Feedback Systems

An Introduction for Scientists and Engineers SECOND EDITION

Karl Johan Åström Richard M. Murray

Version v3.0f (30 Aug 2015)

This is the electronic edition of *Feedback Systems* and is available from http://www.cds.caltech.edu/~murray/FBS. Hardcover editions may be purchased from Princeton University Press, http://press.princeton.edu/titles/8701.html.

This manuscript is for personal use only and may not be reproduced, in whole or in part, without written consent from the publisher (see http://press.princeton.edu/permissions.html).

PRINCETON UNIVERSITY PRESS
PRINCETON AND OXFORD

Bibliography

- [Abk69] M. A. Abkowitz. Stability and Motion Control of Ocean Vehicles. MIT Press, Cambridge, MA, 1969.
- [Ack72] J. Ackermann. Der Entwurf linearer Regelungssysteme im Zustandsraum. Regelungstechnik und Prozessdatenverarbeitung, 7:297–300, 1972.
- [Ack85] J. Ackermann. Sampled-Data Control Systems. Springer, Berlin, 1985.
- [Agn76] C. E. Agnew. Dynamic modeling and control of congestion-prone systems. *Operations Research*, 24(3):400–419, 1976.
- [ÅH05] K. J. Åström and T. Hägglund. Advanced PID Control. ISA—The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC, 2005.
- [Ahl66] L. V. Ahlfors. Complex Analysis. McGraw-Hill, New York, 1966.
- [ÅKL05] K. J. Åström, R. E. Klein, and A. Lennartsson. Bicycle dynamics and control. IEEE Control Systems Magazine, 25(4):26–47, 2005.
- [Alu15] R. Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.
- [AM90] B. D. O. Anderson and J. B. Moore. Optimal Control Linear Quadratic Methods. Prentice Hall, Englewood Cliffs, NJ, 1990. Republished by Dover Publications, 2007.
- [Apo67] T. M. Apostol. *Calculus*, Vol. II: *Multi-Variable Calculus and Linear Algebra with Applications*. Wiley, New York, 1967.
- [Apo69] T. M. Apostol. Calculus, Vol. I: One-Variable Calculus with an Introduction to Linear Algebra. Wiley, New York, 1969.
- [Ari94] R. Aris. Mathematical Modeling Techniques. Dover, New York, 1994. Originally published by Pitman, 1978.
- [Arn78] V. I. Arnold. Mathematical Methods in Classical Mechanics. Springer, New York, 1978.
- [Arn87] V. I. Arnold. Ordinary Differential Equations. MIT Press, Cambridge, MA, 1987. 10th printing 1998.
- [AS82] R. H. Abraham and C. D. Shaw. *Dynamics—The Geometry of Behavior*, Part 1: *Periodic Behavior*. Aerial Press, Santa Cruz, CA, 1982.
- [ASMN03] M. Atkinson, M. Savageau, J. Myers, and A. Ninfa. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in *Escherichia coli*. Cell, 113(5):597– 607, 2003.
- [Åst00] K. J. Åström. Limitations on control system performance. European Journal on Control, 6(1):2–20, 2000.
- [Åst06] K. J. Åström. *Introduction to Stochastic Control Theory*. Dover, New York, 2006. Originally published by Academic Press, New York, 1970.
- [Ath75] D. P. Atherton. *Nonlinear Control Engineering*. Van Nostrand, New York, 1975.
- [AVK87] A. A. Andronov, A. A. Vitt, and S. E. Khaikin. *Theory of Oscillators*. Dover, New York, 1987.

B-2 BIBLIOGRAPHY

[ÅW97] K. J. Åström and B. Wittenmark. Computer-Control Systems: Theory and Design. Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 1997.

- [ÅW08] K. J. Åström and B. Wittenmark. Adaptive Control. Dover, New York, 2nd edition, 2008. Originally published by Addison Wesley, 1995.
- [BÅ70] R. Bellman and K. J. Åström. On structural identifiability. *Mathematical Biosciences*, 7:329–339, 1970.
- [Bas01] T. Basar, editor. Control Theory: Twenty-five Seminal Papers (1932–1981). IEEE Press, New York, 2001.
- [BB91] T. Basar and P. Bernhard. H^{∞} -Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Birkhauser, Boston, 1991.
- [BC48] G. S. Brown and D. P. Campbell. *Principles of Servomechanims*. Wiley, New York, 1948.
- [BD04] W. E. Boyce and R. C. DiPrima. *Elementary Differential Equations*. Wiley, New York, 2004.
- [Bec05] J. Bechhoefer. Feedback for physicists: A tutorial essay on control. Reviews of Modern Physics, 77:783–836, 2005.
- [Ben79] S. Bennett. A History of Control Engineering: 1800–1930. Peter Peregrinus, Stevenage, 1979.
- [Ben93] S. Bennett. A History of Control Engineering: 1930–1955. Peter Peregrinus, Stevenage, 1993.
- [Ber54] L. L. Beranek. Acoustics. McGraw-Hill, New York, 1954.
- [Ber89] R. N. Bergman. Toward physiological understanding of glucose tolerance: Minimal model approach. *Diabetes*, 38:1512–1527, 1989.
- [BG68] B. Brawn and F. Gustavson. Program behavior in a paging environment. Proceedings of the AFIPS Fall Joint Computer Conference, pages 1019–1032, 1968.
- [BG87] D. Bertsekas and R. Gallager. *Data Networks*. Prentice Hall, Englewood Cliffs, 1987.
- [BH75] A. E. Bryson, Jr. and Y.-C. Ho. *Applied Optimal Control: Optimization, Estimation, and Control.* Wiley, New York, 1975.
- [Bia95] B. Bialkowski. Process control sample problems. In N. J. Sell, editor, *Process Control Fundamentals for the Pulp & Paper Industry*. Tappi Press, Norcross, GA, 1995.
- [BK64] R. E. Bellman and R. Kalaba. Selected Papers on Mathematical Trends in Control Theory. Dover, New York, 1964.
- [Bla34] H. S. Black. Stabilized feedback amplifiers. Bell System Technical Journal, 13:1–2, 1934.
- [Bla77] H. S. Black. Inventing the negative feedback amplifier. *IEEE Spectrum*, pages 55–60, 1977.
- [Bla91] J. H. Blakelock. Automatic Control of Aircraft and Missiles. Addison-Wesley, Cambridge, MA, 2nd edition, 1991.
- [Bli90] G. Blickley. Modern control started with Ziegler-Nichols tuning. *Control Engineering*, 37:72–75, 1990.
- [Bod45] H. W. Bode. *Network Analaysis and Feedback Amplifier Design*. Van Nostrand, New York, 1945.
- [Bod60] H. W. Bode. Feedback—The history of an idea. In *Symposium on Active Networks and Feedback Systems*. Polytechnic Institute of Brooklyn, New York, 1960. Reprinted in [BK64].

BIBLIOGRAPHY B-3

[BP96] M. B. Barron and W. F. Powers. The role of electronic controls for future automotive mechatronic systems. *IEEE Transactions on Mechatronics*, 1(1):80–89, 1996.

- [Bro70] R. W. Brockett. Finite Dimensional Linear Systems. Wiley, New York, 1970.
- [Bro00] R. W. Brockett. New issues in the mathematics of control. In B. Engquist and W. Schmid, editors, *Mathematics Unlimited—2001 and Beyond*, pages 189–220. Springer-Verlag, Berlin, 2000.
- [BRS60] J. F. Blackburn, G. Reethof, and J. L. Shearer. Fluid Power Control. MIT Press, Cambridge, MA, 1960.
- [Can03] R. H. Cannon. *Dynamics of Physical Systems*. Dover, New York, 2003. Originally published by McGraw-Hill, 1967.
- [CD75] R. F. Coughlin and F. F. Driscoll. Operational Amplifiers and Linear Integrated Circuits. Prentice Hall, Englewood Cliffs, NJ, 6th edition, 1975.
- [CD91] F. M. Callier and C. A. Desoer. *Linear System Theory*. Springer-Verlag, London, 1991.
- [CEHM10] M. Campbell, M. Egerstedt, J. P. How, and R. M Murray. Autonomous driving in urban environments: Approaches, lessons and challenges. *Philosophical Transactions of the Royal Society – A*, 368(1928), 2010.
- [CFG⁺06] L. B. Cremean, T. B. Foote, J. H. Gillula, G. H. Hines, D. Kogan, K. L. Kriechbaum, J. C. Lamb, J. Leibs, L. Lindzey, C. E. Rasmussen, A. D. Stewart, J. W. Burdick, and R. M. Murray. Alice: An information-rich autonomous vehicle for high-speed desert navigation. *Journal of Field Robotics*, 23(9):777–810, 2006.
- [CJ59] H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. Clarendon Press, Oxford, UK, 2nd edition, 1959.
- [CM51] H. Chestnut and R. W. Mayer. Servomechanisms and Regulating System Design, Vol. 1. Wiley, New York, 1951.
- [Cro75] Crocus. Systemes d'Exploitation des Ordinateurs. Dunod, Paris, 1975.
- [CT84] C. Cobelli and G. Toffolo. Model of glucose kinetics and their control by insulin, compartmental and non-compartmental approaches. *Mathematical Biosciences*, 72(2):291–316, 1984.
- [DB04] R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, Upper Saddle River, NJ, 10th edition, 2004.
- [DFT92] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback Control Theory. Macmillan, New York, 1992.
- [DGH⁺02] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury. Using MIMO feed-back control to enforce policies for interrelated metrics with application to the Apache web server. In *Proceedings of the IEEE/IFIP Network Operations and Management Symposium*, pages 219–234, 2002.
- [DGKF89] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space solutions to standard H_2 and H_{∞} control problems. *IEEE Transactions on Automatic Control*, 34(8):831–847, 1989.
- [DH85] J. P. Den Hartog. *Mechanical Vibrations*. Dover, New York, 1985. Reprint of 4th ed. from 1956; 1st ed. published in 1934.
- [Dic07] E. D. Dickmanns. Dynamic Vision for Perception and Control of Motion. Springer, Berlin, 2007.
- [dJ02] H. de Jong. Modeling and simulation of genetic regulatory systems: A literature review. *Journal of Computational Biology*, 9:67–103, 2002.

