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Chapter 15

Architecture and System
Design

The architect’s two most important tools are the eraser in the drafting
room and the wrecking bar on the site.

Frank Lloyd Wright [Jac65].

In this chapter we place the relatively simple feedback loops that have been
the focus of the previous chapters in the context of overall system design. We
outline a typical design process and discuss the role of architecture and how it
can be approached from top-down and bottom-up perspectives. Interaction and
adaptation are then reviewed and the chapter ends with a brief overview of control
design in some major industrial fields.

15.1 Introduction

So far we have dealt with relatively simple feedback systems. We will now give a
glimpse of how they appear as components in real-world systems and how they are
designed. All control systems have sensors, actuators, communications, computers,
and operator interfaces, but they can have dramatically different sizes and shapes
and very different user communities. It is surprising that such a variety of systems
can be analyzed and designed using the same engineering framework.

The system to be controlled is often designed before control is considered. There
are, however, significant advantages to designing a process and its control system
jointly, so-called co-design. Care can be taken to ensure that the system is easy to
control, for example by avoiding non-minimum phase dynamics. Time delays can
be avoided by proper positioning of sensing and actuation. Use of feedback gives
an extra degree of freedom to the designer; an extreme example is that a system
can be made more maneuverable by making it unstable and then stabilizing it with
a controller. The system itself and its physical and operational environment are
key elements together with requirements, analysis, and testing.

Architecture, from the Greek word αρχιτεκτων (αρχι chief and τεκτων builder,
carpenter, mason), is the process of planning, designing, and constructing buildings
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and other objects. It is also used to describe the structure of practically anything.
In the context of control systems, the elements consist of the process, sensors, actu-
ators, computers, communication devices, human machine interfaces, algorithms,
and software. The control system interacts with the operational environment, it
observes the process by sensors, and it interacts with the process through actua-
tors and with the users through a range of interfaces. Architecture describes how
the system components are connected and how they interact. There is a growing
awareness that architecture is important in all engineering fields and today we have
software, hardware, and systems architects.

15.2 System and Control Design

System design starts by developing an understanding of the system and its environ-
ment. It includes analysis of static and dynamic properties of the physical system
and its sensors and actuators, bounds for safe operation, and characterization of
the nature of the disturbances and the users of the system. There are a wide range
of problems. Sometimes the process is given a priori and the task is to design
a controller for a given process. In other cases the process and the controller are
designed jointly. Co-design has many advantages because performance could be op-
timized. Sometimes it is an enabler, as was illustrated by the Wright Flyer, which
was discussed in Section 1.5. We quote from the 43rd Wilbur Wright Memorial
Lecture by Charles Stark Draper [Dra55]:

The Wright Brothers rejected the principle that aircraft should be made
inherently so stable that the human pilot would only have to steer the
vehicle, playing no part in stabilization. Instead they deliberately made
their airplane with negative stability and depended on the human pilot
to operate the movable surface controls so that the flying system—pilot
and machine—would be stable. This resulted in increased maneuver-
ability and controllability.

If the stabilization of an unstable airframe is done by an automatic control system,
there are very strong requirements on the reliability of the control system. Design
of the X-29, which was discussed in Example 14.2, is a similar case. A more recent
example, which deals with difficulties caused by insufficient actuator authority, is
presented in [EHBM08]. It was attempted to reduce the risk for rotating stall in a jet
engine by feedback, but actuators with the required bandwidth were not available.
Analysis showed that the problem could instead be alleviated by introducing small
asymmetries in the turbine.

Figure 15.1 shows a typical design process and the costs of correcting faults
at different stages in the process. Notice the significant value in correcting faults
early. Design of complex systems is a major effort where many people and groups
are involved. A variety to methods have been developed for efficient design. The
so-called V-model, dating back to NASA’s Apollo program, is a design pattern for
both hardware and software [SC92]. It appears in many different forms: one version
is part of the official project management methodology of software for the German
government [Ano92].

One example of the design V is shown at the top of Figure 15.2. The left
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(a) Design Flow (b) Costs

Figure 15.1: Engineering design process. A typical design cycle is shown in
(a) and (b) illustrates the costs of correcting faults or making design changes at
different stages in the design process.

leg of the V illustrates the design process starting with requirements and ending
with system, module and component design. The right leg of the V represents the
implementation starting with the components and ending with the finished process
and its validation. There are many substeps in the design, they include functional
requirements, architecture generation and exploration, analysis and optimization.
Notice that validation is made only on the finished product.

The cost of faults or changes increase dramatically if they are discovered late in
the development process or even worse when systems are in operation, as illustrated
in Figure 15.1. Model-based systems engineering can reduce the costs because
models allow partial validation using models as virtual hardware at many steps in
the development process as illustrated in the bottom part of Figure 15.2. When
hardware and subsystems are built they can replace the corresponding models in
hardware-in-the-loop simulation.

To perform verification efficiently it is necessary that requirements are expressed
mathematically and checked automatically against requirements using models of
the system and its environment and a variety of tools for analysis. Regression
analysis can be used to avoid that changes in one part of a system do not create
unexpected errors in other parts of the system. Efficient regression analysis requires
robust system-level models and good scripting software that allows analyses to be
performed automatically over many operating conditions with little to no human
intervention. System-level models are also useful for root cause analysis by allowing
errors to be reproduced, which is helpful to ensure that the real cause has been
found.

There are strong interactions between the models and the analysis tools that
are used; therefore, the models must satisfy the requirements of the algorithms
for analysis and design. For example, when using Newton’s method for solution
of nonlinear equations and optimization, the models must be continuous and have
continuous first (and sometimes second) derivatives. This property, which is called
smoothness, is essential for algorithms to work well. Lack of smoothness can be due
to: if-then-else statements, an actuator that saturates or by careless modeling of
fluid systems with reversing flows. Having tools that check if a given system model
has functions with continuous first and second derivatives is valuable.

An alternative to the use of the traditional design V is the agile development model,
which has been driven by software developers for products with short time to mar-
ket, where requirements change and close interaction with customers is required.



15-4 CHAPTER 15. ARCHITECTURE AND SYSTEM DESIGN

(a) Classical Design V (b) Design V for Model Based Design

Figure 15.2: The top figure (a) shows a traditional design V. The left side
of the V represents the decomposition of requirements, and creation of system
specifications. The right side represents the activities in implementation including
validation (building the right thing) and verification (building it right). Notice
that validation and verification are performed late in the design process when all
hardware is available. The bottom figure (b) shows a model-based design process
where virtual validation is be made at many stages in the design process, shortening
the feedback for validation.

The method is characterized by the Agile Manifesto [BBvB+01], which values in-
dividuals and interactions over processes and tool, working software over com-
prehensive documentation, customer collaboration over contract negotiation, and
responding to change over following a plan. When choosing a design methodology
it is also important to keep in mind that products involving hardware are more
difficult to change than software.

Control system design is a subpart of system design that includes many ac-
tivities, starting with requirements and system modeling and ending with imple-
mentation, testing, commissioning, operation, and upgrading. In between are the
important steps of detailed modeling, architecture selection, analysis, design, and
simulation. The V-model used in an iterative fashion is well suited to control de-
sign, particular if it is supported by a tool chain that admits a combination of
modeling, control design, and simulation. Testing is done iteratively at every step
of the design using models of different granularity as virtual systems. Hardware in
the loop simulations are also used when they are available. A scripting language is
helpful to execute the design.

Control system specifications are typically given by large and small signal be-
havior of the closed loop system. Large signal behavior is characterized by limits in
actuation power and its rate, small signal behavior is typically caused by measure-
ment noise, friction, and resolution of A/D and D/A converters. Requirements for
control systems include the ability to deal with disturbances, robustness to process
variations and uncertainty, and the ability to follow reference signals.

Many control system specifications can be captured by linear models and they
can be expressed in terms of properties of the Gangs of Four and Six, discussed
in Section 12.1. Referring to the block diagram in Figure 15.3, load disturbance
attenuation can be characterized by the transfer function Gyv from load disturbance
v to process output y. Measurement noise w generates undesired control actions, the
effect of which can be captured by transfer function Guw from measurement noise w
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Figure 15.3: Specifications can be tested by injecting signals at test points δk
and measuring responses at sij . Compare with Figure 12.1

.

to control action u. Robustness to parameter variations and process uncertainty can
be captured by the sensitivity functions S and T . Reference signal response can be
shaped independently of response to disturbances and robustness for systems with
two degrees of freedom. It is characterized by the transfer functions TF and CSF .
Systems with error feedback are more restricted because the response to reference
signals is characterized by the complementary transfer function T and a compromise
must be made between command signal response and the other requirements.

Since many specifications are expressed in terms of properties of the transfer
functions in the Gang of Six, it is important to measure these transfer functions on
simulated models and on real hardware. To do this the system must be provided
with test points for injecting and measure signals, as indicated by the dashed arrows
in Figure 15.3. The transfer function Gyv, which characterizes response to load
disturbances, can be found by injecting a signal at δ1 and measuring the output
s21. Chirp signals are convenient for measuring frequency responses.

Models of the process and its environment can be obtained from physics, from
experiments, or from a combination. Experiments are typically done by changing
the control signal and measuring the response. The signals can range from simple
step tests to signals that are designed to give optimal information with limited
process perturbations. System identification methods and software provide useful
tools. The models used at different stages typically have different fidelity, cruder
in the beginning and more accurate as the design progresses.

A few standard design methods have been discussed in Chapters 7, 8, 11, and
12, but there are many more methods in the literature [Fri04, GGS01]. Many de-
sign methods are based on linear models, however, when environmental conditions
change significantly it it necessary to use gain scheduling, nonlinear control, or
adaptation. Receding horizon control (also called model predictive control) is an-
other common approach, especially useful when there are constraints on the inputs
or states.

Today most control systems are implemented using computer control. Imple-
mentation then involves selection of hardware for signal conversion, communication,
and computing. A block diagram of a system with computer control is shown in
Figure 15.4. The overall system consists of sensors, actuators, analog-to-digital and
digital-to-analog converters, and computing elements. The filter before the A/D
converter is necessary to ensure that high-frequency disturbances do not appear as
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Figure 15.4: Schematic diagram of a control system with sensors, actuators,
communications, computer, and interfaces.

low-frequency disturbances after sampling because of aliasing. The operations of
the system are synchronized by a clock.

Real-time operating systems that coordinate sensing, actuation, and comput-
ing have to be selected, and algorithms that implement the control laws must be
generated. The sampling period and the anti-alias filter must be chosen carefully.
Since a computer can only do basic arithmetic, the control algorithms have to be
represented as difference equations. They can be obtained by approximating differ-
ential equations, as was illustrated in Section 8.5, but there are also design methods
that automatically give controllers in the form of difference equations. Code can
be generated automatically. It must also be ensured that computational delays and
synchronization of algorithms do not create problems.

