Feedback Systems

An Introduction for Scientists and Engineers SECOND EDITION

Karl Johan Åström Richard M. Murray

Version v3.0g (1 Nov 2015)

This is the electronic edition of *Feedback Systems* and is available from http://www.cds.caltech.edu/~murray/FBS. Hardcover editions may be purchased from Princeton University Press, http://press.princeton.edu/titles/8701.html.

This manuscript is for personal use only and may not be reproduced, in whole or in part, without written consent from the publisher (see http://press.princeton.edu/permissions.html).

PRINCETON UNIVERSITY PRESS
PRINCETON AND OXFORD

Bibliography

- [Abk69] M. A. Abkowitz. Stability and Motion Control of Ocean Vehicles. MIT Press, Cambridge, MA, 1969.
- [Ack72] J. Ackermann. Der Entwurf linearer Regelungssysteme im Zustandsraum. Regelungstechnik und Prozessdatenverarbeitung, 7:297–300, 1972.
- [Ack85] J. Ackermann. Sampled-Data Control Systems. Springer, Berlin, 1985.
- [Agn76] C. E. Agnew. Dynamic modeling and control of congestion-prone systems. *Operations Research*, 24(3):400–419, 1976.
- [ÅH05] K. J. Åström and T. Hägglund. Advanced PID Control. ISA—The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC, 2005.
- [Ahl66] L. V. Ahlfors. Complex Analysis. McGraw-Hill, New York, 1966.
- [ÅKL05] K. J. Åström, R. E. Klein, and A. Lennartsson. Bicycle dynamics and control. IEEE Control Systems Magazine, 25(4):26–47, 2005.
- [Alu15] R. Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.
- [AM90] B. D. O. Anderson and J. B. Moore. Optimal Control Linear Quadratic Methods. Prentice Hall, Englewood Cliffs, NJ, 1990. Republished by Dover Publications, 2007.
- [Apo67] T. M. Apostol. *Calculus*, Vol. II: *Multi-Variable Calculus and Linear Algebra with Applications*. Wiley, New York, 1967.
- [Apo69] T. M. Apostol. Calculus, Vol. I: One-Variable Calculus with an Introduction to Linear Algebra. Wiley, New York, 1969.
- [Ari94] R. Aris. Mathematical Modeling Techniques. Dover, New York, 1994. Originally published by Pitman, 1978.
- [Arn78] V. I. Arnold. Mathematical Methods in Classical Mechanics. Springer, New York, 1978.
- [Arn87] V. I. Arnold. Ordinary Differential Equations. MIT Press, Cambridge, MA, 1987. 10th printing 1998.
- [AS82] R. H. Abraham and C. D. Shaw. *Dynamics—The Geometry of Behavior*, Part 1: *Periodic Behavior*. Aerial Press, Santa Cruz, CA, 1982.
- [ASMN03] M. Atkinson, M. Savageau, J. Myers, and A. Ninfa. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in *Escherichia coli*. Cell, 113(5):597– 607, 2003.
- [Åst00] K. J. Åström. Limitations on control system performance. European Journal on Control, 6(1):2–20, 2000.
- [Åst06] K. J. Åström. *Introduction to Stochastic Control Theory*. Dover, New York, 2006. Originally published by Academic Press, New York, 1970.
- [Ath75] D. P. Atherton. *Nonlinear Control Engineering*. Van Nostrand, New York, 1975.
- [AVK87] A. A. Andronov, A. A. Vitt, and S. E. Khaikin. *Theory of Oscillators*. Dover, New York, 1987.

B-2 BIBLIOGRAPHY

[ÅW97] K. J. Åström and B. Wittenmark. Computer-Control Systems: Theory and Design. Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 1997.

- [ÅW08] K. J. Åström and B. Wittenmark. Adaptive Control. Dover, New York, 2nd edition, 2008. Originally published by Addison Wesley, 1995.
- [BÅ70] R. Bellman and K. J. Åström. On structural identifiability. *Mathematical Biosciences*, 7:329–339, 1970.
- [Bas01] T. Basar, editor. Control Theory: Twenty-five Seminal Papers (1932–1981). IEEE Press, New York, 2001.
- [BB91] T. Basar and P. Bernhard. H^{∞} -Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Birkhauser, Boston, 1991.
- [BC48] G. S. Brown and D. P. Campbell. *Principles of Servomechanims*. Wiley, New York, 1948.
- [BD04] W. E. Boyce and R. C. DiPrima. *Elementary Differential Equations*. Wiley, New York, 2004.
- [Bec05] J. Bechhoefer. Feedback for physicists: A tutorial essay on control. Reviews of Modern Physics, 77:783–836, 2005.
- [Ben79] S. Bennett. A History of Control Engineering: 1800–1930. Peter Peregrinus, Stevenage, 1979.
- [Ben93] S. Bennett. A History of Control Engineering: 1930–1955. Peter Peregrinus, Stevenage, 1993.
- [Ber54] L. L. Beranek. Acoustics. McGraw-Hill, New York, 1954.
- [Ber89] R. N. Bergman. Toward physiological understanding of glucose tolerance: Minimal model approach. *Diabetes*, 38:1512–1527, 1989.
- [BG68] B. Brawn and F. Gustavson. Program behavior in a paging environment. Proceedings of the AFIPS Fall Joint Computer Conference, pages 1019–1032, 1968.
- [BG87] D. Bertsekas and R. Gallager. *Data Networks*. Prentice Hall, Englewood Cliffs, 1987.
- [BH75] A. E. Bryson, Jr. and Y.-C. Ho. *Applied Optimal Control: Optimization, Estimation, and Control.* Wiley, New York, 1975.
- [Bia95] B. Bialkowski. Process control sample problems. In N. J. Sell, editor, *Process Control Fundamentals for the Pulp & Paper Industry*. Tappi Press, Norcross, GA, 1995.
- [BK64] R. E. Bellman and R. Kalaba. Selected Papers on Mathematical Trends in Control Theory. Dover, New York, 1964.
- [Bla34] H. S. Black. Stabilized feedback amplifiers. Bell System Technical Journal, 13:1–2, 1934.
- [Bla77] H. S. Black. Inventing the negative feedback amplifier. *IEEE Spectrum*, pages 55–60, 1977.
- [Bla91] J. H. Blakelock. Automatic Control of Aircraft and Missiles. Addison-Wesley, Cambridge, MA, 2nd edition, 1991.
- [Bli90] G. Blickley. Modern control started with Ziegler-Nichols tuning. *Control Engineering*, 37:72–75, 1990.
- [Bod45] H. W. Bode. *Network Analaysis and Feedback Amplifier Design*. Van Nostrand, New York, 1945.
- [Bod60] H. W. Bode. Feedback—The history of an idea. In *Symposium on Active Networks and Feedback Systems*. Polytechnic Institute of Brooklyn, New York, 1960. Reprinted in [BK64].

BIBLIOGRAPHY B-3

[BP96] M. B. Barron and W. F. Powers. The role of electronic controls for future automotive mechatronic systems. *IEEE Transactions on Mechatronics*, 1(1):80–89, 1996.

- [Bro70] R. W. Brockett. Finite Dimensional Linear Systems. Wiley, New York, 1970.
- [Bro00] R. W. Brockett. New issues in the mathematics of control. In B. Engquist and W. Schmid, editors, *Mathematics Unlimited—2001 and Beyond*, pages 189–220. Springer-Verlag, Berlin, 2000.
- [BRS60] J. F. Blackburn, G. Reethof, and J. L. Shearer. Fluid Power Control. MIT Press, Cambridge, MA, 1960.
- [Can03] R. H. Cannon. *Dynamics of Physical Systems*. Dover, New York, 2003. Originally published by McGraw-Hill, 1967.
- [CD75] R. F. Coughlin and F. F. Driscoll. Operational Amplifiers and Linear Integrated Circuits. Prentice Hall, Englewood Cliffs, NJ, 6th edition, 1975.
- [CD91] F. M. Callier and C. A. Desoer. *Linear System Theory*. Springer-Verlag, London, 1991.
- [CEHM10] M. Campbell, M. Egerstedt, J. P. How, and R. M Murray. Autonomous driving in urban environments: Approaches, lessons and challenges. *Philosophical Transactions of the Royal Society – A*, 368(1928), 2010.
- [CJ59] H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. Clarendon Press, Oxford, UK, 2nd edition, 1959.
- [CM51] H. Chestnut and R. W. Mayer. Servomechanisms and Regulating System Design, Vol. 1. Wiley, New York, 1951.
- [Cro75] Crocus. Systemes d'Exploitation des Ordinateurs. Dunod, Paris, 1975.
- [CT84] C. Cobelli and G. Toffolo. Model of glucose kinetics and their control by insulin, compartmental and non-compartmental approaches. *Mathematical Biosciences*, 72(2):291–316, 1984.
- [DB04] R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, Upper Saddle River, NJ, 10th edition, 2004.
- [DFT92] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback Control Theory. Macmillan, New York, 1992.
- [DGH⁺02] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury. Using MIMO feedback control to enforce policies for interrelated metrics with application to the Apache web server. In *Proceedings of the IEEE/IFIP Network Operations and Management Symposium*, pages 219–234, 2002.
- [DGKF89] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space solutions to standard H_2 and H_∞ control problems. *IEEE Transactions on Automatic Control*, 34(8):831–847, 1989.
- [DH85] J. P. Den Hartog. *Mechanical Vibrations*. Dover, New York, 1985. Reprint of 4th ed. from 1956; 1st ed. published in 1934.
- [dJ02] H. de Jong. Modeling and simulation of genetic regulatory systems: A literature review. *Journal of Computational Biology*, 9:67–103, 2002.
- [DM02] L. Desborough and R. Miller. Increasing customer value of industrial control performance monitoring—Honeywell's experience. In *Sixth International Conference on Chemical Process Control*. AIChE Symposium Series Number 326 (Vol. 98), 2002.
- [DM14] D. Del Vecchio and R. M. Murray. *Biomolecular Feedback Systems*. Princeton University Press, 2014.
- [Dos68] F. H. Dost. Grundlagen der Pharmakokinetik. Thieme Verlag, Stuttgart, 1968.

B-4 BIBLIOGRAPHY

[Doy78] J. C. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control, 23(4):756–757, 1978.