B-4 BIBLIOGRAPHY

[DM02] L. Desborough and R. Miller. Increasing customer value of industrial control performance monitoring—Honeywell's experience. In Sixth International Conference on Chemical Process Control. AIChE Symposium Series Number 326 (Vol. 98), 2002.

- [DM14] D. Del Vecchio and R. M. Murray. Biomolecular Feedback Systems. Princeton University Press, 2014.
- [Dos68] F. H. Dost. Grundlagen der Pharmakokinetik. Thieme Verlag, Stuttgart, 1968.
- [Doy78] J. C. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control, 23(4):756–757, 1978.
- [DRRS00] D. Dvorak, R. D. Rasmussen, G. Reeves, and A. Sacks. Software architecture themes in jpl's mission data system. In *Proceedings of 2000 IEEE Aerospace Conference*, 2000.
- [Dub57] L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. *American Journal of Mathematics*, 79:497–516, 1957.
- [Dys04] F. Dyson. A meeting with Enrico Fermi. Nature, 247(6972):297, 2004.
- [EG05] S. P. Ellner and J. Guckenheimer. Dynamic Models in Biology. Princeton University Press, Princeton, NJ, 2005.
- [EKR03] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server clusters. In *Power-Aware Computer Systems*, pages 179–197. Springer, 2003.
- [EL00] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. *Nature*, 403(6767):335–338, 2000.
- [Ell94] J. R. Ellis. *Vehicle Handling Dynamics*. Mechanical Engineering Publications, London, 1994.
- [ESGK02] H. El-Samad, J. P. Goff, and M. Khammash. Calcium homeostasis and parturient hypocalcemia: An integral feedback perspective. *Journal of Theoretical Biology*, 214:17–29, 2002.
- [FCF+06] P. G. Fabietti, V. Canonico, M. O. Federici, M. Benedetti, and E. Sarti. Control oriented model of insulin and glucose dynamics in type 1 diabetes. *Medical and Biological Engineering and Computing*, 44:66–78, 2006.
- [FLMR92] M. Fliess, J. Levine, P. Martin, and P. Rouchon. On differentially flat nonlinear systems. *Comptes Rendus des Séances de l'Académie des Sciences*, Serie I, 315:619–624, 1992.
- [FLMR95] M. Fliess, J. Levine, P. Martin, and P. Rouchon. Flatness and defect of non-linear systems: Introductory theory and examples. *International Journal of Control*, 61(6):1327–1361, 1995.
- [For61] J. W. Forrester. *Industrial Dynamics*. MIT Press, Cambridge, MA, 1961.
- [Fou07] J. B. J. Fourier. On the propagation of heat in solid bodies. Memoir, read before the Class of the Instut de France, 1807.
- [FPEN05] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. *Feedback Control of Dynamic Systems*. Prentice Hall, Upper Saddle River, NJ, 5th edition, 2005.
- [Fra87] B. A. Francis. A Course in \mathcal{H}_{∞} Control. Springer-Verlag, Berlin, 1987.
- [Fra07] A. Fradkov. Cybernetical Physics: From Control of Chaos to Quantum Control. Springer, Berlin, 2007.
- [Fri04] B. Friedland. Control System Design: An Introduction to State Space Methods. Dover, New York, 2004.
- [Gan60] F. R. Gantmacher. *The Theory of Matrices*. Chelsea Publishing Company, 1960.
- [GB42] M. A. Gardner and J. L. Barnes. *Transients in Linear Systems*. Wiley, New York, 1942.

BIBLIOGRAPHY B-5

[GF71] L. Gunkel and G. F. Franklin. A general solution for linear sampled data systems. *IEEE Transactions on Automatic Control*, AC-16:767–775, 1971.

- [GGS01] G. C. Goodwin, S. F. Graebe, and M. E. Salgado. Control System Design. Prentice Hall, Upper Saddle River, NJ, 2001.
- [GH83] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, Berlin, 1983.
- [Gil63] E. Gilbert. Controllability and observability in multivariable control systems. *SIAM Journal of Control*, 1(1):128–151, 1963.
- [GL95] M. Green and D. J. N. Limebeer. *Linear Robust Control*. Prentice Hall, Englewood Cliffs, NJ, 1995.
- [GM61] D. Graham and D. McRuer. Analysis of Nonlinear Control Systems. Wiley, New York, 1961.
- [God83] K. Godfrey. Compartment Models and Their Application. Academic Press, New York, 1983.
- [Gol53] H. Goldstein. Classical Mechanics. Addison-Wesley, Cambridge, MA, 1953.
- [Gol70] S. W. Golomb. Mathematical models—Uses and limitations. Simulation, 4(14):197–198, 1970.
- [GP82] M. Giobaldi and D. Perrier. *Pharmacokinetics*. Marcel Dekker, New York, 2nd edition, 1982.
- [GPD59] J. C. Gille, M. J. Pelegrin, and P. Decaulne. Feedback Control Systems; Analysis, Synthesis, and Design. McGraw-Hill, New York, 1959.
- [Gui63] E. A. Guillemin. Theory of Linear Physical Systems. MIT Press, Cambridge, MA, 1963.
- [Hah67] W. Hahn. Stability of Motion. Springer, Berlin, 1967.
- [HB90] J. K. Hedrick and T. Batsuen. Invariant properties of automobile suspensions. In *Proceedings of the Institution of Mechanical Engineers*, volume 204, pages 21–27, London, 1990.
- [HD95] M. B. Hoagland and B. Dodson. *The Way Life Works*. Times Books, New York, 1995.
- [HDPT04] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. *Feedback Control of Computing Systems*. Wiley, New York, 2004.
- [Her04] D. V. Herlihy. Bicycle—The History. Yale University Press, New Haven, CT, 2004.
- [HH52] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. *Journal of Physiology*, 117(500–544), 1952.
- [HMTG00] C. V. Hollot, V. Misra, D. Towsley, and W-B. Gong. A control theoretic analysis of RED. In *Proceedings of IEEE Infocom*, pages 1510–1519, 2000.
- [Hor63] I. M. Horowitz. Synthesis of Feedback Systems. Academic Press, New York, 1963.
- [Hor75] I. M. Horowitz. Superiority of transfer function over state-variable methods in linear, time-invariant feedback system design. *IEEE Transactions on Automatic Control*, AC-20(1):84–97, 1975.
- [Hor91] I. M. Horowitz. Survey of quantitative feedback theory. *International Journal of Control*, 53:255291, 1991.
- [Hug93] T. P. Hughes. Elmer Sperry: Inventor and Engineer. John Hopkins University Press, Baltimore, MD, 1993.

B-6 BIBLIOGRAPHY

- [HW00] D. Hanahan and R. A. Weinberg. The hallmarks of cancer. *Cell*, 100:57–70, 2000.
- [IRBM05] M. Ingham, R. Rasmussen, M. Bennett, and A. Moncada. Engineering complex embedded systems with state analysis and the mission data system. *J. Aerospace Computing, Information and Communication*, 2, 2005.
- [Isi95] A. Isidori. Nonlinear Control Systems. Springer-Verlag, Berlin, 3rd edition, 1995.
- [Ito70] M. Ito. Neurophysiological aspects of the cerebellar motor system. *International Journal of Neurology*, 7:162178, 1970.
- [Jac72] J. A. Jacquez. Compartment Analysis in Biology and Medicine. Elsevier, Amsterdam, 1972.
- [Jac95] V. Jacobson. Congestion avoidance and control. ACM SIGCOMM Computer Communication Review, 25:157–173, 1995.
- [Jan14] P. K. Janert. Feedback Control for Computer Scientists. O'Reilly Media, 2014.
- [JNP47] H. James, N. Nichols, and R. Phillips. *Theory of Servomechanisms*. McGraw-Hill, New York, 1947.
- [JT61] P. D. Joseph and J. T. Tou. On linear control theory. *Transactions of the AIEE*, 80(18), 1961.
- [Jun02] W. G. Jung, editor. Op Amp Applications. Analog Devices, Norwood, MA, 2002.
- [Kal60] R. E. Kalman. Contributions to the theory of optimal control. Boletin de la Sociedad Matématica Mexicana, 5:102–119, 1960.
- [Kal61a] R. E. Kalman. New methods and results in linear prediction and filtering theory. Technical Report 61-1, Research Institute for Advanced Studies (RIAS), Baltimore, MD, February 1961.
- [Kal61b] R. E. Kalman. On the general theory of control systems. In *Proceedings of the First IFAC Congress on Automatic Control, Moscow, 1960*, volume 1, pages 481–492. Butterworths, London, 1961.
- [KB61] R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory. *Transactions of the ASME (Journal of Basic Engineering)*, 83 D:95–108, 1961.
- [Kel85] F. P. Kelly. Stochastic models of computer communication. *Journal of the Royal Statistical Society*, B47(3):379–395, 1985.
- [Kel94] K. Kelly. Out of Control. Addison-Wesley, Reading, MA, 1994. Available at http://www.kk.org/outofcontrol.
- [KFA69] R. E. Kalman, P. L. Falb, and M. A. Arbib. *Topics in Mathematical System Theory*. McGraw-Hill, New York, 1969.
- [KG02] B. C. Kuo and F. Golnaraghi. Automatic Control Systems. Wiley, New York, 8th edition, 2002.
- [Kha01] H. K. Khalil. *Nonlinear Systems*. Macmillan, New York, 3rd edition, 2001.
- [KHN63] R. E. Kalman, Y. Ho, and K. S. Narendra. *Controllability of Linear Dynamical Systems*, volume 1 of *Contributions to Differential Equations*. Wiley, New York, 1963.
- [Kit95] C. Kittel. *Introduction to Solid State Physics*. Wiley, New York, 1995.
- [KKK95] M. Krstić, I. Kanellakopoulos, and P. Kokotović. Nonlinear and Adaptive Control Design. Wiley, 1995.
- [Kle75] L. Kleinrock. Queuing Systems, Vols. I and II. Wiley-Interscience, New York, 2nd edition, 1975.
- [KN00] U. Kiencke and L. Nielsen. *Automotive Control Systems: For Engine, Driveline, and Vehicle*. Springer, Berlin, 2000.

