Bibliography

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Publisher</th>
<th>Edition</th>
<th>Year</th>
</tr>
</thead>
</table>
Index

\[e, \ 9-5 \]
\[+, \ 1-5, \ 4-13, \ 4-18, \ 4-25, \ 4-29 \]

acausal modeling, 3-7
access control, see admission control
acknowledgment (ack) packet, 4-13–4-15
activator, 1-11, 3-39, 5-36
active filter, see also operational amplifier, 6-24
actuators, 1-4, 3-5, 3-30, 4-1, 4-17, 7-12, 8-25, 9-37, 10-17, 11-21, 12-11, 12-23–12-25, 12-27
effect on zeros, 10-17, 12-24
in computing systems, 4-11
saturation, 3-9, 8-26, 11-14–11-16, 11-21, 12-11
A/D converters, see analog-to-digital converters
adaptation, 11-5, 14-1, 14-11–14-12
adaptive control, 13-28, 13-29
additive uncertainty, 13-3, 13-7, 13-10, 13-31
adjacency matrix, 3-36
admission control, 3-33, 3-43, 4-14, 4-15, 10-8
aerospace systems, see also vectored thrust aircraft;
X-29 aircraft, 1-6, 1-13, 12-29
AFM, see atomic force microscope
air-fuel ratio control, 1-20
aircraft, see flight control
alcohol, metabolism of, 4-30
algebraic loops, 3-26, 8-11
aliasing, 8-26
all-pass transfer function, 12-21
alternating current (AC), 6-25
amplifier, see operational amplifier
amplitude ratio, see gain
analog computing, 3-10, 3-26, 4-7, 11-20
analog implementation, controllers, 4-10, 9-35, 11-20–11-21
analog-to-digital converters, 1-4, 4-18, 8-25, 11-21
angle, 2-4
anti-windup compensation, 1-18
anticipation, in controllers, see also derivative action,
1-18, 11-5
anti-resonance, 6-26
anti-windup compensation, 11-15–11-16, 11-21, 11-23, 11-25
Apache web server, see also web server control, 4-12
apparent volume of distribution, 4-22, 4-30
Arbib, M. A., 7-1
argument, of a complex number, 9-24
arrival rate (queuing systems), 3-33
asymptotes, in Bode plot, 9-26, 9-27
asymptotic stability, 3-21, 5-8, 5-10, 5-12, 5-13, 5-18, 5-20, 5-23–5-25, 5-27, 6-10
discrete-time systems, 6-35
atmospheric dynamics, see environmental science
atomic force microscopes, 1-3, 3-30, 4-17–4-20
contact mode, 4-17, 6-26, 7-34
horizontal positioning, 10-15, 13-20
system identification, 9-31
tapping mode, 4-17, 10-24, 11-7, 11-12, 12-14
with preloading, 4-29
attractor (equilibrium point), 5-10
automatic reset, in PID control, 11-4
automatic tuning, 11-14, 13-28
automation, 3-5
automotive control systems, see also cruise control;
vehicle steering, 1-15, 3-30, 4-5
autonomous differential equation, see also
time-invariant systems, 3-3
autopilot, 1-13, 1-14
balance systems, see also cart-pendulum system;
inverted pendulum, 3-12–3-13, 3-29, 7-4, 7-23, 9-14, 12-25
band-pass filter, 6-24, 6-25, 9-29
bandwidth, 6-25, 7-20, 12-8, 12-23
behavioral modeling, 3-7
Bell Labs, 1-12, 10-23
Bennett, S., 1-26, 10-24, 11-23
bicycle dynamics, 1-12
bicycle dynamics, 4-4-7, 4-27, 5-29, 8-27
Whipple model, 4-7
bicycle model, 3-31
bicycle model, for vehicle steering, 3-30–3-32
bicycledynamics
Whipple model, 7-34
bifurcations, see also root
locus plots, 5-28–5-30, 5-36
biological circuits, 1-11, 3-24,
3-38–3-39, 5-36, 6-36,
9-29
genetic switch, 3-43, 5-21
repressilator, 3-39
biological systems, see also
biological circuits; drug
administration; neural
systems; population
dynamics, 1-1–1-3, 1-7,
1-10, 1-16, 1-26,
3-38–3-40, 5-33, 11-1,
11-5
bistability, 1-16, 5-23
Black, H. S., 1-12, 1-13, 4-7,
4-9, 6-1, 10-1, 10-24, 13-1
block diagonal form, 5-12,
5-36, 6-19
block diagonal systems, 5-12,
5-36, 6-9, 6-15, 6-19, 8-12
block diagram
finding transfer functions by
inspection, 2-8
simplified writing of
equations, 2-8
block diagram algebra, 9-18,
9-21, 13-10
block diagrams, 1-1,
3-23–3-26, 9-8, 9-18–9-23
control system, 1-4, 9-1,
9-20, 12-1
Kalman decomposition,
8-23
observable canonical form,
8-5
observer, 8-2, 8-10
observer-based control
system, 8-14
PID controllers, 11-1, 11-4,
11-21
reachable canonical form,
7-7
two degree-of-freedom
controller, 8-20, 12-2,
13-12
Youla parameterization,
13-11
Bode, H., 9-1, 10-23, 10-24,
12-34, 13-28
Bode plots, 9-24–9-30, 10-16
asymptotic approximation,
9-26, 9-27, 9-36
low-, band-, high-pass
filters, 9-29
nonminimum phase
systems, 10-17
of rational function, 9-24
sketching, 9-27
Bode’s ideal loop transfer
function, 13-10, 13-29
Bode’s integral formula,
12-25–12-27,
12-29–12-30
Bode’s relations, 10-16, 12-13
Brahe, T., 3-2
