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Preface to the Second Edition

The second edition of Feedback Systems contains a variety of changes
that are based on feedback on the first edition, particularly in its use
for introductory courses in control. Omne of the primary comments
from users of the text was that the use of control tools for design
purposes occurred only after several chapters of analytical tools, leaving
the instructor having to try to convince students that the techniques
would soon be useful. In our own teaching, we find that we often
use design examples in the first few weeks of the class and use this
to motivate the various techniques that follow. This approach has
been particularly useful in engineering courses, where students are often
eager to apply the tools to examples as part of gaining insight into
the methods. We also found that universities that have a laboratory
component attached to their controls class need to introduce some basic
design techniques early, so that students can be implementing control
laws in the laboratory in the early weeks of the course.

To help emphasize this more design-oriented flow, we have added

a new chapter on “Feedback Principles” that illustrates some simple
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design principles and tools that can be used to show students what
types of problems can be solved using feedback. This new chapter uses
simple models, simulations, and elementary analysis techniques, so that
it should be accessible to students from a variety of engineering and
scientific backgrounds. For courses in which students have already been
exposed to the basic ideas of feedback, perhaps in an earlier discipline-
specific course, this new chapter can easily be skipped without any loss
of continuity.

We have also rearranged some of the material in the final chapters
of the book, moving material on fundamental limits from the chap-
ters on frequency domain design (Chapter 11 in the original text, now
Chapter [[2) and robust performance (Chapter 12 in the original text,
now Chapter [[3)) into a separate chapter on fundamental limits (Chap-
ter [[4]). This new chapter also contains some additional material on
techniques for robust pole placement as well as on limits imposed by
nonlinearities.

In addition to these relatively large changes, we have made many
other smaller changes based on the feedback we have received from
early adopters of the text. We have added some material on the Routh—
Hurwitz criterion and root locus plots, to at least serve as “hooks” for
instructors who wish to cover that material in more detail. We have
also made some notational changes throughout, most notably changing

the symbols for disturbance and noise signals to v and w, respectively.

PREFACE
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The notation in the biological examples has also been updated to match
the notation used in the textbook by Del Vecchio and Murray [69].

Overall, we have tried to maintain the style and organization of
the book in a manner that is consistent with our goals for the first
edition. In particular, we have targeted the material toward a wide
range of audiences rather than any specific discipline. One consequence
is that instructors who are teaching department-specific courses many
find there are other texts that are better suited to these audiences.
A few books that have been written over the past few years that are
tuned to non-traditional audiences, including Janert [I30] (computer
science), Del Vecchio and Murray [69] (biology), and Bechhoefer [31]
(physics). In addition, the textbook Feedback Control for Everyone
by Albertos and Mareels [7] provides a readable introduction requiring
minimal mathematical background.

Finally, we are indebted to numerous individuals who have taught
out of the text and sent us feedback on changes that would better
serve their needs. In addition to the many individuals listed in the
preface to the first edition, we would like to also thank Kalle Astrom,
Bo Bernhardsson, Karl Berntorp, Constantine Caramanis, Shuo Han,
Bjorn Olofsson, Noah Olsman, Richard Pates, Jason Rolfe, Clancy
Rowley, and André Tits for their feedback, insights, and contributions.
Vickie Kearn, our recently-retired editor at Princeton University Press,

has continued to serve as an enthusiastic advocate for our efforts and

xiii
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we particularly appreciate her support over the years in our vision for
the book and for her advocacy of making the material available for free

download.

Karl Johan Astrom Richard M. Murray

Lund, Sweden Pasadena, California
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Preface to the First Edition

This book provides an introduction to the basic principles and tools
for the design and analysis of feedback systems. It is intended to serve
a diverse audience of scientists and engineers who are interested in un-
derstanding and utilizing feedback in physical, biological, information
and social systems. We have attempted to keep the mathematical pre-
requisites to a minimum while being careful not to sacrifice rigor in
the process. We have also attempted to make use of examples from a
variety of disciplines, illustrating the generality of many of the tools
while at the same time showing how they can be applied in specific
application domains.

A major goal of this book is to present a concise and insightful view
of the current knowledge in feedback and control systems. The field of
control started by teaching everything that was known at the time and,
as new knowledge was acquired, additional courses were developed to
cover new techniques. A consequence of this evolution is that intro-
ductory courses have remained the same for many years, and it is often

necessary to take many individual courses in order to obtain a good



xvi

perspective on the field. In developing this book, we have attempted to
condense the current knowledge by emphasizing fundamental concepts.
We believe that it is important to understand why feedback is useful,
to know the language and basic mathematics of control and to grasp
the key paradigms that have been developed over the past half century.
It is also important to be able to solve simple feedback problems using
back-of-the-envelope techniques, to recognize fundamental limitations
and difficult control problems and to have a feel for available design
methods.

This book was originally developed for use in an experimental course
at Caltech involving students from a wide set of backgrounds. The
course was offered to undergraduates at the junior and senior levels
in traditional engineering disciplines, as well as first- and second-year
graduate students in engineering and science. This latter group in-
cluded graduate students in biology, computer science and physics.
Over the course of several years, the text has been classroom tested at
Caltech and at Lund University, and the feedback from many students
and colleagues has been incorporated to help improve the readability
and accessibility of the material.

Because of its intended audience, this book is organized in a slightly
unusual fashion compared to many other books on feedback and con-
trol. In particular, we introduce a number of concepts in the text that

are normally reserved for second-year courses on control and hence of-
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ten not available to students who are not control systems majors. This
has been done at the expense of certain traditional topics, which we
felt that the astute student could learn independently and are often
explored through the exercises. Examples of topics that we have in-
cluded are nonlinear dynamics, Lyapunov stability analysis, the matrix
exponential, reachability and observability, and fundamental limits of
performance and robustness. Topics that we have deemphasized in-
clude root locus techniques, lead/lag compensation and detailed rules
for generating Bode and Nyquist plots by hand.

Several features of the book are designed to facilitate its dual func-
tion as a basic engineering text and as an introduction for researchers
in natural, information and social sciences. The bulk of the material
is intended to be used regardless of the audience and covers the core
principles and tools in the analysis and design of feedback systems. Ad-
vanced sections, marked by the “dangerous bend” symbol shown here,
contain material that requires a slightly more technical background, of
the sort that would be expected of senior undergraduates in engineer-
ing. A few sections are marked by two dangerous bend symbols and
are intended for readers with more specialized backgrounds, identified
at the beginning of the section. To limit the length of the text, sev-
eral standard results and extensions are given in the exercises, with
appropriate hints toward their solutions.

To further augment the printed material contained here, a compan-

xvii
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ion web site has been developed and is available from the publisher’s

web page:
https://press.princeton.edu/titles/8701.html

The web site contains a database of frequently asked questions, supple-
mental examples and exercises, and lecture material for courses based
on this text. The material is organized by chapter and includes a
summary of the major points in the text as well as links to external re-
sources. The web site also contains the source code for many examples
in the book, as well as utilities to implement the techniques described
in the text. Most of the code was originally written using MATLAB
M-files but was also tested with LabView MathScript to ensure com-
patibility with both packages. Many files can also be run using other
scripting languages such as Octave, Scil.ab, SysQuake and Xmath.
The first half of the book focuses almost exclusively on state space
control systems. We begin in Chapterlzg with a description of mod-
eling of physical, biological and information systems using ordinary
differential equations and difference equations. Chapter 4 presents a
number of examples in some detail, primarily as a reference for prob-
lems that will be used throughout the text. Following this, Chapter
looks at the dynamic behavior of models, including definitions of sta-

bility and more complicated nonlinear behavior. We provide advanced

*Chapter numbers reflect those in the second edition.
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sections in this chapter on Lyapunov stability analysis because we find
that it is useful in a broad array of applications and is frequently a
topic that is not introduced until later in one’s studies.

The remaining three chapters of the first half of the book focus on
linear systems, beginning with a description of input/output behavior
in Chapter @l In Chapter [7, we formally introduce feedback systems by
demonstrating how state space control laws can be designed. This is
followed in Chapter [§ by material on output feedback and estimators.
Chapters [7 and B introduce the key concepts of reachability and ob-
servability, which give tremendous insight into the choice of actuators
and sensors, whether for engineered or natural systems.

The second half of the book presents material that is often consid-
ered to be from the field of “classical control.” This includes the trans-
fer function, introduced in Chapter @, which is a fundamental tool for
understanding feedback systems. Using transfer functions, one can be-
gin to analyze the stability of feedback systems using frequency domain
analysis, including the ability to reason about the closed loop behavior
of a system from its open loop characteristics. This is the subject of
Chapter [I0, which revolves around the Nyquist stability criterion.

In Chapters [I1] and 12, we again look at the design problem, focus-
ing first on proportional-integral-derivative (PID) controllers and then
on the more general process of loop shaping. PID control is by far the

most common design technique in control systems and a useful tool
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for any student. The chapter on frequency domain design introduces
many of the ideas of modern control theory, including the sensitivity
function. In Chapter [[3] we combine the results from the second half
of the book to analyze some of the fundamental trade-offs between ro-
bustness and performance. This is also a key chapter illustrating the
power of the techniques that have been developed and serving as an
introduction for more advanced studies.

The book is designed for use in a 10- to 15-week course in feedback
systems that provides many of the key concepts needed in a variety
of disciplines. For a 10-week course, Chapters IH3, BHZ and QHIZ| can
each be covered in a week’s time, with the omission of some topics
from the final chapters. A more leisurely course, spread out over 14-15
weeks, could cover the entire book, with 2 weeks on modeling (Chap-
ters [ and R)—particularly for students without much background in
ordinary differential equations—and 2 weeks on robust performance
(Chapter [13]).

The mathematical prerequisites for the book are modest and in
keeping with our goal of providing an introduction that serves a broad
audience. We assume familiarity with the basic tools of linear algebra,
including matrices, vectors and eigenvalues. These are typically cov-
ered in a sophomore-level course on the subject, and the textbooks by
Apostol [12], Arnold [15] and Strang [233] can serve as good references.

Similarly, we assume basic knowledge of differential equations, includ-
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ing the concepts of homogeneous and particular solutions for linear
ordinary differential equations in one variable. Apostol [12] and Boyce
and DiPrima [53] cover this material well. Finally, we also make use of
complex numbers and functions and, in some of the advanced sections,
more detailed concepts in complex variables that are typically covered
in a junior-level engineering or physics course in mathematical meth-
ods. Apostol [I1] or Stewart [232] can be used for the basic material,
with Ahlfors [6], Marsden and Hoffman [I77], or Saff and Snider [212]
being good references for the more advanced material. We have chosen
not to include appendices summarizing these various topics since there
are a number of good books available.

One additional choice that we felt was important was the decision
not to rely on a knowledge of Laplace transforms in the book. While
their use is by far the most common approach to teaching feedback sys-
tems in engineering, many students in the natural and information sci-
ences may lack the necessary mathematical background. Since Laplace
transforms are not required in any essential way, we have included them
only in an advanced section intended to tie things together for students
with that background. Of course, we make tremendous use of trans-
fer functions, which we introduce through the notion of response to
exponential inputs, an approach we feel is more accessible to a broad
array of scientists and engineers. For classes in which students have

already had Laplace transforms, it should be quite natural to build on
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this background in the appropriate sections of the text.
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback gov-
erns how we grow, respond to stress and challenge, and regulate
factors such as body temperature, blood pressure, and cholesterol
level. The mechanisms operate at every level, from the interac-
tion of proteins in cells to the interaction of organisms in complex

ecologies.

M. B. Hoagland and B. Dodson, The Way Life Works, 1995 [118].

In this chapter we provide an introduction to the basic concept of
feedback and the related engineering discipline of control. We focus on
both historical and current examples, with the intention of providing

the context for current tools in feedback and control.

1.1 WHAT IS FEEDBACK?

A dynamical system is a system whose behavior changes over time, of-

ten in response to external stimulation or forcing. The term feedback
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System 1 » System 2 > — System 1 System 2 —»

(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of sys-
tem 1 is used as the input of system 2, and the output of system 2
becomes the input of system 1, creating a closed loop system. (b) The
interconnection between system 2 and system 1 is removed, and the

system is said to be open loop.

refers to a situation in which two (or more) dynamical systems are con-
nected together such that each system influences the other and their
dynamics are thus strongly coupled. Simple causal reasoning about
a feedback system is difficult because the first system influences the
second and the second system influences the first, leading to a circular
argument. A consequence of this is that the behavior of feedback sys-
tems is often counter-intuitive, and it is therefore necessary to resort
to formal methods to understand them.

Figure [Tl illustrates in block diagram form the idea of feedback.
We often use the terms open loop and closed loop when referring to such
systems. A system is said to be a closed loop system if the systems
are interconnected in a cycle, as shown in Figure [LTal If we break the
interconnection, we refer to the configuration as an open loop system,
as shown in Figure [LTbl Note that since the system is in a feedback

loop, the choice of system 1 versus system 2 is somewhat arbitrary. It
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just depends where you want to start describing how the system works.

As the quote at the beginning of this chapter illustrates, a major
source of examples of feedback systems is biology. Biological systems
make use of feedback in an extraordinary number of ways, on scales
ranging from molecules to cells to organisms to ecosystems. One ex-
ample is the regulation of glucose in the bloodstream through the pro-
duction of insulin and glucagon by the pancreas. The body attempts
to maintain a constant concentration of glucose, which is used by the
body’s cells to produce energy. When glucose levels rise (after eating
a meal, for example), the hormone insulin is released and causes the
body to store excess glucose in the liver. When glucose levels are low,
the pancreas secretes the hormone glucagon, which has the opposite
effect. Referring to Figure [T, we can view the liver as system 1 and
the pancreas as system 2. The output from the liver is the glucose
concentration in the blood, and the output from the pancreas is the
amount of insulin or glucagon produced. The interplay between in-
sulin and glucagon secretions throughout the day helps to keep the
blood-glucose concentration constant, at about 90 mg per 100 mL of
blood.

An early engineering example of a feedback system is a centrifugal
governor, in which the shaft of a steam engine is connected to a flyball
mechanism that is itself connected to the throttle of the steam engine,

as illustrated in Figure [L2l The system is designed so that as the



Figure 1.2: The centrifugal governor and the steam engine. The
centrifugal governor on the left consists of a set of flyballs that spread
apart as the speed of the engine increases. The steam engine on the
right uses a centrifugal governor (above and to the left of the flywheel)
to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip

Taylor [1828].)

speed of the engine increases (perhaps because of a lessening of the
load on the engine), the flyballs spread apart and a linkage causes the
throttle on the steam engine to be closed. This in turn slows down
the engine, which causes the flyballs to come back together. We can
model this system as a closed loop system by taking system 1 as the
steam engine and system 2 as the governor. When properly designed,
the flyball governor maintains a constant speed of the engine, roughly
independent of the loading conditions. The centrifugal governor was an
enabler of the successful Watt steam engine, which fueled the industrial
revolution.

The examples given so far all deal with negative feedback, in which

CHAPTER 1



INTRODUCTION

we attempt to react to disturbances in such a way that their effects
decrease. Positive feedback is the opposite, where the increase in some
variable or signal leads to a situation in which that quantity is fur-
ther increased through feedback. This has a destabilizing effect and
is usually accompanied by a saturation that limits the growth of the
quantity. Although often considered undesirable, this behavior is used
in biological (and engineering) systems to obtain a very fast response
to a condition or signal. Encouragement is a type of positive feedback
that is very useful in both industry and academia. Another common
use of positive feedback is in the design of systems with oscillatory
dynamics.

Feedback has many interesting properties that can be exploited in
designing systems. As in the case of glucose regulation or the flyball
governor, feedback can make a system resilient to external influences. It
can also be used to create linear behavior out of nonlinear components,
a common approach in electronics. More generally, feedback allows a
system to be insensitive both to external disturbances and to variations
in its individual elements.

Feedback has potential disadvantages as well. It can create dy-
namic instabilities in a system, causing oscillations or even runaway
behavior. Another drawback, especially in engineering systems, is that
feedback can introduce unwanted sensor noise into the system, requir-

ing careful filtering of signals. It is for these reasons that a substantial



portion of the study of feedback systems is devoted to developing an
understanding of dynamics and a mastery of techniques in dynamical
systems.

Feedback systems are ubiquitous in both natural and engineered
systems. Control systems maintain the environment, lighting, and
power in our buildings and factories; they regulate the operation of
our cars, consumer electronics, and manufacturing processes; they en-
able our transportation and communications systems; and they are
critical elements in our military and space systems. For the most part
they are hidden from view, buried within the code of embedded micro-
processors, executing their functions accurately and reliably. Feedback
has also made it possible to increase dramatically the precision of in-
struments such as atomic force microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintains thermal,
chemical, and biological conditions through feedback. At the other
end of the size scale, global climate dynamics depend on the feedback
interactions between the atmosphere, the oceans, the land, and the
sun. Ecosystems are filled with examples of feedback due to the com-
plex interactions between animal and plant life. Even the dynamics of
economies are based on the feedback between individuals and corpora-

tions through markets and the exchange of goods and services.

CHAPTER 1
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1.2 WHAT IS FEEDFORWARD?

Feedback is reactive: there must be an error before corrective actions
are taken. However, in some circumstances it is possible to measure a
disturbance before it enters the system, and this information can then
be used to take corrective action before the disturbance has influenced
the system. The effect of the disturbance is thus reduced by measuring
it and generating a control signal that counteracts it. This way of
controlling a system is called feedforward. Feedforward is particularly
useful in shaping the response to command signals, which are used as
external inputs to the control system, because command signals are
always available. Since feedforward attempts to match two signals, it
requires good process models; otherwise the corrections may have the
wrong size or may be badly timed.

Figure illustrates the difference between feedforward and feed-
back control. In both figures there is a reference signal r that describes
the desired output of the process P and a disturbance signal v that rep-
resents an external perturbation to the process. In a feedback system,
we measure the output y of the system and the controller C' attempts
to adjust the input to the process in a manner that causes the process
output to maintain the desired the reference value. In a feedforward
system, we instead measure the reference r and disturbance v and com-
pute an input to the process that will create the desired output. Notice

that the feedback controller does not directly measure the disturbance
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(a) Feedback system (b) Feedforward system

Figure 1.3: Feedback system versus feedforward system. In both sys-
tems we have a process P and a controller C. The feedback controller
(a) measures the output y to determine the effect of the disturbance v,
while the feedforward controller (b) measures the disturbance directly,

but does not directly measure the process output.

v while the feedforward controller does not measure the actual output

The ideas of feedback and feedforward are very general and appear
in many different fields. In economics, feedback and feedforward are
analogous to a market-based economy versus a planned economy. In
business, a feedforward strategy corresponds to running a company
based on extensive strategic planning, while a feedback strategy cor-
responds to a reactive approach. In biology, feedforward has been
suggested as an essential element for motion control in humans that
is tuned during training. Experience indicates that it is often advan-
tageous to combine feedback and feedforward, and the correct balance
requires insight and understanding of their respective properties, which

are summarized in Table [[L1]
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Table 1.1: Properties of feedback and feedforward.

Feedback Feedforward
Closed loop Open loop
Acts on deviations Acts on plans

Robust to model uncertainty  Sensitive to model uncertainty

Risk for instability No risk for instability

1.3 WHAT IS CONTROL?

The term control has many meanings and often varies between commu-
nities. In this book, we define control to be the use of algorithms and
feedback in engineered systems. Thus, control includes such examples
as feedback loops in electronic amplifiers, setpoint controllers in chem-
ical and materials processing, “fly-by-wire” systems on aircraft, and
even router protocols that control traffic flow on the Internet. Emerg-
ing applications include high-confidence software systems, autonomous
vehicles and robots, real-time resource management systems, and bi-
ologically engineered systems. At its core, control is an information
science and includes the use of information in both analog and digital
representations.

A modern controller senses the operation of a system, compares it
against the desired behavior, computes corrective actions based on a

model of the system’s response to external inputs, and actuates the
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system to effect the desired change. This basic feedback loop of sens-
ing, computation, and actuation is the central concept in control. The
key issues in designing control logic are ensuring that the dynamics of
the closed loop system are stable (bounded disturbances give bounded
errors) and that they have additional desired behavior (good distur-
bance attenuation, fast responsiveness to changes in operating point,
etc). These properties are established using a variety of modeling and
analysis techniques that capture the essential dynamics of the system
and permit the exploration of possible behaviors in the presence of
uncertainty, noise, and component failure.

A typical example of a control system is shown in Figure [[4l
The basic elements of sensing, computation, and actuation are clearly
seen. In modern control systems, computation is typically implemented
on a digital computer, requiring the use of analog-to-digital (A /D)
and digital-to-analog (D/A) converters. Uncertainty enters the system
through noise in sensing and actuation subsystems, external distur-
bances that affect the underlying system operation, and uncertain dy-
namics in the system (parameter errors, unmodeled effects, etc). The
algorithm that computes the control action as a function of the sensor
values is often called a control law. The system can be influenced exter-
nally by an operator who introduces command signals to the system.
These command signals can be reference values for the system output

or may be more general descriptions of the task the the control system

CHAPTER 1



INTRODUCTION

external disturbances

|

i

— System » Sensors ‘

:

|

Process |
el |
! Clock \
| |
! Y $ ' |
| |
. |

| D/A |= Computer |- A/D |- Filter |« :
? |
: I Controller |

operator input

Figure 1.4: Components of a computer-controlled system. The up-
per dashed box represents the process dynamics, which includes the
sensors and actuators in addition to the dynamical system being con-
trolled. Noise and external disturbances can perturb the dynamics
of the process. The controller is shown in the lower dashed box. It
consists of a filter and analog-to-digital (A/D) and digital-to-analog
(D/A) converters, as well as a computer that implements the control
algorithm. A system clock controls the operation of the controller,
synchronizing the A/D, D/A, and computing processes. The opera-

tor input is also fed to the computer as an external input.

is supposed to implement.

Control engineering relies on and shares tools from physics (dynam-
ics and modeling), computer science (information and software), and
operations research (optimization, probability theory, and game the-
ory), but it is also different from these subjects in both insights and

approach.
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Perhaps the strongest area of overlap between control and other
disciplines is in the modeling of physical systems, which is common
across all areas of engineering and science. One of the fundamental
differences between control-oriented modeling and modeling in other
disciplines is the way in which interactions between subsystems are
represented. Control relies on a type of input/output modeling that
allows many new insights into the behavior of systems, such as distur-
bance attenuation and stable interconnection. Model reduction, where
a simpler (lower-fidelity) description of the dynamics is derived from
a high-fidelity model, is also naturally described in an input/output
framework. Perhaps most importantly, modeling in a control context
allows the design of robust interconnections between subsystems, a fea-
ture that is crucial in the operation of all large engineered systems.

Control is also closely associated with computer science since virtu-
ally all modern control algorithms for engineering systems are imple-
mented in software. However, control algorithms and software can be
very different from traditional computer software because of the cen-
tral role of the dynamics of the system and the real-time nature of the

implementation.
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1.4 USES OF FEEDBACK AND CONTROL

Feedback has many interesting and useful properties. It makes it possi-
ble to design precise systems from imprecise components and to make
relevant quantities in a system change in a prescribed fashion. An
unstable system can be stabilized using feedback, and the effects of
external disturbances can be reduced. Feedback also offers new de-
grees of freedom to a designer by exploiting sensing, actuation, and
computation. In this section we briefly survey some of the important
applications and trends for feedback in the world around us. Consider-
ably more detail is available in several reports describing advances and

directions in the field of control [157, 187, [188] 213].

POWER GENERATION AND TRANSMISSION

Access to electrical power has been one of the major drivers of tech-
nological progress in modern society. Much of the early development
of control was driven by the generation and distribution of electrical
power. Control is mission critical for power systems, and there are
many control loops in individual power stations. Control is also impor-
tant for the operation of the whole power network since it is difficult
to store energy and it is thus necessary to match production to con-
sumption. Power management is a straightforward regulation problem
for a system with one generator and one power consumer, but it is

more difficult in a highly distributed system with many generators and

13
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long distances between consumption and generation. Power demand
can change rapidly in an unpredictable manner, and combining gen-
erators and consumers into large networks makes it possible to share
loads among many suppliers and to average consumption among many

customers.
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Figure 1.5: A small portion of the European power network. In 2016

FEuropean power suppliers operated a single interconnected network
covering a region from the Arctic to the Mediterranean and from the
Atlantic to the Urals. The installed power was more than 800 GW
(8x 10 W) serving more than 500 million citizens. (Source: ENTSO-

E http://www.entsoe.eu)

have therefore been built, such as the one show in Figure

Large transcontinental and transnational power systems
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INTRODUCTION
TELECOMMUNICATIONS

When telecommunications emerged in the early 20th century there was
a strong need to amplify signals to enable telephone communication
over long distances. The only amplifier available at the time was based
on vacuum tubes. Since the properties of vacuum tubes are nonlin-
ear and time varying, the amplifiers created a lot of distortion. A
major advance was made when Black invented the negative feedback
amplifier [45], 46], which made it possible to obtain stable amplifiers
with linear characteristics. Research on feedback amplifiers also gener-
ated fundamental understanding of feedback in the form of Nyquist’s
stability criterion [192] and Bode’s methods for design of feedback am-
plifiers and his theorems on fundamental limits [51]. Feedback is used
extensively in cellular phones and networks, and the future 5G com-
munication networks will permit execution of real-time control systems

over the networks [243].

AEROSPACE AND TRANSPORTATION

In aerospace, control has been a key technological capability tracing
back to the beginning of the 20th century. Indeed, the Wright brothers
are correctly famous not for demonstrating simply powered flight but
controlled powered flight. Their early Wright Flyer incorporated mov-
ing control surfaces (vertical fins and canards) and warpable wings that

allowed the pilot to regulate the aircraft’s flight. In fact, the aircraft
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itself was not stable, so continuous pilot corrections were mandatory.
This early example of controlled flight was followed by a fascinating
success story of continuous improvements in flight control technology,
culminating in the high-performance, highly reliable automatic flight
control systems we see in modern commercial and military aircraft to-

day.

MATERIALS AND PROCESSING

The chemical industry is responsible for the remarkable progress in
developing new materials that are key to our modern society. In addi-
tion to the continuing need to improve product quality, several other
factors in the process control industry are drivers for the use of con-
trol. Environmental statutes continue to place stricter limitations on
the production of pollutants, forcing the use of sophisticated pollution
control devices. Environmental safety considerations have led to the
design of smaller storage capacities to diminish the risk of major chem-
ical leakage, requiring tighter control on upstream processes and, in
some cases, supply chains. And large increases in energy costs have
encouraged engineers to design plants that are highly integrated, cou-
pling many processes that used to operate independently. All of these
trends increase the complexity of these processes and the performance
requirements for the control systems, making control system design

increasingly challenging.
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INSTRUMENTATION

The measurement of physical variables is of prime interest in science
and engineering. Consider, for example, an accelerometer, where early
instruments consisted of a mass suspended on a spring with a deflec-
tion sensor. The precision of such an instrument depends critically on
accurate calibration of the spring and the sensor. There is also a de-
sign compromise because a weak spring gives high sensitivity but low
bandwidth. A different way of measuring acceleration is to use force
feedback. The spring is replaced by a voice coil that is controlled so that
the mass remains at a constant position. The acceleration is propor-
tional to the current through the voice coil. In such an instrument, the
precision depends entirely on the calibration of the voice coil and does
not depend on the sensor, which is used only as the feedback signal.
The sensitivity /bandwidth compromise is also avoided.

Another important application of feedback is in instrumentation for
biological systems. Feedback is widely used to measure ion currents in
cells using a device called a voltage clamp, which is illustrated in Fig-
ure [[L6l Hodgkin and Huxley used the voltage clamp to investigate
propagation of action potentials in the giant axon of the squid. In
1963 they shared the Nobel Prize in Medicine with Eccles for “their
discoveries concerning the ionic mechanisms involved in excitation and
inhibition in the peripheral and central portions of the nerve cell mem-

brane.” A refinement of the voltage clamp called a patch clamp made
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Figure 1.6: The voltage clamp method for measuring ion currents
in cells using feedback. A pipette is used to place an electrode in a
cell (left) and maintain the potential of the cell at a fixed level. The
internal voltage in the cell is v;, and the voltage of the external fluid
is ve. The feedback system (right) controls the current I into the cell
so that the voltage drop across the cell membrane Av = v; — ve i8
equal to its reference value Av,. The current I is then equal to the

ion current.

it possible to measure exactly when a single ion channel is opened
or closed. This was developed by Neher and Sakmann, who received
the 1991 Nobel Prize in Medicine “for their discoveries concerning the

function of single ion channels in cells.”

RoOBOTICS AND INTELLIGENT MACHINES

The goal of cybernetic engineering, already articulated in the 1940s
and even before, has been to implement systems capable of exhibiting
highly flexible or “intelligent” responses to changing circumstances [21].
In 1948 the MIT mathematician Norbert Wiener gave a widely read
account of cybernetics [253]. A more mathematical treatment of the el-

ements of engineering cybernetics was presented by H. S. Tsien in 1954,
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Figure 1.7: Autonomous vehicles. The figure on the left is a DJI
Phantom 3 drone, which is able to maintain its position using GPS
and inertial sensors. The figure on the right is an autonomous car
that was developed by nuTonomy and is capable of driving on city
streets by using sophisticated sensing and decision-making (control)
software (photo courtesy Hyundai-Aptiv Autonomous Driving Joint

Venture, LLC).

driven by problems related to the control of missiles [242]. Together,
these works and others of that time form much of the intellectual basis
for modern work in robotics and control.

Two recent areas of advancement in robotics and autonomous sys-
tems are (consumer) drones and autonomous cars, some examples of
which are shown in Figure [[71 Quadrocopters such as the DJI Phan-
tom make use of GPS receivers, accelerometers, magnetometers, and
gyros to provide stable flight and also use stabilized camera platforms
to provide high quality images and movies. Autonomous vehicles, such
as the Google autonomous car project (now Waymo), make use of a
variety of laser rangefinders, cameras, and radars to perceive their envi-

ronment and then use sophisticated decision-making and control algo-
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rithms to enable them to safely drive in a variety of traffic conditions,

from high-speed freeways to crowded city streets.

NETWORKS AND COMPUTING SYSTEMS

Control of networks is a large research area spanning many topics,
including congestion control, routing, data caching, and power man-
agement. Several features of these control problems make them very
challenging. The dominant feature is the extremely large scale of the
system: the Internet is probably the largest feedback control system
humans have ever built. Another is the decentralized nature of the
control problem: decisions must be made quickly and based only on
local information. Stability is complicated by the presence of varying
time lags, as information about the network state can be observed or
relayed to controllers only after a delay, and the effect of a local control
action can be felt throughout the network only after substantial delay.

Related to the control of networks is control of the servers that
sit on these networks. Computers are key components of the systems
of routers, web servers, and database servers used for communication,
electronic commerce, advertising, and information storage. A typical
example of a multilayer system for e-commerce is shown in Figure [[.8al
The system has several tiers of servers. The edge server accepts incom-
ing requests and routes them to the HT'TP server tier where they are

parsed and distributed to the application servers. The processing for
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Figure 1.8: A multitier system for services on the Internet. In the
complete system shown schematically in (a), users request information
from a set of computers (tier 1), which in turn collect information from
other computers (tiers 2 and 3). The individual server shown in (b)
has a set of reference parameters set by a (human) system operator,
with feedback used to maintain the operation of the system in the

presence of uncertainty. (Based on Hellerstein et al. [116].)

different requests can vary widely, and the application servers may also
access external servers managed by other organizations. Control of an
individual server in a layer is illustrated in Figure[.8Dl A quantity rep-
resenting the quality of service or cost of operation—such as response
time, throughput, service rate, or memory usage—is measured in the
computer. The control variables might represent incoming messages ac-
cepted, priorities in the operating system, or memory allocation. The

feedback loop then attempts to maintain quality-of-service variables
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within a target range of values.

EcoNowMmiIcs

The economy is a large dynamical system with many actors: govern-
ments, organizations, companies, and individuals. Governments con-
trol the economy through laws and taxes, the central banks by set-
ting interest rates, and companies by setting prices and making invest-
ments. Individuals control the economy through purchases, savings,
and investments. Many efforts have been made to model and control
the system both at the macro level and at the micro level, but this
modeling is difficult because the system is strongly influenced by the
behaviors of the different actors in the system.

The financial system can be viewed as a global controller for the
economy. Unfortunately this important controller does not always
function as desired, as expressed in the following quote by Paul Krug-

man [152]:

We have magneto trouble, said John Maynard Keynes at the
start of the Great Depression: most of the economic engine was
in good shape, but a crucial component, the financial system, was
not working. He also said this: “We have involved ourselves in
a colossal muddle, having blundered in the control of a delicate
machine, the working of which we do not understand.” Both

statements are as true now as they were then.
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Figure 1.9: Supply chain dynamics (after Forrester [88]). Products
flow from the producer to the customer through distributors and re-
tailers as indicated by the solid lines. There are typically many facto-
ries and warehouses and even more distributors and retailers. Dashed
lines represent feedback and feedforward information flowing between
the various agents in the chain. Multiple feedback loops are present

as each agent tries to maintain the proper inventory level.

One of the reasons why it is difficult to model economic systems is
that conservation laws for important variables are missing. A typical
example is that the value of a company as expressed by its stock can
change rapidly and erratically. There are, however, some areas with
conservation laws that permit accurate modeling. One example is the
flow of products from a manufacturer to a retailer, as illustrated in Fig-
ure [[LI The products are physical quantities that obey a conservation
law, and the system can be modeled by accounting for the number of
products in the different inventories. There are considerable economic
benefits in controlling supply chains so that products are available to
customers while minimizing products that are in storage. Realistic sup-

ply chain problems are more complicated than indicated in the figure
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because there may be many different products, there may be differ-
ent factories that are geographically distributed, and the factories may

require raw material or subassemblies.

FEEDBACK IN NATURE

Many problems in the natural sciences involve understanding aggre-
gate behavior in complex large-scale systems. This behavior emerges
from the interaction of a multitude of simpler systems with intricate
patterns of information flow. Representative examples can be found in
fields ranging from embryology to seismology. Researchers who special-
ize in the study of specific complex systems often develop an intuitive
emphasis on analyzing the role of feedback (or interconnection) in fa-
cilitating and stabilizing aggregate behavior. We briefly highlight three
application areas here.

A major theme currently of interest to the biology community is
the science of reverse (and eventually forward) engineering of biolog-
ical control networks such as the one shown in Figure [LI0l There
are a wide variety of biological phenomena that provide a rich source
of examples of control, including gene regulation and signal transduc-
tion; hormonal, immunological, and cardiovascular feedback mecha-
nisms; muscular control and locomotion; active sensing, vision, and
proprioception; attention and consciousness; and population dynamics

and epidemics. Each of these (and many more) provide opportunities
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Figure 1.10: The wiring diagram of the growth-signaling circuitry
of the mammalian cell [I13]. The major pathways that are thought
to play a role in cancer are indicated in the diagram. Lines represent
interactions between genes and proteins in the cell. Lines ending
in arrowheads indicate activation of the given gene or pathway; lines
ending in a T-shaped head indicate repression. (Used with permission

of Elsevier Ltd. and the authors.)

to figure out what works, how it works, and what we can do to affect
it.

In contrast to individual cells and organisms, emergent properties
of aggregations and ecosystems inherently reflect selection mechanisms
that act on multiple levels, and primarily on scales well below that of
the system as a whole. Because ecosystems are complex, multiscale dy-

namical systems, they provide a broad range of new challenges for the
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modeling and analysis of feedback systems. Recent experience in ap-
plying tools from control and dynamical systems to bacterial networks
suggests that much of the complexity of these networks is due to the
presence of multiple layers of feedback loops that provide robust func-
tionality to the individual cell [145] 230} 259]. Yet in other instances,
events at the cell level benefit the colony at the expense of the indi-
vidual. Systems level analysis can be applied to ecosystems with the
goal of understanding the robustness of such systems and the extent
to which decisions and events affecting individual species contribute to
the robustness and/or fragility of the ecosystem as a whole.

