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[Åst00] K. J. Åström. Limitations on control system performance. European Journal on Con-

trol, 6(1):2–20, 2000.
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E , 9-5
+, 1-5, 4-13, 4-18, 4-25, 4-29

acausal modeling, 3-7
access control, see admission

control
acknowledgment (ack) packet,

4-13–4-15
activator, 1-11, 3-39, 5-36
active filter, see also

operational amplifier, 6-24
actuators, 1-4, 3-5, 3-30, 4-1,

4-17, 7-12, 8-25, 9-37,
10-17, 11-21, 12-11,
12-23–12-25, 12-27

effect on zeros, 10-17, 12-24
in computing systems, 4-11
saturation, 3-9, 8-26,

11-14–11-16, 11-21,
12-11

A/D converters, see

analog-to-digital
converters

adaptation, 11-5, 14-1,
14-11–14-12

adaptive control, 13-28, 13-29
additive uncertainty, 13-3,

13-7, 13-10, 13-31
adjacency matrix, 3-36
admission control, 3-33, 3-43,

4-14, 4-15, 10-8
aerospace systems, see also

vectored thrust aircraft;
X-29 aircraft, 1-6, 1-13,
12-29

AFM, see atomic force
microscope

air-fuel ratio control, 1-20
aircraft, see flight control
alcohol, metabolism of, 4-30
algebraic loops, 3-26, 8-11
aliasing, 8-26

all-pass transfer function,
12-21

alternating current (AC), 6-25

amplifier, see operational
amplifier

amplitude ratio, see gain

analog computing, 3-10, 3-26,
4-7, 11-20

analog implementation,
controllers, 4-10, 9-35,
11-20–11-21

analog-to-digital converters,
1-4, 4-18, 8-25, 11-21

angle, 2-4

anti-windup compensation,
1-18

anticipation, in controllers, see

also derivative action,
1-18, 11-5

antiresonance, 6-26

anti-windup compensation,
11-15–11-16, 11-21,
11-23, 11-25

Apache web server, see also

web server control, 4-12

apparent volume of
distribution, 4-22, 4-30

Arbib, M. A., 7-1

argument, of a complex
number, 9-24

arrival rate (queuing systems),
3-33

asymptotes, in Bode plot,
9-26, 9-27

asymptotic stability, 3-21, 5-8,
5-10, 5-12, 5-13, 5-18,
5-20, 5-23–5-25, 5-27,
6-10

discrete-time systems, 6-35

atmospheric dynamics, see

environmental science

atomic force microscopes, 1-3,

3-30, 4-17–4-20
contact mode, 4-17, 6-26,

7-34
horizontal positioning,

10-15, 13-20
system identification, 9-31
tapping mode, 4-17, 10-24,

11-7, 11-12, 12-14
with preloading, 4-29

attractor (equilibrium point),
5-10

automatic reset, in PID
control, 11-4

automatic tuning, 11-14, 13-28
automation, 3-5
automotive control systems,

see also cruise control;
vehicle steering, 1-15,
3-30, 4-5

autonomous differential
equation, see also

time-invariant systems,
3-3

autopilot, 1-13, 1-14

balance systems, see also

cart-pendulum system;
inverted pendulum,
3-12–3-13, 3-29, 7-4,
7-23, 9-14, 12-25

band-pass filter, 6-24, 6-25,
9-29

bandwidth, 6-25, 7-20, 12-8,
12-23

behavioral modeling, 3-7
Bell Labs, 1-12, 10-23
Bennett, S., 1-26, 10-24, 11-23
bicycle dynamics, 4-5–4-7,

4-27, 5-29, 8-27
Whipple model, 4-7

bicycle model, 3-31
bicycle model, for vehicle

steering, 3-30–3-32
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bicycledynamics
Whipple model, 7-34

bifurcations, see also root
locus plots, 5-28–5-30,
5-36

biological circuits, 1-11, 3-24,
3-38–3-39, 5-36, 6-36,
9-29

genetic switch, 3-43, 5-21
repressilator, 3-39

biological systems, see also

biological circuits; drug
administration; neural
systems; population
dynamics, 1-1–1-3, 1-7,
1-10, 1-16, 1-26,
3-38–3-40, 5-33, 11-1,
11-5

bistability, 1-16, 5-23
Black, H. S., 1-12, 1-13, 4-7,

4-9, 6-1, 10-1, 10-24, 13-1
block diagonal form, 5-12,

5-36, 6-19
block diagonal systems, 5-12,

5-36, 6-9, 6-15, 6-19, 8-12
block diagram

finding transfer functions by
inspection, 2-8

simplified writing of
equations, 2-8

block diagram algebra, 9-18,
9-21, 13-10

block diagrams, 1-1,
3-23–3-26, 9-8, 9-18–9-23

control system, 1-4, 9-1,
9-20, 12-1

Kalman decomposition,
8-23

observable canonical form,
8-5

observer, 8-2, 8-10
observer-based control

system, 8-14
PID controllers, 11-1, 11-4,

11-21
reachable canonical form,

7-7
two degree-of-freedom

controller, 8-20, 12-2,
13-12

Youla parameterization,
13-11

Bode, H., 9-1, 10-23, 10-24,
12-34, 13-28

Bode plots, 9-24–9-30, 10-16
asymptotic approximation,

9-26, 9-27, 9-36
low-, band-, high-pass

filters, 9-29
nonminimum phase

systems, 10-17
of rational function, 9-24
sketching, 9-27

Bode’s ideal loop transfer
function, 13-10, 13-29

Bode’s integral formula,
12-25–12-27,
12-29–12-30

Bode’s relations, 10-16, 12-13
Brahe, T., 3-2
breakpoint, 9-26, 10-6
Bristol’s RGA, 14-3
Brockett, R. W., xii, 1-1, 6-33
Bryson, A. E., 7-35
bump test, 11-10
bumpless transfer, 13-28
bumptest, 11-11
Bush, V., 11-23
business systems, 1-16