breakpoint, 9-26, 10-6
Bristol’s RGA, 14-3
Brockett, R. W., xii, 1-1, 6-33
Bryson, A. E., 7-35
bump test, 11-10
bumpless transfer, 13-28
bump test, 11-11
Bush, V., 11-23
business systems, 1-16
calibration, versus feedback,
1-7, 7-14, 7-30, 7-31
Cannon, R. H., 3-40, 6-1
capacitor, transfer function for,
9-7
car, see automotive control
systems; cruise control;
vehicle steering
carrying capacity, in
population models, 4-26
cart-pendulum system, see
also balance systems,
2-24, 3-12, 3-13, 7-6
cascade control, 14-1,
14-3–14-5
applications, 14-5
disturbance rejection, 14-4
windup, 14-5
causal reasoning, 1-1, 4-6
Cayley-Hamilton theorem,
7-4, 7-34, 8-3
center (equilibrium point),
5-10
centrifugal governor, 1-2, 1-3,
1-11
chain of integrators (normal
form), 3-41, 7-7
characteristic equation, 2-2,
2-5
characteristic polynomial, 2-1,
5-11, 7-34, 9-14
for closed loop transfer
function, 10-2
observable canonical form,
8-5
output feedback controller,
8-12, 8-13
reachable canonical form,
7-7, 7-9, 7-13, 7-33
chemical systems, see also
process control;
compartment models, 1-6,
11-1
cordial distance, 13-5
circuits, see biological circuits;
electrical circuits
class d^*, 9-5
classical control, xi, 13-28
closed loop, 1-1, 1-2, 1-4,
6-32, 7-10, 7-17, 10-1,
10-2, 10-20, 12-1
versus open loop, 1-2, 10-3,
10-21, 12-1
closed loop behavior, 10-1
Command signal following,
2-12
command signals, see also
reference signal; setpoint,
1-4, 1-16, 8-20, 11-1
compartment models,
4-21–4-25, 5-13, 6-21,
7-20, 8-3, 8-8, 8-28
exercises, 6-34
compensator, see control law
complementary sensitivity
function, 12-3, 12-11,
12-27, 13-5, 13-8, 13-11,
13-14, 13-19, 13-23,
13-29
complexity, of control
systems, 1-7, 1-15, 11-6
computed torque, 6-33
computer implementation,
controllers, 8-24–8-26,
11-21–11-23
computer science, relationship to control, 1-5
computer systems, control of, see also queuing systems, 1-8–1-9, 1-26, 3-16, 3-35, 3-36, 4-11–4-17, 6-27
conditional integration, 11-25
conditional stability, 10-9
congestion control, see also queuing systems, 1-8, 4-13–4-16, 5-10, 10-7, 10-25, 11-24
router dynamics, 4-29
consensus, 3-36
control
definition of, 1-3–1-5
eyearly examples, 1-2, 1-5, 1-6, 1-12, 1-15, 1-26, 11-4
fundamental limitations, 10-17, 12-21–12-30, 12-34, 13-18, 13-20, 13-27–13-28
history of, 1-26, 11-23
modeling for, 1-5, 3-5–3-6, 3-40, 13-1
successes of, 1-6, 1-26
system, 1-3, 7-9, 8-14, 8-19, 8-25, 9-1, 12-2, 12-5, 13-12
using estimated state, 8-11–8-14, 13-24
Control architecture
two degrees of freedom, 2-14
control architecture
two degrees of freedom, 2-14
control error, 1-17, 9-20, 11-2
control law, 1-4, 1-17, 1-18, 6-32, 7-10, 7-13, 9-20
control Lyapunov function, 5-31
control matrix, 3-11, 3-14
control signal, 3-6, 6-27, 11-1
controllability, see also reachability, 7-32
controlled differential equation, 3-3, 3-11
convolution equation, 6-15–6-17, 6-19, 6-20, 7-4, 9-12
discrete-time, 6-35
coordinate transformations, 5-12, 6-17–6-19, 7-7, 8-27, 9-12–9-13
to Jordan form, 6-9
to observable canonical form, 8-6
to reachable canonical form, 7-8, 7-9
Coriolis forces, 3-12, 6-33
corner frequency, 9-26
correlation matrix, 8-15, 8-16
cost function, 7-25
coupled spring-mass system, 6-12, 6-14, 6-18
covariance matrix, 8-15
critical gain, 11-11, 11-13, 11-14
critical period, 11-11, 11-13
critical point, 10-2, 10-5, 10-7, 10-13, 10-22, 10-23, 11-11, 13-6, 13-7, 13-27
critically damped oscillator, 7-18
crossover frequency, see gain crossover frequency; phase crossover frequency
crossover frequency inequality, see gain crossover frequency inequality
frequency inequality
cruise control, 1-12, 1-22, 4-1–4-5
control design, 7-30, 11-8, 11-19
electric car, 14-5
feedback linearization, 6-32
integrator windup, 11-14, 11-15
linearization, 6-28
pole/zero cancellation, 9-17
robustness, 1-12, 13-1, 13-2, 13-8
Curtiss seaplane, 1-13, 1-14
cybernetics, see also robotics, 1-7
cyberphysical system, 3-8
D/A converters, see digital-to-analog converters
damped frequency, 7-19
damping, 3-2, 3-12, 3-19, 5-2, 9-37, 9-38
damping ratio, 2-11, 7-18, 7-19, 7-22
DC gain, see also zero gain frequency gain, 6-25
dead zone, 1-17
decoupling, 14-3
direct, 14-3
decoupling: feedback, 14-3
delay, see time delay
delay compensation, 10-25, 13-30