BIBLIOGRAPHY B-7

[Kra63] N. N. Krasovski. Stability of Motion. Stanford University Press, Stanford, CA, 1963.

- [KS01] J. Keener and J. Sneyd. *Mathematical Physiology*. Springer, New York, 2001.
- [Kum01] P. R. Kumar. New technological vistas for systems and control: The example of wireless networks. Control Systems Magazine, 21(1):24–37, 2001.
- [Kun93] P. Kundur. Power System Stability and Control. McGraw-Hill, New York, 1993.
- [KV86] P. R. Kumar and P. Varaiya. Stochastic Systems: Estimation, Identification, and Adaptive Control. Prentice Hall, Englewood Cliffs, NJ, 1986.
- [LaS60] J. P. LaSalle. Some extensions of Lyapunov's second method. IRE Transactions on Circuit Theory, CT-7(4):520–527, 1960.
- [Lew03] A. D. Lewis. A mathematical approach to classical control. Technical report, Queens University, Kingston, Ontario, 2003.
- [LPD02] S. H. Low, F. Paganini, and J. C. Doyle. Internet congestion control. *IEEE Control Systems Magazine*, pages 28–43, February 2002.
- [LPW⁺02] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. C. Doyle. Dynamics of TCP/RED and a scalable control. In *Proceedings of IEEE Infocom*, pages 239–248, 2002.
- [Lun05] K. H. Lundberg. History of analog computing. IEEE Control Systems Magazine, pages 22–28, March 2005.
- [MÅB+03] R. M. Murray, K. J. Åström, S. P. Boyd, R. W. Brockett, and G. Stein. Future directions in control in an information-rich world. *Control Systems Magazine*, April 2003.
- [Mac37] D. A. MacLulich. Fluctuations in the Numbers of the Varying Hare (Lepus americanus). University of Toronto Press, 1937.
- [Mac45] L.A. MacColl. Fundamental Theory of Servomechanims. Van Nostrand, Princeton, NJ, 1945. Dover reprint 1968.
- [Mac89] J. M. Maciejowski. Multivariable Feedback Design. Addison Wesley, Reading, MA, 1989.
- [Mal59] J. G. Malkin. Theorie der Stabilität einer Bewegung. Oldenbourg, München, 1959.
- [Man02] R. Mancini. Op Amps for Everyone. Texas Instruments, Houston. TX, 2002.
- [May70] O. Mayr. The Origins of Feedback Control. MIT Press, Cambridge, MA, 1970.
- [McF53] M. W. McFarland, editor. The Papers of Wilbur and Orville Wright. McGraw-Hill, New York, 1953.
- [MG90] D. C. McFarlane and K. Glover. Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. Springer, New York, 1990.
- [MH98] J. E. Marsden and M. J. Hoffmann. Basic Complex Analysis. W. H. Freeman, New York, 1998.
- [Mil66] H. T. Milhorn. The Application of Control Theory to Physiological Systems. Saunders, Philadelphia, 1966.
- [Min02] D. A. Mindel. Between Human and Machine: Feedback, Control, and Computing Before Cybernetics. Johns Hopkins University Press, Baltimore, MD, 2002.
- [Min08] D. A. Mindel. Digital Apollo: Human and Machine in Spaceflight. The MIT Press, Cambridge, MA, 2008.
- [MLK06] A. Makroglou, J. Li, and Y. Kuang. Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: An overview. *Applied Numerical Mathematics*, 56:559–573, 2006.

B-8 BIBLIOGRAPHY

[MLS94] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994.

- [MR94] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry. Springer-Verlag, New York, 1994.
- [Mur03] R. M. Murray, editor. Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics and Systems. SIAM, Philadelphia, 2003.
- [Mur04] J. D. Murray. Mathematical Biology, Vols. I and II. Springer-Verlag, New York, 3rd edition, 2004.
- [Nah88] P. J. Nahin. Oliver Heaviside: Sage in Solitude: The Life, Work and Times of an Electrical Genius of the Victorian Age. IEEE Press, New York, 1988.
- [NS99] H. Nijmeijer and J. M. Schumacher. Four decades of mathematical system theory. In J. W. Polderman and H. L. Trentelman, editors, *The Mathematics of Systems and Control: From Intelligent Control to Behavioral Systems*, pages 73–83. University of Groningen, 1999.
- [Nyq32] H. Nyquist. Regeneration theory. Bell System Technical Journal, 11:126–147, 1932.
- [Nyq56] H. Nyquist. The regeneration theory. In R. Oldenburger, editor, Frequency Response, page 3. MacMillan, New York, 1956.
- [Oga01] K. Ogata. Modern Control Engineering. Prentice Hall, Upper Saddle River, NJ, 4th edition, 2001.
- [Old56] R. Oldenburger, editor. Frequency Response. MacMillan, New York, 1956.
- [OSFM07] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-agent systems. *Proceedings of the IEEE*, 95(1):215–233, 2007.
- [PB86] G. Pacini and R. N. Bergman. A computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intraveneous glucose tolerance test. *Computer Methods and Programs in Biomedicine*, 23:113–122, 1986.
- [Phi48] G. A. Philbrick. Designing industrial controllers by analog. *Electronics*, 21(6):108–111, 1948.
- [PN00] W. F. Powers and P. R. Nicastri. Automotive vehicle control challenges in the 21st century. *Control Engineering Practice*, 8:605–618, 2000.
- [PPP02] S. Prajna, A. Papachristodoulou, and P. A. Parrilo. SOSTOOLS: Sum of squares optimization toolbox for MATLAB, 2002. Available from http://www.cds.caltech.edu/sostools.
- [Pto14] Claudius Ptolemaeus, editor. System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org, 2014.
- [Pyt] Python control systems library. Available from http://python-control.org.
- [Ras01] R. D. Rasmussen. Goal-based fault tolerance for space systems using the Mission Data System. In *IEEE Aerospace Conference*, 2001.
- [Rig63] D. S. Riggs. The Mathematical Approach to Physiological Problems. MIT Press, Cambridge, MA, 1963.
- [RM71] H. H. Rosenbrock and P. D. Moran. Good, bad or optimal? IEEE Transactions on Automatic Control, AC-16(6):552–554, 1971.
- [RST12] G. Rafal, R. G. Sanfelice, and A. Teel. *Hybrid Dynamical Systems: Modeling, Stability, and Robustness.* Princeton University Press, 2012.
- [Rug95] W. J. Rugh. Linear System Theory. Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 1995.

BIBLIOGRAPHY B-9

[SÅD+07] G. Schitter, K. J. Åström, B. DeMartini, P. J. Thurner, K. L. Turner, and P. K. Hansma. Design and modeling of a high-speed AFM-scanner. *IEEE Transactions on Control System Technology*, 15(5):906–915, 2007.

- [Sar91] D. Sarid. Atomic Force Microscopy. Oxford University Press, Oxford, UK, 1991.
- [Sas99] S. Sastry. *Nonlinear Systems*. Springer, New York, 1999.
- [Sch87] M. Schwartz. Telecommunication Networks. Addison Wesley, Reading, MA, 1987.
- [Sch01] G. Schitter. High performance feedback for fast scanning atomic force microscopes. Review of Scientific Instruments, 72(8):3320–3327, 2001.
- [SEM04] D. E. Seborg, T. F. Edgar, and D. A. Mellichamp. Process Dynamics and Control. Wiley, Hoboken, NJ, 2nd edition, 2004.
- [Sen01] S. D. Senturia. *Microsystem Design*. Kluwer, Boston, MA, 2001.
- [Shi96] F. G. Shinskey. *Process-Control Systems. Application, Design, and Tuning*. McGraw-Hill, New York, 4th edition, 1996.
- [Smi52] J. M. Smith. The importance of the nervous system in the evolution of animal flight. *Evolution*, 6(1):127–129, 1952.
- [Son98] E. P. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York, 2nd edition, 1998.
- [SP05] S. Skogestad and I Postlethwaite. Multivariable Feedback Control. Wiley, Hoboken, NJ, 2nd edition, 2005.
- [SS02] E. B. Saff and A. D. Snider. Fundamentals of Complex Analysis with Applications to Engineering, Science and Mathematics. Prentice Hall, Englewood Cliffs, NJ, 2002.
- [Sta68] L. Stark. Neurological Control Systems—Studies in Bioengineering. Plenum Press, New York, 1968.
- [Ste02] J. Stewart. Calculus: Early Transcendentals. Brooks Cole, Pacific Grove, CA, 2002.
- [Ste03] G. Stein. Respect the unstable. *Control Systems Magazine*, 23(4):12–25, 2003.
- [Str88] G. Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, San Diego, 3rd edition, 1988.
- [Str94] S. H. Strogatz. Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, Reading, MA, 1994.
- [SV89] M. W. Spong and M. Vidyasagar. Dynamics and Control of Robot Manipulators. John Wiley, 1989.
- [Tan96] A. S. Tannenbaum. Computer Networks. Prentice Hall, Upper Saddle River, NJ, 3rd edition, 1996.
- [Teo37] T. Teorell. Kinetics of distribution of substances administered to the body, I and II. Archives Internationales de Pharmacodynamie et de Therapie, 57:205–240, 1937.
- [Tha89] G. T. Thaler. Automatic Control Systems. West Publishing, St. Paul, MN, 1989.
- [Til01] M. Tiller. Introduction to Physical Modeling with Modelica. Springer, Berlin, 2001.
- [Tru55] J. G. Truxal. Automatic Feedback Control System Synthesis. McGraw-Hill, New York, 1955.
- [TS90] D. Tipper and M. K. Sundareshan. Numerical methods for modeling computer networks under nonstationary conditions. *IEEE Journal of Selected Areas in Communications*, 8(9):1682–1695, 1990.
- [Tsi54] H. S. Tsien. Engineering Cybernetics. McGraw-Hill, New York, 1954.
- [Tus52] A. Tustin. Feedback. Scientific American, 48–54, 1952.

