explicit solution of equation (6.3), but we illustrate the basic
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form through a simple example.

Example 6.1 Linearity of solutions for a scalar system

Consider the first-order differential equation

dx

dt
= ax+ u, y = x,

with x(0) = x0. Let u1 = A sinω1t and u2 = B cosω2t. The solution to

the homogeneous system is xh(t) = eatx0, and two particular solutions

with x(0) = 0 are

xp1(t) = −A
−ω1e

at + ω1 cosω1t+ a sinω1t

a2 + ω2
1

,

xp2(t) = B
aeat − a cosω2t+ ω2 sinω2t

a2 + ω2
2

.

Suppose that we now choose x(0) = αx0 and u = u1 + u2. Then the

resulting solution is the weighted sum of the individual solutions:

x(t) = eat
(
αx0 +

Aω1

a2 + ω2
1

+
Ba

a2 + ω2
2

)

− Aω1 cosω1t+ a sinω1t

a2 + ω2
1

+B
−a cosω2t+ ω2 sinω2t

a2 + ω2
2

.

(6.4)

To see this, substitute equation (6.4) into the differential equation.

Thus, the properties of a linear system are satisfied. ∇

Time Invariance

Time invariance is an important concept that is used to describe a

system whose properties do not change with time. More precisely, for

a time-invariant system if the input u(t) gives output y(t), then if we

shift the time at which the input is applied by a constant amount a,
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Figure 6.2: Response to piecewise constant inputs. A piecewise

constant signal can be represented as a sum of step signals (a), and

the resulting output is the sum of the individual outputs (b).

u(t + a) gives the output y(t + a). Systems that are linear and time-

invariant, often called LTI systems, have the interesting property that

their response to an arbitrary input is completely characterized by their

response to step inputs or their response to short “impulses.”

To explore the consequences of time invariance, we first compute

the response to a piecewise constant input. Assume that the system

has zero initial condition and consider the piecewise constant input

shown in Figure 6.2a. The input has jumps at times tk, and its values

after the jumps are u(tk). The input can be viewed as a combination

of steps: the first step at time t0 has amplitude u(t0), the second step

at time t1 has amplitude u(t1)− u(t0), etc.

Assuming that the system is initially at an equilibrium point (so

that the initial condition response is zero), the response to the input
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can be obtained by superimposing the responses to a combination of

step inputs. Let H(t) be the response to a unit step applied at time

0, and assume that H(0) = 0. The response to the first step is then

H(t−t0)u(t0), the response to the second step isH(t−t1)
(
u(t1)−u(t0)

)
,

and we find that the complete response is given by

y(t) = H(t− t0)u(t0) +H(t− t1)
(
u(t1)− u(t0)

)
+ · · ·

=
(
H(t− t0)−H(t− t1)

)
u(t0) +

(
H(t− t1)−H(t− t2)

)
u(t1) + · · ·

=
n∑

k=1

(
H(t− tk−1)−H(t− tk)

)
u(tk−1) +H(t− tn)u(tn)

=
n∑

k=1

H(t− tk−1)−H(t− tk)
tk − tk−1

u(tk−1)
(
tk − tk−1

)
+H(t− tn)u(tn),

where n is such that tn ≤ t. An example of this computation is shown

in Figure 6.2b.

The response to a continuous input signal is obtained by taking the

limit n→∞ in such a way that tk − tk−1 → 0 and tn → t, which gives

y(t) =

∫ t

0

H ′(t− τ)u(τ)dτ, (6.5)

where H ′ is the derivative of the step response, also called the impulse

response. The response of a linear time-invariant system to any input

can thus be computed from the step response. Notice that the output

depends only on the input since we assumed the system was initially

at rest, x(0) = 0. We will derive equation (6.5) in a slightly different

way in the Section 6.3.
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6.2 THE MATRIX EXPONENTIAL

Equation (6.5) shows that the output of a linear system with zero initial

state can be written as an integral over the inputs u(t). In this section

and the next we derive a more general version of this formula, which

includes nonzero initial conditions. We begin by exploring the initial

condition response using the matrix exponential.

Initial Condition Response

We will now explicitly show that the output of a linear system depends

linearly on the input and the initial conditions. We begin by consider-

ing the general solution to the homogeneous system corresponding to

the dynamics

dx

dt
= Ax. (6.6)

For the scalar differential equation

dx

dt
= ax, x ∈ R, a ∈ R,

the solution is given by the exponential

x(t) = eatx(0).

We wish to generalize this to the vector case, where A becomes a ma-

trix. We define the matrix exponential as the infinite series

eX = I +X +
1

2
X2 +

1

3!
X3 + · · · =

∞∑

k=0

1

k!
Xk, (6.7)



LINEAR SYSTEMS 355

where X ∈ Rn×n is a square matrix and I is the n× n identity matrix.

We make use of the notation

X0 = I, X2 = XX, Xn = Xn−1X,

which defines what we mean by the “power” of a matrix. Equation (6.7)

is easy to remember since it is just the Taylor series for the scalar

exponential, applied to the matrix X. It can be shown that the series

in equation (6.7) converges for any matrix X ∈ Rn×n in the same way

that the normal exponential is defined for any scalar a ∈ R.

Replacing X in equation (6.7) by At, where t ∈ R, we find that

eAt = I + At+
1

2
A2t2 +

1

3!
A3t3 + · · · =

∞∑

k=0

1

k!
Aktk,

and differentiating this expression with respect to t gives

d

dt
eAt = A+ A2t+

1

2
A3t2 + · · · = A

∞∑

k=0

1

k!
Aktk = AeAt. (6.8)

Multiplying by x(0) from the right, we find that x(t) = eAtx(0) is the

solution to the differential equation (6.6) with initial condition x(0).

We summarize this important result as a proposition.

Proposition 6.1. The solution to the homogeneous system of differ-

ential equations (6.6) is given by

x(t) = eAtx(0).

Notice that the form of the solution is exactly the same as for scalar
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equations, but we must be sure to put the vector x(0) on the right of

the matrix eAt.

The form of the solution immediately allows us to see that the

solution is linear in the initial condition. In particular, if xh1(t) is

the solution to equation (6.6) with initial condition x(0) = x01 and

xh2(t) with initial condition x(0) = x02, then the solution with initial

condition x(0) = αx01 + βx02 is given by

x(t) = eAt
(
αx01 + βx02

)
=
(
αeAtx01 + βeAtx02) = αxh1(t) + βxh2(t).

Similarly, we see that the corresponding output is given by

y(t) = Cx(t) = αyh1(t) + βyh2(t),

where yh1(t) and yh2(t) are the outputs corresponding to xh1(t) and

xh2(t).

We illustrate computation of the matrix exponential by two exam-

ples.

Example 6.2 Double integrator

A very simple linear system that is useful in understanding basic con-

cepts is the second-order system given by

q̈ = u, y = q.

This system is called a double integrator because the input u is inte-

grated twice to determine the output y.
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In state space form, we write x = (q, q̇) and

dx

dt
=




0 1

0 0



x+




0

1



u.

The dynamics matrix of a double integrator is

A =




0 1

0 0



,

and we find by direct calculation that A2 = 0 and hence

eAt = I + At =




1 t

0 1



.

Thus the solution of the homogeneous system (u = 0) for the double

integrator is given by

x(t) =




1 t

0 1







x1(0)

x2(0)




=




x1(0) + tx2(0)

x2(0)



,

y(t) = x1(0) + tx2(0).

∇

Example 6.3 Undamped oscillator

A model for an oscillator, such as the spring–mass system with zero

damping, is

q̈ + ω2
0q = u.

Putting the system into state space form using x1 = q, x2 = q̇/ω0, the
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dynamics matrix for this system can be written as

A =




0 ω0

−ω0 0




and eAt =




cosω0t sinω0t

− sinω0t cosω0t



.

This expression for eAt can be verified by differentiation:

d

dt
eAt =




−ω0 sinω0t ω0 cosω0t

−ω0 cosω0t −ω0 sinω0t




=




0 ω0

−ω0 0







cosω0t sinω0t

− sinω0t cosω0t




= AeAt.

The solution to the initial value problem is then given by

x(t) = eAtx(0) =




cosω0t sinω0t

− sinω0t cosω0t







x1(0)

x2(0)



.

The solution is more complicated if the system has damping:

q̈ + 2ζω0q̇ + ω2
0q = u.

If ζ < 1 we have

exp




−ζω0 ωd

−ωd −ζω0



t = e−ζω0t




cosωdt sinωdt

− sinωdt cosωdt



.

where ωd = ω0

√
1− ζ2. The result can be proven by differentiating

the exponential matrix. The corresponding results for ζ ≥ 1 are given

in Exercise 6.4. ∇

An important class of linear systems are those that can be converted
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into diagonal form by a linear change of coordinates. Suppose that we

are given a system

dx

dt
= Ax

such that all the eigenvalues of A are distinct. It can be shown (Ex-

ercise 5.14) that there exists an invertible matrix T such that TAT−1

is diagonal. If we choose a set of coordinates z = Tx, then in the new

coordinates the dynamics become

dz

dt
= T

dx

dt
= TAx = TAT−1z.

By definition of T , this system will be diagonal.

Now consider a diagonal matrix A and the corresponding kth power

of At, which is also diagonal:

A =




λ1

λ2

0

0

. . .

λn




, (At)k =




λk1t
k

λk2t
k

0

0

. . .

λknt
k




It follows from the series expansion that the matrix exponential is given

by

eAt =




eλ1t

eλ2t
0

0

. . .

eλnt




.

A similar expansion can be done in the case where the eigenvalues are
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complex, using a block diagonal matrix, similar to what was done in

Section 5.3.

Given the solution to the dynamics in the z coordinates, the solution

in the original x coordinates can be obtained using the expression x =

T−1z. We can thus obtain an explicit solution for a linear system whose

dynamics matrix is diagonalizable.

Jordan Form
�

Some matrices with repeated eigenvalues cannot be transformed to

diagonal form. They can, however, be transformed to a closely related

form, called the Jordan form, in which the dynamics matrix has the

eigenvalues along the diagonal. When there are equal eigenvalues, there

may be 1’s appearing in the superdiagonal indicating that there is

coupling between the states.

Specifically, we define a matrix to be in Jordan form if it can be

written as

J =




J1

J2

0

0

. . .

Jk




, where Ji =




λi 1

. . .

0

. . .

0

. . . 1

λi




,

(6.9)

and λi is an eigenvalue of Ji. Each matrix Ji is called a Jordan block.

A first-order Jordan block can be represented as a system consisting
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x1∫

λ

(a) 1×1 block

x1
Σ

∫

λ

x2 ∫

λ

(b) 2× 2 block

λ

Σ Σ
∫

λ

x2 x1∫

λ

x3 ∫

(c) 3× 3 block

Figure 6.3: Representations of linear systems where the dynamics

matrices are Jordan blocks. A 1 × 1 Jordan block corresponds to an

integrator with feedback λ, as shown on the left. 2 × 2 and 3 × 3

Jordan blocks correspond to cascade connections of integrators with

identical feedback, as shown in the middle and right diagrams.

of an integrator with feedback λ. A Jordan block of higher order can

be represented as series connections of such systems, as illustrated in

Figure 6.3.

Theorem 6.2 (Jordan decomposition). Any matrix A ∈ Rn×n can be

transformed into Jordan form with the eigenvalues of A determining λi

in the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [233].

The special case where the eigenvalues are distinct is examined in Ex-

ercise 5.14.

Converting a matrix into Jordan form can be complicated, although
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MATLAB can do this conversion for numerical matrices using the

jordan function. There is no requirement that the individual λi’s be

distinct, and hence for a given eigenvalue we can have one or more

Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the matrix can

be computed in terms of the Jordan blocks:

e Jt =




e J1t

e J2t
0

0

. . .

e Jkt




. (6.10)

This follows from the block diagonal form of J . The exponentials of

the Jordan blocks can in turn be written as

e Jit =




1 t t2

2!

1 t

. . .

. . . tn−1

(n−1)!

. . . tn−2

(n−2)!

. . .
...

0

. . . t

1




eλit. (6.11)

As before, we can express the solution to a linear system that can be

converted into this form by making use of the transformations z = Tx

and x = T−1z.

When there are multiple eigenvalues, the invariant subspaces as-

sociated with each eigenvalue correspond to the Jordan blocks of the
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matrix A. Note that some eigenvalues of A may be complex, in which

case the transformation T that converts a matrix into Jordan form will

also be complex. When λ has a nonzero imaginary component, the

solutions will have oscillatory components since

e(σ+iω)t = eσt(cosωt+ i sinωt).

We can now use these results to prove Theorem 5.1, which states that

the equilibrium point xe = 0 of a linear system is asymptotically stable

if and only if Reλi < 0 for all i.

Proof of Theorem 5.1. Let T ∈ Cn×n be an invertible matrix that

transforms A into Jordan form, J = TAT−1. Using coordinates z =

Tx, we can write the solution z(t) as

z(t) = e Jtz(0),

where z(0) = Tx(0), so that x(t) = T−1e Jtz(0).

The solution z(t) can be written in terms of the elements of the

matrix exponential. From equation (6.11) these elements all decay to

zero for arbitrary z(0) if and only if Reλi < 0 for all i. Furthermore, if

any λi has positive real part, then there exists an initial condition z(0)

such that the corresponding solution increases without bound. Since

we can scale this initial condition to be arbitrarily small, it follows

that the equilibrium point is unstable if any eigenvalue has positive

real part.
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The existence of a canonical form allows us to prove many properties

of linear systems by changing to a set of coordinates in which the A

matrix is in Jordan form. We illustrate this in the following proposition,

which follows along the same lines as the proof of Theorem 5.1.

Proposition 6.3. Suppose that the system

dx

dt
= Ax

has no eigenvalues with strictly positive real part and one or more eigen-

values with zero real part. Then the system is stable (in the sense of

Lyapunov) if and only if the Jordan blocks corresponding to each eigen-

value with zero real part are scalar (1× 1) blocks.

Proof. See Exercise 6.6b.

The following example illustrates the use of the Jordan form.

Example 6.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft such as that de-

scribed in Example 3.12. Suppose that we choose u1 = u2 = 0 so that
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the dynamics of the system become

dz

dt
=




z4

z5

z6

−g sin z3 − c
m
z4

g(cos z3 − 1)− c
m
z5

0




, (6.12)

where z = (x, y, θ, ẋ, ẏ, θ̇). The equilibrium points for the system are

given by setting the velocities ẋ, ẏ, and θ̇ to zero and choosing the

remaining variables to satisfy

−g sin z3,e = 0

g(cos z3,e − 1) = 0

=⇒ z3,e = θe = 0.

This corresponds to the upright orientation for the aircraft. Note that

xe and ye are not specified. This is because we can translate the system

to a new (upright) position and still obtain an equilibrium point.

To compute the stability of the equilibrium point, we compute the
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linearization using equation (5.13):

A =
∂F

∂z

∣∣∣∣
ze

=




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 −g −c/m 0 0

0 0 0 0 −c/m 0

0 0 0 0 0 0




.

The eigenvalues of the system can be computed as

λ(A) = {0, 0, 0, 0,−c/m,−c/m}.

We see that the linearized system is not asymptotically stable since not

all of the eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense of Lyapunov,

we must make use of the Jordan form. It can be shown that the Jordan

form of A is given by

J =




0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 −c/m 0

0 0 0 0 0 −c/m




.

Since the second Jordan block has eigenvalue 0 and is not a simple

eigenvalue, the linearization is unstable (Exercise 6.6).
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(a) Mode 1 (b) Mode 2

Figure 6.4: Modes of vibration for a system consisting of two masses

connected by springs. In (a) the masses move left and right in syn-

chronization in (b) they move toward or against each other.

∇

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a description of

the types of behavior the system can exhibit. For oscillatory systems,

the term mode is often used to describe the vibration patterns that

can occur. Figure 6.4 illustrates the modes for a system consisting of

two masses connected by springs. One pattern is when both masses

oscillate left and right in unison, and another is when the masses move

toward and away from each other.

The initial condition response of a linear system can be written in

terms of a matrix exponential involving the dynamics matrix A. The

properties of the matrix A therefore determine the resulting behavior

of the system. Given a matrix A ∈ Rn×n, recall that v is an eigenvector

of A with eigenvalue λ if

Av = λv.
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In general λ and v may be complex-valued, although if A is real-valued,

then for any eigenvalue λ its complex conjugate λ∗ will also be an

eigenvalue (with v∗ as the corresponding eigenvector).

Suppose first that λ and v are a real-valued eigenvalue/eigenvector

pair for A. If we look at the solution of the differential equation for

x(0) = v, it follows from the definition of the matrix exponential that

eAtv =
(
I + At+

1

2
A2t2 + · · ·

)
v = v + λtv +

λ2t2

2
v + · · · = eλtv.

The solution thus lies in the subspace spanned by the eigenvector. The

eigenvalue λ describes how the solution varies in time, and this solution

is often called amode of the system. (In the literature, the term “mode”

is also often used to refer to the eigenvalue rather than the solution.)

If we look at the individual elements of the vectors x and v, it

follows that

xi(t)

xj(t)
=
eλtvi
eλtvj

=
vi
vj
,

and hence the ratios of the components of the state x are constants for

a (real) mode. The eigenvector thus gives the “shape” of the solution

and is also called a mode shape of the system. Figure 6.5 illustrates the

modes for a second-order system consisting of a fast mode and a slow

mode. Notice that the state variables have the same sign for the slow

mode and different signs for the fast mode.

The situation is more complicated when the eigenvalues of A are

complex. Since A has real elements, the eigenvalues and the eigenvec-
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(b) Simulation

Figure 6.5: The notion of modes for a second-order system with real

eigenvalues. The left figure shows the phase portrait and the modes

corresponding to solutions that start on the eigenvectors (bold lines).

The corresponding time functions are shown on the right.

tors are complex conjugates λ = σ± iω and v = u± iw, which implies

that

u =
v + v∗

2
, w =

v − v∗
2i

.

Making use of the matrix exponential, we have

eAtv = eλt(u+ iw) = eσt
(
(u cosωt− w sinωt) + i(u sinωt+ w cosωt)

)
,

from which it follows that

eAtu =
1

2

(
eAtv + eAtv∗

)
= ueσt cosωt− weσt sinωt,

eAtw =
1

2i

(
eAtv − eAtv∗

)
= ueσt sinωt+ weσt cosωt.

A solution with initial conditions in the subspace spanned by the real

part u and imaginary part w of the eigenvector will thus remain in that

subspace. The solution will be a logarithmic spiral characterized by σ
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and ω. We again call the solution corresponding to λ a mode of the

system and v the mode shape.

If a matrix A has n distinct eigenvalues λ1, . . . , λn, then the initial

condition response can be written as a linear combination of the modes.

To see this, suppose for simplicity that we have all real eigenvalues

with corresponding unit eigenvectors v1, . . . , vn. From linear algebra,

these eigenvectors are linearly independent, and we can write the initial

condition x(0) as

x(0) = α1v1 + α2v2 + · · ·+ αnvn.

Using linearity, the initial condition response can be written as

x(t) = α1e
λ1tv1 + α2e

λ2tv2 + · · ·+ αne
λntvn.

Thus, the response is a linear combination of the modes of the system,

with the amplitude of the individual modes growing or decaying as eλit.

The case for distinct complex eigenvalues follows similarly (the case for

nondistinct eigenvalues is more subtle and requires making use of the

Jordan form discussed in the previous section).

Example 6.5 Coupled spring–mass system

Consider the spring–mass system shown in Figure 6.4, but with the

addition of dampers on each mass. The equations of motion of the
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system are

mq̈1 = −2kq1 − cq̇1 + kq2, mq̈2 = kq1 − 2kq2 − cq̇2.

In state space form, we define the state to be x = (q1, q2, q̇1, q̇2), and

we can rewrite the equations as

dx

dt
=




0 0 1 0

0 0 0 1

−2k

m

k

m
− c

m
0

k

m
−2k

m
0 − c

m




x.

We now define a transformation z = Tx that puts this system into a

simpler form. Let z1 =
1
2
(q1 + q2), z2 = ż1, z3 =

1
2
(q1− q2) and z4 = ż3,

so that

z = Tx =
1

2




1 1 0 0

0 0 1 1

1 −1 0 0

0 0 1 −1




x.

In the new coordinates, the dynamics become

dz

dt
=




0 1 0 0

− k
m
− c

m
0 0

0 0 0 1

0 0 −3k

m
− c

m




z,

and we see that the model is now in block diagonal form.
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In the z coordinates, the states z1 and z2 parameterize one mode

with eigenvalues λ ≈ −c/(2m) ± i
√
k/m, and the states z3 and z4

another mode with λ ≈ −c/(2m) ± i
√
3k/m. From the form of the

transformation T we see that these modes correspond exactly to the

modes in Figure 6.4, in which q1 and q2 move either toward or against

each other. The real and imaginary parts of the eigenvalues give the

decay rates σ and frequencies ω for each mode. ∇

6.3 INPUT/OUTPUT RESPONSE

In the previous section we saw how to compute the initial condition

response using the matrix exponential. In this section we derive the

convolution equation, which includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (6.3), repeated

here:

dx

dt
= Ax+ Bu, y = Cx+Du. (6.13)

Using the matrix exponential, the solution to equation (6.13) can be

written as follows.

Theorem 6.4. The solution to the linear differential equation (6.13)

is given by

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ. (6.14)
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Proof. To prove this, we differentiate both sides and use the prop-

erty (6.8) of the matrix exponential. This gives

dx

dt
= AeAtx(0) +

∫ t

0

AeA(t−τ)Bu(τ)dτ +Bu(t) = Ax+ Bu,

which proves the result since the initial conditions are also met. Notice

that the calculation is essentially the same as for proving the result for

a first-order equation.

It follows from equations (6.13) and (6.14) that the input/output

relation for a linear system is given by

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t). (6.15)

It is easy to see from this equation that the output is jointly linear

in both the initial conditions and the input, which follows from the

linearity of matrix/vector multiplication and integration.

Equation (6.15) is called the convolution equation, and it represents

the general form of the solution of a system of coupled linear differen-

tial equations. We see immediately that the dynamics of the system,

as characterized by the matrix A, plays a critical role in both the sta-

bility and performance of the system. Indeed, the matrix exponential

describes both what happens when we perturb the initial condition and

how the system responds to inputs.

Another interpretation of the convolution equation can be given using �

the concept of the impulse response of a system. Consider the applica-
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Figure 6.6: Pulse response and impulse response. (a) The rectangles

show pulses of width 5, 2.5, and 0.8, each with total area equal to 1.

The arrow denotes an impulse δ(t) defined by equation (6.17). The

corresponding pulse responses for a linear system with eigenvalues

λ = {−0.08,−0.62} are shown in (b) as dashed lines. The solid line

is the true impulse response, which is well approximated by a pulse

of duration 0.8.

tion of an input signal u(t) given by the following equation:

u(t) = pǫ(t) =





0 if t < 0,

1/ǫ if 0 ≤ t < ǫ,

0 if t ≥ ǫ.

(6.16)

This signal is a pulse of duration ǫ and amplitude 1/ǫ, as illustrated in

Figure 6.6a. We define an impulse δ(t) to be the limit of this signal as

ǫ→ 0:

δ(t) = lim
ǫ→0

pǫ(t). (6.17)

This signal, sometimes called a delta function, is not physically achiev-

able but provides a convenient abstraction in understanding the re-
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sponse of a system. Note that the integral of an impulse is 1:

∫ t

0

δ(τ) dτ =

∫ t

0

lim
ǫ→0

pǫ(t) dτ = lim
ǫ→0

∫ t

0

pǫ(t) dτ

= lim
ǫ→0

∫ ǫ

0

1/ǫ dτ = 1, t > 0.

In particular, the integral of an impulse over an arbitrarily short period

of time that includes the origin is identically 1.

We define the impulse response h(t) for a system as the output of

the system with zero initial condition and having an impulse as its

input:

h(t) =

∫ t

0

CeA(t−τ)Bδ(τ) dτ +Dδ(t) = CeAtB +Dδ(t), (6.18)

where the second equality follows from the fact that δ(t) is zero every-

where except the origin and its integral is identically 1. We can now

write the convolution equation in terms of the initial condition response

and the convolution of the impulse response and the input signal:

y(t) = CeAtx(0) +

∫ t

0

h(t− τ)u(τ) dτ. (6.19)

One interpretation of this equation, explored in Exercise 6.2, is that the

response of the linear system is the superposition of the response to an

infinite set of shifted impulses whose magnitudes are given by the input

u(t). This is essentially the argument used in analyzing Figure 6.2 and

deriving equation (6.5). Note that the second term in equation (6.19)

is identical to equation (6.5), and it can be shown that the impulse

response is the derivative of the step response.
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The use of pulses pǫ(t) as approximations of the impulse function

δ(t) also provides a mechanism for identifying the dynamics of a system

from experiments. Figure 6.6b shows the pulse responses of a system

for different pulse widths. Notice that the pulse responses approach the

impulse response as the pulse width goes to zero. As a general rule, if

the fastest eigenvalue of a stable system has real part −σmax, then a

pulse of length ǫ will provide a good estimate of the impulse response

if ǫσmax ≪ 1. Note that for Figure 6.6, a pulse width of ǫ = 1 s gives

ǫσmax = 0.62 and the pulse response is already close to the impulse

response.

Coordinate Invariance

The components of the input vector u and the output vector y are

determined by the chosen inputs and outputs of a model, but the state

variables depend on the coordinate frame chosen to represent the state.

This choice of coordinates affects the values of the matrices A, B, and

C that are used in the model. (The direct termD is not affected since it

maps inputs to outputs.) We now investigate some of the consequences

of changing coordinate systems.

Introduce new coordinates z by the transformation z = Tx, where

T is an invertible matrix. It follows from equation (6.3) that

dz

dt
= T (Ax+ Bu) = TAT−1z + TBu =: Ãz + B̃u,

y = Cx+Du = CT−1z +Du =: C̃z +Du.
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The transformed system has the same form as equation (6.3), but the

matrices A, B, and C are different:

Ã = TAT−1, B̃ = TB, C̃ = CT−1. (6.20)

There are often special choices of coordinate systems that allow us

to see a particular property of the system, hence coordinate trans-

formations can be used to gain new insight into the dynamics. The

eigenvalues of Ã are the same as those of A, so stability is not affected.

We can also compare the solution of the system in transformed

coordinates to that in the original state coordinates. We make use of

an important property of the exponential map,

eTST
−1

= TeST−1,

which can be verified by substitution in the definition of the matrix

exponential. Using this property, it is easy to show that

x(t) = T−1z(t) = T−1eÃtTx(0) + T−1

∫ t

0

eÃ(t−τ)B̃u(τ) dτ.

From this form of the equation, we see that if it is possible to transform

A into a form Ã for which the matrix exponential is easy to compute,

we can use that computation to solve the general convolution equation

for the untransformed state x by simple matrix multiplications. This

technique is illustrated in the following example.

Example 6.6 Coupled spring–mass system
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m m

k k

u(t) = sin    tω
k

c c

q1 q2

Figure 6.7: Coupled spring mass system. Each mass is connected to

two springs with stiffness k and a viscous damper with damping coef-

ficient c. The mass on the right is driven through a spring connected

to a sinusoidally varying attachment.

Consider the coupled spring–mass system shown in Figure 6.7. The

input to this system is the sinusoidal motion of the position of the

rightmost spring, and the output is the position of each mass, q1 and

q2. The equations of motion are given by

mq̈1 = −2kq1 − cq̇1 + kq2, mq̈2 = kq1 − 2kq2 − cq̇2 + ku.

In state space form, we define the state to be x = (q1, q2, q̇1, q̇2), and

we can rewrite the equations as

dx

dt
=




0 0 1 0

0 0 0 1

−2k

m

k

m
− c

m
0

k

m
−2k

m
0 − c

m




x+




0

0

0

k

m




u.

This is a coupled set of four differential equations and is quite compli-

cated to solve in analytical form.

The dynamics matrix is the same as in Example 6.5, and we can
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use the coordinate transformation defined there to put the system in

block diagonal form:

dz

dt
=




0 1 0 0

− k
m
− c

m
0 0

0 0 0 1

0 0 −3k

m
− c

m




z +




0

k

2m

0

− k

2m




u.

Note that the resulting matrix equations are decoupled, and we can

solve for the solutions by computing the solutions of two sets of second-

order systems represented by the states (z1, z2) and (z3, z4). Indeed, the

functional form of each set of equations is identical to that of a single

spring–mass system. (The explicit solution is derived in Section 7.3.)

Once we have solved the two sets of independent second-order equa-

tions, we can recover the dynamics in the original coordinates by in-

verting the state transformation and writing x = T−1z. We can also

determine the stability of the system by looking at the stability of the

independent second-order systems. ∇

Steady-State Response

A common practice in evaluating the response of a linear system is

to separate out the short-term response from the long-term response.



380 CHAPTER 6

Given a linear input/output system

dx

dt
= Ax+ Bu, y = Cx+Du, (6.21)

the general form of the solution to equation (6.21) is given by the

convolution equation:

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t).

We see from the form of this equation that the solution consists of an

initial condition response and an input response.

The input response, corresponding to the last two terms in the

equation above, itself consists of two components—the transient re-

sponse and the steady-state response. The transient response occurs

in the first period of time after the input is applied and reflects the

mismatch between the initial condition and the steady-state solution.

The steady-state response is the portion of the output response that

reflects the long-term behavior of the system under the given inputs.

For inputs that are periodic the steady-state response will often be pe-

riodic, and for constant inputs the response will often be constant. An

example of the transient and the steady-state response for a periodic

input is shown in Figure 6.8.

A particularly common form of input is a step input, which repre-

sents an abrupt change in input from one value to another. A unit step
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Figure 6.8: Transient versus steady-state response. The input to

a linear system is shown in (a), and the corresponding output with

x(0) = 0 is shown in (b). The output signal initially undergoes a

transient before settling into its steady-state behavior.

(sometimes called the Heaviside step function) is defined as

u(t) = S(t) =





0 if t = 0,

1 if t > 0.

The step response of the system (6.21) is defined as the output y(t)

starting from zero initial condition (or the appropriate equilibrium

point) and given a step input. We note that the step input is dis-

continuous and hence is not practically implementable. However, it is

a convenient abstraction that is widely used in studying input/output

systems.
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We can compute the step response to a linear system using the

convolution equation. Setting x(0) = 0 and using the definition of the

step input above, we have

y(t) =

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t) = C

∫ t

0

eA(t−τ)Bdτ +D

= C

∫ t

0

eAσBdσ +D = C
(
A−1eAσB

)∣∣σ=t
σ=0

+D

= CA−1eAtB − CA−1B +D.

We can rewrite the solution as

y(t) = CA−1eAtB︸ ︷︷ ︸
transient

+D − CA−1B︸ ︷︷ ︸
steady-state

, t > 0. (6.22)

The first term is the transient response and it decays to zero as t→∞

if all eigenvalues of A have negative real parts (implying that the origin

is a stable equilibrium point in the absence of any input). The second

term, computed under the assumption that the matrix A is invertible,

is the steady-state step response and represents the value of the output

for large time.

A sample step response is shown in Figure 6.9. Several key proper-

ties are used when describing a step response. The steady-state value

yss of a step response is the final level of the output, assuming it con-

verges. The rise time Tr is the amount of time required for the signal

to first go from 10% of its final value to 90% of its final value. (It is

possible to define other limits as well, but in this book we shall use

these percentages unless otherwise indicated.) The overshootMp is the
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Figure 6.9: Sample step response. The rise time, overshoot, settling

time, and steady-state value give the key performance properties of

the signal.

percentage of the final value by which the signal initially rises above

the final value. This usually assumes that future values of the signal

do not overshoot the final value by more than this initial transient,

otherwise the term can be ambiguous. Finally, the settling time Ts is

the amount of time required for the signal to stay within 2% of its final

value for all future times. The settling time is also sometimes defined

as reaching 1% or 5% of the final value (see Exercise 6.7). In general

these performance measures can depend on the amplitude of the input

step, but for linear systems the last three quantities defined above are

independent of the size of the step.

Example 6.7 Compartment model

Consider the compartment model illustrated in Figure 6.10 and de-

scribed in more detail in Section 4.6. Assume that a drug is adminis-

tered by constant infusion in compartment V1 and that the drug has its

effect in compartment V2. To assess how quickly the concentration in
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(c) Pulse input

Figure 6.10: Response of a compartment model to a constant drug

infusion. A simple diagram of the system is shown in (a). The step

response (b) shows the rate of concentration buildup in compartment

2. In (c) a pulse of initial concentration is used to speed up the

response.

the compartment reaches steady state we compute the step response,

which is shown in Figure 6.10b. The step response is quite slow, with

a settling time of 39 min. It is possible to obtain the steady-state con-

centration much faster by having a faster injection rate initially, as

shown in Figure 6.10c. The response of the system in this case can be

computed by combining two step responses (Exercise 6.3). ∇
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Frequency Response

Another common input signal to a linear system is a sinusoid (or a

combination of sinusoids). The frequency response of an input/output

system measures the way in which the system responds to a sinusoidal

excitation on one of its inputs. As we have already seen for scalar

systems, the particular solution associated with a sinusoidal excitation

is itself a sinusoid at the same frequency. Hence we can compare the

magnitude and phase of the output sinusoid to the input.

To see this in more detail, we must evaluate the convolution equa-

tion (6.15) for u = cosωt. This turns out to be a very messy calculation,

but we can make use of the fact that the system is linear to simplify

the derivation. It follows from Euler’s formula that

cosωt =
1

2

(
eiωt + e−iωt

)
.

Since the system is linear, it suffices to compute the response of the

system to the complex input u(t) = est and we can then reconstruct

the input to a sinusoid by averaging the responses corresponding to

s = iω and s = −iω.

Applying the convolution equation to the input u = est we have

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Besτdτ +Dest

= CeAtx(0) + CeAt
∫ t

0

e(sI−A)τBdτ +Dest.

If we assume that none of the eigenvalues of A are equal to ±iω, then
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the matrix sI − A is invertible, and we can write

y(t) = CeAtx(0) + CeAt
(
(sI − A)−1e(sI−A)τB

)∣∣∣
t

0
+Dest

= CeAtx(0) + CeAt(sI − A)−1
(
e(sI−A)t − I

)
B +Dest

= CeAtx(0) + C(sI − A)−1estB − CeAt(sI − A)−1B +Dest,

and we obtain

y(t) = CeAt
(
x(0)− (sI − A)−1B

)

︸ ︷︷ ︸
transient

+
(
C(sI − A)−1B +D

)
est

︸ ︷︷ ︸
steady-state

.

(6.23)

Notice that once again the solution consists of both a transient compo-

nent and a steady-state component. The transient component decays

to zero if the system is asymptotically stable and the steady-state com-

ponent is proportional to the (complex) input u = est.

We can simplify the form of the solution slightly further by rewriting

the steady-state response as

yss(t) =Meiθest =Me(st+iθ),

where

Meiθ = G(s) = C(sI − A)−1B +D, (6.24)

andM and θ represent the magnitude and phase of the complex number

G(s). When s = iω, we say that M = |G(iω)| is the gain and θ =

argG(iω) is the phase of the system at a given forcing frequency ω.

Using linearity and combining the solutions for s = +iω and s = −iω,

we can show that if we have an input u = Au sin(ωt+ψ) and an output
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y = Ay sin(ωt+ ϕ), then

gain(ω) =
Ay
Au

=M, phase(ω) = ϕ− ψ = θ.

The steady-state solution for a sinusoid u = cosωt = sin(ωt + π/2) is

now given by

yss(t) = Re
(
G(iω)eiωt

)
=M cos(ωt+ θ). (6.25)

If the phase θ is positive, we say that the output leads the input,

otherwise we say it lags the input.

A sample steady-state sinusoidal response is illustrated in Figure 6.11a.

The dashed line shows the input sinusoid, which has amplitude 1. The

output sinusoid is shown as a solid line and has a different amplitude

plus a shifted phase. The gain is the ratio of the amplitudes of the

sinusoids, which can be determined by measuring the height of the

peaks. The phase is determined by comparing the ratio of the time

between zero crossings of the input and output to the overall period of

the sinusoid:

θ = −2π ·
∆T

T
.

A convenient way to view the frequency response is to plot how

the gain and phase in equation (6.24) depend on ω (through s = iω).

Figure 6.11b shows an example of this type of representation (called a

Bode plot and discussed in more detail in Section 9.6).

Example 6.8 Active band-pass filter
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(b) Frequency response

Figure 6.11: Steady-state response of an asymptotically stable linear

system to a sinusoid. (a) A sinusoidal input of magnitude Au (dashed)

gives a sinusoidal output of magnitude Ay (solid), delayed by ∆T

seconds. (b) Frequency response, showing gain and phase. The gain

is given by the ratio of the output amplitude to the input amplitude,

M = Ay/Au. The phase lag is given by θ = −2π∆T/T ; it is negative

for the case shown because the output lags the input.

Consider the op amp circuit shown in Figure 6.12a. We can derive

the dynamics of the system by writing the nodal equations, which state

that the sum of the currents at any node must be zero. Assuming that

v− = v+ = 0, as we did in Section 4.3, we have

0 =
v1 − v2
R1

− C1
dv2
dt
, 0 = C1

dv2
dt

+
v3
R2

+ C2
dv3
dt
.

Choosing v2 and v3 as our states and using these equations, we obtain

dv2
dt

=
v1 − v2
R1C1

,
dv3
dt

=
−v3
R2C2

− v1 − v2
R1C2

.
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(b) Frequency response

Figure 6.12: Active band-pass filter. The circuit diagram (a) shows

an op amp with two RC filters arranged to provide a band-pass filter.

The plot in (b) shows the gain and phase of the filter as a function

of frequency. Note that the phase starts at -90◦ due to the negative

gain of the operational amplifier.

Rewriting these in linear state space form, we obtain

dx

dt
=




− 1

R1C1

0

1

R1C2

− 1

R2C2



x+




1

R1C1

−1
R1C2



u, y =


0 1


 x,

(6.26)

where x = (v2, v3), u = v1, and y = v3.

The frequency response for the system can be computed using equa-

tion (6.24):

Meiθ = C(sI−A)−1B+D = −R2

R1

R1C1s

(1 +R1C1s)(1 +R2C2s)
, s = iω.

The magnitude and phase are plotted in Figure 6.12b for R1 = 100 Ω,

R2 = 5 kΩ, and C1 = C2 = 100 µF. We see that signals with frequen-

cies around 15 rad/s pass through the circuit with small attenuation
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but that signals below 2 rad/s or above 100 rad/s are attenuated. At

0.1 rad/s the input signal is attenuated by a factor of 20. This type of

circuit is called a band-pass filter since it passes through signals in the

band of frequencies between 5 and 50 rad/s (approximately). ∇

As in the case of the step response, a number of standard properties

are defined for frequency responses. The gain of a system at ω = 0 is

called the zero frequency gain and corresponds to the ratio between a

constant input and the steady output:

M0 = G(0) = −CA−1B +D

(compare to equation (6.24)). The zero frequency gain is well defined

only if A is invertible (i.e., if it does not have eigenvalues at 0). It is

also important to note that the zero frequency gain is a relevant quan-

tity only when a system is stable about the corresponding equilibrium

point. So, if we apply a constant input u = r, then the corresponding

equilibrium point xe = −A−1Br must be stable in order to talk about

the zero frequency gain. (In electrical engineering, the zero frequency

gain is often called the DC gain. DC stands for direct current and

reflects the common separation of signals in electrical engineering into

a direct current [zero frequency] term and an alternating current [AC]

term.)

The bandwidth ωb of a system is the frequency range over which

the gain has decreased by no more than a factor of 1/
√
2 from its
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reference value. For systems with nonzero, finite zero frequency gain,

the reference value is taken as the zero frequency gain. For systems

that attenuate low frequencies but pass through high frequencies, the

reference gain is taken as the high-frequency gain. For a system such as

the band-pass filter in Example 6.8, bandwidth is defined as the range

of frequencies where the gain is larger than 1/
√
2 of the gain at the

center of the band. (For Example 6.8 this would give a bandwidth of

approximately 2 to 100 rad/s.)

Other important properties of the frequency response are the reso-

nant peakMr, the largest value of the frequency response, and the peak

frequency ωmr, the frequency where the maximum occurs. These two

properties describe the frequency of the sinusoidal input that produce

the largest possible output and the gain at the frequency.

Example 6.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomic force micro-

scope in contact mode, discussed in Section 4.5. The basic dynamics

are given by equation (4.24). The piezo stack can be modeled by a

second-order system with undamped natural frequency ω3 and damp-
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ing ratio ζ3. The dynamics are then described by the linear system

dx

dt
=




0 1 0 0

−k2/(m1 +m2) −c2/(m1 +m2) 1/m2 0

0 0 0 ω3

0 0 −ω3 −2ζ3ω3




x+




0

0

0

ω3




u,

y =
m2

m1 +m2


 m1k2
m1 +m2

m1c2
m1 +m2

1 0


 x,

where the input is the drive signal to the amplifier and the output

is the elongation of the piezo. The frequency response of the system

is shown in Figure 6.13b. The zero frequency gain of the system is

M0 = 1. There are two resonant poles with peaks Mr1 = 2.12 at

ωmr1 = 238 krad/s and Mr2 = 4.29 at ωmr2 = 746 krad/s. There is

also a dip in the gain Md = 0.556 for ωmd = 268 krad/s. This dip,

called an antiresonance, is associated with a dip in the phase and limits

the performance when the system is controlled by simple controllers,

as we will see in Chapter 11. The bandwidth is the frequency range

over which the gain has decreased by no more than a factor of 1/
√
2

from its reference value, which in this case is the zero frequency gain.

Neglecting the slight dip at the antiresonance, the bandwidth becomes

ωb = 1.12 Mrad/s.

∇

So far we have used the frequency response to compute the output

for a single sinusoid. The transfer function can also be used to com-
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Figure 6.13: AFM frequency response. (a) A block diagram for the

vertical dynamics of an atomic force microscope in contact mode. The

plot in (b) shows the gain and phase for the piezo stack. The response

contains two frequency peaks at resonances of the system, along with

an antiresonance at ω = 268 krad/s. The combination of a resonant

peak followed by an antiresonance is common for systems with multi-

ple lightly damped modes. The dashed horizontal line represents the

gain equal to the zero frequency gain divided by
√
2.

pute the output for any periodic signal. Consider a system with the

frequency response G(iω). Let the input signal u(t) be periodic and

decompose it into a sum of a set of sines and cosines,

u(t) =
∞∑

k=0

ak sin(kω f t) + bk cos(kω f t),

where ω f is the fundamental frequency of the periodic input. Using

equation (6.25) and superposition, we find that the input u(t) generates
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the steady-state output

y(t) =
∞∑

k=0

|G(ikω f)|
(
ak sin

(
kω f t+argG(ikω f)

)
+bk cos

(
kω f t+argG(ikω f)

))
.

The gain and phase at each frequency are determined by the frequency

response G(iω), as given in equation (6.24). If we know the steady-

state frequency response G(iω), we can thus compute the response to

any (periodic) signal using superposition.

We can go even further to approximate the response to a transient�

signal. Consider a system with the transfer function G(s) and the input

u. Approximate the initial part of the function u(t) by the periodic

signal

up(t) =





u(t) if 0 ≤ t < T/2,

0 if T/2 ≤ t < T ,

with period T . Since up is periodic it has a Fourier transform uF(iω),

and it follows from equation (6.25) that the Fourier transform of yp is

yF(iω) = G(iω)uF(iω), where uF and yF represent the Fourier trans-

forms of up and yp, respectively. Taking the inverse Fourier transform

then gives the time response yp(t). Efficient algorithms can be obtained

using fast Fourier transforms (Exercise 6.12).

Sampling

It is often convenient to use both differential and difference equations

in modeling and control. For linear systems it is straightforward to
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transform from one to the other. Consider the general linear system

described by equation (6.13) and assume that the control signal is con-

stant over a sampling interval of constant length h. It follows from

equation (6.14) of Theorem 6.4 that

x(t+ h) = eAhx(t)+

∫ t+h

t

eA(t+h−τ)Bu(τ) dτ =: Φx(t)+Γu(t), (6.27)

where we have assumed that the discontinuous control signal is contin-

uous from the right. The behavior of the system at the sampling times

t = kh is described by the difference equation

x[k + 1] = Φx[k] + Γu[k], y[k] = Cx[k] +Du[k], (6.28)

where

Φ = eAh, Γ =
(∫ h

0

eAs ds
)
B.

Notice that the difference equation (6.28) is an exact representation of

the behavior of the system at the sampling instants. Similar expressions

can also be obtained if the control signal is linear over the sampling

interval.

The transformation from equation (6.27) to equation (6.28) is called

sampling. The relations between the system matrices in the continuous

and sampled representations are as follows:

A =
1

h
log Φ, B =

(∫ h

0

eAs ds
)−1

Γ. (6.29)



396 CHAPTER 6

Notice that if A is invertible, we have

Γ = A−1
(
eAh − I

)
B.

All continuous-time systems can be sampled to obtain a discrete-

time version, but there are discrete-time systems that do not have a

continuous-time equivalent. The issue is related to logarithms of ma-

trices and there are several subtleties; for example, there may be many

solutions. A necessary but not sufficient condition is that the matrix�

Φ is nonsingular [96]. A key result is that a real matrix has a real

logarithm if and only if it is invertible and if each Jordan block asso-

ciated with a negative eigenvalue occurs an even number of times [68].

This implies that the matrix Φ cannot have isolated eigenvalues on the

negative real axis. A detailed discussion of sampling is given in [231].

Example 6.10 IBM Lotus server

In Example 3.5 we described how the dynamics of an IBM Lotus server

were obtained as the discrete-time system

x[k + 1] = ax[k] + bu[k],

where a = 0.43, b = 0.47, the sampling period is h = 60 s, and x de-

notes the total requests being served . A differential equation model is

needed if we would like to design control systems based on continuous-

time theory. Such a model is obtained by applying equation (6.29);
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hence

A =
log a

h
= −0.0141, B =

(∫ h

0

eAt dt
)−1

b = 0.0116,

and we find that the difference equation can be interpreted as a sampled

version of the ordinary differential equation

dx

dt
= −0.0141x+ 0.0116u.

∇

6.4 LINEARIZATION

As described at the beginning of the chapter, a common source of linear

system models is through the approximation of a nonlinear system by

a linear one. It is common practice in control engineering to design

controllers based on an approximate linear model and to verify the

results by simulating the closed loop system using a nonlinear model. In

this section we describe how to locally approximate a nonlinear system

by a linear one, and discuss what can be inferred about the stability

of the original system. We begin with an illustration that controllers

can successfully be designed from approximate linear models using the

cruise control example, which is described in more detail in Chapter 4.

Example 6.11 Cruise control

The dynamics for the cruise control system are derived in Section 4.1
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and have the form

m
dv

dt
= αnuT (αnv)−mgCr sgn(v)−

1

2
ρCdAv|v| −mg sin θ, (6.30)

where the first term on the right-hand side of the equation is the force

generated by the engine and the remaining three terms are the rolling

friction, aerodynamic drag, and gravitational disturbance force. There

is an equilibrium point (ve, ue) when the force applied by the engine

balances the disturbance forces.

To explore the behavior of the system near the equilibrium point we

will linearize the system. A Taylor series expansion of equation (6.30)

around the equilibrium point gives

d(v − ve)
dt

= −a(v − ve)− bg(θ − θe) + b(u− ue) + higher-order terms,

(6.31)

where

a =
ρCdA|ve| − ueα2

nT
′(αnve)

m
, bg = g cos θe, b =

αnT (αnve)

m
.

(6.32)

Notice that the term corresponding to rolling friction disappears if

v > 0. For a car in fourth gear with ve = 20 m/s, θe = 0, and the

numerical values for the car from Section 4.1, the equilibrium value for

the throttle is ue = 0.1687 and the parameters are a = 0.01, b = 1.32,

and bg = 9.8. This linear model describes how small perturbations in

the velocity about the nominal speed evolve in time.
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Figure 6.14: Simulated response of a vehicle with PI cruise control as

it climbs a hill with a slope of 4◦ (smaller velocity deviation/throttle)

and unit6◦ (larger velocity deviation/throttle). The solid line is the

simulation based on a nonlinear model, and the dashed line shows the

corresponding simulation using a linear model. The controller gains

are kp = 0.5 and ki = 0.1 and include anti-windup compensation

(described in more detail in Example 11.6).

We will later describe how to design a proportional-integral (PI)

controller for the system. Here we will simply assume that we have ob-

tained a good controller and we will compare the behaviors when the

closed loop system is simulated using the nonlinear model and the lin-

ear approximation. The simulation scenario is that the car is running

with constant speed on a horizontal road and the system has stabilized

so that the vehicle speed and the controller output are constant. Fig-

ure 6.14 shows what happens when the car encounters a hill with a

slope of 4◦ and a hill with a slope of 6◦ at time t =5 s. The results for
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the nonlinear model are solid curves and those for the linear model are

dashed curves. The differences between the curves are very small (es-

pecially for θ = 4◦), and control design based on the linearized model

is thus validated. ∇

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, single-output non-

linear system

dx

dt
= f(x, u), x ∈ Rn, u ∈ R,

y = h(x, u), y ∈ R,

(6.33)

with an equilibrium point at x = xe, u = ue. Without loss of generality

we can assume that xe = 0 and ue = 0, although initially we will

consider the general case to make the shift of coordinates explicit.

To study the local behavior of the system around the equilibrium

point (xe, ue), we suppose that x−xe and u−ue are both small, so that

nonlinear perturbations around this equilibrium point can be ignored

compared with the (lower-order) linear terms. This is roughly the same

type of argument that is used when we do small-angle approximations,

replacing sin θ with θ and cos θ with 1 for θ near zero.

We define a new set of state variables z, as well as inputs v and

outputs w:

z = x− xe, v = u− ue, w = y − h(xe, ue).

These variables are all close to zero when we are near the equilibrium
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point, and so in these variables the nonlinear terms can be thought of

as the higher-order terms in a Taylor series expansion of the relevant

vector fields (assuming for now that these exist).

Formally, the Jacobian linearization of the nonlinear system (6.33)

is

dz

dt
= Az + Bv, w = Cz +Dv, (6.34)

where

A =
∂f

∂x

∣∣∣∣
(xe,ue)

, B =
∂f

∂u

∣∣∣∣
(xe,ue)

, C =
∂h

∂x

∣∣∣∣
(xe,ue)

, D =
∂h

∂u

∣∣∣∣
(xe,ue)

.

(6.35)

The system (6.34) approximates the original system (6.33) when we

are near the equilibrium point about which the system was linearized.

It follows from Theorem 5.3 that if the linearization is asymptotically

stable, then the equilibrium point xe is locally asymptotically stable

for the full nonlinear system.

Example 6.12 Cruise control using Jacobian linearization

Consider again the cruise control system from Example 6.11 with θ

taken as a constant θe. We can write the dynamics as a first-order,

nonlinear differential equation:

dx

dt
= f(x, u) =

αn
m
uT (αnx)− gCr sgn(x)−

1

2

ρCdA

m
x|x| − g sin θe,

y = h(x, u) = x,

where x = v is the velocity of the vehicle and u is the throttle. We

use the velocity as the output of the system (since this is what we are
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trying to control).

If we linearize the dynamics of the system about an equilibrium

point x = ve > 0, u = ue, using the formulas above we obtain

A =
∂f

∂x

∣∣∣∣
(xe,ue)

=
ueα

2
nT

′(αnxe)− ρCdA|xe|
m

, B =
∂f

∂u

∣∣∣∣
(xe,ue)

=
αnT (αnxe)

m
,

C =
∂h

∂x

∣∣∣∣
(xe,ue)

= 1 D =
∂h

∂u

∣∣∣∣
(xe,ue)

= 0,

where we have used the fact that sgn(x) = 1 for x > 0. This matches

the results in Example 6.11, remembering that we have used x as the

system state (vehicle velocity). ∇

It is important to note that we can define the linearization of a

system only near a solution of the differential equations for the system,

of which an equilibrium point is a particularly common case. To see

this, consider a polynomial system

dx

dt
= a0 + a1x+ a2x

2 + a3x
3 + u,

where a0 6= 0. A set of equilibrium points for this system is given by

(xe, ue) = (xe,−a0 − a1xe − a2x2e − a3x3e), and we can linearize around

any of them. Suppose that we try to linearize around the origin of the

system x = 0, u = 0 (which does not correspond to a solution of the

differential equation if a0 6= 0). If we drop the higher-order terms in x,

then we get

dx

dt
= a0 + a1x+ u,

which is not the Jacobian linearization if a0 6= 0. The constant term
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must be kept, and it is not present in equation (6.34). Furthermore,

even if we kept the constant term in the approximate model, the system

would quickly move away from this point (since it is “driven” by the

constant term a0), and hence the approximation could soon fail to hold.

Software for modeling and simulation frequently has facilities for

performing linearization symbolically or numerically. The MATLAB

command trim finds the equilibrium point, and linmod extracts linear

state space models from a SIMULINK system around an equilibrium

point. The more general case of linearizing around a trajectory leads

to a time-varying linear system.

Example 6.13 Vehicle steering

Consider the vehicle steering system introduced in Example 3.11. The

nonlinear equations of motion for the system are given by equations (3.25)–

(3.27) and can be written as

d

dt




x

y

θ




=




v cos (α(δ) + θ)

v sin (α(δ) + θ)

v sinα(δ)

a




, α(δ) = arctan
(a tan δ

b

)
.

The state of the system is the position x, y of the center of mass and

the orientation θ of the vehicle. The control variable is the steering

angle δ. Furthermore b is the wheelbase and a is the distance between

the center of mass and the rear wheel.

We are interested in the motion of the vehicle about a straight-line
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path (θ = θ0) with constant velocity v0 6= 0. To find the relevant

equilibrium point, we first set θ̇ = 0 and we see that we must have

δ = 0, corresponding to the steering wheel being straight. This also

yields α = 0. Looking at the first two equations in the dynamics, we

see that the motion in the xy plane is by definition not at equilibrium

since ẋ2 + ẏ2 = v2 6= 0. Therefore we cannot formally linearize the full

model.

Suppose instead that we are concerned with the lateral deviation

of the vehicle from a straight line. For simplicity, we let θe = 0, which

corresponds to driving along the x axis. We can then focus on the

equations of motion in the y and θ directions. With some abuse of

notation we introduce the state x = (y, θ) and u = δ. The system is

then in standard form with

f(x, u) =




v0 sin (α(u) + x2)

v0 sinα(u)

a



, α(u) = arctan

(a tan u
b

)
, h(x, u) = x1.

The equilibrium point of interest is given by x = (0, 0) and u = 0. To

compute the linearized model around this equilibrium point, we make

use of the formulas (6.35). A straightforward calculation yields

A =
∂f

∂x

∣∣∣∣
x=0
u=0

=




0 v0

0 0



, B =

∂f

∂u

∣∣∣∣
x=0
u=0

=




av0/b

v0/b



,

C =
∂h

∂x

∣∣∣∣
x=0
u=0

=


1 0


 , D =

∂h

∂u

∣∣∣∣
x=0
u=0

= 0,
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and the linearized system

dx

dt
= Ax+ Bu, y = Cx+Du (6.36)

thus provides an approximation to the original nonlinear dynamics.

The linearized model can be simplified further by introducing nor-

malized variables, as discussed in Section 3.3. For this system, we

choose the wheelbase b as the length unit and the time unit as the

time required to travel a wheelbase. The normalized state is thus z =

(x1/b, x2), and the new time variable is τ = v0t/b. The model (6.36)

then becomes

dz

dτ
=




z2 + γu

u




=




0 1

0 0



z +




γ

1



u, y =


1 0


 z, (6.37)

where γ = a/b. The normalized linear model for vehicle steering with

nonslipping wheels is thus a linear system with only one parameter γ.

, ∇

Feedback Linearization

Another type of linearization is the use of feedback to convert the

dynamics of a nonlinear system into those of a linear one. We illustrate

the basic idea with an example.

Example 6.14 Cruise control

Consider again the cruise control system from Example 6.11, whose
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dynamics are given in equation (6.30):

m
dv

dt
= αnuT (αnv)−mgCr sgn(v)−

1

2
ρCdAv|v| −mg sin θ.

If we choose u as a feedback law of the form

u =
1

αnT (αnv)

(
ũ+mgCr sgn(v) +

1

2
ρCdAv|v|

)
, (6.38)

then the resulting dynamics become

m
dv

dt
= ũ+ d, (6.39)

where d(t) = −mg sin θ(t) is the disturbance force due the slope of the

road (which may be changing as we drive). If we now define a feedback

law for ũ (such as a proportional-integral-derivative [PID] controller),

we can use equation (6.38) to compute the final input that should be

commanded.

Equation (6.39) is a linear differential equation. We have essentially

“inverted” the nonlinearity through the use of the feedback law (6.38).

This requires that we have an accurate measurement of the vehicle

velocity v as well as an accurate model of the torque characteristics of

the engine, gear ratios, drag and friction characteristics, and mass of

the car. While such a model is not generally available (remembering

that the parameter values can change), if we design a good feedback

law for ũ, then we can achieve robustness to these uncertainties. ∇
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Figure 6.15: Feedback linearization. A nonlinear feedback of the

form u = α(x, v) is used to modify the dynamics of a nonlinear process

so that the response from the input v to the output y is linear. A linear

controller can then be used to regulate the system’s dynamics.

More generally, we say that a system of the form

dx

dt
= f(x, u), y = h(x),

is feedback linearizable if there exists a control law u = α(x, v) such

that the resulting closed loop system is input/output linear with input

v and output y, as shown in Figure 6.15. To fully characterize such

systems is beyond the scope of this text, but we note that in addition

to changes in the input, the general theory also allows for (nonlinear)

changes in the states that are used to describe the system, keeping only

the input and output variables fixed. More details of this process can

be found in the textbooks by Isidori [125] and Khalil [143].

One case that comes up relatively frequently, and is hence worth special �

mention, is the set of mechanical systems of the form

M(q)q̈ + C(q, q̇) = B(q)u.

Here q ∈ Rn is the configuration of the mechanical system, M(q) ∈



408 CHAPTER 6

Rn×n is the configuration-dependent inertia matrix, C(q, q̇) ∈ Rn rep-

resents the Coriolis forces and additional nonlinear forces (such as stiff-

ness and friction), and B(q) ∈ Rn×p is the input matrix. If p = n, then

we have the same number of inputs and configuration variables, and if

we further have that B(q) is an invertible matrix for all configurations

q, then we can choose

u = B−1(q)
(
M(q)v + C(q, q̇)

)
. (6.40)

The resulting dynamics become

M(q)q̈ =M(q)v =⇒ q̈ = v,

which is a linear system. We can now use the tools of linear system

theory to analyze and design control laws for the linearized system,

remembering to apply equation (6.40) to obtain the actual input that

will be applied to the system.

This type of control is common in robotics, where it goes by the

name of computed torque, and in aircraft flight control, where it is

called dynamic inversion. Some modeling tools like Modelica can gen-

erate the code for the inverse model automatically. One caution is that

feedback linearization can often cancel out beneficial terms in the nat-

ural dynamics, and hence it must be used with care. Extensions that

do not require complete cancellation of nonlinearities are discussed in

Khalil [143] and Krstić et al. [151].
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6.5 FURTHER READING

The majority of the material in this chapter is classical and can be

found in most books on dynamics and control theory, including early

works on control such as James, Nichols and Phillips [129] and more

recent textbooks such as Dorf and Bishop [72], Franklin, Powell, and

Emami-Naeini [92], and Ogata [195]. An excellent presentation of lin-

ear systems based on the matrix exponential is given in the book by

Brockett [55], a more comprehensive treatment is given by Rugh [211],

and an elegant mathematical treatment is given in Sontag [225]. Ma-

terial on feedback linearization can be found in books on nonlinear

control theory such as Isidori [125] and Khalil [143]. The idea of char-

acterizing dynamics by considering the responses to step inputs is due

to Heaviside, who also introduced an operator calculus to analyze lin-

ear systems. The unit step is therefore also called the Heaviside step

function. Analysis of linear systems was simplified significantly, but

Heaviside’s work was heavily criticized because of lack of mathemati-

cal rigor, as described in the biography by Nahin [190]. The difficulties

were cleared up later by the mathematician Laurent Schwartz who de-

veloped distribution theory in the late 1940s. In engineering, linear

systems have traditionally been analyzed using Laplace transforms as

described in Gardner and Barnes [97]. Use of the matrix exponen-

tial started with developments of control theory in the 1960s, strongly

stimulated by a textbook by Zadeh and Desoer [262]. Use of matrix
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techniques expanded rapidly when the powerful methods of numeric

linear algebra were packaged in programs like LABVIEW, MATLAB,

and Mathematica. The books by Gantmacher [96] are good sources for

matrix theory.

EXERCISES

6.1 (Response to the derivative of a signal) Show that if y(t) is the

output of a linear time-invariant system corresponding to input u(t),

then the output corresponding to an input u̇(t) is given by ẏ(t). (Hint:

Use the definition of the derivative: ż(t) = limǫ→0

(
z(t+ ǫ)− z(t)

)
/ǫ.)

6.2 (Impulse response and convolution) Show that a signal u(t) can�

be decomposed in terms of the impulse function δ(t) as

u(t) =

∫ t

0

δ(t− τ)u(τ) dτ

and use this decomposition plus the principle of superposition to show

that the response of a linear, time-invariant system to an input u(t)

(assuming a zero initial condition) can be written as a convolution

equation

y(t) =

∫ t

0

h(t− τ)u(τ) dτ,

where h(t) is the impulse response of the system. (Hint: Use the

definition of the Riemann integral.)
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6.3 (Pulse response for a compartment model) Consider the compart-

ment model given in Example 6.7. Compute the step response for the

system and compare it with Figure 6.10b. Use the principle of su-

perposition to compute the response to the 5 s pulse input shown in

Figure 6.10c. Use the parameter values k0 = 0.1, k1 = 0.1, k2 = 0.5,

and b0 = 1.5.

6.4 (Matrix exponential for second-order system) Assume that ζ < 1

and let ωd = ω0

√
1− ζ2. Show that

exp




−ζω0 ωd

−ωd −ζω0



t = e−ζω0t




cosωdt sinωdt

− sinωdt cosωdt



.

Also show that

exp







−ω0 ω0

0 −ω0



t


 = e−ω0t




1 ω0t

0 1



.

6.5 (Lyapunov function for a linear system) Consider a linear system

ẋ = Ax with Reλj < 0 for all eigenvalues λj of the matrix A. Show

that the matrix

P =

∫ ∞

0

eA
T τQeAτ dτ

defines a Lyapunov function of the form V (x) = xTPx with Q ≻ 0

(positive definite).

6.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan

form that is non-diagonal.
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a) Prove Proposition 6.3 by showing that if the system contains a real

eigenvalue λ = 0 with a nontrivial Jordan block, then there exists an

initial condition with a solution that grows in time.

b) Extend this argument to the case of complex eigenvalues with�

Reλ = 0 by using the block Jordan form

Ji =




0 ω 1 0

−ω 0 0 1

0 0 0 ω

0 0 −ω 0




.

6.7 (Rise time and settling time for a first-order system) Consider a

first-order system of the form

τ
dx

dt
= −x+ u, y = x.

We say that the parameter τ is the time constant for the system since

the zero input system approaches the origin as e−t/τ . For a first-order

system of this form, show that the rise time for a step response of the

system is approximately 2τ , and that 1%, 2%, and 5% settling times

approximately corresponds to 4.6τ , 4τ , and 3τ .

6.8 (Discrete-time systems) Consider a linear discrete-time system of

the form

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k] +Du[k].
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a) Show that the general form of the output of a discrete-time linear

system is given by the discrete-time convolution equation:

y[k] = CAkx[0] +
k−1∑

j=0

CAk−j−1Bu[j] +Du[k].

b) Show that a discrete-time linear system is asymptotically stable if

and only if all the eigenvalues of A have a magnitude strictly less than

1.

c) Show that a discrete-time linear system is unstable if any of the

eigenvalues of A have magnitude greater than 1.

d) Derive conditions for stability of a discrete-time linear system hav-

ing one or more eigenvalues with magnitude identically equal to 1.

(Hint: use Jordan form.)

6.9 (Keynesian economics) Consider the following simple Keynesian

macroeconomic model in the form of a linear discrete-time system dis-

cussed in Exercise 6.8:



C[t+ 1]

I[t+ 1]




=




a a

ab− b ab







C[t]

I[t]




+




a

ab



G[t],

Y [t] = C[t] + I[t] +G[t].

Determine the eigenvalues of the dynamics matrix. When are the mag-

nitudes of the eigenvalues less than 1? Assume that the system is in
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equilibrium with constant values capital spending C, investment I, and

government expenditure G. Explore what happens when government

expenditure increases by 10%. Use the values a = 0.25 and b = 0.5.

6.10 (Keynes model in continuous time) A continuous version of Keynes

model is given by the equations

Y = C + I +G, T
dC

dt
+ C = ay, T

dI

dt
+ I = b

dc

dt
.

Write the equations in state space form, and give the conditions for

stability.

6.11 (State variables in compartment models) Consider the compart-

ment model described by equation (4.28). Let x1 and x2 be the total

mass of the drug in the compartments. Show that the system can be

described by the equation

dx

dt
=




−k0 − k1 k2

k1 −k2



x+




c0

0



u, y =


0 1/V2


 x.

(6.41)

Compare the this equation with equation (4.28), where the state vari-

ables were concentrations. Mass is called an extensive variable, and

concentration is called an intensive variable.

6.12 (Time responses from frequency responses) Consider the follow-�

ing MATLAB program, which computes the approximate step response

from the frequency response. Explain how it works and explore the ef-

fects of the parameter tmax.
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P = ’1./(s+1).^2’; % process dynamics

tmax = 20; % simulation time

N = 2^(12); % number of points for simulation

dt = tmax/N; % time interval

dw = 2*pi/tmax; % frequency interval

% Compute the time and frequency vectors

t = dt*(0:N-1);

omega = -pi/dt:dw:(pi/dt-dw);

s = i*omega;

% Evaluate the frequency response

pv=eval(P);

% Compute the input and output signals using the frequency response

u = [ones(1,N/2) zeros(1,N/2)]; U = fft(u);

y = ifft(fftshift(pv) .* U); y = real(y);

% Analytic solution in the time domain

ye = 1 - exp(-t) - t .* exp(-t);

% Plot analytic and approximate step responses

subplot(211); plot(t, y, ’b-’, t, ye, ’r--’);
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% Zoom in on the first half of the response

tp = t(1:N/2); yp = y(1:N/2); ye = 1-exp(-t) - t .* exp(-t);

subplot(212); plot(tp, yp, ’b-’, t, ye, ’r--’);

6.13 Consider a scalar system

dx

dt
= 1− x3 + u.

Compute the equilibrium points for the unforced system (u = 0) and

use a Taylor series expansion around the equilibrium point to com-

pute the linearization. Verify that this agrees with the linearization in

equation (6.34).

6.14 Consider the model for queuing dynamics in Example 3.15. Let

the admission rate λ be the control variable. Linearize the system

around an equilibrium point, compute the time constant of the system

and determine how it depends on the queue length.

6.15 (Transcriptional regulation) Consider the dynamics of a genetic

circuit that implements self-repression: the protein produced by a gene

is a repressor for that gene, thus restricting its own production. Using

the models presented in Example 3.18, the dynamics for the system

can be written as

dm

dt
=

α

1 + kp2
+ α0 − δm− u,

dp

dt
= κm− γp, (6.42)
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where u is a disturbance term that affects RNA transcription and

m, p ≥ 0. Find the equilibrium points for the system and use the

linearized dynamics around each equilibrium point to determine the

local stability of the equilibrium point and the step response of the

system to a disturbance.

6.16 (Monotone step response) Consider a stable linear system with

monotone step response S(t). Let the input signal be bounded: |u(t)| ≤

umax. Assuming that the initial conditions are zero, show that |y(t)| ≤

S(∞)umax. (Hint: Use the convolution integral.)





Chapter Seven

State Feedback

Intuitively, the state may be regarded as a kind of information

storage or memory or accumulation of past causes. We must,

of course, demand that the set of internal states Σ be sufficiently

rich to carry all information about the past history of Σ to predict

the effect of the past upon the future. We do not insist, however,

that the state is the least such information although this is often

a convenient assumption.

R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathe-

matical System Theory, 1969 [137].

This chapter describes how the feedback of a system’s state can be

used to shape the local behavior of a system. The concept of reacha-

bility is introduced and used to investigate how to design the dynamics

of a system through assignment of its eigenvalues. In particular, we

show that under certain conditions it is possible to assign the system

eigenvalues arbitrarily by appropriate feedback of the system state.
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7.1 REACHABILITY

One of the fundamental properties of a control system is what set of

points in the state space can be reached through the choice of a control

input. It turns out that the property of reachability is also fundamental

in understanding the extent to which feedback can be used to design

the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of the system and

focusing on the evolution of the state, given by

dx

dt
= Ax+ Bu, (7.1)

where x ∈ Rn, u ∈ R, A is an n×n matrix, and B a column vector. A

fundamental question is whether it is possible to find control signals so

that any point in the state space can be reached through some choice

of input. To study this, we define the reachable set R(x0,≤ T ) as the

set of all points xf such that there exists an input u(t), 0 ≤ t ≤ T

that steers the system from x(0) = x0 to x(T ) = xf, as illustrated in

Figure 7.1a.

Definition 7.1 (Reachability). A linear system is reachable if for any

x0, xf ∈ Rn there exists a T > 0 and u : [0, T ]→ R such that if x(0) = x0

then the corresponding solution satisfies x(T ) = xf.
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x(T )

x0
R(x0,≤ T )

(a) Reachable set

Req

(b) Reachability through control

Figure 7.1: The reachable set for a control system. The set R(x0,≤

T ) shown in (a) is the set of points reachable from x0 in time less

than T . The phase portrait in (b) shows the dynamics for a double

integrator, with the natural dynamics drawn as horizontal arrows and

the control inputs drawn as vertical arrows. The set of achievable

equilibrium points is the x axis. By setting the control inputs as a

function of the state, it is possible to steer the system to the origin,

as shown on the sample path.

The definition of reachability addresses whether it is possible to

reach all points in the state space in a transient fashion. In many

applications, the set of points that we are most interested in reaching

is the set of equilibrium points of the system (since we can remain at

those points with constant input u). The set of all possible equilibrium

points for constant controls is given by

Req = {xe : Axe + Bue = 0 for some ue ∈ R}.

This means that possible equilibrium points lie in a one- (or possi-

bly higher) dimensional subspace. If the matrix A is invertible, this



422 CHAPTER 7

subspace is one-dimensional and is spanned by A−1B.

The following example provides some insight into the possibilities.

Example 7.1 Double integrator

Consider a linear system consisting of a double integrator whose dy-

namics are given by

dx1
dt

= x2,
dx2
dt

= u.

Figure 7.1b shows a phase portrait of the system. The open loop dy-

namics (u = 0) are shown as horizontal arrows pointed to the right for

x2 > 0 and to the left for x2 < 0. The control input is represented

by a double-headed arrow in the vertical direction, corresponding to

our ability to set the value of ẋ2. The set of equilibrium points E

corresponds to the x1 axis, with ue = 0.

Suppose first that we wish to reach the origin from an initial condi-

tion (a, 0). We can directly move the state up and down in the phase

plane, but we must rely on the natural dynamics to control the motion

to the left and right. If a > 0, we can move toward the origin by first

setting u < 0, which will cause x2 to become negative. Once x2 < 0,

the value of x1 will begin to decrease and we will move to the left.

After a while, we can set u to be positive, moving x2 back toward zero

and slowing the motion in the x1 direction. If we bring x2 to a positive

value, we can move the system state in the opposite direction.

Figure 7.1b shows a sample trajectory bringing the system to the
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origin. Note that if we steer the system to an equilibrium point, it is

possible to remain there indefinitely (since ẋ1 = 0 when x2 = 0), but if

we go to a point in the state space with x2 6= 0, we can pass through

the point only in a transient fashion. ∇

To find general conditions under which a linear system is reachable,

we will first give a heuristic argument based on formal calculations

with impulse functions. We note that if we can reach all points in the

state space through some choice of input, then we can also reach all

equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system (7.1) to an

input u(t) is given by

x(t) =

∫ t

0

eA(t−τ)Bu(τ) dτ. (7.2)

If we choose the input to be a impulse function δ(t) as defined in

Section 6.3, the state becomes

xδ =

∫ t

0

eA(t−τ)Bδ(τ) dτ = eAtB.

(Note that the state changes instantaneously in response to the im-

pulse.) We can find the response to the derivative of an impulse func-

tion by taking the derivative of the impulse response (Exercise 6.1):

xδ̇ =
dxδ
dt

= AeAtB.
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Continuing this process and using the linearity of the system, the input

u(t) = α1δ(t) + α2δ̇(t) + α3δ̈(t) + · · ·+ αnδ
(n−1)(t)

gives the state

x(t) = α1e
AtB + α2Ae

AtB + α3A
2eAtB + · · ·+ αnA

n−1eAtB.

Taking the limit as t goes to zero through positive values, we get

lim
t→0+

x(t) = α1B + α2AB + α3A
2B + · · ·+ αnA

n−1B.

On the right is a linear combination of the columns of the matrix

Wr =


B AB · · · An−1B


 . (7.3)

To reach an arbitrary point in the state space, we thus require that Wr

has n independent columns (full rank). The matrix Wr is called the

reachability matrix and it is full rank if and only if its determinant is

nonzero.

Although we have only considered the scalar input case, it turns

out that this same test works in the multi-input case, where we require

that Wr be full column rank (have n linearly independent columns).

In addition, it can be shown that only the terms up to An−1B must

be computed; additional terms add no new directions to Wr (see Exer-

cise 7.3).

An input consisting of a sum of impulse functions and their deriva-

tives is a very violent signal. To see that an arbitrary point can be
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reached with smoother signals we can make use of the convolution

equation. Assuming that the initial condition is zero, the state of a

linear system is given by

x(t) =

∫ t

0

eA(t−τ)Bu(τ)dτ =

∫ t

0

eAτBu(t− τ)dτ.

It follows from the theory of matrix functions, specifically the Cayley–

Hamilton theorem (Exercise 7.3), that

eAτ = Iα0(τ) + Aα1(τ) + · · ·+ An−1αn−1(τ),

where αi(τ) are scalar functions, and we find that

x(t) = B

∫ t

0

α0(τ)u(t− τ) dτ + AB

∫ t

0

α1(τ)u(t− τ) dτ

+ · · ·+ An−1B

∫ t

0

αn−1(τ)u(t− τ) dτ.

Again we observe that the right-hand side is a linear combination of the

columns of the reachability matrix Wr given by equation (7.3). This

basic approach leads to the following theorem.

Theorem 7.1 (Reachability rank condition). A linear system of the

form (7.1) is reachable if and only if the reachability matrix Wr is

invertible (full column rank).

The formal proof of this theorem is beyond the scope of this text

but follows along the lines of the sketch above and can be found in

most books on linear control theory, such as Callier and Desoer [59] or

Lewis [162]. It is also interesting to note that Theorem 7.1 makes no
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(a) Segway

M
F

θ

m

l

q

(b) Cart–pendulum system

Figure 7.2: Balance system. The Segway® Personal Transporter

shown in (a) is an example of a balance system that uses torque ap-

plied to the wheels to keep the rider upright. A simplified diagram

for a balance system is shown in (b). The system consists of a mass

m on a rod of length l connected by a pivot to a cart with mass M .

mention of the time T that was in our definition of reachability. For

a linear system, it turns out that we can find an input taking x0 to xf

for any T > 0, though the size of the input required can be very large

when T is very small.

We illustrate the concept of reachability with the following example.

Example 7.2 Balance system

Consider the balance system introduced in Example 3.2 and shown in

Figure 7.2. Recall that this system is a model for a class of examples

in which the center of mass is balanced above a pivot point. One

example is the Segway® Personal Transporter shown in Figure 7.2a,

about which a natural question to ask is whether we can move from
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one stationary point to another by appropriate application of forces

through the wheels.

The nonlinear equations of motion for the system are given in equa-

tion (3.9) and repeated here:

(M +m)q̈ −ml cos θ θ̈ = −cq̇ −ml sin θ θ̇2 + F,

(J +ml2)θ̈ −ml cos θ q̈ = −γθ̇ +mgl sin θ.

(7.4)

For simplicity, we take c = γ = 0. Linearizing around the equilibrium

point xe = (0, 0, 0, 0), the dynamics matrix and the control matrix are

A =




0 0 1 0

0 0 0 1

0 m2l2g/µ 0 0

0 Mtmgl/µ 0 0




, B =




0

0

Jt/µ

lm/µ




,

where µ = MtJt −m2l2, Mt = M + m, and Jt = J + ml2. The

reachability matrix is

Wr =




0 Jt/µ 0 gl3m3/µ2

0 lm/µ 0 gl2m2Mt/µ
2

Jt/µ 0 gl3m3/µ2 0

lm/µ 0 gl2m2Mt/µ
2 0




. (7.5)

To compute the determinant we permute the first and the last columns

of the matrix Wr and use the fact that such a permutation changes the

determinant by a factor of −1. This gives a block diagonal matrix with
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M
F

1θ 2θ
m m

l l

q

S

S

Figure 7.3: An unreachable system. The cart–pendulum system

shown on the left has a single input that affects two pendula of equal

length and mass. Since the forces affecting the two pendula are the

same and their dynamics are identical, it is not possible to arbitrarily

control the state of the system. The figure on the right is a block

diagram representation of this situation.

two identical blocks and the determinant becomes

det(Wr) = −
(gl4m4

µ3
− gl

2m2JtMt

µ3

)2
= −g

2l4m4

µ6
(MJ +mJ +Mml2)2,

and we can conclude that the system is reachable. This implies that

we can move the system from any initial state to any final state and, in

particular, that we can always find an input to bring the system from

an initial state to an equilibrium point. ∇

It is useful to have an intuitive understanding of the mechanisms

that make a system unreachable. An example of such a system is given

in Figure 7.3. The system consists of two identical systems with the

same input. We cannot separately cause the first and the second sys-

tems to do something different since they have the same input. Hence
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we cannot reach arbitrary states, and so the system is not reachable

(Exercise 7.4).