In nature, development of organisms and their control systems have
often developed in synergy. The development of birds is an interesting

example, as noted by John Maynard Smith in 1952 [224]:

[T]he earliest birds, pterosaurs, and flying insects were stable.
This is believed to be because in the absence of a highly evolved
sensory and nervous system they would have been unable to fly if
they were not. ... To a flying animal there are great advantages
to be gained by instability. The greater manoeuvrability is of
equal importance to an animal which catches its food in the air
and to the animals upon which it preys. ... It appears that in the
birds and at least in some insects [...] the evolution of the sensory
and nervous systems rendered the stability found in earlier forms

no longer necessary.
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1.5 FEEDBACK PROPERTIES

Feedback is a powerful idea which, as we have seen, is used extensively
in natural and technological systems. The principle of feedback is sim-
ple: base correcting actions on the difference between desired and ac-
tual performance. In engineering, feedback has been rediscovered and
patented many times in many different contexts. The use of feedback
has often resulted in vast improvements in system capability, and these
improvements have sometimes been revolutionary, as discussed above.
The reason for this is that feedback has some truly remarkable proper-
ties. In this section we will discuss some of the properties of feedback
that can be understood intuitively. This intuition will be formalized in

subsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness to uncertainty.
For example, by measuring the difference between the sensed value of a
regulated signal and its desired value, we can supply a corrective action
to partially compensate for the effect of disturbances. This is precisely
the effect that Watt exploited in his use of the centrifugal governor
on steam engines. Another use of feedback is to provide robustness
to variations in the process dynamics. If the system undergoes some
change that affects the regulated signal, then we sense this change and

try to force the system back to the desired operating point, even if
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Figure 1.11: A feedback system for controlling the velocity of a
vehicle. In the block diagram on the left, the velocity of the vehicle is
measured and compared to the desired velocity within the “Compute”
block. Based on the difference in the actual and desired velocities, the
throttle (or brake) is used to modify the force applied to the vehicle
by the engine, drivetrain, and wheels. The figure on the right shows
how the velocity changes when the car travels on a horizontal road
and the slope of the road changes to a constant uphill slope. The
three different curves correspond to differing masses of the vehicle,
between 1200 and 2000 kg, demonstrating that feedback can indeed
compensate for the changing slope and that the closed loop system is

robust to a large change in the vehicle characteristics.

the process parameters are not directly measured. In this way, a feed-
back system provides robust performance in the presence of uncertain
dynamics.

As an example, consider the simple feedback system shown in Fig-
ure [LTIl  In this system, the velocity of a vehicle is controlled by

adjusting the amount of gas flowing to the engine. Simple proportional-
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integral (PT) feedback is used to make the amount of gas depend on
both the error between the current and the desired velocity and the
integral of that error. The plot on the right shows the effect of this
feedback when the vehicle travels on a horizontal road and it encoun-
ters an uphill slope. When the slope changes, the car decelerates due
to gravity forces and the velocity initially decreases. The velocity error
is sensed by the controller, which acts to restore the velocity to the
desired value by increasing the throttle. The figure also shows what
happens when the same controller is used for a different masses of the
car, which might result from having a different number of passengers or
towing a trailer. Notice that the steady-state velocity of the vehicle al-
ways approaches the desired velocity and achieves that velocity within
approximately 15 s, independent of the mass (which varies by a factor
of + 25%), Thus feedback improves both performance and robustness
of the system.

Another early example of the use of feedback to provide robustness
is the negative feedback amplifier. When telephone communications
were developed, amplifiers were used to compensate for signal attenua-
tion in long lines. A vacuum tube was a component that could be used
to build amplifiers. Distortion caused by the nonlinear characteristics
of the tube amplifier together with amplifier drift were obstacles that
prevented the development of line amplifiers for a long time. A major

breakthrough was the invention of the feedback amplifier in 1927 by
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Harold S. Black, an electrical engineer at Bell Telephone Laboratories.
Black used negative feedback, which reduces the gain but makes the am-
plifier insensitive to variations in tube characteristics. This invention
made it possible to build stable amplifiers with linear characteristics

despite the nonlinearities of the vacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a system. Through
feedback, we can alter the behavior of a system to meet the needs of
an application: systems that are unstable can be stabilized, systems
that are sluggish can be made responsive, and systems that have drift-
ing operating points can be held constant. Control theory provides a
rich collection of techniques to analyze the stability and dynamic re-
sponse of complex systems and to place bounds on the behavior of such
systems by analyzing the gains of linear and nonlinear operators that
describe their components.

An example of the use of control in the design of dynamics comes
from the area of flight control. The following quote, from a lecture
presented by Wilbur Wright to the Western Society of Engineers in
1901 [I80], illustrates the role of control in the development of the

airplane:

Men already know how to construct wings or airplanes, which

when driven through the air at sufficient speed, will not only
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sustain the weight of the wings themselves, but also that of the
engine, and of the engineer as well. Men also know how to build
engines and screws of sufficient lightness and power to drive these
planes at sustaining speed ... Inability to balance and steer still
confronts students of the flying problem ... When this one feature
has been worked out, the age of flying will have arrived, for all

other difficulties are of minor importance.

The Wright brothers thus realized that control was a key issue to
enable flight. They resolved the compromise between stability and
maneuverability by building an airplane, the Wright Flyer, that was
unstable but maneuverable. The Flyer had a rudder in the front of the
airplane, which made the plane very maneuverable. A disadvantage
was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other
early aviators tried to build stable airplanes. These would have been
easier to fly, but because of their poor maneuverability they could not
be brought up into the air. The Wright Brothers were well aware of the
compromise between stability and maneuverability when the designed
they Wright Flyer [77] and they made the first successful flight at Kitty
Hawk in 1903. Modern fighter airplanes are also unstable in certain
flight regimes, such as take-off and landing.

Since it was quite tiresome to fly an unstable aircraft, there was

strong motivation to find a mechanism that would stabilize an aircraft.
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Such a device, invented by Sperry, was based on the concept of feed-
back. Sperry used a gyro-stabilized pendulum to provide an indication
of the vertical. He then arranged a feedback mechanism that would
pull the stick to make the plane go up if it was pointing down, and vice
versa. The Sperry autopilot was the first use of feedback in aeronauti-
cal engineering, and Sperry won a prize in a competition for the safest
airplane in Paris in 1914. Figure shows the Curtiss seaplane and
the Sperry autopilot. The autopilot is a good example of how feed-
back can be used to stabilize an unstable system and hence “design

the dynamics” of the aircraft.

Creating Modularity

Feedback can be used to create modularity and shape well-defined rela-
tions between inputs and outputs in a structured hierarchical manner.
A modular system is one in which individual components can be re-
placed without having to modify the entire system. By using feedback,
it is possible to allow components to maintain their input/output prop-
erties in a manner that is robust to changes in its interconnections. A
typical example is the electrical drive system shown in Figure [[.13]
which has an architecture with three cascaded loops. The innermost
loop is a current loop, where the current controller (CC) drives the
amplifier so that the current to the motor tracks a commanded value

(often called the “setpoint”). The middle feedback loop uses a velocity
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Figure 1.12: Aircraft autopilot system. The Sperry autopilot (left)
contained a set of four gyros coupled to a set of air valves that con-
trolled the wing surfaces. The 1912 Curtiss used an autopilot to sta-
bilize the roll, pitch, and yaw of the aircraft and was able to maintain

level flight as a mechanic walked on the wing (right) [124].

controller (VC) to drive the setpoint of the current controller so that ve-
locity follows its commanded value. The outer loop drives the setpoint
of the velocity loop to follow the setpoint of the position controller PC.

The control architecture with nested loops shown in Figure is

common. It simplifies design, commissioning, and operation. Consider
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Figure 1.13: Block diagram of a system for position control. The
system has three cascaded loops for control of current, velocity, and
position. Each loop has an externally supplied reference value (de-
noted by the subscript ‘r’) that sets the nominal value of the input
to the loop, which is added to output from next outermost loop to

determine the commanded value for the loop (called the “setpoint”).

for example the design of the velocity loop. With a well-designed cur-
rent controller the motor current follows the setpoint of the controller
CC. Since the motor torque is proportional to the current, the dynamics
relating motor velocity to the input of the current controller is approx-
imately an integrator. This simplified model can be used to design
the velocity loop so that effects of friction and other disturbances are
reduced. With a well-designed velocity loop, the design of the position
loop is also simple. The loops can also be tuned sequentially starting
with the inner loop.

This architecture illustrates how feedback can be used to simplify
the overall design of the controller by breaking the problem into stages.
This architecture also provides a level of modularity since each design

stage depends only on the closed loop behavior of the system. If we
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replace the motor when a new motor, then by redesigning the current
controller (CC) to give the same closed loop performance, we can leave
the outer level loops unchanged. Similarly, if we need to redesign one
of the outer layer controllers for an application with different specifica-
tions, we can often make use of an existing inner loop design (as long
as the existing design provide enough performance to satisfy the outer

loop requirements).

Challenges of Feedback

While feedback has many advantages, it also has some potential draw-
backs. Chief among these is the possibility of instability if the system
is not designed properly. We are all familiar with the effects of positive
feedback when the amplification on a microphone is turned up too high
in a room. This is an example of feedback instability, something that
we obviously want to avoid. This is tricky because we must design
the system not only to be stable under nominal conditions but also to
remain stable under all possible perturbations of the dynamics.

In addition to the potential for instability, feedback inherently cou-
ples different parts of a system. One common problem is that feedback
often injects measurement noise into the system. Measurements must
be carefully filtered so that the actuation and process dynamics do not
respond to them, while at the same time ensuring that the measure-

ment signal from the sensor is properly coupled into the closed loop
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dynamics (so that the proper levels of performance are achieved).
Another potential drawback of control is the complexity of em-
bedding a control system into a product. While the cost of sensing,
computation, and actuation has decreased dramatically in the past few
decades, the fact remains that control systems are often complicated,
and hence one must carefully balance the costs and benefits. An early
engineering example of this is the use of microprocessor-based feed-
back systems in automobiles. The use of microprocessors in automotive
applications began in the early 1970s and was driven by increasingly
strict emissions standards, which could be met only through electronic
controls. Early systems were expensive and failed more often than de-
sired, leading to frequent customer dissatisfaction. It was only through
aggressive improvements in technology that the performance, reliabil-
ity, and cost of these systems allowed them to be used in a transparent
fashion. Even today, the complexity of these systems is such that it is

difficult for an individual car owner to fix problems.

1.6 SIMPLE FORMS OF FEEDBACK

The idea of feedback to make corrective actions based on the differ-
ence between the desired and the actual values of a quantity can be
implemented in many different ways. The benefits of feedback can
be obtained by very simple feedback laws such as on-off control, pro-

portional control, and proportional-integral-derivative control. In this
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Figure 1.14: Input/output characteristics of on-off controllers. Each
plot shows the input on the horizontal axis and the corresponding
output on the vertical axis. Ideal on-off control is shown in (a), with
modifications for a dead zone (b) or hysteresis (¢). Note that for on-
off control with hysteresis, the output depends on the value of past

inputs.

section we provide a brief preview of some of the topics that will be

studied more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

Umax 1f € >0,
u= (1.1)

Umin  1f € <0,
where the control error e = r —1y is the difference between the reference
(or command) signal 7 and the output of the system y, and u is the
actuation command. Figure [L.14al shows the relation between error
and control. This control law implies that maximum corrective action

is always used.
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The feedback in equation (LLT) is called on-off control. One of its
chief advantages is that it is simple and there are no parameters to
choose. On-off control often succeeds in keeping the process variable
close to the reference, such as the use of a simple thermostat to maintain
the temperature of a room. It typically results in a system where the
controlled variables oscillate, which is often acceptable if the oscillation
is sufficiently small.

Notice that in equation (I1]) the control variable is not defined when
the error is zero. It is common to make modifications by introducing

either a dead zone or hysteresis (see Figures [L14D and [LT4d).

PID Control

The reason why on-off control often gives rise to oscillations is that the
system overreacts since a small change in the error makes the actuated
variable change over the full range. This effect is avoided in proportional
control, where the characteristic of the controller is proportional to the
control error for small errors. This can be achieved with the control

law

Upax  if € > epax,

U= 9Nkpe if emin < € < emax, (1.2)

Upin  1f € < emin,
\

where k, is the controller gain, €min = Umin/kp, and €max = Umax/kp-

The interval (€min, €max) i called the linear range because the behavior
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of the controller is linear when the error is in this interval:
u=ky(r—y)=kpe if emin < € < €max- (1.3)

While a vast improvement over on-off control, proportional control
has the drawback that the process variable often deviates from its ref-
erence value. In particular, if some level of control signal is required
for the system to maintain a desired value, then we must have e # 0
in order to generate the requisite input.

This can be avoided by making the control action proportional to

the integral of the error:

u(t) = ki/o e(T)dr. (1.4)

This control form is called integral control, and k; is the integral gain.
It can be shown through simple arguments that a controller with in-
tegral action has zero steady-state error (Exercise [[LH]). The catch is
that there may not always be a steady state because the system may
be oscillating. In addition, if the control action has magnitude limits,
as in equation (L2), an effect known as “integrator windup” can occur
and may result in poor performance unless appropriate “anti-windup”
compensation is used. Despite the potential drawbacks, which can be
overcome with careful analysis and design, the benefits of integral feed-
back in providing zero error in the presence of constant disturbances

have made it one of the most used forms of feedback.
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An additional refinement is to provide the controller with an antic-
ipative ability by using a prediction of the error. A simple prediction

is given by the linear extrapolation

de(t)
dt -’

e(t+Ty) ~e(t)+ Ty

which predicts the error Ty time units ahead. Combining proportional,
integral, and derivative control, we obtain a controller that can be

expressed mathematically as

de(t)
dt

u(t) = kpe(t) + k; /t e(r)dr + kq . (1.5)

The control action is thus a sum of three terms: the present as repre-
sented by the proportional term, the past as represented by the integral
of the error, and the future as represented by a linear extrapolation
of the error (the derivative term). This form of feedback is called a
proportional-integral-derivative (PID) controller and its action is illus-
trated in Figure

A PID controller is very useful and is capable of solving a wide range
of control problems. More than 95% of all industrial control problems
are solved by PID control, although many of these controllers are ac-
tually proportional-integral (PI) controllers because derivative action is

often not included [70].
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Error A Present

Time

Figure 1.15: Action of a PID controller. At time ¢, the proportional
term depends on the instantaneous value of the error. The integral
portion of the feedback is based on the integral of the error up to time
t (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of change
of the error. Ty represents the approximate amount of time in which

the error is projected forward (see text).

1.7 COMBINING FEEDBACK WITH LOGIC

Continuous control is often combined with logic to cope with different
operating conditions. Logic is typically related to changes in operating
mode, equipment protection, manual interaction, and saturating actu-
ators. One situation is when there is one variable that is of primary
interest, but other variables may have to be controlled for equipment
protection. For example, when controlling a compressor the outflow is
the primary variable but it may be necessary to switch to a different
mode to avoid compressor stall, which may damage the compressor.
We illustrate some ways in which logic and feedback are combined by

a few examples.
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resume

(a) User interface (b) State machine

Figure 1.16: Finite state machine for cruise control system. The
figure on the left shows some typical buttons used to control the sys-
tem. The controller can be in one of four modes, corresponding to
the nodes in the diagram on the right. Transition between the modes
is controlled by pressing one of the four buttons on the cruise control

interface: on/off, set, resume, or cancel.

Cruise control

The basic control function in a cruise controller, such as the one shown
in Figure [LTIl is to keep the velocity constant. It is typically done
with a PI controller. The controller normally operates in automatic
mode but it is is necessary to switch it off when braking, accelerating,
or changing gears. The cruise control system has a human—machine in-
terface that allows the driver to communicate with the system. There
are many different ways to implement this system; one version is illus-
trated in Figure [[LT6al The system has four buttons: on/off, coast/set,
resume/accelerate, and cancel. The operation of the system is governed
by a finite state machine that controls the modes of the PI controller

and the reference generator, as shown in Figure [[LI6Dl
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The finite state machine has four modes: off, standby, cruise, and
hold. The state changes depending on actions of the driver who can
brake, accelerate, and operate using the buttons. The on/off switch
moves the states between off and standby. From standby the system
can be moved to cruise by pushing the set/coast button. The velocity
reference is set as the velocity of the car when the button is released.
In the cruise state the operator can change the velocity reference; it is
increased using the resume/accelerate button and decreased using the
set/coast button. If the driver accelerates by pushing the gas pedal
the speed increases, but it will go back to the set velocity when the gas
pedal is released. If the driver brakes then the car slows, and the cruise
controller goes into hold but it remembers the setpoint of the controller.
It can be brought to the cruise state by pushing the resume/accelerate
button. The system also moves from cruise mode to standby if the
cancel button is pushed. The reference for the velocity controller is
remembered. The system goes into off mode by pushing on/off when
the system is engaged.

The PI controller is designed to have good regulation properties and
to give good transient performance when switching between resume and

control modes.
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Figure 1.17: Large computer “server farm.” The National Energy

Research Scientific Computing Center (NERSC) at Lawrence Berkeley

National Laboratory. (Figure courtesy U.S. Department of Energy)

Server Farms

Server farms consist of a large number of computers for providing In-
ternet services (cloud computing). Large server farms, such as the
one shown in Figure [[LI7] may have thousands of processors. Power
consumption for driving the servers and for cooling them is a prime
concern. The cost for energy can be more than 40% of the operat-
ing cost for data centers [83]. The prime task of the server farm is
to respond to a strongly varying computing demand. There are con-

straints given by electricity consumption and the available cooling ca-
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pacity. The throughput of an individual server depends on the clock
rate, which can be changed by adjusting the voltage applied to the sys-
tem. Increasing the supply voltage increases the energy consumption
and more cooling is required.

Control of server farms is often performed using a combination of
feedback and logic. Capacity can be increased rapidly if a server is
switched on simply by increasing the voltage to a server, but a server
that is switched on consumes energy and requires cooling. To save
energy it is advantageous to switch off servers that are not required,
but it takes some time to switch on a new server. A control system for
a server farm requires individual control of the voltage and cooling of
each server and a strategy for switching servers on and off. Temper-
ature is also important. Overheating will reduce the life time of the
system and may even destroy it. The cooling system is complicated
because cooling air goes through the servers in series and parallel. The
measured value for the cooling system is therefore the server with the
highest temperature. Temperature control is accomplished by a com-
bination of feedforward logic to determine when servers are switched

on and off and feedback using PID control.

Air—Fuel Control

Air—fuel control is an important problem for ship boilers. The control

system consists of two loops for controlling air and oil flow and a su-
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Figure 1.18: Air—fuel controller based on selectors. The left fig-
ure shows the system architecture. The letters R and Y in the PI
controller denote the input ports for reference and measured signal
respectively. The right figure shows a simulation where the power
reference r is changed stepwise at ¢ = 1 and ¢t = 15. Notice that the
normalized air flow is larger than the normalized fuel flow both for

increasing and decreasing reference steps.

pervisory controller that adjusts the air—fuel ratio. The ratio should
be adjusted for optimal efficiency when the ships are on open sea but
it is necessary to run the system with air excess when the ships are in
the harbor, since generating black smoke will result in heavy penalties.

An elegant solution to the problem can be obtained by combining
PI controllers with maximum and minimum selectors, as shown in Fig-
ure [LI8a. A selector is a static system with several inputs and one
output: a maximum selector gives an output that is the largest of the
inputs, a minimum selector gives an output that is the smallest of the

inputs. Consider the situation when the power demand is increased:
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the reference r to the air controller is selected as the commanded power
level by the maximum selector, and the reference to the oil flow con-
troller is selected as the measured airflow. The oil flow will lag the air
flow and there will be air excess. When the commanded power level
is decreased, the reference of the oil flow controller is selected as the
power demand by the minimum selector and the reference for the air
flow controller is selected as the oil flow by the the maximum selector.
The system then operates with air excess when power is decreased.

The resulting response of the system for step changes in the de-
sired power level is shown in Figure [LI8D] verifying that the system
maintains air excess for both power increases and decreases.

Selectors are commonly used to implement logic in engines and
power systems. They are also used for systems that require very
high reliability: by introducing three sensors and only accepting values
where two sensors agree it is possible to guard for the failure of a single

Sensor.

1.8 CONTROL SYSTEM ARCHITECTURES

Most of the control systems we are investigating in this book will be
relatively simple feedback loops. In this section we will try to give a
glimpse of the fact that in reality the simple loops combine to form a

complex system that often has a hierarchical structure with controllers,
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Figure 1.19: Layered decomposition of a control system.

logic, and optimization in different combinations. Figure shows
one representation of such a hierarchy, exposing different “layers” of
the control system. The details of this class of systems is beyond the
scope of this text, but we present a few representative examples to

illustrate some basic points.

Freight Train Trip Optimizer

An example of two of the layers represented in Figure [L19 can be see
in the control of modern locomotives developed by General Electric
(GE). Typical requirements for operating a freight train are to arrive

on time and to use as little fuel as possible. The key issue is to avoid



INTRODUCTION

Speed limit

Reference
speed
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105

Figure 1.20: Freight train trip optimizer. GE’s Trip Optimizer™
takes data about the train, the terrain, and the propulsion system and
computes the best speed for the train in order to reach the destination
on time while burning the least amount of diesel fuel. (Figure courtesy

GE.)

unnecessary braking. Figure illustrates a system developed by
GE. At the low layer the train has a speed regulator and a simple
logic to avoid entering a zone where there is another train. The key
disturbance for the speed control is the slope of the ground. The speed
controller has a model of the track, a GPS sensor, and an estimator.
The setpoint for the speed controller is obtained from a trip optimizer,
which computes a driving plan that minimizes the fuel consumption
while arriving at the desired arrival time. The arrival time is provided
by a dispatch center, which in turn may use its own optimization.
These optimizations represent the second layer in Figure [L. 19 with the
top layer (decision-making) provided by the human operator.
Diesel-electric freight locomotives pull massive loads of freight cars,
weighing more than 20,000 tons (US), and may be more than a mile in

length. A typical locomotive burns about 35,000 gallons per year and
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can save an average 10% using the Trip Optimizer autopilot, repre-

senting a substantial savings in cost, natural resources, and pollution.

Process Control Systems

Process control systems are used to monitor and regulate the manu-
facturing of a wide range of chemicals and materials. One example is
a paper factory, such as the one depicted in Figure [L2I] The factory
produces paper for a variety of purposes from logs of wood. There are
multiple fiber lines and paper machines, with a few dozen mechanical
and chemical production processes that convert the logs to a slurry of
fibers in different steps, and then paper machines that convert the fiber
slurry to paper. Each production unit has PI(D) controllers that con-
trol flow, temperature, and tank levels. The loops typically operate on
time scales from fractions of seconds to minutes. There is logic to make
sure that the process is safe and there is sequencing for start, stop, and
production changes. The setpoints of the low level control loops are
determined from production rates and recipes, sometimes using opti-
mization. The operation of the system is governed by a supervisory
system that measures tank levels and sets the production rates of the
different production units. This system performs optimization based
on demanded production, measurement of tank levels, and flows. The

optimization is performed at the time scale of minutes to hours, and
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Figure 1.21: Schematic diagram for a pulp and paper manufacturing
plant. The input to the plant is wood (upper left), which is then

processed through a number of stages to create paper products.

it is constrained by the production rates of the different production
units. Processes for continuous production in the chemical and phar-
maceutical industry are similar to the paper factory but the individual
production units may be very different.

One of the features of modern process control systems is that they
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Figure 1.22: Functional architecture of process control system, im-

plemented as a distributed control system (DCS). Figure courtesy of

ABB, Inc.

operate across many time and spatial scales. Modern process control

systems are also integrated with supply chains and product distribution

chains, leading to the use of production planning systems and enter-

prise resource management systems. An example of an architecture for

distributed control system (DCS), typical for complex manufacturing

systems, is shown in Figure [[.22]

Autonomous Driving

The cruise controller in Figure [L.11] relieves the driver of one task,

to keep constant speed, but a driver still has many tasks to perform:
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Figure 1.23: DARPA Grand Challenge. “Alice,” Team Caltech’s
entry in the 2005 and 2007 competitions and its networked control

architecture [66].

plan the route, avoid collisions, decide the proper speed, perform lane
changes, make turns, and keep proper distance to the car ahead. Car
manufacturers are continuously automating more and more of these
functions, going as far as automatic driving. As an example of a control
system for an autonomous vehicle is shown in Figure [[.23] This control
system is designed for driving in urban environments. The feedback
system fuses data from road and traffic sensors (cameras, laser range
finders, and radar) to create a multi-layer “map” of the environment
around the vehicle. This map is used to make decisions about actions
that the vehicle should take (drive, stop, change lanes) and plan a
specific path for the vehicle to follow. An optimization-based planner
is used to compute the trajectory for the vehicle to follow, which is
passed to a trajectory tracking (path following) module. A supervisory

control module performs higher-level tasks such as mission planning
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and contingency management (if a sensor or actuator fails).

We see that this architecture has the basic features shown in Fig-
ure [LT9 The control layers are shown in the planning and control
blocks, with the mission planner and traffic planner representing two
levels of discrete decision-making logic, the path planner representing a
trajectory optimization function, and then the lower layers of control.
Similarly, there are multiple layers of sensing, with low level infor-
mation, such as vehicle speed and position in the lane, being sent to
the trajectory tracking controller, while higher level information about
other vehicles on the road and their predicted motions is sent to the

trajectory, traffic, and mission planners.

1.9 FURTHER READING

The material in the first half of this chapter draws from the report of the
Panel on Future Directions on Control, Dynamics and Systems [187].
Several additional papers and reports have highlighted the successes of
control [I91] and new vistas in control [506] 153, 157, 213, 257]. The
early development of control is described by Mayr [179] and in the
books by Bennett [34], 35], which cover the period 1800-1955. A fas-
cinating examination of some of the early history of control in the
United States has been written by Mindell [I83]. A popular book that

describes many control concepts across a wide range of disciplines is
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Out of Control by Kelly [142].

There are many textbooks available that describe control systems
in the context of specific disciplines. For engineers, the textbooks by
Franklin, Powell, and Emami-Naeini [92], Dorf and Bishop [72], Kuo
and Golnaraghi [I56], and Seborg, Edgar, and Mellichamp [219] are
widely used. More mathematically oriented treatments of control the-
ory include Sontag [225] and Lewis [162]. At the opposite end of the
spectrum, the textbook Feedback Control for Everyone [7] provides
a readable introduction with minimal mathematical background re-
quired. The books by Hellerstein et al. [116] and Janert [130] provide
descriptions of the use of feedback control in computing systems. A
number of books look at the role of dynamics and feedback in biological
systems, including Milhorn [I82] (now out of print), J. D. Murray [186],
and Ellner and Guckenheimer [82]. The book by Fradkov [90] and the
tutorial article by Bechhoefer [30] cover many specific topics of interest
to the physics community.

Systems that combine continuous feedback with logic and sequenc-
ing are called hybrid systems. The theory required to properly model
and analyze such systems is outside the scope of this text, but a com-
prehensive description is given by Goebel, Sanfelice, and Teele [103]. It
is very common that practical control systems combine feedback con-
trol with logic sequencing and selectors; many examples are given by

Astrom and T. Higglund [19].
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EXERCISES

1.1 Identify five feedback systems that you encounter in your every-
day environment. For each system, identify the sensing mechanism,
actuation mechanism, and control law. Describe the uncertainty with
respect to which the feedback system provides robustness and/or the

dynamics that are changed through the use of feedback.

1.2 (Balance systems) Balance yourself on one foot with your eyes
closed for 15 s. Using Figure [[L4] as a guide, describe the control sys-
tem responsible for keeping you from falling down. Note that the “con-
troller” will differ from that in the diagram (unless you are an android

reading this in the far future).

1.3 (Eye motion) Perform the following experiment and explain your
results: Holding your head still, move one of your hands left and right
in front of your face, following it with your eyes. Record how quickly
you can move your hand before you begin to lose track of it. Now hold
your hand still and shake your head left to right, once again recording
how quickly you can move before losing track of your hand. Explain
any difference in performance by comparing the control systems used

to implement these behaviors.

1.4 (Cruise control) Download the MATLAB code used to produce
simulations for the cruise control system in Figure [L.1]] from the com-

panion web site. Using trial and error, change the parameters of the
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control law so that the overshoot in speed is not more than 1 m/s for
a vehicle with mass m = 1200 kg. Does the same controller work if we

set m = 2000 kg?

1.5 (Integral action) We say that a system with a constant input
reaches steady state if all system variables approach constant values
as time increases. Show that a controller with integral action, such as
those given in equations ([4)) and (LX), gives zero error if the closed
loop system reaches steady state. Notice that there is no saturation in

the controller.

1.6 (Combining feedback with logic) Consider a system for cruise con-
trol where the overall function is governed by the state machine in
Figure [[L16l Assume that the system has a continuous input for vehi-
cle velocity, discrete inputs indicating braking and gear changes, and
a PI controller with inputs for the reference and measured velocities
and an output for the control signal. Sketch the actions that have to
be taken in the states of the finite state machine to handle the system
properly. Think about if you have to store some extra variables, and if

the PI controller has to be modified.

1.7 Search the web and pick an article in the popular press about a
feedback and control system. Describe the feedback system using the
terminology given in the article. In particular, identify the control sys-

tem and describe (a) the underlying process or system being controlled,
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along with the (b) sensor, (c) actuator, and (d) computational element.
If the some of the information is not available in the article, indicate

this and take a guess at what might have been used.



Chapter Two

Feedback Principles

Feedback — it is the fundamental principle that underlies all self-
requlating systems, not only machines but also the processes of

life and the tides of human affairs.

A. Tustin, “Feedback”, Scientific American, 1952 [244].

This chapter presents examples that illustrate fundamental prop-
erties of feedback: disturbance attenuation, reference signal tracking,
robustness to uncertainty, and shaping of behavior. The analysis is
based on simple static and dynamical models. After reading this chap-
ter, readers should have some insight into the power of feedback, they
should know about transfer functions and block diagrams, and they
should be able to design simple feedback systems. The basic concepts
described in this chapter are explained in more detail in the remainder
of the text, and this chapter can be skipped for readers who prefer to

move directly to the more detailed analysis and design techniques.
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2.1 NONLINEAR STATIC MODELS

We will start by capturing the behavior of a process and a controller
using static models. Although these models are very simple, they give
significant insight about the fundamental properties of feedback: neg-
ative feedback increases the range of linearity, it improves reference
signal tracking, and it reduces the gain and the effects of disturbances
and parameter variations. Moderate positive feedback has the opposite
properties: it shrinks the range of linearity and increases the gain of
the system. At a critical value the gain becomes infinite and the system
behaves like a relay; larger values of the gain gives hysteretic behavior.
Although static models give some insight, they cannot capture dynamic
phenomena like stability. Positive feedback combined with dynamics
often leads to instability and oscillations, as will be discussed toward
the end of the chapter.

Consider the closed loop system whose block diagram is shown in
Figure2.Il The closed loop system has a reference (or command) signal
r that gives the desired system output. The controller C' has an input
e that is the difference between the reference r and the process output
y, and the output of the controller is the control signal u. There is also
a load disturbance v at the process input that perturbs the system.
Although we will mostly deal with negative feedback, this simple model
also permits analysis of positive feedback.

The process P is modeled as a function that is linear for inputs
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T

ﬁ— . F(a) -
+1 |-

e

Figure 2.1: Block diagram of simple, static feedback system. The

controller is a constant gain k£ > 0 and the process is modeled by a

nonlinear function F'(z). The process output is y, the control signal is

u, the external signals are the reference r, and the load disturbance v.

The sign in the lower block indicates whether the feedback is positive

(+) or negative (—).

that are less than one in magnitude and saturates for inputs of magni-

tude larger than one. The controller is modeled by a constant gain k.

Formally the process and the controller are described by the functions

y = F(z) = sat(z)

(

1 ifr < -1,
x i |2] < 1, and u=ke. (2.1)
1 ifr>1,

\

The process is linear for |z| < 1, which is called the linear range. In

this region we have y = x and the process gain is 1. The controller

gain is k because the controller’s output u is k times its input e.

The open loop system is the combination of the controller and the

process when there is no feedback. Neglecting the disturbance v, it

follows from equation (2.1]) that the input/output relation for the open
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loop system is

y = F(kr) = sat(kr). (2:2)

It has the gain k and linear range |r| < 1/k.

Response to Reference Signals

To explore how well the system output y can follow the reference signal
r we assume that the load disturbance v in Figure 21]is zero. We will
first consider negative feedback by setting the gain in the lower block
of Figure 2T to —1. It follows from Figure 2.1 and equation (2.1]) that

the closed loop system is described by

y = sat(u), u=k(r—uy). (2.3)

Eliminating u in these equations we obtain

y = sat(k(r —y)). (2.4)

To find the relation between the reference r and the output y we have

to solve an algebraic equation. In the linear range |k(r — y)| < 1 we

have y = kiﬂr. When |k(r — y)| > 1 the output saturates and we

obtain y = +1 (depending on the sign of k(r — y). It can be shown
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(a) Negative feedback (b) Positive feedback (c) Positive feedback

Linear
region

k>1 k<1 kE>1
Figure 2.2: Input/output behavior of the system: (a) for large neg-
ative feedback (b) positive feedback k < 1 and (c) large positive feed-
back. The solid line is the response of the closed loop system and

the dotted line is the response of the open loop system. Redrawn

from [221], Figure 20.5].

that the overall input/output relationship satisfies

(

-1 ifr < B
t( k ) k ki1 (2.5)
= sa r) = : :
Yy ) il <55,
: k41
\ 1 if r 2 % -
The linear range for the closed loop system is |r| < %1, Comparing

with equation (Z.2]) we find that negative feedback widens the linear
range of the system by a factor of k+ 1 compared to the open loop sys-
tem. This is illustrated in Figure 22al, which shows the input/output

relations of the open loop system (dashed) and the closed loop system

(solid).
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Robustness to Parameter Uncertainty

Next we will investigate the sensitivity of the closed loop system to
gain variations. The sensitivity of a system describes how changes in
the system parameters affect the performance of the system. For the
open loop system in the linear range we have y = kr and it thus follows
that

dy Yy dy dk

oY dy _ ar. 2.
& " TEr Ty Tk (2:6)

The relative change of the output is thus equal to the relative change
of the parameter and we say that the sensitivity is 1. Thus, for the
open loop system, a change in k of 10% will lead to a change in the
output of 10%.

For the closed loop system with an input in the linear range, it

follows from equation (ZX]) that

@_ ro kr r B Y
de  k+1 (k+1)2 (k+1)2 k(k+1)

and hence
b L dk o)
Y kE+1 k
A comparison with equation (2.6]) shows that negative feedback with
gain k reduces the sensitivity to gain variations by a factor of k + 1.
If k£ is 100, for example, a 10% change in k would lead to less than a
0.1% change in ¥, so the closed loop system is much less sensitive to

parameter variation.

This type of analysis can also be used to investigate the effect of
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positive feedback. If the —1 in the feedback loop in Figure 2] is re-

placed by +1, equation (2.5]) becomes

v= Sat(-kk+ 1) (2:8)

Notice that the gain of the closed loop system is positive and larger
than the open gain for k < 1, as shown in Figure 2.2bl The linear
range is |r| < (1 — k)/k. A comparison with the open loop system
in equation (2.2) shows that positive feedback with k£ < 1 shrinks the
linear range by a factor of 1 —k. As k approaches 1 the closed loop gain
approaches infinity, the range shrinks to zero, and the system behaves
like a relay.

For positive feedback with & > 1 it follows from equation (Z.)
that the closed loop gain is negative, as shown in Figure 2.2d and
that it approaches —1 as k approaches infinity. Positive feedback with
large gains creates an input/output characteristic with multiple output
values possible for inputs in the range |r| < k/(k+1) and the closed loop
system behaves like a switch with hysteresis. This concept is explored
in more detail in Section 2.6, and it is shown that if the process has
dynamics then all points where the input/output characteristics have
negative slope are unstable.

We will mostly deal with negative feedback but there are systems

that employ positive feedback, as illustrated in the following example.