When the design is implemented and tested the system must be commissioned.
This step may involve adjustment of controller parameters, and automatic tuning
(discussed in Section 11.3) can be very beneficial at this stage. During operation
it is important to monitor the behavior of the system to ensure that specifications
are still satisfied. It may be necessary to upgrade the system when it has been
operating. Specifications may also be modified due to operational experiences.

It is highly desirable to have a suite of test programs that can be used throughout
the design and operation stages to ensure that requirements are satisfied.

15.3 Top-Down Architectures

When system design is approached systematically using the design V as described
in Section 15.2, it is natural to use a top-down procedure for control design starting
with the desired properties of the system and decomposing the overall control design
problem into an interlinked set of control problems at different layers of abstraction.
At each layer of abstraction, we make assumptions about the interactions with the
higher and lower layers in order to simplify the control design problem. In this
section we give a brief introduction to some of the organizing principles of top-down
architectures for control and its connections to some of the techniques described
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Figure 15.5: Layered decomposition of a control system.

in the text, along with references to the literature for those interested in further
details.

There are many other aspects of control architectures that are part of control
systems design. These include such topics as cooperative control [Par93, Mur07],
diagnostics and health monitoring [DM02b, GQH16], fault recovery and system
reconfiguration [HC03, BKLS16], and game-theoretic approaches to control [MS15].
We focus here on a small subset of the problem, with an emphasis on multi-layer
approaches to control.

Layered Architectures for Control

For complex control systems, it is often useful to break down the control problem
into a hierarchy of control problems, each solved at a different layer of abstraction,
as illustrated in Figure 15.5. Different types of specifications are used at each layer
to determine the control functionality that will be implemented.

The specific abstraction layers in a control architecture depend on the problem
domain. In Figure 15.5, we have used a decomposition that is common in many
motion control problems, including robotics, self-driving cars, and flight control.
Similar decompositons also appear in application domains such as manufacturing,
process control, and computing systems. At the top layer of abstraction, we care
about discrete modes of behavior, which could correspond to different phases of
operation (takeoff, cruise, landing) or different environment assumptions (highway
driving, city streets, parking lot). The next layer of abstraction reasons about
trajectories of the system, often using an optimization-based approach. At this
layer, we often take into account the constraints on the system operating state and
inputs, as well as system-level descriptions of performance. Finally, at the lowest
layer of the abstraction hierarchy we have the feedback control design that has been
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the main topic in this text thus far, where we may use a linearized model based on
the current operating point (along a trajectory).

Note that at each abstraction level we must consider not only the control design
but also the way that sensory information is processed and represented. At the
lowest levels of abstraction we may use individual sensor signals, perhaps with
some filtering. As we move up the abstraction hierarchy, it will be necessary to fuse
multiple measurements to obtain a more integrated view of the system state, with
the highest level of abstraction often requiring sophisticated methods of reasoning
about the state of the environment and the predicted interactions with other entities
in that environment.

The architecture in Figure 15.5 is suitable for systems of moderate complex-
ity where the users interact with the system by changing modes and references.
More layers are used for complex systems with complicated user interaction. Batch
control is a typical example, where a complex manufacturing system is used to
control different batches of chemicals and where the material flow through the fac-
tory changes. In this case there are two additional layers—procedural control and
coordination control—on top of those shown in Figure 15.5. Procedural control ex-
ecutes the sequence of actions necessary to carry out a process oriented task, such
as charging a reactor with a specific amount and type of raw material and report-
ing the result. Coordination control directs, initiates, or modifies the execution of
procedural control and the utilization of equipment entities.

In addition to these additional layers, a production facility typically operates
in different modes: normal, maintenance, and manual. The maintenance mode has
its own control algorithms and safety procedures to ensure that the system does
not react in an unsafe manner during maintenance. The manual mode is typically
used for equipment maintenance and debugging. Different parts of a manufacturing
system can be in different modes. An example of an architecture for distributed
control system (DCS), typical for complex manufacturing systems, is shown in
Figure 15.6.

An important feature of many control systems architectures is the modularity of
the control software, enabling parallel development of components and the ability
to upgrade components without having to redesign the entire system. Figure 15.7
shows two types of features that are common in architectures: a “bowtie” pattern
and an “hourglass” pattern.

The “bowtie” pattern refers to the use of a common interface within a layer of
abstraction that enables many different subsystems to connect together across the
interface. As an example, in the context of the sensing system for an autonomous
vehicle, a common representation of map data allows many types of sensors to
feed information into the map and different layers of controller to extract (fused)
information from the map. Through this common interface, new sensors or control
functionality can be added on either side of the interface without having to redesign
the rest of the system.

The “hourglass” pattern represents a hierarchy of control functions that uses a
common interface to enable changes above and below that interface to be changed
independently of each other. The Open Systems Interconnection model (OSI model)
uses seven standardized layers—applications at the top and the physical layer at the
bottom—and has been a key to obtain interoperability in communication systems.
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Figure 15.6: Functional architecture of process control system, implemented as
a distributed control system (DCS). Figure courtesy of ABB, Inc.

Another example of an hourglass pattern is used for the planning system in an
autonomous vehicle. Trajectories are used to connect higher and lower levels of the
navigation system. Any high-level function that eventually leads to a trajectory is
completely compatible with the lower level controllers that will track that trajectory,
allowing the higher levels of decision making to be changed without having to
modify the trajectory tracking code. Similarly, the lower level controllers can be
changed without having to redesign the high level decision-making, as long as they
properly perform the function of tracking a given trajectory.

The bowtie and hourglass patterns shown here can be appear multiple times in
a given architecture, so that we obtain appropriate “stacks” of sensing and control
functionality. The following example, given already in the introduction, illustrates
some of these concepts.

Example 15.1 Autonomous driving
As an example of a top-down architecture for control, we consider a control system
for an autonomous vehicle, shown in Figure 15.8. This control system is designed
for driving in urban environments. The feedback system fuses data from road
and traffic sensors (cameras, laser range finders, and radar) to create a multi-layer
“map” of the environment around the vehicle. This map is used to make decisions
about actions that the vehicle should take (drive, stop, change lanes) and plan a
specific path for the vehicle to follow. An optimization-based planner is used to
compute the trajectory for the vehicle to follow, which is passed to a trajectory
tracking module. A supervisory control module performs higher-level tasks such as
mission planning and contingency management (if a sensor or actuator fails).

We see that this architecture has the basic features shown in Figure 15.5. The
control layers are shown in the navigation block, with the mission planner and
traffic planner representing two levels of discrete decision-making logic, the path
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(a) Bowtie pattern (b) Hourglass pattern

Figure 15.7: Architectural patterns that support modularity. The bowtie pattern
is used to connect subsystems at the same level. Proper interface design supports
independence of the subsystems. The hourglass pattern is used to connect subsys-
tem at different levels using protocols. Proper protocols supports independence of
the subsystems at different levels.

planner representing a trajectory optimization function and then the lower layers of
control. Similarly, there are multiple layers of sensing, with low level information,
such as vehicle speed and position in the lane, being sent to the trajectory tracking
controller, while higher level information about other vehicles on the road and their
predicted motions is sent to the trajectory, traffic, and mission planners. ∇

Online Optimization

The use of real-time trajectory generation techniques enables a much more so-
phisticated approach to the design of control systems, especially those in which
constraints must be taken into account. The fact that such trajectories can be
computed quickly enables us to use a receding horizon control technique: a (opti-
mal) feasible trajectory is computed from the current state to the desired state over
a finite time T horizon, used for a short period of time δ < T , and then recomputed
based on the new system state starting at time t+δ until time t+T +δ, as shown in
Figure 15.9. Development and application of receding horizon control (also called
model predictive control, or MPC) originated in process control industries where

Figure 15.8: DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the
2005 and 2007 competitions and its networked control architecture [CFG+06].
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Figure 15.9: The idea of receding horizon control.

the processes being controlled are often sufficiently slow to permit its implementa-
tion. An overview of the evolution of commercially available MPC technology is
given in [QB97] and a survey of the state of stability theory of MPC is given in
[MRRS00].

Figure 15.10 shows a typical setup for a receding horizon control problem. In
this formulation, the trajectory generation block solves the following constrained
trajectory generation problem at each time step:

min
(x,u)

=

∫ t+T

t
L(x, u) dτ+V (x(t+T )) subject to






x(t) = current state

ẋ = f(x) + g(x)u,

lb ≤ c(x, u) ≤ ub.

(15.1)

One of the challenges of properly implementing receding horizon control is that in-
stabilities can result if the problem is not specified correctly. In particular, because
we optimize the system dynamics over a finite horizon T , it can happen that choos-
ing the optimal short term behavior can lead us away from the long term solution
(see [MR96] for an example). To address this problem, the terminal cost V (x(T ))
must have certain properties to ensure stability (see [MRRS00] for details).

One of the chief challenges in implementing receding horizon control is the need
for fast computation of feasible trajectories. One class of systems for which this is
easier are differentially flat systems, defined briefly in Section 8.5.

Discrete-decision making and supervisory control

Design of control systems involves the analysis and synthesis of feedback controllers
at multiple levels of abstraction, from fast feedback loops around actuators and
subsystems, to higher level decision-making logic in supervisory controllers and au-
tonomous systems. One of the major challenges in design of complex networked
control systems—such as those arising in aerospace, computing, robotics, and crit-
ical infrastructure—is insuring that the combination of dynamical behavior and



15-12 CHAPTER 15. ARCHITECTURE AND SYSTEM DESIGN

disturbances

∆

uff

xd

ref

ufb

Process

P
output

Feedback

Trajectory

Generation

Controller

Figure 15.10: Two degree-of-freedom controller design for a process P with
uncertainty ∆. The controller consists of a trajectory generator and feedback con-
troller. The trajectory generation subsystem computes a feedforward command ud

along with the desired state xd. The state feedback controller uses the measured
(or estimated) state and desired state to compute a corrective input ufb. Uncer-
tainty is represented by the block ∆, representing unmodeled dynamics, as well as
disturbances and noise.

logical decision-making satisfies safety and performance specifications. In many of
these areas, verification and validation are now dominant drivers of schedule and
cost, and the tools available for design of such systems are falling behind the needs
of systems and control engineers, particularly in the area of systematic design of
the mixed continuous and discrete control laws for networked systems.

We consider systems consisting of subsystems/agents whose dynamics are de-
scribed by ordinary differential equations of the form

ẋi = f i(xi,αi, ui), yi = h(xi,αi),

where xi ∈ Rni is the continuous state of the ith subsystem, α ∈ A is the discrete
state, ui ∈ Rmi is a control input and yi ∈ Rpi is the measured output of subsystem.
The discrete state evolves according to a set of “guarded commands,” in which the
discrete state α is updated to a new value only if a guard gp(x,α) is true:

gpj (x,α) =⇒ α′ = rpj (x,α).