delay margin, 10-15
delta function, see impulse function
derivative action, 1-18, 1-19, 11-1, 11-4–11-6, 11-20, 12-17
filtering, 11-5, 11-18–11-19, 11-22, 11-23
setpoint weighting, 11-19, 11-23
time constant, 11-2
versus lead compensator, 12-17
derivative gain, 11-2
derivative time constant, 11-5
describing functions, 10-21–10-23
design of dynamics, 1-12–1-14, 5-15, 5-30–5-32, 6-1, 7-1, 7-11, 7-17
diabetes, see insulin-glucose dynamics
diagonal systems, 5-12, 6-8
Kalman decomposition for, 8-23
transforming to, 5-12, 5-36, 6-8
difference equations, 3-10, 3-14–3-17, 3-20, 3-41, 6-27, 8-25, 11-22
differential algebraic equations, see also algebraic loops, 3-7
differential equations, 3-2, 3-10–3-14, 5-1–5-4
controlled, 3-3, 6-3
equilibrium points, 5-6–5-7
existence and uniqueness of solutions, 5-2–5-4
first-order, 3-6, 11-6
isolated solution, 5-7
domestic solutions, 5-7–5-8, 5-16
dominant eigenvalues (poles), 7-22, 11-9
dominant pairs, 7-34
double integrator, 2-5, 6-7, 7-2, 9-10, 10-25
Doyle, J. C., xii, 12-34, 13-28
drug administration, see also compartment models, 4-21–4-25, 4-30, 6-21, 7-20
duality, 8-7, 8-11
dubins car, 3-31
dynamic compensator, 7-30
dynamic inversion, 6-33
dynamical systems, 1-1, 3-1, 5-1, 5-4, 5-32
linear, 5-11, 6-1
observer as a, 8-1
state of, 7-9
stochastic, 8-14
uncertainty in, 13-1–13-3
zz, see also differential equations
dynamics matrix, 3-11, 3-14, 5-11, 6-12
Dynson, F., 3-1
e-commerce, 1-8
e-mail server, control of, 3-16, 6-27
economic systems, 1-9, 1-16, 3-41
ecosystems, see also predator-prey system, 1-10, 4-25, 7-15
eigenvalue assignment, 7-11, 7-13–7-17, 7-23, 8-12, 11-8, 11-23
by output feedback, 8-13
for observer design, 8-8
eigenvalues, 5-11, 5-20, 5-29, 6-12, 9-5
and Jordan form, 6-9–6-11, 6-35
distinct, 5-35, 5-36, 6-8, 6-14, 8-23
dominant, 7-22
effect on dynamic behavior, 7-17–7-19, 7-21, 7-22, 9-5
for discrete-time systems, 6-35
invariance under coordinate transformation, 5-12
relationship to modes, 6-12–6-15
relationship to poles, 9-13
relationship to stability, 5-23, 6-10, 6-11
eigenvectors, 5-12, 5-36, 6-12
relationship to mode shape, 6-13
electric car, 14-5
electric power, see power systems (electric)
electrical circuits, see also operational amplifier, 3-7, 3-24, 4-10, 6-1, 9-6
electrical engineering, 1-5–1-6, 3-4–3-5, 6-25, 10-9
elephant, modeling of an, 3-1
Elowitz, M. B., 3-39
encirclement, see also Nyquist criterion, 10-5
environmental science, 1-3, 1-6
equation-based modeling, 3-7
equilibrium points, 4-26, 5-6, 5-11, 6-2, 6-29, 7-2
bifurcations of, 5-28
discrete time
for closed loop system, 7-11, 7-30
for planar systems, 5-10
region of attraction, 5-26–5-28, 5-34
stability, 5-8
equipment protection, 14-8
error feedback, 2-14, 11-1, 11-2, 11-19, 12-3
estimators, see observers
Euler integration, 3-20, 3-21
exponential functions
simplified notation, 9-5
exponential input, 9-3
exponential signal, 9-4
exponential signals, 9-2–9-9, 9-13, 9-24
exponential signals, 9-5
extended Kalman filter, 8-21
extremal control, 14-1
extremum seeking, 14-12
Fallb, P. L., 7-1
Feedback, 2-1
feedback, 1-1–1-3
as technology enabler, 1-3, 1-13
business, 1-16
combining with feedforward, 2-29
drawbacks of, 1-3, 1-15, 11-18, 13-6, 13-13
economy, 1-16
in biological systems, see also biological circuits, 1-1–1-3, 1-10, 1-26, 11-5
in engineered systems, see control
in financial systems, 1-3
in nature, 1-3, 1-9–1-10, 4-25
positive, see positive feedback
properties, 1-3, 1-5, 1-11–1-17, 12-1, 12-6, 13-1
robustness through, 1-11 versus feedforward, 1-16, 11-4, 12-6
feedback and feedforward, 2-26
feedback connection, 9-19, 10-21
feedback controller, 9-20, 12-1
feedback decoupling, 14-3
feedback linearization, 6-32–6-33
feedback loop, 1-4, 10-1, 12-1, 13-12
feedback uncertainty, 13-3, 13-10
feedback:positive, 2-18
feedforward, 1-15, 1-16, 8-19–8-22, 9-20, 12-1, 12-5, 12-7
business, 1-16
combining with feedback, 2-29
difficulties, 2-27
economy, 1-16
sensitivity to process variations, 2-29
system inversion, 2-27
Fermi, E., 3-1
filters
active, 6-24
for disturbance weighting, 13-27
for measurement signals, 1-15, 8-26, 13-13
zz, see also band-pass filters; high-pass filters; low-pass filters
financial systems, see economic systems
finite escape time, 5-3