Example 2.1 The Superregenerative Amplifier
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Edwin Armstrong constructed a “superregenerative” radio receiver with
only one vacuum tube in 1914, when he was still an undergraduate at
Columbia University. The superregenerative amplifier can be modeled
as an amplifier with open loop gain k£ and a saturated output, com-
bined with a positive feedback loop, as shown in Figure 21l Using
equation (2.8), we can compute the gain of the closed loop system to
be kg = k/(1—k). A very large closed loop gain can be obtained by se-
lecting a feedback gain k that is just below 1. Choosing k = 0.999 gives
ka = 999, which is a gain increase of almost three orders of magnitude.
The drawback of using positive feedback is that the system is highly
sensitive and the gain has to be adjusted carefully to avoid oscillations.
For example, if the gain k is 0.99 instead of 0.999 (a difference of less
than 1%), then the closed loop gain becomes k¢ = 99, a difference of
10X (or 1000%). The oscillatory nature of this circuit requires the use
of a more advanced (dynamic) model for analysis of the amplifier.
Despite its limitations, this type of amplifier is still used in simple

walkie-talkies, garage door openers, and toys. \Y

Load Disturbance Attenuation

Another use of feedback is to reduce the effects of external disturbances,

represented by the signal v in Figure 2.1l For the open loop system,
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the output when v # 0 is given by
y = sat(kr +v).

In the linear region we thus have a gain of 1 between v and y, so that
disturbances are passed through with no attenuation.

To investigate the effect of feedback on load disturbances we con-
sider the system in Figure 1] with negative feedback and, for sim-
plicity, we set the reference signal r» to be zero. The relationship
between the load disturbance v and the the output y is given by
y = sat(v — ky), which is again an algebraic equation. In the lin-
ear range we get y = v/(k + 1) and more generally it can be shown

that

y = sat (%ﬂ) (2.9)

In the linear region, negative feedback thus reduces the effect of load

disturbances by the factor k£ + 1.

Combining these three sets of analyses, we see that negative feedback
increases the range of linearity of the system, decreases the sensitivity of
the system to parameter uncertainty, and attenuates load disturbances.
The trade-off is that the closed loop gain is decreased. Positive feedback
has the opposite effect: it can increase the closed loop gain, but at the

cost of increased sensitivity and amplification of disturbances.
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2.2 LINEAR DYNAMICAL MODELS

The analysis in the previous section was based on static models and
the dynamics of the process were neglected. We will now introduce a
set of concepts and tools to analyze the effects of dynamics. To do
this we will introduce block diagrams, linear differential equations, and
transfer functions. The block diagram is an abstraction that describes
a system as an interconnection of blocks, whose input/output behavior
is described by differential equations. The transfer function, which is
a function of complex variables, is a convenient representation of the
differential equations describing the dynamics of the system. Transfer
functions make it possible for us to find the relations between the sig-
nals of a complex system represented by block diagrams using simple
algebra. The values of the transfer function on the imaginary axis gives
the steady-state response to sinusoidal signals, which means that the
transfer function can be determined experimentally from the steady-

state response to sinusoidal signals.

Linear Differential Equations and Transfer Functions
In many practical situations, the input/output behavior of a system
can be modeled by a linear differential equation of the form

d™ 1y
dtm—l

d™y A"y d™u
ciday=b b
g + aq Ji1 + + any 0 m + 01

+ -+ bpu, (2.10)
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where u is the input, y is the output, and the coefficients a, and by are
real numbers. The differential equation (2.10) is characterized by two

polynomials

a(s) = s"+ays" - tay, b(s) = bps™+b1s™ 4+ by, (2.11)

where a(s) is the characteristic polynomial of the differential equa-
tion (2I0). We assume that the polynomials a(s) and b(s) do not have
common roots. (The consequences of having common roots is discussed
in Section [8.3])

Equation (ZI0) represents a time-invariant system because if the
pair u(t),y(t) satisfies the equation so does u(t + 7),y(t + 7). The
equation is also linear because if uy (t), y1(t), and uq(t), yo(t) satisfy the
equation so does auy (t)+ Bus(t), ay (t)+ Py2(t), where a and ( are real
numbers. Systems that are linear and time-invariant are often called
LTI systems. We can visualize these systems as being characterized by
a huge table of corresponding input /output signal pairs. An interesting
property of an LTI system is that it can be characterized by a single
carefully chosen pair, for example the response of the system to a step
input.

The solution to equation (2.I0]) is the sum of two terms: the general
solution to the homogeneous equation, which does not depend on the

input, and a particular solution, which depends on the input. The
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homogeneous equation associated with equation (2Z.10) is

dny dn—ly
gt T Mg

+...+ay=0. (2.12)

Letting s represent the roots of the characteristic equation a(s) = 0,

the solution to equation (2.12)) is of the form

y(t) = Cre™! (2.13)
k=1

if the characteristic polynomial does not have repeated roots. The
coefficients (1, ..., C, can be determined from the initial conditions at
t=0.

Since the coefficients ay, are real, the roots of the characteristic equa-
tion are either real-valued or occur in complex conjugate pairs. A real
root s, of the characteristic polynomial corresponds to the exponential
function e®*. This function decreases over time if s; is negative, is
constant if s, = 0, and increases if s; is positive, as shown in the top
row of Figure 23l For real roots s; the parameter T' = 1/s, is called
the time constant, because it describes how quickly the signal decays.

A complex root s, = o & iw corresponds to the time functions
e sin (wt), e cos (wt),

which have oscillatory behavior, as illustrated in the bottom row of
Figure 2.3l The sine terms are shown as solid lines; they have zero
crossings with the spacing 7w/w. The dashed lines show the envelopes,

which correspond to the exponential function 4-e”t.
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Figure 2.3: Examples of exponential signals. The top row corre-
sponds to exponential signals with a real exponent, and the bottom
row corresponds to those with complex exponents. The dashed line
in the last two cases denotes the bounding envelope for the oscillatory
signals. In each case, if the real part of the exponent is negative then

the signal decays, while if the real part is positive then it grows.

When the characteristic equation has repeated roots, the solutions

to the homogeneous equation (2.12)) take the form

y(t) = " Chl)e, (2.14)

where Cj(t) is a polynomial with degree less than the multiplicity of the
root s,. The solution (ZI4) has )", | (deg Cy+1) = n free parameters.
This case is considered in more detail in Section [6.2]

Having explored the solution to the homogeneous equation, we now
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turn to the input-dependent part of the solution. The solution to equa-
tion (2.I0) for an exponential input is of particular interest, as will be

shown in the following. We set u(t) = e

, where s # s, is a complex
number, and investigate if there is a unique particular solution of the

form y(t) = G(s)e™. Assuming this to be the case, we find

du st d2u 2 st d™u m st

— = se”, — =s5"e", e —— =3s"e

& _ sG(s)e™ @ = 5°G(s)e™ Y _ s"G(s)e™.
dt T dt? ’ dtm

Inserting these expressions into the differential equation (ZI0) gives
(5" + a15" 4 - 4 a,)G(5)et = (bos™ + bys™ 4 - 4 by et

and hence

_ bos™ + bis™ L4+ by, _ b(s)

G :
(s) s"+astl 4+ +ay, a(s)

(2.16)

This function is called the transfer function of the system. It describes
a particular solution to the differential equation for the input e**. Com-
bining this with the solution to the homogeneous equation, we find that
a solution to the differential equation (ZI0) for the exponential input
u(t) = e is

y(t) = Crl(t)e™ + G(s)e™. (2.17)

k=1

The relation between the transfer function (2.I6) and the differen-
tial equation (ZI0) is clear: the transfer function ([ZI0]) can be obtained
by inspection from the differential equation (2.10), and conversely the

differential equation can be obtained from the transfer function if the
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polynomials a(s) and b(s) do not have common factors. The transfer
function G(s) can thus be regarded as a shorthand notation for the
differential equation (ZI0). It is a complete characterization of the
differential equation even if it was derived as the response to a specific

input u(t) = e*.

We note that the input and the initial conditions
must both be given to obtain the full solution of the differential equa-
tion, given by equation (2.17)), also referred to as the response of the
system.

To deal with oscillatory signals, like those shown in the bottom row
of Figure[2.3] we allow s to be a complex number. The transfer function
G is then a function that maps complex numbers to complex numbers.
We let arg represent the argument (phase, angle) of a complex number
and | - | the magnitude, and note that the complex response to an input
u = e* = coswt + isinwt is given by G(iwt)e™!. Using just the

imaginary parts of the signals, it follows that the particular solution

for the input u = sin(wt) = Im e™* is

y(t) =Im (G(iw) ei“t) =1Im (|G(zw)| ¢ a8 Gliw) ei“’t)

= |G(iw)| Tm '@ T — |G () | sin(wt + arg G (iw)).

The input is thus amplified by |G(iw)| and the phase shift between
input and output is arg G(iw). The functions G(iw), |G(iw)|, and
arg G(iw) are called the frequency response, gain, and phase. Gain

and phase are also called magnitude and angle.
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Figure 2.4: Two responses of a linear time-invariant system to a
sinusoidal input. The dashed line shows the output when the initial
conditions are chosen so that the output is purely sinusoidal. The
solid line shows the response for the initial conditions y(0) = 0 and

y'(0) = 0. The transfer function is G(s) = 1/(s + 1)%.

When the input and the output are constant, u(t) = uy and y(t) =
Yo, the differential equation (ZI0) has the particular solution y(t) =
(bn/an)ug = G(0)ug, obtained by setting s = 0. The input is thus
amplified by the factor G(0), which is therefore called the zero frequency
gain (or sometimes the static gain). If the differential equation is stable
then the solution will converge to G(0)ug as t goes to infinity.

The full response to an exponential input is the sum of a particular
solution and a solution to the homogeneous equation that is determined
by the initial conditions, as given in equation (2.I7)). An illustration
is given in Figure 24 for the transfer function G(s) = 1/(s + 1)?. The
dashed line, which is a pure sine wave, is the solution obtained when all

Cy in equation (2.I7) are zero. The solid line shows the response ob-
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tained when the C} are chosen so that y(0) and its derivatives y*)(0),
k=1,...,n—1 are all zero. Since all roots of the characteristic poly-
nomial have negative real parts, the solution to the homogeneous equa-
tion (2.14]) goes to zero as t — oo and the general solution converges
to the particular solution.

The transfer function has many interpretations that can be ex-
ploited for insight, analysis, and design. The roots s, of the char-
acteristic equation a(s) = 0 are called poles of the transfer function:
the transfer function is infinite for s = s,. The poles s appear as ex-
ponents in the general solution to the homogeneous equation, as seen
in equations (2I3]) and (ZI4). Systems with poles that are “lightly
damped” (Re(sg) is negative but close to zero) can exhibit resonances
when a sinusoidal input is applied whose frequency is near the imagi-
nary part of sg.

The roots s; of the polynomial b(s) are called zeros of the transfer
function. The reason is that if b(s;) = 0 it follows that G(s;) = 0, and

skt is then zero. A system theoretic

the particular solution for the input e
interpretation is that the transmission of the exponential signal e is
blocked by the zero s = s;, which is therefore also called a transmission
zero.

The transfer function can also convey a great deal of intuition: G(0)

is the zero frequency gain for constant inputs and the frequency re-

sponse G(iw) captures the steady-state response to sinusoidal func-
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tions.  The frequency response of a stable system can be determined
experimentally by exploring the steady-state response of a system to
sinusoidal signals. This is an alternative or a complement to physical
modeling. A more elaborate treatment of transfer functions and the

frequency response will be given in Chapter

Stability: The Routh—Hurwitz Criterion

When using feedback there is always the danger that the system may
become unstable, and it is therefore important to have a stability cri-
terion. The differential equation (ZI0) is called stable if all solutions
of the homogeneous equation (Z.12)) go to zero for any initial condition.
It follows from equation (2.I4) that this requires that all the roots of

the characteristic equation

a(s) =s"+as" '+ +a,=0

have negative real parts.

It can often be difficult to analytically compute the roots of a high-
order polynomial. The Routh—Hurwitz criterion is a stability criterion
that does not require explicit calculation of the roots, because it gives
conditions in terms of the coefficients of the characteristic polynomial.

We illustrate the Routh-Hurwitz criterion by describing it for low-
order differential equations. A first-order differential equation is stable

when the coefficient a; of the characteristic polynomial is positive, since
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the root of the characteristic polynomial will be s = —a; < 0. A

second-order polynomial has the roots

1
s:§<—a1i\/a%—4a2),

and it is easy to verify that the real parts of the roots are both negative
if and only if a; > 0 and as > 0. A third order differential equation
is more complicated, but the roots can be shown to have negative real

parts if and only if
ai, as, az >0, and ajay > as. (2.18)

The corresponding conditions for a fourth order differential equation

are
ai, ao, as, ag > 0, ayay > az, and ajazasz > ajag +az. (2.19)

The Routh-Hurwitz criterion [96] gives similar conditions for arbitrar-
ily high order polynomials. Stability of a linear differential equation
can thus be investigated just by analyzing the signs of various combi-

nations of the coefficients of the characteristic polynomial.

Block Diagrams and Transfer Functions

As we saw already in Chapter [I, control systems are often described
using block diagrams, such as the ones shown in Figures [[L1] and 4]
If the behavior of the blocks are represented by transfer functions, the

transfer function of a system can be obtained simply by algebraic ma-
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nipulations. It follows from equation (2.I7) that the transfer function
can be derived from the particular solution for the input e. To de-
rive the transfer function for a system composed of several blocks, we
assume that the input signal is an exponential u(t) = e and compute
the corresponding particular solutions for all blocks.

Consider for example the system in Figure Z5al which is a series
connection of two systems with the transfer functions G1(s) and Ga(s).

st

Let the input of the system be u(t) = e* and assume the system is
stable so that we focus just on the exponential response. The output of
the first block is then y; (t) = G4 (s)e®, which is also an exponential, and
the output of the second system is y(t) = Ga(s)y1(s) = Ga(s)G1(s)e™ =
G2(s)G1(s)u(t). The transfer function of the system is thus G, (s) =
G2(s)G4(s), where we use the convention that the right subscript is the
input and the left subscript is the output, so that y = G,u.

Next we will consider parallel connections of systems as shown in
Figure .50l Assuming that the input is u(t) = e, the exponential

outputs of the blocks are y(t) = Gi(s)e® and ys(t) = Gs(s)e. The

output of the system is then
y(t) = Gi(s)e™ + Ga(s)e™ = (Gi(s) + Ga(s)) €™,

and the transfer function of a parallel connection of systems with the
transfer functions G(s) and Gs(s) is thus Gy, (s) = G1(s) + Ga(s).

Finally we will consider the feedback connection shown in Fig-
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—Gy

Gl(s)

Go(s)Gi(s) Ga(s) 14 G1(s)Ga(s)

Figure 2.5: Interconnections of linear systems. Series (a), parallel
(b) and feedback (c) connections are shown. The transfer functions
for the composite systems can be derived by algebraic manipulations

assuming exponential functions for all signals.

ure [Z5d If the input u(t) = e is an exponential we find

y(t) = Gi(s)e(t) = Gi(s) (u(t) — Ga(s)y(t)) = Gi(s)(e* = Ga(s)y(t)).
Solving for y(t) gives

Gl (S) GSt.

W) = TG (5)Ga(o)

The transfer function of a feedback connection of systems with the

transfer functions Gy (s) and Ga(s) is thus

G1(s)

Gyu(s) = 1+ G1(s)Ga(s)

(2.20)

By using polynomials and transfer functions the relations between
signals in a feedback system can thus be obtained by algebra. With
some practice the transfer functions can often be obtained by inspec-

tion, as we explore in more detail in Chapter [
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Computations Using Transfer Functions

Many software packages for control system analysis and design permit
direct manipulation of transfer functions. In MATLAB the transfer

function

s+1
(s + 5s+6)

G(s) =

can be created by the commands s=tf(’s’) and G=(s+1)/(s"2+5%s+6).

Given two transfer functions G1 and G2, we can form series, parallel, and
feedback interconnections using the commands Gs =series(G1, G2),
Gp=parallel(G1l, G2), and Gf = feedback(G1, G2) (by default, MAT-
LAB’s feedback() command uses negative feedback).

Software packages can also be used to compute the response of a
linear input/output system, represented by its transfer function, to dif-
ferent types of inputs. A common input that is used for performance
characterization is a signal that is 0 for ¢ < 0 and then 1 for ¢ > 0. This
type of input is called a “step input” and the response of the system
to a step input is called the step response of the system. A typical step
response for a linear system is shown in Figure Some standard fea-
tures of a step response are the rise time T}, settling time T}, overshoot
M, and steady-state value yg, as illustrated in the figure. The step
response for a transfer function G is generated by the MATLAB com-
mand y =step(G). If we want to specify the simulation time interval ex-
plicitly, we can instead use the command y=step(G, T). The response

to a specific input signal can be generated by y=1sim(G, u, t), where
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Figure 2.6: Sample step response. The rise time T}, overshoot M,
settling time T, and steady-state value ysg5 describe important perfor-

mance properties of the signal.

u and t are the input and time vectors. Having a transfer function, it
is thus very easy to generate time responses.

A detailed presentation of transfer functions will be given in Chap-
ter [@, where we will see that transfer functions can also be used to
represent systems with time delays and systems described by partial

differential equations.

2.3 USING FEEDBACK TO ATTENUATE DISTURBANCES

Reducing the effects of disturbances is a primary use of feedback. It
was used by James Watt to make steam engines run at constant speed
in spite of varying load and by electrical engineers to make generators
driven by water turbines deliver electricity with constant frequency and
voltage. Feedback is commonly used to alleviate effects of disturbances

in the process industry, for machine tools, and for engine and cruise

81



82

v
r e u Yy
4?— C P o

—] |-

Figure 2.7: Block diagram of a simple feedback system. The con-
troller transfer function is C(s) and the process transfer function is
P(s). The process output is y, the external signals are the reference

r and the load disturbance v.

control in cars. The human body exploits feedback to keep body tem-
perature, blood pressure, and other important variables constant. For
example the pupillary reflex guarantees that the light intensity of the
retina is reasonably constant in spite of large variations in the ambient
light intensity. Keeping variables close to a desired, constant reference
value in spite of disturbances is called a requlation problem.

To discuss disturbance attenuation we consider the system shown in
Figure 2.7l Since we will focus on the effects of a load disturbance v we
will assume for now that the reference r is zero. To derive the transfer
functions from the disturbance input v to the process output y, which
we write as Gy,, we assume that the disturbance is an exponential

function v = e®'. Applying block diagram algebra to Figure 2.7] gives

P(s) st

y(t) = P(s)e™ = P(s)C(s)y(t) = y(t) = T+ P00 ¢

The transfer function relating the output y to the load disturbance v
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is thus

P(s)

Cl8) = T p(5)00s)

(2.21)

To explore the use of feedback to improve disturbance attenuation, we
will focus on a simple process modeled by the first-order differential

equation

d
d—‘z—kay:bu, a>0, b>0.

The corresponding transfer function is

p@):sia. (2.22)

This model is a reasonable approximation for a physical process if the
storage of mass, momentum, or energy can be captured by a single
state variable. Typical examples are the velocity of a car on a road,

the angular velocity of a rotating system, and the fluid level of a tank.

Proportional Control

We will first investigate the case of proportional control, when the
control signal is proportional to the output error: u = kye, as intro-
duced already in Section [LBl The controller transfer function is then
C(s) = kp. The process transfer function is given by equation (2.22])
and the effect of the disturbance on the output is then described by

the transfer function (2.21)):

P(s) _ b/(sHa) b

Gl S TIPOCE T TH bk s+ a) st (@t bhy)
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The relation between the disturbance v and the output y is thus given

by the differential equation

dy
T (a+ bkp)y = bu.

The closed loop system is stable if a4 bk, > 0. A constant disturbance

v = vy then gives an output that exponentially approaches the value

b
a + bk,

Yo = Gy (0)vg = Vg

with the time constant 7' = 1/(a+ bk,). Without feedback, k, = 0 and
for a constant disturbance vy, the output will instead approach bug/a.
The effect of the disturbance is thus reduced if &k, > 0.

We have thus shown that a constant disturbance gives an error
that can be reduced by feedback using a proportional controller. The
error decreases with increasing controller gain. Figure 2.8al shows the

responses for a few values of the controller gain k.

Proportional-Integral (PI) Control

The PI controller, introduced in Section [I.6] is described by

u(t) = kpe(t) + ki /t e(r)dr. (2.23)

To determine the transfer function of the controller we differentiate to

obtain

du:kde

7, 5, kia
ar = gy The
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Normalized time at Normalized time at
(a) Proportional control (b) Proportional-integral (PI) con-
trol

Figure 2.8: Step responses for a first-order, closed loop system with
proportional control (a) and PI control (b). The process transfer func-
tion is P = 2/(s + 1). The controller gains for proportional control
are k, = 0, 0.5, 1, and 2. The PI controller is designed using equa-
tion (Z28) with (. = 0.707 and w, = 0.707, 1, and 2, which gives the
controller parameters k, = 0, 0.207, and 0.914 and k; = 0.25, 0.50,

and 2.

and we find that the transfer function is C'(s) = k,+ki/s. To investigate
the effect of the disturbance v on the output we use the block diagram

in Figure 2.7, and the transfer function from v to y is

P(s) _ bs (2.24)

Gl8) = TP (5)C0) ~ 24 (at ks £ 0k

Using the relationship between transfer functions and differential equa-
tions given by equations (ZI0) and (Z.I0), it follows that the relation

between the load disturbance and the output is given by the differential
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equation

d*y dy dv
—_— bk,)— + bkyy = b—. 2.25

Notice that since the disturbance enters as a derivative on the right
hand side, a constant disturbance gives no steady-state error. The
same conclusion can be drawn from the observation that Gy, (0) = 0.
This is consistent with the discussion of integral action and steady-state
error in Section [L.6l

To find suitable values of the controller parameters k, and k;, we

consider the characteristic polynomial of the differential equation (2.25]),
aa(s) = s> + (a + bky)s + bk;. (2.26)

We can assign arbitrary roots to the characteristic polynomial by choos-
ing the controller gains &, and &;. The most common case is that we

assign complex roots that give the characteristic polynomial
(5 +0q+iwa)(s+ 04 —iwg) = s>+ 2045 + 03 + w? (2.27)

By construction, this polynomial has roots at s = —o4 417 wq. The gen-
eral solution to the homogeneous equation is then a linear combination
of the terms

e~ 7 sin(wqt), e~ 7 cos(wqt),

which are damped sine and cosine functions, as shown in the lower
middle plot in Figure 2.3l The coefficient o4 determines the decay rate

and the parameter wq, called the damped frequency, gives the frequency
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of the decaying oscillation. Identifying coefficients of equal powers of s
in the polynomials (2.26) and (2.27) gives

2 _
kp:%, ki =

2 2
oy + wj

; (2.28)

We can thus choose the controller gains to give a desired closed loop
response.

Instead of parameterizing the closed loop system in terms of oq4
and wq it is common practice to use the (undamped) natural frequency
We = \/m and the damping ratio (. = oq/w.. The closed loop

characteristic polynomial is then
aa(s) = s> + 2048 + 05 + Wi = 8% + 2(cwes + w?.

This parameterization has the advantage that (., which is in the range
[—1, 1], determines the shape of the response and w,. gives the response
speed.

Figure .80 shows the output y and the control signal u for {, =
1/4/2 = 0.707 and different values of the design parameter w,. Propor-
tional control gives a steady-state error that decreases with increasing
controller gain £,. With PI control the steady-state error is zero. Both
the decay rate and the peak error decrease when the design parameter
w, is increased. Larger controller gains give smaller errors and control
signals that react more quickly to the disturbance.

With the controller parameters (2Z28)), the transfer function (2.24))
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from disturbance v to process output y becomes

P(s) bs

It P(s)O(s) 82 + 2Cewes + w?’

Gyv(s)

For efficient attenuation of disturbances, it is desirable that |G, (iw)] is
small for all w. For small values of w we have |G, (iw)| & bw/w?2, while
for large w we have |Gy, (iw)| = b/w. The largest value of |Gy, (iw)| is
b/ (2(cw,) for w = we. It thus follows that a large value of w. gives good
load disturbance attenuation.

In summary, we find that transfer function analysis gives a simple
way to find the parameters of PI controllers for processes whose dy-
namics can be approximated by a first-order system. The technique can
be generalized to more complicated systems but the controller will be
more complex. To achieve the benefits of large control gains the model

must be accurate over wide frequency ranges, as will be discussed next.

Unmodeled Dynamics

The analysis we have made so far indicates that there are no limits to
the performance that can be achieved. Figure [2.80 shows that arbi-
trarily fast response can be obtained simply by making w,. sufficiently
large. In reality there are of course limits on what is achievable. One
reason is that the controller gains increase with w.: the proportional
gain is k, = (2w, — a)/b and the integral gain is k; = w?/b. A large

value of w, thus gives large controller gains and the control signal may
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saturate. Another reason is that the model (2.22)) is a simplification:

it is only valid in a given frequency range. If the model is instead

b
PO = a1y (2.29)

where the term 1+ sT represents the dynamics of sensors, actuators, or
other dynamics that were neglected when deriving equation (2.22))—so-
called unmodeled dynamics—the closed loop characteristic polynomial

for the closed loop system becomes

ao = 5(s+a)(1+ sT) + b(kps + ki) = s°T + s*(1 + aT) + 2(wes + w?.

It follows from the Routh—Hurwitz criterion (2.18]) that the closed loop

system is stable if w?T < 2¢.w.(1 + aT) or if
w.T < 26(1 + aT).

The frequency w,. and the achievable response time are thus limited by
the unmodeled dynamics represented by 7', which typically is smaller
than the time constant 1/a of the process. When models are developed
for control it is therefore important to also consider the unmodeled
dynamics.

The fact that unmodeled dynamics limit the performance of a feed-
back system is an important property and must be considered during
the system design. It is common to use simplified models when design-
ing components of complex systems and if the unmodeled dynamics

of those components (or the other subsystems they interact with) are
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not properly taken into account, the implementation of the system can
display poor behavior (of which instability is one extreme example).
As we shall see in later chapters, it is the ability to reason about the
effects of uncertainty that makes control theory a particularly powerful

mathematical tool for systems design.

2.4 USING FEEDBACK TO TRACK REFERENCE SIGNALS

Another major application of feedback is to make a system output
follow a reference value, which is called the servo problem. Cruise
control, steering of a car, and tracking a satellite with an antenna or
a star with a telescope are some examples. Other examples are high
performance audio amplifiers, machine tools, and industrial robots.
To illustrate reference signal tracking we will consider the system in
Figure 7] where the process is a first-order system and the controller
is a PI controller with proportional gain k, and integral gain k;. The

transfer functions of the process and the controller are

P(s) = b C(s) = M.

2.30
P, . (2.30)
Since we will focus on following the reference signal r, we will neglect

the load disturbance and set v = 0. Applying block diagram algebra

to the system in Figure 2.7 we find that the transfer function from the
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reference signal r to the output y is

_ P(s)C(s) bkys + bk;
TTEPE)C() S+ (a+ bhy)s + bk (2:31)

Gyr(s)

Since G, (0) = 1 it follows that » = y when r and y are constant,
independent of the values of the parameters a and b, as long as the
closed loop system is stable. The steady-state output is thus equal to
the reference, a consequence of the integral action in the controller.
To determine suitable values of the controller parameters £, and
k;, we proceed as in Section by choosing controller parameters that

make the closed loop characteristic polynomial
aa(s) = s> + (a + bky)s + bk; (2.32)

equal to s242(w.s+w? with ¢, > 0 and w,. > 0. Identifying coefficients

of equal powers of s in these polynomials gives

_ 2Ccwe — a

2
by = =, ki:“’—bC, (2.33)

which is equivalent to equation (2.28)). Notice that integral gain in-
creases with the square of w.. Figure shows the output signal y
and the control signal u for different values of the design parameters (.
and w.. The response time decreases with increasing w. and the initial
value of the control signal also increases because it takes more effort to
move rapidly. The overshoot decreases with increasing (.. For w. = 2,
the design choice (. = 1 gives a short settling time and a response

without overshoot.
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Figure 2.9: Responses to a unit step change in the reference signal
for different values of the design parameters w. and (.. The left figure
shows responses for fixed (, = 0.707 and w, = 1, 2, and 5. The right
figure shows responses for w, = 2 and (. = 0.5, 0.707, and 1. The
process parameters are a = b = 1. The initial value of the control

signal is kp.

It is desirable that the output y will track the reference signal r for
time-varying references. This means that we would like the transfer
function G,.(s) to be close to 1 for large frequency ranges. With the

controller parameters (2.33), it follows from equation (2.31]) that

P(s)C(s) (2¢ewe — a)s + w?

Gur(s) = 1+ P(s)C(s) 52+ 2(ewes + w2

Since G,,(0) = 1, tracking of constant inputs is perfect. In addition, if
s = iw is smaller in magnitude than w., then using some approxima-
tions it can be shown that G, (s) will be close to one. The frequency
w. thus determines the upper bound of the frequency of reference sig-

nals that can be tracked with small error, and this bound is referred
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to as the bandwidth of the closed loop system. The frequency response
of G, therefore provides a quantitative representation of the tracking

abilities.

Controllers with Two Degrees of Freedom

The control law in Figure 27 has error feedback because the control
signal u is generated from the error e = r — y. With proportional
control, a step in the reference signal r gives an immediate step change
in the control signal . This rapid reaction can be advantageous, but
it may give large overshoot, which can be avoided by a replacing the

PI controller in equation (Z.23)) with a controller of the form

u(t) =k (57“(15) — y(t)) + k‘i/o (r(t) —y(r))dr. (2.34)

In this modified PI algorithm, the proportional action only acts on
the fraction [ of the reference signal. The signal transmissions from
reference r to u and from output y to u can be represented by the (open

loop) transfer functions

l{fi k:i
Cm«(8> = ka + g, —Cuy<8) = /{Zp + g = C(S) (235)
The controller (2:34]) is called a controller with two degrees of freedom
since the transfer functions C.,.(s) and Cy,(s) are different.
A block diagram of a closed loop system with a PI controller having

two degrees of freedom is shown in Figure 2.10. Let the process transfer

function be P(s) = b/(s + a). The transfer functions from reference r
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,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.10: Block diagram of a closed loop system with a PI con-

troller having an architecture with two degrees of freedom.

and disturbance v to output y are

bBk,s + bk; bs
Gyr(s) = L - Gyo(s) = .
() s2 + (a + bky)s + bk’ () s2 + (a + bky)s + bk;

(2.36)

Comparing with the corresponding transfer function for a controller
with error feedback in equations (224 and (Z31]), we find that the
response to the load disturbances is the same but the response to ref-
erence signals is different.

A simulation of the closed loop system for a = 0 and b = 1 is shown
in Figure 2. 11l The figure shows that the parameter § has a significant
effect on the responses. Comparing the system with error feedback
(6 = 1) to the system with smaller values of 8 we find that using a
system with two degrees of freedom gives less overshoot and gentler
control actions.

The example shows that reference signal response can be improved
by using a controller architecture having two degrees of freedom. In

Section [[2Z.4l we will further show that the responses to reference signals
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Figure 2.11: Response to a step change in the reference signal for
a system with a PI controller having two degrees of freedom. The
process transfer function is P(s) = 1/s and the controller gains are

kp=1.414, k =1, and =0, 0.5, and 1.

and disturbances can be completely separated by using a more general
system architecture. To use a system with two degrees of freedom
both the reference signal r and the output signal y must be measured.
There are situations where only the error signal e = r — y can be
measured; typical examples are DVD players, optical memories, and
atomic force microscopes. In these cases, only single degree of freedom

(error feedback) controllers can be used.

2.5 USING FEEDBACK TO PROVIDE ROBUSTNESS

Feedback can be used to make good systems from imprecise compo-
nents. Black’s invention of the feedback amplifier for the telephone
network is an early example [46]. Black used negative feedback to
design extremely good amplifiers with linear characteristics from com-
ponents with nonlinear and time-varying properties. Since signals are

transmitted over long distances they must be amplified. At the time,
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the thermionic valve—a type of vacuum tube invented by Lee de Forest
in 1906—was the only available technology for amplifying electric sig-
nals until the transistor was in invented in 1947. Vacuum tubes were
the key to develop radio, telephony, and electronics in the first half of
the 20th century. They are still used by some hi-fi aficionados in high
quality audio amplifiers.

Vacuum tubes can give high gain but they have nonlinear and time
varying input/output characteristics that distort the transmitted sig-

nals. Bode [52] expressed the problem as follows:

Most of you with hi-fi systems are no doubt proud of the quality
of your amplifiers, but I doubt whether many of you would care to
listen to the sound after the signal had gone in succession through

several dozen or several hundred even of your fine amplifiers.

The effect is illustrated in Exercise 2.9

Black’s idea to develop a good amplifier was to close a loop with
negative feedback around the tube amplifier. In this way he could
obtain a closed loop system with a linear input/output relation having
constant gain. The general recipe is to localize the nonlinearities and
the source of process variations, and to close feedback loops around

them.
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Reducing Effects of Parameter Variations and Nonlinearities

Consider an amplifier with a static, nonlinear input/output relation
with considerable parameter variability, as illustrated in Figure 2.12h.
The nominal input/output characteristic is shown as a dashed bold line
and examples of variations as thin lines. The nonlinearity in the figure

is given by

y=F(u)=au+pu’), —-3<u<3. (2.37)

The nominal values corresponding to the dashed line are « = 0.2 and
B = 1. The variations of the parameters a and  are in the ranges

0.1 <a<0.5,0< B <2 The responses of the system to the input

u(t) = sin(t) + sin(7t) + sin(7?t) (2.38)

are shown in Figure 2.12b. The desired response y = u is shown as a
solid bold line and responses for a range of parameters are shown with
thin lines. The nominal response of the nonlinear system is shown as a
dashed bold line, and we see that it is distorted due to the nonlinearity.
Notice in particular the heavy distortion for both small and large signal
amplitudes.

The behavior of the system is clearly not satisfactory, but it can be
improved significantly by introducing feedback. A block diagram of a
system with a simple integral controller is shown in Figure 213 where

the reference input is now taken as r. Figure 2.14] shows the behavior
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Figure 2.12: Responses of a static nonlinear system. The left figure
shows the input/output relations of the open loop systems and the
right figure shows responses to the input signal (2.38). The ideal
response is shown with solid bold lines. The nominal response of the
nonlinear system is shown using dashed bold lines and the responses
for different parameter values are shown using thin lines. Notice the

large variability in the responses.

of the closed loop system with the same parameter variations as in
Figure The input/output plot in Figure 2.14h is a scatter plot of
the inputs and the outputs of the feedback system. The input/output
relation is practically linear and close to the desired response. There is

some variability because of the dynamics introduced by the feedback.

c="h > P=F(u) -

Figure 2.13: Block diagram of a nonlinear system with integral

feedback.
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Figure 2.14: Responses of the systems with integral feedback (k; =
1000). The left figure shows the input/output relationships for the
closed loop systems, and the center figure shows responses to the input
signal (2.38) (compare to the corresponding responses in Figure
and b). The right figure shows the individual errors (solid lines) and

the approximate error given by equation (2.42]) (dashed line).

Figure 2I4b shows the responses to the reference signal; notice the
dramatic improvement compared with Figure[2.12b. The tracking error

is shown in Figure 2Z.14k.

Nonlinear Analysis and Approximations @

Analysis of a closed loop system with nonlinearities is often difficult.
We can, however, obtain significant insight by using approximations.
We illustrate a few ideas using the nonlinear amplifier example.