- [Dub57] L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. *American Journal of Mathematics*, 79:497–516, 1957.
- [Dys04] F. Dyson. A meeting with Enrico Fermi. Nature, 247(6972):297, 2004.
- [EG05] S. P. Ellner and J. Guckenheimer. Dynamic Models in Biology. Princeton University Press, Princeton, NJ, 2005.
- [EKR03] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server clusters. In *Power-Aware Computer Systems*, pages 179–197. Springer, 2003.
- [EL00] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. *Nature*, 403(6767):335–338, 2000.
- [Ell94] J. R. Ellis. *Vehicle Handling Dynamics*. Mechanical Engineering Publications, London, 1994.
- [ESGK02] H. El-Samad, J. P. Goff, and M. Khammash. Calcium homeostasis and parturient hypocalcemia: An integral feedback perspective. *Journal of Theoretical Biology*, 214:17–29, 2002.
- [FCF+06] P. G. Fabietti, V. Canonico, M. O. Federici, M. Benedetti, and E. Sarti. Control oriented model of insulin and glucose dynamics in type 1 diabetes. *Medical and Biological Engineering and Computing*, 44:66–78, 2006.
- [FLMR92] M. Fliess, J. Levine, P. Martin, and P. Rouchon. On differentially flat nonlinear systems. Comptes Rendus des Séances de l'Académie des Sciences, Serie I, 315:619–624, 1992.
- [FLMR95] M. Fliess, J. Levine, P. Martin, and P. Rouchon. Flatness and defect of non-linear systems: Introductory theory and examples. *International Journal of Control*, 61(6):1327–1361, 1995.
- [For61] J. W. Forrester. *Industrial Dynamics*. MIT Press, Cambridge, MA, 1961.
- [Fou07] J. B. J. Fourier. On the propagation of heat in solid bodies. Memoir, read before the Class of the Instut de France, 1807.
- [FPEN05] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. *Feedback Control of Dynamic Systems*. Prentice Hall, Upper Saddle River, NJ, 5th edition, 2005.
- [Fra87] B. A. Francis. A Course in ℋ_∞ Control. Springer-Verlag, Berlin, 1987.
- [Fra07] A. Fradkov. *Cybernetical Physics: From Control of Chaos to Quantum Control.* Springer, Berlin, 2007.
- [Fri04] B. Friedland. Control System Design: An Introduction to State Space Methods. Dover, New York, 2004.
- [Gan60] F. R. Gantmacher. The Theory of Matrices. Chelsea Publishing Company, 1960.
- [GB42] M. A. Gardner and J. L. Barnes. Transients in Linear Systems. Wiley, New York, 1942.
- [GF71] L. Gunkel and G. F. Franklin. A general solution for linear sampled data systems. *IEEE Transactions on Automatic Control*, AC-16:767–775, 1971.
- [GGS01] G. C. Goodwin, S. F. Graebe, and M. E. Salgado. Control System Design. Prentice Hall, Upper Saddle River, NJ, 2001.
- [GH83] J. Guckenheimer and P. Holmes. *Nonlinear Oscillations, Dynamical Systems, and Bi*furcations of Vector Fields. Springer-Verlag, Berlin, 1983.
- [Gil63] E. Gilbert. Controllability and observability in multivariable control systems. *SIAM Journal of Control*, 1(1):128–151, 1963.

BIBLIOGRAPHY B-5

[GL95] M. Green and D. J. N. Limebeer. *Linear Robust Control*. Prentice Hall, Englewood Cliffs, NJ, 1995.

- [GM61] D. Graham and D. McRuer. Analysis of Nonlinear Control Systems. Wiley, New York, 1961.
- [God83] K. Godfrey. Compartment Models and Their Application. Academic Press, New York, 1983.
- [Gol53] H. Goldstein. Classical Mechanics. Addison-Wesley, Cambridge, MA, 1953.
- [Gol70] S. W. Golomb. Mathematical models—Uses and limitations. Simulation, 4(14):197–198, 1970.
- [GP82] M. Giobaldi and D. Perrier. *Pharmacokinetics*. Marcel Dekker, New York, 2nd edition, 1982.
- [GPD59] J. C. Gille, M. J. Pelegrin, and P. Decaulne. Feedback Control Systems; Analysis, Synthesis, and Design. McGraw-Hill, New York, 1959.
- [Gui63] E. A. Guillemin. Theory of Linear Physical Systems. MIT Press, Cambridge, MA, 1963.
- [Hah67] W. Hahn. Stability of Motion. Springer, Berlin, 1967.
- [HB90] J. K. Hedrick and T. Batsuen. Invariant properties of automobile suspensions. In *Proceedings of the Institution of Mechanical Engineers*, volume 204, pages 21–27, London, 1990.
- [HD95] M. B. Hoagland and B. Dodson. *The Way Life Works*. Times Books, New York, 1995.
- [HDPT04] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of Computing Systems. Wiley, New York, 2004.
- [Her04] D. V. Herlihy. *Bicycle—The History*. Yale University Press, New Haven, CT, 2004.
- [HH52] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. *Journal of Physiology*, 117(500–544), 1952.
- [HMTG00] C. V. Hollot, V. Misra, D. Towsley, and W-B. Gong. A control theoretic analysis of RED. In *Proceedings of IEEE Infocom*, pages 1510–1519, 2000.
- [Hor63] I. M. Horowitz. Synthesis of Feedback Systems. Academic Press, New York, 1963.
- [Hor75] I. M. Horowitz. Superiority of transfer function over state-variable methods in linear, time-invariant feedback system design. *IEEE Transactions on Automatic Control*, AC-20(1):84–97, 1975.
- [Hor91] I. M. Horowitz. Survey of quantitative feedback theory. *International Journal of Control*, 53:255291, 1991.
- [Hug93] T. P. Hughes. *Elmer Sperry: Inventor and Engineer*. John Hopkins University Press, Baltimore, MD, 1993.
- [HW00] D. Hanahan and R. A. Weinberg. The hallmarks of cancer. *Cell*, 100:57–70, 2000.
- [Isi95] A. Isidori. Nonlinear Control Systems. Springer-Verlag, Berlin, 3rd edition, 1995.
- [Ito70] M. Ito. Neurophysiological aspects of the cerebellar motor system. *International Journal of Neurology*, 7:162178, 1970.
- [Jac72] J. A. Jacquez. Compartment Analysis in Biology and Medicine. Elsevier, Amsterdam, 1972.
- [Jac95] V. Jacobson. Congestion avoidance and control. *ACM SIGCOMM Computer Communication Review*, 25:157–173, 1995.

B-6 BIBLIOGRAPHY

- [Jan14] P. K. Janert. Feedback Control for Computer Scientists. O'Reilly Media, 2014.
- [JNP47] H. James, N. Nichols, and R. Phillips. Theory of Servomechanisms. McGraw-Hill, New York, 1947.
- [JT61] P. D. Joseph and J. T. Tou. On linear control theory. *Transactions of the AIEE*, 80(18), 1961.
- [Jun02] W. G. Jung, editor. Op Amp Applications. Analog Devices, Norwood, MA, 2002.
- [Kal60] R. E. Kalman. Contributions to the theory of optimal control. Boletin de la Sociedad Matématica Mexicana, 5:102–119, 1960.
- [Kal61a] R. E. Kalman. New methods and results in linear prediction and filtering theory. Technical Report 61-1, Research Institute for Advanced Studies (RIAS), Baltimore, MD, February 1961.
- [Kal61b] R. E. Kalman. On the general theory of control systems. In Proceedings of the First IFAC Congress on Automatic Control, Moscow, 1960, volume 1, pages 481–492. Butterworths, London, 1961.
- [KB61] R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory. *Transactions of the ASME (Journal of Basic Engineering)*, 83 D:95–108, 1961.
- [Kel85] F. P. Kelly. Stochastic models of computer communication. *Journal of the Royal Statistical Society*, B47(3):379–395, 1985.
- [Kel94] K. Kelly. Out of Control. Addison-Wesley, Reading, MA, 1994. Available at http://www.kk.org/outofcontrol.
- [KFA69] R. E. Kalman, P. L. Falb, and M. A. Arbib. *Topics in Mathematical System Theory*. McGraw-Hill, New York, 1969.
- [KG02] B. C. Kuo and F. Golnaraghi. Automatic Control Systems. Wiley, New York, 8th edition, 2002.
- [Kha01] H. K. Khalil. *Nonlinear Systems*. Macmillan, New York, 3rd edition, 2001.
- [KHN63] R. E. Kalman, Y. Ho, and K. S. Narendra. *Controllability of Linear Dynamical Systems*, volume 1 of *Contributions to Differential Equations*. Wiley, New York, 1963.
- [Kit95] C. Kittel. Introduction to Solid State Physics. Wiley, New York, 1995.
- [KKK95] M. Krstić, I. Kanellakopoulos, and P. Kokotović. Nonlinear and Adaptive Control Design. Wiley, 1995.
- [Kle75] L. Kleinrock. *Queuing Systems*, Vols. I and II. Wiley-Interscience, New York, 2nd edition, 1975.
- [KN00] U. Kiencke and L. Nielsen. Automotive Control Systems: For Engine, Driveline, and Vehicle. Springer, Berlin, 2000.
- [Kra63] N. N. Krasovski. Stability of Motion. Stanford University Press, Stanford, CA, 1963.
- [KS01] J. Keener and J. Sneyd. *Mathematical Physiology*. Springer, New York, 2001.
- [Kum01] P. R. Kumar. New technological vistas for systems and control: The example of wireless networks. *Control Systems Magazine*, 21(1):24–37, 2001.
- [Kun93] P. Kundur. Power System Stability and Control. McGraw-Hill, New York, 1993.
- [KV86] P. R. Kumar and P. Varaiya. Stochastic Systems: Estimation, Identification, and Adaptive Control. Prentice Hall, Englewood Cliffs, NJ, 1986.
- [LaS60] J. P. LaSalle. Some extensions of Lyapunov's second method. *IRE Transactions on Circuit Theory*, CT-7(4):520–527, 1960.

BIBLIOGRAPHY B-7

[Lew03] A. D. Lewis. A mathematical approach to classical control. Technical report, Queens University, Kingston, Ontario, 2003.

