Feedback Systems

An Introduction for Scientists and Engineers

Karl Johan Astrom
Automatic Control LTH
Lund University

Control, Dynamical Systems and Computation
University of California Santa Barbara

Richard M. Murray

Control and Dynamical Systems
California Institute of Technology

DRAFT v2.7c (14 September 2007)
© 2007 Karl JohaAstrom and Richard M. Murray
All rights reserved.

This manuscript is for use in CDS 101/110a at the California Institute dif@ogy and may not
be reproduced, in whole or in part, without written consent from the asitho






Contents

Preface

Chapter 1. Introduction

1.1
1.2
1.3
1.4
1.5
1.6

What is Feedback?

What is Control?
Feedback Examples
Feedback Properties
Simple Forms of Feedback
Further Reading

Exercises

Chapter 2. System Modeling

21
2.2
2.3
2.4
2.5

Modeling Concepts
State Space Models
Modeling Methodology
Modeling Examples
Further Reading
Exercises

Chapter 3. Examples

3.1
3.2
3.3
3.4
35
3.6
3.7

Cruise Control

Bicycle Dynamics

Operational Amplifier Circuits
Computing Systems and Networks
Atomic Force Microscopy

Drug Administration

Population Dynamics

Exercises

Chapter 4. Dynamic Behavior

4.1
4.2
4.3
4.4

Solving Differential Equations
Qualitative Analysis

Stability

Lyapunov Stability

vii

Gl W = =

17
23
25
26

27

27
34
44
51
60
61

65

65
69
71
75
81
85
89
91

95

95
99
102
111



4.5
4.6

Parametric and Non-Local Behavior
Further Reading
Exercises

Chapter 5. Linear Systems

51
5.2
53
5.4
55

Basic Definitions

The Matrix Exponential
Input/Output Response
Linearization

Further Reading
Exercises

Chapter 6. State Feedback

6.1
6.2
6.3
6.4
6.5

Reachability

Stabilization by State Feedback
State Feedback Design

Integral Action

Further Reading

Exercises

Chapter 7. Output Feedback

7.1
7.2
7.3
7.4
7.5
7.6

Observability

State Estimation

Control using Estimated State
Kalman Filtering

Feedforward and Implementation
Further Reading

Exercises

Chapter 8. Transfer Functions

8.1
8.2
8.3
8.4
8.5
8.6

Frequency Domain Modeling
Derivation of the Transfer Function
Block Diagrams and Transfer Functions
The Bode Plot

Laplace Transforms

Further Reading

Exercises

Chapter 9. Frequency Domain Analysis

9.1
9.2
9.3
9.4
9.5

The Loop Transfer Function

The Nyquist Criterion

Stability Margins

Bode's Relations and Minimum Phase Systems
The Notions of Gain and Phase

CONTENTS

119
125
126

131

131
136
145
158
164
164

167

167
175
183
196
198
198

201

201
206
211
214
219
226
226

229

229
231
242
250
259
261
262

265

265
268
276
280
283



CONTENTS \%

9.6 Further Reading 287
Exercises 288
Chapter 10. PID Control 291
10.1  Basic Control Functions 201
10.2  Simple Controllers for Complex Systems 206
10.3  PID Tuning 300
10.4  Integrator Windup 304
10.5  Implementation 306
10.6  Further Reading 310
Exercises 311

Chapter 11. Frequency Domain Design 313
11.1  Sensitivity Functions 313
11.2  Feedforward Design 317
11.3  Performance Specifications 320
114  Feedback Design via Loop Shaping 324
11.5  Fundamental Limitations 329
11.6  Design Example 339
11.7  Further Reading 342
Exercises 342
Chapter 12. Robust Performance 345
12.1  Modeling Uncertainty 345
12.2  Stability in the Presence of Uncertainty 350
12.3  Performance in the Presence of Uncertainty 356
12.4  Robust Pole Placement 360
12.5  Design for Robust Performance 367
12.6  Further Reading 372
Exercises 372
Bibliography 375

Index 385






Preface

This book provides an introduction to the basic principled &ools for design
and analysis of feedback systems. It is intended to serveeasdi audience of
scientists and engineers who are interested in undersigadd utilizing feedback
in physical, biological, information and social systems Neéve attempted to keep
the mathematical prerequisites to a minimum while beingfcémnot to sacrifice
rigor in the process. We have also attempted to make use of®a from a
variety of disciplines, illustrating the generality of nyaof the tools while at the
same time showing how they can be applied in specific apphicatbmains.

This book was originally developed for use in an experimetdairse at Cal-
tech involving students from a wide set of backgrounds. Thesmconsisted of
undergraduates at the junior and senior level in traditiengineering disciplines,
as well as first and second year graduate students in engigesril science. This
latter group included graduate students in biology, compsitience and physics,
requiring a broad approach that emphasized basic prirscgpid did not focus on
applications in any one given area. Over the course of seyesas, the text has
been classroom tested at Caltech and at Lund University anteddback from
many students and colleagues has been incorporated tamgipve the readabil-
ity and accessibility of the material.

Because of its intended audience, this book is organizedslightly unusual
fashion compared to many other books on feedback and conlmoparticular,
we introduce a number of concepts in the text that are noymedlerved for sec-
ond year courses on control and hence often not availableidests who are not
control systems majors. This has been done at the expensetaihdeaditional
topics, which we felt that the astute student could learedently and are of-
ten explored through the exercises. Examples of topics tedtave included are
nonlinear dynamics, Lyapunov stability, reachability amservability, and funda-
mental limits of performance and robustness. Topics thahave de-emphasized
include root locus techniques, lead/lag compensation atalldd rules for gener-
ating Bode and Nyquist plots by hand.

Several features of the book are designed to facilitate i fduction as a ba-
sic engineering text and as an introduction for researdhanatural, information
and social sciences. The bulk of the material is intended toske regardless of
the audience and covers the core principles and tools innhlkysis and design of
feedback systems. Advanced sections, marked by the “damgéend” symbol
shown to the right, contain material that requires a shghibre technical back-
ground, of the sort that would be expected of senior unddtgris in engineering.
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A few sections are marked by two dangerous bend symbols anishi@nded for
readers with more specialized backgrounds, identified avelggnning of the sec-
tion. To keep the length of the text down, several standasdli®and extensions
are given in the exercises, with appropriate hints towaed tholutions. Finally,
we have included a glossary and a notation section at thefehd book in which
we define some of the terminology and notation that may not telifa to all
readers.

To further augment the printed material contained here ngpamion web site
has been developed:

http://ww. cds. cal tech. edu/ ~nmurray/ anw Ki

The web site contains a database of frequently asked questiopplemental ex-
amples and exercises, and lecture materials for coursesl lmasthis text. The
material is organized by chapter and includes a summaryeofrtajor points in
the text as well as links to external resources. The web s#e ebntains the
source code for many examples in the book, as well as uilibgmplement the
techniques described in the text. Most of the code was d@iiginvritten using
MATLAB M-files, but was also tested with LabVIEW MathScript to enswom-
patibility with both packages. Many files can also be run usititer scripting
languages such as Octave, SciLab, SysQuake and Xmath. [Asittui€: the web
site is under construction as of this writing and some festdiescribed in the text
may not yet be available.]

The first half of the book focuses almost exclusively on soecdlstate-space”
control systems. We begin in Chapter 2 with a description ofleling of physi-
cal, biological and information systems using ordinaryedéntial equations and
difference equations. Chapter 3 presents a number of erarimpsome detalil, pri-
marily as a reference for problems that will be used througtfze text. Following
this, Chapter 4 looks at the dynamic behavior of modelsuitiolg definitions of
stability and more complicated nonlinear behavior. We lexadvanced sections
in this chapter on Lyapunov stability, because we find that iiseful in a broad
array of applications (and is frequently a topic that is mdtdaduced until later in
ones studies).

The remaining three chapters of the first half of the book foculrear sys-
tems, beginning with a description of input/output behaindChapter 5. In Chap-
ter 6, we formally introduce feedback systems by demonsgdtow state space
control laws can be designed. This is followed in Chapter 7 byemal on output
feedback and estimators. Chapters 6 and 7 introduce thedkeepts of reacha-
bility and observability, which give tremendous insighbitthe choice of actuators
and sensors, whether for engineered or natural systems.

The second half of the book presents material that is oftesidered to be
from the field of “classical control.” This includes the tramsfunction, introduced
in Chapter 8, which is a fundamental tool for understandmedback systems.
Using transfer functions, one can begin to analyze thelgtabi feedback systems
using frequency domain analysis, including the abilityeason about the closed
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loop behavior of a system from its open loop characterisiitss is the subject of
Chapter 9, which revolves around the Nyquist stabilityeern.

In Chapters 10 and 11, we again look at the design problenusfiog first
on proportional-integral-derivative (PID) controllersdaiien on the more general
process of loop shaping. PID control is by far the most commesigh technique
in control systems and a useful tool for any student. The enagpt frequency
domain design introduces many of the ideas of modern cotitedry, including
the sensitivity function. In Chapter 12, we pull together tesults from the second
half of the book to analyze some of the fundamental traddxafta/een robustness
and performance. This is also a key chapter illustrating twvesp of the techniques
that have been developed and serving as an introductiondee advanced studies.

The book is designed for use in a 10-15 week course in feedlyatdngs that
provides many of the key concepts needed in a variety ofgliseis. For a 10
week course, Chapters 1-2, 4-6 and 8-11 can each be covaxateiek’s time,
with some dropping of topics from the final chapters. A morsuegly course,
spread out over 14-15 weeks, could cover the entire book, twid weeks on
modeling (Chapters 2 and 3)—particularly for students aitrmuch background
in ordinary differential equations—and two weeks on rolpesformance (Chap-
ter 12).

The mathematical pre-requisites for the book are modestrakddaping with
our goal of providing an introduction that serves a broadenmk. We assume
familiarity with the basic tools of linear algebra, incladi matrices, vectors and
eigenvalues. These are typically covered in a sophomorkdeuese in the subject
and the textbooks by Apostol [10], Arnold [13] or Strang [1g8tve as good refer-
ences. Similarly, we assume basic knowledge of differeptialations, including
the concepts of homogeneous and particular solutionsrfeatiordinary differen-
tial equations in one variable. Apostol [10] or Boyce and iRr[42] cover this
material well. Finally, we also make use of complex numbetsfanctions and,
in some of the advanced sections, more detailed concepisriplex variables that
are typically covered in a junior level engineering or plgsiourse in mathemati-
cal methods. Apostol [9] or Stewart [177] can be used for trechaaterial, with
Ahlfors [6], Marsden and Hoffman [138] or Saff and Snider [168]ng good ref-
erences for the more advanced material. We have choseninotiide appendices
summarizing these various topics since there are a numigeoaf books available
and we believe that most readers will be familiar with maieat this level.

One additional choice that we felt was important was thesiegcinot to rely
on knowledge of Laplace transforms in the book. While the# issby far the
most common approach to teaching feedback systems in emgigemany stu-
dents in the natural and information sciences may lack thessary mathematical
background. Since Laplace transforms are not required in ssgnéial way, we
have only included them in an advanced section intendecetthings together
for students with that background. Of course, we make trelmes use ofrans-
fer functions which we introduce through the notion of response to exptale
inputs, an approach we feel is more accessible to a broag affiscientists and
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engineers. For courses in which students have already hdddeajpansforms, it
should be quite natural to build on this background in ther@yppate sections of
the text.

Acknowledgments

The authors would like to thank the many people who helpedhdutie prepa-
ration of this book. The idea for writing this book came in ffaoim a report on
future directions in control [147] to which Stephen Boyd, Bo@rockett, John
Doyle and Gunter Stein were major contributors. Kristi Maorgen and Hideo
Mabuchi helped teach early versions of the course at Cattaclvhich much of
the text is based and Steve Waydo served as the head TA for tingectaught
at Caltech in 2003—-04 and provide numerous comments andatioms. Char-
lotta Johnsson and Anton Cervin taught from early versidriie manuscript in
Lund in 2003—-2007 and gave very useful feedback. Other gpllesand stu-
dents who provided feedback and advice include John Caksddani Chandy,
Michel Charpentier, Kate Galloway, Per Hagander, Cole Lepinseph Heller-
stein, George Hines, Toreddglund, Dawn Tilbury and Francisco Zabala. The
reviewers for Princeton University Press and Tom Robbins a@Piéks also pro-
vided valuable comments that significantly improved the oizgtion, layout and
focus of the book. Our editor, Vickie Kearn, was a great sewfeencouragement
and help throughout the publishing process. Finally, we didike to thank Cal-
tech, Lund University and the University of California at SaBarbara for provid-
ing many resources, stimulating colleagues and studemtisa gleasant working
environment that greatly aided in the writing of this book.

Karl JohanAstrom Richard M. Murray
Lund, Sweden Pasadena, California
Santa Barbara, California



Chapter One

Introduction

Feedback is a central feature of life. The process of feedback goliemsve grow, respond
to stress and challenge, and regulate factors such as body temperakowoel, pressure and
cholesterol level. The mechanisms operate at every level, from thedtiteraf proteins in
cells to the interaction of organisms in complex ecologies.

Mahlon B. Hoagland and B. Dodsonhe Way Life Worksl995 [94].

In this chapter we provide an introduction to the basic cphaod feedback
and the related engineering disciplinecaintrol. We focus on both historical and
current examples, with the intention of providing the catfer current tools in
feedback and control. Much of the material in this chaptexdispted from [147]
and the authors gratefully acknowledge the contributidnRager Brockett and
Gunter Stein for portions of this chapter.

1.1 WHAT IS FEEDBACK?

The termfeedbacks used to refer to a situation in which two (or more) dynathica
systems are connected together such that each system ieffiLtbiecther and their
dynamics are thus strongly coupled. By dynamical systemrefigr to a system
whose behavior changes over time, often in response tonettstimulation or
forcing. Simple causal reasoning about a feedback systeriffisuf because
the first system influences the second and the second systermagftughe first,
leading to a circular argument. This makes reasoning basedwuse and effect
tricky and it is necessary to analyze the system as a wholen8exjuence of this
is that the behavior of feedback systems is often countaitive and it is therefore
necessary to resort to formal methods to understand them.

Figure 1.1 illustrates in block diagram form the idea of festdb We often use

u y r u y
System 1—» System 2 — System I—» System 2—»
(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used apuhe in
of system 2 and the output of system 2 becomes the input of systematingra “closed
loop” system. (b) The interconnection between system 2 and systemrhésed and the
system is said to be “open loop”.
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Figure 1.2: The centrifugal governor and the Watt steam engine. The centrifiayerg
nor on the left consists of a set of “flyballs” that spread apart as thedspf the engine
increases. The Watt engine on the right uses a centrifugal govexinove and to the left of
the fly wheel) to regulate its speed. Figures courtesy Richard Adampir{ght 1999) and
Cambridge University.

the termsopen loopandclosed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are inteecb@ah in a cycle, as
shown in Figure 1.1a. If we break the interconnection, werttefthe configuration
as an open loop system, as shown in Figure 1.1b.

As the quote at the beginning of this chapter illustrates aporrsource of ex-
amples for feedback systems is from biology. Biologicaltsys make use of
feedback in an extraordinary number of ways, on scales mgnfigbm molecules
to cells to organisms to ecosystems. One example is theatsgulof glucose in
the bloodstream through the production of insulin and gjocaby the pancreas.
The body attempts to maintain a constant concentration abgk; which is used
by the body’s cells to produce energy. When glucose levets (@fter eating a
meal, for example), the hormone insulin is released andesatie body to store
excess glucose in the liver. When glucose levels are lowpainereas secretes the
hormone glucagon, which has the opposite effect. Refetarkigure 1.1, we can
view the liver as system 1 and the pancreas as system 2. Theutb@itom the
liver is the glucose concentration in the blood and the “otitfrom the pancreas
is the amount of insulin or glucagon produced. The interpktyveen insulin and
glucagon secretions throughout the day helps to keep tloglfgjtucose concen-
tration constant, at about 90 mg per 100 mL of blood.

An early engineering example of a feedback system is theifuegdl governor,
in which the shaft of a steam engine is connected to a flybalhar@sm that is
itself connected to the throttle of the steam engine, astitited in Figure 1.2. The
system is designed so that as the speed of the engine inerg@asbaps due to a
lessening of the load on the engine), the flyballs spread apdra linkage causes
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the throttle on the steam engine to be closed. This in turnssttown the engine,
which causes the flyballs to come back together. We can moidetylstem as
a closed loop system by taking system 1 as the steam engirgyatain 2 as the
governor. When properly designed, the flyball governor naamsta constant speed
of the engine, roughly independent of the loading cond#tioffhe centrifugal
governor was an enabler of the successful Watt steam englrieh fueled the
industrial revolution.

Feedback has many interesting properties that can be egblmitdesigning
systems. As in the case of glucose regulation or the flybakkguayr, feedback can
make a system resilient towards external influences. It cemtad used to create
linear behavior out of nonlinear components, a common ambran electronics.
More generally, feedback allows a system to be insensititie to external distur-
bances and to variations in its individual elements.

Feedback has potential disadvantages as well. It can crgadenic instabili-
ties in a system, causing oscillations or even runaway heha\nother drawback,
especially in engineering systems, is that feedback candante unwanted sensor
noise into the system, requiring careful filtering of signatss for these reasons
that a substantial portion of the study of feedback systerdsvoted to developing
an understanding of dynamics and mastery of techniguesnardical systems.

Feedback systems are ubiquitous in both natural and engthegstems. Con-
trol systems maintain the environment, lighting and poweour buildings and
factories; they regulate the operation of our cars, consefeetronics and manu-
facturing processes; they enable our transportation amghemications systems;
and they are critical elements in our military and spaceesyst For the most part
they are hidden from view, buried within the code of embeduétoprocessors,
executing their functions accurately and reliably. Feellias also made it pos-
sible to increase dramatically the precision of instruraesutch as atomic force
microscopes and telescopes.

In nature, homeostasis in biological systems maintaingrtak chemical and
biological conditions through feedback. At the other endhef size scale, global
climate dynamics depend on the feedback interactions lesttee atmosphere,
oceans, land and the sun. Ecosystems are filled with examplegdtback due
to the complex interactions between animal and plant lifeerEthe dynamics
of economies are based on the feedback between individndl@rporations
through markets and the exchange of goods and services.

1.2 WHAT IS CONTROL?

The term “control” has many meanings and often varies betweemimunities. In
this book, we define control to be the use of algorithms anddaeklin engineered
systems. Thus, control includes such examples as feedbaokilo electronic am-
plifiers, setpoint controllers in chemical and materialscpssing, “fly-by-wire”
systems on aircraft and even router protocols that contffld flow on the Inter-
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external disturbances noise

Actuator = System >

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

o T ,,,,,,,,,,,,,,, Controller _ .

operator input

Figure 1.3: Components of a computer-controlled system. The upper dashedp@sents
the process dynamics, which includes the sensors and actuators inrattitie dynamical
system being controlled. Noise and external disturbances can pereudyrtlamics of the
process. The controller is shown in the lower dashed box. It consistealbg-to-digital
(A/D) and digital-to-analog (D/A) converters, as well as a computer thateéments the
control algorithm. A system clock controls the operation of the controj@ctsronizing the
A/D, D/A and computing processes. The operator input is also fed to tm@uier as an
external input.

net. Emerging applications include high confidence softwgstesns, autonomous
vehicles and robots, real-time resource management systedbiologically en-
gineered systems. At its core, control isiaformationscience, and includes the
use of information in both analog and digital representetio

A modern controller senses the operation of a system, caaplaat against the
desired behavior, computes corrective actions based ordalrabthe system’s re-
sponse to external inputs and actuates the system to dféedesired change. This
basicfeedback loopf sensing, computation and actuation is the central cdricep
control. The key issues in designing control logic are emgpitiat the dynamics of
the closed loop system are stable (bounded disturbance®¥ginded errors) and
that they have additional desired behavior (good distureaejection, fast respon-
siveness to changes in operating point, etc). These prepante established using
a variety of modeling and analysis techniques that capheessential dynamics
of the system and permit the exploration of possible bemaviothe presence of
uncertainty, noise and component failures.

A typical example of a modern control system is shown in Figl& The
basic elements of sensing, computation and actuation eaglglseen. In modern
control systems, computation is typically implemented atigital computer, re-
quiring the use of analog-to-digital (A/D) and digital-émalog (D/A) converters.
Uncertainty enters the system through noise in sensing eéndton subsystems,
external disturbances that affect the underlying systeenaifn and uncertain dy-
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namics in the system (parameter errors, unmodeled effeids, The algorithm
that computes the control action as a function of the seraloes is often called
acontrol law. The system can be influenced externally by an operator wha-intr
ducescommand signal® the system.

Control engineering relies on and shares tools from phy&ygeamics and
modeling), computer science (information and software) @perations research
(optimization, probability theory and game theory), buisitalso different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control aaddifitiplines is
in modeling of physical systems, which is common acrossrafisiof engineering
and science. One of the fundamental differences betweemot@niented mod-
eling and modeling in other disciplines is the way in whictemactions between
subsystems are represented. Control relies on a type dfaypoiut modeling that
allows many new insights into the behavior of systems, sgdlisturbance rejec-
tion and stable interconnection. Model reduction, wheriengker (lower-fidelity)
description of the dynamics is derived from a high fidelity relpds also naturally
described in an input/output framework. Perhaps most irapdst, modeling in a
control context allows the design aibustinterconnections between subsystems,
a feature that is crucial in the operation of all large engiad systems.

Control is also closely associated with computer scieniceesvirtually all
modern control algorithms for engineering systems areémginted in software.
However, control algorithms and software can be very diffiéifrom traditional
computer software due to the central role of the dynamichefslystem and the
real-time nature of the implementation.

1.3 FEEDBACK EXAMPLES

Feedback has many interesting and useful properties. Itsngiessible to design
precise systems from imprecise components and to makearglguantities in a

system change in a prescribed fashion. An unstable systeimecstabilized using

feedback and the effects of external disturbances can heedd Feedback also
offers new degrees of freedom to a designer by exploitingiagnactuation and
computation. In this section we survey some of the imporégmlications and

trends for feedback in the world around us.

Early Technological Examples

The proliferation of control in engineered systems has gecuprimarily in the
latter half of the 20th century. There are some important gxaes, such as the
centrifugal governor described earlier and the thermdbigure 1.4a), designed
at the turn of the century to regulate temperature of bugslin

The thermostat, in particular, is a simple example of feekllcantrol that ev-
eryone is familiar with. The device measures the temperatuaebuilding, com-
pares that temperature to a desired setpoint, and usestdbdck error” between
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MOVENENT OPENS ACCELERATOR
THROTTLE ChAD SER PEDAL

\i LATCH
i )
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(a) Honeywell thermostat, 1953 (b) Chrysler cruise control, 1958

Figure 1.4: Early control devices. (a) Honeywell T86 thermostat, originally intredlc
in 1953. The thermostat controls whether a heater is turned on by cmmgphe current

temperature in a room to a desired value that is set using a dial. (b) Qhepsise control

system, introduced in the 1958 Chrysler Imperial [161]. A centrifugmlernor is used to
detect the speed of the vehicle and actuate the throttle. The refererexk isppecified

through an adjustment spring.

these two to operate the heating plant, e.g. to turn heativghen the temperature
is too low and to turn if off when the temperature is too highisxplanation cap-
tures the essence of feedback, but it is a bit too simple evremlbasic device such
as the thermostat. Actually, because lags and delays axis¢iheating plant and
sensor, a good thermostat does a bit of anticipation, tgrthie heater off before
the error actually changes sign. This avoids excessive tertyse swings and cy-
cling of the heating plant. This interplay between the dyranoif the process and
the operation of the controller is a key element in moderrrobsystems design.

There are many other control system examples that have gedtlover the
years with progressively increasing levels of sophisitbicatAn early system with
broad public exposure was the “cruise control” option idtroed on automobiles
in 1958 (see Figure 1.4b). Cruise control illustrates theadyic behavior of closed
loop feedback systems in action—the slowdown error as tstesyclimbs a grade,
the gradual reduction of that error due to integral actiothécontroller, the small
overshoot at the top of the climb, etc. Later control systemawtomobiles such
as emission controls and fuel metering systems have achieagr reductions of
pollutants and increases in fuel economy.

Power Generation and Transmission

Access to electrical power has been one of the major driveteamnological
progress in modern society. Much of the early developmenbaofrol was driven
by generation and distribution of electric power. Contshiission critical for
power systems and there are many control loops in indivighaster stations.
Control is also important for the operation of the whole powetwork since it
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Figure 1.5: The European Power Network. By 2007 the European power supplitrs
operate a single interconnected network covering a region from the Acctite Mediter-
ranean and from the Atlantic to the Ural. In 2004 the installed power was tiane/ 00 GW
(7 x 101 W),

is difficult to store energy and is thus necessary to matchyatazh to consump-
tion. Power management is a straightforward regulation Iprolfor a system
with one generator and one power consumer, but it is more wliffic a highly
distributed system with many generators and long distalpe®geen consumption
and generation. Power demand can change rapidly in an unfakdi manner
and combining generators and consumers into large netwoakes it possible
to share loads among many suppliers and to average consungstiong many
customers. Large transcontinental and transnational peystems have therefore
been built, such as the one show in Figure 1.5.

Most electricity is distributed by alternating current (A@cause the transmis-
sion voltage can be changed with small power losses usingftaners. Alternat-
ing current generators can only deliver power if the geresaire synchronized to
the voltage variations in the network. This means that thersaaf all generators
in a network must be synchronized. To achieve this with ldeglentralized con-
trollers and a small amount of interaction is a challengirapfem. Sporadic low
frequency oscillations between distant regions have bbsarged when regional
power grids have been interconnected [126].

Safety and reliability are major concerns in power systemgrdmay be dis-
turbances due to trees falling down on power lines, liglgminequipment failures.
There are sophisticated control systems that attempt to tkeegpystem operating
even when there are large disturbances. The control actanbesto reduce volt-
age, to break up the net into subnets or to switch off linespawker users. These
safety systems are an essential element of power distsibatistems, but in spite
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(a) F/A-18 “Hornet” (b) X-45 UCAV

Figure 1.6: Military aerospace systems. (a) The F/A-18 aircraft is one of the fiostyrtion
military fighters to use “fly-by-wire” technology. (b) The X-45 (UCAVhmanned aerial
vehicle is capable of autonomous flight, using inertial measuremenrsessd the global
positioning system (GPS) to monitor its position relative to a desired traje®bntographs
courtesy of NASA Dryden Flight Research Center.

of all precautions there are occasionally failures in lgrgwer systems. The power
system is thus a nice example of a complicated distributetésywhere control is
executed on many levels and in many different ways.

Aerospace and Transportation

In aerospace, control has been a key technological cagyatpdcing back to the
beginning of the 20th century. Indeed, the Wright brotheesarrectly famous
not simply for demonstrating powered flight tzdgntrolled powered flight. Their
early Wright Flyer incorporated moving control surfacegfiieal fins and canards)
and warpable wings that allowed the pilot to regulate theratt's flight. In fact,
the aircraft itself was not stable, so continuous pilot ections were mandatory.
This early example of controlled flight is followed by a fas¢ing success story
of continuous improvements in flight control technology,nsimating in the high
performance, highly reliable automatic flight control syssewe see on modern
commercial and military aircraft today.

Similar success stories for control technology have ocduimemany other
application areas. Early World War 1l bombsights and fire acdrgervo systems
have evolved into today’s highly accurate radar-guidedsgumd precision-guided
weapons. Early failure-prone space missions have evolvedrautine launch
operations, manned landings on the moon, permanently rdaspece stations,
robotic vehicles roving Mars, orbiting vehicles at the ougkanets and a host of
commercial and military satellites serving various sutarce, communication,
navigation and earth observation needs. Cars have advaooedanually-tuned
mechanical/pneumatic technology to computer-contradipdration of all major
functions, including fuel injection, emission controluise control, braking and
cabin comfort.
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Figure 1.7: Materials processing. Modern materials are processed at carefualiyotted
conditions, using reactors such as the metal organic chemical vapositden (MOCVD)
reactor shown on the left, which was for manufacturing superconduttin films. Using
lithography, chemical etching, vapor deposition and other techniqoasmlex devices can
be built, such as the IBM cell processor shown on the right. Photograpingesy of Caltech
and IBM.

Current research in aerospace and transportation sysseimgestigating the
application of feedback to higher levels of decision makingluding logical reg-
ulation of operating modes, vehicle configurations, payloardfigurations and
health status. These have historically been performed byahwperators, but to-
day that boundary is moving and control systems are inarghsiaking on these
functions. Another dramatic trend on the horizon is the Uskarge collections
of distributed entities with local computation, global cmemication connections,
little regularity imposed by the laws of physics and no ploisisy of imposing
centralized control actions. Examples of this trend incltigenational airspace
management problem, automated highway and traffic manageamehcommand
and control for future battlefields.

Materials and Processing

The chemical industry is responsible for the remarkable n@sxyin developing
new materials that are key to our modern society. In additothe continuing
need to improve product quality, several other factors & hocess control in-
dustry are drivers for the use of control. Environmentalutést continue to place
stricter limitations on the production of pollutants, fiorg the use of sophisticated
pollution control devices. Environmental safety consitlerss have led to the
design of smaller storage capacities to diminish the riskajor chemical leak-
age, requiring tighter control on upstream processes ansipme cases, supply
chains. And large increases in energy costs have encouesggaeers to design
plants that are highly integrated, coupling many procesdsused to operate in-
dependently. All of these trends increase the complexitthese processes and
the performance requirements for the control systems, myakie control system



10 CHAPTER 1. INTRODUCTION

design increasingly challenging.

As in many other application areas, new sensor technologeaing new op-
portunities for control. Online sensors—including lasackscattering, video mi-
croscopy, and ultraviolet, infrared and Raman spectrgseape becoming more
robust and less expensive and are appearing in more mamifigcprocesses.
Many of these sensors are already being used by currentgsrcoatrol systems,
but more sophisticated signal processing and control tqabs are needed to use
more effectively the real-time information provided by dkesensors. Control en-
gineers can also contribute to the design of even betteosgnahich are still
needed, for example, in the microelectronics industry. lAsvehere, the challenge
is making use of the large amounts of data provided by thesesansors in an ef-
fective manner. In addition, a control-oriented approacmbdeling the essential
physics of the underlying processes is required to undetdtandamental limits
on observability of the internal state through sensor data.