We first observe that the system is linear when 8 = 0. In other
situations we can approximate the nonlinear function by a straight line
around an operating point u = ug. The slope of the nonlinear function

at u = ug is F'(ug) and we will approximate the process with a linear
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system with the gain F'(ug). The transfer functions of the process and

the controller are

i : (2.39)

P(s) = F'(uo) = a(14+3Bug) =b,  C(s)=—
s
where ug denotes the operating condition. It follows from equation (Z.2T])

that the transfer functions relating the output y and the error e to the

reference signal r are

bk’i S

— er =1- r = :
s+ bk Ger(s) Gor = T 0h

Gyr(s) = (240)

The closed loop system is a first-order system with the pole s = —bk;.
The process gain b = a(l + 3Bu2) depends on the values of a, £,
and ug, and its smallest value is 0.1. If the integral gain is chosen as
k; = 1000, the smallest value of the closed loop pole is 100 rad/s, which
is fast compared to the high-frequency component 72 rad/s of the input
signal. It follows from equation (2.40) that the error e(t) is given by

the differential equation

de dr dr

2 ke 4 — — = 2 ). (241
o bkie + o o cos(t) + mcos(mt) + m* cos(m7t). (2.41)

Neglecting the term de/dt in equation (Z4T]) gives

1 dr 2
Hy —— ~ — 2$). 2.42
e(t) bk dt bk, cos(mt) (2.42)

An estimate of the largest error e(t) = 0.1 cos(m?t) is obtained for the

smallest value of b = 0.1. It is shown as a dashed line in Figure 214k,

and we see that it gives a good estimate of the maximum error across
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the uncertain parameter space.

This analysis is based on the assumption that the amplifier can
be modeled by a constant gain. The closed loop system is however a
dynamic system because the controller is an integrator. It follows from
equation (240) that the closed loop dynamics have the time constant
Ty = 1/(bk;). If the amplifier has dynamics, its time constant must
thus be small compared to Ty in order to provide good tracking. It
follows that the largest admissible integral gain k; is determined by the
unmodeled dynamics.

This example illustrates that feedback can be used to design an
amplifier that has practically linear input/output relation even if the

basic amplifier is nonlinear with strongly varying characteristics.

2.6 POSITIVE FEEDBACK

Most of this book is focused on negative feedback because of its amaz-
ingly good properties, which have been illustrated in the previous sec-
tions. In this section we will briefly discuss positive feedback, which
has complementary properties. In spite of this, positive feedback has
found good use in several contexts.

Systems with negative feedback can be well understood by linear
analysis. To understand systems with positive feedback it is necessary

to consider nonlinear effects, because without the nonlinearities the
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(3 neurons) (2 neurons)

Figure 2.15: Schematic diagram of the neural network that con-
trols swimming motions in the marine mollusk Tritonia, which has
both positive and negative feedback [256]. An excitatory connection
(positive feedback) is denoted with a line ending with an arrow, an
inhibitory interaction (negative feedback) is denoted with an arrow

ending with a circle. (Figure adapted from [256].)

instability caused by positive feedback will grow without bound. The
nonlinear elements can create interesting and useful effects by limiting
the signals.

Positive feedback is common in many settings. Encouraging a stu-
dent or a coworker when they have performed well encourages them do
to even better. In biology, it is standard to distinguish inhibitory con-
nections (negative feedback) from excitatory feedback (positive feed-
back) as illustrated in Figure 215l Neurons use a combination of pos-
itive and negative feedback to generate spikes.

Positive feedback may cause instabilities. Exponential growth, where

the rate of change of a quantity x is proportional to x,

de _
dt

ax,
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is a typical example, which results in an unbounded solution z(t) = e**.

In nature, exponential growth of a species is limited by the finite
amount of food. Another common example is when a microphone is
placed close to a speaker in public address systems, resulting in a howl-
ing noise. Positive feedback can create stampedes in cattle herds, runs
on banks, and boom-bust behavior. In all these cases there is exponen-
tial growth that is finally limited by finite resources.

The notions of positive and negative feedback are clear if the feed-
back is static, as we saw for example in Section 2.l If the feedback is
dynamic its action can change from positive to negative depending on
the frequency of the signals and hence more care is required. Use of

positive feedback will be illustrated by a few examples.

Hewlett’s Oscillator

William Hewlett used positive and negative feedback very cleverly to
design a stable oscillator in his master’s thesis from Stanford University
in 1939. The oscillator was the first product made by Hewlett-Packard,
the company that Hewlett founded with David Packard in 1939 [200].

Electronic circuits in the 1930s and 1940s were based on vacuum
tube technology. The simplest vacuum tube amplifier has three elec-
trodes: a cathode, grid, and anode enclosed in a glass tube with vac-
uum. The cathode, which is heated with a filament, emits free elec-

trons. A current is created by applying a high positive voltage between
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version
Figure 2.16: Circuit diagrams of William Hewlett’s oscillator. (a)
Original system with vacuum tubes. (b) Equivalent realization with

an operational amplifier.

the anode and the cathode. The current can be regulated by changing
the voltage on a grid positioned between the anode and the cathode.
The current depends on the voltage difference between the grid and
the cathode, V, — V.. Increasing this voltage difference increases the
current. The vacuum tube amplifier can be regarded as a valve for
controlling a current by applying a voltage to the grid.

A schematic diagram of Hewlett’s oscillator is shown in Figure 2.16al
Signals are amplified by two vacuum tubes and there are two feedback

loops. One loop provides positive feedback from the anode of the second
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tube to the grid of the first tube via the network Ry, C}, Ry, C5. The
second feedback loop provides negative feedback from the output of the
second tube to the cathode of the first tube via the resistor Ry and the
lamp which has resistance R;,. With a proper gain the positive feedback
loop generates an oscillation with the frequency w = 1/v/ Ry ReC1Cy.
The gain is given by the negative feedback loop from the anode of the
second loop to the cathode of the first loop, through the resistor Ry
and the lamp Ry,. This loop has nonlinear gain because the resistance
Ry, of the lamp increases with increasing temperature. An increase of
the amplitude of V, increases the current through the lamp, which re-
duces the gain. The result is that an oscillation with stable amplitude
and frequency is obtained.

The feedback loops are more clearly visible in the implementation of

the oscillator based on an operational amplifier, shown in Figure 2.16bHl

Implementation of Integral Action by Positive Feedback

Early feedback controllers made of use of integral action that was im-
plementing by using positive feedback around a system with first order
dynamics, as shown in the block diagram of Figure 217 Intuitively
the system can be explained as follows. Proportional feedback typi-
cally gives a steady-state error. This can be overcome by adding a bias

signal that cancels the steady-state error. In Figure 217 the bias is
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Figure 2.17: Implementation of integral action by positive feedback.

estimated by low-pass filtering the control signal and adding it back
into to the signal path. This serves to compensate for any error that
is present.

The circuit can be understood better by a little analysis. Using
block diagram algebra we find that the transfer function of the system

is
k, k
1—1/(1+ sTy) p+sT,-’

Gue

which is a transfer function of a PI controller. This way of implementing

integral action is still used in many industrial regulators.

Positive Feedback Combined with Saturation

Systems with interesting and useful properties can be obtained by com-
bining linear and nonlinear components with positive feedback. In this
section we consider an example of a simple form of memory imple-
mented using a feedback circuit.

Consider the system in Figure 2.18 which consists of a linear block
with first-order dynamics and a nonlinear block with positive feedback.

Assume that the nonlinearity is
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s+a

+1 =

Figure 2.18: Block diagram of system with positive feedback and

saturation. The parameters are a = 1 and b = 10.

Y . . _ Y
y=Fzr)= ,  which gives m:Fly: .
T W=7
The system is described by the differential equation
dm a F—l (y> ay

- = —ar+b(r+y) =b(r-G(y)),  Gy):=

Rewriting the dynamics in terms of the variable y = F'(x), we get the

following relation between the input r and the output y:

dy _ dF(z) _ dF (x) dx

& dt  de o = F(F7®) b(r — G(y)). (243)

F=!(y)
The function F' is monotone with F’(z) > 0 for all z and so the equi-
librium points for a constant input r are given by the solutions of

r = G(y). The graph of the function G is shown in Figure 2.19a]

for a = 1 and b = 4. The function G(y) has a local maximum
Tmax = (1 —/a/b)? = 0.25 at y = —1 + y/a/b = —0.5 and a local
minimum r,;, = —0.25 at y = 0.5. The set of possible equilibrium

points for the system can be determined from Figure 2.19al by fixing
r and identifying all values of y that satisfy » = G(y). There is one
unique equilibrium if || > 0.25, two equilibrium points if |r| = 0.25

and three equilibrium points if |r| < 0.25.

— Y=Y
b b(1 — [yl)
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(a) Stable and unstable equilibrium (b) Hysteretic input/output map y=
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(c) Input/output behavior

Figure 2.19: System with positive feedback and saturation. (a) For
a fixed reference value r, the intersections with the curve r = G(y)
corresponds to equilibrium points for the system. Equilibrium points
at selected values of r are shown by circles (note that for some ref-
erence values there are multiple equilibrium points). Arrows indicate
the sign of the derivative of y away from the equilibrium points, with
the solid portions of r = G(y) representing stable equilibrium points
and dashed portions representing unstable equilibrium points. (b)
The hysteretic input/output map given by the y = GT(r), showing
that some values of r have single equilibrium points while others have
two possible (stable) steady-state output values. (c) Simulation of
the system dynamics showing the reference r (dashed curve) and the

output y (solid curve).
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The differential equation (2.43)) is of first order and the equilibrium
point y, is stable if G'(y,) is positive and unstable if G'(y,) is negative.
Stable equilibrium points are shown in solid lines and unstable equilib-
rium points by dashed lines in Figure 2.19al The differential equation
thus has two stable equilibrium points when r;, < r < rpa.e and one
stable equilibrium point when |r| > ryax.

To understand the behavior of the system, we will explore what
happens when the reference is changed. If the reference r is zero there
are two stable equilibrium points, as can be seen in Figure 2.19al by
looking at the horizontal line at = 0 (labeled C). We assume that the
system is at the stable left equilibrium point, where y is negative. If
the reference is increased, the equilibrium point moves slightly to the
right. When the reference reaches the value 0.25, which corresponds
an unstable equilibrium, the solution moves towards the right stable
equilibrium point, where y is positive, as indicated by the line marked
B in Figure 219al If the value of r is increased further, the output y
also increases. The static input/output relation is thus given by the
“inverse function” y = GT(r), which gives the value(s) of the stable
output values as a function of r. The system has hysteretic behavior
as shown in Figure 2.19b, where the dashed line indicates the switches
between the branches of the solution curves, and they occur at r =
+rmax = 1£0.25.

The temporal behavior of the system is illustrated by the simula-
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tions in Figure .19, where the input r is dashed and the output y is
solid. The shapes of the signals depend on the parameters; the values
a =5, b = 50 were used in the figure to give more distinct switches.
The hysteresis width is 2r,.« and the parameter a gives the sharpness
of the corners of the output. The circuit shown in the Figure 218 is
commonly used as a trigger to detect changes in a signal (known as
a Schmitt trigger). It is also used as a memory element in solid state
memories, illustrating that feedback can be used to obtain discrete

behavior.

2.7 FURTHER READING

The books by Bennett [34], 35] and Mindel [I83] [184] give interest-
ing perspective on the development of control. Much of the mate-
rial touched upon in this chapter is referred to as “classical control”;
see [62], [129], and [241] for early texts on this material. A more thor-
ough introduction to the principles of feedback with minimal mathe-
matical prerequisites is available in the textbook Feedback Control for
FEveryone [7]. The notion of controllers with two degrees of freedom
was introduced by Horowitz [120)].

The analysis introduced here will be elaborated in the rest of the
book. Transfer functions and other descriptions of dynamics are dis-

cussed in Chapters B and @ methods to investigate stability in Chap-
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ters Bl and [0 The simple method to find parameters of controllers
based on matching of coefficients of the closed loop characteristic poly-
nomial is developed further in Chapters [, B and I3 Feedforward

control is discussed in Sections and 12.4].

EXERCISES

2.1 (Transfer functions and differential equations) Let y € R and u €
R. Solve the differential equations

d?y dy du
29, 9% _ 927
T T

d
—y+ay:bu,

o + u,

for ¢ > 0. Determine the responses to a unit step u(t) = 1 and the
exponential signal u(t) = e when the initial condition is zero. Derive

the transfer functions of the systems.

2.2 (Effect of zeros on time responses) Let yo(t) be the response of a
system with the transfer function Gy(s) to a given input. The transfer
function G(s) = (1 + sT)Gp(s) has the same zero frequency gain but
it has an additional zero at z = —1/T'. Let y(t) be the response of the

system with the transfer function G(s) and show that

y(0) = wolt) + T, (2.44)

Next consider the system with the transfer function

s+a

Gls) = a(s?+2s+1)
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which has unit zero-frequency-gain (G(0) = 1). Use the result in equa-
tion (2.44) to explore the effect of a zero at s = —1/T on the step

response of a system.

2.3 (PI control) Consider a closed loop system with process dynamics

and a PI controller modeled by

d t
d_gz,{ + ay = bu, u=ky(r—y)+ k‘i/ (7”(7) —y(r))dr,
0

where r is the reference, u is the control variable, and y is the process

output.

a) Derive a differential equation relating the output y to the reference
r by direct manipulation of the equations and compute the transfer
function H,,(s). Make the derivations both by direct manipulation of

the differential equations and by polynomial algebra.

b) Draw a block diagram of the system and derive the transfer func-

tions of the process P(s) and the controller C'(s).

c¢) Use block diagram algebra to compute the transfer function from
reference r to output y of the closed loop system and verify that your

answer matches your answer in part (a).

2.4 (Zero frequency gain) Consider the system described by the differ-
ential equation (2.I0) and the transfer function (2.I6]). Determine the

zero frequency gain of the system by computing the particular solution
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of (2I0) for a constant input u(t) = ug. Compare with the value of

G(0).

2.5 (Pupil response) The dynamics of the pupillary reflex can be ap-

proximated by a linear system with the transfer function

0.2(1 —0.1s)
(T

Assume that the nervous system that controls the pupil opening is
modeled as a proportional controller with the gain k. Use the Routh—
Hurwitz criterion to determine the largest gain that gives a stable closed

loop system.

2.6 (Parameter sensitivity) Consider the feedback system in Figure 2.7
Let the disturbance v = 0, P(s) = 1 and C(s) = k;/s. Determine the
transfer function G, from reference r to output y. Also determine how

much G, is changed when the process gain changes by 10%.

2.7 (PID control design) The calculations in Section 2.3 can be inter-
preted as a design method for a PI controller for a first-order system.
A similar calculation can be made for PID control of a second-order

system. Let the transfer functions of the process and the controller be

b

Ps) = ——
() s2+ a5+ as’

ki
C(s) =kp + S kq4s.

Show that the controller parameters

1+ 2al.)w? — ay aw?
C C

kp: b ) i b7
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give a closed loop system with the characteristic polynomial

(8* + 2¢ewes + w2 ) (s + awe).

2.8 (Linear behavior via feedback) Consider an open loop system with
the nonlinear input/output relation y = F'(u). Assume that the system
is closed with the proportional controller u = k(r — y). Show that the

input /output relation of the closed loop system is

1
y—i—EF*l(y):r

Estimate the largest deviation from ideal linear response y = r. Illus-
trate by plotting the input output responses for a) F'(u) = \/u and b)

F(u) = v? with 0 <u <1 and k =5, 10, and 100.

2.9 (Nonlinear distortion) The following MATLAB commands will load

and play Handel’s Messiah

load handel % Load Handel’s Messiah

sound(y, Fs); pause Y Play the original music through speaker

Write a MATLAB function that implements a nonlinear amplifier with

static gain

y=2(z+az(l—2)—0.5), z=(r+1)/2,

where x is the original signal (assumed to take values between —1 and

1) and a is the amplifier gain. Compare the sound that is obtained
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when the music is then sent through two amplifiers with the given
nonlinearity and gain a = 1 versus when the music is sent through the

same two amplifiers with feedback k = 10.

2.10 (Queing systems) Consider a queuing system modeled by

dx T

— =\ max
dt H r+1

Y

where A is the acceptance rate of jobs and x is the length of the queue.
The model is nonlinear and the dynamics of the system changes signif-
icantly with the queuing length (see Example for a more detailed
discussion). Investigate the situation when a PI controller is used for
admission control. Let r be the rate of arrival of job requests and model

the (average) arrival intensity A as

A=ky(r—ux)+ ki/ (r(t) — x(t))dt.

The controller parameters are determined from the approximate model

dx

— =\

dt
Find controller parameters that give the closed loop characteristic poly-
nomial s? +2s+1 for the approximate model. Investigate the behavior

of the control strategy for the full nonlinear model by simulation for

the input r = 5 + 4sin(0.1¢).






Chapter Three

System Modeling

... I asked Fermi whether he was not impressed by the agreement
between our calculated numbers and his measured numbers. He
replied, “How many arbitrary parameters did you use for your
calculations?” I thought for a moment about our cut-off proce-
dures and said, “Four.” He said, “I remember my friend Johnny
von Neumann used to say, with four parameters I can fit an ele-

phant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for

meson-proton scattering to Enrico Fermi in 1953 [79].

A model is a precise representation of a system’s dynamics used to
answer questions via analysis and simulation. The model we choose
depends on the questions we wish to answer, and so there may be
multiple models for a single dynamical system, with different levels of
fidelity depending on the phenomena of interest. In this chapter we

provide an introduction to the concept of modeling and present some
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basic material on two specific methods commonly used in feedback and

control systems: differential equations and difference equations.

3.1 MODELING CONCEPTS

A model is a mathematical representation of a physical, biological, or
information system. Models allow us to reason about a system and
make predictions about how a system will behave. In this text, we
will mainly be interested in models of dynamical systems describing
the input/output behavior of systems, and we will often work in “state
space” form. As pointed out already in Chapter [Il when using models
it is important to keep in mind that they are an approximation of the
underlying system. Analysis and design using models must always be
done carefully to ensure that the limits of the model are respected.
Roughly speaking, a dynamical system is one in which the effects
of actions do not occur immediately. For example, the velocity of a
car does not change immediately when the gas pedal is pushed nor
does the temperature in a room rise instantaneously when a heater
is switched on. Similarly, a headache does not vanish right after an
aspirin is taken, requiring time for it to take effect. In business systems,
increased funding for a development project does not increase revenues
in the short term, although it may do so in the long term (if it was a

good investment). All of these are examples of dynamical systems, in
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which the behavior of the system evolves with time.
In the remainder of this section we provide an overview of some of
the key concepts in modeling. The mathematical details introduced

here are explored more fully in the remainder of the chapter.

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary
motion. The basis was detailed observations of the planets by Tycho
Brahe and the results of Kepler, who found empirically that the orbits
of the planets could be well described by ellipses. Newton embarked
on an ambitious program to try to explain why the planets move in
ellipses, and he found that the motion could be explained by his law
of gravitation and the formula stating that force equals mass times
acceleration. In the process he also invented calculus and differential
equations.

One of the triumphs of Newton’s mechanics was the observation
that the motion of the planets could be predicted based on the current
positions and velocities of all planets. It was not necessary to know
the past motion. The state of a dynamical system is a collection of
variables that completely captures the past motion of a system for the
purpose of predicting future motion. For a system of planets the state
is simply the positions and the velocities of the planets. We call the

set of all possible states the state space.
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Figure 3.1: Spring—mass system with nonlinear damping. The posi-
tion of the mass is denoted by ¢, with ¢ = 0 corresponding to the rest
position of the spring. The forces on the mass are generated by a lin-
ear spring with spring constant k£ and a damper with force dependent

on the velocity ¢.

A common class of mathematical models for dynamical systems
is ordinary differential equations (ODEs). In mechanics, one of the
simplest such differential equations is that of a spring—mass system
with damping:

mg + c(q) + kg = 0. (3.1)

This system is illustrated in Figure 3.1l The variable ¢ € R represents
the position of the mass m with respect to its rest position. We use
the notation ¢ to denote the derivative of ¢ with respect to time (i.e.,
the velocity of the mass) and ¢ to represent the second derivative (ac-
celeration). The spring is assumed to satisfy Hooke’s law, which says
that the force is proportional to the displacement. The friction element
(damper) is taken as a nonlinear function ¢(¢), which can model effects
such as Coulomb friction and viscous drag. The position ¢ and veloc-

ity ¢ represent the instantaneous state of the system. We say that this
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(a) Time plot (b) Phase portrait

Figure 3.2: Illustration of a state model. A state model gives the
rate of change of the state as a function of the state. The plot on
the left shows the evolution of the state as a function of time. The
plot on the right, called a phase portrait, shows the evolution of the
states relative to each other, with the velocity of the state denoted by

arrows.

system is a second-order system since it has two states that we combine
in the state vector x = (q,q).

The evolution of the position and velocity can be described using
either a time plot or a phase portrait, both of which are shown in
Figure3.2l The time plot, on the left, shows the values of the individual
states as a function of time. The phase portrait, on the right, shows
the traces of some of the states from different initial conditions: it
illustrates how the states move in the state space. In the phase portrait
we have also shown arrows that represent the velocity & of the state x in
a few points. The phase portrait gives a strong intuitive representation

of the equation as a vector field or a flow. While systems of second
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order (two states) can be represented in this way, unfortunately it is
difficult to visualize equations of higher order using this approach.
The differential equation ([B.1]) is called an autonomous system be-
cause there are no external influences. (Note that this usage of “au-
tonomous” is slightly different than in the phrase “autonomous vehi-
cle.”) Such a model is natural for use in celestial mechanics because it
is difficult to influence the motion of the planets. In many examples it is
useful to model the effects of external disturbances or controlled forces

on the system. One way to capture this is to replace equation (B.1) by

mq +c(q) + kg = u, (3.2)

where u represents the effect of external inputs. The model [B2) is
called a forced or controlled differential equation. It implies that the
rate of change of the state can be influenced by the input u(¢). Adding
the input makes the model richer and allows new questions to be posed.
For example, we can examine what influence external disturbances have
on the trajectories of a system. Or, in the case where the input variable
is something that can be modulated in a controlled way, we can analyze
whether it is possible to “steer” the system from one point in the state

space to another through proper choice of the input.
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The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where
the design of electronic amplifiers led to a focus on input/output behav-
ior. A system was considered a device that transforms inputs to out-
puts, as illustrated in Figure B3l Conceptually an input/output model
can be viewed as a giant table of input and output signals. Given an
input signal u(t) over some interval of time, the model should produce
the resulting output y(t).

The input /output framework is used in many engineering disciplines
since it allows us to decompose a system into individual components
connected through their inputs and outputs. Thus, we can take a
complicated system such as a radio or a television and break it down
into manageable pieces such as the receiver, demodulator, amplifier,
and speakers. Each of these pieces has a set of inputs and outputs
and, through proper design, these components can be interconnected
to form the entire system.

The input/output view is particularly useful for the special class of
linear time-invariant systems. This term will be defined more carefully
later in this chapter, but roughly speaking a system is linear if the
superposition (addition) of two inputs yields an output that is the sum
of the outputs that would correspond to individual inputs being applied
separately. A system is time-invariant if the output response for a given

input does not depend on when that input is applied.
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Figure 3.3: Illustration of the input/output view of a dynamical

system. The figure on the left shows a detailed circuit diagram for

an electronic amplifier; the one on the right is its representation as a

block diagram.

Many electrical engineering systems can be modeled by linear time-

invariant systems and hence a large number of tools have been de-

veloped to analyze them. One such tool is the step response, which
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Figure 3.4: Input/output response of a linear system. The step
response (a) shows the output of the system due to an input that
changes from 0 to 1 at time ¢t = 5 s. The frequency response (b)
shows the amplitude gain and phase change due to a sinusoidal input

at different frequencies.

describes the relationship between an input that changes from zero to
a constant value abruptly (a step input) and the corresponding output.
As we shall see later in the text, the step response is very useful in char-
acterizing the performance of a dynamical system, and it is often used

to specify the desired dynamics. A sample step response is shown in

Figure 3.4al
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Another way to describe a linear time-invariant system is to rep-
resent it by its response to sinusoidal input signals. This is called the
frequency response, and a rich, powerful theory with many concepts
and strong, useful results has emerged. The results are based on the
theory of complex variables and Laplace transforms. The basic idea
behind frequency response is that we can completely characterize the
behavior of a system by its steady-state response to sinusoidal inputs.
Roughly speaking, this is done by decomposing any arbitrary signal
into a linear combination of sinusoids (e.g., by using the Fourier trans-
form) and then using linearity to compute the output by combining the
response to the individual frequencies. A sample frequency response is
shown in Figure [3.4b]

The input/output view lends itself naturally to experimental de-
termination of system dynamics, where a system is characterized by
recording its response to particular inputs, e.g., a step or a set of sinu-

soids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach
to dynamics was strongly influenced by the electrical engineering (in-
put /output) view. A second wave of developments in control, starting
in the late 1950s, was inspired by mechanics, where the state space per-

spective was used. The emergence of space flight is a typical example,
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where precise control of the orbit of a spacecraft is essential. These
two points of view gradually merged into what is today the state space
representation of input/output systems. In the 1970s the development
was influenced by advances in automation, which emphasized the need
to include logic and sequencing.

The development of state space models involved modifying the mod-
els from mechanics to include external actuators and sensors and uti-
lizing more general forms of equations. In control, the model given by

equation (B.2) was replaced by

dx_
dt

f(z,u), y = h(z,u), (3:3)
where z is a vector of state variables, u is a vector of control signals, and
y is a vector of measurements. The term dz/dt represents the deriva-
tive of the vector z with respect to time, and f and h are (possibly
nonlinear) mappings of their arguments to vectors of the appropriate
dimension. For mechanical systems, the state consists of the position
and velocity of the system, so that x = (g, ) in the case of a damped
spring—mass system. Note that in the control formulation we model
dynamics as first-order differential equations, but we will see that this
can capture the dynamics of higher-order differential equations by ap-
propriate definition of the state and the maps f and h.

Adding inputs and outputs has increased the richness of the classical

problems and led to many new concepts. For example, it is natural to
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ask if possible states x can be reached with the proper choice of u
(reachability) and if the measurement y contains enough information
to reconstruct the state (observability). These topics will be addressed
in greater detail in Chapters [0 and Bl

A final development in building the control point of view was the
emergence of disturbances and model uncertainty as critical elements
in the theory. The simple way of modeling disturbances as determinis-
tic signals like steps and sinusoids has the drawback that such signals
cannot be predicted precisely. A more realistic approach is to model
disturbances as random signals. This viewpoint gives a natural connec-
tion between prediction and control. The dual views of input/output
representations and state space representations are particularly use-
ful when modeling systems with uncertainty since state models are
convenient to describe a nominal model but uncertainties are easier
to describe using input/output models (often via a frequency response
description). Uncertainty will be a constant theme throughout the text
and will be studied in particular detail in Chapter [[3]

An interesting observation in the design of control systems is that
feedback systems can often be analyzed and designed based on com-
paratively simple models. The reason for this is the inherent robust-
ness of feedback systems. However, other uses of models may require
more complexity and more accuracy. One example is feedforward con-

trol strategies, where one uses a model to precompute the inputs that
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cause the system to respond in a certain way. Another area is system
validation, where one wishes to verify that the detailed response of the
system performs as it was designed. Because of these different uses
of models, it is common to use a hierarchy of models having different

complexity and fidelity.

Multidomain Modeling

Modeling is an essential element of many disciplines, but traditions
and methods from individual disciplines can differ from each other, as
illustrated by the previous discussion of mechanical and electrical en-
gineering. A difficulty in systems engineering is that it is frequently
necessary to deal with heterogeneous systems from many different do-
mains, including chemical, electrical, mechanical, and information sys-
tems.

To model such multidomain systems, we start by partitioning a sys-
tem into smaller subsystems. Each subsystem is represented by balance
equations for mass, energy, and momentum, or by appropriate descrip-
tions of information processing in the subsystem. The behavior at the
interfaces is captured by describing how the variables of the subsystem
behave when the subsystems are interconnected. These interfaces act
by constraining variables within the individual subsystems to be equal
(such as mass, energy, or momentum fluxes). The complete model is

then obtained by combining the descriptions of the subsystems and the
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interfaces.

Using this methodology it is possible to build up libraries of subsys-
tems that correspond to physical, chemical, and informational compo-
nents. The procedure mimics the engineering approach where systems
are built from subsystems that are themselves built from smaller com-
ponents. As experience is gained, the components and their interfaces
can be standardized and collected in model libraries. In practice, it
takes several iterations to obtain a good library that can be reused for
many applications.

State models or ordinary differential equations are not suitable for
component-based modeling of this form because states may disappear
when components are connected. This implies that the internal de-
scription of a component may change when it is connected to other
components. As an illustration we consider two capacitors in an elec-
trical circuit. Each capacitor has a state corresponding to the voltage
across the capacitors, but one of the states will disappear if the capac-
itors are connected in parallel. A similar situation happens with two
rotating inertias, each of which is individually modeled using the angle
of rotation and the angular velocity. Two states will disappear when
the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations by

differential algebraic equations, which have the form

F(z,3) =0,
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where z € R™. A simple special case is

:b:f(x,y), g(x,y)zO, (34)

where z = (z,y) and F' = (i—f(x,y), g(x,y)). The key property is that
the derivative 2 is not given explicitly and there may be pure algebraic
relations between the components of the vector z. Modeling using
differential algebraic equations is also called equation-based modeling,
acausal modeling, or behavioral modeling.

The model (B.4]) captures the examples of the parallel capacitors
and the linked rotating inertias. For example, when two capacitors are
connected, we simply add the algebraic equation expressing that the

voltages across the capacitors are the same.

Modelica is a language that has been developed to support component-

based modeling. Differential algebraic equations are used as the basic
description, and object-oriented programming is used to structure the
models. Modelica is used to model the dynamics of technical systems
in domains such as mechanical, electrical, thermal, hydraulic, ther-
mofluid, and control subsystems. Modelica is intended to serve as a
standard format so that models arising in different domains can be ex-
changed between tools and users. A large set of free and commercial
Modelica component libraries are available and are used by a growing
number of people in industry, research, and academia. For further in-

formation about Modelica, see http://www.modelica.org or the books
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by Tiller [239] and Fritson [94].

Finite State Machines and Hybrid Systems

A final type of modeling has been developed within the computer-
controlled systems community. A hybrid system (also called a cy-
berphysical system) is one that combines continuous dynamics with
discrete logic. The discrete portion of the system represents logical
variables that reside in a computer, such as the mode of a system (on,
off, degraded, etc.).

Discrete state dynamics are often represented using a finite state
machine that consists of a finite set of discrete states a € Q. We can
think of o as the “mode” of the system. The dynamics of a finite state
machine are defined in terms of transitions between the states. One

convenient representation is as a guarded transition system:

Here the function ¢ is a Boolean (true/false) function that depends
on the current system mode « and an input £, which might represent
an environmental event (button press, component failure, etc). If the
guard g; is true then the system transitions from the current state
a to a new state o, determined by the rule (transition map) r;. A
guarded transition system can have many different rules, depending on

the system state and external input.
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It is also possible to combine systems that have continuous states
with those having discrete states, creating a hybrid system. For exam-
ple, if a system has a continuous state x and discrete state «, we might

write the overall system dynamics as

Z_j:fa(l'ﬂl)a gi(z,a,8) = o =ri(x,a), 1=1,...,N.

In this representation, the continuous dynamics (with state =) are gov-
erned by an ordinary differential equation that may depend on the
system mode « (indicated by the subscript in f,). The discrete tran-
sition system is also influenced by the continuous state, so that the
guards ¢g; and rules r; now depend on the continuous state.

Many other representations are possible for hybrid systems, includ-
ing models that allow a non-continuous change in the continuous vari-
ables when a change in the discrete state occurs (so-called reset logic).
Computer modeling packages for hybrid systems include StateFlow

(part of the MATLARB suite of tools), Modelica, and Ptolemy [205].

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback,
and it is therefore important to characterize uncertainty. When mak-
ing measurements, there is a good tradition to assign both a nominal
value and a measure of uncertainty. It is useful to apply the same prin-

ciple to modeling, but unfortunately it is often difficult to express the
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Figure 3.5: Characterization of model uncertainty. Uncertainty of
a static system is illustrated in (a), where the solid line indicates the
nominal input/output relationship and the dashed lines indicate the
range of possible uncertainty. The uncertainty lemon [100] in (b) is one
way to capture uncertainty in dynamical systems emphasizing that a
model is valid only in the amplitude and frequency ranges within the
shaded region. In (c) a model is represented by a nominal model M
and another model A representing the uncertainty analogous to the

representation of parameter uncertainty.

uncertainty of a model quantitatively.

For a static system whose input/output relation can be character-
ized by a function, uncertainty can be expressed by an uncertainty band
as illustrated in FigureB.5al At low signal levels there are uncertainties
due to sensor resolution, friction, and quantization. For example, some
models for queuing systems or cells are based on averages that exhibit
significant variations for small populations. At large signal levels there
are saturations or even system failures. The signal ranges where a

model is reasonably accurate vary dramatically between applications,
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but it is rare to find models that are accurate for signal ranges larger
than 10%.

Characterization of the uncertainty of a dynamical model is much
more difficult. We can try to capture uncertainties by assigning un-
certainties to parameters of the model, but this is often not sufficient.
There may be errors due to phenomena that have been neglected, e.g.,
small time delays. In control the ultimate test is how well a control
system based on the model performs, and time delays can be impor-
tant. There is also a frequency aspect. There are slow phenomena,
such as aging, that can cause changes or drift in the systems. There
are also high-frequency effects: a resistor will no longer be a pure resis-
tance at very high frequencies, and a beam has stiffness and will exhibit
additional dynamics when subject to high-frequency excitation. The
uncertainty lemon [100] shown in Figure B.5Dl is one way to conceptu-
alize the uncertainty of a system. It illustrates that a model is valid
only in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in
Chapter [I3] using figures such as Figure B.5d These tools make use
of the concept of a transfer function, which describes the frequency
response of an input/output system. For now, we simply note that one
should always be careful to recognize the limits of a model and not to
make use of models outside their range of applicability. For example,

one can describe the uncertainty lemon and then check to make sure
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that signals remain in this region. In early analog computing, a system
was simulated using operational amplifiers, and it was customary to
give alarms when certain signal levels were exceeded. Similar features

can be included in digital simulation.

3.2 STATE SPACE MODELS

In this section we describe the two primary forms of models that we use
in this text: differential equations and difference equations. Both make
use of the notions of state, inputs, outputs, and dynamics to describe
the behavior of a system. We also briefly discuss modeling of finite

state systems.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the
past of a system for the purpose of predicting the future. For a physical
system the state is composed of the variables required to account for
storage of mass, momentum, and energy. A key issue in modeling is
to decide how accurately this information has to be represented. The
state variables are gathered in a vector x € R" called the state vector.
The control variables are represented by another vector u € RP, and

the measured signal by the vector y € R?. A system can then be
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represented by the differential equation

dx_
dt

flz,u), y = h(z,u), (3.5)
where f: R" x RP — R"™ and h : R” x RP — R? are smooth mappings.
We call a model of this form a state space model.

The dimension of the state vector is called the order of the model.
The model given in equation (3.0) is called time invariant because the
functions f and h do not depend explicitly on time t; there are more
general time-varying systems where the functions do depend on time.
The model consists of two functions: the function f gives the rate of
change of the state vector as a function of state  and control u, and
the function h gives the measured values as functions of state x and
control w.

A model is called a linear state space model (or often just a “linear

system”) if the functions f and h are linear in x and u. A linear state

space model can thus be represented by

d
d—gtg = Az + Bu, y = Cx + Du, (3.6)

where A, B, C, and D are constant matrices. Such a model is said
to be linear and time-invariant, or LTT for short. (In this text we will
usually omit the term time-invariant and just say the model is linear.)
The matrix A is called the dynamics matriz, the matrix B is called

the control matriz, the matrix C' is called the sensor matriz, and the
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matrix D is called the direct term. Frequently models will not have a
direct term, indicating that the control signal u does not influence the
output directly.

A different form of linear differential equations, generalizing the

second-order dynamics from mechanics, is an equation of the form

dny dnfly
a T g

+ o Fany = u, (3.7)

where ¢ is the independent (time) variable, y(t) is the dependent (out-
put) variable and wu(t) is the input. The notation d*y/dt* is used to
denote the kth derivative of y with respect to ¢, sometimes also writ-
ten as y®. The controlled differential equation (B.7) is said to be an

nth-order model. This model can be converted into state space form

by defining

( ) ( 3\
T dnfly/dtnfl
To dn—Qy/dtn—Z

xr = = s
Tp1 dy/dt

Tn Y

\ Y, \ Y,
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and the state space equations become

4 )
X1
X2
d
dt
Tn-1
Tn
\ /

( )
—A1T1 — - — ARy
T
Tn—2
Lp—

\ n—1 )

0

\ J

With the appropriate definitions of A, B, C', and D, this equation is

in linear state space form.