B-10 BIBLIOGRAPHY

[Vin01] G. Vinnicombe. *Uncertainty and Feedback:* ℋ_∞ *Loop-Shaping and the v-Gap Metric*. Imperial College Press, London, 2001.

- [Whi99] F. J. W. Whipple. The stability of the motion of a bicycle. *Quarterly Journal of Pure and Applied Mathematics*, 30:312–348, 1899.
- [Wid41] D. V. Widder. *Laplace Transforms*. Princeton University Press, Princeton, NJ, 1941.
- [Wie48] N. Wiener. Cybernetics: Or Control and Communication in the Animal and the Machine. Wiley, 1948.
- [Wig90] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, Berlin, 1990.
- [Wil99] H. R. Wilson. Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience. Oxford University Press, Oxford, UK, 1999.
- [Wil04] D. G. Wilson. *Bicycling Science*. MIT Press, Cambridge, MA, 3rd edition, 2004. With contributions by Jim Papadopoulos.
- [Wis07] K. A. Wise. Guidance and control for military systems: Future challenges. In AIAA Conference on Guidance, Navigation, and Control, 2007. AIAA Paper 2007-6867.
- [WT24] E. P. M. Widmark and J. Tandberg. Über die Bedingungen für die Akkumulation indifferenter Narkotika. *Biochemische Zeitung*, 148:358–389, 1924.
- [YH91] S. Yamamoto and I. Hashimoto. Present status and future needs: The view from Japanese industry. In Y. Arkun and W. H. Ray, editors, *Chemical Process Control—CPC IV*, 1991.
- [YHSD00] T.-M. Yi, Y. Huang, M. I. Simon, and J. Doyle. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. *PNAS*, 97:4649–4653, 2000.
- [Zam81] G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximative inverse. *IEEE Transactions on Automatic Control*, AC-26(2):301–320, 1981.
- [ZD63] L. A. Zadeh and C. A. Desoer. Linear System Theory: the State Space Approach. McGraw-Hill, New York, 1963.
- [ZDG96] J. C. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, Englewood Cliffs, NJ, 1996.
- [ZN42] J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers. *Transactions of the ASME*, 64:759–768, 1942.

Index

+, 1-5, 4-13, 4-18, 4-25, 4-29,	alternating current (AC), 6-25	contact mode, 4-17, 6-26,
14-7	amplifier, see operational	7-34
	amplifier	horizontal positioning,
access control, see admission	amplitude ratio, see gain	10-15, 13-20
control	analog computing, 3-29, 4-7,	system identification, 9-30
acknowledgment (ack) packet,	9-22, 11-19	tapping mode, 4-17, 10-24,
4-13-4-15	analog implementation,	11-7, 11-12, 12-14
activator, 1-11, 3-37, 5-36	controllers, 4-10, 9-34,	with preloading, 4-29
active filter, see also	11-19–11-21	attractor (equilibrium point),
operational amplifier, 6-24	analog-to-digital converters,	5-10
actuators, 1-4, 3-5, 3-29, 4-1,	1-4, 4-18, 8-25, 11-21	automatic reset, in PID
4-17, 7-12, 8-25, 9-36,	analytic function, 9-8	control, 11-4
10-17, 11-21, 12-11,	angle, 2-4	automatic tuning, 11-14, 13-28
12-23–12-25, 12-27	anti-windup compensation,	automation, 3-5, 14-4-14-5
effect on zeros, 10-18, 12-24	1-18	automotive control systems,
in computing systems, 4-11	anticipation, in controllers, see	see also cruise control;
saturation, 3-28, 8-26,	also derivative action,	vehicle steering, 1-15,
11-14-11-15, 11-21,	1-18, 11-5	3-29, 4-5
12-11	antiresonance, 6-26	autonomous differential
A/D converters, see	anti-windup compensation,	equation, see also
analog-to-digital	11-14–11-15, 11-21,	time-invariant systems,
converters	11-22, 11-24	3-3
adaptation, 11-5	Apache web server, see also	autonomous vehicles,
adaptive control, 13-28, 13-29,	web server control, 4-12	14-6–14-9
14-7	apparent volume of	autopilot, 1-13, 1-14
additive uncertainty, 13-3,	distribution, 4-22, 4-30	halanaa ayatama aaa alaa
13-7, 13-10, 13-31 adjacency matrix, 3-35	Arbib, M. A., 7-1	balance systems, <i>see also</i> cart-pendulum system;
admission control, 3-32, 3-42,	argument, of a complex	inverted pendulum,
4-14, 4-15, 10-8	number, 9-23	3-10–3-12, 3-27, 7-4,
aerospace systems, see also	arrival rate (queuing systems),	7-23, 9-13, 12-25
vectored thrust aircraft;	3-32	band-pass filter, 6-24, 6-25,
X-29 aircraft, 1-6, 1-13,	asymptotes, in Bode plot,	9-28
12-29	9-25, 9-26	bandwidth, 6-25, 7-20, 12-8,
AFM, see atomic force	asymptotic stability, 3-20, 5-8,	12-23
microscope	5-10, 5-12, 5-13, 5-18,	Bell Labs, 1-12, 10-24
air-fuel ratio control, 1-20	5-20, 5-23–5-25, 5-27,	Bennett, S., 1-26, 10-24, 11-23
aircraft, see flight control	6-10	bicycle dynamics, 4-5–4-7,
alcohol, metabolism of, 4-30	discrete-time systems, 6-35	4-27, 5-29, 8-27
algebraic loops, 8-11, 9-22	atmospheric dynamics, see	Whipple model, 4-7
aliasing, 8-26	environmental science	bicycle model, 3-30
all-pass transfer function,	atomic force microscopes, 1-3,	bicycle model, for vehicle
12-21	3-29, 4-17–4-20	steering, 3-29–3-30
	, · · - -	

I-2

bicycledynamics	9-25, 9-26, 9-35	output feedback controller,
Whipple model, 7-34	low-, band-, high-pass	8-12, 8-13
bifurcations, see also root	filters, 9-28	reachable canonical form,
locus plots, 5-28–5-30,	nonminimum phase	7-7, 7-9, 7-13, 7-33
5-36	systems, 10-18	chemical systems, see also
biological circuits, 1-11, 3-22,	of rational function, 9-24	process control;
3-37–3-38, 5-36, 6-36,	sketching, 9-26	compartment models, 1-6
9-28	Bode's ideal loop transfer	11-1
genetic switch, 3-42, 5-21	function, 13-10, 13-29	chordal distance, 13-5
repressilator, 3-38	Bode's integral formula,	circuits, see biological circuit
biological systems, see also	12-25–12-27,	electrical circuits
biological circuits; drug	12-29–12-30	classical control, xi, 13-28
administration; neural	Bode's relations, 10-16, 10-17,	closed loop, 1-1, 1-2, 1-4,
systems; population	12-13	6-32, 7-10, 7-17, 10-1,
dynamics, 1-1-1-3, 1-7,	Brahe, T., 3-2	10-2, 10-21, 12-1
1-10, 1-16, 1-26,	breakpoint, 9-25, 10-6	versus open loop, 1-2, 10-3
3-36–3-39, 5-33, 11-1,	Brockett, R. W., xii, 1-1, 6-33	10-22, 12-1
11-5	Bryson, A. E., 7-35	Command signal following,
bistability, 1-16, 5-23	bumpless transfer, 13-28	2-11
Black, H. S., 1-12, 1-13, 4-7,	Bush, V., 11-23	command signals, see also
4-9, 6-1, 10-1, 10-24, 13-1	business systems, 1-16	reference signal; setpoint
block diagonal form, 5-12,		1-4, 1-16, 8-20, 11-1
5-36, 6-19	calibration, versus feedback,	compartment models,
block diagonal systems, 5-12,	1-7, 7-14, 7-30, 7-31	4-21-4-25, 5-13, 6-21,
5-36, 6-9, 6-15, 6-19, 8-12	Cannon, R. H., 3-39, 6-1	7-20, 8-3, 8-8, 8-28
block diagram algebra, 9-15,	capacitor, transfer function for,	exercises, 6-34
9-17, 13-10	9-6	compensator, see control law
block diagrams, 1-1,	car, see automotive control	complementary sensitivity
3-23-3-24, 9-7,	systems; cruise control;	function, 12-3, 12-11,
9-15-9-20, 9-22	vehicle steering	12-27, 13-5, 13-8, 13-11
control system, 1-4, 9-1,	carrying capacity, in	13-14, 13-19, 13-23,
9-16, 12-1	population models, 4-26	13-29
Kalman decomposition,	cart-pendulum system, see	complexity, of control
8-23	also balance systems,	systems, 1-7, 1-15, 11-6
observable canonical form,	2-23, 3-11, 7-6	computed torque, 6-33
8-5	causal reasoning, 1-1, 4-6	computer implementation,
observer, 8-2, 8-10	Cayley-Hamilton theorem,	controllers, 8-24-8-26,
observer-based control	7-4, 7-34, 8-3	11-21–11-22
system, 8-14	center (equilibrium point),	computer science, relationshi
PID controllers, 11-1, 11-4,	5-10	to control, 1-5
11-21	centrifugal governor, 1-2, 1-3,	computer systems, control of
reachable canonical form,	1-11	see also queuing systems
7-7	chain of integrators (normal	1-8–1-9, 1-26, 3-14, 3-34
two degree-of-freedom	form), 3-40, 7-7	3-35, 4-11–4-17, 6-27
controller, 8-20, 12-2,	characteristic equation, 2-2,	conditional integration, 11-24
13-12	2-5	conditional stability, 10-9
Youla parameterization,	characteristic polynomial, 2-1,	congestion control, see also
13-11	5-11, 7-34, 9-12	queuing systems, 1-8,
Bode, H., 9-1, 10-24, 12-34,	for closed loop transfer	4-13-4-16, 5-10, 10-7,
13-28	function, 10-2	10-26, 11-24
Bode plots, 9-22–9-29, 10-16 asymptotic approximation,	observable canonical form, 8-5	router dynamics, 4-29 consensus, 3-35

