Feedback Systems

An Introduction for Scientists and Engineers SECOND EDITION

Karl Johan Åström Richard M. Murray

Version v3.0a (21 March 2010)

This manuscript is for editing purposes only and may not be reproduced, in whole or in part, without written consent from the authors.

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Frontmatter.tex, v3839 2010-03-21 18:37:38Z (murray)

Contents

Preface to the Second Edition	xiii
Preface to the First Edition	xv
Chapter 1. Introduction	1
1.1 What Is Feedback?	1
1.2 What Is Control?	3
Feedback Examples	5
1.3 Feedback Properties	5
Positive Feedback	11
1.4 Simple Forms of Feedback	11
On-Off Control	11
PID Control	12
1.5 Further Reading	14
Exercises	14
1.A Feedback Examples	17
Early Technological Examples	17
Power Generation and Transmission	18
Aerospace and Transportation	19
Materials and Processing	20
Instrumentation	21
Robotics and Intelligent Machines	23
Networks and Computing Systems	24
Economics	26
Feedback in Nature	27
Chapter 2. System Modeling	31
2.1 Modeling Concepts	31
The Heritage of Mechanics	32
The Heritage of Electrical Engineering	33
The Control View	35
Multidomain Modeling	36
2.2 State Space Models	38
Ordinary Differential Equations	38

IV		CONTENTS
	- Balance systems	39
	- Inverted pendulum	41
	Difference Equations	41
	- Predator-prey	42
	- E-mail server	43
	Finite State Automata and Hybrid Systems	44
	- Traffic light controller	44
	Simulation and Analysis	45
2.3	•	49
	Block Diagrams	49
	Modeling from Experiments	52
	- Spring-mass system	52
	Normalization and Scaling	53
	- Spring–mass system	54
	- Balance system	54
	Model Uncertainty	55
2.4	Modeling Examples	56
	Motion Control Systems	56
	 Vehicle steering—the bicycle model 	56
	- Vectored thrust aircraft	58
	Information Systems	59
	- Queuing systems	59
	- Virtual memory paging control	61
	- Consensus protocols in sensor networks	62
	Biological Systems	64
	- Transcriptional regulation	64
	- Wave propagation in neuronal networks	66
2.5	Further Reading	66
	Exercises	67
Chap	ter 3. Feedback Principles	79
3.1	Using Feedback to Provide Robustness	79
3.2	Using Feedback to Modify Dynamic Behavior	79
3.3	Using Feedback to Obtain Modularity	79
3.4	Combining Feedback with Logic	79
3.5	The Dangers of Feedback	79
	Exercises	79
Chap	ter 4. Dynamic Behavior	81
4.1	Solving Differential Equations	81
T. 1	Initial Value Problems	81
	- Damped oscillator	82
	Numerical Solutions	83
	- Balance system	84
	= = ===================================	01

CONTE	ENTS	V
	Existence and Uniqueness	85
	- Finite escape time	85
	- Nonunique solution	85
4.2	•	86
	Phase Portraits	87
	Equilibrium Points and Limit Cycles	88
	- Inverted pendulum	88
4.3	Stability	90
	Definitions	90
	- Congestion control	92
	Stability of Linear Systems	92
	- Compartment model	95
	Stability Analysis via Linear Approximation	96
	- Inverted pendulum	96
	- Stable limit cycle	97
4.4		99
	Lyapunov Functions	99
	- Scalar nonlinear system	100
	- Hanging pendulum	101
	- Genetic switch	103
	Krasovski–Lasalle Invariance Principle	106
	- Inverted pendulum	107
4.5		108
	Regions of Attraction	109
	- Stabilized inverted pendulum	109
	Bifurcations	110
	- Predator-prey	110
	- Root locus diagram for a bicycle model	111
	Design of Nonlinear Dynamics Using Feedback	112
	- Noise cancellation	112
4.6	Further Reading	114
	Exercises	115
Chap	ter 5. Linear Systems	125
5.1	-	125
J.1	Linearity	125
	- Scalar system	120
	Time Invariance	128
5.2		120
0.2	Initial Condition Response	130
	- Double integrator	130
	- Undamped oscillator	131
	Jordan Form	132
	- Linear model of a vectored thrust aircraft	135