Instrumentation

Measurement of physical variables is of prime interest iarsze and engineering.
Consider for example an accelerometer, where early ingngsnconsisted of a
mass suspended on a spring with a deflection sensor. The preocissuch an
instrument depends critically on accurate calibratiorhefspring and the sensor.
There is also a design compromise because a weak spring giresdmsitivity
but also low bandwidth.

A different way of measuring acceleration is to tisee feedbackThe spring
is then replaced by a voice coil that is controlled so thatrifass remains at a
constant position. The acceleration is proportional to tireant through the voice
coil. In such an instrument, the precision depends entorlihe calibration of the
voice coil and does not depend on the sensor, which is only as¢he feedback
signal. The sensitivity/bandwidth compromise is also agdidThis way of using
feedback has been applied to many different engineeringfaid has resulted in
instruments with dramatically improved performance. Edeedback is also used
in haptic devices for manual control.

Feedback is widely used to measure ion currents in cells @sdwyice called
the voltage clampwhich is illustrated in Figure 1.8. Hodgkin and Huxley used
the voltage clamp to investigate propagation of actionmicdés in the axon of the
giant squid. In 1963 they shared the Nobel Prize in Medicirk ®wccles for “their
discoveries concerning the ionic mechanisms involved aitation and inhibition
in the peripheral and central portions of the nerve cell mamé’. A refinement of
the voltage clamp called thgatch clamgdater made it possible to measure exactly
when a single ion channel is opened or closed. This was deaeloy Neher and
Sakmann, who received the 1991 Nobel Prize in Medicine “foir tthiecoveries
concerning the function of a single ion channels in cells”.

There are many other interesting and useful applicationseaxtfiack in scien-
tific instruments. The development of the mass spectrometar &arly example.



1.3. FEEDBACK EXAMPLES 11

il
Gioss pipette ﬂV\" Py e

& 1
Cuovbr sl |en [—0
s :

Cell
7 | &
© o \,

Figure 1.8: The voltage clamp method for measuring ion currents in cells. A pipet tstose
place an electrode in a cell (left and middle) and maintain the potential okthata fixed
level. The internal voltage in the cell i and the voltage of the external fluidvs. The
feedback system (right) controls the curreito the cell so that the voltage drop across the
cell membrand\v = v; — ve is equal to its reference valde;,. The current is then equal to
the ion current.

In a 1935 paper, Nier observed that the deflection of the iopemls on both
the magnetic and the electric fields [149]. Instead of keepoty fields constant,
Nier let the magnetic field fluctuate and the electric field wadrotlied to keep
the ratio of the fields constant. The feedback was implemersieg wvacuum tube
amplifiers. The scheme was crucial for the development of nEes®scopy.

The Dutch Engineer van der Meer invented a clever way to usééadto
maintain a good quality, high density beam in a particle caéor [144]. The
idea is to sense particle displacement at one point in theleator and apply
a correcting signal at another point. The scheme, calledhastic cooling, was
awarded the Nobel Prize in Physics in 1984. The method was edsentthe
successful experiments at CERN where the existence of thelparW and Z
associated with the weak force was first demonstrated.

The 1986 Nobel Prize in Physics—awarded to Binnig and Rohretheir
design of the scanning tunneling microscope—is anothenpi&of an innovative
use of feedback. The key idea is to move a narrow tip on a caeetilream across
the surface and to register the forces on the tip [34]. The dafteof the tip is
measured using tunneling. The tunneling current is used Bedbiack system
to control the position cantilever base so that the tungedirrent is constant, an
example of force feedback. The accuracy is so high that iddaliatoms can be
registered. A map of the atoms is obtained by moving the bagieeacantilever
horizontally. The performance of the control system is diyeceflected n the
image quality and scanning speed. This example is descnibadditional detall
in Chapter 3.

Robotics and Intelligent Machines

The goal of cybernetic engineering, already articulatethn940s and even be-
fore, has been to implement systems capable of exhibitighiyiflexible or “in-
telligent” responses to changing circumstances. In 198MIT mathematician
Norbert Wiener gave a widely read account of cybernetic&][18 more math-
ematical treatment of the elements of engineering cybieshetas presented by
H.S. Tsien in 1954, driven by problems related to control ofsites [186]. To-
gether, these works and others of that time form much of ttedl@ctual basis for
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Figure 1.9: Robotic systems. (a) “Spirit”, one of the two Mars Exploratory Rovers tha
landed on the Mars in January 2004. (b) The Sony AIBO EntertainmebofRone of the
first entertainment robots to be mass marketed. Both robots make fesedbfick between
sensors, actuators and computation to function in unknown environnféraggographs cour-
tesy of Jet Propulsion Laboratory and Sony.

modern work in robotics and control.

Two accomplishments that demonstrate the successes ofltharkethe Mars
Exploratory Rovers and entertainment robots such as the SB® Ashown in
Fig. 1.9. The two Mars Exploratory Rovers, launched by the Jgilsmn Lab-
oratory (JPL), maneuvered on the surface of Mars for over tyeaes starting in
January 2004 and sent back pictures and measurementsraditieonment. The
Sony AIBO robot debuted in June of 1999 and was the first “ententant” robot
to be mass marketed by a major international corporatiomadtparticularly note-
worthy because of its use of Al technologies that allowed #&dt in response to
external stimulation and its own judgment. This “higher I&wd# feedback is a
key element in robotics, where issues such as obstacleanad goal seeking,
learning and autonomy are prevalent.

Despite the enormous progress in robotics over the lastclealiury, in many
ways the field is still in its infancy. Today’s robots still ekl simple behaviors
compared with humans, and their ability to locomote, imergomplex sensory
inputs, perform higher level reasoning and cooperate h@geéh teams is limited.
Indeed, much of Wiener’s vision for robotics and intellig@machines remains
unrealized. While advances are needed in many fields to acliy vision—
including advances in sensing, actuation and energy sterdge opportunity to
combine the advances of the Al community in planning, adegtand learning
with the techniques in the control community for modelingglgsis and design of
feedback systems presents a renewed path for progress.

Networks and Computing Systems

Control of networks is a large research area spanning magstancluding con-

gestion control, routing, data caching and power managerBeneral features of
these control problems make them very challenging. The damifeature is the
extremely large scale of the system; the Internet is probtia largest feedback
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Figure 1.10: A multi-tier system for services on the Internet. In the complete system is
shown schematically on the left, users request information from a semaputers (tier 1),
which in turn collect information from other computers (tiers 2 and 3). ib&idual server
shown on the right has a set of reference parameters set by ar(hayséem operator, with
feedback used to maintain the operation of the system in the presenceeofaimty (based

on Hellersteiret al.[92].

control system humans have ever built. Another is the deakzdd nature of the
control problem: decisions must be made quickly and basktborocal informa-
tion. Stability is complicated by the presence of varyingdilags, as information
about the network state can only be observed or relayed tinadlens after a de-
lay, and the effect of a local control action can be felt tigloaut the network only
after substantial delay. Uncertainty and variation in teework, through network
topology, transmission channel characteristics, traffinated and available re-
sources, may change constantly and unpredictably. Otmeplézating issues are
the diverse traffic characteristics—in terms of arrivalistats at both the packet
and flow time scales—and the different requirements for guafiservice that the
network must support.

Related to control of networks is control of the servers giabn these net-
works. Computers are key components of the systems of sputesb servers
and database servers that are used for communication;cgliectcommerce, ad-
vertisement and information storage. While hardware clastsomputing have
decreased dramatically, the cost of operating these sgdt@sincreased due to
the difficulty in managing and maintaining these complexericdnnected systems.
The situation is similar to the early phases of process cowtnen feedback was
first introduced to control industrial processes. As in pssaeontrol, there are in-
teresting possibilities for increasing performance aratesing costs by applying
feedback. Several promising uses of feedback in operati@omputer systems
are described in the book by Hellerstein et al. [92].

A typical example of a multi-layer system for e-commercehsven in Fig-
ure 1.10a. The system has several tiers of servers. The edge aecepts incom-
ing requests and routes them to the HTTP server tier where tleegassed and
distributed to the application servers. The processing ififerént requests can
vary widely and the application servers may also accessraaltservers managed
by other organizations.

Control of an individual server in a layer is illustrated ig&ie 1.10b. A quan-
tity representing the quality of service or cost of opemasoch as response time,
throughput, service rate or memory usage is measured irotheuter. The con-
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trol variables might represent incoming messages acceptiedities in the oper-
ating system or memory allocation. The feedback loop thenrgits to maintain
quality-of-service variables within a target range of wsu

Economics

The economy is a large dynamical system with many actors: rgowents, orga-
nizations, companies and individuals. Governments cbtiteoeconomy through
laws and taxes, the central banks by setting interest ratks@mpanies by set-
ting prices and making investments. Individuals contreléconomy through pur-
chases, savings and investments. Many efforts have beea tmawlodel the sys-
tem both at the macro level and at the micro level, but thiseting is difficult
because the system is strongly influenced by the behaviotedfifferent actors
in the system.

Keynes [115] developed a simple model to understand relatietween gross
national product, investment, consumption and governrspehding. One of
Keynes' observations was that under certain conditioke,during the 1930s de-
pression, an increase of investment of government spermndinig lead to a larger
increase in the gross national product. This idea was useeMgya governments
to try to alleviate the depression. Keynes' ideas can baicegtby a simple model
that is discussed in Exercise 2.4.

A perspective on modeling and control of economic systemsbeaobtained
from the work of some economists who received the “the SveRjksbank Prize
in Economics in Memory of Alfred Nobel”, popularly called tiNobel Prize in
Economics. Paul A. Samuelson received the prize in 1970 fersdmentific work
through which he has developed static and dynamic econdra@ry and actively
contributed to rising the level of analysis in economic sc&’. Lawrence Klein
received the prize in 1980 for development of large dynahmeadels with many
parameters that were fitted to historical data [119], for eplara model of the US
economy in the period 1929-1952. Other researchers haveletbdther countries
and other periods. In 1997 Myron Scholes shared the prize Ratbert Merton
for a new method to determine the value of derivatives. A keyedient was
a dynamic model for variation of stock prices that is widesed by banks and
investment companies. In 2004 Finn E. Kydland and Edward C. dateshared
the economics prize “for their contributions to dynamic ne@conomics: the time
consistency of economic policy and the driving forces beHinsiness cycles”, a
topic that is clearly related to dynamics and control.

One of the reasons why it is difficult to model economic systebat there
are no conservation laws. A typical example is that the vaftecompany as ex-
pressed by its stock can change rapidly and erratically. eTae¥, however, some
areas with conservation laws that permit accurate modeldwge example is the
flow of products from a manufacturer to a retailer as illugitleih Figure 1.11. The
products are physical quantities that obey a conservaigmhd the system can be
modeled simply by accounting for the number of products edHferent inven-
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Figure 1.11: Supply chain dynamics (after Forrester [72]). Products flow fronptoeucer

to the customer through distributors and retailers as indicated by the solidTineslashed
lines show the upward flow of orders. The numbers in the circles représe delays in the
flow of information or materials. Multiple feedback loops are presentah agent tries to
maintain the proper inventory levels.

tories. There are considerable economic benefits in comgodlupply chains so
that products are available to the customers while minimgizhe products that are
in storage. The real problems are more complicated thandteticin the figure

because there may be many different products, differenorfi@s that are geo-
graphically distributed and the factories require raw mater sub-assemblies.

Control of supply chains was proposed by Forrester in 198]L [Zonsiderable
economic benefits can be obtained by using models to minimiamtories. Their
use accelerated dramatically when information technolegy applied to predict
sales, keep track of products and enable just-in-time naatwing. Supply chain
management has contributed significantly to the growingesgof global distrib-
utors.

Advertising on the Internet is an emerging application aftoal. With network-
based advertising it is easy to measure the effect of differearketing strategies
quickly. The response of customers can then be modeled adbdeke strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understandggregate behavior
in complex large-scale systems. This behavior “emergesi fitee interaction of
a multitude of simpler systems, with intricate patternsxddimation flow. Repre-
sentative examples can be found in fields ranging from embgyadio seismology.
Researchers who specialize in the study of specific compkrisys often develop
an intuitive emphasis on analyzing the role of feedbackr{tarconnection) in fa-
cilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domauarts for the
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Figure 1.12: The wiring diagram of the growth signaling circuitry of the mammalian
cell [91]. The major pathways that are thought to be play a role in caareemdicated

in the diagram. Lines represent interaction between genes and protehesdell. Lines
ending in arrow heads indicated activation of the given gene or patHimag, ending in a
T-shaped head indicate repression.

analysis of various complex systems, the development ofaigs methodology
that can discover and exploit common features and essemiddematical struc-
ture is just beginning to emerge. Advances in science arohtdagy are creating
new understanding of the underlying dynamics and the inapog of feedback
in a wide variety of natural and technological systems Weflyrihighlight three
application areas here.

Biological SystemsA major theme currently underway in the biology commu-
nity is the science of reverse (and eventually forward) eegiing of biological
control networks such as the one shown in Figure 1.12. The@\waige variety of
biological phenomena that provide a rich source of examiplesontrol, includ-
ing gene regulation and signal transduction; hormonal,umaiogical and cardio-
vascular feedback mechanisms; muscular control and lotomactive sensing,
vision and proprioception; attention and consciousnass;p@pulation dynamics
and epidemics. Each of these (and many more) provide opitbesito figure out
what works, how it works, and what we can do to affect it.

One interesting feature of biological systems is the frequese of positive
feedback to shape the dynamics of the system. Positive fekdiza be used
to create switch-like behavior through auto-regulatioraajenes, and to create
oscillations such as those present in the cell cycle, cepatéern generators or
circadian rhythm.
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Ecosystemdn contrast to individual cells and organisms, emergenp@iies
of aggregations and ecosystems inherently reflect selei@ahanisms that act on
multiple levels, and primarily on scales well below thatloé system as a whole.
Because ecosystems are complex, multiscale dynamicamsgsthey provide a
broad range of new challenges for modeling and analysis exfldack systems.
Recent experience in applying tools from control and dyrcahsystems to bac-
terial networks suggests that much of the complexity of¢hestworks is due to
the presence of multiple layers of feedback loops that pewwbust functionality
to the individual cell. Yet in other instances, events at¢h# level benefit the
colony at the expense of the individual. Systems level arsayem be applied to
ecosystems with the goal of understanding the robustnesscbfsystems and the
extent to which decisions and events affecting individyalcies contribute to the
robustness and/or fragility of the ecosystem as a whole.

Environmental Sciencelt is now indisputable that human activities have al-
tered the environment on a global scale. Problems of enorcmugplexity chal-
lenge researchers in this area and first among these is tostaaeithe feedback
systems that operate on the global scale. One of the chaengleveloping such
an understanding is the multiscale nature of the problei, datailed understand-
ing of the dynamics of microscale phenomena such as midagpcal organisms
being a necessary component of understanding global prermreuch as the car-
bon cycle.

1.4 FEEDBACK PROPERTIES

Feedback is a powerful idea which, as we have seen, is usatsedly in natural

and technological systems. The principle of feedback is lemipase correcting
actions on the difference between desired and actual pesfoze. In engineering,
feedback has been rediscovered and patented many timesindifferent con-

texts. The use of feedback has often resulted in vast imprem&sin system ca-
pability and these improvements have sometimes been tewduy, as discussed
above. The reason for this is that feedback has some trulyrkaime properties.
In this section we will discuss some of the properties of beatt that can be un-
derstood intuitively. This intuition will be formalized itné subsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness tertamaty. By mea-
suring the difference between the sensed value of a regudaral and its desired
value, we can supply a corrective action. If the system wgwks some change that
affects the regulated signal, then we sense this changenatalforce the system
back to the desired operating point. This is precisely thecethat Watt exploited
in his use of the centrifugal governor on steam engines.

As an example of this principle, consider the simple feelllsstem shown
in Figure 1.13. In this system, the speed of a vehicle is ctattdy adjusting
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Figure 1.13: A feedback system for controlling the speed of a vehicle. In the blockatiag
on the left, the speed of the vehicle is measured and compared to theddgsdel within

the “compute” block. Based on the difference in the actual and degestisthe throttle (or
brake) is used to modify the force applied to the vehicle by the enginetcain and wheels.
The figure on the right shows the response of the control system to maonded change
in speed from 25 m/s to 30 m/s. The three different curves corresjodiffering masses
of the vehicle, between 1000 and 3000 kg, demonstrating the robusiinthesclosed loop
system to a very large change in the vehicle characteristics.

the amount of gas flowing to the engine. A simple “proportioplals integral”
feedback is used to to make the amount of gas depend on bafrdndetween the
current and desired speed, and the integral of that errorplbhen the right shows
the results of this feedback for a step change in the desreeldsand a variety of
different masses for the car, which might result from haardjfferent number of
passengers or towing a trailer. Notice that independertteftass (which varies
by a factor of 3!), the steady state speed of the vehicle avegproaches the
desired speed and achieves that speed within approxinasgygonds. Thus the
performance of the system is robust with respect to this raicey.

Another early example of the use of feedback to provide rolass is the neg-
ative feedback amplifier. When telephone communication® wlereloped, am-
plifiers were used to compensate for signal attenuation ig lores. The vacuum
tube was a component that could be used to build amplifierstoffien caused
by the nonlinear characteristics of the tube amplifier togiettith amplifier drift
were obstacles that prevented development of line ampliicera long time. A
major breakthrough was the invention of the feedback ampiifi&927 by Harold
S. Black, an electrical engineer at the Bell Telephone Labdest. Black used
negative feedbackvhich reduces the gain but makes the amplifier insensitive to
variations in tube characteristics. This invention madeoggible to build stable
amplifiers with linear characteristics despite nonlingssiof the vacuum tube am-
plifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a systémough feed-
back, we can alter the behavior of a system to meet the neeais application:
systems that are unstable can be stabilized, systems éslugigish can be made
responsive and systems that have drifting operating poensbe held constant.
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Control theory provides a rich collection of techniquesnalsize the stability and
dynamic response of complex systems and to place boundg deltavior of such
systems by analyzing the gains of linear and nonlinear opexthat describe their
components.

An example of the use of control in the design of dynamics cimam the
area of flight control. The following quote, from a lecture bylWir Wright to the
Western Society of Engineers in 1901 [141], illustrates the od control in the
development of the airplane:

“Men already know how to construct wings or airplanes, whidten
driven through the air at sufficient speed, will not only sirsthe
weight of the wings themselves, but also that of the engind, at
the engineer as well. Men also know how to build engines arehsc
of sufficient lightness and power to drive these planes aaBisy
speed ... Inability to balance and steer still confrontslsis of the
flying problem. ... When this one feature has been worked bat, t
age of flying will have arrived, for all other difficulties are ofinor
importance.”

The Wright brothers thus realized that control was a key iss@mable flight.
They resolved the compromise between stability and manahbiigy by building
an airplane, the Wright Flyer, that was unstable but maneiner The Flyer had
a rudder in the front of the airplane, which made the plang waaneuverable. A
disadvantage was the necessity for the pilot to keep adgithie rudder to fly the
plane: if the pilot let go of the stick the plane would crashth€ early aviators
tried to build stable airplanes. These would have been etsity, but because
of their poor maneuverability they could not be brought up ithe air. By using
their insight and skillful experiments the Wright brotherade the first successful
flight at Kitty Hawk in 1905.

Since it was quite tiresome to fly an unstable aircraft, therg stlang motiva-
tion to find a mechanism that would stabilize an aircraft. Sude\ace, invented
by Sperry, was based on the concept of feedback. Sperry used-atgpilized
pendulum to provide an indication of the vertical. He theraaged a feedback
mechanism that would pull the stick to make the plane go upwas pointing
down and vice versa. The Sperry autopilot is the first use of f@edin aeronau-
tical engineering and Sperry won a prize in a competition lier $afest airplane
in Paris in 1914. Figure 1.14 shows the Curtiss seaplane @an8gkrry autopi-
lot. The autopilot is a good example of how feedback can be tgssthbilize an
unstable system and hence “design the dynamics” of theadtircr

One of the other advantages of designing the dynamics of mealé/that it
allows for increased modularity in the overall system desiBy using feedback
to create a system whose response matches a desired profilenweale the com-
plexity and variability that may be present inside a sulmystThis allows us to
create more complex systems by not having to simultanedusky the response
of a large number of interacting components. This was oneefatlvantages of
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Figure 1.14: Aircraft autopilot system. The 1912 Curtiss (left) used an autopilot tdlstab
the pitch of the aircraft. The Sperry Autopilot (right) contained a set of fiyros coupled
to a set of air valves that controlled the wing surfaces. The Sperry Aotopas able to
correct for errors in roll, pitch and yaw [99].

Black’s use of negative feedback in vacuum tube amplifiers:résulting device
had a well-defined linear input/output response that did apedd on the individ-
ual characteristics of the vacuum tubes being used.

Higher Levels of Automation

A major trend in the use of feedback is its application to kigbvels of situational
awareness and decision making. This includes not only ioait logical branch-
ing based on system conditions, but optimization, adaptatearning and even
higher levels of abstract reasoning. These problems areiddmain of the artifi-
cial intelligence (Al) community, with an increasing roleédynamics, robustness
and interconnection in many applications.

An example of this trend is the DARPA Grand Challenge, a sasfecompe-
titions sponsored by the US government to build vehicles¢ha autonomously
drive themselves in desert and urban environments. Cattatipeted in the 2005
and 2007 Grand Challenges using a modified Ford E-350 offroadnieknamed
“Alice.” It was fully automated, including electronicalgontrolled steering, throt-
tle, brakes, transmission and ignition. Its sensing systeiuded multiple video
cameras scanning at 10-30 Hz, several laser ranging uaitsisg at 10 Hz, and
an inertial navigation package capable of providing positind orientation es-
timates at 2.5 ms temporal resolution. Computational nessuincluded 7 high
speed servers connected together through a 1 Gb/s Etheribet.s picture of
the vehicle is shown in Figure 1.15, along with a block diagminits control
architecture.

The software and hardware infrastructure that was develepatled the ve-
hicle to traverse long distances at substantial speedsstimg), Alice drove itself
over 500 kilometers in the Mojave Desert of California, wiklie ability to fol-
low dirt roads and trails (if present) and avoid obstaclem@lthe path. Speeds
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Figure 1.15: DARPA Grand Challenge. “Alice”, Team Caltech’s entry in the 2005 and
2007 competitions and its networked control architecture [52]. Thebfeedsystem fuses
data from terrain sensors (cameras and laser range finders) tohetex digital elevation
map. This map is used to compute the vehicle’s potential speed over tha tand an
optimization-based path planner then commands a trajectory for the véhifddow. A
supervisory control module performs higher level tasks such atlihngrsensor and actuator
failures.

of over 50 km/hr were obtained in fully autonomous mode. Sasti#l tuning of
the algorithms was done during desert testing, in part duketdack of systems-
level design tools for systems of this level of complexityh€ competitors in the
race (including Stanford, which won the competition) usemathms for adaptive
control and learning, increasing the capabilities of tegstems in unknown envi-
ronments. Together, the competitors in the Grand Challelegeonstrated some
of the capabilities for the next generation of control sgstend highlighted many
research directions in control at higher levels of decisi@king.

Drawbacks of Feedback

While feedback has many advantages, it also has some drlsvb@hief among
these is the possibility for instability if the system is ni#signed properly. We
are all familiar with the effects of “positive feedback” whée amplification on
a microphone is turned up too high in a room. This is an examipéefeedback
instability, something that we obviously want to avoid. Tisisricky because we
must not only design the system to be stable under nominaitons, but to
remain stable under all possible perturbations of the dyceam

In addition to the potential for instability, feedback imaetly couples different
parts of a system. One common problem is that feedback affeots measure-
ment noise into the system. Measurements must be carefudyefil so that the
actuation and process dynamics do not respond to them, ahilee same time
ensuring that the measurement signal from the sensor i€pgyogupled into the
closed loop dynamics (so that the proper levels of perfonaamne achieved).

Another potential drawback of control is the complexity afleedding a con-
trol system into a product. While the cost of sensing, comfiort and actuation
has decreased dramatically in the past few decades, theefaains that control
systems are often complicated and hence one must carefldiypde the costs and
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benefits. An early engineering example of this is the use ofopiocessor-based
feedback systems in automobiles. The use of microprocessargomotive ap-

plications began in the early 1970s and was driven by ingrghsstrict emissions

standards, which could only be met through electronic obsitr Early systems

were expensive and failed more often than desired, leadifiggguent customer
dissatisfaction. It was only through aggressive improvaimén technology that
the performance, reliability and cost of these systemsvalibthem to be used in a
transparent fashion. Even today, the complexity of thesesysis such that it is
difficult for an individual car owner to fix problems.

Feedforward

Feedback is reactive: there must be an error before coreeatitions are taken.
However, in some circumstances it is possible to measurstardance before it
enters the system and this information can be used to takeative action before
the disturbance has influenced the system. The effect of therlaigice is thus
reduced by measuring it and generating a control signalciatteracts it. This
way of controlling a system is calle@edforward Feedforward is particularly
useful to shape the response to command signals becauseacahsignals are
always available. Since feedforward attempts to match tgoads$, it requires
good process models; otherwise the corrections may havwertheg size or may
be badly timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward arkwgoas to a market-
based economy versus a planned economy. In business arfgadfcstrategy
corresponds to running a company based on extensive strategning while a
feedback strategy corresponds to a reactive approach. iErperindicates that
it is often advantageous to combine feedback and feedfdrwBeedforward is
particularly useful when disturbances can be measurecdedligied. A typical ex-
ample is in chemical process control where disturbanceménpmocess may be
due to other processes upstream. The correct balance of pheagpes requires
insight and understanding of their properties.

Positive Feedback

In most of this text, we will consider the role of negativedback, in which we
attempt to regulate the system by reacting to disturbamcasiay that decreases
the effect of those disturbances. In some systems, patlgidiological systems,
positive feedbackan play an important role. In a system with positive fee&tbac
the increase in some variable or signal leads to a situatiariich that quantity is
further increased through its dynamics. This has a destadgjleffect and is usu-
ally accompanied by a saturation that limits the growth efdaantity. Although
often considered undesirable, this behavior is used irgiocal (and engineering)
systems to obtain a very fast response to a condition orlsigna



1.5. SIMPLE FORMS OF FEEDBACK 23

u u u

(a) On-off control (b) Dead zone (c) Hysteresis

Figure 1.16: Input-output characteristics of on-off controllers. Each plot showsrtput on
the horizontal axis and the corresponding output on the vertical axdal toh-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (oje that for on-off
control with hysteresis, the output depends on the value of past inputs.

One example of the use of positive feedback is to create lsingcbehavior,
in which a system maintains a given state until some inputthass a threshold.
Hysteresis is often present so that noisy inputs near tlesliotd do not cause the
system to jitter. This type of behavior is callbitability and is often associated
with memory devices.

1.5 SIMPLE FORMS OF FEEDBACK

The idea of feedback to make corrective actions based on ffieeettice between
the desired and actual values of a quantity can be implerdent@aany different
ways. The benefits of feedback can be obtained by very simpdééek laws such
as on-off control, proportional control and PID control. histsection we provide
a brief preview of some of the topics that will be studied mfmamally in the
remainder of the text.

On-off Control

A simple feedback mechanism can be described as follows:

if
U {umax ife>0

1.1
Unin iIfe<0 (1)

wheree=r —yis the difference between the reference sigraaid the output of the
systeny, anduis the actuation command. Figure 1.16a shows the relatiovelest
error and control. This control law implies that maximum eative action is
always used.

The feedback in equation (1.1) is called-off control One of its chief advan-
tagesisthat it is simple and there are no parameters to eh@usoff control often
succeeds in keeping the process variable close to the me&ersuch as the use of
a simple thermostat to maintain the temperature of a roonypitally results in
a system where the controlled variables oscillate, whiaiftesn acceptable if the
oscillation is sufficiently small.
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Notice that in equation (1.1) the control variable is not dedimvhen the error
is zero. It is common to make modifications either by introdgdiysteresis or a
dead zone (see Figure 1.16b and 1.16c).

PID Control

The reason why on-off control often gives rise to oscillagias that the system
overreacts since a small change in the error will make thea#ed variable change
over the full range. This effect is avoidedpnoportional contro] where the char-
acteristic of the controller is proportional to the contealor for small errors. This
can be achieved with the control law

Umax If > emax
u=< kpe if emin < €< emax (1.2)
Umin  if € < €nin,

where whereky, is the controller gaingmin = Umin/Kp, and€max = Umax/Kp. The
interval (emin, emax) IS called theproportional bandbecause the behavior of the
controller is linear when the error is in this interval:

u=Kkp(r—y) =kpe if €min < € < emax (1.3)

While a vast improvement over on-off control, proportiocahtrol has the
drawback that the process variable often deviates fronefesence value. In par-
ticular, if some level of control signal is required for thgseem to maintain a
desired value, then we must hawe 0 in order to generate the requisite input.

This can be avoided by making the control action proportiendhe integral
of the error:

t
u(t):ki/e(r)dr. (1.4)
0

This control form is calledntegral controlandk; is the integral gain. It can be
shown through simple arguments that a controller with irggkegction will have
zero “steady state” error (Exercise 1.5). The catch is thaethey not always be
a steady state because the system may be oscillating.

An additional refinement is to provide the controller with anieipative abil-
ity by using a prediction of the error. A simple predictiongisen by the linear
extrapolation

e(t+Ty) =~ e(t) +Tdd3(tt),
which predicts the errdly time units ahead. Combining proportional, integral and
derivative control we obtain a controller that can be expedsmathematically as
follows:

u(t) = kpe(t)+ki/0t e(r)dr+kdd3(:) (L5)
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Figure 1.17: Action of a PID controller. At time, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedb&esed on the integral

of the error up to time (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of changhefrror. Ty
represents the approximate amount of time in which the error is projemedrd (see text).

The control action is thus a sum of three terms: the past agsepted by the
integral of the error, the present as represented by theoiopal term and the
future as represented by a linear extrapolation of the d€ther derivative term).
This form of feedback is called@oportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.17.