More subtle mechanisms for nonreachability can also occur. For

example, if there is a linear combination of states that always remains

constant, then the system is not reachable. To see this, suppose that

there exists a row vector H such that

0 =
d

dt
Hx = H(Ax+ Bu), for all x and u.

Then H is in the left null space of both A and B and it follows that

HWr = H


B AB · · · An−1B


 = 0.

Hence the reachability matrix is not full rank. In this case, if we have

an initial condition x0 and we wish to reach a state xf for which Hx0 6=

Hxf, then since Hx(t) is constant, no input u can move the state from

x0 to xf.

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient

to change coordinates and write the dynamics of the system in the

transformed coordinates z = Tx. One application of a change of coor-

dinates is to convert a system into a canonical form in which it is easy

to perform certain types of analysis.

A linear state space system is in reachable canonical form if its
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∫z1 z2

Σ
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Σ

Σ

an−1 an

bnbn−1

∫

Σ

znzn−1

Figure 7.4: Block diagram for a system in reachable canonical form.

The individual states of the system are represented by a chain of

integrators whose input depends on the weighted values of the states.

The output is given by an appropriate combination of the system

input and other states.

dynamics are given by

dz

dt
=




−a1 −a2 −a3 . . . −an

1 0
0

1 0

. . . . . .
0

1 0




z +




1

0

0

...

0




u,

y =


b1 b2 b3 . . . bn


 z + du.

(7.6)

A block diagram for a system in reachable canonical form is shown

in Figure 7.4. We see that the coefficients that appear in the A and

B matrices show up directly in the block diagram. Furthermore, the

output of the system is a simple linear combination of the outputs of

the integration blocks.
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The characteristic polynomial for a system in reachable canonical

form is given by

λ(s) = sn + a1s
n−1 + · · ·+ an−1s+ an. (7.7)

The reachability matrix also has a relatively simple structure:

W̃r =


B̃ ÃB̃ . . . Ãn−1B̃


 =




1 −a1 a21 − a2

0 1 −a1 *
. . . . . .

1 −a1
0

1




,

where ∗ indicates a possibly nonzero term and we use a tilde to remind

us that A and B are in a special form. The matrix Wr is full rank since

no column can be written as a linear combination of the others because

of the triangular structure of the matrix.

We now consider the problem of finding a change of coordinates such

that the dynamics of a system can be written in reachable canonical

form. Let A,B represent the dynamics of a given system and Ã, B̃

be the dynamics in reachable canonical form. Suppose that we wish

to transform the original system into reachable canonical form using a

coordinate transformation z = Tx. As shown in the previous chapter,

the dynamics matrix and the control matrix for the transformed system

are

Ã = TAT−1, B̃ = TB.
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The reachability matrix for the transformed system then becomes

W̃r =


B̃ ÃB̃ · · · Ãn−1B̃


 .

Transforming each element individually, we have

ÃB̃ = TAT−1TB = TAB,

Ã2B̃ = (TAT−1)2TB = TAT−1TAT−1TB = TA2B,

...

ÃnB̃ = TAnB,

and hence the reachability matrix for the transformed system is

W̃r = T


B AB · · · An−1B


 = TWr. (7.8)

If Wr is invertible, we can thus solve for the transformation T that

takes the system into reachable canonical form:

T = W̃rW
−1
r .

The following example illustrates the approach.

Example 7.3 Transformation to reachable form

Consider a simple two-dimensional system of the form

dx

dt
=




α ω

−ω α



x+




0

1



u.

We wish to find the transformation that converts the system into reach-
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able canonical form:

Ã =




−a1 −a2

1 0



, B̃ =




1

0



.

The coefficients a1 and a2 can be determined from the characteristic

polynomial for the original system:

λ(s) = det(sI − A) = s2 − 2αs+ (α2 + ω2) =⇒
a1 = −2α,

a2 = α2 + ω2.

The reachability matrix for each system is

Wr =




0 ω

1 α



, W̃r =




1 −a1

0 1



.

The transformation T becomes

T = W̃rW
−1
r =




−(a1 + α)/ω 1

1/ω 0




=




α/ω 1

1/ω 0



,

and hence the coordinates



z1

z2




= Tx =




αx1/ω + x2

x1/ω




put the system in reachable canonical form. ∇

We summarize the results of this section in the following theorem.

Theorem 7.2 (Reachable canonical form). Let A and B be the dy-

namics and control matrices for a reachable system and suppose that
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the characteristic polynomial for A is given by

det(sI − A) = sn + a1s
n−1 + · · ·+ an−1s+ an.

Then there exists a transformation z = Tx such that in the trans-

formed coordinates the dynamics and control matrices are in reachable

canonical form (7.6).

One important implication of this theorem is that for any reachable

system, we can assume without loss of generality that the coordinates

are chosen such that the system is in reachable canonical form. This

is particularly useful for proofs, as we shall see later in this chapter.

However, for high-order systems, small changes in the coefficients ai can

give large changes in the eigenvalues. Hence, the reachable canonical

form is not always well conditioned and must be used with some care.

7.2 STABILIZATION BY STATE FEEDBACK

The state of a dynamical system is a collection of variables that permits

prediction of the future evolution of a system given its future inputs.

We now explore the idea of designing the dynamics of a system through

feedback of the state. We will assume that the system to be controlled is

described by a linear state model and has a single input (for simplicity).

The feedback control law will be developed step by step using a single

idea: the positioning of closed loop eigenvalues in desired locations.
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Controller

y
u

Σ Σkfr
ẋ = Ax+Bu

y = Cx+Du

Process
v

−K
x

Figure 7.5: A feedback control system with state feedback. The

controller uses the system state x and the reference input r to com-

mand the process through its input u. We model disturbances via the

additive input v.

State Space Controller Structure

Figure 7.5 is a diagram of a typical control system using state feedback.

The full system consists of the process dynamics, which we take to be

linear, the controller elements K and kf, the reference input (or com-

mand signal) r, and process disturbances v. The goal of the feedback

controller is to regulate the output of the system y such that it tracks

the reference input in the presence of disturbances and also uncertainty

in the process dynamics.

An important element of the control design is the performance spec-

ification. The simplest performance specification is that of stability:

given a constant reference r and in the absence of any disturbances,

we would like the equilibrium point of the system to be asymptotically

stable. More sophisticated performance specifications typically involve

giving desired properties of the step or frequency response of the sys-

tem, such as specifying the desired rise time, overshoot, and settling
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time of the step response. Finally, we are often concerned with the

disturbance attenuation properties of the system: to what extent can

we experience disturbance inputs v and still hold the output y near the

desired value?

Consider a system described by the linear differential equation

dx

dt
= Ax+ Bu, y = Cx+Du, (7.9)

where we have ignored the disturbance signal v for now. Our goal is

to drive the output y to a given reference value r and hold it there.

We begin by assuming that all components of the state vector are

measured. Since the state at time t contains all the information nec-

essary to predict the future behavior of the system, the most general

time-invariant control law is a function of the state and the reference

input:

u = α(x, r).

If the control law is restricted to be linear, it can be written as

u = −Kx+ kfr, (7.10)

where r is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figure 7.5.

The negative sign is a convention to indicate that negative feedback

is the normal situation. The term kfr represents a feedforward signal

from the reference to the control. The closed loop system obtained
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when the feedback (7.10) is applied to the system (7.9) is given by

dx

dt
= (A−BK)x+ Bkfr. (7.11)

We attempt to determine the feedback gain K so that the closed loop

system has the characteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn. (7.12)

This control problem is called the eigenvalue assignment problem or pole

placement problem (we will define poles more formally in Chapter 9).

Note that kf does not affect the stability of the system (which is

determined by the eigenvalues of A−BK) but does affect the steady-

state solution. In particular, the equilibrium point and steady-state

output for the closed loop system are given by

xe = −(A− BK)−1Bkfr, ye = Cxe +Due,

hence kf should be chosen such that ye = r (the desired output value).

Since kf is a scalar, we can easily solve to show that if D = 0 (the most

common case),

kf = −1/
(
C(A− BK)−1B

)
. (7.13)

Notice that kf is exactly the inverse of the zero frequency gain of the

closed loop system. The solution for D 6= 0 is left as an exercise.

Using the gainsK and kf, we are thus able to design the dynamics of

the closed loop system to satisfy our goal. To illustrate how to construct
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such a state feedback control law, we begin with a few examples that

provide some basic intuition and insights.

Example 7.4 Vehicle steering

In Example 6.13 we derived a normalized linear model for vehicle steer-

ing. The dynamics describing the lateral deviation were given by the

normalized dynamics

A =




0 1

0 0



, B =




γ

1



,

C =


1 0


 , D = 0,

where γ = a/b is the ratio of the distance between the center of mass

and the rear wheel, a, and the wheelbase b. We want to design a

controller that stabilizes the dynamics and tracks a given reference

value r of the lateral position of the vehicle. To do this we introduce

the feedback

u = −Kx+ kfr = −k1x1 − k2x2 + kfr,

and the closed loop system becomes

dx

dt
= (A− BK)x+ Bkfr =




−γk1 1− γk2

−k1 −k2



x+




γkf

kf



r,

y = Cx+Du =


1 0


 x.

(7.14)
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The closed loop system has the characteristic polynomial

det (sI − A+BK) = det




s+ γk1 γk2 − 1

k1 s+ k2




= s2+(γk1+k2)s+k1.

Suppose that we would like to use feedback to design the dynamics

of the system to have the characteristic polynomial

p(s) = s2 + 2ζcωcs+ ω2
c .

Comparing this polynomial with the characteristic polynomial of the

closed loop system, we see that the feedback gains should be chosen as

k1 = ω2
c , k2 = 2ζcωc − γω2

c .

Equation (7.13) gives kf = k1 = ω2
c , and the control law can be written

as

u = k1(r − x1)− k2x2 = ω2
c (r − x1)− (2ζcωc − γω2

c )x2.

To find reasonable values of ωc we have to balance the speed of re-

sponse with the available control authority. The unit step responses for

the closed loop system for different values of the design parameters are

shown in Figure 7.6. The effect of ωc is shown in Figure 7.6a, which

shows that the response speed increases with increasing ωc. All re-

sponses have overshoot less than 5%, as indicated by the dashed lines,

which corresponds to 15 cm assuming a wheelbase b = 3 m. The set-

tling times range from 3 to 6 normalized time units, which corresponds

to about 2–4 s at v0 = 15 m/s. The effect of ζc is shown in Figure 7.6b.
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Figure 7.6: State feedback control of a steering system. Unit step

responses (from zero initial condition) obtained with controllers de-

signed with ζc = 0.7 and ωc = 0.5, 0.7, and 1 [rad/s] are shown in (a).

The dashed lines indicate ±5% deviations from the setpoint. Notice

that response speed increases with increasing ωc, but that large ωc

also give large initial control actions. Unit step responses obtained

with a controller designed with ωc = 0.7 and ζc = 0.5, 0.7, and 1 are

shown in (b).

The response speed and the overshoot increase with decreasing damp-

ing.

To select the specific gains to use, we can evaluate how the choice

of parameters affects vehicle handling characteristics. For example, a

lateral error of 20% of the wheelbase is relatively large and we might

choose ωc to exert a relatively large steering angle to correct for such an

error. For ωc = 0.7 and a step input of size 0.2 (in normalized units),
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Figure 7.6a indicates that the initial steering angle will be 0.1 rad,

which is aggressive but not unreasonable at moderate speeds. The

value for ζc can be also be chosen as 0.7, which gives a fast response

with approximately 5% overshoot. ∇

The example of the vehicle steering system illustrates how state

feedback can be used to set the eigenvalues of a closed loop system to

arbitrary values. We see that for this example we can set the eigenval-

ues to any location. We now show that this is a general property for

reachable systems.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters

of the system are the coefficients of the characteristic polynomial. It

is therefore natural to consider systems in this form when solving the

eigenvalue assignment problem.

Consider a system in reachable canonical form, i.e,

dz

dt
= Ãz + B̃u =




−a1 −a2 −a3 . . . −an

1 0
0

1 0

. . . . . .

0
1 0




z +




1

0

0

...

0




u

y = C̃z =


b1 b2 · · · bn


 z.

(7.15)
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It follows from equation (7.7) that the open loop system has the char-

acteristic polynomial

det(sI − A) = sn + a1s
n−1 + · · ·+ an−1s+ an.

Before making a formal analysis we can gain some insight by inves-

tigating the block diagram of the system shown in Figure 7.4. The

characteristic polynomial is given by the parameters ak in the figure.

Notice that the parameter ak can be changed by feedback from state

zk to the input u. It is thus straightforward to change the coefficients

of the characteristic polynomial by state feedback.

Returning to equations, introducing the control law

u = −K̃z + kfr = −k̃1z1 − k̃2z2 − · · · − k̃nzn + kfr, (7.16)

the closed loop system becomes

dz

dt
=




−a1 − k̃1 −a2 − k̃2 −a3 − k̃3 . . . −an − k̃n

1 0
0

1 0

. . . . . .

0
1 0




z +




kf

0

0

...

0




r,

y =


b1 b2 · · · bn


 z.

(7.17)

The feedback changes the elements of the first row of the A matrix,

which corresponds to the parameters of the characteristic polynomial.
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The closed loop system thus has the characteristic polynomial

sn + (a1 + k̃1)s
n−1 + (a2 + k̃2)s

n−2 + · · ·+ (an−1 + k̃n−1)s+ an + k̃n.

Requiring this polynomial to be equal to the desired closed loop poly-

nomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn,

we find that the controller gains should be chosen as

k̃1 = p1 − a1, k̃2 = p2 − a2, . . . k̃n = pn − an.

This feedback simply replaces the parameters ai in the system (7.15)

by pi. The feedback gain for a system in reachable canonical form is

thus

K̃ =


p1 − a1 p2 − a2 · · · pn − an


 . (7.18)

To have zero frequency gain equal to unity, we compute the equi-

librium point ze by setting the right hand side of equation (7.17) to

zero and then compute the corresponding output. It can be seen that

ze,1, . . . , ze,n−1 must all be zero and we are left with

(−an − k̃n)ze,n + kfr = 0 and ye = bnze,n.

It follows that in order for ye to be equal to r then the parameter kf

should be chosen as

kf =
an + k̃n
bn

=
pn
bn
. (7.19)

Notice that it is essential to know the precise values of parameters
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an and bn in order to obtain the correct zero frequency gain. The

zero frequency gain is thus obtained by precise calibration. This is

very different from obtaining the correct steady-state value by integral

action, which we shall see in later sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design

the dynamics of a system through assignment of its eigenvalues. To

solve the problem in the general case, we simply change coordinates so

that the system is in reachable canonical form. Consider the system

dx

dt
= Ax+ Bu, y = Cx+Du. (7.20)

We can change the coordinates by a linear transformation z = Tx

so that the transformed system is in reachable canonical form (7.15).

For such a system the feedback is given by equation (7.16), where the

coefficients are given by equation (7.18). Transforming back to the

original coordinates gives the control law

u = −K̃z + kfr = −K̃Tx+ kfr.

The form of the controller is a feedback term −Kx and a feedforward

term kfr.

The results obtained can be summarized as follows.

Theorem 7.3 (Eigenvalue assignment by state feedback). Consider
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the system given by equation (7.20), with one input and one output.

Let λ(s) = sn+a1s
n−1+· · ·+an−1s+an be the characteristic polynomial

of A. If the system is reachable, then there exists a control law

u = −Kx+ kfr

that gives a closed loop system with the characteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn

and unity zero frequency gain between r and y. The feedback gain is

given by

K = K̃T =


p1 − a1 p2 − a2 · · · pn − an


 W̃rW

−1
r , (7.21)

where ai are the coefficients of the characteristic polynomial of the ma-

trix A and the matrices Wr and W̃r are given by

Wr =


B AB · · · An−1B


 , W̃r =




1 a1 a2 · · · an−1

1 a1 · · · an−2

. . . . . .
...

0 1 a1

1




−1

.

The feedforward gain is given by

kf = −1/
(
C(A− BK)−1B

)
.

For simple problems, the eigenvalue assignment problem can be
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solved by introducing the elements ki of K as unknown variables. We

then compute the characteristic polynomial

λ(s) = det(sI − A+BK)

and equate coefficients of equal powers of s to the coefficients of the

desired characteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn−1s+ pn.

This gives a system of linear equations to determine ki. The equations

can always be solved if the system is reachable, exactly as we did in

Example 7.4.

Equation (7.21), which is called Ackermann’s formula [3, 4], can

be used for numeric computations. It is implemented in the MATLAB

function acker. The MATLAB function place is preferable for systems

of high order because it is better conditioned numerically.

Example 7.5 Predator–prey

Consider the problem of regulating the population of an ecosystem by

modulating the food supply. We use the predator–prey model intro-

duced in Example 5.16 and described in more detail in Section 4.7. The

dynamics for the system are given by

dH

dt
= (r + u)H

(
1− H

k

)
− aHL

c+H
, H ≥ 0,

dL

dt
= b

aHL

c+H
− dL, L ≥ 0.
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We choose the following nominal parameters for the system, which

correspond to the values used in previous simulations:

a = 3.2, b = 0.6, c = 50,

d = 0.56, k = 125 r = 1.6.

We take the parameter r, corresponding to the growth rate for hares, as

the input to the system, which we might modulate by controlling a food

source for the hares. This is reflected in our model by the term (r+ u)

in the first equation, where here r represents a constant parameter (not

the reference signal) and u represents the controlled modulation. We

choose the number of lynxes L as the output of our system.

To control this system, we first linearize the system around the

equilibrium point of the system (He, Le), which can be determined

numerically to be xe ≈ (20.6, 29.5). This yields a linear dynamical

system

d

dt




z1

z2




=




0.13 −0.93

0.57 0







z1

z2



+




17.2

0



v, w =


0 1







z1

z2



,

where z1 = H−He, z2 = L−Le, and v = u. It is easy to check that the

system is reachable around the equilibrium point (z, v) = (0, 0), and

hence we can assign the eigenvalues of the system using state feedback.

Selecting the eigenvalues of the closed loop system requires balanc-

ing the ability to modulate the input against the natural dynamics of

the system. This can be done by the process of trial and error or by us-
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ing some of the more systematic techniques discussed in the remainder

of the text. For now, we simply choose the desired closed loop eigen-

values to be at λ = {−0.1,−0.2}. We can then solve for the feedback

gains using the techniques described earlier, which results in

K =


0.025 −0.052


 .

Finally, we solve for the feedforward gain kf, using equation (7.13) to

obtain kf = 0.002.

Putting these steps together, our control law becomes

v = −Kz + kfLd,

where Ld is the desired number of lynxes. In order to implement the

control law, we must rewrite it using the original coordinates for the

system, yielding

u = ue −K(x− xe) + kf(Ld − ye)

= −

0.025 −0.052







H − 20.6

L− 29.5




+ 0.002 (Ld − 29.5).

This rule tells us how much we should modulate u as a function of the

current number of lynxes and hares in the ecosystem. Figure 7.7a shows

a simulation of the resulting closed loop system using the parameters

defined above and starting with an initial population of 15 hares and

20 lynxes. Note that the system stabilizes the population of lynxes at

the reference value (Ld = 30). A phase portrait of the system is given
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Figure 7.7: Simulation results for the controlled predator–prey sys-

tem. The population of lynxes and hares as a function of time is

shown in (a), and a phase portrait for the controlled system is shown

in (b). Feedback is used to make the population stable at He = 20.6

and Le = 30.

in Figure 7.7b, showing how other initial conditions converge to the

stabilized equilibrium population. Notice that the dynamics are very

different from the natural dynamics (shown in Figure 4.20). ∇

The results of this section show that we can use state feedback

to design the dynamics of a reachable system, under the strong as-

sumption that we can measure all of the states. We shall address the

availability of the states in the next chapter, when we consider out-

put feedback and state estimation. In addition, Theorem 7.3, which

states that the eigenvalues can be assigned to arbitrary locations, is

also highly idealized and assumes that the dynamics of the process

are known to high precision. The robustness of state feedback com-
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bined with state estimators is considered in Chapter 13 after we have

developed the requisite tools.

7.3 DESIGN CONSIDERATIONS

The location of the eigenvalues determines the behavior of the closed

loop dynamics, and hence where we place the eigenvalues is the main

design decision to be made. As with all other feedback design prob-

lems, there are trade-offs among the magnitude of the control inputs,

the robustness of the system to perturbations, and the closed loop

performance of the system. In this section we examine some of these

trade-offs starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of

feedback systems is second-order linear differential equations. Because

of their ubiquitous nature, it is useful to apply the concepts of this

chapter to that specific class of systems and build more intuition about

the relationship between stability and performance.

A canonical second-order system is a differential equation of the

form

q̈ + 2ζω0q̇ + ω2
0q = kω2

0u, y = q. (7.22)
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In state space form, this system can be represented as

dx

dt
=




0 ω0

−ω0 −2ζω0



x+




0

kω0



u, y =


1 0


 x, (7.23)

where x = (q, q̇/ω0) represents a normalized choice of states. The

eigenvalues of this system are given by

λ = −ζω0 ± ω0

√
(ζ2 − 1),

and we see that the system is stable if ω0 > 0 and ζ > 0. Note that the

eigenvalues are complex if ζ < 1 and real otherwise. Equations (7.22)

and (7.23) can be used to describe many second-order systems, includ-

ing damped oscillators, active filters, and flexible structures, as shown

in the examples below.

The form of the solution depends on the value of ζ, which is referred

to as the damping ratio for the system. If ζ > 1, we say that the system

is overdamped, and the natural response (u = 0) of the system is given

by

y(t) =
βx10 + x20
β − α e−αt − αx10 + x20

β − α e−βt,

where α = ω0(ζ+
√
ζ2 − 1) and β = ω0(ζ−

√
ζ2 − 1). We see that the

response consists of the sum of two exponentially decaying signals. If

ζ = 1, then the system is critically damped and solution becomes

y(t) = e−ζω0t
(
x10 + (x20 + ζω0x10)t

)
.

Note that this is still asymptotically stable as long as ω0 > 0, although



452 CHAPTER 7

the second term within the outer parentheses is increasing with time

(but more slowly than the decaying exponential that is multiplying it).

Finally, if 0 < ζ < 1, then the solution is oscillatory and equa-

tion (7.22) is said to be underdamped. The natural response of the

system is given by

y(t) = e−ζω0t

(
x10 cosωdt+

(ζω0

ωd

x10 +
1

ωd

x20

)
sinωdt

)
,

where ωd = ω0

√
1− ζ2 is called the damped frequency. For ζ ≪ 1,

ωd ≈ ω0 defines the oscillation frequency of the solution and ζ gives

the damping rate relative to ω0. The parameter ω0 is referred to as the

natural frequency of the system, stemming from the fact that for ζ = 0

the oscillation frequency is given by ω0.

Because of the simple form of a second-order system, it is possible

to solve for the step and frequency responses in analytical form. The

solution for the step response depends on the magnitude of ζ:

y(t) =





k

(
1− e−ζω0t cosωdt− ζ√

1−ζ2
e−ζω0t sinωdt

)
, if ζ < 1;

k (1− e−ω0t(1 + ω0t)) , if ζ = 1;

k

(
1− 1

2

(
ζ√
ζ2−1

+ 1
)
e−ω0t(ζ−

√
ζ2−1)

+1
2

(
ζ√
ζ2−1
− 1
)
e−ω0t(ζ+

√
ζ2−1)

)
, if ζ > 1,

(7.24)

where we have taken x(0) = 0. Note that for the lightly damped case

(ζ < 1) we have an oscillatory solution at frequency ωd.
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Figure 7.8: Step response for a second-order system. Normalized

step responses for the system (7.23) for ζ = 0, 0.4, 0.7 (thicker), 1,

and 1.2. As the damping ratio is increased, the rise time of the system

gets longer, but there is less overshoot. The horizontal axis is in scaled

units ω0t; higher values of ω0 result in a faster response (rise time and

settling time).

Step responses of systems with k = 1 and different values of ζ are

shown in Figure 7.8. The shape of the response is determined by ζ,

and the speed of the response is determined by ω0 (included in the time

axis scaling): the response is faster if ω0 is larger.

In addition to the explicit form of the solution, we can also compute

the properties of the step response that were defined in Section 6.3.

For example, to compute the maximum overshoot for an underdamped

system, we rewrite the output as

y(t) = k

(
1− 1√

1− ζ2
e−ζω0t sin(ωdt+ ϕ)

)
, (7.25)

where ϕ = arccos ζ. The maximum overshoot will occur at the first

time in which the derivative of y is zero, at which time the fraction of
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Table 7.1: Properties of the step response for a second-order system

q̈ + 2ζω0q̇ + ω2
0q = kω2

0u with 0 < ζ ≤ 1.

Property Value ζ = 0.5 ζ = 1/
√
2 ζ = 1

Steady-state value k k k k

Rise time (inverse slope) Tr = eϕ/ tanϕ /ω0 1.8/ω0 2.2/ω0 2.7/ω0

Overshoot Mp = e−πζ/
√

1−ζ2 16% 4% 0%

Settling time (2%) Ts ≈ 4/ζω0 8.0/ω0 5.6/ω0 4.0/ω0

the final value can be shown to be

Mp = e−πζ/
√

1−ζ2 .

The rise time is normally defined as the time for the step response

to go from p% of its final value to (100 − p)%. Typical values are

p = 5 or 10%. An alternative definition is the inverse of the steepest

slope: by differentiating equation (7.25) we find after straightforward

but tedious calculations that

Tr =
1

ω0

eϕ/ tanϕ, ϕ = arccos ζ.

Similar computations can be done for the other characteristics of a step

response. Table 7.1 summarizes these calculations.

The frequency response for a second-order system can also be com-
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Figure 7.9: Frequency response of a second-order system (7.23). (a)

Eigenvalues as a function of ζ. (b) Frequency response as a function of

ζ. The upper curve shows the gain ratioM , and the lower curve shows

the phase shift θ. For small ζ there is a large peak in the magnitude

of the frequency response and a rapid change in phase centered at

ω = ω0. As ζ is increased, the magnitude of the peak drops and the

phase changes more smoothly between 0◦ and -180◦.

puted explicitly and is given by

Meiθ =
kω2

0

(iω)2 + 2ζω0(iω) + ω2
0

=
kω2

0

ω2
0 − ω2 + 2iζω0ω

.

A graphical illustration of the frequency response is given in Figure 7.9.

Notice the resonant peak that increases with decreasing ζ. The peak is

often characterized by its Q-value, defined as Q = 1/2ζ. The properties

of the frequency response for a second-order system are summarized in

Table 7.2.

Example 7.6 Drug administration

To illustrate the use of these formulas, consider the two-compartment
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Table 7.2: Properties of the frequency response for a second-order

system q̈ + 2ζω0q̇ + ω2
0q = kω2

0u with 0 < ζ ≤ 1.

Property Value ζ=0.1 ζ=0.5 ζ=1/
√
2

Zero

frequency

gain

M0 k k k

Bandwidth ωb = ω0

√
1− 2ζ2 +

√
(1− 2ζ2)2 + 1 1.54ω0 1.27ω0 ω0

Resonant

peak gain
Mr =





k/(2ζ
√

1− ζ2) ζ ≤
√
2/2,

N/A ζ >
√
2/2

5 k 1.15 k k

Resonant

frequency
ωmr =





ω0

√
1− 2ζ2 ζ ≤

√
2/2,

0 ζ >
√
2/2

ω0 0.707ω0 0

model for drug administration, described in Section 4.6. The dynamics

of the system are

dc

dt
=




−k0 − k1 k1

k2 −k2



c+




b0

0



u, y =


0 1


 c,

where c1 and c2 are the concentrations of the drug in each compartment,

k0, k1, k2, and b0 are parameters of the system, u is the flow rate of

the drug into compartment 1 and y is the concentration of the drug in

compartment 2. We assume that we can measure the concentrations of

the drug in each compartment, and we would like to design a feedback

law to maintain the output at a given reference value r.
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We choose ζ = 1/
√
2 to minimize the overshoot and additionally

require the rise time to be Tr = 10 min. Using the formulas in Table 7.1,

this gives a value for ω0 = 0.22. We can now compute the gains to place

the eigenvalues at this location. Setting u = −Kx + kfr, the closed

loop eigenvalues for the system satisfy

λ(s) = −0.2± 0.096i.

Choosing k̃1 = −0.2 and k̃2 = 0.2, with K = (k̃1, k̃2) to avoid confusion

with the rates ki in the dynamics matrix, gives the desired closed loop

behavior. Equation (7.13) gives the feedforward gain kf = 0.065. The

response of the controller is shown in Figure 7.10 and compared with an

open loop strategy involving administering periodic doses of the drug.

∇

Higher-Order Systems

Our emphasis so far has considered only second-order systems. For

higher-order systems, eigenvalue assignment is considerably more dif-

ficult, especially when trying to account for the many trade-offs that

are present in a feedback design.

One of the other reasons why second-order systems play such an

important role in feedback systems is that even for more complicated

systems the response is often characterized by the dominant eigen-

values. To define these more precisely, consider a stable system with
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Figure 7.10: Open loop versus closed loop drug administration.

Comparison between drug administration using a sequence of doses

versus continuously monitoring the concentrations and adjusting the

dosage continuously. In each case, the concentration is (approxi-

mately) maintained at the desired level, but the closed loop system

has substantially less variability in drug concentration.

eigenvalues λj, j = 1, . . . , n. We say that a complex conjugate pair

of eigenvalues λ, λ∗ is a dominant pair if they are the closest pair to

the imaginary axis. In the case when multiple eigenvalues pairs are

the same distance to the imaginary axis, a second criterion is to look

at the relative damping of the system modes. We define the damping

ratio for a complex eigenvalue λ as

ζ =
−Reλ
|λ| .

Given multiple complex conjugate pairs with the same real part, the

dominant pair will the set with the lowest damping ratio.

Assuming that a system is stable, the dominant pair of eigenvalues
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tends to be the most important element of the response. To see this,

assume that we have a system in Jordan form with a simple Jordan

block corresponding to the dominant pair of eigenvalues:

dz

dt
=




λ

λ∗

J2

. . .

Jk




z + Bu, y = Cz.

(Note that the state z may be complex because of the Jordan trans-

formation.) The response of the system will be a linear combination

of the responses from each of the individual Jordan subsystems. As

we see from Figure 7.8, for ζ < 1 the subsystem with the slowest re-

sponse is precisely the one with the whose eigenvalues are closest to

the imaginary axis. Hence, when we add the responses from each of

the individual subsystems, it is the dominant pair of eigenvalues that

will be the primary factor after the initial transients due to the other

terms in the solution die out. While this simple analysis does not al-

ways hold (e.g., if some non-dominant terms have larger coefficients

because of the particular form of the system), it is often the case that

the dominant eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment is that the

system be reachable. In practice there are many other constraints be-

cause the selection of eigenvalues has a strong effect on the magnitude
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and rate of change of the control signal. Large eigenvalues will in gen-

eral require large control signals as well as fast changes of the signals.

The capability of the actuators will therefore impose constraints on

the possible location of closed loop eigenvalues. These issues will be

discussed in depth in Chapters 12–14.

We illustrate some of the main ideas using the balance system as

an example.

Example 7.7 Balance system

Consider the problem of stabilizing a balance system, whose dynamics

were given in Example 7.2. The dynamics are given by

A =




0 0 1 0

0 0 0 1

0 m2l2g/µ −cJt/µ −γlm/µ

0 Mtmgl/µ −clm/µ −γMt/µ




, B =




0

0

Jt/µ

lm/µ




,

where Mt = M + m, Jt = J + ml2, µ = MtJt − m2l2 and we have

left c and γ nonzero. We use the following parameters for the system

(corresponding roughly to a human being balanced on a stabilizing

cart):

M = 10 kg, m = 80 kg, c = 0.1 N s/m,

J = 100 kg m2/s2, l = 1 m, γ = 0.01 N m s,

g = 9.8 m/s2.

The eigenvalues of the open loop dynamics are given by λ ≈ 0,−0.0011,±2.68.

We have verified already in Example 7.2 that the system is reachable,
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and hence we can use state feedback to stabilize the system and provide

a desired level of performance.

To decide where to place the closed loop eigenvalues, we note that

the closed loop dynamics will roughly consist of two components: a set

of fast dynamics that stabilize the pendulum in the inverted position

and a set of slower dynamics that control the position of the cart. For

the fast dynamics, we look to the natural period of the pendulum (in the

hanging-down position), which is given by ω0 =
√
mgl/(J +ml2) ≈

2.1 rad/s. To provide a fast response we choose a damping ratio of ζ =

0.5 and try to place the first pair of eigenvalues at λ1,2 ≈ −ζω0± iω0 ≈

−1±2i, where we have used the approximation that
√

1− ζ2 ≈ 1. For

the slow dynamics, we choose the damping ratio to be 0.7 to provide a

small overshoot and choose the natural frequency to be 0.5 to give a rise

time of approximately 5 s. This gives eigenvalues λ3,4 = −0.35± 0.35i.

The controller consists of feedback on the state and a feedforward

gain for the reference input. The feedback gain is given by

K =


−15.6 1730 −50.1 443


 ,

which can be computed using Theorem 7.3 or using the MATLAB

place command. The feedforward gain is kf = −1/(C(A−BK)−1B) =

−15.6. The step response for the resulting controller (applied to the lin-

earized system) is given in Figure 7.11a. While the step response gives

the desired characteristics, the input required (lower left) is excessively
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(b) λ1,2 = −0.33± 0.66i

Figure 7.11: State feedback control of a balance system. The step

response of a controller designed to give fast performance is shown in

(a). Although the response characteristics (upper left) look very good,

the input magnitude (lower left) is very large. Also note that the force

is negative initially. A less aggressive controller is shown in (b). Here

the response time is slowed down, but the input magnitude is much

more reasonable. Both step responses are applied to the linearized

dynamics.

large, almost three times the force of gravity at its peak.

To provide a more realistic response, we can redesign the controller

to have slower dynamics. We see that the peak of the input force

occurs on the fast time scale, and hence we choose to slow this down by

approximately a factor of 3, leaving the damping ratio unchanged. We

also slow down the second set of eigenvalues, with the intuition that we

should move the position of the cart more slowly than we stabilize the
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pendulum dynamics. Leaving the damping ratio for the slow dynamics

unchanged at 0.7 and changing the frequency to 1 (corresponding to a

rise time of approximately 10 s), the desired eigenvalues become

λ = {−0.33± 0.66i, −0.18± 0.18i}.

The performance of the resulting controller is shown in Figure 7.11b.

∇

As we see from this example, it can be difficult to decide where to

place the eigenvalues using state feedback. This is one of the principal

limitations of this approach, especially for systems of higher dimen-

sion. Optimal control, such as the linear quadratic regulator problem

discussed in Section 7.5, is one approach that is available. One can

also focus on the frequency response for performing the design, which

is the subject of Chapters 9–13.

7.4 INTEGRAL ACTION

Controllers based on state feedback achieve the correct steady-state re-

sponse to command signals by careful calibration of the gain kf. How-

ever, one of the primary uses of feedback is to allow good performance

in the presence of uncertainty and hence requiring that we have an

exact model of the process is undesirable. An alternative to calibra-

tion is to make use of integral feedback, in which the controller uses
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an integrator to provide zero steady-state error. The basic concept of

integral feedback was introduced in Section 1.6 and discussed briefly in

Sections 2.3 and 2.4; here we provide a more complete description and

analysis.

System Augmentation

The basic approach in integral feedback is to create a state within the

controller that computes the integral of the error signal, which is then

used as a feedback term. We do this by augmenting the description of

the system with a new state z, which is the integral of the difference

between the the actual output y and desired output r. The augmented

state equations become

d

dt




x

z




=




Ax+ Bu

y − r




=




Ax+ Bu

Cx− r



. (7.26)

Note that if we find a controller that stabilizes the system, then we will

necessarily have ż = 0 in steady state and hence y = r in steady state.

Given the augmented system, we design a state space controller in

the usual fashion, with a control law of the form

u = −Kx− kiz + kfr, (7.27)

where K is the usual state feedback term, ki is the integral term, and

kf is used to set the nominal input for the desired steady state. The
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resulting equilibrium point for the system is given by

xe = −(A−BK)−1B(kfr − kize), Cxe = r,

which comes from setting the right hand side of equation (7.26) to zero

and substituting u from equation (7.27). Note that the value of ze

is not specified but rather will automatically settle to the value that

makes ż = y − r = 0, which implies that at equilibrium the output

will equal the reference value. This holds independently of the specific

values of A, B, and K as long as the system is stable (which can be

done through appropriate choice of K and ki).

The final control law is given by

u = −Kx− kiz + kfr,
dz

dt
= y − r,

where we have now included the dynamics of the integrator as part of

the specification of the controller. This type of control law is known

as a dynamic compensator since it has its own internal dynamics. The

following example illustrates the basic approach.

Example 7.8 Cruise control

Consider the cruise control example introduced in Section 1.5 and con-

sidered further in Example 6.11 (see also Section 4.1). The linearized

dynamics of the process around an equilibrium point ve, ue are given

by

dx

dt
= −ax− bgθ + bw, y = v = x+ ve,
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where x = v − ve, w = u − ue, m is the mass of the car, and θ is the

angle of the road. The constants a, b, and bg depend on the properties

of the car and are given in Example 6.11.

If we augment the system with an integrator, the process dynamics

become

dx

dt
= −ax− bgθ + bw,

dz

dt
= y − vr = ve + x− vr,

or, in state space form,

d

dt




x

z




=




−a 0

1 0







x

z




+




b

0



w +




−bg

0



θ +




0

ve − vr



.

Note that when the system is at equilibrium, we have that ż = 0, which

implies that the vehicle speed v = ve+x should be equal to the desired

reference speed vr. Our controller will be of the form

dz

dt
= y − vr, w = −kpx− kiz + kfvr,

and the gains kp, ki, and kf will be chosen to stabilize the system and

provide the correct input for the reference speed.

Assume that we wish to design the closed loop system to have the

characteristic polynomial

λ(s) = s2 + a1s+ a2.

Setting the disturbance θ = 0, the characteristic polynomial of the
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closed loop system is given by

det
(
sI − (A− BK)

)
= s2 + (bkp + a)s+ bki,

and hence we set

kp =
a1 − a
b

, ki =
a2
b
, kf = −1/

(
C(A− BK)−1B

)
=
a1
b
.

The resulting controller stabilizes the system and hence brings ż =

y−vr to zero, resulting in perfect tracking. Notice that even if we have

a small error in the values of the parameters defining the system, as long

as the closed loop eigenvalues are still stable, then the tracking error

will approach zero. Thus the exact calibration required in our previous

approach (using kf) is not needed here. Indeed, we can even choose

kf = 0 and let the feedback controller do all of the work. However, kf

does influence the transient response to reference signals and setting it

properly will generally give a more favorable response.

Integral feedback can also be used to compensate for constant dis-

turbances. Figure 7.12 shows the results of a simulation in which the

car encounters a hill with angle θ = 4◦ at t = 5 s. The steady-state

values of the throttle for a state feedback controller and a controller

with integral action are very close, but the corresponding values of the

car velocity are quite different. The reason for this is that the zero

frequency gain from throttle to velocity is −b/a = 130 is high. The

stability of the system is not affected by this external disturbance, and



468 CHAPTER 7

0 10 20 30 40

Time t [s]

18

19

20
V

el
o
ci

ty
 v

 [
m

/s
]

0 10 20 30 40

Time t [s]

0

0.5

1

T
h
ro

tt
le

 u

State feedback

Integral action

Figure 7.12: Velocity and throttle for a car with cruise control based

on state feedback (dashed) and state feedback with integral action

(solid). The controller with integral action is able to adjust the throt-

tle to compensate for the effect of the hill and maintain the speed at

the reference value of vr = 20 m/s. The controller gains are kp = 0.5

and ki = 0.1.

so we once again see that the car’s velocity converges to the reference

speed. This ability to handle constant disturbances is a general prop-

erty of controllers with integral feedback (see Exercise 7.15). ∇

Reachability of the Augmented System

Eigenvalue assignment requires that the augmented system (7.26) is

reachable. To explore this we compute the reachability matrix of the

augmented system:

Wr =




B AB . . . AnB

0 CB . . . CAn−1B



.

To find the conditions for Wr to be of full rank, the matrix will be

transformed by making column operations. Let ak be the coefficients
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of the characteristic polynomial of the matrix A:

λA(s) = sn + a1s
n−1 + · · ·+ an−1s+ an.

Multiplying the first column by an, the second by an−1, through multi-

plication of the (n-1)th column by a1 and then adding these to the last

column of the matrixWr, it follows from the Cayley–Hamilton theorem

(Exercise 7.3) that the transformed matrix becomes

Wr =




B AB . . . 0

0 CB . . . bn



,

where

bn = C(An−1B + a1A
n−2B + . . .+ an−1B). (7.28)

If the matrix A is invertible, implying that there are no eigenvalues at

the origin, then we can rewrite the formula for bn as

bn = CA−1(An + a1A
n−1 + . . .+ an−1A)B = −anCA−1B,

where the final equality follows from a second application of the Cayley–

Hamilton theorem. As long as the coefficient bn 6= 0, then the system is

reachable and it is possible to assign the eigenvalues of the augmented

system to arbitrary values.

We will see in Chapter 9 that the coefficient bn can be identified

with a coefficient of the transfer function

G(s) =
b1s

n−1 + b2s
n−2 + . . .+ bn

sn + a1sn−1 + . . .+ an
.
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The condition for reachability is thus that the original system does not

contain a pure derivative in the input/output response.

7.5 LINEAR QUADRATIC REGULATORS�

As an alternative to selecting the closed loop eigenvalue locations to

accomplish a certain objective, the gains for a state feedback controller

can instead be chosen by attempting to optimize a cost function. This

can be particularly useful in helping balance the performance of the

system with the magnitude of the inputs required to achieve that level

of performance.

The linear quadratic regulator (LQR) problem is one of the most

common optimal control problems. Given a multi-input linear system

dx

dt
= Ax+Bu, x ∈ Rn, u ∈ Rp

with initial condition x(0) = x0, we attempt to minimize the quadratic

cost function

J(x0) =

∫ tf

0

(
xTQxx+ uTQuu

)
dt+ xT (tf)Qfx(tf), (7.29)

where Qx � 0, Qu ≻ 0 and Qf � 0 are symmetric, positive (semi-

) definite matrices of the appropriate dimensions. This cost function

represents a trade-off between the deviation of the state from the origin

and the cost of the control input. By choosing the matrices Qx, Qu

and Qf we can balance the rate of convergence of the solutions with
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the cost of the control.

The solution to the LQR problem is given by a linear control law

of the form

u = −Kx, K = Q−1
u BTS, (7.30)

where S ∈ Rn×n is a positive definite, symmetric matrix given by

− dS

dt
= ATS + SA− SBQ−1

u BTS +Qx, S(tf) = Qf. (7.31)

This differential equation, called the Riccati differential equation, is

integrated backwards in time starting with S(tf) = Qf. The minimal

cost function, representing the optimal cost, is given by

min
u

∫ tf

0

(
xTQxx+ uTQuu

)
dt+xT (tf)Qfx(tf) = xT (0)S(0)x(0) (7.32)

The matrices A, B, Qx, Qu, and K may depend on time. A solution to

the optimal control problem exists if the Riccati equation has a unique

positive solution. The LQR approach is particularly well suited when

linearizing around a trajectory as will be done later in Section 8.5.

The LQR problem is simplified significantly if the time horizon is

infinite and all matrices are constants, in which case S is a constant

matrix given by the steady-state solution of (7.31):

ATS + SA− SBQ−1
u BTS +Qx = 0. (7.33)

This equation is called the algebraic Riccati equation. If the system

is reachable, it can be shown that there is a unique positive definite
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matrix S satisfying equation (7.33) that makes the closed loop system

stable. The feedback gain K = Q−1
u BTS is then also a constant matrix.

The MATLAB command lqr returns K, S, and the dynamics matrix

E = A−BK of the closed loop system.

A key question in LQR design is how to choose the weights Qx, Qu

and Qf. To guarantee that a solution exists, we must have Qx � 0 and

Qu ≻ 0. In addition, there are certain “observability” conditions on Qx

that limit its choice. Here we assume Qx ≻ 0 to ensure that solutions

to the algebraic Riccati equation always exist. To choose specific values

for the cost function weights Qx and Qu, we must use our knowledge

of the system we are trying to control. A particularly simple choice is

to use diagonal weights

Qx =




q1
0

. . .

0 qn




, Qu =




ρ1
0

. . .

0 ρn




.

For this choice of Qx and Qu, the individual diagonal elements describe

how much each state and input (squared) should contribute to the over-

all cost. Hence, we can take states that should remain small and attach

higher weight values to them. Similarly, we can penalize an input ver-

sus the states and other inputs through choice of the corresponding

input weight ρ.

Example 7.9 Vectored thrust aircraft
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Consider the original dynamics of the system (3.28), written in state

space form as

dz

dt
=




z4

z5

z6

− c
m
z4

−g − c
m
z5

0




+




0

0

0

F1

m
cos θ − F2

m
sin θ

F1

m
sin θ + F2

m
cos θ

r
J
F1




(see also Example 6.4). The system parameters are m = 4 kg, J =

0.0475 kg m2, r = 0.25 m, g = 9.8 m/s2, c = 0.05 N s/m, which corre-

sponds to a scaled model of the system. The equilibrium point for the

system is given by F1 = 0, F2 = mg, and ze = (xe, ye, 0, 0, 0, 0). To

derive the linearized model near an equilibrium point, we compute the

linearization according to equation (6.35):

A =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 −g −c/m 0 0

0 0 0 0 −c/m 0

0 0 0 0 0 0




, B =




0 0

0 0

0 0

1/m 0

0 1/m

r/J 0




,

C =




1 0 0 0 0 0

0 1 0 0 0 0



, D =




0 0

0 0



.



474 CHAPTER 7

Letting ξ = z − ze and v = F − Fe, the linearized system is given by

dξ

dt
= Aξ + Bv, y = Cξ.

It can be verified that the system is reachable.

To compute a linear quadratic regulator for the system, we write

the cost function as

J =

∫ ∞

0

(ξTQξξ + vTQvv )dt,

where ξ = z − ze and v = F − Fe again represent the local coordinates

around the desired equilibrium point (ze, Fe). We begin with diagonal

matrices for the state and input costs:

Qξ =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




, Qv =




ρ 0

0 ρ



.

This gives a control law of the form v = −Kξ, which can then be used

to derive the control law in terms of the original variables:

F = v + Fe = −K(z − ze) + Fe.

As computed in Example 6.4, the equilibrium points have Fe = (0,mg)

and ze = (xe, ye, 0, 0, 0, 0). The response of the controller to a step
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Figure 7.13: Step response for a vectored thrust aircraft with an

LQR controller. The plot in (a) shows the x and y positions of the

aircraft when it is commanded to move 1 m in each direction. In (b)

the x motion is shown for control weights ρ = 1, 102, 104. A higher

weight of the input term in the cost function causes a more sluggish

response.

change in the desired position is shown in Figure 7.13a for ρ = 1.

The response can be tuned by adjusting the weights in the LQR cost.

Figure 7.13b shows the response in the x direction for different choices

of the weight ρ. ∇

Linear quadratic regulators can also be designed for discrete-time

systems, as illustrated by the following example.

Example 7.10 Web server control

Consider the web server example given in Section 4.4, where a discrete-

time model for the system was given. We wish to design a control law

that sets the server parameters so that the average server processor

load is maintained at a desired level. Since other processes may be

running on the server, the web server must adjust its parameters in
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Feedback

Σ
rcpu u Σ

dcpu

ycpu

−K

kf P

Precompensation Server xcpu

xmem

Figure 7.14: Feedback control of a web server. The controller sets

the values of the web server parameters based on the difference be-

tween the nominal parameters (determined by kfrcpu) and the current

load ycpu. The disturbance v represents the load due to other processes

running on the server. Note that the measurement is taken after the

disturbance so that we measure the total load on the server.

response to changes in the load.

A block diagram for the control system is shown in Figure 7.14. We

focus on the special case where we wish to control only the processor

load using both the KeepAlive and MaxClients parameters. We also

include a “disturbance” on the measured load that represents the use

of the processing cycles by other processes running on the server. The

system has the same basic structure as the generic control system in

Figure 7.5, with the variation that the disturbance enters after the

process dynamics.

The dynamics of the system are given by a set of difference equa-

tions of the form

x[k + 1] = Ax[k] +Bu[k], ycpu[k] = xcpu[k] + dcpu[k],
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where x = (xcpu, xmem) is the state of the web server, u = (uka, umc)

is the input, dcpu is the processing load from other processes on the

computer, and ycpu is the total processor load. The matrices A ∈ R2×2

and B ∈ R2×2 are described in Section 4.4.

We choose our controller to be a feedback controller of the form

u = −K




ycpu

xmem




+ kfrcpu,

where rcpu is the desired processor load. Note that we have used the

measured processor load ycpu instead of the CPU state xcpu to ensure

that we adjust the system operation based on the actual load. (This

modification is necessary because of the nonstandard way in which the

disturbance enters the process dynamics.)

The feedback gain matrix K can be chosen by any of the methods

described in this chapter. Here we use a linear quadratic regulator,

with the cost function given by

Qx =




5 0

0 1



, Qu =




1/502 0

0 1/10002



.

The cost function for the state Qx is chosen so that we place more

emphasis on the processor load versus the memory usage. The cost

function for the inputs Qu is chosen so as to normalize the two in-

puts, with a KeepAlive timeout of 50 s having the same weight as a

MaxClients value of 1000. These values are squared since the cost

associated with the inputs is given by uTQuu. Using the dynamics in
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Section 4.4 and the dlqr command in MATLAB, the resulting gains

become

K =




−22.3 10.1

382.7 77.7



.

As in the case of a continuous-time control system, the feedforward

gain kf is chosen to yield the desired operating point for the system.

Setting x[k + 1] = x[k] = xe, the steady-state equilibrium point and

output for a given reference input r are given by

xe = (A−BK)xe + Bkfr, ye = Cxe.

This is a matrix equation in which kf is a column vector that sets the

two input values based on the desired reference. Since we have two

inputs, we can set both the desired CPU load ycpu,e and the desired

memory usage xmem,e. If we take the desired equilibrium state to be

of the form xe = (r, 0), where we choose the desired value of memory

usage to be zero to make as much memory as possible available for

other tasks, then we must solve




r

0




= (A−BK − I)−1Bkf r.

Solving this equation for kf, we obtain

kf =
((

(A−BK − I)−1B
))−1




1

0




=




49.3

539.5



.

The dynamics of the closed loop system are illustrated in Fig-
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Figure 7.15: Web server with LQR control. The plot in (a) shows

the state of the system under a change in external load applied at

k = 10 ms. The corresponding web server parameters (system inputs)

are shown in (b). The controller is able to reduce the effect of the

disturbance by approximately 40%.

ure 7.15. We apply a change in load of dcpu = 0.3 at time t = 10 s,

forcing the controller to adjust the operation of the server to attempt to

maintain the desired load at 0.57. Note that both the KeepAlive and

MaxClients parameters are adjusted. Although the load is decreased,

it remains approximately 0.2 above the desired steady state. ∇

7.6 FURTHER READING

The importance of state models and state feedback was discussed in

the seminal paper by Kalman [133], where the state feedback gain

was obtained by solving an optimization problem that minimized a

quadratic loss function. The notions of reachability and observability

(Chapter 8) are also due to Kalman [135] (see also [99, 138]). Kalman

defines controllability and reachability as the ability to reach the ori-
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gin and an arbitrary state, respectively [137]. Reachability is also used

in graph theory as the ability to get from one vertex to another. We

note that in most textbooks the term “controllability” is used instead

of “reachability,” but we prefer the latter term because it is more de-

scriptive of the fundamental property of being able to reach arbitrary

states. The result that the eigenvalues of a reachable linear system

could be placed in arbitrary positions was first realized by J. Bertram

in 1959 [137], who worked in a control group at IBM Research led by

Kalman. Bertram’s results were based on root-locus analysis; an ana-

lytical proof was given in 1960 [209]. Most undergraduate textbooks on

control contain material on state space systems, including, for example,

Franklin, Powell, and Emami-Naeini [92] and Ogata [195]. Friedland’s

textbook [93] covers the material in the previous, current, and next

chapter in considerable detail, including the topic of optimal control.

EXERCISES

7.1 (Double integrator) Consider the double integrator. Find a piece-

wise constant control strategy that drives the system from the origin

to the state x = (1, 1).

7.2 (Reachability from nonzero initial state) Extend the argument in

Section 7.1 to show that if a system is reachable from an initial state

of zero, it is reachable from a nonzero initial state.
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7.3 (Cayley–Hamilton theorem) Let A ∈ Rn×n be a matrix with char-

acteristic polynomial λ(s) = det(sI−A) = sn+a1s
n−1+· · ·+an−1s+an.

Show that the matrix A satisfies

λ(A) = An + a1A
n−1 + · · ·+ an−1A+ anI = 0,

where the zero on the right hand side represents a matrix of elements

with all zeros. Use this result to show that An can be written in terms

of lower order powers of A and hence any matrix polynomial in A can

be rewritten using terms of order at most n− 1.

7.4 (Unreachable systems) Consider a system with the state x and z

described by the equations

dx

dt
= Ax+Bu,

dz

dt
= Az + Bu.

If x(0) = z(0) it follows that x(t) = z(t) for all t regardless of the input

that is applied. Show that this violates the definition of reachability

and further show that the reachability matrix Wr is not full rank.

7.5 (Rear-steered bicycle) A simple model for a bicycle was given by

equation (4.5) in Section 4.2. A model for a bicycle with rear-wheel

steering is obtained by reversing the sign of the velocity in the model.

Determine the conditions under which this systems is reachable and

explain any situations in which the system is not reachable.

7.6 (Characteristic polynomial for reachable canonical form) Show that
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the characteristic polynomial for a system in reachable canonical form

is given by equation (7.7) and that

dnzk
dtn

+ a1
dn−1zk
dtn−1

+ · · ·+ an−1
dzk
dt

+ anzk =
dn−ku

dtn−k
,

where zk is the kth state.

7.7 (Reachability matrix for reachable canonical form) Consider a sys-

tem in reachable canonical form. Show that the inverse of the reacha-

bility matrix is given by

W̃−1
r =




1 a1

1

a2 · · · an−1

a1 · · · an−2

0

1
. . .

...

. . . a1

1




.

7.8 (Non-maintainable equilibrium points) Consider the normalized

model of a pendulum on a cart

d2x

dt2
= u,

d2θ

dt2
= −θ + u,

where x is cart position and θ is pendulum angle. Can the angle θ = θ0

for θ0 6= 0 be maintained?
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7.9 (Eigenvalue assignment) Consider the system

dx

dt
= Ax+Bu =




−1 0

1 0



x+




a− 1

1



u,

with a = 1.25. Design a state feedback that gives det(sI − BK) =

s2 + 2ζcωcs+ ω2
c , where ωc = 5, and ζc = 0.6.

7.10 (Eigenvalue assignment for unreachable system) Consider the sys-

tem

dx

dt
=




0 1

0 0



x+




1

0



u, y =


1 0


 x,

with the control law

u = −k1x1 − k2x2 + kfr.

Compute the rank of the reachability matrix for the system and show

that eigenvalues of the system cannot be assigned to arbitrary values.

7.11 (Motor drive) Consider the normalized model of the motor drive

in Exercise 3.7. Using the following normalized parameters,

J1 = 10/9, J2 = 10, c = 0.1, k = 1, kI = 1,

verify that the eigenvalues of the open loop system are 0, 0,−0.05± i.

Design a state feedback that gives a closed loop system with eigenvalues

−2, −1, and −1±i. This choice implies that the oscillatory eigenvalues

will be well damped and that the eigenvalues at the origin are replaced

by eigenvalues on the negative real axis. Simulate the responses of the
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closed loop system to step changes in the reference signal for θ2 and a

step change in a disturbance torque on the second rotor.

7.12 (Whipple bicycle model) Consider the Whipple bicycle model

given by equation (4.8) in Section 4.2. Using the parameters from the

companion web site, the model is unstable at the velocity v0 = 5 m/s

and the open loop eigenvalues are −1.84, −14.29, and 1.30±4.60i. Find

the gains of a controller that stabilizes the bicycle and gives closed loop

eigenvalues at−2, −10, and−1±i. Simulate the response of the system

to a step change in the steering reference of 0.002 rad.

7.13 (Dominant eigenvalues) Consider the following two linear sys-

tems:

Σ1 :

dx

dt
=




−1.1 −0.1

1 0



x+




1

0



u,

y =


1.01 0.11


 x,

Σ2 :

dx

dt
=




−1.1 −0.1

1 0



x+




1

0



u,

y =


1.1 1.01


 x.

Show that although both systems have the same eigenvalues, the step

responses of the two systems are dominated by different sets of eigen-

values.

7.14 Consider the second-order system

d2y

dt2
+ 0.5

dy

dt
+ y = a

du

dt
+ u.

Let the initial conditions be zero.
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a) Show that the initial slope of the unit step response is a. Discuss

what it means when a < 0.

b) Show that there are points on the unit step response that are in-

variant with a. Discuss qualitatively the effect of the parameter a on

the solution.

c) Simulate the system and explore the effect of a on the rise time and

overshoot.

7.15 (Integral feedback for rejecting constant disturbances) Consider

a linear system of the form

dx

dt
= Ax+ Bu+ Fd, y = Cx

where u is a scalar and v is a disturbance that enters the system through

a disturbance vector F ∈ Rn. Assume that the matrix A is invertible

and the zero frequency gain CA−1B is nonzero. Show that integral

feedback can be used to compensate for a constant disturbance by

giving zero steady-state output error even when d 6= 0.

7.16 (Bryson’s rule) Bryson and Ho [58] have suggested the following

method for choosing the matrices Qx and Qu in equation (7.29). Start

by choosing Qx and Qu as diagonal matrices whose elements are the

inverses of the squares of the maxima of the corresponding variables.

Then modify the elements to obtain a compromise among response

time, damping, and control effort. Apply this method to the motor
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drive in Exercise 7.11. Assume that the largest values of the ϕ1 and

ϕ2 are 1, the largest values of ϕ̇1 and ϕ̇2 are 2 and the largest control

signal is 10. Simulate the closed loop system for ϕ2(0) = 1 and all

other states are initialized to 0. Explore the effects of different values

of the diagonal elements for Qx and Qu.

7.17 (LQR proof) Use the Riccati equation (7.31) and the relation

xT (tf)Qfx(tf)− xT (0)S(0)x(0) =
∫ tf

0

(
ẋT (t)S(t)x(t) + xT Ṡ(t)x(t) + xT (t)S(t)ẋ(t)

)
dt.

to show that the cost function for the linear quadratic regulator prob-

lem can be written as

∫ tf

0

(
xT (t)Qxx(t) + uT (t)Quu(t)

)
dt+ xT (tf)Qfx(tf)

= xT (0)S(0)x(0)+

∫ tf

0

(
u(t)+Q−1

u BTS(t)x(t)
)T
Qu

(
u(t)+Q−1

u BTS(t)x(t)
)
dt,

from which it follows that the control law u(t) = −Kx(t) = −Q−1
u BTS(t)x(t)

is optimal. Does the proof hold when all matrices depend on time?



Chapter Eight

Output Feedback

One may separate the problem of physical realization into two

stages: computation of the “best approximation” x̂(t1) of the state

from knowledge of y(t) for t ≤ t1 and computation of u(t1) given

x̂(t1).

R. E. Kalman, “Contributions to the Theory of Optimal Con-

trol,” 1960 [133].

In this chapter we show how to use output feedback to modify the

dynamics of the system through the use of observers. We introduce

the concept of observability and show that if a system is observable,

it is possible to recover the state from measurements of the inputs

and outputs to the system. We then show how to design a controller

with feedback from the observer state. A general controller with two

degrees of freedom is obtained by adding feedforward. We illustrate

by outlining a controller for a nonlinear system that also employs gain

scheduling.
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8.1 OBSERVABILITY

In Section 7.2 of the previous chapter it was shown that it is possible

to find a state feedback law that gives desired closed loop eigenval-

ues provided that the system is reachable and that all the states are

measured by sensors. For many situations, it is highly unrealistic to

assume that all the states are measured. In this section we investigate

how the state can be estimated by using a mathematical model and

a few measurements. It will be shown that computation of the states

can be carried out by a dynamical system called an observer.

Definition of Observability

Consider a system described by a set of differential equations

dx

dt
= Ax+ Bu, y = Cx+Du, (8.1)

where x ∈ Rn is the state, u ∈ Rp the input, and y ∈ Rq the measured

output. We wish to estimate the state of the system from its inputs

and outputs, as illustrated in Figure 8.1. In some situations we will

assume that there is only one measured signal, i.e., that the signal y

is a scalar and that C is a (row) vector. This signal may be corrupted

by noise w, although we shall start by considering the noise-free case.

We write x̂ for the state estimate given by the observer.

Definition 8.1 (Observability). A linear system is observable if for

every T > 0 it is possible to determine the state of the system x(T )
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u
Σ

w

Observer

x̂

Process

ẋ = Ax+Bu

y = Cx+Du

y

Figure 8.1: Block diagram for an observer. The observer uses the

process measurement y (possibly corrupted by noise w) and the input

u to estimate the current state of the process, denoted x̂.

through measurements of y(t) and u(t) on the interval [0, T ].

The definition above holds for nonlinear systems as well, and the

results discussed here have extensions to the nonlinear case.

The problem of observability is one that has many important ap-

plications, even outside feedback systems. If a system is observable,

then there are no “hidden” dynamics inside it; we can understand ev-

erything that is going on through observation (over time) of the inputs

and outputs. As we shall see, the problem of observability is of signif-

icant practical interest because it will determine if a set of sensors is

sufficient for controlling a system. Sensors combined with a mathemat-

ical model of the system can also be viewed as a “virtual sensor” that

gives information about variables that are not measured directly. The

process of reconciling signals from many sensors using mathematical

models is also called sensor fusion.



490 CHAPTER 8

Testing for Observability

When discussing reachability in the previous chapter, we neglected the

output and focused on the state. Similarly, it is convenient here to

initially neglect the input and focus on the autonomous system

dx

dt
= Ax, y = Cx, (8.2)

where x ∈ Rn and y ∈ R. We wish to understand when it is possible

to determine the state from observations of the output.

The output itself gives the projection of the state onto vectors that

are rows of the matrix C. The observability problem can immediately

be solved if n = q (number of outputs equals number of states) and

the matrix C is invertible. If the matrix is not square and invertible,

we can take derivatives of the output to obtain

dy

dt
= C

dx

dt
= CAx.

From the derivative of the output we thus get the projection of the

state on vectors that are rows of the matrix CA. Proceeding in this

way, we get at every time t




y(t)

ẏ(t)

ÿ(t)

...

y(n−1)(t)




=




C

CA

CA2

...

CAn−1




x(t). (8.3)
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We thus find that the state at time t can be determined from the output

and its derivatives at time t if the observability matrix

Wo =




C

CA

CA2

...

CAn−1




(8.4)

has full row rank (n independent rows). As in the case of reachability,

it turns out that we need not consider any derivatives higher than n−1

(this is an application of the Cayley–Hamilton theorem [Exercise 7.3]).

The calculation can easily be extended to systems with inputs and

many measured signals. The state is then given by a linear combination

of inputs and outputs and their higher derivatives. The observability

criterion is unchanged. We leave this case as an exercise for the reader.

In practice, differentiation of the output can give large errors when

there is measurement noise, and therefore the method sketched above

is not particularly practical. We will address this issue in more detail

in the next section, but for now we have the following basic result.

Theorem 8.1 (Observability rank condition). A linear system of the

form (8.1) is observable if and only if the observability matrix Wo is

full row rank.

Proof. The sufficiency of the observability rank condition follows from �
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the analysis above. To prove necessity, suppose that the system is

observable but Wo is not full row rank. Let v ∈ Rn, v 6= 0, be a vector

in the null space of Wo, so that Wov = 0. (Such a v exists using the

fact that the row and column rank of a matrix are always equal.) If we

let x(0) = v be the initial condition for the system and choose u = 0,

then the output is given by y(t) = CeAtv. Since eAt can be written as

a power series in A and since An and higher powers can be rewritten

in terms of lower powers of A (by the Cayley–Hamilton theorem), it

follows that y(t) will be identically zero (the reader should fill in the

missing steps). However, if both the input and output of the system

are zero, then a valid estimate of the state is x̂ = 0 for all time, which

is clearly incorrect since x(0) = v 6= 0. Hence by contradiction we must

have that Wo is full row rank if the system is observable.

Example 8.1 Compartment model

Consider the two-compartment model in Figure 4.18a, but assume that

only the concentration in the first compartment can be measured. The

system is described by the linear system

dc

dt
=




−k0 − k1 k1

k2 −k2



c+




b0

0



u, y =


1 0


 c.

The first compartment represents the drug concentration in the blood

plasma, and the second compartment the drug concentration in the

tissue where it is active. To determine if it is possible to find the
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Σ
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(a) Block diagram

−

+
v1 v2

R2
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+

R1

R2R1

C2

C2

R3

R3

(b) Op amp circuit

Figure 8.2: An unobservable system. Two identical subsystems

have outputs that add together to form the overall system output.

The individual states of the subsystem cannot be determined since

the contributions of each to the output are not distinguishable. The

circuit diagram on the right is an example of such a system.

concentration in the tissue compartment from a measurement of blood

plasma, we investigate the observability of the system by forming the

observability matrix

Wo =




C

CA




=




1 0

−k0 − k1 k1



.

The rows are linearly independent if k1 6= 0, and under this condition

it is thus possible to determine the concentration of the drug in the

active compartment from measurements of the drug concentration in

the blood. ∇

It is useful to have an understanding of the mechanisms that make a

system unobservable. Such a system is shown in Figure 8.2. The system
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is composed of two identical systems whose outputs are subtracted. It

seems intuitively clear that it is not possible to deduce the states from

the output since we cannot deduce the individual output contributions

from the difference. This can also be seen formally (Exercise 8.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms will be useful in

studying observability. A linear single-input, single-output state space

system is in observable canonical form if its dynamics are given by

dz

dt
=




−a1 1 0

−a2 0
. . .

...
. . . 1

−an 0 0




z +




b1

b2

...

bn




u,

y =


 1 0 · · · 0


 z + d0 u.

This definition can be extended to systems with many inputs; the only

difference is that the vector multiplying u is replaced by a matrix.

Figure 8.3 is a block diagram for a system in observable canonical

form. As in the case of reachable canonical form, we see that the coef-

ficients in the system description appear directly in the block diagram.

The characteristic polynomial for a system in observable canonical form

is

λ(s) = sn + a1s
n−1 + · · ·+ an−1s+ an. (8.5)
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u

y

a1

∫

b1

ΣΣ

. . .

. . .

an−1

∫

bn−1

Σ

. . .

a2

∫

b2

Σ

an

∫

bn

Σ

d0

−1

zn zn−1 z2 z1

Figure 8.3: Block diagram of a system in observable canonical form.

The states of the system are represented by individual integrators

whose inputs are a weighted combination of the next integrator in

the chain, the first state (rightmost integrator), and the system input.

The output is a combination of the first state and the input. Compare

with the block diagram of the system in reachable form in Figure 7.4.

It is possible to reason about the observability of a system in observable

canonical form by studying the block diagram. If the input u and the

output y are available, the state z1 can clearly be computed. Differen-

tiating z1, we obtain the input to the integrator that generates z1, and

we can now obtain z2 = ż1 + a1z1 − b1u. Proceeding in this way, we

can compute all states. The computation will, however, require that

the signals be differentiated.

To check observability more formally, we compute the observability
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matrix for a system in observable canonical form, which is given by

W̃o =




1

−a1 1

0

−a21 − a2
...

∗

−a1
...

∗

1

. . .

· · · 1




,

where * represents an entry whose exact value is not important. The

columns of this matrix are linearly independent (since it is lower tri-

angular), and hence Wo is invertible. A straightforward but tedious

calculation shows that the inverse of the observability matrix has a

simple form given by

W̃−1
o =




1

a1 1
0

a2

...

an−1

a1

...

an−2

1

. . .

1

· · · a1 1




.

As in the case of reachability, it turns out that a system is observable

if and only if there exists a transformation T that converts the system

into observable canonical form. This is useful for proofs since it lets us

assume that a system is in observable canonical form without any loss

of generality. The observable canonical form may be poorly conditioned
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numerically.

8.2 STATE ESTIMATION

Having defined the concept of observability, we now return to the ques-

tion of how to construct an observer for a system. We will look for

observers that can be represented as a linear dynamical system that

takes the inputs and outputs of the system we are observing and pro-

duce an estimate of the system’s state. That is, we wish to construct

a dynamical system of the form

dx̂

dt
= F x̂+Gu+Hy,

where u and y are the input and output of the original system and

x̂ ∈ Rn is an estimate of the state with the property that x̂(t) → x(t)

as t→∞.

The Observer

We consider the system in equation (8.1) with D set to zero to simplify

the exposition:

dx

dt
= Ax+Bu, y = Cx. (8.6)

We can attempt to determine the state simply by simulating the equa-

tions with the correct input. An estimate of the state is then given
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by

dx̂

dt
= Ax̂+ Bu. (8.7)

To find the properties of this estimate, introduce the estimation error

x̃ = x− x̂. It follows from equations (8.6) and (8.7) that

dx̃

dt
= Ax̃.

If the dynamics matrix A has all its eigenvalues in the left half-plane,

the error x̃ will go to zero, and hence equation (8.7) is a dynamical sys-

tem whose output converges to the state of the system (8.6). However,

the convergence might be slower than desired.

The observer given by equation (8.7) uses only the process input

u; the measured signal does not appear in the equation. We must

also require that the system be stable, and essentially our estimator

converges because the transient dynamics of both the observer and

the estimator are going to zero. This is not very useful in a control

design context since we want to have our estimate converge quickly to

a nonzero state so that we can make use of it in our controller. We

will therefore attempt to modify the observer so that the output is used

and its convergence properties can be designed to be fast relative to the

system’s dynamics. This version will also work for unstable systems.

Consider the observer

dx̂

dt
= Ax̂+ Bu+ L(y − Cx̂). (8.8)
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This can be considered as a generalization of equation (8.7). Feedback

from the measured output is provided by adding the term L(y − Cx̂),

which is proportional to the difference between the observed output and

the output predicted by the observer. It follows from equations (8.6)

and (8.8) that

dx̃

dt
= (A− LC)x̃.

If the matrix L can be chosen in such a way that the matrix A − LC

has eigenvalues with negative real parts, the error x̃ will go to zero.

The convergence rate is determined by an appropriate selection of the

eigenvalues.

Notice the similarity between the problems of finding a state feed-

back and finding the observer. State feedback design by eigenvalue

assignment is equivalent to finding a matrix K so that A − BK has

given eigenvalues. Designing an observer with prescribed eigenvalues is

equivalent to finding a matrix L so that A−LC has given eigenvalues.

Since the eigenvalues of a matrix and its transpose are the same we

can establish the following equivalences:

A↔ AT , B ↔ CT , K ↔ LT , Wr ↔ W T
o . (8.9)

The observer design problem is the dual of the state feedback design

problem. Using the results of Theorem 7.3, we get the following theo-

rem on observer design.

Theorem 8.2 (Observer design by eigenvalue assignment). Consider
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the system given by

dx

dt
= Ax+ Bu, y = Cx, (8.10)

with one input and one output. Let λ(s) = sn+a1s
n−1+· · ·+an−1s+an

be the characteristic polynomial for A. If the system is observable, then

the dynamical system

dx̂

dt
= Ax̂+ Bu+ L(y − Cx̂) (8.11)

is an observer for the system, with L chosen as

L = W−1
o W̃o




p1 − a1

p2 − a2
...

pn − an




(8.12)

and the matrices Wo and W̃o given by

Wo =




C

CA

...

CAn−1




, W̃o =




1

a1 1
0

a2

...

an−1

a1

...

an−2

1

. . .

1

· · · a1 1




−1

.

The resulting observer error x̃ = x − x̂ is governed by a differential
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equation having the characteristic polynomial

p(s) = sn + p1s
n−1 + · · ·+ pn.

The dynamical system (8.11) is called an observer for (the states

of) the system (8.10) because it will generate an approximation of

the states of the system from its inputs and outputs. This form of

an observer is a much more useful form than the one given by pure

differentiation in equation (8.3).

Example 8.2 Compartment model

Consider the compartment model in Example 8.1, which is character-

ized by the matrices

A =




−k0 − k1 k1

k2 −k2



, B =




b0

0



, C =


1 0


 .

The observability matrix was computed in Example 8.1, where we con-

cluded that the system was observable if k1 6= 0. The dynamics matrix

has the characteristic polynomial

λ(s) = det




s+ k0 + k1 −k1

−k2 s+ k2




= s2 + (k0 + k1 + k2)s+ k0k2.

Letting the desired characteristic polynomial of the observer be s2 +
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Figure 8.4: Observer for a two compartment system. A two com-

partment model is shown on the left. The observer measures the

input concentration u and output concentration y = c1 to determine

the compartment concentrations, shown on the right. The true con-

centrations are shown by solid lines and the estimates generated by

the observer by dashed lines.

p1s+ p2, equation (8.12) gives the observer gain

L =




1 0

−k0 − k1 k1




−1


1 0

k0 + k1 + k2 1




−1


p1 − k0 − k1 − k2

p2 − k0k2




=




p1 − k0 − k1 − k2

(p2 − p1k2 + k1k2 + k22)/k1



.

Notice that the observability condition k1 6= 0 is essential. The be-

havior of the observer is illustrated by the simulation in Figure 8.4b.

Notice how the observed concentrations approach the true concentra-

tions. ∇
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Observer

Σ

Σ

x̂

x̂

ŷ

y

u

L −1

B
∫

C

A

˙̂x

Figure 8.5: Block diagram of an observer. The observer takes the

signals y and u as inputs and produces an estimate x. Notice that the

observer contains a copy of the process model that is driven by y − ŷ

through the observer gain L.

The observer is a dynamical system whose inputs are the process

input u and the process output y. The rate of change of the estimate

is composed of two terms. One term, Ax̂ + Bu, is the rate of change

computed from the model with x̂ substituted for x. The other term,

L(y− ŷ), is proportional to the difference e = y− ŷ between measured

output y and its estimate ŷ = Cx̂. The observer gain L is a matrix

that determines how the error e is weighted and distributed among

the state estimates. The observer thus combines measurements with

a dynamical model of the system. A block diagram of the observer is

shown in Figure 8.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introduce the elements

of the observer gain L as unknown parameters and solve for the values
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required to give the desired characteristic polynomial, as illustrated in

the following example.

Example 8.3 Vehicle steering

The normalized linear model for vehicle steering derived in Exam-

ples 6.13 and 7.4 gives the following state space model dynamics relat-

ing lateral path deviation y to steering angle u:

dx

dt
=




0 1

0 0



x+




γ

1



u, y =


1 0


 x. (8.13)

Recall that the state x1 represents the lateral path deviation and that

x2 represents the turning rate. We will now derive an observer that uses

the system model to determine the turning rate from the measured path

deviation.

The observability matrix is

Wo =




1 0

0 1



,

i.e., the identity matrix. The system is thus observable, and the eigen-

value assignment problem can be solved. We have

A− LC =




−l1 1

−l2 0



,

which has the characteristic polynomial

det (sI − A+ LC) = det




s+ l1 −1

l2 s




= s2 + l1s+ l2.
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Assuming that we want to have an observer with the characteristic

polynomial

s2 + p1s+ p2 = s2 + 2ζoωos+ ω2
o,

the observer gains should be chosen as

l1 = p1 = 2ζoωo, l2 = p2 = ω2
o.

The observer is then

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂) =




0 1

0 0



x̂+




γ

1



u+




l1

l2




(y − x̂1).

A simulation of the observer for a vehicle driving on a curvy road is

shown in Figure 8.6. Figure 8.6a shows the trajectory of the vehicle on

the road, as viewed from above. The response of the observer is shown

in Figure 8.6a, where time is normalized to the vehicle length. We see

that the observer error settles in about 4 vehicle lengths. ∇

To compute the observer gains for systems of high order we have

to use numerical calculations. The duality between the design of a

state feedback and the design of an observer means that the computer

algorithms for state feedback can also be used for the observer design;

we simply use the transpose of the dynamics matrix and the output

matrix. The MATLAB command acker, which essentially is a direct

implementation of the calculations given in Theorem 8.2, can be used

for systems with one output. The MATLAB command place can be
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Figure 8.6: Simulation of an observer for a vehicle driving on a

curvy road. (a) The vehicle trajectory, as viewed from above, with

the lane boundaries shown as dashed lines. (b) The response of the

observer with an initial position error. The plots on the left show

the lateral deviation x1 and the lateral velocity x2 with solid lines

and their estimates x̂1 and x̂2 with dashed lines. The plots on the

right show the estimation errors. The parameters used to design the

estimator were ωo = 1 and ζo = 0.7.

used for systems with many outputs. It is also better conditioned

numerically.