calibration, versus feedback,
1-7, 7-14, 7-30, 7-31

Cannon, R. H., 3-40, 6-1
capacitor, transfer function for,

9-7
car, see automotive control

systems; cruise control;
vehicle steering

carrying capacity, in
population models, 4-26

cart-pendulum system, see

also balance systems,
2-24, 3-12, 3-13, 7-6

cascade control, 14-1,
14-3–14-5

applications, 14-5
disturbance rejection, 14-4
windup, 14-5

causal reasoning, 1-1, 4-6
Cayley-Hamilton theorem,

7-4, 7-34, 8-3
center (equilibrium point),

5-10

centrifugal governor, 1-2, 1-3,
1-11

chain of integrators (normal
form), 3-41, 7-7

characteristic equation, 2-2,
2-5

characteristic polynomial, 2-1,
5-11, 7-34, 9-14

for closed loop transfer
function, 10-2

observable canonical form,
8-5

output feedback controller,
8-12, 8-13

reachable canonical form,
7-7, 7-9, 7-13, 7-33

chemical systems, see also

process control;
compartment models, 1-6,
11-1

chordal distance, 13-5
circuits, see biological circuits;

electrical circuits
class E , 9-5
classical control, xi, 13-28
closed loop, 1-1, 1-2, 1-4,

6-32, 7-10, 7-17, 10-1,
10-2, 10-20, 12-1

versus open loop, 1-2, 10-3,
10-21, 12-1

closed loop behavior, 10-1
Command signal following,

2-12
command signals, see also

reference signal; setpoint,
1-4, 1-16, 8-20, 11-1

compartment models,
4-21–4-25, 5-13, 6-21,
7-20, 8-3, 8-8, 8-28

exercises, 6-34
compensator, see control law
complementary sensitivity

function, 12-3, 12-11,
12-27, 13-5, 13-8, 13-11,
13-14, 13-19, 13-23,
13-29

complexity, of control
systems, 1-7, 1-15, 11-6

computed torque, 6-33
computer implementation,

controllers, 8-24–8-26,
11-21–11-23
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computer science, relationship
to control, 1-5

computer systems, control of,
see also queuing systems,
1-8–1-9, 1-26, 3-16, 3-35,
3-36, 4-11–4-17, 6-27

conditional integration, 11-25
conditional stability, 10-9
congestion control, see also

queuing systems, 1-8,
4-13–4-16, 5-10, 10-7,
10-25, 11-24

router dynamics, 4-29
consensus, 3-36
control

definition of, 1-3–1-5
early examples, 1-2, 1-5,

1-6, 1-12, 1-15, 1-26, 11-4
fundamental limitations,

10-17, 12-21–12-30,
12-34, 13-18, 13-20,
13-27–13-28

history of, 1-26, 11-23
modeling for, 1-5, 3-5–3-6,

3-40, 13-1
successes of, 1-6, 1-26
system, 1-3, 7-9, 8-14, 8-19,

8-25, 9-1, 12-2, 12-5,
13-12

using estimated state,
8-11–8-14, 13-24

Control architecture
two degrees of freedom,

2-14
control architecture

two degrees of freedom,
2-14

control error, 1-17, 9-20, 11-2
control law, 1-4, 1-17, 1-18,

6-32, 7-10, 7-13, 9-20
control Lyapunov function,

5-31
control matrix, 3-11, 3-14
control signal, 3-6, 6-27, 11-1
controllability, see also

reachability, 7-32
controlled differential

equation, 3-3, 3-11
convolution equation,

6-15–6-17, 6-19, 6-20,
7-4, 9-12

discrete-time, 6-35

coordinate transformations,
5-12, 6-17–6-19, 7-7,
8-27, 9-12–9-13

to Jordan form, 6-9
to observable canonical

form, 8-6
to reachable canonical form,

7-8, 7-9
Coriolis forces, 3-12, 6-33
corner frequency, 9-26
correlation matrix, 8-15, 8-16
cost function, 7-25
coupled spring-mass system,

6-12, 6-14, 6-18
covariance matrix, 8-15
critical gain, 11-11, 11-13,

11-14
critical period, 11-11, 11-13
critical point, 10-2, 10-5, 10-7,

10-13, 10-22, 10-23,
11-11, 13-6, 13-7, 13-27

critically damped oscillator,
7-18

crossover frequency, see gain
crossover frequency;
phase crossover frequency

crossover frequency inequality,
see gain crossover
frequency inequality

cruise control, 1-12, 1-22,
4-1–4-5

control design, 7-30, 11-8,
11-19

electric car, 14-5
feedback linearization, 6-32
integrator windup, 11-14,

11-15
linearization, 6-28
pole/zero cancellation, 9-17
robustness, 1-12, 13-1, 13-2,

13-8
Curtiss seaplane, 1-13, 1-14
cybernetics, see also robotics,

1-7
cyberphysical system, 3-8

D/A converters, see

digital-to-analog
converters

damped frequency, 7-19
damping, 3-2, 3-12, 3-19, 5-2,

9-37, 9-38

damping ratio, 2-11, 7-18,
7-19, 7-22

DC gain, see also zero
frequency gain, 6-25

dead zone, 1-17
decoupling, 14-3

direct, 14-3
decoupling:feedback, 14-3
delay, see time delay
delay compensation, 10-25,

13-30
delay margin, 10-15
delta function, see impulse

function
derivative action, 1-18, 1-19,

11-1, 11-4–11-6, 11-20,
12-17

filtering, 11-5, 11-18–11-19,
11-22, 11-23

setpoint weighting, 11-19,
11-23

time constant, 11-2
versus lead compensator,

12-17
derivative gain, 11-2
derivative time constant, 11-5
describing functions,

10-21–10-23
design of dynamics,

1-12–1-14, 5-15,
5-30–5-32, 6-1, 7-1, 7-11,
7-17

diabetes, see insulin-glucose
dynamics

diagonal systems, 5-12, 6-8
Kalman decomposition for,

8-23
transforming to, 5-12, 5-36,

6-8
difference equations, 3-10,

3-14–3-17, 3-20, 3-41,
6-27, 8-25, 11-22

differential algebraic
equations, see also

algebraic loops, 3-7
differential equations, 3-2,

3-10–3-14, 5-1–5-4
controlled, 3-3, 6-3
equilibrium points, 5-6–5-7
existence and uniqueness of

solutions, 5-2–5-4
first-order, 3-6, 11-6
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isolated solution, 5-7
periodic solutions, 5-7–5-8,