finite state machine, 1-22, 3-8, 4-5, 4-12
first-order systems, 6-4, 6-35, 9-10, 9-25, 9-27
fisheries management, 4-30
flatness, see differential flatness
flight control, 1-6, 1-13, 3-31, 6-33
X-29 aircraft, 12-27
zz, see also vectored thrust aircraft
flow, of a vector field, 3-3, 5-5
flow in a tank, 5-33
flow model (queuing systems), 3-33, 10-25, 11-24
flyball governor, see centrifugal governor
force feedback, 1-7
forced response, 6-3, 9-3
forced solution, 6-3
Forrester, J. W., 1-10
FOTD model, 11-11
Fourier, J. B. J., 3-40, 9-33
frequency domain, 9-1–9-3, 10-1, 10-19, 12-1
frequency response, 2-4, 3-5, 3-22, 3-23, 6-22–6-27, 9-2, 10-24, 11-11, 12-8
relationship to Bode plot, 9-24
relationship to Nyquist plot, 10-4, 10-5
second-order systems, 7-20, 9-29
system identification using, 9-31
fully actuated systems, 9-14
fundamental limits, see control: fundamental limitations
Furuta pendulum, 5-36
gain, 1-18, 2-4, 3-22, 4-8, 6-23, 6-24, 7-21, 9-3, 9-6, 9-13, 9-24, 10-12, 10-19–10-22, 13-1
H∞ control, 13-25–13-28, 13-30
observer, see observer gain of a system, 10-19
reference, 7-30
state feedback, 7-11, 7-15, 7-30, 7-32
steady-state, 9-13
zero frequency, see zero frequency gain
zz, see also integral gain
gain crossover frequency, 10-13, 12-8, 12-22, 13-19
gain crossover frequency inequality, 12-22, 12-24
gain curve (Bode plot), 9-24–9-28, 10-16, 12-13
gain margin, 10-12–10-14 from Bode plot, 10-13
reasonable values, 10-14
gain scheduling, 8-21, 13-28, 14-1, 14-11–14-12
gain-bandwidth product, 4-10, 9-7, 13-15
Gang of Four, 12-3, 12-35, 13-12
Gang of Seven, 12-3, 12-8
gene regulation, 1-10, 3-38, 6-36, 9-29
general solution to the homogeneous equation, 2-2
genetic switch, 3-43, 5-21
global behavior, 5-10, 5-27–5-30
Glover, K., 12-34, 13-28
glucose regulation, see insulin-glucose dynamics
Golomb, S., 4-1
governor, see centrifugal governor
H∞ control, 13-25–13-28, 13-30
haptics, 2-25
Harrier AV-8B aircraft, 3-32
heat propagation, 9-9
Heaviside, O., 6-34
Heaviside step function, 6-20, 6-34
Hellerstein, J. L., 1-26, 4-17
high-frequency roll-off, 12-13, 13-13, 13-21
high-pass filter, 9-29
Hill function, 3-38
Hoagland, M. B., 1-1
Hodgkin-Huxley equations, 3-39
homeostasis, 1-3, 3-38
homogeneous equation, 2-2
homogeneous solution, 6-3, 6-6
Horowitz, I. M., 8-26, 12-34, 13-23, 13-28
human-machine interface, 1-22, 4-1, 4-4
hybrid system, 3-8, 3-19
hysteresis, 1-17, 10-23

identification, see system identification
impedance, 9-7, 11-20
impedance control, 2-25
implementation, controllers, see analog implementation; computer implementation
impulse function, 6-16, 6-34, 7-4
impulse response, 6-5, 6-16, 6-17, 9-12
inductor, transfer function for, 9-7
inertia matrix, 3-12, 6-33
infinity norm, 10-20, 13-26
information systems, see also congestion control; web server control, 1-8, 3-33–3-37
initial condition, 5-2, 5-5, 5-8, 6-2, 6-4, 6-7, 6-14, 8-15
initial condition response, 6-3, 6-6–6-9, 6-12, 6-14, 6-17, 9-3
initial value problem, 5-2
inner loop control, 12-31, 12-33
input sensitivity function, see load sensitivity function
input/output models, see also frequency response; steady-state response; step response, 1-5, 3-4, 3-5, 6-2, 6-15–6-28, 9-1, 10-19
and transfer functions, 9-12
and uncertainty, 3-10, 13-3
from experiments, 9-31
relationship to state space models, 3-6, 5-1, 6-16
steady-state response, 6-19
input/output stable, 10-20
inputs, 3-3, 3-6
insect flight control, 3-23–3-26
instrumentation, 1-7, 4-7
insulin-glucose dynamics, 1-2, 4-24–4-25
integral action, 1-18, 1-19, 1-27, 2-20–2-21, 7-30–7-33, 11-1, 11-3–11-5, 11-7, 12-11
for bias compensation, 8-27
setpoint weighting, 11-19, 11-23
time constant, 11-2
integral gain, 1-18, 11-2, 11-4, 11-7
integrator, see also double integrator, 3-23, 3-24, 6-9, 7-30, 7-31, 8-5, 9-10, 9-25, 10-16, 11-16
integrator windup, 1-18, 8-26, 11-14–11-16, 11-24, 11-25
conditional integration, 11-25
intelligent machines, see robotics
internal model principle, 8-13, 8-21
internal stability, 12-4
Internet, see also congestion control, 1-8, 1-9, 4-11, 4-13, 4-16, 4-29
Internet Protocol (IP), 4-13
invariant set, 5-25, 5-28
inverse, 2-27
inverse model, 6-32, 12-6
inverse response, 2-28, 10-18, 10-26
inverted pendulum, see also balance systems

3-13–3-14, 4-5, 5-6, 5-14, 5-25, 5-27, 5-35, 5-36