The PID controller is very useful and is capable of solving aenmidnge of
control problems. Over 95% of all industrial control prabkeare solved by PID
control, although many of these controllers are actually ¢Htllers because
derivative action is often not included [54]. There are alswrenadvanced con-
trollers, which differ from the PID controller by using moreghisticated methods
for prediction.

1.6 FURTHER READING

The material in this section draws heavily from the reporthef Panel on Future
Directions on Control, Dynamics and Systems [147]. Severditiatal papers
and reports have highlighted successes of control [150]reswd vistas in con-
trol [44, 123]. The early development of control is describgdViayr [140] and
the books by Bennett [27, 28], which cover the period 1808519A fascinat-
ing examination of some of the early history of control in theited States has
been written by Mindell [143]. A popular book that descrilmeany control con-
cepts across a wide range of disciplines is “Out of ContrglKelly [114]. There
are many textbooks available that describe control systertigee context of spe-
cific disciplines. For engineers, the textbooks by Frankliny@band Emami-
Naeini [76], Dorf and Bishop [56], Kuo and Golnaraghi [128hd Seborg, Edgar
and Mellichamp [169] are widely used. More mathematicatigmmted treatments
of control theory include Sontag [173] and Lewis [128]. The bbgkHellerstein
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et al.[92] provides a description of the use of feedback contra@dmputing sys-
tems. A number of books look at the role of dynamics and feeklbabiological
systems, including Milhorn [142] (now out of print), J. D. May [146] and Ell-
ner and Guckenheimer [67]. The book by Fradkov [74] and tuteniticle by
Bechhoefer [24] cover many specific topics of interest to tgsfcs community.

EXERCISES

1.1(Eye motion) Perform the following experiment and explainy@sults: Hold-

ing your head still, move your right or left hand back and fiart front of your

face, following it with your eyes. Record how quickly you camove your hand
before you begin to lose track of your hand. Now hold your hstildand move

your head back and forth, once again recording how quicklygam move before
loosing track.

1.2 ldentify 5 feedback systems that you encounter in your elsgryenviron-
ment. For each system, identify the sensing mechanismatmtumechanism and
control law. Describe the uncertainty with respect to wittoh feedback system
provides robustness and/or the dynamics that are changmdytihthe use of feed-
back.

1.3 Balance yourself on one foot with your eyes closed for 15 sdso Using
Figure 1.3 as a guide, describe the control system respeniiblkeeping you
from falling down. Note that the “controller” will differ fsm the diagram (unless
you are an android reading this in the far future).

1.4 Download the MATLAB code used to produce the simulations ferdtuise

control system in Figure 1.13 from the companion web sitengJsiial and error,

change the parameters of the control law so that the overghdioe speed is not
more than 1 m/s for a vehicle with mass= 1000 kg.

1.5 We say that a system with a constant input reaches “steady gtithe output
of the system approaches a constant value as time increztsms.that a controller
with integral action, such as those given in equations (&) (1.5), gives zero
error if the closed loop system reaches steady state.



Chapter Two
System Modeling

. | asked Fermi whether he was not impressed by the agreemewtdye our calculated
numbers and his measured numbers. He replied, “How many arbippargmeters did you
use for your calculations?” | thought for a moment about our cut-offgedures and said,
“Four” He said, “l remember my friend Johnny von Neumann usedap svith four param-
eters | can fit an elephant, and with five | can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for mesatospscattering to
Enrico Fermi in 1953 [62].

A model is a precise representation of a system’s dynamied ts answer
guestions via analysis and simulation. The model we chogsendks on the ques-
tions we wish to answer, and so there may be multiple models f&ingle dy-
namical system, with different levels of fidelity dependingtbe phenomena of
interest. In this chapter we provide an introduction to thacept of modeling,
and provide some basic material on two specific methods teatanmonly used
in feedback and control systems: differential equatiortsdifierence equations.

2.1 MODELING CONCEPTS

A model is a mathematical representation of a physicalplickl or information
system. Models allow us to reason about a system and mak&twad about
how a system will behave. In this text, we will mainly be irsted in models of
dynamical systems describing the input/output behaviagystems and we will
often work in so-called “state space” form.

Roughly speaking, a dynamical system is one in which thecesffef actions
do not occur immediately. For example, the velocity of a caesdinot change
immediately when the gas pedal is pushed nor does the tetupeia a room
rise instantaneously when a heater is switched on. Similarlyeadache does
not vanish right after an aspirin is taken, requiring timeatice effect. In business
systems, increased funding for a development project dotdagrease revenues in
the short term, although it may do so in the long term (if it wapod investment).
All of these are examples of dynamical systems, in which thlealsior of the
system evolves with time.

In the remainder of this section we provide an overview of safithe key
concepts in modeling. The mathematical details introdueed are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring-mass system, with nonlinear damping. The position of the mass is de
noted byq, with g = 0 corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring conktamdl a damper with force depen-
dent on the velocity.”

The Heritage of Mechanics

The study of dynamics originated in the attempts to descidmegpary motion. The
basis was detailed observations of the planets by TychoeBaal the results of
Kepler, who found empirically that the orbits of the plansasild be well described
by ellipses. Newton embarked on an ambitious program totexplain why the
planets move in ellipses and he found that the motion coulexipdained by his
law of gravitation and the formula that force equals mas®siracceleration. In
the process he also invented calculus and differentialtemsa

One of the triumphs of Newton’s mechanics was the obsenvdtiat the mo-
tion of the planets could be predicted based on the curresitigos and velocities
of all planets. It was not necessary to know the past motioe.stdteof a dynam-
ical system is a collection of variables that characterthesmotion of a system
completely for the purpose of predicting future motion. Bosystem of planets
the state is simply the positions and the velocities of tlaagls. We call the set of
all possible states thstate space

A common class of mathematical models for dynamical systisnesdinary
differential equations (ODES). In mechanics, one of the @stsuch differential
equation is that of a spring-mass system, with damping:

m4+c(q) +kg=0. (2.1)

This system is illustrated in Figure 2.1. The variafjle R represents the position
of the massn with respect to its rest position. We use the notatjda denote the
derivative ofg with respect to time (i.e., the velocity of the mass) grtd represent
the second derivative (acceleration). The spring is asstongatisfy Hooke’s law,
which says that the force is proportional to the displacdmieme friction element
(damper) is taken as a nonlinear functiafy), which can model effects such as
stiction and viscous drag. The positigand velocityg represent the instantaneous
“state” of the system. We say that this system seaond order systesince the
dynamics depend on the second derivative.of

The evolution of the position and velocity can be describadgusither a time
plot or a phase plot, both of which are shown in Figure 2.2. Tine {plot, on the
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Figure 2.2: lllustration of a state model. A state model gives the rate of change of tiee sta
as a function of the state. The plot on the left shows the evolution of the statéuaction

of time. The plot on the right shows the evolution of the states relative to @heln, with

the velocity of the state denoted by arrows.

left, shows the values of the individual states as a funatfidime. The phase plot,
on the right, shows theector fieldfor the system, which gives the state velocity
(represented as an arrow) at every point in the state spacaddition, we have
superimposed the traces of some of the states from diffecgmitions. The phase
plot gives a strong intuitive representation of the equmts a vector field or a
flow. While systems of second order (two states) can be remies@ this way, it
is unfortunately difficult to visualize equations of higheder using this approach.

The differential equation (2.1) is called amtonomousystem because there
are no external influences. Such a model is natural to use festedmechanics,
because it is difficult to influence the motion of the planetsmbmy examples, it
is useful to model the effects of external disturbances atrotied forces on the
system. One way to capture this is to replace equation (2.1) b

m4+c(q) +kg=u (2.2)

whereu represents the effect of external inputs. The model (2.2)llsa aforced
or controlleddifferential equation. The model implies that the rate ofrgeof
the state can be influenced by the input,). Adding the input makes the model
richer and allows new questions to be posed. For exampleawexamine what
influence external disturbances have on the trajectoriesyétem. Or, in the case
when the input variable is something that can be modulateddantrolled way,
we can analyze whether it is possible to “steer” the systemm fone point in the
state space to another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineg, where the de-
sign of electronic amplifiers led to a focus on input/outpubdagor. A system
was considered as a device that transformed inputs to @ tpatillustrated in
Figure 2.3. Conceptually an input/output model can be vieaga giant table
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Figure 2.3: lllustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the onthefright its
representation as a block diagram.

of inputs and outputs. Given an input signgl) over some interval of time, the
model should produce the resulting outg(it).

The input/output framework is used in many engineering systsince it al-
lows us to decompose a problem into individual componemtsnected through
their inputs and outputs. Thus, we can take a complicate@mystich as a radio
or a television and break it down into manageable pieced) aadhe receiver,
demodulator, amplifier and speakers. Each of these piecesse®oainputs and
outputs and, through proper design, these components cardoeonnected to
form the entire system.

The input/output view is particularly useful for the spedaikss oflinear time-
invariant systems. This term will be defined more carefully later in thiapter,
but roughly speaking a system is linear if the superposifaatdition) of two in-
puts yields an output which is the sum of the outputs that daarrespond to
individual inputs being applied separately. A system istimvariant if the output
response for a given input does not depend on when that ispyiglied.

Many electrical engineering systems can be modeled byrlitieze-invariant
systems and hence a large number of tools have been devatpagrdlyze them.
One such tool is thetep responsewhich describes the relationship between an
input that changes from zero to a constant value abruptlys{@p” input) and
the corresponding output. As we shall see in the latter fattteotext, the step
response is very useful in characterizing the performaf@dynamical system
and it is often used to specify the desired dynamics. A sarsiigle response is
shown in Figure 2.4a.

Another possibility to describe a linear, time-invariagstem is to represent
the system by its response to sinusoidal input signals. Shialled theérequency
responseand a rich, powerful theory with many concepts and strongfulsesults
has emerged. The results are based on the theory of compiaklearand Laplace
transforms. The basic idea behind frequency response isvihaan completely
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Figure 2.4: Input/output response of a linear system. The step response (& gi@autput
of the system due to an input that changes from 0 to 1 at times s. The frequency
response (b) shows the amplitude gain and phase change due to &sihngpalt at different
frequencies.

characterize the behavior of a system by its steady stapomes to sinusoidal
inputs. Roughly speaking, this is done by decomposing abigrary signal into
a linear combination of sinusoids (e.g., by using the Faeuransform) and then
using linearity to compute the output by combining the resgato the individual
frequencies. A sample frequency response is shown in Figdbe 2

The input/output view lends itself naturally to experimémtatermination of
system dynamics, where a system is characterized by regpitdi response to a
particular input, e.g. a step or a sweep across a range afdneigs.

The Control View

When control theory emerged as a discipline in the 1940sx3jthpeoach to dynam-
ics was strongly influenced by the electrical engineeringuifoutput) view. A
second wave of developments in control, starting in the 18&0s, was inspired
by mechanics, where the state space perspective was useein€ngence of space
flight is a typical example, where precise control of the oolbid spacecraft is es-
sential. These two points of view gradually merged into whabitay the state
space representation of input/output systems.

The development of state space models involved modifyingrtbdels from
mechanics to include external actuators and sensors, #dizihgtmore general
forms of equations. In control, the model given by equat) was replaced by

dx

i f(x,u), y =h(x,u), (2.3)
wherex is a vector of state variablesjs a vector of control signals, aryh vector
of measurements. The terdx/dt represents the derivative gfwith respect to
time, now considered as a vector, ahdndh are mappings of their arguments to
vectors of the appropriate dimension. For mechanical systehe state consists of
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the position and velocity of the system, so tkat (q,q) in the case of a damped
spring-mass system. Note that in the control formulationnveglel dynamics as
first order differential equations, but we will see that tras capture the dynamics
of higher order differential equations by appropriate débiniof the state and the
mapsf andh.

Adding inputs and outputs has added to the richness of tissickd problems
and led to many new concepts. For example it is natural tofgsissible states
can be reached with the proper choicaigfeachability) and if the measurement
contains enough information to reconstruct the state fohbdity). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view wag ttmergence of
disturbance and model uncertainty as critical elementharthieory. The simple
way of modeling disturbances as deterministic signalsdik@s and sinusoids has
the drawback that such signals can be predicted preciseljnore realistic ap-
proach is to model disturbances as random signals. This vieivgives a natural
connection between prediction and control. The dual viewsdit/output rep-
resentations and state space representations are attiaideful when modeling
uncertainty, since state models are convenient to desamioeninal model but un-
certainties are easier to describe using input/output leddéen via a frequency
response description). Uncertainty will be a constant gnémnoughout the text
and will be studied in particular detail in Chapter 12.

An interesting experience in design of control systemsasfiredback systems
can often be analyzed and designed based on comparativghjesinodels. The
reason for this is the inherent robustness of feedbackragstdowever, other uses
of models may require more complexity and more accuracy.&aeple is feed-
forward control strategies, where one uses a model to prneatmihe inputs that
will cause the system to respond in a certain way. Anothex iari system valida-
tion, where one wishes to verify that the detailed respoih#eeosystem performs
as it was designed. Because of these different uses of madslsommon to use
a hierarchy of models having different complexity and figelit

Multi-Domain Modeling

Modeling is an essential element of many disciplines, baditions and meth-
ods from individual disciplines can be different from eathe, as illustrated by
the previous discussion of mechanical and electrical e®ging. A difficulty in
systems engineering is that it is frequently necessary abwlith heterogeneous
systems from many different domains, including chemidaicteical, mechanical
and information systems.

To model such multi-domain systems, we start by partitigransystem into
smaller subsystems. Each subsystem is represented by éalgunations for mass,
energy and momentum, or by appropriate descriptions ofifleernation process-
ing in the subsystem. The behavior at the interfaces is caghtoy describing how
the variables of the subsystem behave when the subsystenistenrconnected.
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These interfaces act by constraining variables within thé&idual subsystems to
be equal (such as mass, energy or momentum fluxes). The compuded is then
obtained by combining the descriptions of the subsysterdgtaninterfaces.

Using this methodology it is possible to build up librarigssabsystems that
correspond to physical, chemical and informational coneptst The procedure
mimics the engineering approach where systems are built$rdosystems that are
themselves built from smaller components. As experiencgiised, the compo-
nents and their interfaces can be standardized and callectaodel libraries. In
practice, it takes several iterations to obtain a good fibthat can be reused for
many applications.

State models or ordinary differential equations are noabigtfor component
based modeling of this form because states may disappear eameponents are
connected. This implies that the internal description of @mponent may change
when it is connected to other components. As an illustratienconsider two
capacitors in an electrical circuit. Each capacitor has & st@rresponding to the
voltage across the capacitors, but one of the states wapgisar if the capacitors
are connected in parallel. A similar situation happens Wwith rotating inertias,
each of which are individually modeled using the angle adition and the angular
velocity. Two states will disappear when the inertias amegd by a rigid shaft.

This difficulty can be avoided by replacing differential edoas bydifferential
algebraic equationswhich have the form

F(z,z) =0,
wherez € R". A simple special case is

X= f(X, y) g(X7 y) =0, (24)

wherez = (x,y) andF = (x— f(x,y),9(x,y)). The key property is that the deriva-
tive zis not given explicitly and there may be pure algebraic iefst between the
components of the vectar

The model (2.4) captures the examples of the parallel capa@nd the linked
rotating inertias. For example, when two capacitors areeoted we simply add
the algebraic equation expressing that the voltages athessapacitors are the
same.

Modelicais a language that has been developed to support compoased-b
modeling. Differential algebraic equations are used ad#wc description and
object-oriented programming is used to structure the nsodébdelica is used to
model the dynamics of technical systems in domains such akanéal, electri-
cal, thermal, hydraulic, thermo-fluid and control subsystelodelica is intended
to serve as a standard format so that models arising in @iffefomains can be ex-
changed between tools and users. A large set of free and camahidodelica
component libraries are available and are used by a growimgper of people
in industry, research and academia. For further informmagiboutModelicg see
http://ww. nodel i ca. org.



34 CHAPTER 2. SYSTEM MODELING

2.2 STATE SPACE MODELS

In this section we introduce the two primary forms of modélsttwe use in this
text: differential equations and difference equationsthBoake use of the notions
of state, inputs, outputs and dynamics to describe the ahafva system.

Ordinary Differential Equations

The state of a system is a collection of variables that sunmmahie past of a
system for the purpose of predicting the future. For a playsgstem the state
is composed of the variables required to account for stoodgeass, momentum
and energy. A key issue in modeling is to decide how accyréiés storage has
to be represented. The state variables are gathered in a,vect®", called the
state vector The control variables are represented by another vectoRP and
the measured signal by the vecyor R9. A system can then be represented by the
differential equation

Zlf[( = f(x,u), y =h(x,u), (2.5)
wheref : R" x RP — R" andh: R" x RP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called thder of the system. The sys-
tem (2.5) is calledime-invariantbecause the functions andg do not depend
explicitly on timet; there are more general time-varying systems where the func
tions do depend on time. The model consists of two functidresfunctionf gives
the rate of change of the state vector as a function of gtatel controlu, and the
functiong gives the measured values as functions of staed controlu.

A system is called &near state space system if the functiohandg are linear
in x andu. A linear state space system can thus be represented by

dx

pri Ax+ Bu, y = Cx+ Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said tombar and
time-invariant or LTI for short. The matriXA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influeneedhtput directly.
A different form of linear differential equations, generalg the second order
dynamics from mechanics, is an equation of the form
dn dnfl
dT'): A dtn—i/
wheret is the independent (time) variablg}) is the dependent (output) variable,
andu(t) is the input. The notatiod“y/dt* is used to denote theh derivative ofy
with respect td, sometimes also written 8. The system (2.7) is said to be an

+ - +apy =U, (2.7)
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nth order system. This system can be converted into state §pacdy defining

dn- 1y/dtn 1
dn- 2y/dt” 2
dy/dt

and the state space equations become

X1 —aiXy — - —anXp u
X X 0
g 2 B 2 . . .
dt . - . . ) y_ n
Xn-1 Xn-2 0
Xn Xn—1 0

With the appropriate definition o4, B, C andD, this equation is in linear state
space form.
An even more general system is obtained by letting the olpuatlinear com-
bination of the states of the system, i.e.
y = bixg +boxo+ - - + baXy +du

This system can be modeled in state space as

X1 —a; —a2 ... —apn-1 —an 1
X2 1 0 ... 0 0 0
dlx|_| o 1 0 0 |xs|0]y
- 5 5 5 (2.8)
Xn 0 o0 10 0
y= (bl b ... bn]x+du.

This particular form of a linear state space system is catbedhable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems

An example of a class of systems that can be modeled usingawyddifferential
equations is the class of “balance systems.” A balance mystea mechanical
system in which the center of mass is balanced above a pivot. pgpome com-
mon examples of balance systems are shown in Figure 2.5. Thea@dgunan
transportation system (Figure 2.5a) uses a motorized ptatfo stabilize a per-
son standing on top of it. When the rider leans forward, thacke propels itself
along the ground, but maintains its upright position. Amotxample is a rocket
(Figure 2.5b), in which a gimbaled nozzle at the bottom of theket is used to
stabilize the body of the rocket above it. Other examplesatdirice systems in-
clude humans or other animals standing upright or a perslamt&iag a stick on
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- !
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(a) Segway (b) Saturn rocket (c) Cart-pendulum system

Figure 2.5: Balance systems. (a) Segway human transportation system, (b) Satket
and (c) inverted pendulum on a cart. Each of these examples uses &ritie bottom of the
system to keep it upright.

their hand.
Balance systems are a generalization of the spring-matnsyge saw earlier.
We can write the dynamics for a mechanical system in the géfam

M(a)d+C(a,q) +K(a) =B(q)u,

whereM(q) is the inertia matrix for the systen(q,q) represents the Coriolis
forces as well as the dampini§(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into themaycs. The
specific form of the equations can be derived using Newtoniaohanics. Note
that each of the terms depends on the configuration of thersysé@d these terms
are often nonlinear in the configuration variables.

Figure 2.5c shows a simplified diagram for a balance system. daefrthis
system, we choose state variables that represent thegooaitid velocity of the
base of the systenp andp, and the angle and angular rate of the structure above
the basef andf. We letF represent the force applied at the base of the system,
assumed to be in the horizontal direction (aligned vpithand choose the position
and angle of the system as outputs. With this set of definititresdynamics of
the system can be computed using Newtonian mechanics arnldenfmsm

(M+m) —mlcosB) (p cp+mising82)  (F )9
—mlcos® (J+mli?) ) (6 vo—mglsing | = (0] (2.9)

whereM is the mass of the bas®,andJ are the mass and moment of inertia of the
system to be balancelis the distance from the base to the center of mass of the
balanced body; andy are coefficients of viscous friction, aids the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space fgrdetining the
state ax = (p, 0, p, 0), the input asu = F and the output ag = (p,0). If we
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define the total mass and total inertia as
M=M+m  J=J+ml

the equations of motion then become

p
p . 6 _
d e —mlsg82 +mgml?/J)sgcg — cp— yYimcgB +-u
de [ p]| ~ M—m(mR/%)c3 .
0 —ml?sgcg 82 + Miglsg — clcgp— y(M/m)6 + Icgu
\ J(M/m) —m(Icg)?
y: g] b

where we have used the shorthanpd= cosf andsg = sinf.

In many cases, the angwill be very close to 0 and hence we can use the
approximations sifl ~ 6 and co$ ~ 1. Furthermore, if9 is small, we can ig-
nore quadratic and higher termsén Substituting these approximations into our
equations, we see that we are left witlireear state space equation

oy (O 0 1 0 D 0
dle 0 0 0 1 0 0
at || = [0 mPrg/u —ca/p —yaimp| | o | a/m |t
6 0 Mmgl/u —clm/u —yMy/u J \O Im/u
_(r 000,
Y=o 100"
whereu = MyJ — Al 0

Example 2.2 Inverted pendulum

A variation of this example is one in which the location of tiese,p, does not
need to be controlled. This happens, for example, if we arg iotérested in
stabilizing a rocket's upright orientation, without woimyg about the location of
base of the rocket. The dynamics of this simplified system aenddy

d [‘-9] _ [mgl o ] y—0 (2.10)
dt |6) sind— -6+ —cosbu |’ R '
J Joo%
wherey is the coefficient of rotational friction} = J+ ml? andu is the force
applied at the base. This system is referred to asarted pendulum O

Difference Equations

In some circumstances, it is more natural to describe thugen of a system
at discrete instants of time rather than continuously iretintf we refer to each
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of these times by an integ&r=0,1,2, ..., then we can ask how the state of the
system changes for ea&h Just as in the case of differential equations, we define
the state to be those sets of variables that summarize thefghs system for the
purpose of predicting its future. Systems described in traamer are referred to
asdiscrete time systems

The evolution of a discrete time system can written in the form

X[k+ 1] = f(x[K],ulk]), y[K] = h(x[k],u[k]) (2.11)

wherex[k] € R" is the state of the system at “timk’(an integer)u[k] € RP is the
input andy[k] € R%is the output. As beforef, andh are smooth mappings of the
appropriate dimension. We call equation (2.14jféerence equatiosince it tells
us nowx[k+ 1] differs fromx[k]. The statex[k] can either be a scalar or a vector
valued quantity; in the case of the latter we wjék] for the value of thgth state
at timek.

Just as in the case of differential equations, it will oftentbe case that the
equations are linear in the state and input, in which caseanencite the system
as

x[k+ 1] = Axk] + BulK], y[K] = Cx[k] + DulK].

As before, we refer to the matricés B, C andD as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. Theitsm of a linear
difference equation with initial conditiox]0] and inputu[0],...,u[T] is given by

k—1 _
X[k = Afxo + ZOA"‘J‘lBu[ i]
‘:k_l k> 0. (2.12)
y[k] = CA%o+ Z)CAK—J—lsu[ j] -+ DulK]
J:

Difference equations are also useful as an approximatiafifieirential equa-
tions, as we will show later.

Example 2.3 Predator-prey

As an example of a discrete time system, consider a simplehfioda predator-
prey system. The predator-prey problem refers to an ecabgystem in which
we have two species, one of which feeds on the other. This typestem has been
studied for decades and is known to exhibit interesting thiog. Figure 2.6 shows
a historical record taken over 50 years in a population ofégversus hares [134].
As can been seen from the graph, the annual records of thdabioms of each
species are oscillatory in nature.

A simple model for this situation can be constructed usinigerdte time model
by keeping track of the rate of births and deaths of each spedtiettingH rep-
resent the population of hares abhdepresent the population of lynxes, we can
describe the state in terms of the populations at discretedseof time. Lettingk
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Figure 2.6: Predator versus prey. The photograph on the left shows a Canadaaryl
a snowshoe hare, the lynx’s primary prey. The graph on the rightsktize populations of
hares and lynxes between 1845 and 1935 in a section of the Canadikiesd34, 145].
The data were collected on an annual basis over a period of 90 ydartagPaph courtesy
Rudolfo’s Usenet Animal Pictures Gallery.

be the discrete time index (e.qg., the day number), we cam writ
Hk+ 1] = H[k] + by (u)H [K] — aL[kH[K]
L[k+ 1] = L[k] —d¢L[K] +cL[k]H k],

whereby (u) is the hare birth rate per unit period and as a function of tuel f
supplyu, ds is the lynx death rate, ang andc are the interaction coefficients.
The interaction ternaL[k|H[K] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey megttisshence given
by the product of the population sizes. The interaction tekfi]H[K] in the lynx
dynamics has a similar form and represents the rate of grofitie lynx popula-
tion. This model makes many simplifying assumptions—sudhafact that hares
only decrease in numbers through predation by lynxes—Iluotfitah is sufficient to
answer basic questions about the system.

To illustrate the usage of this system, we can compute thebruwf lynxes
and hares at each time point from some initial populations ©done by starting
with x[0] = (Ho, Lo) and then using equation (2.13) to compute the populations in
the following period. By iterating this procedure, we camgete the population
over time. The output of this process for a specific choice cipaters and initial
conditions is shown in Figure 2.7. While the details of theldation are different
from the experimental data (to be expected given the siitylad our assump-
tions), we see qualitatively similar trends and hence weusanthe model to help
explore the dynamics of the system. O

(2.13)

Example 2.4 Email Server
The IBM Lotus server is an collaborative software system thatinisters users’
e-mail, documents and notes. Client machines interactevithusers to provide
access to data and applications. The server also handlesdth@istrative tasks.
In the early development of the system it was observed tlegpénformance was
poor when the CPU was overloaded because of too many sergoests and
mechanisms to control the load were therefore introduced.

The interaction between the client and the server is in thra fifremote proce-
dure calls (RPCs). The server maintains a log of statisticewipteted requests.
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Figure 2.7: Discrete time simulation of the predator-prey model (2.13). Using thenpar
tersa= c=0.014,b, (u) = 0.6 andd = 0.7 in equation (2.13), the period and magnitude of
the lynx and hare population cycles approximately match the data in Fighre 2.

The total number of requests being served, caitel (RPCs in server), is also
measured. The load on the server is controlled by a paramated ¥axUser s,
which sets the total number of client connections to theeserhis parameter is
controlled by the system administrator. The server can berdegl as a dynamical
system withMaxUser s as input andRl S as the output. The relationship between
input and output was first investigated by exploring the stestdte performance
and was found to be linear.

In [92] a dynamic model in the form of a first order differenceuation is
used to capture the dynamic behavior of this system. Usiatgsyidentification
technigues they construct a model of the form

ylk+ 1] = ay[k] + bulk],

whereu = MaxUser s — MaxUser s andy = Rl S— RI'S. The parametera = 0.43
andb = 0.47 are parameters that describe the dynamics of the systamdathe
operating point an@xUser s = 165 andRI'S = 135 represent the nominal oper-
ating point of the system. The number of requests was aveigigthe sampling
period which was 60 s. O

Simulation and Analysis

State space models can be used to answer many questions. Beentdst com-
mon, as we have seen in the previous examples, is to predi@vitiution of the
system state from a given initial condition. While for simphodels this can be
done in closed form, more often it is accomplished throughmater simulation.
One can also use state space models to analyze the overalidedf the system,
without making direct use of simulation.

Consider again the damped spring-mass system from Secliph2 this time
with an external force applied, as shown in Figure 2.8. We waspredict the
motion of the system for a periodic forcing function, withigem initial condition,
and determine the amplitude, frequency and decay rate oégudting motion.
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m |——p Ut)=Asinwt

ALV VAN
f|

Figure 2.8: A driven spring-mass system, with damping. Here we use a linear dgmpin
element with coefficient of viscous frictiom The mass is driven with a sinusoidal force of
amplitudeA.

We choose to model the system with a linear ordinary difféaéequation.
Using Hooke’s law to model the spring and assuming that thepda exerts a
force that is proportional to the velocity of the system, egdn

mg+cq+kgq=u, (2.14)

wherem is the massq is the displacement of the massjs the coefficient of
viscous friction K is the spring constant andis the applied force. In state space
form, usingx = (q,q) as the state and choosigg- g as the output, we have

dx X2
T C k ul: y =X
dt | =2 — —x+

m- m- m

We see that this is a linear, second order differential egouatith one input and
one output.

We now wish to compute the response of the system to an inpiecform
u = Asinwt. Although it is possible to solve for the response analiiicave
instead make use of a computational approach that does Ipairreéhe specific
form of this system. Consider the general state space system

dx

i f(x,u).

Given the state at timet, we can approximate the value of the state at a short
time h > 0 later by assuming that the rate of changé ©f u) is constant over the
intervalt tot + h. This gives

X(t4h) =x(t) +hf(x(t),u(t)). (2.15)

Iterating this equation, we can thus solve ¥a&s a function of time. This approxi-
mation is known as Euler integration, and is in fact a diffeesaquation if we leh
represent the time increment and weitk] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methaasEuler
integration, it still illustrates some of the basic tradeof

Returning to our specific example, Figure 2.9 shows the restitemputing
X(t) using equation (2.15), along with the analytical compotatiWe see that as
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Figure 2.9: Simulation of the forced spring-mass system with different simulation time co
stants. The darker dashed line represents that analytical solution olidhéirees represent
the approximate solution via the method of Euler integration, using decgesteip sizes.

h gets smaller, the computed solution converges to the exadian. The form
of the solution is also worth noticing: after an initial tea@nt, the system settles
into a periodic motion. The portion of the response after thesient is called the
steady state responsethe input.