5-16
qualitative analysis, 5-4–5-8
second-order, 5-5, 7-18,

11-6
solutions, 5-1, 5-2, 6-3, 6-6,

6-15, 9-34
stability, see stability
transfer functions for, 9-10

differential flatness, 8-22
digital control systems, see

computer implementation,
controllers

digital-to-analog converters,
1-4, 4-18, 8-25, 11-21

dimension-free variables,
3-28, 3-40

direct connection, 3-26
direct decoupling, 14-3
direct term, 3-11, 3-14, 3-26,

6-17, 8-11
discrete control, 3-35
discrete-time systems, 3-14,

3-41, 5-35, 6-27, 6-35,
11-21

Kalman filter for, 8-14
linear quadratic regulator

for, 7-27
disk drives, 3-44
disturbance attenuation, 1-4,

7-10, 12-10–12-11, 13-13
design of controllers for,

12-6, 12-13, 12-27, 12-35,
13-24

fundamental limits, 12-26
in biological systems, 9-30,

11-5
integral gain as a measure

of, 11-4, 12-11, 13-13
relationship to sensitivity

function, 12-10, 12-25,
12-35, 13-13

disturbance weighting, 13-27
disturbances, 1-4, 3-3, 3-6,

9-17, 9-20, 12-1, 12-4,
12-5

generalized, 13-25
random, 8-15

Dodson, B., 1-1
dominant eigenvalues (poles),

7-22, 11-9

dominant pairs, 7-34

double integrator, 2-5, 6-7,
7-2, 9-10, 10-25

Doyle, J. C., xii, 12-34, 13-28
drug administration, see also

compartment models,
4-21–4-25, 4-30, 6-21,
7-20

duality, 8-7, 8-11
Dubins car, 3-31
dynamic compensator, 7-30

dynamic inversion, 6-33
dynamical systems, 1-1, 3-1,

5-1, 5-4, 5-32

linear, 5-11, 6-1
observer as a, 8-1
state of, 7-9
stochastic, 8-14
uncertainty in, 13-1–13-3
zz, see also differential

equations
dynamics matrix, 3-11, 3-14,

5-11, 6-12

Dyson, F., 3-1

e-commerce, 1-8
e-mail server, control of, 3-16,

6-27

economic systems, 1-9, 1-16,
3-41

ecosystems, see also

predator-prey system,
1-10, 4-25, 7-15

eigenvalue assignment, 7-11,
7-13–7-17, 7-23, 8-12,
11-8, 11-23

by output feedback, 8-13
for observer design, 8-8

eigenvalues, 5-11, 5-20, 5-29,
6-12, 9-5

and Jordan form, 6-9–6-11,
6-35

distinct, 5-35, 5-36, 6-8,
6-14, 8-23

dominant, 7-22
effect on dynamic behavior,

7-17–7-19, 7-21, 7-22, 9-5
for discrete-time systems,

6-35
invariance under coordinate

transformation, 5-12

relationship to modes,
6-12–6-15

relationship to poles, 9-13
relationship to stability,

5-23, 6-10, 6-11
eigenvectors, 5-12, 5-36, 6-12

relationship to mode shape,
6-13

electric car, 14-5
electric power, see power

systems (electric)
electrical circuits, see also

operational amplifier, 3-7,
3-24, 4-10, 6-1, 9-6

electrical engineering,
1-5–1-6, 3-4–3-5, 6-25,
10-9

elephant, modeling of an, 3-1
Elowitz, M. B., 3-39
encirclement, see also Nyquist

criterion, 10-5
environmental science, 1-3,

1-6
equation-based modeling, 3-7
equilibrium points, 4-26, 5-6,

5-11, 6-2, 6-29, 7-2
bifurcations of, 5-28
discrete time, 3-41
for closed loop system,

7-11, 7-30
for planar systems, 5-10
region of attraction,

5-26–5-28, 5-34
stability, 5-8

equipment protection, 14-8
error feedback, 2-14, 11-1,

11-2, 11-19, 12-3
estimators, see oserversI-1
Euler integration, 3-20, 3-21
exponential functions

simplified notation, 9-5
exponential input, 9-3
exponential signal, 9-4
exponential signals, 9-2–9-9,

9-13, 9-24
exponential signals E , 9-5
extended Kalman filter, 8-21
extremal control, 14-1
extremum seeking, 14-12

Falb, P. L., 7-1
Feedback, 2-1
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feedback, 1-1–1-3
as technology enabler, 1-3,

1-13
business, 1-16
combining with

feedforward, 2-29
drawbacks of, 1-3, 1-15,

11-18, 13-6, 13-13
economy, 1-16
in biological systems, see

also biological circuits,
1-1–1-3, 1-10, 1-26, 11-5

in engineered systems, see

control
in financial systems, 1-3
in nature, 1-3, 1-9–1-10,

4-25
positive, see positive

feedback
properties, 1-3, 1-5,

1-11–1-17, 12-1, 12-6,
13-1

robustness through, 1-11
versus feedforward, 1-16,

11-4, 12-6
feedback and feedforward,

2-26
feedback connection, 9-19,

10-21
feedback controller, 9-20, 12-1
feedback decoupling, 14-3
feedback linearization,

6-32–6-33
feedback loop, 1-4, 10-1, 12-1,

13-12
feedback uncertainty, 13-3,

13-10
feedback:positive, 2-18
feedforward, 1-15, 1-16,

8-19–8-22, 9-20, 12-1,
12-5, 12-7

business, 1-16
combining with feedback,

2-29
difficulties, 2-27
economy, 1-16
sensitivity to process

variations, 2-29
system inversion, 2-27

Fermi, E., 3-1
filters

active, 6-24

for disturbance weighting,
13-27

for measurement signals,
1-15, 8-26, 13-13

zz, see also band-pass
filters; high-filters;
low-pass filters

financial systems, see

economic systems
finite escape time, 5-3
finite state machine, 1-22, 3-8,

4-5, 4-12
first-order systems, 6-4, 6-35,

9-10, 9-25, 9-27
fisheries management, 4-30
flatness, see differential

flatness
flight control, 1-6, 1-13, 3-31,

6-33
X-29 aircraft, 12-27
zz, see also vectored thrust

aircraft
flow, of a vector field, 3-3, 5-5
flow in a tank, 5-33
flow model (queuing systems),