10-10, 12-27
Jacobian linearization, 6-29–6-31
Janert, P. K., 1-26
Jordan block, 6-9
Jordan form, 6-9–6-12, 6-35, 7-22
Kalman, R. E., 7-1, 7-32, 8-1, 8-23, 8-26
Kalman decomposition, 8-22–8-24, 9-17, 9-34, 9-36
Kalman filter, 8-14–8-19, 8-26, 13-25
extended, 8-21
Kalman-Bucy filter, 8-17
Kelly, F. P., 4-16
Kepler, J., 3-2
Keynesian economic model, 3-41, 6-35
Krasovski-Lasalle principle, 5-24–5-25
LabVIEW, 5-29, 6-34
lag, see phase lag
lag compensation, 12-13–12-15
Laplace transform, computing transfer function with, 9-11
Laplace transforms, xi, 9-10–9-12
Laplacian matrix, 3-37
Lasalle’s invariance principle, see Krasovski-Lasalle principle
lead, see phase lead
lead compensation, 12-14–12-17, 12-32, 12-36
limit cycle, 4-27, 5-7, 5-16, 5-17, 5-29, 10-22
linear quadratic control, 7-25–7-29, 8-16, 8-26, 13-24–13-25
linear systems, 3-4, 3-10, 4-10, 5-11, 6-1–6-34, 8-22, 9-4, 9-33, 10-20
<table>
<thead>
<tr>
<th>INDEX</th>
<th>1-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear time-invariant systems,</td>
<td></td>
</tr>
<tr>
<td>3-4, 3-10, 6-4</td>
<td></td>
</tr>
<tr>
<td>linearity, 6-3, 9-24</td>
<td></td>
</tr>
<tr>
<td>linearization, 5-15, 5-23, 6-2, 6-28–6-33, 8-20, 8-21, 13-1</td>
<td></td>
</tr>
<tr>
<td>Lipschitz continuity, 5-4</td>
<td></td>
</tr>
<tr>
<td>load disturbances, see also disturbances, 12-1, 13-12</td>
<td></td>
</tr>
<tr>
<td>load sensitivity function, 12-3</td>
<td></td>
</tr>
<tr>
<td>local behavior, 5-9, 5-15, 5-24, 5-27, 6-29</td>
<td></td>
</tr>
<tr>
<td>locally asymptotically stable, 5-9</td>
<td></td>
</tr>
<tr>
<td>logistic growth model, 4-25, 4-26, 4-30</td>
<td></td>
</tr>
<tr>
<td>loop analysis, 10-1, 12-1</td>
<td></td>
</tr>
<tr>
<td>loop gain, 10-12</td>
<td></td>
</tr>
<tr>
<td>loop shaping, 10-4, 12-12–12-17, 12-33, 13-23</td>
<td></td>
</tr>
<tr>
<td>design rules, 12-14</td>
<td></td>
</tr>
<tr>
<td>fundamental limitations, 12-21–12-30</td>
<td></td>
</tr>
<tr>
<td>zz, see also Bode’s loop transfer function</td>
<td></td>
</tr>
<tr>
<td>loop transfer function, see also Bode’s loop transfer function, 10-1–10-4, 10-12, 10-20, 12-1, 12-4, 12-12, 12-13, 12-16, 12-26, 12-34</td>
<td></td>
</tr>
<tr>
<td>Lotus Notes server, see e-mail server</td>
<td></td>
</tr>
<tr>
<td>low-order models, 11-6</td>
<td></td>
</tr>
<tr>
<td>low-pass filter, 9-29, 11-19</td>
<td></td>
</tr>
<tr>
<td>LQ control, see linear quadratic control</td>
<td></td>
</tr>
<tr>
<td>LTI systems, see linear time-invariant systems</td>
<td></td>
</tr>
<tr>
<td>Lyapunov equation, 5-20, 5-35</td>
<td></td>
</tr>
<tr>
<td>Lyapunov functions, 5-17, 5-18, 5-20, 5-21, 5-27, 5-34, 6-35</td>
<td></td>
</tr>
<tr>
<td>design of controllers using, 5-25, 5-31</td>
<td></td>
</tr>
<tr>
<td>existence of, 5-20</td>
<td></td>
</tr>
<tr>
<td>Lyapunov stability analysis, 3-22, 5-17–5-26, 5-33</td>
<td></td>
</tr>
<tr>
<td>discrete time, 5-35</td>
<td></td>
</tr>
<tr>
<td>magnitude, 2-4</td>
<td></td>
</tr>
<tr>
<td>manifold, 5-26</td>
<td></td>
</tr>
<tr>
<td>margins, see stability margins Materials science, 1-6</td>
<td></td>
</tr>
<tr>
<td>Mathematica, 3-20, 5-29, 6-34</td>
<td></td>
</tr>
<tr>
<td>MATLAB, 1-27, 3-20, 5-29, 6-34</td>
<td></td>
</tr>
<tr>
<td>acker, 7-15, 8-11</td>
<td></td>
</tr>
<tr>
<td>dlqe, 8-16</td>
<td></td>
</tr>
<tr>
<td>dlgr, 7-29</td>
<td></td>
</tr>
<tr>
<td>hinfsyn, 13-26</td>
<td></td>
</tr>
<tr>
<td>jordan, 6-10</td>
<td></td>
</tr>
<tr>
<td>linmod, 6-30</td>
<td></td>
</tr>
<tr>
<td>lqr, 7-25</td>
<td></td>
</tr>
<tr>
<td>place, 7-15, 7-24, 8-11</td>
<td></td>
</tr>
<tr>
<td>trim, 6-30</td>
<td></td>
</tr>
<tr>
<td>matrix exponential, 6-6–6-9, 6-13, 6-15, 6-33, 6-34</td>
<td></td>
</tr>
<tr>
<td>coordinate transformations, 6-18</td>
<td></td>
</tr>
<tr>
<td>Jordan form, 6-10</td>
<td></td>
</tr>
<tr>
<td>second-order systems, 6-34</td>
<td></td>
</tr>
<tr>
<td>maximum complementary sensitivity, 13-8, 13-19</td>
<td></td>
</tr>
<tr>
<td>maximum selector, 1-20, 14-8</td>
<td></td>
</tr>
<tr>
<td>maximum sensitivity, 12-10, 13-6, 13-20</td>
<td></td>
</tr>
<tr>
<td>measured signals, 3-6, 3-10, 5-1, 8-1, 8-14, 8-26, 12-2, 12-4, 13-25</td>
<td></td>
</tr>
<tr>
<td>measurement noise, 1-4, 1-15, 8-1, 8-3, 8-14, 8-15, 8-17, 9-20, 11-18, 12-1–12-3, 12-13, 13-13</td>