Vİ		CONTENTS
	Eigenvalues and Modes	136
	- Coupled spring-mass system	138
5.3		139
	The Convolution Equation	139
	Coordinate Invariance	142
	- Coupled spring-mass system	143
	Steady-State Response	144
	- Compartment model	146
	- Active band-pass filter	149
	- Atomic force microscope in contact mode	151
	Sampling	151
	- IBM Lotus server	153
5.4	Linearization	153
	- Cruise control	153
	Jacobian Linearization Around an Equilibrium Point	154
	- Vehicle steering	155
	Feedback Linearization	157
	- Cruise control	157
5.5	Further Reading	159
	Exercises	159
Chap	ter 6. State Feedback	167
6.1	Reachability	167
	Definition of Reachability	167
	- Double integrator	168
	Testing for Reachability	169
	- Balance system	170
	Reachable Canonical Form	172
	- Transformation to reachable form	174
6.2	Stabilization by State Feedback	175
	State Space Controller Structure	175
	- Vehicle steering	177
	State Feedback for Systems in Reachable Canonical Form	178
	Eigenvalue Assignment	180
	- Predator–prey	181
6.3	State Feedback Design	183
	Second-Order Systems	183
	- Drug administration	186
	Higher-Order Systems	187
	- Balance system	189
	Linear Quadratic Regulators	191
	- Vectored thrust aircraft	192
	- Web server control	193
6.4	Integral Action	195

CONTE	INTS	VII
	- Cruise control	196
6.5	Further Reading	198
0.5	Exercises	198
	Exercises	170
Chapt	ter 7. Output Feedback	203
7.1	Observability	203
	Definition of Observability	203
	Testing for Observability	204
	- Compartment model	205
	Observable Canonical Form	206
7.2	State Estimation	208
	The Observer	208
	- Compartment model	210
	Computing the Observer Gain	211
	- Vehicle steering	211
7.3	Control Using Estimated State	213
	- Vehicle steering	216
7.4	Kalman Filtering	217
	- Vectored thrust aircraft	219
7.5	A General Controller Structure	221
	Feedforward	221
	- Vehicle steering	223
	Kalman's Decomposition of a Linear System	225
	- System and controller with feedback from observer states	226
	Computer Implementation	227
7.6	Further Reading	229
	Exercises	229
Chapt	ter 8. Transfer Functions	235
8.1	Frequency Domain Modeling	235
8.2	Derivation of the Transfer Function	237
	Transmission of Exponential Signals	237
	- Damped oscillator	239
	Coordinate Changes	240
	Transfer Functions for Linear Systems	241
	- Electrical circuit elements	242
	- Operational amplifier circuit	243
	- Heat propagation	244
	Gains, Poles and Zeros	245
	- Balance system	246
8.3	Block Diagrams and Transfer Functions	248
	Control System Transfer Functions	250
	- Vehicle steering	251
	- Cruise control	254

viii		CONTENTS
	Algebraic Loops	255
8.4	The Bode Plot	255
••••	Sketching and Interpreting Bode Plots	250
	- Asymptotic approximation for a transfer function	260
	- Transcriptional regulation	260
	Transfer Functions from Experiments	262
	- Atomic force microscope	263
	- Pupillary light reflex dynamics	263
8.5	Laplace Transforms	266
8.6	Further Reading	268
	Exercises	268
Chapte	er 9. Frequency Domain Analysis	279
9.1	The Loop Transfer Function	279
5.1	- Operational amplifier circuit	280
9.2	The Nyquist Criterion	282
	The Nyquist Plot	282
	- Third-order system	283
	- Third-order system with a pole at the origin	284
	- Congestion control	285
	Conditional Stability	287
	- Third-order system	287
	General Nyquist Criterion	288
	- Stabilized inverted pendulum	289
	Derivation of Nyquist's Stability Theorem	289
9.3	Stability Margins	291
	- Third-order system	292
	- Good gain and phase margins but poor stability margin	
	- Nanopositioning system for an atomic force microscope	
9.4	Bode's Relations and Minimum Phase Systems	295
0 5	- Vehicle steering	297
9.5	Generalized Notions of Gain and Phase	298
	System Gain	298
	Small Gain and Passivity Describing Functions	300 301
	- Relay with hysteresis	301 302
9.6	Further Reading	302
5.0	Exercises	303
Chapte	er 10. PID Control	311
10.1	Basic Control Functions	311
	- PD action in the retina	315
10.2	Simple Controllers for Complex Systems	316
	- Integral control of AFM in tapping mode	317