This specification allows the discrete state to evolve in an asynchronous way (e.g. for
modeling failures) or to depend on the system state (e.g. to model nonlinearities
or changes in connectivity). A model of this type is called a discrete transition
system. The overall system, consisting of both continuous dynamics and discrete
(state) dynamics, is called a hybrid system.

A controller for the system is a combination of a continuous control law and a
discrete control protocol:

u = k(x,α), gcj(x,α) =⇒ α′ = rcj(x,α). (15.2)

The control protocol (sometimes called a supervisory controller) is in the form of
discrete transition system, which controls some subset of the discrete states. The
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discrete state is assumed to be updated by a periodically controlled process that
examines the guards and updates appropriate rules. This model for the control
allows for the possibility of distributed computation in which different systems (or
subsystems) execute on loosely regulated clocks.

The system specification for a hybrid system is often composed of both a con-
tinuous performance specification and a discrete performance specification. For the
continuous portion of the specification, a typical form is to use a cost function J
that is written as a finite horizon cost

J =

∫ T

0
L(x,α, u)dt+ V (x(T )). (15.3)

This function, a variant of which we have just seen in the context of receding
horizon control, uses an integral cost over a fixed horizon T along with a terminal
cost V (x(T )), where V is an appropriate positive function.

For the discrete performance specification, we make use of temporal logic formu-
las. For a discrete transition system, a temporal logic formula describes conditions
on the sequence of events. One mathematical language that is widely used is linear
temporal logic (LTL), which makes use of two temporal operators: always (!) and
eventually (♦). Given a logical formula ϕ(α) that evaluates to true or false for a
given (discrete) state α, we can define a temporal logic formula !ϕ, which is inter-
preted as meaning that ϕ(α) should be true at all times in the future. Similarly,
the formula ♦ϕ represents the temporal logic statement that the logical formula ϕ
is true at some future state. By combining these temporal operators with standard
logical operators, we can obtain more complex formulas. For example, the formula

!(ϕ =⇒ ♦ψ)

can be interpreted as saying that at all times, if the formula ϕ is satisfied (evaluates
to true), then eventually (at some time in the future) the formula ψ is true. This
formula is a typical form for specifying that a system should respond to a certain
event (captured by ϕ becoming true) by taking a certain action (captured by ψ
becoming true). The always (!) operator at the outer level of the formula describes
the specification that this condition should be satisfied at all times, which means
that the system should respond over and over again if the event condition occurs
repeatedly.

A typical LTL formula for a supervisory control system has the form

ϕinit ∧ !ϕenv =⇒ !ϕsafe ∧ ♦ϕgoal, (15.4)

where ϕinit represents a proposition describing the initial state of the system, ϕenv

describes the possible actions of the environment, ϕsafe is a safety requirement,
and ϕgoal is a progress requirement. The environmental description ϕenv, safety
requirement ϕsafe, and progress requirement ϕgoal are typically described using
LTL or other temporal logics (including computational tree logic, CTL, or one of
its variants, TCTL, pCTL, etc.). These languages allow various specifications on
sequences of actions, such as requiring that a certain condition hold until another
condition is satisfied, or requiring that a certain condition occurs on a regular basis.

The control design problem for a supervisory system consists of finding a control
law of the form in equation (15.2) that satisfies the system specification (15.4) while
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minimizing the cost function (15.3). Traditional approaches to this problem involve
synthesis of the continuous control law using optimization-based approaches, as
described earlier in this section, and manual design of the discrete control protocols.
The system is then checked against the specification by running (many) repeated
simulations and checking that in each case the system specification is satisfied.

Linking Continuous and Discrete Controllers

In Section 15.3 we saw techniques for finding (optimal) controllers for continuous
systems and in the previous section we have talked about techniques for design of
discrete controllers. Going back to our initial top-down architecture in Figure 15.5,
we now consider the problem of how to link these two different layers of the control
system.

One approach to linking the two layers is to develop control techniques that
can handle both the continuous and discrete dynamics in a common framework.
One such approach is to make use of the notion of mixed logical dynamical (MLD)
systems, introduced by Bemporad and Morari [BM99]. In this formulation, we
extend the trajectory generation and receding horizon frameworks to handle discrete
variables in the underlying constrained optimization problem. This requires the
use of so-called mixed integer solvers, which allow optimization for problems with
both continuous and discrete (integer valued) variables. As computers become
increasingly powerful, the size and complexity of problems that we can handle with
these tools have increased and these techniques are more and more commonly used.

An alternative is to solve the supervisory control problem and the trajectory
generation problem separately, with an appropriate simplified representation of the
dynamics of the layers above and below the one that for which we are doing the
design.

For example, a common approach in doing trajectory generation is to assume
that the discrete state (which might represent an operational mode or an environ-
mental context) transitions from one state to another and then remains fixed for a
sufficiently long period of time. Under this assumption, we can focus our attention
on the problem of trajectory generation with an initial condition that may represent
the state of the system just prior to transition to the new mode and the assume
that the mode stays constant for the duration of our planning horizon. We are then
required to make sure that our supervisory controller imposes this restriction on
the time between mode switches as part of its specification.

This type of linkage between two layers in our abstraction is called a vertical
contract and can often be written in assume-guarantee form. The supervisory layer
will assume that the trajectory generation layer maintains the system specification
in a given mode given enough “settling” time, and then guarantees that it does
not switch the system mode more quickly than the settling time. Similarly, the
trajectory generation layer will assume that the switching is sufficiently long, but
must then guarantee that it satisfies the system specification within the prescribed
settling time.

Similar to the simplified model of the supervisory controller used at the trajec-
tory generation layer (the mode is essentially constant), the supervisory controller
must have an appropriate representation of the trajectory generation dynamics.
Since the supervisory controller design is done using discrete transition system
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(a) Discretization (b) Simulation relation

Figure 15.11: Representation of continuous dynamics as a discrete transition
system

. .

models, our representation of the dynamics of the lower layers of abstraction must
be in terms of a discrete transition system model. One simple approach to such a
representation is to break the continuous state space into a collection of discrete
regions, such that each continuous state is contained in one discrete region. The
dynamics of the trajectory generation layer can then be represented as a set of
transitions between adjacent regions in the discretized state space, as illustrated
in Figure 15.11a. In setting up the discrete representation, it is important that
any trajectory in the discretized state space correspond to a feasible trajectory in
the original continuous state space, and vice versa. This is required so that when
the supervisory controller layer commands the system to move from one region to
another then the trajectory generation layer is able to do so, and conversely when
the continuous system executes a command and moves from one (continuous) state
to another, it corresponds to a valid transition between the regions.

Model Checking and Program Synthesis

Given a system model, a controller design and performance specifications, we must
verify that the controller satisfies the specifications. This is typically done by
running many simulations. A problem in using simulation to try to check whether
the design satisfies the specification is that it can be prohibitively time-consuming
to simulate every possible sequence of events. For purely discrete state systems, in
which the dynamics are completely specified by a set of discrete variables α, it turns
out that there are more efficient techniques for verifying that a system is specified
by making use of the structure of the logical formula and the discrete dynamics of
the system. These verification techniques are referred to as model checking.

A block diagram that describes how model checking is performed is shown in
Figure 15.12. The main idea of model checking is to make use of a model of
the (discrete) system dynamics and the temporal logic specification to create a
discrete transition system, known as the product transition system, where finding a
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Figure 15.12: Model checking.

path through this transition system represents a possible system execution (set of
allowable state transitions) that violates the system specification. If no such path
can be found, then the system specification is satisfied. But if a path is found, it
represents a counter-example that can be used to update the controller design.

Model checking tools, such as nuSMV [CCG+02], PRISM [KNP11], SPIN [Hol03],
and TLC [Lam03] are capable of handling relatively large discrete state systems
with quite general classes of specifications (beyond simple LTL formulas). They
are now widely used in industry and are increasingly being applied in mission and
safety critical applications, such as planetary exploration and aviation.

Despite their increasing power and applicability, a limitation in the use of model
checking is that it does not necessarily provide any insight into how to redesign
the system if the specification is not met. Rather, it provides a counterexample
indicating what can go wrong, and leaves it to the designer to understand why the
controller is not correct and then redesign the system. The updated design can
be re-verified using the model checker, and this process is iterated until a correct
design is obtained.

An alternative to iterative manual design is to make use of results in program
synthesis or correct-by-construction synthesis [MW80]. The basic idea in synthesis
is to create an algorithm that takes a model of the discrete system dynamics along
with a temporal logic specification and then synthesize a control protocol such
that the resulting closed loop system satisfies the specification. This approach is
conceptually similar to the LQR design technique outlined in Section 7.5: given
a system specification (cost function to minimize) and system model (A, B, C
matrices), create a controller (u = −Kx) that by construction stabilizes the system
and optimizes the performance specification.

Model checking and program synthesis make use of a common set of information
(system model and system specification), but solve different problems, as illustrated
in Figure 15.13. The advantage of using synthesis is that it provides a control
protocol that is guaranteed to satisfy the specification. That is, no matter what
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Figure 15.13: Verification versus synthesis.

sequence of environmental events occur, the system will always respond in a manner
that satisfies the specification.

Of course, correct-by-construction synthesis is not a panacea. It can only be used
for certain types of specifications and it too can be overwhelmed by complexity. But
it is an increasingly important tool in the systematic synthesis of control protocols,
especially safety-critical systems. A practical way to obtain a safe system is to
design the system in layers with algorithms and guards. The algorithms perform
their ordinary tasks and the guards determine if the system is functioning properly.
The innermost layer, which for flight control is called flying home mode,, consists
of a simple robust controller that provides the basic properties. If the loop is
simple enough it can be designed to be correct-by-construction. The algorithms at
the higher layers deliver better performance, and they have guards that move the
system to a lower, safer layer if the system does not perform properly. The safety
of the guards must of course also be guaranteed. Systems of this type have been
designed by Sha [Sha01], and examples of guards for adaptive control are found
in [THÅ00].

15.4 Bottom-Up Architectures

An alternative to the approaches described in the previous section is to design
controllers by interconnecting low-level control systems to create more sophisticated
capabilities. This approach is referred to as “bottom up” design. The idea of
building complex systems from standard parts has emerged in many branches of
engineering. In design of mechanical devices it was very efficient to standardize
nuts and bolts. In electronics, standards emerged for components, circuits, boards,
and patterns for VLSI design.