INDEX I-3

control definition of, 1-3–1-5 early examples, 1-2, 1-5, 1-6, 1-12, 1-15, 1-26, 11-4 fundamental limitations, 10-17, 12-21–12-30, 12-34, 13-18, 13-20, 13-27–13-28 history of, 1-26, 11-23 modeling for, 1-5, 3-5–3-6, 3-39, 13-1 successes of, 1-6, 1-26 system, 1-3, 7-9, 8-14, 8-19, 8-25, 9-1, 12-2, 12-5, 13-12 using estimated state, 8-11–8-14, 13-24 Control architecture two degrees of freedom, 2-13 control architecture two degrees of freedom, 2-13 control law, 1-4, 1-17, 1-18, 6-32, 7-10, 7-13, 9-16 control Lyapunov function, 5-31 control matrix, 3-9, 3-13	covariance matrix, 8-15 critical gain, 11-11, 11-13 critical period, 11-11, 11-13 critical point, 10-5, 10-7, 10-13, 10-23, 10-24, 11-11, 13-6, 13-7, 13-27 critically damped oscillator, 7-18 crossover frequency, see gain crossover frequency; phase crossover frequency crossover frequency inequality, see gain crossover frequency inequality cruise control, 1-12, 1-22, 4-1-4-5 control design, 7-30, 11-8, 11-19 feedback linearization, 6-32 integrator windup, 11-14, 11-15 linearization, 6-28 pole/zero cancellation, 9-21 robustness, 1-12, 13-1, 13-2, 13-8 Curtiss seaplane, 1-13, 1-14 cybernetics, see also robotics, 1-7 cyberphysical system, 3-8	derivative action, 1-18, 1-19, 11-1, 11-4-11-6, 11-20, 12-17 filtering, 11-5, 11-18-11-19, 11-22 setpoint weighting, 11-19, 11-22 time constant, 11-2 versus lead compensator, 12-17 derivative gain, 11-2 derivative gain, 11-2 derivative time constant, 11-5 describing functions, 10-22-10-24 design of dynamics, 1-12-1-14, 5-15, 5-30-5-32, 6-1, 7-1, 7-11, 7-17 diabetes, <i>see</i> insulin-glucose dynamics diagonal systems, 5-12, 6-8 Kalman decomposition for, 8-23 transforming to, 5-12, 5-36, 6-8 Dickmanns, E., 14-6 difference equations, 3-9, 3-13-3-15, 3-19, 3-40, 6-27, 8-25, 11-22
control signal, 3-6, 6-27, 11-1 controllability, see also reachability, 7-32 controlled differential equation, 3-3, 3-10 convolution equation, 6-15-6-17, 6-19, 6-20, 7-4, 9-10 discrete-time, 6-35 coordinate transformations, 5-12, 6-17-6-19, 7-7, 8-27, 9-11 to Jordan form, 6-9 to observable canonical form, 8-6 to reachable canonical form, 7-8, 7-9 Coriolis forces, 3-11, 6-33 corner frequency, 9-25 correlation matrix, 8-15, 8-16 cost function, 7-25 coupled spring-mass system, 6-12, 6-14, 6-18	D/A converters, <i>see</i> digital-to-analog converters damped frequency, 7-19 damping, 3-2, 3-11, 3-18, 5-2, 9-36, 9-37 damping ratio, 2-10, 7-18, 7-19, 7-22 DARPA Grand Challenge, 14-6, 14-7 DC gain, <i>see also</i> zero frequency gain, 6-25 dead zone, 1-17 decision making, higher levels of, 14-6 delay, <i>see</i> time delay delay compensation, 10-26, 13-30 delay margin, 10-15 delta function, <i>see</i> impulse function	differential algebraic equations, see also algebraic loops, 3-7 differential equations, 3-2, 3-9-3-13, 5-1-5-4 controlled, 3-3, 6-3 equilibrium points, 5-6-5-7 existence and uniqueness of solutions, 5-2-5-4 first-order, 3-6, 11-6 isolated solution, 5-7 periodic solutions, 5-7-5-8, 5-16 qualitative analysis, 5-4-5-8 second-order, 5-5, 7-18, 11-6 solutions, 5-1, 5-2, 6-3, 6-6, 6-15, 9-33 stability, see stability transfer functions for, 9-9 differential flatness, 8-22 digital control systems, see computer implementation,

I-4 INDEX

controllers	observer as a, 8-1	elephant, modeling of an, 3-1
digital-to-analog converters,	state of, 7-9	Elowitz, M. B., 3-38
1-4, 4-18, 8-25, 11-21	stochastic, 8-14	encirclement, see also Nyquist
dimension-free variables,	uncertainty in, 13-1-13-3	criterion, 10-5
3-26, 3-39	zz, see also differential	environmental science, 1-3,
direct term, 3-9, 3-13, 6-17,	equations	1-6
8-11, 9-22 discrete control, 3-34	dynamics matrix, 3-9, 3-13, 5-11, 6-12	equilibrium points, 4-26, 5-6, 5-11, 6-2, 6-29, 7-2
discrete-time systems, 3-13,	Dyson, F., 3-1	bifurcations of, 5-28
3-40, 5-35, 6-27, 6-35,	Dyson, 1., 5 1	discrete time, 3-40
11-21	e-commerce, 1-8	for closed loop system,
Kalman filter for, 8-14	e-mail server, control of, 3-14,	7-11, 7-30
linear quadratic regulator	6-27	for planar systems, 5-10
for, 7-27	economic systems, 1-9, 1-16,	region of attraction,
disk drives, 3-43	3-40	5-26-5-28, 5-34
disturbance attenuation, 1-4,	ecosystems, see also	stability, 5-8
7-10, 12-10–12-11, 13-13	predator-prey system,	error feedback, 2-13, 11-1,
design of controllers for,	1-10, 4-25, 7-15	11-2, 11-19, 12-3
12-6, 12-13, 12-27, 12-35,	eigenvalue assignment, 7-11,	estimators, see oserversI-1
13-24	7-13–7-17, 7-23, 8-12,	Euler integration, 3-19
fundamental limits, 12-26	11-8, 11-23	exponential input, 9-3
in biological systems, 9-29,	by output feedback, 8-13	exponential signals, 9-2–9-8,
11-5	for observer design, 8-8	9-12, 9-22
integral gain as a measure	eigenvalues, 5-11, 5-20, 5-29,	extended Kalman filter, 8-21
of, 11-4, 12-11, 13-13	6-12, 9-4	Ell DI 71
relationship to sensitivity function, 12-10, 12-25,	and Jordan form, 6-9–6-11,	Falb, P. L., 7-1
12-35, 13-13	6-35	Feedback, 2-1 feedback, 1-1-1-3
disturbance weighting, 13-27	distinct, 5-35, 5-36, 6-8, 6-14, 8-23	as technology enabler, 1-3,
disturbances, 1-4, 3-3, 3-6,	dominant, 7-22	1-13
9-16, 9-20, 12-1, 12-4,	effect on dynamic behavior,	business, 1-16
12-5	7-17–7-19, 7-21, 7-22, 9-4	combining with
generalized, 13-25	for discrete-time systems,	feedforward, 2-27
random, 8-15	6-35	drawbacks of, 1-3, 1-15,
Dodson, B., 1-1	invariance under coordinate	11-18, 13-6, 13-13
dominant eigenvalues (poles),	transformation, 5-12	economy, 1-16
7-22, 11-9	relationship to modes,	in biological systems, see
dominant pairs, 7-34	6-12-6-15	also biological circuits,
double integrator, 2-4, 6-7,	relationship to poles, 9-12	1-1-1-3, 1-10, 1-26, 11-5
7-2, 9-9, 10-26	relationship to stability,	in engineered systems, see
Doyle, J. C., xii, 12-34, 13-28	5-23, 6-10, 6-11	control
drug administration, see also	eigenvectors, 5-12, 5-36, 6-12	in financial systems, 1-3
compartment models,	relationship to mode shape,	in nature, 1-3, 1-9–1-10,
4-21–4-25, 4-30, 6-21, 7-20	6-13 electric power, <i>see</i> power	4-25 positive, <i>see</i> positive
duality, 8-7, 8-11	systems (electric)	feedback
Dubins car, 3-30	electrical circuits, see also	properties, 1-3, 1-5,
dynamic compensator, 7-30	operational amplifier, 3-7,	1-11–1-17, 12-1, 12-6,
dynamic inversion, 6-33	3-22, 4-10, 6-1, 9-6	13-1
dynamical systems, 1-1, 3-1,	electrical engineering,	robustness through, 1-11
5-1, 5-4, 5-32	1-5–1-6, 3-4–3-5, 6-25,	versus feedforward, 1-16,
linear, 5-11, 6-1	10-9	11-4, 12-6