viii

CONTENT	-S	İX
	- Cruise control using PI feedback	318
10.3	PID Tuning	320
	iegler–Nichols' Tuning	320
	- Atomic force microscope in tapping mode	322
R	elay Feedback	323
10.4	Integrator Windup	324
	- Cruise control	325
	- Cruise control with anti-windup	326
10.5	Implementation	327
Fi	Itering the Derivative	327
S	etpoint Weighting	327
	- Cruise control with setpoint weighting	328
	nplementation Based on Operational Amplifiers	328
C	omputer Implementation	329
10.6	0	331
	Exercises	331
Chapter	¹ 11. Frequency Domain Design	339
11.1	Sensitivity Functions	339
	- The loop transfer function gives only limited insight	342
11.2	Feedforward Design	343
	- Vehicle steering	345
11.3	Performance Specifications	346
R	esponse to Reference Signals	346
	- Third-order system	346
R	esponse to Load Disturbances and Measurement Noise	347
	- Third-order system	349
11.4	Feedback Design via Loop Shaping	350
D	esign Considerations	350
L	ead and Lag Compensation	351
	- Atomic force microscope in tapping mode	352
	- Roll control for a vectored thrust aircraft	353
11.5	Fundamental Limitations	355
R	ight Half-Plane Poles and Zeros and Time Delays	355
	- Zero in the right half-plane	356
	- Pole in the right half-plane	357
	- Balance system	358
В	ode's Integral Formula	359
	- System that admits small sensitivities	359
	- X-29 aircraft	361
	erivation of Bode's Formula	363
11.6	Design Example	364
	- Lateral control of a vectored thrust aircraft	364
11.7	Further Reading	367

х		CONTENTS
	Exercises	368
Chapte	r 12. Robust Performance	377
12.1	Modeling Uncertainty	377
	- Cruise control	377
ι	Inmodeled Dynamics	378
٧	Vhen Are Two Systems Similar? The Vinnicombe Metric	379
	- Similar in open loop but large differences in closed loop	o 379
	- Different in open loop but similar in closed loop	379
	- Vinnicombe metric for Examples 12.2 and 12.3	382
12.2	Stability in the Presence of Uncertainty	382
F	Robust Stability Using Nyquist's Criterion	382
	- Cruise control	384
	- Bode's ideal loop transfer function	386
١	oula Parameterization	387
12.3	Performance in the Presence of Uncertainty	388
Γ	Disturbance Attenuation	388
F	Reference Signal Tracking	390
	- Operational amplifier circuit	390
12.4	Robust Pole Placement	392
S	low Stable Process Zeros	392
	- Vehicle steering	392
F	ast Stable Process Poles	394
	- Fast system poles	394
Ľ	Design Rules for Pole Placement	395
	- Nanopositioning system for an atomic force microscope	e 396
12.5	Design for Robust Performance	399
(Quantitative Feedback Theory	399
L	inear Quadratic Control	400
	I Control	401
	Disturbance Weighting	403
	imits of Robust Design	403
12.6	Further Reading	404
	Exercises	405
Append	dix A. Examples	411
A.1	Cruise Control	411
A.2	Bicycle Dynamics	416
A.3	Operational Amplifier Circuits	418
A.4	Computing Systems and Networks	422
V	Veb Server Control	422
(Congestion Control	424
A.5	Atomic Force Microscopy	429
A.6	Drug Administration	432

CONTENTS	xi
Compartment Models	433
Insulin–glucose Dynamics	435
A.7 Population Dynamics	437
Logistic Growth Model	437
Predator–Prey Models	437
Exercises	439
Bibliography	443
Index	453

Frontmatter.tex, v3839 2010-03-21 18:37:38Z (murray)

Preface to the Second Edition

The second edition of *Feedback Systems* contains a variety of changes that are based on feedback on the first edition, particularly in its use for introductory courses in control. One of the primary comments from users of the text was that the use of control tools for design purposes occured only after several chapters of analytical tools, leaving the instructor having to try to convince students that the techniques would soon be useful. In our own teaching, we find that we often use design examples in the first few weeks of the class and use this to motivate the various techniques that follow (particularly Chapters 2, 4 and 5). This approach has been particularly useful in engineering courses, where students are often eager to apply the tools to examples as part of gaining insight into the methods. We also found that universities that have a laboratory component attached to their controls class need to introduce some basic design techniques early, so that students can be implementing control laws in the laboratory in the early weeks of the course.

To help emphasize this more design-oriented flow, we have rearranged the material in the first third of the book. Chapter 3 in the original text, which introduced a number of examples in some detail, has been moved to an appendix, where it can be assigned as needed when specific examples arise. In its place, we have put a new chapter on "Feedback Principles" that illustrates some simple design principles and tools that can be used to show students what types of problems can be solved using feedback. This new chapter uses simple models, simulations and elementary analysis techniques, so that it should be accessible to students from a variety of engineering and scientific backgrounds. For courses in which students have already been exposed to the basic ideas of feedback, perhaps in an earlier discipline-specific course, this new chapter can easily be skipped without any loss of continuity.

In addition to this relatively large change in the first portion of the book, we have also taken the opportunity to make other smaller changes based on the feedback we have received from early adopters of the text.