An even more general model is obtained by letting the output be a

linear combination of the states of the model, i.e.,

y =bixy + boxo + - - - + by, + du.

This model can be represented in state space as

\

T1
X2
d J—
dt | T3
In
\ /
y =

;

\

(

\

—ay —Qag ... —QAp—1
1 0 ... 0
0 1 0
0 0 1
by by ... m]x+mL

_an

)

0

x 4+

(3.8)

This particular form of a linear state space model is called reachable

canonical form and will be studied in more detail in later chapters.

Many other representations for a model are possible and we shall see
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several of these in Chapters [6HSl It is also possible to expand the form
of equation (B.7) to allow derivatives of the input to appear, as we saw

briefly in Chapter 2

Example 3.1 Spring—mass system
As a simple example of converting a linear differential equation to state
space form, consider the externally-driven spring mass system whose

dynamics are given in equation (3.2):

mg + c(q) + kq = u.

This has the same form as equation (3.7) where the output y is the

position ¢q. The state of the system can then be written as

and the state space equations are

d | —c/m —k/m| |z 1/m
) 1 0 i) 0
where we have further assumed that ¢(¢) = ¢¢ (corresponding to viscous

friction).

Example 3.2 Balance systems
A more complex example of a type of system that can be modeled using

ordinary differential equations is the class of balance systems. A balance
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(a) Segway (b) Saturn rocket (c) Cart-pendulum system

Figure 3.6: Balance systems. (a) Segway® Personal Transporter,
(b) Saturn rocket, and (c) inverted pendulum on a cart. Each of these

examples uses forces at the bottom of the system to keep it upright.

system is a mechanical system in which the center of mass is balanced
above a pivot point. Some common examples of balance systems are
shown in Figure[3.6. The Segway® Personal Transporter (Figure [3.Gal)
uses a motorized platform to stabilize a person standing on top of it.
When the rider leans forward, the transportation device propels itself
along the ground but maintains its upright position. Another example
is a rocket (Figure 3.6h)), in which a gimballed nozzle at the bottom of
the rocket is used to stabilize the body of the rocket above it. Other
examples of balance systems include humans or other animals standing
upright or a person balancing a stick on their hand.

Balance systems are a generalization of the spring—mass system we

saw earlier. We can write the dynamics for a mechanical system in the
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general form

M(q)g + C(q,q) + K(q) = B(q)u,

where M (q) is the inertia matrix for the system, C(q, ¢) represents the
Coriolis forces as well as the damping, K(q) gives the forces due to
potential energy, and B(q) describes how the external applied forces
couple into the dynamics. Note that ¢ may be a vector, rather than
just a scalar, and represents the configuration variables of the system.
The specific form of the equations can be derived using Newtonian me-
chanics. Each of the terms depends on the configuration of the system
q and these terms are often nonlinear in the configuration variables.
Figure [3.6d shows a simplified diagram for a balance system con-
sisting of an inverted pendulum on a cart. To model this system, we
choose state variables that represent the position and velocity of the
base of the system, ¢ and ¢, and the angle and angular rate of the
structure above the base, § and 0. (Note the slight abuse of notation
in using ¢ to represent the position and (g, ) for the full set of config-
uration variables.) We let F' represent the force applied at the base of
the system, assumed to be in the horizontal direction (aligned with ¢),
and choose the position and angle of the system as outputs. With this
set of definitions, the dynamics of the system can be computed using

Newtonian mechanics and have the form

(M +m) —mlcosf| |q g + milsin 6 62 F
+ = , (3.9)

—mlcos® (J+mi?®) | |6 ~0 — mgl sin 6 0
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where M is the mass of the base, m and J are the mass and moment
of inertia of the system to be balanced, [ is the distance from the base
to the center of mass of the balanced body, ¢ and v are coefficients of
viscous friction, and ¢ is the acceleration due to gravity.

We can rewrite the dynamics of the system in state space form by

defining the state as x = (¢, 6, ¢, 0), the input as w = F', and the output

as y = (q,0). If we define the total mass and total inertia as

My =M+ m, Jy = J +ml?,

the equations of motion then become

() ( . )
q q
d |? . ’ .
o = | —=mlse0* + mg(mi?/J;)seco — cqg — (v/J)mlcel) +u | >
q M, —m(mi?/J;)c3
i —mi%sgcah? + Miglsy — clcogg — 'y(Mt/m)é + lcgu
N L Je(My/m) — m(lcy)? )
q
Y= 5
0

where we have used the shorthand ¢y = cosf and sy = sin 6.

In many cases, the angle 6 will be very close to 0, and hence we
can use the approximations sinf ~ # and cosf =~ 1. Furthermore, if 0
is small, we can ignore quadratic and higher terms in 6. Substituting

these approximations into our equations, we see that we are left with
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a linear state space equation

() (
. 0 0 1 0 . 0

d 19 0 0 0 1 0 0

al |~ * “v
g 0 m?Pg/u  —cli/u —lm/p| |4 Jo/
\9) \O Mimgl/u —clm/u —fyMt/u) \9) \lm/u}

4

1000
y= Z,
0100

where = M J; — m2[2. \V4

Example 3.3 Inverted pendulum

A variation of the previous example is one in which the location of the
base ¢ does not need to be controlled. This happens, for example, if we
are interested only in stabilizing a rocket’s upright orientation without
worrying about the location of the base of the rocket. The dynamics

of this simplified system are given by

d 10 0
— = , y =70, (3.10)
di 0 m—glsinﬁ—lé—i—iucosﬁ

Ji Ji Ji

where 7 is the coefficient of rotational friction, J, = J + ml?, and u is
the force applied at the base. This system is referred to as an inverted

pendulum. \Y%
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Difference Equations

In some circumstances, it is more natural to describe the evolution of
a system at discrete instants of time rather than continuously in time.
If we refer to each of these times by an integer £k = 0,1,2,..., then
we can ask how the state of the system changes for each k. Just as
in the case of differential equations, we define the state to be the set
of variables that summarizes the past of the system for the purpose of
predicting its future. Systems described in this manner are referred to
as discrete-time systems.

The evolution of a discrete-time system can be written in the form

zlk +1] = f(x[k], ulk]), ylk] = h(z[k], ulk]), (3.11)

where x[k] € R" is the state of the system at time k (an integer),
ulk] € RP is the input, and y[k] € R? is the output. As before, f
and h are smooth mappings of the appropriate dimension. We call
equation (B.I1) a difference equation since it tells us how z[k+ 1] differs
from x[k|. The state x[k] can be either a scalar- or a vector-valued
quantity; in the case of the latter we write z;[k] for the value of the
jth state at time k.

Just as in the case of differential equations, it is often the case that

the equations are linear in the state and input, in which case we can
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describe the system by

zlk + 1] = Az[k] + Bulk], y[k] = Cx[k] + Dulk].

As before, we refer to the matrices A, B, C', and D as the dynamics
matrix, the control matrix, the sensor matrix, and the direct term. The

solution of a linear difference equation with initial condition z[0] and

input u[0],...,u[T] can be computed using repeated substitution and
is given by
k—1
wlk] = A*z[0] + > A¥ 7 Bulj),
=0
o k>0, (3.12)
ylk] = CA*2[0] + ZC’Ak_j_lBu[j] + Dulk],
=0

Difference equations are also useful as an approximation of differ-

ential equations, as we will show later.

Example 3.4 Predator—prey

As an example of a discrete-time system, consider a simple model for
a predator—prey system. The predator—prey problem refers to an eco-
logical system in which we have two species, one of which feeds on the
other. This type of system has been studied for decades and is known
to exhibit interesting dynamics. Figure 3.7 shows a historical record
taken over 90 years for a population of lynxes versus a population of
hares [I72]. As can been seen from the graph, the annual records of
the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-
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Figure 3.7: Predator versus prey. The photograph on the left shows
a Canadian lynx and a snowshoe hare, the lynx’s primary prey. The
graph on the right shows the populations of hares and lynxes between
1845 and 1935 in a section of the Canadian Rockies [I72]. The data
were collected on an annual basis over a period of 90 years. (Photo-

graph copyright Tom and Pat Leeson.)

time model to keep track of the rate of births and deaths of each species.
Letting H represent the population of hares and L represent the popu-
lation of lynxes, we can describe the state in terms of the populations
at discrete periods of time. Letting k be the discrete-time index (cor-

responding here to each day), we can write

Hlk+ 1] = H[k] + by(u)H[k] — aL[k]H k],
(3.13)
L[k + 1] = L[k] 4+ cL[k|H[k| — d,L[k],
where by(u) is the hare birth rate per unit period and is a function
of the food supply u, d; is the lynx mortality rate, and a and c are
the interaction coefficients. The interaction term aL[k]H[k] models
the rate of predation, which is assumed to be proportional to the rate

at which predators and prey meet and is hence given by the product

of the population sizes. The interaction term cL[k]|H[k| in the lynx
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Figure 3.8: Discrete-time simulation of the predator—prey
model (BI3). Using the parameters a = ¢ = 0.014, by(u) = 0.6, and
dy = 0.7 in equation (B3I3)), the period and magnitude of the lynx and

hare population cycles approximately match the data in Figure B.7

dynamics has a similar form and represents the rate of growth of the
lynx population. This model makes many simplifying assumptions—
such as the fact that hares decrease in number only through predation
by lynxes—but it often is sufficient to answer basic questions about the
system.

To illustrate the use of this system, we can compute the number of
lynxes and hares at each time point from some initial population. This
is done by starting with z[0] = (Ho, Lo) and then using equation (3.13)
to compute the populations in the following period. By iterating this
procedure, we can generate the population over time. The output of
this process for a specific choice of parameters and initial conditions is
shown in Figure .81 While the details of the simulation are different
from the experimental data (to be expected given the simplicity of our

assumptions), we see qualitatively similar trends and hence we can use
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the model to help explore the dynamics of the system. \Y%

Example 3.5 E-mail server

The IBM Lotus (now Domino) server is a collaborative software system
that administers users’ e-mail, documents, and notes. Client machines
interact with end users to provide access to data and applications. The
server also handles other administrative tasks. In the early develop-
ment of the system it was observed that the performance was poor
when the central processing unit (CPU) was overloaded because of too
many service requests, and mechanisms to control the load were there-
fore introduced.

The interaction between the client and the server is in the form of
remote procedure calls (RPCs). The server maintains a log of statis-
tics of completed requests. The total number of requests being served,
called RIS (RPCs in server), is also measured. The load on the server is
controlled by a parameter called MaxUsers, which sets the total num-
ber of client connections to the server. This parameter is controlled by
the system administrator. The server can be regarded as a dynamical
system with MaxUsers as the input and RIS as the output. The rela-
tionship between input and output was first investigated by exploring
the steady-state performance and was found to be linear.

In [116] a dynamical model in the form of a first-order difference

equation is used to capture the dynamic behavior of this system. Using
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system identification techniques, they construct a model of the form
ylk+ 1] = ay[K] + bulk],

where © = MaxUsers — MaxUsers and y = RIS — RIS. The parameters
a = 043 and b = 0.47 are parameters that describe the dynamics
of the system around the operating point, and MaxUsers = 165 and
RIS = 135 represent the nominal operating point of the system. The

number of requests was averaged over a sampling period of 60 s. \Y%

Another application of difference equations is in the implementation
of control systems on computers. Early controllers were analog phys-
ical systems, which can be modeled by differential equations. When
implementing a controller described by a differential equation using a
computer it is necessary to do approximations. A simple way is to
approximate derivatives by finite differences, as illustrated by the fol-

lowing example.

Example 3.6 Difference approximation of a PI controller

Consider the proportional-integral (PI) controller

t t

u(t) = kpe(t) + ki/ e(r)dr = kpe(t) + x(t), x(t) = ki/ e(r)dr,
0 0
where the controller state is given by the differential equation

dx
i kie(t) (3.14)

Assume that the error is measured at regular sampling intervals ¢t =
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h,2h,3h,.... Approximating the derivative in equation (B.14]) by dif-

ferences gives

z(jh + h) — x(jh)

Y = kie(jh),

and the controller is then given by the difference equation
wlj +1] = xlj] + hkeljl,  ulj] = kpelj] + (5],

where z[j] = z(jh), e[j] = e(jh), and u[j] = wu(jh) represent the
discrete-time state, error, and input sampled at each time interval (and
we use j as our discrete time index here to avoid confusion with the
gains k, and k;). This controller is easy to implement on a computer

since it consists of just addition and multiplication. \Y%

The approximation in the example works well provided that the
sampling interval is so short that the variable e(t) changes very little

over a sampling interval.

Finite State Machines @

In addition to systems that can be modeled by continuous variables
(e.g., positions, velocities, voltages, temperatures), we often encounter
systems that have discrete states (e.g., on, off, standby, fault). A finite
state machine is a model in which the states of the system are chosen
from a finite list of “modes.” The dynamics of a finite state machine
are given by transitions between these modes, possibly in response to

external signals. We illustrate this concept with a simple example.
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Figure 3.9: A simple model for a traffic light. The diagram on the

right is a finite state machine model of the traffic light controller.

Example 3.7 Traffic light controller
Consider a finite state machine model of a traffic light control system,
as shown in Figure We represent the state of the system in terms
of the set of traffic lights that are turned on (either east—west or north—
south). In addition, once a light is turned on it should stay that way
for a certain minimum time, and then only change when a car comes up
to the intersection in the opposite direction. This gives us two states
for each direction of the lights: waiting for a car to arrive and waiting
for the timer to expire. Thus, we have four states for the system, as
shown in Figure

The dynamics for the light describe how the system transitions from
one state to another. Starting at the leftmost state, we assume that
the lights are set to allow traffic in the north-south direction. When
a car arrives on the east—west street, we transition to the state at the

top of the diagram, where a timer is started. Once the timer reaches
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the designated amount of time, we transition to the state on the right
side of the diagram and turn on the lights in the east—west direction.
From here we wait until a car arrives on the north-south street and
continue the cycle.

Viewed as a control system, this model has a state space consisting
of four discrete states: north—south waiting, north—south countdown,
east—west waiting, and east—west countdown. The inputs to the con-
troller consist of the signals that indicate whether a car is present at
the roads leading up to the intersection. The outputs from the con-
troller are the signals that change the colors of the traffic light. Finally,
the dynamics of the controller are the transition diagram that controls

how the states (or modes) of the system change in time. \Y

More formally, a finite state machine can be represented as a finite
set of discrete states a € Qgys, Where Qg is a discrete set. The dy-
namics of the system are described by transitions between the discrete
states, as in the finite state machine described in the previous example.
These transitions can depend on external inputs or measurements and
can generate output actions on transition into or out of a given state.
If we let 5 € Qy, represent (discrete) input events (button press, com-
ponent failure, etc) and v € Qo represent (discrete) output actions

(such as turning off a device), then the dynamics of the finite state
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machine can be written as a guarded command system

(o, ) —> i=1,...,N. (3.15)
7/22a10175)7

Here the function g; is a Boolean (true/false) function that depends on
the current system mode o and an external input . If the guard g; is
true then the system transitions from the current state o to a new state
o/, determined by the rule (transition map) r; and the external input.
The output action a; is similarly dependent on the current state and
external input. A guarded transition system can have many different
rules, depending on the system state and external input.

The dynamics of a transition system is similar in many ways to the
discrete time dynamics in equation (3.I1]). The major difference is that
the transitions do not necessarily occur at regularly spaced intervals of
time. Indeed, there is no strict notion of time in a transition system as
we have described it here: it is only the sequence of events that is kept
track of (through the evolution of the discrete state).

Specifications for finite transition systems are often written as log-
ical functions describing the conditions that should be imposed on the
system. For example, we might wish to say that if a specific sensor
is not operating, then the system cannot transition to a mode that

requires the use of that sensor. This could be written as the logical
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formula

« € {states with sensor k not functioning} = o’ & {states requiring sensor k}.

The formula of the form p = ¢ where p and ¢ are Boolean proposi-
tions can be written as the logical function (Ip)||(p&&¢q), which asserts
that if proposition p is true then proposition ¢ must be true. In the
sensor example, p and q are represented by whether the system mode
« is in some set of states.

Finite state machines are very useful for describing logical opera-
tions and are often combined with continuous state models (differential
or difference equations) to create a hybrid system model. The study of
hybrid systems is beyond the scope of this text, but excellent references

include Lee and Seshia [160] and Alur [§].

Simulation and Analysis

State space models can be used to answer many questions. One of the
most common, as we have seen in the previous examples, involves pre-
dicting the evolution of the system state from a given initial condition.
While for simple models this can be done in closed form, more often it
is accomplished through computer simulation.

Consider again the damped spring—mass system from Section [B.1]
but this time with an external force applied, as shown in Figure B.I0

We wish to predict the motion of the system for a periodic forcing
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Figure 3.10: A driven spring—mass system with damping. Here we
use a linear damping element with coefficient of viscous friction ¢. The

mass is driven with a sinusoidal force of amplitude A.

function, with a given initial condition, and determine the amplitude,
frequency, and decay rate of the resulting motion.

We choose to model the system with a linear ordinary differential
equation. Using Hooke’s law to model the spring and assuming that
the damper exerts a force that is proportional to the velocity of the
system, we have

mq + cq + kq = u, (3.16)

where m is the mass, ¢ is the displacement of the mass, ¢ is the coeffi-
cient of viscous friction, £ is the spring constant, and u is the applied
force. In state space form, using x = (¢, q) as the state and choosing

y = q as the output, we have

dz L2
-V = ) Yy =2a.
dt c k U
iy — —y + —
m m m

We see that this is a linear second-order differential equation with one

input u and one output .

CHAPTER 3



SYSTEM MODELING

We now wish to compute the response of the system to an input of
the form u = Asinwt. Although it is possible to solve for the response
analytically, we instead make use of a computational approach that
does not rely on the specific form of this system. Consider the general

state space system

Given the state x at time ¢, we can approximate the value of the state
at a short time h > 0 later by assuming that the rate of change f(x,u)

is constant over the interval ¢ to t 4+ h. This gives

x(t+h)=x(t) + hf(z(t),u(t)). (3.17)

Iterating this equation, we can thus solve for x as a function of time.
This approximation is known as Euler integration and is in fact a dif-
ference equation if we let h represent the time increment and write
zlk] = z(kh), as we saw in Example B.6l Although modern simulation
tools such as MATLAB and Mathematica use more accurate methods
than Euler integration, they still have some of the same basic trade-offs.

Returning to our specific example, Figure B.I1] shows the results of
computing x(t) using equation (B.17)), along with the analytical compu-
tation. We see that as h gets smaller, the computed solution converges
to the exact solution. The form of the solution is also worth noticing:
after an initial transient, the system settles into a periodic motion. The

portion of the response after the transient is called the steady-state re-
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Figure 3.11: Simulation of the forced spring—mass system with dif-
ferent simulation time constants. The solid line represents the ana-
lytical solution. The dashed lines represent the approximate solution

via the method of Euler integration, using decreasing step sizes.

sponse to the input.

In addition to generating simulations, models can also be used to an-
swer other types of questions. Two that are central to the methods
described in this text concern the stability of an equilibrium point and
the input/output frequency response. We illustrate these two compu-
tations through the examples below and return to the general compu-
tations in later chapters.

Returning to the damped spring—mass system, the equations of mo-

tion with no input forcing are given by

dx T2
- 3.18
— T2 — —I1
m m

where z; is the position of the mass (relative to the rest position) and z

is its velocity. We wish to show that if the initial state of the system is

away from the rest position, the system will return to the rest position
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eventually (we will later define this situation to mean that the rest
position is asymptotically stable). While we could heuristically show
this by simulating many, many initial conditions, we seek instead to
prove that this is true for any initial condition.

To do so, we construct a function V' : R" — R that maps the system
state to a positive real number. For mechanical systems, a convenient

choice is the energy of the system,

1 1
V(z) = 5/&7&% + §mx§ (3.19)

If we look at the time derivative of the energy function, we see that

av c k 9

— = kxlx'l + ml'gi'g = k‘l’ll'g + mZE2<——I‘2 - —I1> = —CZy,
dt m m

which is always either negative or zero. Hence V(z(t)) is never in-
creasing and, using a bit of analysis that we will see formally later, the
individual states must remain bounded.

If we wish to show that the states eventually return to the origin, we
must use a slightly more detailed analysis. Intuitively, we can reason as
follows: suppose that for some period of time, V' (x(t)) stops decreasing.
Then it must be true that V(z(t)) = 0, which in turn implies that
zo(t) = 0 for that same period. In that case, #2(f) = 0, and we can

substitute into the second line of equation (3.I8)) to obtain

. c k k
m m m

Thus we must have that z; also equals zero, and so the only time that
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V(z(t)) can stop decreasing is if the state is at the origin (and hence
this system is at its rest position). Since we know that V(x(t)) is never
increasing (because V < 0), we therefore conclude that the origin is
stable (for any initial condition).

This type of analysis, called Lyapunov stability analysis, is consid-
ered in detail in Chapter[Bl It shows some of the power of using models

for the analysis of system properties.

Another type of analysis that we can perform with models is to compute
the output of a system to a sinusoidal input, known as the frequency
response. We again consider the spring-mass system, but this time

keeping the input and leaving the system in its original form:
mq + cq + kq = u. (3.20)

We wish to understand how the system responds to a sinusoidal input
of the form

u(t) = Asinwt.

We will see how to do this analytically in Chapter [{, but for now we
make use of simulations to compute the answer.

We first begin with the observation that if ¢(t) is the solution to
equation (B:20) with input u(t), then applying an input 2u(t) will give
a solution 2¢(t) (this is easily verified by substitution). Hence it suffices
to look at an input with unit magnitude, A = 1. A second observation,

which we will prove in Chapter [l is that the long-term response of the
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system to a sinusoidal input is itself a sinusoid at the same frequency,

and so the output has the form

q(t) = g(w) sin(wt + p(w)),

where g(w) is called the gain of the system and ¢(w) is called the phase
(or phase offset).

To compute the frequency response numerically, we can simulate the
system at a set of frequencies wy,...,wy and plot the gain and phase
at each of these frequencies. An example of this type of computation is
shown in Figure BI2l For linear systems the frequency response does
not depend on the amplitude A of the input signal. Frequency response
can also be applied to nonlinear systems but the gain and phase then

depend on the A.

3.3 MODELING METHODOLOGY

To deal with large, complex systems, it is useful to have different repre-
sentations of the system that capture essential features and hide irrel-
evant details. In all branches of science and engineering it is common
practice to use some graphical description of systems, called schematic
diagrams. They can range from stylistic pictures to drastically simpli-
fied standard symbols. These pictures make it possible to get an overall
view of the system and to identify the individual components. Exam-

ples of such diagrams are shown in Figure B.I3l Schematic diagrams

161



162

—
(=]

Gain (log scale)

107 :

10" 10” 10’
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(a) Time domain simulations (b) Frequency response

Figure 3.12: A frequency response (gain only) computed by mea-
suring the response of individual sinusoids. The figure on the left
shows the response of the system as a function of time to a number of
different unit magnitude inputs (at different frequencies). The figure
on the right shows this same data in a different way, with the mag-
nitude of the response plotted as a function of the input frequency.
The filled circles correspond to the particular frequencies shown in

the time responses.

are useful because they give an overall picture of a system, showing dif-
ferent subprocesses and their interconnection and indicating variables

that can be manipulated and signals that can be measured.

Block Diagrams

A special graphical representation called a block diagram has been de-
veloped in control engineering. The purpose of a block diagram is to
emphasize the information flow and to hide details of the system. In a

block diagram, different process elements are shown as boxes, and each
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Figure 3.13: Schematic diagrams for different disciplines. Each di-
agram is used to illustrate the dynamics of a control system: (a)
electrical schematics for a power system [155], (b) a biological cir-
cuit diagram for a synthetic clock circuit [26], (c) a process diagram
for a distillation column [219], and (d) a Petri net description of a

communication protocol.

box has inputs denoted by lines with arrows pointing toward the box
and outputs denoted by lines with arrows going out of the box. The
inputs denote the variables that influence a process, and the outputs
denote the signals that we are interested in or signals that influence

other subsystems. Block diagrams can also be organized in hierarchies,
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t
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Figure 3.14: Standard block diagram elements. The arrows indicate
the the inputs and outputs of each element, with the mathematical
operation corresponding to the blocked labeled at the output. The
system block (f) represents the full input/output response of a dy-

namical system.

where individual blocks may themselves contain more detailed block
diagrams.

Figure [B.14] shows some of the notation that we use for block dia-
grams. Signals are represented as lines, with arrows to indicate inputs
and outputs. The first diagram is the representation for a summation
of two signals. An input/output response is represented as a rectan-
gle with the system name (or mathematical description) in the block.
Two special cases are a proportional gain, which scales the input by a
multiplicative factor, and an integrator, which outputs the integral of
the input signal.

Figure illustrates the use of a block diagram, in this case for

modeling the flight response of a fly. The flight dynamics of an insect
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Wind
(d) Drag = |ea—0
Aero-
dynamics [
o Ref (a) Sensory (b) Wing (c) Bod
DN Motor Aero- Dynani]ics —
? \? System dynamics ’
(e) Vision
—1 |-
System

Figure 3.15: A block diagram representation of the flight control
system for an insect flying against the wind. The mechanical portion
of the model consists of the rigid-body dynamics of the fly, the drag
due to flying through the air, and the forces generated by the wings.
The motion of the body causes the visual environment of the fly to
change, and this information is then used to control the motion of the

wings (through the sensory motor system), closing the loop.

are incredibly intricate, involving careful coordination of the muscles
within the fly to maintain stable flight in response to external stimuli.
One known characteristic of flies is their ability to fly upwind by making
use of the optical flow in their compound eyes as a feedback mechanism.
Roughly speaking, the fly controls its orientation so that the point of
contraction of the visual field is centered in its visual field [207].

To understand this complex behavior, we can decompose the overall
dynamics of the system into a series of interconnected subsystems (or
blocks). Referring to Figure BI85, we can model the insect navigation

system through an interconnection of five blocks. The sensory motor
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system (a) takes the information from the visual system (e) and gener-
ates muscle commands that attempt to steer the fly so that the point
of contraction is centered. These muscle commands are converted into
forces through the flapping of the wings (b) and the resulting aerody-
namic forces that are produced. The forces from the wings are com-
bined with the drag on the fly (d) to produce a net force on the body
of the fly. The wind velocity enters through the drag aerodynamics.
Finally, the body dynamics (c) describe how the fly translates and ro-
tates as a function of the net forces that are applied to it. The insect
position, speed, and orientation are fed back to the drag aerodynamics
and vision system blocks as inputs.

Each of the blocks in the diagram can itself be a complicated sub-
system. For example, the visual system of a fruit fly consists of two
complicated compound eyes (with about 700 elements per eye), and
the sensory motor system has about 200,000 neurons that are used
to process information. A more detailed block diagram of the insect
flight control system would show the interconnections between these
elements, but here we have used one block to represent how the motion
of the fly affects the output of the visual system, and a second block to
represent how the visual field is processed by the fly’s brain to generate
muscle commands. The choice of the level of detail of the blocks and
what elements to separate into different blocks often depends on expe-

rience and on the questions that one wants to answer using the model.
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One of the powerful features of block diagrams is their ability to hide
information about the details of a system that may not be needed to

gain an understanding of the essential dynamics of the system.

Algebraic Loops

When analyzing or simulating a system described by a block diagram,
we need to form the differential equations that describe the complete
system. In many cases the equations can be obtained by combining the
differential equations that describe each subsystem and substituting
variables. This simple procedure cannot be used when there are closed
loops of subsystems that all have a direct connection between inputs
and outputs, known as an algebraic loop. A direct connection means
that a change in the input u gives an instantaneous change in the
output y.

To see what can happen, consider a system with two blocks, a first-

order nonlinear system,

dx
pri f(x,u), y = h(x), (3.21)
and a proportional controller described by u = —ky. There is no direct

connection since the function h does not depend on u. In that case we
can obtain the equation for the closed loop system simply by replacing

u by —ky = —kh(z) in equation ([B21]) to give

dx
o= [ —kh(@), oy =h),



168 CHAPTER 3

which is an ordinary differential equation.
The situation is more complicated if there is a direct connection. If

y = h(z,u), then replacing u by —ky gives

dx

To obtain a differential equation for z, the algebraic equation y =
h(z, —ky) must first be solved to give y = «a(x), which in general is a
complicated task.

When algebraic loops are present, it is necessary to solve algebraic
equations to obtain the differential equations for the complete system.
The resulting model becomes a set of differential algebraic equations,
similar to equation (B3]). Resolving algebraic loops is a nontrivial
problem because it requires the symbolic solution of algebraic equa-
tions. Most block diagram-oriented modeling languages cannot handle
algebraic loops, and they simply give a diagnosis that such loops are
present. In the era of analog computing, algebraic loops were elimi-
nated by introducing fast dynamics between the loops. This created
differential equations with fast and slow modes that are difficult to solve
numerically. Advanced modeling languages like Modelica use several

sophisticated methods to resolve algebraic loops.
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Modeling from Experiments

Since control systems are provided with sensors and actuators, it is
also possible to obtain models of system dynamics from experiments
on the process. The models are restricted to input/output models
since only these signals are accessible to experiments, but modeling
from experiments can also be combined with modeling from physics
through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the
response to a step change in the control signal. Such an experiment
begins by setting the control signal to a constant value. When the
output settles to a constant value (assuming the system is stable),
the control signal is changed quickly to a new level and the output is
observed. The experiment gives the step response of the system, and
the shape of the response gives useful information about the dynamics.
It immediately gives an indication of the response time, and it tells if

the system is oscillatory or if the response is monotone.

Example 3.8 Spring—mass system

The dynamics of the spring—mass system in Section 3.1I] are given by

mq + cq + kq = u. (3.22)

We wish to determine the constants m, ¢, and k by measuring the
response of the system to a step input of magnitude Fj.

We will show in Chapter [7l that when ¢? < 4km, the step response
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Figure 3.16: Step response for a spring—mass system. The mag-
nitude of the step input is Fy = 20 N. The period of oscillation T’
is determined by looking at the time between two subsequent local
maxima in the response. The period combined with the steady-state
value g(co) and the relative decrease between local maxima can be

used to estimate the parameters in a model of the system.

for this system from the rest configuration is given by

Pb 1 k ct .
q(t) = T (1 - w—d\/ o eXp(—%) sin(wat + @)) :

Vakm — ¢? . (\/4km — 02)
Wg=———", p = tan .
2m c
From the form of the solution, we see that the shape of the step response
is determined by the parameters of the system. Hence, by measuring
certain features of the step response we can determine the parameter
values.
Figure[3.16] shows the response of the system to a step of magnitude

Fy = 20 N, along with some measurements. We start by noting that

the steady-state position of the mass (after the oscillations die down)
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is a function of the spring constant k:
q(c0) = —= (3.23)

where Fj is the magnitude of the applied force (F = 1 for a unit step
input). The parameter 1/k is called the gain of the system. The period

of the oscillation can be measured between two peaks and must satisfy

21 V4dkm — c?
T 2m ’

Finally, the rate of decay of the oscillations is given by the exponential
factor in the solution. Measuring the amount of decay between two

peaks, we have

log (q(tl) - %) — log (q(tg) — %) = %(tg —t). (3.24)

Using this set of three equations, we can solve for the parameters and
determine that for the step response in Figure B.16] we have m ~ 250

kg, ¢ = 60 Ns/m, and k ~ 40 N/m. \%

Modeling from experiments can also be done using many other sig-
nals. Sinusoidal signals are commonly used (particularly for systems
with fast dynamics) and precise measurements can be obtained by ex-
ploiting correlation techniques. An indication of nonlinearities can be
obtained by repeating experiments with input signals having different
amplitudes. Modeling based on sinusoidal signals is very time consum-

ing for systems with slow dynamics. In such situations it is advanta-
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geous to used signals that switch between two different levels. There is
a whole subfield of control called system identification that deals with
experimental determination of models. Questions like optimal inputs,
experiments in open and closed loop, model accuracy, and fundamental

limits are dealt with extensively.

Normalization and Scaling

When deriving a model, it is often useful to introduce dimension-free
variables. Such a procedure can often simplify the equations for a
system by reducing the number of parameters. It can also reveal inter-
esting properties of the model. It is also useful to normalize variables
by scaling to improve numerics and allow faster and more accurate
simulations.

The procedure of scaling is straightforward in principle: choose
units for each independent variable and introduce new variables by
dividing the variables by the chosen normalization unit. We illustrate

the procedure with two examples.

Example 3.9 Spring—mass system
Consider again the spring-mass system introduced earlier. Neglecting

the damping, the system is described by

mq + kq = u.

The model has two parameters m and k. To normalize the model
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we introduce dimension-free variables © = ¢/l and 7 = wyt, where
wo = v/k/m and [ is the chosen length scale. We scale force by mlw?

and introduce v = u/(mlw?). The scaled equation then becomes

Pz dq/l 1

e — k -
dr?  d(wet)?  mlw? (=ha +u) T,

which is the normalized undamped spring—mass system. Notice that
the normalized model has no parameters, while the original model had
two parameters m and k. Introducing the scaled, dimension-free state
variables z; = x = ¢/l and 2y = dz/dr = ¢/(lwp), the model can be

written as
d Z1 0 1 21 0
dr
29 -1 0 29 v

This simple linear equation describes the dynamics of any spring—mass
system, independent of the particular parameters, and hence gives us
insight into the fundamental dynamics of this oscillatory system. To
recover the physical frequency of oscillation or its magnitude, we must

invert the scaling we have applied. \Y%

Example 3.10 Balance system
Consider the balance system described in Example Neglecting
damping by putting ¢ = 0 and 7 = 0 in equation (3.9), the model can

be written as

2 2

(Mer)% —mlcos@idl—tf +mlsin0(2—f)2 = F
d*q ,.d20 .

_mlcosﬁﬁ + (J +ml )ﬁ — mglsinf = 0.
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Let wy = \/mgl/(J +mi?), choose the length scale as I, let the time
scale be 1/wy, choose the force scale as (M +m)lw?2, and introduce the
scaled variables 7 = wot, * = ¢/l, and u = F/((M + m)lw2). The

equations then become

22 a20 do~ 2 d? d*0
d—i—acosep—l—ozsinQ(%) = u, —BCOSHd—T:g-l-P—SiDQ =0,

where o = m/(M+m) and 8 = mi*/(J+mli?). Notice that the original
model has five parameters m, M, J, [, and g but the normalized model
has only two parameters « and 5. If M > m and mil? > J, we get

a =~ 0 and § &~ 1, and the model can be approximated by

d*x o .
P:u, P—sm@zucos@.

The model can be interpreted as a mass combined with an inverted

pendulum driven by the same input. \Y%

For large systems scaling is not so easy: there are many choices
and good selection of variables and normalization units require good
understanding of the physics of the system and the numerical methods
that will be used for analysis. Scaling of large systems is therefore still

an art.
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3.4 MODELING EXAMPLES

In this section we introduce additional examples that illustrate some
of the different types of systems for which one can develop differential
equation and difference equation models. These examples are specifi-
cally chosen from a range of different fields to highlight the broad vari-
ety of systems to which feedback and control concepts can be applied.
A more detailed set of applications that serve as running examples

throughout the text are given in Chapter [4]

Motion Control Systems

Motion control systems involve the use of computation and feedback
to control the movement of a mechanical system. Motion control sys-
tems range from nanopositioning systems (atomic force microscopes,
adaptive optics), to control systems for the read/write heads in a disk
drive of a DVD player, to manufacturing systems (transfer machines
and industrial robots), to automotive control systems (antilock brakes,
suspension control, traction control), to air and space flight control

systems (airplanes, satellites, rockets, and planetary rovers).