<td></td>
</tr>
<tr>
<td>response to, 12-11–12-12, 13-13–13-14</td>
<td></td>
</tr>
<tr>
<td>mechanical systems, 3-6, 3-12, 3-21, 3-30, 3-40, 6-32</td>
<td></td>
</tr>
<tr>
<td>mechanics, 3-2–3-3, 3-5, 5-32, 6-1</td>
<td></td>
</tr>
<tr>
<td>median selector, 14-9</td>
<td></td>
</tr>
<tr>
<td>mid-range control, 14-1, 14-7</td>
<td></td>
</tr>
<tr>
<td>minimal model (insulin-glucose), see also insulin-glucose dynamics, 4-24, 4-25</td>
<td></td>
</tr>
<tr>
<td>minimum phase, 10-17, 10-24, 12-21</td>
<td></td>
</tr>
<tr>
<td>minimum selector, 1-20, 14-8</td>
<td></td>
</tr>
<tr>
<td>model following, 14-1</td>
<td></td>
</tr>
<tr>
<td>Modelica, 3-7</td>
<td></td>
</tr>
<tr>
<td>modeling, 1-5, 3-1–3-10, 3-40, 4-1</td>
<td></td>
</tr>
<tr>
<td>control perspective, 3-5</td>
<td></td>
</tr>
<tr>
<td>discrete control, 3-5</td>
<td></td>
</tr>
<tr>
<td>discrete-time, 3-14–3-15, 6-27–6-28</td>
<td></td>
</tr>
<tr>
<td>frequency domain, 9-1–9-3</td>
<td></td>
</tr>
<tr>
<td>from experiments, 3-27–3-28</td>
<td></td>
</tr>
<tr>
<td>model reduction, 1-5</td>
<td></td>
</tr>
<tr>
<td>normalization and scaling, 3-28</td>
<td></td>
</tr>
<tr>
<td>of uncertainty, 3-9–3-10</td>
<td></td>
</tr>
<tr>
<td>simplified models, use of, 3-6, 11-7, 13-2, 13-8, 13-9</td>
<td></td>
</tr>
<tr>
<td>software for, 3-7, 6-30, 6-33</td>
<td></td>
</tr>
<tr>
<td>state space, 3-10–3-22</td>
<td></td>
</tr>
<tr>
<td>uncertainty, see uncertainty modes, 6-12–6-14, 9-13</td>
<td></td>
</tr>
<tr>
<td>relationship to poles, 9-14</td>
<td></td>
</tr>
<tr>
<td>monotone step responses, 11-11</td>
<td></td>
</tr>
<tr>
<td>motion control systems, 3-30–3-33, 8-26</td>
<td></td>
</tr>
<tr>
<td>motors, electric, 3-44, 7-34, 8-28</td>
<td></td>
</tr>
<tr>
<td>multi-input, multi-output systems, see also input/output models, 10-20, 12-4, 12-14</td>
<td></td>
</tr>
<tr>
<td>multiplicative uncertainty, 13-3, 13-10</td>
<td></td>
</tr>
<tr>
<td>nanopositioner (AFM), 10-15, 13-20</td>
<td></td>
</tr>
<tr>
<td>natural frequency, 7-19</td>
<td></td>
</tr>
<tr>
<td>negative definite function, 5-18</td>
<td></td>
</tr>
<tr>
<td>negative feedback, 1-12, 1-16, 4-9, 7-10, 10-1, 11-5</td>
<td></td>
</tr>
<tr>
<td>Nernst’s law, 3-40</td>
<td></td>
</tr>
<tr>
<td>networking, see also congestion control, 1-8, 3-24, 4-16</td>
<td></td>
</tr>
<tr>
<td>neural systems, 1-7, 3-25, 3-39, 11-5, 11-6</td>
<td></td>
</tr>
<tr>
<td>neutral stability, 5-8–5-10</td>
<td></td>
</tr>
<tr>
<td>Newton, 1, 3-2</td>
<td></td>
</tr>
<tr>
<td>Nichols, N. B., 6-33, 11-10, 12-33</td>
<td></td>
</tr>
<tr>
<td>Nichols chart, 13-24</td>
<td></td>
</tr>
<tr>
<td>Nobel Prize, 1-7, 3-40, 4-17</td>
<td></td>
</tr>
<tr>
<td>noise, see disturbances; measurement noise</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

10-16, 12-13
phase lag, 6-23, 6-24, 9-29, 10-17, 12-22, 12-24
phase lead, 6-23, 9-29, 12-17, 12-36
phase margin, 10-13, 10-14, 12-14, 12-15, 12-22, 12-37, 13-29
from Bode plot, 10-13
reasonable values, 10-14
phase portrait, 3-3, 5-4–5-6, 5-27
Philbrick, G. A., 4-11
photoreceptors, 11-5
physics, relationship to control, 1-5
PI Control, 2-9
PI control, 1-12, 1-19, 2-10, 2-21, 4-1, 4-4, 11-4, 11-9, 12-14, 12-15
first-order system, 11-7, 13-18
PID control, 1-18–1-19, 11-1–11-23, 12-17
block diagram, 11-2, 11-4, 11-16
computer implementation, 11-21
ideal form, 11-1, 11-23
implementation, 11-4, 11-18–11-23
in biological systems, 11-5
op amp implementation, 11-20–11-21
tuning, 11-10–11-14
zz, see also derivative action; integral action
pitchfork bifurcation, 5-37
planar dynamical systems, see also second-order systems, 5-5, 5-10
pole and zeros, 9-13–9-16
pole excess, 12-18
pole placement, see also eigenvalue assignment, 7-11, 13-16, 13-19–13-20
robust, 13-15
pole zero diagram, 9-14
pole/zero cancellations, 9-16–9-18, 9-36, 13-20
poles, 2-5, 9-13, 9-14
dominant, see also dominant eigenvalues (poles), 11-9
fast stable, 13-18, 13-20
pure imaginary, 10-5, 10-10
relationship to eigenvalues, 9-13
right half-plane, 9-14, 10-10, 10-17, 12-21, 12-23–12-24, 12-26, 12-36, 13-20
poles and zeros, 9-13
population dynamics, see also predator-prey system, 4-25–4-27, 4-30
positive definite function, 5-18, 5-20, 5-24
positive definite matrix, 5-20, 7-25