Requirements on a control system typically involve fast response to
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reference inputs and disturbances at the ame time as avoiding ampli-

fication of noise. Choosing a fast observer gives fast convergence but

the observer gains will be high and the estimated state will be sensitive

to measurement noise. If noise characteristics are known it is possible

to find the best compromise, as will be discussed in Section 8.4, the

observer is then called a Kalman filter.

8.3 CONTROL USING ESTIMATED STATE

In this section we will consider a state space system of the form

dx

dt
= Ax+Bu, y = Cx. (8.14)

We wish to design a feedback controller for the system where only

the output is measured. Notice that we have assumed that there is no

direct term in the system (D = 0), which is often a realistic assumption.

The presence of a direct term in combination with a controller having

proportional action creates an algebraic loop, which will be discussed

in Section 9.4. The problem can still be solved even if there is a direct

term, but the calculations are more complicated.

As before, we will assume that u and y are scalars. We also assume

that the system is reachable and observable. In Chapter 7 we found a

feedback of the form

u = −Kx+ kfr
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for the case that all states could be measured, and in Section 8.2 we

developed an observer that can generate estimates of the state x̂ based

on inputs and outputs. In this section we will combine the ideas of these

sections to find a feedback that gives desired closed loop eigenvalues

for systems where only outputs are available for feedback.

If all states are not measurable, it seems reasonable to try the feed-

back

u = −Kx̂+ kfr, (8.15)

where x̂ is the output of an observer of the state, i.e.,

dx̂

dt
= Ax̂+ Bu+ L(y − Cx̂). (8.16)

It is not clear that such a combination will have the desired effect. To

explore this, note that since the system (8.14) and the observer (8.16)

are both of state dimension n, the closed loop system has state dimen-

sion 2n with state (x, x̂). The evolution of the states is described by

equations (8.14)–(8.16). To analyze the closed loop system, we change

coordinates and replace the estimated state variable x̂ by the estima-

tion error

x̃ = x− x̂. (8.17)

Subtraction of equation (8.16) from equation (8.14) gives

dx̃

dt
= Ax− Ax̂− L(Cx− Cx̂) = Ax̃− LCx̃ = (A− LC)x̃.

Returning to the process dynamics, introducing u from equation (8.15)
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into equation (8.14) and using equation (8.17) to eliminate x̂ gives

dx

dt
= Ax+ Bu = Ax− BKx̂+ Bkfr = Ax− BK(x− x̃) + Bkfr

= (A−BK)x+ BKx̃+Bkfr.

The closed loop system is thus governed by

d

dt




x

x̃




=




A−BK BK

0 A− LC







x

x̃




+




Bkf

0



r. (8.18)

Notice that the state x̃, representing the observer error, is not affected

by the reference signal r. This is desirable since we do not want the

reference signal to generate observer errors.

Since the dynamics matrix is block diagonal, we find that the char-

acteristic polynomial of the closed loop system is

λ(s) = det (sI − A+ BK) det (sI − A+ LC).

This polynomial is a product of two terms: the characteristic polyno-

mial of the closed loop system obtained with state feedback det (sI − A+ BK)

and the characteristic polynomial of the observer det (sI − A+ LC).

The design procedure thus separates into two subproblems: design of

a state feedback and design of an observer. The feedback (8.15) that

was motivated heuristically therefore provides an elegant solution to

the eigenvalue assignment problem for output feedback. The result is

summarized as follows.

Theorem 8.3 (Eigenvalue assignment by output feedback). Consider
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the system

dx

dt
= Ax+ Bu, y = Cx.

The controller described by

dx̂

dt
= Ax̂+ Bu+ L(y − Cx̂) = (A−BK − LC)x̂+ Bkf r + Ly,

u = −Kx̂+ kf r

gives a closed loop system with the characteristic polynomial

λ(s) = det (sI − A+ BK) det (sI − A+ LC).

This polynomial can be assigned arbitrary roots if the system is reach-

able and observable.

The controller has a strong intuitive appeal: it can be thought of

as being composed of two parts: state feedback and an observer. The

controller is now a dynamic compensator with internal state dynamics

generated by the observer. The control action makes use of feedback

from the estimated states x̂. The feedback gain K can be computed as

if all state variables can be measured, and it depends only on A and

B. The observer gain L depends only on A and C. The property that

the eigenvalue assignment for output feedback can be separated into

an eigenvalue assignment for a state feedback and an observer is called

the separation principle.

A block diagram of the controller is shown in Figure 8.7. Notice

that the controller contains a dynamical model of the plant. This is
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Figure 8.7: Block diagram of an observer-based control system. The

observer uses the measured output y and the input u to construct

an estimate of the state. This estimate is used by a state feedback

controller to generate the corrective input. The controller consists of

the observer and the state feedback; the observer is identical to that

in Figure 8.5.

called the internal model principle: the controller contains a model of

the process being controlled.

Design of control systems involves a balance between achieving high

performance while maintaining adequate robustness in the presence

of uncertainties. It is not obvious how such properties are reflected

in the closed loop eigenvalues. It is therefore important to evaluate

the design for example by plotting time responses to get more insight

into the properties of the design. Additional discussion is presented in

Section 14.5, where we consider the robustness of eigenvalue assignment
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(pole placement) design and also give some design rules.

Example 8.4 Vehicle steering

Consider again the normalized linear model for vehicle steering in Ex-

ample 7.4. The dynamics relating the steering angle u to the lateral

path deviation y are given by the state space model (8.13). Combining

the state feedback derived in Example 7.4 with the observer determined

in Example 8.3, we find that the controller is given by

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂) =




0 1

0 0



x̂+




γ

1



u+




l1

l2




(y − x̂1),

u = −Kx̂+ kfr = k1(r − x̂1)− k2x̂2.

Elimination of the variable u gives

dx̂

dt
= (A−BK − LC)x̂+ Ly + Bkfr

=




−l1 − γk1 1− γk2

−k1 − l2 −k2



x̂+




l1

l2



y +




γ

1



k1r,

where we have set kf = k1 as described in Example 7.4. The controller

is a dynamical system of second order, with two inputs y and r and

one output u. Figure 8.8 shows a simulation of the system when the

vehicle is driven along a curvy road. Since we are using a normalized

model, the length unit is the vehicle length and the time unit is the

time it takes to travel one vehicle length. The estimator is initialized

with all states equal to zero but the real system has an initial lateral

position of 0.8. The figures show that the estimates converge quickly
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Figure 8.8: Simulation of a vehicle driving on a curvy road with

a controller based on state feedback and an observer. The left plot

shows the lane boundaries (dotted), the vehicle position (solid), and

its estimate (dashed), the upper right plot shows the velocity (solid)

and its estimate (dashed), and the lower right plot shows the control

signal using state feedback (solid) and the control signal using the

estimated state (dashed).

to their true values. The vehicle roughly tracks the desired path, but

there are errors because the road is curving. The tracking error can be

improved by introducing feedforward (Section 8.5). ∇

Kalman’s Decomposition of a Linear System
�

In this chapter and the previous one we have seen that two fundamental

properties of a linear input/output system are reachability and observ-

ability. It turns out that these two properties can be used to classify

the dynamics of a system. The key result is Kalman’s decomposition

theorem, which says that a linear system can be divided into four sub-

systems: Σro which is reachable and observable, Σro which is reachable
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but not observable, Σro which is not reachable but is observable, and

Σro which is neither reachable nor observable.

We will first consider this in the special case of systems with one

input and one output, and where the matrix A has distinct eigenvalues.

In this case we can find a set of coordinates such that the A matrix is

diagonal and, with some additional reordering of the states, the system

can be written as

dx

dt
=




Aro 0 0 0

0 Aro 0 0

0 0 Aro 0

0 0 0 Aro




x+




Bro

Bro

0

0




u,

y =


Cro 0 Cro 0


 x+Du.

(8.19)

All states xk such that Bk 6= 0 are reachable, and all states such that

Ck 6= 0 are observable. If we set the initial state to zero (or equivalently

look at the steady-state response if A is stable), the states given by xr̄o

and xro will be zero and xrō does not affect the output. Hence the

output y can be determined from the system

dxro
dt

= Aroxro + Brou, y = Croxro +Du.

Thus from the input/output point of view, it is only the reachable

and observable dynamics that matter. A block diagram of the system

illustrating this property is given in Figure 8.9a.

The general case of the Kalman decomposition is more complicated
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Figure 8.9: Kalman’s decomposition of a linear system. The decom-

position in (a) is for a system with distinct eigenvalues and the one in

(b) is the general case. The system is broken into four subsystems, rep-

resenting the various combinations of reachable and observable states.

The input/output relationship only depends on the subset of states

that are both reachable and observable.

and requires some additional linear algebra; see the original paper by

Kalman, Ho, and Narendra [138]. The key result is that the state space

can still be decomposed into four parts, but there will be additional

coupling so that the equations have the form

dx

dt
=




Aro 0 ∗ 0

∗ Aro ∗ ∗

0 0 Aro 0

0 0 ∗ Aro




x+




Bro

Bro

0

0




u,

y =


Cro 0 Cro 0


 x,

(8.20)

where ∗ denotes block matrices of appropriate dimensions. If xro(0) = 0
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then the input/output response of the system is given by

dxro
dt

= Aroxro + Brou, y = Croxro +Du, (8.21)

which are the dynamics of the reachable and observable subsystem Σro.

A block diagram of the system is shown in Figure 8.9b.

The following example illustrates Kalman’s decomposition.

Example 8.5 System and controller with feedback from ob-

server states

Consider the system

dx

dt
= Ax+Bu, y = Cx.

The following controller, based on feedback from the observer state,

was given in Theorem 8.3:

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂), u = −Kx̂+ kfr.

Introducing the states x and x̃ = x− x̂, the closed loop system can be

written as

d

dt




x

x̃




=




A− BK BK

0 A− LC







x

x̃



+




Bkf

0



r, y =


C 0







x

x̃



,

which is a Kalman decomposition like the one shown in Figure 8.9b with

only two subsystems Σro and Σro. The subsystem Σro, with state x, is

reachable and observable, and the subsystem Σro, with state x̃, is not

reachable but observable. It is natural that the state x̃ is not reachable
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from the reference signal r because it would not make sense to design

a system where changes in the reference signal could generate observer

errors. The relationship between the reference r and the output y is

given by

dx

dt
= (A−BK)x+ Bkfr, y = Cx,

which is the same relationship as for a system with full state feedback.

∇

8.4 KALMAN FILTERING
��

One of the principal uses of observers in practice is to estimate the state

of a system in the presence of noisy measurements. We have not yet

treated noise in our analysis, and a full treatment of stochastic dynam-

ical systems is beyond the scope of this text. In this section, we present

a brief introduction to the use of stochastic systems analysis for con-

structing observers. We work primarily in discrete time to avoid some

of the complications associated with continuous-time random processes

and to keep the mathematical prerequisites to a minimum. This section

assumes basic knowledge of random variables and stochastic processes;

see Kumar and Varaiya [154] or Åström [17] for the required material.
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Discrete-Time Systems

Consider a discrete-time linear system with dynamics

x[k + 1] = Ax[k] + Bu[k] + v[k], y[k] = Cx[k] + w[k], (8.22)

where v[k] and w[k] are Gaussian white noise processes satisfying

E(v[k]) = 0, E(w[k]) = 0,

E(v[k]vT [j]) =





0 if k 6= j,

Rv if k = j,

E(w[k]wT [j]) =





0 if k 6= j,

Rw if k = j,

E(v[k]wT [j]) = 0.

(8.23)

E(v[k]) represents the expected value of v[k] and E(v[k]vT [j]) is the

covariance matrix. The matrices Rv and Rw are the covariance matrices

for the process disturbance v and measurement noise w. (Rv is allowed

to be singular if the disturbances do not affect all states.) We assume

that the initial condition is also modeled as a Gaussian random variable

with

E(x[0]) = x0, E
(
(x[0]− x0)(x[0]− x0)T

)
= P0. (8.24)

We would like to find an estimate x̂[k] that minimizes the mean square

error

P [k] = E
(
(x[k]− x̂[k])(x[k]− x̂[k])T

)
(8.25)
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given the measurements {y(κ) : 0 ≤ κ ≤ k}. We consider an observer

in the same basic form as derived previously:

x̂[k + 1] = Ax̂[k] + Bu[k] + L[k](y[k]− Cx̂[k]). (8.26)

The following theorem summarizes the main result.

Theorem 8.4 (Kalman, 1961). Consider a random process x[k] with

dynamics given by equation (8.22) and noise processes and initial con-

ditions described by equations (8.23) and (8.24). The observer gain L

that minimizes the mean square error is given by

L[k] = AP [k]CT (Rw + CP [k]CT )−1,

where

P [k + 1] = (A− LC)P [k](A− LC)T +Rv + LRwL
T ,

P [0] = E
(
(x[0] = x0)(x[0]− x0)T

)
.

(8.27)

Before we prove this result, we reflect on its form and function.

First, note that the Kalman filter has the form of a recursive filter:

given mean square error P [k] = E((x[k] − x̂[k])(x[k] − x̂[k])T ) at time

k, we can compute how the estimate and error change. Thus we do

not need to keep track of old values of the output. Furthermore, the

Kalman filter gives the estimate x̂[k] and the error covariance P [k],

so we can see how reliable the estimate is. It can also be shown that

the Kalman filter extracts the maximum possible information about

output data. If we form the residual between the measured output and
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the estimated output,

e[k] = y[k]− Cx̂[k],

we can show that for the Kalman filter the covariance matrix is

Re(j, k) = E(e[j]eT [k]) = W [k]δjk, δjk =





1 if j = k,

0 if j 6= k.

In other words, the error is a white noise process, so there is no re-

maining dynamic information content in the error.

The Kalman filter is extremely versatile and can be used even if the

process, noise, or disturbances are time-varying. When the system is

time-invariant and if P [k] converges, then the observer gain is constant:

L = APCT (Rw + CPCT ),

where P satisfies

P = APAT +Rv − APCT
(
Rw + CPCT

)−1
CPAT .

We see that the optimal gain depends on both the process noise and

the measurement noise, but in a nontrivial way. Like the use of LQR

to choose state feedback gains, the Kalman filter permits a systematic

derivation of the observer gains given a description of the noise pro-

cesses. The solution for the constant gain case is solved by the dlqe

command in MATLAB.

Proof of theorem. We wish to minimize the mean square of the error
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E((x[k]− x̂[k])(x[k]− x̂[k])T ). We will define this quantity as P [k] and

then show that it satisfies the recursion given in equation (8.27). By

definition,

P [k + 1] = E
(
(x[k + 1]− x̂[k + 1])(x[k + 1]− x̂[k + 1])T

)

= (A− LC)P [k](A− LC)T +Rv + LRwL
T

= AP [k]AT +Rv − AP [k]CTLT − LCP [k]AT

+ L(Rw + CP [k]CT )LT .

Letting Rǫ = (Rw + CP [k]CT ), we have

P [k + 1] = AP [k]AT +Rv − AP [k]CTLT − LCP [k]AT + LRǫL
T

= AP [k]AT +Rv +
(
L−AP [k]CTR−1

ǫ

)
Rǫ

(
L−AP [k]CTR−1

ǫ

)T

− AP [k]CTR−1
ǫ CP T [k]AT .

To minimize this expression, we choose L = AP [k]CTR−1
ǫ , and the

theorem is proved.

Continuous-Time Systems

The Kalman filter can also be applied to continuous-time stochastic

processes. The mathematical derivation of this result requires more

sophisticated tools, but the final form of the estimator is relatively

straightforward.

Consider a continuous stochastic system

dx

dt
= Ax+ Bu+ v, E(v(s)vT (t)) = Rvδ(t− s),

y = Cx+ w, E(w(s)wT (t)) = Rwδ(t− s),
(8.28)
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where δ(τ) is the unit impulse function, and the initial value is Gaussian

with mean x0 and covariance P0 = E((x(0)− x0)(x(0)− x0)T ) Assume

that the disturbance v and noise w are zero mean and Gaussian (but

not necessarily time-invariant):

pdf(v) =
1

n
√
2π
√
detRv

e−
1
2
vTR−1

v v, pdf(w) =
1

q
√
2π
√
detRw

e−
1
2
wTR−1

w w.

(8.29)

The model (8.28) is very general. We can model the dynamics both of

the process and disturbances, as illustrated by the following example.

Example 8.6 Modeling a noisy sinusoidal disturbance

Consider a process whose dynamics are described by

dx

dt
= x+ u+ v, y = x+ w.

The disturbance v is a noisy sinusoidal disturbance with frequency ω0

and w is white measurement noise. We model the oscillatory load

disturbance as v = z1, where

d

dt




z1

z2




=




−0.01ω0 ω0

−ω0 −0.01ω0







z1

z2




+




0

ω0



e,

and e is zero mean white noise with covariance function rδ(t).

Augmenting the system state with the states of the noise model by
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introducing the new state ξ = (x, z1, z2), we obtain the model

dξ

dt
=




1 1 0

0 −0.01ω0 ω0

0 −ω0 −0.01ω0




ξ+




1

0

0




u+v, y =


1 0 0


 ξ+w,

where v is white Gaussian noise with zero mean and the covariance

Rvδ(t) with

Rv =




0 0 0

0 0 0

0 0 ω2
0r




.

The model is in the standard form given by equations (8.28) and (8.29).

∇

We will now return to the filtering problem. Specifically, we wish

to find the estimate x̂(t) that minimizes the mean square error P (t) =

E((x(t)− x̂(t))(x(t)− x̂(t))T ) given {y(τ) : 0 ≤ τ ≤ t}.

Theorem 8.5 (Kalman–Bucy, 1961). The optimal estimator has the

form of a linear observer

dx̂

dt
= Ax̂+ Bu+ L(y − Cx̂), x̂(0) = E(x(0)),

where L = PCTR−1
w and P = E((x(t)−x̂(t))(x(t)−x̂(t))T ) and satisfies

dP

dt
= AP+PAT−PCTR−1

w CP+Rv, P (0) = E
(
(x(0)− x0)(x(0)− x0)T

)
.

(8.30)

All matrices A, B, C, Rv, Rw, P and L can be time varying. The
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essential condition is that the Riccati equation (8.30) has a unique

positive solution.

As in the discrete case, when the system is time-invariant and if

P (t) converges, the observer gain L = PCTR−1
w is constant and P is

the solution to

AP + PAT − PCTR−1
w CP +Rv = 0, (8.31)

which is called the algebraic Riccati equation.

Notice that there are a strong similarities between the Riccati equa-

tions (8.30) and (8.31) for the Kalman filtering problem and the corre-

sponding equations (7.31) and (7.33) for the linear quadratic regulator

(LQR). We have the equivalences

A↔ AT , B ↔ CT , K ↔ LT , P ↔ S, Qx ↔ Rv, Qu ↔ Rw,

(8.32)

which we can compare with equation (8.9). The MATLAB command

kalman can be used to compute optimal filter gains.

Example 8.7 Vectored thrust aircraft

The dynamics for a vectored thrust aircraft were considered in Ex-

amples 3.12 and 7.9. We consider the (linearized) lateral dynamics

of the system, consisting of the subsystems whose states are given by

z = (x, θ, ẋ, θ̇). The dynamics of the linearized system can be obtained

from Example 7.9 by extracting only the relevant states and outputs,



OUTPUT FEEDBACK 525

giving

A =




0 0 1 0

0 0 0 1

0 −g −c/m 0

0 0 0 0




, B =




0

0

0

r/J




, C =


0 0 0 1


 ,

where the linearized state ξ = z − ze represents the system state lin-

earized around the equilibrium point ze. To design a Kalman filter for

the system, we must include a description of the process disturbances

and the sensor noise. We thus augment the system to have the form

dξ

dt
= Aξ +Bu+ Fv, y = Cξ + w,

where F represents the structure of the disturbances (including the

effects of nonlinearities that we have ignored in the linearization), v

represents the disturbance source (modeled as zero mean, Gaussian

white noise), and w represents that measurement noise (also zero mean,

Gaussian, and white).

For this example, we choose F as the identity matrix and choose

disturbances v, i = 1, . . . , n, to be independent random variables with

covariance matrix elements given by Rii = 0.1, Rij = 0, i 6= j. The

sensor noise is a single random variable that we model as white noise

having covariance Rw = 10−4. Using the same parameters as before,
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(b) Position and orientation

Figure 8.10: Kalman filter response for a (linearized) vectored thrust

aircraft with disturbances and noise during the initial portion of a

step response. In the first design (a) only the lateral position of the

aircraft is measured. Adding a direct measurement of the roll angle

produces a much better observer (b). The initial estimator state for

both simulations is (0.1, 0.0175, 0.01, 0) and the controller gains are

K = (−1, 7.9,−1.6, 2.1) and kf = −1.

the resulting Kalman gain is given by

L = PCTR−1
w =




37.0

−46.9

185

−31.6




where AP+PAT−PCTR−1
w CP+Rv = 0.

The performance of the estimator is shown in Figure 8.10a. We see

that while the estimator roughly tracks the system state, it contains

significant overshoot in the state estimate and has significant error

in the estimate for θ even after 2 seconds, which can lead to poor

performance in a closed loop setting.
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To improve the performance of the estimator, we explore the im-

pact of adding a new output measurement. Suppose that instead of

measuring just the output position x, we also measure the orientation

of the aircraft θ. The output becomes

y =




1 0 0 0

0 1 0 0



ξ +




w1

w2



,

and if we assume that w1 and w2 are independent white noise sources

each with covariance Rwi
= 10−4, then the optimal estimator gain

matrix becomes

L =




32.6 −0.150

−0.150 32.6

32.7 −9.79

−0.0033 31.6




.

These gains provide good immunity to noise and high performance, as

illustrated in Figure 8.10b. ∇

Linear Quadratic Gaussian Control (LQG)

In Section 7.5 we considered optimization of the criterion (7.29) when

the the control u(t) could be a function of the state x(t). We will now

explore the same problem for the stochastic system (8.28) where the

control u(t) is a function of the output y(t).

Consider the system given by equation (8.28) where the initial state

is Gaussian with mean x0 and covariance P0 and the disturbances v and
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w are characterized by equation (8.29). Assume that the requirement

can be captured by the cost function

J = min
u

E

(∫ tf

0

(xTQxx+ uTQuu) dt+ xT (tf)Qfx(tf)

)
, (8.33)

where we minimize over all controls such that u(t) is a function of all

measurements y(τ), 0 ≤ τ ≤ t obtained up to time t.

The optimal control law is simply u(t) = −Kx̂(t) where K =

SBQ−1
u and S is the solution of the Riccati equation (7.31) (for the

linear quadratic regulator) and x̂(t) is given by the Kalman filter (The-

orem 8.5). The solution of the problem can thus be separated into a

deterministic control problem (LQR) and an optimal filtering problem.

This remarkable result is also known as the separation principle, as

mentioned briefly in Section 8.3.

The minimum cost function is

min J = xT0 S(0)x0+Tr (S(0)P0)+

∫ tf

0

Tr (RvS) dt+

∫ tf

0

Tr (LTQuLP ) dt,

where Tr is the trace of a matrix. The first two terms represent the

cost of the mean x0 and covariance P0 of the initial state, the third

term represents the cost due to the load disturbance, and the last term

represents the cost of prediction. Notice that the models we have used

do not have a direct term in the output. The separation theorem does

not hold in this case because the nature of the disturbances is then

influenced by the feedback.
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8.5 STATE SPACE CONTROLLER DESIGN

State estimators and state feedback are important components of a

controller. In this section, we will add feedforward to arrive at a general

controller structure that appears in many places in control theory and

is the heart of most modern control systems. We will also briefly sketch

how computers can be used to implement a controller based on output

feedback.

Two Degree-of-Freedom Controller Architecture

In this chapter and the previous one we have emphasized feedback

as a mechanism for minimizing tracking error; reference values were

introduced simply by adding them to the state feedback through a

gain kf. A more sophisticated way of doing this is shown by the block

diagram in Figure 8.11, where the controller consists of three parts: an

observer that computes estimates of the states based on a model and

measured process inputs and outputs, a state feedback, and a trajectory

generator that computes the desired behavior of all states xd and a

feedforward signal uff. Under the ideal conditions of no disturbances

and no modeling errors the signal uff generates the desired behavior

xd when applied to the process. The signals xd and uff are generated

from the task description Td, which can represent different types of

command signals depending on the application. In simple cases the

task description is simply the reference signal r, and xd and uff are
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ufb

Σ Σ
ηµ

Process

v w

ye
State

Feedback

xdGeneration

Trajectory

uff

Σ

Td

−x̂

u

Figure 8.11: Block diagram of a controller based on a structure with

two degrees of freedom that combines feedback and feedforward. The

controller consists of a trajectory generator, state feedback, and an ob-

server. The trajectory generation subsystem computes a feedforward

command uff along with the desired state xd. The state feedback

controller uses the estimated state and desired state to compute a

corrective input ufb.

generated by sending r through linear systems. For motion control

problems, such as vehicle steering and robotics, the task description

consists of the coordinates of a number of points (waypoints) that the

vehicle should pass. In other situations the task description could be to

transition from one state to another while optimizing some criterion.

To get some insight into the behavior of the system, consider the

case when there are no disturbances and the system is in equilibrium

with a constant reference signal and with the observer state x̂ equal to

the process state x. When the reference signal is changed, the signals

uff and xd will change. The observer tracks the state perfectly because

the initial state was correct. The estimated state x̂ is thus equal to

the desired state xd, and the feedback signal ufb = K(xd − x̂) will also
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be zero. All action is thus created by the signals from the trajectory

generator. If there are some disturbances or some modeling errors, the

feedback signal will attempt to correct the situation.

This controller is said to have two degrees of freedom because the

responses to reference signals and disturbances are decoupled. Distur-

bance responses are governed by the observer and the state feedback,

while the response to command signals is governed by the trajectory

generator (feedforward).

Feedforward Design and Trajectory Generation

We will now discuss design of controllers with the architecture shown in

Figure 8.11. For an analytic description we start with the full nonlinear

dynamics of the process

dx

dt
= f(x, u), y = h(x, u). (8.34)

A feasible trajectory for the system (8.34) is a pair (xd(t), uff(t)) that

satisfies the differential equation and generates the desired trajectory:

dxd(t)

dt
= f

(
xd(t), uff(t)

)
, r(t) = h

(
xd(t), uff(t)

)
.

The problem of finding a feasible trajectory for a system is called the

trajectory generation problem, with xd representing the desired state

for the (nominal) system and uff representing the desired input or the

feedforward control. If we can find a feasible trajectory for the system,

we can search for controllers of the form u = α(x, xd, uff) that track the
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desired reference trajectory.

In many applications, it is possible to attach a cost function to

trajectories that describe how well they balance trajectory tracking

with other factors, such as the magnitude of the inputs required. In

such applications, it is natural to ask that we find the optimal controller

with respect to some cost function:

min
u( · )

∫ T

0

L(x, u) dt+ V
(
x(T )

)
,

subject to the constraint

ẋ = f(x, u), x ∈ Rn, u ∈ Rp.

Abstractly, this is a constrained optimization problem where we seek

a feasible trajectory (xd(t), uff(t)) that minimizes the cost function.

Depending on the form of the dynamics, this problem can be quite

complex to solve, but there are good numerical packages for solving

such problems, including handling constraints on the range of inputs

as well as the allowable values of the state.

In some situations we can simplify the approach of generating fea-

sible trajectories by exploiting the structure of the system. The next

example illustrates one such approach.

Example 8.8 Vehicle steering

To illustrate how we can use a two degree-of-freedom design to improve

the performance of the system, consider the problem of steering a car
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Figure 8.12: Trajectory generation for changing lanes. We wish to

change from the right lane to the left lane over a distance of 90 m in

6 s. The planned trajectory in the xy plane is shown in (a) and the

lateral position y and the steering angle δ over the maneuver time

interval are shown in (b).

.

to change lanes on a road, as illustrated in Figure 8.12a.

We use the non-normalized form of the dynamics, which were de-

rived in Example 3.11. As shown in Exercise 3.6, using the center of

the rear wheels as the reference (α = 0) the dynamics can be written

as

dx

dt
= v cos θ,

dy

dt
= v sin θ,

dθ

dt
=
v

b
tan δ,

where v is the forward velocity of the vehicle, θ is the heading angle,

and δ is the steering angle. To generate a trajectory for the system,

we note that we can solve for the states and inputs of the system given
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x(t), y(t) by solving the following sets of equations:

ẋ = v cos θ, ẍ = v̇ cos θ − vθ̇ sin θ,

ẏ = v sin θ, ÿ = v̇ sin θ + vθ̇ cos θ,

θ̇ = (v/b) tan δ.

(8.35)

This set of five equations has five unknowns (θ, θ̇, v, v̇ and δ) that

can be solved using trigonometry and linear algebra given the path

variables x(t), y(t) and their time derivatives. It follows that we can

compute a feasible state trajectory for the system given any path x(t),

y(t). (This special property of a system is known as differential flatness

and is described in more detail below.)

To find a trajectory from an initial state (x0, y0, θ0) to a final state

(xf, yf, θf) at a time T , we look for a path x(t), y(t) that satisfies

x(0) = x0, x(T ) = xf,

y(0) = y0, y(T ) = yf,

ẋ(0) sin θ0 − ẏ(0) cos θ0 = 0, ẋ(T ) sin θf − ẏ(T ) cos θf = 0,

ẏ(0) sin θ0 + ẋ(0) cos θ0 = v0, ẏ(T ) sin θf + ẋ(T ) cos θf = vf,

(8.36)

where v0 is the initial velocity and vf is the final velocity along the

trajectory. One such trajectory can be found by choosing x(t) and y(t)

to have the form

xd(t) = α0 + α1t+ α2t
2 + α3t

3, yd(t) = β0 + β1t+ β2t
2 + β3t

3.
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Substituting these equations into equation (8.36), we are left with a

set of linear equations that can be solved for αi, βi, i = 0, 1, 2, 3. This

gives a feasible trajectory for the system by using equation (8.35) to

solve for θd, vd, and δd.

Figure 8.12b shows a sample trajectory generated by a set of higher-

order equations that also set the initial and final steering angle to zero.

Notice that the feedforward input is different from zero, allowing the

controller to command a steering angle that executes the turn in the

absence of errors. ∇

The concept of differential flatness that we exploited in the previous

example is a fairly general one and can be applied to many interesting

trajectory generation problems. A nonlinear system (8.34) is differen-

tially flat if there exists a flat output z such that the state x and the

input u can be expressed as functions of the flat output z and a finite

number of its derivatives:

x = β(z, ż, . . . , z(m)), u = γ(z, ż, . . . , z(m)). (8.37)

The number of flat outputs is always equal to the number of system

inputs. The vehicle steering model is differentially flat with the position

of the rear wheels as the flat output.

A broad class of systems that is differentially flat is the class of

reachable linear systems. For the linear system given in equation (7.6),
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which is in reachable canonical form, we have

z1 = z(n−1)
n , z2 = z(n−2)

n , . . . , zn−1 = żn,

u = z(n)n + a1z
(n−1)
n + a2z

(n−2)
n + · · ·+ anzn,

and the nth component zn of the state vector is thus a flat output.

Since any reachable system can be transformed to reachable canonical

form, it follows that every reachable linear system is differentially flat.

Note that no differential equations need to be integrated in order to

compute the feasible trajectories for a differentially flat system (unlike

optimal control methods, which often involve parameterizing the input

and then solving the differential equations). The practical implication

is that nominal trajectories and inputs that satisfy the equations of

motion for a differentially flat system can be computed efficiently. The

concept of differential flatness is described in more detail in the review

article by Fliess et al. [87].

Disturbance Modeling and State Augmentation

We often have some information about load disturbances: they can

be unknown constants, drifting with unknown rates, sinusoidal with

known or unknown frequency, or stochastic signals. This information

can be used by modeling the disturbances by differential equations and

augmenting the process state with the disturbance states as was done

in Section 7.4 and Example 8.6. We illustrate with a simple example.
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Example 8.9 Integral action by state augmentation

Consider the system (8.1) and assume that there is a constant but

unknown disturbance z acting additively on the process input. The

system and the disturbance can then be modeled by augmenting the

state x with z. An unknown constant can be modeled by the differential

equation dz/dt = 0 and we obtain the following model for the process

and its environment:

d

dt




x

z




=




A B

0 0







x

z




+




B

0



u, y =


C 0







x

z



.

Notice that the disturbance state z is not reachable from u, but because

the disturbance enters at the process input it can be attenuated by the

control law

u = −Kx̂− ẑ, (8.38)

where x̂ and ẑ are estimates of the state x and the disturbance z. The

estimated disturbance can be obtained from the observer:

dx̂

dt
= Ax̂+Bẑ + Bu+ Lx(y − Cx̂),

dẑ

dt
= Lz(y − Cx̂).

Integrating the last equation and inserting the expression for ẑ in the

control law (8.38) gives

u = −Kx̂− Lz
∫ t

0

(y(τ)− Cx̂(τ))dτ,

which is a state feedback controller with integral action. Notice that the

integral action is created through estimation of a disturbance state. ∇
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The idea of the example can be extended to many types of distur-

bances and we emphasized that much can be gained from modeling a

process and its environment (disturbances acting on the process and

measurement noise).

Feedback Design and Gain Scheduling

We now assume that the trajectory generator is able to compute a de-

sired trajectory (xd, uff) that satisfies the dynamics (8.34) and satisfies

r = h(xd, uff). To design the feedback controller, we construct the error

system. Let ξ = x − xd and ufb = u − uff and compute the dynamics

for the error:

ξ̇ = ẋ− ẋd = f(x, u)− f(xd, uff)

= f(ξ + xd, v + uff)− f(xd, uff) =: F (ξ, v, xd(t), uff(t)).

For trajectory tracking, we can assume that e is small (if our con-

troller is doing a good job), and so we can linearize around ξ = 0:

dξ

dt
≈ A(t)ξ + B(t)v, h(x, u) ≈ C(t)x(t)

A(t) =
∂F

∂ξ

∣∣∣∣
(xd(t),uff(t))

, B(t) =
∂F

∂v

∣∣∣∣
(xd(t),uff(t))

, C(t) =
∂h

∂ξ

∣∣∣∣
(xd(t),uff(t))

.

In general, this system is time-varying. Note that ξ corresponds

to −e in Figure 8.11 due to the convention of using negative feed-

back in the block diagram. We can now proceed to use LQR to com-

pute the time-varying feedback gain K(t) = Q−1
u (t)BT (t)S(t) by solv-

ing the Riccati differential equation (7.31) and the Kalman filter gain
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L(t) = P (t)CT (t)R−1
w (t), where P (t) is obtained by solving the Riccati

equation (8.30).

Assume now that xd and uff are either constant or slowly varying

(with respect to the process dynamics). It is often the case that A(t),

B(t) and C(t) depend only on xd, in which case it is convenient to

write A(t) = A(xd), B(t) = B(xd) and C(t) = C(xd). This allows us

to consider just the linear system given by A(xd), B(xd), and C(xd).

If we design a state feedback controller K(xd) for each xd, then we can

regulate the system using the feedback

ufb = −K(xd)ξ.

Substituting back the definitions of ξ and ufb, our controller becomes

u = ufb + uff = −K(xd)(x− xd) + uff.

This form of controller is called a gain scheduled linear controller with

feedforward uff.

Example 8.10 Steering control with velocity scheduling

Consider the problem of controlling the motion of a automobile so that

it follows a given trajectory on the ground, as shown in Figure 8.13a.

We use the model derived in Example 8.8. A simple feasible trajectory

for the system is to follow a straight line in the x direction at lateral

position yr and fixed velocity vr. This corresponds to a desired state

xd = (vrt, yr, 0) and nominal input uff = (vr, 0). Note that (xd, uff) is
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Figure 8.13: Vehicle steering using gain scheduling. (a) Vehicle

configuration consists of the x, y position of the vehicle, its angle with

respect to the road, and the steering wheel angle. (b) Step responses

for the vehicle lateral position (solid) and forward velocity (dashed).

Gain scheduling is used to set the feedback controller gains for the

different forward velocities.

not an equilibrium point for the full system, but it does satisfy the

equations of motion.

Linearizing the system about the desired trajectory, we obtain

Ad =
∂f

∂x

∣∣∣∣
(xd,uff)

=




0 0 − sin θ

0 0 cos θ

0 0 0




∣∣∣∣∣∣∣∣∣∣∣∣
(xd,uff)

=




0 0 0

0 0 1

0 0 0




,

Bd =
∂f

∂u

∣∣∣∣
(xd,uff)

=




1 0

0 0

0 vr/l




.
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We form the error dynamics by setting e = x− xd and w = u− uff:

dex
dt

= w1,
dey
dt

= eθ,
deθ
dt

=
vr
l
w2.

We see that the first state is decoupled from the second two states and

hence we can design a controller by treating these two subsystems sep-

arately. Suppose that we wish to place the closed loop eigenvalues of

the longitudinal dynamics (ex) at λ1 and place the closed loop eigen-

values of the lateral dynamics (ey, eθ) at the roots of the polynomial

equation s2 + a1s+ a2 = 0. This can accomplished by setting

w1 = −λ1ex, w2 =
l

vr
(a1ey + a2eθ).

Note that the gain l/vr depends on the velocity vr (or equivalently on

the nominal input uff), giving us a gain scheduled controller.

In the original inputs and state coordinates, the controller has the

form




v

δ




= −




λ1 0 0

0
a1l

vr

a2l

vr




︸ ︷︷ ︸
Kd




x− vrt

y − yr

θ




︸ ︷︷ ︸
e

+




vr

0




︸ ︷︷ ︸
uff

.

The form of the controller shows that at low speeds the gains in the

steering angle will be high, meaning that we must turn the wheel harder

to achieve the same effect. As the speed increases, the gains become

smaller. This matches the usual experience that at high speed a very

small amount of actuation is required to control the lateral position of
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a car. Note that the gains go to infinity when the vehicle is stopped

(vr = 0), corresponding to the fact that the system is not reachable at

this point.

Figure 8.13b shows the response of the controller to a step change

in lateral position at three different reference speeds. Notice that the

rate of the response is constant, independent of the reference speed,

reflecting the fact that the gain scheduled controllers each set the closed

loop eigenvalues to the same values. ∇

Nonlinear Estimation

Finally, we briefly comment on the observer represented in Figure 8.11

for the case where the process dynamics are not necessarily linear. Since

we are now considering a nonlinear system that operates over a wide

range of a state space, it is desirable to use full nonlinear dynamics

for the prediction portion of the observer. This can then be combined

with a linear correction term, so that the observer has the form:

dx̂

dt
= f(x̂, u) + L(x̂)(y − h(x̂)).

The estimator gain L(x̂) is the observer gain obtained by linearizing

the system around the currently estimated state. This form of the

observer is known as an extended Kalman filter and has proved to be

a very effective means of estimating the state of a nonlinear system.

The combination of trajectory generation, trajectory tracking, and



OUTPUT FEEDBACK 543

nonlinear estimation provides a means for state space control of nonlin-

ear systems. There are many ways to generate the feedforward signal,

and there are also many different ways to compute the feedback gain

K and the observer gain L. Note that once again the internal model

principle applies: the overall controller contains a model of the system

to be controlled and its environment through the observer.

Computer Implementation

The controllers obtained so far have been described by ordinary differ-

ential equations. They can be implemented directly using analog com-

ponents, whether electronic circuits, hydraulic valves, or other physical

devices. Since in modern engineering applications most controllers are

implemented using computers, we will briefly discuss how this can be

done.

A computer-controlled system typically operates periodically: ev-

ery cycle, signals from the sensors are sampled and converted to digi-

tal form by an analog-to-digital (A/D) converter, the control signal is

computed and the resulting output is converted to analog form for the

actuators, as shown in Figure 8.14. To illustrate the main principles

of how to implement feedback in this environment, we consider the

controller described by equations (8.15) and (8.16), i.e.,

dx̂

dt
= Ax̂+ Bu+ L(y − Cx̂), u = −Kx̂+ kfr.
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Filter
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ΣΣ
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Actuators

Figure 8.14: Components of a computer-controlled system. The

controller consists of analog-to-digital (A/D) and digital-to-analog

(D/A) converters, as well as a computer that implements the control

algorithm. A system clock controls the operation of the controller,

synchronizing the A/D, D/A, and computing processes. The opera-

tor input is also fed to the computer as an external input.

The second equation consists only of additions and multiplications and

can thus be implemented directly on a computer. The first equation

can be implemented by approximating the derivative by a difference

dx̂

dt
≈ x̂(tk+1)− x̂(tk)

h
= Ax̂(tk) +Bu(tk) + L

(
y(tk)− Cx̂(tk)

)
,

where tk are the sampling instants and h = tk+1 − tk is the sampling

period. Rewriting the equation to isolate x̂(tk+1), we get the difference

equation

x̂(tk+1) = x̂(tk) + h
(
Ax̂(tk) +Bu(tk) + L

(
y(tk)− Cx̂(tk)

))
. (8.39)



OUTPUT FEEDBACK 545

The calculation of the estimated state at time tk+1 requires only ad-

dition and multiplication and can easily be done by a computer. A

section of pseudocode for the program that performs this calculation is

% Control algorithm - main loop

r = adin(ch1) % read reference

y = adin(ch2) % get process output

(xd, uff) = trajgen(r, t) % generate feedforward

u = K*(xd - xhat) + uff % compute control variable

daout(ch1, u) % set analog output

xhat = xhat + h*(A*x+B*u+L*(y-C*x)) % update state estimate

The program runs periodically at a fixed sampling period h. Notice

that the number of computations between reading the analog input and

setting the analog output has been minimized by updating the state

after the analog output has been set. The program has an array of

states xhat that represents the state estimate. The choice of sampling

period requires some care.

There are more sophisticated ways of approximating a differential

equation by a difference equation. If the control signal is constant

between the sampling instants, it is possible to obtain exact equations;

see [22].

There are several practical issues that also must be dealt with. For

example, it is necessary to filter measured signals before they are sam-

pled so that the filtered signal has little frequency content above fs/2
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(the Nyquist frequency), where fs = 1/h is the sampling frequency.

This avoids a phenomenon known as aliasing. If controllers with inte-

gral action are used, it is also necessary to provide protection so that

the integral does not become too large when the actuator saturates.

This issue, called integrator windup, is studied in more detail in Chap-

ter 11. Care must also be taken so that parameter changes do not cause

disturbances.

8.6 FURTHER READING

The notion of observability is due to Kalman [135] and, combined with

the dual notion of reachability, it was a major stepping stone toward

establishing state space control theory beginning in the 1960s. The ob-

server first appeared as the Kalman filter in the paper by Kalman [134]

for the discrete-time case and Kalman and Bucy [136] for the continuous-

time case. Kalman also conjectured that the controller for output feed-

back could be obtained by combining a state feedback with a Kalman

filter; see the quote in the beginning of this chapter. This result,

which is known as the separation theorem, is mathematically subtle.

Attempts of proof were made by Josep and Tou [131] and Gunckel

and Franklin [111], but a rigorous proof was given by Georgiou and

Lindquist [98] in 2013. The combined result is known as the linear

quadratic Gaussian control theory; a compact treatment is given in
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the books by Anderson and Moore [9], Åström [17], and Lindquist and

Picci [164]. It was also shown that solutions to robust control prob-

lems had a similar structure but with different ways of computing ob-

server and state feedback gains [76]. The importance of systems with

two degrees of freedom that combine feedback and feedforward was

emphasized by Horowitz [120]. The controller structure discussed in

Section 8.5 is based on these ideas. The particular form in Figure 8.11

appeared in [22], where computer implementation of the controller was

discussed in detail. The hypothesis that motion control in humans is

based on a combination of feedback and feedforward was proposed by

Ito in 1970 [126]. Differentially flat systems were originally studied by

Fliess et al. [86]; they are very useful for trajectory generation.

EXERCISES

8.1 (Coordinate transformations) Consider a system under a coordi-

nate transformation z = Tx, where T ∈ Rn×n is an invertible matrix.

Show that the observability matrix for the transformed system is given

by W̃o = WoT
−1 and hence observability is independent of the choice

of coordinates.

8.2 Show that the system depicted in Figure 8.2 is not observable.

8.3 (Multi-input, multi-output observability) Consider the multi-input,
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multi-output system given by

dx

dt
= Ax+Bu, y = Cx,

where x ∈ Rn, u ∈ Rp, and y ∈ Rq. Show that the states can be

determined from the input u and the output y and their derivatives if

the observability matrix Wo given by equation (8.4) has n independent

rows.

8.4 (Observable canonical form) Show that if a system is observable,

then there exists a change of coordinates z = Tx that puts the trans-

formed system into observable canonical form.

8.5 (Bicycle dynamics) The linearized model for a bicycle is given in

equation (4.5), which has the form

J
d2ϕ

dt2
− Dv0

b

dδ

dt
= mghϕ+

mv20h

b
δ,

where ϕ is the tilt of the bicycle and δ is the steering angle. Give

conditions under which the system is observable and explain any special

situations where it loses observability.

8.6 (Observer design by eigenvalue assignment) Consider the system

dx

dt
= Ax =




−1 0

1 0



x+




a− 1

1



u, y = Cx =


0 1


 x.

Design an observer such that det(sI − LC) = s2 + 2ζoωos + ω2
o with

values ωo = 10 and ζo = 0.6.
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8.7 (Vectored thrust aircraft) The lateral dynamics of the vectored �

thrust aircraft example described in Example 7.9 can be obtained by

considering the motion described by the states z = (x, θ, ẋ, θ̇). Con-

struct an estimator for these dynamics by setting the eigenvalues of

the observer into a Butterworth pattern with λbw = −3.83 ± 9.24i,

−9.24±3.83i. Using this estimator combined with the state space con-

troller computed in Example 7.9, plot the step response of the closed

loop system.

8.8 (Observer for Teorell’s compartment model) Teorell’s compartment

model, shown in Figure 4.17, has the following state space representa-

tion:

dx

dt
=




−k1 0 0 0 0

k1 −k2 − k4 0 k3 0

0 k4 0 0 0

0 k2 0 −k3 − k5 0

0 0 0 k5 0




x+




1

0

0

0

0




u,

where representative parameters are k1 = 0.02, k2 = 0.1, k3 = 0.05,

k4 = k5 = 0.005. The concentration of a drug that is active in com-

partment 5 is measured in the bloodstream (compartment 2). De-

termine the compartments that are observable from measurement of

concentration in the bloodstream and design an estimator for these

concentrations base on eigenvalue assignment. Choose the closed loop
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eigenvalues −0.03, −0.05, and −0.1. Simulate the system when the

input is a pulse injection.

8.9 (Whipple bicycle model) Consider the Whipple bicycle model given

by equation (4.8) in Section 4.2. A state feedback for the system was

designed in Exercise 7.12. Design an observer and an output feedback

for the system.

8.10 (Kalman decomposition) Consider a linear system characterized

by the matrices

A =




−2 1 −1 2

1 −3 0 2

1 1 −4 2

0 1 −1 −1




, B =




2

2

2

1




, C =


0 1 −1 0


 , D = 0.

Construct a Kalman decomposition for the system. (Hint: Try to

diagonalize.)

8.11 (Kalman filtering for a first-order system) Consider the system

dx

dt
= ax+ v, y = cx+ w

where all variables are scalar. The signals v and w are uncorrelated

white noise disturbances with zero mean values and covariance func-

tions

E(v(s)vT (t)) = rvδ(t− s), E(w(s)wT (t)) = rwδ(t− s).
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The initial condition is Gaussian with mean value x0 and covariance P0.

Determine the Kalman filter for the system and analyze what happens

for large t.

8.12 (Vertical alignment) In navigation systems it is important to align

a system to the vertical. This can be accomplished by measuring the

vertical acceleration and controlling the platform so that the measured

acceleration is zero. A simplified one-dimensional version of the prob-

lem can be modeled by

dϕ

dt
= u, u = −ky, y = ϕ+ w,

where ϕ is the alignment error, u the control signal, y the measured

signal, and w the measurement noise, which is assumed to be white

noise with zero mean and covariance function E(w(s)wT (t)) = rwδ(t−

s). The initial misalignment is assumed to be a random variable with

zero mean and the covariance P0. Determine a time-varying gain k(t)

such that the error goes to zero as fast as possible. Compare this with

a constant gain.





Chapter Nine

Transfer Functions

The typical regulator system can frequently be described, in es-

sentials, by differential equations of no more than perhaps the

second, third, or fourth order. . . . In contrast, the order of the set

of differential equations describing the typical negative feedback

amplifier used in telephony is likely to be very much greater. As

a matter of idle curiosity, I once counted to find out what the

order of the set of equations in an amplifier I had just designed

would have been, if I had worked with the differential equations

directly. It turned out to be 55.

Hendrik Bode, 1960 [52].

This chapter introduces the concept of the transfer function, which

is a compact description of the input/output relation for a linear time-

invariant system. We show how to obtain transfer functions analyt-

ically and experimentally. Combining transfer functions with block

diagrams gives a powerful algebraic method to analyze linear systems
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Figure 9.1: A block diagram for a feedback control system. The

reference signal r is fed through a reference shaping block, which

generates a signal that is compared with the output y to form the

error e. The control signal u is generated by the controller, which has

the error as the input. The load disturbance v and the measurement

noise w are external signals.

with many blocks. The transfer function allows new interpretations of

system dynamics. We also introduce the Bode plot, a powerful graphi-

cal representation of the transfer function that was introduced by Bode

to analyze and design feedback amplifiers.

9.1 FREQUENCY DOMAIN MODELING

Figure 9.1 is a block diagram for a typical control system, consisting

of a process to be controlled and a controller that combines feedback

and feedforward. We saw in the previous two chapters how to analyze

and design such systems using state space descriptions of the blocks.

As mentioned in Chapter 3, an alternative approach is to focus on the

input/output characteristics of the system. Since it is the inputs and
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outputs that are used to connect the systems, one could expect that

this point of view would allow an understanding of the overall behavior

of the system. Transfer functions are the main tool in implementing

this approach for linear systems.

The basic idea of the transfer function comes from looking at the

frequency response of a system. Suppose that we have an input signal

that is periodic. Then we can decompose this signal into the sum of a

set of sines and cosines,

u(t) =
∞∑

k=0

ak sin(kωft) + bk cos(kωft),

where ωf is the fundamental frequency of the periodic input. As we saw

in Section 6.3, the input u(t) generates corresponding sine and cosine

outputs (in steady state), with possibly shifted magnitude and phase.

The gain and phase at each frequency are determined by the frequency

response given in equation (6.24):

G(iω) = C(iωI − A)−1B +D, (9.1)

where we set ω = kωf for each k = 1, . . . ,∞. We can thus use the

steady-state frequency response G(iω) and superposition to compute

the steady-state response any periodic signal.

The transfer function generalizes this notion to allow a broader

class of input signals besides periodic ones. As we shall see in the next

section, the transfer function represents the response of the system to
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an exponential input, u = est. It turns out that the form of the transfer

function is precisely the same as that of equation (9.1). This should

not be surprising since we derived equation (9.1) by writing sinusoids

as sums of complex exponentials. The transfer function can also be

introduced as the ratio of the Laplace transforms of the output and

the input when the initial state is zero, although one does not have to

understand the details of Laplace transforms in order to make use of

transfer functions.

Modeling a system through its response to sinusoidal and exponen-

tial signals is known as frequency domain modeling. This terminology

stems from the fact that we represent the dynamics of the system in

terms of the generalized frequency s rather than the time domain vari-

able t. The transfer function provides a complete representation of a

linear system in the frequency domain.

The power of transfer functions is that they provide a particularly

convenient representation in manipulating and analyzing complex lin-

ear feedback systems. As we shall see, there are graphical represen-

tations of transfer functions (Bode and Nyquist plots) that capture

interesting properties of the underlying dynamics. Transfer functions

also make it possible to express the changes in a system because of

modeling error, which is essential when considering sensitivity to pro-

cess variations of the sort discussed in Chapter 13. More specifically,

using transfer functions it is possible to analyze what happens when
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dynamical models are approximated by static models or when high-

order models are approximated by low-order models. One consequence

is that we can introduce concepts that express the degree of stability

of a system.

While many of the concepts for state space modeling and analysis

apply directly to nonlinear systems, frequency domain analysis applies

primarily to linear systems. The notions of gain and phase can, how-

ever, be generalized to nonlinear systems and, in particular, propaga-

tion of sinusoidal signals through a nonlinear system can approximately

be captured by an analog of the frequency response called the describ-

ing function. These extensions of frequency response will be discussed

in Section 10.5.

9.2 DETERMINING THE TRANSFER FUNCTION

As we have seen in previous chapters, the input/output dynamics of a

linear system have two components: the initial condition response and

the forced response, which depends on the system input. The forced

response can be characterized by the transfer function. In this section

we will compute transfer functions for general linear time-invariant

systems. Transfer functions will also be determined for systems with

time delays and systems described by partial differential equations, for

which the transfer functions obtained are then transcendental functions
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of a complex variable.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we will make

use of a special type of signal, called an exponential signal, of the form

est, where s = σ + iω is a complex number. Exponential signals play

an important role in linear systems. They appear in the solution of dif-

ferential equations and in the impulse response of linear systems, and

many signals can be represented as exponentials or sums of exponen-

tials. For example, a constant signal is simply eαt with α = 0. Using

Euler’s formula, damped sine and cosine signals can be represented by

e(σ+iω)t = eσteiωt = eσt(cosωt+ i sinωt),

where σ < 0 determines the decay rate. Figure 9.2 gives examples of

signals that can be represented by complex exponentials; many other

signals can be represented by linear combinations of these signals.

As in the case of the sinusoidal signals we considered in Section 6.3,

we will allow complex-valued signals in the derivation that follows,

although in practice we always add together combinations of signals

that result in real-valued functions.

To find the transfer function for the state space system

dx

dt
= Ax+ Bu, y = Cx+Du, (9.2)

we let the input be the exponential signal u(t) = est and assume that
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Figure 9.2: Examples of exponential signals. The top row corre-

sponds to exponential signals with a real exponent, and the bottom

row corresponds to those with complex exponents. The dashed line

in the last two cases denotes the bounding envelope for the oscillatory

signals. In each case, if the real part of the exponent is negative then

the signal decays, while if the real part is positive then it grows.

s 6∈ λ(A). The state is then given by

x(t) = eAtx(0)+

∫ t

0

eA(t−τ)Besτ dτ = eAtx(0)+eAt(sI−A)−1
(
e(sI−A)t−I

)
B.
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The output y of equation (9.2) then becomes

y(t) = Cx(t) +Du(t)

= CeAtx(0)︸ ︷︷ ︸
initial

condition

response

+
(
C(sI − A)−1B +D

)
est − CeAt(sI − A)−1B

︸ ︷︷ ︸
input response

= CeAt
(
x(0)− (sI − A)−1B

)

︸ ︷︷ ︸
transient response

+
(
C(sI − A)−1B +D

)
est

︸ ︷︷ ︸
pure exponential response yp

,

(9.3)

and the transfer function from u to y of the system (9.2) is the coeffi-

cient of the term est, hence

G(s) = C(sI − A)−1B +D. (9.4)

Compare this with the definition of frequency response given by equa-

tions (6.23) and (6.24).

An important point in the derivation of the transfer function is the

fact that we have restricted s so that s 6= λj(A), the eigenvalues of A.

At those values of s, we see that the response (9.3) of the system is

singular (since sI − A then is not invertible). The transfer function

can, however, be extended to all values of s by analytic continuation.

To give some insight we will now discuss the structure of equa-

tion (9.3). We first notice that the output y(t) can be separated into

two terms in two different ways, as is indicated by braces in the equa-

tion.

The response of the system to initial conditions is CeAtx(0). Recall
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that eAt can be written in terms of the eigenvalues of A (using the Jor-

dan form in the case of repeated eigenvalues), and hence the transient

response is a linear combination of terms of the form pj(t)e
λjt, where

λj are eigenvalues of A and pj(t) is a polynomial whose degree is less

than the multiplicity of the eigenvalue (Exercise 9.1).

The transient response to the input u(t) = est contains a mixture

of terms pj(t)e
λjt and the exponential function

yp(t) =
(
C(sI − A)−1B +D

)
est = G(s)est, (9.5)

which is a particular solution to the differential equation (9.2). We call

equation (9.5) the pure exponential solution because it has only one

exponential est. It follows from equation (9.3) that the output y(t) is

equal to the pure exponential solution yp(t) if the initial condition is

chosen as

x(0) = (sI − A)−1B. (9.6)

If the system (9.2) is asymptotically stable, then eAt → 0 as t→∞.

If in addition the input u(t) is a constant u(t) = e0 · t or a sinusoid

u(t) = eiωt then the response converges to a constant or sinusoidal

steady-state solution (as shown in equation (6.23)).

To simplify manipulation of the equations describing linear time-

invariant systems, we introduce E as the class of time functions that

can be created from combinations of signals of the form X(s)est, where

the parameter s is a complex variable and X(s) is a complex function
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(vector valued if needed). It follows from equations (9.3) and (9.4)

that if a system with transfer function G(s) has the input u ∈ E then

there is a particular solution y ∈ E that satisfies the dynamics of the

system. This solution is the actual response of the system if the initial

condition is chosen as equation (9.6). Since the transfer function of a

system is given by the pure exponential response, we can derive transfer

functions using exponential signals, and we will use the notation

y = Gyu u, (9.7)

where Gyu is the transfer function for the linear input/output system

taking u to y. Mathematically, it is important to remember that this

notation assumes the use of combinations of exponential signals. We

will also often drop the subscripts on G and just write y = Gu when

the meaning is clear from context.

Example 9.1 Damped oscillator

Consider the response of a damped linear oscillator, whose state space

dynamics were studied in Section 7.3:

dx

dt
=




0 ω0

−ω0 −2ζω0



x+




0

kω0



u, y =


1 0


 x. (9.8)

This system is asymptotically stable if ζ > 0, and so we can look at
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the steady-state response to an input u = est:

Gyu(s) = C(sI − A)−1B =


1 0







s −ω0

ω0 s+ 2ζω0




−1


0

kω0




=


1 0







1

s2 + 2ζω0s+ ω2
0




s+ 2ζω0 −ω0

ω0 s










0

kω0




=
kω2

0

s2 + 2ζω0s+ ω2
0

.

(9.9)

The steady-state response to a step input is obtained by setting s = 0,

which gives

u = 1 =⇒ y = Gyu(0)u = k.

If we wish to compute the steady-state response to a sinusoid, we write

u = sinωt =
1

2

(
ie−iωt − ieiωt

)
=⇒ y =

1

2

(
iGyu(−iω)e−iωt − iGyu(iω)e

iωt
)
.

We can now write G(iω) in terms of its magnitude and phase,

G(iω) =
kω2

0

−ω2 + (2ζω0ω)i+ ω2
0

=Meiθ,

where the magnitude (or gain) M and phase θ are given by

M =
kω2

0√
(ω2

0 − ω2)2 + (2ζω0ω)2
,

sin θ

cos θ
=
−2ζω0ω

ω2
0 − ω2

.

We can also make use of the fact that G(−iω) is given by its complex

conjugate G∗(iω), and it follows that G(−iω) = Me−iθ. Substituting
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Figure 9.3: Stable amplifier based on negative feedback around an

operational amplifier. The circuit diagram on the left shows a typical

amplifier with low-frequency gain R2/R1. If we model the dynamic

response of the op amp as G(s) = ak/(s + a), then the gain falls

off at frequency ω = aR1k/R2, as shown in the gain curves on the

right. The frequency response is computed for k = 107, a = 10 rad/s,

R2 =106 Ω, and R1 = 1, 102, 104, and 106 Ω.

these expressions into our output equation, we obtain

y =
1

2

(
i(Me−iθ)e−iωt − i(Meiθ)eiωt

)

=M ·
1

2

(
ie−i(ωt+θ) − iei(ωt+θ)

)
=M sin(ωt+ θ).

The responses to other signals can be computed by writing the in-

put as an appropriate combination of exponential responses and using

linearity. ∇

Example 9.2 Operational amplifier circuit

To further illustrate the use of exponential signals, we consider the

operational amplifier circuit described in Section 4.3 and reproduced

in Figure 9.3a. The model in Section 4.3 is a simplification because

the linear behavior of the amplifier is modeled as a constant gain. In
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reality there are significant dynamics in the amplifier, and the static

model vout = −kv (equation (4.11)) should therefore be replaced by a

dynamical model vout = −Gv. A simple transfer function is

G(s) =
ak

s+ a
. (9.10)

These dynamics correspond to a first-order system with time constant

1/a. The parameter k is called the open loop gain, and the product ak

is called the gain-bandwidth product; typical values for these parameters

are k = 107 and ak = 107–109 rad/s.

If the input v1 is an exponential signal est, then there are solutions

where all signals in the circuit are exponentials, v, v1, v2 ∈ E , since all of

the elements of the circuit are modeled as being linear. The equations

describing the system can then be manipulated algebraically.

Assuming that the current into the amplifier is zero, as is done in

Section 4.3, the current through the resistors R1 and R2 are the same,

hence

v1 − v
R1

=
v − v2
R2

, or (R1 +R2)v = R2v1 +R1v2

Combining the above equation with the open loop dynamics of the

operational amplifier (9.10), which can be written as v2 = −Gv in the

simplified notation (9.7), gives the following model for the closed loop

system:

(R1 +R2)v = R2v1 +R1v2, v2 = −Gv, v, v1, v2 ∈ E . (9.11)
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Eliminating v between these equations yields

v2 =
−R2G

R1 +R2 +R1G
v1 =

−R2ak

R1ak + (R1 +R2)(s+ a)
v1,

and the transfer function of the closed loop system is

Gv2v1 =
−R2ak

R1ak + (R1 +R2)(s+ a)
. (9.12)

The low-frequency gain is obtained by setting s = 0, hence

Gv2v1(0) =
−kR2

(k + 1)R1 +R2

≈ −R2

R1

,

which is the result given by equation (4.12) in Section 4.3. The band-

width of the amplifier circuit is

ωb = a
R1(k + 1) +R2

R1 +R2

≈ a
R1k

R2

for k ≫ 1,

where the approximation holds for R2/R1 ≫ 1. The gain of the closed

loop system drops off at high frequencies as R2ak/(ω(R1 + R2)). The

frequency response of the transfer function is shown in Figure 9.3b for

k = 107, a = 10 rad/s, R2 = 106 Ω, and R1 = 1, 102, 104, and 106 Ω.

Note that in solving this example, we bypassed explicitly writing the

signals as v = V (s)est and instead worked directly with v, assuming

it was an exponential. This shortcut is handy in solving problems

of this sort and when manipulating block diagrams. A comparison

with Section 4.3, where we make the same calculation when G(s) is a

constant, shows analysis of systems using transfer functions is as easy

as using static systems. The calculations are the same if the resistances
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R1 and R2 are replaced by impedances, as discussed in Example 9.3,

below. ∇

Transfer Functions for Linear Differential Equations

Consider a linear system described by the controlled differential equa-

tion

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b0

dmu

dtm
+ b1

dm−1u

dtm−1
+ · · ·+ bmu, (9.13)

where u is the input and y is the output. Notice that here we have

generalized our system description from Section 3.2 to allow both the

input and its derivatives to appear. This type of description arises in

many applications, as described briefly in Chapter 2 and Section 3.2;

bicycle dynamics and AFM modeling are two specific examples.

To determine the transfer function of the system (9.13), let the

input be u(t) = est. Since the system is linear, there is an output of

the system that is also an exponential function y(t) = y0e
st. Inserting

the signals into equation (9.13), we find

(sn + a1s
n−1 + · · ·+ an)y0e

st = (b0s
m + b1s

m−1 · · ·+ bm)e
st,

and the response of the system can be completely described by two

polynomials

a(s) = sn + a1s
n−1 + · · ·+ an, b(s) = b0s

m + b1s
m−1 + · · ·+ bm.

(9.14)
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The polynomial a(s) is the characteristic polynomial of the ordinary

differential equation. If a(s) 6= 0, it follows that

y(t) = y0e
st =

b(s)

a(s)
est. (9.15)

The transfer function of the system (9.13) is thus the rational function

G(s) =
b(s)

a(s)
=
b0s

m + b1s
m−1 + · · ·+ bm

sn + a1sn−1 + · · ·+ an
, (9.16)

where the polynomials a(s) and b(s) are given by equation (9.14). No-

tice that the transfer function for the system (9.13) can be obtained

by inspection since the coefficients of a(s) and b(s) are precisely the

coefficients of the derivatives of u and y. The poles and the zeros of the

transfer functions are the roots of the polynomials a(s) and b(s). The

properties of the system are determined by the poles and zeros of the

transfer function, as we shall see in the examples that follow and shall

explore in more detail in Section 9.5.

Example 9.3 Electrical circuit elements

Modeling of electrical circuits is a common use of transfer functions.

Consider, for example, a resistor modeled by Ohm’s law V = IR, where

V is the voltage across the resistor, I is the current through the resistor,

and R is the resistance value. If we consider current to be the input

and voltage to be the output, the resistor has the transfer function

Z(s) = R, which is also called the generalized impedance of the circuit

element.
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Next we consider an inductor whose input/output characteristic is

given by

L
dI

dt
= V.

Letting the current be I(t) = est, we find that the voltage is V (t) =

Lsest and the transfer function of an inductor is thus Z(s) = Ls. A

capacitor is characterized by

C
dV

dt
= I,

and a similar analysis gives a transfer function from current to voltage

of Z(s) = 1/(Cs). Using transfer functions, complex electrical circuits

can be analyzed algebraically by using the generalized impedance Z(s)

just as one would use the resistance value in a resistor network. ∇

Example 9.4 Vibration damper

Damping vibrations is a common engineering problem. A schematic

diagram of a vibration damper is shown in Figure 9.4. To analyze the

system we use Newton’s equations for the two masses:

m1q̈1 + c1q̇1 + k1q1 + k2(q1 − q2) = F, m2q̈2 + k2(q2 − q1) = 0.

To determine the transfer function from the force F to the position q1

of the mass m1 we first find particular exponential solutions:

(m1s
2 + c1s+ k1)q1 + k2(q1 − q2) = F, m2s

2q2 + k2(q2 − q1) = 0,

(9.17)
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m1
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c1

k2

F

q1

q2

Figure 9.4: A vibration damper. Vibrations of the mass m1 can be

damped by providing it with an auxiliary mass m2, attached to m1

by a spring with stiffness k2. The parameters m2 and k2 are chosen so

that the frequency
√

k2/m2 matches the frequency of the vibration.

We solve q2 from the second expression,

q2 =
k2

m2s2 + k2
q1,

and insert this into the first expression to obtain

(m1s
2 + c1s+ k1)q1 + k2

(
1− k2

m2s2 + k2

)
q1 = F,

and hence

(
(m1s

2 + c1s+ k1 + k2)(m2s
2 + k2)− k22

)
q1 = (m2s

2 + k2)F.

Expanding the expression gives the the transfer function

Gq1F (s) =
m2s

2 + k2
m1m2s4 +m2c1s3 + (m1k2 +m2(k1 + k2))s2 + k2c1s+ k1k2

from the disturbance force F to the position q1 of the mass m1. The

transfer function has a zero at s = ±i
√
k2/m2, which means that
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Table 9.1: Transfer functions for some common linear time-invariant

systems.

Type System Transfer Function

Integrator ẏ = u
1

s

Differentiator y = u̇ s

First-order system ẏ + ay = u
1

s+ a

Double integrator ÿ = u
1

s2

Damped oscillator ÿ + 2ζω0ẏ + ω2
0y = u

1

s2 + 2ζω0s+ ω2
0

State space system ẋ = Ax+Bu, y = Cx+Du C(sI −A)−1B +D

PID controller y = kpu+ kdu̇+ ki
∫
u kp + kds+

ki
s

Time delay y(t) = u(t− τ) e−τs

transmission of sinusoidal signals with this frequency are blocked (this

blocking property will be discussed in Section 9.5). ∇

As the examples above illustrate, transfer functions provide a simple

representation for linear input/output systems. Transfer functions for

some common linear time-invariant systems are given in Table 9.1.

Transfer functions of a form similar to equation (9.13) can also be

constructed for systems with many inputs and many outputs.
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Time Delays and Partial Differential Equations

Although we have focused thus far on ordinary differential equations,

transfer functions can also be used for other types of linear systems.

We illustrate this using time delays and systems described by partial

differential equations.

Example 9.5 Time delay

Time delays appear in many systems: typical examples are delays in

nerve propagation, communication systems, and mass transport. A

system with a time delay has the input/output relation

y(t) = u(t− τ). (9.18)

To obtain the corresponding transfer function we let the input be u(t) =

est, and the output is then

y(t) = u(t− τ) = es(t−τ) = e−sτest = e−sτu(t).

We find that the transfer function of a time delay is thus G(s) = e−sτ ,

which is not a rational function. ∇
�

Example 9.6 Heat propagation

Consider the problem of one-dimensional heat propagation in a semi-

infinite metal rod. Assume that the input is the temperature at one

end and that the output is the temperature at a point along the rod.

Let θ(x, t) be the temperature at position x and time t. With a proper
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choice of length scales and units, heat propagation is described by the

partial differential equation

∂θ

∂t
=
∂2θ

∂2x
, y(t) = θ(1, t), (9.19)

and the point of interest can be assumed to have x = 1. The boundary

condition for the partial differential equation is

θ(0, t) = u(t).

To determine the transfer function we choose the input as u(t) = est.

Assume that there is a solution to the partial differential equation of

the form θ(x, t) = ψ(x)est and insert this into equation (9.19) to obtain

sψ(x) =
d2ψ

dx2
,

with boundary condition ψ(0) = 1. This ordinary differential equation

(with independent variable x) has the solution

ψ(x) = Aex
√
s + Be−x

√
s.

Since the temperature of the rod is bounded we have A = 0, the bound-

ary condition gives B = 1, and the solution is then

y(t) = θ(1, t) = ψ(1)est = e−
√
sest = e−

√
su(t).

The system thus has the transfer function G(s) = e−
√
s. As in the case

of a time delay, the transfer function is not a rational function. ∇
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State Space Realizations of Transfer Functions

We have seen in equation (9.4) how to compute the transfer function

for a given state space control system. The inverse problem, computing

a state space control system for a given transfer function, is known as

the realization problem. Given a transfer function G(s), we say that

a state space system with matrices A, B, C, and D is a (state space)

realization of G(s) if G(s) = C(sI−A)−1B+D. We explore here some

of the properties of realizations of transfer functions, starting with the

question of uniqueness.

As we saw in Section 6.3, it is possible to choose a different set of

coordinates for the state space of a linear system and still preserve the

input/output response. In other words, the matrices A, B, C, and D

in the state space equations (9.2) depend on the choice of coordinate

system used for the states, but since the transfer function relates input

to outputs, it should be invariant to coordinate changes in the state

space. Repeating the analysis in Chapter 6, consider a model (9.2) and

introduce new coordinates z by the transformation z = Tx, where T is

a nonsingular matrix. The system is then described by

dz

dt
= T (Ax+ Bu) = TAT−1z + TBu =: Ãz + B̃u,

y = Cx+Du = CT−1z +Du =: C̃z +Du.

This system has the same form as equation (9.2), but the matrices A,
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B, and C are different:

Ã = TAT−1, B̃ = TB, C̃ = CT−1. (9.20)

Computing the transfer function of the transformed model, we get

G̃(s) = C̃(sI − Ã)−1B̃ +D = CT−1(sI − TAT−1)−1TB +D

= C
(
T−1(sI − TAT−1)T

)−1
B +D = C(sI − A)−1B +D = G(s),

which is identical to the transfer function (9.4) computed from the

system description (9.2). The transfer function is thus invariant to

changes of the coordinates in the state space.

One consequence of this coordinate invariance is that it is not possi-

ble for there to be a unique state space realization for a given transfer

function. Given any one realization, we can compute another real-

ization by simply changing coordinates using any invertible matrix T .

Note, however, that the dimension of the state space realization is not

changed by this transformation. It therefore makes sense to talk about

a minimal realization, in which the number of states is as small as pos-

sible. For a transfer function G(s) = b(s)/a(s) with denominator a(s)

of degree n, it can be shown that there is always a realization with n

states, given by a state space system in reachable canonical form (7.6).

In general, a minimal realization will always have at most n states.

However, the degree may be lower if there are pole/zero cancellations,

as illustrated by the following example.
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Example 9.7 Cancellation of poles and zeros

Consider the system

dx

dt
=




−3 1

−2 0



x+




1

1



u, y =


1 0


 x.

Equation (9.4) gives the following transfer function

G(s) =


1 0







s+ 3 −1

2 s




−1


1

1




=
1

s2 + 3s+ 2


1 0







s 1

−2 s+ 3







1

1




=
s+ 1

s2 + 3s+ 2
=

s+ 1

(s+ 1)(s+ 2)
=

1

s+ 2
.

Even though the original state space system was of second order, the

transfer function is a first-order rational function. The reason is that

the factor s+1 has been canceled when computing the transfer function.

Cancellation of poles and zeros is related to lack of reachability and

observability. In this particular case the reachability matrix

Wr =


B AB


 =




1 −2

1 −2




has rank 1 and the system is not reachable. Notice that it was shown

in Section 8.3 that the transfer function is given by the reachable and

observable subsystem Σro in the Kalman decomposition of a linear

system, which in this case is of first order. ∇

The general approach to understand realizations (and minimal real-�

izations) is to make use of the Kalman decomposition in Section 8.3.
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We see from the structure of equation (8.20) that the input/output re-

sponse of a linear control system is determined solely by the reachable

and observable subsystem Σro. When a system lacks reachability and

observability, this shows up as cancellation of poles and zeros in the

transfer function computed from the full system matrices.

Cancellation of poles and zeros was controversial for a long time,

which was manifested in rules for manipulating transfer functions: do

not cancel factors with roots in the right half-plane. Special algebraic

methods were also developed to do block diagram algebra. Kalman’s

decomposition, which clarifies that the transfer function only represents

part of the dynamics, gives clear insight into what is happening. These

issues are discussed in more detail in Section 9.5.

The results of this section can also be extended to the case of multi-

input, multi-output (MIMO) systems. The transfer function G(s) for

a single-input, single-output given by equation (9.4) is a function of

complex variables, G : C→ C. For systems with p inputs and q outputs

the transfer function is matrix-valued, G : C → Cq×p. The techniques

described above can be generalized to this case, but the notion of a

(minimal) realization becomes substantially more complicated.
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9.3 LAPLACE TRANSFORMS
�

The traditional way to derive the transfer function for a linear, time-

invariant, input/output system is to make use of Laplace transforms.

The Laplace transform method was particularly important before the

advent of computers, since it provided a practical way to compute the

response of a system to a given input. Today, we compute the response

of a linear (or nonlinear) system to complex inputs using numerical

simulation, and the Laplace transform is no longer needed for this

purpose. It is however, still useful to gain insight into the response of

linear systems.

In this section, we provide a brief introduction to the use of Laplace

transforms and their connections with transfer functions. Only a few el-

ementary properties of Laplace transforms are needed for basic control

applications; students who are not familiar with them can safely skip

this section. A good reference for the mathematical material in this sec-

tion is the classic book by Widder [251] or the more modern treatments

available in standard textbooks on signals and systems [161, 198].

Consider a function f(t), f : R+ → R, that is integrable and grows

no faster than es0t for some finite s0 ∈ R and large t. The Laplace

transform maps f to a function F = Lf : C→ C of a complex variable.

It is defined by

F (s) =

∫ ∞

0

e−stf(t) dt, Re s > s0. (9.21)



TRANSFER FUNCTIONS 579

Table 9.2: Laplace transforms for some common signals.

Signal u(t) Laplace transform U(s)

S(t) [unit step]
1

s

sin(at)
a

s2 + a2

e−αt sin(at)
a

(s+ α)2 + a2

Signal u(t) Laplace transform U(s)

δ(t) [impulse] 1

cos(at)
s

s2 + a2

e−αt cos(at)
s+ α

(s+ α)2 + a2

Using this formula, it is possible to compute the Laplace transform of

some common functions; see Table 9.2.

The Laplace transform has some properties that makes it well suited

to deal with linear systems. First we observe that the transform itself

is linear because

L(af + bg) =

∫ ∞

0

e−st(af(t) + bg(t)) dt

= a

∫ ∞

0

e−stf(t) dt+ b

∫ ∞

0

e−stg(t) dt = aLf + bLg.
(9.22)

Using linearity we can compute the Laplace transform of combinations

of simple inputs, such as those that make up the set of exponential
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signals E introduced earlier.

Next we will calculate the Laplace transform of the integral of a

function. Using integration by parts, we get

L
∫ t

0

f(τ) dτ =

∫ ∞

0

(
e−st

∫ t

0

f(τ) dτ
)
dt

= −e
−st

s

∫ t

0

f(τ) dτ
∣∣∣
∞

0
+

∫ ∞

0

e−sτ

s
f(τ) dτ =

1

s

∫ ∞

0

e−sτf(τ) dτ,

hence

L
∫ t

0

f(τ) dτ =
1

s
Lf =

1

s
F (s). (9.23)

Integration of a time function thus corresponds to division of the cor-

responding Laplace transform by s.

Since integration corresponds to division by s, we can expect that

differentiation corresponds to multiplication by s. This is not quite true

as we will see by calculating the Laplace transform of the derivative of

a function. We have

Ldf
dt

=

∫ ∞

0

e−stf ′(t) dt = e−stf(t)
∣∣∣
∞

0
+s

∫ ∞

0

e−stf(t) dt = −f(0)+sLf,

where the second equality is obtained using integration by parts. We

thus obtain

Ldf
dt

= sLf − f(0) = sF (s)− f(0). (9.24)

Notice the appearance of the initial value f(0) of the function. The

formula (9.24) is particularly simple if the initial conditions are zero,

because if f(0) = 0 it follows that differentiation of a function corre-

sponds to multiplication of the transform by s.
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Using Laplace transforms the transfer function for a linear time-

invariant system can be defined as the ratio of the transform of the

input and the output, when the transforms are computed under the

assumption that all initial conditions are zero. We will now illustrate

how Laplace transforms can be used to compute transfer functions.