To use bottom-up design of control systems, we must find the appropriate com-
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Figure 15.14: Block diagram of a system with cascade control. The dashed
controller block has two controllers Cp and Cs in series. Both controllers have two
degrees of freedom with two inputs: the reference (top) and the measured variable
(bottom). The process has two blocks P1 and P2 in cascade. There are two loops:
an inner or secondary loop and an outer or primary loop.

ponents or building blocks and the rules for interconnecting them. The building
blocks are controllers (often PID), nonlinear functions, filters, logic, and finite state
machines. They can either be separate pieces of hardware or function blocks im-
plemented in software. The systems are built loop by loop by using structures or
control principles such as feedback, feedforward, and gain scheduling, which have
been discussed extensively in previous chapters. In this section we will introduce
other architectural structures: cascade control, mid-range control, selector control,
internal model control (IMC), Smith predictors, extremum seeking, and comple-
mentary filtering.

Bottom-up architectures can deal with systems having many inputs, many out-
puts, and constraints. An advantage is that the system can be designed, commis-
sioned, and tuned loop by loop. The disadvantages are that it is not easy to judge
the consequences of adding loops and that there may be difficulties when loops are
interacting. Bottom-up architectures are easy to use for simple systems, but for
complicated systems it may be better to use a top-down approach.

Cascade Control – Several Sensors

Cascade control is a scheme for using one actuator and two or more sensors. Ver-
sions of it were previously encountered in Figure 1.13 and in Example 12.9, where
it was called inner-outer loop design. A block diagram of a closed loop system with
cascade control is shown in Figure 15.14. The dashed process block has one con-
trol variable u and two measured signals: the primary output y and the secondary
output ys. The process is modeled by the blocks with transfer functions P1 and
P2, which capture how the measured signals are related to the control variable.
The dashed controller block in the figure has two controllers Cp and Cs, which are
connected in cascade. It has three inputs: the reference r and the measured signals
y and ys. The primary controller Cp attempts to keep the output y close to the
reference r by manipulating the reference input rs of the secondary controller Cs.
The secondary controller Cs attempts to keep the secondary output ys close to its
reference rs manipulating the control variable u.

The controllers Cp and Cs can be of any type, but PID controllers are most
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Figure 15.15: Block diagram of a closed loop system with mid-range control.
The process has one output y and two inputs uf and uc. The input uf provides
fine control with limited range, the input uc provides coarse control with wide
range. The controller Cf attempts to keep the output y close to its reference r.
The controller Cc controls uc so that the variable uf is in the middle of this range.

common. Design is done loop by loop starting with the inner loop. If integral action
is used, it is necessary to have a scheme to avoid integral windup. Anti-windup for
the secondary controller can be done in the conventional way, since the controller
drives the actuator directly. To provide anti-windup for the primary controller it
must be told when the secondary controller goes into anti-windup mode.

Cascade control is a convenient way to use extra sensors to improve control
performance. It can be used with more than two sensors: the ultimate case is state
feedback when all states are measured. Cascade control is particularly useful when
there is significant time delay or dynamics between the input u and the primary
output y, but significantly less dynamics between u and the secondary output ys.
A tight feedback in the inner loop reduces effects of disturbances and uncertainties
in the block P1, and simplifies the design of the outer loop.

Mid-Range Control – Many Actuators

Midranging is a control scheme that can be used when several control signals in-
fluence the same measured output. A typical example is a CD player with a fast
actuator having a small actuation range and a slower actuator with a wide actua-
tion range. The block diagram in Figure 15.15 shows an example. The process has
two control signals uf for fine control and uc for coarse control. They influence the
output y through dynamics described by the transfer functions Pf and Pc.

The controller Cf drives uf and is the primary controller that attempts to keep
the output y close to its reference r. The second controller Cc drives the subsystem
Pc, which has wide actuation range. The measured signal for Cc is the output uf

of the controller Cf, and the reference is the middle range of uf. The controller
Cc manipulates the control variable uc so that uf is in the middle of its operating
range and can handle moderately large disturbances. Both controller will act for
large disturbances.

The controllers are tuned loop by loop, starting with the Cf. Anti-windup is
handled in the standard manner if controllers have integral action.
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Figure 15.16: Block diagram of a system with selector control. The primary
controller C is designed to keep y close to its reference r. The controllers Cmax

and Cmin are controllers that ensures that the intermediary variable z is in its
permissible range zmin < z < zmax. The block marked < is a minimum selector,
whose output equals the smallest input. The block marked > is a maximum
selector, whose output equals the largest input.

Selector Control – Equipment Protection

Selector control is used to control a primary variable while keeping auxiliary vari-
ables within given constraints for safety or for equipment protection. A selector is
a function with many inputs and one output. The output of a maximum selector is
the largest of the inputs and the output of a minimum is the smallest of the inputs.

Selector control is illustrated in Figure 15.16. The primary controlled variable
is the process output y. The primary controller C, with output un, attempts to
keep y close to its reference r. To guarantee safe operation the auxiliary variable z
should be kept in the range zmin < z < zmax. This is accomplished by the secondary
controllers Cmax and Cmin, which have reference signals zmax and zmin.

The control signal u is generated by sending un, uh and ul through maximum and
minimum selectors as shown in the figure. Under normal conditions the auxiliary
variable z is larger than zmin and smaller than zmax. The system then acts as
if the maximum and minimum controllers were not present and the input to the
control system is u = un. If the variable z goes above its upper limit zmax the
error of the controller Cmax becomes negative and the minimum selector chooses
uh instead of un. Control is then executed by the controller Cmax, which attempts
to drive z towards zmax. A similar situation occurs if the variable z becomes smaller
than zmin. The switches between the controllers are determined by the limits zmin

and zmax and the gains of the secondary controllers, which often are proportional
controllers.

Selector control is commonly used to provide safety, for example to maintain
temperature while ensuring that a pressure does not exceed certain limits or to
avoid stall in compressor control. We have only discussed maximum and minimum
selectors, but there are also median selectors and two-out-of-three selectors that are
used for high integrity systems with multiple sensors. Selector control is related
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Figure 15.17: Block diagram of a closed loop system with a controller based on
the internal model control structure.

to manual control, described briefly in Section 11.4, where the control variable is
manipulated directly.

Design of the controllers can be made loop-by-loop since only one of the con-
trollers is in operation at each time. There may, however, be complications when
switching between the controllers. With controllers having integral action, it is
necessary to track the integral states of those controllers that are not in operation.
Windup protections therefore requires care. Selector control will be complicated
when there are many constraints. It is then safer to use multivariable architectures
and design methods such as model predictive control.

Internal Model Control – Disturbance Observer

Figure 15.17 shows a controller architecture that is called internal model control
(IMC) or inferential control. The basic idea is to create an estimate of the effect of
the disturbances v and w on the output of the system.

If P̂ = P it follows from the block diagram that the control signal u has no
effect on the signal ε, hence ε = w + Pv. The signal ε is thus the net effect of the
disturbances reduced to the process output, which explains the name disturbance
observer. If Gf = 1 the block P̂−1 generates a control signal that eliminates the
disturbance. In reality, ideal disturbance rejection cannot be accomplished because
the inverse P−1 is normally not realizable. Good disturbance attenuation can,
however, be achieved by using an approximate inverse and a proper design of Gf.

To investigate the response to reference signals, we neglect the disturbances v
and w. If P̂ = P we have ε = 0 and the transfer function from reference to output
becomes Gyr = P P̂−1Gf = Gf. In reality the inverse has to be substituted with an
approximate inverse P † because P normally cannot be inverted. The response to
reference signals can be shaped by the transfer function P †Gf.

The block diagram in Figure 15.17 can be also be represented as a standard
feedback loop with a process P and a controller C where

C =
P−1Gf

1−Gf
. (15.5)

If P̂ = P , then the controller C cancels all process poles and zeros, which im-
plies that it cannot be used for processes with unstable poles or zeros. The same
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Figure 15.18: Block diagram of a closed loop system with a Smith predictor.

observation can be made from the fact that the system has a parallel paths with
two identical systems, which is a prototype for a system lacking observability and
reachability.

The Smith Predictor – Phase Advance

The Smith predictor is a special controller architecture for systems with time delays.
A block diagram of the controller is shown in Figure 15.18. The controller is
provided with a model P̂ = P̂0 e−sτ , in parallel with the process P = P0 e−sτ . The
parallel model provides the signal yp, which is a proxy for the undelayed process
output. Notice the similarity with the internal model controller architecture in
Figure 15.17. Assuming that P̂0 = P0 then the signal ε is zero for all u. Applying
block diagram algebra then gives the following transfer function for the closed loop
system:

Gyr(s) =
P0(s)C0(s)

1 + P0(s)C0(s)
e−sτ . (15.6)

To obtain a desired response to reference signals we can design a controller C0 for
a process with the delay-free dynamics P0. Notice that the architecture has two
parallel paths with identical dynamics, which is particularly serious if the transfer
function P0 has unstable poles. The Smith predictor cannot be used for processes
with integrators without modifications [ÅHL94].

To get additional insight into the properties of the Smith predictor, we observe
that if P̂ = P = P0 e−sτ the block diagram Figure 15.18 can be redrawn as a
conventional feedback loop with the controller

C =
C0

1 + C0 P0(1− e−sτ )
= C0 Cpred, Cpred =

1

1 + C0 P0(1− e−sτ )
. (15.7)

The controller can thus be viewed as a cascade connection of the conventional
controller C0 with the predictor Cpred. Notice that near the gain crossover frequency
for P0 C0 we have P0 C0 ≈ −1 and Cpred ≈ esL, indicating that the transfer function
Cpred has a significant phase advance.
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Figure 15.19: Bode plots of the predictor transfer function Cpred (solid curve)
given by equation (15.7) and the ideal predictor esτ (dashed curves) for the transfer
functions given in equation (15.8).

An example is shown in Figure 15.19 for the case where

P0 =
1

s+ 1
, C0 =

(
1 +

1

0.45s

)
, L = 8. (15.8)

The phase curve of Cpred shows that the phase lead is very close to that of an ideal
predictor esτ for the frequencies ω = 0.76 and ω = 1.3, where the phase lead is
360◦ and 720◦. Also notice that the gain curve of the Bode plot has resonances at
ω = 0.76 and ω = 1.3 and that the phase increases approximately 180◦ at those
frequencies. This implies that the transfer function Cpred has two complex pole
pairs in the right half-plane.

The Smith predictor gives closed loop systems with good responses to reference
signals but the response to load disturbance responses are not much better than
with PI control because the gain crossover frequency is limited by the time delay
(around 0.1 for the system in Figure 15.19). This gain crossover frequency can also
be obtained using a PI controller. The predictor Cpred is, however, a useful transfer
function to provide large phase advance.

Complementary Filtering – Sensor Fusion

Complementary filtering is a technique that can be used to combine the information
from different sensors, typically one sensor that is slow but accurate and another
that is fast but drifting. One example is to fuse signals from a GPS with signals
from gyroscopes and accelerometers to provide good estimates of position, velocity,
and acceleration.