INDEX I-5

feedback and feedforward,	flyball governor, see	Gang of Four, 12-3, 12-35,
2-25	centrifugal governor	13-12
feedback connection, 9-15,	force feedback, 1-7	Gang of Seven, 12-3
9-16, 10-21, 10-22	forced response, 6-3, 9-3	Gang of Six, 12-8
feedback controller, 9-16, 12-1	forced solution, 6-3	gene regulation, 1-10, 3-37,
feedback linearization,	Forrester, J. W., 1-10	6-36, 9-28
6-32-6-33	Fourier, J. B. J., 3-39, 9-32	general solution to the
feedback loop, 1-4, 10-1, 12-1,	frequency domain, 9-1-9-3,	homogeneous equation,
13-12	10-1, 10-19, 12-1	2-2
feedback uncertainty, 13-3,	frequency response, 2-4, 3-5,	genetic switch, 3-42, 5-21
13-10	3-20, 3-21, 6-22–6-27,	global behavior, 5-10,
feedback:positive, 2-17	9-2, 10-24, 11-11, 12-8	5-27-5-30
feedforward, 1-15, 1-16,	relationship to Bode plot,	Glover, K., 12-34, 13-28
8-19-8-22, 9-16, 12-1,	9-23	glucose regulation, see
12-5, 12-7	relationship to Nyquist plot,	insulin-glucose dynamics
business, 1-16	10-4, 10-6	Golomb, S., 4-1
combining with feedback,	second-order systems, 7-20,	governor, see centrifugal
2-27	9-28	governor
difficulties, 2-26	system identification using,	-
economy, 1-16	9-30	H_{∞} control, 13-25–13-28,
sensitivity to process	fully actuated systems, 9-13	13-30
variations, 2-27	fundamental limits, see	haptics, 2-24
system inversion, 2-25	control: fundamental	Harrier AV-8B aircraft, 3-30,
Fermi, E., 3-1	limitations	3-31
filters	Furuta pendulum, 5-36	heat propagation, 9-8
active, 6-24		Heaviside, O., 6-34
for disturbance weighting,	gain, 1-18, 2-4, 3-21, 4-8,	Heaviside step function, 6-20,
13-27	6-23, 6-24, 7-21, 9-2, 9-5,	6-34
for measurement signals,	9-11, 9-23, 10-12,	Hellerstein, J. L., 1-26, 4-17
1-15, 8-26, 13-13	10-19-10-22, 13-1	high-frequency roll-off, 12-13,
zz, see also band-pass	H_{∞} , 10-20, 10-21, 13-26	13-13, 13-21
filters; high-filters;	observer, <i>see</i> observer gain	high-pass filter, 9-28
low-pass filters	of a system, 10-19	Hill function, 3-37
financial systems, <i>see</i> economic systems	reference, 7-30 state feedback, 7-11, 7-15,	Hoagland, M. B., 1-1
finite escape time, 5-3	7-30, 7-32	Hodgkin-Huxley equations,
finite state machine, 1-22, 3-8,	zero frequency, see zero	3-38
4-5, 4-12	frequency gain	homeostasis, 1-3, 3-36
first-order systems, 6-4, 6-35,	zz, <i>see also</i> integral gain	homogeneous equation, 2-2
9-9, 9-24, 9-26	gain crossover frequency,	homogeneous solution, 6-3,
fisheries management, 4-30	10-13, 10-14, 12-8, 12-22,	6-6, 9-12
flatness, see differential	13-19	Horowitz, I. M., 8-26, 12-34,
flatness	gain crossover frequency	13-23, 13-28
flight control, 1-6, 1-13, 3-30,	inequality, 12-22, 12-24	human-machine interface,
6-33	gain curve (Bode plot),	1-22, 4-1, 4-4
X-29 aircraft, 12-27	9-23–9-27, 10-16, 12-13	hybrid system, 3-8, 3-18
zz, see also vectored thrust	gain margin, 10-12-10-15	hysteresis, 1-17, 10-23
aircraft	from Bode plot, 10-13	
flow, of a vector field, 3-3, 5-5	reasonable values, 10-15	identification, see system
flow in a tank, 5-33	gain scheduling, 8-21, 13-28	identification
flow model (queuing systems),	gain-bandwidth product, 4-10,	impedance, 9-6, 11-20
3-32, 10-26, 11-24	9-7, 13-15	impedance control, 2-24

I-6

implementation, controllers,	integrator, see also double	lag, see phase lag
see analog	integrator, 3-23, 6-9, 7-30,	lag compensation,
implementation; computer	7-31, 8-5, 9-9, 9-24,	12-13-12-15
implementation	10-17, 11-16	Laplace transforms, xi, 9-8
impulse function, 6-16, 6-34,	integrator windup, 1-18, 8-26,	Laplacian matrix, 3-36
7-4	11-14-11-15, 11-24	Lasalle's invariance principle,
impulse response, 6-5, 6-16,	conditional integration,	see Krasovski-Lasalle
6-17, 9-10	11-24	principle
inductor, transfer function for,	intelligent machines, see	lead, see phase lead
9-6	robotics	lead compensation,
inertia matrix, 3-11, 6-33	internal model principle, 8-13,	12-14–12-17, 12-32,
infinity norm, 10-20, 13-26	8-21	
	internal stability, 12-4	12-36
information systems, see also		limit cycle, 4-27, 5-7, 5-16,
congestion control; web	Internet, see also congestion	5-17, 5-29, 10-22, 10-23
server control, 1-8,	control, 1-8, 1-9, 4-11,	linear quadratic control,
3-32–3-36	4-13, 4-16, 4-29	7-25–7-29, 8-16, 8-26,
initial condition, 5-2, 5-5, 5-8,	Internet Protocol (IP), 4-13	13-24–13-25
6-2, 6-6, 6-7, 6-14, 8-15	invariant set, 5-25, 5-28	linear systems, 3-4, 3-9, 4-10,
initial condition response, 6-3,	inverse, 2-26	5-11, 6-1–6-34, 8-22, 9-3,
6-6-6-9, 6-12, 6-14, 6-17,	inverse model, 6-32, 12-6	9-32, 10-20
9-3	inverse response, 2-26, 10-18,	linear time-invariant systems,
initial value problem, 5-2	10-26	3-4, 3-9, 6-4
inner loop control, 12-31,	inverted pendulum, see also	linearity, 6-3, 9-23
12-33	balance systems,	linearization, 5-15, 5-23, 6-2,
input sensitivity function, see	3-12-3-13, 4-5, 5-6, 5-14,	6-28-6-33, 8-20, 8-21,
load sensitivity function	5-25, 5-27, 5-35, 5-36,	13-1
input/output models, see also	10-10, 12-27	Lipschitz continuity, 5-4
frequency response;		load disturbances, see also
steady-state response; step	Jacobian linearization,	disturbances, 12-1, 13-13
response, 1-5, 3-4, 3-5,	6-29-6-31	load sensitivity function, 12-3
6-2, 6-15-6-28, 9-1, 10-20	Janert, P. K., 1-26	local behavior, 5-9, 5-15, 5-24,
and transfer functions, 9-10	Jordan block, 6-9	5-27, 6-29
and uncertainty, 3-28, 13-3	Jordan form, 6-9-6-12, 6-35,	locally asymptotically stable,
from experiments, 9-30	7-22	5-9
relationship to state space		logistic growth model, 4-25,
models, 3-6, 5-1, 6-16	Kalman, R. E., 7-1, 7-32, 8-1,	4-26, 4-30
steady-state response, 6-19	8-23, 8-26	loop analysis, 10-1, 12-1
inputs, 3-3, 3-6	Kalman decomposition,	loop shaping, 10-4,
insect flight control, 3-23–3-24	8-22–8-24, 9-21, 9-33,	12-12–12-17, 12-33,
instrumentation, 1-7, 4-7	9-35	13-23
	Kalman filter, 8-14–8-19,	
insulin-glucose dynamics, 1-2, 4-24–4-25		design rules, 12-14
	8-26, 13-25	fundamental limitations,
integral action, 1-18, 1-19,	extended, 8-21	12-21–12-30
1-27, 2-19–2-20,	Kalman-Bucy filter, 8-17	zz, see also Bode's loop
7-30–7-33, 11-1,	Kelly, F. P., 4-16	transfer function
11-3–11-5, 11-7, 12-11	Kepler, J., 3-2	loop transfer function, see also
for bias compensation, 8-27	Keynesian economic model,	Bode's loop transfer
setpoint weighting, 11-19,	3-40, 6-36	function, 10-1–10-4,
11-22	Krasovski-Lasalle principle,	10-12-10-14, 10-21, 12-1,
time constant, 11-2	5-24-5-25	12-4, 12-12, 12-13, 12-16,
integral gain, 1-18, 11-2, 11-4,		12-26, 12-34
11-7	LabVIEW, 5-29, 6-34	Lotus Notes server, see e-mail

INDEX I-7

server low-order models, 11-6 low-pass filter, 9-28, 11-18 LQ control, <i>see</i> linear quadratic control LTI systems, <i>see</i> linear time-invariant systems Lyapunov equation, 5-20, 5-35 Lyapunov functions, 5-17, 5-18, 5-20, 5-21, 5-27, 5-34, 6-35 design of controllers using, 5-25, 5-31 existence of, 5-20 Lyapunov stability analysis, 3-20, 5-17–5-26, 5-33 discrete time, 5-35	response to, 12-11–12-12, 13-13–13-14 mechanical systems, 3-6, 3-11, 3-20, 3-29, 3-39, 6-32 mechanics, 3-2–3-3, 3-5, 5-32, 6-1 minimal model (insulin-glucose), see also insulin-glucose dynamics, 4-24, 4-25 minimum phase, 10-17, 10-24, 12-21 minimum selector, 1-20 Modelica, 3-7 modeling, 1-5, 3-1–3-8, 3-39, 4-1 control perspective, 3-5 discrete control, 3-34	networking, see also congestion control, 1-8, 3-22, 4-16 neural systems, 1-7, 3-24, 3-38, 11-5, 11-6 neutral stability, 5-8-5-10 Newton, I., 3-2 Nichols, N. B., 6-33, 11-10, 12-33 Nichols chart, 13-24 Nobel Prize, 1-7, 3-39, 4-17 noise, see disturbances; measurement noise noise attenuation, 9-29, 12-11-12-12 noise cancellation, 5-31 noise sensitivity function, 12-3 nonlinear systems, 3-6, 5-1,
magnitude, 2-4 manifold, 5-26 margins, see stability margins materials science, 1-6 Mathematica, 3-19, 5-29, 6-34 MATLAB, 1-27, 3-19, 5-29, 6-34, 7-34 acker, 7-15, 8-11 dlqe, 8-16 dlqr, 7-29 hinfsyn, 13-26 jordan, 6-10 linmod, 6-30 lqr, 7-25 place, 7-15, 7-24, 8-11 trim, 6-30 matrix exponential, 6-6-6-9, 6-13, 6-15, 6-33, 6-34 coordinate transformations, 6-18 Jordan form, 6-10 second-order systems, 6-34 maximum complementary sensitivity, 13-8, 13-19 maximum selector, 1-20 maximum sensitivity, 12-10, 13-6, 13-20	discrete-time, 3-13, 6-27–6-28 frequency domain, 9-1–9-3 from experiments, 3-24–3-26 model reduction, 1-5 normalization and scaling, 3-26 of uncertainty, 3-27–3-29 simplified models, use of, 3-6, 11-7, 13-2, 13-8, 13-9 software for, 3-7, 6-30, 6-33 state space, 3-9–3-21 uncertainty, see uncertainty modes, 6-12–6-14, 9-12 relationship to poles, 9-13 motion control systems, 3-29–3-31, 8-26 motors, electric, 3-42, 7-34, 8-28 multi-input, multi-output systems, see also input/output models, 10-20, 12-4, 12-14 multiplicative uncertainty, 13-3, 13-10	5-4, 5-7, 5-15, 5-17, 5-21, 5-27–5-32, 8-2, 8-20, 8-21, 10-20–10-22 linear approximation, 5-15, 5-23, 6-29, 6-36, 13-1 system identification, 3-41 nonminimum phase, see also inverse response, 10-17, 10-18, 10-26, 12-21–12-23 nonunique solutions (ODEs), 5-3 normalized coordinates, 3-26–3-27, 3-41, 6-31 norms, 10-19–10-20 Nyquist, H., 10-1, 10-24 Nyquist criterion, 10-5, 10-7, 10-9, 10-12, 10-21, 10-22, 11-11 for robust stability, 13-6, 13-31 Nyquist D contour, 10-4, 10-10 Nyquist plot, 10-4–10-5, 10-12, 10-13, 11-11, 12-10, 13-24
measured signals, 3-6, 3-9, 5-1, 8-1, 8-14, 8-26, 12-2, 12-4, 13-25 measurement noise, 1-4, 1-15, 8-1, 8-3, 8-14, 8-15, 8-17, 9-16, 11-18, 12-1-12-3, 12-13, 13-13	nanopositioner (AFM), 10-15, 13-20 natural frequency, 7-19 negative definite function, 5-18 negative feedback, 1-12, 1-16, 4-9, 7-10, 10-1, 11-5 Nernst's law, 3-39	observability, 3-6, 8-1–8-2, 8-22, 8-26 rank condition, 8-3 tests for, 8-2–8-3 unobservable systems, 8-4, 8-22–8-24, 9-35 observability matrix, 8-3, 8-5