Example 9.8 Transfer function of state space model

Consider the state space system described by equation (9.2). Taking

Laplace transforms gives

sX(s)− x(0) = AX(s) + BU(s), Y (s) = CX(s) +DU(s).

Elimination of X(s) gives

X(s) = (sI − A)−1x(0) + (sI − A)−1BU(s). (9.25)

When the initial condition x(0) is zero we have

X(s) = (sI − A)−1BU(s), Y (s) =
(
C(sI − A)−1B +D

)
U(s).

and the transfer function is given by G(s) = C(sI −A)−1B +D (com-

pare with equation (9.4)). ∇

Example 9.9 Transfer functions and impulse response

Consider a linear time-invariant system with zero initial state. We saw

in Section 6.3 that the relation between the input u and the output y
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is given by the convolution integral

y(t) =

∫ ∞

0

h(t− τ)u(τ) dτ,

where h(t) is the impulse response for the system (assumed causal).

Taking the Laplace transform of this expression and using the fact

that h(t′) = 0 for t′ = t− τ < 0 gives

Y (s) =

∫ ∞

0

e−sty(t) dt =

∫ ∞

0

e−st
∫ ∞

0

h(t− τ)u(τ) dτ dt

=

∫ ∞

0

∫ t

0

e−s(t−τ)e−sτh(t− τ)u(τ) dτ dt

=

∫ ∞

0

∫ ∞

0

e−st
′

h(t′)e−sτu(τ) dτ dt′

=

∫ ∞

0

e−sth(t) dt

∫ ∞

0

e−sτu(τ) dτ = H(s)U(s).

Thus, the input/output response is given by Y (s) = H(s)U(s), where

H, U , and Y are the Laplace transforms of h, u, and y.

The system theoretic interpretation is that the Laplace transform

of the output of a linear system is a product of two terms, the Laplace

transform of the input U(s) and the Laplace transform of the impulse

response of the system H(s). A mathematical interpretation is that the

Laplace transform of a convolution is the product of the transforms of

the functions that are convolved. The fact that the formula Y (s) =

H(s)U(s) is much simpler than a convolution is one reason why Laplace

transforms have traditionally been popular in engineering. ∇

A variety of theorems are available using Laplace transforms that

are useful in a control systems setting. The initial value theorem states
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that

lim
t→0

f(t) = lim
s→∞

sF (s).

Using this theorem and the fact that a step input has Laplace transform

1/s, we can compute the initial value of signals in a control system in

response to step inputs. For example, if Gur represents that transfer

function between the reference r and control input u, then the step

response will have the property that

u(0) = lim
t→0

u(t) = lim
s→∞

sU(s) = lim
s→∞

s ·Gur(s) ·
1

s
= Gur(∞).

Similarly, the final value theorem states that

lim
t→∞

f(t) = lim
s→0

sF (s),

and this can be used to show that for a step input r(t) we have

limt→∞ y(t) = Gyr(0).

9.4 BLOCK DIAGRAMS AND TRANSFER FUNCTIONS

The combination of block diagrams and transfer functions is a powerful

way to represent control systems. Transfer functions relating different

signals in the system can be derived by purely algebraic manipulations

of the transfer functions of the blocks using block diagram algebra. Out-

puts resulting from several input signals can be derived using super-

position. To show how this can be done, we will begin with simple

combinations of systems. We will assume that all signals are exponen-
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G1 G2

u y

(a) Gyu = G2G1

G2

Σ
u y

G1

(b) Gyu = G1 +G2

−G2

Σ
eu y

G1

(c) Gyu =
G1

1 +G1G2

Figure 9.5: Interconnections of linear systems. Series (a), parallel

(b), and feedback (c) connections are shown. The transfer functions

for the composite systems can be derived by algebraic manipulations

assuming exponential functions for all signals.

tial signals E and we will use the compact notation y = Gu for the

output y ∈ E of a linear time-invariant system with the input u ∈ E

and the transfer function G (see equation (9.7) and recall its interpre-

tation).

Consider a system that is a cascade combination of systems with

the transfer functions G1(s) and G2(s), as shown in Figure 9.5a. Let

the input of the system be u ∈ E . The output of the first block is then

G1u ∈ E , which is also the input to the second system. The output of

the second system is then

y = G2(G1u) = (G2G1)u. (9.26)

The transfer function of the series connection is thus G = G2G1, i.e.,

the product of the transfer functions. The order of the individual trans-

fer functions is due to the fact that we place the input signal on the
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right-hand side of this expression, hence we first multiply by G1 and

then by G2. Unfortunately, this has the opposite ordering from the

diagrams that we use, where we typically have the signal flow from left

to right, so one needs to be careful. The ordering is important if either

G1 or G2 is a vector-valued transfer function, as we shall see in some

examples.

Consider next a parallel connection of systems with the transfer

functions G1 and G2, as shown in Figure 9.5b, and assume that all

signals are exponential signals. The outputs of the first and second

systems are simply G1u and G2u and the output of the parallel con-

nection is

y = G1u+G2u = (G1 +G2)u.

The transfer function for a parallel connection is thus G = G1 +G2.

Finally, consider a feedback connection of systems with the transfer

functions G1 and G2, as shown in Figure 9.5c. Writing the relations

between the signals for the different blocks and the summation unit,

we find

y = G1e, e = u−G2y. (9.27)

Elimination of e gives

y = G1(u−G2y) =⇒ (1+G1G2)y = G1u =⇒ y =
G1

1 +G1G2

u.
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µ
Σ Σ

v

Σ

w

ye u η
F (s)

r
C(s) P (s)

−1

Figure 9.6: Block diagram of a feedback system. The inputs to the

system are the reference signal r, the process disturbance v, and the

measurement noise w. The remaining signals in the system can all

be chosen as possible outputs, and transfer functions can be used to

relate the system inputs to the other labeled signals.

The transfer function of the feedback connection is thus

G =
G1

1 +G1G2

. (9.28)

These three basic interconnections can be used as the basis for com-

puting transfer functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figure 9.6, which was given at the beginning

of the chapter. The system has three blocks representing a process P ,

a feedback controller C, and a feedforward controller F . Together, C

and F define the control law for the system. There are three external

signals: the reference (or command) signal r, the load disturbance v,

and the measurement noise w. A typical problem is to determine how

the error e is related to the signals r, v, and w.

To derive the transfer functions we are interested in, we assume that
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all signals are exponential signals E and we write the relations between

the signals for each block in the system block diagram. Assume for

example that we are interested in the control error e. The summation

point and the block F (s) gives

e = Fr − y.

The signal y is the sum of w and η, where η is the output of the process

P (s):

y = w + η, η = P (v + u), u = Ce,

Combining these equations gives

e = Fr − y = Fr − (w + η) = Fr −
(
w + P (v + u)

)

= Fr −
(
w + P (v + Ce)

)
,

and hence

e = Fr − w − Pv − PCe,

Finally, solving this equation for e gives

e =
F

1 + PC
r− 1

1 + PC
w− P

1 + PC
v = Gerr+Geww+Gevv, (9.29)

and the error is thus the sum of three terms, depending on the reference

r, the measurement noise w, and the load disturbance v. The functions

Ger =
F

1 + PC
, Gew =

−1
1 + PC

, Gev =
−P

1 + PC
(9.30)

are transfer functions from reference r, noise w, and disturbance v to

the error e. Equation (9.29) can also be obtained by computing the
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(c)

(b)

F PC
r e

Σ

−1

F
r

PC
1+PC

y

PCF
1+PC

yr

y

(a)

Figure 9.7: Example of block diagram algebra. The results from

multiplying the process and controller transfer functions (from Fig-

ure 9.6) are shown in (a). Replacing the feedback loop with its transfer

function equivalent yields (b), and finally multiplying the two remain-

ing blocks gives the reference to output representation in (c).

outputs for each input and using superposition.

We can also derive transfer functions by manipulating the block

diagrams directly, as illustrated in Figure 9.7. Suppose we wish to

compute the transfer function between the reference r and the out-

put y. We begin by combining the process and controller blocks in

Figure 9.6 to obtain the diagram in Figure 9.7a. We can now elimi-

nate the feedback loop using the algebra for a feedback interconnection

(Figure 9.7b) and then use the series interconnection rule to obtain

Gyr =
PCF

1 + PC
. (9.31)

Similar manipulations can be used to obtain the other transfer func-

tions (Exercise 9.10).

The above analysis illustrates an effective way to manipulate the

equations to obtain the relations between inputs and outputs in a feed-
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back system. The general idea is to start with the variable of interest

and to trace variables backwards around the feedback loop. With some

practice, equations (9.29) and (9.30) can be written directly by inspec-

tion of the block diagram. Notice, for example, that all terms in equa-

tion (9.30) have the same denominator and that the numerators are the

blocks that one passes through when going directly from input to out-

put (ignoring the feedback). This type of rule can be used to compute

transfer functions by inspection, although for systems with multiple

feedback loops it can be tricky to compute them without writing down

the algebra explicitly.

We can also use block diagram algebra to obtain insights about state

space controllers. Consider a state space controller that uses an ob-

server, such as the one shown in Figure 8.7. The process model is

dx

dt
= Ax+Bu, y = Cx,

and the controller (8.15) is given by

u = −Kx̂+ kfr, (9.32)

where x̂ is the output of a state observer (8.16) given by

dx̂

dt
= Ax̂+ Bu+ L(y − Cx̂). (9.33)

The controller is a system with one output u and two inputs, the ref-

erence r and the measured signal y. Using transfer functions and ex-
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ponential signals it can be represented as

u = Gurr +Guyy.s (9.34)

The transfer function Guy from y to u describes the feedback action

and Gur from r to u describes the feedforward action. We call these

open loop transfer functions because they represent the relationships

between the signals without considering the dynamics of the process

(e.g., removing P from the system description or cutting the loop at

the process input or output).

To derive the controller transfer functions we rewrite equation (9.33)

as

dx̂

dt
= (A−BK − LC)x̂+ Bkfr + Ly. (9.35)

Letting x̂, r, and y be exponential signals, the above equations give

u = −Kx̂+ kfr, (sI − (A−BK − LC))x̂ = Bkfr + Ly,

and we find that the controller transfer functions in equation (9.34) are

Gur = kf −K(sI − A+BK + LC)−1Bkf,

Guy = −K(sI − A+ BK + LC)−1L

(9.36)

We illustrate with an example.

Example 9.10 Vehicle steering

Consider the linearized model for vehicle steering introduced in Ex-

ample 6.13. In Examples 7.4 and 8.3 we designed a state feedback
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y(t)

r(t)

Controller

Σ

K
Gx̂u Gx̂y

−1 Σ

P (s)
u yr

kf

Estimator

x̂

Figure 9.8: Block diagram for a steering control system. The control

system is designed to maintain the lateral position of the vehicle along

a reference curve (left). The structure of the control system is shown

on the right as a block diagram of transfer functions. The estimator

consists of two components that compute the estimated state x̂ from

the combination of the input u and output y of the process. The esti-

mated state is fed through a state feedback controller and combined

with a feedforward gain obtain the commanded steering angle u.

controller and state estimator for the system. A block diagram for the

resulting control system is given in Figure 9.8. Note that we have split

the estimator into two components, Gx̂u(s) and Gx̂y(s), corresponding

to its inputs u and y. To compute these transfer functions we use equa-

tion (9.33) and the expressions for A, B, C, and L from Example 8.3,

hence

Gx̂u(s) =




γs+ 1

s2 + l1s+ l2

s+ l1 − γl2
s2 + l1s+ l2



, Gx̂y(s) =




l1s+ l2
s2 + l1s+ l2

l2s

s2 + l1s+ l2



,

where l1 and l2 are the observer gains and γ is the scaled position of the
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center of mass from the rear wheels. Applying block diagram algebra

to the controller in Figure 9.8 we obtain

Gur(s) =
kf

1 +KGx̂u(s)
=

kf(s
2 + l1s+ l2)

s2 + s(γk1 + k2 + l1) + k1 + l2 + k2l1 − γk2l2
,

and

Guy(s) =
−KGx̂y(s)

1 +KGx̂u(s)
=

s(k1l1 + k2l2) + k1l2
s2 + s(γk1 + k2 + l1) + k1 + l2 + k2l1 − γk2l2

,

where k1 and k2 are the state feedback gains and kf is the feedforward

gain. The last equalities are obtained applying block diagram algebra

to Figure 9.8, but can also be obtained by applying equation (9.36).

To compute the closed loop transfer function Gyr from reference r

to output y, we begin by deriving the transfer function for the process

P (s). We can compute this directly from the state space description,

which was given in Example 6.13. Using that description, we have

P (s) = Gyu(s) = C(sI−A)−1B+D =


1 0







s −1

0 s




−1


γ

1




=
γs+ 1

s2
.

The transfer function for the full closed loop system between the input

r and the output y is then given by

Gyr =
P (s)Gur(s)

1− P (s)Guy(s)
=

kf(γs+ 1)

s2 + (k1γ + k2)s+ k1
.

(The unusual sign in the denominator of the middle expression occurs

because Gur is in the feedback path and incorporates the −1 gain ele-

ment.) ∇
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Note that in the previous example the observer gains l1 and l2 do

not appear in the transfer function Gyr. This is true in general, as

follows from Figure 8.9b in Section 8.3.

We also note that a control system using an observer should be

implemented as the multivariable system (9.35), which is of order n.

It should not be implemented using two separate transfer functions, as

described in equation (9.34), because the controller would then be of

order 2n, and there will be unobservable modes.

Algebraic Loops
�

When analyzing or simulating a system described by a block diagram,

it is necessary to form the differential equations that describe the com-

plete system. In many cases the equations can be obtained by combin-

ing the differential equations that describe each subsystem and substi-

tuting variables. This simple procedure cannot be used when there are

closed loops of subsystems that all have a direct connection between

inputs and outputs, known as an algebraic loop.

To see what can happen, consider a system with two blocks, a first-

order nonlinear system,

dx

dt
= f(x, u), y = h(x), (9.37)

and a proportional controller described by u = −ky. There is no direct

term since the function h does not depend on u. In that case we can
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obtain the equation for the closed loop system simply by replacing u

by −ky in equation (9.37) to give

dx

dt
= f(x,−ky), y = h(x).

Such a procedure can easily be automated using simple formula ma-

nipulation.

The situation is more complicated if there is a direct term. If y =

h(x, u), then replacing u by −ky gives

dx

dt
= f(x,−ky), y = h(x,−ky).

To obtain a differential equation for x, the algebraic equation y =

h(x,−ky) must be solved to give y = α(x), which in general is a com-

plicated task.

When algebraic loops are present, it is necessary to solve algebraic

equations to obtain the differential equations for the complete system.

Resolving algebraic loops is a nontrivial problem because it requires the

symbolic solution of algebraic equations. Most block diagram-oriented

modeling languages cannot handle algebraic loops, and they simply give

a diagnosis that such loops are present. In the era of analog computing,

algebraic loops were eliminated by introducing fast dynamics between

the loops. This created differential equations with fast and slow modes

that are difficult to solve numerically. Advanced modeling languages

like Modelica use several sophisticated methods to resolve algebraic
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loops.

9.5 ZERO FREQUENCY GAIN, POLES, AND ZEROS

The transfer function has many useful interpretations and the features

of a transfer function are often associated with important system prop-

erties. Three of the most important features are the gain and the

locations of the poles and zeros.

Zero Frequency Gain

The zero frequency gain of a system is given by the magnitude of the

transfer function at s = 0. It represents the ratio of the steady-state

value of the output with respect to a step input (which can be repre-

sented as u = est with s = 0). For a state space system, we computed

the zero frequency gain in equation (6.22):

G(0) = D − CA−1B.

For a system modeled as the linear differential equation

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b0

dmu

dtm
+ b1

dm−1u

dtm−1
+ · · ·+ bmu,

if we assume that the input u and output y are constants y0 and u0,

then we find that any0 = bmu0, and the zero frequency gain is

G(0) =
y0
u0

=
bm
an
. (9.38)
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Poles and Zeros

Next consider a linear system with the rational transfer function

G(s) =
b(s)

a(s)
.

The roots of the polynomial a(s) are called the poles of the system, and

the roots of b(s) are called the zeros of the system. If p is a pole, it

follows that y(t) = ept is a solution of equation (9.13) with u = 0 (the

solution to the homogeneous equation). A pole p corresponds to a mode

of the system with corresponding modal solution ept. The unforced

motion of the system after an arbitrary excitation is a weighted sum

of modes.

Zeros have a different interpretation. Since the pure exponential

output corresponding to the input u(t) = est with a(s) 6= 0 is G(s)est,

it follows that the pure exponential output is zero if b(s) = 0. Zeros

of the transfer function thus block transmission of the corresponding

exponential signals.

The difference between the number of poles and zeros npe = n−m is

called the pole excess (also sometimes referred to as the relative degree).

A rational transfer function is called proper if npe ≥ 0 and strictly

proper if npe > 0.

Effective use of zeros can be seen in integral control. To obtain

a closed loop system where a constant disturbance does not create a

steady-state error, the controller is designed so that the transfer func-



TRANSFER FUNCTIONS 597

tion from disturbance to control error has a zero at the origin. Vibra-

tion dampers are another example where the system is designed so that

the transfer function from disturbance force to motion has a zero at

the frequency we want to damp (Example 9.4).

For a state space system with transfer function G(s) = C(sI −

A)−1B + D, the poles of the transfer function are the eigenvalues of

the matrix A in the state space model. One easy way to see this is to

notice that the value of G(s) is unbounded when s is an eigenvalue of a

system since this is precisely the set of points where the characteristic

polynomial λ(s) = det(sI−A) = 0 (and hence sI−A is noninvertible).

It follows that the poles of a state space system depend only on the

matrix A, which represents the intrinsic dynamics of the system. We

say that a transfer function is stable if all of its poles have negative real

part.

To find the zeros of a state space system, we observe that the zeros

are complex numbers s such that the input u(t) = U0e
st gives zero

output. Inserting the pure exponential response x(t) = X0e
st and

setting y(t) = 0 in equation (9.2) gives

sestx0 = AX0e
st +BU0e

st 0 = CestX0 +DestU0,

which can be written as



A− sI B

C D







X0

U0



est = 0.
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This equation has a solution with nonzero X0, U0 only if the matrix on

the left does not have full column rank. The zeros are thus the values

s such that the matrix 


A− sI B

C D




(9.39)

loses rank.

Since the zeros depend on A, B, C, and D, they therefore depend

on how the inputs and outputs are coupled to the states. Notice in

particular that if the matrix B has full row rank, then the matrix in

equation (9.39) has n linearly independent rows for all values of s.

Similarly there are n linearly independent columns if the matrix C has

full column rank. This implies that systems where the matrix B or C

is square and full rank do not have zeros. In particular it means that a

system has no zeros if it is fully actuated (each state can be controlled

independently) or if the full state is measured.

A convenient way to view the poles and zeros of a transfer function

is through a pole zero diagram, as shown in Figure 9.9. In this diagram,

each pole is marked with a cross, and each zero with a circle. If there

are multiple poles or zeros at a fixed location, these are often indicated

with overlapping crosses or circles (or other annotations). Poles in the

left half-plane correspond to stable modes of the system, and poles in

the right half-plane correspond to unstable modes. We thus call a pole

in the left half-plane a stable pole and a pole in the right half-plane
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Figure 9.9: A pole zero diagram for a transfer function with zeros

at −5 and −1 and poles at −3 and −2± 2j. The circles represent the

locations of the zeros, and the crosses the locations of the poles.

an unstable pole. A similar terminology is used for zeros, even though

the zeros do not directly relate to stability or instability of the system.

Notice that the gain must also be given to have a complete description

of the transfer function.

Example 9.11 Balance system

Consider the dynamics for a balance system, shown in Figure 9.10. The

transfer function for a balance system can be derived directly from the

second-order equations, given in Example 3.2:

Mt
d2q

dt2
−mld

2θ

dt2
cos θ + c

dq

dt
+ml sin θ

(dθ
dt

)2
= F,

−ml cos θd
2q

dt2
+ Jt

d2θ

dt2
+ γ

dθ

dt
−mgl sin θ = 0.

If we assume that θ and θ̇ are small, we can approximate this nonlinear

system by a set of linear second-order differential equations,

Mt
d2q

dt2
−mld

2θ

dt2
+ c

dq

dt
= F,

−mld
2q

dt2
+ Jt

d2θ

dt2
+ γ

dθ

dt
−mglθ = 0.



600 CHAPTER 9

M
F

θ

m

l

q

(a) Cart–pendulum system
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(b) Pole zero diagram for HθF
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(c) Pole zero diagram for HqF

Figure 9.10: Poles and zeros for a balance system. The balance

system (a) can be modeled around its vertical equilibrium point by

a fourth order linear system. The poles and zeros for the transfer

functions HθF and HqF are shown in (b) and (c), respectively.

If we let F be an exponential signal, the resulting response satisfies

Mts
2 q −mls2 θ + cs q = F,

Jts
2 θ −mls2 q + γs θ −mgl θ = 0,

where all signals are exponential signals. The resulting transfer func-

tions for the position of the cart and the orientation of the pendulum

are given by solving for q and θ in terms of F to obtain

HθF (s) =
mls

(MtJt −m2l2)s3 + (γMt + cJt)s2 + (cγ −Mtmgl)s−mglc
,

HqF (s) =
Jts

2 + γs−mgl
(MtJt −m2l2)s4 + (γMt + cJt)s3 + (cγ −Mtmgl)s2 −mglcs

,

where each of the coefficients is positive. The pole zero diagrams for

these two transfer functions are shown in Figure 9.10 using the param-
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eters from Example 7.7.

If we assume the damping is small and set c = 0 and γ = 0, we

obtain

HθF (s) =
ml

(MtJt −m2l2)s2 −Mtmgl
,

HqF (s) =
Jts

2 −mgl
s2
(
(MtJt −m2l2)s2 −Mtmgl

) .

This gives nonzero poles and zeros at

p = ±
√

mglMt

MtJt −m2l2
≈ ±2.68, z = ±

√
mgl

Jt
≈ ±2.09.

We see that these are quite close to the pole and zero locations in

Figure 9.10. ∇

Pole/Zero Cancellations

Because transfer functions are often polynomials in s, it can sometimes

happen that the numerator and denominator have a common factor,

which can be canceled. Sometimes these cancellations are simply alge-

braic simplifications, but in other situations they can mask potential

fragilities in the model. In particular, if a pole/zero cancellation occurs

because terms in separate blocks just happen to coincide, the cancella-

tion may not occur if one of the systems is slightly perturbed. In some

situations this can result in severe differences between the expected

behavior and the actual behavior.

Consider the block diagram in Figure 9.6 with F = 1 (no feedfor-
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ward compensation) and let C and P be given by

C(s) =
nc(s)

dc(s)
, P (s) =

np(s)

dp(s)
.

The transfer function from r to e is then given by

Ger(s) =
1

1 + PC
=

dc(s)dp(s)

dc(s)dp(s) + nc(s)np(s)
.

If there are common factors in the numerator and denominator polyno-

mials, then these terms can be factored out and eliminated from both

the numerator and denominator. For example, if the controller has a

zero at s = −a and the process has a pole at s = −a, then we will have

Ger(s) =
(s+ a)dc(s)d

′
p(s)

(s+ a)dc(s)d′p(s) + (s+ a)n′
c(s)np(s)

=
dc(s)d

′
p(s)

dc(s)d′p(s) + n′
c(s)np(s)

,

where n′
c(s) and d

′
p(s) represent the relevant polynomials with the term

s+ a factored out. We see that the s+ a term does not appear in the

transfer function Ger.

Suppose instead that we compute the transfer function from v to e,

which represents the effect of a disturbance on the error between the

reference and the output. This transfer function is given by

Gev(s) = −
dc(s)np(s)

(s+ a)dc(s)d′p(s) + (s+ a)n′
c(s)np(s)

.

Notice that if a < 0, then the pole is in the right half-plane and the

transfer function Gev is unstable. Hence, even though the transfer func-

tion from r to e appears to be okay (assuming a perfect pole/zero can-

cellation), the transfer function from v to e can exhibit unbounded
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behavior. This unwanted behavior is typical of an unstable pole/zero

cancellation.

As noted at the end of Section 9.2, the cancellation of a pole with �

a zero can be understood in terms of the state space representation

of the systems. Reachability or observability is lost when there are

cancellations of poles and zeros (Example 9.7 and Exercise 9.14) and

the transfer function depends only on the dynamics in the reachable

and observable subsystem Σro.

Example 9.12 Cruise control

A cruise control system can be modeled by the block diagram in Fig-

ure 9.6, where y is the vehicle velocity, r the desired velocity, v the

slope of the road, and u the throttle. Furthermore F (s) = 1, and

the input/output response from throttle to velocity for the linearized

model for a car has the transfer function P (s) = b/(s + a). A simple

(but not necessarily good) way to design a PI controller is to choose

the parameters of the PI controller as ki = akp. The controller trans-

fer function is then C(s) = kp + ki/s = kp(s + a)/s. It has a zero at

s = −ki/kp = −a that cancels the process pole at s = −a. We have

P (s)C(s) = bkp/s giving the transfer function from reference to vehicle

velocity as Gyr(s) = bkp/(s+ bkp), and control design is then simply a

matter of choosing the gain kp. The closed loop system dynamics are

of first order with the time constant 1/(bkp). Notice that the canceled

pole 1/a is much slower than the other pole.
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Figure 9.11: Car with PI cruise control encountering a sloping road.

The velocity error is shown on the left and the throttle is shown on

the right. Results for a PI controller with kp = 0.5 and ki = 0.005 are

shown by solid lines, and for a controller with kp = 0.5 and ki = 0.1

are shown by dashed lines. Compare with Figure 4.3b.

Figure 9.11 shows the velocity error when the car encounters an

increase in the road slope. A comparison with the controller used in

Figure 4.3b (reproduced in dashed curves) shows that the controller

based on pole/zero cancellation has very poor performance. The ve-

locity error is larger, and it takes a long time to settle.

Notice that the control signal remains practically constant after

t = 15 even if the error is large after that time. To understand what

happens we will analyze the system. The parameters of the system are

a = 0.01 and b = 1.32, and the controller parameters are kp = 0.5 and

ki = 0.005. The closed loop time constant is 1/(bkp) = 1.5 s, and we

would expect that the error would settle in about 6 s (4 time constants).

The transfer functions from road slope to velocity and control signals
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are

Gyv(s) =
bgs

(s+ a)(s+ bkp)
, Guv(s) =

bkp
s+ bkp

.

Notice that the slow canceled mode s = −a = −0.01 appears in Gyv

but not in Guv. The reason why the control signal remains constant is

that the controller has a zero at s = −0.01, which cancels the slowly

decaying process mode. Note also that the error would diverge if the

canceled pole was unstable. ∇

The lesson we can learn from this example is that it is a bad idea to

try to cancel unstable or slow process poles. A more detailed discussion

of pole/zero cancellations and their impact on robustness is given in

Section 14.5.

9.6 THE BODE PLOT

The frequency response of a linear system can be computed from its

transfer function by setting s = iω, corresponding to a complex expo-

nential

u(t) = eiωt = cos(ωt) + i sin(ωt).

The resulting output has the form

y(t) = G(iω)eiωt =Mei(ωt+θ) =M cos(ωt+ θ) + iM sin(ωt+ θ),
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where M and θ are the gain and phase of G:

M = |G(iω)|, θ = arctan
ImG(iω)

ReG(iω)
.

The gain and phase of G are also called the magnitude and argument

of G, terms that come from the theory of complex variables.

It follows from linearity that the response to a single sinusoid (sin(ωt)

or cos(ωt)) is amplified by M and phase-shifted by θ. It will often be

convenient to represent the phase in degrees rather than radians. We

will use the notation ∠G(iω) for the phase in degrees and argG(iω)

for the phase in radians. In addition, while we always take argG(iω)

to be in the range (−π, π], we will take ∠G(iω) to be continuous, so

that it can take on values outside the range of −180◦ to 180◦.

The frequency responseG(iω) can thus be represented by two curves:

the gain curve and the phase curve. The gain curve gives |G(iω)| as a

function of frequency ω and the phase curve gives ∠G(iω). One par-

ticularly useful way of drawing these curves is to use a log/log scale for

the gain curve and a log/linear scale for the phase curve. This type of

plot is called a Bode plot and is shown in Figure 9.12.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy to sketch

and interpret. Since the frequency scale is logarithmic, they cover the

behavior of a linear system over a wide frequency range.
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Figure 9.12: Bode plot of the transfer function C(s) = 20 + 10
s +

10s = 10 (s+1)2

s , corresponding to an ideal PID controller. The upper

plot is the gain curve and the lower plot is the phase curve. The

dashed lines show straight-line approximations of the gain curve and

the corresponding phase curve.

Consider a transfer function that is a rational function of the form

G(s) =
b1(s)b2(s)

a1(s)a2(s)
.

We have

log |G(s)| = log |b1(s)|+ log |b2(s)| − log |a1(s)| − log |a2(s)|,

and hence we can compute the gain curve by simply adding and sub-

tracting gains corresponding to terms in the numerator and denomina-

tor. Similarly,

∠G(s) = ∠b1(s) + ∠b2(s)− ∠a1(s)− ∠a2(s),

and so the phase curve can be determined in an analogous fashion.
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Since a polynomial can be written as a product of terms of the type

k, s, s+ a, s2 + 2ζω0s+ ω2
0,

it suffices to be able to sketch Bode diagrams for these terms. The

Bode plot of a complex system is then obtained by adding the gains

and phases of the terms.

The function G(s) = sk is a simple transfer function, with the

important special cases of k = 1 corresponding to a differentiator and

k = −1 to an integrator. The gain and phase of the term are given by

log |G(iω)| = k × logω, ∠G(iω) = k × 90◦.

The gain curve is thus a straight line with slope k, and the phase

curve is a constant at k × 90◦. The case when k = 1 corresponds to a

differentiator and has slope 1 with phase 90◦. The case when k = −1

corresponds to an integrator and has slope −1 with phase −90◦. Bode

plots of the various powers of k are shown in Figure 9.13.

Consider next the transfer function of a first-order system, given by

G(s) =
a

s+ a
, a > 0.

We have

|G(s)| = |a|
|s+ a| , ∠G(s) = ∠(a)− ∠(s+ a),
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Figure 9.13: Bode plots of the transfer functions G(s) = sk for

k = −2,−1, 0, 1, 2. On a log-log scale, the gain curve is a straight

line with slope k. The phase curves for the transfer functions are

constants, with phase equal to k × 90◦.

and hence

log |G(iω)| = log a− 1

2
log (ω2 + a2), ∠G(iω) = −180

π
arctan

ω

a
.

The Bode plot is shown in Figure 9.14a, with the magnitude normalized

by the zero frequency gain. Both the gain curve and the phase curve
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Figure 9.14: Bode plots for first- and second-order systems. (a)

The first-order system G(s) = a/(s + a) can be approximated by

asymptotic curves (dashed) in both the gain and the frequency, with

the breakpoint in the gain curve at ω = a and the phase decreasing

by 90◦ over a factor of 100 in frequency. (b) The second-order system

G(s) = ω2
0/(s

2 + 2ζω0s+ ω2
0) has a peak at frequency ω0 and then a

slope of −2 beyond the peak; the phase decreases from 0◦ to −180◦.

The height of the peak and the rate of change of phase depending on

the damping ratio ζ (ζ = 0.02, 0.1, 0.2, 0.5, and 1.0 shown).

can be approximated by the following straight lines

log |G(iω)| ≈





0 if ω < a,

log a− logω if ω > a,

∠G(iω) ≈





0 if ω < a/10,

−45− 45(logω − log a, ) if a/10 < ω < 10a,

−90 if ω > 10a.
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The approximate gain curve consists of a horizontal line up to frequency

ω = a, called the breakpoint or corner frequency, after which the curve

is a line of slope −1 (on a log-log scale). The phase curve is zero

up to frequency a/10 and then decreases linearly by 45◦/decade up to

frequency 10a, at which point it remains constant at 90◦. Notice that

a first-order system behaves like a constant for low frequencies and

like an integrator for high frequencies; compare with the Bode plot in

Figure 9.13.

Finally, consider the transfer function for a second-order system,

G(s) =
ω2
0

s2 + 2ω0ζs+ ω2
0

,

with 0 < ζ < 1, for which we have

log |G(iω)| = 2 logω0 −
1

2
log
(
ω4 + 2ω2

0ω
2(2ζ2 − 1) + ω4

0

)
,

∠G(iω) = −180

π
arctan

2ζω0ω

ω2
0 − ω2

.

The gain curve has an asymptote with zero slope for ω ≪ ω0. For large

values of ω the gain curve has an asymptote with slope −2. The largest

gain Q = maxω |G(iω)| ≈ 1/(2ζ), called the Q-value, is obtained for

ω ≈ ω0. The phase is zero for low frequencies and approaches 180◦ for

large frequencies. The curves can be approximated with the following
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piecewise linear expressions

log |G(iω)| ≈





0 if ω ≪ ω0,

2 logω0 − 2 logω if ω ≫ ω0,

∠G(iω) ≈





0 if ω ≪ ω0,

−180 if ω ≫ ω0.

The Bode plot is shown in Figure 9.14b. Note that the asymptotic

approximation is poor near ω = ω0 and that the Bode plot depends

strongly on ζ near this frequency.

Given the Bode plots of the basic functions, we can now sketch the

frequency response for a more general system. The following example

illustrates the basic idea.

Example 9.13 Asymptotic approximation for a transfer func-

tion

Consider the transfer function given by

G(s) =
k(s+ b)

(s+ a)(s2 + 2ζω0s+ ω2
0)
, a≪ b≪ ω0.

The Bode plot for this transfer function appears in Figure 9.15, with the

complete transfer function shown as a solid curve and the asymptotic

approximation shown as a dashed curve.

We begin with the gain curve. At low frequency, the magnitude is
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Figure 9.15: Asymptotic approximation to a Bode plot. The thin

curve is the Bode plot for the transfer function G(s) = k(s+ b)/(s+

a)(s2 + 2ζω0s + ω2
0), where a ≪ b ≪ ω0. Each segment in the gain

and phase curves represents a separate portion of the approximation,

where either a pole or a zero begins to have effect. Each segment of

the approximation is a straight line between these points at a slope

given by the rules for computing the effects of poles and zeros.

given by

G(0) =
kb

aω2
0

.

When we reach ω = a, the effect of the pole begins and the gain

decreases with slope −1. At ω = b, the zero comes into play and we

increase the slope by 1, leaving the asymptote with net slope 0. This

slope is used until the effect of the second-order pole is seen at ω = ω0,

at which point the asymptote changes to slope −2. We see that the

gain curve is fairly accurate except in the region of the peak due to the

second-order pole (indicating that for this case ζ is reasonably small).
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The phase curve is more complicated since the effect of the phase

stretches out much further. The effect of the pole begins at ω = a/10,

at which point we change from phase 0 to a slope of −45◦/decade. The

zero begins to affect the phase at ω = b/10, producing a flat section

in the phase. At ω = 10a the phase contributions from the pole end,

and we are left with a slope of +45◦/decade (from the zero). At the

location of the second-order pole, s ≈ iω0, we get a jump in phase of

−180◦. Finally, at ω = 10b the phase contributions of the zero end, and

we are left with a phase of −180 degrees. We see that the straight-line

approximation for the phase is not quite as accurate as it was for the

gain curve, but it does capture the basic features of the phase changes

as a function of frequency. ∇

Poles and Zeros in the Right Half-Plane

The gain curve of a transfer function remains the same if a pole or

a zero of a transfer function is shifted from the left half-plane to the

right half-plane by mirror imaging in the imaginary axis. The phase

will, however, change significantly as is illustrated by the following

example.

Example 9.14 Transfer function with a zero in the right half–

plane
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Consider the transfer functions

G(s) =
s+ 1

(s+ 0.1)(s+ 10)
, Grhpp(s) =

s+ 1

(s− 0.1)(s+ 10)
,

and

Grhpz(s) =
−s+ 1

(s+ 0.1)(s+ 10)
.

The transfer functions G and Grhpp have the zero at s = −1 and the

pole at s = −10 in common, while G has the pole at s = −0.1 but

Grhpp has the pole at s = 0.1. Similarly, the transfer functions G and

Grhpz have the same poles, but G has the zero at s = −1 while Grhpz

has the zero at s = 1. Notice that all transfer functions have the same

gain curves but that the phase curves differ significantly, as shown in

Figure 9.16. Notice in particular that the transfer functions Grhpp and

Grhpz have much larger phase lags than G. ∇

A time delay, which has the transfer function G(s) = e−sτ , is an

even more striking example of a change in phase than a right half-plane

zero. Since |G(iωτ)| = |e−iωτ | = 1 the gain curve is constant but the

phase is ∠G(iωτ) = −180ωτ/π, which has a large negative value for

large ω. Time delays are in this respect similar to right half-plane zeros.

Intuitively it seems reasonable that extra phase will cause difficulties

for control since there is a delay between applying an input and seeing

its effect. Poles and zeros in the right half-plane and time delay will

indeed limit the achievable control performance, as will be discussed in

detail in Section 10.4 and Chapter 14.
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(a) Right half-plane pole
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(b) Right half-plane zero

Figure 9.16: Effect of a right half-plane pole and a right half-plane

zero on the Bode plot. The curves for G, which has all poles and

zeros in the right half-plane, are shown in solid lines and the curves

for Grhpp and Grhpz are shown as dashed curves. The left plot shows

Bode plots for the transfer functions G and Grhpp, which have a pole
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System Insights from the Bode Plot

The Bode plot gives a quick overview of a system. The plot covers wide

ranges in amplitude and frequency because of the logarithmic scales.

Since many useful signals can be decomposed into a sum of sinusoids, it

is possible to visualize the behavior of a system for different frequency

ranges. The system can be viewed as a filter that can change the

amplitude (and phase) of the input signals according to the frequency

response. For example, if there are frequency ranges where the gain

curve has constant slope and the phase is close to zero, the action of

the system for signals with these frequencies can be interpreted as a

pure gain. Similarly, for frequencies where the slope is +1 and the

phase close to 90◦, the action of the system can be interpreted as a

differentiator.

Three common types of frequency responses are shown in Fig-

ure 9.17. The system in Figure 9.17a is called a low-pass filter because

the gain is constant for low frequencies and drops for high frequen-

cies. Notice that the phase is zero for low frequencies and −180◦ for

high frequencies. The systems in Figures 9.17b and 9.17c are called a

band-pass filter and a high-pass filter for similar reasons.

To illustrate how different system behaviors can be read from the

Bode plots we consider the band-pass filter in Figure 9.17b. For fre-

quencies around ω = ω0, the signal is passed through with no change in

gain. However, for frequencies well below or well above ω0, the signal
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Figure 9.17: Bode plots for low-pass, band-pass, and high-pass fil-

ters. The upper plots are the gain curves and the lower plots are the

phase curves. Each system passes frequencies in a different range and

attenuates frequencies outside of that range.

is attenuated. The phase of the signal is also affected by the filter,

as shown in the phase curve. For frequencies below ω0/100 there is a

phase lead of 90◦, and for frequencies above 100ω0 there is a phase lag

of 90◦. These actions correspond to differentiation and integration of

the signal in these frequency ranges.

The intuition captured in the Bode plot can also be related to the

transfer function: the approximations of G(s) for small and large s cap-

ture the propagation of slow and fast signals, respectively, as illustrated

in the following examples.

Example 9.15 Spring–mass system

Consider a spring–mass system with input u (force) and output q (po-
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Figure 9.18: Bode plot for a spring–mass system. At low frequency

the system behaves like a spring with G(s) ≈ 1/k and at high fre-

quency the system behaves like a pure mass with G(s) ≈ 1/(ms2).

sition), whose dynamics satisfy the second-order differential equation

mq̈ + cq̇ + kq = u.

The system has the transfer function

G(s) =
1

ms2 + cs+ k
,

and the Bode plot is shown in Figure 9.18. For small s we have

G(s) ≈ 1/k. The corresponding input/output relation is q = (1/k)u,

which implies that for low-frequency inputs, the system behaves like a

spring driven by a force. For large s we have G(s) ≈ 1/(ms2). The cor-

responding differential equation ismq̈ = u and the system thus behaves

like mass driven by a force (a double integrator). ∇

Example 9.16 Transcriptional regulation

Consider a genetic circuit consisting of a single gene. We wish to

study the response of the protein concentration to fluctuations in the
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Figure 9.19: Noise attenuation in a genetic circuit. The open loop

system (a) consists of a constitutive promoter, while the closed loop

circuit (b) is self-regulated with negative feedback (repressor). The

frequency response for each circuit is shown in (c).

mRNA dynamics. We consider two cases: a “constitutive” promoter

(no regulation) and self-repression (negative feedback), illustrated in

Figure 9.19. The dynamics of the system are given by

dm

dt
= α(p)− δm− v, dp

dt
= κm− γp,

where v is a disturbance term that affects mRNA transcription.

For the case of no feedback we have α(p) = α0, and when v = 0 the

system has an equilibrium point at me = α0/δ, pe = κα0/(γδ). The

open loop transfer function from v to p is given by

Gol
pv(s) =

−κ
(s+ δ)(s+ γ)

.
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For the case of negative regulation, we have

α(p) =
α1

1 + kpn
+ α0,

and the equilibrium points satisfy

me =
γ

κ
pe,

α1

1 + kpne
+ α0 = δme =

δγ

κ
pe.

The transfer function can be obtained by linearization around the equi-

librium point and can be shown to be

Gcl
pv(s) =

κ

(s+ δ)(s+ γ) + κσ
, σ =

nα1kp
n−1
e

(1 + kpne )
2
.

Figure 9.19c shows the frequency response for the two circuits. We

see that the feedback circuit attenuates the response of the system to

disturbances with low-frequency content but slightly amplifies distur-

bances at high frequency (compared to the open loop system). ∇

Determining Transfer Functions Experimentally

The transfer function of a system provides a summary of the input/output

response and is very useful for analysis and design. We can often build

an input/output model for a given application by directly measuring

the frequency response and fitting a transfer function to it. To do so,

we perturb the input to the system using a sinusoidal signal at a fixed

frequency. When steady state is reached, the amplitude ratio and the

phase lag give the frequency response for the excitation frequency. The
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complete frequency response is obtained by sweeping over a range of

frequencies.

By using correlation techniques it is possible to determine the fre-

quency response very accurately, and an analytic transfer function can

be obtained from the frequency response by curve fitting. The success

of this approach has led to instruments and software that automate

this process, called spectrum analyzers. We illustrate the basic concept

through two examples.

Example 9.17 Atomic force microscope

To illustrate the utility of spectrum analysis, we consider the dynamics

of the atomic force microscope, described in Section 4.5. Experimental

determination of the frequency response is particularly attractive for

this system because its dynamics are very fast and hence experiments

can be done quickly. A typical example is given in Figure 9.20, which

shows an experimentally determined frequency response (solid line). In

this case the frequency response was obtained in less than a second.

The transfer function

G(s) =
kω2

2ω
2
3ω

2
5(s

2 + 2ζ1ω1s+ ω2
1)(s

2 + 2ζ4ω4s+ ω2
4)e

−sτ

ω2
1ω

2
4(s

2 + 2ζ2ω2s+ ω2
2)(s

2 + 2ζ3ω3s+ ω2
3)(s

2 + 2ζ5ω5s+ ω2
5)
,

with ωi = 2πfi, k = 5,

f1 = 2.4 kHz, f2 = 2.6 kHz, f3 = 6.5 kHz, f4 = 8.3 kHz, f5 = 9.3 kHz,

ζ4 = 0.025, ζ3 = 0.042, ζ1 = 0.03, ζ2 = 0.03, ζ5 = 0.032,
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Figure 9.20: Frequency response of a preloaded piezoelectric drive

for an atomic force microscope. The Bode plot shows the response of

the measured transfer function (solid) and the fitted transfer function

(dashed).

and τ = 10−4 s, was fitted to the data (dashed line). The frequencies

ω1 and ω4 associated with the zeros are located where the gain curve

has minima, and the frequencies ω2, ω3, and ω5 associated with the

poles are located where the gain curve has local maxima. The relative

damping ratios are adjusted to give a good fit to maxima and minima.

When a good fit to the gain curve is obtained, the time delay is adjusted

to give a good fit to the phase curve. The piezo drive is preloaded, and

a simple model of its dynamics is derived in Exercise 4.6. The pole

at 2.55 kHz corresponds to a “trampoline” mode; the other resonances

are higher modes.

∇

Example 9.18 Pupillary light reflex dynamics
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The human eye is an organ that is easily accessible for experiments.

It has a control system that adjusts the pupil opening to regulate the

light intensity at the retina.

This control system was explored extensively by Stark in the 1960s [227].

To determine the dynamics, light intensity on the eye was varied sinu-

soidally and the pupil opening was measured. A fundamental difficulty

is that the closed loop system is insensitive to internal system param-

eters, so analysis of a closed loop system thus gives little information

about the internal properties of the system. Stark used a clever ex-

perimental technique that allowed him to investigate both open and

closed loop dynamics. He excited the system by varying the inten-

sity of a light beam focused on the eye and measured pupil area, as

illustrated in Figure 9.21. By using a wide light beam that covers the

whole pupil, the measurement gives the closed loop dynamics. The

open loop dynamics were obtained by using a narrow beam, which is

small enough that it is not influenced by the pupil opening. The result

of one experiment for determining open loop dynamics is given in Fig-

ure 9.22. Fitting a transfer function to the gain curve gives a good fit

for G(s) = 0.17/(1 + 0.08s)3. This curve gives a poor fit to the phase

curve as shown by the dashed curve in Figure 9.22. The fit to the phase

curve is improved by adding a 0.2 s time delay, which leaves the gain

curve unchanged while substantially modifying the phase curve. The
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(a) Closed loop (b) Open loop (c) High gain

Figure 9.21: Light stimulation of the eye. In (a) the light beam is so

large that it always covers the whole pupil, giving closed loop dynam-

ics. In (b) the light is focused into a beam which is so narrow that it

is not influenced by the pupil opening, giving open loop dynamics. In

(c) the light beam is focused on the edge of the pupil opening, which

has the effect of increasing the gain of the system since small changes

in the pupil opening have a large effect on the amount of light entering

the eye. From Stark [227].

final fit gives the model

G(s) =
0.17

(1 + 0.08s)3
e−0.2s.

The Bode plot of this is shown with solid curves in Figure 9.22. Mod-

eling of the pupillary reflex from first principles is discussed in detail

in [140]. ∇

Notice that for both the AFM drive and pupillary dynamics it is

not easy to derive appropriate models from first principles. In practice,

it is often fruitful to use a combination of analytical modeling and

experimental identification of parameters. Experimental determination

of frequency response is less attractive for systems with slow dynamics
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Figure 9.22: Sample curves from an open loop frequency response

of the eye (left) and a Bode plot for the open loop dynamics (right).

The solid curve shows a fit of the data using a third-order transfer

function with 0.2 s time delay. The dashed curve in the Bode plot is

the phase of the system without time delay, showing that the delay is

needed to properly capture the phase. (Figure redrawn from the data

of Stark [227].)

because the experiment takes a long time.

9.7 FURTHER READING

The idea of characterizing a linear system by its steady-state response

to sinusoids was introduced by Fourier in his investigation of heat con-

duction in solids [89]. Much later, it was used by the electrical engineer

Steinmetz who introduced the iω method for analyzing electrical cir-

cuits. Transfer functions were introduced via the Laplace transform by

Gardner and Barnes [97], who also used them to calculate the response

of linear systems. The Laplace transform was very important in the
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early phase of control because it made it possible to find transients via

tables (see, e.g., [129]). Combined with block diagrams and transfer

functions, Laplace transforms provided powerful techniques for deal-

ing with complex systems. Calculation of responses based on Laplace

transforms is less important today, when responses of linear systems

can easily be generated using computers. The frequency response of a

system can also be measured directly using a frequency response ana-

lyzer. There are many excellent books on the use of Laplace transforms

and transfer functions for modeling and analysis of linear input/output

systems. Traditional texts on control such as [72], [92] and [195] are

representative examples. Pole/zero cancellation was one of the mys-

teries of early control theory. It is clear that common factors can be

canceled in a rational function, but cancellations have system theo-

retical consequences that were not clearly understood until Kalman’s

decomposition of a linear system was introduced [138]. In the following

chapters, we will use transfer functions extensively to analyze stability

and to describe model uncertainty.

EXERCISES

9.1 Consider the system

dx

dt
= ax+ u.
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Compute the exponential response of the system and use this to derive

the transfer function from u to x. Show that when s = a, a pole of the

transfer function, the response to the exponential input u(t) = est is

x(t) = eatx(0) + teat.

9.2 Let G(s) be the transfer function for a linear system. Show that

if we apply an input u(t) = A sin(ωt), then the steady-state output is

given by y(t) = |G(iω)|A sin(ωt + argG(iω)). (Hint: start by showing

that the real part of a complex number is a linear operation and then

use this fact.)

9.3 (Inverted pendulum) A model for an inverted pendulum was intro-

duced in Example 3.3. Neglecting damping and linearizing the pendu-

lum around the upright position gives a linear system characterized by

the matrices

A =




0 1

mgl/Jt 0



, B =




0

1/Jt



, C =


1 0


 , D = 0.

Determine the transfer function of the system.

9.4 (Operational amplifier) Consider the operational amplifier described

in Section 4.3 and analyzed in Example 9.2. An analog implementation

of a PI controller can be constructed using an op amp by replacing the

resistor R2 with a resistor and capacitor in series, as shown in Fig-
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ure 4.10. The resulting transfer function of the circuit is given by

H(s) = −
(
R2 +

1

Cs

)
·

(
kCs(

(k + 1)R1C +R2C
)
s+ 1

)
,

where k is the gain of the op amp, R1 and R2 are the resistances in the

compensation network and C is the capacitance.

a) Sketch the Bode plot for the system under the assumption that

k ≫ R2 > R1. You should label the key features in your plot, including

the gain and phase at low frequency, the slopes of the gain curve, the

frequencies at which the gain changes slope, etc.

b) Suppose now that we include some dynamics in the amplifier, as

outlined in Example 9.2. This would involve replacing the gain k with

the transfer function

G(s) =
ak

s+ a
.

Compute the resulting transfer function for the system (i.e., replace k

with G(s)) and find the poles and zeros assuming the following param-

eter values

R2

R1

= 100, k = 106, R2C = 1, a = 100.

c) Sketch the Bode plot for the transfer function in part (b) using

straight line approximations and compare this to the exact plot of the

transfer function (using MATLAB). Make sure to label the important

features in your plot.
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9.5 (Delay differential equation) Consider a system described by

dx

dt
= −x(t) + u(t− τ)

Derive the transfer function for the system.

9.6 (Congestion control) Consider the congestion control model de-

scribed in Section 4.4. Let w represent the individual window size for

a set of N identical sources, q represent the end-to-end probability of

a dropped packet, b represent the number of packets in the router’s

buffer, and p represent the probability that a packet is dropped by the

router. We write w̄ = Nw to represent the total number of packets

being received from all N sources. Show that the linearized model can

be described by the transfer functions

Gbw̄(s) =
e−τ

fs

τpe s+ e−τ fs
, Gw̄q(s) =

N

qe(τ
p
e s+ qewe)

, k

Gqp(s) = e−τ
bs, Gpb(s) = ρe−τ

p
e s,

where (we, be) is the equilibrium point for the system, τpe is the router

processing time, and τ f and τb are the forward and backward propa-

gation times.

9.7 (Transfer function for state space system) Consider the linear state

space system

dx

dt
= Ax+Bu, y = Cx.
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a) Show that the transfer function is

G(s) =
b1s

n−1 + b2s
n−2 + · · ·+ bn

sn + a1sn−1 + · · ·+ an
,

where the coefficients for the numerator polynomial are linear combi-

nations of the Markov parameters CAiB, i = 0, . . . , n− 1:

b1=CB, b2=CAB+a1CB, . . . , bn=CA
n−1B+a1CA

n−2B+· · ·+an−1CB

and λ(s) = sn + a1s
n−1 + · · · + an is the characteristic polynomial for

A.

b) Compute the transfer function for a linear system in reachable

canonical form and show that it matches the transfer function given

above.

9.8 Consider linear time-invariant systems with the control matrices

(a) A =




−1 0

0 −2



, B =




2

1



, C =


1 −1


 , D = 0,

(b) A =




−3 1

−2 0



, B =




1

3



, C =


1 0


 , D = 0,

(c) A =




−3 −2

1 0



, B =




1

0



, C =


1 3


 , D = 0.

Show that all systems have the transfer function G(s) =
s+ 3

(s+ 1)(s+ 2)
.

9.9 (Kalman decomposition) Show that the transfer function of a �
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system depends only on the dynamics in the reachable and observable

subspace of the Kalman decomposition. (Hint: Consider the represen-

tation given by equation (8.20).)

9.10 Using block diagram algebra, show that the transfer functions

from v to y and w to y in Figure 9.6 are given by

Gyv =
P

1 + PC
Gyw =

1

1 + PC
.

9.11 (Vectored thrust aircraft) Consider the lateral dynamics of a vec-

tored thrust aircraft as described in Example 3.12. Show that the

dynamics can be described using the following block diagram:

1

ms2 + cs

θ
−mg Σ

ν
u1

r

Js2
x

Use this block diagram to compute the transfer functions from u1 to θ

and x and show that they satisfy

Hθu1 =
r

Js2
, Hxu1 =

Js2 −mgr
Js2(ms2 + cs)

.

9.12 (Vehicle suspension [115]) Active and passive damping are used

in cars to give a smooth ride on a bumpy road. A schematic diagram

of a car with a damping system in shown in the figure below.
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(Porter Class I race car driven by Todd Cuffaro)

qb

qw

qr

F +

-

Σ

F

Body

Actuator

Wheel

This model is called a quarter car model, and the car is approximated

with two masses, one representing one fourth of the car body and the

other a wheel. The actuator exerts a force F between the wheel and

the body based on feedback from the distance between the body and

the center of the wheel (the rattle space).

Let qb, qw and qr represent the heights of body, wheel, and road

measured from their equilibrium points. A simple model of the system

is given by Newton’s equations for the body and the wheel,

mbq̈b = F, mwq̈w = −F + kt(qr − qw),

where mb is a quarter of the body mass, mw is the effective mass of the

wheel including brakes and part of the suspension system (the unsprung
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mass) and kt is the tire stiffness. For a conventional damper consisting

of a spring and a damper, we have F = k(qw− qb)+ c(q̇w− q̇b). For an

active damper the force F can be more general and can also depend on

riding conditions. Rider comfort can be characterized by the transfer

function Gaqr from road height qr to body acceleration a = q̈b. Show

that this transfer function has the property Gaqr(iωt) = kt/mb, where

ωt =
√
kt/mw (the tire hop frequency). The equation implies that there

are fundamental limits to the comfort that can be achieved with any

damper.

9.13 (Solutions corresponding to poles and zeros) Consider the differ-

ential equation

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b1

dn−1u

dtn−1
+ b2

dn−2u

dtn−2
+ · · ·+ bnu.

a) Let λ be a root of the characteristic equation

sn + a1s
n−1 + · · ·+ an = 0.

Show that if u(t) = 0, the differential equation has the solution y(t) =

eλt.

b) Let κ be a zero of the polynomial

b(s) = b1s
n−1 + b2s

n−2 + · · ·+ bn.

Show that if the input is u(t) = eκt, then there is a solution to the

differential equation that is identically zero.
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9.14 (Pole/zero cancellation) Consider a closed loop system of the form �

of Figure 9.6, with F = 1 and P and C having a pole/zero cancellation.

Show that if each system is written in state space form, the resulting

closed loop system is not reachable and not observable.

9.15 (Inverted pendulum with PD control) Consider the normalized

inverted pendulum system, whose transfer function is given by P (s) =

1/(s2−1) (Exercise 9.3). A proportional-derivative control law for this

system has transfer function C(s) = kp + kds (see Table 9.1). Suppose

that we choose C(s) = α(s − 1). Compute the closed loop dynamics

and show that the system has good tracking of reference signals but

does not have good disturbance rejection properties.





Chapter Ten

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by

tests that it possessed the advantages which he had predicted for

it. In particular, its gain was constant to a high degree, and it

was linear enough so that spurious signals caused by the inter-

action of the various channels could be kept within permissible

limits. For best results the feedback factor µβ had to be numer-

ically much larger than unity. The possibility of stability with a

feedback factor larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 1956 [193].

In this chapter we study how the stability and robustness of closed

loop systems can be determined by investigating how sinusoidal sig-

nals of different frequencies propagate around the feedback loop. This

technique allows us to reason about the closed loop behavior of a sys-

tem through the frequency domain properties of the open loop transfer

function. The Nyquist stability theorem is a key result that provides a
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way to analyze stability and introduce measures of degrees of stability.

10.1 THE LOOP TRANSFER FUNCTION

Understanding how the behavior of a closed loop system is influenced

by the properties of its open loop dynamics is tricky. Indeed, as the

quote from Nyquist above illustrates, the behavior of feedback systems

can often be puzzling. However, using the mathematical framework

of transfer functions provides an elegant way to reason about such

systems, which we call loop analysis.

The basic idea of loop analysis is to trace how a sinusoidal signal

propagates in the feedback loop and explore the resulting stability by

investigating if the propagated signal grows or decays. This is easy

to do because the transmission of sinusoidal signals through a linear

dynamical system is characterized by the frequency response of the sys-

tem. The key result is the Nyquist stability theorem, which provides a

great deal of insight regarding the stability of a system. Unlike proving

stability with Lyapunov functions, studied in Chapter 5, the Nyquist

criterion allows us to determine more than just whether a system is

stable or unstable. It provides a measure of the degree of stability

through the definition of stability margins. The Nyquist criterion also

indicates how an unstable system should be changed to make it stable,

which we shall study in detail in Chapters 11–13.
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−1

Σ
r e u

P (s)
y

C(s)

(a) Closed loop system

L(s)

−1

AB

(b) Open loop system

Figure 10.1: The loop transfer function. The stability of the feed-

back system (a) can be determined by tracing signals around the loop.

Letting L = PC represent the loop transfer function, we break the

loop in (b) and ask whether a signal injected at the point A has the

same magnitude and phase when it reaches point B.

Consider the system in Figure 10.1a. The traditional way to de-

termine if the closed loop system is stable is to investigate if the

closed loop characteristic polynomial has all its roots in the left half-

plane. If the process and the controller have rational transfer functions

P (s) = np(s)/dp(s) and C(s) = nc(s)/dc(s), then the closed loop sys-

tem has the transfer function

Gyr(s) =
PC

1 + PC
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)
,

and the characteristic polynomial is

λ(s) = dp(s)dc(s) + np(s)nc(s).

To check stability, we simply compute the roots of the characteristic

polynomial and verify that they each have negative real part. This

approach is straightforward but it gives little guidance for design: it
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is not easy to tell how the controller should be modified to make an

unstable system stable.

Nyquist’s idea was to first investigate conditions under which oscil-

lations can occur in a feedback loop. To study this, we introduce the

loop transfer function L(s) = P (s)C(s), which is the transfer function

obtained by breaking the feedback loop, as shown in Figure 10.1b. The

loop transfer function is simply the transfer function from the input at

position A to the output at position B multiplied by −1 (to account

for the usual convention of negative feedback).

Assume that a sinusoid of frequency ω0 is injected at point A. In

steady state the signal at point B will also be a sinusoid with the

frequency ω0. It seems reasonable that an oscillation can be maintained

if the signal at B has the same amplitude and phase as the injected

signal because we can then disconnect the injected signal and connect

A to B. Tracing signals around the loop, we find that the signals at A

and B are identical if there is a frequency ω0 such that

L(iω0) = −1, (10.1)

which then provides a condition for maintaining an oscillation. The

condition in equation (10.1) implies that the frequency response goes

through the value −1, which is called the critical point. Letting ωc

represent a frequency at which ∠L(iωc) = 180◦, we can further reason

that the system is stable if |L(iωc)| < 1, since the signal at point B
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e−τs

Σ

−c

C(s)
r

P (s)

1

Js

y
kI

1

s
Σ

−1

Figure 10.2: Block diagram of a DC motor control system with a

short delay in the sensed position of the motor.

will have smaller amplitude than the injected signal. This is essentially

true, but there are several subtleties that require a proper mathematical

analysis, leading to Nyquist’s stability criterion. Before discussing the

details we give an example of calculating the loop transfer function.

Example 10.1 Electric motor with proportional controller and

delay

Consider a simple direct current electric motor with inertia J and

damping (or back EMF) c. We wish to control the position of the mo-

tor using a feedback controller, and we consider the case where there

is a small delay in the measurement of the motor position (a common

case for controllers implemented on a computer with a fixed sampling

rate). A block diagram for the motor with a controller C(s) is shown

in Figure 10.2. Using block diagram algebra, the process dynamics can

be shown to be

P (s) =
kI

Js2 + cs
.
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We now use a proportional controller of the form

C(s) = kp.

The loop transfer function for the system control system is given by

L(s) = P (s)C(s)e−τs =
kIkp

Js2 + cs
e−τs,

where τ is the delay in sensing of the motor position. We wish to

understand under which conditions the closed loop system is stable.

The condition for oscillation is given by equation (10.1), which re-

quires that the phase of the loop transfer function must be 180◦ at

some frequency ω0. Examining the loop transfer function we see that

if τ = 0 (no delay) then for s near 0 the phase of L(s) will be 90◦ while

for large s the phase of L(s) will approach 180◦. Since the gain of the

system decreases as s increases, it is not possible for the condition of

oscillation to be met in the case of no delay (the gain will always be

less than 1 at arbitrarily high frequency).

When there is a small delay in the system, however, it is possible

that we might get oscillations in the closed loop system. Suppose that

ω0 represents the frequency at which the magnitude of L(iω) is equal to

1 (the specific value of ω0 will depend on the parameters of the motor

and the controller). Notice that the magnitude of the loop transfer

function is not affected by the delay, but the phase increases as τ

increases. In particular, if we let θ0 be the phase of the undelayed
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Figure 10.3: Loop transfer function and step response for the DC

motor control system. The system parameters are kI = 1, J = 2,

c = 1 and the controller parameters are kp = 1 and τ = 0, 1, and 3.

system at frequency ω0, then a time delay of τc = (π + θ0)/ω0 will

cause L(iω0) to be equal to −1. This means that as signals traverse

the feedback loop, they can return in phase with the original signal and

an oscillation may result.

Figure 10.3 shows three controllers that result in stable, oscillatory,

and unstable closed loop performance, depending on the amount of

delay in the system. The instability is caused by the fact that the

disturbance signals that propagate around the feedback loop can be in

phase with the original disturbance due to the delay. If the gain around

the loop is greater than or equal to one, this can lead to instability.

∇

One of the powerful concepts embedded in Nyquist’s approach to

stability analysis is that it allows us to study the stability of the feed-
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back system by looking at properties of the loop transfer function

L = PC. The advantage of doing this is that it is easy to see how

the controller should be chosen to obtain a desired loop transfer func-

tion. For example, if we change the gain of the controller, the loop

transfer function will be scaled accordingly and the critical point can

be avoided. A simple way to stabilize an unstable system is thus to

reduce the gain or to otherwise modify the controller so that the criti-

cal point −1 is avoided. Different ways to do this, called loop shaping,

will be developed and discussed in Chapter 12.

10.2 THE NYQUIST CRITERION

In this section we present Nyquist’s criterion for determining the stabil-

ity of a feedback system through analysis of the loop transfer function.

We begin by introducing a convenient graphical tool, the Nyquist plot,

and show how it can be used to ascertain stability.

The Nyquist Plot

We saw in the previous chapter that the dynamics of a linear system

can be represented by its frequency response and graphically illustrated

by a Bode plot. To study the stability of a system, we will make use

of a different representation of the frequency response called a Nyquist

plot. The Nyquist plot of the loop transfer function L(s) is formed

by tracing s ∈ C around the Nyquist contour, consisting of the imag-
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Re

Im

r

R

Γ

(a) Nyquist contour

Re

Im

L(iω)

−1

(b) Nyquist plot

Figure 10.4: The Nyquist contour and the Nyquist plot. (a) The

Nyquist contour Γ encloses the right half-plane, with a small semicir-

cle around any poles of L(s) at the origin or on the imaginary axis

(illustrated here at the origin) and an arc whose radius R extends to-

wards infinity. (b) The Nyquist plot is the image of the loop transfer

function L(s) when s traverses Γ in the clockwise direction. The solid

curve corresponds to ω > 0, and the dashed curve to ω < 0. The gain

and phase at the frequency ω are g = |L(iω)| and ϕ = ∠L(iω). The

curve is generated for L(s) = 1.4 e−s/(s+ 1)2.

inary axis combined with an arc at infinity connecting the endpoints

of the imaginary axis. This contour, sometimes called the “Nyquist D

contour” is denoted as Γ ⊂ C and is illustrated in Figure 10.4a. The

image of L(s) when s traverses Γ gives a closed curve in the complex

plane and is referred to as the Nyquist plot for L(s), as shown in Fig-

ure 10.4b. Note that if the transfer function L(s) goes to zero as s gets

large (the usual case), then the portion of the contour “at infinity”

maps to the origin. Furthermore, the portion of the plot corresponding
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to ω < 0, shown in dashed lines in Figure 10.4b, is the mirror image of

the portion with ω > 0.

There is a subtlety in the Nyquist plot when the loop transfer func-

tion has poles on the imaginary axis because the gain is infinite at the

poles. To solve this problem, we modify the contour Γ to include small

deviations that avoid any poles on the imaginary axis, as illustrated

in Figure 10.4a (assuming a pole of L(s) at the origin). The deviation

consists of a small semicircle to the right of the imaginary axis pole

location. Formally the contour Γ is defined as

Γ = lim
r→0
R→∞

(
−iR,−ir

)
∪{reiθ : θ ∈

[
−π

2
, π
2

]
}∪
(
ir, iR

)
∪{Re−iθ : θ ∈

[
−π

2
, π
2

]
}

(10.2)

for the case with a pole at the origin.

We now state the Nyquist criterion for the special case where the

loop transfer function L(s) has no poles in the right half-plane and no

poles on the imaginary axis except possibly at the origin.

Theorem 10.1 (Simplified Nyquist criterion). Let L(s) be the loop

transfer function for a negative feedback system (as shown in Fig-

ure 10.1a) and assume that L has no poles in the closed right half-plane

(Re s ≥ 0) except possibly at the origin. Then the closed loop system

Gcl(s) = L(s)/(1 + L(s)) is stable if and only if the image of L along

the closed contour Γ given by equation (10.2) has no net encirclements

of the critical point s = −1.
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The following conceptual procedure can be used to determine that

there are no net encirclements. Fix a pin at the critical point s = −1,

orthogonal to the plane. Attach a string with one end at the critical

point and the other on the Nyquist plot. Let the end of the string

attached to the Nyquist curve traverse the whole curve. There are no

encirclements if the string does not wind up on the pin when the curve

is encircled. The number of encirclements is called the winding number.

Example 10.2 Nyquist plot for a third-order system

Consider a third-order transfer function

L(s) =
1

(s+ a)3
.

To compute the Nyquist plot we start by evaluating points on the

imaginary axis s = iω, which yields

L(iω) =
1

(iω + a)3
=

(a− iω)3
(a2 + ω2)3

=
a3 − 3aω2

(a2 + ω2)3
+ i

ω3 − 3a2ω

(a2 + ω2)3
.

This is plotted in the complex plane in Figure 10.5, with the points

corresponding to ω > 0 drawn as a solid line and ω < 0 as a dashed

line. Notice that these curves are mirror images of each other.

To complete the Nyquist plot, we compute L(s) for s on the outer

arc of the Nyquist contour. This arc has the form s = Re−iθ for

θ ∈ [−π/2, π/2] and R→∞. This gives

L
(
Re−iθ

)
=

1

(Re−iθ + a)3
→ 0 as R→∞.
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ImL(iω)

Figure 10.5: Nyquist plot for a third-order transfer function L(s).

The Nyquist plot consists of a trace of the loop transfer function

L(s) = 1/(s+ a)3 with a = 0.6. The solid line represents the portion

of the transfer function along the positive imaginary axis, and the

dashed line the negative imaginary axis. The outer arc of the Nyquist

contour Γ maps to the origin.

Thus the outer arc of the Nyquist contour Γ maps to the origin on the

Nyquist plot. ∇

An alternative to computing the Nyquist plot explicitly is to de-

termine the plot from the frequency response (Bode plot), which gives

the Nyquist curve for s = iω, ω > 0. We start by plotting L(iω) from

ω = 0 to ω =∞, which can be read off from the magnitude and phase

of the transfer function. We then plot L(Reiθ) with θ ∈ [π/2, 0] and

R → ∞, which goes to zero if the high-frequency gain of L(iω) goes

to zero (if and only if L(s) is strictly proper). The remaining parts of

the plot can be determined by taking the mirror image of the curve

thus far (normally plotted using a dashed line). The plot can then be

labeled with arrows corresponding to a clockwise traversal around the
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Figure 10.6: Sketching Nyquist and Bode plots. The loop transfer

function is L(s) = 1/(s(s + 1)2). The frequency response (a) can be

used to construct the Nyquist plot (b). The large semicircle is the

map of the small semicircle of the Nyquist contour around the pole at

the origin. The closed loop is stable because the Nyquist curve does

not encircle the critical point. The point where the phase is −180◦ is

marked with a circle in the Bode plot.

Nyquist contour (the same direction in which the first portion of the

curve was plotted).

Example 10.3 Nyquist criterion for a third-order system with

a pole at the origin

Consider the transfer function

L(s) =
k

s(s+ 1)2
,

where the gain has the nominal value k = 1. The Bode plot is shown

in Figure 10.6a. The system has a single pole at s = 0 and a double

pole at s = −1. The gain curve of the Bode plot thus has the slope −1
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for low frequencies, and at the double pole s = 1 the slope changes to

−3. For small s we have L ≈ k/s, which means that the low-frequency

asymptote intersects the unit gain line at ω = k. The phase curve

starts at −90◦ for low frequencies, it is −180◦ at the breakpoint ω = 1,

and it is −270◦ at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquist

plot, shown in Figure 10.6b. It starts with a phase of −90◦ for low

frequencies, intersects the negative real axis at the breakpoint ω = 1

where L(i) = −0.5 and goes to zero along the imaginary axis for high

frequencies. The small half-circle of the Nyquist contour at the origin

is mapped on a large circle enclosing the right half-plane. The Nyquist

curve does not encircle the critical point s = −1, and it follows from

the simplified Nyquist criterion that the closed loop system is stable.

Since L(i) = −k/2, we find the closed loop system becomes unstable if

the gain is increased to k = 2 or beyond. ∇

The Nyquist criterion does not require that |L(iωc)| < 1 for all

ωc corresponding to a crossing of the negative real axis. Rather, it

says that the number of encirclements must be zero, allowing for the

possibility that the Nyquist curve could cross the negative real axis and

cross back at magnitudes greater than 1. The fact that it was possible

to have high feedback gains surprised the early designers of feedback

amplifiers, as mentioned in the quote in the beginning of this chapter.

One advantage of the Nyquist criterion is that it tells us how a sys-
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Figure 10.7: Internet congestion control. A set of N sources us-

ing TCP/Reno send messages through a single router with admission

control (left). Link delays are included for the forward and backward

directions. The Nyquist plot for the loop transfer function is shown

on the right.

tem is influenced by changes of the controller parameters. For example,

it is very easy to visualize what happens when the gain is changed since

this just scales the Nyquist curve.

Example 10.4 Congestion control

Consider the Internet congestion control system described in Section 4.4.

Suppose we have N identical sources and a disturbance d representing

an external data source, as shown in Figure 10.7a. We let w represent

the individual window size for a source, q represent the end-to-end

probability of a dropped packet, b represent the number of packets in

the router’s buffer, and p represent the probability that a packet is

dropped by the router. We write w̄ for the total number of packets be-
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ing received from all N sources. We also include forward and backward

propagation delays between the router and the senders.

To analyze the stability of the system, we use the transfer functions

computed in Exercise 9.6:

G̃bw̄(s) =
1

τpe s+ e−τ fs
, Gwq(s) = −

1

qe(τ
p
e s+ qewe)

, G̃pb(s) = ρ,

where (we, be) is the equilibrium point for the system, N is the num-

ber of sources, τpe is the steady-state round-trip time, and τ f and τb

are the forward and backward propagation times. We use G̃bw̄ and

G̃qp to represent the transfer functions with the forward and backward

time delays removed since this is accounted for as a separate blocks in

Figure 10.7a. Similarly, Gwq = Gw̄q/N since we have pulled out the

multiplier N as a separate block as well.

The loop transfer function is given by

L(s) = ρ ·
N

τpe s+ e−τ fs
·

1

qe(τ
p
e s+ qewe)

e−τ
t
es,

where τ t = τp+τ f+τb is the total round trip delay time. Using the fact

that we = be/N = τpe c/N and qe = 2/(2 + w2
e) ≈ 2/w2

e = 2N3/(τpe c)
2

from equation (4.17), we can show that

L(s) = ρ ·
N

τpe s+ e−τ fs
·

c3(τpe )
3

2N2(c(τpe )2s+ 2N)
e−τ

t
es.

Note that we have chosen the sign of L(s) to use the same sign con-

vention as in Figure 10.1b.

The Nyquist plot for the loop transfer function is shown in Fig-
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ure 10.7b. To obtain an analytic stability criterion we can approxi-

mate the transfer function close to the intersection with the negative

real axis, which occurs at the “phase crossover” frequency ωpc. The

second factor is stable if τpe > τ f and has fast dynamics, so we ap-

proximate it by its zero frequency gain N . The third factor has slow

dynamics (it can be shown that 2N ≪ c(τpe )
2ωpc), and we can approx-

imate it by an integrator. We thus obtain the following approximation

of the loop transfer function around the frequency ωpc:

L(s) ≈ ρ ·N ·
c3(τpe )

3

2N2c(τpe )2s
e−τ

t
es =

ρc2τpe
2Ns

e−τ
t
es.

The integrator has a phase lag of π/2 and the transfer function L(s) has

the phase crossover frequency ωpc = π/(2τpe ). A necessary condition

for stability is thus |L(iωpc)| < 1, which gives the condition

ρc2(τpe )
2

πN
< 1.

Using the Nyquist criterion, the closed loop system will be unstable

if this quantity is greater than 1. In particular, for a fixed processing

time τpe , the system will become unstable as the link capacity c. This

indicates that the TCP protocol may not be scalable to high-capacity

networks, as pointed out by Low et al. [167]. Exercise 10.3 provides

some ideas of how this might be overcome. ∇
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The General Nyquist Criterion
�

Theorem 10.1 requires that L(s) has no poles in the closed right half-

plane, except possibly at the origin. In some situations this is not the

case and we need a more general result. This requires some results

from the theory of complex variables, for which the reader can consult

Ahlfors [6]. Since some precision is needed in stating Nyquist’s criterion

properly, we will use a more mathematical style of presentation. We

also follow the mathematical convention of counting encirclements in

the counterclockwise direction for the remainder of this section. The

key result is the following theorem about functions of complex variables.

Theorem 10.2 (Principle of variation of the argument). Let Γ be a

closed contour in the complex plane and let D represent the interior

of Γ. Assume the function f : C → C is analytic on Γ and D except

at a finite number of poles and zeros in D. Then the winding number

nw,Γ(f(s)) of the function f(s) as s traverses the contour Γ in the

counterclockwise direction is given by

nw,Γ(f(s)) =
1

2π
∆argΓ f(s) =

1

2πi

∫

Γ

f ′(s)

f(s)
ds = nz,D − np,D,

where ∆argΓ is the net variation in the angle when s traverses the

contour Γ in the counterclockwise direction, nz,D is the number of zeros

of f(s) in D, and np,D is the number of poles of f(s) in D. Poles and

zeros of multiplicity m are counted m times.
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Figure 10.8: Graphical proof of the principle of the variation of the

argument.

To understand why the principle of variation of the argument is

true, we keep track of how the argument (angle) of a function varies

as we traverse a closed contour. Figure 10.8 illustrates the basic idea.

Consider a function f : C→ C of the form

f(s) =
(s− z1) · · · (s− zm)
(s− p1) · · · (s− pn)

, (10.3)

where zi are zeros and pi are poles. We can rewrite the factors in this

function by keeping track of the distance and angle to each pole and

zero:

f(s) =
r1e

iψ1 · · · rmeiψm

ρ1eiθ1 · · · ρmeiθn
.

The argument (angle) of f(s) at any given value of s can be computed

by adding the contributions for the zeros and subtracting the contri-

butions from the poles,

arg(f(s)) =
m∑

i=1

ψi −
n∑

i=1

θi.

We now consider what happens if we traverse a closed loop contour
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Γ. If all of the poles and zeros in f(s) are outside of the contour,

then the net contribution to the angle from terms in the numerator

and denominator will be zero since there is no way for the angle to

“accumulate.” Thus the contribution from each individual zero and

pole will integrate to zero as we traverse the contour. If, however, the

zero or pole is inside the contour Γ, then the net change in angle as we

transverse the contour will be 2π for terms in the numerator (zeros)

or −2π for terms in the denominator (poles). Thus the net change in

the angle as we traverse the contour is given by 2π(nz,D−np,D), where

nz,D is the number of zeros inside the contour and np,D is the number

of poles inside the contour.