3-33, 10-25, 11-24
flyball governor, see

centrifugal governor
force feedback, 1-7
forced response, 6-3, 9-3
forced solution, 6-3
Forrester, J. W., 1-10
FOTD model, 11-11
Fourier, J. B. J., 3-40, 9-33
frequency domain, 9-1–9-3,

10-1, 10-19, 12-1
frequency response, 2-4, 3-5,

3-22, 3-23, 6-22–6-27,
9-2, 10-24, 11-11, 12-8

relationship to Bode plot,
9-24

relationship to Nyquist plot,
10-4, 10-5

second-order systems, 7-20,
9-29

system identification using,
9-31

fully actuated systems, 9-14
fundamental limits, see

control: fundamental
limitations

Furuta pendulum, 5-36

gain, 1-18, 2-4, 3-22, 4-8,
6-23, 6-24, 7-21, 9-3, 9-6,
9-13, 9-24, 10-12,
10-19–10-22, 13-1

H∞, 10-20, 13-26
observer, see observer gain
of a system, 10-19
reference, 7-30
state feedback, 7-11, 7-15,

7-30, 7-32
steady-state, 9-13
zero frequency, see zero

frequency gain
zz, see also integral gain

gain crossover frequency,
10-13, 12-8, 12-22, 13-19

gain crossover frequency
inequality, 12-22, 12-24

gain curve (Bode plot),
9-24–9-28, 10-16, 12-13

gain margin, 10-12–10-14
from Bode plot, 10-13
reasonable values, 10-14

gain scheduling, 8-21, 13-28,
14-1, 14-11–14-12

gain-bandwidth product, 4-10,
9-7, 13-15

Gang of Four, 12-3, 12-35,
13-12

Gang of Seven, 12-3, 12-8
gene regulation, 1-10, 3-38,

6-36, 9-29
general solution to the

homogeneous equation,
2-2

genetic switch, 3-43, 5-21
global behavior, 5-10,

5-27–5-30
Glover, K., 12-34, 13-28
glucose regulation, see

insulin-glucose dynamics
Golomb, S., 4-1
governor, see centrifugal

governor

H∞ control, 13-25–13-28,
13-30

haptics, 2-25
Harrier AV-8B aircraft, 3-32
heat propagation, 9-9
Heaviside, O., 6-34
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Heaviside step function, 6-20,
6-34

Hellerstein, J. L., 1-26, 4-17

high-frequency roll-off, 12-13,
13-13, 13-21

high-pass filter, 9-29

Hill function, 3-38

Hoagland, M. B., 1-1

Hodgkin-Huxley equations,
3-39

homeostasis, 1-3, 3-38

homogeneous equation, 2-2

homogeneous solution, 6-3,
6-6

Horowitz, I. M., 8-26, 12-34,
13-23, 13-28

human-machine interface,
1-22, 4-1, 4-4

hybrid system, 3-8, 3-19

hysteresis, 1-17, 10-23

identification, see system
identification

impedance, 9-7, 11-20
impedance control, 2-25

implementation, controllers,
see analog
implementation; computer
implementation

impulse function, 6-16, 6-34,
7-4

impulse response, 6-5, 6-16,
6-17, 9-12

inductor, transfer function for,
9-7

inertia matrix, 3-12, 6-33

infinity norm, 10-20, 13-26

information systems, see also

congestion control; web
server control, 1-8,
3-33–3-37

initial condition, 5-2, 5-5, 5-8,
6-2, 6-6, 6-7, 6-14, 8-15

initial condition response, 6-3,
6-6–6-9, 6-12, 6-14, 6-17,
9-3

initial value problem, 5-2
inner loop control, 12-31,

12-33

input sensitivity function, see

load sensitivity function

input/output models, see also

frequency response;
steady-state response; step
response, 1-5, 3-4, 3-5,
6-2, 6-15–6-28, 9-1, 10-19

and transfer functions, 9-12
and uncertainty, 3-10, 13-3
from experiments, 9-31
relationship to state space

models, 3-6, 5-1, 6-16
steady-state response, 6-19

input/output stable, 10-20
inputs, 3-3, 3-6
insect flight control, 3-23–3-26
instrumentation, 1-7, 4-7
insulin-glucose dynamics, 1-2,

4-24–4-25
integral action, 1-18, 1-19,

1-27, 2-20–2-21,
7-30–7-33, 11-1,
11-3–11-5, 11-7, 12-11

for bias compensation, 8-27
setpoint weighting, 11-19,

11-23
time constant, 11-2

integral gain, 1-18, 11-2, 11-4,
11-7

integrator, see also double
integrator, 3-23, 3-24, 6-9,
7-30, 7-31, 8-5, 9-10,
9-25, 10-16, 11-16

integrator windup, 1-18, 8-26,
11-14–11-16, 11-24,
11-25

conditional integration,
11-25

intelligent machines, see

robotics
internal model principle, 8-13,

8-21
internal stability, 12-4
Internet, see also congestion

control, 1-8, 1-9, 4-11,
4-13, 4-16, 4-29

Internet Protocol (IP), 4-13
invariant set, 5-25, 5-28
inverse, 2-27
inverse model, 6-32, 12-6
inverse response, 2-28, 10-18,

10-26
inverted pendulum, see also

balance systems,

3-13–3-14, 4-5, 5-6, 5-14,
5-25, 5-27, 5-35, 5-36,
10-10, 12-27

Jacobian linearization,
6-29–6-31

Janert, P. K., 1-26
Jordan block, 6-9
Jordan form, 6-9–6-12, 6-35,

7-22

Kalman, R. E., 7-1, 7-32, 8-1,
8-23, 8-26

Kalman decomposition,
8-22–8-24, 9-17, 9-34,
9-36

Kalman filter, 8-14–8-19,
8-26, 13-25

extended, 8-21
Kalman-Bucy filter, 8-17
Kelly, F. P., 4-16
Kepler, J., 3-2
Keynesian economic model,