positive feedback, 1-15–1-17, 2-18, 2-21, 5-36, 11-4
positive real (transfer function), 12-26
power of a matrix, 6-6
power systems (electric), 1-5–1-6, 3-43, 5-7, 5-34
predator-prey system, 3-15, 4-26–4-27, 5-28, 7-15
prediction, in controllers, see also derivative action, 1-18, 1-19, 8-21, 11-5, 13-29
prediction time, 11-5
principle of the argument, see variation of the argument, principle of process control, 1-6, 3-24
proportional (P) control, 2-9
proportional control, see also PID control, 1-18, 2-9, 11-1
proportional, integral, derivative control, see PID control
proportional-derivative (PD) controller, 2-24
Proportional-Integral Control, 2-9
protocol, see congestion control; consensus
pulse signal, see also impulse function, 6-16, 6-17, 7-22
pupil response, 9-32, 11-5
pure exponential solution, 9-5
Q-value, 3-42, 7-20, 9-27
quantitative feedback theory (QFT), 13-23–13-24
quarter car model, 9-37
queuing systems, 3-33–3-35, 3-43
random process, 3-33, 8-14, 8-15, 8-29
reachability, 3-6, 7-1–7-9, 7-32, 8-22
rank condition, 7-4
tests for, 7-3
unreachable systems, 7-5, 7-33, 8-22–8-24, 9-36
reachability matrix, 7-3, 7-8
reachable canonical form, 3-11, 7-6–7-9, 7-13, 7-14, 7-33
reachable set, 7-1
real-time systems, 1-5
reference signal, see also command signals;
setpoint, 1-17, 7-10, 9-1, 9-20, 11-1, 11-19, 12-3, 12-5
effect on observer error, 8-12, 8-19, 8-24
response to, 12-8, 12-9, 12-35
tracking, 7-10, 8-19, 8-20, 12-13, 13-14
reference weighting, see setpoint weighting
region of attraction, see equilibrium points:
regions of attraction regulation problem, 2-8
regulator, see control law
relay feedback, 10-23, 11-13
Reno (protocol), see Internet;
congestion control
repeatitive control, 14-1, 14-9, 14-10
repressillator, 3-39
repressor, 1-11, 3-39, 3-43, 5-21, 6-36, 9-30
reset logic, 3-8
reset, in PID control, 11-3, 11-4
resonant frequency, 7-20, 10-20
resonant peak, 6-26, 7-20, 12-8, 13-9
resource usage, in computing systems, 3-34, 3-36, 4-11, 4-12
response, see input/output models
retina, see also pupil response, 11-5
Riccati equation, 7-25, 8-17, 13-26, 13-28
Riemann sphere, 13-5
right half-plane poles and zeros, see poles: right half-plane; zeros: right half-plane
rise time, 6-21, 7-10, 7-20, 12-8
robotics, 1-7–1-8, 6-33
robustness, 1-10–1-12, 12-8, 13-3, 13-28
stability, 13-6–13-12
using gain and phase margin, 10-14, 12-13
using maximum sensitivity, 12-10, 12-13, 13-7, 13-29, 13-31
using pole placement, 13-15–13-22
via gain and phase margin, 10-14
zz, see also uncertainty roll-off, see high-frequency roll-off
root locus, 12-17, 12-18
asymptotes, 12-36
initial direction, 12-36
real line segment, 12-36
root locus diagram, 5-29, 5-30
root locus method, 12-18
Routh-Hurwitz criterion, 2-5, 5-37
Routh-Hurwitz stability criterion, 2-5
rush-hour effect, 3-35, 3-43
saddle (equilibrium point), 5-10
sampling, 6-27, 8-25, 8-26, 11-21
saturation function, see also actuators; saturation, 3-24, 4-8, 11-21
scaling, see normalized coordinates
scanning tunneling microscope, 4-17
schematic diagrams, 3-23, 3-24, 4-7
Schitter, G., 4-20
second-order systems, 3-2, 6-34, 7-18–7-21, 7-35, 9-26, 9-27, 11-9
Segway, 2-24
Segway Personal Transporter, 3-12, 7-4
selector, 1-20
selector control, 14-1, 14-8–14-9
of air-fuel, 1-20
selector, maximum, 1-20
selector, minimum, 1-20
self-activation, 5-36
self-optimization, 14-12
self-repression, 6-36, 9-29
semidefinite function, 5-18
sensitivity crossover frequency, 12-10
sensitivity function, 12-3, 12-10, 12-11, 12-13, 12-26, 13-7, 13-14, 13-20
and disturbance attenuation, 12-10, 12-26, 12-35
sensor matrix, 3-11, 3-14
sensor networks, 3-36
sensors, 1-3, 1-4, 8-2, 8-25, 10-17, 11-21, 12-1, 12-4, 12-23, 12-24, 13-25
effect on zeros, 10-17, 12-24
in computing systems, 4-11
zz, see also measured signals
separation principle, 8-1, 8-13
series connection, 9-19
service rate (queuing systems), 3-33
servo problem, 2-12
setpoint, 11-1
setpoint weighting, 11-19, 11-23
settling time, 6-21, 6-35, 7-10, 7-20, 12-8
similarity of two systems, 13-3–13-6
simulated notation exponential functions, 9-5
simulation, 3-10, 3-19–3-20
SIMULINK, 6-30
single-input, single-output (SISO) systems, 5-1, 6-2, 6-3, 6-29, 8-4, 10-20
singular values, 10-19, 10-20, 13-30
sink (equilibrium point), 5-10