��
Formal proof. Assume that s = a is a zero of multiplicity m. In the

neighborhood of s = a we have

f(s) = (s− a)mg(s),

where the function g is analytic and different from zero. The ratio of

the derivative of f to itself is then given by

f ′(s)

f(s)
=

m

s− a +
g′(s)

g(s)
,

and the second term is analytic at s = a. The function f ′/f thus has

a single pole at s = a with the residue m. The sum of the residues at

the zeros of this function is nz,D. Similarly, we find that the sum of the
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residues for the poles is −np,D, and hence

nz,D−np,D =
1

2πi

∫

Γ

f ′(s)

f(s)
ds =

1

2πi

∫

Γ

d

ds
log f(s) ds =

1

2πi
∆argΓ log f(s),

where ∆argΓ again denotes the variation along the contour Γ. We have

log f(s) = log |f(s)|+ i arg f(s),

and since the variation of |f(s)| around a closed contour is zero it

follows that

∆ argΓ log f(s) = i∆argΓ arg f(s),

and the theorem is proved.

This theorem is useful in determining the number of poles and zeros

of a function of a complex variable in a given region. By choosing an

appropriate closed region D with boundary Γ, we can determine the

difference between the number of zeros and poles through computation

of the winding number.

Theorem 10.2 can be used to obtain a general version of Nyquist’s

stability theorem by choosing Γ as the Nyquist contour shown in Fig-

ure 10.4a, which encloses the right half-plane. To construct the contour,

we start with part of the imaginary axis −iR ≤ s ≤ iR and a semicircle

to the right with radius R. If the function f has poles on the imaginary

axis, we introduce small semicircles with radii r to the right of the poles

as shown in the figure to avoid crossing through a singularity. The

Nyquist contour is obtained by selecting R large enough and r small
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enough so that all open loop right half-plane poles are enclosed.

Note that Γ has orientation opposite that shown in Figure 10.4a.

The convention in engineering is to traverse the Nyquist contour in

the clockwise direction since this corresponds to increasing frequency

moving upwards along the imaginary axis, which makes it easy to sketch

the Nyquist contour from a Bode plot. In mathematics it is customary

to define the winding number for a curve with respect to a point so

that it is positive when the contour is traversed counterclockwise. This

difference does not matter as long as we use the same convention for

orientation when traversing the Nyquist contour and computing the

winding number.

To use the principle of variation of the argument (Theorem 10.2)

to obtain an improved stability criterion we apply it to the function

f(s) = 1 + L(s), where L(s) is the loop transfer function of a closed

loop system with negative feedback. The generalized Nyquist criterion

is given by the following theorem.

Theorem 10.3 (General Nyquist criterion). Consider a closed loop

system with loop transfer function L(s) that has np,rhp poles in the

region enclosed by the Nyquist contour Γ. Let nw,Γ(1 + L(s) be the

winding number of f(s) = 1 + L(s) when s traverses Γ in the counter-

clockwise direction. Assume that 1+L(iω) 6= 0 for all ω on Γ and that

nw,Γ(1 + L(s)) + np,rhp = 0. Then the closed loop system has no poles

in the closed right half-plane and it is thus stable.
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Proof. The proof follows directly from the principle of variation of the

argument, Theorem 10.2. The closed loop poles of the system are the

zeros of the function f(s) = 1 + L(s). It follows from the assumptions

that the function f(s) has no zeros on the contour Γ. To find the

zeros in the right half-plane, we investigate the winding number of the

function f(s) = 1+L(s) as s moves along the Nyquist contour Γ in the

counterclockwise direction. The winding number nw can be determined

from the Nyquist plot. A direct application of Theorem 10.2 shows that

since nw,Γ(1 + L(s)) + np,rhp(L(s)) = 0, then f(s) has no zeros in the

right half-plane. Since the image of 1+L(s) is a shifted version of L(s),

we usually express the Nyquist criterion as net encirclements of the −1

point by the image of L(s).

The condition that 1 + L(iω) 6= 0 on Γ implies that the Nyquist

curve does not go through the critical point −1 for any frequency. The

condition that nw,Γ(1 + L(s)) + np,rhp(L(s)) = 0, which is called the

winding number condition, implies that the Nyquist curve encircles the

critical point as many times as the loop transfer function L(s) has poles

in the right half-plane.

As noted above, in practice the Nyquist criterion is most often

applied by traversing the Nyquist contour in the clockwise direction,

since this corresponds to tracing out the Nyquist curve from ω = 0

to ∞, which can be read off from the Bode plot. In this case, the

number of net encirclements of the −1 point must also be counted in
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the clockwise direction. If we let P be the number of unstable poles in

the loop transfer function, N be the number of clockwise encirclements

of the point −1, and Z be the number of unstable stable zeros of 1+L

(and hence the number of unstable poles of the closed loop) then the

following relation holds:

Z = N + P.

Note also than when using small semicircles of radius r to avoid poles

on the imaginary axis, these generate a section of the Nyquist curve

with large magnitude, requiring care in computing the winding number.

Example 10.5 Stabilized inverted pendulum

The linearized dynamics of a normalized inverted pendulum can be

represented by the transfer function P (s) = 1/(s2 − 1), where the

input is acceleration of the pivot and the output is the pendulum angle

θ, as shown in Figure 10.9 (Exercise 9.3). We attempt to stabilize the

pendulum with a proportional-derivative (PD) controller having the

transfer function C(s) = k(s+ 2). The loop transfer function is

L(s) =
k(s+ 2)

s2 − 1
.

The Nyquist plot of the loop transfer function is shown in Figure 10.9b.

We have L(0) = −2k and L(∞) = 0. If k > 0.5, the Nyquist curve

encircles the critical point s = −1 in the counterclockwise direction

when the Nyquist contour γ is encircled in the clockwise direction.

The number of encirclements is thus N = −1. Since the loop transfer
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Figure 10.9: PD control of an inverted pendulum. (a) The sys-

tem consists of a mass that is balanced by applying a force at the

pivot point. A proportional-derivative controller with transfer func-

tion C(s) = k(s+2) is used to command u based on θ. (b) A Nyquist

plot of the loop transfer function for gain k = 1. There is one counter-

clockwise encirclement of the critical point, giving N = −1 clockwise

encirclements.

function has one pole in the right half-plane (P = 1), we find that

Z = N + P = 0 and the system is thus stable for k > 0.5. If k < 0.5,

there is no encirclement and the closed loop will have one pole in the

right half-plane. Notice that the system is unstable for small gains but

stable for high gains. ∇

Conditional Stability

An unstable system can often be stabilized simply by reducing the

loop gain. However, as Example 10.5 illustrates, there are situations

where a system can be stabilized by increasing the gain. This was first

encountered by electrical engineers in the design of feedback amplifiers,
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−200

ReL(iω)

ImL(iω)

(a) Nyquist plot

−1

ReL(iω)

ImL(iω)

(b) Enlargement around

-1

Figure 10.10: Nyquist curve for the loop transfer function L(s) =

(
3(s + 6)2

)
/
(
s(s + 1)2

)
. The plot on the right is an enlargement of

the box around the origin of the plot on the left. The Nyquist curve

intersects the negative real axis twice but has no net encirclements of

−1.

who coined the term conditional stability. The problem was actually

a strong motivation for Nyquist to develop his theory. The following

example further illustrates this concept.

Example 10.6 Conditional stability for a third-order system

Consider a feedback system with the loop transfer function

L(s) =
3k(s+ 6)2

s(s+ 1)2
. (10.4)

The Nyquist plot of the loop transfer function is shown in Figure 10.10

for k = 1. Notice that the Nyquist curve intersects the negative real

axis twice. The first intersection occurs at L = −12 for ω = 2, and

the second at L = −4.5 for ω = 3. The intuitive argument based on

signal tracing around the loop in Figure 10.1b is misleading in this case.
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Injection of a sinusoid with frequency 2 rad/s and amplitude 1 at A

gives, in steady state, an oscillation at B that is in phase with the input

and has amplitude 12. Intuitively it seems unlikely that closing of the

loop will result in a stable system. Evaluating the winding number

for the Nyquist plot in Figure 10.10 shows that the winding number

is zero and the system is thus shown to be stable by using the version

of Nyquist’s stability criterion in Theorem 10.3. More specifically, the

closed loop system is stable for any k > 2/9. It becomes unstable if

the gain is reduced to 1/12 < k < 2/9, and it will be stable again for

gains less than 1/12. ∇

10.3 STABILITY MARGINS

In practice it is not enough that a system is stable. There must also

be some margins of stability that describe how far from instability the

system is and its robustness to perturbations. Stability is captured

by Nyquist’s criterion, which says that the loop transfer L(s) function

should avoid the critical point −1, while satisfying a winding number

condition. Stability margins express how well the Nyquist curve of the

loop transfer avoids the critical point. The shortest distance sm of the

Nyquist curve to the critical point is a natural criterion, which is called

the stability margin. It is illustrated in Figure 10.11a, where we have

plotted the portion of the curve corresponding to ω > 0. A stability
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Figure 10.11: Stability margins for a third-order loop transfer func-

tion L(s). The Nyquist plot (a) shows the stability margin, sm, the

gain margin gm, and the phase margin ϕm. The stability margin sm is

the shortest distance to the critical point −1. The gain margin corre-

sponds to the smallest increase in gain that creates an encirclement,

and the phase margin is the smallest change in phase that creates an

encirclement. The Bode plot (b) shows the gain and phase margins.

margin sm means that the Nyquist curve of the loop transfer function

is outside a circle around the critical point with radius sm.

Other margins are based the influence of the controller on the

Nyquist curve. An increase in controller gain expands the Nyquist plot

radially. An increase in the phase of the controller turns the Nyquist

plot clockwise. Hence from the Nyquist plot we can easily pick off the

amount of gain or phase that can be added without causing the system

to become unstable.

The gain margin gm of a closed loop system is defined as the smallest

multiplier of the loop gain that makes the system unstable. It is also
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the inverse of the distance between the origin and the point between −1

and 0 where the loop transfer function crosses the negative real axis. If

there are several crossings the gain margin is defined by the intersection

that is closest to the critical point. Let this point be L(iωpc), where

ωpc represent this frequency, called the phase crossover frequency. The

gain margin for the system is then

gm =
1

|L(iωpc)|
. (10.5)

This number can be obtained directly from the Nyquist plots as shown

in Figure 10.11a.

The phase margin is the amount of phase lag required to reach the

stability limit. Let ωgc be the gain crossover frequency, the frequency

where the loop transfer function L(iωpc) intersects the unit half-circle

below the real axis. The phase margin is then

ϕm = 180◦ + ∠L(iωgc). (10.6)

As with the gain margin, this number can be obtained from the Nyquist

plots as shown in Figure 10.11a. If the Nyquist curve intersects the half-

circle many times, the phase margin is defined by the intersection that

is closest to the critical point.

The gain and phase margins can also be determined from the Bode

plot of the loop transfer function, as illustrated in Figure 10.11b. To

find the gain margin we first find the phase crossover frequency ωpc
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where the phase is −180◦. The gain margin is the inverse of the gain

at that frequency. To determine the phase margin we first determine

the gain crossover frequency ωgc, i.e., the frequency where the gain

of the loop transfer function is 1. The phase margin is the phase of

the loop transfer function at that frequency plus 180◦. Figure 10.11b

illustrates how the margins are found in the Bode plot of the loop

transfer function. The margins are not always easy to determine from

the Bode plot if the loop transfer function intersects the lines |G(iω)| =

1 or ∠G(iω) = −180◦±n · 360◦ many times. In these cases, the Nyquist

plot should be used instead.

The gain and phase margins are classical robustness measures that

have been used for a long time in control system design. They were

particularly attractive because design was often based on the Bode plot

of the loop transfer function. The gain and phase margins are related

to the stability margin through inequalities

gm ≥
1

1− sm
, ϕm ≥ 2 arcsin(sm/2), (10.7)

which follow from Figure 10.12 and the fact that sm is less than the

distance d = 2 sin(ϕm/2) from the critical point−1 to the point defining

the gain crossover frequency.

A drawback with the stability margin sm is that it does not have a

natural representation in the Bode plot of the loop transfer function.

It can be shown that the peak magnitudeMs of the closed loop transfer
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Figure 10.12: Stability margins for a third-order transfer function.

The Nyquist plot on the left allows the gain, phase, and stability mar-

gins to be determined by measuring the distances of relevant features.

The gain and phase margins can also be read off of the Bode plot on

the right.

function 1/(1+P (s)C(s)) is related to the stability margin through the

formula sm = 1/Ms, as will be discussed in Chapter 13 together with

more general robustness measures. A drawback with gain and phase

margins is that both have to be given to guarantee that the Nyquist

curve is not close to the critical point. It is also difficult to represent

the winding number in the Bode plot. In general, it is best to use

the Nyquist plot to check stability since this provides more complete

information than the Bode plot.

Example 10.7 Stability margins for a third-order system

Consider a loop transfer function L(s) = 3/(s+ 1)3. The Nyquist and

Bode plots are shown in Figure 10.12. To compute the gain, phase, and

stability margins, we can use the Nyquist plot shown in Figure 10.12.
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This yields the following values:

gm = 2.67, ϕm = 41.7◦, sm = 0.464.

The gain and phase margins can also be determined from the Bode

plot. ∇

Even if both the gain and phase margins are reasonable, the system

may still not be robust, as is illustrated by the following example.

Example 10.8 Good gain and phase margins but poor stability

margins

Consider a system with the loop transfer function

L(s) =
0.38(s2 + 0.1s+ 0.55)

s(s+ 1)(s2 + 0.06s+ 0.5)
.

A numerical calculation gives the gain margin as gm = 266, and the

phase margin is 70◦. These values indicate that the system is robust,

but the Nyquist curve is still close to the critical point, as shown in

Figure 10.13a. The stability margin is sm = 0.27, which is very low.

The closed loop system has two resonant modes, one with damping

ratio ζ = 0.81 and the other with ζ = 0.014. The step response of the

system is highly oscillatory, as shown in Figure 10.13c. ∇

When designing feedback systems, it will often be useful to define

the robustness of the system using gain, phase, and stability margins.

These numbers tell us how much the system can vary from our nominal
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Figure 10.13: System with good gain and phase margins but a poor

stability margin. The Nyquist plot (a) and Bode plot (b) of the loop

transfer function and step response (c) for a system with good gain

and phase margins but with a poor stability margin. The Nyquist

plot shows only the portion of the curve corresponding to ω > 0.

model and still be stable. Reasonable values of the margins are phase

margin ϕm = 30◦–60◦, gain margin gm = 2–5, and stability margin

sm = 0.5–0.8.

There are also other stability measures, such as the delay margin,

which is the smallest time delay required to make the system unstable.

For loop transfer functions that decay quickly, the delay margin is

closely related to the phase margin, but for systems where the gain

curve of the loop transfer function has several peaks at high frequencies,

the delay margin is a more relevant measure.

Example 10.9 Nanopositioning system for an atomic force mi-
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croscope

Consider the system for horizontal positioning of the sample in an

atomic force microscope, described in more detail in Section 4.5. The

system has oscillatory dynamics, and a simple model is a spring–mass

system with low damping. The normalized transfer function is given

by

P (s) =
ω2
0

s2 + 2ζω0s+ ω2
0

, (10.8)

where the damping ratio typically is a very small number, e.g., ζ = 0.1.

We will start with a controller that has only integral action. The

resulting loop transfer function is

L(s) =
kiω

2
0

s(s2 + 2ζω0s+ ω2
0)
,

where ki is the gain of the controller. Nyquist and Bode plots of the

loop transfer function are shown in Figure 10.14. Notice that the part of

the Nyquist curve that is close to the critical point −1 is approximately

circular.

From the Bode plot in Figure 10.14b, we see that the phase crossover

frequency is ωpc = ω0, which will be independent of the gain ki. Eval-

uating the loop transfer function at this frequency, we have L(iω0) =

−ki/(2ζω0), which means that the stability margin is sm = 1−ki/(2ζω0).

To have a desired stability margin of sm the integral gain should be cho-

sen as

ki = 2ζω0(1− sm).
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Figure 10.14: Nyquist and Bode plots of the loop transfer function

for the AFM system (10.8) with an integral controller. The frequency

in the Bode plot is normalized by ω0. The parameters are ζ = 0.01

and ki = 0.008.

Figure 10.14 shows Nyquist and Bode plots for the system with gain

margin gm = 2.5 and stability margin sm = 0.6. The gain curve in the

Bode plot is almost a straight line for low frequencies and has a resonant

peak at ω = ω0. The gain crossover frequency is approximately equal

to ki and the phase decreases monotonically from −90◦ to −270◦: it is

equal to −180◦ at ω = ω0. The gain curve can be shifted vertically by

changing ki: increasing ki shifts the gain curve upward and increases

the gain crossover frequency. ∇

10.4 BODE’S RELATIONS AND MINIMUM PHASE SYSTEMS

An analysis of Bode plots reveals that there appears to be a relation

between the gain curve and the phase curve. Consider, for example,
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the Bode plots for the differentiator and the integrator (shown in Fig-

ure 9.13). For the differentiator the slope is +1 and the phase is a

constant π/2 radians. For the integrator the slope is −1 and the phase

is −π/2. For the first-order system G(s) = s+ a, the amplitude curve

has the slope 0 for small frequencies and the slope +1 for high frequen-

cies, and the phase is 0 for low frequencies and π/2 for high frequencies.

Bode investigated the relations between the gain and phase curves

in his plot and he found that for a special class of systems there was

indeed a relation between gain and phase. These systems do not have

time delays or poles and zeros in the right half-plane and in addition

they have the property that log |G(s)|/s goes to zero as s → ∞ for

Re s ≥ 0. Bode called these systems minimum phase systems because

they have the smallest phase lag of all systems with the same gain

curve. For minimum phase systems the phase is uniquely given by the

shape of the gain curve, and vice versa:

argG(iω0) =
π

2

∫ ∞

0

f(ω)
d log |G(iω)|
d logω

dω

ω
≈ π

2

d log |G(iω)|
d logω

∣∣∣∣∣
ω=ω0

,

(10.9)

where f is the weighting kernel

f(ω) =
2

π2
log
∣∣∣ω + ω0

ω − ω0

∣∣∣ and

∫ ∞

0

f(ω)
dω

ω
= 1. (10.10)

The phase curve for a minimum phase system is thus a weighted average

of the derivative of the gain curve. Notice that since |G(s)| = |−G(s)|

and ∠(−G(s)) = ∠G(s) − 180◦, the sign of the minimum phase G(s)



FREQUENCY DOMAIN ANALYSIS 673

must also be chosen properly. We assume that the sign is always chosen

so that ∠G(s) > ∠(−G(s)).

We illustrate Bode’s relation (10.9) with an example.

Example 10.10 Phase of G(s) = s
n

For the transfer function G(s) = sn we have that logG(s) = n log s

and hence d logG(s)/d log s = n. Equation (10.9) then gives

argG(iω0) =
π

2

∫ ∞

0

f(ω)
d log |G(iω)|
d logω

dω

ω
=
π

2

∫ ∞

0

nf(ω)
dω

ω
= n

π

2
,

where the last equality follows from equation (10.10). If the gain curve

has constant slope n, the phase curve is a horizontal line argG(iω) =

nπ/2. ∇

We will now give a few examples of transfer functions that are not

minimum phase transfer functions. The transfer function of a time

delay of τ units is G(s) = e−sτ . This transfer function has unit gain

|G(iω)| = 1, and the phase is argG(iω) = −ωτ . The corresponding

minimum phase system with unit gain has the transfer function G(s) =

1. The time delay thus has an additional phase lag of ωτ . Notice that

the phase lag increases linearly with frequency. Figure 10.15a shows

the Bode plot of the transfer function. (Because we use a log scale for

frequency, the phase falls off exponentially in the plot.)

Consider a system with the transfer function G(s) = (a−s)/(a+s)

with a > 0, which has a zero s = a in the right half-plane. The trans-
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Figure 10.15: Bode plots of systems that are not minimum phase.

(a) Time delay G(s) = e−sT , (b) system with a right half-plane (RHP)

zero G(s) = (a− s)/(a+ s) and (c) system with right half-plane pole

G(s) = (s + a)/(s − a). The corresponding minimum phase system

has the transfer function G(s) = 1 in all cases, the phase curves for

that system are shown as dashed lines.

fer function has unit gain |G(iω)| = 1, and the phase is argG(iω) =

−2 arctan (ω/a). The corresponding minimum phase system with unit

gain has the transfer function G(s) = 1. Figure 10.15b shows the Bode

plot of the transfer function. A similar analysis of the transfer function

G(s) = (s + a)/(s− a) with a > 0, which has a pole in the right half-

plane, shows that its phase is argG(iω) = −2 arctan(a/ω). The Bode

plot is shown in Figure 10.15c.

The presence of poles and zeros in the right half-plane imposes

severe limits on the achievable performance as will be discussed in

Chapter 14. Dynamics of this type should be avoided by redesign of

the system. While the poles are intrinsic properties of the system and



FREQUENCY DOMAIN ANALYSIS 675

they do not depend on sensors and actuators, the zeros depend on how

inputs and outputs of a system are coupled to the states. Zeros can

thus be changed by moving sensors and actuators or by introducing new

sensors and actuators. Non-minimum phase systems are unfortunately

quite common in practice.

The following example shows that difficulties can arise in the re-

sponse of non-minimum phase systems.

Example 10.11 Vehicle steering

The vehicle steering model considered in Examples 6.13 and 9.10 has

different properties depending on whether we are driving forward or in

reverse. The non-normalized transfer function from steering angle to

lateral position for the simple vehicle model is

P (s) =
av0s+ v20

bs2
,

where v0 is the velocity of the vehicle and a, b > 0 (see Example 6.13).

The transfer function has a zero at s = v0/a. In normal (forward)

driving this zero is in the left half-plane, but it is in the right half-

plane when driving in reverse, v0 < 0. The unit step response is

y(t) =
av0t

b
+
v20t

2

2b
.

The lateral position thus begins to respond immediately to a steering

command as an integrator. For reverse steering v0 is negative and the

initial response is in the wrong direction, a behavior that is represen-
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Figure 10.16: Vehicle steering for driving in reverse. (a) Step re-

sponses from steering angle to lateral translation for a simple kinemat-

ics model when driving forward (dashed) and reverse (solid). With

rear-wheel steering the center of mass first moves in the wrong direc-

tion and the overall response with rear-wheel steering is significantly

delayed compared with that for front-wheel steering. (b) Frequency

response for driving forward (dashed) and reverse (solid). Notice that

the gain curves are identical, but the phase curve for driving in reverse

has non-minimum phase.

tative for non-minimum phase systems (called an inverse response).

Figure 10.16 shows the step response for forward and reverse driv-

ing. The parameters are a = 1.5 m, b = 3 m, v0 = 2 m/s for forward

driving, and v0 = −2 m/s for reverse driving. Thus when driving in

reverse there is an initial motion of the center of mass in the opposite

direction and there is a delay before the car begins to move in the

desired manner.

The position of the zero v0/a depends on the location of the sensor.
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In our calculation we have assumed that the sensor is at the center

of mass. The zero in the transfer function disappears if the sensor

is located at the rear wheel. Thus if we look at the center of the rear

wheels instead of the center of mass, the inverse response is not present

and the resulting input/output behavior is simplified.

The formulas for the unit step response y(t) and the transfer P (s)

give an interesting insight between the time and frequency domains.

The behavior of the step response for small t, y(t) ≈ av0t/b is related

to the high frequency property of the transfer function P (s) ≈ av0/(bs)

and the behavior of the step response for large t is related to the low

frequency properties of the transfer function. This linkage can be made

more formala through the use of the initial value theorem, discussed at

the end of Section 9.3 ∇

10.5 GENERALIZED NOTIONS OF GAIN AND PHASE
�

A key idea in frequency domain analysis is to trace the behavior of

sinusoidal signals through a system. The concepts of gain and phase

represented by the transfer function are strongly intuitive because they

describe amplitude and phase relations between input and output. In

this section we will see how to extend the concepts of gain and phase to

more general systems, including some nonlinear systems. We will also

show that there are analogs of Nyquist’s stability criterion if signals
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are approximately sinusoidal.

System Gain and Passivity

We begin by considering the case of a static linear system y = Au,

where A is a matrix whose elements are complex numbers. The matrix

does not have to be square. Let the inputs and outputs be vectors

whose elements are complex numbers and use the Euclidean norm

‖u‖ =
√

Σ|ui|2. (10.11)

The norm of the output is

‖y‖2 = u∗A∗Au,

where ∗ denotes the complex conjugate transpose. The matrix A∗A

is symmetric and positive semidefinite, and the right-hand side is a

quadratic form. The square roots of the eigenvalues of the matrix A∗A

are all real, and we have

‖y‖2 ≤ λ̄(A∗A)‖u‖2,

where λ̄ denotes the largest eigenvalue. The gain of the system can

then be defined as the maximum ratio of the output to the input over

all possible inputs:

γ = max
u

‖y‖
‖u‖ =

√
λ̄(A∗A). (10.12)
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The square roots of the eigenvalues of the matrix A∗A are called the

singular values of the matrix A, and the largest singular value is de-

noted by σ̄(A).

To generalize this to the case of an input/output dynamical system,

we need to think of the inputs and outputs not as vectors of real num-

bers but as vectors of signals. For simplicity, consider first the case of

scalar signals and let the signal space L2 be square-integrable functions

with the norm

‖u‖2 =
√∫ ∞

0

|u|2(τ) dτ .

This definition can be generalized to vector signals by replacing the

absolute value with the vector norm (10.11). We can now formally

define the gain of a system taking inputs u ∈ L2 and producing outputs

y ∈ L2 as

γ = sup
u∈L2

‖y‖2
‖u‖2

, (10.13)

where sup is the supremum, defined as the smallest number that is

larger or equal to its argument. The reason for using the supremum is

that the maximum may not be defined for u ∈ L2. This definition of

the system gain is quite general and can even be used for some classes

of nonlinear systems, though one needs to be careful about how initial

conditions and global nonlinearities are handled.

This generalized notion of gain can be used to define the concept

of input/output stability for a system. Roughly speaking, a system

is called bounded input/bounded output (BIBO) stable if a bounded



680 CHAPTER 10

input gives a bounded output for all initial states. A system is called

input to state stable (ISS) if ‖x(t)‖ ≤ β(‖x(0)‖)+ γ(‖u‖) where β and

γ are monotonically increasing functions that vanish at the origin.

The norm (10.13) has some nice properties in the case of linear systems.

In particular, given a single-input, single-output stable linear system

with transfer function G(s), it can be shown that the norm of the

system is given by

γ = sup
ω
|G(iω)| =: ‖G‖∞. (10.14)

In other words, the gain of the system corresponds to the peak value of

the frequency response. This corresponds to our intuition that an input

produces the largest output when we are at the resonant frequencies of

the system. ‖G‖∞ is called the infinity norm of the transfer function

G(s).

This notion of gain can be generalized to the multi-input, multi-

output case as well. For a linear multivariable system with a transfer

function matrix G(s) we can define the gain as

γ = ‖G‖∞ = sup
ω
σ̄(G(iω)). (10.15)

Thus we can combine the idea of the gain of a matrix with the idea of

the gain of a linear system by looking at the maximum singular value

over all frequencies.

In addition to generalizing the system gain, it is also possible to make
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generalizations of the concept of phase. The angle between two vectors

can be defined by the equation

〈u, y〉 = ‖u‖‖y‖ cos(ϕ), (10.16)

where the left argument denotes the scalar product. If systems are

defined in such a way that we have norms of signals and a scalar product

between signals we can use equation (10.16) to define the phase between

two signals. For square-integrable inputs and outputs we have the

scalar product

〈u, y〉 =
∫ ∞

0

u(τ)y(τ) dτ,

and the phase ϕ between the signals u and y can now be defined through

equation (10.16).

Systems where the phase between inputs and outputs is 90◦ or less

for all inputs are called passive systems. Systems where the phase is

strictly less than 90◦ are called strictly passive.

Extensions of the Nyquist Criterion

There are many extensions of the Nyquist’s criterion, and we briefly

sketch a few of them here. For linear systems it follows from Nyquist’s

theorem that the closed loop is stable if the gain of the loop transfer

function is less than 1 for all frequencies. Since we have a notion of

gain for nonlinear systems given by equation (10.13), we can extend

this case of the Nyquist criterion to nonlinear systems:
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−H2

Σ H1

Figure 10.17: Block diagram of feedback connection of two general

nonlinear systems H1 and H2.

Theorem 10.4 (Small gain theorem). Consider the closed loop system

shown in Figure 10.17, where H1 and H2 are input/output stable sys-

tems and the signal spaces and initial conditions are properly defined.

Let the gains of the systems H1 and H2 be γ1 and γ2. Then the closed

loop system is input/output stable if γ1γ2 < 1, and the gain of the closed

loop system is

γ =
γ1

1− γ1γ2
.

Another extension of the Nyquist criterion to nonlinear systems can

be obtained by investigating the phase shift of the nonlinear systems.

Consider again the system in Figure 10.17. It follows from the Nyquist

criterion that if the blocks H1 and H2 are linear transfer functions,

then the closed loop system is stable if the phase of H1H2 is always

less than 180◦. A generalization of this to nonlinear systems is that the

closed loop system is stable if both H1 and H2 are passive and if one

of them is strictly passive. This result is called the passivity theorem.

A final useful extension of the Nyquist criterion applies to the system

in Figure 10.18 where H1 is a linear system with transfer function
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Figure 10.18: Stability using the circle criterion. For a feedback

system with a sector-bounded nonlinearity (a), the Nyquist plot (b)

must stay outside of a circle defined by −1/klow ≤ x ≤ −1/khigh

H(s) and the nonlinear block H2 is a static nonlinearity described by

a function F (x) that is sector-bounded

klow x ≤ F (x) ≤ khigh x. (10.17)

The following theorem allows us to reason about the stability of such

a system.

Theorem 10.5 (Circle criterion). Consider a negative feedback system

consisting of a linear system with transfer function H(s) and a static

nonlinearity defined by a function F (x) satisfying the sector bound (10.17).

The closed loop system is stable if the Nyquist curve of H(iω) is outside

a circle with diameter −1/klow ≤ x ≤ −1/khigh and the encirclement

condition is satisfied.

The extensions of Nyquist’s criterion that we have discussed are
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Figure 10.19: Describing function analysis. A feedback connection

between a static nonlinearity and a linear system is shown in (a). The

linear system is characterized by its transfer function H(s), which

depends on frequency, and the nonlinearity by its describing function

N(a), which depends on the amplitude a of its input. The Nyquist

plot of H(iω) and the plot of the −1/N(a) are shown in (b). The

intersection of the curves represents a possible limit cycle.

powerful and easy to apply, and we will use them later to in Chapter 13.

Details, proofs, and applications are found in [143].

Describing Functions

For special nonlinear systems like the one shown in Figure 10.19a, which

consists of a feedback connection between a linear system and a static

nonlinearity, it is possible to obtain a generalization of Nyquist’s sta-

bility criterion based on the idea of describing functions. Following

the approach of the Nyquist stability condition, we will investigate the

conditions for maintaining an oscillation in the system. If the linear

subsystem has low-pass character, its output is approximately sinu-
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soidal even if its input is highly irregular. The condition for oscillation

can then be found by exploring the propagation of a sinusoid that cor-

responds to the first harmonic.

To carry out this analysis, we have to analyze how a sinusoidal

signal propagates through a static nonlinear system. In particular we

investigate how the first harmonic of the output of the nonlinearity is

related to its (sinusoidal) input. Letting F (x) represent the nonlinear

function, we expand F (eiωt) in terms of its harmonics:

F (aeiωt) =
∞∑

n=0

Mn(a)e
i(nωt+ϕn(a)),

where Mn(a) and ϕn(a) represent the gain and phase of the nth har-

monic, which depend on the input amplitude since the function F (x)

is nonlinear. We define the describing function to be the complex gain

of the first harmonic:

N(a) =M1(a)e
iϕ1(a). (10.18)

The function can also be computed by assuming that the input is a

sinusoid and using the first term in the Fourier series of the resulting

output.

Neglecting higher harmonics and arguing as we did when deriving

Nyquist’s stability criterion, we find that an oscillation can be main-

tained if

H(iω)N(a) = −1. (10.19)
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This equation means that if we inject a sinusoid of amplitude a at A

in Figure 10.19a, the same signal will appear at B and an oscillation

can be maintained by connecting the points. Equation (10.19) gives

two conditions for finding the frequency ω of the oscillation and its

amplitude a: the phase of H(iω)N(a) must be 180◦ and its magnitude

must be unity. A convenient way to solve the equation is to plot H(iω)

and −1/N(a) on the same diagram as shown in Figure 10.19b. The

diagram is similar to the Nyquist plot where the critical point −1 is

replaced by the curve −1/N(a) and a ranges from 0 to ∞. The in-

tersection of the curves gives the amplitude a and frequency ω of the

predicted oscillation.

It is possible to define describing functions for types of inputs other

than sinusoids. Describing function analysis is a simple method, but

it is approximate because it assumes that higher harmonics can be

neglected. Excellent treatments of describing function techniques can

be found in the texts by Atherton [25] and Graham and McRuer [107].

The following example illustrates its use.

Example 10.12 Relay with hysteresis

Consider a linear system with a nonlinearity consisting of a relay with

hysteresis. The output has amplitude b and the relay switches when

the input is ±c, as shown in Figure 10.20a. Assuming that the input is

u = a sin(ωt), we find that the output is zero if a ≤ c, and if a > c the

output is a square wave with amplitude b that switches at times ωt =
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Figure 10.20: Describing function analysis for a relay with hys-

teresis. The input/output relation of the hysteresis is shown in (a)

and the input with amplitude a = 2, the output and its first har-

monic are shown in (b). The Nyquist plots of the transfer function

H(s) = (s + 1)−4 and the negative of the inverse describing function

for the relay with b = 3 and c = 1 are shown in (c).

arcsin(c/a) + nπ. The first harmonic is then y(t) = (4b/π) sin(ωt−α),

where sinα = c/a. For a > c the describing function and its inverse

are

N(a) =
4b

aπ

(√
1− c2

a2
− i c

a

)
,

1

N(a)
=
π
√
a2 − c2
4b

+ i
πc

4b
,

where the inverse is obtained after simple calculations. Figure 10.20b

shows the response of the relay to a sinusoidal input with the first

harmonic of the output shown as a dashed line. Describing function

analysis is illustrated in Figure 10.20c, which shows the Nyquist plot of



688 CHAPTER 10

the transfer function H(s) = 2/(s+ 1)4 (dashed line) and the negative

inverse describing function of a relay with b = 1 and c = 0.5 (solid

line). The curves intersect for a = 1 and ω = 0.77 rad/s, indicating the

amplitude and frequency for a possible oscillation if the process and

the relay are connected in a a feedback loop. ∇

It follows from the example that the describing function for a relay

without hysteresis is N(a) = 4b/(aπ) and −1/N(a) is thus the negative

real axis. For a saturation function, −1/N(a) is the part of the negative

real axis from −∞ to −1.

10.6 FURTHER READING

Nyquist’s original paper giving his now famous stability criterion was

published in the Bell Systems Technical Journal in 1932 [192]. More

accessible versions are found in the book [33], which also includes other

interesting early papers on control. Nyquist’s paper is also reprinted

in an IEEE collection of seminal papers on control [28]. Nyquist used

+1 as the critical point, but Bode changed it to −1, which is now

the standard notation. Interesting perspectives on early developments

are given by Black [46], Bode [52], and Bennett [35]. Nyquist did a

direct calculation based on his insight into the propagation of sinusoidal

signals through systems; he did not use results from the theory of

complex functions. The idea that a short proof can be given by using
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the principle of variation of the argument is presented in the delightful

book by MacColl [170]. Bode made extensive use of complex function

theory in his book [51], which laid the foundation for frequency response

analysis where the notion of minimum phase was treated in detail. A

good source for complex function theory is the classic by Ahlfors [6].

The extensions of Nyquist’s criterion to a closed loop system that

is composed of a linear system and a static nonlinearity has received

significant attention. An extensive treatment of the passivity and

small gain theorems and describing functions is given in the book by

Khalil [143]. Describing functions for many nonlinearities are given in

the books by Atherton [25] and Graham and McRuer [107]. Frequency

response analysis was a key element in the emergence of control the-

ory as described in the early texts by James et al. [129], Brown and

Campbell [57], and Oldenburger [196], and it became one of the corner-

stones of early control theory. Frequency response methods underwent

a resurgence when robust control emerged in the 1980s, as will be dis-

cussed in Chapter 13.

EXERCISES

10.1 (Operational amplifier loop transfer function) Consider the oper-

ational amplifier circuit shown below, where Z1 and Z2 are generalized

impedances and the open loop amplifier is modeled by the transfer
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function G(s).

v −

+
v1

v2

Z1 Z2

i0
v2Z1

Z1 + Z2

e vZ2

Z1

v1
−G(s)Σ

Show that the system can be modeled as the block diagram on the

right, with loop transfer function L = Z1G/(Z1 + Z2) and feedforward

transfer function F = Z1/(Z1 + Z2).

10.2 (Atomic force microscope) The dynamics of the tapping mode of

an atomic force microscope are dominated by the damping of the can-

tilever vibrations and the system that averages the vibrations. Mod-

eling the cantilever as a spring–mass system with low damping, we

find that the amplitude of the vibrations decays as exp(−ζω0t), where

ζ is the damping ratio and ω0 is the undamped natural frequency of

the cantilever. The cantilever dynamics can thus be modeled by the

transfer function

G(s) =
a

s+ a
,

where a = ζω0. The averaging process can be modeled by the in-

put/output relation

y(t) =
1

τ

∫ t

t−τ
u(v)dv,

where the averaging time is a multiple n of the period of the oscillation

2π/ω. The dynamics of the piezo scanner can be neglected in the first

approximation because they are typically much faster than a. A simple
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model for the complete system is thus given by the transfer function

P (s) =
a(1− e−sτ )
sτ(s+ a)

.

Plot the Nyquist curve of the system and determine the gain of a pro-

portional controller that brings the system to the boundary of stability.

10.3 (Congestion control in overload conditions) A strongly simplified

flow model of a TCP loop under overload conditions is given by the

loop transfer function

L(s) =
k

s
e−sτ ,

where the queuing dynamics are modeled by an integrator, the TCP

window control is a time delay τ , and the controller is simply a propor-

tional controller. A major difficulty is that the time delay may change

significantly during the operation of the system. Show that if we can

measure the time delay, it is possible to choose a gain that gives a

stability margin of sm ≥ 0.6 for all time delays τ .

10.4 (Heat conduction) A simple model for heat conduction in a solid

is given by the transfer function

P (s) = ke−
√
s.

Sketch the Nyquist plot of the system. Determine the frequency where

the phase of the process is −180◦ and the gain at that frequency. Show

that the gain required to bring the system to the stability boundary is
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k = eπ.

10.5 (Stability margins for second-order systems) A process whose dy-

namics is described by a double integrator is controlled by an ideal PD

controller with the transfer function C(s) = kds+ kp, where the gains

are kd = 2ζω0 and kp = ω2
0. Calculate and plot the gain, phase, and

stability margins as a function ζ.

10.6 (Unity gain operational amplifier) Consider an op amp circuit

with Z1 = Z2 that gives a closed loop system with nominally unit gain.

Let the transfer function of the operational amplifier be

G(s) =
ka1a2

(s+ a)(s+ a1)(s+ a2)
,

where a1, a2 ≫ a. Show that the condition for oscillation is k < a1+a2

and compute the gain margin of the system. Hint: Assume a = 0.

10.7 (Vehicle steering) Consider the linearized model for vehicle steer-

ing with a controller based on state feedback discussed in Example 8.4.

The transfer functions for the process and controller are given by

P (s) =
γs+ 1

s2
, C(s) =

s(k1l1 + k2l2) + k1l2
s2 + s(γk1 + k2 + l1) + k1 + l2 + k2l1 − γk2l2

,

as computed in Example 9.10. Let the process parameter be γ = 0.5

and assume that the state feedback gains are k1 = 0.5 and k2 = 0.75

and that the observer gains are l1 = 1.4 and l2 = 1. Compute the

stability margins numerically.
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10.8 (Vectored thrust aircraft) Consider the state space controller �

designed for the vectored thrust aircraft in Examples 7.9 and 8.7. The

controller consists of two components: an optimal estimator to compute

the state of the system from the output and a state feedback compen-

sator that computes the input given the (estimated) state. Compute

the loop transfer function for the system and determine the gain, phase,

and stability margins for the closed loop dynamics.

10.9 (Kalman’s inequality) Consider the linear system (7.20). Let u =

−Kx be a state feedback control law obtained by solving the linear

quadratic regulator problem. Prove the inequality

(
I + L(−iω)

)T
Qu

(
I + L(iω)

)
≥ Qu,

where

K = Q−1
u BTS, L(s) = K(sI − A)−1B.

(Hint: Use the Riccati equation (7.33), add and subtract the terms sS,

multiply with BT (sI + A)−T from the left and (sI − A)−1B from the

right.)

For single-input single-output systems this result implies that the

Nyquist plot of the loop transfer function has the property |1+L(iω)| ≥

1, from which it follows that the phase margin for a linear quadratic

regulator is always greater than 60◦.

10.10 (Bode’s formula) Consider Bode’s formula (10.9) for the re-
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lation between gain and phase for a transfer function that has all

its singularities in the left half-plane. Plot the weighting function

and make an assessment of the frequencies where the approximation

argG ≈ (π/2)d log |G|/d logω is valid.

10.11 (Padé approximation to a time delay) Consider the transfer

functions

G(s) = e−sτ , G1(s) =
1− sτ/2
1 + sτ/2

. (10.20)

Show that the minimum phase properties of the transfer functions are

similar for frequencies ω < 1/τ . A long time delay τ is thus equiv-

alent to a small right half-plane zero. The approximation G1(s) in

equation (10.20) is called a first-order Padé approximation.

10.12 (Inverse response) Consider a system whose input/output re-

sponse is modeled by G(s) = 6(−s+ 1)/(s2 + 5s+ 6), which has a

zero in the right half-plane. Compute the step response for the sys-

tem, and show that the output goes in the wrong direction initially,

which is also referred to as an inverse response. Compare the response

to a minimum phase system by replacing the zero at s = 1 with a zero

at s = −1.

10.13 (Circle criterion) Consider the system in Figure 10.17, where H1

is a linear system with the transfer function H(s) and H2 is a static

nonlinearity F (x) with the property xF (x) ≥ 0. Use the circle criterion

to prove that the closed loop system is stable ifH(s) is strictly passive.
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10.14 (Describing function analysis) Consider the system with the

block diagram shown on the left below.

−1

Σ
r e u

P (s)
y

R( · )

y

u

c

b

The block R is a relay with hysteresis whose input/output response is

shown on the right and the process transfer function is P (s) = e−sτ/s.

Use describing function analysis to determine frequency and amplitude

of possible limit cycles. Simulate the system and compare with the

results of the describing function analysis.

10.15 (Describing functions) Consider the saturation function

y = sat(x) =





−1 if x ≤ 1,

x if −1 < x ≤ 1,

1 if x > 1.

Show that the describing function is

N(a) =





x if |x| ≤ 1,

2

π

(
arcsin

1

x
+

1

x

√
1− 1

x2

)
if |x| > 1.





Chapter Eleven

PID Control

Based on a survey of over eleven thousand controllers in the refin-

ing, chemicals and pulp and paper industries, 97% of regulatory

controllers utilize a PID feedback control algorithm.

L. Desborough and R. Miller, 2002 [70].

Proportional-integral-derivative (PID) control is by far the most

common way of using feedback in engineering systems. In this chapter

we present the basic properties of PID control and the methods for

choosing the parameters of the controllers. We also analyze the effects

of actuator saturation, an important feature of many feedback systems,

and describe methods for compensating for it. Finally, we discuss the

implementation of PID controllers as an example of how to implement

feedback control systems using analog or digital computation.
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11.1 BASIC CONTROL FUNCTIONS

The PID controller was introduced in Section 1.6, where Figure 1.15

illustrates that control action is composed of three terms: the propor-

tional term (P), which depends on the present error; the integral term

(I), which depends on past errors; and the derivative term (D), which

depends on anticipated future errors. A major difference between a

PID controller and an advanced controller based on feedback from es-

timated states (see Section 8.5) is that the observer-based controller

predicts the future state of the system using a mathematical model,

while the PID controller makes use of linear extrapolation of the mea-

sured output. A PI controller does not make use of any prediction of

the future state of the system.

A survey of controllers for more than 100 boiler-turbine units in

the Guangdong Province in China is a typical illustration of the preva-

lence of PID-based control: 94.4% of all controllers were PI, 3.7% PID,

and 1.9% used advanced control [235]. The reasons why derivative

action is used in only 4% of all controllers are that the benefits of

prediction are significant primarily for processes that permit large con-

troller gains. For many systems, prediction by linear extrapolation can

generate large undesired control signals because measurement noise is

amplified. In addition care must be taken to find a proper prediction

horizon. Temperature control is a typical case where derivative action

can be beneficial: sensors have low noise levels and controllers can have
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high gain.

PID control appears in simple dedicated systems and in large fac-

tories with thousands of controllers: as stand-alone controllers, as ele-

ments of hierarchical, distributed control systems, and as components

of embedded systems. Advanced control systems are implemented as

hierarchical systems, where high-level controllers give setpoints to PID

controllers in a lower layer. The PID controllers are directly connected

to the sensors and actuators of the process. The importance of PID

controllers thus has not decreased with the adoption of advanced con-

trol methods, because the performance of the system depends critically

on the behavior of the PID controllers [70]. There is also growing evi-

dence that PID control appears in biological systems [259].

Block diagrams of closed loop systems with PID controllers are

shown in Figure 11.1. The command signal r is called the reference

signal in regulation problems or the setpoint in the literature of PID

control. The control signal u for the system in Figure 11.1a is formed

entirely from the error e; there is no feedforward term (which would

correspond to kfr in the state feedback case). A common alternative in

which proportional and derivative action do not act on the reference is

shown in Figure 11.1b; combinations of the schemes will be discussed

in Section 11.5.

The input/output relation for an ideal PID controller with error
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kds
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y

(a) PID using error feedback

Controller

kp

kds

ki/sΣ

Σ
u

r

y
P (s)

−1

(b) PID using two degrees of free-

dom

Figure 11.1: Block diagrams of closed loop systems with ideal PID

controllers. Both controllers have one output, the control signal u.

The controller in (a), which is based on error feedback, has one input,

the control error e = r − y. For this controller proportional, integral,

and derivative action acts on the error e = r − y. The two degree-

of-freedom controller in (b) has two inputs, the reference r and the

process output y. Integral action acts on the error, but proportional

and derivative action act on only the process output y.

feedback is

u = kpe+ki

∫ t

0

e(τ) dτ+kd
de

dt
= kp

(
e+

1

Ti

∫ t

0

e(τ) dτ+Td
de

dt

)
. (11.1)

The control action is thus the sum of three terms: proportional feed-
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back, the integral term, and derivative action. For this reason PID

controllers were originally called three-term controllers.

The controller parameters are the proportional gain kp, the integral

gain ki, and the derivative gain kd. The gain kp is sometimes expressed

in terms of the proportional band, defined as PB = 100/kp. A propor-

tional band of 10% thus implies that the controller operates linearly for

only 10% of the span of the measured signal. The controller can also

be parameterized with the time constants Ti = kp/ki and Td = kd/kp,

called the integral time (constant) and the derivative time (constant).

The parameters Ti and Td have dimensions of time and can naturally

be related to the time constants of the controller.

The controller (11.1) is an idealized representation. It is a useful

abstraction for understanding the PID controller, but several modifi-

cations must be made to obtain a controller that is practically useful.

Before discussing these practical issues we will develop some intuition

about PID control.

We start by considering pure proportional feedback. Figure 11.2a shows

the responses of the process output to a unit step in the reference value

for a system with pure proportional control at different gain settings.

In the absence of a feedforward term, the output never reaches the ref-

erence, and hence we are left with nonzero steady-state error. Letting

the process transfer function be P (s), with proportional feedback we
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(c) PID control

Figure 11.2: Responses to step changes in the reference value for a

system with a proportional controller (a), PI controller (b), and PID

controller (c). The process has the transfer function P (s) = 1/(s+1)3,

the proportional controller has parameters kp = 1, 2, and 5, the PI

controller has parameters kp = 1, ki = 0, 0.2, 0.5, and 1, and the PID

controller has parameters kp = 2.5, ki = 1.5, and kd = 0, 1, 2, and 4.

have C(s) = kp and the transfer function from reference to error is

Ger(s) =
1

1 + C(s)P (s)
=

1

1 + kpP (s)
. (11.2)
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Assuming that the closed loop is stable, the steady-state error for a

unit step is

Ger(0) =
1

1 + C(0)P (0)
=

1

1 + kpP (0)
.

For the system in Figure 11.2a with gains kp = 1, 2, and 5, the steady-

state error is 0.5, 0.33, and 0.17. The error decreases with increasing

gain, but the system also becomes more oscillatory. The system be-

comes unstable for kp = 8. Notice in the figure that the initial value of

the control signal equals the controller gain.

To avoid having a steady-state error, the proportional term can be

changed to

u(t) = kpe(t) + uff, (11.3)

where uff is a feedforward term that is adjusted to give the desired

steady-state value. If the reference value r is constant and we choose

uff = r/P (0) = kfr, then the steady-state output will be exactly equal

to the reference value, as it was in the state space case, provided that

there are no disturbances. However, this requires exact knowledge

of the zero frequency gain P (0), which is usually not available. The

parameter uff, called the reset value, was adjusted manually in early

controllers. Another alternative to avoid a steady-state error is to

multiply the reference by 1 + kpP (0), but this also requires precise

knowledge of P (0).

As we saw in Section 7.4, integral action guarantees that the process
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output agrees with the reference in steady state and provides an alter-

native to the feedforward term. Since this result is so important, we

will provide a general proof. Consider the controller given by equa-

tion (11.1) with ki 6= 0. Assume that u(t) and e(t) converge to steady-

state values u = u0 and e = e0. It then follows from equation (11.1)

that

u0 = kpe0 + ki lim
t→∞

∫ t

0

e(t)dt.

The limit of the right hand side is not finite unless e(t) goes to zero,

which implies that e0 = 0. We can thus conclude that integral control

has the property that if a steady state exists, the error will always be

zero. This property is sometimes called the magic of integral action.

Notice that we have not assumed that the process is linear or time-

invariant. We have, however, assumed that there is an equilibrium

point. It is much better to achieve zero steady-state error by inte-

gral action than by feedforward, which requires a precise knowledge of

process parameters.

The effect of integral action can also be understood from frequency

domain analysis. The transfer function of the PID controller is

C(s) = kp +
ki
s
+ kds. (11.4)

The controller has infinite gain at zero frequency (C(0) = ∞), and it

then follows from equation (11.2) that Ger(0) = 0, which implies that

there is no steady-state error for a step input.
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Σkp
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(a) Integral action (automatic reset)

u
Σkp

e

−1

1 + sTd

(b) Derivative action

Figure 11.3: Implementation of integral and derivative action. The

block diagram in (a) shows how integral action is implemented using

positive feedback with a first-order system, sometimes called automatic

reset. The block diagram in (b) shows how derivative action can be

implemented by taking differences between a static system and a first-

order system.

Integral action can also be viewed as a method for generating the

feedforward term uff in the proportional controller (11.3) automatically.

This is shown in Figure 11.3a, where the controller output is low-pass

filtered and fed back with positive gain. This implementation, called

automatic reset, was one of the early inventions of integral control (it

was much easier to implement a low-pass filter than to implement an

integrator). The transfer function of the system in Figure 11.3a is

obtained by block diagram algebra: we have

Gue = kp
1 + sTi
sTi

= kp +
kp
sTi

,

which is the transfer function for a PI controller.

The properties of integral action are illustrated in Figure 11.2b for

a step input. The proportional gain is constant, kp = 1, and the
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integral gains are ki = 0, 0.2, 0.5, and 1. The case ki = 0 corresponds

to pure proportional control, with a steady-state error of 50%. The

steady-state error is eliminated when integral gain action is used. The

response creeps slowly toward the reference for small values of ki and

converges more quickly for larger integral gains, but the system also

becomes more oscillatory.

The integral gain ki is a useful measure for attenuation of load

disturbances. Consider a closed loop system under PID control, like

the one in Figure 11.1. Assume that the system is stable and initially

at rest with all signals being zero. Apply a unit step load disturbance

at the process input. After a transient, the process output goes to

zero and the controller output settles at a value that compensates for

the disturbance. Since e(t) goes to zero as t → ∞, it follows from

equation (11.1) that

u(∞) = ki

∫ ∞

0

e(t)dt.

The integrated error, IE, for a unit step load disturbance IE =
∫∞
0
e(t)dt

is thus inversely proportional to the integral gain ki and hence serves

as a measure of the effectiveness of disturbance attenuation. A large

gain ki attenuates disturbances effectively, but too large a gain gives

oscillatory behavior, poor robustness, and possibly instability.

We now return to the general PID controller and consider the effect

of derivative action. Recall that the original motivation for derivative
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feedback was to provide predictive or anticipatory action. Notice that

the combination of the proportional and the derivative terms can be

written as

u = kpe+ kd
de

dt
= kp

(
e+ Td

de

dt

)
=: kpep,

where ep(t) can be interpreted as a prediction of the error at time

t + Td by linear extrapolation. The prediction time Td = kd/kp is the

derivative time constant.

Derivative action can be implemented by taking the difference be-

tween the signal and its low-pass filtered version as shown in Fig-

ure 11.3b. The transfer function for the system is

Gue(s) = kp

(
1− 1

1 + sTd

)
= kp

sTd
1 + sTd

=
kds

1 + sTd
. (11.5)

The transfer function Gue(s) approximates a derivative for low frequen-

cies because for |s| ≪ 1/Td we have G(s) ≈ kpTds = kds. The transfer

function Gue acts like a differentiator for signals with low frequencies

and as a constant gain kp for high-frequency signals, so we can regard

this as a filtered derivative.

Figure 11.2c illustrates the effect of derivative action: the system

is oscillatory when no derivative action is used, and it becomes more

damped as the derivative gain is increased. When the input is a step,

the controller output generated by the derivative term will be an im-

pulse. This is clearly visible in Figure 11.2c. The impulse can be



708 CHAPTER 11

avoided by using the controller configuration shown in Figure 11.1b.

Although PID control was developed in the context of engineering

applications, it also appears in nature. Disturbance attenuation by

feedback in biological systems is often called adaptation. A typical ex-

ample is the pupillary reflex discussed in Example 9.18, where it is said

that the eye adapts to changing light intensity. Analogously, feedback

with integral action is called perfect adaptation [259]. In biological

systems proportional, integral, and derivative action are generated by

combining subsystems with dynamical behavior, similar to what is done

in engineering systems. For example, PI action can be generated by

the interaction of several hormones [80].

Example 11.1 PD action in the retina

The response of cone photoreceptors in the retina is an example where

proportional and derivative action is generated by a combination of

cones and horizontal cells. The cones are the primary receptors stim-

ulated by light, which in turn stimulate the horizontal cells, and the

horizontal cells give inhibitory (negative) feedback to the cones. A

schematic diagram of the system is shown in Figure 11.4a. The sys-

tem can be modeled by ordinary differential equations by representing

neuron signals as continuous variables representing the average pulse

rate. In [256] it is shown that the system can be represented by the
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Figure 11.4: Schematic diagram of cone photoreceptors (C) and

horizontal cells (H) in the retina. In the schematic diagram in (a),

excitatory feedback is indicated by arrows and inhibitory feedback by

circles. A block diagram is shown in (b) and the step response in (c).

differential equations

dx1
dt

=
1

Tc
(−x1 − kx2 + u),

dx2
dt

=
1

Th
(x1 − x2),

where u is the light intensity and x1 and x2 are the average pulse rates

from the cones and the horizontal cells. A block diagram of the system

is shown in Figure 11.4b. The step response of the system given in

Figure 11.4c shows that the system has a large initial response followed

by a lower, constant steady-state response typical of proportional and

derivative action. The parameters used in the simulation are k = 4,

Tc = 0.025, and Th = 0.08. ∇

11.2 SIMPLE CONTROLLERS FOR COMPLEX SYSTEMS

Many of the design methods discussed in previous chapters have the

property that the complexity of the controller is a direct reflection
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of the complexity of the model. When designing controllers by output

feedback in Chapter 8, we found for single-input, single-output systems

that the order of the controller was the same as the order of the model,

possibly one order higher if integral action was required. Applying

these design methods to PID control requires that the models must be

of first or second order.

Low-order models can be obtained from first principles. Any stable

system can be modeled by a static system if its inputs are sufficiently

slow. Similarly a first-order model is sufficient if the storage of mass,

momentum, or energy can be captured by only one variable; typical

examples are the velocity of a car on a road, angular velocity of a

stiff rotational system, the level in a tank, and the concentration in a

volume with good mixing. System dynamics are of second order if the

storage of mass, energy, and momentum can be captured by two state

variables; typical examples are the position and velocity of a car on the

road, the orientation and angular velocity of satellites, the levels in two

connected tanks, and the concentrations in two-compartment models.

A wide range of techniques for model reduction are also available. In

this section we will focus on design techniques where we simplify the

models to capture the essential properties that are needed for PID

design.

We begin by analyzing the case of integral control. Any stable

system can be controlled by an integral controller provided that the
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requirements on the closed loop system are modest. To design a con-

troller we approximate the transfer function of the process by a constant

K = P (0), which will be reasonable for any stable system at sufficiently

low frequencies. The loop transfer function under integral control then

becomes Kki/s, and the closed loop characteristic polynomial is simply

s + Kki. Specifying performance by the desired time constant Tcl of

the closed loop system, we find that the integral gain can be chosen as

ki = 1/(TclP (0)).

This simplified analysis requires that Tcl be sufficiently large that

the process transfer function can indeed be approximated by a constant.

A reasonable criterion is that Tcl > Tar, where Tar = −P ′(0)/P (0) is

known as the average residence time of the open loop system.

To obtain controllers with higher performance we approximate the

process dynamics by a first-order system (rather than a constant):

P (s) ≈ P (0)

1 + sTar
.

A reasonable design criterion is to obtain a step response with small

overshoot and reasonable response time. An integral controller with

gain

ki =
1

2P (0)Tar
, (11.6)

gives the loop transfer function

L(s) = P (s)C(s) ≈ P (0)

1 + sTar

ki
s
=

1

2sTar(1 + sTar)
,
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and the closed loop poles become s = (−0.5 ± 0.5i)/Tar. Using the

approximations in Table 7.1 on page 454, we see that this controller

has ω0 = 1/(Tar
√
2), which gives a rise time of 3.1Tar, a settling time

of 7.9Tar, and overshoot of 4%.

Example 11.2 Integral control of AFM in tapping mode

A simplified model of the dynamics of the vertical motion of an atomic

force microscope in tapping mode was discussed in Exercise 10.2. The

transfer function for the system dynamics is

P (s) =
a(1− e−sτ )
sτ(s+ a)

,

where a = ζω0, τ = 2πn/ω0, and the gain has been normalized to 1.

This transfer function is unusual since there is a time-delay term in the

numerator.

To design a controller, we focus on the low-frequency dynamics of

the system. We have P (0) = 1 and P ′(0) = −τ/2 − 1/a = −(2 +

aτ)/(2a). For low frequencies the loop transfer function can then be

approximated by

L(s) ≈ ki(P (0) + sP ′(0))

s
= kiP

′(0) +
kiP (0)

s
.

Using the design rule (11.6) we set ki = −1/(2P ′(0)), Nyquist and

Bode plots for the resulting loop transfer function are shown in Fig-

ure 11.5. We see that the controller provides good performance at low

frequency and has good stability margins. Note that even though the
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Figure 11.5: Nyquist and Bode plots of the loop transfer function

for integral control of an AFM in tapping mode. The integrating

controller gives good robustness properties based on a simple analysis.

At high frequencies the Nyquist plot has an infinite number of small

loops with decreasing amplitude in the left half-plane. These loops

are not visible in the Nyquist plot but they show up clearly in the

Bode plot.

system dynamics include a time-delay term, we were able to obtain

good performance using a simple integral controller and a simple set of

calculations. ∇

Another approach to designing simple controllers is to use the gains

of the controller to set the location of the closed loop poles. PI con-

trollers give two gains with which to tune the closed loop dynamics,

and for simple models the closed loop poles can be set using these gains.

Consider a first-order system with the transfer function

P (s) =
b

s+ a
.
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With a PI controller the closed loop system has the characteristic poly-

nomial

s(s+ a) + bkps+ bki = s2 + (a+ bkp)s+ bki.

The closed loop poles can thus be assigned arbitrary values by proper

choice of the controller gains kp and ki. Requiring that the closed loop

system have the characteristic polynomial

p(s) = s2 + a1s+ a2,

we find that the controller parameters are

kp =
a1 − a
b

, ki =
a2
b
. (11.7)

If we require a response of the closed loop system that is slower than

that of the open loop system, a reasonable choice is a1 = a + α and

a2 = αa, where α < a determines the closed loop response. If a

response faster than that of the open loop system is required, a possible

choice is a1 = 2ζcωc and a2 = ω2
c , where ωc and ζc are the undamped

natural frequency and damping ratio of the dominant mode.

The choice of ωc has a significant impact on the robustness of the

system and will be discussed in Section 14.5. An upper limit to ωc is

given by highest frequency where the model is valid. Large values of

ωc will require fast control actions, and actuators may saturate if the

value is too large. A first-order model is unlikely to represent the true

dynamics for high frequencies.
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Example 11.3 Cruise control using PI feedback

Consider the problem of maintaining the speed of a car as it goes up a

hill. In Example 6.11 we found that there was little difference between

the linear and nonlinear models when investigating PI control, provided

that the throttle did not reach the saturation limits. A simple linear

model of a car was given in Example 6.11:

d(v − ve)
dt

= −a(v − ve)− bg(θ − θe) + b(u− ue), (11.8)

where v is the velocity of the car, u is the input to the engine (throttle)

and θ is the slope of the hill. The parameters were a = 0.01, b = 1.32,

bg = 9.8, ve = 20, θe = 0, and ue = 0.1687. This model will be used

to find suitable parameters of a vehicle speed controller. The transfer

function from throttle to velocity is a first-order system. Since the open

loop dynamics are quite slow (1/a ≈ 100 s), it is natural to specify a

faster closed loop system by requiring that the closed loop system be of

second order with damping ratio ζc and undamped natural frequency

ωc. The controller gains are given by equation (11.7).

Figure 11.6 shows the velocity and the throttle for a car that initially

moves on a horizontal road and encounters a hill with a slope of 4◦ at

time t = 5 s. To design a PI controller we choose ζc = 1 to obtain

a response without overshoot, as shown in Figure 11.6a. The choice

of ωc is a compromise between response speed and control actions: a

large value gives a fast response, but it requires fast control action.
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Figure 11.6: Cruise control using PI feedback. The step responses

for the error and input illustrate the effect of parameters ζc and ωc

on the response of a car with cruise control. The slope of the road

changes linearly from 0◦ to 4◦ between t = 5 and 6 s. (a) Responses for

ωc = 0.5 and ζc = 0.5, 1, and 2. Choosing ζc ≥ 1 gives no overshoot

in the velocity v. (b) Responses for ζc = 1 and ωc = 0.2, 0.5, and 1.0.

The trade-off is illustrated in Figure 11.6b. The largest velocity error

decreases with increasing ωc, but the control signal also changes more

rapidly. In the simple model (11.8) it was assumed that the force

responds instantaneously to throttle commands. For rapid changes

there may be additional dynamics that have to be accounted for. There

are also physical limits to the rate of change of the force, which also

restricts the admissible value of ωc. A reasonable choice of ωc is in the

range 0.5–1.0. Notice in Figure 11.6 that even with ωc = 0.2 the largest

velocity error is only about 1.3 m/s. ∇
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A PI controller can also be used for a process with second-order

dynamics, but there will be restrictions on the possible locations of the

closed loop poles. Using a PID controller, it is possible to control a

system of second order in such a way that the closed loop poles have

arbitrary locations (Exercise 11.2).

Instead of finding a low-order model and designing controllers for

them, we can also use a high-order model and attempt to place only

a few dominant poles. An integral controller has one parameter, and

it is possible to position one pole. To see this, consider a process

with the transfer function P (s). The loop transfer function with an

integral controller is L(s) = kiP (s)/s. The roots of the closed loop

characteristic polynomial are the roots of s+kiP (s) = 0. Requiring that

s = −a be a root, the controller gain should be chosen as ki = a/P (−a).

The pole s = −a will be a dominant closed loop pole if a is smaller

than the magnitude of the other closed loop process poles. A similar

approach can be applied to PI and PID controllers (Exercise 11.3).

11.3 PID TUNING

Users of control systems are frequently faced with the task of adjust-

ing the controller parameters to obtain a desired behavior. There are

many different ways to do this. One approach is to go through the

conventional steps of modeling and control design as described in the
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previous section. A typical process may have thousands of PID con-

trollers. Since the PID controller has so few parameters a number of

special empirical methods have been developed for direct adjustment

of the controller parameters.

Ziegler–Nichols’ Tuning

The first tuning rules were developed by Ziegler and Nichols [266] in the

1940s. Their idea was to perform a simple experiment on the process

and extract features of process dynamics in the time and frequency

domains.

The time domain method is based on a measurement of part of the

open loop unit step response of the process, as shown in Figure 11.7a.

The step response is measured by a bump test. The process is first

brought to steady state, the input is then changed by a suitable amount,

and finally the output is measured and scaled to correspond to a unit

step input. Ziegler and Nichols characterized the step response by only

two parameters a and τ , which are the intercepts of the steepest tangent

of the step response with the coordinate axes. The parameter τ is an

approximation of the time delay of the system and a/τ is the steepest

slope of the step response. Notice that it is not necessary to wait

until steady state is reached to be able to determine the parameters;

it suffices to wait until the response has had an inflection point. The

suggested controller parameters are given in Table 11.1. They were
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(a) Step response method

Re P (iω)

Im P (iω)

ω = ωc

(b) Frequency response method

Figure 11.7: Ziegler–Nichols step and frequency response experi-

ments. The open loop unit step response in (a) is characterized by

the parameters a and τ . The frequency response method (b) charac-

terizes process dynamics by the point where the Nyquist curve of the

process transfer function first intersects the negative real axis and the

frequency ωc where this occurs.

obtained by extensive simulation of a range of representative processes.

A controller was tuned manually for each process, and an attempt was

then made to correlate the controller parameters with a and τ .

In the frequency domain method, a controller is connected to the

process, the integral and derivative gains are set to zero, and the pro-

portional gain is increased until the system starts to oscillate. The

critical value kc of the proportional gain is observed together with the

period of oscillation Tc. It follows from Nyquist’s stability criterion that

the Nyquist contour for the loop transfer function L = kcP (s) passes

through the critical point at the frequency ωc = 2π/Tc. The experi-

ment thus gives the point on the Nyquist curve of the process transfer



720 CHAPTER 11

Table 11.1: Original Ziegler–Nichols tuning rules. (a) The step

response method gives the parameters in terms of the intercept a and

the apparent time delay τ . (b) The frequency response method gives

controller parameters in terms of critical gain kc and critical period

Tc.

Type kp Ti Td

P 1/a

PI 0.9/a τ/0.3

PID 1.2/a τ/0.5 0.5τ

(a) Step response method

Type kp Ti Td

P 0.5kc

PI 0.45kc Tc/1.2

PID 0.6kc Tc/2 Tc/8

(b) Frequency response method

function P (s) where the phase lag is 180◦, as shown in Figure 11.7b.

The suggested controller parameters are then given by Table 11.1b.

The Ziegler–Nichols methods had a huge impact when they were

introduced in the 1940s. The rules were simple to use and gave initial

conditions for manual tuning. The ideas were adopted by manufac-
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turers of controllers for routine use. The Ziegler–Nichols tuning rules

unfortunately have two severe drawbacks: too little process information

is used, and the closed loop systems that are obtained lack robustness.

Tuning Based on the FOTD Model

The Ziegler–Nichols methods use only two parameters to characterize

process dynamics, a and τ for the step response method and kc and

Tc for the frequency domain method. Tuning of PID controllers can

be improved if we characterize the process by more parameters. The

first-order and time-delay (FOTD) model

P (s) =
K

1 + sT
e−τs, τn =

τ

T + τ
, (11.9)

is commonly used to approximate the step response of systems with

essentially monotone step responses. The parameter τn, which has val-

ues between 0 and 1, is called the relative time delay or the normalized

time delay. The dynamics are characterized as being lag dominated if

τn is close to zero, delay dominated if τn is close to one, and balanced

for intermediate values.

The parameters of the FOTD model can be determined from a

bump test as indicated in Figure 11.7a. The zero frequency gain K is

the steady-state value of the unit step response. The time delay τ is the

intercept of the steepest tangent with the time axis, as in the Ziegler–

Nichols method. The time T63 is the time where the output has reached
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63% of its steady-state value and T is then given by T = T63−τ . Notice

that it takes a longer time to find an FOTD model than the Ziegler–

Nichols model (a and τ) because to determine K it is necessary to wait

until the steady state has been reached.

There are many versions of improved tuning rules for the model (11.9).

As an illustration we give the following rules for PI control, based

on [19]:

kp =
0.15τ + 0.35T

Kτ

(0.9T
Kτ

)
, ki =

0.46τ + 0.02T

Kτ 2

(0.27T
Kτ 2

)
,

(11.10a)

kp = 0.16kc

(
0.45kc

)
, ki =

0.16kc + 0.72/K

Tc

(0.54kc
Tc

)
.

(11.10b)

The values for the Ziegler–Nichols rule from Table 11.1 are given in

parentheses. Notice that the improved formulas typically give lower

controller gains than the original Ziegler–Nichols method.

Example 11.4 Atomic force microscope in tapping mode

A simplified model of the dynamics of the vertical motion of an atomic

force microscope in tapping mode was discussed in Example 11.2. The

transfer function is normalized by choosing 1/a as the time unit, yield-

ing

P (s) =
1− e−sTn
sTn(s+ 1)

,

where Tn = 2nπa/ω0 = 2nπζ. The Nyquist plot of P (s) is shown as
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Figure 11.8: PI control of an AFM in tapping mode. Nyquist plots

(a) and step responses (b) for PI control of the vertical motion of

an atomic force microscope in tapping mode. Results with Ziegler–

Nichols tuning are shown by dashed lines, and modified Ziegler–

Nichols tuning is shown by solid lines. The Nyquist plot of the process

transfer function is shown by dotted lines.

a dotted line in Figure 11.8a for ζ = 0.002 and n = 20. The first

intersection with the real axis occurs at Re s = −0.0461 for ωc = 13.1.

The critical gain is thus kc = 21.7 and the critical period is Tc = 0.48.

Using the Ziegler–Nichols tuning rule, we find the parameters kp = 8.67

and ki = 22.6 (Ti = 0.384) for a PI controller. With this controller the

stability margin is sm = 0.31, which is quite small. The step response

of the controller is shown using dashed lines in Figure 11.8. Notice in

particular that there is a large overshoot in the control signal.

The modified Ziegler–Nichols rule (11.10b) gives the controller pa-

rameters kp = 3.47 and ki = 8.73 (Ti = 0.397) and the stability margin

becomes sm = 0.61. The step response with this controller is shown
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using solid lines in Figure 11.8. A comparison of the responses obtained

with the original Ziegler–Nichols rule shows that the overshoot has been

reduced. Notice that the control signal reaches its steady-state value

almost instantaneously. It follows from Example 11.2 that a pure inte-

gral controller has the normalized gain ki = 1/(2 + Tn) = 0.44, which

is more than an order of magnitude smaller than the integral gain of

the PI controller. ∇

The tuning rules based on the FOTD model work well for PI con-

trollers. Derivative action has little effect on processes with delay-

dominated dynamics, but can give substantial performance for pro-

cesses with lag-dominated dynamics. Tuning of PID controllers for

processes with lag-dominated dynamics cannot, however, be based on

the the FOTD model; see [19].

Relay Feedback

The Ziegler–Nichols frequency response method increases the gain of a

proportional controller until oscillation to determine the critical gain

kc and the corresponding critical period Tc or, equivalently, the point

where the Nyquist curve intersects the negative real axis. One way

to obtain this information automatically is to connect the process in

a feedback loop with a nonlinear element having a relay function as

shown in Figure 11.9a. For many systems there will then be an oscil-

lation, as shown in Figure 11.9b, where the relay output u is a square
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Figure 11.9: Block diagram of a process with relay feedback (a)

and typical signals (b). The process output y is a solid line, and the

relay output u is a dashed line. Notice that the signals u and y have

opposite phases.

wave and the process output y is close to a sinusoid. Moreover, the

fundamental sinusoidal components of the input and the output are

180◦ out of phase, which means that the system oscillates with the

critical period Tc. Notice that an oscillation with constant period is

established quickly.

To determine the critical gain kc we expand the square wave relay

output in a Fourier series. Notice in the figure that the process output is

practically sinusoidal because the process attenuates higher harmonics.

It is then sufficient to consider only the first harmonic component of the

input. Letting d be the relay amplitude, this component has amplitude

4d/π. If a is the amplitude of the process output, the process gain at

the critical frequency ωc = 2π/Tc is |P (iωc)| = πa/(4d) and the critical

gain is kc = 4d/(πa). Having obtained the critical gain kc and the

critical period Tc, the controller parameters can then be determined
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using the Ziegler–Nichols rules. Improved tuning can be obtained by

fitting a model to the data obtained from the relay experiment.

The relay experiment can be automated. Since the amplitude of the

oscillation is proportional to the relay output, it is easy to control it by

adjusting the relay output. Automatic tuning based on relay feedback

is used in many commercial PID controllers. Tuning is accomplished

simply by pushing a button that activates relay feedback. The relay

amplitude is automatically adjusted to keep the oscillations sufficiently

small, and the relay feedback is replaced by a PID controller when

the tuning is finished. The main advantage of relay tuning is that a

short experiment for identification of process dynamics is generated

automatically. The original relay autotuner can be improved signifi-

cantly by using an asymmetric relay, which admits determination of

more parameters [41].

11.4 INTEGRAL WINDUP

Many aspects of a control system can be understood from linear models.

However, there are some nonlinear phenomena that must be taken into

account. These are typically limitations in the actuators: a motor has

limited speed, a valve cannot be more than fully opened or fully closed,

etc. For a system that operates over a wide range of conditions, it may

happen that the control variable reaches the actuator limits. When this
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happens, the feedback loop is broken and the system runs in open loop

because the actuator remains at its limit independently of the process

output as long as the actuator remains saturated. The integral term

will also build up since the error is typically nonzero. The integral term

and the controller output may then become very large. The control

signal will then remain saturated even when the error changes, and it

may take a long time before the integrator and the controller output

come inside the saturation range. The consequence is that there are

large transients. This situation is referred to as integrator windup,

illustrated in the following example.

Example 11.5 Cruise control

The windup effect is illustrated in Figure 11.10a, which shows what

happens when a car encounters a hill that is so steep (6◦) that the throt-

tle saturates when the cruise controller attempts to maintain speed.

When encountering the slope at time t = 5, the velocity decreases and

the throttle increases to generate more torque. However, the torque

required is so large that the throttle saturates. The error decreases

slowly because the torque generated by the engine is just a little larger

than the torque required to compensate for gravity. The error is large

and the integral continues to build up until the error reaches zero at

time 25, but the controller output is still larger than the saturation

limit and the actuator remains saturated. The integral term starts to

decrease, and the velocity settles to the desired value at time t = 40.
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Figure 11.10: Simulation of PI cruise control with windup (a) and

anti-windup (b). The figure shows the speed v and the throttle u for a

car that encounters a slope that is so steep that the throttle saturates.

The controller output is a dashed line. The controller parameters are

kp = 0.5, ki = 0.1 and kaw = 2.0. The anti-windup compensator

eliminates the overshoot by preventing the error from building up in

the integral term of the controller.

Also notice the large overshoot. ∇

Avoiding Windup

Windup can occur in any controller with integral action. There are

many methods to avoid windup. One method for PID control is illus-

trated in Figure 11.11: the system has an extra feedback path that is

generated from a mathematical model of the saturating actuator. The

signal es is the difference between the outputs of the controller ua, and

the actuator model u. It is fed to the input of the integrator through
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Figure 11.11: PID controller with filtering, anti-windup, and man-

ual control. The controller has filtering of the measured signal, an

input uff for feedforward signal, and another input w for direct con-

trol of the output. The switch is in position A for normal operation;

if it is set to M the control variable is manipulated directly. The in-

put to the integrator (1/s) has a “reset” term that avoids integrator

windup in addition to the normal P, I, and D terms. Notice that the

reference r only enters in the integral term.

the gain kaw. The signal es is zero when there is no saturation and the

extra feedback loop has no effect on the system. When the actuator

saturates, the signal es is fed back to the integrator in such a way that

es goes toward zero. This implies that controller output is kept close

to the saturation limit. The controller output will then change as soon

as the error changes sign and integral windup is avoided.

The rate at which the controller output is reset is governed by the

feedback gain kaw; a large value of kaw gives a short reset time. The

parameter kaw cannot be too large because measurement noise can then

cause an undesirable reset. A reasonable choice is to choose kaw as a
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multiple of the integral gain ki.

The controller also has an input uff for feedforward control. By

entering the feedforward signal as shown in Figure 11.11, the basic anti-

windup scheme also deals with saturation caused by the feedforward

signal.

We illustrate how integral windup can be avoided by investigating

the cruise control system.