In addition to generating simulations, models can also el us answer other
types of questions. Two that are central to the methods itestin this text are
stability of an equilibrium point and the input/output freency response. We illus-
trate these two computations through the examples belaedarn to the general
computations in later chapters.

Returning to the damped spring-mass system, the equationstin with no

input forcing are given by
dx X2

mX2 le

wherex; is the position of the mass (relative to the rest position)»arits veloc-
ity. We wish to show that if the initial state of the system vgag from the rest
position, the system will return to the rest position evatiju(we will later define
this situation to mean that the rest positiorasymptotically stable While we
could heuristically show this by simulating many, manyialitconditions, we seek
instead to prove that this is true fanyinitial condition.

To do so, we construct a functidh: R" — R that maps the system state to a
positive real number. For mechanical systems, a conveniaice is the energy
of the system,

V(X) = %kx%%—%mx%. (2.17)
If we look at the time derivative of the energy function, we seat

dv ) . c k
e kxaXa 4+ mMxexo = kxqXo + mxz(—ﬁxz — ﬁxl) = 0%,
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which is always either negative or zero. Hentg(t)) is never increasing and,
using a bit of analysis that we will see formally later, thdiindual states must
remain bounded.

If we wish to show that the states eventually return to thginyiwe must
use a more slightly more detailed analysis. Intuitively,sca® reason as follows:
suppose that for some period of timé(x(t)) stops decreasing. Then it must be
true thatv (x(t)) = 0, which in turn implies thak,(t) = O for that same period. In
that casexy(t) = 0 and we can substitute into the second line of equation 2016

obtain:
c k k

0= Xo = sz mX1 = mX1.

Thus we must have thag also equals zero and so the only time thdk(t))
can stop decreasing is if the state is at the origin (and htmseystem is at its
rest position). Since we know th¥t(x(t)) is never increasing (sincé < 0), we
therefore conclude that the origin is stable @oryinitial condition).

This type of analysis, called Lyapunov analysis, is considémn detail in Chap-
ter 4 but shows some of the power of using models for analysigsiem proper-
ties.

Another type of analysis that we can perform with models isdmpute the
output of a system to a sinusoidal input. We again considesphing-mass system,
but this time keeping the input and leaving the system inrigireal form:

m4+ cq+kg=u. (2.18)

We wish to understand what the response of the system is tmaadal input of
the form

u(t) = Asinwt.

We will see how to do this analytically in Chapter 6, but fomnee make use of
simulations to compute the answer.

We first begin with the observation thatjft) is the solution to equation (2.18)
with input u(t), then applying an input®t) will give a solution 2j(t) (this is
easily verified by substitution). Hence it suffices to look atannput with unit
magnitudeA = 1. A second observation, which we will prove in Chapter Shatt
the long term response of the system to a sinusoidal inptggl & sinusoid at the
same frequency and so the output has the form

q(t) = g(w) sin(wt + ¢ (w)),

whereg(w) is called thegain of the system and (w) is called thephase(or phase
offset).

To compute the frequency response numerically, we can gisipiulate the
system at a set of frequencies, ..., wy and plot the gain and phase at each of
these frequencies. An example of this type of computatishasvn in Figure 2.10.
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Figure 2.10: A frequency response (magnitude only) computed by measuringspense
of individual sinusoids. The figure on the left shows the responsesafititem as a function
of time to a number of different unit magnitude inputs (at differentdiestgies). The figure
on the right shows this same data in a different way, with the magnitude ottiponse
plotted as a function of the input frequency. The filled circles corregporihe particular
frequencies shown in the time responses.

2.3 MODELING METHODOLOGY

To deal with large complex systems, it is useful to have diffie representations
of the system that capture the essential features and haleviant details. In all
branches of science and engineering it is common practiaegsome graphical
description of systems. They can range from stylistic peguo drastically simpli-
fied standard symbols. These pictures make it possible to geteaall view of the
system and to identify the individual components. Exampfesioh diagrams are
shown in Figure 2.11. Schematic diagrams are useful becaggegitre an overall
picture of a system, showing different subprocesses anmditierconnection, and
indicating variables that can be manipulated and signalsctiin be measured.

Block Diagrams

A special graphical representation calleblack diagramhas been developed in
control engineering. The purpose of a block diagram is to exsigle the informa-
tion flow and to hide details of the system. In a block diagraiffierent process
elements are shown as boxes and each box has inputs dendiseshyith arrows
pointing toward the box and outputs denoted by lines witlowasrgoing out of
the box. The inputs denote the variables that influence a pa@resthe outputs
denote signals that we are interested in or signals that mfkiether subsystems.
Block diagrams can also be organized in hierarchies, winelieidual blocks may
themselves contain more detailed block diagrams.

Figure 2.12 shows some of the notation that we use for bloakaias. Signals
are represented as lines, with arrows to indicate inputsoatglits. The first di-
agram is the representation for a summation of two signafsinfiut/output re-
sponse is represented as a rectangle with the system nam®iloematical de-
scription) in the block. Two special cases are a proportigaa, which scales the
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Figure 4.10 A communication protocol
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Figure 2.11: Schematic diagrams in different disciplines. Each diagram is used to itkistra
the dynamics of a feedback system: (a) electrical schematics for erppystem, (b) a bio-
logical circuit diagram for a synthetic clock circuit [21], (c) procegsydam for a distillation
column and (d) Petri net description of a communication protdgol [
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Figure 2.12: Standard block diagram elements. The arrows indicate the the inputs &nd ou
puts of each element, with the mathematical operation corresponding tiothed labeled

at the output. The system block (e) represents the full input/outputmespd a dynamical
system.
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Figure 2.13: A block diagram representation of the flight control system for an irfggng
against the wind. The mechanical portion of the model consists of thebiglg dynamics
of the fly, the drag due to flying through the air and the forces genergtéuelwings. The
motion of the body causes the visual environment of the fly to changethainformation
is then used to control the motion of the wings (through the sensory maitamsy, closing
the loop.

input by a multiplicative factor, and an integrator, whialtputs the integral of the
input signal.

Figure 2.13 illustrates the use of a block diagram, in thig dasmodeling the
flight response of a fly. The flight dynamics of an insect are inbtgdntricate,
involving a careful coordination of the muscles within the tihymaintain stable
flight in response to external stimuli. One known charadierisf flies is their
ability to fly upwind by making use of the optical flow in their cpound eyes as
a feedback mechanism. Roughly speaking, the fly controlgigstation so that
the point of contraction of the visual field is centered in il field.

To understand this complex behavior, we can decompose tralbdynamics
of the system into a series of interconnected subsysterfislgmks”). Referring to
Figure 2.13, we can model the insect navigation system trangnterconnection
of five blocks. The sensory motor system (a) takes the infaamditom the visual
system (e) and generates muscle commands that attempetatstefly so that
the point of contraction is centered. These muscle commamdscaverted into
forces through the flapping of the wings (b) and the resulter@adynamic forces
that are produced. The forces from the wings are combinedtivldrag on the
fly (d) to produce a net force on the body of the fly. The wind veloeinters
through the drag aerodynamics. Finally, the body dynamicdéscribe how the
fly translates and rotates as a function of the net forces tea@plied to it. The
insect position, speed and orientation is fed back to thg dexodynamics and
vision system blocks as inputs.

Each of the blocks in the diagram can itself be a complicatbdysiem. For
example, the fly visual system of a fruit fly consists of two casgied compound
eyes (with about 700 elements per eye) and the sensory mi@ns has about
200,000 neurons that are used to process that informationork detailed block
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diagram of the insect flight control system would show thergdenections be-
tween these elements, but here we have used one block tseaph®w the motion
of the fly affects the output of the visual system and a secoockltb represent
how the visual field is processed by the fly’s brain to generatecte.commands.
The choice of the level of detail of the blocks and what elemémiseparate into
different blocks often depends on experience and the qumessthat one wants to
answer using the model. One of the powerful features of btbagrams is their
ability to hide information about the details of a systent thay not be needed to
gain an understanding of the essential dynamics of thersyste

Modeling from Experiments

Since control systems are provided with sensors and acslititeralso possible to
obtain models of system dynamics from experiments on thegso The models
are restricted to input/output models since only theseadégare accessible to ex-
periments, but modeling from experiments can also be coedbivith modeling
from physics through the use of feedback and interconnectio

A simple way to determine a system’s dynamics is to obsemedbponse to a
step change in the control signal. Such an experiment begisstbing the control
signal to a constant value, then when steady state is estelllthe control signal
is changed quickly to a new level and the output is observede eéXperiment
will give the step response of the system and the shape oédpense gives useful
information about the dynamics. It immediately gives andation of the response
time and it tells if the system is oscillatory or if the resperin monotone. By
repeating the experiment for different steady state vadnesdifferent amplitudes
of the change of the control signal we can also determineasanipere the process
can be approximated by a linear system.

Example 2.5 Identification of a spring-mass system
Consider the spring-mass system from Section 2.1, whosemgaare given by

mg+cq+kg=u. (2.19)

We wish to determine the constamis c andk by measuring the response of the
system to a step input of magnituBig

We will show in Chapter 5 that whee? < 4km, the step response for this
system from the rest configuration is given by

V4km— c?
ct, . -
q(t) = % (1—exp(—?n) S|n(a)dt+¢)> 2m
¢ =tan? (\/ Akm— 02> .
From the form of the solution, we see that the form of the respas determined

by the parameters of the system. Hence, by measuring cétures of the step
response we can determine the parameter values.
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Figure 2.14: Step response for a spring-mass system. The magnitude of the stéfsinpu
Fo = 20 N. The period of oscillationT is determined by looking at the time between two
subsequent local maxima in the response. The period combined wittetidy state value
g(e0) and the relative decrease between local maxima can be used to estingeatheters

in a model of the system.

Figure 2.14 shows the response of the system to a step of mdgRit= 20 N,
along with some measurements. We start by noting that tlael\ststate position
of the mass (after the oscillations die down) is a functiothefspring constank:

o) = 2. (2.20)

whereFy is the magnitude of the applied fordeéy(= 1 for a unit step input). The
parameter 1k is called thegain of the system. The period of the oscillation can
be measured between two peaks and must satisfy

2 V4km—c?
=t (2.21)

Finally, the rate of decay of the oscillations is given by tlkpanential factor in
the solution. Measuring the amount of decay between twogeed have (using
Exercise 2.5)

log(d(ty) — Fo/k) —log(ate) ~Fo/K) = otz —ta). (2.22)

Using this set of three equations, we can solve for the paemand determine
that for the step response in Figure 2.14 we have 250 kg,c ~ 60 N s/m and
k~ 40 N/m. 0

Modeling from experiments can also be done using many ofgeals. Si-
nusoidal signals are commonly used (particularly for systavith fast dynamics)
and precise measurements can be obtained by exploitinglation techniques.
An indication of nonlinearities can be obtained by repeagrperiments with in-
put signals having different amplitudes.
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Normalization and Scaling

Having obtained a model, it is often useful to scale the e by introducing
dimension free variables. Such a procedure can often sirtpif equations for a
system by reducing the number of parameters and reveaéstieg properties of
the model. Scaling can also improve the numerical conditigmif the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: simply choosisuor each in-
dependent variable and introduce new variables by divittiegrariables with the
chosen normalization unit. We illustrate the procedurd wito examples.

Example 2.6 Spring-mass system
Consider again the spring-mass system introduced eaNieglecting the damp-
ing, the system is described by

mg-+kg=u.

The model has two parametarsandk. To normalize the model we introduce
dimension free variables = q/I and 1 = wot, wherean = /k/m and| is the
chosen length scale. We scale forcerbl and introduces = u(mlag). The
scaled equation then becomes

> dg/l 1
dr2  d(aot)?  wflm

which is the normalized undamped spring-mass system. &tiat the normal-
ized model has no parameters while the original model hadgarametersn
andk. Introducing the scaled, dimension-free state variabjes x = g/ and
2, = dx/dt = g/(lwp) the model can be written as

a(2)= (5o () (0)

This simple linear equation describes the dynamics of anpn@mnass system,
independent of the particular parameters, and hence gs#/essight into the fun-
damental dynamics of this oscillatory system. To recoverphysical frequency
of oscillation or its magnitude, we must invert the scaling lvave applied. [

(_kq+ U) = _X+V7

Example 2.7 Balance system
Consider the balance system described in Section 2.1. Negjetamping by
puttingc = 0 andy = 0 in equation (2.9) the model can be written as

d?q d?e . .dg,2
(M+m)ﬁ—mlcosew+mlsm6(a) =F
d%q ,. d%6 .
—mIcosQW+(J+ml )W—mglsme_o

Let wp = /mgl/(J+ ml?), choose the length scale Bghe time scale as/lw,
the force scale a@vl +m)l w and introduce the scaled variables- aot, x = g/
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a). The uncertainty lemon in (b) is one way to capture uncertairttyriamical
systems emphasizing that a model is only valid in some amplitude and fregrenges. In

(c) a model is represented by a nominal modi¢) and another modéiM representing the
uncertainty analogous to representation of parameter uncertainty.

andu = F/((M+m)lw?). The equations then become

2x d?e do\2 d>x d’6 .
ﬁ—aCOSQW—Fa(a) =u, —BCOSGPJrP—st_O,

wherea = m/(M +m) andf = ml?/(J+ml?). Notice that the original model has
five parameterm, M, J, | andg but the normalized model has only two parameters
a andB. If M > mandml? > J we geta ~ 0 and ~ 1 and the model can be
approximated by

@x_ oo

drz2 7 dr?
The model can be interpreted as a mass combined with an idveetedulum
driven by the same input. O

—sin@ = ucoso.

Model Uncertainty

Reducing uncertainty is one of the main reasons for usindjd@ek and it is there-
fore important to characterize uncertainty. When makingsaneements there is a
good tradition to assign both a nominal value and a measweacddrtainty. It is
useful to apply same principle to modeling, but unfortulyaités often difficult to
express the uncertainty of a model quantitatively.

For a static system whose input-output relation can be ckeaed by a func-
tion, uncertainty can be expressed by an uncertainty baildisisated in In Fig-
ure 2.15a. At low signal levels there are uncertainties dugensor resolution,
friction and quantization. Some models for queuing systemsetls are based
on averages that exhibit significant variations for smallyjations. At large sig-
nal levels there are saturations or even system failures.siimal ranges where
a model is reasonably accurate varies dramatically betwpphcations but it is
rare to find models that are accurate for signal ranges langertd.

Characterization of uncertainty of dynamic model is muchrardifficult. We
can try to capture uncertainties by assigning uncertairtbeparameters of the
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model but this is often not sufficient. There may be errors dyghtmmomena that
have been neglected, for example small time delays. In cbthite ultimate test
is how well a control system based on the model performs amel delays can be
important. There is also a frequency aspect. There are slomopiena, such as
aging, that can cause changes or drift in the systems. Thesdsarhigh frequency
effects: a resistor will no longer be a pure resistance at higth frequencies and
a beam has stiffness and will exhibit additional dynamic&mvBubject to high
frequency excitation. Thencertainty lemorshown in Figure 2.15b is one way to
conceptualize the uncertainty of a system. It illustrakeg & model is only valid
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing unaiertly in Chapter 12
using figures such as the one shown in Figure 2.15c. These todks nsa of
the concept of a transfer function, which describes theukagy response of an
input/output system. For now, we simply note that one shalv@ys be careful to
recognize the limits of a model and not to make use of moddkaritheir range
of applicability. For example, one can describe the una#gtdemon and then
check to make sure that signals remain in this region.

2.4 MODELING EXAMPLES

In this section we introduce additional examples that fthte some of the differ-
ent types of systems for which one can develop differentjahéion and difference
equation models. These examples are specifically chosen framga of differ-
ent fields to highlight the broad variety of systems to whiatdigack and control
concepts can be applied. A more detailed set of applicatlmtsserve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation ardiack to control the
movement of a mechanical system. Motion control systemged&rmom nanopo-

sitioning systems (atomic force microscopes, adaptiveEgptto control systems
for the read/write heads in a disk drive of CD player, to maotiring systems
(transfer machines and industrial robots), to automotirgrol systems (anti-lock
brakes, suspension control, traction control), to air qguats flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model

A common problem in motion control is to control the trajegt@f a vehicle
through an actuator that causes a change in the orientatisteering wheel on an
automobile or the front wheel of a bicycle are two examplessbmilar dynamics
occur in steering of ships or control of the pitch dynamicswfaircraft. In many
cases, we can understand the basic behavior of these sybi@mgh the use of a
simple model that captures the basic geometry of the system.
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead viewdlfiale
with four wheels. By approximating the motion of the front and rear pdimsteels by a
single front and rear wheel, we obtain an abstraction called the “bicycteethshown on
the right. The wheel base sand the center of mass at a distarctrward of the rear
wheels. The steering angle & and the velocity at the center of mass has the angle
relative the length axis of the vehicle. The position of the vehicle is givetxly and the
orientation (heading) bg.

Consider a vehicle with two wheels as shown in Figure 2.16.tl@purpose
of steering we are interested in a model that describes hewselocity of the
vehicle depends on the steering angjleTo be specific, consider the velocinyat
the center of mass, a distareeéom the rear wheel, and letbe the wheel base, as
shown in Figure 2.16. Let andy be the coordinates of the center of ma@she
heading angle and the angle between the velocity vectoand the centerline of
the vehicle. Sincé = ratand anda = ratana it follows that tarx = (a/b)tanf
and we get the following relation betweemand the steering angl®

atané). (2.23)

b
Assume that the wheels are rolling without slip and that thleaity of the rear
wheel isvg. The vehicle speed at its center of mass is vp/ cosa and we find
that the motion of this point is given by

a(d) = arctar(

31( =vcos(a+0) = VOCOSC(;JS;LQ)

in( ) (2.24)
dy . __sin(a +
dt_vsm(a+6)_voicosa .

To see how the angl@ is influenced by the steering angle we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velogjtyr, around the point
O. Hence 46 ve v
0 0
— = — = —tand. 2.25
dt ra b ( )
Equations (2.23)—(2.25) can be used to model an automokilerine assump-
tions that there is no slip between the wheels and the roadhatdhe two front
wheels can be a approximated by a single wheel at the centee @far. The as-
sumption of no slip can be relaxed by adding an extra statablar giving a more
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Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) resdits its

engine thrust downward so that it can “hover” above the ground.eSainfrom the engine
is diverted to the wing tips to be used for maneuvering. As shown in (bnehéhrust on
the aircraft can be decomposed into a horizontal fé#cand a vertical forcé, acting at a
distance from the center of mass.

realistic model. Such a model also describes the steeringndigs of ships as
well as the pitch dynamics of aircraft and missiles. It i9giessible to place the
coordinates of the car at the rear wheels (correspondingttinga = 0), a model
which is often referred to as thgubins car[61].

The situation in Figure 2.16 represents the situation whervéhéle moves
forward and has front-wheel steering. The case when the leet@eerses is ob-
tained simply by changing the sign of the velocity, whichdsigalent to a vehicle
with rear-wheel steering. O

Example 2.9 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such asHhgier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takipffedirecting its
thrust downward and through the use of smaller maneuvehingters located on
its wings. A simplified model of the Harrier is shown in Figurdzb, where we
focus on the motion of the vehicle in a vertical plane throtigh wings of the
aircraft. We resolve the forces generated by the main dowshttuster and the
maneuvering thrusters as a pair of foréeandF, acting at a distancebelow the
aircraft (determined by the geometry of the thrusters).

Let (x,y, 8) denote the position and orientation of the center of massarbdt.
Let m be the mass of the vehicld, the moment of inertiag the gravitational
constant, ana the damping coefficient. Then the equations of motion for the
vehicle are given by

mX = F, cosB — F,sinB — cx
my = F1Sin6 + K cosf — mg— cy (2.26)
JG =TrFq.
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive ak rael are
stored in a queue. Messages are processed and removed fromethe ajurateu. The
average size of the queue is givemby R.

It is convenient to redefine the inputs so that the origin is quildérium point
of the system with zero input. Lettingg = F; andu, = F, — mg the equations

become ) , _ _
mX = —mgsin — cx+ u; cosf — u,siné

my = mg(cosO — 1) — cy+ u; Sin6 + ux coso (2.27)
J6 =ru;.
These equations described the motion of the vehicle as a #wteef coupled sec-
ond order differential equations. O

Information Systems

Information systems range from communication systemstlikelinternet to soft-
ware systems that manipulate data or manage enterprise@gderces. Feedback
is present in all these systems, and design of strategia®diting, flow control
and buffer management are typical problems. Many resulguiuing theory
emerged from design of telecommunication systems and flater development
of the Internet and computer communication systems [32, 1&@8]. Management
of queues to avoid congestion is a central problem and wethghefore start by
discussing modeling of queuing systems.

Example 2.10 Queuing systems

A schematic picture of a simple queue is shown in Figure 2.18quRsts arrive
and are then queued and processed. There can be large veriatiarrival rates
and service rates and the queue length builds up when thelaaie is larger than
the service rate. When the queue becomes too large, sesvitenied using an
admission control policy.

The system can be modeled in many different ways. One way isoidem
each incoming request, which leads to an event-based mdusievihe state is
an integer that represents the queue length. The queue chamhgae a request
arrives or a request is serviced. The statistics of arrivdlsanvicing are typically
modeled as random processes. In many cases it is possibdéetonine statistics
of quantities like queue length and service time but the agatns can be quite
complicated.
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A significant simplification can be obtained by usindl@av model Instead
of keeping track of each request we instead view service aqdests as flows,
similar to what is done when replacing molecules by a contimwhen analyzing
fluids. Assuming that the average queue lengtha continuous variable and that
arrivals and services are flows with ratesand i, the system can be modeled by
the first order differential equation

dx
a:/\_HZA—HmaXf(X)’ x>0, (2.28)
where Umax is the maximum service rate arfdx) is a number between 0 and 1
that describes the effective service rate as a functioneofjtieue length.

It is natural to assume that the effective service rate dépem the queue
length because larger queues require more resources. ddysstate we have
f(X) = A /Umax @nd we assume that the queue length goes to zero W)igRax
goes to zero and that it goes to infinity when umax goes to 1. This implies
that f(0) = 0 and thatf () = 1. In addition if we assume that the effective ser-
vice rate deteriorates monotonically with queue lengti ttiee functionf (x) is
monotone and concave. A simple function that satisfies thie beguirements is
f(x) = x/(1+x), which gives the model

dx X

This model was proposed by Agnew [5]. It can be shown that if@rand ser-

vice processes are Poisson processes the average quebeidegigen by equa-
tion (2.29) and that equation (2.29) is a good approximatien for short queue
lengths; see Tipper [184].

To explore the properties of the model (2.29) we will first istigate the equi-
librium value of the queue length when the arrival ratés constant. Setting the
derivativedx/dt to zero in equation (2.29) and solving fowe find that the queue
lengthx approaches the steady state value

A
Hmax— A~
Figure 2.19a shows the steady state queue length as a furdtibfimax, the
effective service rate excess. Notice that the queue leingteases rapidly a&
approachegimax. To have a queue length less than 20 requirgmax < 0.95.
The average time to service a requestds= (X+ 1)/Umax and it also increases
dramatically as\ approachegimax.

Figure 2.19b illustrates the behavior of the server in a Blmeerload situation.
The maximum service rate [$hax = 1, and the arrival rate starts &t= 0.5. The
arrival rate is increased td = 4 at time 20, and it returns td = 0.5 at time 25.
The figure shows that the queue builds up quickly and clearssiewly. Since the
response time is proportional to queue length, it meanslieaquality of service
is poor for a long period after an overload. This behavior iedaherush-hour
effectand has been observed in web servers and many other questegisysuch

Xe = (2.30)



56 CHAPTER 2. SYSTEM MODELING

m 80 o
=3 =3
2 60 g
(o)) (o))
& 5]
o % ©
~N
o 2 o .o
o Lonnt iin
0 0.5 1 0 20 40 60 80
Service rate excess/ imax [MB/s] Timet [s]
(a) Steady state queue size (b) Overload condition

Figure 2.19: Queuing dynamics. The figure on the left shows steady state queue &ngth
function of A / umax, and the figure on the right shows the behavior of the queue length when
there is a temporary overload in the system. The full line shows a realizaftian event
based simulation and the dashed line shows the behavior of the flow n2a2i@). (

as automobile traffic.

The dashed line in Figure 2.19b shows the behavior of the flow mathéch
describes the average queue length. The simple model cafeihavior qualita-
tively, but there are significant variations from sample tmgke when the queue
length is short. O

Queuing problems of the type illustrated in Example 2.10 Hmeen observed
in many different situations. The following example illietiEs an early example
of the difficulty and it also describes how it can be avoided bing a simple
feedback scheme.

Example 2.11 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications whergvaré to collect
and aggregate information over a region of space using phelbiensors that are
connected together via a communications network. Exampt#gde monitoring
environmental conditions in a geographical area (or inaiteailding), monitoring
movement of animals or vehicles, or monitoring the resoloegling across a
group of computers. In many sensor networks the computdtiesources for the
system are distributed along with the sensors and it can periant for the set
of distributed agents to reach a consensus about a cerigieny, such as the
average temperature in a region or the average computblimthamongst a set
of computers.

We model the connectivity of the sensor network using a grapth nodes
corresponding to the sensors and edges corresponding éxitence of a direct
communications link between two nodes. We use the notatitio represent the
set of neighbors of a node For example, in the network shown in Figure 2.20a
N2 ={1,3,4,5} and. 43 = {2,4}.

To solve the consensus problem, weXebe the state of thegh sensor, corre-
sponding to that sensor’s estimate of the average valuevinate trying to com-
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Figure 2.20: Consensus protocols for sensor networks. A simple sensor netwibr five
nodes is shown on the left. In this network, node 1 communicates with noded2 2
communicates with notes 1, 3, 4 and 5, etc. A simulation demonstrating thiergence of
the consensus protocol (2.31) to the average value of the initial corglissshown on the
right.

pute. We initialize the state to the value of the quantity soeed by the individual
sensor. Our consensus protocol can now be realized as aulodate law of the
form
Xi[k+ 1 =x[Kl+y S (Xj[K —xi[k]). (2.31)
jeM

This protocol attempts to compute the average by updatingptiaé state of each
agent based on the value of its neighbors. The combined dgsashall agents
can be written in the form

X[k 1] = x[K] — y(D — A)X[K] (2.32)

whereA is the adjacency matrix and is a diagonal matrix whose entries cor-
respond to the number of neighbors of the corresponding.ndtie constany
describes the rate at which we update our own estimate ofvéfrage based on
the information from our neighbors. The mattix=D — Ais called the_aplacian
of the graph.

The equilibrium points of equation (2.32) are the set of statech thake[k +
1] = xe[k]. It is easy to show thate = (a,a,...,a) is an equilibrium state for
the system, corresponding to each sensor having an ideesitmatea for the
average. Furthermore, we can show ttnas the precisely the average value of the
initial states. Since there can be cycles in the graph, it &sipte that the state
of the system could get into an “infinite loop” and never cogeeto the desired
consensus state. A formal analysis requires tools thatbeiiintroduced later in
the text, but it can be shown that for any connected graph,aneatways find g
such that the states of the individual agents converge taw@ege. A simulation
demonstrating this property is shown in Figure 2.20b.

Although we have focused here on consensus to the average ofah set of
measurements, other consensus states can be achieveghtbhmice of appropri-
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1. Transcription

Figure 2.21: Biological circuitry. The cell on the left is a bovine pulmonary cell, stained
so that the the nucleus, actin and chromatin are visible. The figure on titegii@s an
overview of the process by which proteins in the cell are made. RNA isd¢rdoed from
DNA by an RNA polymerase enzyme. The RNA is then translated into a protein
organelle called the ribosome.

ate feedback laws. Examples include finding the maximum ormum value in
a network, counting the number of nodes in a network or comgutigher order
statistical moments of a distributed quantity [154]. O

Biological Systems

Biological systems provide perhaps the richest sourceeaflfack and control ex-
amples. The basic problem of homeostasis, in which a quasuitii as tempera-
ture or blood sugar level is regulated to a fixed value, is betafrthe many types
of complex feedback interactions that can occur in moleaulachines, cells, or-
ganisms and ecosystems.

Example 2.12 Transcriptional regulation
Transcription is the process by which mRNA is generated fasagment of DNA.
The promoter region of a gene allows transcription to be otlett by the pres-
ence of other proteins, which bind to the promoter region eititer repress or
activate RNA polymerase (RNAP), the enzyme that producesRINAtranscript
from DNA. The mRNA is then translated into a protein accordimds nucleotide
sequence. This process is illustrated in Figure 2.21.

A simple model of the transcriptional regulation procesthisugh the use of
a Hill function [53, 146]. Consider the regulation of a piaté with concentra-
tion given bypa and corresponding mRNA concentration. Let B be a second
protein with concentratiomg that represses the production of protein A through
transcriptional regulation. The resulting dynamicgpgfandma can be written as

dmy a dpa

W——VmA—FTkBpE—FGm W:ﬁmA—CSpA, (2.33)

wherea + ag is the unregulated transcription rajerepresents the rate of degra-
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Figure 2.22: The repressilator genetic regulatory network. A schematic diagram oéthe
pressilator is given on the left, showing the layout of the genes in the plabatitiolds the
circuit as well as the circuit diagram (center). A simulation of a simple rhfodéhe repres-
silator is shown on the right, showing the oscillation of the individual proteirceatrations.
Parameter values taken from [68].

dation of MRNA,a andn are parameters that describe how B represseg A,
represents the rate of production of the protein from itsesgonding mMRNA and
d represents the rate of degradation of the protein A. The peteaimy describes
the “leakiness” of the promoter amdis called the Hill coefficient and relates to
the cooperativity of the promoter.

A similar model can be used when a protein activates the ptauof another
protein, rather than repressing it. In this case, the egustiave the form

dmy  akspg dpa

dt
where the variables are the same as described previoustg.thit in the case of
the activator, ifpg is zero then the production rate dg (versusa + ag for the
repressor). Ag gets large, the first term in the expressionrigy approaches 1
and the transcription rate becomes- ag (versusag for the repressor). Thus we
see that the activator and repressor act in opposite fagttoneach other.