- [Lju99] L. Ljung. System Indentification Theory for the User. Prentice Hall, Upper Saddle River, NJ, 2nd edition, 1999.
- [LPD02] S. H. Low, F. Paganini, and J. C. Doyle. Internet congestion control. *IEEE Control Systems Magazine*, pages 28–43, February 2002.
- [LPW⁺02] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. C. Doyle. Dynamics of TCP/RED and a scalable control. In *Proceedings of IEEE Infocom*, pages 239–248, 2002.
- [LS15] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems, A Cyber-Physical Systems Approach. http://LeeSeshia.org, 2015. ISBN 978-1-312-42740-2.
- [Lun05] K. H. Lundberg. History of analog computing. IEEE Control Systems Magazine, pages 22–28. March 2005.
- [MÅB⁺03] R. M. Murray, K. J. Åström, S. P. Boyd, R. W. Brockett, and G. Stein. Future directions in control in an information-rich world. *Control Systems Magazine*, April 2003.
- [Mac37] D. A. MacLulich. Fluctuations in the Numbers of the Varying Hare (Lepus americanus). University of Toronto Press, 1937.
- [Mac45] L.A. MacColl. Fundamental Theory of Servomechanims. Van Nostrand, Princeton, NJ, 1945. Dover reprint 1968.
- [Mac89] J. M. Maciejowski. Multivariable Feedback Design. Addison Wesley, Reading, MA, 1989.
- [Mal59] J. G. Malkin. Theorie der Stabilität einer Bewegung. Oldenbourg, München, 1959.
- [Man02] R. Mancini. Op Amps for Everyone. Texas Instruments, Houston. TX, 2002.
- [May70] O. Mayr. The Origins of Feedback Control. MIT Press, Cambridge, MA, 1970.
- [McF53] M. W. McFarland, editor. The Papers of Wilbur and Orville Wright. McGraw-Hill, New York, 1953.
- [MG90] D. C. McFarlane and K. Glover. Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. Springer, New York, 1990.
- [MH98] J. E. Marsden and M. J. Hoffmann. Basic Complex Analysis. W. H. Freeman, New York, 1998.
- [Mil66] H. T. Milhorn. The Application of Control Theory to Physiological Systems. Saunders, Philadelphia, 1966.
- [Min02] D. A. Mindel. Between Human and Machine: Feedback, Control, and Computing Before Cybernetics. Johns Hopkins University Press, Baltimore, MD, 2002.
- [Min08] D. A. Mindel. Digital Apollo: Human and Machine in Spaceflight. The MIT Press, Cambridge, MA, 2008.
- [MLK06] A. Makroglou, J. Li, and Y. Kuang. Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: An overview. *Applied Numerical Mathematics*, 56:559–573, 2006.
- [MLS94] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994.
- [MR94] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry. Springer-Verlag, New York, 1994.
- [Mur03] R. M. Murray, editor. Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics and Systems. SIAM, Philadelphia, 2003.

B-8 BIBLIOGRAPHY

[Mur04] J. D. Murray. Mathematical Biology, Vols. I and II. Springer-Verlag, New York, 3rd edition, 2004.

- [Nah88] P. J. Nahin. Oliver Heaviside: Sage in Solitude: The Life, Work and Times of an Electrical Genius of the Victorian Age. IEEE Press, New York, 1988.
- [NS99] H. Nijmeijer and J. M. Schumacher. Four decades of mathematical system theory. In J. W. Polderman and H. L. Trentelman, editors, *The Mathematics of Systems and Control: From Intelligent Control to Behavioral Systems*, pages 73–83. University of Groningen, 1999.
- [Nyq32] H. Nyquist. Regeneration theory. *Bell System Technical Journal*, 11:126–147, 1932.
- [Nyq56] H. Nyquist. The regeneration theory. In R. Oldenburger, editor, *Frequency Response*, page 3. MacMillan, New York, 1956.
- [Oga01] K. Ogata. *Modern Control Engineering*. Prentice Hall, Upper Saddle River, NJ, 4th edition, 2001.
- [Old56] R. Oldenburger, editor. Frequency Response. MacMillan, New York, 1956.
- [OSFM07] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-agent systems. *Proceedings of the IEEE*, 95(1):215–233, 2007.
- [PB86] G. Pacini and R. N. Bergman. A computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intraveneous glucose tolerance test. *Computer Methods and Programs in Biomedicine*, 23:113–122, 1986.
- [Phi48] G. A. Philbrick. Designing industrial controllers by analog. *Electronics*, 21(6):108–111, 1948.
- [PN00] W. F. Powers and P. R. Nicastri. Automotive vehicle control challenges in the 21st century. *Control Engineering Practice*, 8:605–618, 2000.
- [PPP02] S. Prajna, A. Papachristodoulou, and P. A. Parrilo. SOSTOOLS: Sum of squares optimization toolbox for MATLAB, 2002. Available from http://www.cds.caltech.edu/sostools.
- [Pto14] Claudius Ptolemaeus, editor. System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org, 2014.
- [Pyt] Python control systems library. Available from http://python-control.org.
- [Rig63] D. S. Riggs. The Mathematical Approach to Physiological Problems. MIT Press, Cambridge, MA, 1963.
- [RM71] H. H. Rosenbrock and P. D. Moran. Good, bad or optimal? *IEEE Transactions on Automatic Control*, AC-16(6):552–554, 1971.
- [RST12] G. Rafal, R. G. Sanfelice, and A. Teel. *Hybrid Dynamical Systems: Modeling, Stability, and Robustness.* Princeton University Press, 2012.
- [Rug95] W. J. Rugh. Linear System Theory. Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 1995.
- [SÅD+07] G. Schitter, K. J. Åström, B. DeMartini, P. J. Thurner, K. L. Turner, and P. K. Hansma. Design and modeling of a high-speed AFM-scanner. *IEEE Transactions on Control System Technology*, 15(5):906–915, 2007.
- [Sar91] D. Sarid. Atomic Force Microscopy. Oxford University Press, Oxford, UK, 1991.
- [Sas99] S. Sastry. Nonlinear Systems. Springer, New York, 1999.
- [Sch87] M. Schwartz. *Telecommunication Networks*. Addison Wesley, Reading, MA, 1987.
- [Sch01] G. Schitter. High performance feedback for fast scanning atomic force microscopes. *Review of Scientific Instruments*, 72(8):3320–3327, 2001.

BIBLIOGRAPHY B-9

[SEM04] D. E. Seborg, T. F. Edgar, and D. A. Mellichamp. Process Dynamics and Control. Wiley, Hoboken, NJ, 2nd edition, 2004.

- [Sen01] S. D. Senturia. *Microsystem Design*. Kluwer, Boston, MA, 2001.
- [Shi96] F. G. Shinskey. Process-Control Systems. Application, Design, and Tuning. McGraw-Hill, New York, 4th edition, 1996.
- [Smi52] J. M. Smith. The importance of the nervous system in the evolution of animal flight. *Evolution*, 6(1):127–129, 1952.
- [Son98] E. P. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York, 2nd edition, 1998.
- [SP05] S. Skogestad and I Postlethwaite. Multivariable Feedback Control. Wiley, Hoboken, NJ, 2nd edition, 2005.
- [SS02] E. B. Saff and A. D. Snider. Fundamentals of Complex Analysis with Applications to Engineering, Science and Mathematics. Prentice Hall, Englewood Cliffs, NJ, 2002.
- [Sta68] L. Stark. Neurological Control Systems—Studies in Bioengineering. Plenum Press, New York, 1968.
- [Ste02] J. Stewart. Calculus: Early Transcendentals. Brooks Cole, Pacific Grove, CA, 2002.
- [Ste03] G. Stein. Respect the unstable. *Control Systems Magazine*, 23(4):12–25, 2003.
- [Str88] G. Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, San Diego, 3rd edition, 1988.
- [Str94] S. H. Strogatz. Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, Reading, MA, 1994.
- [SV89] M. W. Spong and M. Vidyasagar. Dynamics and Control of Robot Manipulators. John Wiley, 1989.
- [Tan96] A. S. Tannenbaum. Computer Networks. Prentice Hall, Upper Saddle River, NJ, 3rd edition, 1996.
- [Teo37] T. Teorell. Kinetics of distribution of substances administered to the body, I and II. Archives Internationales de Pharmacodynamie et de Therapie, 57:205–240, 1937.
- [Tha89] G. T. Thaler. *Automatic Control Systems*. West Publishing, St. Paul, MN, 1989.
- [Til01] M. Tiller. Introduction to Physical Modeling with Modelica. Springer, Berlin, 2001.
- [Tru55] J. G. Truxal. Automatic Feedback Control System Synthesis. McGraw-Hill, New York, 1955.
- [TS90] D. Tipper and M. K. Sundareshan. Numerical methods for modeling computer networks under nonstationary conditions. *IEEE Journal of Selected Areas in Communications*, 8(9):1682–1695, 1990.
- [Tsi54] H. S. Tsien. Engineering Cybernetics. McGraw-Hill, New York, 1954.
- [Tus52] A. Tustin. Feedback. Scientific American, 48–54, 1952.
- [Vin01] G. Vinnicombe. *Uncertainty and Feedback: ℋ*_∞ *Loop-Shaping and the v-Gap Metric*. Imperial College Press, London, 2001.
- [Whi99] F. J. W. Whipple. The stability of the motion of a bicycle. *Quarterly Journal of Pure and Applied Mathematics*, 30:312–348, 1899.
- [Wid41] D. V. Widder. Laplace Transforms. Princeton University Press, Princeton, NJ, 1941.
- [Wie48] N. Wiener. Cybernetics: Or Control and Communication in the Animal and the Machine. Wiley, 1948.

B-10 BIBLIOGRAPHY

[Wig90] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, Berlin, 1990.

- [Wil99] H. R. Wilson. Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience. Oxford University Press, Oxford, UK, 1999.
- [Wil04] D. G. Wilson. *Bicycling Science*. MIT Press, Cambridge, MA, 3rd edition, 2004. With contributions by Jim Papadopoulos.
- [Wis07] K. A. Wise. Guidance and control for military systems: Future challenges. In AIAA Conference on Guidance, Navigation, and Control, 2007. AIAA Paper 2007-6867.
- [WT24] E. P. M. Widmark and J. Tandberg. Über die Bedingungen für die Akkumulation indifferenter Narkotika. *Biochemische Zeitung*, 148:358–389, 1924.
- [YH91] S. Yamamoto and I. Hashimoto. Present status and future needs: The view from Japanese industry. In Y. Arkun and W. H. Ray, editors, *Chemical Process Control—CPC IV*, 1991.
- [YHSD00] T.-M. Yi, Y. Huang, M. I. Simon, and J. Doyle. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. *PNAS*, 97:4649–4653, 2000.
- [Zam81] G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximative inverse. *IEEE Transactions on Automatic Control*, AC-26(2):301–320, 1981.
- [ZD63] L. A. Zadeh and C. A. Desoer. Linear System Theory: the State Space Approach. McGraw-Hill, New York, 1963.
- [ZDG96] J. C. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, Englewood Cliffs, NJ, 1996.
- [ZN42] J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers. *Transactions of the ASME*, 64:759–768, 1942.