small gain theorem, 10-20–10-21, 13-9
Smith predictor, 13-29
ideal time delay, 14-10
social, 1-16
software tools for control, x
solution (ODE), see differential equations: solutions
source (equilibrium point), 5-10
spectrum analyzer, 9-31
Sperry autopilot, 1-13
split-range control, 14-7
spring-mass system, 3-2, 3-19, 3-21, 3-22, 4-18, 5-34
coupled, 6-14, 6-18
generalized, 3-12, 4-7
identification, 3-27
normalization, 3-28, 3-42
zz, see also oscillator dynamics
Stability, 2-5
Routh-Hurwitz criterion, 2-5
stability, 1-3, 1-5, 1-12, 1-13, 2-5, 3-21, 5-4, 5-8–5-26
asymptotic stability, 5-8, 5-13
conditional, 10-9
in the sense of Lyapunov, 5-8
local versus global, 5-9, 5-16, 5-27
Lyapunov analysis, see Lyapunov stability analysis
neutrally stable, 5-8, 5-10
of a system, 5-11
of equilibrium points, 3-21, 5-8, 5-10, 5-17, 5-18, 5-23
INDEX

of feedback loop, see Nyquist criterion
of limit cycles, 5-16
of linear systems,
 5-11–5-14, 5-20, 6-10
of solutions, 5-8, 5-9, 5-17
of transfer functions, 9-14
robust, see robust stability
unstable solutions, 5-9
using eigenvalues, 5-23, 6-10, 6-11
using linear approximation,
 5-14, 5-23, 6-30
using Routh-Hurwitz criterion, 5-37
using state feedback,
 7-9–7-29
zz, see also bifurcations; equilibrium points
stability diagram, see parametric stability diagram
stability margin (quantity),
 10-13, 10-14, 12-10, 12-37, 13-7, 13-26
reasonable values, 10-14
stability margins (concept),
 10-12–10-16, 10-25, 12-13
stable, 2-5
stable pole, 9-14
stable zero, 9-14
Stark, L., 9-32
state, of a dynamical system,
 3-2, 3-6, 3-10
state estimators, see observers
state feedback, see also eigenvalue assignment;
 linear quadratic control,
 7-1–7-32, 8-7, 8-12, 8-19–8-21, 8-24–8-26,
 13-16, 13-25, 14-4
state space, 3-2, 3-10–3-22, 7-9
state vector, 3-2, 3-10
static gain, 2-4
steady state solution, 9-5
steady-state gain, see zero frequency gain, 9-13
steady-state response, 1-27,
 3-20, 6-19–6-27, 7-11, 7-20, 9-2, 9-31, 9-33
steam engines, 1-2, 1-11
steering, see vehicle steering
Stein, G., xii, 1-1, 12-1, 12-27
step input, 3-4, 6-5, 6-20, 9-13
step response, 3-4, 3-5, 3-27,
 3-28, 6-5, 6-17, 6-20,
 6-21, 7-10, 7-19, 7-20, 11-10
stochastic systems, 8-14, 8-17
summing junction, 3-24
superposition, 3-4, 6-3, 6-17, 6-34, 9-2
supervisory control, see decision making: higher levels of
supply chains, 1-9, 1-10
supremum (sup), 10-20
switching behavior, 1-16,
 3-43, 5-23, 5-24, 13-28
system identification, 3-27,
 3-28, 3-42, 9-31
system inversion, 2-27
tapping mode, see atomic force microscope
TCP/IP, see Internet;
 congestion control
Teorell, T., 2-5
Teorell, T., 4-21, 4-25
the relative gain array,
 14-3
three-term controllers, see also PID control, 11-1
thrust vectored aircraft, see vectored thrust aircraft
time constant, 2-2
time constant, first-order system, 6-35
time delay, 1-8, 9-9, 9-10,
 10-15, 10-17, 11-10,
 11-11, 11-21, 12-23,
 12-24
compensation for, 13-29, 13-30
Padé approximation, 10-26, 12-23
time plot, 3-3
time-invariant systems, 3-4,
 3-10, 5-33, 6-4–6-5
tracking, see reference signal:
 tracking
 tracking mode, 11-17
trail (bicycle dynamics), 4-6
transcription factors, 3-38
transcriptional regulation, see gene regulation
transfer function, 2-3
transfer function:loop tracing, 9-21
transfer functions, 9-1–9-33
 common systems, 9-10
derivation using exponential signals, 9-4
 for control systems, 9-20,
 9-36
 for electrical circuits, 9-6
 for time delay, 9-9
frequency response, 9-2, 9-24
from experiments, 9-31
irrational, 9-9
linear input/output systems,
 9-4, 9-10, 9-36
simplified notation, 9-5
transfer functions, 9-12
transient response, 9-26
transfer functions: Laplace transforms, 9-11
transfer functions: impulse response, 9-12
transfer functions: state space model, 9-11
transient response, 3-20, 6-20,
 6-21, 6-23, 7-2, 7-23
Transmission Control Protocol (TCP), 4-13
transmission zero, 2-5
Tsien, H. S., 1-8
 tuning rules, see Ziegler-Nichols tuning,
 11-24
Tustin, A., 2-1
two degree-of-freedom control, 8-20, 11-2, 12-5,
 12-7, 12-34, 12-35
two degrees of freedom, 2-14, 2-30
uncertainty, 1-4, 1-11–1-12,
 3-6, 3-9–3-10, 7-30,
 13-1–13-6
component or parameter variation, 1-4, 3-9, 13-1
disturbances and noise, 1-4,
 3-6, 7-10, 9-20, 12-1
unmodeled dynamics, 1-4,
 3-9, 13-2, 13-8