As an example of how these models can be used, we considerithel of a
“repressilator”, originally due to Elowitz and Leibler [68T.he repressilator is a
synthetic circuit in which three proteins each represstaron a cycle. This is
shown schematically in Figure 2.22a, where the three protia TetRA cl and
Lacl. The basic idea of the repressilator is that if TetR is @méghen it represses
the production ofA cl. If A cl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed thehcl
is no longer repressed and so on. If the dynamics of the tiaceidesigned prop-
erly, the resulting protein concentrations will oscillate

We can model this system using three copies of equation 2xth A and
B replaced by the appropriate combination of TetR, cl and L&ké state of the

system is then given by= (Mretr, Pretr, M1, Pels Meact, PLact)- Figure 2.22b shows
the traces of the three protein concentrations for parasete 2, a = 0.5, k =
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6.25x 1074 ag=5x10"% y=58x10"3, B =0.12 andd = 1.2 x 103 with
initial conditionsx(0) = (1,0,0,200,0,0) (following [68]). O

Example 2.13 Wave propagation in neuronal networks
The dynamics of the membrane potential in a cell are a fundeherechanism
in understanding signaling in cells, particularly in nexs@nd muscle cells. The
Hodgkin-Huxley equations give a simple model for studyingpgagation waves in
networks of neurons. The model for a single neuron has the form

dv

C:a = —|Na_ IK — Ileak+ |inputa

whereV is the membrane potential; the capacitancelna and I the current
caused by transport of sodium and potassium across the eeflbnane ljeax a
leakage current anlghp,t the external stimulation of the cell. Each current obeys

Ohm’s law, i.e.
I =9(V-E),

whereg is the conductance aritithe equilibrium voltage. The equilibrium voltage
is given by Nernst’s law

RT
E= F log(ce/Ci),

whereR is Boltzmann’s constanil the absolute temperaturk, Faraday’s con-
stant,nis the charge (or valence) of the ion, as@ndce are the ion concentrations
inside the cell and in the external fluid. At 2C we haveRT/F =20 mV.

The Hodgkin-Huxley model was originally developed as a meéapsedict the
guantitative behavior of the squid giant axon [95]. Hodgkird Huxley shared the
1963 Nobel Prize in Physiology (along with J. C. Eccles) for gsialof the elec-
trical and chemical events in nerve cell discharge. The geldamp described in
Section 1.3 (see Figure 1.8) was a key element in Hodgkin andelfaxexperi-
ments. U

2.5 FURTHER READING

Modeling is ubiquitous in engineering and science and has@history in applied
mathematics. For example, the Fourier series was intratlogd-ourier when he
modeled heat conduction in solids [73]. Models of dynamiasehbeen devel-
oped in many different fields, including mechanics [12, 82gthconduction [48],
fluids [37], vehicles [1, 38, 66], circuit theory [88], acoigst[29] and microme-
chanical systems [170]. Control theory requires modelimmgnf many different
domains and most control theory texts contain several elngph modeling using
ordinary differential equations and difference equatitses, for example, [76]).
A classic book on modeling of physical systems, especiaéigimnical, electrical
and thermo-fluid systems, is Cannon [47]. The book by Aris [4hjghly original

and has a detailed discussion of the use of dimension fregbles. Two of the
authors’ favorite books on modeling of biological systemes.da D. Murray [146]
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and Wilson [194]. For readers interested in learning mo@abbject oriented
modeling and Modelica, Tiller [183] provides an excellamtoduction.

EXERCISES

2.1 Consider the linear ordinary differential equation (2 Show that by choosing
a state space representation with=y, the dynamics can be written as

0] 1 0 0
. . 0
0 0 1 :
—an —an-1 - 1
C= [1 .0 0].

This canonical form is calledhain of integratordorm.

2.2 Use the equations of motion for a balance system to derivenardic model
for the inverted pendulum described in Example 2.2 and véniy for smallf the
dynamics are approximated by equation (2.10).

2.3 Consider the following discrete time system
X[k+ 1] = AXK] + BulK]
y[k] = Cx(K]

x= [ A= |11 &2 B— |9 c= (1 o]
X2 0 axp 1
In this problem, we will explore some of the properties o$ttliscrete time system
as a function of the parameters, the initial conditions, #uednputs.

(a) For the case wheam > = 0 andu = 0, give a closed for expression for the
output of the system.

(b) A discrete system is irquilibriumwhenxk+ 1] = x[K] for all k. Letu=
r be a constant input and compute the resulting equilibriumtdor the
system. Show that ifai| < 1 for all i, all initial conditions give solutions
that converge to the equilibrium point.

(c) Write a computer program to plot the output of the systemesponse to
a unit step inputulk] = 1, k > 0. Plot the response of your system with

x[0] = 0 andA given by
05 1
A= [ 0 0.25] '
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2.4 Keynes'’ simple model for an economy is given by
Y[k] =C[k] + I [K] + GIK],

whereY, C, | andG are gross national product (GNP), consumption, investment
and government expenditure for yéaiConsumption and investment are modeled
by difference equations of the form

Clk+1]=aY[k, I[k+1]=b(C[k+1]—C[K),

wherea andb are parameters. The first equation implies that consumption in
creases with GNP but that the effect is delayed. The secoratiegumplies that
investment is proportional to the rate of change of consionpt

Show that the equilibrium value of the GNP is given by

Ye

= l— a(le+ Ge),

where the parameter/{1 — a) is the Keynes multiplier (the gain froinor G to
Y). With a= 0.25 an increase of government expenditure will result in aftid
increase of GNP. Also show that the model can be written afotlosving discrete
time state model

Ck+1) _( a a) (CK a
[I[k+1}] = [ab—a ab] [I[k]] * [ab] Gl
Y[k] =C[k] + 1 [k] + G[K].
2.5(Second order system identification) Verify that equatio@Z2in Example 2.5

is correct and use this formula and the others in the examptempute the pa-
rameters corresponding to the step response in Figure 2.14.

2.6(Least squares system identification) Consider a nonlin&areintial equation
that can be written in the form

dx M

a@t :i;ai fi(x),

where fi(x) are known nonlinear functions amg are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estinfatesstatex at time
instantdy, to, ..., tn, with N > M. Show that the parameteas can be determined
by finding the least squares solution to a linear equationefdim

Ha = b,
wherea € RM is the vector of all parameters amtlc RN*M andb € RN are
appropriately defined.

2.7(Normalized oscillator dynamics) Consider a damped spmirggs system with
dynamics

mg+cq+kg=F.
Let wp = /k/m be the undamped natural frequency ahe- c/(2vkm) be the
relative damping.
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(@) Show that by rescaling the equations, we can write the@sydiynamics in
the form
G+ 20 wog+ g = wdu (2.35)

whereu = F /k. This form of the dynamics is that of a linear oscillator with
natural frequencyy and damping coefficierg.

(b) Show that the system can be further normalized and wiiittéime form

dz dz
We thus see that the essential dynamics of the system arengoMay a sin-
gle damping parametef,, The emQ-value defined a® = 1/2{ is some-

times used instead df.

2.8 Show that the dynamics for a balance system using normalizediimates

can be written in state space form as

X3 )

X4

dx — X2 — A SiNXp COSX + U

dt 1 aBcogxy '

— 0B COSXXZ — SiNXp + B COSXaU
1- afcogx J

wherex = (q/I,Q,Q/I,é).

2.9 An electric generator connected to a strong power grid camdgeled by a
momentum balance for the rotor of the generator:
2

Jc;tf =Pn—Pe=Pn— %sind),
wherel is the effective moment of inertia of the generatbthe angle of rotation,
Py the mechanical power that drives the generdiois the generator voltag¥,
the grid voltage an& the reactance of the lind> is the active electrical power
and, assuming that the line dynamics are much faster tharotbedynamics, it
is given byP. = VI = (EV/X)sing, wherel is the current component in phase
with the voltageE and¢ is the phase angle between voltageandV. Show that
the dynamics of the electric generator have a normalized fbat is similar to the
inverted pendulum in Example 2.2 (note that damping has beglected in the
model above).

2.10 The long delays created by temporary overloads can be redhyoegecting
requests when the queue gets large. This allows requestarthatcepted to be
serviced quickly and requests that cannot be accommodatedéive a rejection
quickly so they can try another server. Consider a simplpgntenal control with

saturation, described by
U= safg ) (k(r —x)), (2.37)
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where sat ;) is defined in equation (3.9) andis the desired (reference) queue
length. Use a simulation to show that this controller redube rush-hour effect
and explain how the choice ofeffects the system dynamics.

2.11 Consider the dynamics of two repressors connected togitleecycle, as
shown below:

A
- /7 N
" —| w LA [ B ]
B

LUZ

Using the models from Example 2.12, under the assumptiortlieaparameters
are the same for both genes, and further assuming that theAncBhtentrations
reach steady state quickly, show that the dynamics for §fstem can be written

as
dz H dz U

— = —— —71—V — = 7z
ar 14z dr — 142 7

wherez; andz, represent scaled versions of the protein concentratiahthartime

scale has been changed. Show hat 2.16 using the parameters in Example 2.12.

—\o. (2.38)

2.12 (Motor drive) Consider a system consisting of a motor dgviwo masses
that are connected by a torsional spring, as shown in theatiabelow:

9, 9o
! L QQ0QQ
—| Motor =S —| ==
wl . | C()2

This system can represent a motor with a flexible shaft thaegi@aload. Assum-
ing that the motor delivers a torque that is proportionah®durrent, the dynamics
of the system can be described by the equations

d’¢s dg; doo B
Wge +o(Tgr g ) K@ g2 =k (2.39)
o2 d¢, d '
szgz +C<(;pt2 - ftl) TK($2=91) = Ta

Similar equations are obtained for a robot with flexible armd fam the arms of
DVDs and optical memories.

Derive a state space model for the system by introducing riber(alized)
state variableq = ¢1, Xo = ¢2, X3 = w1/ wp, andxqy = wp/wn, where wy =
VK31 +3)/(hd) is the undamped natural frequency of the system when the
control signal is zero.




Chapter Three

Examples

. Don't apply any model until you understand the simplifying assumgttonwhich it
is based, and you can test their validity. Catch phrase: use only as dire@en't limit
yourself to a single model: More than one model may be useful for ulagheliag different
aspects of the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb in his 1970 paper “Mathematical Models—Uses and Limitatif&33’

In this chapter we present a collection of examples spanmiagy different
fields of science and engineering. These examples will be hsedghout the text
and in exercises to illustrate different concepts. Firsetimaders may wish to
focus only on a few examples with which they have the mostr@iperience or
insight to understand the concepts of state, input, outpditignamics in a familiar
setting.

3.1 CRUISE CONTROL

The cruise control system of a car is a common feedback systeoustered in
everyday life. The system attempts to maintain a constantitglin the presence
of disturbances primarily caused by changes in the slopaad@ The controller
compensates for these unknowns by measuring the speed@drthed adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figule 8etv be
the speed of the car angl the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type des@&ibbriefly in Chapter 1,
receives the signalg andv; and generates a control signathat is sent to an
actuator that controls throttle position. The throttle imntwontrols the torque
T delivered by the engine, which is transmitted through geaus the wheels,
generating a forc& that moves the car. There are disturbance fofgedue to
variations in the slope of the road, the rolling resistanue aerodynamic forces.
The cruise controller also has a human-machine interfadeatttavs the driver
to set and modify the desired speed. There are also functiamhslisconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engaresmission,
wheels and car body—and a detailed model can be very cortgalicén spite of
this, the model required to design the cruise controllertguite simple.

To develop a mathematical mode we start with a force balasrabé car body.
Let v be the speed of the canthe total mass (including passengefs}he force
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torquéhat is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environmettt,asiaerodynamic
drag and gravitational forces on hills, the net force causes the car\e.niche velocity

of the carv is measured by a control system that adjusts the throttle through an actuation
mechanism. A human interface allows the system to be turned on an ofhamdference
speedy; to be established.

generated by the contact of the wheels with the road Farile disturbance force
due to gravity and friction. The equation of motion of the asimply

dv

m— =F —Fg. 3.1
at d (3.1)
The forceF is generated by the engine, whose torque is proportiondido t

rate of fuel injection, which is itself proportional to a ¢osl signal 0< u < 1 that
controls throttle position. The torque also depends on engjreedv. A simple
representation of the torque at full throttle is given by tiwgue curve

T(w) =T (1-[3(&-1)2) (3.2)

where the maximum torquly, is obtained at engine spees,. Typical parameters
are Ty, = 190 Nm, wy, = 420 rad/s (about 4000 RPM) arti= 0.4. Letn be

the gear ratio and the wheel radius. The engine speed is related to the velocity
through the expression

n
w = FV = ar\V7
and the driving force can be written as
nu
F= TT(oo) = anuT(apv).

Typical values ofx,, for gears 1 through 5 ame, = 40,0, = 25,a3 = 16,04 =12
andas = 10. The inverse ofi, has a physical interpretation as #fgective wheel
radius. Figure 3.2 shows the torque as a function of engine speed emdle
speed. The figure shows that the effect of the gear is to “flattemtdrque curve
so that a almost full torque can be obtained almost over tt@endpeed range.
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Figure 3.2: Torque curves for typical car engine. The graph on the left showsotigele
generated by the engine as a function of the angular velocity of the engiile,the curve
on the right shows torque as a function of car speed for differemsgea

The disturbance forcBy has three major componentsg, the forces due to
gravity; F, the forces due to rolling friction; ariey, the aerodynamic drag, Letting
the slope of the road b@, gravity gives the forcéy = mgsing, as illustrated in
Figure 3.3a, wherg = 9.8 m/€ is the gravitational constant. A simple model of
rolling friction is

Fr = —mgGsgnv),

whereC; is the coefficient of rolling friction and sgm) is the sign ofv (+1) or
zero ifv= 0. A typical value for the coefficient of rolling friction i€, = 0.01.
Finally, the aerodynamic drag is proportional to the squatbespeed:

Fa= %pCdszv

wherep is the density of airCy is the shape-dependent aerodynamic drag coef-
ficient andA is the frontal area of the car. Typical parameters@re 1.3 kg/n?,
Cy=0.32 andA= 2.4 n?.

Summarizing, we find that the car can be modeled by

m(;;/ = apuT(apv) —mgGsgnv) — %pCdA\/2 —mgsin®, (3.3)
where the functiorm is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velogityvhich is also the output. The
input is the signal that controls the throttle position, and the disturbanciés
force Ry, which depends on the slope of the road. The system is nonlieeause
of the torque curve and the nonlinear character of the aesdic drag. There
can also be variations in the parameters, e.g. the mass chthdepends on the
number of passengers and the load being carried in the car.

We add to this model a feedback controller that attemptsgolage the speed
of the car in the presence of disturbances. We shall use adfiq@ronal-integral)
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Figure 3.3: Car with cruise control encountering a sloping road: a schematic diaigram
shown in (a) and (b) shows the response in speed and throttle whereso§pis encoun-
tered. The hill is modeled as a net change in hill angleof 4 degrees, with a linear change
in the angle betweein= 5 andt = 6. The PI controller has proportional gairkis= 0.5 and
the integral gain i = 0.1.

controller, which has the form

u(t) = kee(t) + ki /0t e(r)dr.

This controller can itself be realized as an input/outputasgical system by defin-
ing a controller state and implementing the differential equation

dz

dt
wherey; is the desired (reference) speed. As discussed briefly imtrediuction,
the integrator (represented by the sgtensures that in steady state the error will
be driven to zero, even when there are disturbances or nmodatiors. (The design
of PI controllers is the subject of Chapter 10.) Figure 3.3mshine response of
the closed loop system, consisting of equations (3.3) adq,(@hen it encounters
a hill. The figure shows that even if the hill is so steep that tuettle changes
from 0.17 to almost full throttle, the largest speed errdess than 1 m/s, and the
desired velocity is recovered after 20 s.

Many approximations were made when deriving the model (3t3)ay seem
surprising that such a seemingly complicated system car&eritied by the sim-
ple model (3.3). Itis important to make sure that we restrictuse of the model to
the uncertainty lemon conceptualized in Figure 2.15b. Theahigchot valid for
very rapid changes of the throttle because since we haveddribe details of the
engine dynamics, neither is it valid for very slow changesaose the properties
of the engine will change over the years. Nevertheless theeiris very useful
for the design of a cruise control system. As we shall seetar lehapters, the
reason for this is the inherent robustness of feedbackragsteven if the model
is not perfectly accurate, we can use it to design a contratid make use of the
feedback in the controller to manage the uncertainty in yiséesn.

Vi —V u=kp(vr —Vv)+kiz (3.4)
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Figure 3.4: Finite state machine for cruise control system. The figure on the leftshow
some typical buttons used to control the system. The controller can be iof dour modes,
corresponding to the nodes in the diagram on the right. Transition betweendties is
controlled by pressing one of five buttons on the cruise control interfateoff, set/accel,
resume or cancel.

The cruise control system also has a human-machine intetiatallows the
driver to communicate with the system. There are many difteneays to imple-
ment this system; one version is illustrated in Figure 3.4. 3ystem has four
buttons: on-off, set/decelerate, resume/accelerateamzet The operation of the
system is governed by a finite state machine that controls tuemof the Pl con-
troller and the reference generator. Implementation ofrotlars and reference
generators will be discussed more fully in Chapter 10.

The use of control in automotive systems goes well beyondithgls cruise con-
trol system described here. Modern applications includis&ons control, trac-
tion control and power control (especially in hybrid vek&). Many automotive
applications are discussed in detail in and the book by Kiermnd Nielsen [117]
and the survey papers by Powetsl.[22, 157].

3.2 BICYCLE DYNAMICS

The bicycle is an interesting dynamical system with the fesatinat one of its key
properties is due to a feedback mechanism that is createtiebgdsign of the
front fork. A detailed model of a bicycle is complex because gystem has many
degrees of freedom and the geometry is complicated. Howavgreat deal of
insight can be obtained from simple models.

To derive the equations of motion we assume that the bicytle on the hor-
izontal xy plane. Introduce a coordinate system that is fixed to the l@oyith
the &-axis through the contact points of the wheels with the gdouhe n-axis
horizontal and the -axis vertical, as shown in Figure 3.5. lwtbe the velocity of
the bicycle at the rear whedd,the wheel basep the tilt angle and the steering
angle. The coordinate system rotates around the intth the angular veloc-
ity w = Vpd /b, and an observer fixed to the bicycle experiences forces dineto
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted geium, as shown
in the rear view in Figure 3.5b. To model the tilt, considertigél body obtained
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Figure 3.5: Schematic views of a bicycle. The steering anglé,i¢he roll angle isp. The
center of mass has heighand distanca from a vertical through the contact poit of the
rear wheel. The wheel basetignd the trail i.

when the wheels, the rider and the front fork assembly are fizetie bicycle
frame. Letm be the total mass of the systeththe moment of inertia of this
body with respect to thé-axis, andD the product of inertia with respect to the
& axes. Furthermore, let thg and ¢ coordinates of the center of mass with
respect to the rear wheel contact poiRt, be a and h, respectively. We have

J ~ mi? andD = mah The torques acting on the system are due to gravity and
centripetal action. Assuming that the steering aniglis small, the equation of
motion becomes

d’¢ Dvpdd mgh

dtz b dt b
The termmghsing is the torque generated by gravity. The terms contaidiagd
its derivative are the torques generated by steering, Wwiéghterm(Dvp/b) dd /dt
due to inertial forces and the terfmah/b) & due to centripetal forces.

The steering angle is influenced by the torque the rider apfdi¢ise handle
bar. Because of the tilt of the steering axis and the shapkeofront fork, the
contact point of the front wheel with the ro&d is behind the axis of rotation of
the front wheel assembly, as shown in Figure 3.5c. The distateween the
contact point of the front whed®, and the projection of the axis of rotation of
the front fork assembly; is called thetrail. The steering properties of a bicycle
depend critically on the trail. A large trail increases gdtghbut makes the steering
less agile.

A consequence of the design of the front fork is that the sigeangled is
influenced both by steering torqdeand by the tilt of the frame&. This means
that the bicycle with a front fork is feedback systems illustrated by the block
diagram in Figure 3.6. The steering andlenfluences the tilt angle and the
tilt angle influences the steering angle giving rise to theutar causality that is
characteristic for reasoning about feedback. For a frattvigth positive trail, the
bicycle will steer into the lean creating a centrifugal ®that attempts to diminish
the lean. Under certain conditions, the feedback can dgtsiabilize the bicycle.

mghsing + 0, (3.5)
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Figure 3.6: Block diagram of the bicycle with a front fork. The steering torque appited
the handlebars i, the roll angle isp, and the steering angl® Notice that the front fork
creates a feedback from the roll angi¢o the steering anglé that under certain conditions
can stabilize the system.

A crude empirical model is obtained by assuming that theksdandB are static
gainsk; andk, respectively:

5 =kiT — kop. (3.6)

This model neglects the dynamics of the front fork, the toaer interaction and
the fact that the parameters depend on the velocity. A mangrate model, called
the Whipple modelis obtained by the rigid body dynamics of the front fork and
the frame. Assuming small angles this model becomes

M [‘g] +Cv [g] + (Ko + K2v3) [‘g] = [?] , (3.7)

where the elements of thex22 matricesM, C, Ky andK, depend on the geome-
try and the mass distribution of the bicycle. Note that thas b form somewhat
similar to the spring-mass system introduced in Chapterd2iag balance system
in Example 2.1. Even this more complex model is inaccurateusecthe inter-
action between tire and road is neglected; taking this ictmant requires two
additional state variables. Again, the uncertainty lemmoRigure 2.15b provides a
framework for understanding the validity of the model unilterse assumptions

Interesting presentations on the development of the kBcgok given in the
books by D. Wilson [193] and Herlihy [93]. The model (3.7) wassented in a
paper by Whipple in 1899 [188]. More details on bicycle maugis given in the
paper [18], which has many references.

3.3 OPERATIONAL AMPLIFIER CIRCUITS

The operational amplifier (op amp) is a modern implementatidBlack’s feed-
back amplifier. It is a universal component that is widely usednstrumentation,
control and communication. Itis also a key element in anatmgputing.
Schematic diagrams of the operational amplifier are shown iar€ig.7. The
amplifier has one inverting inpw(), one non-inverting input, ), and one output
(Vout). There are also connections for the supply voltagesande., and a zero
adjustment (offset null). A simple model is obtained by assig that the input
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Figure 3.7: An operational amplifier and two schematic diagrams. The figure on the lef
shows the amplifier pin connections on an integrated circuit chip, the midgieefshows a
schematic with all connections, and the diagram on the right shows onlygtied sonnec-
tions.

currents_ andi_ are zero and that the output is given by the static relation

Vout = SaQVmimeax) (k(V+ B V_)) ’ (38)
where sat denotes the saturation function

a ifx<a
Satap)(X) = ¢ x ifa<x<b (3.9)
b if x>h.

We assume that the galkis large, in the range of $61(, and the voltagesmin
andvmax satisfy
€ < Vmin < Vmax < €4

and hence are in the range of the supply voltages. More decoradels are ob-
tained by replacing the saturation function with a smoothcfion as shown in
Figure 3.8. For small input signals the amplifier character{8t8) is linear:

Vout = K(Vy —Vv_) = —Kv. (3.10)

Since the open loop gakis very large, the range of input signals where the system

Vout
Vmax

Vi —V_

Vmin

Figure 3.8: Input/output characteristics of an operational amplifier. The differkintat is
given byv; —v_. The output voltage is a linear function of the input in a small range around
0, with saturation atnin andvmax. In the linear regime the op amp has high gain.
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R1 R2 Vq e R2 \% N K Vo N
v R+ Rz
Vi io o
V2 _& -
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(a) Amplifier circuit (b) Block diagram

Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feledbaend
an operational amplifier and has a corresponding block diagram Ifle)réBistor&; andR,
determine the gain of the ampilifier.

is linear is very small.

A simple amplifier is obtained by arranging feedback aroumrdbifisic opera-
tional amplifier as shown in Figure 3.9a. To model the feedbacglifier in the
linear range, we assume that the currignt i _ +i, is zero, and that the gain of
the amplifier is so large that the voltage- v_ — v, is also zero. It follows from
Ohm'’s law that the currents through resistBfsandR; are given by

i_ Ve
RR R
and hence the closed loop gain of the amplifier is
V2 B &
i kg where kg = R (3.11)

A more accurate model is obtained by continuing to negleetdinrentip but
assuming that the voltagdas small but not negligible. The current balance is then

Vi—V V-V

R R
Assuming that the amplifier operates in the linear range aimgj egjuation (3.10)
the gain of the closed loop system becomes

%) Ry 1

w R, 1 Ry
1+-—(1+ =
+k<+R1)

If the open loop gairk of the operational amplifier is large, the closed loop gain
ke is the same as in the simple model given by equation (3.11}jic&lthat the
closed loop gain only depends on the passive componentshahddriations in

k only have a marginal effect on the closed loop gain. For exanfk = 10°
andRy/R; = 100, a variation ok by 100% only gives a variation of 0.01% in the
closed loop gain. The drastic reduction in sensitivity is@nillustration of how
feedback can be used to make precise systems from uncestapooents. In this
particular case, feedback is used to trade high gain anddbustness for low gain
and high robustness. Equation (3.13) was the formula thairetBlack when he
invented the feedback amplifier [35] (see the quote at thenbewg of Chapter 12).

(3.12)

ke = — (3.13)
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Figure 3.10: Circuit diagram of a Pl controller obtained by feedback around aratipaal
amplifier. The capacitd€ is used to store charge and represents the integral of the input.

It is instructive to develop a block diagram for the feedbaokplifier in Fig-
ure 3.9a. To do this we will represent the pure amplifier wighuirv and outputz,
as one block. To complete the block diagram we must descdbevtdepends on
vy andv,. Solving equation (3.12) for gives

VR SV SV <V1+—1)
Ri+R Ri+R Ri+R Ro/’

and we obtain the block diagram shown in Figure 3.9b. The diagfearly shows
that the system has feedback and that the gain frotavis Ry /(Ry + R2), which
can also be read from the circuit diagram in Figure 3.9a. Ifltop is stable
and the gain of the amplifier is large it follows that the ereds small and then
we find thatv, = —(R>/R1)v1. Notice that the resistdR; appears in two blocks
in the block diagram. This situation is typical in electricéicuits and it is one
reason why block diagrams are not always well suited for stypes of physical
modeling.

The simple model of the amplifier given by equation (3.10) gigeslitative
insight but it neglects the fact that the amplifier is a dynagystem. A more
realistic model is

d;";“t = —aVout— bv (3.14)

The parametdn that has dimensions of frequency and is called the gainyoiaitiol
product of the amplifier. Whether a more complicated modebkedudepends on
the questions to be answered and the required size of thetaimtg lemon. The
model (3.14) is still not valid for very high or very low frequocies, since drift
causes deviations at low frequencies and there are adalidgnamics that appear
at frequencies close tm The model is also not valid for large signals—an upper
limit is given by the voltage of the power supply, typicallythe range of 5-10 V—
neither is it valid for very low signals because of electrit@ise. These effects can
be added, if needed, but increase the complexity of the aisaly

The operational amplifier is very versatile and many diffeirstems can be
built by combining it with resistors and capacitors. In faaty linear system can
be implemented by combining operational amplifiers withstess and capacitors.
Exercise 3.5 shows how a second order oscillator is implesdesmd Figure 3.10
shows the circuit diagram for an analog PI (proportionakgmnal) controller. To
develop a simple model for the circuit we assume that theeatiiy is zero and that




3.4. COMPUTING SYSTEMS AND NETWORKS 75

the open loop gaiR is so large that the input voltages negligible. The currerit
through the capacitor is= Cd\/dt, where\ is the voltage across the capacitor.
Since the same current goes through the resigtave get

o v
Ry dt’
which implies that

Ve(t) = (l:/i(t)dt: Ric/otvl(r)dr.

The output voltage is thus given by

. R 1
Vo(t) = —Roi — Ve = _ﬁivl(t) ——— [ vi(1)dr,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered byoftil [130,
156] and their usage is described in many textbooks (e.d).[&bod information
is also available from suppliers [105, 137].

3.4 COMPUTING SYSTEMS AND NETWORKS

The application of feedback to computing systems followsstiie principles as
control of physical systems, but the types of measurementgantrol inputs that
can be used are somewhat different. Measurements (seaseitypically related
to resource utilization in the computing system or netwarld can include quan-
tifies such as the processor load, memory usage or networknidthd Control
variables (actuators) typically involve setting limits the resources available to a
process. This might be done by controlling the amount of mgntbsk space or
time that a process can consume, turning on or off processaaying availability
of aresource, or rejecting incoming requests to a serveegs Process modeling
for networked computing systems is also challenging, angieal models based
on measurements are often used when a first principles moulet &vailable.

Web Server Control

Web servers respond to requests from the Internet and gravidrmation in the

form of web pages. Modern web servers will start multiplecgisses to respond to
requests, with each process assigned to a single sourtaafiirther requests are
received from that source for a predefined period of time. Rsmethat are idle
become part of a pool that can be used to respond to new reqiiegtrovide fast

response to web requests, it is important that the web spreeesses do not over-
load the server’s computational capabilities nor exhasstnemory. Since other
processes may be running on the server, the amount of aegiledcessing power
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Figure 3.11: Feedback control of a web server. Connection requests arriven ampat
queue, where they are sent to a server process. A finite state maekipe tkack of the
state of the individual server processes and responds to requestmtrdl algorithm can
modify the server’s operation by controlling parameters that affeceitabior, such as the
maximum number of requests that can be serviced at a single kimeJ( i ent s) or the
amount of time that a connection can remain idle before it is dropgedAl i ve).

and memory is uncertain and feedback can be used to provitk ggrformance
in the presence of this uncertainty.

Figure 3.11 illustrates the use of feedback to modulate tlezation of the
Apache web server. The web server operates by placing ingpognnection
requests on a queue and then starting a subprocess to hegdésts for each ac-
cepted connection. This subprocess responds to requestafgiven connection
as they come in, alternating betweeBasy state and a\ai t state. (Keeping
the subprocess active between requests is known as “pers#stof the connec-
tion and provides substantial reduction in latency to retgi®r multiple pieces of
information from a single site.) If no requests are receif@d sufficiently long
period of time, controlled by thBeepAl i ve parameter, then the connection is
dropped and the subprocess enterkdine state, where it can be assigned another
connection. A maximum daxCl i ent s simultaneous requests will be served,
with the remainder remaining on the incoming request queue.