Index

acausal modeling, 3-7 access control, see admission control acknowledgment (ack) packet, 4-13-4-15 activator, 1-11, 3-39, 5-36 active filter, see also operational amplifier, 6-24 actuators, 1-4, 3-5, 3-30, 4-1, 4-17, 7-12, 8-25, 9-37, 10-17, 11-21, 12-11, 12-23-12-25, 12-27 effect on zeros, 10-17, 12-24 in computing systems, 4-11 saturation, 3-9, 8-26, 11-14-11-16, 11-21, 12-11 A/D converters, see analog-to-digital converters adaptation, 11-5, 14-1, 14-11-14-12 adaptive control, 13-28, 13-29 additive uncertainty, 13-3, 13-7, 13-10, 13-31 adjacency matrix, 3-36 admission control, 3-33, 3-43, 4-14, 4-15, 10-8 aerospace systems, see also vectored thrust aircraft; X-29 aircraft, 1-6, 1-13, 12-29 AFM, see atomic force microscope air-fuel ratio control, 1-20 aircraft, see flight control alcohol, metabolism of, 4-30	all-pass transfer function, 12-21 alternating current (AC), 6-25 amplifier, see operational amplifier amplitude ratio, see gain analog computing, 3-10, 3-26, 4-7, 11-20 analog implementation, controllers, 4-10, 9-35, 11-20-11-21 analog-to-digital converters, 1-4, 4-18, 8-25, 11-21 angle, 2-4 anti-windup compensation, 1-18 anticipation, in controllers, see also derivative action, 1-18, 11-5 antiresonance, 6-26 anti-windup compensation, 11-15-11-16, 11-21, 11-23, 11-25 Apache web server, see also web server control, 4-12 apparent volume of distribution, 4-22, 4-30 Arbib, M. A., 7-1 argument, of a complex number, 9-24 arrival rate (queuing systems), 3-33 asymptotes, in Bode plot, 9-26, 9-27 asymptotic stability, 3-21, 5-8, 5-10, 5-12, 5-13, 5-18, 5-20, 5-23-5-25, 5-27, 6-10 discrete-time systems, 6-35 atmospheric dynamics, see	3-30, 4-17-4-20 contact mode, 4-17, 6-26, 7-34 horizontal positioning, 10-15, 13-20 system identification, 9-31 tapping mode, 4-17, 10-24, 11-7, 11-12, 12-14 with preloading, 4-29 attractor (equilibrium point), 5-10 automatic reset, in PID control, 11-4 automatic tuning, 11-14, 13-28 automation, 3-5 automotive control systems, see also cruise control; vehicle steering, 1-15, 3-30, 4-5 autonomous differential equation, see also time-invariant systems, 3-3 autopilot, 1-13, 1-14 balance systems, see also cart-pendulum system; inverted pendulum, 3-12-3-13, 3-29, 7-4, 7-23, 9-14, 12-25 band-pass filter, 6-24, 6-25, 9-29 bandwidth, 6-25, 7-20, 12-8, 12-23 behavioral modeling, 3-7 Bell Labs, 1-12, 10-23 Bennett, S., 1-26, 10-24, 11-23 bicycle dynamics, 4-5-4-7, 4-27, 5-29, 8-27 Whipple model, 4-7 bicycle model, 3-31
_		

bicycledynamics Bode, H., 9-1, 10-23, 10-24, centrifugal governor, 1-2, 1-3, Whipple model, 7-34 12-34, 13-28 1-11 Bode plots, 9-24-9-30, 10-16 chain of integrators (normal bifurcations, see also root locus plots, 5-28-5-30, asymptotic approximation, form), 3-41, 7-7 5-36 9-26, 9-27, 9-36 characteristic equation, 2-2, biological circuits, 1-11, 3-24, low-, band-, high-pass 3-38-3-39, 5-36, 6-36, filters, 9-29 characteristic polynomial, 2-1, 9-29 5-11, 7-34, 9-14 nonminimum phase genetic switch, 3-43, 5-21 systems, 10-17 for closed loop transfer repressilator, 3-39 function, 10-2 of rational function, 9-24 biological systems, see also observable canonical form, sketching, 9-27 biological circuits; drug Bode's ideal loop transfer output feedback controller, administration; neural function, 13-10, 13-29 8-12, 8-13 systems; population Bode's integral formula, dynamics, 1-1-1-3, 1-7, reachable canonical form, 12-25-12-27, 1-10, 1-16, 1-26, 7-7, 7-9, 7-13, 7-33 12-29-12-30 3-38-3-40, 5-33, 11-1, chemical systems, see also Bode's relations, 10-16, 12-13 11-5 process control; Brahe, T., 3-2 bistability, 1-16, 5-23 compartment models, 1-6, breakpoint, 9-26, 10-6 Black, H. S., 1-12, 1-13, 4-7, 11-1Bristol's RGA, 14-3 4-9, 6-1, 10-1, 10-24, 13-1 chordal distance, 13-5 Brockett, R. W., xii, 1-1, 6-33 block diagonal form, 5-12, circuits, see biological circuits; Bryson, A. E., 7-35 5-36, 6-19 electrical circuits bump test, 11-10 class \mathcal{E} , 9-5 block diagonal systems, 5-12, bumpless transfer, 13-28 5-36, 6-9, 6-15, 6-19, 8-12 classical control, xi, 13-28 bumptest, 11-11 block diagram closed loop, 1-1, 1-2, 1-4, Bush, V., 11-23 finding transfer functions by 6-32, 7-10, 7-17, 10-1, business systems, 1-16 inspection, 2-8 10-2, 10-20, 12-1 simplified writing of versus open loop, 1-2, 10-3, calibration, versus feedback, 10-21, 12-1 equations, 2-8 1-7, 7-14, 7-30, 7-31 block diagram algebra, 9-18, closed loop behavior, 10-1 Cannon, R. H., 3-40, 6-1 9-21, 13-10 Command signal following, capacitor, transfer function for, block diagrams, 1-1, 2-12 9-7 3-23-3-26, 9-8, 9-18-9-23 command signals, see also car, see automotive control control system, 1-4, 9-1, reference signal; setpoint, systems; cruise control; 9-20, 12-1 1-4, 1-16, 8-20, 11-1 vehicle steering Kalman decomposition, compartment models, 8-23 carrying capacity, in 4-21-4-25, 5-13, 6-21, observable canonical form, population models, 4-26 7-20, 8-3, 8-8, 8-28 cart-pendulum system, see 8-5 exercises, 6-34 also balance systems, observer, 8-2, 8-10 compensator, see control law 2-24, 3-12, 3-13, 7-6 observer-based control complementary sensitivity cascade control, 14-1, system, 8-14 function, 12-3, 12-11, 14-3-14-5 PID controllers, 11-1, 11-4, 12-27, 13-5, 13-8, 13-11, applications, 14-5 11-21 13-14, 13-19, 13-23, disturbance rejection, 14-4 reachable canonical form, 13-29 7-7 windup, 14-5 complexity, of control two degree-of-freedom causal reasoning, 1-1, 4-6 systems, 1-7, 1-15, 11-6 controller, 8-20, 12-2, Cayley-Hamilton theorem, computed torque, 6-33 13-12 7-4, 7-34, 8-3 computer implementation, Youla parameterization, center (equilibrium point), controllers, 8-24-8-26, 13-11 5-10 11-21-11-23

INDEX I-3

computer science, relationship to control, 1-5	coordinate transformations, 5-12, 6-17-6-19, 7-7,	damping ratio, 2-11, 7-18, 7-19, 7-22
computer systems, control of,	8-27, 9-12-9-13	DC gain, see also zero
see also queuing systems,	to Jordan form, 6-9	frequency gain, 6-25
1-8–1-9, 1-26, 3-16, 3-35, 3-36, 4-11–4-17, 6-27	to observable canonical form, 8-6	dead zone, 1-17
conditional integration, 11-25	to reachable canonical form,	decoupling, 14-3 direct, 14-3
conditional stability, 10-9	7-8, 7-9	decoupling:feedback, 14-3
congestion control, see also	Coriolis forces, 3-12, 6-33	delay, see time delay
queuing systems, 1-8,	corner frequency, 9-26	delay compensation, 10-25,
4-13–4-16, 5-10, 10-7,	correlation matrix, 8-15, 8-16	13-30
10-25, 11-24	cost function, 7-25	delay margin, 10-15
router dynamics, 4-29	coupled spring-mass system,	delta function, see impulse
consensus, 3-36	6-12, 6-14, 6-18	function
control	covariance matrix, 8-15	derivative action, 1-18, 1-19,
definition of, 1-3–1-5	critical gain, 11-11, 11-13,	11-1, 11-4–11-6, 11-20,
early examples, 1-2, 1-5,	11-14	12-17
1-6, 1-12, 1-15, 1-26, 11-4	critical period, 11-11, 11-13	filtering, 11-5, 11-18–11-19,
fundamental limitations,	critical point, 10-2, 10-5, 10-7,	11-22, 11-23
10-17, 12-21-12-30,	10-13, 10-22, 10-23,	setpoint weighting, 11-19,
12-34, 13-18, 13-20,	11-11, 13-6, 13-7, 13-27	11-23
13-27-13-28	critically damped oscillator, 7-18	time constant, 11-2
history of, 1-26, 11-23 modeling for, 1-5, 3-5–3-6,	crossover frequency, see gain	versus lead compensator, 12-17
3-40, 13-1	crossover frequency;	derivative gain, 11-2
successes of, 1-6, 1-26	phase crossover frequency	derivative time constant, 11-5
system, 1-3, 7-9, 8-14, 8-19,	crossover frequency inequality,	describing functions,
8-25, 9-1, 12-2, 12-5,	see gain crossover	10-21–10-23
13-12	frequency inequality	design of dynamics,
using estimated state,	cruise control, 1-12, 1-22,	1-12–1-14, 5-15,
8-11-8-14, 13-24	4-1-4-5	5-30-5-32, 6-1, 7-1, 7-11,
Control architecture	control design, 7-30, 11-8,	7-17
two degrees of freedom,	11-19	diabetes, see insulin-glucose
2-14	electric car, 14-5	dynamics
control architecture	feedback linearization, 6-32	diagonal systems, 5-12, 6-8
two degrees of freedom,	integrator windup, 11-14,	Kalman decomposition for,
2-14	11-15	8-23
control error, 1-17, 9-20, 11-2	linearization, 6-28 pole/zero cancellation, 9-17	transforming to, 5-12, 5-36,
control law, 1-4, 1-17, 1-18,	robustness, 1-12, 13-1, 13-2,	6-8 difference equations, 3-10,
6-32, 7-10, 7-13, 9-20 control Lyapunov function,	13-8	3-14–3-17, 3-20, 3-41,
5-31	Curtiss seaplane, 1-13, 1-14	6-27, 8-25, 11-22
control matrix, 3-11, 3-14	cybernetics, see also robotics,	differential algebraic
control signal, 3-6, 6-27, 11-1	1-7	equations, see also
controllability, see also	cyberphysical system, 3-8	algebraic loops, 3-7
reachability, 7-32		differential equations, 3-2,
controlled differential	D/A converters, see	3-10-3-14, 5-1-5-4
equation, 3-3, 3-11	digital-to-analog	controlled, 3-3, 6-3
convolution equation,	converters	equilibrium points, 5-6-5-7
6-15-6-17, 6-19, 6-20,	damped frequency, 7-19	existence and uniqueness of
7-4, 9-12	damping, 3-2, 3-12, 3-19, 5-2,	solutions, 5-2–5-4
discrete-time, 6-35	9-37, 9-38	first-order, 3-6, 11-6