Example 11.6 Cruise control with anti-windup

Figure 11.10b shows what happens when a controller with anti-windup

is applied to the system simulated in Figure 11.10a. Because of the feed-

back from the actuator model, the output of the integrator is quickly

reset to a value such that the controller output is at the saturation

limit. The behavior is drastically different from that in Figure 11.10a

and the large overshoot is avoided. The tracking gain used in the simu-

lation is kaw = 2 which is an order of magnitude larger than the integral

gain ki = 0.2. ∇

To explore if windup protection improves stability, we can redraw

the block diagram so that the nonlinearity is isolated. The closed loop

system then consists of a linear block and a static nonlinearity. With

an ideal saturation, the nonlinearity is a sector-bounded nonlinearity

modeled by equation (10.17) with klow = 0 and khigh = 1, and the linear
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part has the transfer function

H(s) =
sP (s)C(s)− kaw

s+ kaw
(11.11)

(Exercise 11.12). We can use the circle criterion in Section 10.5 to

check stability of the closed loop system. We first observe that the

special form of the nonlinearity implies that the circle reduces to the

line Re s = −1. Applying the circle criterion, we find that the system

with windup protection is stable if the Nyquist curve of the transfer

function H(s) is to the right of the line Re s = −1. If we use describing

functions we find that oscillations may occur if the Nyquist curveH(iω)

intersects the negative real axis to the right of the critical point −1.

Manual Control and Tracking

Automatic control is often combined with manual control, where the

operation modes are selected by a switch as illustrated in Figure 11.11.

The switch is normally in the position A (automatic). Manual control

is selected by moving the switch to position M (manual) and the control

variable is then manipulated directly, often by buttons for increasing

and decreasing the control signal. For example, in a cruise control

system such as that shown in Figure 1.16a, the control signal increases

at constant rate when pushing the increase speed (accel) button and

it decreases at constant rate when the decrease speed (decel) button is

pushed. In Figure 11.11 the manipulated variable is denoted by um.
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Care has to be taken to avoid transients when switching modes.

This can be accomplished by the arrangement shown in Figure 11.11.

When the controller is in manual mode the feedback through the gain

kaw adjusts the input to the integrator so that the controller output ua

tracks the manual input um, resulting in no transient when switching

to automatic control.

To see how the controller in Figure 11.11 is implemented, let the

integrator output be z. The controller is then described by

dx

dt
= ki(r−yf)+kaw(u−ua), ua = z−kpyf−kdẏf, u =





F (ua) automatic,

F (um) manual,

where F (u) is the function that represents the actuator model. The

parameter kaw is typically larger than ki and it then follows that the

controller output u tracks um in manual mode (tracking would be ideal

if the term ki(r − yf) is zero).

Anti-Windup for General Controllers

Anti-windup can also be extended to general control architectures such

as the state space-based designs studied in Chapters 7 and 8. For the

case of an output feedback controller with integral action via state aug-

mentation (see Example 8.9), we modify the anti-windup compensation

to adjust the entire controller state instead of just the integrator state.

The approach is particularly easy to understand for controllers based
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Figure 11.12: Anti-windup for a general controller architecture.

Compare with the corresponding controller without anti-windup in

Figure 8.11.

on state feedback and an observer, like the one shown in Figure 8.11.

Without modification, when a saturation occurs then the wrong infor-

mation is sent to the observer (the commanded input instead of the

saturated input). To address this, we simply introduce a model for the

saturating actuator and feed its output to the observer, as illustrated

in Figure 11.12.

To investigate the stability of the controller with anti-windup, we

observe that if the observer model is designed so that the process actua-

tor never saturates, the block diagram of the closed loop system can be

redrawn so that it consists of a nonlinear static block representing the

actuator model F (x) and a linear block representing the observer and

the process. We can again make use of the circle criterion described in

Section 10.5 to provide conditions for stability. The linear block has

the transfer function

H(s) = K
(
sI − A+ LC

)−1(
B + LC[sI − A]−1B

)
, (11.12)
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where A, B, and C are the matrices of the state space model, K is the

feedback gain matrix, and L is the gain matrix of the Kalman filter.

With a simple saturating actuator, the nonlinearity is sector-bounded

with klow = 0 and khigh = 1 in equation (10.17). It then follows from

the circle criterion that the closed loop is stable if the Nyquist plot of

L(iω) is to the right of the line Re z = −1/khigh = −1, and the winding

number condition is satisfied.

Facilities for manual control and tracking with observers and state

augmentation can be done in the same way as for the PID controller

in Figure 11.11.

11.5 IMPLEMENTATION

There are many practical issues that have to be considered when imple-

menting PID controllers. They have been developed over time based

on practical experience. In this section we consider some of the most

common. Similar considerations also apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivative has high

gain for high-frequency signals. This means that high-frequency mea-

surement noise will generate large variations in the control signal. The

effect of measurement noise may be reduced by replacing the term kds

by kds/(1 + sTf), which can be interpreted as an ideal derivative of a
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low-pass filtered signal. The time constant of the filter is typically cho-

sen as Tf = (kd/kp)/N = Td/N , with N in the range 5–20. Filtering is

obtained automatically if the derivative is implemented by taking the

difference between the signal and its filtered version as shown in Fig-

ure 11.3b; see also equation (11.5). Note that in the implementation in

Figure 11.3b, the filter time constant Tf is equal to the derivative time

constant Td (N = 1).

Instead of filtering just the derivative, it is also possible to use an

ideal controller and filter the measured signal. Choosing a second-order

filter, the transfer function of the controller with the filter becomes

C(s) = kp

(
1 +

1

sTi
+ sTd

)
1

1 + sTf + (sTf)2/2
. (11.13)

For the system in Figure 11.11, filtering is done in the box marked

Gf(s), which has the dynamics

d

dt




x1

x2




=




0 1

−2T−2
f −2T−1

f







x1

x2




+




0

2T−2
f



y. (11.14)

The states are x1 = yf and x2 = dyf/dt. The filter thus gives filtered

versions of the measured signal and its derivative. The second-order

filter also provides good high-frequency roll-off, which improves robust-

ness.
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Setpoint Weighting

Figure 11.1 shows two configurations of a PID controller. The system

in Figure 11.1a has a controller with error feedback where proportional,

integral, and derivative action acts on the error. In the simulation of

PID controllers in Figure 11.2c there is a large initial peak in the control

signal, which is caused by the derivative of the reference signal. The

peak can be avoided by using the controller in Figure 11.1b, where

proportional and derivative action acts only on the process output. An

intermediate form is given by

u = kp
(
βr − y

)
+ ki

∫ t

0

(
r(τ)− y(τ)

)
dτ + kd

(
γ
dr

dt
− dy

dt

)
, (11.15)

where the proportional and derivative actions act on fractions β and γ

of the reference. Integral action has to act on the error to make sure

that the error goes to zero in steady state. The closed loop systems

obtained for different values of β and γ respond to load disturbances

and measurement noise in the same way. The response to reference

signals is different because it depends on the values of β and γ, which

are called reference weights or setpoint weights. Setpoint weighting is a

simple way to obtain two degree-of-freedom action in a PID controller.

A controller with β = γ = 0 is sometimes called an I-PD controller, as

seen Figure 11.1b. We illustrate the effect of setpoint weighting by an

example.

Example 11.7 Cruise control with setpoint weighting
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Figure 11.13: Step and frequency responses for PI cruise control

with setpoint weighting. Step responses are shown in (a) and the gain

curves of the frequency responses in (b). The controller gains are

kp = 0.74 and ki = 0.19. The setpoint weights are β = 0, 0.5, and 1,

and γ = 0.

Consider the PI controller for the cruise control system derived in Ex-

ample 11.3. Figure 11.13 shows the effect of setpoint weighting on the

response of the system to a reference signal. With β = 1 (error feed-

back) there is an overshoot in velocity and the control signal (throttle)

is initially close to the saturation limit. There is no overshoot with

β = 0 and the control signal is much smaller, clearly a much better

drive comfort. The frequency responses gives another view of the same

effect. The parameter β is typically in the range 0–1, and γ is normally

zero to avoid large transients in the control signal when the reference

is changed. ∇
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Figure 11.14: Schematic diagrams for PI and PID controllers using

op amps. The circuit in (a) uses a capacitor in the feedback path to

store the integral of the error. The circuit in (b) adds a filter on the

input to provide derivative action.

The controller given by equation (11.15) is a special case of the

general controller structure having two degrees of freedom, which was

discussed in Section 8.5.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different technologies. Fig-

ure 11.14 shows how PI and PID controllers can be implemented by

feedback around operational amplifiers.

To show that the circuit in Figure 11.14b is a PID controller we will

use the approximate relation given by equation (4.14), which is valid

when resistances Ri are replaced by impedances Zi (Exercise 10.1).

This gives the transfer function −Z2/Z1 for the closed loop op amp

circuit, noting that the gain of the operational amplifier is negative.
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For the PI control in Figure 11.14a the impedances are

Z1 = R1, Z2 = R2+
1

sC2

=
1 +R2C2s

sC2

,
Z2

Z1

=
1 +R2C2s

sR1C2

=
R2

R1

+
1

R1C2s
,

which shows that the circuit is an implementation of a PI controller

with gains kp = R2/R1 and ki = 1/(R1C2).

A similar calculation for the PID controller in Figure 11.14b gives

Z1(s) =
R1

1 +R1C1s
, Z2(s) = R2+

1

C2s
,

Z2

Z1

=
(1 +R1C1s)(1 +R2C2s)

R1C2s
,

which shows that the circuit is an implementation of a PID controller

with the parameters

kp =
R1C1 +R2C2

R1C2

, Ti = R1C1 +R2C2, Td =
R1R2C1C2

R1C1 +R2C2

.

Computer Implementation

In this section we briefly describe how a PID controller may be imple-

mented using a computer. The computer typically operates periodi-

cally, with signals from the sensors sampled and converted to digital

form by the A/D converter, and the control signal computed and then

converted to analog form for the actuators. The sequence of operation

is as follows:

1. Wait for clock interrupt

2. Read input from sensor

3. Compute control output

4. Send output to the actuator

5. Update controller state

6. Repeat
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Notice that an output is sent to the actuators as soon as it is avail-

able. The time delay is minimized by making the calculations in step

3 as short as possible and performing all updates after the output is

commanded. This simple way of reducing the latency is, unfortunately,

seldom used in commercial systems.

As an illustration we consider the PID controller in Figure 11.11,

which has a filtered derivative, setpoint weighting, and protection against

integral windup (anti-windup). The controller is a continuous-time

dynamical system. To implement it using a computer, the continuous-

time system has to be approximated by a discrete-time system.

In Figure 11.11, the signal ua is the sum of the proportional, in-

tegral, and derivative terms, and the controller output is u = sat(ua),

where sat is the saturation function that models the actuator. The

proportional term P = kp(βr − y) is implemented simply by replacing

the continuous variables with their sampled versions. Hence

P (tk) = kp
(
βr(tk)− y(tk)

)
, (11.16)

where {tk} denotes the sampling instants, i.e., the times when the

computer reads its input. We let h represent the sampling time, so

that tk+1 = tk+h. The integral term is obtained by approximating the

integral with a sum,

I(tk+1) = I(tk) + kih e(tk) +
h

Taw

(
sat(ua)− ua

)
, (11.17)



PID CONTROL 741

where Taw = h/kaw represents the anti-windup term. The filtered

derivative term D is given by the differential equation

Tf
dD

dt
+D = −kdẏ.

Approximating the derivative with a backward difference gives

Tf
D(tk)−D(tk−1)

h
+D(tk) = −kd

y(tk)− y(tk−1)

h
,

which can be rewritten as

D(tk) =
Tf

Tf + h
D(tk−1)−

kd
Tf + h

(y(tk)− y(tk−1)) . (11.18)

The advantage of using a backward difference is that the parameter

Tf/(Tf+h) is nonnegative and less than 1 for all h > 0, which guarantees

that the difference equation is stable. Reorganizing equations (11.16)–

(11.18), the PID controller can be described by the following pseu-

docode:

% Precompute controller coefficients

bi = ki*h

ad = Tf/(Tf+h)

bd = kd/(Tf+h)

br = h/Taw

% Initalize variables

I = 0, yold = adin(ch2)
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% Control algorithm - main loop

while (running) {

r = adin(ch1) % read setpoint from ch1

y = adin(ch2) % read process variable from ch2

P = kp*(b*r - y) % compute proportional part

D = ad*D - bd*(y-yold) % compute derivative part

ua = P + I + D % compute temporary output

u = sat(ua, ulow, uhigh) % simulate actuator saturation

daout(ch1) % set analog output ch1

I = I + bi*(r-y) + br*(u-ua) % update integral state

yold = y % update derivative state

sleep(h) % wait until next update interval

}

Precomputation of the coefficients bi, ad, bd, and br saves com-

puter time in the main loop. These calculations have to be done only

when controller parameters are changed. The main loop is executed

once every sampling period. The program has three states: yold, I,

and D. One state variable can be eliminated at the cost of less readable

code. The latency between reading the analog input and setting the

analog output consists of four multiplications, four additions, and eval-

uation of the sat function. All computations can be done using fixed-

point calculations if necessary and implemented on a programmable

logical controller (PLC). Notice that the code computes the filtered
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derivative of the process output and that it has setpoint weighting and

anti-windup protection. Note also that in this code we apply the actua-

tor saturation inside the controller, rather than measuring the actuator

output as in Figure 11.11.

11.6 FURTHER READING

The history of PID control is very rich and stretches back to the early

uses of feedback. Good presentations are given by Bennett [34, 35]

and Mindel [183]. An industrial perspective on PID control is given

in [44], [222], and [258], which all mention that a significant fraction

of PID controllers are poorly tuned. PID algorithms have been used

in many fields; an unconventional application is to explain popular

monetary policy rules [114]. The Ziegler–Nichols rules for tuning PID

controllers, first presented in 1942 [266], were developed based on ex-

tensive experiments with pneumatic simulators and Vannevar Bush’s

differential analyzer at MIT. An interesting view of the development of

the Ziegler–Nichols rules is given in an interview with Ziegler [49]. The

book [194] lists more than 1730 tuning rules. A detailed discussion

of methods for avoiding windup is given in [261], and a comprehen-

sive treatment of PID control is given in Åström and Hägglund [19].

Advanced relay autotuners are presented in Berner et al. [42].
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EXERCISES

11.1 (Ideal PID controllers) Consider the systems represented by the

block diagrams in Figure 11.1. Assume that the process has the transfer

function P (s) = b/(s+ a) and show that the transfer functions from r

to y are

a) Gyr(s) =
bkds

2 + bkps+ bki
(1 + bkd)s2 + (a+ bkp)s+ bki

,

b) Gyr(s) =
bki

(1 + bkd)s2 + (a+ bkp)s+ bki
.

Pick some parameters and compare the step responses of the systems.

11.2 Consider a second-order process with the transfer function

P (s) =
b

s2 + a1s+ a2
.

The closed loop system with a PI controller is a third-order system.

Show that it is possible to position the closed loop poles as long as the

sum of the poles is −a1. Give equations for the parameters that give

the closed loop characteristic polynomial

(s+ αc)(s
2 + 2ζcωcs+ ω2

c ).

11.3 Consider a system with the transfer function P (s) = (s + 1)−2.

Find an integral controller that gives a closed loop pole at s = −a and

determine the value of a that maximizes the integral gain. Determine



PID CONTROL 745

the other poles of the system and judge if the pole can be considered

dominant. Compare with the value of the integral gain given by equa-

tion (11.6).

11.4 (Tuning rules) Apply the Ziegler–Nichols and the modified tuning

rules to design PI controllers for systems with the transfer functions

P1 =
e−s

s
, P2 =

e−s

s+ 1
, P3 = e−s.

Compute the stability margins and explore any patterns.

11.5 (Ziegler–Nichols tuning) Consider a system with transfer function

P (s) = e−s/s. Determine the parameters of P, PI, and PID controllers

using Ziegler–Nichols step and frequency response methods. Compare

the parameter values obtained by the different rules and discuss the

results.

11.6 (Vehicle steering) Design a proportional-integral controller for the

vehicle steering system that gives the closed loop characteristic poly-

nomial

s3 + 2ωcs
2 + 2ω2

cs+ ω3
c .

11.7 (Average residence time with PID control) The average residence

time is a measure of the response time of the system. For a stable

system with impulse response h(t) and transfer function P (s) it can be

defined as

Tar =

∫ ∞

0

th(t) dt = −P
′(0)

P (0)
.



746 CHAPTER 11

Consider a stable system with P (0) 6= 0 and a PID controller having

integral gain ki = kp/Ti. Show that the average residence time of the

closed loop system is given by Tar = Ti/(P (0)kp).

11.8 (Web server control) Web servers can be controlled using a method

known as dynamic voltage frequency scaling in which the processor

speed is regulated by changing its supply voltage. A typical control

goal is to maintain a given service rate, which is approximately equal

to maintaining a specified queue length. The queue length x can be

modeled by equation (3.32),

dx

dt
= λ− µ,

where λ is the arrival rate and µ is the service rate, which is manip-

ulated by changing the processor voltage. A PI controller for keeping

queue length close to xr is given by

µ = kp(x− βxr) + ki

∫ t

0

(x− xr) dt.

Choose the controller parameters kp and ki so that the closed loop

system has the characteristic polynomial s2 +1.6s+1, then adjust the

setpoint weight β so that the response to a step in the reference signal

has 2% overshoot.

11.9 (Motor drive) Consider the model of the motor drive in Exer-

cise 3.7 with the parameter values given in Exercise 7.11. Develop an

approximate second-order model of the system and use it to design
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an ideal PD controller that gives a closed loop system with eigenvalues

−ζω0±iω0

√
1− ζ2. Add low-pass filtering as shown in equation (11.13)

and explore how large ω0 can be made while maintaining a good stabil-

ity margin. Simulate the closed loop system with the chosen controller

and compare the results with the controller based on state feedback in

Exercise 7.11.

11.10 (Windup and anti-windup) Consider a PI controller of the form

C(s) = 1+1/s for a process with input that saturates when |u| > 1, and

whose linear dynamics are given by the transfer function P (s) = 1/s.

Simulate the response of the system to step changes in the reference

signal of magnitude 1, 2, and 10. Repeat the simulation when the

windup protection scheme in Figure 11.11 is used.

11.11 (Windup protection by conditional integration) Many methods

have been proposed to avoid integrator windup. One method called

conditional integration is to update the integral only when the error is

sufficiently small. To illustrate this method we consider a system with

PI control described by

dx1
dt

= u, u = satu0(kpe+ kix2),
dx2
dt

=





e if |e| < e0,

0 if |e| ≥ e0,

where e = r−x. Plot the phase portrait of the system for the parameter

values kp = 1, ki = 1, u0 = 1, and e0 = 1 and discuss the properties of

the system. The example illustrates the difficulties of introducing ad
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hoc nonlinearities without careful analysis.

11.12 (Windup stability) Consider a closed loop system with controller

transfer function C(s) and process transfer function P (s). Let the con-

troller have windup protection with the tracking constant kaw. Assume

that the actuator model in the anti-windup scheme is chosen so that

the process never saturates.

a) Use block diagram transformations to show that the closed loop

system with anti-windup can be represented as a connection of a linear

block with transfer function (11.11) and a nonlinear block representing

the actuator model.

b) Show that the closed loop system is stable if the Nyquist plot of the

transfer function (11.11) has the property ReH(iω) > −1.

c) Assume that P (s) = kv/s and C(s) = kp + ki/s. Show that the

system with windup protection is stable if kaw > ki/kp.

d) Use describing function analysis to show that without the anti-

windup protection, the system may not be stable and estimate the

amplitude and frequency of the resulting oscillation.

e) Build a simple simulation that verifies the results from part (d).

11.13 Consider the system in Exercise 11.9 and investigate what hap-

pens if the second-order filtering of the derivative is replaced by a first-

order filter.



Chapter Twelve

Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for

with sensitivity deteriorations in another frequency range, and

the price is higher if the plant is open loop unstable. This applies

to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [229].

In this chapter we continue to explore the use of frequency domain

techniques with a focus on the design of feedback systems. We begin

with a more thorough description of the performance specifications for

control systems and then introduce the concept of “loop shaping” as

a mechanism for designing controllers in the frequency domain. Ad-

ditional techniques discussed in this chapter include feedforward com-

pensation, the root locus method, and nested controller design.
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12.1 SENSITIVITY FUNCTIONS

In the previous chapter, we used proportional-integral-derivative (PID)

feedback as a mechanism for designing a feedback controller for a given

process. In this chapter we will expand our approach to include a richer

repertoire of controllers and tools for shaping the frequency response

of the closed loop system.

One of the key ideas in this chapter is that we can design the be-

havior of the closed loop system by focusing on the open loop transfer

function. This same approach was used in studying stability using the

Nyquist criterion: we plotted the Nyquist plot for the open loop trans-

fer function to determine the stability of the closed loop system. From

a design perspective, the use of loop analysis tools is very powerful:

since the loop transfer function is L = PC, if we can specify the de-

sired performance in terms of properties of L, we can directly see the

impact of changes in the controller C. This is much easier, for example,

than trying to reason directly about the tracking response of the closed

loop system, whose transfer function is given by Gyr = PC/(1 + PC).

We will start by investigating some key properties of a closed loop

control system. A block diagram of a basic two degree-of-freedom con-

trol system is shown in Figure 12.1. The system loop is composed of

two components: the process and the controller. The two degree-of-

freedom controller itself has two blocks: the feedback block C and the

feedforward block F . There are two disturbances acting on the process,
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Figure 12.1: Block diagram of a control system with two degrees

of freedom. The controller has a feedback block C and a feedforward

block F . The external signals are the reference signal r, the load

disturbance v, and the measurement noise w. The measured output

is y, and the control signal is u.

the load disturbance v and the measurement noise w. The load dis-

turbance represents disturbances that drive the process away from its

desired behavior, while the measurement noise represents disturbances

that corrupt information about the process given by the sensors. For

example, in a cruise control system the major load disturbances are

changes in the slope of the road, and measurement noise is caused by

the electronics that convert pulses measured on a rotating shaft to a

velocity signal. The load disturbances typically have low frequencies,

lower than the controller bandwidth, while measurement noise typi-

cally has higher frequencies. It is assumed that load disturbances enter

at the process input and that the measurement noise acts at the pro-

cess output. This is a simplification since disturbances may enter the

process in many different ways and that there may be dynamics in the

sensors. These assumptions allow us to streamline the presentation
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without significant loss of generality.

The process output η is the variable that we want to control, and

our ultimate goal is to make η track a reference signal r. To shape the

response to reference signals, it is common to use a feedforward block

to generate a desired (or model) reference signal ym that represents the

actual signal we attempt to track. Control is based on the difference

between the model reference ym and the measured signal y, where the

measurements are corrupted by measurement noise w. The process is

influenced by the controller via the control variable u. The process

is thus a system with three inputs (the control variable u, the load

disturbance v, and the measurement noise w) and one output (the

measured signal y). The controller is a system with two inputs (the

measured signal y and the reference signal r) and one output (the

control signal u). Note that the control signal u is an input to the

process and the output of the controller, and that the measured signal

y is the output of the process and an input to the controller.

Since the control system in Figure 12.1 is composed of linear el-

ements, the relations between the signals in the diagram can be ex-

pressed in terms of the transfer functions. The overall system has

three external inputs: the reference r, the load disturbance v, and the

measurement noise w. Any of the remaining signals can be relevant for

design, but the most common ones are the error e, the control input u,

and the output y. In addition, the process input and output, µ and ν,
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Table 12.1: Transfer functions relating the signals of the control

system in Figure 12.1. The external inputs are the reference signal

r, load disturbance v, and measurement noise w, represented by each

row. The columns represent the measured signal y, control input u,

error e, process input µ, and process output η that are most relevant

for system performance.

y u e µ η

PCF

1 + PC

CF

1 + PC

F

1 + PC

CF

1 + PC

PCF

1 + PC
r

P

1 + PC

−PC

1 + PC

−P
1 + PC

1

1 + PC

P

1 + PC
v

1

1 + PC

−C
1 + PC

−1
1 + PC

−C
1 + PC

−PC

1 + PC
w

are also useful. Table 12.1 summarizes the transfer functions between

the external inputs (rows) and remaining signals (columns).

Although there are 15 entries in the table, many transfer functions

appear more than once. For most control designs we focus on the

following subset, which we call the Gang of Six:

Gyr =
PCF

1 + PC
, −Guv =

PC

1 + PC
, Gyv =

P

1 + PC
,

Gur =
CF

1 + PC
, −Guw =

C

1 + PC
, Gyw =

1

1 + PC
.

(12.1)

The transfer functions in the first column of equation (12.1) give the

responses of the process output y and the control signal u to the ref-

erence signal r. The second column gives the responses of the control
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variable u to the load disturbance v and the measurement noise w, and

the final column gives the responses of the measured signal y to those

two inputs. (Note that the sign convention in equation (12.1) is chosen

for later convenience and does not affect the magnitude of the Gang of

Six transfer functions.)

The response of the system to load disturbances and measurement

noise is of particular importance and these transfer functions are re-

ferred to as sensitivity functions. They represent the sensitivity of the

system to the various inputs, and they have specific names:

S =
1

1 + PC

sensitivity

function

PS =
P

1 + PC

load (or in-

put)

sensitivity

function

T =
PC

1 + PC

complementary

sensitivity

function

CS =
C

1 + PC

noise (or out-

put)

sensitivity

function
(12.2)

Because these transfer functions are particularly important in feedback

control design, they are called the Gang of Four, and they have many

interesting properties that will be discussed in detail in the rest of

the chapter. Good insight into these properties is essential in under-

standing the performance of feedback systems for the purposes of both

analysis and design.
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While the Gang of Four capture the response to disturbances, we

are also interested in the response of the system to the reference signal

r. The remaining two elements in the full Gang of Six capture the

relationship between the reference signal and the measured output y

plus the control input u:

Gyr =
PCF

1 + PC
, Gur =

CF

1 + PC
.

We see that F can be used to design these responses and provides a

second degree of freedom in addition to the feedback controller C. In

practice, it is common to first design the feedback controller C us-

ing the Gang of Four to provide good response with respect to load

disturbances and measurement noise, and then use F and the remain-

ing transfer functions as part of the full Gang of Six to obtain good

reference tracking.

In addition to the Gang of Six, one other signal that can be im-

portant is the error between the reference r and the process output η

(prior to the addition of measurement noise), which satisfies

ǫ = r − η =

(
1− PCF

1 + PC

)
r − P

1 + PC
v − PC

1 + PC
w

= (1− TF )r − PSv − Tw.

The signal ǫ is not actually present in our diagram, but is the true

error that represents the tracking deviation. We see that it consists of

a particular combination of transfer functions chosen from the Gang of

Six.
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The special case of F = 1 is called a system with (pure) error

feedback because all control actions are based on feedback from the

error. In this case the transfer functions given by equations (12.1)

and (12.2) are the same and the system is completely characterized by

the Gang of Four. In addition, the true tracking error becomes

ǫ = Sr − PSv − Tw.

Notice that we have less freedom in design of a system with error

feedback because the feedback controller C must now deal with both

disturbance attenuation, robustness, and reference signal tracking.

The transfer functions in equation (12.2) have many interesting

properties. For example, it follows from equation (12.2) that S+T = 1,

which explains why T is called the complementary sensitivity function.

The loop transfer function PC will typically go to zero for large s, which

implies that T goes to zero and S goes to one as s goes to infinity.

Thus, it will not be possible to track very high-frequency reference

signals (|Gyr| = |FT | → 0) and any high-frequency noise will propagate

unfiltered to the error (|Gew| = |S| → 1). For controllers with integral

action and processes with non-vanishing zero frequency gain, the loop

transfer function PC goes to infinity for small s, which implies that

S goes to zero and T goes to one as s goes to zero. Low-frequency

signals are thus tracked well (|Gyr| = |FT | → 0), and low-frequency

disturbances can be completely attenuated (|Gev| = |PS| → 0). Many
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more properties of the sensitivity functions will be discussed in detail

later in this chapter and in Chapters 13 and 14. Good insight into these

properties is essential in understanding the performance of feedback

systems for the purposes of both analysis and design. The transfer

functions are also used to formulate specifications on control systems.

In Chapter 10 we focused on the loop transfer function, and we

found that its properties gave useful insights into the properties of a

system. The loop transfer function does not, however, always give a

complete characterization of the closed loop system. In particular, it

can happen that there are pole/zero cancellations in the product of P

and C such that 1 + PC has no unstable poles, but one of the other

Gang of Four transfer functions might be unstable. The follow example

illustrates this difficulty.

Example 12.1 The loop transfer function gives only limited

insight

Consider a process with the transfer function P (s) = 1/(s − a) con-

trolled by a PI controller with error feedback having the transfer func-

tion C(s) = k(s−a)/s. The loop transfer function is L = k/s, and the

sensitivity functions are

S =
1

1 + PC
=

s

s+ k
, PS =

P

1 + PC
=

s

(s− a)(s+ k)
,

CS =
C

1 + PC
=
k(s− a)
s+ k

, T =
PC

1 + PC
=

k

s+ k
.

Notice that the factor s−a is canceled when computing the loop transfer
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function and that this factor also does not appear in the sensitivity

functions S and T . However, cancellation of the factor is very serious

if a > 0 since the transfer function PS relating load disturbances to

process output is then unstable. A small disturbance v then leads to

an unbounded output, which is clearly not desirable. ∇

If all four of the transfer functions in equation (12.2) are stable we

say that the feedback system is internally stable. In addition, if there

is a feedforward controller F then it should also be stable in order

for the full system to be internally stable. For more general systems,

which may contain additional transfer functions and feedback loops, the

system is internally stable if all possible input/output transfer functions

are stable. For simplicity we will often say that a closed loop system

is stable when we mean that it is internally stable.

As mentioned previously, the system in Figure 12.1 represents a special�

case because it is assumed that the load disturbance enters at the

process input and that the measured output is the sum of the process

variable and the measurement noise. Disturbances can enter in many

different ways, and the sensors may have dynamics. A more abstract

way to capture the general case is shown in Figure 12.2, which has only

two blocks representing the process (P) and the controller (C). The

process has two inputs, the control signal u and a vector of disturbances

χ, and three outputs, the measured signal y, the reference signal r

and a vector of signals ξ that is used to specify performance. The
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Figure 12.2: A more general representation of a feedback system.

The process input u represents the control signal, which can be ma-

nipulated, and the process input χ represents the other signals that

influence the process. The process output consists of the measured

variable(s) y, the reference signal r, and the signal vector ξ represent-

ing the other signals of interest in the control design.

system in Figure 12.1 can be captured by choosing χ = (r, v, w) and

ξ = (e, µ, η, ǫ). The process transfer function P describes the effect of

χ and u on ξ, y, and r, and the controller transfer function C describes

how u is related to y and r (see Exercise 12.2). Restricting the signal

ξ to contain the errors e and ǫ, the control problem can be formulated

as finding a controller C so that the gain of the transfer function from

the disturbance χ = (r, v, w) to the generalized control error ξ = (e, ǫ)

is as small as possible (discussed further in Section 13.4).

Processes with multiple inputs and outputs can be handled by re-

garding u and y as vectors. Representations at these higher levels of

abstraction are useful for the development of theory because they make

it possible to focus on fundamentals and to solve general problems with

a wide range of applications. However, care must be exercised to main-

tain the coupling to the real-world control problems we intend to solve
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and we must keep in mind that matrix multiplication is not commuta-

tive.

12.2 PERFORMANCE SPECIFICATIONS

A key element of the control design process is how we specify the de-

sired performance of a system. Specifications capture robustness to

process variations as well performance in terms of the ability to follow

reference signals and attenuate load disturbances without injecting too

much measurement noise. The specifications are expressed in terms of

transfer functions such as the Gang of Six and the loop transfer func-

tion, and are often represented by features of the transfer functions or

their time and frequency responses.

Robustness to process variations was discussed extensively in Sec-

tion 10.3, where we introduced gain margin gm, phase margin ϕm, and

stability margin sm, as shown in Figure 10.11. The largest value of

the sensitivity function Ms = 1/sm is another robustness measure, as

illustrated in Figure 12.3a.

To provide specifications it is desirable to capture the characteris-

tic properties of a system with a few parameters. Features of step re-

sponses that we have already seen are overshoot, rise time, and settling

time, as shown in Figure 6.9. Common features of frequency responses

include peak value(s), peak frequency, gain crossover frequency, and



FREQUENCY DOMAIN DESIGN 761

10
-1

10
0

10
1

10
-1

10
0

10
1

|S
(i
ω
)|

Frequency ω [rad/s]

Ms

ωsc ωms

(a) Frequency response of S(iω)

10
-2

10
-1

10
1

10
-2

10
-1

10
1

|G
y
r
(i
ω
)|

Frequency ω [rad/s]

Mr

1/
√
2

ωmrωb

(b) Frequency response of Gyr(iω)

Figure 12.3: Illustration of specifications in frequency domain. (a)

Gain curve of sensitivity function; the maximum sensitivity Ms is a

robustness measure. (b) Gain curve of the transfer function Gyr with

peak value p, peak frequency ωmr, and bandwidth ωb.

bandwidth. Other features of the frequency response include the maxi-

mum value of sensitivity function Ms (occurring at frequency ωms) and

the maximum value of the complementary sensitivity function Mt (oc-

curring at frequency ωmt). The sensitivity crossover frequency ωsc is

defined as the frequency where the magnitude of the sensitivity func-

tion S(jω) is 1. The various crossover frequencies and the bandwidth

are only well defined if the curves are monotone; if this is not the case

the lowest such frequency is typically used.

There are interesting relationships between specifications in the

time and frequency domains. Roughly speaking, the behavior of time

responses for short times is related to the behavior of frequency re-

sponses at high frequencies, and vice versa. The precise relations are

given by the Laplace transform. There are also useful relationships

between features in the time and frequency domain; typical examples



762 CHAPTER 12

are given in Tables 7.1 and 7.2 in Section 7.3.

In the remainder of this section we consider the different types of

responses that are commonly used in control design and describe the

types of specifications that are relevant for each.

Response to Reference Signals

Consider the basic feedback loop in Figure 12.1. The responses of the

output y and the control signal u to the reference r are described by

the transfer functions Gyr = PCF/(1 + PC) and Gur = CF/(1 + PC)

(F = 1 for systems with pure error feedback). Specifications can be

expressed in terms of features of the transfer function Gyr, such as

the peak (or resonant) value Mr, the peak frequency ωmr, and the

bandwidth ωb, as shown in Figure 12.3b.

In the special case where F = 1, the transfer function Gyr is equal

to the complementary sensitivity function T . However, in many cases

it is useful to retain the ability to shape the input/output response by

using F 6= 1. This distinction is captured in the use of the full Gang

of Six rather than just the Gang of Four.

The transfer function Gyr typically has unit zero frequency gain

because we want to design the system so that the response to a step

input has zero steady-state error. The behavior of the transfer func-

tion at low frequencies determines the tracking error for slow reference

signals. We can capture this analytically by making the following se-
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ries expansion of the transfer function from reference r to output e for

small s:

Ger(s) ≈ e1s+ e2s
2 + · · · ,

where the coefficients ek are called error coefficients. If the reference

signal is r(t), the tracking error is then

e(t) = r(t)− y(t) = Gerr = e1
dr

dt
+ e2

d2r

d2t
+ · · · .

It follows that a ramp input r(t) = v0t gives a steady-state tracking

error v0e1, and we can conclude that the steady-state tracking error

is zero if e1 = 0. A system with e1 = 0 has the steady-state error

e(t) = 2ae2 for the input r(t) = a0t
2. The equation also supports the

insight that the behavior at low frequencies (small s) corresponds to

the behavior at large times, a consequence of the final value theorem

(discussed briefly at the end of Section 9.3).

It has been a long practice to focus on the output when we give

specifications. However, it is useful to also consider the response of the

control signal because this allows us to judge the magnitude and rate

of the control signal required to obtain the output response. This is

illustrated in the following example.

Example 12.2 Reference signal tracking for a third-order sys-

tem

Consider a process with the transfer function P (s) = (s + 1)−3 and

a PI controller with error feedback having the gains kp = 0.6 and
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Figure 12.4: Reference signal responses for Example 12.2. The

responses in process output y and control signal u to a unit step in

the reference signal r are shown in (a), and the gain curves of Gyr and

Gur are shown in (b). Results for PI control with error feedback are

shown by solid lines, and the dashed lines show results for a controller

with a feedforward compensator. The bandwidth of the closed loop

systems is marked in the plot of Gyr with open circles (◦).

ki = 0.5. The responses are illustrated in Figure 12.4. The solid lines

show results for a proportional-integral (PI) controller with error feed-

back. The dashed lines show results for a controller with feedforward

controller

F =
Gyr(1 + PC)

PC
=

2s4 + 6s3 + 6s2 + 3.2s+ 1

0.15s4 + 1.025s3 + 2.55s2 + 2.7s+ 1
,

designed to give the closed loop transfer function Gyr = (0.5s + 1)−3.

Looking at the time responses, we find that the controller with feedfor-

ward gives a faster response with no overshoot. However, much larger
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control signals are required to obtain the fast response. The initial

value of the control signal for the controller with feedforward is 13.3,

compared to 0.6 for the regular PI controller. The controller with feed-

forward has a larger bandwidth (marked with ◦) and no resonant peak.

The transfer function Gur also has higher gain at high frequencies. ∇

We can get some insight into the relationship between time and fre-

quency responses from Figure 12.4. The figures in the top row show the

unit step response and the frequency response for the transfer function

Gyr, and the lower plots show the same quantities for Gur. The dashed

time and frequency responses have no peaks while the solid responses

have peaks. The peaks are related in the sense that a large overshoot

in the time response corresponds to a large resonant peak in the fre-

quency response. The time responses in the bottom plot of Figure 12.4

have the initial values 8 (dashed) and 6 (solid), and the frequency re-

sponses have the same final values. In general, it can be shown using

the Laplace transform (or appropriate exponential responses) and the

initial and final value theorems that for a unit reference signal r(t) we

have that u(t)→ Gur(0) as t→∞ and if x(0) = 0 then u(0) = Gur(∞).

The dashed time response is faster than the solid time response and

the dashed frequency response has larger bandwidth than the solid fre-

quency response. The product of the rise time of the unit step response

and the bandwidth of a transfer function (the rise time-bandwidth prod-

uct) is a dimension-free variable that is useful characteristic. The time
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responses in Figure 12.4 have rise times of Tr = 1.7 (dashed) and 3.0

(solid), and the corresponding bandwidths are ωb = 1.9 (dashed) and

0.8 (solid), which gives the products Tr ωb = 3.2 (dashed) and 2.4

(solid). A similar observation can be made from Tables 7.1 and 7.2

in Section 7.3, which gives Tr ωb ≈ 2.7–2.8. It thus appears that the

product of the rise time of the step response and the bandwidth of the

frequency response is approximately constant (Tr ωb ≈ 3). It can be

shown that the rise time-bandwidth product increases if the frequency

response has a faster roll-off (see Exercise 12.5, which uses a slightly

different definition of bandwidth).

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to compare the output

of the closed loop system in Figure 12.1 with the output of the corre-

sponding open loop system, which can be obtained by setting C = 0

in the figure. With identical disturbances for the open and closed loop

systems, the output of the closed loop system can be obtained simply

by sending the open loop output through a system with the transfer

function S (Exercise 12.6). The sensitivity S function thus directly

shows how feedback influences the response of the output to distur-

bances both in the form of load disturbances and measurement noise.

Disturbances with frequencies such that |S(iω)| < 1 are attenuated,

but disturbances with frequencies such that |S(iω)| > 1 are amplified
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Figure 12.5: Illustration of sensitivity to disturbances. The gain

curves of the sensitivity function S and the loop transfer function L

are shown in (a). The Nyquist plot of the loop transfer function L is

shown in (b). Disturbances with frequencies less than the sensitivity

crossover frequency, to the left of ωsc in (a) and inside the dashed circle

in (b), are attenuated by feedback. Disturbances with frequencies

higher than ωsc are amplified. The largest amplification occurs for

the frequency ωms, where the sensitivity has its largest value Ms, the

point where the Nyquist curve is closest to the critical point −1 in

(b).

by feedback. The sensitivity crossover frequency ωsc is the (lowest)

frequency where |S(iω)| = 1, as shown in Figure 12.5a.

Since the sensitivity function is related to the loop transfer function

by S = 1/(1 + L), disturbance attenuation can be visualized graphi-

cally by the Nyquist plot of the loop transfer function, as shown in

Figure 12.5b. The complex number 1 + L(iω), which is the inverse of

the sensitivity function S(iω), can be represented as the vector from
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the point −1 to the point L(iω) on the Nyquist curve. The sensitivity

is thus less than 1 for all points outside a circle with radius 1 and cen-

ter at −1. Disturbances with frequencies in this range are attenuated

by the feedback, while disturbances with frequencies corresponding to

points inside the circle are amplified.

The maximum sensitivity Ms, which occurs at the frequency ωms,

is a measure of the largest amplification of the disturbances. The sen-

sitivity crossover frequency ωsc and the maximum sensitivity Ms are

two parameters that give a gross characterization of load disturbance

attenuation. For systems where the phase margin is ϕm = 60◦, it can

be shown that the sensitivity crossover frequency ωsc is equal to the

gain crossover frequency ωgc and the complementary sensitivity func-

tion crossover frequency ωtc. Notice that the maximum magnitude of

1/(1 +L(iω)) corresponds to the minimum of |1+L(iω)|, which is the

stability margin sm defined in Section 10.3, so that Ms = 1/sm. The

maximum sensitivity is therefore also a robustness measure.

The transfer function Gyv from load disturbance v to process output

y for the system in Figure 12.1 is

Gyv =
P

1 + PC
= PS =

T

C
. (12.3)

Load disturbances typically have low frequencies. For small s (low fre-

quencies) we have T ≈ 1 which gives Gyv ≈ 1/C. For processes with

P (0) 6= 0 and controllers with integral action we have C(s) ≈ ki/s for
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small s and Gyv ≈ s/ki. A controller with integral action thus attenu-

ates disturbances with low frequencies effectively, and the integral gain

ki is a measure of disturbance attenuation. For high frequencies we

have S ≈ 1 which implies that Gyv ≈ P for large s.

Measurement noise, which typically has high frequencies, generates

rapid variations in the control variable that are detrimental because

they cause wear in the actuators and can even saturate an actuator.

It is thus important to keep variations in the control signal due to

measurement noise at reasonable levels—a typical requirement is that

the variations are only a fraction of the allowable range of the control

signal. The effects of measurement noise are captured by the transfer

function from the measurement noise to the control signal,

−Guw =
C

1 + PC
=
T

P
= CS. (12.4)

Under the assumption that S ≈ 1 for large s (high frequencies, which is

appropriate for measurement noise), we have −Guw ≈ C. The formula

clearly shows it is useful to filter the derivative so that the transfer

function C(s) goes to zero for large s (high-frequency roll-off).

Example 12.3 Disturbance attenuation for a third-order sys-

tem

Consider a process with the transfer function P (s) = (s + 1)−3 and

a proportional-integral-derivative (PID) controller with gains kp = 2,

ki = 1.5, and kd = 2.0. We augment the controller with a second-order
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Figure 12.6: Closed loop disturbance responses for Example 12.3.

The closed loop unit step response and frequency response for the

transfer function Gyv from load disturbance v to process output y are

shown in (a) and the corresponding responses for the transfer function

Guw from measurement noise w to the control signal u are shown in

(b).

noise filter with damping ratio 1/
√
2 and Tf = 0.1. The controller

transfer function then becomes

C(s) =
kds

2 + kps+ ki
s(s2T 2

f /2 + sTf + 1)
. (12.5)

The closed loop system responses are illustrated in Figure 12.6. The

closed loop response of the output y to a unit step in the load distur-

bance v in the upper part of Figure 12.6a has a peak of 0.28 at time

t = 2.73 s. The frequency response in Figure 12.6a shows that the gain

has a maximum of 0.58 at ω = 0.7 rad/s.

The closed loop response of the control signal u to a step in mea-
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surement noise w is shown in Figure 12.6b. The high-frequency roll-off

of the transfer function Guw(iω) is due to filtering; without it the gain

curve in Figure 12.6b would continue to rise after 20 rad/s. The step

response has a valley of −14 at t = 0.08 s. The frequency response

has a peak of 20 at ω = 14 rad/s. Notice that the peak occurs at a

frequency far above the peak of the response to load disturbances and

far above the gain crossover frequency ωgc = 0.78 rad/s. An approxi-

mation derived in Exercise 12.7 gives max |CS(iω)| ≈ kd/Tf = 20 for

ω =
√
2/Td = 14.1 rad/s. ∇

Figure 12.6 also gives insight into the relationship between the time

and frequency responses. The frequency response of the transfer func-

tions Gyv and Guw have band-pass characteristics and their gains go

to zero for high and low frequencies. A consequence is that the corre-

sponding step responses are zero both for small and large times. The

frequency response Gyv in Figure 12.6a has a peak of 0.6 for ωp = 0.7

and the time response has a peak of 0.3 for tp = 2.7, hence ωptp = 1.9.

Figure 12.6b shows that the low-frequency gain of the transfer function

Guw and steady-state time response are both 1, and the time response

starts at zero because the frequency response goes to zero at high fre-

quencies. The frequency response has a peak of 20 for ωp = 14 and

the time response has a peak of 14 for tp = 0.08, hence ωptp = 1.1.

These observations support the simple rules for transfer functions with

a band-pass character: the product of the peak time of the step re-
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Figure 12.7: Specifications can be tested by injecting signals at test

points δk and measuring responses at sij . Compare with Figure 12.1.

sponse and the resonant peak of the frequency response is in the range

of 1 to 2 (Exercise 12.8).

Measuring Specifications

Many specifications are expressed in terms of properties of the transfer

functions in the Gang of Six and they can easily be checked simply by

computing the transfer functions numerically. To test a real system is

is necessary to provide the controller with test points for injecting and

measuring signals. Some possible test points are shown in Figure 12.7.

As an example, the transfer function Gyv, which characterizes response

of process output to load a disturbance, can be found by injecting a

signal at δ1 and measuring the output s21. A frequency analyzer that

measures the transfer function directly is very convenient for such a

test. By measuring the transfer functions we can ensure that robustness

and performance are maintained during the design phase and operation

of a system.
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12.3 FEEDBACK DESIGN VIA LOOP SHAPING

One advantage of the Nyquist stability theorem is that it is based

on the loop transfer function L = PC, which is the product of the

transfer functions of the process and the controller. It is thus easy

to see how the controller influences the loop transfer function. For

example, to make an unstable system stable we simply have to bend

the Nyquist curve away from the critical point. This simple idea is

the basis of several different design methods collectively called loop

shaping. These methods are based on choosing a compensator that

gives a loop transfer function with a desired shape. One possibility is to

determine a loop transfer function that gives a closed loop system with

the desired properties and to compute the controller as C = L/P . This

approach may lead to controllers of high order and there are limits if

the process transfer function has poles and zeros in the right half-plane,

as discussed briefly in Section 12.4 and in more detail in Section 14.3.

Another possibility is to start with the process transfer function, change

its gain to obtain the desired bandwidth, and then add poles and zeros

until the desired shape is obtained. In this section we will explore

different loop-shaping methods for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfer function

that gives good performance and good stability margins. Figure 12.8
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Figure 12.8: Gain plots of the loop transfer function (a) and the sen-

sitivity functions (b) for typical loop transfer functions. The plot on

the left shows the gain curve and the plots on the right show the sensi-

tivity function and complementary sensitivity function. The crossover

frequency ωgc determines the attenuation of load disturbances, band-

width, and response time of the closed loop system. The slope ngc of

the gain curve of L(s) at the gain crossover frequency ωgc determines

the robustness of the closed loop systems (equation (12.6)). At low

frequencies, a large magnitude of L provides good load disturbance

rejection and reference tracking, while at high frequencies a small loop

gain avoids injecting too much measurement noise.

shows a typical loop transfer function. Good performance requires

that the loop transfer function is large for frequencies where we de-

sire good tracking of reference signals and good attenuation of low-

frequency load disturbances. Since S = 1/(1 + L), it follows that for

frequencies where |L| > 100 disturbances will be attenuated by ap-

proximately a factor of 100 or more and the tracking error is less than
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1%. The transfer function from measurement noise to control action

is CS = C/(1 + L). To avoid injecting too much measurement noise,

which can create undesirable control actions, the controller transfer

function should have low gain at high frequencies, a property called

high-frequency roll-off. The loop transfer function should thus have

roughly the shape shown in Figure 12.8. It has unit gain at the gain

crossover frequency (|L(iωgc)| = 1), large gain for lower frequencies,

and small gain for higher frequencies.

Robustness is determined by the shape of the loop transfer function

around the crossover frequency. Good robustness requires good stabil-

ity margins, which imposes requirements on the loop transfer function

around the gain crossover frequency ωgc. It would be desirable to tran-

sition from high loop gain |L(iω))| at low frequencies to low loop gain as

quickly as possible, but robustness requirements expressed via Bode’s

relations (Section 10.4) impose restrictions on how fast the gain can

decrease. Equation (10.9) implies that the slope of the gain curve at

ωgc cannot be too steep. If the gain curve has a constant slope around

ωgc, we have the following relationship between slope ngc and phase

margin ϕm (in degrees):

ngc ≈ −2 +
ϕm

90
, (12.6)

for a minimum-phase system. A steeper slope thus gives a smaller phase

margin. The equation is a reasonable approximation when the gain
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curve does not deviate too much from a straight line. It follows from

equation (12.6) that the phase margins 30◦, 45◦, and 60◦ correspond to

the slopes −5/3, −3/2, and −4/3, with a steeper slope giving smaller

phase margin. Time delays and poles and zeros in the right half-plane

impose further restrictions as will be discussed in Chapter 14.

Loop shaping is a trial-and-error procedure. We typically start

with a Bode plot of the process transfer function. Choosing the gain

crossover frequency ωgc is a major design decision and is a compromise

between attenuation of load disturbances and injection of measurement

noise. Notice that the gain crossover frequency and the sensitivity

crossover frequencies are the same if the phase margin is ϕm = 60◦,

while for smaller phase margins we have ωgc < ωsc. Having determined

the gain crossover frequency we then attempt to shape the loop transfer

function by changing the controller gain and adding poles and zeros to

the controller transfer function. As we shall see, the controller gain at

low frequencies can be increased by so-called “lag compensation”, and

the behavior around the crossover frequency can be changed by so-

called “lead compensation.” Different performance specifications are

evaluated for each controller as we attempt to balance many different

requirements by adjusting controller parameters and complexity.

Loop shaping is straightforward to apply to single-input, single-

output systems. It can also be applied to systems with one input and

many outputs by closing the loops one at a time. The only limita-
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tion for minimum phase systems is that large phase leads and high

controller gains may be required to obtain closed loop systems with

a fast response. Many specific procedures are available: they all re-

quire experience, but they also give good insight into the conflicting

specifications. There are fundamental limits to what can be achieved

for systems that are not minimum phase; they will be discussed in

Section 14.3.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfer function

of the process and add simple compensators with transfer function

C(s) = k
s+ a

s+ b
, a > 0, b > 0. (12.7)

The compensator is called a lead compensator if a < b, and a lag com-

pensator if a > b. The PI controller is a special case of a lag com-

pensator with b = 0. A lead compensator is essentially the same as

a PD controller with filtering. As described in Section 11.5, we often

use a filter for the derivative action of a PID controller to limit the

high-frequency gain. This same effect is present in a lead compensator

through the pole at s = b. Equation (12.7) is a first-order compensator

and can provide up to 90◦ of phase lead. Larger phase lead can be

obtained by using a higher-order lead compensator (Exercise 12.17):

C(s) = k
(s+ a)n

(s+ b)n
, a < b.
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Figure 12.9: Frequency response for lead and lag compensators

C(s) = k(s+a)/(s+b). Lead compensation (a) occurs when a < b and

provides phase lead between ω = a and ω = b. Lag compensation (b)

corresponds to a > b and provides low-frequency gain. PI control is

a special case of lag compensation and PD control is a special case of

lead compensation. PI/PD frequency responses are shown by dashed

curves. The parameters are a = 0.25, b = 4, k = 16 in (a) and a = 4,

b = 0.25, k = 1 in (b).

Bode plots of lead and lag compensators are shown in Figure 12.9.

Lag compensation, which increases the gain at low frequencies, is typ-

ically used to improve tracking performance and disturbance attenua-

tion at low frequencies. Lead compensation is typically used to improve

phase margin. If we set a < b in equation (12.7), we add phase lead in

the frequency range between the pole/zero pair (and extending approx-

imately 10× in frequency in each direction). By appropriately choosing

the location of this phase lead, we can provide additional phase margin
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at the gain crossover frequency.

Lead compensation is associated with an increase of the high-frequency

gain. Let G(s) be a transfer function with G(0) > 0, with no poles and

zeros in the right half plane, and assume that lims→∞G(s) = G(∞) >

0. Then

log
G(∞)

G(0)
=

2

π

∫ ∞

0

argG(iω) d logω =
2

π

∫ ∞

−∞
argG(ieu) du. (12.8)

This formula, which we call Bode’s phase area formula, implies that the

logarithm of the gain ratio G(∞)/G(0) for a transfer function is pro-

portional to the area of the phase curve in the Bode plot. The equation

was derived by Bode [51, page 286] using the theory of complex vari-

ables. Lead compensation thus requires high gain at high frequencies

and increases the sensitivity to measurement noise.

Lead and lag compensators can also be combined to form a lead-

lag compensator (Exercise 12.11). Compensators that are tailored to

specific disturbances can be also designed, as shown in Exercise 12.12.

The following examples illustrate the use of lag compensation (via PI

control) and lead compensation (to increase phase margin).

Example 12.4 Atomic force microscope in tapping mode

A simple model of the dynamics of the vertical motion of an atomic

force microscope in tapping mode was given in Exercise 10.2. The
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transfer function for the system dynamics is

P (s) =
a(1− e−sτ )
sτ(s+ a)

,

and the parameters a = ζω0, τ = 2πn/ω0 are explained in Exam-

ple 11.2. The gain has been normalized to 1. A Bode plot of this

transfer function for the parameters a = 1 and τ = 0.25 is shown us-

ing dashed curves in Figure 12.10a. To improve the attenuation of load

disturbances we increase the low-frequency gain by introducing an inte-

gral controller. The loop transfer function then becomes L = kiP (s)/s,

and we start by adjusting the gain ki so that the closed loop system

is marginally stable, giving ki = 8.3. The Bode plot is shown by the

dash-dotted line in Figure 12.10a, where the critical point is indicated

by ◦. Notice the increase of the gain at low frequencies. To obtain a

reasonable phase margin we introduce proportional action and we in-

crease the proportional gain kp gradually until reasonable values of the

sensitivities are obtained. The value kp = 3.5 gives maximum sensitiv-

ity Ms = 1.6 and maximum complementary sensitivity Mt = 1.3. The

loop transfer function is shown in solid lines in Figure 12.10a. Notice

the significant increase of the phase margin compared with the purely

integral controller (dash-dotted line).

To evaluate the design we also compute the gain curves of the trans-

fer functions in the Gang of Four. They are shown in Figure 12.10b.

The peaks of the sensitivity curves are reasonable, and the plot of PS
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Figure 12.10: Loop-shaping design of a controller for an atomic force

microscope in tapping mode. (a) Bode plots of the process (dashed),

the loop transfer function for an integral controller with critical gain

(dash-dotted), and a PI controller (solid) adjusted to give reasonable

robustness. (b) Gain curves for the Gang of Four for the system.

shows that the largest value of PS is 0.3, which implies that the load

disturbances are well attenuated. The plot of CS shows that the largest

noise gain |C(iω)S(iω)| is 6. The controller has a gain kp = 3.5 at high

frequencies, and hence we may consider adding high-frequency roll-off

to make CS smaller at high frequencies. ∇

Example 12.5 Roll control for a vectored thrust aircraft

Consider the control of the roll of a vectored thrust aircraft such as the

one illustrated in Figure 12.11. Following Exercise 9.11, we model the

system with a second-order transfer function of the form

P (s) =
r

Js2
,
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r

x

y

θ

F1

F2

(a) Simplified model

Symbol Description Value

m Vehicle mass 4.0 kg

J Vehicle inertia, ϕ3 axis 0.0475 kg m2

r Force moment arm 25.0 cm

c Damping coefficient 0.05 kg m/s

g Gravitational constant 9.8 m/s2(b) Parameter values

Figure 12.11: Roll control of a vectored thrust aircraft. (a) The roll

angle θ is controlled by applying maneuvering thrusters, resulting in

a moment generated by F1. (b) The table lists the parameter values

for a laboratory version of the system.

with the parameters given in Figure 12.11b. We take as our perfor-

mance specification that we would like less than 1% error in steady

state and less than 10% tracking error up to 10 rad/s.

The open loop transfer function from F1 to θ is shown in Fig-

ure 12.12a. To achieve our performance specification, we would like

to have a gain of at least 10 at a frequency of 10 rad/s, requiring the
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(b) Lead compensator

Figure 12.12: Control design for a vectored thrust aircraft using lead

compensation. The Bode plot for the open loop process P is shown

in (a) and (b) shows the Bode plot for the loop transfer function

L = PC, where C is the lead given by equation (12.7) with a = 2,

b = 50, and k = 200. Note the phase lead in the crossover region near

ω = 20 rad/s.

gain crossover frequency to be at a higher frequency. We see from the

loop shape that in order to achieve the desired performance we cannot

simply increase the gain since this would give a very low phase margin.

Instead, we must increase the phase at the desired crossover frequency.

To accomplish this, we use a lead compensator (12.7) with a = 2,

b = 50, and k = 200. We then set the gain of the system to provide a

large loop gain up to the desired bandwidth, as shown in Figure 12.12b.

We see that this system has a gain of greater than 10 at all frequencies

up to 10 rad/s and that it has more than 60◦ of phase margin. ∇
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12.4 FEEDFORWARD DESIGN

Feedforward is a simple and powerful technique that complements feed-

back. It can be used both to improve the response to reference signals

and to reduce the effect of measurable disturbances. Design of feed-

forward for controllers based on state feedback and observers was de-

veloped in Section 8.5 (Figure 8.11). Section 11.5 presented setpoint

weighting as simple form of feedforward for PID controllers (equa-

tion (11.15)). In this section we will use transfer functions to develop

more advanced methods for feedforward design.

Combining Feedforward and Feedback

Figure 12.13 shows a block diagram of a system with feedback and feed-

forward control. The process dynamics are separated into two blocks

P1(s) and P2(s), where the measured disturbance v enters at the input

of the block P2, and we define P (s) = P1(s)P2(s). The transfer func-

tion Fm represents the desired (model) response to reference signals.

There are two feedforward blocks with transfer functions Fr and Fv to

deal with the reference signal r and the measured disturbances v.

A major advantage of controllers with two degrees of freedom that

combine feedback and feedforward is that the control design problem

can be split in two parts. The feedback transfer function C can be de-

signed to give good robustness and effective disturbance attenuation,

and the feedforward transfer functions Fr and Fv can be designed in-
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Figure 12.13: Block diagram of a system with feedforward compen-

sation for improved response to reference signals and measured dis-

turbances (2 degree-of-freedom system). Three feedforward elements

are present: Fm(s) sets the desired output value, Fr(s) generates the

feedforward command ufr to improve reference signal response and

Fv(s) generates the feedforward signal ufv that reduces the effect of

the measured disturbance v.

dependently to give the desired responses to reference signals and to

reduce effects of measured disturbances.

We will first explore the response to reference signals. The transfer

function Gyr(s) from reference input r to process output y in Fig-

ure 12.13 is

Gyr(s) =
P (CFm + Fr)

1 + PC
= TFm + SPFr = Fm + S(PFr − Fm)

(12.9)

where S is the sensitivity function and T the complementary sensitivity

function (equation (12.2)) and we use the fact that T = 1 − S. We

can make Gyr close to the desired transfer function Fm in two different

ways: by choosing the feedforward transfer function Fr so that PFr−Fm
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is small, or by choosing the feedback transfer function C so that the

sensitivity S = 1/(1+PC) is small. Perfect feedforward compensation

is obtained by choosing

Fr =
Fm

P1P2

=
Fm

P
, (12.10)

which gives Gyr = Fm. Notice that the feedforward compensator Fr

contains an inverse model of the process dynamics.

Next we will consider attenuation of disturbances that can be mea-

sured. The transfer function from load disturbance v to process output

y is given by

Gyv =
P2(1− P1Fv)

1 + PC
= P2S(1− P1Fv). (12.11)

The transfer function Gyv can be made small in two different ways: by

choosing the feedforward transfer function Fv so that 1−P1Fv is small,

or by choosing the feedback transfer function C so that the sensitivity

S = 1/(1+PC) is small. Perfect compensation is obtained by choosing

Fv =
1

P1

. (12.12)

Design of feedforward to improve responses to reference signals and

disturbances using transfer functions is thus a simple task, but it re-

quires inversion of process models. We illustrate with an example.

Example 12.6 Vehicle steering

A linearized model for vehicle steering was given in Example 7.4. The
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normalized transfer function from steering angle δ to lateral deviation

y is P (s) = (γs + 1)/s2. For a lane transfer system we would like

to have a nice response without overshoot, and we therefore choose

the desired response as Fm(s) = ω2
c/(s + ωc)

2, where the response

speed or aggressiveness of the steering is governed by the parameter

ωc. Equation (12.10) gives

Fr =
Fm

P
=

ω2
cs

2

(γs+ 1)(s+ ωc)2
,

which is a stable transfer function as long as γ > 0. Figure 12.14

shows the responses of the system for ωc = 0.2. The figure shows that

a lane change is accomplished in about 20 vehicle lengths with smooth

steering angles. The largest steering angle is slightly larger than 0.2 rad

(12◦). Using the scaled variables, the curve showing lateral deviations

(y as a function of t) can also be interpreted as the vehicle path (y as

a function of x) with the vehicle length as the length unit. ∇

Difficulties with Feedforward

The ideal feedforward compensators for Figure 12.13 are given by

Fr =
Fm

P1P2

, Fv =
1

P1

. (12.13)

Both transfer functions require inversion of process transfer functions

and there can be problems with inversion if the process transfer func-

tion has time delays, right half-plane zeros, or high pole excess. Inver-

sion of time delays requires prediction, which cannot be done perfectly
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Figure 12.14: Feedforward control for vehicle steering. The plot on

the left shows the trajectory generated by the controller for changing

lanes. The plots on the right show the lateral deviation y (top) and

the steering angle δ (bottom) for a smooth lane change control using

feedforward (based on the linearized model).

except in the situation when the command signal is known in advance.

If the process transfer functions has zeros in the right half-plane, the

inverse process transfer function is unstable and approximate inverses

may have to be used. Finally, if the pole excess of the process transfer

function is greater than zero, then the inverse requires differentiation.

In this case the reference signal must then be sufficiently smooth and
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there may also be problems with noise.

There is some extra freedom when finding the transfer function Fr

because it also contains the transfer function Fm, which specifies the

ideal behavior. A stable feedforward transfer function can be obtained

if Fm has the same time delays and right half-plane zeros as the process.

We illustrate with an example.

Example 12.7 Feedforward for a process with a right half-plane

zero

Let the process and the desired response have the transfer functions

P (s) =
1− s

(s+ 1)2
, Fm(s) =

ω2
m(1− s)

s2 + 2ζcωms+ ω2
m

.

Since the process has a right half-plane zero at s = 1, the desired

transfer function Fm(s) must have the same zeros to avoid having an

unstable feedforward transfer function Fr. Equation (12.10) gives the

feedforward transfer function:

Fr(s) =
ω2
m(s+ 1)2

s2 + 2ζcωms+ ω2
m

. (12.14)

Figure 12.15 shows the outputs y and the feedforward signals uff for

different values of ωm. The response to the reference signal goes in the

wrong direction initially because of the right half-plane zero at s = 1.

This effect, called inverse response, is barely noticeable if the response

is slow (ωm = 1) but it increases with increasing response speed. For

ωm = 5 the undershoot is more than 200%. The large undershoot is an
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(c) ωm = 5

Figure 12.15: Feedforward control for a process with a right half-

plane zero (Example 12.7). Outputs y (upper plots) and feedforward

signals uff (lower plots) for a unit step command signal. The design

parameter has the values ωm = 0.2, 1, and 0.5 for a unit step command

in the reference signal. The dashed curve shows the response that

could be achieved if the process did not have the right half-plane

zero.

indication that a right half-plane zero limits the achievable bandwidth,

as will be discussed in depth in Chapter 14. A reasonable choice of ωm

is in the range 0.2 to 0.5. Notice that the same feedforward transfer

function (12.14) is obtained if the process and the desired model have

the transfer functions

P (s) =
1

(s+ 1)2
, Fm(s) =

ω2
m

s2 + 2ζcωms+ ω2
m

.

The corresponding responses are shown as dashed lines in Figure 12.15.

When there is no right half-plane zero it is thus possible to obtain well-

behaved, fast responses.
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The control signals for different values of ωm differ significantly, as

shown in the bottom row of plots in Figure 12.15. Since r = 1 and the

zero frequency gain of the feedforward transfer function is Fr(0) = 1,

the control signal goes to 1 as time goes to infinity in all cases. The

feedforward transfer function also has constant gain Fr(∞) = ω2
m for

high frequencies, which means that gain for high-frequency signals is

ω2
m and this can be undesirable if ωm is large. The initial response to

a unit step signal is then uff(0) = Fr(∞) = ω2
m (using the initial value

theorem). For ωm = 0.2 the control signal grows from 0.04 to the final

value 1 with a small overshoot. For ωm = 1 the control signal starts

from 1, has an overshoot, and then settles on the final value 1. For

ωm = 5 the control signal starts at 25 and decays towards the final

value 1 with an undershoot. ∇

Approximate Inverses

Processes with right half-plane zeros do not have stable inverses. To

design feedforward compensators for such systems we need to use ap-

proximate inverses that are stable. The following theorem, which is

presented without proof, provides a means of constructing such ap-

proximate inverses.

Theorem 12.1 (Approximate inverse). Let the rational transfer func-

tion G(s) have all its poles in the left half-plane and no zeros on the

imaginary axis. Factor the transfer function as G(s) = G+(s)G−(s),
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where G+(s) has all its zeros in the left half-plane and G−(s) has all

its zeros in the right half-plane. An approximate stable inverse of G(s)

that minimizes the mean square error for a step input is

G†(s) =
1

G+(s)G−(−s) . (12.15)

We illustrate the theorem with an example.

Example 12.8 Approximate inverse for a system with a right

half-plane zero

Let the transfer functions of the process and the reference model (de-

sired response) be

P (s) =
1− s

(s+ 1)2
, Fm(s) =

ω2
m

s2 + 2ζcωms+ ω2
m

.

Note that in comparison to Example 12.7, we do not include the right

half-plane zero in Fm. The process transfer function can be factored as

P−(s) = 1− s, P+(s) =
1

(s+ 1)2
.

Theorem 12.1 then gives the following approximate inverse:

P †(s) =
1

P+(s)P−(−s) =
(s+ 1)2

1 + s
= s+ 1.

The feedforward transfer function is then

Fr(s) = Fm(s)P
†(s) =

ω2
m(s+ 1)

s2 + 2ζcωms+ ω2
m

,

which is similar to equation (12.14) but no longer relies on cancella-

tion of the right half-plane zero to obtain a stable feedforward transfer
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Figure 12.16: Feedforward design based on an approximate inverse.

Outputs y (upper plots) and feedforward signals uff (lower plots) for

a unit step reference signal. The design parameter has the values

ωm = 0.2, 1, and 0.5 for a unit step command in the reference signal.

The dashed curves show the responses for a process without the right

half-plane zero.

function. The transfer function from reference r to output y is then

Gyr(s) = P (s)Fr(s) =
1− s

(s2 + 2ζcωms+ ω2
m)(s+ 1)

.

Figure 12.16 shows the step responses for different values of ωm.

Comparing Figures 12.15 and 12.16 we find that there are small

differences for ωm = 0.2, but large differences for ωm = 5. Notice in

particular the shapes of the feedforward signals uff. The design based on

the approximate inverse has smaller undershoot but the time responses

have somewhat longer settling times. ∇

In summary, we see that feedforward can be used to improve the
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response to reference signals and to reduce the effects of load distur-

bances that can be measured. There are limits if the process has time

delays, right half-plane zeros, or high pole excess. The zeros depend

on the sensors and we can change them by moving or adding sensors.

In addition, we will see in Chapter 13 that feedforward controllers can

be sensitive to model uncertainty (Section 13.3 and Exercise 13.5), and

hence feedforward control is usually combined with feedback control to

obtain robust performance.

12.5 THE ROOT LOCUS METHOD

In design methods such as eigenvalue assignment, discussed in Sec-

tions 7.2 and 8.3, we designed controllers that give desired closed loop

poles. The controllers were sufficiently complex so that all closed loop

poles could be specified. The complexity of the controller is thus di-

rectly related to the complexity of the process. In practice we may

have to use a simple controller for a complex process, and it is then

not possible to find a controller that gives all closed poles their desired

values. It is interesting to explore what can be done with a controller

having restricted complexity as was the case for PID control in Chap-

ter 11 and loop shaping in Section 12.3. The simplest case with only

one selectable controller parameter can be investigated with the root

locus method. The root locus is a graph of the roots of the characteristic
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polynomial as a function of a parameter, and the method gives insight

into the effects of the controller parameter. It is straightforward to ob-

tain the root locus by finding the roots of the closed loop characteristic

polynomial for different values of the parameter. There are also good

computer tools for generating the root locus. Of greater interest is the

fact that the general shape of the root locus can be obtained with very

little effort, and that it often gives considerable insight.

To illustrate the root locus method we consider a process with the

transfer function

P (s) =
b(s)

a(s)
=
b0s

m + b1s
m−1 + · · · bm

sn + a1sn−1 + · · · an
= b0

(s− z1)(s− z2) . . . (s− zm)
(s− p1)(s− p2) · · · (s− pn)

.

The polynomial a(s) has degree n and the polynomial b(s) has degree

m. We assume that pole excess npe = n −m is positive or zero. The

controller is assumed to be a proportional controller with the transfer

function C(s) = k. We will explore the poles of the closed loop system

when the gain k of the proportional controller ranges from 0 to ∞.

The closed loop characteristic polynomial is

acl(s) = a(s) + kb(s) (12.16)

and the closed loop poles are the roots of acl(s). The root locus is a

graph of the roots of acl(s) as the gain k is varied from 0 to ∞. Since

the polynomial acl(s) has degree n, the plot will have n branches.

When the gain k is zero we have acl(s) = a(s) and the closed loop
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poles are equal to the open loop poles. When there are open loop

poles at s = pl with multiplicity m, the characteristic equation can be

written as

(s− pl)mã(s) + kb(s) ≈ (s− pl)mã(pl) + kb(pl) = 0,

where ã(s) represents the polynomial a(s) with the poles at s = pl

factored out. For small values of k the roots of this equation are given

by s = pl +
m
√
−kb(pl)/ã(pl). The root locus thus has a star pattern

with m branches emanating from the open loop pole s = pl. The angle

between two neighboring branches is 2π/m.

To explore what happens for large gain we approximate the char-

acteristic polynomial (12.16) for large s and k, which gives

acl(s) = b(s)
(a(s)
b(s)

+ k
)
≈ b(s)

(snpe

b0
+ k
)
. (12.17)

For large k the closed loop poles are approximately the roots of b(s)

and
npe
√
−b0k. A better approximation of equation (12.17) is

s = s0 +
npe
√
−kb0, s0 =

1

npe

(
n∑

k=1

pk −
m∑

k=1

zk

)
(12.18)

(Exercise 12.15). The asymptotes are thus npe lines that radiate from

s = s0, the center of mass of poles and zeros. When b0k > 0 the lines

have the angles (π + 2lπ)/npe, l = 1, · · · , npe with respect to the real

line. Figure 12.17 shows the asymptotes of the root locus for large gain

for different values of the pole excess npe.

Summarizing, we find that the root locus plot with the loop gain
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Figure 12.17: Asymptotes of of root locus for systems with pole

excess npe = 2, 3, and 4. There are npe asymptotes radiate from the

point s = s0 given by equation (12.18), and the angles between the

asymptotes are 360◦/npe.

as the varied parameter has n branches that start at the open loop

poles and end either at the open loop zeros or at infinity. The branches

that end at infinity have star-patterned asymptotes given by equa-

tion (12.18). An immediate consequence is that open loop systems

with right half-plane zeros or a pole excess larger than 2 will always be

unstable for sufficiently large gains.

There are simple rules for sketching the root locus. We describe

here a few of them. As discussed already, the root locus has a (locally)

symmetric star pattern at points where there are multiple roots; the

number of branches depend on the multiplicity of the roots. For sys-

tems with kb0 > 0 the root locus has segments on the real line where

there are odd numbers of real poles and zeros to the right of the segment

(Exercise 12.16). It is also straightforward to find directions where a
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Figure 12.18: Examples of root loci for processes with the transfer

functions Pa(s), Pb(s), Pc(s), and Pd(s) given by equation (12.19).

branch of the root locus leaves a pole, as discussed in Exercise 12.19.

Figure 12.18 shows root loci for systems with k > 0 and the transfer

functions

Pa(s) = k
s+ 1

s2
, Pb(s) = k

s+ 1

s(s+ 2)(s2 + 2s+ 4)
,

Pc(s) = k
s+ 1

s(s2 + 1)
, Pd(s) = k

s2 + 2s+ 2

s(s2 + 1)
.

(12.19)

The locus of Pa(s) in Figure 12.18a starts with two roots at the origin

and the pattern locally has the star configuration with n∗ = 2. As the

gain increases the locus bends because of the attraction of the zero. In

this particular case the locus is actually a circle around the zero s = −1.

Two roots meet at the real axis and depart forming a star pattern. One

root goes towards the zero and the other one goes to infinity along the

negative real axis as the gain k increases. The root locus thus has

the segment (−∞,−1] on the real axis. The locus in Figure 12.18b

starts at the open loop poles s = −2, 0, and −1 ± i
√
3. The pole

excess is npe = 3 and the asymptotes that originate from s0 = −1 have
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the corresponding pattern. The locus in Figure 12.18c has vertical

asymptotes since npe = 2 (see Figure 12.17). The asymptotes originate

from s0 = 0.5. The root locus has the segment [−1, 0] on the real line.

The locus in Figure 12.18d has three branches: one is the segment

(−∞, 0] on the real line and the other two originate on the complex

open loop poles and end at the open loop zeros.

The root locus can also be used for design. Consider for example

the system in Figure 12.18c, which can represent PI control of a system

with the transfer functions

P (s) =
1

s2 + 1
, C(s) = k

s+ 2

s
.

The root locus in Figure 12.18c shows that the system is unstable for all

values of the controller gain and we can immediately conclude that the

process cannot be stabilized with a PI controller. To obtain a stable

closed loop system we can attempt to choose a PID controller with

zeros to the left of the undamped poles, for example

C(s) = k
s2 + 2s+ 2

s
.

The root locus obtained with this controller is shown in Figure 12.18d.

We see that this system is stable for k > 0 and we can choose k to

place the poles in reasonable locations.

We have illustrated the root locus with a closed loop system with

a proportional controller where the parameter is the gain. The root
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locus can also be used to find the effects of other parameters, as was

illustrated in Example 5.17.

12.6 DESIGN EXAMPLE

In this final section we present a detailed example that illustrates some

of the design techniques described in this chapter.

Example 12.9 Lateral control of a vectored thrust aircraft

The problem of controlling the motion of a vertical takeoff and landing

(VTOL) aircraft was introduced in Example 3.12 and in Example 12.5,

where we designed a controller for the roll dynamics. We now wish to

control the position of the aircraft, a problem that requires stabilization

of the attitude.

To control the lateral dynamics of the vectored thrust aircraft, we

make use of an “inner/outer” loop design methodology, as illustrated

in Figure 12.19. This diagram shows the process dynamics and con-

troller divided into two components: an inner loop consisting of the

roll dynamics and controller and an outer loop consisting of the lateral

position dynamics and controller. This decomposition follows the block

diagram representation of the dynamics given in Exercise 9.11.

The approach that we take is to design a controller Ci for the inner

loop so that the resulting closed loop system Hi assures that the roll

angle θ follows its reference θr quickly and accurately. We then design
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r θr

Hi

Co

−1

ν
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u1

θ
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−1
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Figure 12.19: Inner/outer control design for a vectored thrust air-

craft. The inner loop Hi controls the roll angle of the aircraft using

the vectored thrust. The outer loop controller Co commands the roll

angle to regulate the lateral position. The process dynamics are de-

composed into inner loop (Pi) and outer loop (Po) dynamics, which

combine to form the full dynamics for the aircraft.

.

a controller for the lateral position y that uses the approximation that

we can directly control the roll angle as an input θ to the dynamics

controlling the position. Under the assumption that the dynamics of

the roll controller are fast relative to the desired bandwidth of the lat-

eral position control, we can then combine the inner and outer loop

controllers to get a single controller for the entire system. As a perfor-

mance specification for the entire system, we would like to have zero

steady-state error in the lateral position, a bandwidth of approximately

1 rad/s, and a phase margin of 45◦.

For the inner loop, we choose our design specification to provide the

outer loop with accurate and fast control of the roll. The inner loop
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dynamics are given by

Pi(s) = Hθu1(s) =
r

Js2
.

We choose the desired bandwidth to be 10 rad/s (10 times that of the

outer loop) and the low-frequency error to be no more than 5%. This

specification is satisfied using the lead compensator of Example 12.5

designed previously, so we choose

Ci(s) = k
s+ a

s+ b
, a = 2, b = 50, k = 200.