Example 3.11 Vehicle steering
A common problem in motion control is to control the trajectory of a
vehicle through an actuator that causes a change in the orientation. A

steering wheel on an automobile and the front wheel of a bicycle are
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two examples, but similar dynamics occur in the steering of ships or
control of the pitch dynamics of an aircraft. In many cases, we can
understand the basic behavior of these systems through the use of a
simple model that captures the basic kinematics of the system.

Consider a conventional vehicle with a fixed rear axle and a set of
front wheels that can be rotated, as shown in Figure B.I7 For the
purpose of steering we are interested in a model that describes how the
velocity of the vehicle depends on the steering angle §. To be specific,
let b be the wheelbase and consider the velocity v at the center of mass,
a distance a from the rear wheel, as shown in Figure .17 Let z and y
be the coordinates of the center of mass, # the heading angle, and « the
angle between the velocity vector v and the centerline of the vehicle.
The point O is at the intersection of the normals to the front and rear
wheels.

Assuming no slipping of the wheels, the motion of the vehicle is
given by a rotation around the point O in the figure. Letting the
distance from the center of rotation O to the contact point of the
rear wheel be 7., it the follows from Figure B.I7 that b = r, tan and
a = 1, tan o, which implies that tan a = (a/b) tand, and we obtain the

following relation between « and the steering angle ¢:

atané)'

a= arctan( (3.25)

If the vehicle speed at its center of mass is v, the motion of the center
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(a) Overhead view (b) Bicycle model

Figure 3.17: Vehicle steering dynamics. The left figure shows an
overhead view of a vehicle with four wheels. The wheelbase is b and
the center of mass at a distance a forward of the rear wheels. By
approximating the motion of the front and rear pairs of wheels by a
single front wheel and a single rear wheel, we obtain an abstraction
called the bicycle model, shown on the right. The steering angle is
6 and the velocity at the center of mass has the angle « relative the
length axis of the vehicle. The position of the vehicle is given by (x,y)

and the orientation (heading) by 6.

of mass is then given by

le—j =wvcos (a+0),
(3.26)
Cji_gz = vsin (a + 0).

To see how the heading angle # is influenced by the steering angle,
we observe from Figure 317 that the distance from the center of mass

to the center of rotation O is r. = a/sina. The vehicle thus rotates
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around the point O with the angular velocity v/r. = (v/a) sin . Hence

do v vsinae v . atand v
P - sin (arctan( 5 >) A 55, (3.27)

where the approximation holds for small § and a.

Equations (3:28)—(B321) can be used to model an automobile under
the assumptions that there is no slip between the wheels and the road
and that the two front wheels can be approximated by a single wheel at
the center of the car. This model is often called the bicycle model. The
assumption of no slip can be relaxed by adding an extra state variable,
giving a more realistic model. Such a model also describes the steering
dynamics of ships as well as the pitch dynamics of aircraft and missiles.
It is also possible to choose coordinates so that the reference point is at
the rear wheels (corresponding to setting a = 0), a model often referred
to as the Dubins car [78].

Figure B IT represents the situation when the vehicle moves forward
and has front-wheel steering. The figure shows that the model also
applies to rear wheel steering if the sign of the velocity is reversed.

\%

Example 3.12 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such as the Harrier
“jump jet” shown FigureB.I8al The Harrier is capable of vertical take-
off by redirecting its thrust downward and through the use of smaller

maneuvering thrusters located on its wings. A simplified model of the
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(b) Simplified model

Figure 3.18: Vectored thrust aircraft. The Harrier AV-8B military
aircraft (a) redirects its engine thrust downward so that it can “hover”
above the ground. Some air from the engine is diverted to the wing
tips to be used for maneuvering. As shown in (b), the net thrust
on the aircraft can be decomposed into a horizontal force F; and a

vertical force Fy acting at a distance r from the center of mass.

Harrier is shown in Figure [3.I80 where we focus on the motion of the
vehicle in a vertical plane through the wings of the aircraft. We resolve

the forces generated by the main downward thruster and the maneu-
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vering thrusters as a pair of forces F} and F, acting at a distance r
below the aircraft (determined by the geometry of the thrusters).

Let (z,y,0) denote the position and orientation of the center of
mass of the aircraft. Let m be the mass of the vehicle, J the moment
of inertia, g the gravitational constant, and ¢ the damping coefficient.

Then the equations of motion for the vehicle are given by

mx = Fjcost — Fysinf — cx,
my = Fysinf + F, cos —mg — cy, (3.28)
JO = rky.
It is convenient to redefine the inputs so that the origin is an equilibrium

point of the system with zero input. Letting u; = I} and us = Fy—mg,

the equations become

ma = —mgsinf — ¢t + uy cos — ug sin b,
my = mg(cos — 1) — ¢y + uy sin 0 + uy cos b, (3.29)
JO = U,

These equations describe the motion of the vehicle as a set of three

coupled second-order differential equations. \Y

Thermofluid Systems

Thermofluid systems are commonly used in process control, power gen-
eration, and for heating ventilation and air conditioning in buildings

and cars. The processes involve motion of fluids and transmission of
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Figure 3.19: Two thermofluid systems. A schematic diagram of a

simple water heater a tank with a submerged electrical heater (a) and

schematic diagram of a drum boiler (b).

energy; typical processes include heat exchangers, evaporators, chillers,
and compressors. The dynamics are often complicated because of two-
phase flows, and accurate modeling often requires partial differential

equations and computational fluid dynamics. Two examples are given

in Figure [3.19
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Example 3.13 Water heater

Consider the water heater in Figure [3.19al, which is a cylindrical tank
with cross section A. The mass of the water is m and its temperature
is T'. The inflow and outflow rates are ¢, and ¢ou, the temperature of
the inflow is T;,, and the temperature of the outflow is T'. The total
mass is m = pAh, where p is its the density, h is the water level, C' is
the specific heat capacity for water, and mC'T is the total energy. The

system can be modeled by a mass balance and an energy balance, and

we obtain
d dmCT
d_TI:L = {in — Qout; % =P+ Gin Oﬂn — Qout CT, (330)

where P is the power from the heater. Energy losses have been ne-
glected and it is assumed that all water in the tank has the same
temperature.

Assuming that C' is constant and expanding the derivative for the

energy balance we obtain

dimCT) dm dr
——=—CT — = P+ ¢in CTin — qous CT..
o i C +m0dt +qin C Gout C

Solving this equation for d7'/dt and using the mass balance to elimi-
nate dm/dt, we find that the mass and energy balances expressed by

equation (B.30) can be written as

dm dT (in 1
= Gin — Gouts — =21, -T —P. 3.31
dt g Jout dt m( )+ mC ( )

The state variables are the total mass m and the temperature 7', the
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control (input) variables are the input power P and inflow rate g;,, and
the disturbances are the temperature of the inflow 7}, and the output

flow rate gout- \Y%

Example 3.14 Drum Boiler

A drum boiler is a piece of equipment used to produce steam, for
example as part of a power generation system where the steam drives
a turbine connected to a generator. The drum in a drum boiler shares
many properties with the water heater but there are two significant
complications: the material constants p and C depend on the state,
and there is a mixture of water and steam in both the riser and the
drum. Modeling can still be done by mass and energy balances, but
the two-phase flow leads to significant complications, which we discuss
briefly (and informally) here. A diagram of a drum boiler is shown in
Figure 3.190]

Control of the drum level is a key problem: if the level is too low the
tubes will burn through, and if the level is too high water may enter
the turbine and cause damage to the turbine blades. We will focus on
modeling of the drum level. Water entering the system is controlled
by the feedwater valve; water leaves the drum as steam through the
steam valve. Water circulates through the drum-downcomer-riser loop,
and it is heated in the riser tubes. The differences in densities in the
downcomer tubes and the riser tubes creates self-circulation. The figure

shows only one riser tube and one downcomer tube, but in the boiler
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we discuss there are 22 downcomer tubes and 788 riser tubes, and the

drum volume is 40 m3

. There is pure water in the downcomer tubes
and at the bottom of the riser tubes. Steam is generated by heating the
tubes and the amount of steam increases along the riser tubes. There
is a mixture of steam and water in the drum.

Consider the situation when the system is in equilibrium and the
steam valve is suddenly opened. More steam then leaves the system,
and we may expect the drum level to decrease. This will not happen
because the pressure in the drum will decrease when steam leaves the
system. The air bubbles in the riser and the drum will then increase,
and the water level will initially increase. If we continue to keep the
steam valve open, the level will finally start to decrease. The dynamics
relating drum level to feedwater flow has a similar characteristic. If
feedwater flow is increased then the water temperature in the drum
will decrease, bubbles will collapse, and the drum level will initially de-
crease. This effect, which is called shrink and swell or inverse response,
makes it difficult to control the drum level.

The effect is illustrated in Figure B.20, which shows simulated and
experimental data for a medium sized boiler. The inverse response
characteristics are clearly seen in the figure. The model used in the
simulation is a fifth-order model based on mass, energy, and momentum
balances; details are given in [18].

The inverse response character of the dynamics from feedwater to
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Figure 3.20: Model (dashed line) and plant data (solid line) for open
loop perturbations in steam flow rate at medium load. Notice that the
drum level increases initially when the steam flow is increased. The
experiment was performed by removing all controllers and introducing

a perturbation in the steam flow [18].

drum level makes it difficult to control the drum level. For this reason
the system is provided with sensors of steam flow and feedwater flow as
indicated in Figure[3.19b. The extra sensors make it possible to predict
whether the mass of water and steam in the system is decreasing or
increasing. We will discuss the consequences of having dynamics with

inverse response in Section [14.4 \V4
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Figure 3.21: Schematic diagram of a queuing system. Messages
arrive at rate A and are stored in a queue. Messages are processed
and removed from the queue at rate u. The average length of the

queue is given by x € R.

Information Systems

Information systems range from communication systems like the Inter-
net to software systems that manipulate data or manage enterprise-
wide resources. Feedback is present in all these systems, and designing
strategies for routing, flow control, and buffer management is a typi-
cal problem. Many results in queuing theory emerged from design of
telecommunication systems and later from development of the Internet
and computer communication systems [43], [148] 218]. Management of
queues to avoid congestion is a central problem and we will therefore

start by discussing the modeling of queuing systems.

Example 3.15 Queuing systems

A schematic picture of a simple queue is shown in Figure[3.21l Requests
arrive and are then queued and processed. There can be large variations
in arrival rates and service rates, and the queue length builds up when

the arrival rate is larger than the service rate. When the queue becomes
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too large, service is denied using an admission control policy.

The system can be modeled in many different ways. One way is to
model each incoming request, which leads to an event-based, discrete-
state model where the state is an integer that represents the queue
length. The queue changes when a request arrives or a request is ser-
viced. The statistics of arrival and servicing are typically modeled as
random processes. In many cases it is possible to determine statistics
of quantities like queue length and service time, but the computations
can be quite complicated.

A significant simplification can be obtained by approximating the
discrete queue length by a continuous variable. Instead of keeping track
of each request we instead view service and requests as continuous flows.
The model obtained is called a flow model because of the analogy with
fluid dynamics where motion of molecules are replace by continuous
flows. Hence, if the queue length z is a continuous variable and the
arrivals and services are flows with rates A and pu, the system can be

modeled by the first-order differential equation

C(li_f :)\_,u: )‘_:umaxf(x)a x> Oa (332)

as proposed by Agnew [5]. The service rate u depends on the queue
length; if there are no capacity restrictions we have p = x /T where T is
the time it takes to serve one customer. The service rate thus increases

linearly with the queue length. In reality the growth will be slower
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because longer queues require more resources, and the service rate has
an upper limit p,.c. These effects are captured by modeling the ser-
vice rate as fimax f(2), where function f(x) is monotone, approximately
linear for small z, and f(oc0) = 1.

For a particular queue, the function f(x) can be determined empir-
ically by measuring the queue length for different arrival and service

rates. A simple choice is f(x) = /(1 4 z), which gives the model

dx T

— =\ — lpax——— 3.33
dt a r+1 ( )

It was shown by Tipper [240] that if arrival and service processes
are Poisson processes, then average queue length is given by equa-
tion (3.33)).

To explore the properties of the model ([B.33]) we will first investigate
the equilibrium value of the queue length when the arrival rate A is
constant. Setting the derivative dx/dt to zero in equation (B33]) and
solving for x, we find that the queue length x approaches the steady-

state value

A

ﬁ. (3.34)

Te =

Figure B.22al shows the steady-state queue length as a function of
A imax, the effective service rate excess. Notice that the queue length
increases rapidly as A approaches pimax. To have a queue length less
than 20 requires A/jimax < 0.95. The average time to service a request

can be shown to be Ty = (x4 1)/pimax, and it increases dramatically as
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Figure 3.22: Queuing dynamics. (a) The steady-state queue length
as a function of A\/pmax. (b) The behavior of the queue length when
there is a temporary overload in the system. The solid line shows a
realization of an event-based simulation, and the dashed line shows
the behavior of the flow model ([B:33]). The maximum service rate is
Pmax = 1, and the arrival rate starts at A = 0.5. The arrival rate is

increased to A = 4 at time 20, and it returns to A = 0.5 at time 25.

A approaches fiyax.

Figure [3.220) illustrates the behavior of the server in a typical over-
load situation. The figure shows that the queue builds up quickly and
clears very slowly. Since the response time is proportional to queue
length, it means that the quality of service is poor for a long period
after an overload. This behavior is called the rush-hour effect and has
been observed in web servers and many other queuing systems such as
automobile traffic.

The dashed line in Figure [3.22h] shows the behavior of the flow
model, which describes the average queue length. The simple model

captures behavior qualitatively, but there are variations from sample
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to sample when the queue length is short. \Y%

Many complex systems use discrete control actions. Such systems
can be modeled by characterizing the situations that correspond to

each control action, as illustrated in the following example.

Example 3.16 Virtual memory paging control

An early example of the use of feedback in computer systems was ap-
plied in the operating system OS/VS for the IBM 370 [54, [67]. The
system used virtual memory, which allows programs to address more
memory than is physically available as fast memory. Data in current
fast memory (random access memory, RAM) is accessed directly, but
data that resides in slower memory (disk) is automatically loaded into
fast memory. The system is implemented in such a way that it appears
to the programmer as a single large section of memory. The system
performed very well in many situations, but very long execution times
were encountered in overload situations, as shown by the open circles
in Figure B.23al The difficulty was resolved with a simple discrete
feedback system. The load of the central processing unit (CPU) was
measured together with the number of page swaps between fast mem-
ory and slow memory. The operating region was classified as being in
one of three states: normal, underload, or overload. The normal state
is characterized by high CPU activity, the underload state is charac-

terized by low CPU activity and few page replacements, the overload
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Figure 3.23: Illustration of feedback in the virtual memory system

of the IBM/370. (a) The effect of feedback on execution times in a

simulation, following [54]. Results with no feedback are shown with

o, and results with feedback with x. Notice the dramatic decrease in

execution time for the system with feedback. (b) How the three states

are obtained based on process measurements.

state has moderate to low CPU load but many page replacements;
see Figure 3.23Dl The boundaries between the regions and the time
for measuring the load were determined from simulations using typical
loads. The control strategy was to do nothing in the normal load con-
dition, to exclude a process from memory in the overload condition and
to allow a new process or a previously excluded process in the under-
load condition. The crosses in Figure B.23al show the effectiveness of
the simple feedback system in simulated loads. Similar principles based
on crude quantization of the state and simple heuristic algorithms are

used in many other situations, e.g., in communication systems and in

web server control.
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Example 3.17 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications where we want to
collect and aggregate information over a region of space using multi-
ple sensors that are connected together via a communications network.
Examples include monitoring environmental conditions in a geograph-
ical area (or inside a building), monitoring the movement of animals or
vehicles, and monitoring the resource loading across a group of com-
puters. In many sensor networks the computational resources are dis-
tributed along with the sensors, and it can be important for the set of
distributed agents to reach a consensus about a certain property, such
as the average temperature in a region or the average computational
load among a set of computers.

To illustrate how such a consensus might be achieved, we consider
the problem of computing the average value of a set of numbers that
are locally available to the individual agents. We wish to design a
“protocol” (algorithm) such that all agents will agree on the average
value. We consider the case in which all agents cannot necessarily
communicate with each other directly, although we will assume that
the communications network is connected (meaning that no two groups
of agents are completely isolated from each other). Figure [3.24al shows
a simple situation of this type.

We model the connectivity of the sensor network using a graph,

with nodes corresponding to the sensors and edges corresponding to
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Figure 3.24: Consensus protocols for sensor networks. (a) A simple
sensor network with five nodes. In this network, node 1 communi-
cates with node 2 and node 2 communicates with nodes 1, 3, 4, 5,
etc. (b) A simulation demonstrating the convergence of the consensus

protocol ([B:35]) to the average value of the initial conditions.

the existence of a direct communications link between two nodes. For
any such graph, we can build an adjacency matrixz, where each row and
column of the matrix corresponds to a node and a 1 in the respective
row and column indicates that the two nodes are connected. For the

network shown in Figure [3.24al the corresponding adjacency matrix is

( )

01000
10111
A=1op 101 0

01100

01000)

\
We use the notation N; to represent the set of neighbors of a node i.

For example, in the network shown in Figure Ny = {1,3,4,5}

and N3 = {2,4}.
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To solve the consensus problem, let x; be the state of the ith sensor,
corresponding to that sensor’s estimate of the average value that we are
trying to compute. We initialize the state to the value of the quantity
measured by the individual sensor. The consensus protocol (algorithm)
can now be realized as a local update law

ik + 1) = ailk] + 7 Y (w;[k] — x[k]). (3.35)
JEN;

This protocol attempts to compute the average by updating the local
state of each agent based on the value of its neighbors. The combined

dynamics of all agents can be written in the form
zlk + 1] = z[k] — v(D — A)x[k], (3.36)

where A is the adjacency matrix and D is a diagonal matrix with entries
corresponding to the number of neighbors of each node. The constant
~ describes the rate at which the estimate of the average is updated
based on information from neighboring nodes. The matrix L := D — A
is called the Laplacian of the graph.

The equilibrium points of equation (B3] are the set of states such
that xe[k+1] = x[k]. It can be shown that if the network is connected,
Te = (a, ..., @) is an equilibrium state for the system, corresponding
to each sensor having an identical estimate « for the average. Further-
more, we can show that « is indeed the average value of the initial

states. Since there can be cycles in the graph, it is possible that the
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state of the system could enter into an infinite loop and never converge
to the desired consensus state. A formal analysis requires tools that
will be introduced later in the text, but it can be shown that for any
connected graph we can always find a + such that the states of the
individual agents converge to the average. A simulation demonstrating
this property is shown in Figure [3.240l Although we have focused here
on consensus to the average value of a set of measurements, other con-
sensus states can be achieved through choice of appropriate feedback
laws. Examples include finding the maximum or minimum value in
a network, counting the number of nodes in a network or computing

higher-order statistical moments of a distributed quantity [64,[197]. V

Biological Systems

Biological systems provide perhaps the richest source of feedback and
control examples. The basic problem of homeostasis, in which a quan-
tity such as temperature or blood sugar level is regulated to a fixed
value, is but one of the many types of complex feedback interactions

that can occur in molecular machines, cells, organisms, and ecosystems.

Example 3.18 Transcriptional regulation

Transcription is the process by which messenger RNA (mRNA) is gen-
erated from a segment of DNA. The promoter region of a gene allows
transcription to be controlled by the presence of other proteins, called

transcription factors, which bind to the promoter region and either
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Figure 3.25: Biological circuitry. The cell on the left is a bovine
pulmonary cell, stained so that the nucleus, actin, and chromatin are
visible. The figure on the right gives an overview of the process by
which proteins in the cell are made. RNA is transcribed from DNA
by an RNA polymerase enzyme. The RNA is then translated into
a polypeptide chain by a molecular machine called a ribosome, and

then the polypeptide chain folds into a protein molecule.

repress or activate RNA polymerase, the enzyme that produces an
mRNA transcript from DNA. The mRNA is then translated into a
protein according to its nucleotide sequence. This process is illustrated
in Figure .25

A simple model of the transcriptional regulation process is through
the use of a Hill function [69, [186]. Consider the regulation of a protein
A with a concentration given by p, and a corresponding mRNA con-
centration m,. Let B be a second protein with concentration p;, that

represses the production of protein A through transcriptional regula-
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tion. The resulting dynamics of p, and m, can be written as

dm, a, dp,
D + Qap — 5ama7 4

= = Rallla — YYala, 3.37
At 1+ kppi™ g = KaMa = YaPay  (3:37)

where a,p, + a0 is the unregulated transcription rate, Jd, represents
the rate of degradation of mRNA, a,,, k.,, and n,, are parameters
that describe how B represses A, k, represents the rate of production
of the protein from its corresponding mRNA, and v, represents the
rate of degradation of the protein A. The parameter o,y describes the
“leakiness” of the promoter, and n,, is called the Hill coefficient and
relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the production
of another protein rather than repressing it. In this case, the equations

have the form

dma aabkabpgab dpa
= -9 -
dt 1+ kfabpgab + Q0 allla, dt

= RaMa — YaPa, (3.38)

where the variables are the same as described previously. Note that
in the case of the activator, if py, is zero, then the production rate is
a0 K Qap, (VETSUS (i, + (i for the repressor). As py, gets large, the
first term in the expression for m, approaches 1 and the transcription
rate becomes a,p, + ag (Versus apg for the repressor). Thus we see that
the activator and repressor act in opposite fashion from each other.
As an example of how these models can be used, we consider the

model of a “repressilator,” originally due to Elowitz and Leibler [84].
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Figure 3.26: The repressilator genetic regulatory network. (a) A
schematic diagram of the repressilator, showing the layout of the genes
in the plasmid that holds the circuit as well as the circuit diagram
(center). (b) A simulation of a simple model for the repressilator,
showing the oscillation of the individual protein concentrations. (Fig-

ure courtesy M. Elowitz.)

The repressilator is a synthetic circuit in which three proteins each re-
press another in a cycle. This is shown schematically in Figure [3.26al
where the three proteins are TetR, A cl, and Lacl. The basic idea of the
repressilator is that if TetR is present, then it represses the production
of Acl. If Acl is absent, then Lacl is produced (at the unregulated tran-
scription rate), which in turn represses TetR. Once TetR is repressed,
then Acl is no longer repressed, and so on. If the dynamics of the
circuit are designed properly, the resulting protein concentrations will
oscillate.

We can model this system using three copies of equation ([B.37), with

A and B replaced by the appropriate combination of TetR, cI, and Lacl.
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Figure 3.27: Nerve cell physiology. The left figure shows a neuron
and the right figures illustrated the synaptic gap between an axon

terminal and a dendrite.

The state of the system is then given by = (metr, PTetR > Ml s Pels MLacl, PLacl)-

Figure 3.260 shows the traces of the three protein concentrations for
parameters n = 2, a = 0.5, k = 6.25 x 107%, ap = 5 x 1074, § =
5.8 x 1073, k = 0.12, and v = 1.2 x 10~ with initial conditions

2(0) = (1,200,0,0,0,0) (following [34]). v

Example 3.19 Nerve cells
Neurons are key elements of the control systems for all humans and an-
imals. There are different types of neurons: sensory neurons respond
to stimuli, motor neurons control muscles and other organs, and in-
terneurons that act as intermediaries in passing signals between other
neurons. Neurons are often connected to form networks; a human brain
has close to 100 billion neurons.

A neuron has three parts: the cell body (soma), the axon, and the

dendrites, as shown in Figure [3.27al The cell body varies in size from 4
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to 100 pm and axons have lengths from one millimeter to a meter. The
cell has a membrane that separates it from the outside environment
(extracellular space), with molecular-scale channels that let ions pass
through the membrane, creating a voltage difference across the cell
membrane. An electric pulse (spike) is generated when the voltage
difference reaches a critical level. Pulse rates range from 1 Hz to 1 kHz
and the generated pulse travels along the axon to its terminals.

Neurons receive signals from other neurons through dendrites. There
are electrochemical reactions at the interface between an axon and a
dendrite of another cell that allows transmission between two neurons.
The axon terminal has vesicles that contain neurotransmitters, which
are released in the synaptic gap when the axon is stimulated by electri-
cal pulses, as illustrated in Figure 3.27bl The neurotransmitters stim-
ulate ion channels in the cell membrane, causing them to open. There
are many types of channels; two common ones are sodium (Na™) chan-
nels and potassium (K*) channels. The potassium channel has a slow
excitatory action, while the sodium channel has a fast excitatory and
a slow inhibitory action.

The dynamics of the neuron are a fundamental mechanism for
understanding signaling in cells. The Hodgkin—-Huxley equation is a
model for neuron dynamics. It models the cell membrane as a capaci-
tor,

av

C% = [Na+ —+ [K+ + Ileak + [inputa

CHAPTER 3



SYSTEM MODELING 201

where V' is the membrane potential, C' is the capacitance, I+ and I+
are the current caused by the transport of sodium and potassium ions
across the cell membrane, . is a leakage current, and fipy is the

external stimulation of the cell. Each current obeys Ohm’s law,

INa+ = gNa(ENa+_V)7 [K+ = gK(EK+_V)7 [leak = gleak(Eleak_V>-

The conductances gna, gk, and greax depend on the voltage V' through
the variables m, n, and h, where gn. is proportional to m3h, gk is
proportional to n* and gk is a constant. The variables m, n, and h

are given by the differential equations

dm — me(V)—m dh ho(V)—h dn  ne(V)—n
d (V) d (V) d (V)

where the functions mg, hy, e, Tm, T, and 7, are derived from experi-
mental data. The functions m, and n, are monotone and increasing in
V', creating excitatory behavior. The function h, is monotone and de-
creasing, creating inhibitory behavior. The time constant 7, is almost
an order of magnitude smaller than the time constants 7, and 7,.

The equilibrium voltages Ey,+ and Ex+ are given by Nernst’s law,

RT C
E="l10g&
nF Ogci’

where R is Boltzmann’s constant, 7' is the absolute temperature, F' is
Faraday’s constant, n is the charge (or valence) of the ion, and ¢; and ¢,
are the ion concentrations inside the cell and in the external fluid. At

20 °C we have RT/F =20 mV, Ey, =55 mV, and Fx+ = —92 mV.
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Figure 3.28: Response of a neuron to a current input. The current
input is shown in (a) and the neuron voltage V in (b). The simulation

was done using the FitzHugh-Nagumo model (Exercise B.IT)).

The Hodgkin-Huxley equations are complicated and contain many
widely different time scales, and many approximations have therefore
been proposed. One approximation is the FitzHugh—Nagumo model
(Exercise B.I1]). A simulation of this model is shown in Figure to
illustrate the behavior of a neuron to an external current stimulation.
The system is initially at rest with I =0 and V' = 0. A short current
pulse enters at time t = 5 ms, the neuron is excited, and responds by
sending out a spike. The neuron is then excited at time ¢ = 30 ms and

the neuron then starts spiking. \Y

The Hodgkin—Huxley model was originally developed as a means
to predict the quantitative behavior of the squid giant axon [119].
Hodgkin and Huxley shared the 1963 Nobel Prize in Physiology (along
with J. C. Eccles) for analysis of the electrical and chemical events in
nerve cell discharges. The voltage clamp described in Section [[L4] was

used to determine the functions my(V'), n.(V'), and h,(V). There are
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many variations of models for the dynamics of neurons based on the
Hodgkin—Huxley model; a recent reference is [202]. Some models com-
bine ordinary differential equations with discrete transitions, so—called

integrate-and-fire models or hybrid systems.

3.5 FURTHER READING

Modeling is ubiquitous in engineering and science and has a long history
in applied mathematics. For example, the Fourier series was introduced
by Fourier when he modeled heat conduction in solids [89]. A classic
book on the modeling of physical systems, especially mechanical, elec-
trical, and thermofluid systems, is Cannon [60]. The book by Aris [13]
is highly original and has a detailed discussion of the use of dimension-
free variables. Models of dynamics have been developed in many dif-
ferent fields, including mechanics [14], [104], heat conduction [61], flu-
ids [47], vehicles [1I, 48] [81], robotics [189) 226], circuits [110], power
systems [I55], acoustics [38], and micromechanical systems [220]. The
authors’ favorite books on modeling of biological systems are Keener
and Sneyd [139, 140], J. D. Murray [I86], and Wilson [256]. Control re-
quires modeling from many different domains, and most control theory
texts contain several chapters on modeling using ordinary differential
equations and difference equations (see, for example, [92]). A good

source for system identification is Ljung [165].
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EXERCISES
3.1 (Chain of integrators form) Consider the linear ordinary differential

equation ([B.7). Show that by choosing a state space representation with

x1 =y, the dynamics can be written as

4 3\ 4 A
0 1 0 0
0 0 0
A= , B = , C = [1 0 0]
0 0 1
\—&n -1 _al) kl)

This canonical form is called the chain of integrators form.

3.2 (Discrete-time dynamics) Consider the following discrete-time sys-

tem
zlk + 1] = Az[k] + Bulk], y[k] = Cxl[k],
where
Z1 ai; a2 0
T = , A= , B = , C= [1 0] .
) 0 929 1

In this problem, we will explore some of the properties of this discrete-
time system as a function of the parameters, the initial conditions, and

the inputs.

a) For the case when aj; = 0 and u = 0, give a closed form expression

for the output of the system.

b) A discrete system is in equilibrium when xz[k+1] = z[k] for all k. Let
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u = r be a constant input and compute the resulting equilibrium point
for the system. Show that if |a;;| < 1 for all ¢, all initial conditions give

solutions that converge to the equilibrium point.

c) Write a computer program to plot the output of the system in re-
sponse to a unit step input, u[k] = 1, k£ > 0. Plot the response of your

system with z[0] = 0 and A given by a;; = 0.5, a;2 = 1, and ag = 0.25.

3.3 (Keynesian economics) Keynes’ simple model for an economy is
given by

Y[k] = C[k] + I[k] + G[k],

where Y, C, I, and G are gross national product (GNP), consumption,
investment and government expenditure for year k. Consumption and

investment are modeled by difference equations of the form

Clk + 1] = aY'[k], Ik + 1] = b(Clk + 1] — C[k)),

where a and b are parameters. The first equation implies that consump-
tion increases with GNP but that the effect is delayed. The second
equation implies that investment is proportional to the rate of change
of consumption.

Show that the equilibrium value of the GNP is given by

1
Y;: Gea
1—a

where the parameter 1/(1 — a) is the Keynes multiplier (the gain from
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G to Y). With a = 0.75 an increase of government expenditure will
result in a fourfold increase of GNP. Also show that the model can be

written as the following discrete-time state model:
Clk +1] a a Clk] a
Ik + 1] ab—"b ab I[k] ab

Yk] = Clk] + I[k] + G[k].

3.4 (Least squares system identification) Consider a nonlinear differ-

ential equation that can be written in the form

dx M
a = Z a; fi(x),
i=1

where f;(x) are known nonlinear functions and «; are unknown, but
constant, parameters. Suppose that we have measurements (or esti-
mates) of the full state = at time instants tq, s, ..., ty, with N > M.
Show that the parameters «; can be estimated by finding the least

squares solution to a linear equation of the form
Ha =0,

where o« € RM is the vector of all parameters and H € R¥*M and

b € RY are appropriately defined.

3.5 (Normalized oscillator dynamics) Consider a damped spring-mass
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system with dynamics
m{+cq+ kq=F.

Let wy = /k/m be the natural frequency and ¢ = ¢/(2vkm) be the

damping ratio.

a) Show that by rescaling the equations, we can write the dynamics in
the form

G + 2Cwod + wiq = wiu, (3.39)

where uw = F'/k. This form of the dynamics is that of a linear oscillator

with natural frequency wy and damping ratio (.

b) Show that the system can be further normalized and written in the
form
le dZQ

- = i 20z + 0. (3.40)

The essential dynamics of the system are governed by a single damping
parameter (. The Q-value, defined as Q = 1/2(, is sometimes used

instead of (.

3.6 (Dubins car) Show that the trajectory of a vehicle with reference
point chosen as the center of the rear wheels can be modeled by dy-

namics of the form

d—x:vcosg, @:vsinﬁ, @:Etané,
dt dt

dt b

where the variables and constants are defined as in Example B.111
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3.7 (Motor drive) Consider a system consisting of a motor driving two
masses that are connected by a torsional spring, as shown in the dia-

gram below.

—_— Motor

i (2]

This system can represent a motor with a flexible shaft that drives a
load. Assuming that the motor delivers a torque that is proportional
to the current I, the dynamics of the system can be described by the

equations

d*py do1  dypr
N +C< at  dt ) k(o1 =) = ki,
p P (3.41)
P2 Y2 AP B _
S +C( at  dt ) ke =) =T,

where ¢ and ¢, are the angles of the two masses, w; = dip;/dt are their
velocities, J; represents moments of inertia, ¢ is the damping coefficient,
k represents the shaft stiffness, k; is the torque constant for the motor,
and Ty is the disturbance torque applied at the end of the shaft. Similar
equations are obtained for a robot with flexible arms and for the arms
of DVD and optical disk drives.

Derive a state space model for the system by introducing the (nor-

malized) state variables 1 = 1, T = @9, T3 = w1 /wy, and x4 = ws /wy,

where wy = \/k(J1 + J2)/(J1.J2) is the undamped natural frequency of

the system when the control signal is zero.
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3.8 (Electric generator) An electric generator connected to a power grid

can be modeled by a momentum balance for the rotor of the generator:

d*p EV
WIPHI_PG:PHI_TSHISO?

where J is the effective moment of inertia of the generator, ¢ is the
angle of rotation, P, is the mechanical power that drives the generator,
P, is the active electrical power, F is the generator voltage, V' is the
grid voltage, and X is the reactance of the line. Assuming that the
line dynamics are much faster than the rotor dynamics, P, = VI =
(EV/X)sinp, where I is the current component in phase with the
voltage E and ¢ is the phase angle between voltages £ and V. Show
that the dynamics of the electric generator has a normalized form that

is similar to the dynamics of a pendulum with forcing at the pivot.

3.9 (Admission control for a queue) Consider the queuing system de-
scribed in Example B.I5l The long delays created by temporary over-
loads can be reduced by rejecting requests when the queue gets large.
This allows requests that are accepted to be serviced quickly and re-
quests that cannot be accommodated to receive a rejection quickly so
that they can try another server. Consider an admission control system

described by

dx T

= \u — ,umaxx—_i_la

dt u = sat.) (k(r — 1)), (3.42)

where the controller is a simple proportional control with saturation

209



210

(sat(qp is defined by equation (£I0)) and r is the desired (reference)
queue length. Use a simulation to show that this controller reduces
the rush-hour effect and explain how the choice of r affects the system

dynamics.

3.10 (Biological switch) A genetic switch can be formed by connecting
two repressors together in a cycle as shown below.
' S
" </ /> —
B

~.

u2

Using the models from Example B.I8—assuming that the parameters
are the same for both genes and that the mRNA concentrations reach
steady-state quickly—show that the dynamics can be written in nor-

malized coordinates as

le % d22 I
— = — 21—V = =
dr 1+ 2% ! b dr 1+ 27

— 29 — V3, (343)

where z; and 2, are scaled versions of the protein concentrations and
the time scale has also been changed. Show that p ~ 200 using the
parameters in Example B.18 and use simulations to demonstrate the

switch-like behavior of the system.

3.11 (FitzHugh—Nagumo) The second-order FitzHugh—Nagumo equa-

tions
d d
d_‘t/ = 1O(V—V3/3—R+Ln), d—}: =0.8(1.25V — R+ 1.5)
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are a simplified version of the Hodgkin—Huxley equations discussed in
Example The variable V' is the voltage across the axon membrane
and R is an auxiliary variable that approximates several ion currents
that flow across the membrane. Simulate the equations and reproduce
the simulation in Figure B.28 Explore the effect of the input current

Iiy.
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Chapter Four

Examples

Don’t apply any model until you understand the simplifying
assumptions on which it is based, and you can test their validity.
Catch phrase: use only as directed. Distinguish at all times be-
tween the model and the real world. Catch phrase: You will never

strike oil by drilling through the map!”

Saul Golomb, “Mathematical Models—Uses and Limitations,”

1970 [105].