I-4 INDEX

isolated solution, 5-7	dominant pairs, 7-34	relationship to modes,
periodic solutions, 5-7–5-8, 5-16	double integrator, 2-5, 6-7,	6-12-6-15
	7-2, 9-10, 10-25	relationship to poles, 9-13
qualitative analysis, 5-4–5-8 second-order, 5-5, 7-18,	Doyle, J. C., xii, 12-34, 13-28	relationship to stability, 5-23, 6-10, 6-11
11-6	drug administration, see also	
solutions, 5-1, 5-2, 6-3, 6-6,	compartment models, 4-21–4-25, 4-30, 6-21,	eigenvectors, 5-12, 5-36, 6-12 relationship to mode shape,
6-15, 9-34	7-20	6-13
stability, see stability	duality, 8-7, 8-11	electric car, 14-5
transfer functions for, 9-10	Dubins car, 3-31	electric power, <i>see</i> power
differential flatness, 8-22		systems (electric)
digital control systems, see	dynamic compensator, 7-30 dynamic inversion, 6-33	electrical circuits, see also
computer implementation,	dynamical systems, 1-1, 3-1,	operational amplifier, 3-7,
controllers	5-1, 5-4, 5-32	3-24, 4-10, 6-1, 9-6
digital-to-analog converters,	linear, 5-11, 6-1	electrical engineering,
1-4, 4-18, 8-25, 11-21	observer as a, 8-1	1-5–1-6, 3-4–3-5, 6-25,
dimension-free variables,	state of, 7-9	10-9
3-28, 3-40	state of, 7-9 stochastic, 8-14	elephant, modeling of an, 3-1
direct connection, 3-26	uncertainty in, 13-1–13-3	Elowitz, M. B., 3-39
direct decoupling, 14-3	zz, <i>see also</i> differential	encirclement, see also Nyquist
direct term, 3-11, 3-14, 3-26,	equations	criterion, 10-5
6-17, 8-11	dynamics matrix, 3-11, 3-14,	environmental science, 1-3,
discrete control, 3-35	5-11, 6-12	1-6
discrete-time systems, 3-14,	Dyson, F., 3-1	equation-based modeling, 3-7
3-41, 5-35, 6-27, 6-35,	J	equilibrium points, 4-26, 5-6,
11-21		5-11, 6-2, 6-29, 7-2
Kalman filter for, 8-14	e-commerce, 1-8	bifurcations of, 5-28
linear quadratic regulator	e-mail server, control of, 3-16,	bifurcations of, 5-28 discrete time, 3-41
linear quadratic regulator for, 7-27	e-mail server, control of, 3-16, 6-27	bifurcations of, 5-28 discrete time, 3-41 for closed loop system,
linear quadratic regulator for, 7-27 disk drives, 3-44	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16,	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4,	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10–12-11, 13-13	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, <i>see also</i>	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction,
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10–12-11, 13-13 design of controllers for,	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, <i>see also</i> predator-prey system,	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26–5-28, 5-34
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10–12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35,	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, <i>see also</i> predator-prey system, 1-10, 4-25, 7-15	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, <i>see also</i> predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11,	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8 equipment protection, 14-8
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12,	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26–5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1,
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30,	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26–5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26–5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, <i>see</i> oserversI-1
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26–5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, <i>see</i> oserversI-1 Euler integration, 3-20, 3-21
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29,	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, <i>see</i> oserversI-1 Euler integration, 3-20, 3-21 exponential functions
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10–12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13 relationship to sensitivity	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, see oserversI-1 Euler integration, 3-20, 3-21 exponential functions simplified notation, 9-5
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13 relationship to sensitivity function, 12-10, 12-25,	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5 and Jordan form, 6-9-6-11,	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, see oserversI-1 Euler integration, 3-20, 3-21 exponential functions simplified notation, 9-5 exponential input, 9-3
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10–12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13 relationship to sensitivity function, 12-10, 12-25, 12-35, 13-13	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5 and Jordan form, 6-9-6-11, 6-35	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, see oserversI-1 Euler integration, 3-20, 3-21 exponential functions simplified notation, 9-5 exponential signal, 9-4
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10–12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13 relationship to sensitivity function, 12-10, 12-25, 12-35, 13-13 disturbance weighting, 13-27	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5 and Jordan form, 6-9-6-11, 6-35 distinct, 5-35, 5-36, 6-8,	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, see oserversI-1 Euler integration, 3-20, 3-21 exponential functions simplified notation, 9-5 exponential input, 9-3
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13 relationship to sensitivity function, 12-10, 12-25, 12-35, 13-13 disturbance weighting, 13-27 disturbances, 1-4, 3-3, 3-6,	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5 and Jordan form, 6-9-6-11, 6-35 distinct, 5-35, 5-36, 6-8, 6-14, 8-23	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, see oserversI-1 Euler integration, 3-20, 3-21 exponential functions simplified notation, 9-5 exponential signal, 9-4 exponential signals, 9-2-9-9, 9-13, 9-24
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13 relationship to sensitivity function, 12-10, 12-25, 12-35, 13-13 disturbance weighting, 13-27 disturbances, 1-4, 3-3, 3-6, 9-17, 9-20, 12-1, 12-4,	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5 and Jordan form, 6-9-6-11, 6-35 distinct, 5-35, 5-36, 6-8, 6-14, 8-23 dominant, 7-22	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, see oserversI-1 Euler integration, 3-20, 3-21 exponential functions simplified notation, 9-5 exponential signal, 9-4 exponential signals, 9-2-9-9,
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13 relationship to sensitivity function, 12-10, 12-25, 12-35, 13-13 disturbance weighting, 13-27 disturbances, 1-4, 3-3, 3-6, 9-17, 9-20, 12-1, 12-4, 12-5	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5 and Jordan form, 6-9-6-11, 6-35 distinct, 5-35, 5-36, 6-8, 6-14, 8-23	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, see oserversI-1 Euler integration, 3-20, 3-21 exponential functions simplified notation, 9-5 exponential signal, 9-4 exponential signals, 9-2-9-9, 9-13, 9-24 exponential signals &, 9-5
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13 relationship to sensitivity function, 12-10, 12-25, 12-35, 13-13 disturbance weighting, 13-27 disturbances, 1-4, 3-3, 3-6, 9-17, 9-20, 12-1, 12-4,	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5 and Jordan form, 6-9-6-11, 6-35 distinct, 5-35, 5-36, 6-8, 6-14, 8-23 dominant, 7-22 effect on dynamic behavior,	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26-5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, see oserversI-1 Euler integration, 3-20, 3-21 exponential functions simplified notation, 9-5 exponential signal, 9-4 exponential signals, 9-2-9-9, 9-13, 9-24 exponential signals &, 9-5 extended Kalman filter, 8-21
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13 relationship to sensitivity function, 12-10, 12-25, 12-35, 13-13 disturbance weighting, 13-27 disturbances, 1-4, 3-3, 3-6, 9-17, 9-20, 12-1, 12-4, 12-5 generalized, 13-25	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5 and Jordan form, 6-9-6-11, 6-35 distinct, 5-35, 5-36, 6-8, 6-14, 8-23 dominant, 7-22 effect on dynamic behavior, 7-17-7-19, 7-21, 7-22, 9-5	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26–5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, see oserversI-1 Euler integration, 3-20, 3-21 exponential functions simplified notation, 9-5 exponential signal, 9-4 exponential signal, 9-4 exponential signals, 9-2–9-9, 9-13, 9-24 exponential signals &, 9-5 extended Kalman filter, 8-21 extremal control, 14-1
linear quadratic regulator for, 7-27 disk drives, 3-44 disturbance attenuation, 1-4, 7-10, 12-10-12-11, 13-13 design of controllers for, 12-6, 12-13, 12-27, 12-35, 13-24 fundamental limits, 12-26 in biological systems, 9-30, 11-5 integral gain as a measure of, 11-4, 12-11, 13-13 relationship to sensitivity function, 12-10, 12-25, 12-35, 13-13 disturbance weighting, 13-27 disturbances, 1-4, 3-3, 3-6, 9-17, 9-20, 12-1, 12-4, 12-5 generalized, 13-25 random, 8-15	e-mail server, control of, 3-16, 6-27 economic systems, 1-9, 1-16, 3-41 ecosystems, see also predator-prey system, 1-10, 4-25, 7-15 eigenvalue assignment, 7-11, 7-13-7-17, 7-23, 8-12, 11-8, 11-23 by output feedback, 8-13 for observer design, 8-8 eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5 and Jordan form, 6-9-6-11, 6-35 distinct, 5-35, 5-36, 6-8, 6-14, 8-23 dominant, 7-22 effect on dynamic behavior, 7-17-7-19, 7-21, 7-22, 9-5 for discrete-time systems,	bifurcations of, 5-28 discrete time, 3-41 for closed loop system, 7-11, 7-30 for planar systems, 5-10 region of attraction, 5-26–5-28, 5-34 stability, 5-8 equipment protection, 14-8 error feedback, 2-14, 11-1, 11-2, 11-19, 12-3 estimators, see oserversI-1 Euler integration, 3-20, 3-21 exponential functions simplified notation, 9-5 exponential signal, 9-4 exponential signal, 9-4 exponential signals, 9-2–9-9, 9-13, 9-24 exponential signals &, 9-5 extended Kalman filter, 8-21 extremal control, 14-1