The parameters that control represent a tradeoff betwedarpemnce (how
quickly requests receive a response) and resource usagan(tbunt of processing
power and memory utilized on the server). IncreasingvheCl i ent s param-
eter allows connection requests to be pulled off of the quaaee quickly, but
increases the amount of processing power and memory usaige tequired. In-
creasing th&keepAl i ve timeout means that individual connections can remain
idle for a longer period of time, which decreases the prangdsad on the ma-
chine but increases the size of the queue (and hence the aofdime required
for a user to initiate a connection). Successful operaticalafisy server requires
proper choice of these parameters, often based on trialramd e

To model the dynamics of this system in more detail, we craatiscrete time
model with states given by the average processor lggdand the percentage
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memory usag&mem 1he inputs to the system are taken as the maximum number
of clientsumc and the keep-alive timey,. If we assume a linear model around the
equilibrium point, the dynamics can be written as

[eoticd) = (R 22 o) = (o 2) () oo

where the coefficients of theandB matrices must be determined based on empir-
ical measurements or detailed modeling of the web serversgssing and mem-
ory usage. Using system identification, Diao et al. [55, 92htified the linearized
dynamics as

_( 054 011 (-85 44 4
A= [0.026 063]’ B= [2.5 2.8] 107

where the system was linearized about the equilibrium point
Xepu = 0.58, Uka = 11 sec Xrem = 0.55, U = 600

This model shows the basic characteristics that were destabove. Look-
ing first at theB matrix, we see that increasing thkeepAl i ve timeout (first
column of theB matrix) decreases both the processor usage and the memory us
age, since there is more persistence in connections ane lleacserver spends
a longer time waiting for a connection to close rather th&mtgaon a new ac-
tive connection. Thé/axd i ent s connection increases both the processing and
memory requirements. Note that the largest effect on thegssor load is the
KeepAl i ve timeout. TheA matrix tells us about how the processor and memory
usage evolve in a region of the state space near the equilipoint. The diagonal
terms describe how the individual resources return to #xjwim after a transient
increase or decrease. The off-diagonal terms show that iheogipling between
the two resources, so that a change in one could cause allarggein the other.

Although this model is very simple, we will see in later exdespthat it can
be used to modify the parameters controlling the serverahtime and provide
robustness with respect to uncertainties in the load on gehine. Similar types
of mechanisms have been used for other types of serversmipa@tant to remem-
ber the assumptions on the model and their role in detergnimimen the model is
valid. In particular, since we have chosen to use averagetiiea over a given
sample time, the model will not provide an accurate repiasem for high fre-
guency phenomena.

Congestion Control

The Internet was created to obtain a large, highly decené@liefficient and ex-
pandable communication system. The system consists of ahangber of inter-
connected gateways. A message is split into several pattiadtsire transmitted
over different paths in the network and the packages arénegjdo recover the
message at the receiver. An acknowledgment (“ack”) messaggnt back to the
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Figure 3.12: Internet congestion control. Source computers send information terspu
which forward the information to other routers that eventually connecigtogbeiving com-
puter. When a packet is received, an acknowledgment packetisagathrough the routers
(not shown). The routers buffer information received from thersesiand send the data
across the outgoing link. The plot on the right shows the equilibrium baiteh, for a set
of N identical computers sending packets through a single router with draalpitidy p.

sender when a packet is received. The operation of the systgovérned a simple
but powerful decentralized control structure that evoleedr time.

The system has two control mechanisms, capemtocols the Transmission
Control Protocol (TCP) for end-to-end network communicatiod ¢he Internet
Protocol (IP) for routing packets and for host-to-gateway ategay-to-gateway
communication. The current protocols evolved after sometapalar congestion
collapses occurred in the mid 1980s, when throughput ureéegly could drop
by a factor of 1000 [101]. The control mechanism in TCP is basedomserving
the number of packets in the loop from sender to receiver actl to the sender.
The sending rate is increased exponentially when there i®ngestion and it is
dropped to a low level when there is congestion.

To derive a model for congestion control, we model three isgpaelements
of the system: the rate at which packets are sent by indiV/stuarces (comput-
ers), the dynamics of the queues in the links (routers), hactimission control
mechanism for the queues. Figure 3.12a shows a block diagnatimef system.

The current source control mechanism on the Internet is @@obknown as
TCP/Reno [129]. This protocol operates by sending packetsdoeive and wait-
ing to receive an acknowledgment from the receiver that #uket has arrived. Is
no acknowledgment is sent within a certain timeout peribd,gacket is retrans-
mitted. To avoid waiting for the acknowledgment before $segdhe next packet,
Reno transmits multiple packets up to a fixed “window” aroumel latest packet
that has been acknowledged. If the window length is chosepeply, packets
at the beginning of the window will be acknowledge before ¢bharce transmits
packets at the end of the window, allowing the computer tdinaously stream
packets at a high rate.

To determine the size of the window to use, TCP/Reno uses adekafecha-
nism in which (roughly speaking) the window size is increblsg one every time
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a packet is acknowledged and the window size is cut in halivwgdzekets are lost.
This mechanism allows a dynamic adjustment of the window isizehich each
computer acts in a greedy fashion as long as packets are delingred but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed byrithésg the
dynamics of the window size. Suppose we h&lveomputers and lety; be the
current window size (measured in number of packets) forttheomputer. Let;
represent the end-to-end probability that a packet is drdmomeplace between
the source and the receiver. We can model the dynamics ofitttow size by the
differential equation

dw o nt-T) oW =
H_(l_ql) W +Q|(_§rl(t_1—|))’ r'_?i’

wherer; is the end-to-end transmission time for a packet to reacksshtion and
the acknowledgment to be sent back ani the resulting rate at which packets
are cleared from the list of packets that have been receiVkd.first term in the
dynamics represents the increase in the window size wheckesais received
and the second term represents the decrease in window sezeaybacket is lost.
Notice thatr; is evaluated at time— 1, representing the time required to receive
additional acknowledgments.

The link dynamics are controlled by the dynamics of the rogtezue and the
admission control mechanism for the queue. Assume that welhbnks in the
network and usé to index the individual links. We model the queue in terms of
the current number of packets in the router’s bufgrand assume that the router
can contain a maximum dff max packets and transmits packets at a tequal
to the capacity of the link. The buffer dynamics can then bétamias

%zs—q, s= Y rt-g), (3.17)
dt {i: leLi}

(3.16)

wherelL; is the set of links that are being used by soUrcq\‘; is the time that it
takes a packet from sourcéo reach linkl ands is the total rate at which packets
arrive on linkl.

The admission control mechanism determines whether a giaekep is ac-
cepted by a router. Since our model is based on the averagéitsam the
network and not the individual packets, one simple modebiagsume that the
probability that a packet is dropped depends on how how lgllduffer is: p, =
m (b, bmax). For simplicity, we will assume for now thay = pib, (see Exer-
cise 3.6 for a more detailed model). The probability that &ptis dropped at a
given link can be used to determine the end-to-end prolatilat a packet is lost

in transmission: )
a=1-[1a-p)~ ¥ p(t—1d), (3.18)
leL; leL

whererl? is the backward delay from linkto sourcel and the approximation is
valid as long as the individual drop probabilities are smdle use the backward
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delay since this represents the time required for the aclatmyment packet to be
received by the source.

Together, equations (3.16), (3.17) and (3.18) represeradehof the conges-
tion control dynamics. We can obtain substantial insighttesidering a special
case in which we havid identical sources and 1 link. In addition, we assume for
the moment that the forward and backward time delays canrimgeg, in which
case the dynamics can be reduced to the form

dw 1 pb(2+wi2) db N w b

—_— — —_— = —_— = — _l

dt 1 2 7 dt 41 © o (3.19)
wherew; € R, i = 1,...,N are the window sizes for the sources of ddia& R

is the current buffer size of the routegr, controls the rate at which packets are
dropped and is the capacity of the link connecting the router to the cotarsu
The variabler represents the amount of time required for a packet to beepsec
by a router, based on the size of the buffer and the capadihedink. Substituting

T into the equations, we write the state space dynamics as

dw ¢ w2 db Y cw
E —b—pC<1+ 2), a—i;T—C, (320)

More sophisticated models can be found in [96, 129]. _
The nominal operating point for the system can be found bingpi; = b = O:

c w2 CJew b
b—pc<l+2>, O_i;T_C’ T—E.
Exploiting the fact that each of the source dynamics are icaintt follows that all

of thew; should be the same and it can be shown that there is a uniqilieqgon
satisfying the equations:

0=

1 3

The solution for the second equation is a bit messy, but caly éssdetermined
numerically. A plot of its solution as a function of (2p°N?) is shown in Fig-
ure 3.12b. We also note that at equilibrium we have the faligwadditional
equalities:

be NWe We

c c Qe Pe PDe e T

Figure 3.13 shows a simulation of 60 sources communicatingsa@ single
link, with 20 sources dropping out &t= 20 s and the remaining sources increasing
their rates (window sizes) to compensate. Note that theebsfze and window
sizes automatically adjust to match the capacity of the link

Te

A comprehensive treatment of computer networks is givemmmeénbaum [180].
A good presentation of the ideas behind the control priesifior the Internet are
given by one of its designers, Van Jacobson, in [101]. Kelly3] presents an
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Figure 3.13: Internet congestion control fa¥ identical sources across a single link. As
shown on the right, multiple sources attempt to communicate through a santess a single
link. An “ack” packet sent by the receiver acknowledges that thesages was received,;
otherwise the message packet is resent and the sending rate is slowedtdbe source.
The simulation on the left is for 60 sources starting random rates, withi@@eodropping
out att = 20 s. The buffer size is shown on the top and the individual source fiatésof
the sources are shown on the bottom.

early effort of analysis of the system. The book by Hellersti al. [92] gives
many examples of use of feedback in computer systems.

3.5 ATOMIC FORCE MICROSCOPY

The 1986 Nobel Prize in Physics was shared by Gerd Binnig andieleiRohrer
for their design of the scanning tunneling microscope. Tlea iof the instrument
is to bring an atomically sharp tip so close to a conductingase that tunneling
occurs. Animage is obtained by traversing the tip acrossdh&le and measuring
the tunneling current as a function of tip position. This imien has stimulated
the development of a family of instruments that permit vigadion of surface
structure at the nanometer scale, including the atomicefancroscope (AFM),
where a sample is probed by a tip on a cantilever. An AFM canatpén two
mode. In tapping mode the cantilever is vibrated and the itundjel of vibration
is controlled by feedback. In contact mode the cantileven isontact with the
sample and its bending is control by feedback. In both casesd is actuated
by a piezo element that controls the vertical position ofdastilever base. The
control system has a direct influence on picture quality aadrsing rate.

A schematic picture of an atomic force microscope is showrignre 3.14a. A
micro-cantilever with a tip having a radius of the order ofrit is placed close to
the sample. The tip can be moved vertically and horizontalggia piezoelectric
scanner. It is clamped to the sample surface by attractivelga\Waals forces and
repulsive Pauli forces. The cantilever tilt depends on tpedoaphy of the surface
and the position of the cantilever base which is controllgdhe piezo element.
The tiltis measured by sensing the deflection of the laser bearg a photo diode.
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Figure 3.14: Atomic force microscope. A schematic diagram of an atomic force niomes
is shown on the left, consisting of a piezo drive that scans the sample tined&FM tip. A
laser reflects off of the cantilever and is used to measure the detectioe ty tthrough a
feedback controller. An AFM image of DNA is shown on the right.

The signal from the photo diode is amplified and sent to a cdatriblat drives the
amplifier for the vertical deflection of the cantilever. By amtfling the piezo

element so that the deflection of the cantilever is consthetsignal driving the
vertical deflection of the piezo element is a measure of thaiatforces between
the cantilever tip and the atoms of the sample. An image o$tinface is obtained
by scanning the cantilever along the sample. The resolutiakemit possible to
see the structure of the sample on the atomic scale, agalladtin Figure 3.14b,
which shows an AFM image of a DNA molecule.

The horizontal motion is typically modeled as a spring-mgssesn with low
damping. The vertical motion is more complicated. To modeldysstem, we start
with the block diagram shown in Figure 3.15. Signals that aséyeaccessible are
the input voltagel to the power amplifier that drives the piezo element, the gelta
v applied to the piezo element and the output voltagéthe signal amplifier for
the photo diode. The controller is a Pl controller implemertigda computer,
which is connected to the system by A/D and D/A converters. défeection of
the cantileverg, is also shown in the figure. The desired reference value for the
deflection is an input to the computer.

There are several different configurations that have diftedgnamics. Here
we will discuss a high performance system from [167] wheeedhntilever base
is positioned vertically using a piezo stack. We begin theletiog by a simple
experiment on the system. Figure 3.16a shows a step respbaszanner from
the input voltageu to the power amplifier to the output voltageof the signal
amplifier for the photo diode. This experiment captures theadyins of the chain
of blocks fromu toy in the block diagram in Figure 3.15. Figure 3.16a shows that
the system responds quickly but that there is a poorly dangeilatory mode
with a period of about 35 ps. A primary task of the modelingisihderstand the
origin of the oscillatory behavior. To do so we will exploigetsystem in more
detail.

The natural frequency of the clamped cantilever is typicaélyeral hundred
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Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope (AFM) in scanning mode. The control systeamats to keep the
cantilever deflection equal to it reference value. Cantilever deflectioeésured, amplified
and converted to a digital signal, then compared with its reference valoerrécting signal

is generated by the computer, converted to analog form, amplified andcséhe piezo
element.

kHz, which is much higher than the observed oscillation afuat80 kHz. As a
first approximation we will therefore model the cantilevernagtatic system. Since
the deflections are small we can assume that the beriafythe cantilever is
proportional to the difference in heights between the tardr tip at the probe
and the piezo scanner. A more accurate model can be obtaynewdeling the
cantilever as a spring-mass system of the type discusselapter 2.

Figure 3.16a also shows that the response of the power amjdifiast. As
first approximation we will model it as a static system. The plaibde and the
signal amplifier also have fast responses and can thus be edomiestatic systems.
The remaining block is a piezo system with suspension. A saliermechanical
representation of the vertical motion of the scanner is shiomFigure 3.16b. We
will model the system as two masses separated by an idea plement. The
massmy is half of the piezo system plus the massis the other half of the piezo
system and the mass of the support.

A simple model is obtained by assuming that the piezo crgemérates a force
F between the masses and that there is a dangaimthe spring. Let the positions
of the center of the masses heandz,. A momentum balance gives the following
model for the system:

d221 . dZZZ - d22

mlw — F, m2 dtz — —CZE - k222 - F

Let the elongation of the piezo elemdnt z3 — z be the control variable and
the heightz; of the cantilever base be the output. Eliminating the vagi&bin
equations (3.22) and substitutiag— | for z, gives the model

d221 d21 d2| dl
st koz =My o kol 22
(Mg 4 M)~ +Co- g Fhezr =My 5 +C2 o+ ke (3.22)

Summarizing, we find that a simple model of the system is obdiaryemod-
eling the piezo by (3.22) and all the other blocks by statidel®. Introducing
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Figure 3.16: Measured step response and model of piezo scanner. The le& figows a
measured step response. The top curve shows the valtagplied to the drive amplifier
(50 mv/div), the middle curve is the outp\, of the power amplifier (500 mV/div) and
the bottom curve is the outpytof the signal amplifier (500 mV/div). The time scale is 25
us/div. Data has been supplied by Georg Schitter. The right figure is desimgchanical
model for the vertical positioner and the piezo crystal.

the linear equations= kzu, andy = ksz; we now have a complete model relat-
ing the outputy to the control signall. A more accurate model can be obtained
by introducing the dynamics of the cantilever and the powapldier. As in the
previous examples, the concept of the uncertainty lemonguargi2.15b provides
a framework for describing the uncertainty: the model wéldxcurate up to the
frequencies of the fastest modeled modes and over a rangetimimm which the
linearized stiffness models can be used.

The experimental results in Figure 3.16a can be explainedtatizly as fol-
lows. When a voltage is applied to the piezo it expandk Jiype massny is moves
up and the massy moves down instantaneously. The system settles after aypoorl
damped oscillation.

It is highly desirable to have design a control system forwbeical motion
so that it responds quickly with little oscillation. The inghent designer has
several choices: to accept the oscillation and have a sleporese time, to design a
control system that can damp the oscillations, or to redetsig mechanics to give
resonances of higher frequency. The last two alternatives gyifaster response
and faster imaging.

Since the dynamic behavior of the system changes with theepiep of the
sample, itis necessary to tune the feedback loop. In singptemis this is currently
done manually by adjusting parameters of a Pl controller. dlage interesting
possibilities to make AFM systems easier to use by introdpeaimtomatic tuning
and adaptation.

The book by Sarid [164] gives a broad coverage of atomic foraeascopes.
The interaction of atoms close to surfaces is fundamentallio state physics, see
Kittel [118]. The model discussed in this section is based dritee [166].
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Figure 3.17: The abstraction used to compartmentalize the body for the purpose of de-
scribing drug distribution (based on Teorell [181]). The body is ab&tthby a number of
compartments with perfect mixing and the complex transport processepproximated by
assuming that the flow is proportional to the concentration difference® icaimpartments.

The constant&; parameterize the rates of flow between different compartments.

3.6 DRUG ADMINISTRATION

The phrase “take two pills three times a day” is a recommeodatith which we
are all familiar. Behind this recommendation is a solutibamopen loop control
problem. The key issue is to make sure that the concentrafiannzedicine in
a part of the body is sufficiently high to be effective but nothégh that it will
cause undesirable side effects. The control action is qaeahtake two pills and
sampledevery 8 hoursThe prescriptions are based on simple models captured in
empirical tables, and dosage is based on the age and weitjte patient.

Drug administration is a control problem. To solve it we mustierstand how
a drug spreads in the body after it is administered. This tagilledpharmacoki-
netics is now a discipline of its own and the models used are caitedpartment
models They go back to the 1920s when Widmark modeled propagatiafcof
hol in the body [190]. Compartment models are now importantstreening of
all drugs used by humans. The schematic diagram in Figure Bukfrates the
idea of a compartment model. The body is viewed as a numbemopadments
like blood plasma, kidney, liver, and tissues which are sspd by membranes.
It is assumed that there is perfect mixing so that the drugeatnation is con-
stant in each compartment. The complex transport processesparoximated
by assuming that the flow rates between the compartments@pertional to the
concentration differences in the compartments.

To describe the effect of a drug it is necessary to know bgtlednhcentration
and how it influences the body. The relation between concémtratind its effect
eis typically nonlinear. A simple model is

Co
e= . 3.23
Cot o M (323)

The effect is linear for low concentrations and it saturatdsgh concentrations.
The relation can also be dynamic and and it is then callemacodynamics
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Compartment Models

The simplest dynamic model for drug administration is olgdiby assuming that
the drug is evenly distributed in a single compartment aftteas been adminis-
tered and that the drug is removed at a rate proportionaktadhcentration. The
compartments behave like stirred tanks with perfect mixiogt ¢ be the concen-
tration,V the volume andj the outflow rate. Converting the description of the
system into differential equations gives the model

(;f[: =—qc, c>0. (3.24)

This equation has the solutiaft) = coe~ 9V = cpe !, which shows that the con-
centration decays exponentially with the time consfartV /q after an injection.
The input is introduced implicitly as an initial conditiontine model (3.24). More
generally, the way the input enters the model depends onlmedrtig is adminis-
tered. For example, the input can be represented as a massfiothié compart-
ment where the drug is injected. A pill that is dissolved ckio &e interpreted as
an input in terms of a mass flow rate.

The model (3.24) is called aane-compartment model asingle pool model
The parameteq/V is called the elimination rate constant. This simple model
often used to model the concentration in the blood plasman&sgsuring the con-
centration at a few times, the initial concentration canlitaimed by extrapolation.
If the total amount of injected substance is known, the vaifnecan then be deter-
mined as/ = m/cp; this volume is called théhe apparent volume of distribution
This volume is larger than the real volume if the concentratiothe plasma is
lower than in other parts of the body. The model (3.24) is vampte and there
are large individual variations in the parameters. The patargV andq are often
normalized by dividing by the weight of the person. Typicatgmeters for aspirin
areV = 0.2 L/kg andq = 0.01(L/h)/kg. These numbers can be compared with
a blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, intthdar fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/min/kg.

The simple one-compartment model captures the gross beluddoug distri-
bution but it is based on many simplifications. Improved msaein be obtained
by considering the body as composed of several compartnexasnples of such
systems are shown in Figure 3.18, where the compartmentsaesented as cir-
cles and the flows by arrows.

Modeling will be illustrated using the two-compartment rebish Figure 3.18a.
We assume that there is perfect mixing in each compartmehthat the transport
between the compartments are driven by concentrationreliftees. We further
assume that a drug with concentratmris injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the outputclabd
c2 be the concentrations of the drug in the compartments ang hdV, be the

S
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by ltl

(a) (b)

Figure 3.18: Schematic diagrams of compartment models. A simple two-compartment
model is shown on the left. Each compartment is labeled by its volume aodsandi-

cate the flow of chemical into, out of and between compartments. Thpament model

on the right shows a system with six compartments used to study metaboligyroid
hormone [81]. The notatiok; denotes the transport from compartmeid compartmenit

volumes of the compartments. The mass balances for the congds are

dc
VlT: =((C2—C1)—CoC1+Cu €1 >0
dc
g o 0
y=Cp.

Introducing the variableky = qo/V1, k1 = q/V1, ko = q/V2 andbg = ¢p/V1 and
using matrix notation, the model can be written as

dC_ —ko—ki ki bo
dt_[ ke —kz]c+[0 !

(3.26)
y= (0 l) X.

Comparing this model with its graphical representation iguFé 3.18a we find

that the the mathematical representation (3.26) can beewiily inspection.

It should also be emphasized that simple compartment msdelsas the one
in equation (3.26) have a limited range of validity. Low freqay limits exist
because the human body changes with time and since the congpéimodel uses
average concentrations they will not accurately represgnd changes. There are
also nonlinear effects that influence transportation betvilee compartments.

Compartment models are widely used in medicine, engingexitd environ-
mental science. An interesting property of these systentiaisvariables like
concentration and mass are always positive. An essenffalulty in compart-
ment modeling is deciding how to divide a complex system gdmpartments.
Compartment models can also be nonlinear, as illustratdteinext section.



88 CHAPTER 3. EXAMPLES
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Figure 3.19: Insulin-glucose dynamics. (a) Sketch of body parts involved in comtol

glucose, (b) schematic diagram of the system, and (c) responseslin Bnsd glucose when
glucose in injected intravenously. From [155].

Insulin-Glucose Dynamics

It is essential that the blood glucose concentration in theylis kept in a narrow
range (0.7-1.1 g/L). Glucose concentration is influenced hyyrfectors like food
intake, digestion and exercise. A schematic picture ofelevant parts of the body
is shown in Figure 3.19.

There is a sophisticated mechanism that regulates glucosecwation. Glu-
cose concentration is maintained by the pancreas thatsélceehormones insulin
and glucagon. Glucagon is released into the blood stream thigeglucose level
is low. It acts on cells in the liver that release glucose.ulinsis secreted when
the glucose level is high and the glucose level is loweredamnsing the liver and
other cells to take up more glucose. In diseases, like jl@li@betes, the pan-
creas is unable to produce insulin and the patient musttimjealin into the body
to maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are caagdicdynamics
with time scales that range from seconds to hours have besmad. Models of
different complexity have been developed. The models ariedifp tested with
data from experiments where glucose is injected intravelyoand insulin and
glucose concentrations are measured at regular time atserv

A relatively simple model called thminimal modelvas developed by Bergman
and coworkers [30]. This models uses two compartments, gnegenting the
concentration of glucose in the blood stream and the otlpeesenting the concen-
tration of insulin in the interstitial fluid. Insulin in the dobd stream is considered
as an input. The reaction of glucose to insulin can be modsje¢debequations

dX]_

d .
ar —(P1+X2)X1+ P1Ge, d—)iz = —p2Xo+ p3(U—ie), (3.27)
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wherege andie represent the equilibrium values of glucose and insudinis the
concentration of glucose and is proportional to the concentration of interstitial
insulin. Notice the presence of the tesax, in the first equation. Also notice
that the model does not capture the complete feedback locgube it does not
describe how the pancreas reacts to the glucose. Figure $ht®¢s a fit of the
model to a test on a normal person where glucose was injecteyénously at
timet = 0. Glucose concentration rises rapidly and the pancrepsmes with a
rapid spike-like injection of insulin. The glucose and inisuévels then gradually
approach the equilibrium values.

Models of the type (3.27) and more complicated models hawmagy com-
partments have been developed and fitted to experimental datiifficulty in
modeling is that there are significant variations in modeapeaters over time and
for different patients. For example the paramgiglin (3.27) has been reported
to vary with an order of magnitude for normal persons. The risobave been
used for diagnosis and to develop schemes for treatmentedpe with diseases.
Attempts to develop a fully automatic artificial pancreasthesn hampered by the
lack of reliable sensors.

The papers by Widmark and Tandberg [190] and Teorell [181Ekassics in
pharmacokinetics which is now an established disciplirtd wiany textbooks [57,
102, 80]. Because of its medical importance pharmacokiséinow an essential
component of drug development. The book by Riggs [159] is algmurce for
modeling of physiological systems and a more mathematieatrent is given in
[112]. Compartment models are discussed in [81]. The prold&determining
rate coefficients from experimental data is discussed in §2%] [81]. There are
many publications on the insulin-glucose model. The minimatlel is discussed
in [50, 30, 31] more recent references are [135, 69].

3.7 POPULATION DYNAMICS

Population growth is a complex dynamic process that involliesinteraction of

one or more species with their environment and the largesystem. The dynam-
ics of population groups are interesting and important imyngifferent areas of
social and environmental policy. There are examples whewespecies have been
introduced into new habitats, sometimes with disastroeslt® There are also
been attempts to control population growth both througlertiees and through
legislation. In this section we describe some of the modelsdan be used to un-
derstand how populations evolve with time and as a functfdher environment.

Logistic Growth Model

Let x the population of a species at timeA simple model is to assume that the
birth and death rates are proportional to the total poputafr his gives the linear
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model

(;i( =bx—dx=(b—d)x=rx, x>0, (3.28)
where birth ratdéo and death ratd are parameters. The model gives an exponential
increase ifb > d or an exponential decreaseiik d. A more realistic model is to
assume that the birth rate decreases when the populatiarges IThe following
modification of the model (3.28) has this property:

dx X

— =rx(1—— >0 3.29
wherex; is thecarrying capacityof the environment. The model (3.29) is called
thelogistic growthmodel.

Predator-Prey Models

A more sophisticated model of population dynamics incluttheseffects of com-
peting populations, where one species may feed on anothisrsitumtion, referred

to as thepredator-prey problenmwas already introduced in Example 2.3, where we
developed a discrete time model that captured some of therésaof historical
records of lynx and hare populations.

In this section, we replace the difference equation modsd tisere with a more
sophisticated differential equation model. ltéft) represent the number of hares
(prey) andL(t) represent the number of lynxes (predator). The dynamicseof th
system are modeled as

LU <1—H> At o)

t K/) 1+aHT

d +ath (3.30)
Sl P L>0

dt ! kH =

In the first equationry, represents the growth rate of the harn€sepresents the
maximum population of hares (in the absence of lynxaggpresents the inter-
action term that describes how the hares are diminished @sctidn of the lynx
population, andy, depends is a time constant for prey consumption. In the skcon
equation,r, represents the growth rate of the lynxes &mépresents the fraction
of hares versus lynxes at equilibrium. Note that both the laad lynx dynamics
include terms that resemble the logistic growth model (8.29

Of particular interest are the values at which the poputatadues remain con-
stant, calledequilibrium points The equilibrium points for this system can be
determined by setting the right hand side of the above empumto zero. Letting
He andLe represent the equilibrium state, from the second equatohave

Le - kHe
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Figure 3.20: Simulation of the predator-prey system. The figure on the left shows-a sim
ulation of the two populations as a function of time. The figure on the righivshbe
populations plotted against each other, starting from different valugsegfopulation. The
oscillation seen in both figures is an example of a “limit cycle”. The paranvetaes used

for the simulations werg, = 0.02,K = 500,a= 0.03,T, =5,r, =0.01,k=0.2.

Substituting this into the first equation, we must solve
He akH2
He(1-—2)——2—=0
& e< K ) 17 aHeT
Multiplying through by the denominator, we get

0= He- (rh (1— |_}|<e> (1+aHeTh) — akHe>

K

This gives one solution & = 0 and a second that can be solved analytically or
numerically.

Figure 3.20 shows a simulation of the dynamics starting frasataof popula-
tion values near the nonzero equilibrium values. We sedah#tis choice of pa-
rameters, the simulation predicts an oscillatory popatatiount for each species,
reminiscent of the data shown in Figure 2.6 (page 39).

rhat
= He- <hhH§+ (ak+rp/K —rpaTh)He — I‘h> .

Volume | of the two volume set by J. D. Murray [146] give a braaderage of
population dynamics.

EXERCISES

3.1 Consider the cruise control example described in SectionBilld a simula-
tion that recreates the response to a hill shown in Figure @&8lshow the effects
of increasing and decreasing the mass of the car by 25%. Redés controller
(using trial and error is fine) so that it returns to within 10%he desired speed
within 3 seconds of encountering the beginning of the hill.
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3.2 Show that the dynamics of a bicycle frame given by equatioB) (@an be
written in state space form as

d (x2) _ (0 mghJd) (x 1
ali) = (2 7%°) () o)
_ ( Dvg mgh
v= (%2 )~

bJ

where the input is the torque applied to the handle bars and the outpsithe
title angle¢. What do the stateg andx, represent?

(3.31)

3.3 Combine the bicycle model given by equation (3.5) and theehfad steering
kinematics in Example 2.8 to obtain a model that describegalie of the center
of mass of the bicycle.

3.4 Consider the op amp circuit shown below:
V2

Ry Ra Ro
Rz

G Vo Cy V3
[ 1.