The closed loop dynamics for the system satisfy

Hi =
Ci

1 + CiPi

−mg CiPi

1 + CiPi

=
Ci(1−mgPi)

1 + CiPi

.

A plot of the magnitude of this transfer function is shown in Fig-

ure 12.20, and we see that Hi ≈ −mg = −39.2 is a good approximation

up to 10 rad/s.

To design the outer loop controller, we assume the inner loop roll

control is perfect, so that we can take θr as the input to our lateral

dynamics. Following the diagram shown in Exercise 9.11, the outer

loop dynamics can be written as

P (s) = Hi(0)Po(s) =
Hi(0)

ms2 + cs
,

where we replace Hi(s) with Hi(0) to reflect our approximation that

the inner loop will eventually track our commanded input. Of course,

this approximation may not be valid, and so we must verify this when
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Figure 12.20: Outer loop control design for a vectored thrust air-

craft. (a) The outer loop approximates the roll dynamics as a state

gain −mg. (b) The Bode plot for the roll dynamics, indicating that

this approximation is accurate up to approximately 10 rad/s.

we complete our design.

Our control goal is now to design a controller that gives zero steady-

state error in y for a step input and has a bandwidth of 1 rad/s. The

outer loop process dynamics are given by a double integrator, and we

can again use a simple lead compensator to satisfy the specifications.

We also choose the design such that the loop transfer function for

the outer loop has |Lo| < 0.1 for ω > 10 rad/s, so that the Hi high-

frequency dynamics can be neglected. We choose the controller to be

of the form

Co(s) = −ko
s+ ao
s+ bo

,

with the negative sign to cancel the negative sign in the process dy-

namics. To find the location of the poles, we note that the phase lead

flattens out at approximately bo/10. We desire phase lead at crossover,
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and we desire the crossover at ωgc = 1 rad/s, so this gives bo = 10.

To ensure that we have adequate phase lead, we must choose ao such

that bo/10 < 10ao < bo, which implies that ao should be between 0.1

and 1. We choose ao = 0.3. Finally, we need to set the gain of the

system such that at the desired crossover frequency the loop gain has

magnitude 1 or more. A simple calculation shows that ko = 2 satisfies

this objective. Thus, the final outer loop controller becomes

Co(s) = −2
s+ 0.3

s+ 10
.

Finally, we can combine the inner and outer loop controllers and

verify that the system has the desired closed loop performance. The

Bode and Nyquist plots corresponding to Figure 12.19 with inner and

outer loop controllers are shown in Figure 12.21, and we see that the

specifications are satisfied. In addition, we show the gain curves of the

Gang of Four in Figure 12.22, and we see that the transfer functions

between all inputs and outputs are reasonable. The sensitivity to load

disturbances PS is large at low frequency because the controller does

not have integral action.

The approach of splitting the dynamics into an inner and an outer

loop is common in many control applications and can lead to simpler

designs for complex systems. Indeed, for the aircraft dynamics studied

in this example, it is very challenging to directly design a controller

from the lateral position y to the input u1. The use of the additional
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Figure 12.21: Inner/outer loop controller for a vectored thrust air-

craft. Bode plot (a) and Nyquist plot (b) for the loop transfer function

cut at θr, for the complete system. The system has a phase margin of

68◦ and a gain margin of 6.2.

measurement of θ greatly simplifies the design because it can be broken

up into simpler pieces. ∇
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thrust aircraft system.
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12.7 FURTHER READING

Loop shaping design emerged at Bell Labs in connection with the de-

velopment of Black’s [45] electronic amplifier with negative feedback.

Nyquist [192] derived his stability criterion to understand and avoid

instabilities or “singing,” as it was called at the time. Bode [50] used

the theory of complex variables to establish important fundamental re-

sults such as the relation between amplitude and phase for a minimum

phase system, the ideal loop transfer functions, and the phase area for-

mula. His results are nicely summarized in the book [51]. Design by

loop shaping became a key element in the early development of con-

trol, and many design methods were developed; see James, Nichols and

Phillips [129], Chestnut and Mayer [62], Truxal [241], and Thaler [238].

Loop shaping is also treated in standard textbooks such as Franklin,

Powell, and Emami-Naeini [92], Dorf and Bishop [72], Kuo and Gol-

naraghi [156], and Ogata [195]. Horowitz [120] developed the notion

of systems with two degrees of freedom. Much of the early work was

based on the loop transfer function; the importance of the sensitivity

functions appeared in connection with developments in the 1980s that

resulted in H∞ design methods. A compact presentation is given in the

texts by Doyle, Francis, and Tannenbaum [75] and Zhou, Doyle, and

Glover [265]. Loop shaping was integrated with the robust control the-

ory in McFarlane and Glover [181] and Vinnicombe [248]. Comprehen-

sive treatments of control system design are given in Maciejowski [171]
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and Goodwin, Graebe, and Salgado [106]. There are fundamental lim-

its to what can be achieved given by nonlinearities of the process and

the poles and zeros. These will be discussed in Chapter 14.

EXERCISES

12.1 Consider the system in Example 12.1, where the process and con-

troller transfer functions are given by

P (s) = 1/(s− a), C(s) = k(s− a)/s.

Choose the parameter a = −1 and compute the time (step) and fre-

quency responses for all the transfer functions in the Gang of Four for

controllers with k = 0.2 and k = 5.

12.2 (Equivalence of Figures 12.1 and 12.2) Consider the system in

Figure 12.1 and let the outputs of interest be ξ = (µ, η) and the major

disturbances be χ = (w, v). Show that the system can be represented

by Figure 12.2 and give the matrix transfer functions P and C. Verify

that the elements of the closed loop transfer function Hξχ are the Gang

of Four.

12.3 (Equivalence of controllers with two degrees of freedom) Show

that the systems in Figures 12.1 and 12.13 give the same responses to

command signals if FmC + Fu = CF .

12.4 (Web server control) Feedback and feedforward are increasingly
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used for complex computer systems such as web servers. Control of a

single server is an example. A model for a virtual server is given by

equation (3.32),

dx

dt
= λ− µ,

where x is the queue length, λ is the arrival rate, and µ is the server

rate. The objective of control is to maintain a given queue length. The

service rate µ can be changed by dynamic voltage and frequency scaling

(DVFS). Determine a PI controller that gives a closed loop system

with the characteristic polynomial s2 + 4s+ 4. Use feedforward in the

form of setpoint weighting to reduce the overshoot for step changes

in reference signals; simulate the closed loop system to determine the

setpoint weighting.

12.5 (Rise time-bandwidth product) Consider a stable system with�

the transfer function G(s) whose frequency response is an ideal low-

pass filter with |G(iω)| = 1 for ω ≤ ωb and |G(iω)| = 0 for ω > ωb and

which has low-pass character. Define the rise time Tr as the inverse of

the largest slope of the unit step response and the bandwidth as ω̃b =

∫∞
0
|G(iω)|/G(0) dω. Show that with this definition of the bandwidth

the rise time-bandwidth product satisfies Tr ω̃b ≥ π.

12.6 (Disturbance attenuation) Consider the feedback system shown

in Figure 12.1. Assume that the reference signal is constant. Let yol be

the measured output when there is no feedback and ycl be the output
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with feedback. Show that Ycl(s) = S(s)Yol(s), where Ycl and Yol are

exponential signals and S is the sensitivity function.

12.7 (Approximate expression for noise sensitivity) Show that the ef-

fect of high-frequency measurement noise on the control signal for the

system in Example 12.3 can be approximated by

CS ≈ C =
kds

(sTf)2 /2 + sTf + 1
,

and that the largest value of |CS(iω)| is kd/Tf which occurs for ω =

√
2/Tf.

12.8 (Peak frequency-peak time product) Consider the transfer func-

tion for a second-order system

G(s) =
ω0s

s2 + 2ζω0s+ ω2
0

,

which has the unit step response

y(t) =
1√

1− ζ2
e−ζω0t sinω0t

√
1− ζ2.

Let Mr = maxω |G(iω)| be the largest gain of G(s), which is assumed

to occur at ωmr, and let yp = maxt y(t) be the largest value of y(t),

which is assumed to occur at tp. Show that

tpωmr =
arccos ζ√
1− ζ2

,
yp
Mr

= 2ζe−ζϕ,

and evaluate the right-hand sides of the above equations for ζ = 0.5,

0.707, and 1.0.
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12.9 (Disturbance reduction through feedback) Consider a problem in

which an output variable has been measured to estimate the potential

for disturbance attenuation by feedback. Suppose an analysis shows

that it is possible to design a closed loop system with the sensitivity

function

S(s) =
s

s2 + s+ 1
.

Estimate the possible disturbance reduction when the measured dis-

turbance response is

y(t) = 5 sin (0.1 t) + 3 sin (0.17 t) + 0.5 cos (0.9 t) + 0.1 t.

12.10 (Bode’s formula) Consider the lead compensator

G(s) = 16
s+ 0.25

s+ 4
.

Verify Bode’s phase area formula (12.8) and show that G(∞) = 16G(0)

by numerical integration.

12.11 (Lead-lag compensation) Lead and lag compensators can be

combined into a lead-lag compensator that has the transfer function

C(s) = k
(s+ a1)(s+ a2)

(s+ b1)(s+ b2)
.

Show that the controller reduces to a PID controller with special choice

of parameters and give the relations between the parameters.

12.12 (Attenuation of low-frequency sinusoidal disturbances) Integral

action eliminates constant disturbances and reduces low-frequency dis-
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turbances because the controller gain is infinite at zero frequency. A

similar idea can be used to reduce the effects of sinusoidal disturbances

of known frequency ω0 by using the controller

C(s) = kp +
kss

s2 + 2ζω0s+ ω2
0

.

This controller has the gain Cs(iω0) = kp + ks/(2ζ) for the frequency

ω0, which can be large by choosing a small value of ζ. Assume that

the process has the transfer function P (s) = 1/s. Determine the Bode

plot of the loop transfer function and simulate the system. Compare

the results with PI control.

12.13 (Performance specifications and transfer functions) Find the

transfer function of a second-order system that satisfies the following

closed loop specifications: zero steady-state error, 2% settling time less

than 2 s, rise time less than 0.8 s, and overshoot less than 3%.

12.14 Consider the spring–mass system given by equation (3.16), which

has the transfer function

P (s) =
1

ms2 + cs+ k
.

Design a feedforward compensator that gives a response with critical

damping (ζ = 1).

12.15 (Asymptotes of root locus) Consider proportional control of a
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system with the transfer function

P (s) =
b(s)

a(s)
=
b0s

m + b1s
m−1 + · · · bm

sn + a1sn−1 + · · · an
= b0

(s− z1)(s− z2) . . . (s− zm)
(s− p1)(s− p2) · · · (s− pn)

.

Show that the root locus has asymptotes that are straight lines that

emerge from the point

s0 =
1

ne

( n∑

k=1

pk −
m∑

k=1

zk

)
,

where ne = n−m is the pole excess of the transfer function.

12.16 (Real line segments of root locus) Consider proportional control

of a process with a rational transfer function. Assuming that b0k > 0,

show that the root locus has segments on the real line where there are

an odd number of real poles and zeros to the right of the segment.

12.17 Consider a lead compensator with the transfer function

Cn(s) =
(s n
√
k + a

s+ a

)n
,

which has zero frequency gain C(0) = 1 and high-frequency gain C(∞) =

k. Show that the gain required to provide a given phase lead ϕ is

k =
(
1 + 2 tan2(ϕ/n) + 2 tan(ϕ/n)

√
1 + tan2(ϕ/n)

)n
,

and that lim
n→∞

k = e2ϕ.

12.18 (Phase margin formulas) Show that the relationship between

the phase margin and the values of the sensitivity functions at gain
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crossover is given by

|S(iωgc)| = |T (iωgc)| =
1

2 sin(ϕm/2)
.

12.19 (Initial direction of root locus) Consider proportional control of

a system with the transfer function

P (s) =
b(s)

a(s)
=
b0s

m + b1s
m−1 + · · · bm

sn + a1sn−1 + · · · an
= b0

(s− z1)(s− z2) . . . (s− zm)
(s− p1)(s− p2) · · · (s− pn)

.

Let pj be an isolated pole and assume that kb0 > 0. Show that the

root locus starting at pj has the initial direction.

∠(s− pj) = π + Σm
k=1∠(pj − sk)− Σk 6=j∠(pj − pk).

Give a geometric interpretation of the result.





Chapter Thirteen

Robust Performance

However, by building an amplifier whose gain is deliberately made,

say 40 decibels higher than necessary (10000 fold excess on en-

ergy basis), and then feeding the output back on the input in such

a way as to throw away the excess gain, it has been found possible

to effect extraordinary improvement in constancy of amplification

and freedom from non-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1934 [45].

This chapter focuses on the analysis of robustness of feedback sys-

tems, a vast topic for which we provide only an introduction to some of

the key concepts. We consider the stability and performance of systems

whose process dynamics are uncertain. We make use of generalizations

of Nyquist’s stability criterion as a mechanism to characterize robust

stability and performance. To do this we develop ways to describe un-

certainty, both in the form of parameter variations and in the form of

neglected dynamics. We also briefly mention some methods for design-
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ing controllers to achieve robust performance.

13.1 MODELING UNCERTAINTY

Harold Black’s quote above illustrates that one of the key uses of feed-

back is to provide robustness to uncertainty (“constancy of amplifica-

tion”). It is one of the most useful properties of feedback and is what

makes it possible to design feedback systems based on strongly simpli-

fied models. In this section we explore different types of uncertainty in

our knowledge of the dynamics of the system, including the important

problem of determining when two systems are similar from a controls

perspective.

Parametric Uncertainty

One form of uncertainty in dynamical systems is parametric uncer-

tainty in which the parameters describing the system are not precisely

known. A typical example is the variation of the mass of a car, which

changes with the number of passengers and the weight of the baggage.

When linearizing a nonlinear system, the parameters of the linearized

model also depend on the operating conditions. It is straightforward to

investigate the effects of parametric uncertainty simply by evaluating

the performance criteria for a range of parameters. Such a calculation

reveals the consequences of parameter variations. We illustrate by an

example.
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Figure 13.1: Responses of the cruise control system to a slope in-

crease of 4◦ (a) and the eigenvalues of the closed loop system (b).

Model parameters are swept over a wide range. The closed loop sys-

tem is of second order.

Example 13.1 Cruise control

The cruise control problem is described in Section 4.1, and a PI con-

troller was designed in Example 11.3. To investigate the effect of pa-

rameter variations, we will choose a controller designed for a nominal

operating condition corresponding to mass m = 1600 kg, fourth gear

(α = 12), and speed ve = 20 m/s; the controller gains are kp = 0.5

and ki = 0.1. Figure 13.1a shows the velocity error e and the throttle

u when encountering a hill with a 4◦ slope with masses in the range

1600 < m < 2000 kg, gear ratios 3–5 (α = 10, 12, and 16), and veloc-

ity 10 ≤ v ≤ 40 m/s. The simulations were done using models that

were linearized around the different operating conditions. The figure

shows that there are variations in the response but that they are all
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quite reasonable. The largest velocity error is in the range of 0.5–1.2

m/s, and the settling time is about 15 s. The control signal is larger

than 1 in some cases, which implies that the throttle is fully open. (A

full nonlinear simulation using a controller with windup protection is

required if we want to explore these cases in more detail.) The closed

loop system has two eigenvalues, shown in Figure 13.1b for the differ-

ent operating conditions. We see that the closed loop system is well

damped in all cases. ∇

This example indicates that at least as far as parametric variations

are concerned, a design based on a simple nominal model will give

satisfactory control. The example also indicates that a controller with

fixed parameters can be used in all cases. Notice that we have not

considered operating conditions in low gear and at low speed, but cruise

controllers are not typically used in these cases.

Unmodeled Dynamics

It is generally easy to investigate the effects of parametric variations.

However, there are other uncertainties that also are important, as dis-

cussed at the end of Section 3.1. The simple model of the cruise control

system captures only the dynamics of the forward motion of the vehi-

cle and the torque characteristics of the engine and transmission. It

does not, for example, include a detailed model of the engine dynam-

ics (whose combustion processes are extremely complex) or the slight
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delays that can occur in modern electronically-controlled engines (as

a result of the processing time of the embedded computers). These

neglected mechanisms are called unmodeled dynamics.

One way to account for unmodeled dynamics is by developing a

more complex model that includes additional details that are deemed

important for control design. Such models are commonly used for con-

troller development, but substantial effort is required to generate them.

In addition, these models are themselves likely to be uncertain, since

the parameter values may vary over time or between units. Performing

parametric analysis on complex models can be very time-consuming,

especially if the parameter space is large.

An alternative is to investigate if the closed loop system can be made

insensitive to generic forms of unmodeled dynamics. The basic idea is

to augment the nominal model with a bounded input/output transfer

function that captures the gross features of the unmodeled dynamics.

For example, in the cruise control example the model of the engine can

be a static model that provides the torque instantaneously and the aug-

mented model can include a time delay with an unknown but bounded

value. Describing unmodeled dynamics with transfer functions permits

us to handle infinite-dimensional systems like time delays.

Figure 13.2 illustrates some ways in which unmodeled dynamics can

be captured. The transfer functions ∆, δ, ∆fb are taken as bounded

input/output operators that represent the unmodeled dynamics. For
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Figure 13.2: Unmodeled dynamics in linear systems. Uncertainty

can be represented using additive perturbations (a), multiplicative

perturbations (b), or feedback perturbations (c). The nominal system

is P , and ∆, δ, and ∆fb represent unmodeled dynamics.

example, in Figure 13.2a we assume that the transfer function of the

process is P̃ (s) = P (s) + ∆(s), where P (s) is the nominal simplified

transfer function and ∆(s) is a transfer function that represents the

unmodeled dynamics in terms of additive uncertainty. If we can show

that the closed loop system is stable for all ∆(s) satisfying a given

bound (e.g., |∆(s)| < ǫ), then the system is said to be robustly stable.

Different representations are possible in addition to additive uncer-

tainty. Figure 13.2b shows a representation for multiplicative uncer-

tainty and Figure 13.2c represents feedback uncertainty. The specific

form that is used depends on what provides the best representation of

the unmodeled dynamics. The different types of uncertainty can also

be related to each other:

δ =
∆

P
, ∆fb =

∆

P (P +∆)
=

δ

P (1 + δ)
.
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We will return to these representations in the next section, where we

develop conditions for robust stability in the presence of unmodeled

dynamics.

When Are Two Systems Similar?

A fundamental issue in describing robustness is to determine when

two systems are close. Given such a characterization, we can then

attempt to describe robustness according to how close the actual system

must be to the model in order to still achieve the desired levels of

performance. This seemingly innocent problem is not as simple as it

may appear. A naive approach is to say that two systems are close if

their open loop responses are close. Even if this appears natural, there

are complications, as illustrated by the following examples.

Example 13.2 Systems similar in open loop but different in

closed loop

The systems with the transfer functions

P1(s) =
k

s+ 1
, P2(s) =

k

(s+ 1)(sT + 1)2
(13.1)

have very similar open loop step responses for small values of T , as

illustrated in the upper plot in Figure 13.3a, which corresponds to

T = 0.025 and k = 100.

The differences between the open loop step responses are barely no-

ticeable in the figure. Closing a feedback loop with unit gain (C = 1)
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Figure 13.3: Determining when two systems are close. The plots in

(a) show a situation when the open loop responses are almost identical,

but the closed loop responses are very different. The processes are

given by equation (13.1) with k = 100 and T = 0.025. The plots in

(b) show the opposite situation: the systems are different in open loop

but similar in closed loop. The processes are given by equation (13.3)

with k = 100.

around the systems gives closed loop systems with the transfer func-

tions

T1(s) =
k

s+ 1 + k
, T2(s) =

k

s3T 2 + (T 2 + 2T )s2T + (1 + 2T )s+ 1 + k
.

(13.2)

We find that T1 is stable for k > −1 and T2 is stable for −1 < k <

2T + 4 + 2/T . With the numerical values k = 100 and T = 0.025 the

transfer function T1 is stable and T2 is unstable, which is clearly seen

in the closed loop step responses in the lower plot in Figure 13.3a. ∇
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Example 13.3 Systems different in open loop but similar in

closed loop

Consider the systems

P1(s) =
k

s+ 1
, P2(s) =

k

s− 1
. (13.3)

The open loop responses are different because P1 is stable and P2 is

unstable, as shown in the upper plot in Figure 13.3b. Closing a feedback

loop with unit gain (C = 1) around the systems, we find that the closed

loop transfer functions are

T1(s) =
k

s+ k + 1
, T2(s) =

k

s+ k − 1
, (13.4)

which are very close for large k, as shown in the lower plot in Fig-

ure 13.3b. ∇

The examples we have just discussed indicate that comparing time

responses may not be a good way to compare systems. We will next

compare frequency responses.

Example 13.4 Comparison of systems via frequency responses

Consider the systems

P1(s) =
2

(1 + 5s)3(1− 0.05s)
, P2(s) =

2

(1 + 5s)3(1 + 0.05s)
.

(13.5)

Bode and Nyquist plots of these transfer functions are shown in Fig-

ure 13.4. The figure shows that both systems have very similar Bode
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Figure 13.4: Comparison of frequency response of P1(s) (solid) and

P2(s) (dashed). (a) Bode plot and (b) Nyquist plot.

and Nyquist plots. In spite of this, the closed loop systems obtained

with unit feedback are very different. Neither system has any zeros,

but P1 has two poles in the left half-plane and one pole in the right

half-plane while P2 has all its poles in the left half-plane. Both 1 + P1

and 1 + P2 have winding number nw = 0. Since P1 has a pole in the

right half-plane it follows from the Nyquist criterion (Theorem 10.3)

that the characteristic polynomial of the closed loop system obtained

with unit feedback has one zero in the right half-plane (f = 1 + P1,

nz,D = nw,Γ + np,D in the principle of variation of the argument, Theo-

rem 10.2). Thus the closed loop system using P1 is unstable while the

closed loop system using P2 is stable. ∇

The important lesson to learn from this example is that two systems

may not be close from the point of view of feedback even if their open

loop frequency responses are similar. It is also necessary that both

systems satisfy the winding number condition.
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The Vinnicombe Metric
�

Examples 13.2 and 13.3 show that comparing open loop time responses

is not a good way to judge closed loop behavior. Example 13.4 shows

that it is necessary to have a winding number condition if frequency

responses are compared. We will now introduce the Vinnicombe metric,

which is the proper way to compare open loop systems in a way that

reflects their closed loop behavior. The metric is closely related to the

Nyquist plot; more information is available in [247, 248].

We start by introducing the chordal metric, which is a function

C × C → [0 1] that maps two complex numbers to a real variable in

the range 0 ≤ x ≤ 1. Applied to the transfer functions P1(s) and P2(s)

the chordal metric is defined as

dP1P2
(ω) :=

|P1(iω)− P2(iω)|√
1 + |P1(iω)|2

√
1 + |P2(iω)|2

. (13.6)

The chordal metric dP1P2
has a nice geometric interpretation, illustrated

in Figure 13.5. The points P1(iω) and P2(iω) are projected onto a

sphere with diameter 1 positioned at the origin of the complex plane

(the Riemann sphere). The projection is the intersection of the sphere

with a straight line from the point to the north pole of the sphere

(inverse stereographic projection). The chordal distance is then the

Euclidean distance between the two points on the sphere.

To define a metric between two transfer functions, Vinnicombe in-
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Figure 13.5: Geometric interpretation of the chordal metric

d(P1, P2) on a Nyquist plot with a Riemann sphere. At each fre-

quency, the points on the Nyquist curve for P1 (solid, starting at A)

and P2 (dashed, starting at B) are projected onto the sphere of diam-

eter 1 positioned at the origin of the complex plane. The projection

of the point 1 − i is shown in the figure. The distance between the

two systems is defined as the maximum distance between the projec-

tions of P1(iω) and P2(iω) over all frequencies ω. The figure is plotted

for the transfer functions P1(s) = 2/(s + 1) and P2(s) = 2/(s − 1).

(Diagram courtesy G. Vinnicombe.)

troduced the following set C of rational transfer functions P1 and P2:

C =
{
P1, P2 : 1 + P1(iω)P2(−iω) 6= 0 ∀ω,

nw,Γ(1 + P1(s)P2(−s)) + np,rhp(P1(s))− np,rhp(P2(−s)) = 0
}
,

(13.7)

where nw,Γ(f) is the winding number for the function f(s) around the

Nyquist contour Γ and np,rhp(f) is the number of poles of the f(s) in

the open right half-plane. (Compare with the corresponding conditions

in Nyquist’s criterion in Theorem 10.3.) The metric is then defined as

follows.
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Definition 13.1 (The ν-gap metric). Let P1(s) and P2(s) be rational

transfer functions. The ν-gap metric is

δν(P1, P2) =





supω dP1P2
(ω), if (P1, P2) ∈ C,

1, otherwise,

(13.8)

where dP1P2
(ω) is given by equation (13.6).

We will also call this metric the Vinnicombe metric after its in-

ventor. Vinnicombe showed that δν(P1, P2) is indeed a metric. He

extended it to multivariable and infinite-dimensional systems, and he

gave strong robustness results that will be discussed later. There is a

MATLAB command gapmetric for computing the Vinnicombe metric.

Vinnicombe gave several interpretations of the winding number con-

dition that determines if (P1, P2) belong to C. He showed that the

condition implies that the closed loop system obtained when P1(s) is

connected in a feedback loop with P1(−s) has the same number of

right half-plane poles as when P1(s) is connected with P2(−s). A nec-

essary condition is that the rational functions 1 + P1(s)P1(−s) and

1+P1(s)P2(−s) have the same number of zeros in the right half-plane.

This condition can be interpreted as a continuity condition: the transfer

function P can be continuously perturbed from P1 to P2 in such a way

that there is no intermediate transfer function P where dP1P (ω) = 1.

We illustrate the Vinnicombe metric by computing it for the sys-
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tems in Examples 13.2 and 13.3.

Example 13.5 Vinnicombe metric for Example 13.2

The transfer functions P1 and P2 for the systems in Example 13.2 are

given by equation (13.1). We have

f(s) = 1 + P1(s)P2(−s) = 1 +
k2

(1− s2)(1− sT )2 , k = 100.

The graph of f(iω) for −∞ ≤ ω ≤ ∞ is a closed contour in the

right half-plane that does not encircle the origin (see Figure 13.6a

and 13.6b for an enlargement of the region around the origin), hence

nw,Γ(1 + P1(s)P2(−s)) = 0. In addition, the transfer functions P1 and

P2 have no poles in the right half-plane and we can conclude that

(P1, P2) ∈ C (equation (13.7)). An alternative to verify the winding

number condition is to compute the number of right half-plane zeros of

the transfer functions 1 + P1(s)P1(−s) and 1 + P1(s)P2(−s). A direct

computation shows that both transfer functions have one zero in the

open right half-plane. It follows from equation (13.8) that the Vinni-

combe metric is δν(P1, P2) = 0.89, which is large since 1.0 is as big as

it can get, confirming that P1 and P2 are quite different. ∇

Example 13.6 Vinnicombe metric for Example 13.3

The transfer functions P1 and P2 for the systems in Example 13.3 are

given by equation (13.3). We have

1 + P1(iω)(P2(−iω) = 1− k2

(1 + iω)2
= 1− k2(1− ω2)

(1 + ω2)2
+

2k2iω

(1 + ω2)2
.
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Figure 13.6: Graphs of the function f(iω) = 1 + P1(iω)P2(−iω) for

−∞ ≤ ω ≤ ∞. The plots for Example 13.2 with P1(s) = 100/(s+ 1)

and P2(s) = 100/((s + 1)(0.025s + 1)2 are shown in (a), with an

enlargement in the area close to the origin in (b). The plots for

Example 13.3 with P1(s) = k/(s + 1) and P2(s) = k/(−s + 1) are

shown in (c), with gains k = 1.25 (outer), k = 1, and k = 0.8 (inner).

Values for positive ω are shown as solid lines and negative values are

shown as dashed lines.

The imaginary part of the function 1+P1(iω)P2(−iω) is zero for ω = 0

and ω =∞ and the corresponding values of the real part are 1−k2 and

1. The function is thus zero only for ω = 0 and k = 1. Furthermore

f(s) = 1 + P1(s)P2(−s) = 1− k2

(s+ 1)2
=
s2 + 2s+ 1− k2

(s+ 1)2
.

The function f(s) has a zero in the open right half-plane if k > 1. The

winding number of 1 + P1(s)P2(−s) is 0 if k ≤ 1 and 1 if k > 1, as

seen in Figure 13.6c. Since P1 has no poles in the right half-plane and
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P2 has one pole in the right half-plane, equation (13.8) implies that

δν(P1, P2) = 1 if k ≤ 1.

We have thus found that (P1, P2) ∈ C if k > 1, and equation (13.6)

implies that

dP1P2
(ω) =

2k

1 + k2 + ω2
.

The largest value occurs for ω = 0, and the Vinnicombe metric, equa-

tion (13.8), becomes

δν(P1, P2) =





1 if k ≤ 1,

2k

1 + k2
if k > 1.

With k = 100 we get δν(P1, P2) = 0.02, indicating that the closed loop

transfer functions are very close as illustrated in Figure 13.3b. ∇

13.2 STABILITY IN THE PRESENCE OF UNCERTAINTY

Having discussed how to describe uncertainty and the similarity be-

tween two systems, we now consider the problem of robust stability:

when can we show that the stability of a system is robust with respect

to process variations? This is an important question since the potential

for instability is one of the main drawbacks of feedback. Hence we want

to ensure that even if we have small inaccuracies in our model, we can

still guarantee stability and performance of the closed loop system.
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Figure 13.7: Illustrations of robust stability in Nyquist plots. The

plot (a) shows the stability margin sm = 1/Ms. The plot (b) shows the

Nyquist curve and the circle shows uncertainty due to stable additive

process variations ∆.

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant way to study

the effects of uncertainty for linear systems. A simple criterion for a

stable system is that the Nyquist curve be sufficiently far from the

critical point −1. Recall that the shortest distance from the Nyquist

curve to the critical point is sm = 1/Ms, where Ms is the maximum

of the sensitivity function and sm is the stability margin introduced in

Section 10.3. The maximum sensitivity Ms or the stability margin sm

is thus a good robustness measure, as illustrated in Figure 13.7a.

We will now derive explicit conditions on the controller C such that

stability is guaranteed for process perturbations where |∆| is less than

a given bound. Consider a stable feedback system with a process P
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and a controller C. If the process is changed from P to P + ∆, the

loop transfer function changes from PC to PC +C∆, as illustrated in

Figure 13.7b. The additive perturbation ∆ must be a stable transfer

function to satisfy the winding number condition in the Nyquist crite-

rion. If we have a bound on the size of ∆ (represented by the dashed

circle in the figure), then the system remains stable as long as the per-

turbed loop transfer function |1+ (P +∆)C| never reaches the critical

point −1, since the number of encirclements of −1 remains unchanged.

We will now compute an analytical bound on the allowable process

disturbances. The distance from the critical point −1 to the loop trans-

fer function L = PC is |1+L|. This means that the perturbed Nyquist

curve will not reach the critical point −1 provided that |C∆| < |1+L|,

which is guaranteed if

|∆| <
∣∣∣1 + PC

C

∣∣∣ =
∣∣∣1 + L

C

∣∣∣ or |δ| < 1

|T | , where δ :=
∆

P
.

(13.9)

This condition must be valid for all points on the Nyquist curve,

i.e, pointwise for all frequencies. The condition for robust stability can

thus be written as

|δ(iω)| =
∣∣∣∆(iω)

P (iω)

∣∣∣ <
∣∣∣1 + L(iω)

L(iω)

∣∣∣ = 1

|T (iω)| for all ω ≥ 0. (13.10)

Notice that the condition is conservative in the sense that the critical

perturbation is in the direction toward the critical point −1. Larger

perturbations can be permitted in the other directions.
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Robustness is normally defined as the margin to maintain stability.

It is easy to modify the criterion and obtain a robustness condition

that guarantees a specified stability margin (Exercise 13.6).

The condition in equation (13.10) allows us to reason about uncer-

tainty without exact knowledge of the process perturbations. Namely,

we can verify stability for any uncertainty ∆ that satisfies the given

bound. From an analysis perspective, this gives us a measure of the

robustness for a given design. Conversely, if we require robustness of

a given level, we can attempt to choose our controller C such that the

desired level of robustness is available (by asking that T be small) in

the appropriate frequency bands.

Equation (13.10) is one of the reasons why feedback systems work

so well in practice. The mathematical models used to design control

systems are often simplified, and the properties of a process may change

during operation. Equation (13.10) implies that the closed loop system

will at least be stable for substantial variations in the process dynamics.

It follows from equation (13.10) that the variations can be large

for those frequencies where T is small and that smaller variations are

allowed for frequencies where T is large. A conservative estimate of

permissible process variations that will not cause instability is given by

|δ(iω)| =
∣∣∣∆(iω)

P (iω)

∣∣∣ < 1

|T (iω)| ≤
1

Mt

, (13.11)
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where Mt is the largest value of the complementary sensitivity

Mt = sup
ω
|T (iω)| =

∥∥∥ PC

1 + PC

∥∥∥
∞
. (13.12)

Reasonable values of Mt are in the range of 1.2 to 2. It is shown in

Exercise 13.7 that if Mt = 2 then pure gain variations of 50% or pure

phase variations of 30◦ are permitted without making the closed loop

system unstable.

Example 13.7 Cruise control

Consider the cruise control system discussed in Section 4.1. Using the

parameters from Example 6.11, the model of the car in fourth gear at

speed 20 m/s is

P (s) =
1.32

s+ 0.01
,

and the controller is a PI controller with gains kp = 0.5 and ki = 0.1.

Figure 13.8 plots the allowable size of the process uncertainty using the

bound in equation (13.10).

At low frequencies T → 1 and so the perturbations can be as large as

the original process (|δ| = |∆/P | < 1). The complementary sensitivity

has its maximum Mt = 1.17 at ωmt = 0.26, and hence this gives the

lowest allowable process uncertainty, with |δ| < 0.86 or |∆| < 4.36.

Finally, at high frequencies, T → 0 and hence the relative error can

get very large. For example, at ω = 5 rad/s we have |T (iω)| = 0.264,

which means that the stability requirement is |δ| < 3.8. The analysis

clearly indicates that the system has good robustness and that the high-
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Figure 13.8: Robustness for a cruise controller. (a) The maximum

relative error 1/|T | (solid) and the absolute error |P |/|T | (dashed) for

the process uncertainty ∆. (b) The Nyquist plot of the loop trans-

fer function L (zoomed in to the region around the critical point) is

shown on the right as a solid line. The dashed circles show allow-

able perturbations in the process dynamics, |C∆| = |CP |/|T |, at the

frequencies ω = 0.2, 0.4, and 2, which are marked with circles.

frequency properties of the transmission system are not important for

the design of the cruise controller.

Another illustration of the robustness of the system is given in Fig-

ure 13.8b, which shows the Nyquist curve of the loop transfer function

L along with the allowable perturbations. We see that the system can

tolerate large amounts of uncertainty and still maintain stability of the

closed loop. ∇

The situation illustrated in the previous example is typical of many
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processes: moderately small uncertainties are required only around the

gain crossover frequencies, but large uncertainties can be permitted at

higher and lower frequencies. A consequence of this is that a simple

model that describes the process dynamics well around the crossover

frequency is often sufficient for design. Systems with many resonant

peaks are an exception to this rule because the process transfer function

for such systems may also have large gains for higher frequencies, as

shown for instance in Example 10.9.

The robustness condition given by equation (13.10) can be given an-

other interpretation by using the small gain theorem (Theorem 10.4).

To apply the theorem we start with block diagrams of a closed loop sys-

tem with a perturbed process and make a sequence of transformations

of the block diagram that isolate the block representing the uncertainty,

as shown in Figure 13.9. The result is the two-block interconnection

shown in Figure 13.9c, which has the loop transfer function

L =
PC

1 + PC

∆

P
= Tδ.

Equation (13.10) implies that the largest loop gain is less than 1 and

hence the system is stable via the small gain theorem.

The small gain theorem can be used to check robust stability for

uncertainty in a variety of other situations. Table 13.1 summarizes a

few of the common cases; the proofs (all via the small gain theorem)

are left as exercises.
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Figure 13.9: Illustration of robustness to process perturbations. A

system with additive uncertainty (a) can be manipulated via block

diagram algebra to one with multiplicative uncertainty δ = ∆/P (b).

Additional manipulations isolate the uncertainty in a manner that

allows application of the small gain theorem (c).

Table 13.1: Conditions for robust stability for different types of

uncertainty

Process Uncertainty Type Robust Stability

P +∆ Additive ‖CS∆‖∞ < 1

P (1 + δ) Multiplicative ‖Tδ‖∞ < 1

P/(1 + ∆fb ·P ) Feedback ‖PS∆fb‖∞ < 1
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The circle criterion can also be used to understand robustness to

nonlinear gain variations, as illustrated by the following example.

Example 13.8 Robustness for sector-bounded nonlinearities

Consider a system with a nonlinear gain F (x) that can be isolated

through appropriate manipulation of the block diagram, resulting in

a system that is a feedback composition of the nonlinear block F (x)

and a linear part with the transfer function H(s). If the nonlinearity

is sector bounded,

klow x < F (x) < khigh x,

and the nominal system has been designed to have maximum sensitiv-

ities Ms and Mt, we can use the circle criterion to verify stability of

the closed loop system. In particular, the system can be shown to be

stable for sector-bounded nonlinearities with

klow =
Ms

Ms + 1
or

Mt − 1

Mt

, khigh =
Ms

Ms − 1
or

Mt + 1

Mt

.

With Ms = Mt = 1.4 we can thus permit gain variations from 0.3 to

3.5, and for a design with Ms = Mt = 2 we can allow gain variations

of 0.5 to 2 without the system becoming unstable. ∇

The following example illustrates that it is possible to design sys-

tems that are robust to parameter variations.

Example 13.9 Bode’s ideal loop transfer function

A major problem in the design of electronic amplifiers is to obtain a
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closed loop system that is insensitive to changes in the gain of the

electronic components. Bode found that the loop transfer function

L(s) = ks−n, 1 ≤ n ≤ 5/3 (13.13)

had very useful robustness properties. The gain curve of the Bode plot

is a straight line with slope −n and the phase is constant argL(iω) =

−nπ/2. The phase margin is thus ϕm = 90(2− n)◦ for all values of the

gain k and the stability margin is sm = sin π(1− n/2). Bode called the

transfer function the “ideal cut-off characteristic” [52, pp. 454–458]; we

will call it Bode’s ideal loop transfer function in honor of Bode. The

transfer function cannot be realized with lumped physical components

unless n is an integer, but it can be approximated over a given frequency

range with a proper rational function for any n (Exercise 13.8). An

operational amplifier circuit that has the approximate transfer function

G(s) = k/(s + a) is a realization of Bode’s ideal transfer function

with n = 1, as described in Example 9.2. Designers of operational

amplifiers go to great efforts to make the approximation valid over a

wide frequency range. ∇

Youla Parameterization
�

Since stability is such an essential property, it is useful to characterize

all controllers that stabilize a given process. Such a representation,

which is called a Youla parameterization, is also very useful when solv-



840 CHAPTER 13

ing design problems because it makes it possible to search over all

stabilizing controllers without the need to test stability explicitly.

We will first derive Youla’s parameterization for a stable process

with a rational transfer function P . A system with a given comple-

mentary sensitivity function T can be obtained by feedforward control

with the stable transfer function Q where T = PQ. Assume that we

want to implement the transfer function T by feedback with the con-

troller C. Since T = PC/(1 + PC) = PQ, the controller transfer

function and its input-output relation are

C =
Q

1− PQ, u = Q(r − y + Py). (13.14)

A straightforward calculation gives the transfer functions for the Gang

of Four as

S = 1− PQ, PS = P (1− PQ), CS = Q, T = PQ.

These transfer functions are all stable if P and Q are stable and the

controller given by equation (13.14) is thus stabilizing. Indeed, it can

be shown that all stabilizing controllers are in the form given by equa-

tion (13.14) for some choice of Q.

The closed loop system with the controller (13.14) can be repre-

sented by the block diagram in Figure 13.10a. Notice that the signal

z is always zero in steady state, because it is a subtraction of identi-

cal signals. Using block diagram algebra we find from the figure that
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Figure 13.10: Block diagrams of Youla parameterizations for a sta-

ble process (a) and an unstable process (b). Notice that the signal z

is zero in steady state in both cases.

the transfer function of the closed loop system is PQ. The fact that

there are two blocks with transfer function P in parallel in the block

diagram implies that there are modes, corresponding to the poles of P ,

that are not reachable and observable. These modes are stable because

we assumed that P was stable.

The scheme in Figure 13.10a cannot be used when the process is

unstable but we can make a similar construct. Consider a closed loop

system where the process is a rational transfer function P = np/dp,

where dp and np are polynomials with no common factors. Assume

that the controller C = nc/dc, where dc and nc are polynomials without

common factors, stabilizes the system in the sense that all sensitivity

functions are stable. By introducing stable polynomials fp and fc we

obtain

P =
np

dp
=
Np

Dp

, C =
nc

dc
=
Nc

Dc

, (13.15)
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where Np = dp/fp, Dp = np/fp, Nc = nc/fc, and Dc = dc/fc are

rational functions with no zeros in the right half-plane (stable rational

functions). The sensitivity functions are

S =
1

1 + PC
=

DpDc

DpDc +NpNc

, PS =
P

1 + PC
=

NpDc

DpDc +NpNc

,

CS =
C

1 + PC
=

DpNc

DpDc +NpNc

, T =
PC

1 + PC
=

NpNc

DpDc +NpNc

.

The controller C is stabilizing if and only if the rational function

DpDc + NpNc does not have any zeros in the right half-plane. Let-

ting Q be a stable rational function, we observe that the closed loop

poles do not change if the controller C is changed by adding NpQ to

Dc and subtracting DpQ from Nc, resulting in the controller

C =
Nc −DpQ

Dc +NpQ
, Dcu = Nc(r − y) +Q(Dpy −Npu)). (13.16)

A block diagram of the closed loop system is shown in Figure 13.10b.

Figure 13.10b and 13.10a share the same basic structure, despite

their difference in appearance. In both cases we form a signal z that

is zero in steady state and feed it back into the system via the stable

transfer function Q. The sensitivity functions of the closed loop system

are

S =
1

1 + PC
=
Dp(Dc +NpQ)

DpDc +NpNc

, PS =
P

1 + PC
=
Np(Dc +NpQ)

DpDc +NpNc

,

CS =
C

1 + PC
=
Dp(Nc −DpQ)

DpDc +NpNc

, T =
PC

1 + PC
=
Np(Nc −DpQ)

DpDc +NpNc

.

(13.17)

These transfer functions are all stable and equation (13.16) is therefore
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a parameterization of controllers that stabilize the process P . Con-

versely it can be shown that all stabilizing controllers can be repre-

sented by the controller (13.16); see [246, Section 3.1]. The controller

C is a called a Youla parameterization of the controller C.

The Youla parameterization is very useful for controller design be-

cause it characterizes all controllers that stabilize a given process. The

fact that the transfer function Q appears affinely in the expressions

for the Gang of Four in equation (13.17) is very useful if we want to

use optimization techniques to find a transfer function Q that yields

desired closed loop properties.

13.3 PERFORMANCE IN THE PRESENCE OF UNCERTAINTY

So far we have investigated the risk for instability and robustness to

process uncertainty. We will now explore how responses to load distur-

bances, measurement noise, and reference signals are influenced by pro-

cess variations. To do this we will analyze the system in Figure 13.11,

which is identical to the basic feedback loop analyzed in Chapter 12.

Disturbance Attenuation

The sensitivity function S gives a rough characterization of the effect

of feedback on disturbances, as was discussed in Section 12.2. A more

detailed characterization is given by the transfer function from load
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Figure 13.11: Block diagram of a basic feedback loop. The external

signals are the reference signal r, the load disturbance v, and the mea-

surement noise w. The process output is y, and the control signal is

u. The process P may include unmodeled dynamics, such as additive

perturbations.

disturbances to process output:

Gyv =
P

1 + PC
= PS. (13.18)

Load disturbances typically have low frequencies, and it is therefore

important that the transfer function Gyv is small for low frequencies.

For processes P with constant low-frequency gain and a controller with

integral action it follows from equation (13.18) that Gyv ≈ s/ki. The

integral gain ki is thus a simple measure of the attenuation of low-

frequency load disturbances.

To find out how the transfer function Gyv is influenced by small

variations in the process transfer function we differentiate equation

(13.18) with respect to P , yielding

dGyv

dP
=

1

(1 + PC)2
=

SP

P (1 + PC)
= S

Gyv

P
,
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and it follows that

dGyv

Gyv

= S
dP

P
, (13.19)

where we write dG and dP as a reminder that this expression holds for

small variations.

In this form, we see that the relative error in the transfer function

Gyu is determined by the relative error in the process transfer function,

scaled by the sensitivity function S. The response to load disturbances

is thus insensitive to process variations for frequencies where |S(iω)| is

small.

A drawback with feedback is that the controller feeds measurement

noise into the system. It is thus also important that the control actions

generated by measurement noise are not too large. It follows from

Figure 13.11 that the transfer function Guw from measurement noise

to controller output is given by

Guw = − C

1 + PC
= −T

P
. (13.20)

Since measurement noise typically has high frequencies, the transfer

function Guw should not be too large for high frequencies. The loop

transfer function PC is typically small for high frequencies, which im-

plies that Guw ≈ C for large s. To avoid injecting too much mea-

surement noise the high-frequency gain of the controller transfer func-

tion C(s) should thus be small. This property is called high-frequency

roll-off. Low-pass filtering of the measured signal is a simple way to
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achieve this property, and this is common practice in PID control; see

Section 11.5.

To determine how the transfer function Guw is influenced by small

variations in the process transfer function, we differentiate equation (13.20)

with respect to P :

dGuw

dP
=

d

dP

(
− C

1 + PC

)
=

C

(1 + PC)2
C = −T Guw

P
.

Rearranging the terms gives

dGuw

Guw

= −T dP
P
. (13.21)

If PC is small for high frequencies the complementary sensitivity func-

tion is also small, and we find that process uncertainty has little influ-

ence on the transfer function Guw for those frequencies.

Response to Reference Signals

The transfer function from reference to output is given by

Gyr =
PCF

1 + PC
= TF, (13.22)

which contains the complementary sensitivity function. To see how

variations in P affect the performance of the system, we differentiate

equation (13.22) with respect to the process transfer function:

dGyr

dP
=

CF

1 + PC
− PCFC

(1 + PC)2
=

CF

(1 + PC)2
= S

Gyr

P
,



ROBUST PERFORMANCE 847

and it follows that

dGyr

Gyr

= S
dP

P
. (13.23)

The relative error in the closed loop transfer function thus equals the

product of the sensitivity function and the relative error in the process.

In particular, it follows from equation (13.23) that the relative error in

the closed loop transfer function is small when the sensitivity is small.

This is one of the useful properties of feedback.

As in the previous section, there are some mathematical assump-

tions that are required for the analysis presented here to hold. As

already stated, we require that the perturbations ∆ be small (as in-

dicated by writing dP ). Second, we require that the perturbations be

stable, so that we do not introduce any new right half-plane poles that

would require additional encirclements in the Nyquist criterion. Also,

as before, this condition is conservative: it allows for any perturbation

that satisfies the given bounds, while in practice the perturbations may

be more restricted.

Example 13.10 Operational amplifier circuit

To illustrate the use of these tools, consider the performance of an op

amp-based amplifier, as shown in Figure 13.12a. We wish to analyze

the performance of the amplifier in the presence of uncertainty in the

dynamic response of the op amp and changes in the loading on the

output. We model the system using the block diagram in Figure 13.12b,
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Figure 13.12: Operational amplifier with uncertain dynamics. The

circuit on the left is modeled using the transfer function G(s) to cap-

ture its dynamic properties and it has a load at the output. The block

diagram on the right shows the input/output relationships. The load

is represented as a disturbance d applied at the output of G(s).

which is based on the derivation in Exercise 10.1.

Consider first the effect of unknown dynamics for the operational

amplifier. Letting the dynamics of the op amp be modeled as v2 =

−G(s)v, it follows from the block diagram in Figure 13.12b that the

transfer function for the overall circuit is

Gv2v1 = −
R2

R1

G(s)

G(s) +R2/R1 + 1
.

We see that if G(s) is large over the desired frequency range, then the

closed loop system is very close to the ideal response α := R2/R1. As-

suming G(s) = b/(s+ a), where b = ak is the gain-bandwidth product

of the amplifier (as discussed in Example 9.2), the sensitivity function

and the complementary sensitivity function become

S =
s+ a

s+ a+ αb
, T =

αb

s+ a+ αb
.
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The sensitivity function around the nominal values tells us how the

tracking response varies as a function of process perturbations:

dGv2v1

Gv2v1

= S
dP

P
.

We see that for low frequencies, where S is small, variations in the

bandwidth a or the gain-bandwidth product b will have relatively little

effect on the performance of the amplifier (under the assumption that

b is sufficiently large).

To model the effects of an unknown load, we consider the addition of

a disturbance d at the output of the system, as shown in Figure 13.12b.

This disturbance represents changes in the output voltage due to load-

ing effects. The transfer function Gv2d = S gives the response of the

output to the load disturbance, and we see that if S is small, then we

are able to reject such disturbances. The sensitivity of Gv2d to per-

turbations in the process dynamics can be computed by taking the

derivative of Gv2d with respect to P :

dGv2d

dP
=

−C
(1 + PC)2

= −T
P
Gv2d =⇒ dGv2d

Gv2d

= −T dP
P
.

Thus we see that the relative changes in disturbance rejection are

roughly the same as the process perturbations at low frequencies (when

T is approximately 1) and drop off at higher frequencies. However, it

is important to remember that Gv2d itself is small at low frequency,

and so these variations in relative performance may not be an issue in
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many applications. ∇

Analysis of the sensitivity to small process perturbations can per-

formed for many other system configurations. The analysis for the sys-

tem in Figure 12.13, where the reference signal response is improved

by feedforward and the load disturbance response is improved by feed-

forward from measured disturbances, is presented in Exercise 13.11.

13.4 DESIGN FOR ROBUST PERFORMANCE
�

Control design is a rich problem where many factors have to be taken

into account. Typical requirements are that load disturbances should

be attenuated, the controller should inject only a moderate amount

of measurement noise, the output should follow variations in the com-

mand signal well, and the closed loop system should be insensitive to

process variations. For the system in Figure 13.11 these requirements

can be captured by specifications on the sensitivity functions S and T

and the transfer functions Gyv, Guw, Gyr, and Gur. Notice that it is

necessary to consider at least six transfer functions, as discussed Sec-

tion 12.1. The requirements are mutually conflicting, and we have to

make trade-offs. The attenuation of load disturbances will be improved

if the bandwidth is increased, but the noise injection will be worse. The

following example is an illustration.

Example 13.11 Nanopositioning system for an atomic force
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microscope

A simple nanopositioner with the process transfer function

P (s) =
ω2
0

s2 + 2ζω0s+ ω2
0

was explored in Example 10.9. It was shown that the system could be

controlled using an integral controller. The closed loop performance

was poor because the gain crossover frequency was limited to ωgc <

2ζω0(1−sm) to have good robustness with the integral controller. It can

be shown that little improvement is obtained by using a PI controller.

We will explore if better performance can be obtained with PID control.

As justified in Example 14.11 in the next chapter, we trying choosing a

controller zero that is near the fast stable process pole. The controller

transfer function should thus be chosen as

C(s) =
kds

2 + kps+ ki
s

=
ki
s

s2 + 2ζω0s+ ω2
0

ω2
0

, (13.24)

which gives kp = 2ζki/ω0 and kd = ki/ω
2
0. The loop transfer function

becomes L(s) = ki/s.

Figure 13.13 shows, in dashed lines, the gain curves for the Gang of

Four for a system designed with ki = 0.5. A comparison with Fig-

ure 10.14 shows that the bandwidth is increased significantly from

ωgc = 0.01 to ωgc = ki = 0.5. However, since the process pole is

canceled, the system will be very sensitive to load disturbances with

frequencies close to the resonant frequency, as seen by the peak in PS
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at ω/ω0 = 1. The gain curve of CS has a dip or a notch at the reso-

nant frequency ω0, which implies that the controller gain is very low for

frequencies around the resonance. The gain curve also shows that the

system is very sensitive to high-frequency noise. The system will likely

be unusable because the gain goes to infinity for high frequencies.

The sensitivity to high-frequency noise can be reduced by modifying

the controller to be

C(s) =
ki
s

s2 + 2ζω0s+ ω2
0

ω2
0(1 + sTf + (sTf)2/2)

, (13.25)

which has high-frequency roll-off. Selection of the constant Tf for the

filter is a compromise between attenuation of high-frequency measure-

ment noise and robustness. A large value of Tf reduces the effects of

sensor noise significantly, but it also reduces the stability margin. Since

the gain crossover frequency without filtering is ki, a reasonable choice

is Tf = 0.2/ki, as shown by the solid curves in Figure 13.13. The plots

of |CS(iω)| and |S(iω)| show that the sensitivity to high-frequency

measurement noise is reduced dramatically at the cost of a marginal

increase of sensitivity. Notice that the poor attenuation of disturbances

with frequencies close to the resonance is not visible in the sensitivity

function because of the cancellation of the resonant poles (but it can

be seen in PS).

The designs thus far have the drawback that load disturbances with

frequencies close to the resonance are not attenuated, since |S(iω0)| is
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Figure 13.13: Nanopositioning system control via cancellation of

the fast process pole. Gain curves for the Gang of Four for PID con-

trol with second-order filtering (13.25) are shown by solid lines, and

the dashed lines show results for an PID controller without filter-

ing (13.24).

close to one. We will now consider a design that actively attenuates the

poorly damped modes. We start with an ideal PID controller where

the design can be done analytically, and we add high-frequency roll-off.

The loop transfer function obtained with this controller is

L(s) =
ω2
0(kds

2 + kps+ ki)

s(s2 + 2ζω0s+ ω2
0)
. (13.26)

The closed loop system is of third order, and its characteristic polyno-

mial is

s3 + (kdω
2
0 + 2ζω0)s

2 + (kp + 1)ω2
0s+ kiω

2
0. (13.27)

A general third-order polynomial can be parameterized as

s3 + (αc + 2ζc)ωcs
2 + (1 + 2αcζc)ω

2
cs+ αcω

3
c . (13.28)
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The parameters αc and ζc give the relative configuration of the poles,

and the parameter ωc gives their magnitudes, and therefore also the

bandwidth of the system.

The identification of coefficients of equal powers of s with equa-

tion (13.27) gives a linear equation for the controller parameters, which

has the solution

kp =
(1 + 2αcζc)ω

2
c

ω2
0

− 1, ki =
αcω

3
c

ω2
0

, kd =
(αc + 2ζc)ωc

ω2
0

− 2ζc
ω0

.

(13.29)

Adding high-frequency roll-off, the controller becomes

C(s) =
kds

2 + kps+ k

s(1 + sTf + (sTf)2/2)
. (13.30)

If the PID controller is designed without the filter, the filter time con-

stant must be significantly smaller than Td to avoid introducing extra

phase lag; a reasonable value is Tf = Td/10 = 0.1 kd/k . If more filter-

ing is desired it is necessary to account for the filter dynamics in the

design.

Figure 13.14 shows the gain curves of the Gang of Four for designs

with ζc = 0.707, αc = 1, and ωc = ω0, 2ω0, and 4ω0. The figure shows

that the largest values of the sensitivity functions S and T are small.

The gain curve for PS shows that the load disturbances are now well

attenuated over the whole frequency range, and attenuation increases

with increasing ω0. The gain curve for CS shows that large control

signals are required to provide active damping. The high gain of CS for
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Figure 13.14: Nanopositioner control using active damping. Gain

curves for the Gang of Four for PID control of the nanopositioner de-

signed for ωc = ω0 (dash-dotted), 2ω0 (dashed), and 4ω0 (solid). The

controller has high-frequency roll-off and has been designed to give

active damping of the oscillatory mode. The different curves corre-

spond to different choices of magnitudes of the poles, parameterized

by ωc in equation (13.27).

high frequencies also shows that low-noise sensors and actuators with

a wide range are required. The largest gains for CS are 19, 103 and

434 for ωc = ω0, 2ω0, and 4ω0, respectively. There is clearly a trade-off

between disturbance attenuation and controller gain. A comparison

of Figures 13.13 and 13.14 illustrates the trade-offs between control

action and disturbance attenuation for the designs with cancellation of

the fast process pole and active damping. ∇

It is highly desirable to have design methods that can guarantee

robust performance. Such design methods did not appear until the
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late 1980s. Many of these design methods result in controllers having

the same structure as the controller based on state feedback and an

observer. In remainder of this section we provide a brief review of some

of the techniques as a preview for those interested in more specialized

study.

Quantitative Feedback Theory

Quantitative feedback theory (QFT) is a graphical design method for ro-

bust loop shaping that was developed by I. M. Horowitz [122]. The idea

is to first determine a controller that gives a complementary sensitiv-

ity that is robust to process variations and then to shape the response

to reference signals by feedforward. The idea is illustrated in Fig-

ure 13.15a, which shows the level curves of the gain |T (iω)| of the com-

plementary sensitivity function on a Nyquist plot (this type of Nyquist

plot is also called a Hall chart). The complementary sensitivity func-

tion has unit gain on the line ReL(iω) = −0.5. In the neighborhood

of this line, significant variations in process dynamics only give moder-

ate changes in the complementary transfer function. The shaded part

of the figure corresponds to the region 0.9 < |T (iω)| < 1.1. To use

the design method, we represent the uncertainty for each frequency by

a region and attempt to shape the loop transfer function so that the

variation in T is as small as possible. The design is often performed

using the Nichols chart shown in Figure 13.15b.
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Figure 13.15: Hall and Nichols charts. The Hall chart is a Nyquist

plot with curves for constant gain (solid) and phase (dotted) of the

complementary sensitivity function T . The Nichols chart is the confor-

mal map of the Hall chart under the transformation N = logL (with

the scale flipped). The dashed curve is the line where |T (iω)| = 1,

and the shaded region corresponds to loop transfer functions whose

complementary sensitivity changes by no more than ±10%.

Linear Quadratic Control

One way to make the trade-off between the attenuation of load distur-

bances and the injection of measurement noise is to design a controller

that minimizes the cost function

J =

∫ ∞

0

(
y2(t) + ρu2(t)

)
dt,

where ρ is a weighting parameter as discussed in Section 8.4. This cost

function gives a compromise between load disturbance attenuation and

disturbance injection because it balances control actions against devi-

ations in the output. If all state variables are measured, the controller
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is a state feedback u = −Kx as described in Section 7.5. It has been

shown that this controller is very robust: it has a phase margin of at

least 60◦ and an infinite gain margin. This controller is called a lin-

ear quadratic regulator or LQR controller because the process model is

linear and the criterion is quadratic.

When all state variables are not measured, the state can be re-

constructed using an observer, as discussed in Section 8.3. It is also

possible to introduce process disturbances and measurement noise ex-

plicitly in the model and to reconstruct the states using a Kalman

filter, as discussed briefly in Section 8.4. The Kalman filter has the

same structure as the observer designed by eigenvalue assignment in

Section 8.3, but the observer gains L are now obtained by solving an

optimization problem.

The control law obtained by combining linear quadratic control with

a Kalman filter is called linear quadratic Gaussian control or LQG

control. The Kalman filter is optimal when the models for load dis-

turbances and measurement noise are Gaussian. There are efficient

programs to compute these feedback and observer gains. The basic

task is to solve algebraic Riccati equations. For numerical calculations

we can use the MATLAB commands care for continuous time systems

and dare for discrete time systems. The are also MATLAB commands

lqg, lqi, and kalman that perform the complete design.

It is interesting that the solution to the optimization problem leads
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to a controller having the structure of a state feedback and an observer.

The state feedback gains depend on the parameter ρ, and the filter gains

depend on the parameters in the model that characterize process noise

and measurement noise (see Section 8.4).

The nice robustness properties of state feedback are unfortunately

lost when the observer is added [74]. There are parameters that give

closed loop systems with poor robustness, and hence there is a fun-

damental difference between directly measuring the states of a system

and reconstructing the states using an observer.

H∞ Control
�

An elegant method for robust control design is called H∞ control be-

cause it can be formulated as minimization of the H∞ norm of a matrix

of transfer functions, defined in equation (10.15). The basic ideas are

simple, but the details are complicated and we will therefore just give

the flavor of the results. A key idea is illustrated in Figure 13.16a,

where the closed loop system is represented by two blocks the process

P and the controller C as discussed in Section 12.1. The process P has

two inputs, the control signal u, which can be manipulated by the con-

troller, and the generalized disturbance χ, which represents all external

influences, e.g., command signals, load disturbances, and measurement

noise. The process has two outputs, the generalized error ξ, which is a

vector of error signals representing the deviation of signals from their
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Figure 13.16: H∞ robust control formulation. (a) General repre-

sentation of a control problem used in robust control. The input u

represents the control signal, the input χ represents the external in-

fluences on the system, the output ξ is the generalized error and the

output y is the measured signal. (b) Special case of the basic feedback

loop in Figure 13.11 where the reference signal is zero.

desired values, and the measured signal y, which can be used by the

controller to compute u. For a linear system and a linear controller the

closed loop system can be represented by a linear system

ξ = G(P (s), C(s))χ, (13.31)

which tells how the generalized error ξ depends on the generalized

disturbances χ. The control design problem is to find a controller C

such that the gain of the transfer function G is small even when the

process has uncertainties. There are many different ways to specify

uncertainty and gain, giving rise to different designs depending on the

chosen norms.

To illustrate the ideas we will consider a regulation problem for
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a system where the reference signal is assumed to be zero and the

external signals are the load disturbance v and the measurement noise

w, as shown in Figure 13.16b. The generalized error is defined as

ξ = (µ, η), where µ = v − u is the part of the load disturbance that

is not compensated by the controller and η is the process output. The

generalized input is χ = (v,−w) (the negative sign of w is not essential

but is chosen to obtain somewhat nicer equations). The closed loop

system is thus modeled by

ξ =




µ

η




=




1

1 + PC

C

1 + PC

P

1 + PC

PC

1 + PC







v

−w




=: G(P,C)χ, (13.32)

which is a special case of equation (13.31). If C is stabilizing we have

‖G(P,C))‖∞ = sup
ω
σ̄(G) = sup

ω

√
(1 + |P (iω)|2)(1 + |C(iω)|2)
|1 + P (iω)C(iω)| .

(13.33)

where σ̄ is the largest singular value. Notice that the elements of G are

the Gang of Four. The diagonal elements of G are the sensitivity func-

tions S = 1/(1+PC) and T = PC/(1+PC), which capture robustness.

The off-diagonal elements P/(1+PC) = Gyv and C/(1+PC) = −Guw

represent the the responses of the output to load disturbances and

of the control signal to measurement noise, and they capture perfor-

mance. If we minimize ‖G(P,C)‖∞, we thus balance performance and

robustness.

There are numerical methods for finding a stabilizing controller C
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that minimizes ‖G(P,C)‖∞, if such a controller exists. This controller

has the same structure as the controller based on state feedback and

an observer; see Figure 8.7 and Theorem 8.3. The controller gains are

given by algebraic Riccati equations. They can be computed numeri-

cally by the MATLAB command hinfsyn.

The Generalized Stability Margin

In Section 13.2 we introduced the stability margin as sm = infω |1 + P (iω)C(iω)|

for systems such that C stabilizes P . The margin can be interpreted

as the shortest distance between the Nyquist plot of the loop transfer

function PC and the critical point −1, as shown in Figure 13.7a. We

can also found that sm = 1/Ms where Ms is the maximum sensitivity.

We now define the generalized stability margin

σm =





infω
|1 + P (iω)C(iω)|√

(1 + |P (iω)|2)(1 + |C(iω)|2)
if C stabilizes P ,

0 otherwise.

(13.34)

It can be shown that

inf
ω

|1 + P (iω)C(iω)|√
(1 + |P (iω)|2)(1 + |C(iω)|2)

= inf
ω

|P (iω) + 1/C(iω)|√
(1 + |P (iω)|2)(1 + |1/C(iω)|2)

,

and it follows that σm can be interpreted as the shortest chordal dis-

tance between P (iω) and −1/C(iω). Furthermore equations (13.6)
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and (13.33) imply that

σm(P,C) =





1

‖G(P,C)‖∞
if C stabilizes P ,

0 otherwise.

(13.35)

Using the generalized stability margin we have the following fundamen-

tal robustness theorem, which is proved in [248].

Theorem 13.1 (Vinnicombe’s robustness theorem). Consider a pro-

cess with transfer function P . Assume that the controller C is designed

to give the generalized stability margin σm. Then the controller C will

stabilize all processes P1 such that δν(P, P1) < σm(P,C), where δν is

the Vinnicombe metric.

The theorem is a generalization of equation (13.11). The generalized

stability margins can be related to the classical gain and phase margins.

It follows from equation (13.34) that

|1 + P (iω)C(iω)|2 ≥ σ2
m(1 + |P (iω)|2)(1 + |C(iω)|2). (13.36)

If the Nyquist curve of the loop transfer function PC intersects the

negative real axis for some ω we have P (iω)C(iω) = −k for some

0 < k < 1 and equation (13.36) becomes

|1− k|2 ≥ σ2
m(1 + |P (iω)|2 + |C(iω)|2 + k2) ≥ σ2

m(1 + k)2,
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which implies that

k ≤ 1− σm
1 + σm

, gm =
1

k
≥ 1 + σm

1− σm
. (13.37)

If the loop transfer function intersects the unit circle so that the

phase margin is ϕm we have P (iω)C(iω) = ei(π+ϕm) = −eiϕm and equa-

tion (13.36) becomes

|1− eiϕm |2 ≥ σ2
m(1 + |P (iω)|2 + 1/|P (iω)|2 + 1) ≥ 4σ2

m,

where the last inequality follows from the fact that |x| + 1/|x| ≥ 2.

Since |1− eiϕm | = 2 sin(ϕm/2) (think geometrically) it follows that the

above inequality can be written as

4 sin(ϕm/2) ≥ 4σ2
m, ϕm ≥ 2 arcsin σm (13.38)

(compare with equation 10.7). For σm = 1/3, 1/2, 2/3 we have gm ≥ 2,

3, 5 and ϕm ≥ 39◦, 60◦, 84◦.

Disturbance Weighting

H∞ control attempts to find a controller that minimizes the effect of

external signals (χ in Figure 13.16a or ν and w in Figure 13.16b) on

the generalized error ξ, in the sense that the largest singular value

of the matrix ‖G(P,C)‖∞ is as small as possible. The solution of the

problem can be changed by introducing weightsW , which is illustrated

in Figure 13.17a.

Figures 13.17b and 13.17c show how the problem with a weight
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Figure 13.17: Block diagrams that illustrate frequency weighting of

load disturbances. A frequency weight W is introduced on the load

disturbance in (a). Block diagram transformations are used in (b)

to obtain a system in standard form, which is redrawn in (c) using

P = PW and C = W−1C.

W can be transformed into a problem of the same form as in Fig-

ure 13.17a. This allows the weighted problem to be solved using the

same tools as the unweighted problem. In the transformed problem the

process transfer function P is replaced by P = PW and the controller

transfer function is replaced by C = W−1C. The relation between the

transformed signals then becomes

ξ̄ =




µ̄

η̄







1

1 + P C

P

1 + P C

C

1 + P C

P C

1 + P C







v̄

−w




= G(P ,C)χ̄.

Notice that PC = PC, which means that only the off diagonal block

elements in the matrix G(P ,C) are different from those in G(P,C).

Weighting thus does not change the sensitivity and complementary

sensitivity functions. The matrix element corresponding to load dis-

turbances changes from P/(1 + PC) to PW/(1 + PC) and the matrix
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element corresponding to measurement noise changes from C/(1+PC)

to CW−1/(1 + PC).

Having chosen the desired weight W , the solution to the weighted

H∞ problem gives the controller C. Transforming back then gives the

real controller C = WC. Choosing proper weights allows the designer

to obtain a controller that reflects the design specifications. If W is a

scalar greater than one it means that we are increasing the effect of the

load disturbances and reducing the effect of the measurement noise.

The weighting can also be made frequency dependent. For example,

choosing the weight as W = k/s will automatically give a controller

with integral action. Similarly a weighting that emphasizes high fre-

quencies will give a controller with high-frequency roll-off. Frequency

weighting allows the designer to modify the solution to reflect the many

different design specifications, makingH∞ loop shaping a very powerful

design method.

Limits of Robust Design

There is a limit to what can be achieved by robust design. In spite of

the nice properties of feedback, there are situations where the process

variations are so large that it is not possible to find a linear controller

that gives a robust system with good performance. It is then neces-

sary to use other types of controllers. In some cases it is possible to

measure a variable that is well correlated with the process variations.
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Controllers for different parameter values can then be designed and the

corresponding controller can be chosen based on the measured signal.

This type of control design is called gain scheduling and it was dis-

cussed briefly already in Section 8.5. The cruise controller is a typical

example where the measured signal could be gear position and velocity.

Gain scheduling is the common solution for high-performance aircraft

where scheduling is done based on Mach number and dynamic pres-

sure. When using gain scheduling, it is important to make sure that

switches between the controllers do not create undesirable transients

(often referred to as the bumpless transfer problem).

It is often not possible to measure variables related to the parame-

ters, in which case automatic tuning and adaptive control can be used.

In automatic tuning the process dynamics are measured by perturb-

ing the system, and a controller is then designed automatically. Au-

tomatic tuning requires that parameters remain constant, and it has

been widely applied for PID control. It is a reasonable guess that in

the future many controllers will have features for automatic tuning. If

parameters are changing, it is possible to use adaptive methods where

process dynamics are measured online.
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13.5 FURTHER READING

The topic of robust control is a large one, with many articles and

textbooks devoted to the subject. Robustness was a central issue in

classical control as described in the books by Bode [51], James, Nichols,

and Phillips [129], and Horowitz [120]. Quantitative feedback theory

(QFT) [123] can be regarded as an extension of Bode’s work. The

interesting properties of Bode’s ideal loop transfer function were re-

discovered in the late 1990s, creating an interest in fractional transfer

functions [185]. It took a long time before the fundamental question

of when two systems are similar was clearly formulated. The gap met-

ric was introduced by Zames and El-Sakkary [264], and Vidyasagar

introduced the graph metric a few year later [245, 246].

The ν-gap metric, which is the proper notion, is due to Vinni-

combe [247, 248]. Robustness was deemphasized in the euphoria of

the development of design methods based on optimization. The strong

robustness of controllers based on state feedback, shown by Anderson

and Moore [9], contributed to the optimism. The poor robustness of

output feedback was pointed out by Rosenbrock [210], Horowitz [121],

and Doyle [74] and resulted in a renewed interest in robustness. A

major step forward was the development of design methods where ro-

bustness was explicitly taken into account, such as the seminal work of

Zames [263].

Robust control was originally developed using powerful results from
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the theory of complex variables, which gave controllers of high order.

A major breakthrough was made by Doyle, Glover, Khargonekar, and

Francis [76], who showed that the solution to the problem could be ob-

tained using Riccati equations and that a controller of low order could

be found. This paper led to an extensive treatment of H∞ control, in-

cluding books by Francis [91], McFarlane and Glover [181], Doyle, Fran-

cis, and Tannenbaum [75], Green and Limebeer [108], Zhou, Doyle, and

Glover [265], Skogestad and Postlethwaite [223], and Vinnicombe [248].

A major advantage of the theory is that it combines much of the in-

tuition from servomechanism theory with sound numerical algorithms

based on numerical linear algebra and optimization. The results have

been extended to nonlinear systems by treating the design problem as

a game where the disturbances are generated by an adversary, as de-

scribed in the book by Basar and Bernhard [29]. Gain scheduling and

adaptation are discussed in the book by Åström and Wittenmark [23].

EXERCISES

13.1 Consider systems with the transfer functions P1 = 1/(s+ 1) and

P2 = 1/(s+ a). Show that P1 can be changed continuously to P2 with

bounded additive and multiplicative uncertainty if a > 0 but not if

a < 0. Also show that no restriction on a is required for feedback

uncertainty.
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13.2 Consider systems with the transfer functions P1 = (s+1)/(s+1)2

and P2 = (s+a)/(s+1)2. Show that P1 can be changed continuously to

P2 with bounded feedback uncertainty if a > 0 but not if a < 0. Also

show that no restriction on a is required for additive and multiplicative

uncertainties.

13.3 (Difference in sensitivity functions) Let T (P,C) be the comple-

mentary sensitivity function for a system with process P and controller

C. Show that

T (P1, C)− T (P2, C) =
(P1 − P2)C

(1 + P1C)(1 + P2C)
,

and compare with equation (13.6). Derive a similar formula for the

sensitivity function.

13.4 (Vinnicombe metrics) Consider the transfer functions

P1(s) =
k

4s+ 1
, P2(s) =

k

(2s+ 1)2
, P3(s) =

k

(s+ 1)4

Compute the Vinnicombe metric for all combinations of the transfer

functions when k = 1 and k = 2. Discuss the results.

13.5 (Sensitivity of feedback and feedforward) Consider the system in

Figure 13.11 and let Gyr be the transfer function relating the measured

signal y to the reference r. Show that the sensitivities of Gyr with

respect to the feedforward and feedback transfer functions F and C are

given by dGyr/dF = CP/(1 + PC) and dGyr/dC = FP/(1 + PC)2 =
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GyrS/C.

13.6 (Guaranteed stability margin) The inequality given by equation (13.10)

guarantees that the closed loop system is stable for process uncertain-

ties. Let s0m = 1/M0
s be a specified stability margin. Show that the

inequality

|δ(iω)| < 1− s0m|S(iω)|
|T (iω)| =

1− |S(iω)|/M0
s

|T (iω)| , for all ω ≥ 0,

guarantees that the closed loop system has a stability margin greater

than s0m for all perturbations (compare with equation (13.10)).

13.7 (Stability margins) Consider a feedback loop with the process

and the controller having transfer functions P and C. Assume that

the maximum sensitivity is Ms = 2. Show that the phase margin is at

least 30◦ and that the closed loop system will be stable if the gain is

changed by 50%.

13.8 Consider a process with the transfer function P (s) = k/(s(s+1)),

where the gain can vary between 0.1 and 10. A controller that has a

phase margin close to ϕm = 45◦ for the gain variations can be obtained

by finding a controller that gives the loop transfer function L(s) =

1/(s
√
s). Suggest how the transfer function can be implemented by

approximating it by a rational function.

13.9 (Bode’s ideal loop transfer function) Bode’s ideal loop transfer

function is given in Example 13.9. Show that the phase margin is
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ϕm =180◦–90◦n and that the stability margin is sm = sin π(1− n/2).

Make Bode and Nyquist plots of the transfer function for n=5/3.

13.10 (Ideal delay compensator) Consider a process whose dynamics

are a pure time delay with transfer function P (s) = e−s. The ideal

delay compensator is a controller with the transfer function C(s) =

1/(1 − e−s). Show that the sensitivity functions are T (s) = e−s and

S(s) = 1 − e−s and that the closed loop system will be unstable for

arbitrarily small changes in the delay.

13.11 (Sensitivity of two degree-of-freedom controllers to process vari-

ations) Consider the two degree-of-freedom controller shown in Fig-

ure 12.13, which uses feedforward compensation to provide improved

response to reference signals and measured disturbances. Show that

the input/output transfer functions and the corresponding sensitivi-

ties to process variations for the feedforward, feedback, and combined

controllers are given by

Controller Gyr
dGyr

Gyr
Gyv

dGyv

dP1

Feedforward (C = 0) Fm
dP

P
0 −P2

P1

Feedback (Fr, Fv = 0 ) TFm S
dP

P
S P2 −S P2

P1

Feedforward and Feedback Fm S
dP

P
0 S

P2

P1

13.12 (H∞ control) Consider the matrix G(P,C) in equation (13.32).
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Show that it has the singular values

σ1 = 0, σ2 = σ̄ = sup
ω

√
(1 + |P (iω)|2)(1 + |C(iω)|2)
|1 + P (iω)C(iω)| = ‖G(P,C))‖∞.

Also show that σ̄ = 1/δν(P,−1/C), which implies that 1/σ̄ is a gener-

alization of the closest distance of the Nyquist plot to the critical point

and hence also serves as a measure of the stability margin.

13.13 (Disturbance weighting) Consider an H∞ control problem with

the disturbance weight W (P = PW and C = W−1C). Show that

‖G(P ,C)‖∞ ≥ sup
ω

(
|S(iω)|+ |T (iω)|

)
.





Chapter Fourteen

Fundamental Limits

Many people have seen theoretical advantages in the facts that

front-drive rear-steering recumbent bicycles would have simpler

transmissions than rear-drive recumbents and could have the cen-

ter of mass nearer to the front wheel than the rear. The U.S.

Department of Transportation commissioned the construction of

a safe motorcycle with this configuration. It turned out to be safe

in an unexpected way: No one could ride it.

F. R. Whitt and D. G. Wilson, Bicycling Science, 1997 [250]

In this chapter we discuss properties that limit performance and

robustness of control systems. Non-minimum phase dynamics, due to

time delays and right half-plane poles and zeros impose severe limits.

There are also nonlinear behaviors that appear at large and small sig-

nal levels. Large signal limits can be caused by limited rate and power

of actuators, or by constraints required to protect the process. Small

signal limits can be caused by measurement noise, friction, and quan-
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tization in converters. We also discuss consequences of the limits for

loop shaping, and give rules for pole placement design.