3-41, 6-35
Krasovski-Lasalle principle,

5-24–5-25

LabVIEW, 5-29, 6-34
lag, see phase lag
lag compensation,

12-13–12-15
Laplace transform

computing transfer function
with, 9-11

Laplace transforms, xi,
9-10–9-12

Laplacian matrix, 3-37
Lasalle’s invariance principle,

see Krasovski-Lasalle
principle

lead, see phase lead
lead compensation,

12-14–12-17, 12-32,
12-36

limit cycle, 4-27, 5-7, 5-16,
5-17, 5-29, 10-22

linear quadratic control,
7-25–7-29, 8-16, 8-26,
13-24–13-25

linear systems, 3-4, 3-10, 4-10,
5-11, 6-1–6-34, 8-22, 9-4,
9-33, 10-20
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linear time-invariant systems,
3-4, 3-10, 6-4

linearity, 6-3, 9-24
linearization, 5-15, 5-23, 6-2,

6-28–6-33, 8-20, 8-21,
13-1

Lipschitz continuity, 5-4
load disturbances, see also

disturbances, 12-1, 13-13
load sensitivity function, 12-3
local behavior, 5-9, 5-15, 5-24,

5-27, 6-29
locally asymptotically stable,

5-9
logistic growth model, 4-25,

4-26, 4-30
loop analysis, 10-1, 12-1
loop gain, 10-12
loop shaping, 10-4,

12-12–12-17, 12-33,
13-23

design rules, 12-14
fundamental limitations,

12-21–12-30
zz, see also Bode’s loop

transfer function
loop transfer function, see also

Bode’s loop transfer
function, 10-1–10-4,
10-12, 10-20, 12-1, 12-4,
12-12, 12-13, 12-16,
12-26, 12-34

Lotus Notes server, see e-mail
server

low-order models, 11-6
low-pass filter, 9-29, 11-19
LQ control, see linear

quadratic control
LTI systems, see linear

time-invariant systems
Lyapunov equation, 5-20, 5-35
Lyapunov functions, 5-17,

5-18, 5-20, 5-21, 5-27,
5-34, 6-35

design of controllers using,
5-25, 5-31

existence of, 5-20
Lyapunov stability analysis,

3-22, 5-17–5-26, 5-33
discrete time, 5-35

magnitude, 2-4

manifold, 5-26
margins, see stability margins
materials science, 1-6
Mathematica, 3-20, 5-29, 6-34
MATLAB, 1-27, 3-20, 5-29,

6-34, 7-34
acker, 7-15, 8-11
dlqe, 8-16
dlqr, 7-29
hinfsyn, 13-26
jordan, 6-10
linmod, 6-30
lqr, 7-25
place, 7-15, 7-24, 8-11
trim, 6-30

matrix exponential, 6-6–6-9,
6-13, 6-15, 6-33, 6-34

coordinate transformations,
6-18

Jordan form, 6-10
second-order systems, 6-34

maximum complementary
sensitivity, 13-8, 13-19

maximum selector, 1-20, 14-8
maximum sensitivity, 12-10,

13-6, 13-20
measured signals, 3-6, 3-10,

5-1, 8-1, 8-14, 8-26, 12-2,
12-4, 13-25

measurement noise, 1-4, 1-15,
8-1, 8-3, 8-14, 8-15, 8-17,
9-20, 11-18, 12-1–12-3,
12-13, 13-13

response to, 12-11–12-12,
13-13–13-14

mechanical systems, 3-6, 3-12,
3-21, 3-30, 3-40, 6-32

mechanics, 3-2–3-3, 3-5, 5-32,
6-1

median selector, 14-9
mid-range control, 14-1, 14-7
minimal model

(insulin-glucose), see also

insulin-glucose dynamics,
4-24, 4-25

minimum phase, 10-17, 10-24,
12-21

minimum selector, 1-20, 14-8
model following, 14-1
Modelica, 3-7
modeling, 1-5, 3-1–3-10, 3-40,

4-1

control perspective, 3-5
discrete control, 3-35
discrete-time, 3-14–3-15,

6-27–6-28
frequency domain, 9-1–9-3
from experiments,

3-27–3-28
model reduction, 1-5
normalization and scaling,

3-28
of uncertainty, 3-9–3-10
simplified models, use of,

3-6, 11-7, 13-2, 13-8, 13-9
software for, 3-7, 6-30, 6-33
state space, 3-10–3-22
uncertainty, see uncertainty

modes, 6-12–6-14, 9-13
relationship to poles, 9-14

monotone step responses,
11-11

motion control systems,
3-30–3-33, 8-26

motors, electric, 3-44, 7-34,
8-28

multi-input, multi-output
systems, see also

input/output models,
10-20, 12-4, 12-14

multiplicative uncertainty,
13-3, 13-10

nanopositioner (AFM), 10-15,
13-20

natural frequency, 7-19
negative definite function, 5-18
negative feedback, 1-12, 1-16,

4-9, 7-10, 10-1, 11-5
Nernst’s law, 3-40
networking, see also

congestion control, 1-8,
3-24, 4-16

neural systems, 1-7, 3-25,
3-39, 11-5, 11-6

neutral stability, 5-8–5-10
Newton, I., 3-2
Nichols, N. B., 6-33, 11-10,

12-33
Nichols chart, 13-24
Nobel Prize, 1-7, 3-40, 4-17
noise, see disturbances;

measurement noise
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noise attenuation, 9-30,
12-11–12-12

noise cancellation, 5-31

noise sensitivity function, 12-3

nonlinear systems, 3-6, 5-1,
5-4, 5-7, 5-15, 5-17, 5-21,
5-27–5-32, 8-2, 8-20,
8-21, 10-20, 10-21