Show that the dynamics can be written in state space form as

Vi

21y 1
dx_ | RG RG wt | Ry
i R 1 [
Ra R:C2 RCo

y= (O 1] X
whereu = v1 andy = vs. (Hint: Usev, andvs as your state variables.)
3.5 The op amp circuit shown below is an implementation of an laoil. Show

Ca Ry c,

that the dynamics can be written in state space form as

A
dix - R1R:C1
— 1 \
dt 0

T RG
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where the state variables represents the voltages acesaphacitors; = v, and
Xo = V.

3.6 A number of improvements can be made to the model for Intexoegestion
control presented in Section 3.4 To insure that the router’s buffer size remains
positive, we can modify the buffer dynamics to satisfy

. S —C b >0
b =
safow) (8 —C) b =0

In addition, we can model the drop probability of a packetlasn how close we
are to the buffer limits, a mechanism known as random eatlyatien (RED):

0 a (t) < blower
—m (al) B Plri(t) —p blower blower <a (t) < bIUPPer
b= ) i) — (120" PP < (1) < 20PP
1 a(t) > 2p PP’

a=—-ac(a—h),

whereaq;, b'*P®, bloVer and p/'PP*" are parameters for the RED protocol.

Using the model above, write a simulation for the system andl dirset of
parameter values for which there is a stable equilibriunmipaind a set for which
the system exhibits oscillatory solutions. The followingssef parameters should
be explored:

N =20,30,...,60
c=38,9,...,15 pktyms
T =5560,...,100 ms

3.7 A schematic diagram an AFM where the vertical scanner is agigze with
preloading is shown below

blower — 40 pkts o =01
b'PP®'=540pkts =10

Show that the dynamics can be written as

221 d21 d2| dl
W—i_ (Cl-i-Cz)E-i- (k1+k2)21 = mzﬁ-i-Cza +Kkol.

Are there parameters values which makes the dynamics plartic simple?

(M +np)
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3.8 (Drug administration) The metabolism of alcohol in the body be modeled
by the nonlinear compartment model

d
Vb—o‘) = (¢ —Cp) + Qv

dt
dg C
M g q(ce—¢) — Qmaxr s + i

whereVy, = 48 | andV, = 0.6 | are the effective distribution volumes of body wa-
ter and liver watergc, and ¢, are the concentrations of alcohol in the compart-
ments,gy anddg; are the injection rates for intravenously and gastroiirtabin-
take,q = 1.5 L/min is the total hepatic blood flovgjyax = 2.75 mmol/min and
co = 0.1 mmol. Simulate the system and compute the concentratitreiblood
for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9(State variables in compartment models) Consider the cdmpat model de-
scribed by equation (3.26). L&t andx, be the total mass of the drug in the
compartments. Show that the system can be described by tagaqu

dx _ (—ko—ki ko Co
dt_[ ki —kz]x+[0 !

y= [0 1/v2] X.

Compare the this equation with the (3.26) where the statehbles were con-
centrations. Mass is called axtensive variabl@nd concentration is called an
intensive variable

(3.32)

3.10(Population dynamics) Consider the model for logistic grogiten by equa-
tion (3.29). Show that the maximum growth rate occurs whensike of the
population is half of the steady state value.



Chapter Four

Dynamic Behavior

It Don't Mean a Thing If It Ain't Got That Swing.

Duke Ellington (1899-1974)

In this chapter we give a broad discussion of the behavioryoathical sys-
tems, focused on systems modeled by nonlinear differegqiadtions. This allows
us to discuss equilibrium points, stability, limit cyclescaother key concepts for
understanding dynamic behavior. We also introduce somaadstfor analyzing
global behavior of solutions.

4.1 SOLVING DIFFERENTIAL EQUATIONS

In the last two chapters we saw that one of the methods of rimgddynamical sys-
tems is through the use of ordinary differential equatiddBESs). A state space,
input/output system has the form

%: f(X, U), y= h(X,U), (4'1)

dt
wherex= (x1,...,%n) € R"is the statey € RP is the input ang € R%is the output.
The smooth map$ : R" x RP — R"andh: R" x RP — RY represent the dynamics
and measurements for the system. We will sometimes focusglesnput, single
output (SISO) systems, for whigh=q= 1.

We begin by investigating systems in which the input has Ise¢to a function

of the statepy = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equatio this case become

d

o = T a() = FX). (4.2)
To understand the dynamic behavior of this system, we needhatyze the

features of the solutions of equation (4.2). While in sormapéé situations we can

write down the solutions in analytical form, often we mudyren computational

approaches. We begin by describing the class of solutiari®problem.
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Initial Value Problems

We say thak(t) is asolutionof the differential equation (4.2) on the time interval
tocRtots e Rif

d)c;(tt) =F(x(t)) forallto<t <ts.

A given differential equation may have many solutions. W# miost often be
interested in thenitial value problem wherex(t) is prescribed at a given time
to € R and we wish to find a solution valid for dlituretime,t > to.

We say thak(t) is a solution of the differential equation (4.2) with inlti@lue
X0 € RMattg € R if

X(to) =% and d)(;(tt) =F(x(t)) foralltg<t<t;.

For most differential equations we will encounter, thera isiguesolution that is
defined fortg < t < t;. The solution may be defined for all tinhe> ty, in which
case we takés = . Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to thisrgly as the solution
of an ODE.

We will typically assume thap is equal to 0. In the case wheéris independent
of time (as in equation (4.2)), we can do so without loss ofegelity by choosing
a new independent (time) variable=t —ty (Exercise 4.1).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of thenfor

G+ 2¢ wod+ whq =0,

whereqis the displacement of the oscillator from its rest positibhese dynamics
are equivalent to those of a spring-mass system, as shownertigs 2.7. We

assume thaf < 1, corresponding to a lightly damped system (the reasorhfer t
particular choice will become clear later). We can rewtitis in state space form

by settingx; = g andx; = g/ wy, giving

dxg dxo
ddt — WoX2, ddt — Xy — 2{ WoX.

In vector form, the right hand side can be written as

(X
Fx) = [—woxl—ZZZasz] '

The solution to the initial value problem can be written in anter of different
ways and will be explored in more detail in Chapter 5. Here iwgoky assert that
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Figure 4.1: Response of the damped oscillator to the initial conditigr= (1,0). The
solution is unique for the given initial conditions and consists of an oscillaohytion for
each state, with an exponentially decaying magnitude.

the solution can be written as

1 .
x1(t) = g ¢t <xlocoswdt + @(abfmeero) smwdt>
1 .
Xo(t) = o {unt <xZocoswdt — @((L{%X]_o-i- wo{ X20) S|nwdt>

wherexg = (X10,X%20) is the initial condition andwy = wy+/1— 2. This solution
can be verified by substituting it into the differential eqoat We see that the
solution is explicitly dependent on the initial conditiomcsit can be shown that this
solution is unique. A plot of the initial condition resporiseshown in Figure 4.1.
We note that this form of the solution only holds fox0{ < 1, corresponding to
an “underdamped” oscillator. O

Existence and Uniqueness @

Without imposing some mathematical conditions on the fiond%, the differential
equation (4.2) may not have a solution fortaland there is no guarantee that the
solution is unique. We illustrate these possibilities viitlo examples.

Example 4.2 Finite escape time
Letx € R and consider the differential equation

dx
== 4.
a =X (4.3)
with initial conditionx(0) = 1. By differentiation we can verify that the function
1
=— 4.4
X(t) = (4.4)

satisfies the differential equation and it also satisfies titialicondition. A graph
of the solution is given in Figure 4.2a; notice that the soluijoes to infinity as
goes to 1. We say that this system liagte escape timeThus the solution only
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(a) Finite escape time (b) Non-unique solutions

Figure 4.2: Existence and uniqueness of solutions. Equation (4.3) only has a sdiation
timet < 1, at which point the solution goes to, as shown in (a). Equation (4.4) is an
example of a system with many solutions, as showh.irFor each value o, we get a
different solution starting from the same initial condition.

exists in the time interval 8.t < 1. O

Example 4.3 No unique solution
Letx € R and consider the differential equation

dx

at 2V
with initial conditionx(0) = 0. We can show that the function
0 fo<t<a
X(t) = 2 .
(t—a)“ ift>a

satisfies the differential equation for all values of the peatera > 0. To see this,
we differentiatex(t) to obtain

dx o fo<t<a
dt  |2(t—-a) ift>a

and hencex = 2,/x for all t > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 4.2b. Notice that in this casedfsge many solutions
to the differential equation. O

These simple examples show that there may be difficulties eviénsimple
differential equations. Existence and uniqueness can beugieed by requiring
that the functiorF has the property that for some fixed R

IFO) —FW) <cllx=y[ forallxy,

which is calledLipschitz continuity A sufficient condition for a function to be
Lipschitz is that the JacobiadF /dx, is uniformly bounded for alk. The diffi-
culty in Example 4.2 is that the derivativ¥ /dx becomes large for largeand
the difficulty in Example 4.3 is that the derivatigé /dx is infinite at the origin.
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Figure 4.3: Phase portraits. The plot on the left shows the vector field for a plamamnadigal
system. Each arrow shows the velocity at that point in the state spac@lditon the right
includes the solutions (sometimes called streamlines) from different indralitons, with
the vector field superimposed.

4.2 QUALITATIVE ANALYSIS

The qualitative behavior of nonlinear systems is importanthderstanding some
of the key concepts of stability in nonlinear dynamics. Wd feicus on an im-
portant class of systems known as planar dynamical sysfEnese systems have
two state variables € R?, allowing their solutions to be plotted in thgy, xo)
plane. The basic concepts that we describe hold more genaradlcan be used
to understand dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamicalesys with state
x € R? is to plot thephase portraitof the system, briefly introduced in Chapter 2.
We start by introducing the concept of a vector field. For aesysof ordinary

differential equations
dx
a =F (X))

the right hand side of the differential equation defines atyexec R" a velocity
F(x) € R". This velocity tells us how changes and can be represented as a vector
F(x) e R".

For planar dynamical systems, each state corresponds tmiipohe plane
and F(x) is a vector representing the velocity of that state. We can thlese
vectors on a grid of points in the plane and obtain a visuagenaf the dynamics
of the system, as shown in Figure 4.3a. The points where theitiebare zero
are of particular interest, since they define stationarytgahthe flow: if we start
at such a state, we stay at that state.

A phase portrait is constructed by plotting the flow of the wedield corre-
sponding to the planar dynamical system. That is, for a setitéli conditions,
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we plot the solution of the differential equation in the @ak?. This corresponds
to following the arrows at each point in the phase plane aadithg the resulting
trajectory. By plotting the resulting trajectories for eead different initial condi-
tions, we obtain a phase portrait, as show in Figure 4.3b.

Phase portraits give us insight into the dynamics of the sy$ig showing us
the trajectories plotted in the (two dimensional) statespz the system. For ex-
ample, we can see whether all trajectories tend to a singie ps time increases
or whether there are more complicated behaviors as thensystelves. In the ex-
ample in Figure 4.3, corresponding to a damped oscillatersyistem approaches
the origin for all initial conditions. This is consistent Wibur simulation in Fig-
ure 4.1 but it allows us to infer the behavior for all initiadrditions rather than a
single initial condition. However, the phase portrait doesreadily tell us the rate
of change of the states (although this can be inferred franteihgth of the arrows
in the vector field plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a stages an equilibrium point for a dynamical system

dx _
dt
if F(xe) = 0. If a dynamical system has an initial conditief®) = xe then it will
stay at the equilibrium point(t) = x for all t > 0, where we have takdp= 0.
Equilibrium points are one of the most important features dymamical sys-

tem since they define the states corresponding to constaratimgeconditions. A
dynamical system can have zero, one or more equilibriumtg.oin

F(x)

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figure 4.4, which is a gahebalance system
we considered in Chapter 2. The inverted pendulum is a singbh#esion of the
problem of stabilizing a rocket: by applying forces at thadaf the rocket, we
seek to keep the rocket stabilized in the upright positione State variables are
the anglef = x; and the angular velocitg6/dt = x,, the control variable is the
acceleratioru of the pivot, and the output is the andle

For simplicity we assume thatgl/J, = 1 andml/J, = 1, where} = J +ml?,
so that the dynamics (equation (2.10)) become

dx . Xo
E a [sinxl — YXo + ucosxl] (4-5)

This is a nonlinear time-invariant system of second orders Saime set of equa-
tions can also be obtained by appropriate normalizatiohesystem dynamics as
illustrated in Example 2.7.

We consider the open loop dynamics by setting 0. The equilibrium points
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(b) ()

Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a node
for a class of balance systems in which we wish to keep a system uprightasia rocket
(a). Using a simplified model of an inverted pendulum (b), we can dpw&lphase plane
diagram that shows the dynamics of the system (c). The system has medjiglédrium
points, marked by the solid dots along the= 0 line.

for the system are given by
0
e = [inn] ’

wheren=0,1,2,.... The equilibrium points fon even correspond to the pendu-

lum pointing up and those farodd correspond to the pendulum hanging down. A

phase portrait for this system (without corrective inpugsghown in Figure 4.4c.

The phase portrait shows2t < x; < 211, so 5 of the equilibrium points are shown.
O

Nonlinear systems can exhibit rich behavior. Apart fromilitopia they can
also exhibit stationary periodic solutions. This is of gnestctical value to gener-
ate sinusoidally varying voltages in power systems or teegate periodic signals
for animal locomotion. A simple example is given in Exercis&l4 which shows
the circuit diagram for an electronic oscillator. A nornzalil model of the oscilla-
tor is given by the equation

dx _ X2 4 X1(1— X2 — X3)
dt (4.6)
dx 2 2
i —X1 +X2(1—X] —X5).
The phase portrait and time domain solutions are given in Eigus. The figure
shows that the solutions in the phase plane converge towdanifcajectory. In the
time domain this corresponds to an oscillatory solutiontidenatically the circle
is called dimit cycle More formally, we call an isolated solutiott) a limit cycle
of periodT > 0if x(t+T) = x(t) forallt € R.

There are methods for determining limit cycles for seconeépsystems, but
for general higher order systems we have to resort to cortipngh analysis. Com-
puter algorithms find limit cycles by searching for periodigjeéctories in state
space that satisfy the dynamics of the system. In many mitgtstable limit
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different icotialitions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) slasingle solution
plotted as a function of time, with the limit cycle corresponding to a steady dswillaf
fixed amplitude.

cycles can be found by simulating the system with differaitial conditions.

4.3 STABILITY

The stability of a solution determines whether or not sohgioearby the solution
remain nearby, get closer or move further away.

Definitions

Let x(t;a) be a solution to the differential equation with initial catich a. A
solution is stable if other solutions that start neatay close tx(t;a). Formally,
we say that thesolution Xt;a) is stable if for alle > 0, there exists & > 0 such
that

|b—a|<d = |x(t;b)—x(t;a)]| <e forallt>0.

Note that this definition does not imply th&(t; b) approaches(t;a) as time in-
creases, but just that it stays nearby. Furthermore, the wdlbmay depend os,
so that if we wish to stay very close to the solution, we mayeha\start very, very
close @ < ¢€). This type of stability which is illustrated in Figure 4.6 i3setimes
called stability “in the sense of Lyapunov”. If a solutiorsigble in this sense and
the trajectories do not converge, we say that the solutioeugrally stable

An important special case is when the solutidtta) = Xe is an equilibrium
solution. Instead of saying that the solution is stable wig$ say that the equi-
librium pointis stable. An example of a neutrally stableigljium pointis shown
in Figure 4.7. From the phase portrait, we see that if we stat the equilibrium
point then we stay near the equilibrium point. Indeed, ftg #xample, given any
¢ that defines the range of possible initial conditions, we ¢aply choosed = ¢
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Timet

Figure 4.6: lllustration of Lyapunov’s concept of a stable solution. The solutionasgmted
by the full line is stable if we can guarantee that all solutions remain within adidiameter
€ by choosing initial conditions sufficiently close the solution.

to satisfy the definition of stability since the trajectorés perfect circles.

A solutionx(t;a) is asymptotically stabld it is stable in the sense of Lyapunov
and also(t; b) — x(t; a) ast — oo for b sufficiently close t@. This corresponds to
the case where all nearby trajectories converge to thesssahition for large time.
Figure 4.8 shows an example of an asymptotically stable ieguiin point. Note
from the phase portraits that not only do all trajectories stear the equilibrium
point at the origin, but they all approach the origirt gets large (the directions of
the arrows on the phase plot show the direction in which tjedtories move).

A solutionx(t; a) is unstableif it is not stable. More specifically, we say that a
solutionx(t;a) is unstable if given some > 0, there doesot exist ad > 0 such
that if |b—a|| < & then||x(t;b) —x(t;a)|| < € for all t. An example of an unstable
equilibrium point is shown in Figure 4.9.

The definitions above are given without careful descriptiothefr domain of
applicability. More formally, we define a solution to heeally stable (or asymp-
totically stable) if it is stable for all initial conditions< By (a) where

Br(a) = {x:|x—a| <r}

is a ball of radius arounda andr > 0. A system is globally stable if it is sta-
ble for allr > 0. Systems whose equilibrium points are only locally stalale c

By
o
&
Q
i
(%))
-2
0 2 4 6 8 10
Timet
5(1 = X2
Xz =—X1

Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium poirte at the origin is stable since all trajectories that
start neax stay neake.
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Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium poixg at the origin is asymptotically stable
since the trajectories converge to this point as .

have interesting behavior away from equilibrium pointswasexplore in the next
section.

For planar dynamical systems, equilibrium points have kassigned names
based on their stability type. An asymptotically stableikdopium point is called
a sink or sometimes amttractor. An unstable equilibrium point can either be
a source if all trajectories lead away from the equilibrium point, @saddle if
some trajectories lead to the equilibrium point and othesseraway (this is the
situation pictured in Figure 4.9). Finally, an equilibriumipichat is stable but not
asymptotically stable (i.e. neutrally stable, such as tiein Figure 4.7) is called
acenter

Example 4.5 Congestion control
The model for congestion control in a network consistinglafientical computers
connected to a single router, introduced in Section 3.4 yvisrgby

dw ¢ 1 w2 db e

dt b pC( 3 ) - ¢

wherew is the window size antd is the buffer size of the router. Phase portraits are
shown in Figure 4.10 for two different sets of parameter allieeach case we see
that the system converges to an equilibrium point in whiehlibffers are below
their full capacity of 500 packets. The equilibrium size oé thuffer represents

a balance between the transmission rates for the sourcethamdpacity of the
link. We see from the phase portraits that the equilibriurmsoare stable since
all initial conditions result in trajectories that converp these points. O

Stability of Linear Systems

A linear dynamical system has the form

dx
i AX X(0) = o, 4.7)
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium pinte at the origin is unstable since not all trajectories
that start neaxe stay neae. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

whereA € R™" is a square matrix, corresponding to the dynamics matrix of a
linear control system (2.6). For a linear system, the stglwf the equilibrium at
the origin can be determined from the eigenvalues of theixnAtr

A(A) ={se C:defsl—A) =0}.

We use the notatioa; for theith eigenvalue of\, so thatA; € A (A). In generalA
can be complex valued, althoughAfis real-valued then for any eigenvaldeits
complex conjugatd * will also be an eigenvalue.

The easiest class of linear systems to analyze are those sy&tsen matrices
are in diagonal form. In this case, the dynamics have the form

A 0
dx A2
— = X. 4.8
dt (48)
0 An
It is easy to see that the state trajectories for this systenmdependent of each
other, so that we can write the solution in termsafdividual systems

X = AiX;.
Each of these scalar solutions is of the form
xi(t) = itx(0).

We see that the equilibrium point = 0 is stable ifA; < 0 and asymptotically
stable ifA; < 0. The origin is always an equilibrium for a linear system. 8itiee
stability of a linear system only depends on the mafrixe find that stability is a
property of the system. For linear system we can thereftkeatsout the stability
of the system rather than the stability of a particular sotubr equilibrium point.
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Figure 4.10: Phase portraits for a congestion control protocol running With 60 identical
source computers. The equilibrium values correspond to a fixed wiatithe source, which
results in a steady state buffer size and corresponding transmissioA fagger link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

Another simple case is when the dynamics are in the bloclodialgiorm

01 w1 0 0
—w O 0 0
dx _ ]y
g | 0 0 : : :
0 0 Om O
0 0 —Wm Om

In this case, the eigenvalues can be shown td;be gj £iw;. We once again can
separate the state trajectories into independent sofuttsreach pair of states and
the solutions are of the form

Xoj_1(t) = 71" (% (0) coswjt + Xi11(0) sincjt)
Xoj (t) = €1 (x;(0) sincjt — xi+1(0) coswjt)

wherej =1,2,...,m. We see that this system is asymptotically stable if and only
if g = ReAj < 0. Itis also possible to combine real and complex eigensgaiue
(block) diagonal form, resulting in a mixture of solutiorfstioe two types.

Very few systems are in one of the diagonal forms above, buesystems can
be transformed into these forms via coordinate transfaomat One such class
of systems is those for which the dynamics matrix has dis{inon-repeating)
eigenvalues. In this case there is a mafrix R™" such that the matri¥ AT~1
is in (block) diagonal form, with the block diagonal elemeibrresponding to
the eigenvalues of the original matrix (see Exercise 4.13). If we choose new
coordinateg = T xthen

7=Tx=TAx=TAT 1z

and the linear system has a (block) diagonal dynamics mafuxthermore, the
eigenvalues of the transformed system are the same as tieabisystem since
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if v is an eigenvector oA thenw = Tv can be shown to be an eigenvector of
TAT 1. We can reason about the stability of the original system dtjng that
X(t) = T~1z(t) and so if the transformed system is stable (or asymptoistdble)
then the original system has the same type of stability.

This analysis shows that for linear systems with distincepiglues, the sta-
bility of the system can be completely determined by exangjrthe real part of
the eigenvalues of the dynamics matrix. For more generésys we make use
of the following theorem, proved in the next chapter:

Theorem 4.1. The system

dx
a—Ax

is asymptotically stable if and only if all eigenvalues oflthave strictly negative
real part and is unstable if any eigenvalue of A has strictigifive real part.

Example 4.6 Compartment model

Consider the two-compartment module for drug deliveryodtrced in Section 3.6.
Using concentrations as state variables and denotingadke\stctor by, the sys-
tem dynamics are given by

dx (—ko—ki ki bo _

dt_[ ko _kz]x+[0 u, y= (0 1] X,
where the inpuu is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measurgalioy We wish to

design a feedback control law that maintains a constanubgipen byy = yq.
We choose an output feedback control law of the form

u=—k(y—yd)+Uug

whereuq is the rate of injection required to maintain the desiredcemtration
andk is a feedback gain that should be chosen such that the clospdystem is
stable. Substituting the control law into the system, weiabta

G (o ) () e

dt ko —ko 0
y= (O 1] X =:Cx
The equilibrium concentratiox, € R? is given byxe = —A~1Buq and
_ boka
— CA By = Ug-
Ye ™ Kokz +kake + Kkikzbo

Choosinguq such thatye = y4 provides the constant rate of injection required to
maintain the desired output. We can now shift coordinat@daice the equilibrium
point at the origin, which yields

12_ —ko—ki  —kqbok .
dt ko —ko ’
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wherez = x— Xe. We can now apply the results of Theorem 4.1 to determine the
stability of the system. The eigenvalues of the system aendiy the roots of the
characteristic polynomial

A(S) = S*+ (Ko+ ka +ka)s+ (ko + Ky + kikobgk).

While the specific form of the roots is messy, it can be showntth@roots are
positive as long as the linear term and the constant termahegositive. Hence
the system is stable for amky> 0. O

Stability Analysis via Linear Approximation

An important feature of differential equations is that ibiten possible to deter-
mine the local stability of an equilibrium point by approxting the system by a
linear system. The following example illustrates the badéai

Example 4.7 Inverted pendulum
Consider again the inverted pendulum, whose open loop digsare given by

d_ (%

dt — |sinxg—yxz )’
where we have defined the statexas (8, 8). We first consider the equilibrium
point atx = (0,0), corresponding to the straight up position. If we assumetttea

angle@ = x; remains small, then we can replacexsinvith x; and cox; with 1,
which gives the approximate system

dX_ X2 . 0 1
o (e )=(2 1) ”

Intuitively, this system should behave similarly to the mma@omplicated model
as long ax is small. In particular, it can be verified that the equililonigpoint
(0,0) is unstable by plotting the phase portrait or computing therevalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable aquitilpoint atx =
(1,0). In this case we have to expand sirand cos; aroundx; = 11, according
to the expansions

sin(rm+6) = —sinB~ —6 cogm+6) =cog0) ~ 1.

If we definez; = x1 — randz, = xp, the resulting approximate dynamics are given

by g
j_ 2 . 0 1
& [_zl_m] _ [_1 _y] , (4.10)

Note thatz= (0, 0) is the equilibrium point for this system and that it has thesa
basic form as the dynamics shown in Figure 4.8. Figure 4.11 shiogvphase por-
traits for the original system and the approximate systeyarad the corresponding
equilibrium points. Note that they are very similar, altgbunot exactly the same.
It can be shown that if a linear approximation has either ggtically stable or
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Figure 4.11: Comparison between the phase portraits for the full nonlinear systeft)s (le
and its linear approximation around the origin (right). Notice that near thiilegum point
at the center of the plots, the phase portraits (and hence the dynamsiedinaist identical.

unstable equilibrium points, then the local stability of triginal system must be
the same (Theorem 4.3, page 118). O

More generally, suppose that we have a nonlinear system
x=F(x)

that has an equilibrium point a. Computing the Taylor series expansion of the
vector field, we can write

X=F(Xe)+ Z—I):( (X—Xe) + higher order terms ifix — Xe).
Xe

SinceF (xe) = 0, we can approximate the system by choosing a new statédlaria
Z= X—Xe and writing

oF

z=Az where A= —| .
dxXe

(4.11)

We call the system (4.11) tHmear approximationof the original nonlinear sys-
tem.

The fact that a linear model can be used to study the behaviamohlinear
system near an equilibrium point is a powerful one. Indeezlcan take this even
further and use a local linear approximations of a nonlirmetem to design a
feedback law that keeps the system near its equilibriumtgdesign of dynam-
ics). Thus, feedback can be used to make sure that solutior&reslose to the
equilibrium point, which in turn ensures that the linear @pimation used to sta-
bilize it is valid.

Linear approximations can also used to understand stabilitpn-equilibrium
solutions, as illustrated by the following example.

Example 4.8 Stable limit cycle
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Consider the system given by equation (4.6),

dx

—dtl =X+ x1(1—x2 —X3)

d

d—)? = X1+ %(1-x —x3),

whose phase portrait is shown in Figure 4.5. The differentjgbéion has a peri-
odic solution
X1(t) = x1(0) cost + x2(0) sint, (4.12)

with x2(0) +x3(0) = 1.
To explore the stability of this solution, we introduce pataordinates and¢
that are related to the state varialskgsandx, by

X1 =rCcosgp, Xo =rsing.
Differentiation gives the following linear equations foand¢
X1 =rFcosp —resing, X =FSing +r¢ cosp
Solving this linear system farand¢ gives, after some calculation,
F=r(1—r?), p=-1

Notice that the equations are decoupled, hence we can arthlystability of each
state separately.

The equation for has three equilibriar =0, r = 1 andr = —1 (not realiz-
able sinca must be positive). We can analyze the stability of theselibgiai by
linearizing the radial dynamics with(r) = r(1—r?). The corresponding linear
dynamics are given by

f=—r r=(1-2r3r re=0,1,

e

where we have abused notation and usdd represent the deviation from the
equilibrium point. It follows from the sign ofl — 2r2) that the equilibriunt = 0

is unstable and the equilibrium= 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes to= 1 as time goes to infinity, but if the system
starts withr = 0O it will remain at the equilibrium for all times. This implig¢bat
all solutions to the original system that do not starkat x, = 0 will approach
the circlex? +x3 = 1 as time increases.

To show stability of the full solution (4.12), we must invigstte the behavior
of neighboring solutions with different initial conditisnWe have already shown
that the radiusg will approach that of the solution 4.12 as longré8) > 0. The
equation for the angle can be integrated analytically to giggt) = —t + ¢(0),
which shows that solutions starting at different anglesill neither converge nor
diverge. Thus, the unit circle ettractingbut the solution (4.12) is only stable, not
asymptotically stable. The behavior of the system is ilatsid by the simulation
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Figure 4.12: Solution curves for a stable limit cycle. The phase plane plot on the lefisho
that the trajectory for the system rapidly converges to the stable limit cydie. sTarting
points for the trajectories are marked by circles in the phase portrait. Teelttimain plots
on the right show that the states do not convert to the solution but instéathma constant
phase error.

in Figure 4.12. Notice that the solutions approach the ciagtédly but that there
is a constant phase shift between the solutions. O

4.4 LYAPUNOV STABILITY @

We now return to the study of the full nonlinear system

K_FW xeR" (4.13)

Having defined when a solution for a nonlinear dynamical systestable, we
can now ask how to prove that a given solution is stable, asyticplly stable
or unstable. For physical systems, one can often argue alahitity based on
dissipation of energy. The generalization of that techniguerbitrary dynamical
systems is based on the use of Lyapunov functions in placesstjg.

In this section we will describe techniques for determinting stability of so-
lutions for a nonlinear system (4.13). We will generally heerested in stability
of equilibrium points and it will be convenient to assumettka= 0 is the equi-
librium point of interest. (If not, rewrite the equationsamew set of coordinates

Z=X—Xe.)

Lyapunov Functions

A Lyapunov function V. R" — R is an energy-like function that can be used to
determine stability of a system. Roughly speaking, if we fiath a non-negative
function that always decreases along trajectories of te&enmy, we can conclude
that the minimum of the function is a stable equilibrium gdlocally).

To describe this more formally, we start with a few definitiokge say that a
continuous functiorV is positive definitef V(x) > 0 for all x # 0 andV (0) = 0.
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Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov functé(x) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system vaysbaus¥ (x)

to decrease along the trajectory.

Similarly, a function isnegative definité V (x) < O for allx# 0 andV (0) = 0. We
say that a functioV is positive semidefinitd V (x) > 0 for all x butV(x) can be
zero at points other than just= 0.