14.1 SYSTEM DESIGN CONSIDERATIONS

The initial design of a system can have a significant impact on the

ability to use feedback to provide robustness and performance improve-

ments. It is particularly important to recognize fundamental limits in

the performance of feedback systems early in the design process. For

example, we may expect that a system with time delays cannot admit

fast control because control actions are delayed. Similarly it seems rea-

sonable that unstable systems will require fast controllers, which will

depend on the bandwidth of sensors and actuators. These limits are

caused by properties of the system dynamics and can often be captured

by conditions on the poles and zeros of the process.

The freedom for the control designer depends very much on the

situation. The designer can be faced with a process with given sensors

and actuators and his or her task is to design a suitable controller. The

designer then has limited freedom. In other cases he or she may be able

to choose sensors, and in yet other cases the location and characteristics

of sensors, actuators, and controller are designed simultaneously. The

designer then has significant freedom. The typical case is somewhere

in between these extremes.
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In any case, design engineers should be aware of the fundamental

limits of feedback systems and be able to deal with them as early as

possible in the design process. Awareness of the limits and co-design

of the process and the controller are good ways to avoid potential dif-

ficulties both for system and control designers. The limits alluded to

in the chapter quote are due to process dynamics and limits on ac-

tuation power and actuation rate. The dynamics limitations can be

captured by time delays and poles and zeros in the right half-plane.

It seems intuitively clear that a time delay in the process limits the

achievable response speed. A less obvious case is that a process with

a right half-plane pole/zero pair cannot be controlled robustly if the

pole is close to the zero. Restriction in actuation can be captured by

actuation power and actuation rates. These are all examples of fun-

damental limits whose potential impacts should be taken into account

during initial system design.

Stabilizability and Strong Stabilizability

One of the most fundamental properties of a control system is the abil-

ity to design the dynamics of the (closed loop) system to meet a set of

performance specifications. Often this can be captured by the location

of poles and zeros in the relevant transfer functions, such as the Gang of

Four. In Section 7.2 we found that a system must be reachable in order

to find a state feedback that places closed loop eigenvalues in arbitrary
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positions. The corresponding condition for output feedback is that the

system is be both reachable and observable (Section 8.3). There are

also trade-offs that are captured by the stability margin, bandwidth,

peak values and locations of sensitivity functions, and many other fea-

tures that we have encountered in the previous chapters.

One question of particular interest for system whose natural dy-

namics are unstable is when a system can be stabilized using feedback

and whether it can be stabilized using a stable controller (a condi-

tion known as strong stabilizability). The question of stabilizability is

slightly different than reachability since it may turn out that there are

stable eigenvalues that cannot be modified by feedback, but we can still

modify all unstable eigenvalues. Strong stabilizability is important for

system-level design since we may not want to implement an unstable

controller unless it is necessary to do so. (Note that just having the

controller be unstable does not mean that the closed loop system is

unstable.)

A linear system with state feedback is always stabilizable if it is

reachable. If a linear system is not reachable, it follows from Kalman’s

decomposition theorem (Section 8.3) that the system dynamics can be

written as

dx

dt
=

d

dt




xr

xr




=




Ar 0

∗ Ar







xr

xr




+




Br

0



u, (14.1)

where the states have been decomposed into two parts: the reachable
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states xr and the unreachable states xr. The dynamics in the invariant

subspace represented xr are reachable and it follows that we can always

find a state feedback Kr such that Ar−KrBr has arbitrary eigenvalues.

The system (14.1) is then stabilizable if and only if the eigenvalues of

Ar are in the left half-plane. A system with state feedback is thus

stabilizable if the unreachable part of the system is stable.

Reachability and stabilizability for systems with state feedback can

also be stated as a rank condition. A system with dynamics and control

matrices A, B having n state variables is reachable if and only if

rank


A− sI B


 = n (14.2)

for all values of λ ∈ C. This test is known as the Popov-Belevitch-

Hautus (PBH) test. The system is stabilizable if the condition holds for

all λ in the right half-plane Re s ≥ 0 (Re s > 0 for strict stabilizability).

Stabilizabilty for systems with state feedback is thus a weaker condition

than reachability.

For a linear system with output feedback a controller can be con-

structed using an estimator and linear feedback on the state estimate,

and the resulting controller has the input/output dynamics given in

equation (8.16), repeated here:

dx̂

dt
= Ax̂+ Bu+ L(y − Cx̂), u = −Kx̂. (14.3)

The controller poles are the eigenvalues of the matrix A− BK − LC,
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and the controller zeros are the values of s where the matrix



A−BK − LC − sI L

K 0




(14.4)

loses rank. If a system is stabilizable and observable, it is always pos-

sible to construct a stabilizing controller. However, the question about

whether this controller is stable (corresponding to strong stabilizabil-

ity) is more subtle. Strong stabilizability can be expressed as conditions

on the transfer function, as described in the following theorem.

Theorem 14.1 (Strong stabilizability). Consider a linear system with

the rational transfer function P (s) = n(s)/d(s), where the polynomials

n(s) and d(s) do not have a factor in common. The system can be

strongly stabilized if and only if all d(zk) have the same sign for all zk

such that n(zk) = 0.

This theorem is proven in Vidyasagar [246, Theorem 3.1 and Corol-

lary 3.3]) (see also Youla [260]). For a system with a single pole at p

and zero at z, this result implies that a process with p > z requires a

controller with a pole in the right half-plane, hence an unstable con-

troller. This situation is illustrated in Figure 14.1. An example is given

in Exercise 14.1. The root locus method gives significant insight into

these cases.

Another characterization of strong stabilizability is given in Doyle,

Frances, and Tannenbaum [75, Theorem 3, Chapter 5]:
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Re

Im

(a) Strongly stabilizable

Re

Im

(b) Not strongly stabilizable

Figure 14.1: Pole zero diagrams for strongly stabilizable and non-

strongly stabilizable systems. The system in (a) can be stabilized with

a stable controller, but stabilization of the system in (b) requires a

controller with a pole in the right half-plane.

Theorem 14.2. A linear system P is strongly stabilizable if and only

if it has an even number of real poles between every pair of real zeros

in Re s ≥ 0.

These two results show that strong stabilizability depends on the

patterns of poles and zeros, which are often determined in the early

stages of system design. Note that this does not imply that unstable

systems should always be avoided, because instability may actually

have advantages. A typical examples is when high maneuverability is

desired, such as in high-performance aircraft.

Right Half-Plane Zeros and Time Delays

In addition to questions related to stabilizability, we will see through-

out this chapter that there can significant limitations on closed loop

performance when a system has zeros in the right half-plane or time de-
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lays in the loop transfer function. A natural question to ask is whether

these features can be avoided at the time of system design.

The poles of a system depend on the intrinsic dynamics of the sys-

tem. They represent the modes of the system and they are given by

the eigenvalues of the dynamics matrix A of the linearized model. Sen-

sors and actuators have no effect on the poles: the only way to change

poles is by feedback or by redesign of the process. However, the zeros

of a system depend on how the sensors and actuators are connected

to the process. Zeros can thus be changed by moving or adding sen-

sors and actuators, which is often simpler than redesigning the process

dynamics.

The following example illustrates how the location of zeros can be

determine through placement of sensors.

Example 14.1 Vehicle steering

Consider the vehicle steering system introduced in Example 3.11. The

linearized (but non-normalized) model of the dynamics of the system

relating lateral velocity to steering angle was given in Example 10.11

and has the form

P (s) =
av0s+ v20

bs
,

where v0 is the velocity of the vehicle, a is the offset to the reference

point for the vehicle position, and b is the wheelbase. We observed that

the system has a right half-plane zero when the velocity of the vehicle
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is negative and this can lead to limits in the closed loop performance

of the system, such as those described in Example 10.11.

The existence of the right half-plane zero can be removed if we

choose to measure the location of the vehicle by the position of the

center of the rear wheels instead of the center of mass. This gives

a = 0 and our dynamics become

G(s) =
v20
bs
,

which no longer has a right half-plane zero. Choosing this output can

simplify the design constraints and is easily implemented by calibrating

the position sensor for the vehicle so that it returns the position of the

center of the rear wheels.

We note that this choice of “sensor” is subject to calibration errors

and this can lead to a zero of the process transfer function at v0/ǫ, where

ǫ represents the calibration error and the sign of the zero depends on

the sign of the calibration error and the direction of travel. We will see

later in the chapter that this corresponds that what we call a “fast”

zero and its impact on fundamental limits is relatively minor. It can

thus it can be advantageous to choose the system output to be at a

different point in order to simplify the feedback controller design. ∇

Another source of limitations is due to time delays, which can add

significant phase lag to the loop transfer function, making it difficult

to maintain sufficient phase margin. Time delays may appear in the
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process, in communication channels, and in computations. Time delays

have effects similar to right half-plane zeros. One way to see this is to

consider the Padé approximation for a time delay, which provides a

unity gain, rational transfer function whose phase approximates that

of a time delay. The first- and second-order Padé approximations are

given by

G1(s) =
1− sτ/2
1 + sτ/2

, G(s) =
1− τs/2 + (τs)2/12

1 + τs/2 + (τs)2/12
.

The first-order Padé approximation has a right half-plane zero at 2/τ

and the second-order Padé approximation has a complex conjugate pair

of right half-plane zeros at s = (3± i
√
3)/τ .

Unlike zeros, time delays cannot generally be avoided by choice

of sensor or actuator location, and hence they should be avoided by

proper design of the system’s computing and communications archi-

tecture. Minimizing time delays whenever possible is usually a good

design guideline for feedback control systems.

14.2 BODE’S INTEGRAL FORMULA

One of the most important limits in feedback control design was ob-

tained by Bode, who showed that it was not possible to uniformly

improve the performance of certain closed loop performance charac-

teristics. Bode’s result makes use of the the sensitivity function S in-

troduced in Section 12.1, which gives an overview of performance and
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robustness of a closed loop system. Specifically, it describes how dis-

turbances are attenuated by feedback and allows comparison of distur-

bance attenuation of open and closed loop systems. We recall that dis-

turbances with frequency ω are attenuated by feedback if |S(iω)| < 1,

and disturbances with frequencies such that |S(iω)| > 1 are amplified.

The maximum sensitivity Ms = maxω |S(iω)| gives the largest ampli-

fication and is also a robustness measure, since 1/Ms is equal to the

stability margin sm (see Figure 10.12).

A key observation is that the sensitivity function cannot be made

small over a wide frequency range. There is an invariant (conserved

quantity) called Bode’s integral formula that implies that reducing the

sensitivity at one frequency increases it at another, and the situation

is worse if the process has right half-plane poles. Control design is

thus always a compromise. The following theorem captures limits of

performance under feedback.

Theorem 14.3 (Bode’s integral formula). Let S(s) be the sensitivity

function of an internally stable closed loop system with loop transfer

function L(s). Assume that the loop transfer function L(s) is such that

sL(s) goes to zero as s → ∞. Then the sensitivity function has the

property

∫ ∞

0

log |S(iω)| dω =

∫ ∞

0

log
1

|1 + L(iω)| dω = π
∑

pk. (14.5)

where the sum is over the right half-plane poles pk of L(s).
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Equation (14.5) implies that if we design a controller that decreases

the effect of disturbances for some frequencies it will increase the effect

for other frequencies because the integral of log |S(iω)| remains con-

stant. This property is sometimes referred to as the waterbed effect. It

also follows that systems with open loop poles in the right half-plane

have larger overall sensitivity than stable systems.

Equation (14.5) can be regarded as a conservation law: if the loop

transfer function has no poles in the right half-plane, the equation

simplifies to
∫ ∞

0

log |S(iω)|dω = 0.

This formula can be given a nice geometric interpretation as illustrated

in Figure 14.2, which shows log |S(iω)| as a function of ω. The area

over the horizontal axis must be equal to the area under the axis when

the frequency is plotted on a linear scale. Thus if we wish to make the

sensitivity smaller up to some frequency ωsc, we must balance this by

increased sensitivity above ωsc. Control system design can be viewed

as trading the disturbance attenuation at some frequencies for distur-

bance amplification at other frequencies. Notice that the assumption

lims→∞ sL(s) = 0 is essential. Exercise 14.2 shows that without this as-

sumption the sensitivity can be made arbitrarily small. A modification

that covers lims→∞ sL(s) = k is given in Exercise 14.3.

An equation similar to equation (14.5) holds for the complementary
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Figure 14.2: Interpretation of the waterbed effect. The function

log |S(iω)| is plotted versus ω using a linear scale in (a). According

to Bode’s integral formula (14.5), the area of log |S(iω)| above zero

must be equal to the area below zero. Gunter Stein’s interpretation of

design as a trade-off of sensitivities at different frequencies is shown

in (b) (from [229]).

sensitivity function:

∫ ∞

0

log |T (iω)|
ω2

dω = π
∑ 1

zi
, T (s) =

L(s)

1 + L(s)
, (14.6)

where the summation is over all right half-plane zeros of the loop trans-

fer function L(s) = P (s)C(s) (Exercise 14.4). It follows from equa-

tion (14.6) that slow right half-plane zeros are worse than fast ones,

just as equation (14.5) implies that fast right half-plane poles are worse

than slow ones.

Example 14.2 The X-29 aircraft

As an illustration of Bode’s integral formula, we present an analysis
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(a) X-29 aircraft

1

Ms

ω1 ωa

|S
(i
ω
)|

Frequency ω [rad/s]

(b) Sensitivity analysis

Figure 14.3: X-29 flight control system. The aircraft makes use of

forward swept wings and a set of canards on the fuselage to achieve

high maneuverability (a). The desired sensitivity for the closed loop

system is shown in (b). We seek to use our control authority to shape

the sensitivity curve so that we have low sensitivity (good perfor-

mance) up to frequency ω1 by creating higher sensitivity up to our

actuator bandwidth ωa.

of the control system for the X-29 aircraft (see Figure 14.3a), which

has an unusual configuration of aerodynamic surfaces that is designed

to enhance its maneuverability. This analysis was originally carried

out by Gunter Stein in his inaugural IEEE Bode lecture “Respect the

Unstable” [229].

To analyze the system, we make use of a small set of parameters

that describe the key properties of the system. A typical robustness

requirement in aerospace systems is that the phase margins should

be at least ϕm = 45◦. The X-29 has longitudinal dynamics that are

similar to inverted pendulum dynamics (Exercise 9.3). It has a right

half-plane pole at approximately p = 6 rad/s and a right half-plane
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zero at z = 26 rad/s. The actuators that stabilize the pitch have a

bandwidth of ωa = 40 rad/s and the desired bandwidth of the pitch

control loop is ω1 = 3 rad/s.

To evaluate the achievable performance, we search for a control law

such that the sensitivity function is small up to the desired bandwidth

and not greater than Ms beyond that frequency. Because of Bode’s

integral formula, we know that Ms must be greater than 1 at high

frequencies to balance the small sensitivity at low frequency. We thus

ask if we can find a controller that has the shape shown in Figure 14.3b

with the smallest possible value of Ms. Note that the sensitivity above

the frequency ωa is 1 since we have no actuator authority above those

frequencies. Thus, we desire to design a closed loop system that has

low sensitivity at frequencies below ω1 and sensitivity that is not too

large between ω1 and ωa.

From Bode’s integral formula, we know that whatever controller we

choose, equation (14.5) must hold. We will assume that the sensitivity

function is given by

|S(iω)| =





ω
ω1
Ms if ω < ω1,

Ms if ω1 ≤ ω < ωa,

1 if ωa ≤ ω <∞,
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corresponding to Figure 14.3b. Bode’s integral becomes

∫ ∞

0

log |S(iω)| dω =

∫ ωa

0

log |S(iω)| dω

=

∫ ω1

0

log
ωMs

ω1

dω + (ωa − ω1) logMs = πp.

Integration by parts gives, after some calculation, −ω1+ωa logMs = πp

or

Ms = e(πp+ω1)/ωa .

This formula tells us what the achievable value of Ms will be for the

given control specifications. In particular, using p = 6 rad/s, ω1 =

3 rad/s and ωa = 40 rad/s, we find that Ms = 1.75, which means that

in the range of frequencies between ω1 and ωa, disturbances at the input

to the process dynamics (such as wind) will be amplified by a factor of

1.75 in terms of their effect on the aircraft. WithMs = 1.75 we can also

obtain an estimate of the phase margin as ϕm ≥ 2 arcsin 1/(2Ms) = 33◦

(equation (10.7)), which indicates that the requirement ϕm = 45◦ may

not be achievable. ∇

Derivation of Bode’s Integral Formula
�

Bode’s integral formula (Theorem 14.3) can be derived by contour in-

tegration. We assume that the loop transfer function has distinct poles

at s = pk in the right half-plane and that L(s) goes to zero faster than

1/s for large values of s. Consider the integral of the logarithm of the

sensitivity function S(s) = 1/(1 + L(s)) along the Nyquist contour Γ
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(a) Closed contour

X+ pk

θ

Meiθγ

X−

(b) Open loop pole

Figure 14.4: Contour used to prove Bode’s theorem. For each right

half-plane pole pk of the loop transfer function L(s), which is also a

singularity of logS(s), we create a path from the imaginary axis that

encircles the pole. To avoid clutter only one of the paths is shown.

shown in Figure 14.4. The contour encloses the right half-plane except

for the points s = pk where the loop transfer function L(s) = P (s)C(s)

has poles and the sensitivity function S(s) therefore has singularities

(only one pk is shown in the figure). The direction of the contour is

counterclockwise. The integral of the logarithm of the sensitivity func-

tion around the contour Γ is given by

I =

∫

Γ

log(S(s)) ds = I1 + I2 + I3 = 0.

The integral I is zero because the function log S(s) is analytic with no

poles or zeros inside the contour. The term I1 is the integral along the

imaginary axis, the term I2 is the integral along a large semicircle to

the right with a radius R that we will make infinitely large. The term

I3 is the integral along two parallel horizontal lines and a small circle
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enclosing pk as shown in Figure 14.4.

We now compute each of the terms in the contour integration. We

have

I1 = −i
∫ R

−R
log(S(iω))dω = −2i

∫ R

0

log(|S(iω)|)dω

because the real part of log S(iω) is an even function and the imaginary

part is an odd function. Furthermore we have

I2 =

∫

⊃
log(S(s)) ds = −

∫

⊃
log(1 + L(s)) ds ≈ −

∫

⊃
L(s) ds,

where ⊃ represents the semicircular portion of Γ at radius R. Since

L(s) goes to zero faster than 1/s for large s, the integral goes to zero

when the radius of the semicircle goes to infinity.

Next we consider the integral I3. We split the contour into three

parts: X+, γ, and X−, where X+ and X− are horizontal lines from the

imaginary axis to pk, and γ is a small circle with radius r around the

point pk (see Figure 14.4b). We can write the contour integral as

I3 =

∫

X+

log S(s) ds+

∫

γ

log S(s) ds+

∫

X−
log S(s) ds

The point pk is a pole of L(s) and hence a zero of S(s), which causes

log S(s) to become singular at pk. The contour γ for the middle inte-

gral is a small circle with radius r around pk. The magnitude of the

integrand is of the order log r and the length of the path is 2πr, and

it can be shown that the magnitude of the integral goes to zero as the

radius r goes to zero. At the same time, S(s) ≈ k(s − pk) near pk, so
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the argument of log S(s) decreases by 2π as the contour encircles pk (in

the clockwise direction). On the contours X+ and X− we thus have

|SX+
| = |SX−

|, arg SX−
= arg SX+

− 2π.

Hence

log(SX+
)−log(SX−

) = log(|SX+
|)+i arg(SX+

)−log(|SX−
|)−i arg(SX−

) = 2πi.

Using the fact that the path X+ is traversed in the opposite direction

from X−, the first and third terms can be combined to give

∫

X+

log S(s) ds+

∫

X−

log S(s) ds =

∫

X+

(
log SX+

(s)− log SX−
(s)
)
ds.

The length of the path from the imaginary axis to pk is Re pk and we

get
∫

X+

log S(s) ds+

∫

X−

log S(s) ds = 2πi ·Re pk.

Repeating the argument for all pk in the right half-plane, and letting

the small circles go to zero gives

I1 + I2 + I3 = −2i
∫ ∞

0

log |S(iω)| dω + i
∑

k

2πRe pk = 0.

Since the pk’s appear as complex conjugate pairs, we have
∑

k Re pk =

∑
k pk, which gives Bode’s formula (14.5).
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14.3 GAIN CROSSOVER FREQUENCY INEQUALITY

We will now investigate the effect of non-minimum phase process dy-

namics for loop shaping design. The key idea of loop shaping design

is to shape the loop transfer function L(iω) = P (iω)C(iω) so that

the closed loop system has good performance and robustness. Good

performance is obtained by making |L(iω)| large for frequencies where

we want disturbance attenuation and small for high frequencies where

measurement noise dominates. Recall from Figure 12.8 that good ro-

bustness is obtained by shaping the loop transfer function around the

gain crossover frequency ωgc. The performance limits show up very

clearly in the design.

To explore the limits due to right half-plane poles and zeros, we

factor the process transfer function as

P (s) = Pmp(s)Pap(s), (14.7)

where Pmp is the minimum phase factor and Pap is the non-minimum

phase factor. We do the factorization so that Pmp has all its poles and

zeros in the open left half-plane. The factorization is normalized so

that |Pap(iω)| = 1, and the sign is chosen so that Pap has negative

phase. The transfer function Pap is called an all-pass system because
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it has unit gain for all frequencies. For example

P (s) =
s− 2

(s+ 1)(s− 1)
=

s+ 2

(s+ 1)2
·
(s− 2)(s+ 1)

(s+ 2)(s− 1)
= Pmp(s) ·Pap(s).

(14.8)

Since |Pap(iω)| = 1, the transfer functions P (s) and Pmp(s) have the

same gain curves but the transfer function P (s) has larger phase lag

than Pmp(s).

Consider the closed loop system obtained with a controller with the

transfer function C(s). Requiring that the phase margin be ϕm, we get

the inequality

argL(iωgc) = argPap(iωgc) + argPmp(iωgc) + argC(iωgc) ≥ −π + ϕm,

(14.9)

where ωgc is the gain crossover frequency. Let ngc be the slope of

the gain curve of the loop transfer function L(s) = P (s)C(s) at the

crossover frequency. Since |Pap(iω)| = 1 it follows that

ngc =
d log |L(iω)|
d logω

∣∣∣∣∣
ω=ωgc

=
d log |Pmp(iω)C(iω)|

d logω

∣∣∣∣∣
ω=ωgc

.

Assuming that the controller C(s) has neither poles nor zeros in the

right half-plane, it then follows from Bode’s relations (equation (10.9)

on page 672) that

argPmp(iω) + argC(iω) ≈ ngc
π

2
.

Combining this with equation (14.9) gives the following inequality for

the allowable phase lag of the all-pass part at the gain crossover fre-
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Figure 14.5: Illustration of the gain crossover frequency inequality.

(a) Gain curve of the transfer function, with the slope of the curve

at the gain crossover frequency ngc marked. (b) Phase of the transfer

function (solid) and its minimum phase component (dashed). The

phase margin ϕm, the phase lags ϕmp and ϕap of the minimum phase

component, and the all-pass component are shown in the figure.

quency, which we state as a theorem.

Theorem 14.4 (Gain crossover frequency inequality). Let P (s) =

Pmp(s)Pap(s), where Pap is an all-pass transfer function containing the

non-minimum phase portion of P (s). If C(s) is a stabilizing com-

pensator for the closed loop system with no right half-plane poles and

zeros and with phase margin ϕm, gain crossover frequency ωgc, and

gain crossover slope ngc, then the allowable phase lag for the all-pass

transfer function must satisfy the inequality

ϕap := − argPap(iωgc) ≤ π − ϕm + ngc

π

2
:= ϕap. (14.10)

The gain crossover frequency inequality is illustrated in Figure 14.5.

The condition (14.10) requires that the gain crossover frequency must
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be chosen so that the phase lag of the all-pass factor is not too large.

For systems with high robustness requirements we may choose a phase

margin of 60◦ (ϕm = π/3). To have a reasonable flexibility in choos-

ing the gain crossover frequency we choose ngc = −1, which gives an

admissible phase lag ϕap = π/6 = 0.52 rad (30◦) for the all-pass com-

ponent. For systems where we can accept a lower robustness we might

choose a phase margin of 45◦ (ϕm = π/4) and the slope ngc = −1/2,

which gives an admissible phase lag ϕap = π/2 = 1.57 rad (90◦).

The gain crossover frequency inequality (14.10) shows that non-

minimum phase components impose severe restrictions on possible crossover

frequencies and that there are systems that cannot be controlled with

sufficient stability margins. We illustrate the limits in a number of

commonly encountered situations.

Example 14.3 Crossover frequency limits for a process with a

zero in the right half-plane

The non-minimum phase part of the process transfer function for a

system with a right half-plane zero is

Pap(s) =
z − s
z + s

,

where z > 0. Notice that we have z − s in the numerator instead of

s−z to satisfy the condition that Pap should have negative phase. The
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phase lag of the all-pass factor is

ϕap = − argPap(iω) = 2 arctan
ω

z
.

Let the admissible phase lag of the all-pass factor be ϕap. The inequal-

ity (14.10) then gives the following bound on the crossover frequency:

ωgc ≤ z tan (ϕap/2). (14.11)

With ϕap = π/3 we get ωgc < 0.6 z. We can thus conclude that a right

half-plane zero limits the achievable gain crossover frequency ωgc, and

slow right half-plane zeros (z small) give lower crossover frequency than

fast right half-plane zeros. ∇

Processes with zeros in the right half-plane are not uncommon, and

are they are inherent consequences of the physics, as in Exercise 14.5,

which models hydroelectric power generation. Another example is the

shrink and swell phenomenon in drum level control discussed in Exam-

ple 3.14. In that example the zero in the right half-plane is associated

with the inverse response characteristic, where the step response ini-

tially moves in the wrong direction. The effect also appears in product

development projects where the cost initially increases during the de-

velopment phase and then hopefully decreases to give profit when the

product appears on the market.

We next consider the case of right half-plane poles.

Example 14.4 Crossover frequency limits for a process with a
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pole in the right half-plane

The non-minimum phase part of the transfer function for a system with

a pole in the right half-plane is

Pap(s) =
s+ p

s− p,

where p > 0. The sign of Pap is dictated by the condition that it should

have negative phase. The phase lag of the non-minimum phase part is

ϕap = − argPap(iω) = 2 arctan
p

ω
,

and the inequality (14.10) gives the following bound on the crossover

frequency:

ωgc ≥
p

tan(ϕap/2)
, (14.12)

where ϕap is the maximum admissible phase lag of the all-pass factor

Pap. Right half-plane poles thus require that the closed loop system

has a sufficiently high gain crossover frequency. With ϕap = π/3 we

get ωgc > 1.7p. Fast right half-plane poles (p large) therefore require

a larger gain crossover frequency than slower right half-plane poles.

Robust control of unstable systems thus requires that the bandwidths

of the process the actuators and the sensors are sufficiently high. ∇

Example 14.5 Phase lag for processes with a right half-plane

pole/zero pair

Consider a system with a right half-plane zero z and a right half-plane

pole p. The transfer function of the process and its all-pass factor are
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Figure 14.6: Illustration of the gain crossover frequency inequality

for systems with a zero and a pole in the right half-plane (a) and

systems with a time delay and a right half-plane pole (b). The figures

show the phase lag ϕap of the all-pass factor Pap as a function of

frequency for the systems using equations (14.14) and (14.15). All

systems have a right half-plane pole at p = 1. The systems in (a)

have zeros at z = 2, 5, 20, and 100, and the systems in (b) have time

delays τ = 0.02, 0.1, 0.5, and 1.

given by

P (s) =
a− z
s− p , Pap(s) =

(z − s)(s+ p)

(z + s)(s− p) . (14.13)

The all-pass factor has the phase lag

ϕap = − argPap(iω) = 2 arctan(ω/z) + 2 arctan(p/ω), (14.14)

which is plotted in Figure 14.6a for z/p = 1, 2, 5, 10, 20, 100.

We will illustrate with some numerical values. If we require that

the phase lag ϕap of the non-minimum phase factor be less than 90◦, we



FUNDAMENTAL LIMITS 901

must require that the ratio z/p be larger than 6 (from Figure 14.6). The

pole and the zero must thus be sufficiently separated (Exercise 14.6).

The values of the gain crossover frequency ωgc are also quite restricted.

Notice that we cannot apply Theorem 14.4 if p > z because a

stabilizing controller must then have a pole in the right half-plane (see

Figure 14.1). ∇

Time delays also impose limits similar to those given by zeros in the

right half-plane. For a process with time delay, Pap(s) = eτs. Using the

gain crossover frequency inequality (14.10) we get ωgcτ ≤ ϕap, where τ

is the time delay. Time delays are thus similar to right half-plane zeros

because they require that the bandwidth and the crossover frequencies

be sufficiently small.

Example 14.6 Phase lag for processes with a right half-plane

pole and time delay

Consider a system with all-pass factor and phase lag given by

Pap(s) =
s+ p

s− pe
−τs, ϕap = − argPpτ (iω) = ωτ + 2arctan(p/ω).

(14.15)

A plot of the phase lag of the all-pass factor is given in Figure 14.6b.

The figure shows that the behavior is similar to a system with a

right half-plane pole/zero pair. The phase lag ϕap has a minimum

√
τ(2− pτ) + 2 arctan

√
pτ/(2− pτ) for ωτ =

√
pτ(2− pτ) (Exer-

cise 14.7). It follows from equation (14.9) that a system with a right
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half-plane pole p and a time delay τ cannot be stabilized by a controller

with no poles and zeros in the right half-plane if pτ ≥ 2. ∇

Systems with a pole/zero pair in the right half-plane are not com-

mon. In Example 14.2 we encountered the X-29 aircraft (Exercise 14.8).

The next example is another illustration.

Example 14.7 Balance system

As an example of a system with both right half-plane poles and zeros,

consider the balance system with zero damping introduced in Exam-

ple 3.2. The transfer functions from force F to output angle θ and

position q were derived in Example 9.11:

HθF (s) =
ml

(MtJt −m2l2)s2 −mglMt

,

HqF (s) =
Jts

2 −mgl
s2
(
(MtJt −m2l2)s2 −mglMt

) .

Assume that we want to stabilize the pendulum by using the cart po-

sition as the measured signal. The transfer functionHqF from the input

force F to the cart position q has poles {0, 0,±
√
mglMt/(MtJt −m2l2)}

and zeros {±
√
mgl/Jt}. Using the parameters in Example 7.7, the

right half-plane pole is at p = 2.68 and the zero is at z = 2.09. With

the best choice of the gain crossover frequency, it follows from equa-

tion (14.14) that the phase lag of the all-pass component Pap is 166◦,

which implies that it impossible to obtain a reasonable phase margin.

The pole/zero ratio is 1.28, which is far from the value 6 required to

control the system robustly. Using Figure 14.6, we see that the amount
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of achievable phase margin for the system is very small if we desire a

bandwidth in the range of 2–4 rad/s.

The right half-plane zero of the system can be eliminated by chang-

ing the output of the system. For example, if we choose the output

to correspond to a position at a distance r along the pendulum, we

have y = q − r sin θ and the transfer function for the linearized output

becomes

HyF (s) = HqF (s)− rHθF (s) =
(Jt −mlr)s2 −mgl2

s2
(
(MtJt −m2l2)s2 −mglMt

) .

If we choose r sufficiently large, then mlr − Jt > 0 and we eliminate

the right half-plane zero, obtaining instead two pure imaginary zeros.

The gain crossover frequency is determined by the right half-plane pole

p =
√
mglMt/(MtJt −m2l2) (Example 14.4). If our admissible phase

lag for the non-minimum phase part is ϕl = 45◦, then our gain crossover

must satisfy

ωgc ≥
p

tan(ϕl/2)
= 6.48 rad/s.

If the actuators have sufficiently high bandwidth, e.g., a factor of 10

above ωgc or roughly 10 Hz, then we can provide robust tracking up to

this frequency. ∇
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14.4 THE MAXIMUM MODULUS PRINCIPLE

Significant insight into the fundamental limits imposed by poles and

zeros in the right half-plane and time delays can be obtained with

simple calculations by using the maximum modulus principle.

Theorem 14.5 (Maximummodulus principle). Let Ω ⊂ C be a nonempty,

bounded, open and connected set in the complex plane and let G : Ω→

C be continuous on the closure of Ω and analytic on Ω. Then

sup
s∈Ω
|G(s)| = sup

s∈∂Ω
|G(s)|

This theorem can be used to give bounds on transfer functions, such

as the sensitivity functions, by using the Nyquist contour as the bound-

ary of the open right half-plane. We state this result as a corollary.

Corollary. Let G(s) be a bounded analytic transfer function on the

closed, right half-plane. Then |G(s)| assumes its largest value on the

imaginary axis:

max
ω∈R
|G(iω)| ≥ max

Re s≥0
|G(s)|.

To see how this result can be applied, consider the transfer functions

S(s) =
1

1 + P (s)C(s)
, T (s) =

P (s)C(s)

1 + P (s)C(s)
,

and note that S(s) + T (s) = 1. The zeros of the sensitivity function

S(s) are the poles of the process and the controller, and the zeros of

the complementary sensitivity function are the zeros of the process and
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Figure 14.7: Gain curves for the transfer functions (a) Sr(s) =

Ms s/(s + a) and (b) Tr(s) = Mt b/(s + b), which give requirements

for sensitivity and complementary sensitivity. The dashed curves rep-

resent the pieceswise linear approximations to the first-order sensitiv-

ity requirements. The plots are drawn for Ms = Mt = 2, the gain

crossover frequencies are denoted by ◦, and the bandwidth defined by

T (ωb) = 1/
√
2 by +.

the controller. We find from the above equation that S(z) = 1 for zeros

z of the process or the controller. Similarly we have T (p) = 1 for poles

p of the poles of the process or the controller.

We can use the maximum modulus principle to obtain requirements

on disturbance attenuation and robustness, formulated as conditions

on the sensitivity functions. We will use the following nominal transfer

functions to capture our desired sensitivity requirements:

Sr(s) =
Ms s

s+ a
, Tr(s) =

Mt b

s+ b
. (14.16)

Bode plots of the gain curves of the transfer functions Sr(s) and Tr(s)

are shown in Figure 14.7a. We will consider requirements defined by
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|S(iω)| ≤ |Sr(iω)|, |T (iω)| ≤ |Tr(iω)|, (14.17)

which guarantee that the maximum sensitivities are less thanMs orMt.

The sensitivity crossover frequencies of the transfer functions (14.16)

and the bandwidth are given by

ωsc =
a√

M2
s − 1

, ωtc = b
√
M2

t − 1, ωb = b
√
2M2

t − 1.

(14.18)

We will now use the maximum modulus principle to investigate the

effects of poles and zeros in the right half-plane, and to establish limits

on achievable performance.

Example 14.8 Sensitivity limits for a system with a zero in

the right half-plane

Assume that the process P (s) has a zero s = z in the right half-plane

and no other poles and zeros in the right half-plane. The sensitiv-

ity function is analytic in the right half-plane for all controllers that

stabilize the system, and equation (14.17) implies that

max
ω

∣∣∣ S(iω)
Sr(iω)

∣∣∣ ≤ 1. (14.19)

The function S(s)/Sr(s) is analytic in the right half-plane and on the

imaginary axis. If the process has a zero s = z in the right half-plane

the sensitivity function has the property that S(z) = 1. Applying the
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maximum modulus principle to the function S(s)/Sr(s) then gives

max
ω

∣∣∣ S(iω)
Sr(iω)

∣∣∣ ≥
∣∣∣ S(z)
Sr(z)

∣∣∣ = S(z)
z + a

Msz
=
z + a

Msz
.

This inequality is compatible with equation (14.19) only if z+a ≤Msz,

hence

a ≤ z (Ms − 1), ωsc ≤ z

√
Ms − 1

Ms + 1
, (14.20)

where the bound on ωsc follows after some algebra. We see that a right

half-plane zero z limits the sensitivity crossover frequency ωsc of the

closed loop system and thus also the range of frequencies over which

the sensitivity can be kept small (compare with Example 14.3). ∇

If we make the calculations for a system with complex zeros s =

zre ± i zim, we obtain the following conditions (Exercise 14.9):

a ≤
√
M2

s z
2
re + (M2

s − 1)z2im − zre,

ωsc =
a√

M2
s − 1

≤
√
M2

s z
2
re + (M2

s − 1)z2im − zre√
M2

s − 1
,

(14.21)

which are equal to equation (14.20) for zim = 0. Robust control of a

process with right half-plane zeros therefore requires that the sensitivity

crossover frequency ωsc is not too high (equations (14.20) and (14.21)).

If there are several right half-plane zeros the limit is given by the small-

est bound.

A similar analysis based the complementary sensitivity function

gives the consequences of right half-plane poles (see Exercise 14.10).

We conclude that robust control in the presence of right half-plane
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poles requires that the complementary sensitivity crossover frequency

ωtc and the bandwidth ωb are sufficiently large.

Next we will consider the effect of both poles and zeros in the right half-

plane. Since robust control of a process with a right half-plane zero z

requires that the sensitivity crossover frequency (or the bandwidth) is

sufficiently low and a right half-plane pole requires that the sensitivity

crossover frequency is sufficiently high, we may expect that systems

with a right half-plane pole/zero pair cannot be controlled robustly if

the poles and zeros are close and we may expect that a system cannot

be controlled at all if p > z. Indeed, it can be shown (Exercise 12.16)

that a process cannot be stabilized by a stable controller if p > z. We

will analyze the situation in the next example.

Example 14.9 Sensitivity limits for processes with poles and

zeros in the right half-plane

Consider a process P (s) with right half-plane zeros zk and right half-

plane poles pk. Introduce the polynomial n(s) with zeros s = zk and

the polynomial d(s) with zeros s = pk. The process transfer function

can then be written as

P (s) =
n(s)

d(s)
P̃ (s), (14.22)

where P̃ (s) has no poles or zeros in the right half-plane. Furthermore

we consider controllers that stabilize the process. The sensitivity func-
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tion

S(s) =
1

1 + P (s)C(s)
=

d(s)

d(s) + n(s)P̃ (s)C(s)
,

has the zeros s = pk in the right half-plane, and we have S(zk) = 1 for

all zeros zk of the polynomial n(s). Introduce the weighting function

Wp(s) =
d(−s)
d(s)

.

The poles and zeros of this function are symmetric with respect to

the imaginary axis, which implies that |Wp(iω)| = 1. The function

Wp(s)S(s) is analytic in the right half-plane, since the polynomial d(s)

is canceled and d(−s) has all its roots in the left half-plane. Since

S(zk) = 1, it follows from the maximum modulus principle that

Ms = max
ω
|S(iω)| = max

ω
|Wp(iω)S(iω)| ≥ |Wp(zk)S(zk)| =

∣∣∣d(−zk)
d(zk)

∣∣∣,

(14.23)

which implies

Ms ≥ max
k

∣∣∣d(−zk)
d(zk)

∣∣∣. (14.24)

For a system with a pole/zero pair in the right half-plane we have

n(s) = s − z and d(s) = s − p. Since there is only one zero the above

equation becomes

Ms ≥
∣∣∣z + p

z − p
∣∣∣, (14.25)

which implies that

z

p
≥ Ms + 1

Ms − 1
if z > p or

z

p
≤ Ms − 1

Ms + 1
if z > p. (14.26)
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∇

To find controllers with a maximum sensitivity less than Ms for a

process with a right half-plane pole/zero pair, it follows from equa-

tion (14.26) that the pole and zero must be sufficiently separated. The

zero/pole ratio must either be smaller than (Ms−1)/(Ms+1) or larger

than (Ms + 1)/(Ms − 1). For Ms = 2 the critical ratios are 0.5 and 2

and for Ms = 1.4 they are 1/6 and 6.

A calculation similar to the one in Example 14.9 for the comple-

mentary sensitivity gives (Exercise 14.11)

Mt ≥ max
k

∣∣∣n(−pk)
n(pk)

∣∣∣. (14.27)

In the special case of a single pole/zero pair the condition becomes

Mt ≥
∣∣∣z + p

z − p
∣∣∣ =⇒ z

p
≥ Mt + 1

Mt − 1
or

z

p
≤ Mt − 1

Mt + 1
. (14.28)

We illustrate the results with an example.

Example 14.10 Bicycle with rear-wheel steering

Figure 14.8 shows two bicycles with rear wheel steering. Bicycle dy-

namics were discussed in Section 4.2, where the following model was

obtained:

J
d2ϕ

dt2
− Dv0

b

dδ

dt
= mgh sinϕ+

mv20h

b
δ.

The wheelbase is b, the mass of the bicycle and the driver is m, and

the distance from the center of mass to ground is h. Furthermore, J
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(a) Unrideable bicycle

(b) Rideable bicycle

Figure 14.8: Two bicycles with rear wheel steering (a) is unrideable

and (b) is rideable. Figures courtesy of Richard Klein [20].

is the moment of inertia with respect to the line through the contact

points of the wheels with the ground and D is the inertia product.

We have J ≈ mh2 and D ≈ mah, where a the distance between the

projection of the center of mass on the ground and the contact point

of the driving wheel. The model for a bicycle with rear wheel steering
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is obtained simply by reversing the sign of the velocity and we get

mh2
d2ϕ

dt2
+
mhav0
b

dδ

dt
= mgh sinϕ+

mv20h

b
δ.

The transfer function from steering angle δ to tilt angle ϕ is

Pϕδ =
−av0s+ v20
b(hs2 − g) =

av0
bh

−s+ v0/a

s2 − g/h .

The transfer function has a right half-plane pole p =
√
g/h and a right

half-plane zero at z = v0/a. The condition (14.26) then gives

z

p
=
v0
a

√
h

g
≥ Ms + 1

Ms − 1
=⇒ v0 ≥ a

√
g

h

Ms + 1

Ms − 1
.

The unstable pole p =
√
g/h does not depend on the velocity but the

right half-plane zero z = v0/a is proportional to the velocity. To ride

the bicycle comfortably the velocity must therefore be sufficiently large.

Evaluating the parameters for the bicycles in Figure 14.8 with Ms = 2

we find v0 ≥ 9.4 m/s (34 km/h) for the bicycle in Figure 14.8a and

v0 ≥ 1.2 m/s (3.8 km/h) for the bicycle in Figure 14.8b. The bicycle

in Figure 14.8a has indeed proven to be unrideable, while the bicycle

in Figure 14.8b is rideable [147]. ∇

In view of the robustness results for systems with a single right

half-plane pole or single right half-plane zero, it is perhaps surprising

that processes with p > z can actually be controlled robustly. This is

in fact possible, though it requires more clever design techniques. A

detailed discussion of stabilizability is given by Youla [260], where it
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Table 14.1: Summary of limits by time delays and right half-plane

(RHP) poles and zeros, ωsc and ωtc are the crossover frequencies for

the sensitivity function and the complementary sensitivity function.

Process feature Limits

Real RHP zero z ωsc ≤ z

√
Ms − 1

Ms + 1

Complex RHP zeros z = zre ± izim ωsc ≤

√
M2

s z
2
re + (M2

s − 1)z2im − zre
√
M2

s − 1

Real RHP pole p ωtc ≥ p

√
Mt + 1

Mt − 1

Complex RHP poles p = pre ± ipim ωtc ≥

√
M2

t p
2
re + (M2

t − 1)p2im + pre
√
M2

t − 1

RHP pole/zero pair p, z Ms ≥
∣∣∣p+ z

p− z

∣∣∣, Mt ≥
∣∣∣p+ z

p− z

∣∣∣

RHP poles and zeros d(s), n(s) Ms ≥ maxk

∣∣∣d(−zk)
d(zk)

∣∣∣, Mt ≥ maxk

∣∣∣n(−pk)
n(pk)

∣∣∣

RHP pole p and time delay τ Mt ≥ epτ , Ms ≥ epτ − 1

is proven that a system with right half-plane poles and zeros can be

stabilized with a stable controller if and only if the number of poles

between every pair of right half-plane zeros is even (Theorem 14.2).

We have focused here on the effects of right half-plane poles and

zeros. Another common source of limits is the existence of time delays.

The limits imposed by a time delay and a right half-plane pole are

similar to the limits by a right half-plane pole/zero pair. A list of

various limits are summarized in Table 14.1.
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14.5 ROBUST POLE PLACEMENT

When using any design method that does not include requirements on

robustness it is necessary to check the robustness of the design. In

Section 7.2 we used state feedback to assign the eigenvalues of the

closed loop system and showed that if a system is reachable then the

eigenvalues of the closed loop system can be set to arbitrary values.

This design technique is also called “pole placement” and in this section

we will show that the insights into the roles of poles and zeros can

give us a deeper understanding of how to design such controllers. In

particular we will show that it is necessary to take the process zeros

into account when choosing the desired closed loop poles. We will first

analyze examples where seemingly reasonable designs lead to closed

loop systems that are not robust. We will then present design rules for

pole (eigenvalue) placement that guarantee that the closed loop system

is robust.

Fast Stable Process Poles

A pole is stable if it is in the left half-plane and unstable if it is in

the right half-plane. We call it “fast” if its magnitude is larger than

the intended closed loop bandwidth. We will explore the effects of fast

stable process poles on pole placement design through a simple example

that illustrates the basic design rule.
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Example 14.11 Robust pole placement for fast process poles

Consider a PI controller for a first-order system, where the process and

the controller have the transfer functions P (s) = b/(s+a), with a > 0,

and C(s) = kp + ki/s. The loop transfer function is

L(s) =
b(kps+ ki)

s(s+ a)
,

and the closed loop characteristic polynomial is

s(s+ a) + b(kps+ ki) = s2 + (a+ bkp)s+ kib.

If we specify that the desired closed loop poles should be −p1 and −p2,

we find that the controller parameters are given by

kp =
p1 + p2 − a

b
, ki =

p1p2
b
.

The sensitivity functions are then

S(s) =
s(s+ a)

(s+ p1)(s+ p2)
, T (s) =

(p1 + p2 − a)s+ p1p2
(s+ p1)(s+ p2)

.

Assume that the process pole a is faster than the closed loop poles

p1 < p2 < a. The proportional gain kp is then negative and the con-

troller has a zero in the right half-plane, an indication that the system

may have bad properties. Consider the gain |S(iω)| of the sensitiv-

ity function plotted in Figure 14.9a for a = b = 1, p1 = 0.05, and

p2 = 0.2. We have S(iω) ≈ 1 for high frequencies. Moving backwards

in frequency we find that the sensitivity increases around ω = a corre-

sponding to the fast process pole. The sensitivity continues to increase
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Figure 14.9: Gain curves of the sensitivity function S for designs

in Example 14.11. The solid lines are the true sensitivities, and the

dashed lines are the asymptotes. Notice the high peak of the sensi-

tivity function in (a) and that there is no peak in (b).

with decreasing frequency and it does not decrease until the frequency

is below the closed loop pole p2. The net effect is a large sensitivity

peak, approximately ω = a/
√
p1p2 ≈ 10.

The problem with poor robustness can be avoided by choosing one

closed loop pole equal to the process pole, i.e., p2 = a. The controller

gains then become

kp =
p1
b
, ki =

ap1
b
,

which means that the fast process pole is canceled by a controller zero

at s = −a. The loop transfer function and the sensitivity functions are

L(s) =
bkp
s
, S(s) =

s

s+ bkp
, T (s) =

bkp
s+ bkp

.

Figure 14.9b shows the gain curve of the sensitivity function for the

case when the closed loop poles (p1 = 5, p2 = 20) are faster than the

process pole (a = 1). There is no peak of the sensitivity function in
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this case. ∇

Slow Stable Process Zeros

We call a zero “stable” if it is in the left half-plane and “unstable” if

it is in the right half-plane. Furthermore a zero is said to be “slow” if

its magnitude is smaller than the intended closed loop bandwidth. We

will explore the effects of slow stable process zeros in pole placement

design, and we begin with a simple example.

Example 14.12 Vehicle steering

Consider the model for vehicle steering in Example 9.10, where the

transfer function from steering angle to lateral position is

P (s) =
γs+ 1

s2
= γ

s+ 1/γ

s2
.

A controller based on state feedback was designed in Example 7.4,

and state feedback was combined with an observer in Example 8.4.

The system simulated in Figure 8.8 has closed loop poles specified by

ωc = 0.7, ζc = 0.707, ωo = 1, and ζo = 0.707. Assume that we want

a faster closed loop system and choose ωc = 10, ζc = 0.707, ωo = 20,

and ζo = 0.707. Using the state representation in Example 8.3, a pole

placement design gives state feedback gains k1 = 100 and k2 = −35.86

and observer gains l1 = 28.28 and l2 = 400. The controller transfer

function is

C(s) =
−11516s+ 40000

s2 + 42.4s+ 6657.9
. (14.29)



918 CHAPTER 14

ReL(iω)

ImL(iω)

(a) Nyquist plot of L(s) =

P (s)C(s)

10
-3

10
-1

10
1

10
3

10
-1

10
0

10
1

10
2

10
3

-360

-270

-180

|L
(i
ω
)|

∠
L
(i
ω
)

Frequency ω [rad/s]

(b) Bode plot of L(s) = P (s)C(s)

Figure 14.10: Observer-based control of vehicle steering. Nyquist

and Bode plots of the loop transfer function for vehicle steering with

a controller based on state feedback and an observer. The controller

provides stable operation, but with very poor robustness.

Figure 14.10 shows Nyquist and Bode plots of the loop transfer func-

tion.

The Nyquist plot indicates that the robustness is poor since the

loop transfer function is very close to the critical point −1. The phase

margin is 7◦ and the gain margin is gm = 1.08, which means that the

system becomes unstable if the gain is increased by 8%. The poor ro-

bustness also shows up in the Bode plot, where the gain curve hovers

around the value 1 while the phase curve is close to −180◦ for a wide

frequency range (3-40 rad/s). Additional insight is obtained by analyz-

ing the sensitivity functions, shown as solid lines in Figure 14.11. The

maximum sensitivities are Ms = 13 and Mt = 12.

It is surprising that the closed loop is so sensitive to process varia-
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Figure 14.11: Gain curves of the sensitivity functions for systems

with observer-based control of vehicle steering. The plots for the

original controller with ωc = 10, ζc = 0.707, ωo = 20, ζo = 0.707 is

shown as solid lines and the improved controller with ωc = 10, ζc = 2.6

is shown as dashed lines.

tions when we have designed a controller so that the closed loop system

has well-damped closed loop poles. We have an indication that some-

thing is unusual because the design gives a controller that has a zero in

the right half-plane at s = 3.5, while the observer and controller have

complex poles with ωc = 10 and ωo = 20. Recall the results from Ex-

ample 14.3, which indicate that robust control of a process with a zero

at s = 3.5 cannot have a gain crossover frequency larger than ωgc = 2.

To understand what happens, we will investigate the reason for the

peaks of the sensitivity functions. Let the transfer functions of the

process and the controller be

P (s) =
np(s)

dp(s)
, C(s) =

nc(s)

dc(s)
, (14.30)
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where np(s), nc(s), dp(s) and dc(s) are the numerator and denominator

polynomials. The complementary sensitivity function is

T (s) =
P (s)C(s)

1 + P (s)C(s)
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)
.

The poles of T (s) are the poles of the closed loop system and the

zeros of T (s) are the zeros of the process and the controller transfer

functions. A plot of the gain curve of T (s) for the original controller is

shown as the solid line in the lower right plot in Figure 14.11. We have

T (0) = 1, because L(0) = P (0)C(0) =∞ due to the double integrator

of P . The gain |T (iω)| increases for increasing ω due to the process

zero at ω = 2. It increases further at the controller zero at ω = 3.5,

and it does not start to decrease until the closed loop poles appear at

ω = 10 and ω = 20. The net result is a high peak of the gain of the

complementary sensitivity function.

The peak in the complementary sensitivity function can be avoided

by assigning a closed loop pole at the slow process zero or close to it.

We can achieve this by choosing ωc = 10 and ζc = 2.6, which gives

closed loop poles at s = −2 and s = −50. The controller transfer

function then becomes

C(s) =
3628s+ 40000

s2 + 80.28s+ 156.56
= 3628

s+ 11.02

(s+ 2)(s+ 78.28)
. (14.31)

Notice that the new controller has a pole at s = −2 that cancels the

process zero. Also notice the large differences in the zero frequency
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gains of the controllers C(0) = 6.0 for the controller (14.29) and C(0) =

255 for the controller (14.31). Cancellation of the slow zero gives a

dramatic increase of the low-frequency gain of the controller. The gain

curves for the sensitivity function of the improved controller are shown

with dashed lines in Figure 14.11. The closed loop system has the

maximum sensitivities Ms = 1.34 and Mt = 1.41, which indicate good

robustness.

This example shows that a robust design can be obtained by first

canceling the slow stable process zero, designing the controller for the

system without the zero, and then adding the pole to the controller.

Notice that the plot of |PS(iω)| shows that the improved system has

much better disturbance attenuation and the plot of |CS(iω)| shows

that is it not as sensitive to measurement noise. The large differences

in low-frequency gains of the controllers are clearly visible in the gain

curves for S and PS. ∇

We can learn several things from this example. First, it is essential

to evaluate the closed loop system carefully, for example by plotting

the gain curves of the Gang of Four. We have also seen that seemingly

reasonable design methods do not necessarily give robust closed loop

systems. For designs based on pole placement it is necessary to consider

the open loop poles and zeros when specifying the desired closed loop

dynamics, and in particular robustness requires that there must be

closed loop poles that are equal to or close to slow stable process zeros.
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Another lesson is that slow unstable process zeros impose limits on the

achievable bandwidth, as already noted in Section 14.4.

One potential issue with the choice of controller poles and zeros

that exactly cancel the open loop poles and zeros is that they may

lead to undesirable dynamics or lack of robustness (if there are model

uncertainties). We address this important issue in more detail below.

Design Rules for Robust Pole Placement

Based on the insight gained from the previous examples, we can now

formulate design rules that give controllers with good robustness for

pole placement design. Consider the expression (13.12) for maximum

complementary sensitivity, repeated here:

Mt = sup
ω
|T (iω)| =

∥∥∥ PC

1 + PC

∥∥∥
∞
.

Let ωgc be the desired gain crossover frequency, and assume that the

process has zeros that are slower than ωgc. The complementary sensi-

tivity function is 1 for low frequencies, and it increases for frequencies

close to the process zeros unless there is a closed loop pole in the

neighborhood (as seen, for instance, in Figure 14.11 of the previous

example). To avoid large values of the complementary sensitivity func-

tion we find that the closed loop system should therefore have poles

close to or equal to the slow stable zeros. This means that slow sta-

ble zeros should be canceled by controller poles. Since unstable zeros
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cannot be canceled, the presence of slow unstable zeros means that

achievable gain crossover frequency must be smaller than the slowest

unstable process zero.

Now consider process poles that are faster than the desired gain

crossover frequency. Consider the expression for the maximum of the

sensitivity function:

Ms = sup
ω
|S(iω)| =

∥∥∥ 1

1 + PC

∥∥∥
∞
.

The sensitivity function is 1 for high frequencies. Moving from high

to low frequencies, the sensitivity function increases at the fast process

poles. The sensitivity function will have large peaks unless there are

closed loop poles that are close to the fast process poles. To avoid large

peaks in the sensitivity, the closed loop system should therefore have

poles close the fast process poles. One way to achieve this is to have

controller zeros close to the fast process pole. Since unstable modes

cannot be canceled, the presence of a fast unstable pole implies that

the gain crossover frequency must be sufficiently large, as was discussed

in Section 14.3 (Example 14.4).

To summarize, we obtain the following simple rules for choosing

closed loop poles: slow stable process zeros should be matched by slow

closed loop poles, and fast stable process poles should be matched by

fast closed loop poles. Slow unstable process zeros and fast unstable

process poles impose severe limits.
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14.6 NONLINEAR EFFECTS

Although we focus primarily on linear systems in this chapter, there

are some nonlinearities that must be considered when designing a con-

trol system. Limits on actuation power set bounds on response speed.

Nonlinearities due to friction, round-off error in A/D and D/A convert-

ers, and numerical representations in computation bound the precision

that can be obtained in regulation and tracking. We briefly describe

some of the effects of these limits here, illustrated primarily through

examples.

Actuation Limits

Many limits are associated with constraints on how large signals and

variables can be. Motors have limited torque, amplifiers have limits on

currents, and pumps have limited flow. There are also limits due to

equipment protection: the temperature of a component must not be

too high and compressor stall must be avoided, for example. Limits

may appear as restrictions on the amplitude and the rate of change of

the control signal. There may also be restrictions on internal process

variables and their rates.

A real-world example of the consequences of actuator limits is the

grounding of a Swedish passenger ferry in 2004. The ferry was grounded

while entering the port of Ume̊a due to high winds (20 m/s). The

incident analysis revealed that the wind forces of 600 kN and higher
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were much larger than the forces generated by the ship’s propellers and

rudder, and even assistance from a tugboat capable of applying 260 kN

of thrust could not have helped. In the setting of control systems,

this example illustrates a situation where actuators do not have the

sufficient power to counteract the load disturbances.

The following simple analytical example demonstrates how these

types of considerations can be taken into account in the design stage

of a project.

Example 14.13 Current limits in servo systems

Response time is a common requirement for motor drives. The achiev-

able response time depends critically on actuation power and physical

limits of the process. To determine the response time we can compute

the minimum time to make transitions from one state to the other,

subject to the physical constraints on the process and the actuator.

Consider a simple servo system where the actuator is a current-

driven voice coil. The system can be modeled by

m
d2x

dt2
= F = kII, (14.32)

wherem is the mass of the system, x is the position of the mass, F is the

force, I is the current through the voice coil, and kI is the motor con-

stant. The maximum acceleration amax = Fmax/m = kIImax/m is given

by the maximum current Imax. There is also a limit on the maximum

velocity: for a voice coil drive the maximum velocity is vmax = Vmax/kI ,
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where Vmax is the largest supply voltage.

If there is no limit on the velocity, the problem of moving the mass

from one position to another in minimum time is simply to apply max-

imum acceleration until the mid position is reached and then apply

maximum deceleration, so-called “bang-bang” control. If there is a ve-

locity limit, the maximum acceleration is only applied until the maxi-

mum velocity is reached. The minimum time solutions are illustrated

in Figure 14.12. When the acceleration a is constant, the velocity in-

creases as v(t) = at and the position is x(t) = at2/2 = v2(t)/(2a). A

straightforward calculation shows that the minimum time for a transi-

tion over a distance ℓ with zero velocity at start and end is

t =





2
√
ℓ/amax if ℓ ≤ v2max/amax,

ℓ/vmax + vmax/amax if ℓ > v2max/amax.

(14.33)

We can derive requirements on the actuator from this equation. ∇

This simple example can be solved analytically. Software for com-

puting minimum time control is readily available for more complex

systems.

Saturation limits can also affect the stability of a feedback system. We

saw in Section 10.5 two different methods for reasoning about the ef-

fects of (static) nonlinearities in a feedback system: the circle criterion

and describing functions. Both of these techniques use the Nyquist plot

as a means of analyzing the effects of the nonlinearity on closed loop
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Figure 14.12: Minimum time transition for a servo system. (a)

The case of short movements when the velocity does not reach the

saturation limit. The control is of the “bang-bang” type where maxi-

mum current is applied to accelerate or brake. (b) Illustration of what

happens for large motions. Full acceleration amax = 500 m/s2 is ap-

plied until t = 5 ms when maximum velocity vmax = 2 m/s is reached

and the drive circuit saturates. The current is then zero until time

t = 10 ms when full braking current is applied. The parameter values

are m = 2.5× 10−3 kg, kI = 2.5 N/A = 2.5 Vs/m, Imax = 0.5 A, and

Vmax = 5 V.

stability. In the particular case of actuation limits, the circle criterion

allows the saturation to be modeled as a sector-bounded nonlinearity

with klow = 0 and khigh = 1, which implies that the system is stable

if the Nyquist curve for the linear dynamics has ReH(s) > −1. The

describing function method is slightly less constraining, since the im-
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age of the describing function for a saturation nonlinearity is given by

the negative real axis from −∞ to −1, and hence the Nyquist curve

for H(s) should not cross the negative real axis at at a gain greater

than one. (Note that the describing function method is only an ap-

proximation, although it is often a very useful for preliminary design.)

Measurement Noise and Friction

There are many sources of measurement noise: the physics of the sen-

sor, the electronics, the transmission equipment, and the A/D and

D/A converters. The controller in a closed loop system feeds mea-

surement noise into the system, creating fluctuations in all variables.

Fluctuations in the output limits regulation and tracking performance.

Fluctuations in the control signal causes wear or even saturation of the

actuator, and cannot be permitted to be too large. Since measurement

noise is typically dominated by high frequencies, it limits the high-

frequency gain of the controller, the bandwidth, and thus the response

time of the closed loop system.

The effects of measurement noise and quantization can be estimated

using linear methods by calculating the transfer function from the noise

sources to the control signal and the process variables, and they can

be alleviated by filtering and a controller with high-frequency roll-off.

Quantization can be approximated as noise with a variance of δ2/12,
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where δ is the quantization level.

Friction typically generates oscillations that limit regulation and

tracking performance. Similar oscillations can be caused by quantiza-

tion. Oscillations can be reduced by nonlinear friction compensation.

Friction is inherently a nonlinear phenomenon, and accurate analysis

requires nonlinear methods. Some insight can be obtained using the

describing function method discussed in Section 10.5. We illustrate

with an example.

Example 14.14 Effect of friction in a cart–pendulum system

The cart-pendulum or balance system was introduced in Example 3.2

and we designed a state feedback for it in Example 7.7. Experiments

with cart–pendulum systems have shown that friction on the cart cre-

ates oscillations. To explore this we will investigate the effects of fric-

tion by simulation and analysis.

A block diagram of a balance system with friction is shown in Fig-

ure 14.13a. To simulate the system we use Coulomb’s model for friction,

where the friction force is F is given by

F = −µfMtg sgn(v), (14.34)

where µf = 0.001 is the coefficient for rolling friction, Mt is the total

mass, g is the acceleration due to gravity, and v is the cart velocity.

We use the parameter values from Example 3.2, and the controller

is the state space feedback in Example 7.7 with the slower closed loop
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v = q̇

State

Feedback

(a) Balance system with state feed-

back

v

G(s)

F

Friction

(b) Transformed dia-

gram

Figure 14.13: Block diagrams of a balance system with state feed-

back and friction. (a) Detailed block diagram showing the balance

system with inputs u and F and outputs q, θ, v = q̇, θ̇. (b) Block

diagram obtained after transformations. It has two blocks: the non-

linear friction block a linear block with the transfer function G(s)

from friction force F to velocity v.

poles. Results of a simulation of the system are shown in Figure 14.14a.

The upper plots in the figure show the cart position q (left) and the

pendulum angle θ (right), and the lower plots show the cart velocity

v = q̇ (left) and the angular velocity of the pendulum θ̇ (right). The

plots show clearly that there are oscillations with period Tp = 37 s.

The oscillation of the cart velocity has amplitude A ≈ 0.52 m/s. The

waveforms of the oscillations are far from sinusoidal, as can be seen in

the plots on the right in Figure 14.14a.

We can make a simple physical argument to understand how fric-

tion may cause oscillation. The pendulum is unstable and will start to

fall for any perturbation. The control law then attempts to stabilize

the system by applying a force to the cart, but the cart will remain
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Figure 14.14: Time and frequency responses of the cart-pendulum

system. (a) Time responses when the pendulum has an initial mis-

alignment. (b) Frequency response of the transfer function G(s) (solid

line), given by (14.36), and the locus of the negative inverse −1/N(a)

(dashed line) of the describing function N(a) for friction, which given

by equation (14.35).

stationary until the pendulum has fallen so much that the control sig-

nal is large enough to generate a force that is larger than the friction

force. The cart then moves, causing the pendulum to move towards the

upright position. The process will repeat itself creating an oscillation.

We will now use the describing function method, introduced in Sec-
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tion 10.5, to understand the behavior of the system. To do this we first

use block diagram algebra to reduce Figure 14.13a to the two-block

system in Figure 14.13b. One block represents the nonlinear friction

model (14.34), which has the describing function

N(a) =
4µfMtg

aπ
, (14.35)

where a is the amplitude of the input (cart velocity). The other block in

Figure 14.13b represents the linear closed loop dynamics from friction

force F to cart velocity v, when friction is not present. The transfer

function can be computed from the state space representation of the

closed loop dynamics

d

dt
x = (A−BK)x+BF, v =


0 0 1 0


 x,

where x = (q, θ, q̇, θ̇), A, B, and K are given in Example 7.7. The

resulting transfer function is given by

G(s) =
0.01837s3 − 0.08s

s4 + 1.046s3 + 0.9109s2 + 0.2552s+ 0.03781
, (14.36)

where the numerical values are based on the parameter values from

Example 7.7.

Figure 14.14b shows a Nyquist plot of the transfer function G

(solid line) and the negative inverse −1/N(a) of the describing function

(dashed line). Recall that the condition for oscillation is G(iω)N(a) =

−1, which corresponds to an intersection of the solid and dashed lines

in the figure. The intersection occurs for ω = 0.21, and 1/N(a) =
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0.39. The describing function method then indicates that there may

be an oscillation with period Tp = 2π/0.21 = 30 s and amplitude

a = 4 × 0.39µfMt g/π = 0.43 m/s. Notice that the describing func-

tion method assumes that the velocity variation is sinusoidal, which

explains the difference from the values T = 37 s and a = 0.52 m/s

obtained by simulation. ∇

14.7 FURTHER READING

The limitations caused by right half-plane poles and zeros were well

known by Bode, who coined the term non-minimum phase to empha-

size that such systems had much more phase lag than the equivalent

minimum phase systems [51]. The paper [229], which is based on the

inaugural IEEE Bode Lecture gives important insights into the effects

of unstable poles and is strongly recommended. Horowitz [120] also

discussed the limits caused by poles and zeros in the right half-plane.

The section on the maximum modulus theorem is based on [206]; more

details are found in [106, 223]. The section on loop shaping design

is based on [16]. The design rules for pole placement are not widely

known. The effects of actuator limits are conveniently explored using

optimal control theory [24, 58], which permits solution of problems that

are much more complicated than the one in Figure 14.12.
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EXERCISES

14.1 (Right half-plane pole/zero pair PI control) Consider a process

with the transfer function

P (s) =
s− z
s− p.

a) Show that the system can be controlled by a PI controller and design

a PI controller that gives a closed loop system with poles at s = −ζω0±

ω0

√
1− ζ2.

b) Calculate the maximum sensitivity of the closed loop system as

a function of ω0 and compare with the bound imposed by the the

right half-plane poles and zeros of the system. Discuss the differences

between the cases z > p and z < p.

c) Plot the root locus of the process with the PI controller and quali-

tatively describe how it changes with the process pole and the process

zero. Use the numerical values ω0 = 1, ζ = 1; p = 1, z = 5; and p = 5,

z = 1.

14.2 (Effect of roll-off) Consider a closed loop system consisting of a

first-order process and a proportional controller. Let the loop transfer

function be

L(s) = P (s)C(s) =
k

s+ 1
,

where parameter k > 0 is the controller gain. Show that the magnitude

of the sensitivity function is bounded above by 1 and can be made
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arbitrarily small up to any frequency ω.

14.3 (Bode’s integral formula) In Theorem 14.3 it was assumed that

sL(s) goes to zero as s→∞. Assume instead that lim sL(s) = a and

show that

∫ ∞

0

log |S(iω)| dω =

∫ ∞

0

log
1

|1 + L(iω)| dω = π
∑

pk − a
π

2
,

where pk are the poles of the loop transfer function L(s) in the right

half-plane.

14.4 (Integral formula for complementary sensitivity) Prove the for- �

mula (14.6) for the complementary sensitivity.

14.5 (Water turbine dynamics) Consider the problem of power gener-

ation in an hydroelectric power station. Let the control signal be the

opening area a at the turbine entrance and ℓ be the length of the tube,

which has area A. Formulate a mathematical model for the system,

then linearize the model around a nominal valve opening u0 = a/A

and a nominal power P0. Show that the linearization is non-minimum

phase, with transfer function

G(s) =
P0

a0

1− 2u0sτ

1 + u0sτ
,

where τ = ℓ/
√
2gh and g is the acceleration due to gravity.

14.6 (The pole/zero ratio) Consider a process with the loop transfer
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function

L(s) = k
z − s
s− p,

with positive z and p. Show that the system is stable if p/z < k < 1 or

1 < k < p/z and that the largest stability margin is sm = |p−z|/(p+z),

which is obtained for k = 2p/(p + z). Determine the pole/zero ratios

that give the stability margin sm = 2/3.

14.7 (Phase lag of systems with right half-plane pole/zero pair and

delay and right half-plane pole) Consider the transfer functions for a

process with a right half-plane pole and right half-plane zero as in

Example 14.5 and a right half-plane pole and a time delay as in Ex-

ample 14.6. The phase lags of their all-pass factors are given in equa-

tions (14.14) and (14.15). Show that the largest phase lags are

ϕap1 = − argPpz(iω) ≤ 2 arctan
(
2
√
pz/|z − p|

)
,

ϕap2 = − argPpτ (iω) ≤
√
pτ(2− pτ) + 2 arctan

√
pτ/(2p− pτ)

and that they occur for ω1 =
√
pz and ω2 =

√
2p/τ − p2 respectively.

14.8 (X-29) A simplified model of the X-29 aircraft in a certain flight

condition has a right-hand pole/zero pair with p = 6 rad/s and z =

26 rad/s. Estimate the achievable stability margins and compare with

the results in Example 14.2.

14.9 (Sensitivity inequalities) Prove the inequalities given by equa-�

tion (14.21). (Hint: Use the maximum modulus theorem.)
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14.10 (Sensitivity limits due to poles in the right half-plane) Let Tr =

Mt b/(s+b) represent an upper bound on the desired sensitivity and let

ωtc represent the complementary sensitivity crossover frequency. Show

that for a process P (s) with a right half-plane pole s = p but no other

singularities in the right half-plane, the following inequalities hold:

b ≥ pre +
√
M2

t p
2
re + (M2

t − 1)p2im
M2

t − 1
, ωtc ≤

pre +
√
M2

t p
2
re + (M2

t − 1)p2im√
M2

t − 1
,

(14.37)

where p = pre + ipim.

14.11 (Maximum complementary sensitivity for multiple right half–

plane poles and zeros) Consider a process P (s) with the right half- �

plane zeros zk and right half-plane poles pk. Introduce the polynomial

n(s) with zeros s = zk and the polynomial d(s) with zeros s = pk.

Show that the complementary sensitivity function has the property

Mt ≥ max
k

∣∣∣n(−pk)
n(pk)

∣∣∣.

Also show that the equations (14.28) hold.

14.12 (Vehicle steering) Consider the Nyquist curve in Figure 14.10.

Explain why part of the curve is approximately a circle. Derive a

formula for the center and the radius and compare with the actual

Nyquist curve.
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14.13 Consider a process with the transfer function

P (s) =
(s+ 3)(s+ 200)

(s+ 1)(s2 + 10s+ 40)(s+ 40)
.

Discuss suitable choices of closed loop poles for a design that gives

dominant poles with undamped natural frequency 1 and 10.

14.14 (Large signals) Verify Figure 14.12 by hand calculation.

14.15 (Noise limits bandwidth) Consider PI control of an integrator,

where the transfer functions of the process and the controller are

P (s) =
1

s
, C(s) = kp +

ki
s
,

with kp = 2ζω0, ki = ω2
0, and ζ = 0.707. Assume that the inputs and

outputs range from 0 to 10, that there is measurement noise with a

standard deviation of 0.01, and that the largest permissible variation

in the control signal due to noise is 2. Show that the bandwidth, defined

as ωbw = 2ω0, cannot be larger than 283.
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[19] K. J. Åström and T. Hägglund. Advanced PID Control. ISA—The

Instrumentation, Systems, and Automation Society, Research Triangle

Park, NC, 2006.
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[23] K. J. Åström and B. Wittenmark. Adaptive Control, 2nd ed. Dover,

New York, 2008. Originally published by Addison Wesley, 1995.

[24] M. Athans and P. Falb. Optimal Control. McGraw-Hill, New York,

NY, 1966. Dover Reprint 2007.

[25] D. P. Atherton. Nonlinear Control Engineering. Van Nostrand, New

York, 1975.

[26] M. Atkinson, M. Savageau, J. Myers, and A. Ninfa. Development

of genetic circuitry exhibiting toggle switch or oscillatory behavior in

Escherichia coli. Cell, 113(5):597–607, 2003.

[27] M. B. Barron and W. F. Powers. The role of electronic controls for fu-

ture automotive mechatronic systems. IEEE Transactions on Mecha-

tronics, 1(1):80–89, 1996.



942 BIBLIOGRAPHY

[28] T. Basar (editor). Control Theory: Twenty-five Seminal Papers

(1932–1981). IEEE Press, New York, 2001.

[29] T. Basar and P. Bernhard. H∞-Optimal Control and Related Minimax

Design Problems: A Dynamic Game Approach. Birkhauser, Boston,

1991.

[30] J. Bechhoefer. Feedback for physicists: A tutorial essay on control.

Reviews of Modern Physics, 77:783–836, 2005.

[31] J. Bechhoefer. Control Theory for Physicists. 2019. In press.
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control error, 37, 587, 698
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control matrix, 137, 146
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robustness, 29, 815–817, 832–833
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damping, 120, 142, 156, 276

damping ratio, 87, 451, 453, 458, 712
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delay-dominated dynamics, 722

derivative action, 40, 41, 697, 699, 703–707, 736
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discrete control, 189
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dynamical systems, 1, 118, 273, 280, 336
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observer as a, 488

state of, 434

stochastic, 517

dynamics matrix, 137, 146, 292, 367
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E , see exponential signals
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dominant, 457

effect on dynamic behavior, 450, 451, 453,
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repeated, 360
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electrical circuits, 130, 163, 231, 346, 568–569

electrical engineering, 13–15, 123–126, 390, 659
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Elowitz, M. B., 197
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discrete time, 194, 204
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893, 920

gain crossover frequency inequality, 892–901

gain curve (Bode plot), 606–612, 669, 772

gain margin, 662, 666, 667

from Bode plot, 663

reasonable values, 667

gain scheduling, 538–542, 865

gain-bandwidth product, 231, 565, 846

Gang of Four, 752, 805, 841

Gang of Six, 751

gene regulation, 24, 195–197, 416, 619

generalized impedance, 568

genetic switch, 210, 315–319

global behavior, 290, 325–333

Glover, K., 804, 867

Golomb, S., 213

H∞ control, 857–864, 867, 870

disturbance weighting, 871

Hall chart, 854

Harrier AV-8B aircraft, 178, 179

heat propagation, 572, 689

Heaviside, O., 409

Heaviside step function, 381, 409



978 INDEX

Hellerstein, J. L., 55, 245

Hewlett’s oscillator, 103

Hewlett-Packard, 103

high-frequency roll-off, 733, 767, 773, 843, 850,

926

high-pass filter, 617

Hill function, 196

Hoagland, M. B., 1

Hodgkin-Huxley equations, 199–203, 211

homeostasis, 6, 195

homogeneous equation, 69, 596

homogeneous system, 349, 354, 355

Horowitz, I. M., 110, 547, 804, 854, 866, 931

human-machine interface, 42, 215, 220

hybrid system, 55, 132, 133, 155, 203

hysteresis, 37, 38, 65, 108, 109, 684, 685

I-PD controller, 734

impedance, 567–569, 736

impulse function, 374, 424

impulse response, 353, 373, 375, 410, 423, 581,

582

inductor, transfer function for, 569

inertia matrix, 142, 408

infinity norm, 678, 859

information systems, 20, 186–195

initial condition, 275, 281, 282, 286, 348, 355, 356,

370, 518

initial condition response, 349, 350, 354–360, 367,

370, 375, 557, 560

initial value problem, 275

initial value theorem, 582

inner loop control, 798, 802

input/output models, 11, 68, 123, 125, 349, 372–

397, 554, 560, 677

and transfer functions, 582

from experiments, 620

relationship to state space models, 128, 273,

373

steady-state response, 379

transfer function for, 567

input/output stability, 680

inputs, 122, 127

insect flight control, 164–167

instrumentation, 16–18, 226

insulin-glucose dynamics, 3, 257–262, 270

minimal model, 259

integral action, 39–41, 57, 91, 105–106, 463–469,

485, 536, 699, 701–704, 708



INDEX 979

by positive feedback, 106

setpoint weighting, 734, 740

time constant, 699

integral gain, 39, 699, 704, 709

integrated error, 704

integrator, 164, 463, 465, 466, 495, 571, 608, 670

integrator windup, 39, 546, 724–725, 728

conditional integration, 745

internal model principle, 511, 543
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Padé approximation, 692, 882

parallel connection, 78, 79, 584, 585

parametric stability diagram, 329, 330, 332

parametric uncertainty, 97, 135, 814–816

particular solution, 69, 350, 385, 561

transfer function, 72

passive systems, 679, 692

passivity theorem, 680

patch clamp, 17

PD control, 703, 776

peak frequency, 391, 758, 760

peak frequency-peak time product, 807

peak value, 758, 760

pendulum dynamics, 311

perfect adaptation, 706

performance limits, 864, 884, 892, 921

due to right half-plane poles and zeros, 672

performance specifications, 81, 235, 383, 435, 748,

758–770, 774, 809, 841

test points, 770

time domain versus frequency domain, 759

persistence, of a web connection, 234, 237

Petri net, 163

pharmacokinetics, 252, 253, 257
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