Add a summary of changes here

We are indebted to numerous individuals who have taught out of the text and sent us feedback on changes that would better serve their needs. In addition to the many individuals listed in the preface to the first edition, we would like to also thank Constantine Caramanis and Clancy Rowley for their feedback and insights.

Karl Johan Åström

Richard M. Murray

RMM

xiv

Lund, Sweden

PREFACE

Pasadena, California

Preface to the First Edition

This book provides an introduction to the basic principles and tools for the design and analysis of feedback systems. It is intended to serve a diverse audience of scientists and engineers who are interested in understanding and utilizing feedback in physical, biological, information and social systems. We have attempted to keep the mathematical prerequisites to a minimum while being careful not to sacrifice rigor in the process. We have also attempted to make use of examples from a variety of disciplines, illustrating the generality of many of the tools while at the same time showing how they can be applied in specific application domains.

A major goal of this book is to present a concise and insightful view of the current knowledge in feedback and control systems. The field of control started by teaching everything that was known at the time and, as new knowledge was acquired, additional courses were developed to cover new techniques. A consequence of this evolution is that introductory courses have remained the same for many years, and it is often necessary to take many individual courses in order to obtain a good perspective on the field. In developing this book, we have attempted to condense the current knowledge by emphasizing fundamental concepts. We believe that it is important to understand why feedback is useful, to know the language and basic mathematics of control and to grasp the key paradigms that have been developed over the past half century. It is also important to be able to solve simple feedback problems using back-of-the-envelope techniques, to recognize fundamental limitations and difficult control problems and to have a feel for available design methods.

This book was originally developed for use in an experimental course at Caltech involving students from a wide set of backgrounds. The course was offered to undergraduates at the junior and senior levels in traditional engineering disciplines, as well as first- and second-year graduate students in engineering and science. This latter group included graduate students in biology, computer science and physics. Over the course of several years, the text has been classroom tested at Caltech and at Lund University, and the feedback from many students and colleagues has been incorporated to help improve the readability and accessibility of the material.

Because of its intended audience, this book is organized in a slightly unusual fashion compared to many other books on feedback and control. In particular, we introduce a number of concepts in the text that are normally reserved for secondyear courses on control and hence often not available to students who are not control systems majors. This has been done at the expense of certain traditional topics, which we felt that the astute student could learn independently and are often

PREFACE

explored through the exercises. Examples of topics that we have included are nonlinear dynamics, Lyapunov stability analysis, the matrix exponential, reachability and observability, and fundamental limits of performance and robustness. Topics that we have deemphasized include root locus techniques, lead/lag compensation and detailed rules for generating Bode and Nyquist plots by hand.

Several features of the book are designed to facilitate its dual function as a basic engineering text and as an introduction for researchers in natural, information and social sciences. The bulk of the material is intended to be used regardless of the audience and covers the core principles and tools in the analysis and design of feedback systems. Advanced sections, marked by the "dangerous bend" symbol shown here, contain material that requires a slightly more technical background, of the sort that would be expected of senior undergraduates in engineering. A few sections are marked by two dangerous bend symbols and are intended for readers with more specialized backgrounds, identified at the beginning of the section. To limit the length of the text, several standard results and extensions are given in the exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here, a companion web site has been developed and is available from the publisher's web page:

http://www.cds.caltech.edu/~murray/amwiki

The web site contains a database of frequently asked questions, supplemental examples and exercises, and lecture material for courses based on this text. The material is organized by chapter and includes a summary of the major points in the text as well as links to external resources. The web site also contains the source code for many examples in the book, as well as utilities to implement the techniques described in the text. Most of the code was originally written using MATLAB M-files but was also tested with LabView MathScript to ensure compatibility with both packages. Many files can also be run using other scripting languages such as Octave, SciLab, SysQuake and Xmath.

The first half of the book focuses almost exclusively on state space control systems. We begin in Chapter 2 with a description of modeling of physical, biological and information systems using ordinary differential equations and difference equations. Chapter 3¹ presents a number of examples in some detail, primarily as a reference for problems that will be used throughout the text. Following this, Chapter 4 looks at the dynamic behavior of models, including definitions of stability and more complicated nonlinear behavior. We provide advanced sections in this chapter on Lyapunov stability analysis because we find that it is useful in a broad array of applications and is frequently a topic that is not introduced until later in one's studies.

The remaining three chapters of the first half of the book focus on linear systems, beginning with a description of input/output behavior in Chapter 5. In Chapter 6, we formally introduce feedback systems by demonstrating how state space control laws can be designed. This is followed in Chapter 7 by material on output

xvi

¹Now Appendix A