In this chapter we present a collection of examples spanning many
different fields of science and engineering. These examples are used
throughout the text and in exercises to illustrate different concepts.
First-time readers may wish to focus on only a few examples with which
they have had the most prior experience or insight to understand the

concepts of state, input, output, and dynamics in a familiar setting.
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Throttle & | T Gears & F v

> . - Body >
Engine ‘Wheels
u
Actuator | Controller |- ¢
A |l«—— on/off
Ur Driver |«—— set/decel
Interface +—— resume/accel
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Figure 4.1: Block diagram of a cruise control system for an auto-
mobile. The throttle-controlled engine generates a torque 7' that is
transmitted to the ground through the gearbox and wheels. Combined
with the external forces from the environment, such as aerodynamic
drag and gravitational forces on hills, the net force causes the car to
move. The velocity of the car v is measured by a control system that
adjusts the throttle through an actuation mechanism. A driver inter-
face allows the system to be turned on and off and the reference speed

vy to be established.

4.1 CRUISE CONTROL

The cruise control system of a car is a common feedback system en-
countered in everyday life. The system attempts to maintain a constant
velocity in the presence of disturbances primarily caused by changes in
the slope of a road. The controller compensates for these unknowns by
measuring the speed of the car and adjusting the throttle appropriately.

To model the system we start with the block diagram in Figure[4.1l
Let v be the speed of the car and v, the desired (reference) speed. The

controller, which typically is of the proportional-integral (PI) type de-
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scribed briefly in Chapter [, receives the signals v and v, and generates
a (normalized) control signal u that is sent to an actuator that con-
trols the throttle position. The throttle in turn controls the torque T°
delivered by the engine, which is transmitted through the gears and
the wheels, generating a force F' that moves the car. There are distur-
bance forces Fy due to variations in the slope of the road, the rolling
resistance, and aerodynamic forces. The cruise controller also has a
human—machine interface that allows the driver to set and modify the
desired speed. There are also functions that disconnect the cruise con-
trol when the brake is touched.

The system has many individual components—actuator, engine,
transmission, wheels, and car body—and a detailed model can be very
complicated. In spite of this, the model required to design the cruise
controller can be quite simple.

To develop a mathematical model we start with a force balance
for the car body. Letting m be the total mass of the car (including

passengers), the equation of motion of the car is simply

W _Fr_F, 41
™ d (1)

Typical values for the mass of a car are in the range of 1000-2000 kg
(we will use 1600 kg here).
The force F'is generated by the engine, whose torque is proportional

to the rate of fuel injection, which is itself proportional to a control
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(a) Torque versus engine speed (b) Torque versus car speed

Figure 4.2: Torque curves for typical car engine. The graph on the
left shows the torque generated by the engine as a function of the
angular velocity of the engine, while the curve on the right shows

torque as a function of car speed for different gears.

signal 0 < u < 1 that controls the throttle position. The torque also
depends on engine speed w. A simple representation of the torque at

full throttle is given by the torque curve

T(w) = T <1 . 5(% - 1>2> : (4.2)

where the maximum torque 7}, is obtained at engine speed wy,,. Typical
parameters are 1y, = 190 Nm, wy,, = 420 rad/s (about 4000 RPM), and
B = 0.4. Let n be the gear ratio and r the wheel radius. The engine

speed is related to the velocity through the expression
W= —v=:ay,
and the driving force can be written as

F = %T(w) = aul (ay,v).
r
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Typical values of «, for gears 1 through 5 are a; = 40, ay = 25,
az = 16, ay = 12, and a5 = 10. The inverse of «, has a physical
interpretation as the effective wheel radius. Figured.2shows the torque
as a function of engine speed and vehicle speed. The figure shows that
the effect of the gear is to “fatten” the torque curve so that nearly full
torque can be obtained over almost the whole speed range.

The disturbance force Fy has three major components: F,, the
forces due to gravity; F;, the forces due to rolling friction; and Fj,, the
aerodynamic drag. Letting the slope of the road be 6, gravity gives the
force F, = mgsin, as illustrated in Figure L3a where g = 9.8 m/s?

is the gravitational constant. A simple model of rolling friction is
F, = mgC;sgn(v),

where C; is the coefficient of rolling friction and sgn(v) is the sign of
v (£1) or zero if v = 0. A typical value for the coefficient of rolling
friction is C; = 0.01. Finally, the aerodynamic drag is proportional to

the square of the speed:
1
F, = §PCdA‘U‘Ua

where p is the density of air, Cq is the shape-dependent aerodynamic
drag coefficient, and A is the frontal area of the car. Typical parameters

are p = 1.3 kg/m3, Cq = 0.32, and A = 2.4 m?.

217



218

\

20 J\/—
\
\

Velocity v [m/s]

mg

5
Throttle u
=]
W

0 10 20 30
Time ¢ [s]
(a) Effect of gravitational forces (b) Closed loop response

Figure 4.3: Car with cruise control encountering a sloping road. A
schematic diagram is shown in (a), and (b) shows the response in
speed and throttle when a slope of 4° is encountered. The hill is
modeled as a net change of 4° in hill angle 6, with a linear change in
the angle between t = 5 and ¢ = 6. The PI controller has proportional

gain kp = 0.5 and integral gain k; = 0.1.

Summarizing, we find that the car’s speed can be modeled by

d 1
md—: = a,ul'(a,v) — mgCysgn(v) — §pC’dA|v]v —mgsind, (4.3)

where the function 7" is given by equation (4.2]). The model [3]) is a
dynamical system of first order. The state is the car velocity v, which
is also the output. The input is the signal v that controls the throttle
position, and the disturbance is the force F; = mgsin 6, which depends
on the slope of the road. The system is nonlinear because of the torque
curve, the gravity term, and the nonlinear character of rolling friction

and aerodynamic drag. There can also be variations in the parameters;
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e.g., the mass of the car depends on the number of passengers and the
load being carried in the car.

We add to this model a feedback controller that attempts to reg-
ulate the speed of the car in the presence of disturbances. We use a

proportional-integral controller, which has the form

u(t) = kpe(t) + k; /Ot e(r)dr.

This controller can itself be realized as an input/output dynamical
system by defining a controller state z and implementing the differential

equation

dz _
dt

v — v, u = ky(v, —v) + kiz, (4.4)
where v, is the desired (reference) speed. As discussed briefly in Sec-
tion [[.6l the integrator (represented by the state z) ensures that in
steady state the error will be driven to zero, even when there are dis-
turbances or modeling errors. (The design of PI controllers is the sub-
ject of Chapter [[1l) Figure [£.3b] shows the response of the closed loop
system, consisting of equations (4.3]) and (4.4]), when it encounters a
hill. The figure shows that even if the hill is so steep that the throttle
changes from 0.17 to almost full throttle, the largest speed error is less
than 1 m/s, and the desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (d3]). It

may seem surprising that such a seemingly complicated system can be

described by the simple model ([A3]). It is important to make sure that
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we restrict our use of the model to the uncertainty lemon conceptualized
in Figure B.5bl The model is not valid for very rapid changes of the
throttle because we have ignored the details of the engine dynamics,
neither is it valid for very slow changes because the properties of the
engine will change over the years. Nevertheless the model is very useful
for the design of a cruise control system. As we shall see in later
chapters, the reason for this is the inherent robustness of feedback
systems: even if the model is not perfectly accurate, we can use it to
design a controller and make use of the feedback in the controller to
manage the uncertainty in the system.

The cruise control system also has a human—machine interface that
allows the driver to communicate with the system. There are many
different ways to implement this system; one version is illustrated in
Figure 4l The system has four buttons: on-off, set/decelerate, re-
sume/accelerate, and cancel. The operation of the system is governed
by a finite state machine that controls the modes of the PI controller
and the reference generator. Implementation of controllers and refer-

ence generators will be discussed more fully in Chapter 111

The use of control in automotive systems goes well beyond the sim-
ple cruise control system described here. Applications include emissions
control, traction control, power control (especially in hybrid vehicles),
and adaptive cruise control. Many automotive applications are dis-

cussed in detail in the book by Kiencke and Nielsen [I44] and in the
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@ @ ﬁ reswme

(a) Cruise control interface (b) Finite state machine

Figure 4.4: Finite state machine for cruise control system. The
figure on the left shows some typical buttons used to control the sys-
tem. The controller can be in one of four modes, corresponding to
the nodes in the diagram on the right. Transition between the modes
is controlled by pressing one of the five buttons on the cruise control

interface: on, off, set, resume, or cancel.

survey papers by Powers et al. [27, 203]. New vehicles coming on the
market also include many “self-driving” features, which represent even

more complex feedback systems.

4.2 BICYCLE DYNAMICS

The bicycle is an interesting dynamical system with the feature that
one of its key properties is due to a feedback mechanism that is created
by the design of the front fork. A detailed model of a bicycle is complex
because the system has many degrees of freedom and the geometry is
complicated. However, a great deal of insight can be obtained from
simple models.

To derive the equations of motion we assume that the bicycle rolls
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on the horizontal zy plane. Introduce a coordinate system that is
fixed to the bicycle with the &-axis through the contact points of the
wheels with the ground, the n-axis horizontal, and the (-axis vertical,
as shown in Figure .5l Let vy be the velocity of the bicycle at the rear
wheel, b the wheelbase, ¢ the tilt angle, and ¢ the steering angle. The
coordinate system rotates around the point O with the angular velocity
w = vpd /b, and an observer fixed to the bicycle experiences forces due
to the motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pendulum,
as shown in the rear view in Figure .8b. To model the tilt, consider
the rigid body obtained when the wheels, the rider, and the front fork
assembly are fixed to the bicycle frame. Let m be the total mass of the
system, J the moment of inertia of the body with respect to the £-axis,
and D the product of inertia with respect to the £¢ axes. Furthermore,
let the £ and ( coordinates of the center of mass with respect to the rear
wheel contact point, P;, be a and h, respectively. We have J ~ mh?
and D = mah. The torques acting on the system are due to gravity
and centripetal action. Assuming that the steering angle 9 is small, the

equation of motion becomes

2
mugh

b

J— — —— =mghsinp + J. (4.5)

The term mgh sin ¢ is the torque generated by gravity. The terms con-

taining 0 and its derivative are the torques generated by steering, with
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Figure 4.5: Schematic views of a bicycle. The steering angle is 9,
and the roll angle is ¢. The center of mass has height h and distance
a from a vertical through the contact point P; of the rear wheel. The
wheelbase b is the distance between P; and P», and the trail c is the

distance between P, and Ps.

the term (Dug/b) dd/dt due to inertial forces and the term (mwv3h/b) &
due to centripetal forces.

The steering angle is influenced by the torque the rider applies to
the handle bar. Because of the tilt of the steering axis and the shape
of the front fork, the contact point of the front wheel with the road
P, is behind the axis of rotation of the front wheel assembly, as shown
in Figure .8kc. The distance ¢ between the contact point of the front

wheel P, and the projection of the axis of rotation of the front fork
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Figure 4.6: Block diagram of a bicycle with a front fork. The steering
torque applied to the handlebars is 7', the roll angle is ¢, and the
steering angle is §. Notice that the front fork creates a feedback from
the roll angle ¢ to the steering angle § that under certain conditions

can stabilize the system.

assembly Pj is called the trail. The steering properties of a bicycle
depend critically on the trail. A large trail increases stability but makes
the steering less agile.

A consequence of the design of the front fork is that the steering
angle ¢ is influenced both by steering torque T and by the tilt of the
frame . This means that a bicycle with a front fork is a feedback
system as illustrated by the block diagram in Figure .6l The steering
angle ¢ influences the tilt angle ¢, and the tilt angle influences the
steering angle, giving rise to the circular causality that is characteristic
of reasoning about feedback. For a front fork with a positive trail,
the bicycle will steer into the lean, creating a centrifugal force that
attempts to diminish the lean.

Under certain conditions, the feedback can actually stabilize the

bicycle. A crude empirical model is obtained by assuming that the
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front fork can be modeled as the static system

0= k‘lT — ]{TQQO (46)

Combining the model of the bicycle frame (A.3]) with the model of the

front fork (L.0), we get the the following system model:

d%p Dok, dyp (mv%hkg _ Dugky dT muihk,

Cmah)e = T (4.
w2ty d b mg)‘P T » (47)

/ dt b

where we have approximated sin ¢ with ¢. The left hand side of this
equation looks like the equation for a spring mass system, where the
damping term is Dugks /b and the spring term is mviky/b—mgh. Notice
that the spring term is negative if vy = 0 and that it becomes positive
for v > \/M . We can thus conclude that the bicycle is unstable for
small velocities but that the feedback provided by the front fork makes
the bicycle stable if the velocity is sufficiently large.

The simple model given by equations (£5) and (£6) neglects the
dynamics of the front fork, the tire-road interaction, and the fact that
the parameters depend on the velocity. A more accurate model, called
the Whipple model, is obtained using the rigid-body dynamics of the

front fork and the frame. Assuming small angles, this model becomes
¢ i N3
M + CUO + (K() + KQUO) = s (48)

where the elements of the 2 x 2 matrices M, C, Ky, and Ky depend

on the geometry and the mass distribution of the bicycle. Note that
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this has a form somewhat similar to that of the spring—mass system
introduced in Chapter 3l and the balance system in Example 3.2l Even
this more complex model is inaccurate because the interaction between
the tire and the road is neglected; taking this into account requires two
additional state variables. Again, the uncertainty lemon in Figure B.50]
provides a framework for understanding the validity of the model under

these assumptions.

Interesting presentations on the development of the bicycle are given
in the books by D. Wilson [255] and Herlihy [117]. The model (4.8)) was
presented in a paper by Whipple in 1899 [249]. More details on bicycle
modeling are given in the papers [20} 163], which has many additional

references.

4.3 OPERATIONAL AMPLIFIER CIRCUITS

An operational amplifier (op amp) is a modern implementation of
Black’s feedback amplifier. It is a universal component that is widely
used for instrumentation, control, and communication. It is also a key
element in analog computing. Schematic diagrams of the operational
amplifier are shown in Figure 7l The amplifier has one inverting in-
put (v_), one noninverting input (vy), and one output (vey). There
are also connections for the supply voltages, e_ and e,, and a zero

adjustment (offset null). A simple model is obtained by assuming that
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Figure 4.7: An operational amplifier and two schematic diagrams.
(a) The amplifier pin connections on an integrated circuit chip. (b) A

schematic with all connections. (c¢) Only the signal connections.

the input currents ¢_ and i, are zero and that the output is given by

the static relation

Vout = Sat('umm,vmax) (k’(U+ - U—))a (49)

where sat denotes the saturation function

;

a ifzr<a,
satab)(¥) =\ z ifa <z <b, (4.10)
boif x> b.

\

We assume that the gain k is large, in the range of 105108, and the

voltages vpin and vpy., satisfy

€_ S Umin < Umax S €4+
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Figure 4.8: Input/output characteristics of an operational amplifier.
The differential input is given by vy — v_. The output voltage is a
linear function of the input in a small range around 0, with saturation

at Umin and vmax. In the linear regime the op amp has high gain.

and hence are in the range of the supply voltages. More accurate
models are obtained by replacing the saturation function with a smooth
function as shown in Figure [4.8 For small input signals the amplifier

characteristic (£9) is linear:

Vout = k(vy —v_) = —kv. (4.11)

Since the open loop gain k is very large, the range of input signals
where the system is linear is very small.

A simple amplifier is obtained by arranging feedback around the
basic operational amplifier as shown in Figure £9al To model the
feedback amplifier in the linear range, we assume that the current iy =
i_ 4 i, is zero and that the gain of the amplifier is so large that the

voltage v = v_ — v, is also zero. It follows from Ohm’s law that the
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(a) Amplifier circuit
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(b) Block diagram

Figure 4.9: Stable amplifier using an op amp. The circuit (a) uses
negative feedback around an operational amplifier and has a corre-
sponding block diagram (b). The resistors R; and Ry determine the

gain of the amplifier.

currents through resistors R; and Ry are given by

U1 V2

i
and hence the closed loop gain of the amplifier is

2 _ _k, where k f

= —. 4.12
U1 : R1 ( )

A more accurate model is obtained by continuing to neglect the current
1o but assuming that the voltage v is small but not negligible. The

current balance is then

V1 — U U — U

Ry Ry

(4.13)

Assuming that the amplifier operates in the linear range and using
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equation (£I1]), the gain of the closed loop system becomes

b Y2 _ B kI L]
4 0 T R R +R,+ kR, R

(4.14)

If the open loop gain k of the operational amplifier is large, the closed
loop gain k is the same as in the simple model given by equation ([ZI2]).
Notice that the closed loop gain depends only on the passive compo-
nents and that variations in k have only a marginal effect on the closed
loop gain. For example if k& = 10% and Ry/R; = 100, a variation of k
by 100% gives only a variation of 0.01% in the closed loop gain. The
drastic reduction in sensitivity is a nice illustration of how feedback can
be used to make precise systems from uncertain components. In this
particular case, feedback is used to trade high gain and low robustness
for low gain and high robustness. Equation (£I4]) was the formula
that inspired Black when he invented the feedback amplifier [45] (see
the quote at the beginning of Chapter [I3)).

It is instructive to develop a block diagram for the feedback ampli-
fier in Figure[4£.9al To do this we will represent the pure amplifier with
input v and output vy as one block. To complete the block diagram,
we must describe how v depends on v; and vy. Solving equation (£.13])

for v gives

Ry Ry Ry (R

v = v + Vg = —2v—|—v>
Ri+Ry ' Ri+Ry > R +R,\R, * ' 72

and we obtain the block diagram shown in Figure £.9bl The diagram
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clearly shows that the system has feedback and that the gain from vy
tovis Ry /(R + Ry), which can also be read from the circuit diagram in
Figure [4.9al If the loop is stable and the gain of the amplifier is large,
it follows that the error e is small, and we find that vy = —(Ry/Ry)v;.
Notice that the resistor R; appears in two blocks in the block diagram.
This situation is typical in electrical circuits, and it is one reason why
block diagrams are not always well suited for some types of physical
modeling.

The simple model of the amplifier given by equation ({11l pro-
vides qualitative insight, but it neglects the fact that the amplifier is a

dynamical system. A more realistic model is

dvout
dt

= —QUgyt — bU. (4.15)

The parameter b has dimensions of frequency and is called the gain-
bandwidth product of the amplifier. Whether a more complicated model
is used depends on the questions to be answered and the required size of
the uncertainty lemon. The model ([@I3]) is still not valid for very high
or very low frequencies since drift causes deviations at low frequencies
and there are additional dynamics that appear at frequencies close to
b. The model is also not valid for large signals—an upper limit is given
by the voltage of the power supply, typically in the range of 5-10 V—
neither is it valid for very low signals because of electrical noise. These

effects can be added, if needed, but increase the complexity of the
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Figure 4.10: Circuit diagram of a PI controller obtained by feedback
around an operational amplifier. The capacitor C' is used to store

charge and represents the integral of the input.

analysis.

The operational amplifier is very versatile, and many different sys-
tems can be built by combining it with resistors and capacitors. In
fact, any linear system can be implemented by combining operational
amplifiers with resistors and capacitors. Exercise [£.4] shows how a
second-order oscillator is implemented, and Figure shows the cir-
cuit diagram for an analog proportional-integral controller. To develop
a simple model for the circuit we assume that the current i is zero and
that the open loop gain k is so large that the input voltage v is negli-
gible. The current i through the capacitor is ¢ = C'dv./dt, where v, is
the voltage across the capacitor. Since the same current goes through

the resistor Ry, we get
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The output voltage is thus given by

(t) Ryi o (t) ! /t (7)d
p— Z— - —_——— _— —_—
b2 2= TR R.C J, T

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [169]
201], and their usage is described in many textbooks (e.g., [65]). Good

information is also available from suppliers [132, [176].

4.4 COMPUTING SYSTEMS AND NETWORKS

The application of feedback to computing systems follows the same
principles as the control of physical systems, but the types of mea-
surements and control inputs that can be used are somewhat different.
Measurements (sensors) are typically related to resource utilization in
the computing system or network and can include quantities such as
the processor load, memory usage, or network bandwidth. Control
variables (actuators) typically involve setting limits on the resources
available to a process. This might be done by controlling the amount
of memory, disk space, or time that a process can consume, turning
on or off processing, delaying availability of a resource, or rejecting in-
coming requests to a server process. Process modeling for networked
computing systems is also challenging, and empirical models based on

measurements are often used when a first-principles model is not avail-
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able.

Web Server Control

Web servers respond to requests from the Internet and provide infor-
mation in the form of web pages. Modern web servers start multiple
processes to respond to requests, with each process assigned to a sin-
gle source until no further requests are received from that source for
a predefined period of time. Processes that are idle become part of a
pool that can be used to respond to new requests. To provide a fast
response to web requests, it is important that the web server processes
do not overload the server’s computational capabilities or exhaust its
memory. Since other processes may be running on the server, the
amount of available processing power and memory is uncertain, and
feedback can be used to provide good performance in the presence of
this uncertainty.

Figure[d.ITlillustrates the use of feedback to modulate the operation
of an Apache web server. The web server operates by placing incoming
connection requests on a queue and then starting a subprocess to han-
dle requests for each accepted connection. This subprocess responds to
requests from a given connection as they come in, alternating between
a Busy state and a Wait state. (Keeping the subprocess active between
requests is known as the persistence of the connection and provides a

substantial reduction in latency to requests for multiple pieces of infor-
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Figure 4.11: Feedback control of a web server. Connection requests
arrive on an input queue, where they are sent to a server process. A
finite state machine keeps track of the state of the individual server
processes and responds to requests. A control algorithm can modify
the server’s operation by controlling parameters that affect its behav-
ior, such as the maximum number of requests that can be serviced at
a single time (MaxClients) or the amount of time that a connection

can remain idle before it is dropped (KeepAlive).

mation from a single site.) If no requests are received for a sufficiently
long period of time, controlled by the KeepAlive parameter, then the
connection is dropped and the subprocess enters an Idle state, where
it can be assigned another connection. A maximum of MaxClients
simultaneous requests will be served, with the remainder remaining on
the incoming request queue.

The parameters that control the server represent a trade-off between
performance (how quickly requests receive a response) and resource
usage (the amount of processing power and memory used by the server).

Increasing the MaxClients parameter allows connection requests to
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be pulled off of the queue more quickly but increases the amount of
processing power and memory usage that is required. Increasing the
KeepAlive timeout means that individual connections can remain idle
for a longer period of time, which decreases the processing load on the
machine but increases the length of the queue (and hence the amount of
time required for a user to initiate a connection). Successful operation
of a busy server requires a proper choice of these parameters, often
based on trial and error.

To model the dynamics of this system in more detail, we create a
discrete-time model with states given by the average processor load x¢py
and the percentage memory usage Tmem. The inputs to the system are
taken as the maximum number of clients wu,,. and the keep-alive time
Uka. 1f we assume a linear model around the equilibrium point, the

dynamics can be written as

Tepulk + 1] A Agg Tepul K] By Bia U [ K]
= +
Lmem [k + 1] A21 A22 zmem[k] BQl B22 Umc [k]
(4.16)

where the coefficients of the A and B matrices can be determined based
on empirical measurements or detailed modeling of the web server’s
processing and memory usage. Using system identification, Diao et

al. |71} [116] identified the linearized dynamics as

0.54 —0.11 —85 4.4
, B = x 1074,

—0.026 0.63 —2.5 2.8

A=
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where the system was linearized about the equilibrium point

ZTepu = 0.98, Uy = 118, Tmem = 0.59, Ume = 600.

This model shows the basic characteristics that were described
above. Looking first at the B matrix, we see that increasing the
KeepAlive timeout (first column of the B matrix) decreases both the
processor usage and the memory usage since there is more persistence
in connections and hence the server spends a longer time waiting for
a connection to close rather than taking on a new active connection.
The MaxClients connection increases both the processing and mem-
ory requirements. Note that the largest effect on the processor load is
the KeepAlive timeout. The A matrix tells us how the processor and
memory usage evolve in a region of the state space near the equilibrium
point. The diagonal terms describe how the individual resources return
to equilibrium after a transient increase or decrease. The off-diagonal
terms show that there is coupling between the two resources, so that a
change in one could cause a later change in the other.

Although this model is very simple, we will see in later examples
that it can be used to modify the parameters controlling the server in
real time and provide robustness with respect to uncertainties in the
load on the machine. Similar types of mechanisms have been used for
other types of servers. It is important to remember the assumptions

on the model and their role in determining when the model is valid. In
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particular, since we have chosen to use average quantities over a given
sample time, the model will not provide an accurate representation for

high-frequency phenomena.

Congestion Control

The Internet was created to provide a large, highly decentralized, effi-
cient, and expandable communication system. The system consists of
a large number of interconnected gateways. A message is split into sev-
eral packets that are transmitted over different paths in the network,
and the packages are rejoined to recover the message at the receiver.
An acknowledgment (“ack”) message is sent back to the sender when
a packet is received. The operation of the system is governed by a sim-
ple but powerful decentralized control structure that has evolved over
time.

The system has two control mechanisms called protocols: the Trans-
mission Control Protocol (TCP) for end-to-end network communica-
tion and the Internet Protocol (IP) for routing packets and for host-
to-gateway or gateway-to-gateway communication. The current pro-
tocols evolved after some spectacular congestion collapses occurred in
the mid 1980s, when throughput unexpectedly could drop by a factor
of 1000 [127]. The control mechanism in TCP is based on conserving
the number of packets in the loop from the sender to the receiver and

back to the sender. The sending rate is increased when there is no
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Figure 4.12: Internet congestion control. (a) Source computers send
information to routers, which forward the information to other routers
that eventually connect to the receiving computer. When a packet is
received, an acknowledgment packet is sent back through the routers
(not shown). The routers buffer information received from the sources
and send the data across the outgoing link. (b) The equilibrium buffer
size be for a set of IV identical computers sending packets through a

single router with drop probability pb.

congestion, and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we model three
separate elements of the system: the rate at which packets are sent
by individual sources (computers), the dynamics of the queues in the
links (routers), and the admission control mechanism for the queues.
Figure [4.12al is a block diagram of the system.

The current source control mechanism on the Internet is a protocol
known as TCP/Reno [167]. This protocol operates by sending packets

to a receiver and waiting to receive an acknowledgment from the re-
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ceiver that the packet has arrived. If no acknowledgment is sent within
a certain timeout period, the packet is retransmitted. To avoid waiting
for the acknowledgment before sending the next packet, Reno transmits
multiple packets up to a fixed window around the latest packet that
has been acknowledged. If the window size is chosen properly, packets
at the beginning of the window will be acknowledged before the source
transmits packets at the end of the window, allowing the computer to
continuously stream packets at a high rate.

To determine the size of the window to use, TCP/Reno uses a
feedback mechanism in which (roughly speaking) the window size is
increased at a fixed rate as long as packets are acknowledged, and the
window size is cut in half when packets are lost. This mechanism allows
a dynamic adjustment of the window size in which each computer acts
in a greedy fashion as long as packets are being delivered but backs off
quickly when congestion occurs.

A model for the behavior of the source can be developed by describ-
ing the dynamics of the window size. Suppose we have N computers
(sources) and let w; be the current window size (measured in number
of packets) for the ith computer. Let ¢; represent the end-to-end prob-
ability that a packet will be dropped someplace between the source and

the receiver. We can model the dynamics of the window size w; by the
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differential equation

dw; ri(t — 1) w; w;
dt ( QZ) w %( 9 Tz(t 7‘@)), L7 P > ( 7)

where 7; is the round-trip time for a packet to reach its destination
and the acknowledgment to be sent back, and r; is the resulting rate
at which packets are cleared from the list of packets that have been
received. The first term in the dynamics represents the increase in
window size when a packet is received, and the second term repre-
sents the decrease in window size when a packet is lost. Notice that
r; is evaluated at time ¢t — 7;, representing the time required to receive
acknowledgments that a packet has arrived.

The link dynamics are controlled by the dynamics of the router
queue and the admission control mechanism for the queue. Assume
that we have L links in the network and use [ to index the individual
links. We model the queue in terms of the current number of packets
in the router’s buffer b, and assume that the router transmits packets
at a rate ¢;, equal to the capacity of the link. The buffer dynamics can

then be written as

db, s;—c¢ if b > 0, L
% = S = Z Ry, Ti(t - Tlfi)a (4-18)
0 if b =0, =

where Ry; = 1 if link [ is used by source i and 0 otherwise, 75 is the

time it takes a packet from source i to reach link [, and s; is the total

RLXN

rate at which packets arrive at link [. The matrix R € is called
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the routing matriz.

The admission control mechanism determines whether a given packet
is accepted by a router. Since our model is based on the average quan-
tities in the network and not the individual packets, one simple model
is to assume that the probability that a packet is dropped depends
on how full the buffer is. If we let b max be the maximum number
of packets that the router [ can buffer, we write the drop probabil-
ity as p = Bi(br, bimax), where §; is a function with £;(0, b max) = 0
and G (b max, imax) = 1. For simplicity, we will assume for now that
m = piby (see Exercise for a more detailed model). The probability
that a packet is dropped at a given link can be used to determine the

end-to-end probability that a packet is lost in transmission:

L L
4 = 1—HRM(1—291) %ZRlipl(t_Titl))a (4.19)
1=1 1=0

where 7 is the backward delay from link [ to source i and the approx-
imation is valid as long as the individual drop probabilities are small.
We use the backward delay since this represents the time required for
the acknowledgment packet to be received by the source.

Together, equations (LI7), (£I8), and (ZI9) represent a model
of congestion control dynamics. We can obtain substantial insight by
considering a special case in which we have N identical sources and
one link. In addition, we assume for the moment that the forward and

backward time delays can be ignored and that none of the routers are
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saturated or empty, in which case the dynamics can be reduced to the

form
dw; 1 2+ w? db = wy b
w :__pc( +wz), av ﬂ—c, P == (4.20)
dt TP 2 dt — TP c
where w; € R, i =1,..., N, is a vector of window sizes for the sources

of data, b € R is the current buffer size of the router, p controls the
rate at which packets are dropped, and c is the capacity of the link
connecting the router to the computers. The variable 7P represents
the amount of time required for a packet to be processed by the router,
based on the size of the buffer and the capacity of the link. Substituting

7P into the equations, we write the state space dynamics as

dw; ¢ w? db cw;
— - _ 14 —& A —c. 4.21

More sophisticated models can be found in [166] [167] and subsequent
exercises and examples.
The nominal operating point for the system can be found by setting

w; = b = 0:

C w2 NCU)'
= - _ 14 = = e
0 2 pc(+2), 0 2.7 c

Exploiting the fact that all of the source dynamics are identical, it

follows that all of the w; should be the same, and it can be shown that

there is a unique equilibrium point satisfying the equations

b cTP 1
e = — = —=, ——(pbe)? be) —1=0. 4.22
Wie = 3 = 2pQNQ(p )” + (pbe) (4.22)
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Figure 4.13: Internet congestion control for N identical sources
across a single link. As shown on the left, multiple sources attempt to
communicate through a router across a single link. An “ack” packet
sent by the receiver acknowledges that the message was received; oth-
erwise the message packet is resent and the sending rate is slowed
down at the source. The simulation on the right is for 60 sources
starting at random rates (window sizes), with 20 sources dropping
out at ¢ = 500 ms. The buffer size is shown at the top, and the

individual source rates for 6 of the sources are shown at the bottom.

The solution for the second equation is a bit messy but can easily
be determined numerically. A plot of its solution as a function of
1/(2p*N?) is shown in Figure 120 We also note that at equilibrium

we have the following additional equalities:

be Nuw, e
Tep — z frnd ;U s qe = Npe = pr67 Te = i_]p (423)

Figure [4.13 shows a simulation of 60 sources communicating across

a single link, with 20 sources dropping out at ¢ = 500 ms and the
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remaining sources increasing their rates (window sizes) to compensate.
Note that the buffer size and window sizes automatically adjust to

match the capacity of the link.

A comprehensive treatment of computer networks is given in the
textbook by Tannenbaum [236]. A good presentation of the ideas be-
hind the control principles for the Internet is given by one of its de-
signers, Van Jacobson, in [127]. F. Kelly [141] presents an early effort
on the analysis of the system. The books by Hellerstein et al. [116] and
Janert [I30] give many examples of the use of feedback in computer

systems.

4.5 ATOMIC FORCE MICROSCOPY

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Hein-
rich Rohrer for their design of the scanning tunneling microscope. The
idea of the instrument is to bring an atomically sharp tip so close to
a conducting surface that tunneling occurs. An image is obtained by
traversing the tip across the sample and measuring the tunneling cur-
rent as a function of tip position. This invention has stimulated the
development of a family of instruments that permit visualization of
surface structure at the nanometer scale, including the atomic force
microscope (AFM), where a sample is probed by a tip on a cantilever.

An AFM can operate in two modes. In tapping mode the cantilever
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Figure 4.14: Atomic force microscope. (a) A schematic diagram
of an atomic force microscope, consisting of a piezo drive that scans
the sample under the AFM tip. A laser reflects off of the cantilever
and is used to measure the detection of the tip through a feedback
controller. (b) An AFM image of strands of DNA. (Image courtesy

Veeco Instruments.)

is vibrated, and the amplitude of vibration is controlled by feedback.
In contact mode the cantilever is in contact with the sample, and its
bending is controlled by feedback. In both cases control is actuated
by a piezo element that controls the vertical position of the cantilever
base (or the sample). Control design has a direct influence on picture
quality and scanning rate.

A schematic picture of an atomic force microscope is shown in Fig-
ure [£.14al A microcantilever with a tip having a radius of the order of
10 nm is placed close to the sample. The tip can be moved vertically
and horizontally using a piezoelectric scanner. It is clamped to the

sample surface by attractive van der Waals forces and repulsive Pauli
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forces. The cantilever tilt depends on the topography of the surface
and the position of the cantilever base, which is controlled by the piezo
element. The tilt is measured by sensing the deflection of the laser
beam using a photodiode. The signal from the photodiode is ampli-
fied and sent to a controller that drives the amplifier for the vertical
position of the cantilever (z). By controlling the piezo element so that
the deflection of the cantilever is constant, the signal driving the ver-
tical deflection of the piezo element is a measure of the atomic forces
between the cantilever tip and the atoms of the sample. An image of
the surface is obtained by scanning the cantilever along the sample.
The resolution makes it possible to see the structure of the sample on
the atomic scale, as illustrated in Figure [£.14D, which shows an AFM
image of DNA.

The horizontal motion of an AFM is typically modeled as a spring—
mass system with low damping. The vertical motion is more compli-
cated. To model the system, we start with the block diagram shown
in Figure T8l Signals that are easily accessible are the input voltage
u to the power amplifier that drives the piezo element, the voltage v
applied to the piezo element, and the output voltage y of the signal am-
plifier for the photodiode. The controller is a PI controller implemented
by a computer, which is connected to the system by analog-to-digital
(A/D) and digital-to-analog (D/A) converters. The deflection of the

cantilever ¢ is also shown in the figure. The desired reference value for
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Figure 4.15: Block diagram of the system for vertical positioning of
the cantilever for an atomic force microscope in contact mode. The
control system attempts to keep the cantilever deflection equal to
its reference value. Cantilever deflection is measured, amplified, and
converted to a digital signal, then compared with its reference value.
A correcting signal is generated by the computer, converted to analog

form, amplified, and sent to the piezo element.

the deflection is an input to the computer.

There are several different configurations that have different dynam-
ics. Here we will discuss a high-performance system from [217] where
the cantilever base is positioned vertically using a piezo stack. We be-
gin the modeling with a simple experiment on the system. Figure[£.16al
shows a step response of a scanner from the power amplifier input volt-
age u to the output voltage y of the signal amplifier for the photodiode.
This experiment captures the dynamics of the chain of blocks from u
to y in the block diagram in Figure .18l Figure d.16al shows that the
system responds quickly but that there is a poorly damped oscillatory
mode with a period of about 35 ps. A primary task of the modeling is

to understand the origin of the oscillatory behavior. To do so we will
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Figure 4.16: Modeling of an atomic force microscope. (a) A mea-
sured step response. The top curve shows the voltage u applied to the
drive amplifier (50 mV /div), the middle curve is the output V}, of the
power amplifier (500 mV/div), and the bottom curve is the output
y of the signal amplifier (500 mV /div). The time scale is 25 us/div.
Data have been supplied by Georg Schitter. (b) A simple mechanical

model for the vertical positioner and the piezo crystal.

explore the system in more detail.