linear approximation, 5-15,
5-23, 6-29, 13-1

system identification, 3-42

nonminimum phase, see also

inverse response, 10-16,
10-17, 10-26,
12-21–12-23

nonunique solutions (ODEs),
5-3

normalized coordinates,
3-28–3-30, 3-42, 6-31

norms, 10-19–10-20

Nyquist, H., 10-1, 10-23

Nyquist criterion, 10-5, 10-7,
10-9, 10-12, 10-20, 10-21,
11-11

for robust stability, 13-6,
13-31

Nyquist D contour, 10-4,
10-10

Nyquist plot, 10-4–10-5,
10-12, 10-13, 11-11,
12-10, 13-24

observability, 3-6, 8-1–8-2,
8-22, 8-26

rank condition, 8-3

tests for, 8-2–8-3

unobservable systems, 8-4,
8-22–8-24, 9-36

observability matrix, 8-3, 8-5

observable canonical form,
8-4, 8-5, 8-27

observer gain, 8-7, 8-9–8-11,
8-13, 8-15–8-17

observers, 8-1, 8-6–8-9, 8-17,
8-21

block diagram, 8-2, 8-10

zz, see also Kalman filter

ODEs, see differential
equations

Ohm’s law, 3-40, 4-9, 9-6

on-off control, 1-17, 1-18

open loop, 1-1, 1-2, 4-8, 7-2,
9-22, 10-1, 11-14, 12-1,
12-10, 13-3

open loop gain, 9-7, 12-8

operational amplifiers,
4-7–4-11, 9-7, 11-20,
13-10

circuits, 4-28, 6-24, 10-2,
13-14

dynamic model, 4-10, 9-7

input/output characteristics,
4-8

oscillator using, 4-28, 5-35

static model, 4-8, 9-7

optimal control, 7-25, 8-15,
8-17, 13-25

order, of a model, 3-10, 3-11

ordinary differential equations,
see differential equations

oscillator dynamics, 4-28, 5-2,
5-3, 6-7, 6-8, 7-18, 9-5,
9-10

normal form, 3-42

zz, see also nanopositioner
(AFM); spring-mass
system

outer loop control,
12-31–12-33

output feedback, see also

control: using estimated
state; loop shaping; PID
control, 8-11, 8-12, 8-26

output sensitivity function, see

noise sensitivity function

outputs, see measured signals

overdamped oscillator, 7-18

overshoot, 6-21, 7-10, 7-20,
12-8

P control, 2-9, 2-10

Padé approximation, 10-26,
12-23

paging control (computing),
3-35

pairing problem, 14-2

parallel connection, 9-19

parallel systems, 14-5–14-6

parametric stability diagram,
5-28–5-30

parametric uncertainty, 3-9,
13-1

particular solution, see also

forced response, 2-2, 6-3,
6-22, 9-5

non
uniqueness, 2-2

transfer function, 2-3
passive systems, 10-21, 12-26
passivity theorem, 10-21
patch clamp, 1-7
PD control, 2-24, 11-4, 12-14,

12-15
peak frequency, 6-26, 12-8
pendulum dynamics, see also

inverted pendulum, 5-19
perfect adaptation, 11-5
perfect control, 14-2
performance, 4-12
performance limitations,

12-21, 12-26, 13-20,
13-27

due to right half-plane poles
and zeros, 10-17

zz, see also control:
fundamental limitations

performance specifications,
see also overshoot;
maximum sensitivity;
resonant peak; rise time;
settling time, 6-21, 7-10,
12-1, 12-8–12-12, 12-14,
13-12

periodic solutions, see

differential equations;
limit cycles

persistence, of a web
connection, 4-12, 4-13

Petri net, 3-24
pharmacokinetics, see also

drug administration, 4-21,
4-25

phase, see also minimum
phase; nonminimum
phase, 2-4, 3-22, 6-23,
6-24, 7-21, 9-3, 9-6, 9-24,
10-22

minimum vs. nonminimum,
10-16

phase crossover frequency,
10-13

phase curve (Bode plot),
9-24–9-26, 9-28

relationship to gain curve,
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10-16, 12-13
phase lag, 6-23, 6-24, 9-29,

10-17, 12-22, 12-24
phase lead, 6-23, 9-29, 12-17,

12-36
phase margin, 10-13, 10-14,

12-14, 12-15, 12-22,
12-37, 13-29

from Bode plot, 10-13
reasonable values, 10-14

phase portrait, 3-3, 5-4–5-6,
5-27

Philbrick, G. A., 4-11
photoreceptors, 11-5
physics, relationship to

control, 1-5
PI Control, 2-9
PI control, 1-12, 1-19, 2-10,

2-21, 4-1, 4-4, 11-4, 11-9,
12-14, 12-15

first-order system, 11-7,
13-18

PID control, 1-18–1-19,
11-1–11-23, 12-17

block diagram, 11-2, 11-4,
11-16

computer implementation,
11-21

ideal form, 11-1, 11-23
implementation, 11-4,

11-18–11-23
in biological systems, 11-5
op amp implementation,

11-20–11-21
tuning, 11-10–11-14
zz, see also derivative

action; integral action
pitchfork bifurcation, 5-37
planar dynamical systems, see

also second-order
systems, 5-5, 5-10

pole and zeros, 9-13–9-16
pole excess, 12-18
pole placement, see also

eigenvalue assignment,
7-11, 13-16, 13-19–13-20

robust, 13-15
pole zero diagram, 9-14
pole/zero cancellations,

9-16–9-18, 9-36, 13-20
poles, 2-5, 9-13, 9-14

dominant, see also dominant

eigenvalues (poles), 11-9
fast stable, 13-18, 13-20
pure imaginary, 10-5, 10-10
relationship to eigenvalues,

9-13
right half-plane, 9-14,

10-10, 10-17, 12-21,
12-23–12-24, 12-26,
12-36, 13-20

poles and zeros, 9-13
population dynamics, see also

predator-prey system,
4-25–4-27, 4-30

positive definite function,
5-18, 5-20, 5-24

positive definite matrix, 5-20,
7-25

positive feedback, 1-15–1-17,
2-18, 2-21, 5-36, 11-4

positive real (transfer
function), 12-26

power of a matrix, 6-6
power systems (electric),

1-5–1-6, 3-43, 5-7, 5-34
predator-prey system, 3-15,

4-26–4-27, 5-28, 7-15
prediction, in controllers, see

also derivative action,
1-18, 1-19, 8-21, 11-5,
13-29

prediction time, 11-5
principle of the argument, see

variation of the argument,
principle of

process control, 1-6, 3-24
proportional (P) control, 2-9
proportional control, see also