INDEX I-5

feedback, 1-1-1-3 as technology enabler, 1-3, 1-13 business, 1-16 combining with feedforward, 2-29 drawbacks of, 1-3, 1-15, 11-18, 13-6, 13-13 economy, 1-16 in biological systems, see also biological circuits, 1-1-1-3, 1-10, 1-26, 11-5 in engineered systems, see control in financial systems, 1-3 in nature, 1-3, 1-9-1-10, 4-25 positive, see positive feedback properties, 1-3, 1-5, 1-11-1-17, 12-1, 12-6, 13-1 robustness through, 1-11 versus feedforward, 1-16, 11-4, 12-6 feedback and feedforward, 2-26 feedback connection, 9-19, 10-21 feedback decoupling, 14-3 feedback linearization, 6-32-6-33 feedback loop, 1-4, 10-1, 12-1, 13-12 feedback uncertainty, 13-3, 13-10 feedback:positive, 2-18 feedforward, 1-15, 1-16, 8-19-8-22, 9-20, 12-1, 12-5, 12-7	for disturbance weighting, 13-27 for measurement signals, 1-15, 8-26, 13-13 ZZ, see also band-pass filters; high-filters; low-pass filters financial systems, see economic systems finite escape time, 5-3 finite state machine, 1-22, 3-8, 4-5, 4-12 first-order systems, 6-4, 6-35, 9-10, 9-25, 9-27 fisheries management, 4-30 flatness, see differential flatness flight control, 1-6, 1-13, 3-31, 6-33 X-29 aircraft, 12-27 ZZ, see also vectored thrust aircraft flow, of a vector field, 3-3, 5-5 flow in a tank, 5-33 flow model (queuing systems), 3-33, 10-25, 11-24 flyball governor, see centrifugal governor force feedback, 1-7 forced response, 6-3, 9-3 forced solution, 6-3 Forrester, J. W., 1-10 FOTD model, 11-11 Fourier, J. B. J., 3-40, 9-33 frequency domain, 9-1-9-3, 10-1, 10-19, 12-1 frequency response, 2-4, 3-5, 3-22, 3-23, 6-22-6-27, 9-2, 10-24, 11-11, 12-8 relationship to Bode plot, 9-24	gain, 1-18, 2-4, 3-22, 4-8, 6-23, 6-24, 7-21, 9-3, 9-6, 9-13, 9-24, 10-12, 10-19-10-22, 13-1 H _∞ , 10-20, 13-26 observer, see observer gain of a system, 10-19 reference, 7-30 state feedback, 7-11, 7-15, 7-30, 7-32 steady-state, 9-13 zero frequency, see zero frequency gain zz, see also integral gain gain crossover frequency, 10-13, 12-8, 12-22, 13-19 gain crossover frequency inequality, 12-22, 12-24 gain curve (Bode plot), 9-24-9-28, 10-16, 12-13 gain margin, 10-12-10-14 from Bode plot, 10-13 reasonable values, 10-14 gain scheduling, 8-21, 13-28, 14-1, 14-11-14-12 gain-bandwidth product, 4-10, 9-7, 13-15 Gang of Four, 12-3, 12-35, 13-12 Gang of Seven, 12-3, 12-8 gene regulation, 1-10, 3-38, 6-36, 9-29 general solution to the homogeneous equation, 2-2 genetic switch, 3-43, 5-21 global behavior, 5-10, 5-27-5-30 Glover, K., 12-34, 13-28 glucose regulation, see insulin-glucose dynamics
12-5, 12-7 business, 1-16 combining with feedback, 2-29	9-24 relationship to Nyquist plot, 10-4, 10-5 second-order systems, 7-20,	
difficulties, 2-27 economy, 1-16 sensitivity to process variations, 2-29 system inversion, 2-27 Fermi, E., 3-1 filters active, 6-24	9-29 system identification using, 9-31 fully actuated systems, 9-14 fundamental limits, see control: fundamental limitations Furuta pendulum, 5-36	H_{∞} control, 13-25–13-28, 13-30 haptics, 2-25 Harrier AV-8B aircraft, 3-32 heat propagation, 9-9 Heaviside, O., 6-34

Heaviside step function, 6-20, input/output models, see also 3-13-3-14, 4-5, 5-6, 5-14, frequency response; 5-25, 5-27, 5-35, 5-36, steady-state response; step 10-10, 12-27 Hellerstein, J. L., 1-26, 4-17 high-frequency roll-off, 12-13, response, 1-5, 3-4, 3-5, 13-13, 13-21 6-2, 6-15-6-28, 9-1, 10-19 Jacobian linearization, high-pass filter, 9-29 and transfer functions, 9-12 6-29-6-31 Hill function, 3-38 and uncertainty, 3-10, 13-3 Janert, P. K., 1-26 Hoagland, M. B., 1-1 from experiments, 9-31 Jordan block, 6-9 Hodgkin-Huxley equations, relationship to state space Jordan form, 6-9-6-12, 6-35, models, 3-6, 5-1, 6-16 3-39 7-22 steady-state response, 6-19 homeostasis, 1-3, 3-38 input/output stable, 10-20 homogeneous equation, 2-2 Kalman, R. E., 7-1, 7-32, 8-1, inputs, 3-3, 3-6 homogeneous solution, 6-3, 8-23, 8-26 insect flight control, 3-23-3-26 6-6 Kalman decomposition, instrumentation, 1-7, 4-7 8-22-8-24, 9-17, 9-34, Horowitz, I. M., 8-26, 12-34, insulin-glucose dynamics, 1-2, 9-36 13-23, 13-28 4-24-4-25 Kalman filter, 8-14-8-19, human-machine interface. integral action, 1-18, 1-19, 8-26, 13-25 1-22, 4-1, 4-4 1-27, 2-20-2-21, extended, 8-21 hybrid system, 3-8, 3-19 7-30-7-33, 11-1, Kalman-Bucy filter, 8-17 hysteresis, 1-17, 10-23 11-3-11-5, 11-7, 12-11 Kelly, F. P., 4-16 for bias compensation, 8-27 Kepler, J., 3-2 identification, see system setpoint weighting, 11-19, Keynesian economic model, identification 11-23 3-41, 6-35 impedance, 9-7, 11-20 time constant, 11-2 Krasovski-Lasalle principle, impedance control, 2-25 integral gain, 1-18, 11-2, 11-4, 5-24-5-25 implementation, controllers, 11-7see analog integrator, see also double LabVIEW, 5-29, 6-34 implementation; computer integrator, 3-23, 3-24, 6-9, lag, see phase lag implementation 7-30, 7-31, 8-5, 9-10, lag compensation, impulse function, 6-16, 6-34, 9-25, 10-16, 11-16 12-13-12-15 7-4 integrator windup, 1-18, 8-26, Laplace transform impulse response, 6-5, 6-16, 11-14-11-16, 11-24, computing transfer function 6-17, 9-12 11-25 with, 9-11 inductor, transfer function for, conditional integration, Laplace transforms, xi, 9-7 11-25 9-10-9-12 inertia matrix, 3-12, 6-33 intelligent machines, see Laplacian matrix, 3-37 infinity norm, 10-20, 13-26 robotics Lasalle's invariance principle, information systems, see also internal model principle, 8-13, see Krasovski-Lasalle congestion control; web 8-21 principle server control, 1-8, internal stability, 12-4 lead, see phase lead 3-33-3-37 Internet, see also congestion lead compensation, initial condition, 5-2, 5-5, 5-8, control, 1-8, 1-9, 4-11, 12-14-12-17, 12-32, 6-2, 6-6, 6-7, 6-14, 8-15 4-13, 4-16, 4-29 12-36 initial condition response, 6-3, Internet Protocol (IP), 4-13 limit cycle, 4-27, 5-7, 5-16, 6-6-6-9, 6-12, 6-14, 6-17, invariant set, 5-25, 5-28 5-17, 5-29, 10-22 9-3 inverse, 2-27 linear quadratic control, initial value problem, 5-2 7-25-7-29, 8-16, 8-26, inverse model, 6-32, 12-6 inner loop control, 12-31, inverse response, 2-28, 10-18, 13-24-13-25 12-33 10-26 linear systems, 3-4, 3-10, 4-10, input sensitivity function, see inverted pendulum, see also 5-11, 6-1-6-34, 8-22, 9-4, load sensitivity function balance systems, 9-33, 10-20

INDEX I-7

linear time-invariant systems,	manifold, 5-26	control perspective, 3-5
3-4, 3-10, 6-4	margins, see stability margins	discrete control, 3-35
linearity, 6-3, 9-24	materials science, 1-6	discrete-time, 3-14-3-15,
linearization, 5-15, 5-23, 6-2,	Mathematica, 3-20, 5-29, 6-34	6-27–6-28
6-28-6-33, 8-20, 8-21,	MATLAB, 1-27, 3-20, 5-29,	frequency domain, 9-1-9-3
13-1	6-34, 7-34	from experiments,
Lipschitz continuity, 5-4	acker, 7-15, 8-11	3-27–3-28
load disturbances, see also	dlqe, 8-16	model reduction, 1-5
disturbances, 12-1, 13-13	dlqr, 7-29	normalization and scaling,
load sensitivity function, 12-3	hinfsyn, 13-26	3-28
local behavior, 5-9, 5-15, 5-24,	jordan, 6-10	of uncertainty, 3-9-3-10
5-27, 6-29	linmod, 6-30	simplified models, use of,
locally asymptotically stable,	lqr, 7-25	3-6, 11-7, 13-2, 13-8, 13-9
5-9	place, 7-15, 7-24, 8-11	software for, 3-7, 6-30, 6-33
logistic growth model, 4-25,	trim, 6-30	state space, 3-10-3-22
4-26, 4-30	matrix exponential, 6-6-6-9,	uncertainty, see uncertainty
loop analysis, 10-1, 12-1	6-13, 6-15, 6-33, 6-34	modes, 6-12-6-14, 9-13
loop gain, 10-12	coordinate transformations,	relationship to poles, 9-14
loop shaping, 10-4,	6-18	monotone step responses,
12-12-17, 12-33,	Jordan form, 6-10	11-11
13-23	second-order systems, 6-34	motion control systems,
design rules, 12-14 fundamental limitations,	maximum complementary	3-30–3-33, 8-26
12-21–12-30	sensitivity, 13-8, 13-19	motors, electric, 3-44, 7-34,
zz, <i>see also</i> Bode's loop	maximum selector, 1-20, 14-8	8-28
transfer function	maximum sensitivity, 12-10, 13-6, 13-20	multi-input, multi-output
loop transfer function, see also	measured signals, 3-6, 3-10,	systems, see also
Bode's loop transfer	5-1, 8-1, 8-14, 8-26, 12-2,	input/output models,
function, 10-1–10-4,	12-4, 13-25	10-20, 12-4, 12-14
10-12, 10-20, 12-1, 12-4,	measurement noise, 1-4, 1-15,	multiplicative uncertainty,
12-12, 12-13, 12-16,	8-1, 8-3, 8-14, 8-15, 8-17,	13-3, 13-10
12-26, 12-34	9-20, 11-18, 12-1–12-3,	
Lotus Notes server, see e-mail	12-13, 13-13	nanopositioner (AFM), 10-15,
server	response to, 12-11-12-12,	13-20
low-order models, 11-6	13-13-13-14	natural frequency, 7-19
low-pass filter, 9-29, 11-19	mechanical systems, 3-6, 3-12,	negative definite function, 5-18
LQ control, see linear	3-21, 3-30, 3-40, 6-32	negative feedback, 1-12, 1-16,
quadratic control	mechanics, 3-2-3-3, 3-5, 5-32,	4-9, 7-10, 10-1, 11-5
LTI systems, see linear	6-1	Nernst's law, 3-40
time-invariant systems	median selector, 14-9	networking, see also
Lyapunov equation, 5-20, 5-35	mid-range control, 14-1, 14-7	congestion control, 1-8,
Lyapunov functions, 5-17,	minimal model	3-24, 4-16
5-18, 5-20, 5-21, 5-27,	(insulin-glucose), see also	neural systems, 1-7, 3-25,
5-34, 6-35	insulin-glucose dynamics,	3-39, 11-5, 11-6
design of controllers using,	4-24, 4-25	neutral stability, 5-8–5-10
5-25, 5-31	minimum phase, 10-17, 10-24,	Newton, I., 3-2
existence of, 5-20	12-21	Nichols, N. B., 6-33, 11-10,
Lyapunov stability analysis, 3-22, 5-17–5-26, 5-33	minimum selector, 1-20, 14-8	12-33 Nighala ghart 13-24
discrete time, 5-35	model following, 14-1	Nichols chart, 13-24 Nobel Prize, 1-7, 3-40, 4-17
discrete time, J-33	Modelica, 3-7 modeling, 1-5, 3-1–3-10, 3-40,	noise, see disturbances;
magnitude, 2-4	4-1	measurement noise
inagintudo, 2 i	1 1	mousurement noise