I-8

observable canonical form, 8-4, 8-5, 8-27 observer gain, 8-7, 8-9–8-11, 8-13, 8-15–8-17 observers, 8-1, 8-6–8-9, 8-17, 8-21	P control, 2-8, 2-9 Padé approximation, 10-26, 12-23 paging control (computing), 3-34 parallel connection, 9-15	6-24, 7-21, 9-2, 9-5, 9-23, 10-22 minimum vs. nonminimum, 10-17 phase crossover frequency, 10-13, 10-14
block diagram, 8-2, 8-10 zz, <i>see also</i> Kalman filter	parametric stability diagram, 5-28–5-30	phase curve (Bode plot), 9-23–9-25, 9-27
ODEs, <i>see</i> differential equations	parametric uncertainty, 3-28, 13-1	relationship to gain curve, 10-16, 12-13
Ohm's law, 3-39, 4-9, 9-6 on-off control, 1-17, 1-18	particular solution, <i>see also</i> forced response, 2-2, 6-3,	phase lag, 6-23, 6-24, 9-28, 10-17, 12-22, 12-24
open loop, 1-1, 1-2, 4-8, 7-2,	6-22 non	phase lead, 6-23, 9-28, 12-17, 12-36
9-18, 10-1, 11-14, 12-1, 12-10, 13-3	uniqueness, 2-2	phase margin, 10-13, 10-14,
open loop gain, 9-7, 10-12, 12-8	transfer function, 2-3 passive systems, 10-21, 12-26	12-14, 12-15, 12-22, 12-37, 13-29
operational amplifiers,	passivity theorem, 10-22 patch clamp, 1-7	from Bode plot, 10-13 reasonable values, 10-15
4-7–4-11, 9-6, 11-19, 13-10	PD control, 2-23, 11-4, 12-14,	phase portrait, 3-3, 5-4-5-6,
circuits, 4-28, 6-24, 10-2, 13-14	12-15 peak frequency, 6-26, 12-8	5-27 Philbrick, G. A., 4-11
dynamic model, 4-10, 9-6	pendulum dynamics, <i>see also</i> inverted pendulum, 5-19	photoreceptors, 11-5 physics, relationship to
input/output characteristics, 4-8	perfect adaptation, 11-5	control, 1-5
oscillator using, 4-28, 5-35	performance, 4-12 performance limitations,	PI Control, 2-8 PI control, 1-12, 1-19, 2-9,
static model, 4-8, 9-6 optimal control, 7-25, 8-15,	12-21, 12-26, 13-20, 13-27	2-20, 4-1, 4-4, 11-4, 11-9, 12-14, 12-15
8-17, 13-25 order, of a model, 3-9, 3-10	due to right half-plane poles and zeros, 10-17	first-order system, 11-7, 13-18
ordinary differential equations, <i>see</i> differential equations	zz, <i>see also</i> control: fundamental limitations	PID control, 1-18–1-19, 11-1–11-23, 12-17
oscillator dynamics, 4-28, 5-2, 5-3, 6-7, 6-8, 7-18, 9-5,	performance specifications, see also overshoot;	block diagram, 11-2, 11-4, 11-16
9-9 normal form, 3-41	maximum sensitivity;	computer implementation,
zz, <i>see also</i> nanopositioner	resonant peak; rise time; settling time, 6-21, 7-10,	11-21 ideal form, 11-1, 11-23
(AFM); spring-mass system	12-1, 12-8–12-12, 12-14, 13-12	implementation, 11-4, 11-18–11-22
outer loop control, 12-31–12-33	periodic solutions, see	in biological systems, 11-5
output feedback, see also	differential equations; limit cycles	op amp implementation, 11-19–11-21
control: using estimated state; loop shaping; PID	persistence, of a web connection, 4-12, 4-13	tuning, 11-10–11-14 zz, <i>see also</i> derivative
control, 8-11, 8-12, 8-26	Petri net, 3-22	action; integral action
output sensitivity function, see noise sensitivity function	pharmacokinetics, <i>see also</i> drug administration, 4-21,	pitchfork bifurcation, 5-37 planar dynamical systems, <i>see</i>
outputs, <i>see</i> measured signals overdamped oscillator, 7-18	4-25 phase, <i>see also</i> minimum	also second-order systems, 5-5, 5-10
overshoot, 6-21, 7-10, 7-20,	phase; nonminimum	pole excess, 12-18
12-8	phase, 2-4, 3-21, 6-23,	pole placement, see also

INDEX I-9

eigenvalue assignment,	2-8	reset logic, 3-8
7-11, 13-16, 13-19–13-20	protocol, see congestion	reset, in PID control, 11-3,
robust, 13-15	control; consensus	11-4
pole zero diagram, 9-13	pulse signal, see also impulse	resonant frequency, 7-20,
pole/zero cancellations,	function, 6-16, 6-17, 7-22	10-20
9-20-9-22, 9-35, 13-20	pupil response, 9-31, 11-5	resonant peak, 6-26, 7-20,
poles, 2-4, 9-12, 9-13		12-8, 13-9
dominant, see also dominant	<i>Q</i> -value, 3-41, 7-20, 9-26	resource usage, in computing
eigenvalues (poles), 11-9	quantitative feedback theory	systems, 3-33, 3-35, 4-11,
fast stable, 13-18, 13-20	(QFT), 13-23–13-24	4-12
pure imaginary, 10-4, 10-10	quarter car model, 9-36	response, <i>see</i> input/output models
relationship to eigenvalues, 9-12	queuing systems, 3-32–3-34, 3-42	retina, <i>see also</i> pupil response,
right half-plane, 9-13,	3-42	11-5
10-10, 10-17, 12-21,	random process, 3-32, 8-14,	Riccati equation, 7-25, 8-17,
12-23–12-24, 12-26,	8-15, 8-29	13-26, 13-28
12-36, 13-20	reachability, 3-6, 7-1–7-9,	Riemann sphere, 13-5
population dynamics, see also	7-32, 8-22	right half-plane poles and
predator-prey system,	rank condition, 7-4	zeros, see poles: right
4-25-4-27, 4-30	tests for, 7-3	half-plane; zeros: right
positive definite function,	unreachable systems, 7-5,	half-plane
5-18, 5-20, 5-24	7-33, 8-22–8-24, 9-35	rise time, 6-21, 7-10, 7-20,
positive definite matrix, 5-20,	reachability matrix, 7-3, 7-8	12-8
7-25	reachable canonical form,	robotics, 1-7–1-8, 6-33
positive feedback, 1-15–1-17,	3-10, 7-6–7-9, 7-13, 7-14,	robustness, 1-10–1-12, 12-8,
2-17, 2-20, 5-36, 11-4	7-33	13-3, 13-28
positive real (transfer	reachable set, 7-1	performance, 13-12–13-15, 13-22–13-28
function), 12-26	real-time systems, 1-5	
power of a matrix, 6-6 power systems (electric),	reference signal, see also	stability, 13-6–13-12 using gain and phase
1-5–1-6, 3-41, 5-7, 5-34	command signals; setpoint, 1-17, 7-10, 9-1,	margin, 10-15, 12-13
predator-prey system, 3-13,	9-16, 11-1, 11-19, 12-3,	using maximum sensitivity,
4-26–4-27, 5-28, 7-15	12-5	12-10, 12-13, 13-7, 13-29,
prediction, in controllers, see	effect on observer error,	13-31
also derivative action,	8-12, 8-19, 8-24	using pole placement,
1-18, 1-19, 8-21, 11-5,	response to, 12-8, 12-9,	13-15-13-22
13-29	12-35	via gain and phase margin,
prediction time, 11-5	tracking, 7-10, 8-19, 8-20,	10-14
principle of the argument, see	12-13, 13-14	zz, see also uncertainty
variation of the argument,	reference weighting, see	roll-off, see high-frequency
principle of	setpoint weighting	roll-off
process control, 1-6, 3-22	region of attraction, see	root locus, 12-17, 12-18
proportional (P) control, 2-8	equilibrium points:	asymptotes, 12-36
proportional control, see also	regions of attraction	initial direction, 12-36
PID control, 1-18, 2-8,	regulation problem, 2-7	real line segment, 12-36
11-1 proportional, integral,	regulator, <i>see</i> control law relay feedback, 10-23, 11-13	root locus diagram, 5-29, 5-30 root locus method, 12-18
derivative control, see PID	Reno (protocol), see Internet;	Routh-Hurwitz criterion, 2-5,
control	congestion control	5-37
proportional-derivative (PD)	repressilator, 3-38	Routh-Hurwitz stability
controller, 2-23	repressor, 1-11, 3-38, 3-42,	criterion, 2-5
Proportional-Integral Control,	5-21, 6-36, 9-29	rush-hour effect, 3-33, 3-42