PID control, 1-18, 2-9,
11-1

proportional, integral,
derivative control, see PID
control

proportional-derivative (PD)
controller, 2-24

Proportional-Integral Control,
2-9

protocol, see congestion
control; consensus

pulse signal, see also impulse
function, 6-16, 6-17, 7-22

pupil response, 9-32, 11-5
pure exponential solution, 9-5

Q-value, 3-42, 7-20, 9-27
quantitative feedback theory

(QFT), 13-23–13-24
quarter car model, 9-37
queuing systems, 3-33–3-35,

3-43

random process, 3-33, 8-14,
8-15, 8-29

reachability, 3-6, 7-1–7-9,
7-32, 8-22

rank condition, 7-4
tests for, 7-3
unreachable systems, 7-5,

7-33, 8-22–8-24, 9-36
reachability matrix, 7-3, 7-8
reachable canonical form,

3-11, 7-6–7-9, 7-13, 7-14,
7-33

reachable set, 7-1
real-time systems, 1-5
reference signal, see also

command signals;
setpoint, 1-17, 7-10, 9-1,
9-20, 11-1, 11-19, 12-3,
12-5

effect on observer error,
8-12, 8-19, 8-24

response to, 12-8, 12-9,
12-35

tracking, 7-10, 8-19, 8-20,
12-13, 13-14

reference weighting, see

setpoint weighting
region of attraction, see

equilibrium points:
regions of attraction

regulation problem, 2-8
regulator, see control law
relay feedback, 10-23, 11-13
Reno (protocol), see Internet;

congestion control
repetitive control, 14-1, 14-9,

14-10
repressilator, 3-39
repressor, 1-11, 3-39, 3-43,

5-21, 6-36, 9-30
reset logic, 3-8
reset, in PID control, 11-3,

11-4
resonant frequency, 7-20,

10-20
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resonant peak, 6-26, 7-20,
12-8, 13-9

resource usage, in computing
systems, 3-34, 3-36, 4-11,
4-12

response, see input/output
models

retina, see also pupil response,
11-5

Riccati equation, 7-25, 8-17,
13-26, 13-28

Riemann sphere, 13-5
right half-plane poles and

zeros, see poles: right
half-plane; zeros: right
half-plane

rise time, 6-21, 7-10, 7-20,
12-8

robotics, 1-7–1-8, 6-33
robustness, 1-10–1-12, 12-8,

13-3, 13-28
performance, 13-12–13-15,

13-22–13-28
stability, 13-6–13-12
using gain and phase

margin, 10-14, 12-13
using maximum sensitivity,

12-10, 12-13, 13-7, 13-29,
13-31

using pole placement,
13-15–13-22

via gain and phase margin,
10-14

zz, see also uncertainty
roll-off, see high-frequency

roll-off
root locus, 12-17, 12-18

asymptotes, 12-36
initial direction, 12-36
real line segment, 12-36

root locus diagram, 5-29, 5-30
root locus method, 12-18
Routh-Hurwitz criterion, 2-5,

5-37
Routh-Hurwitz stability

criterion, 2-5
rush-hour effect, 3-35, 3-43

saddle (equilibrium point),
5-10

sampling, 6-27, 8-25, 8-26,
11-21

saturation function, see also

actuators: saturation, 3-24,
4-8, 11-21

scaling, see normalized
coordinates

scanning tunneling
microscope, 4-17

schematic diagrams, 3-23,
3-24, 4-7

Schitter, G., 4-20
second-order systems, 3-2,

6-34, 7-18–7-21, 7-35,
9-26, 9-27, 11-9

Segway, 2-24
Segway Personal Transporter,

3-12, 7-4
selector, 1-20
selector control, 14-1,

14-8–14-9
of air-fuel, 1-20

selector, maximum, 1-20
selector,minimum, 1-20
self-activation, 5-36
self-optimization, 14-12
self-repression, 6-36, 9-29
semidefinite function, 5-18
sensitivity crossover

frequency, 12-10
sensitivity function, 12-3,

12-10, 12-11, 12-13,
12-26, 13-7, 13-14, 13-20

and disturbance attenuation,
12-10, 12-26, 12-35

sensor matrix, 3-11, 3-14
sensor networks, 3-36
sensors, 1-3, 1-4, 8-2, 8-25,

10-17, 11-21, 12-1, 12-4,
12-23, 12-24, 13-25

effect on zeros, 10-17, 12-24
in computing systems, 4-11
zz, see also measured

signals
separation principle, 8-1, 8-13
series connection, 9-19
service rate (queuing systems),

3-33
servo problem, 2-12
setpoint, 11-1
setpoint weighting, 11-19,

11-23
settling time, 6-21, 6-35, 7-10,

7-20, 12-8

similarity of two systems,
13-3–13-6

simplified notation
exponential functions, 9-5

simulation, 3-10, 3-19–3-20
SIMULINK, 6-30
single-input, single-output

(SISO) systems, 5-1, 6-2,
6-3, 6-29, 8-4, 10-20

singular values, 10-19, 10-20,
13-30

sink (equilibrium point), 5-10
small gain theorem,

10-20–10-21, 13-9
Smith predictor, 13-29

ideal time delay, 14-10
social, 1-16
software tools for control, x
solution (ODE), see

differential equations:
solutions

source (equilibrium point),
5-10

spectrum analyzer, 9-31
Sperry autopilot, 1-13
split-range control, 14-7
spring-mass system, 3-2, 3-19,

3-21, 3-22, 4-18, 5-34
coupled, 6-14, 6-18
generalized, 3-12, 4-7
identification, 3-27
normalization, 3-28, 3-42
zz, see also oscillator

dynamics
Stability, 2-5

Rout-Hurwitz criterion, 2-5
stability, 1-3, 1-5, 1-12, 1-13,

2-5, 3-21, 5-4, 5-8–5-26
asymptotic stability, 5-8,

5-13
conditional, 10-9
in the sense of Lyapunov,

5-8
local versus global, 5-9,

5-16, 5-27
Lyapunov analysis, see

Lyapunov stability
analysis

neutrally stable, 5-8, 5-10
of a system, 5-11
of equilibrium points, 3-21,

5-8, 5-10, 5-17, 5-18, 5-23
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of feedback loop, see

Nyquist criterion
of limit cycles, 5-16
of linear systems,

5-11–5-14, 5-20, 6-10
of solutions, 5-8, 5-9, 5-17
of transfer functions, 9-14
robust, see robust stability
unstable solutions, 5-9
using eigenvalues, 5-23,

6-10, 6-11
using linear approximation,

5-14, 5-23, 6-30
using Routh-Hurwitz

criterion, 5-37
using state feedback,

7-9–7-29
zz, see also bifurcations;

equilibrium points
stability diagram, see

parametric stability
diagram

stability margin (quantity),
10-13, 10-14, 12-10,
12-37, 13-7, 13-26

reasonable values, 10-14
stability margins (concept),

10-12–10-16, 10-25,
12-13

stable, 2-5
stable pole, 9-14
stable zero, 9-14
Stark, L., 9-32
state, of a dynamical system,