noise attenuation, 9-30,	open loop, 1-1, 1-2, 4-8, 7-2,	particular solution, see also
12-11–12-12	9-22, 10-1, 11-14, 12-1,	forced response, 2-2, 6-3,
noise cancellation, 5-31	12-10, 13-3	6-22, 9-5
noise sensitivity function, 12-3	open loop gain, 9-7, 12-8	non
nonlinear systems, 3-6, 5-1,	operational amplifiers,	uniqueness, 2-2
5-4, 5-7, 5-15, 5-17, 5-21,	4-7-4-11, 9-7, 11-20,	transfer function, 2-3
5-27-5-32, 8-2, 8-20,	13-10	passive systems, 10-21, 12-26
8-21, 10-20, 10-21	circuits, 4-28, 6-24, 10-2,	passivity theorem, 10-21
linear approximation, 5-15,	13-14	patch clamp, 1-7
5-23, 6-29, 13-1	dynamic model, 4-10, 9-7	PD control, 2-24, 11-4, 12-14,
system identification, 3-42	input/output characteristics,	12-15
nonminimum phase, see also	4-8	peak frequency, 6-26, 12-8
inverse response, 10-16,	oscillator using, 4-28, 5-35	pendulum dynamics, see also
10-17, 10-26,	static model, 4-8, 9-7	inverted pendulum, 5-19
12-21–12-23	optimal control, 7-25, 8-15,	perfect adaptation, 11-5
nonunique solutions (ODEs),	8-17, 13-25	perfect adaptation, 11-3
5-3		performance, 4-12
	order, of a model, 3-10, 3-11	performance limitations,
normalized coordinates,	ordinary differential equations,	
3-28-3-30, 3-42, 6-31	see differential equations	12-21, 12-26, 13-20, 13-27
norms, 10-19–10-20	oscillator dynamics, 4-28, 5-2,	
Nyquist, H., 10-1, 10-23	5-3, 6-7, 6-8, 7-18, 9-5,	due to right half-plane poles
Nyquist criterion, 10-5, 10-7,	9-10	and zeros, 10-17
10-9, 10-12, 10-20, 10-21,	normal form, 3-42	zz, see also control:
11-11	zz, see also nanopositioner	fundamental limitations
for robust stability, 13-6,	(AFM); spring-mass	performance specifications,
13-31	system	see also overshoot;
Nyquist D contour, 10-4,	outer loop control,	maximum sensitivity;
10-10	12-31–12-33	resonant peak; rise time;
Nyquist plot, 10-4–10-5,	output feedback, see also	settling time, 6-21, 7-10,
10-12, 10-13, 11-11,	control: using estimated	12-1, 12-8–12-12, 12-14,
12-10, 13-24	state; loop shaping; PID	13-12
	control, 8-11, 8-12, 8-26	periodic solutions, see
observability, 3-6, 8-1-8-2,	output sensitivity function, see	differential equations;
8-22, 8-26	noise sensitivity function	limit cycles
rank condition, 8-3	outputs, see measured signals	persistence, of a web
	overdamped oscillator, 7-18	connection, 4-12, 4-13
tests for, 8-2–8-3	overshoot, 6-21, 7-10, 7-20,	Petri net, 3-24
unobservable systems, 8-4,	12-8	pharmacokinetics, see also
8-22-8-24, 9-36		drug administration, 4-21,
observability matrix, 8-3, 8-5		4-25
observable canonical form,	P control, 2-9, 2-10	phase, see also minimum
8-4, 8-5, 8-27	Padé approximation, 10-26,	phase; nonminimum
observer gain, 8-7, 8-9–8-11,	12-23	phase, 2-4, 3-22, 6-23,
8-13, 8-15–8-17	paging control (computing),	6-24, 7-21, 9-3, 9-6, 9-24,
observers, 8-1, 8-6–8-9, 8-17,	3-35	10-22
8-21	pairing problem, 14-2	minimum vs. nonminimum,
block diagram, 8-2, 8-10	parallel connection, 9-19	10-16
zz, see also Kalman filter	parallel systems, 14-5–14-6	phase crossover frequency,
ODEs, see differential	parametric stability diagram,	10-13
equations	5-28-5-30	phase curve (Bode plot),
Ohm's law, 3-40, 4-9, 9-6	parametric uncertainty, 3-9,	9-24-9-26, 9-28
on-off control, 1-17, 1-18	13-1	relationship to gain curve,

INDEX I-9

10.16.10.10		0 1 2 42 7 20 0 27
10-16, 12-13	eigenvalues (poles), 11-9	Q-value, 3-42, 7-20, 9-27
phase lag, 6-23, 6-24, 9-29,	fast stable, 13-18, 13-20	quantitative feedback theory
10-17, 12-22, 12-24	pure imaginary, 10-5, 10-10	(QFT), 13-23–13-24
phase lead, 6-23, 9-29, 12-17,	relationship to eigenvalues,	quarter car model, 9-37
12-36	9-13	queuing systems, 3-33–3-35,
phase margin, 10-13, 10-14,	right half-plane, 9-14,	3-43
12-14, 12-15, 12-22,	10-10, 10-17, 12-21,	
12-37, 13-29	12-23–12-24, 12-26,	random process, 3-33, 8-14,
from Bode plot, 10-13	12-36, 13-20	8-15, 8-29
reasonable values, 10-14	poles and zeros, 9-13	reachability, 3-6, 7-1–7-9,
phase portrait, 3-3, 5-4–5-6, 5-27	population dynamics, <i>see also</i> predator-prey system,	7-32, 8-22
	4-25–4-27, 4-30	rank condition, 7-4
Philbrick, G. A., 4-11 photoreceptors, 11-5	positive definite function,	tests for, 7-3
physics, relationship to	5-18, 5-20, 5-24	unreachable systems, 7-5,
control, 1-5	positive definite matrix, 5-20,	7-33, 8-22–8-24, 9-36
PI Control, 2-9	7-25	reachability matrix, 7-3, 7-8 reachable canonical form,
PI control, 1-12, 1-19, 2-10,	positive feedback, 1-15–1-17,	3-11, 7-6–7-9, 7-13, 7-14,
2-21, 4-1, 4-4, 11-4, 11-9,	2-18, 2-21, 5-36, 11-4	7-33
12-14, 12-15	positive real (transfer	reachable set, 7-1
first-order system, 11-7,	function), 12-26	real-time systems, 1-5
13-18	power of a matrix, 6-6	reference signal, see also
PID control, 1-18–1-19,	power systems (electric),	command signals;
11-1–11-23, 12-17	1-5–1-6, 3-43, 5-7, 5-34	setpoint, 1-17, 7-10, 9-1,
block diagram, 11-2, 11-4,	predator-prey system, 3-15,	9-20, 11-1, 11-19, 12-3,
11-16	4-26-4-27, 5-28, 7-15	12-5
computer implementation,	prediction, in controllers, see	effect on observer error,
11-21	also derivative action,	8-12, 8-19, 8-24
ideal form, 11-1, 11-23	1-18, 1-19, 8-21, 11-5,	response to, 12-8, 12-9,
implementation, 11-4,	13-29	12-35
11-18–11-23	prediction time, 11-5	tracking, 7-10, 8-19, 8-20,
in biological systems, 11-5	principle of the argument, see	12-13, 13-14
op amp implementation,	variation of the argument,	reference weighting, see
11-20–11-21	principle of	setpoint weighting
tuning, 11-10–11-14	process control, 1-6, 3-24	region of attraction, see
zz, see also derivative	proportional (P) control, 2-9	equilibrium points:
action; integral action	proportional control, see also	regions of attraction
pitchfork bifurcation, 5-37	PID control, 1-18, 2-9,	regulation problem, 2-8
planar dynamical systems, see	11-1	regulator, see control law
also second-order	proportional, integral,	relay feedback, 10-23, 11-13
systems, 5-5, 5-10 pole and zeros, 9-13–9-16	derivative control, <i>see</i> PID control	Reno (protocol), <i>see</i> Internet; congestion control
pole excess, 12-18	proportional-derivative (PD)	repetitive control, 14-1, 14-9,
pole placement, see also	controller, 2-24	14-10
eigenvalue assignment,	Proportional-Integral Control,	repressilator, 3-39
7-11, 13-16, 13-19–13-20	2-9	repressor, 1-11, 3-39, 3-43,
robust, 13-15	protocol, see congestion	5-21, 6-36, 9-30
pole zero diagram, 9-14	control; consensus	reset logic, 3-8
pole/zero cancellations,	pulse signal, see also impulse	reset, in PID control, 11-3,
9-16–9-18, 9-36, 13-20	function, 6-16, 6-17, 7-22	11-4
poles, 2-5, 9-13, 9-14		
	pupil response, 9-32, 11-5	resonant frequency, 7-20,
dominant, see also dominant	pupil response, 9-32, 11-5 pure exponential solution, 9-5	resonant frequency, 7-20, 10-20