I-10 INDEX

saddle (equilibrium point),	7-20, 12-8	of linear systems,
5-10	similarity of two systems,	5-11-5-14, 5-20, 6-10
sampling, 6-27, 8-25, 8-26,	13-3-13-6	of solutions, 5-8, 5-9, 5-17
11-21	simulation, 3-18-3-19, 3-29	of transfer functions, 9-12
saturation function, see also	SIMULINK, 6-30	robust, see robust stability
actuators: saturation, 3-23,	single-input, single-output	unstable solutions, 5-9
4-8, 11-21	(SISO) systems, 5-1, 6-2,	using eigenvalues, 5-23,
scaling, see normalized	6-3, 6-29, 8-4, 10-20	6-10, 6-11
coordinates	singular values, 10-20, 10-21,	using linear approximation,
scanning tunneling	13-30	5-14, 5-23, 6-30
microscope, 4-17	sink (equilibrium point), 5-10	using Routh-Hurwitz
schematic diagrams, 3-22, 4-7	small gain theorem,	criterion, 5-37
Schitter, G., 4-20	10-21-10-22, 13-9	using state feedback,
second-order systems, 3-2,	Smith predictor, 13-29	7-9–7-29
6-34, 7-18-7-21, 7-35,	social, 1-16	zz, see also bifurcations;
9-25, 9-26, 11-9	software tools for control, x	equilibrium points
Segway, 2-23	solution (ODE), see	stability diagram, see
Segway Personal Transporter,	differential equations:	parametric stability
3-10, 7-4	solutions	diagram
selector, 1-20	source (equilibrium point),	stability margin (quantity),
selector control	5-10	10-13, 10-15, 12-10,
of air-fuel, 1-20	spectrum analyzer, 9-30	12-37, 13-7, 13-26
selector, maximum, 1-20	Sperry autopilot, 1-13	reasonable values, 10-15
selector,minimum, 1-20	spring-mass system, 3-2, 3-18,	stability margins (concept),
self-activation, 5-36	3-20, 3-21, 4-18, 5-34	10-12–10-16, 10-26,
self-repression, 6-36, 9-28	coupled, 6-14, 6-18	12-13
semidefinite function, 5-18	generalized, 3-11, 4-7	stable, 2-5
sensitivity crossover	identification, 3-25	stable pole, 9-13
frequency, 12-10	normalization, 3-26, 3-41	stable zero, 9-13
sensitivity function, 12-3,	zz, see also oscillator	Stark, L., 9-31
12-10, 12-11, 12-13,	dynamics	state, of a dynamical system,
12-26, 13-7, 13-14, 13-20	Stability, 2-5	3-2, 3-6, 3-9
and disturbance attenuation,	Rout-Hurwitz criterion, 2-5	state estimators, see observers
12-10, 12-26, 12-35	stability, 1-3, 1-5, 1-12, 1-13,	state feedback, see also
sensor matrix, 3-9, 3-13	2-5, 3-20, 5-4, 5-8-5-26	eigenvalue assignment;
sensor networks, 3-35	asymptotic stability, 5-8,	linear quadratic control,
sensors, 1-3, 1-4, 8-2, 8-25,	5-13	7-1–7-32, 8-7, 8-12,
10-17, 11-21, 12-1, 12-4,	conditional, 10-9	8-19-8-21, 8-24-8-26,
12-23, 12-24, 13-25	in the sense of Lyapunov,	13-16, 13-25
effect on zeros, 10-18, 12-24	5-8	state space, 3-2, 3-9-3-21, 7-9
in computing systems, 4-11	local versus global, 5-9,	state vector, 3-2, 3-9
zz, see also measured	5-16, 5-27	static gain, 2-4
signals	Lyapunov analysis, see	steady-state gain, see zero
separation principle, 8-1, 8-13	Lyapunov stability	frequency gain
series connection, 9-15	analysis	steady-state response, 1-27,
service rate (queuing systems),	neutrally stable, 5-8, 5-10	3-19, 6-19–6-27, 6-35,
3-32	of a system, 5-11	7-11, 7-20, 9-2, 9-30, 9-32
servo problem, 2-11	of equilibrium points, 3-20,	steam engines, 1-2, 1-11
setpoint, 11-1	5-8, 5-10, 5-17, 5-18, 5-23	steering, see vehicle steering
setpoint weighting, 11-19,	of feedback loop, see	Stein, G., xii, 1-1, 12-1, 12-27
11-22	Nyquist criterion	step input, 3-4, 6-5, 6-20,
settling time, 6-21, 6-35, 7-10,	of limit cycles, 5-16	9-11, 11-10

I-11 INDEX

step response, 3-4, 3-5, 3-25, derivation using exponential 3-26, 6-5, 6-17, 6-20, signals, 9-3 6-21, 7-10, 7-19, 7-20, for control systems, 9-16, 11-10 9-35 stochastic systems, 8-14, 8-17 for electrical circuits, 9-6 summing junction, 3-23 for time delay, 9-7 superposition, 3-4, 6-3, 6-17, frequency response, 9-2, 6-34, 9-2 9-22 supervisory control, see from experiments, 9-30 decision making: higher irrational, 9-8 levels of linear input/output systems, supply chains, 1-9, 1-10 9-3, 9-9, 9-35 supremum (sup), 10-20 transfer functions:, 9-10 switching behavior, 1-16, transfer functions: Laplace 3-42, 5-23, 5-24, 13-28 transforms, 9-10 system identification, 3-25, transfer functions:impulse 3-41, 9-30 response, 9-10 system inversion, 2-25 transfer functions:state space model, 9-10 transient response, 3-19, 6-20, tapping mode, see atomic 6-21, 6-23, 7-2, 7-23 force microscope TCP/IP, see Internet; Transmission Control Protocol (TCP), 4-13congestion control Tsien, H. S., 1-8 Teorell, T., 4-21, 4-25 tuning rules, see three-term controllers, see also Ziegler-Nichols tuning, PID control, 11-1 11 - 24thrust vectored aircraft, see Tustin, A., 2-1 vectored thrust aircraft two degree-of-freedom time constant, 2-2 control, 8-20, 11-2, 12-5, time constant, first-order 12-7, 12-34, 12-35 system, 6-35 two degrees of freedom, 2-13, time delay, 1-8, 9-7, 9-9, 2-29 10-15, 10-17, 11-10, 11-21, 12-23, 12-24 compensation for, 13-29, uncertainty, 1-4, 1-11-1-12, 13-30 3-6, 3-27-3-29, 7-30, Padé approximation, 10-26, 13-1-13-6 12-23 component or parameter time plot, 3-3 variation, 1-4, 3-28, 13-1 time-invariant systems, 3-4, disturbances and noise, 1-4, 3-9, 5-33, 6-4-6-5 3-6, 7-10, 9-16, 12-1 TM, 2-25 unmodeled dynamics, 1-4, tracking, see reference signal: 3-28, 13-2, 13-8 zz, see also additive tracking tracking mode, 11-17 uncertainty; feedback trail (bicycle dynamics), 4-6 uncertainty; multiplicative 7-27 transcription factors, 3-37 uncertainty transcriptional regulation, see uncertainty band, 3-28 gene regulation uncertainty lemon, 3-28, 4-4, transfer function, 2-3 4-10, 4-20 winding number, 10-11 transfer functions, 9-1-9-4 undamped natural frequency, window size (TCP), 4-14,

2-10

common systems, 9-9

underdamped oscillator, 5-3, 7-19, 7-20 unit step, 6-20 unmodeled dynamics, see uncertainty: unmodeled dynamics, 2-10, 2-11 effect for control, 2-11 unstable pole, see poles: right half-plane unstable pole/zero cancellation, 9-20 unstable solution, for a dynamical system, 5-9, 5-10, 5-13, 6-10, 9-13 unstable zero, see zeros: right half-plane variation of the argument, principle of, 10-11, 10-24 vector field, 3-3, 5-5 vectored thrust aircraft, 3-30-3-31, 6-11, 7-26, 8-17, 9-35, 12-16, 12-30 vehicle steering, 3-29-3-30, 6-30, 7-11, 8-9, 8-13, 8-21, 9-18, 10-18, 10-25, 12-7, 13-16 ship dynamics, 3-29 vehicle suspension, see also coupled spring-mass system, 9-36 vertical takeoff and landing, see vectored thrust aircraft vibration absorber, 9-37 Vinnicombe, G., 12-34, 13-5, 13-6, 13-28 Vinnicombe metric, 13-3-13-6, 13-26 voltage clamp, 1-7, 3-39 waterbed effect, 12-26, 12-27 Watt governor, see centrifugal governor Watt steam engine, 1-3, 1-11 web server control, 4-11-4-13, web site, companion, x Whipple, F. J. W., 4-7 Wiener, N., 1-7

4-16, 5-10

I-12 INDEX

windup, *see* integrator windup Wright, W., 1-13 Wright Flyer, 1-6, 1-13

X-29 aircraft, 12-27

Youla parameterization, 13-10-13-12

zero blocking property, 2-4

zero frequency gain, 2-4, 6-25, 7-11, 7-14, 7-20, 9-11, 9-12
zeros, 2-4, 9-12
Bode plot for, 9-35
effect of sensors and actuators on, 10-18, 12-24 for a state space system, 9-12
right half-plane, 9-13, 10-17, 12-21-12-24,

12-27, 12-36, 13-20 signal-blocking property, 9-12 slow stable, 13-16, 13-18, 13-20 Ziegler, J. G., 11-10, 11-23 Ziegler-Nichols tuning, 11-10-11-13, 11-23 frequency response, 11-10 improved method, 11-11 step response, 11-10