The natural frequency of the clamped cantilever is typically several
hundred kilohertz, which is much higher than the observed oscillation
of about 30 kHz. As a first approximation we will model it as a static
system. Since the deflections are small, we can assume that the bending
@ of the cantilever is proportional to the difference in height between
the cantilever tip at the probe and the piezo scanner. A more accurate
model can be obtained by modeling the cantilever as a spring—mass
system of the type discussed in Chapter Bl

Figure [4.16al also shows that the response of the power amplifier is
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fast. The photodiode and the signal amplifier also have fast responses
and can thus be modeled as static systems. The remaining block is a
piezo system with suspension. A schematic mechanical representation
of the vertical motion of the scanner is shown in Figure [£.160 We will
model the system as two masses separated by an ideal piezo element.
The mass m; is half of the piezo system, and the mass ms is the other
half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crystal gen-
erates a force F' between the masses and that there is a damping ¢, in
the spring. Let the positions of the center of the masses be z; and 2.

A momentum balance gives the following model for the system:

2 2
le_ de:—CZE—kQZQ—F.

dt? dt
Let the elongation of the piezo element [ = z;—2z5 be the control variable
and the height z; of the cantilever base be the output. Eliminating the

variable F' in the equations above and substituting z; — [ for 29 gives

the model

d2 21 le d2l

dl
(m1 + mg)— + Cco— + kQZl = mgp —+ CQ% + kgl (424)

dt? dt t

Summarizing, we find that a simple model of the system is obtained
by modeling the piezo by equation (4.24]) and all the other blocks by
static models. Introducing the linear equations [ = ksu and y = k421,

we now have a complete model relating the output y to the control
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signal u. A more accurate model can be obtained by introducing the
dynamics of the cantilever and the power amplifier. As in the previous
examples, the concept of the uncertainty lemon in Figure B.5b] provides
a framework for describing the uncertainty: the model will be accurate
up to the frequencies of the fastest modeled modes and over a range of
motion in which linearized stiffness models can be used.

The experimental results in Figure [4.16al can be explained qualita-
tively as follows. When a voltage is applied to the piezo, it expands
by ly, the mass m; moves up, and the mass my moves down instanta-
neously. The system settles after a poorly damped oscillation.

It is highly desirable to design a control system for the vertical
motion so that it responds quickly with little oscillation. The instru-
ment designer has several choices: to accept the oscillation and have
a slow response time, to design a control system that can damp the
oscillations, or to redesign the mechanics to give resonances of higher
frequency. The last two alternatives give a faster response and faster
imaging.

Since the dynamic behavior of the system changes with the proper-
ties of the sample, it is necessary to tune the feedback loop. In simple
systems this is currently done manually by adjusting parameters of a PI
controller. There are interesting possibilities for making AFM systems

easier to use by introducing automatic tuning and adaptation.

The book by Sarid [214] gives a broad coverage of atomic force
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microscopes. The interaction of atoms close to surfaces is fundamental
to solid state physics, see Kittel [146]. The model discussed in this

section is based on Schitter [216].

4.6 DRUG ADMINISTRATION

The phrase “take two pills three times a day” is a recommendation with
which we are all familiar. Behind this recommendation is a solution
of an open loop control problem. The key issue is to make sure that
the concentration of a medicine in a part of the body is sufficiently
high to be effective but not so high that it will cause undesirable side
effects. The control action is quantized, take two pills, and sampled,
every 8 hours. The prescriptions are based on simple models captured
in empirical tables, and the dose is based on the age and weight of the
patient.

Drug administration is a control problem. To solve it we must un-
derstand how a drug spreads in the body after it is administered. This
topic, called pharmacokinetics, is now a discipline of its own, and the
models used are called compartment models. They go back to the 1920s
when Widmark modeled the propagation of alcohol in the body [252].
Compartment models are now important for the screening of all drugs
used by humans. The schematic diagram in Figure [1.17] illustrates the

idea of a compartment model. The body is viewed as a number of
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Figure 4.17: Abstraction used to compartmentalize the body for
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the purpose of describing drug distribution (based on Teorell [237]).
The body is abstracted by a number of compartments with perfect
mixing, and the complex transport processes are approximated by
assuming that the flow is proportional to the concentration differences
in the compartments. The constants k; parameterize the rates of flow

between different compartments.

compartments like blood plasma, kidney, liver, and tissues that are
separated by membranes. It is assumed that there is perfect mixing
so that the drug concentration is constant in each compartment. The
complex transport processes are approximated by assuming that the
flow rates between the compartments are proportional to the concen-
tration differences in the compartments.

To describe the effect of a drug it is necessary to know both its
concentration and how it influences the body. The relation between
concentration ¢ and its effect e is typically nonlinear. A simple model
is

- Cma (4.25)
EC50 +c

253



254

The effect is linear for low concentrations, and it saturates at high
concentrations. The parameter ECsq represents the concentration of
the drug that gives half (50%) maximal response. The relation can

also be dynamic, and it is then called pharmacodynamics.

Compartment Models

The simplest dynamical model for drug administration is obtained by
assuming that the drug is evenly distributed in a single compartment af-
ter it has been administered and that the drug is removed at a rate pro-
portional to the concentration. The compartments behave like stirred
tanks with perfect mixing. Let ¢ be the concentration, V' the volume,
and ¢ the outflow rate. Converting the description of the system into

differential equations gives the model

V(;—; = —qc, c>0. (4.26)

¢ which shows

This equation has the solution c(t) = coe™®/V = cye™*
that the concentration decays exponentially with the time constant T' =
V/q after an injection. The input is introduced implicitly as an initial
condition in the model ([A.26]). More generally, the way the input enters
the model depends on how the drug is administered. For example, the
input can be represented as a mass flow into the compartment where

the drug is injected. A pill that is dissolved can also be interpreted as

an input in terms of a mass flow rate.
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The model ([£20]) is called a one-compartment model or a single-
pool model. The parameter £ = ¢/V is called the elimination rate
constant. This simple model is often used to model the concentration
in the blood plasma. By measuring the concentration at a few times,
the initial concentration can be obtained by extrapolation. If the total
amount of injected substance m is known, the volume V' can then be
determined as V = m/c,.

The simple one-compartment model captures the gross behavior of
drug distribution, but it is based on many simplifications. Improved
models can be obtained by considering the body as composed of several
compartments. Examples of such systems are shown in Figure [1.18]
where the compartments are represented as circles and the flows by
arrows.

Modeling will be illustrated using the two-compartment model in
Figure [4.18al We assume that there is perfect mixing in each compart-
ment and that the transport between the compartments is driven by
concentration differences. We further assume that a drug with concen-
tration cg is injected in compartment 1 at a volume flow rate of u and
that the concentration in compartment 2 is the output. Let ¢; and ¢
be the concentrations of the drug in the compartments, and let V; and

V5 be the volumes of the compartments. The mass balances for the
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Figure 4.18: Schematic diagrams of compartment models. (a) A
simple two-compartment model. Each compartment is labeled by its
volume, and arrows indicate the flow of chemical into, out of, and
between compartments. (b) A system with six compartments used
to study the metabolism of thyroid hormone [102]. The notation k;;

denotes the transport from compartment j to compartment i.

compartments are

de
Vld—tl = q(c2 — 1) — qocr1 + cou, ¢ >0,
d
Véﬂ = q(c1 — ¢2), cp > 0, (4.27)
dt
Yy = Co,

where ¢ represents flow rate between the compartments and ¢y repre-
sents the flow rate out of compartment 1 that is not going to compart-
ment 2. Introducing the variables kg = qo/Vi, k1 = q/V1, k2 = q/ V5,

and by = ¢o/V; and using matrix notation, the model can be written
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as

de —ko— k1 ki bo
- = c+ u, Y= [0 1] c.  (4.28)
ko —ko 0
Comparing this model with its graphical representation in Figure[4.18al,
we find that the mathematical representation (L.28)) can be written by
inspection.

It should also be emphasized that simple compartment models such
as the one in equation (£28) have a limited range of validity. Low-
frequency limits exist because the human body changes with time, and
since the compartment model uses average concentrations, they will
not accurately represent rapid changes. There are also nonlinear effects
that influence transportation between the compartments.

Compartment models are widely used in medicine, engineering, and
environmental science. An interesting property of these systems is
that variables like concentration and mass are always positive. An
essential difficulty in compartment modeling is deciding how to divide

a complex system into compartments. Compartment models can also

be nonlinear, as illustrated in the next section.

The papers by Widmark and Tandberg [252] and Teorell [237] are
classics in pharmacokinetics, which is now an established discipline
with many textbooks [73],[128] T0T]. Because of its medical importance,
pharmacokinetics is now an essential component of drug development.

The book by Riggs [208] is a good source for the modeling of physiologi-
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Figure 4.19: Insulin-glucose dynamics. (a) Sketch of body parts
involved in the control of glucose. (b) Schematic diagram of the sys-
tem. (c) Responses of insulin and glucose when glucose in injected

intravenously. From Pacini and Bergman [199].

cal systems, and a more mathematical treatment is given in Keener and
Sneyd [139, 140]. Compartment models are discussed in Godfrey [102].
The problem of determining rate coefficients from experimental data is

discussed in Bellman and Astrom [32] and Godfrey [102].

Insulin—Glucose Dynamics

Glucose provides energy to all cells in the body. It is influenced by many
factors: body constitution, food intake, digestion, stress, and exercise.
Healthy individuals have sophisticated mechanisms that regulate glu-

cose concentration in the blood. A schematic picture of the relevant

parts of the body involved are shown in Figures [4.19al and [4.19bl The

pancreas secretes the hormones insulin and glucagon. Glucagon is re-
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leased into the bloodstream when the glucose level is low. It acts on
cells in the liver that release glucose. Insulin is secreted when the glu-
cose level is high, and the glucose level is lowered by causing the liver
and other cells to take up more glucose. There are also other hormones
that influence glucose concentration. It is important that the blood
glucose concentration is regulated to be in the range 70-110 mg/L.

Diabetes is a disease where the body’s ability to produce or respond
to insulin is impaired, resulting in blood sugar levels that are too high.
There are several varieties of diabetes: production of insulin can be
impaired (type 1) or the ability of the body to absorb insulin can be
reduced (type 2). Long exposure to high blood sugar concentration is
serious and may result in cardiovascular diseases, stroke, chronic kidney
disease, foot ulcers, and blindness. Low blood sugar is also serious and
can give headaches, fatigue, dizziness, lethargy, and blurred vision.
Very low blood sugar levels can result in a coma.

The mechanisms that regulate glucose and insulin are complicated.
Models of different complexity have been developed. The models are
typically tested with data from experiments where glucose is injected
intravenously and insulin and glucose concentrations are measured at
regular time intervals, as shown in Figure 4.19d.

A simple minimal model was developed by Bergman and cowork-
ers [39, 40]. Tt is a compartment model with two state variables: con-

centration of glucose in the blood plasma G and the variable X repre-
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senting the effect of insulin on glucose removal, which is proportional
to the concentration of insulin / in the interstitial fluid. The minimal

model is given by the equations

dG dX
% = —pl(G—Ge) —XG+uG, % = _p2X +p3(]_]e)' (4'29)

The first equation is a compartment model for glucose. The right-
hand side has three terms: a linear clearance term that models glucose
removal at a rate proportional to G — (G, the nonlinear term XG,
and the external input ug that represents injection of glucose. The
nonlinear term X G captures the fact that removal rate of glucose is
enhanced by insulin. The second equation represents how the variable
X depends on the insulin concentration I in the interstitial fluid. If
the external input ug is zero and I = I, there is an equilibrium with
G =G, and X =0.

A model that is slightly more complicated than the minimal model
is given in Exercise 1.8 and includes a model for insulin dynamics.
Figure M.19d shows a fit of the model to a test on a normal person
where glucose was injected intravenously at time ¢ = 0 and samples of
concentrations of insulin and glucose are taken at different times. The
glucose concentration rises rapidly, and the pancreas responds with a
rapid spike-like injection of insulin. The glucose and insulin levels then
gradually approach the equilibrium values.

There are many more complicated models that capture dynamics of
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food intake and measurement dynamics [63, 85, [95] 173, 175]. The mod-
els are used in many different ways for insight, analysis, and treatment
of diabetes. A model for type 1 diabetes developed at the University
of Virginia [159] has been approved by the U. S. Food and Drug Ad-
ministration (FDA) as a replacement for animal testing of closed loop
control strategies for regulation of blood sugar (in silico testing).

A simple way to measure blood sugar is to analyze glucose concen-
tration in a drop of blood obtained by a fingerstick. Diabetic patients
can also be provided with a continuous glucose monitor (GCM), which
is a tiny sensor wire under the skin with an adhesive patch and a wire-
less transmitter. The sensor measures glucose concentration in the in-
terstitial fluid near the sensor wire; calibration is required to obtain the
glucose concentration in the bloodstream. The sensor is often placed in
the upper arm where it can be connected wirelessly to a smartphone.
An application on the phone can then generate advice on how much
insulin has to be injected, for example long-lasting insulin for main-
tenance of a base level and rapid-acting insulin taken at meal times.
The advice is based on a model of the glucose-insulin system that is
matched to the patient. Devices of this type are increasingly available
and widely used by patients with diabetes.

Patients with type 1 diabetes can also be provided with an artificial
pancreas, a fully automatic system that regulates the blood sugar [149]

63]. An artificial pancreas consists of a glucose monitor that measures
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blood sugar, an insulin infusion pump, and a control algorithm that
computes the amount of insulin to be injected based on the measured
blood sugar value. The Medtronic MiniMed 670G was approved by
FDA for use by adults in 2016 and for children over seven years old
in 2018. The system has a sampling period of 5 minutes and a PID
algorithm to control the injection rate [228]. Similar devices with model
predictive control have also been tested [37]. The glucose monitor
requires frequent observation, the wire has to be replaced regularly,
and the sensor must be calibrated frequently using a fingerstick. There
are extreme safety requirements on an artificial pancreas [36, [149], and
it is absolutely essential to ensure that the glucose level does not get
too low (hypoglycemia). All these additions make the system more

complicated.

4.7 POPULATION DYNAMICS

Population growth is a complex dynamic process that involves the in-
teraction of one or more species with their environment and the larger
ecosystem. The dynamics of population groups are interesting and
important in many different areas of social and environmental pol-
icy. There are examples where new species have been introduced into
new habitats, sometimes with disastrous results. There have also been

attempts to control population growth both through incentives and
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through legislation. In this section we describe some of the models
that can be used to understand how populations evolve with time and

as a function of their environments.

Logistic Growth Model

Let x be the population of a species at time ¢. A simple model is to
assume that the birth rates and mortality rates are proportional to the

total population. This gives the linear model

% =br—dr=(b—d)x =rz, x>0, (4.30)

where birth rate b and mortality rate d are parameters. The model gives
an exponential increase if b > d or an exponential decrease if b < d. A
more realistic model is to assume that the birth rate decreases when
the population is large. The following modification of the model (£.30)

has this property:

le—f = rm(l - %), x>0, (4.31)

where k is the carrying capacity of the environment. The model (£.31)

is called the logistic growth model.

Predator—Prey Models

A more sophisticated model of population dynamics includes the effects
of competing populations, where one species may feed on another. This

situation, referred to as the predator—prey problem, was introduced in
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Example B.4], where we developed a discrete-time model that captured
some of the features of historical records of lynx and hare populations.

In this section, we replace the difference equation model used there
with a more sophisticated differential equation model. Let H(t) repre-
sent the number of hares (prey) and let L(t) represent the number of

lynxes (predator). The dynamics of the system are modeled as

W (1o E) S s,
¢t (4.32)
dL aHL
— = —dL L>0.
dt c+H ’ 20

In the first equation, r represents the growth rate of the hares, k repre-
sents the maximum population of the hares (in the absence of lynxes),
a represents the interaction term that describes how the hares are di-
minished as a function of the lynx population, and ¢ controls the prey
consumption rate for low hare population. In the second equation,
b represents the growth coefficient of the lynxes and d represents the
mortality rate of the lynxes. Note that the hare dynamics include a
term that resembles the logistic growth model (£31]).

Of particular interest are the values at which the population values
remain constant, called equilibrium points. The equilibrium points for
this system can be determined by setting the right-hand side of the
above equations to zero. Letting H, and L, represent the equilibrium

state, from the second equation we have

cd
Le=0 0 = . 4.33
o He T b —d (4:33)
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Substituting this into the first equation, we have that for L. = 0 either

H,=0or H, = k. For L, # 0, we obtain

L =
N aH,

rHe(c+ H.) (1 B He) _ ber(abk — cd — dk)

k (ab — d)?k (4:34)

Thus, we have three possible equilibrium points x, = (L, Ho):

where H} and L} are given in equations (4.33]) and (4.34]). Note that the
equilibrium populations may be negative for some parameter values,
corresponding to a unachievable equilibrium point.

Figure shows a simulation of the dynamics starting from a set
of population values near the nonzero equilibrium values. We see that
for this choice of parameters, the simulation predicts an oscillatory

population count for each species, reminiscent of the data shown in

Figure 3.7

Volume I of the two-volume set by J. D. Murray [186] give a broad

coverage of population dynamics.

EXERCISES

4.1 (Cruise control) Consider the cruise control example described in
Section 1l Build a simulation that re-creates the response to a hill

shown in Figure [£.30l and show the effects of increasing and decreasing
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Figure 4.20: Simulation of the predator—prey system. The figure on

the left shows a simulation of the two populations as a function of time.

The figure on the right shows the populations plotted against each

other, starting from different values of the population. The oscillation

seen in both figures is an example of a limit cycle. The parameter

values used for the simulations are a = 3.2, b = 0.6, ¢ = 50, d = 0.56,

k =125, and r = 1.6.

the mass of the car by 25%. Redesign the controller (using trial and

error is fine) so that it returns to within 1% of the desired speed within

3 s of encountering the beginning of the hill.

4.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame

given by equation (3] can be approximated in state space form as

p
0 1 T Dvo/(bj)

+ Uu,

(mgh/J 0 | 2> muzh/(bJ)

,
o)

\

where the input u is the steering angle 6 and the output y is the tilt
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angle . What do the states x; and z5 represent?

4.3 (Operational amplifier circuit) Consider the op amp circuit shown

below.
V2
O— WA —TT WV MW
Ry R, Ry
Ry
v C= .
o
(&) —|— V3
o o)

Show that the dynamics can be written in state space form as

1 1
d_x B RCy  R,Cy
dt _& 1

R, RyCs

T +

1

" R,C,

R101

1

u, y

:{0 1]90,

where u = vy and y = v3. (Hint: Use vy and vz as your state variables.)

4.4 (Operational amplifier oscillator) The op amp circuit shown below

is an implementation of an oscillator.

Ry

MV

V1

Show that the dynamics can be written in state space form as

dx
dt

0 B
Rl RgCl
1
— 0
RQCQ

where the state variables represent the voltages across the capacitors

r1 = v and z9 = vy.
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4.5 (Congestion control using RED [168]) A number of improvements
can be made to the congestion control model presented in Section [4.4]
To ensure that the router’s buffer size remains positive, we can modify

the buffer dynamics to satisfy

dbl S — C if 0 < bl < bl,maX7

dat
0 otherwise.

In addition, we can model the drop probability of a packet based on
how close a filtered estimate of the buffer size is to the buffer limits, a

mechanism known as random early detection (RED):

(

0 if a; < DoV,
pia; — b%ow) if b}ow <aq < b{nid,
P = 5z(az) =
m(ai — b ) 4 py (b = oY) if b < ap < b,
1 if q; > bf“ax,
\
d
% = —O./lCl(CLl — bl),

where g, pr, m;, b1°%, b9, and b"** are parameters for the RED proto-
col. The variable q; is a smoothed version of the buffer size ;. Using
the model above, write a simulation for the system and find a set of
parameter values for which there is a stable equilibrium point and a

set for which the system exhibits oscillatory solutions. The following
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sets of parameters should be explored:

N = 20,30,...,60, ™ = 40 pkts, a; = 1074,
c=38,9,...,15 pkts/ms, brd = 540 pkts, o = 0.0002,
7P = 55,60, ...,100 ms b = 1080 pkts, n = 0.00167.

4.6 (Atomic force microscope with piezo tube) A schematic diagram
of an AFM where the vertical scanner is a piezo tube with preloading

is shown below.

Show that the dynamics can be written as

d*z d d?l

Z dl
(m1 + mg)— + (Cl + 02)—1 + (kl + kg)Zl = m2ﬁ + CQE + le,

dt? dt t

where z; is the displacement of the first mass and [ = z; — 25 is the
difference in displacement between the first and second masses. Are

there parameter values that make the dynamics particularly simple?

4.7 (Drug administration) The metabolism of alcohol in the body can

be modeled by the nonlinear compartment model

‘/b_ - Q(Cl - Cb) + i) 1=, — Q(cb - Cl) - Qmax—l + qgi,
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where V}, = 48 L and V} = 0.6 LL are the apparent volumes of distri-
bution of body water and liver water, ¢, and ¢ are the concentrations
of alcohol in the compartments, ¢, and g, are the injection rates for
intravenous and gastrointestinal intake, ¢ = 1.5 L/min is the total hep-
atic blood flow, gmax = 2.75 mmol/min and ¢y = 0.1 mmol/L. Simulate
the system and compute the concentration in the blood for oral and

intravenous doses of 12 g and 40 g of alcohol.

4.8 (Insulin-glucose dynamics) The following model for insulin glucose
dynamics by Gaetano and colleagues [95] has three states: glucose
concentration in the blood plasma G [mg/dL], insulin concentration
in the interstitial fluid I [pUI/ml], and X [min~!] that represents the
increased removal rate of glucose due to insulin. The state X is pro-

portional to the concentration of interstitial insulin. The dynamics

are:
dG
E = —(p1 —l—X)G—i—ple + ug
dX
— = —p X I — 7
i P2 X + ps( b)
dl
% = P4 maX(G —p5,0) _pG(I — Ib) + Uus.

Use the parameters

G, = 87, I, =379, p =005 p,=05  p3=10""
pa=10""  ps; =150, ps=0.05, p;=199.
Simulate the system with the initial conditions G(0) = 400, 1(0) = 200

and X (0) = 0. This corresponds to a person having taken a large initial
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dose of glucose.

4.9 (Fisheries management) Some features of the dynamics of a com-

mercial fishery can be described by the following simple model:

dz
o= f(z) — h(x,u), y = bh(z,u) — cu,

where z is the total biomass, f(x) = rz(1—x/k) is the growth rate, and
r and k are constant parameters. The harvesting rate is h(z, u) = azu,
where a is a constant parameter and wu is the fishing effort. The output
y is the rate of revenue, where b and ¢ are constants representing the

price of fish and the cost of fishing.

a) Find a sustainable equilibrium point where the revenue is as large
as possible. Determine the equilibrium value of the biomass and the

fishing effort at the equilibrium.

b) With the parameters a = 0.1, b =1, ¢ = 1, k = 100, and r = 0.2
the sustainable equilibrium point corresponds to x, = 55 and u, = 0.9.
For an individual fisherman it is profitable to fish as long as the rate of
revenue y = (abx —c)u is positive. Explore by simulation what happens
if the fishing intensity is much higher than the sustainable fishing rate
Ue, say u = 3. Use the results to discuss the role of having a fishing

quota.
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Chapter Five

Dynamic Behavior

It Don’t Mean a Thing (If It Ain’t Got That Swing).

Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behavior of
dynamical systems focused on systems modeled by nonlinear differen-
tial equations. This allows us to consider equilibrium points, stability,
limit cycles, and other key concepts in understanding dynamic behav-
ior. We also introduce some methods for analyzing the global behavior

of solutions.

5.1 SOLVING DIFFERENTIAL EQUATIONS

In the previous two chapters we saw that one of the methods of model-
ing dynamical systems is through the use of ordinary differential equa-

tions (ODESs). A state space, input/output system has the form

Cfl—f = f(z,u), y = h(z,u), (5.1)
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where x = (x1,...,2,) € R" is the state, v € RP is the input, and
y € R?is the output. The smooth maps f : R" xRP — R™ and h : R™ x
R? — R? represent the dynamics and measurements for the system. In
general, they can be nonlinear functions of their arguments. Systems
with many inputs and many outputs are called multi-input, multi-
output systems (MIMO) systems. We will usually focus on single-input,
single-output (SISO) systems, for which p =¢ = 1.

We begin by investigating systems in which the input has been
set to a function of the state, u = «(x). This is one of the simplest
types of feedback, in which the system regulates its own behavior. The

differential equations in this case become

Ccli—:; = f(z,a(x)) = F(z). (5.2)

To understand the dynamic behavior of this system, we need to
analyze the features of the solutions of equation (5.2). While in some
simple situations we can write down the solutions in analytical form,
often we must rely on computational approaches. We begin by describ-
ing the class of solutions for this problem.

We say that x(t) is a solution of the differential equation (5.2]) on

the time interval ¢y € R to t; € R if

dx(t)
dt

= F(z(t)) forall ty <t <t

A given differential equation may have many solutions. We will most
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often be interested in the initial value problem, where z(t) is prescribed
at a given time t; € R and we wish to find a solution valid for all future
time t > 1.

We say that z(t) is a solution of the differential equation (5.2]) with

initial value o € R™ at ty € R if

dx(t)
dt

x(tp) = 9 and = F(z(t)) forall tg <t <ty

For most differential equations we will encounter, there is a wunique
solution that is defined for ty5 < t < t;. The solution may be defined
for all time t > ty, in which case we take t; = co. Because we will
primarily be interested in solutions of the initial value problem for
differential equations, we will usually refer to this simply as the solution
of a differential equation.

We will typically assume that ¢ is equal to 0. In the case when F'
is independent of time (as in equation (5.2])), we can do so without loss
of generality by choosing a new independent (time) variable, 7 =t —tg

(Exercise B.1]).

Example 5.1 Damped oscillator

Consider a damped linear oscillator with dynamics of the form

G+ 2Cwod + wiq = 0,

where ¢ is the displacement of the oscillator from its rest position.

These dynamics are equivalent to those of a spring—mass system, as
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shown in Exercise3.5l We assume that ¢ < 1, corresponding to a lightly
damped system (the reason for this particular choice will become clear
later). We can rewrite this in state space form by setting z; = ¢ and

To = ¢/wo, giving

dxq dxo

— = Wk — = —wopx1 — 2Cwpxs.
i 02, i 0Z1 CwoT2

In vector form, the right-hand side can be written as

WoT2
F(x) =
—Wol1 — 2(&)0[[‘2
The solution to the initial value problem can be written in a number

of different ways and will be explored in more detail in Chapter Q. Here

we simply assert that the solution can be written as
—Cuwot 1 :
x1(t) = e " | w19 cos wat + — (wolw10 + T20) Sinwyt |
wq

1
To(t) = e~ S0t (xgo cos wat — — (wiw 1o + wolxag) sin wdt) ,
wd

where zg = (10, T90) is the initial condition and wq = wy m This
solution can be verified by substituting it into the differential equation.
We see that the solution is explicitly dependent on the initial condition,
and it can be shown that this solution is unique. A plot of the initial
condition response is shown in Figure[5.Il We note that this form of the
solution holds only for 0 < ¢ < 1, corresponding to an “underdamped”

oscillator. \V4

Without imposing some mathematical conditions on the function
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Figure 5.1: Response of the damped oscillator to the initial condition
xo = (1,0). The solution is unique for the given initial conditions and
consists of an oscillatory solution for each state, with an exponentially

decaying magnitude.

F'| the differential equation (£.2) may not have a solution for all ¢, and
there is no guarantee that the solution is unique. We illustrate these

possibilities with two examples.

Example 5.2 Finite escape time

Let z € R and consider the differential equation

dx 9
B 5.3
il (5.3)

with the initial condition z(0) = 1. By differentiation we can verify

that the function

satisfies the differential equation and that it also satisfies the initial
condition. A graph of the solution is given in Figure [5.2al notice that
the solution goes to infinity as t goes to 1. We say that this system has

finite escape time. Thus the solution exists only in the time interval
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Figure 5.2: Existence and uniqueness of solutions. Equation (5.3)
has a solution only for time ¢ < 1, at which point the solution goes
to infinity, as shown in (a). Equation (5.4]) is an example of a system
with many solutions, as shown in (b). For each value of a, we get a

different solution starting from the same initial condition.

0<t<l. \V4

Example 5.3 Nonunique solution

Let x € R and consider the differential equation

dx
i 2V (5.4)

with initial condition z(0) = 0. We can show that the function

0 if 0<t<a,
(t) =

(t—a)* ift>a

satisfies the differential equation for all values of the parameter a > 0.
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To see this, we differentiate x(t) to obtain

dr 0 if0<t<a,

dt
2(t—a) ift>a,

and hence & = 24/z for all ¢ > 0 with z(0) = 0. A graph of some of

the possible solutions is given in Figure 5.2Bl Notice that in this case

there are many solutions to the differential equation. \Y%

These simple examples show that there may be difficulties even
with simple differential equations. Existence and uniqueness can be
guaranteed by requiring that the function F' have the property that for

some fixed ¢ € R,
[F(z) = F(y)ll <cllz =yl forall z,y,

which is called Lipschitz continuity. A sufficient condition for a function
to be Lipschitz is that the Jacobian OF/Ox is uniformly bounded for all
x. The difficulty in Example is that the derivative OF/dx becomes
large for large x, and the difficulty in Example[5.3lis that the derivative

OF/0z is infinite at the origin.

5.2 QUALITATIVE ANALYSIS

The qualitative behavior of nonlinear systems is important in under-
standing some of the key concepts of stability in nonlinear dynamics.

We will focus on an important class of systems known as planar dynam-
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ical systems. These systems have two state variables z € R?, allowing
their solutions to be plotted in the (z1,x2) plane. The basic concepts
that we describe hold more generally and can be used to understand

dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems
with state € R? is to plot the phase portrait of the system, briefly
introduced in Chapter We start by introducing the concept of a

vector field. For a system of ordinary differential equations

dx
T _F
p (z),

the right-hand side of the differential equation defines at every x € R"
a velocity F'(x) € R". This velocity tells us how x changes and can be
represented as a vector F(z) € R™.

For planar dynamical systems, each state corresponds to a point in
the plane and F'(z) is a vector representing the velocity of that state.
We can plot these vectors on a grid of points in the plane and obtain
a visual image of the dynamics of the system, as shown in Figure [5.3al
The points where the velocities are zero are of particular interest since
they define stationary points of the flow: if we start at such a state, we
stay at that state.

A phase portrait is constructed by plotting the flow of the vector
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Figure 5.3: Phase portraits. (a) This plot shows the vector field
for a planar dynamical system. KEach arrow shows the velocity at
that point in the state space. (b) This plot includes the solutions
(sometimes called streamlines) from different initial conditions, with

the vector field superimposed.

field corresponding to the planar dynamical system. That is, for a set
of initial conditions, we plot the solution of the differential equation in
the plane R?. This corresponds to following the arrows at each point
in the phase plane and drawing the resulting trajectory. By plotting
the solutions for several different initial conditions, we obtain a phase
portrait, as show in Figure 53Dl Phase portraits are also sometimes
called phase plane diagrams.

Phase portraits give insight into the dynamics of the system by
showing the solutions plotted in the (two-dimensional) state space of
the system. For example, we can see whether all trajectories tend to
a single point as time increases or whether there are more complicated

behaviors. In the example in Figure (3] corresponding to a damped
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oscillator, the solutions approach the origin for all initial conditions.
This is consistent with our simulation in Figure [5.1] but it allows us to
infer the behavior for all initial conditions rather than a single initial
condition. However, the phase portrait does not readily tell us the rate
of change of the states (although this can be inferred from the lengths

of the arrows in the vector field plot).

Equilibrium Points and Limit Cycles

An equilibrium point of a dynamical system represents a stationary
condition for the dynamics. We say that a state x. is an equilibrium

point for a dynamical system

dx
— =F
o (z)

if F(z.) = 0. If a dynamical system has an initial condition z(0) = z.,
then it will stay at the equilibrium point: z(t) = z, for all ¢ > 0, where
we have taken to = 0.

Equilibrium points are one of the most important features of a
dynamical system since they define the states corresponding to constant
operating conditions. A dynamical system can have zero, one, or more

equilibrium points.

Example 5.4 Inverted pendulum
Consider the inverted pendulum in Figure (5.4l which is a part of the

balance system we considered in Chapter [8l The inverted pendulum is
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Figure 5.4: Equilibrium points for an inverted pendulum. An in-
verted pendulum is a model for a class of balance systems in which we
wish to keep a system upright, such as a rocket (a). Using a simplified
model of an inverted pendulum (b), we can develop a phase portrait
that shows the dynamics of the system (c). The system has multiple

equilibrium points, marked by the solid dots along the x2 = 0 line.

a simplified version of the problem of stabilizing a rocket: by applying
forces at the base of the rocket, we seek to keep the rocket stabilized in
the upright position. The state variables are the angle § = z; and the
angular velocity df/dt = x4, the control variable is the acceleration u
of the pivot, and the output is the angle 6.

For simplicity we assume that mgl/J; = 1, [/J; = 1 and set ¢ =
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v/ Jt, so that the dynamics (equation ([B.10)) become

dx Z2
i | . (5.5)
SIN L1 — CTg + U COS T
This is a nonlinear time-invariant system of second order. This same
set of equations can also be obtained by appropriate normalization of
the system dynamics as illustrated in Example B.10l
We consider the open loop dynamics by setting u = 0. The equi-

librium points for the system are given by

+nm
Lo = )
0
where n = 0,1,2,.... The equilibrium points for n even correspond

to the pendulum pointing up and those for n odd correspond to the
pendulum hanging down. A phase portrait for this system (without
corrective inputs) is shown in Figure E.4k. The phase portrait shows

=21 < x1 < 2m, so five of the equilibrium points are shown. \Y%

Nonlinear systems can exhibit rich behavior. Apart from equilib-
rium points they can also exhibit stationary periodic solutions. This is
of great practical value in generating sinusoidally varying voltages in
power systems or in generating periodic signals for animal locomotion.
A simple example is given in Exercise 5.1l which shows the circuit di-

agram for an electronic oscillator. A normalized model of the oscillator
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Figure 5.5: Phase portrait and time domain simulation for a sys-
tem with a limit cycle. The phase portrait (a) shows the states of
the solution plotted for different initial conditions. The limit cycle
corresponds to a closed loop trajectory. The simulation (b) shows
a single solution plotted as a function of time, with the limit cycle

corresponding to a steady oscillation of fixed amplitude.

is given by the equation

dry
dt

dCL’Q

=29+ 11(1 — 27 — 23),

(5.6)
The phase portrait and time domain solutions are given in Figure
The figure shows that the solutions in the phase plane converge to a
circular trajectory. In the time domain this corresponds to an oscilla-
tory solution. Mathematically the circle is called a limit cycle. More
formally, we call a nonconstant solution x,(¢) a limit cycle of period
T >0if x,(t +T) = xp(t) for all t € R and nearby trajectories con-

verge to xp(-) as t — oo (stable limit cycle) or ¢ — —oo (unstable

limit cycle).
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There are methods for determining limit cycles for second-order sys-
tems, but for general higher-order systems we have to resort to compu-
tational analysis. Computer algorithms find limit cycles by searching
for periodic trajectories in state space that satisfy the dynamics of
the system. In many situations, stable limit cycles can be found by

simulating the system with different initial conditions.

5.3 STABILITY

The stability of a solution determines whether or not solutions nearby
the solution remain close, get closer, or move further away. We now
give a formal definition of stability and describe tests for determining

whether a solution is stable.

Definitions

Let z(t;a) be a solution to the differential equation with initial con-
dition a. A solution is stable if other solutions that start near a stay
close to z(t;a). Formally, we say that the solution z(¢;a) is stable if

for all € > 0, there exists a § > 0 such that

Ib—all <6 = |z(t;b) —xz(t;a)| <€ forallt > 0.

Note that this definition does not imply