3-2, 3-6, 3-10
state estimators, see observers
state feedback, see also

eigenvalue assignment;
linear quadratic control,
7-1–7-32, 8-7, 8-12,
8-19–8-21, 8-24–8-26,
13-16, 13-25, 14-4

state space, 3-2, 3-10–3-22,
7-9

state vector, 3-2, 3-10
static gain, 2-4
steady state solution, 9-5
steady-state gain, see zero

frequency gain, 9-13
steady-state response, 1-27,

3-20, 6-19–6-27, 7-11,
7-20, 9-2, 9-31, 9-33

steam engines, 1-2, 1-11
steering, see vehicle steering
Stein, G., xii, 1-1, 12-1, 12-27
step input, 3-4, 6-5, 6-20, 9-13
step response, 3-4, 3-5, 3-27,

3-28, 6-5, 6-17, 6-20,
6-21, 7-10, 7-19, 7-20,
11-10

stochastic systems, 8-14, 8-17
summing junction, 3-24
superposition, 3-4, 6-3, 6-17,

6-34, 9-2
supervisory control, see

decision making: higher
levels of

supply chains, 1-9, 1-10
supremum (sup), 10-20
switching behavior, 1-16,

3-43, 5-23, 5-24, 13-28
system identification, 3-27,

3-28, 3-42, 9-31
system inversion, 2-27

tapping mode, see atomic
force microscope

TCP/IP, see Internet;
congestion control

Teorell, T., 4-21, 4-25
the relative gain array, 14-3
three-term controllers, see also

PID control, 11-1
thrust vectored aircraft, see

vectored thrust aircraft
time constant, 2-2
time constant, first-order

system, 6-35
time delay, 1-8, 9-9, 9-10,

10-15, 10-17, 11-10,
11-11, 11-21, 12-23,
12-24

compensation for, 13-29,
13-30

Padé approximation, 10-26,
12-23

time plot, 3-3
time-invariant systems, 3-4,

3-10, 5-33, 6-4–6-5
tracking, see reference signal:

tracking
tracking mode, 11-17
trail (bicycle dynamics), 4-6
transcription factors, 3-38

transcriptional regulation, see

gene regulation
transfer function, 2-3
transfer function:looptracing,

9-21
transfer functions, 9-1–9-33

common systems, 9-10
derivation using exponential

signals, 9-4
for control systems, 9-20,

9-36
for electrical circuits, 9-6
for time delay, 9-9
frequency response, 9-2,

9-24
from experiments, 9-31
irrational, 9-9
linear input/output systems,

9-4, 9-10, 9-36
simplified notation, 9-5

transfer functions: , 9-12
transfer functions: Laplace

transforms, 9-11
transfer functions:impulse

response, 9-12
transfer functions:state space

model, 9-11
transient response, 3-20, 6-20,

6-21, 6-23, 7-2, 7-23
Transmission Control Protocol

(TCP), 4-13
transmission zero, 2-5
Tsien, H. S., 1-8
tuning rules, see

Ziegler-Nichols tuning,
11-24

Tustin, A., 2-1
two degree-of-freedom

control, 8-20, 11-2, 12-5,
12-7, 12-34, 12-35

two degrees of freedom, 2-14,
2-30

uncertainty, 1-4, 1-11–1-12,
3-6, 3-9–3-10, 7-30,
13-1–13-6

component or parameter
variation, 1-4, 3-9, 13-1

disturbances and noise, 1-4,
3-6, 7-10, 9-20, 12-1

unmodeled dynamics, 1-4,
3-9, 13-2, 13-8
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zz, see also additive
uncertainty; feedback
uncertainty; multiplicative
uncertainty

uncertainty band, 3-9
uncertainty lemon, 3-9, 4-4,

4-10, 4-20
undamped natural frequency,

2-11
underdamped oscillator, 5-3,

7-19, 7-20
unit step, 6-20
unmodeled dynamics, see

uncertainty: unmodeled
dynamics, 2-11, 2-12

effect for control, 2-12
unstable pole, see poles: right

half-plane
unstable pole/zero

cancellation, 9-17
unstable solution, for a

dynamical system, 5-9,
5-10, 5-13, 6-10, 9-14

unstable zero, see zeros: right
half-plane

variation of the argument,
principle of, 10-11, 10-24

vector field, 3-3, 5-5
vectored thrust aircraft,

3-32–3-33, 6-11, 7-26,
8-17, 9-36, 12-16, 12-30

vehicle steering, 3-30–3-32,
6-30, 7-11, 8-9, 8-13,
8-21, 9-22, 10-18, 10-25,
12-7, 13-16

ship dynamics, 3-30
vehicle suspension, see also

coupled spring-mass
system, 9-37

vertical takeoff and landing,
see vectored thrust aircraft

vibration absorber, 9-38
Vinnicombe, G., 12-34, 13-5,

13-6, 13-28
Vinnicombe metric,

13-3–13-6, 13-26
voltage clamp, 1-7, 3-40

waterbed effect, 12-26, 12-27
Watt governor, see centrifugal

governor
Watt steam engine, 1-3, 1-11
web server control, 4-11–4-13,

7-27
web site, companion, x
Whipple, F. J. W., 4-7
Wiener, N., 1-7
winding number, 10-11
window size (TCP), 4-14,

4-16, 5-10
windup, see integrator windup

cascade control, 14-5
selector control, 14-9

Wright, W., 1-13

Wright Flyer, 1-6, 1-13

X-29 aircraft, 12-27

Youla parameterization,
13-10–13-12

zero
blocking property, 2-5

zero frequency gain, 2-4, 6-25,
7-11, 7-14, 7-20, 9-13,
11-11

zeros, 2-5, 9-13
Bode plot for, 9-36
effect of sensors and

actuators on, 10-17,
10-18, 12-24

for a state space system,
9-14

right half-plane, 9-14,
10-17, 12-21–12-24,
12-27, 12-36, 13-20

signal-blocking property,
9-13

slow stable, 13-16, 13-18,
13-20

Ziegler, J. G., 11-10, 11-23
Ziegler-Nichols tuning,

11-10–11-13, 11-23
frequency response, 11-11
improved method, 11-11
step response, 11-10
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