Consider the situation when we want to give a good estimate of the variable x
and we have two sensors available that give the signals y1 and y2 where

y1 = x+ w1, y2 = x+ w2.

The disturbance w1 has zero mean but the disturbance w2 may drift. Using expo-
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nential signals the complementary filter for recovering the signal x is given by

yf =
1

s+ 1
y1 +

s

s+ 1
y2 = G1(s) y1 +G2(s) y2. (15.9)

Notice that G1(s) +G2(s) = 1, which explains the name complementary filtering.
Both complementary filtering and Kalman filtering can provide improved esti-

mates by fusing information from several sensors, and they can also be optimized if
information about the noise characteristics are available. Complementary filtering
requires only a model of the sensor system but the Kalman filter requires a model
of the complete system dynamics. The Kalman filter can, however, also exploit
the control actions. Both methods are widely used both in simple and advanced
systems.

Extremum Seeking or Self-Optimization

Another set of useful control structures are extremum seeking or self-optimizing
controllers. Instead of keeping the process output close to a constant reference value,
self-optimizing controllers attempt to change the reference so that an objective
function is minimized. The idea of extremum seeking is to adjust the reference of
a closed loop system so that a performance criterion is optimized. This concept
is illustrated in Figure 15.20a. The reference value r of the controller is changed
sinusoidally and the performance j is observed. The performance changes very little
close to the optimum, see B in the figure. They are in phase with the changes of the
reference if the reference is to the left of the maximum (A in the figure), and they
are out of phase if the reference is to the right of the maximum (C in the figure).
The phase difference can be used to find the how the reference should be changed
to optimize the performance. A block diagram of an extremal seeker is shown in
Figure 15.20b. The self-optimizer has a block PC that calculates the perfjormance
J from the process input u and output y. The signal generator SG generates a
sinusoidal signal which is sent to the reference value of the closed loop system. The
signal is correlated with the output J from the performance calculator and a low-
pass filtered version is sent to the reference value. The perturbation signal should be
chosen sufficiently slow so that process dynamics can be neglected. There are many
other more sophisticated schemes based on optimization and estimation [Krs03].
They differ in how probing, analysis, and action are performed.

15.5 Interaction

A drawback with building a system loop by loop is that there may be unintended
interactions. It is therefore important to investigate when interactions arise and
what can be done to reduce potential drawbacks. We will start by introducing
the relative gain array (RGA), which is a simple measure of interaction. We will
then discuss parallel systems, which is a special form of interaction that occurs
when several subsystems produce the same effect. A typical example is an electric
car with motors on each wheel or a power system with many generators that are
synchronized for frequency control.



15.5. INTERACTION 15-25

A B C

(a) Performance response

Process and controller

$y$

$u$

CLSLPF
$r$

$\Sigmai$$\Phi$

PC

$J$

SG

Self−optimizer

(b) Block diagram

Figure 15.20: Self-optimizing control or extremum seeking. The steady state
response of the performance J is shown as a function of the reference r in (a),
together with the effects of sinusoidal variations in r. A block diagram of the
system is shown in (b).

The Relative Gain Array

To explore the effects of interactions we will investigate control of a system loop by
loop. The first problem, which is a prototype for a system that lacks reachability
and observability, is to decide if yi should be controlled by uj or by some other
control signal. This is called the pairing problem (relative gain array). The second
problem is to investigate if there will be interactions between the loops. It turns
out that an understanding of the second problem also solves the first problem.

Consider a system with p inputs and p outputs. Let the transfer function matrix
of the system be P . The open loop transfer function from input j to output i is
(i, j)th element of the transfer function matrix, which we denote Pij . This transfer
function will change when the other loops are controlled. The change depends on
the controllers in the other loops in a complicated way. A simple situation is when
all other loops are perfectly controlled in the sense that all outputs yk are zero for
k (= i. To find the transfer function from uj to ui in this case we use exponential
signals, which gives

uj = (P−1)ji yi.

The closed loop transfer function from uj to yj is thus 1/(P−1)ji. The relative gain
for the loop ij is defined as the ratio of the transfer functions from uj to yi under
open loop and ideal closed loop control, hence

λij = Pij(P
−1)ji = Pij(P

−T )ij ,

where P−T denotes the transpose of P−1. The transfer functions λij can be com-
bined into the matrix

Λ = P ◦ P−T . (15.10)

where ◦ denotes element by element multiplication of the matrices (the Hadamard
product denoted .∗ in MATLAB). The matrix Λ is called the relative gain array
(RGA) or Bristol’s RGA after its inventor [Bri66]. It was originally derived for the
steady-state case (s = 0), which explains the name relative gain and it was later
extended to dynamics. We illustrate with an example.
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Example 15.2 Relative gain array for 2× 2 systems
Consider a static system with two inputs and two outputs. The transfer function
and its inverse are

P =


p11 p12
p21 p22


 , P−1 =

1

p11p22 − p12p21


 p22 −p12
−p21 p11


 ,

and the relative gain array (15.10) then becomes

Λ =


1− λ λ

λ 1− λ


 , λ =

p11p22
p11p22 − p12p21

.

In this case the interaction can thus be characterized by a single number λ. Notice
that the relative gain array Λ has a special structure: the diagonal elements are
equal to 1− λ and all row and column sums are one. ∇

The matrix Λ given by equation (15.10) has special properties. Since P−1 is the
inverse of P we have

n∑

k=1

Pik(P
−1)kj = δij ,

and hence
n∑

i=1

Pij(P
−1)ji = δii = 1.

The row and column sums of Λ are thus all equal to one, which implies that the
interactions can be characterized by (n − 1)2 elements: one element for m = 2 as
in Example 15.2 and four elements for m = 3.

The relative gain has a good physical interpretation in the static case. If λij = 1
there is no interaction because the open and closed loop gains are the same. The
interaction increases the gain if λij < 1 and decreases the gain if λij > 0. The
interaction changes the sign of the gain if λij is negative. The relative gain can also
be used for pairing inputs and outputs as illustrated by the example.

Example 15.3 RGA and pairing
Consider a system where the static gain matrix and the RGA are

P =




2.662 8.351 8.351
0.382 −0.559 −0.559
0 11.896 −0.351


 , Λ =




0.32 0.02 0.66
0.68 0.01 0.31
0 0.97 0.03


 ,

where the bold entries are the maximum entries in each row. In this case the pairing
is straightforward because there is one largest relative gain in each row and each
column, which gives the pairing y1:u3, y2:u1, and y3:u2. The relative gains are
also reasonably large. ∇

The relative gain array is a simple measure of interaction, it is dimension free,
easy to compute and it gives insight into interactions and pairing of variables. It
was originally derived for static systems but analysis of the frequency response
Λ(iω) gives insight into the frequency dependence of the interactions. The RGA
also gives information about the variables that should be grouped for multivariable
control. Since it was derived under the special assumption of perfect control, it
does not capture all aspects of interaction.
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Parallel Systems

There are situations when several subsystems are used to control the same variable.
Typical examples include temperature control using several cooling or heating de-
vices and control of an electric car with one motor on each wheel. An extreme
example is control of a power grid, which may have hundreds of energy sources
that all contribute to maintain frequency and voltage of the net. Designing a sys-
tem loop by loop requires care as is illustrated by the following example.

Example 15.4 Cruise control for electric car
Consider speed control of an electrical car with motors on each wheel. For simplicity
we will consider linear motion with only two motors, and we will use the simple
model (4.1) in Section 4.1. Neglecting all disturbance forces except the force due
to gravity, Fd = mgθ, the model (4.3) becomes

m
dv

dt
= F1 + F2 −mgθ, (15.11)

where v is the speed of the car, θ is the slope of the road, and F1 and F2 are the
forces generated by each tire.

For simplicity we will neglect the dynamics of motors and wheels, so that the
forces are simply the output of the wheel controllers. When both wheels have
proportional controllers we have

F1 = kp1(r − v), F2 = kp2(r − v), (15.12)

where r is the speed reference. Combining equations (15.11) and (15.12) gives the
following equation for the closed loop system:

m
dv

dt
= (kp1 + kp2)(r − v)−mgθ = kp(r − v)−mgθ,

where kp = kp1 + kp2. If the slope θ is constant there will be a steady-state error
ess = r − vss = mgθ/kp and the steady-state forces are then

F1,ss =
kp1

kp1 + kp2
mgθ, F2,ss =

kp2
kp1 + kp2

mgθ.

The proportional gains kp1 and kp2 of the controllers thus determine how the com-
pensation for the disturbance is distributed among the motors.

Next we will consider the case when each motor drive is provided with a PI
controller. The closed loop system is then described by the equations

m
dv

dt
= (kp1 + kp2)(r − v) + ki1I1 + ki2I2 −mgθ,

dI1
dt

= r − v,
dI2
dt

= r − v.
(15.13)

Assuming that r and θ are constant, the equilibrium point is given by v = r and
constant I1 and I2. The variables I1 and I2 are not unique, however, and they can
have any values as long as

kpI1 + ki2I2 = mgθ.
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(a) Drive system with two PI controllers
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(b) Drive system with one PI controller

Figure 15.21: Transient behavior of car with two controlled wheels. The system
in (a) has a PI controller for each wheel drive. The system in (b) has one PI
controller whose output is distributed to the wheel drives. The top plots show the
velocity error e = r − v, the middle plots show the forces F1 and F2 generated by
the wheels and the bottom plots show the total force F1 + F2.

The fact that the closed loop system has infinitely many equilibrium points is an
indication that there may be difficulties. To explore this we will analyze the closed
loop system. The transfer functions from r and θ to v are

Gvr =
kps+ ki

ms2 + kps+ ki
, Gvθ =

mgs

ms2 + kps+ ki
, (15.14)

where ki = ki1 + ki2. The velocity v follows reference signals without steady-state
error since Gvr(0) = 1 and there will be no steady-state error when encountering a
slope since Gvθ(0) = 0.

The system (15.13) is of third order but the transfer functions (15.14) are of
second order, which means that there is a pole/zero cancellation. The canceled
mode is governed by the equation d(I1− I2)/dt = 0, which has an eigenvalue at the
origin. The system has a Kalman decomposition (Figure 8.9a) with a first-order
subsystem Σro with integrator dynamics that is neither reachable from the forces
F1 and F2 nor observable from v. Recall that a system with two parallel systems
having the same mode is a prototype for a system that is neither reachable nor
observable.

The fact that the closed loop system has an unstable mode that is neither
reachable nor observable is seen in the simulation in Figure 15.21a. The simulation
shows what happens when a pulse like perturbation is introduced at the input of
the PI controller for wheel 1. The velocity error e = r−v is quite well behaved and
the error settles in about 10 time units. The force F1 (solid curves) reacts quickly
to reduce the effect of the disturbance but the force F2 (dashed curves) goes in the
opposite direction. In steady state the force F1 settles to a constant value as does
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F2. The steady-state forces have different signs, however, which means that one
wheel is driving and the other is braking: clearly not a satisfactory behavior.