I-10 INDEX

resonant peak, 6-26, 7-20,	saturation function, see also	similarity of two systems,
12-8, 13-9	actuators: saturation, 3-24,	13-3-13-6
resource usage, in computing	4-8, 11-21	simplified notation
systems, 3-34, 3-36, 4-11,	scaling, see normalized	exponential functions, 9-5
4-12	coordinates	simulation, 3-10, 3-19-3-20
response, see input/output	scanning tunneling	SIMULINK, 6-30
models	microscope, 4-17	single-input, single-output
retina, see also pupil response,	schematic diagrams, 3-23,	(SISO) systems, 5-1, 6-2,
11-5	3-24, 4-7	6-3, 6-29, 8-4, 10-20
Riccati equation, 7-25, 8-17,	Schitter, G., 4-20	singular values, 10-19, 10-20,
13-26, 13-28	second-order systems, 3-2,	13-30
Riemann sphere, 13-5	6-34, 7-18–7-21, 7-35,	sink (equilibrium point), 5-10
right half-plane poles and	9-26, 9-27, 11-9	small gain theorem,
zeros, see poles: right	Segway, 2-24	10-20-10-21, 13-9
half-plane; zeros: right	Segway Personal Transporter,	Smith predictor, 13-29
half-plane	3-12, 7-4	ideal time delay, 14-10
rise time, 6-21, 7-10, 7-20,	selector, 1-20	social, 1-16
12-8	selector control, 14-1,	software tools for control, x
robotics, 1-7-1-8, 6-33	14-8-14-9	solution (ODE), see
robustness, 1-10-1-12, 12-8,	of air-fuel, 1-20	differential equations:
13-3, 13-28	selector, maximum, 1-20	solutions
performance, 13-12-13-15,	selector, minimum, 1-20	source (equilibrium point),
13-22-13-28	self-activation, 5-36	5-10
stability, 13-6-13-12	self-optimization, 14-12	spectrum analyzer, 9-31
using gain and phase	self-repression, 6-36, 9-29	Sperry autopilot, 1-13
margin, 10-14, 12-13	semidefinite function, 5-18	split-range control, 14-7
using maximum sensitivity,	sensitivity crossover	spring-mass system, 3-2, 3-19,
12-10, 12-13, 13-7, 13-29,	frequency, 12-10	3-21, 3-22, 4-18, 5-34
13-31	sensitivity function, 12-3,	coupled, 6-14, 6-18
using pole placement,	12-10, 12-11, 12-13,	generalized, 3-12, 4-7
13-15-13-22	12-26, 13-7, 13-14, 13-20	identification, 3-27
via gain and phase margin,	and disturbance attenuation,	normalization, 3-28, 3-42
10-14	12-10, 12-26, 12-35	zz, see also oscillator
zz, see also uncertainty	sensor matrix, 3-11, 3-14	dynamics
roll-off, see high-frequency	sensor networks, 3-36	Stability, 2-5
roll-off	sensors, 1-3, 1-4, 8-2, 8-25,	Rout-Hurwitz criterion, 2-5
root locus, 12-17, 12-18	10-17, 11-21, 12-1, 12-4,	stability, 1-3, 1-5, 1-12, 1-13,
asymptotes, 12-36	12-23, 12-24, 13-25	2-5, 3-21, 5-4, 5-8-5-26
initial direction, 12-36	effect on zeros, 10-17, 12-24	asymptotic stability, 5-8,
real line segment, 12-36	in computing systems, 4-11	5-13
root locus diagram, 5-29, 5-30	zz, see also measured	conditional, 10-9
root locus method, 12-18	signals	in the sense of Lyapunov,
Routh-Hurwitz criterion, 2-5,	separation principle, 8-1, 8-13	5-8
5-37	series connection, 9-19	local versus global, 5-9,
Routh-Hurwitz stability	service rate (queuing systems),	5-16, 5-27
criterion, 2-5	3-33	Lyapunov analysis, see
rush-hour effect, 3-35, 3-43	servo problem, 2-12	Lyapunov stability
	setpoint, 11-1	analysis
saddle (equilibrium point),	setpoint weighting, 11-19,	neutrally stable, 5-8, 5-10
5-10	11-23	of a system, 5-11
sampling, 6-27, 8-25, 8-26,	settling time, 6-21, 6-35, 7-10,	of equilibrium points, 3-21,
11-21	7-20, 12-8	5-8, 5-10, 5-17, 5-18, 5-23

of feedback loop, see steam engines, 1-2, 1-11 Nyquist criterion steering, see vehicle steering of limit cycles, 5-16 Stein, G., xii, 1-1, 12-1, 12-27 of linear systems, step input, 3-4, 6-5, 6-20, 9-13 5-11-5-14, 5-20, 6-10 step response, 3-4, 3-5, 3-27, of solutions, 5-8, 5-9, 5-17 3-28, 6-5, 6-17, 6-20, 6-21, 7-10, 7-19, 7-20, of transfer functions, 9-14 11-10 robust, see robust stability stochastic systems, 8-14, 8-17 unstable solutions, 5-9 using eigenvalues, 5-23, summing junction, 3-24 superposition, 3-4, 6-3, 6-17, 6-10, 6-11 6-34, 9-2 using linear approximation, supervisory control, see 5-14, 5-23, 6-30 decision making: higher using Routh-Hurwitz levels of criterion, 5-37 supply chains, 1-9, 1-10 using state feedback, 7-9-7-29 supremum (sup), 10-20 switching behavior, 1-16, zz, see also bifurcations; 3-43, 5-23, 5-24, 13-28 equilibrium points system identification, 3-27, stability diagram, see parametric stability 3-28, 3-42, 9-31 diagram system inversion, 2-27 stability margin (quantity), 10-13, 10-14, 12-10, tapping mode, see atomic 12-37, 13-7, 13-26 force microscope reasonable values, 10-14 TCP/IP, see Internet; stability margins (concept), congestion control 10-12-10-16, 10-25, Teorell, T., 4-21, 4-25 12-13 the relative gain array, 14-3 stable, 2-5 three-term controllers, see also stable pole, 9-14 PID control, 11-1 stable zero, 9-14 thrust vectored aircraft, see Stark, L., 9-32 vectored thrust aircraft state, of a dynamical system, time constant, 2-2 3-2, 3-6, 3-10 time constant, first-order state estimators, see observers system, 6-35 state feedback, see also time delay, 1-8, 9-9, 9-10, eigenvalue assignment; 10-15, 10-17, 11-10, linear quadratic control, 11-11, 11-21, 12-23, 7-1-7-32, 8-7, 8-12, 12-24 8-19-8-21, 8-24-8-26, compensation for, 13-29, 13-16, 13-25, 14-4 13-30 state space, 3-2, 3-10-3-22, Padé approximation, 10-26, 7-9 12-23 time plot, 3-3 state vector, 3-2, 3-10 static gain, 2-4 time-invariant systems, 3-4, 3-10, 5-33, 6-4-6-5 steady state solution, 9-5 steady-state gain, see zero tracking, see reference signal: frequency gain, 9-13 tracking steady-state response, 1-27, tracking mode, 11-17 3-20, 6-19-6-27, 7-11, trail (bicycle dynamics), 4-6 7-20, 9-2, 9-31, 9-33 transcription factors, 3-38

transcriptional regulation, see gene regulation transfer function, 2-3 transfer function:looptracing, transfer functions, 9-1-9-33 common systems, 9-10 derivation using exponential signals, 9-4 for control systems, 9-20, 9-36 for electrical circuits, 9-6 for time delay, 9-9 frequency response, 9-2, 9-24 from experiments, 9-31 irrational, 9-9 linear input/output systems, 9-4, 9-10, 9-36 simplified notation, 9-5 transfer functions: , 9-12 transfer functions: Laplace transforms, 9-11 transfer functions:impulse response, 9-12 transfer functions:state space model, 9-11 transient response, 3-20, 6-20, 6-21, 6-23, 7-2, 7-23 Transmission Control Protocol (TCP), 4-13transmission zero, 2-5 Tsien, H. S., 1-8 tuning rules, see Ziegler-Nichols tuning, 11-24 Tustin, A., 2-1 two degree-of-freedom control, 8-20, 11-2, 12-5, 12-7, 12-34, 12-35 two degrees of freedom, 2-14, 2-30 uncertainty, 1-4, 1-11-1-12, 3-6, 3-9-3-10, 7-30, 13-1-13-6 component or parameter variation, 1-4, 3-9, 13-1 disturbances and noise, 1-4, 3-6, 7-10, 9-20, 12-1

unmodeled dynamics, 1-4,

3-9, 13-2, 13-8

zz, see also additive uncertainty; feedback uncertainty; multiplicative uncertainty uncertainty band, 3-9 uncertainty lemon, 3-9, 4-4, 4-10, 4-20 undamped natural frequency, 2-11 underdamped oscillator, 5-3, 7-19, 7-20 unit step, 6-20 unmodeled dynamics, see uncertainty: unmodeled dynamics, 2-11, 2-12 effect for control, 2-12 unstable pole, see poles: right half-plane unstable pole/zero cancellation, 9-17 unstable solution, for a dynamical system, 5-9, 5-10, 5-13, 6-10, 9-14 unstable zero, see zeros: right half-plane

variation of the argument, principle of, 10-11, 10-24 vector field, 3-3, 5-5 vectored thrust aircraft, 3-32-3-33, 6-11, 7-26, 8-17, 9-36, 12-16, 12-30 vehicle steering, 3-30-3-32, 6-30, 7-11, 8-9, 8-13, 8-21, 9-22, 10-18, 10-25, 12-7, 13-16 ship dynamics, 3-30 vehicle suspension, see also coupled spring-mass system, 9-37 vertical takeoff and landing, see vectored thrust aircraft vibration absorber, 9-38 Vinnicombe, G., 12-34, 13-5, 13-6, 13-28 Vinnicombe metric. 13-3-13-6, 13-26 voltage clamp, 1-7, 3-40

waterbed effect, 12-26, 12-27 Watt governor, see centrifugal governor Watt steam engine, 1-3, 1-11 web server control, 4-11-4-13, 7-27 web site, companion, x Whipple, F. J. W., 4-7 Wiener, N., 1-7 winding number, 10-11 window size (TCP), 4-14, 4-16, 5-10 windup, see integrator windup cascade control, 14-5 selector control, 14-9 Wright, W., 1-13

Wright Flyer, 1-6, 1-13

X-29 aircraft, 12-27

Youla parameterization, 13-10-13-12

zero

blocking property, 2-5 zero frequency gain, 2-4, 6-25, 7-11, 7-14, 7-20, 9-13, 11-11

zeros, 2-5, 9-13 Bode plot for, 9-36 effect of sensors and actuators on, 10-17, 10-18, 12-24

10-18, 12-24 for a state space system, 9-14 right half-plane, 9-14, 10-17, 12-21-12-24, 12-27, 12-36, 13-20 signal-blocking property, 9-13 slow stable, 13-16, 13-18, 13-20

Ziegler, J. G., 11-10, 11-23 Ziegler-Nichols tuning, 11-10-11-13, 11-23 frequency response, 11-11 improved method, 11-11 step response, 11-10