The irregular behavior is caused by an unreachable and unobservable mode in
the closed loop system, which caused by two PI controllers in parallel. Having un-
derstood what happens, it is straightforward to find a remedy: use one PI controller
and distribute its output to the two wheels. The controller is then

F1 = α
(
kp(r − v) + kiI

)
, F2 = (1− α)

(
kp(r − v) + kiI

)
,

dI

dt
= r − v, (15.15)

where the parameter 0 < α < 1 tells how the forces are distributed between the
wheels. The closed loop system is described by

dv

dt
= kp(r − v) + kiI −mgθ,

dI

dt
= r − v, (15.16)

and the forces are given by equation (15.15). This system is of second order and
the transfer functions Gvr and Gvθ from reference r and slope θ to velocity v are
given by equation (15.14).

A simulation of the system is shown in Figure 15.21b. The behavior of the
forces are now much more reasonable because they both collaborate to reduce the
disturbance. The behavior of the error e and the total force F are, however, the
same as for the system with two PI controllers. ∇

The conclusion from the example can be generalized. If parallel systems are
controlled by proportional controllers, then the controller gains determine how dis-
turbance attenuation is divided among the subsystems. However, integral control
cannot be used in the individual subsystems. Instead we can use a central integrator
and distribute its output to the separate controllers for the subsystems.

15.6 Adaptation and Learning

In this section we will briefly discuss control systems with abilities to adapt, learn,
and reason. Adaptation is used to adjust to a specified use or situation, learning is
used to acquire knowledge or skill by study, instruction, or experience, and reason-
ing is the intellectual process of seeking truth or knowledge by inferring from either
fact or logic. Cars and air vehicles with autonomy are areas where adaptation,
learning, and reasoning are essential, but it should be recognized that the abilities
of humans are still far ahead of what is achievable using human-engineered systems.

Adaptive Control

Adaptive control is a technique that can be used when there are significant varia-
tions in the process and its environment and where neither robust control nor gain
scheduling is applicable. Model reference control and the self-tuning regulator are
two common adaptive systems: their block diagrams are shown in Figure 15.22.
Notice that in both cases there are two feedback loops: one conventional feedback
loop involving the process P and the controller C and a slower loop that adjusts
the parameters θ of the controller.
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Figure 15.22: Block diagrams of systems with (a) a model reference adaptive
controller (MRAC) and (b) a self-tuning regulator (STR). The block P is the
process, C is a controller with adjustable parameters. For the model reference
system the requirements R are given in terms of the model Fm, which gives the
ideal response to reference signals. The controller parameters θ are adjusted by the
parameter adjustment mechanism PA. In the self-tuning regulator the controller
parameters θ are adjusted indirectly based on a control design calculation CDC,
where the process model is obtained by a recursive parameter estimator RPE.

Model reference adaptive control (MRAC) is primarily used for reference sig-
nal tracking. A block diagram of the controller is shown in Figure 15.22a. The
controller consists of three blocks Fm, C, and PA. The desired response to com-
mand signals is given by the transfer function Fm, which is shaped to satisfy the
requirements R. The controller C has adjustable parameters θ. The parameter
adjustment mechanism PA, receives the process input u, the process output y,
and the desired response ym, and it generates the process parameters θ. A simple
parameter adjustment mechanism is given by the “MIT rule” [ÅW08b, Section 5.2]:

dθ

dt
= −γ e ∂e

∂θ
, (15.17)

where γ is a parameter, e = ym− y, and ∂e/∂θ is a sensitivity derivative. The MIT
rule is a very simple way to adjust the parameters. There are many other rules,
some of them are derived from Lyapunov theory [ÅW08b].

The self-tuning regulator (STR) is used both for reference signal tracking and
for regulation. The controller is based on the idea of developing a process model
automatically and applying some design method to find a suitable controller. A
block diagram of a system is shown in Figure 15.22b. The controller has three
blocks: a controller C with adjustable parameters θ, a recursive parameter estima-
tor RPE and a controller design calculation CDC. The parameter estimator RPE
estimates the process parameters θ recursively from the process input u and output
y. The controller design block CDC determines the controller parameters from the
process parameters using some design method. In this calculation it is common to
treat the estimates as the true parameters, a principle from decision making under
uncertainty called the certainty equivalence principle [Sim56]. Uncertainties in the
estimates can be taken into account because many estimation schemes provide es-
timates of parameter uncertainty. The self-tuning regulator is very flexible because
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many different methods can be used for parameter estimation and control design.
Recursive least squares is a common method for estimating parameters in the

model

yt+1 = −a1yt − a2yt−1 + · · ·+ b1ut + · · ·+ et+1 = ϕtθ + et+1,

ϕt = [−yt − yt−1 · · · ut ut−1 · · · ], θ = [a1 a2 · · · b1 b2 · · · ]T
(15.18)

by minimizing the mean square error
∑

e2k. The estimates are given by

θ̂t = θ̂t−1 +Kt(yt − ϕtθ̂
T
t−1), Kt = Ptϕ

T
t ,

Pt = Pt−1ϕ
T
t (λ+ ϕtPt−1ϕ

T
t )

−1,
(15.19)

which is a special case of the Kalman filter: see equation (8.8) in Section 8.2. The
parameter λ controls how quickly old data is forgotten. There are many variations of
the parameter estimator: directional forgetting and square root algorithms, where
the square root of P is updated instead of P itself [ÅW08b], are of particular
interest.

Applications of adaptive control are found in flight control, process control,
and wheel-slip control and other automotive applications. We illustrate by a ship
steering application.

Example 15.5 Adaptive ship steering
A conventional autopilot for ship steering is typically based on PID control. The
major disturbances are due to wind and waves, which can change significantly. An
adaptive controller can model wave generated forces and counteract them efficiently.
Ship dynamics and wave forces can be captured by a model of the form (15.18) with
4 a-parameters, constrained to contain an integrator, and 2 b-parameters. Exten-
sive sea trials have shown that the adaptive autopilot has better performance than
the conventional autopilot in normal whether conditions and substantially better
performance in bad weather conditions. Figure 15.23 shows results from evaluation
of the Steermaster autopilot developed by Kockums and now marketed by Northrop
Grumman. In the experiments, the conventional and adaptive autopilots were run
repeatedly for about an hour each during normal operation. The figure shows that
the adaptive autopilot has significantly smaller variations in heading than the con-
ventional autopilot. The difference corresponds to about 3% less fuel consumption.

∇

A difficulty with adaptive control is that parameter estimation is performed
when the system is in closed loop. It is then important where the excitation signals
occur. Consider for example the standard feedback loop in Figure 15.3. If the only
perturbation on the system is the injected signal δ1 and we assume r = 0, v = 0
and w = 0, we get

y =
P (s)

1 + P (s)C(s)
δ1, u = − C(s)P (s)

1 + P (s)C(s)
δ1.

It then follows that y = − 1
C(s) u and any attempt to find a model relating u and y

will thus result in the negative inverse of the controller transfer function. However,
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(a) Conventional autopilot
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(b) Self-tuning autopilot

Figure 15.23: Heading deviation (top) and rudder motion (bottom) for ship
steering for (a) a conventional autopilot and (b) an adaptive autopilot. The ex-
periments were performed on a 225000 ton tanker Seascape, wind velocity around
10 knots, from [KÅT+79].

if we inject disturbances through the reference r and set all other inputs to zero we
have instead

y =
P (s)C(s)

1 + P (s)C(s)
F (s)r, u =

C(s)

1 + P (s)C(s)
F (s)r.

Hence, y = P (s)u and the process model can indeed be estimated.
To obtain reliable estimates of the process parameters, there must be sufficient

variations in the control signal. This can be captured by the notion of persistent
excitation. A signal u(t) is persistently exciting of order n if

U = lim
t→∞

1

T

∫ T

0
(A(p)u(k))2 > 0

for all nonzero polynomials A of the differential operator p = d/dt with degree
less than or equal to n − 1. Persistency of excitation determines the number of
parameters that can be estimated reliably. A constant is persistently exciting of
order 1 and permits estimation of one parameter. A sinusoid is persistently exciting
of order two.

To have a reliable parameter estimation it is important to be aware of where
disturbances enter and to monitor the excitation. Load disturbances of the pro-
cess are particularly harmful. A scheme for detecting harmful load disturbances
is presented in [THÅ00]. To obtain reliable estimates it is necessary to monitor
the excitation of the process and only update parameters when there is sufficient
excitation of the process.

An interesting approach to control of uncertain systems was proposed by Feld-
baum [Fel65], who emphasized that control should be investigating as well as direct-
ing, and he coined the term dual control for this property. Feldbaum used optimal
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stochastic control to obtain a controller that was actively introducing perturbations
in the process when the process was not properly excited by natural disturbances.
The hyper state of a dual controller is the conditional probability distribution of
the regular states of the process and the parameters. The computations of a dual
controller can only be performed in simple cases because the state of the system
is a conditional probability distribution over states and parameters [ÅH86]. Many
heuristic schemes to monitor excitation and to introduce perturbations when needed
have therefore been developed. In the field of machine learning this approach is
called reinforcement learning.

Learning

A nonlinear function with a learning mechanism is a simple example of a learning
system. Learning can be done in two different ways. In supervised learning, the
function is created automatically by providing it with a large number of arguments
and corresponding function values. In reinforcement learning a criterion for good fit
is provided and learning is executed by selecting random arguments and changing
the function until a good fit is provided. Representation of the learning mechanism
is a central issue. A simple way to represent a function of several variables is to
quantize the variables, which we illustrate by an example of unsupervised learning.

Example 15.6 Michie’s BOXES method
Michie and Chambers developed a simple learning program called BOXES [MC68]
for game playing. An early connection between learning and control was established
when the program was applied to the classical control problem of stabilizing an
inverted pendulum. Consider a cart–pendulum system such as that in Figure 7.2b
on page 7-5, where cart position and velocity and pendulum angle and angular
velocity are measured. The control signal is a function: f : R4 → R. BOXES
was used to learn an approximation of this function. To implement the system the
states were quantized crudely: 5 levels for position and angle, 3 levels for velocities,
and 2 levels left (L) or right (R) for the control signal. The control law is then
represented by a table with 5× 5× 3× 3 = 225 entries. Each entry in the table has
five numbers: LL (left life), RL (right life), LU (left usage), RU (right usage), which
capture features of past experiments, and T (target), which is related to the current
mean time for stabilization. The life (L) is a weighted average of the number of
times the entry was used before failure. The usage (U) is a weighted number of
times the entry was used before failure. The control actions taken upon entering a
box is a heuristic function of the values of LL, RL, LU, RU, and T. The system is
initialized by introducing random numbers in the table. Experiments are run and
the table is updated. In a typical experiment the system was able to stabilize the
pendulum in 25 minutes after a 60 hour training period. ∇

Pendulum stabilization is perhaps not the best case to demonstrate learning,
since a student could design a stabilizing controller in less than an hour. Control
performance will also be better because a conventional design can avoid the crude
quantization used in BOXES. There have, however, been significant developments
in machine learning since the late 1960s when BOXES was developed.
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Figure 15.24: Schematic diagram of a feedforward neural network with an input
layer, a hidden layer, and an output layer.

Neural Networks

A severe drawback of schemes like BOXES is that the nonlinear function is repre-
sented by gridding the state variables, which requires very large tables. To have
efficient learning schemes it is necessary to find more efficient ways to represent
nonlinear functions and to find efficient learning mechanisms. An artificial neural
network is such a representation.

Artificial neural networks were inspired by neuroscience although their current
implementation is far from their biological origin. A neuron has many synapses
which receives inhibitory or excitatory signals from other neurons. The neuron
emits a pulse to other neurons if the net excitation over a short time interval is
above a certain level. An artificial neuron mimics a real neuron but it operates
continuously. A very simple model is

y = g
( n∑

k=1

wiui

)
, (15.20)

where the parameters wi are weights. The function g was originally a sigmoid
shaped function, for example g(x) = tanhx or g(x) = (1+ e−x)−1, but many other

functions are currently used, such as max(0, x), e−xTQx, and (1 + xTQx)−1.
An artifical neural network (ANN) is a combination of neurons in a layered

network as shown in Figure 15.24, which represents the function f : R3 → R2 as

f(u) = g
(
W (3)g

(
W (2)g(W (1)u)

))
, (15.21)

where W (k) is a matrix of the weights to the layer k, and g is a monotone function
of the type discussed above (when x is a vector, g(x) is a vector obtained when the
function is applied to each element of the vector). The neural network may appear
very restricted, but Kolmogorov proved that any continuous function on a finite
cube can be represented by a neural network with only one hidden layer [Kol57].
The strong advantage of having many layers was clarified by H̊astad [H̊as87].

Neural networks have weights w(k)
ij , which are determined experimentally by

matching a large number of arguments and corresponding function values. A useful
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Figure 15.25: Illustration of feature detection based on deep learning. Objects
are detected and classified as car, bicycle, or person, their position and spatial
extent are also determined. The images typically have low-resolution to prevent
identification of license plates and humans. The particular network which gener-
ated this figure has 13 layers and more than 25 million parameters [AJÅ+17].

feature is that both the function and its inverse can be generated from data. The
weights in a simple neuron can be determined by the gradient algorithm

wi(k + 1) = wi(k) + γu0
i (k)

(
y0(k)− y(k)

)
, (15.22)

where u0
i and y0 are training data and y is computed from equation (15.20) with

u = u0. This rule can be interpreted as an approximation of a gradient scheme for
minimizing the mean square error. It is similar to the MIT rule (15.17) for model
reference adaptive control. In neurophysiology the algorithm (15.22) is known as
Hebb’s rule [Heb49]. Parameters of multi-layer neural networks can be updated by
gradient descent, where the gradient is computed by back propagation..

Deep Learning

Neural networks with many layers, so-called deep learning, have proven very use-
ful in many fields. Preprocessing of data from information-rich sensors, such as
spectrometers and cameras, is particularly useful for control. For example, in au-
tonomous driving it is useful to recognize objects such as houses, road markings,
traffic lights, cars, bicycles, and pedestrians, and to track these objects in real time.

A typical scene is illustrated in Figure 15.25, where object recognition is made
by a convolutional neural network (CNN). An image is represented as an m × n
array and an additional index k is used to represent images of different colors (red,
green, and blue) or different features (lines, corners, wheels, cars, bicycles, etc.).
Artificial neural networks have only two operations—a weighted summation and
a monotone function of a scalar variable—while the convolutional neural networks
have more operations.
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The convolution (C) function acts on a three-dimensional array and generates
a three-dimensional array. The function can be written y = C(x), where

y(i, j, k) = wo(k) +
∑

u

∑

v

∑

l

x(i− u, j − v, l)w(u, v, l, k).

The function depends on the bias term wo and the weights w. Convolution is used
to detect features, such as edges, corners, wheels, cars, bicycles, etc.

The rectified linear unit (ReLU) R operates on an array and generates an array
of the same size. The function can be written y = R(x), where

y(i, j, k) = max
(
x(i, j, k), 0

)
.

It operates element-wise on the image. The function is analogous to the monotone
function used in conventional neural networks.

The max-pooling function (P ) operates on an array x of size m × n × k and
generates an array y of size m/2 ×n/2×k. The function can be written y = P (x),
where

y(i, j, k) = max
(
x(2i, 2j, k), x(2i− 1, 2j, k), x(2i, 2j − 1, k), x(2i− 1, 2j − 1, k)

)
.

Max-pooling is also called down sampling or subsampling, reduces the dimension
of an array but retains the most important features of the image. There are also
other pooling operators such as minimum and average pooling.

The function Softmax (S) operates on an array and generates an array of the
same size. The function can be written y = S(x), where

y(i, j, k) =
ex(i,j,k)∑
l e

x(i,j,l)
,

∑

k

y(i, j, k) = 1.

The entries of the output are in the range [0, 1], they indicate the subjective prob-
ability of finding the object k in position ij. The function is typically used in the
final layer to assign a subjective probability to a detected feature.

A convolutional neural network can be large with many parameters, but pa-
rameters appear only in the convolution layer. The parameters are determined by
optimization based on large training sets.

Determination of the sizes of the arrays, the number of layers and the order of
the operators is an art that requires experience. In computer vision it is inspired
by earlier efforts based on detection of lines, objects, corners, and blobs.

Figure 15.26 shows a simplified representation of the network used to generate
Figure 15.25. The input to the network is a box with 3 RGB planes with 300× 300
pixels and the output is a box of three images of size 20×20 pixels each representing
a recognized object. The network has 25 million parameters which have to be
estimated. The network can be described by the function

Q = S ◦ C ◦R ◦ C ◦ (P ◦R ◦ C)3,

where f ◦ g denotes function composition, i.e. f ◦ g(x) = f(g(x)). The function
is a composition of 13 functions. The first operations creates a wide range of
patterns using a combination of convolution (C), ReLU (R), and max-pooling (P ).
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Figure 15.26: A simplified version of the convolutional neural network used for
the object detection in Figure 15.25. The input is a color image. The output is
three layers of images representing the subjective probability of finding car, bicycle,
or person at a given position in the image.

Recognition of the final objects car, bicycle, and pedestian is done by S ◦C ◦R ◦C.
The final result three images with numbers that indicate the subjective probability
of finding an object at a particular location.

The arrays are illustrated by boxes in the figure. The first layer consists of
three arrays of red, blue, and green pixels of the object. The convolution operates
sequentially on part of the picture, the kernel is typically a fraction of the image
size. Different convolution kernels are applied to detection edges, corners, and other
features. The result of for each kernel is stored in a separate layer. Convolution is
followed by a rectified linear operator. The size of the image is then reduced using
max-pooling (P ). The operations C, R, and P are repeated several times to create
more features. The final part consists of three layers generated by C, R, and C.
The final result, a classification as car, bicycle, pedestrian, or no object, is obtained
by applying the softmax operator. The final result can be mapped on the original
image as shown in Figure 15.26. There are several ways to improve the position of
the objects and their sizes.

A camera with a convolutional neural network can be regarded as a trainable
sensor that will detect, classify, and position objects such as cars, bicycles, and
people in real time. It is clearly a useful component for autonomous driving and
for other applications in which vision-based sensors are used. From the data it is
easy to generate warnings, zones where a vehicle can safely enter, and other useful
information. The computations are fast, since they only require evaluation of simple
functions; computations can also be parallellized. The network used to generate
Figure 15.25 has more than 12 million parameters and it estimates 11 objects. The
final trained network can be executed in 60 Hz on a standard PC with an NVIDIA
Titan X graphics card.

15.7 Control Design in Common Application Fields

Control is sometimes called the hidden technology because it is successfully used
practically everywhere without being noticed [Åst99]. In this section we will present
the role of control in four different applications fields, which provides a flavor of the
commercial landscape of controls, the systems, the controllers, and the users.
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Aerospace – High Performance Systems and Highly Skilled
Users

The aerospace industry was an early user of control. The Wright brothers flew in
1905 because they had a good insight into dynamics and control. The first autopi-
lot was designed by Sperry in 1914 and autonomous flight was demonstrated in
1947. Today aerospace is a flourishing application area for control, dominated by
large companies for civil and military markets. The industry produces airplanes,
helicopters, drones, satellites, rockets, missiles, and quadrocopters as well as infras-
tructure for flight control, which includes air traffic control and automatic landing
systems. An indication of the size of the business is that about 2500 aircraft were
produced in 2015, generating revenues over 20 billion dollars, and that is only one
part of the industry. Aerospace companies typically have large central groups for
systems and control.

Typical aerospace systems are operated by highly selected, skilled pilots and
astronauts, who are well-trained in simulators and interact with the system by direct
manipulation of actuators and reference signals or by changing operating modes. A
consequence is that the systems are designed so that the user can directly influence
the system in many different ways. Sometimes users have taken over operation of
the system and saved the mission, as was done in Apollo 13 [Min08].

The aerospace industry has been a technology driver with new hardware and
control techniques emerging from the industry. There are extreme requirements on
safety, which has led to the practice of redundant systems and components, since
adopted by the automotive industry. The industry pioneered the use of simulation
and model-based systems engineering, development of high precision accelerometers
and gyroscopes, and anti-lock braking (used on aircraft as early as 1929). Extremal
control was first applied to control of aircraft engines already in 1951. Wide vari-
ations of operating conditions stimulated the development of gain scheduling and
adaptive control. Optimal control and Kalman filtering were used in the early space
efforts. Nonlinear control was used extensively in control of satellites. Unmanned
air vehicles were used operationally already in 1970.

Automotive – Complex Systems Used by Ordinary People

The automotive industry is a multi-trillion dollar business. It is dominated by
six large companies and many subcontractors. Control is used extensively both in
the cars themselves and in the manufacturing of cars. Automobiles are used by
ordinary people who interact with the system by changing modes and setpoints
and by direct actuation. Control is executed using electronic control units (ECUs),
microprocessors with input/output interfaces. Modern cars have more than 100
electronic control units.

Servo-assisted power braking was used in racing cars in 1914 and became com-
monly used in the 1920s. Computer control was introduced in the late 1970s to
cope with the stringent emission requirements. Once computers were introduced
they were applied to more functions: suspension control, anti-lock braking systems
(ABS), electronic braking systems (EBS) and electronic stability control (ESC).
These systems used accelerometers and gyroscopes to control the brakes individ-
ually to improve stability and steering. Adaptive cruise control, based on radar
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sensors, maintains a constant distance to the car in front. The excellent experience
with these systems inspired car manufacturers to introduce more sophisticated sys-
tems such as collision avoidance and parking assist. Autonomous driving is well
on its way. Control is a key element both on its own but also in combination with
computer vision.

Model-based systems engineering is used extensively to improve the efficiency of
engineering. The design of the Toyota Prius is an example where modeling and sim-
ulation replaced much of the traditional testing using hardware prototypes. Another
example is design of climate control systems. The major European car manufactur-
ers and their component suppliers have created an infrastructure for model-based
design where the suppliers deliver components with validated dynamical models
enabling the car manufacturers to simulate complete systems (e.g. [LBSP05]).

A worldwide development partnership of vehicle manufacturers, suppliers, and
software companies called AUTOSAR (AUTomotive Open System Architecture)
was formed in 2003 (see http://www.autosar.org). Standards that enable mod-
ularity, scalability, transferability, and reusability of functions have been created,
providing a standardized platform for automotive software systems. The standard
enables system-wide configuration and optimization to meet run-time requirements
of automotive devices.

The large size of the automotive industry provides a mass market for a wide
range of industries to develop components and subsystems. The industry stimulated
the development of inexpensive emission sensors, accelerometers, and gyroscopes,
and even more importantly the microcontroller and the programmable logic con-
troller (PLC).

Early manufacturing systems were automation systems controlled by relays for
logic and sequencing. General Motors challenged the electronics industry with re-
quirements for a standard machine controller that could replace the relays resulting
in the PLC. The system architecture is based on round robin schedulers with dif-
ferent cycle rates. PLCs were originally programmed in a graphical language called
ladder diagrams (LD), which emulated the ladder logic used to describe relay cir-
cuits. Several different programming styles were later standardized: function block
diagrams (FBD), sequential function charts (SFC), and structured text (ST). PLCs
developed rapidly and became a standard tool for automation in many industries.

Process Industry – Complex Systems with Many Different
Users

Process control provides automation for a variety of industries such as chemicals,
oil refining, pulp and paper, pharmaceuticals power plants and many others. A
characteristic feature of the industry is that control and automation is typically
delivered by special companies. This began with instrument companies that devel-
oped sensors, recorders, and controllers, including Taylor Instruments, founded in
1851, and Foxboro, founded in 1908. By the mid 1930s there were many companies
who supplied sensors, actuators, and controllers to the process industry.

It is normally difficult to find out how much of the turnover of a business is
related to control. In process control this data is available, since automation is
done by special companies. Control and automation is a 100 billion dollar industry.
Distributed control systems account for about 20% of the market, the rest is sensors,

http://www.autosar.org
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actuators, software, and other components. Five dominating suppliers have more
than 50% of the market.

Functions of control and logic and sequencing are essential for process operation.
Early process control systems had cabinets with analog controllers for regulation
and cabinets with relays for logic and sequencing governing startup, shut down,
and equipment protection. As technology developed the relays were replaced by
programmable logic controllers (PLCs), originating in the automotive industry,
and the analog controllers were replaced by distributed control systems (DCS).

DCS is now the standard tool to provide control in the process industry, as
illustrated in Figure 15.6. It has facilities for connecting sensors, actuators, and
algorithms and can be viewed as a toolbox for implementing control systems. It is
interesting to note that ExxonMobil has recently contracted Lockheed Martin to
specify the next generation of distributed control system for process control. The
system will be open, secure, and based on standards, leveraging experiences from
the Future Airborne Capability Environment (FACE) consortium in the aerospace
industry [Ope14].

Process control systems typically have thousands of sensors and actuators, and
the systems are also widely distributed geographically. Sensors and actuators are
connected to the DCS system by standardized networks (IEC 61784).

Valves are commonly used for actuation in process control. It is customary to
have cascade control with inner analog loops with valve positioners to reduce effects
of friction and nonlinearities at the lowest level of the hierarchy, and feedback loops
for control of pressure and temperature and quality variables at the higher levels.

There are several different types of users of the DCS: the plant managers who
set production schedules and directs equipment maintenance, the process engineers
who select, configure, and modify the system, the instrument engineers who tune
controllers and maintain sensors and actuators and the operators who supervise the
operation of the system (see Figure 15.6).

Distributed control systems have many control algorithms that easily can be
configured using graphical interfaces. The control algorithms are implemented by
process and instrument engineers both by company personnel and by consultants.
Controllers are tuned during operation and the system is occasionally reconfigured.
Algorithms and languages are standardized by international committees. A wide
range of standards for control and automation are set by the International Society
of Automation (ISA) and the International Electrical Commission (IEC). There are
also some standards for communication organized by special groups.

Although PID control was used in many fields, the major development of the
controller and its tuning procedure occurred in the process industries. Most of the
controllers (typically 97% [DM02b]) are PID controllers, only a small fraction of
them using derivative action. A recent investigation of 100 boiler-turbine units in
the Guangdong Province in China showed 94.4% PI, 3.7% PID, and 1.9% advanced
controllers [SLL16] .

Control paradigms such as cascade, selector, and midrange control are common,
as are gain scheduling, automatic tuning, and model predictive control. Model
predictive control emerged from efforts at the Shell oil company to develop effective
techniques for control of multi-variable processes. It was originally called dynamic
matrix control [CR80, JBRM99].
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Telecommunication – Billions of Systems

Black’s invention of the negative feedback amplifier was inspired by the needs to
make phone calls over long distances. Intellectual giants like Bode, Nyquist, and
Shannon developed theoretical foundations of control and communications.

Today the global telecommunication system is said to be the world’s largest
man-made artifact, with the total number of mobile subscriptions in the beginning
of 2016 at around 7.4 billion. In many countries the number of mobile subscrip-
tions exceeds the population. The Internet of Things (IoT) is of particular interest
because it enables simple ways of using feedback, and combined with the cloud it
offers many interesting opportunities for novel control applications. It is expected
that the number of IoT devices will surpass mobile subscriptions by 2018. Telecom-
munications is a high pace industry where the consumer preferences change quickly,
making it hard to predict what products will be like 2–3 years from now and the
rules of the game change continuously.

The development of camera modules, GPS modules, accelerometers, and gyros
for the mobile phone industry has decreased the cost for such sensors by several
orders of magnitude because of the large volumes involved. Reduction in size and
improvements in power efficiency have been required to fit sensors into hand held
devices with reasonable battery life times. The inexpensive components have then
found several uses in other fields, for example virtual reality.

Cost efficiency is vital for production in large volumes, making it economical
to put large engineering efforts into cost optimization even for minute details. The
requirements from the communication field lead the development of smaller and
more energy efficient solutions.

There is extensive standardization in the telecommunication markets, forced by
the fact that the technologies share the common radio frequency spectrum and a
carefully controlled use of this limited resource has been needed. It is also highly
beneficial for the consumer if devices from different manufacturers can function
together. The development of technology is coordinated in different groups. The
3GPP consortium develops the standards for mobile communication using GSM
(2G), WCDMA (3G), LTE (4G) as well as future communication standards such
as 5G and beyond. Similarly, IEEE working groups develop standards, for example
802.11 for wireless routers. Competing operators, vendors, and mobile equipment
manufacturers meet in standardization meetings to discuss and decide on new func-
tionality and performance specifications for future devices. New inventions and
intellectual property rights are very important for competitive reasons which leads
to both portfolio agreements and patent battles.

Control enters on many levels, from analog electronics where it is used to im-
prove performance such as linearity and power efficiency of power amplifiers, to
higher functional levels where control is used to continuously choose suitable sys-
tem parameters such as transmission power and coding schemes depending on ex-
isting communication conditions. PID control is often used together with and gain
scheduling and simple adaptive schemes.
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15.8 Further Reading

A comprehensive treatment of architecture and design of complex systems is given
in [CCS15]. Much of the development of PID controllers occurred in the power
and process industries, where also many of the associated bottom-up control ar-
chitectures like cascade, selector, and midranging control appeared. A detailed
treatment is given in [ÅH06]. Complementary filtering is well described in []. The
internal model control architecture is described in [BT78]. The internal model
principle which says that a good controller should contain a model of the process
is formulated in [FW76]. The Smith predictor [Smi57a, Hun07] is closely related
to internal model control because it also uses a parallel model. It was invented by
Otto J. M. Smith, a legendary professor from University of California, Berkeley who
also invented posicast control [Smi57b], a scheme for controlling highly oscillatory
systems.

Decoupling has long been used in many areas of control, the architecture with in-
verted decoupling is introduced in [Wad97], a state space version is given in [HK83].
The relative gain array, a simple way to quickly estimate the interaction, was in-
troduced in [Bri66]. A detailed treatment is found in [McA83].

Gain scheduling is widely used in practice, overviews are presented in [LWE00,
SA92, Rug91]. Adaptive control emerged from the desire to avoid gain scheduling
in flight control and the dream of having a controller that can automatically ad-
just itself to good performance in the process industry. Early pioneering work is
found in [Gre59]. Current knowledge is found in [ÅW08a, CS08, LW13]. System
identification is a key element of adaptive control; the book [Lju99a] is an excellent
reference. In spite of advances in adaptive control, gain scheduling is still the dom-
inant control scheme for flight control [Ste80], with one reason being the significant
developments in air-data sensors. The process engineers dream of having a simple
universal controller that self-adjusts to provide good robust performance; the relay
auto-tuner for PID control is a partial answer.

Rosenblatt’s perceptron [Ros62] was the first neural network, which was used to
separate hyperplanes in pictures. An analog version, the Adaline [WS85], invented
by Widrow, was used in simple adaptive systems and for noise cancellation. A se-
vere and partially unfair criticism was given by Minsky and Papert [MP69] who did
not realize the advantage with many layers. There was a revival when backpropa-
gation was introduced to find parameters in networks with many layers [RHW86].
Backpropagation is closely related to dynamic programming [Bel57]. The disad-
vantage of networks with few layers was clarified in [H̊as87]. An early application
to picture classification is given in [LBD+89], using deep structures and convolu-
tional networks. There have lately been significant advances in object recognition,
driven by improved algorithms and good test bases. The ImageNet Large Scale
Visual Recognition Challenge is a benchmark with millions of images and hundreds
of objects. Competitions have been run since 2010. The classification error was
brought down from around 30% in 2010 to 3% in 2016 [KSH12, SZ14, SHM+16a].
The usefulness of deep convolutional networks has been proven in many domains:
character recognition, computer vision, and game-playing. AlphaGo’s algorithm
uses a Monte Carlo tree search to find its moves based on knowledge previously
obtained by machine learning based on extensive training, both from playing with
humans and computers [SHM+16b].
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