To illustrate the difference between a positive definite fiamcand a positive
semi-definite function, suppose that R? and let

Vi) =X, Va(X) =+,

BothV; andV; are always non-negative. However, it is possibleVfpto be zero
even ifx # 0. Specifically, if we sex = (0, c) wherec € R is any nonzero number,
thenV;(x) = 0. On the other hand/,(x) = 0 if and only ifx= (0,0). ThusV; is
positive semi-definite and, is positive definite.

We can now characterize the stability of an equilibrium poin= 0 for the
system (4.13).

Theorem 4.2(Lyapunov stability) Let V be a non-negative function @&i' and
let V represent the time derivative of V along trajectories & system dynam-
ics (4.13)

VvV = 07V@< — dl (x)

- oxdt  ox '

Let B = B(0) be a ball of radius r around the origin. If there exists>r0 such
that V is positive definite aid is negative semi-definite for allxB;, then x= 0
is locally stable in the sense of Lyapunov. IfV is positiviinite andV is negative
definite in B, then x= 0is locally asymptotically stable.

If V satisfies one of the conditions above, we say Yhat a (local)Lyapunov
functionfor the system. These results have a nice geometric intatfmet The
level curves for a positive definite function are the curvengd byV (x) = c,

¢ > 0 and for eacle this gives a closed contour, as shown in Figure 4.13. The
condition thatV (x) is negative simply means that the vector field points towards

lower level contours. This means that the trajectories mowernaller and smaller
values ofV and ifV is negative definite thenmust approach 0.
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Example 4.9 Stability of a simple nonlinear system
Consider the scalar nonlinear system

K= x
1+X
This system has equilibrium points»at 1 andx = —2. We consider the equilib-
rium point atx = 1 and rewrite the dynamics usizg= x— 1:

_ 2
7= ——7-1
2+2 ’
which has an equilibrium point &= 0. Now consider the candidate Lyapunov
function

V(X) = %22

which is globally positive definite. The derivative @falong trajectories of the
system is given by
V() =zz= 2 _2_,
2+z
If we restrict our analysis to a baB, wherer < 2, then 2+z > 0 and we can

multiply through by 2+ zto obtain
22— (242242 =-2-32=-72(z+3)<0 zeB,r<2

It follows thatV(z) < Oforallze By, z# 0 and hence the equilibrium poixg = 1
is locally asymptotically stable. O

A slightly more complicated situation occursvfis negative semi-definite. In
this case it is possible th¥t(x) = 0 whenx ## 0 and hence could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum
A normalized model for a hanging pendulum is

O(I;f[l = Xo, dd)iz = —sinxy,

wherex; is the angle between the pendulum and the vertical, withtigest;

corresponding to counter-clockwise rotation. The equdtaman equilibriuny; =

x2 = 0, which corresponds to the pendulum hanging straight ddwmexplore the

stability of this equilibrium we choose the total energy dyapunov function:
1,

1 1
V(X) = 1—cosxg + §X% ~ Ex§+ 5%

The Taylor series approximation shows that the function sitpe definite for
smallx. The time derivative o¥/ (x) is

V = X1 SiNX1 + XoXo = X2 SiNXp — X2 Sinxg = 0.

Since this function is positive semi-definite it follows frongdpunov’s theorem
that the equilibrium is stable but not necessarily asyniqaty stable. When per-



114 CHAPTER 4. DYNAMIC BEHAVIOR

turbed the pendulum actually moves in a trajectory whicmeggonds to constant
energy. U

Lyapunov functions are not always easy to find and they are migua. In
many cases energy functions can be used as a starting poiw#sadone in Ex-
ample 4.10. It turns out that Lyapunov functions can alwagsdund for any
stable system (under certain conditions) and hence onektimat if a system is
stable, a Lyapunov function exists (and vice versa). Rewslts using “sum
of squares” methods have provided systematic approachdmding Lyapunov
systems [158]. Sum of squares techniques can be applied tad Bariety of sys-
tems, including systems whose dynamics are described lyynquoilial equations
as well as “hybrid” systems, which can have different modiglifferent regions
of state space.

For a linear dynamical system of the form

X = Ax
it is possible to construct Lyapunov functions in a systeenatanner. To do so,
we consider quadratic functions of the form
V(x) = x" Px,
whereP € R™" is a symmetric matrix® = PT). The condition thaV be positive
definite is equivalent to the condition tHais apositive definite matrix
x'Px>0  forallx#0,

which we write as? > 0. It can be shown that P is symmetric ther is positive
definite if and only if all of its eigenvalues are real and pgsit

Given a candidate Lyapunov functidhx) = x" Px, we can now compute its
derivative along flows of the system:

. oVdx
V = —— =
ox dt
The requirement that be negative definite (for asymptotic stability) becomes a
condition that the matriXQ be positive definite. Thus, to find a Lyapunov func-

tion for a linear system it is sufficient to choos®a> 0 and solve thé.yapunov
equation

X" (ATP+PA)Xx =: —x" Qx.

ATP4+PA=—Q. (4.14)

This is a linear equation in the entries Bf and hence it can be solved using
linear algebra. It can be shown that the equation always kakiion if all of the
eigenvalues of the matriX are in the left half plane (see Exercise 4.7). Moreover
the solutionP is positive definite ifQ is positive definite. It is thus always possible
to find a quadratic Lyapunov function for a stable linear syst&Ve will defer a
proof of this until Chapter 5 where more tools for analysidiméar systems will
be developed.

Knowing that we have a direct method to find Lyapunov functitordinear
systems we can now investigate stability of nonlinear sgsteConsider the sys-
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Figure 4.14: Stability of a genetic switch. The circuit diagram on the left represents two
proteins that are each repressing the production of the other. The inpaitsiu, interfere
with this repression, allowing the circuit dynamics to be modified. The equifibpoints

for this circuit can be determined by the intersection of the two curvesrsioovthe right.

tem dx B

dt
whereF (0) = 0, andF (x) contains terms that are second order and higher in the
elements ok. The functionAxis an approximation df (x) near the origin and we
can determine the Lyapunov function for the linear appr@tion and investigate
if it also is a Lyapunov function for the full nonlinear syste The following
example illustrates the approach.

F(x) = Ax+F(x), (4.15)

Example 4.11 Stability of a Genetic Switch
Consider the dynamics of a set of repressors connectedhtagiet a cycle, as
shown in Figure 4.14a. The normalized dynamics for this systeme given in
Exercise 2.11: dz i 4z "
dr  1+2) o dr  1+27 2 (4.18)

wherez; andz are scaled versions of the protein concentrationand u are
parameters that describe the interconnection betweenetiesgand we have set
the external inputs; andu, to zero.

The equilibrium points for the system are found by equatirgytitne deriva-
tives to zero. We define

_ M oy df _ —pnd
fu) = 14+un Fw = du (14um)?
and the equilibrium point are defined as the solutions of thegons
2 = f(Zg) Zp = f(Zl).

If we plot the curveqz, f(z)) and(f(z),2) on a graph, then these equations
will have a solution when the curves intersect, as shown inréig.14b. Because
of the shape of the curves, it can be shown that there willydve three solutions:
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one atzie = Zpe, ONE Withzie < Zpe and one withzye > zpe. If > 1, then we can
show that the solutions are given approximately by

1 1
e~ U, Ze= W, Z1e = Z2e, Z1e ™ Tnil, Ze ~ . (4.17)

To check the stability of the system, we writtéu) in terms of its Taylor series
expansion abouie

f(u) = f(ue)+ f'(Ue) - (U— Ug) + f”(Ue) - (U— Ue)® + higher order terms

where f’ represents the first derivative of the function affdthe second. Using
these approximations, the dynamics can then be written as

dw -1 f(ze =
a = [f/(zle) _i >] W+F(W)a

wherew = z— z is the shifted state arfél(w) represents quadratic and higher order
terms.

We now use equation (4.14) to search for a Lyapunov funct@mosingQ = |
and lettingP € R%*? have elementsgj, we search for a solution of the equation

-1 f3) (Pu P2 (Pu pr2) (-1 f1)_ (-1 O

fi -1 P12 P22 P12 P22 f; —1 0o -1)°
wheref] = f/(ze) and f; = f'(z¢). Note that we have sgh1 = p;2 to forceP to
be symmetric. Multiplying out the matrices, we obtain

—2pu+2f3p12 pufi—2pa+p2f;) _ (-1 0
P11f] —2p1a+ p2ofy  —2p22+2fip1o 0o -1)°

which is a set ofinear equations for the unknowrs;. We can solve these linear

equations to obtain

CPi-ff42 fI 4+ 15 f3— /542

P11= m7 plzz—m, Pzzz—m-

To check tha¥ (w) = wTPwis a Lyapunov function, we must verify the(w) is
positive definite function or equivalently thBt> 0. SinceP is a 2x 2 symmetric
matrix, it has two real eigenvaludg andA, that satisfy

A1+ Ay =traceP), A1-Az =detP).
In order forP to be positive definite we must have thiatandA, are positive and
we thus require that
f12 251+ 5+ 4 f/7— 25+ f'5+ 4
4—A4Af[f) 16— 16f;f;
We see that tra¢®) = 4de{P) and the numerator of the expressions is jigt-
fz)2 +4 > 0, so it suffices to check the sign of—lfi fé. In particular, forP to be

traceP) = >0, detP) = > 0.




4.4. LYAPUNOV STABILITY 117

cl — — —lacl

Protein B (scaled)

Protein concentration (scaled)

0 5 10 15 20 25
Protein A (scaled) time (scaled)

Figure 4.15: Dynamics of a genetic switch. The phase portrait on the left shows that the
switch has three equilibrium points, corresponding to protein 1 havingeocration greater
than, equal to or less than protein 2. The concentration with equal pratedgistrations is
unstable, but the other equilibrium points are stable. The simulation on theshigivs the

time response of the system starting from two different initial conditions.

positive definite, we require that
f/(Zle) f,(Zze) <1

We can now make use of the expressionsffodefined earlier and evaluate at
the approximate locations of the equilibrium points detiieequation (4.17). For
the equilibrium points whereye # 2, we can show that

£ (2e) ' (20) o () 1Ly — HORT Y g O e
le 2e) ~ T'(L) (Un_l) = (1+ pn)2 1+H—n(n—1) ~ i )
Usingn = 2 andu ~ 200 from Exercise 2.11 we see thidtze) f'(z¢) < 1 and
henceP is a positive definite. This implies th¥tis a positive definite function and
hence a potential Lyapunov function for the system. _

To determine if the system (4.16) is stable, we now compuge the equilib-
rium point. By construction

V =w' (PA+ATP)W+FT (w)Pw+w'PF(w) = —w'w+F T (w)Pw+w'PF (w).

Since all terms irF are quadratic or higher order im, it follows thatF T (w)Pw
andw' PF (w) consist of terms that are at least third ordemin Therefore ifw
is sufficiently close to zero then the cubic and higher ordensewill be smaller
than the quadratic terms. Hence, sufficiently closerte 0,V is negative definite
allowing us to conclude that these equilibrium points arihstable.

Figure 4.15 shows the phase portrait and time traces for amysith u = 4,
illustrating the bistable nature of the system. When thigaintondition starts with
a concentration of protein B greater than protein A, thetsmhuconverges to the
equilibrium point at (approximately()L/u"*, i) and if A is greater then B then it
goes to(u,1/u"1). The equilibrium point withz;e = 2o is seen to be unstable.

O

More generally, we can investigate what the linear appration tells about
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the stability of a solution to a nonlinear equation. The feilogy theorem gives a
partial answer for the case of stability of an equilibriunirpo

Theorem 4.3. Consider the dynamical syste@.15)with F(0) = 0 andF such
thatlim ||F(x)|/||x|| — 0 as||x|| — O. If the real parts of all eigenvalues of A are
strictly less than zero, then,x= 0 is a locally asymptotically stable equilibrium
point of equatior(4.15)

This theorem implies that asymptotic stability of the linapproximation im-
plieslocal asymptotic stability of the original nonlinear system. Thedrem is
very important for control because it implies that stalilian of a linear approxi-
mation of a nonlinear system results in a stable equilibrfionthe nonlinear sys-
tem. The proof of this theorem follows the technique used inntpla 4.11. A
formal proof can be found in [116].

Krasovskii-Lasalle Invariance Principle

For general nonlinear systems, especially those in symfmiin, it can be difficult
to find a positive definite functioM whose derivative is strictly negative definite.
The Krasovskii-Lasalle theorem enables us to conclude asfimgtability of an
equilibrium point under less restrictive conditions, n&mia the case thaV is
negative semi-definite, which is often easier to construotvéier, it applies only
to time-invariant or periodic systems.
We will deal with the time-invariant case and begin by intronhg a few more

definitions. We denote the solution trajectories of the tim@riant system

dx

dt
asx(t : a), which is the solution of equation (4.18) at tinhestarting froma at
to = 0. Thew limit setof a trajectoryx(t;a) is the set of all pointz € R" such
that there exists a strictly increasing sequence of tithesich thatx(t,;a) — z
asn— . A setM C R" is said to be arnvariant setif for all b € M, we have
X(t;b) € M for all t > 0. It can be proved that the limit set of every trajectory is
closed and invariant. We may now state the Krasovskii-Lagaihciple.

F(x) (4.18)

Theorem 4.4(Krasovskii-Lasalle principle)Let V: R" — R be a locally positive
definite function such that on the compact@et= {x € R":V(x) < r} we have
V(x) < 0. Define _

S={xe Q,:V(x) =0}.
As t— oo, the trajectory tends to the largest invariant set inside.&; its w limit
set is contained inside the largest invariant set in S. Irtipatar, if S contains no
invariant sets other than x 0, then 0 is asymptotically stable.

Proofs are given in [121] and [127].

Lyapunov functions can often be used to design stabiliziowgtrollers as is
illustrated by the following example, which also illusgathow the Krasovskii-
Lasalle principle can be applied.
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Example 4.12 Stabilization of an inverted pendulum
Following the analysis in Example 2.7, an inverted pendulamize described by
the following normalized model:

dxq . dx
at @ dt
wherex; is the angular deviation from the upright position ang the (scaled)
acceleration of the pivot. The system has an equilibriumyat xo = 0, which
corresponds to the pendulum standing upright. This eqiuliis unstable.
To find a stabilizing controller we consider the following dadate for a Lya-
punov function

= SiNXy + UCOSXy, (4.19)

1 1 1
V(x) = (cosxy — 1) +a(1—cogxy) + éxg ~ (a— é)x§+ éxg.
The Taylor series expansion shows that the function is pesitefinite near the
origin if a > 0.5. The time derivative o¥ (x) is

V = —Xg Sinxy + 2a%; SiNXg COSXy + XoXo = X2(U 4 2asinXy) COSX.
Choosing the feedback law
U= —2asinx; — Xp COSX1,

gives _
V = —x3c08xq,

It follows from Lyapunov’s theorem that the equilibrium w@chlly stable. How-
ever, since the function is only negative semi-definite wenononclude asymp-
totic stability using Theorem 4.2. However, note thiat 0 implies thatx, =0 or
X1 = T/2+nm.
If we restrict our analysis to a small neighborhood of thgiorQ,, r < /2
then we can define
S={(x1,%2) € Qr : xo =0}

and we can compute the largest invariant set inSideéor a trajectory to remain
in this set we must have, = 0 for allt and hence(t) = 0 as well. Using the
dynamics of the system (4.19), we see thét) = 0 andxx(t) = 0 impliesxy (t) =0
as well. Hence the largest invariant set ins&is (x;,x2) = 0 and we can use the
Krasovskii-Lasalle principle to conclude that the origindsally asymptotically
stable. A phase portrait of the closed loop system is shovirigare 4.16.

O

4.5 PARAMETRIC AND NON-LOCAL BEHAVIOR @

Most of the tools that we have explored are focused on thd lmefaavior of a
fixed system near an equilibrium point. In this section weflyrimtroduce some



120 CHAPTER 4. DYNAMIC BEHAVIOR

—21 -1 0 T 2

Figure 4.16: Phase portrait for a stabilized inverted pendulum. The shaded regicates!
the set of initial conditions that converge to the origin. The ellipse corredpto a level
set of a Lyapunov functiol (x) for whichV(x) > 0 andV (x) < 0 for all points inside the
ellipse. This can be used as an estimate of the region of attraction of the gquiljoint.

concepts regarding the global behavior of nonlinear systena the dependence
of a system'’s behavior on parameters in the system model.

Regions of attraction

To get some insight into the behavior of a nonlinear systeroamestart by finding
the equilibrium points. We can then proceed to analyze tbal loehavior around
the equilibria. The behavior of a system near an equilibriwwimipis called the
local behavior of the system.

The solutions of the system can be very different far away faonequilibrium
point. This is seen, for example, in the stabilized penduluféxample 4.12. The
inverted equilibrium point is stable, with small oscillatis that eventually con-
verge to the origin. But far away from this equilibrium pothere are trajectories
that converge to other equilibrium points or even cases iithwthe pendulum
swings around the top multiple times, giving very long datibns that are topo-
logically different from those near the origin.

To better understand the dynamics of the system, we can agéhe set of all
initial conditions that converge to a given asymptoticaligble equilibrium point.
This set is called theegion of attractionfor the equilibrium point. An example is
shown by the shaded region in Figure 4.16. In general, comgpuégions of at-
traction is difficult. However, even if we cannot determine thgion of attraction,
we can often obtain patches around the stable equilibrizatteaattracting. This
gives partial information about the behavior of the system.

One method for approximating the region of attraction i®tigh the use of
Lyapunov functions. Suppose thétis a local Lyapunov function for a system
around an equilibrium poing. Let Q; be set on whicW (x) has value less than

Qr={xeR":V(x) <r},

and suppose that(x) < 0 for all x € Q, with equality only at the equilibrium
pointxg. ThenQ;, is inside the region of attraction of the equilibrium poiSince
this approximation depends on the Lyapunov function andlioéce of Lyapunov



4.5. PARAMETRIC AND NON-LOCAL BEHAVIOR 121

function is not unique, it can sometimes be a very consemastimate.

It is sometimes the case that we can find a Lyapunov fundfi@uch thatv is
positive definite an¥ is negative (semi-) definite for atlc R". In this case it can
be shown that the region of attraction for the equilibriuninpés the entire state
space and the equilibrium point is said todiebally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Exampl2. The Lya-
punov function for the system was

V(x) = (cosxg — 1) +a(1—cogxg) + %x%

andV was negative semidefinite for alland nonzero wher; # +m/2. Hence
anyx such thatxy| < 11/2,V(x) > 0 will be inside the invariant set defined by the
level curves oW (x). These level sets are shown in Figure 4.16. O

Bifurcations

Another important property of nonlinear systems is howrthehavior changes as
the parameters governing the dynamics change. We can stisdiy the context
of models by exploring how the location of equilibrium paintheir stability, their
regions of attraction, and other dynamic phenomena suchméisdycles, vary
based on the values of the parameters in the model.

Consider a differential equation of the form

dx

gt = Foom), xeR", ueRX (4.20)
wherex is the state angl is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x,u)=0

and asu is varied, the corresponding solutiorg 1) can also vary. We say that
the system (4.20) hagufurcationat u = u* if the behavior of the system changes
qualitatively atu*. This can occur either due to a change in stability type or a
change in the number of solutions at a given valug of

Example 4.14 Predator-prey
Consider the predator-prey system described in SectionT®& dynamics of the

system are given by
dH H aHL
—=rpH|{l—— ) ————
.~ " < K) 1+aHT,

dL L

whereH andL are the number of hares (prey) and lynxes (predators)sarmng,
K, k, aandT, are parameters that model a given predator-prey systerorijoed

(4.21)



122

0.02

0.015

0.01

0.005

stable

unstable

stable

@)

15

20

400

300

— 200

100

CHAPTER 4. DYNAMIC BEHAVIOR
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Figure 4.17: Bifurcation analysis of the predator-prey system. (a) Parametric statbidity
gram showing the regions in parameter space for which the system is atab(b) bifurca-
tion diagram showing the location and stability of the equilibrium point as a fumciidy,.
The dotted lines indicate the upper and lower bounds for the limit cycle aptrameter
value (computed via simulation). The nominal values of the parameterg imtidel are
r, = 0.02,K =500,a=0.03,T, =5,r, = 0.01 andk = 0.2.

in more detail in Section 3.7). The system has an equilibriumt@d He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behafithe sys-
tem, we choose to focus on two specific parameters of interiesiie growth rate
of the lynxes, andl}, the time constant for prey consumption. Figure 4.17a is
a numerically computegarametric stability diagranshowing the regions in the
chosen parameter space for which the equilibrium poingislst(leaving the other
parameters at their nominal values). We see from this figueftn certain com-
binations ofr; and T, we get a stable equilibrium point while at other values this
equilibrium point is unstable.

Figure 4.17b shows a numerically computgturcation diagramfor the sys-
tem. In this plot, we choose one parameter to vapy &nd then plot the equilib-
rium value of one of the statek)(on the vertical axis. The remaining parameters
are set to their nominal values. A solid line indicates thatequilibrium point is
stable; a dashed line indicates that the equilibrium paintistable. Note that the
stability in the bifurcation diagram matches that in thegpaetric stability diagram
for rj = 0.01 (the nominal value) ant}, varying from 0 to 20. For the predator-
prey system, when the equilibrium point is unstable, thetgm converges to a
stable limit cycle. The amplitude of this limit cycle is showsing the dot-dashed
line in Figure 4.17b. O

A particular form of bifurcation that is very common when tmtling linear
systems is that the equilibrium remains fixed, but the stswoli the equilibrium
changes as the parameters are varied. In such a case it aimgvi® plot the
eigenvalues of the system as a function of the parameterdh [Sats are called
root locus plotsbecause they give the locus of the eigenvalues when panamete
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Figure 4.18: Stability plots for balancing a bicycle. The left plot shows the real partef th
system eigenvalues as a function of the bicycle velogityVhen one or more eigenvalues
have positive real part, the system is unstable. The figure on the rigivssthe locus of
eigenvalues on the complex plane as the velocisyaried and gives a different view of the
stability of the system. This type of plot is called a root locus plot.

change. Bifurcations occur when parameter values are sathhere are eigen-
values with zero real part. Computing environments such LBBY, MATLAB
and Mathematica have tools for plotting root loci.

Example 4.15 Root locus plot for a bicycle model

Consider the linear bicycle model given by equation (3. 8eaation 3.2. Introduc-
ing the state variables = ¢, X, = 8, x3 = ¢ andx4 = & and setting the steering
torqueT = 0 the equations can be written as

dx 0 [

g X=A
dt —M_l(Ko—l— KzV%) —M1Cvwy %

wherel is a 2x 2 identity matrix ands is the velocity of the bicycle. Figure 4.18a
shows the real parts of the eigenvalues as a function of ¥gloEigure 4.18b
shows the dependence of the eigenvaluesar the velocityvg. The figures show
that the bicycle is unstable for low velocities because tigemvalues are in the
right half plane. As the velocity increases these eigemgmove into the left
half plane indicating that the bicycle becomes self-sizibij). As the velocity is
increased further there is an eigenvalue close to the dfigirmoves into the right
half plane making the bicycle unstable again. However, ¢igenvalue is small
so it can easily be stabilized by a rider. Figure 4.18b showstie bicycle is
self-stabilizing for velocities between 6 and 10 m/s. O

Parametric stability diagrams and bifurcation diagranmsaravide valuable in-
sights into the dynamics of a nonlinear system. It is ususdigessary to carefully
choose the parameters that one plots, including combihiegéatural parameters
of the system to eliminate extra parameters when possibbenpQter programs
such aAUTO, LOCBI F andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.
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Figure 4.19: Headphones with noise cancellation. Noise is sensed by the exterior micro-
phone (a) and sent to a filter in such a way that it cancels the noise thettates the head
phone (b). The parameters of the filter are adjusted by the controller.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations tosag feedback laws
that stabilize and equilibrium point and provide a desimekl of performance.
However, for some classes of problems the feedback coatmolist be nonlinear
to accomplish its function. By making use of Lyapunov fuans we can often
design a nonlinear control law that provides stable bemaagowe saw already in
Example 4.12.

One way to systematically design a nonlinear controllemibégin with a
candidate Lyapunov functioW (x) and a control systemt = f(x,u). We say
thatV (x) is a control Lyapunov functioif for every x there exists ai such that
V(x) = 4L f(x,u) < 0. In this case, it may be possible to find a functi(x)
such thatu = a(x) stabilizes the system. The following example illustrates th
approach.

Example 4.16 Noise cancellation

Noise cancellation is used in consumer electronics anddinstnial systems to re-
duce the effects of noise and vibrations. The idea is to lpceliiuce the effect
of noise by generating opposing signals. A pair of headphovith noise can-
cellation such as those shown in Figure 4.19a is a typical p}@nA schematic
diagram of the system is shown in Figure 4.19b. The system leasiterophones,
one outside the headphones that picks up exterior no&®d another inside the
headphones that picks up the sigaalvhich is a combination of the desired signal
and the external noise that penetrates the headphone. Ttz @m the exterior
microphone is filtered and sent to the headphones in such ahatit tancels the
external noise that penetrates into the headphones. Thegtta of the filter are
adjusted by a feedback mechanism to make the noise sigrted internal micro-
phone as small as possible. The feedback is inherently reanllmecause it acts by
changing the parameters of the filter.
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To analyze the system we assume for simplicity that the gaipen of external
noise into the headphones is modeled by a first order dynasyst#¢m described
by

:—tz = apz+ bon, (4.22)

wherezis the sound level and the paramet&ysc 0 andbg are not known. Assume
that the filter is a dynamical system of the same type

d—W = aw+bn
dt '

We wish to find a controller that updatesand b so that they converge to the
(unknown) parametei® andbg. Introducex; =e=w-—12z X, = a—ag andxz =
b — bg, then

d
% = —ag(X—2)+ (a—a0)wW+ (b—bp)n = —agxy — XpX+Xan.  (4.23)

We will achieve noise cancellation if we can find a feedbackflanwchanging the
parameterga andb so that the erroe goes to zero. To do this we choose

1
V (X1,X2,X3) = 5 (X8 + x5 +X3)

as a candidate Lyapunov function for (4.23). The derivativé s
V = aX1X1 + XoXo + XaXa = —01@0X5 + Xo(Xo 4+ AXgW) + X3(X3 + X1N)

Choosing
Xo = AXX = AEeW X3 = axn=aen (4.24)

we find thatV = —aaoxf, and it follows that the quadratic function will decrease
as long ae = x; = w—2z+# 0. The nonlinear feedback (4.24) thus attempts to
change the parameters so that the error between the sigh#i@noise is small.
Notice that feedback law (4.24) does not use the model (£22)citly.

A simulation of the system is shown in Figure 4.20. In the satiah we have
represented the signal as a pure sinusoid and the noisezastiaod noise. The fig-
ure shows the dramatic improvement with noise cancellafidve sinusoidal sig-
nal is not visible without noise cancellation. The filter paedens change quickly
from their initial valuesa = b = 0. Filters of higher order with more coefficients
are used in practice. O

4.6 FURTHER READING

The field of dynamical systems has a rich literature that cheriaes the possi-
ble features of dynamical systems and describes how patiarockanges in the
dynamics can lead to topological changes in behavior. Readatroductions to
dynamical systems are given by Strogatz [179] and the hidlistiated text by
Abraham and Shaw [2]. More technical treatments include é&naov, Vitt and
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headphgne s
nal without noise cancellation and the bottom left shows the signal with narseetiation.
The right figures show the parameterandb of the filter.

Khaikin [8], Guckenheimer and Holmes [87] and Wiggins [L9Hor students
with a strong interest in mechanics, the texts by Arnold [48¢§ Marsden and
Ratiu [139] provide an elegant approach using tools frorfedéhtial geometry.
Finally, nice treatments of dynamical systems methods itogioare given by
Wilson [194] and Ellner and Guckenheimer [67]. There is a lditgeature on
Lyapunov stability theory, including the classic texts bwlkin [136], Hahn [90]
and Krasovskii [121]. We highly recommend the comprehensieatment by
Khalil [116].

EXERCISES

4.1 Show that if we have a solution of the differential equatiori)4iven by
X(t) with initial conditionx(tp) = Xo, thenxX{1) = X(t —tg) — Xo is a solution of the
differential equation o4z

X

& —F®

with initial conditionx(0) = 0.

4.2 A cylindrical tank has cross sectidnm?, effective outlet area m? and the in-
flow gi, m3/s. An energy balance shows that the outlet velocity+4s./2ghm/s,
whereg m/s? is the acceleration of gravity arfum is the distance between the
outlet and the water level in the tank. Show that the systenbeanodeled by

dh a 1
- = —K\/Zgh— AUin: Qout = @y/2gh.

dt
Use the parametefs= 0.2, a. = 0.01. Simulate the system when the inflow is zero
and the initial level id1= 0.2. Do you expect some difficulties in the simulation?

4.3 Consider the cruise control system described in Section Bldt the phase
portrait for the combined vehicle dynamics and Pl compemsaith k, = 1 and
ki =0.5.
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4.4 Consider the second order system

D ax
dt '
dXz

wherea, b, c > 0.

(a) Check whether
1, 15,
V(X) == éxl‘i‘ EXZ.
is a Lyapunov function for the system and give any conditithvat must

hold.

(b) Check whether . 1 b
I 2 Y Y
V(X) = 2x1+ 2(xz C—&Xl) :

is a Lyapunov function for the system and give any condititivad must
hold.

(c) Use the Lyapunov equation to find anotiewhich is a Lyapunov function
for all values of the parameters.

4.5 (Damped spring-mass system) Consider a damped springsystesn with
dynamics

md+ cq+kg= 0.
A natural candidate for a Lyapunov function is the total ggef the system, given
by

1 ., 1

V= Smg”+ équ'
Use the Krasovskii-Lasalle theorem to show that the systemyisptotically sta-
ble.

4.6 The following simple model for an electric generator conaddb a strong
power grid was given in Exercise 2.9:

d? EV .
The parameter b £V
~ Pmax
a= B = XP. (4.25)

is the ratio between the maximum deliverable poRgsy= EV/X, and the me-
chanical powePR,.

(a) Considern as a bifurcation parameter and discuss how the equilibparm
ona.
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(b) For the case whem> 1, show that there is a centerdaf = arcsir(1/a) and
a saddle ath = 11— ¢o.

(c) Show that there is a solution through the saddle thatfieetis
1 2
(2?1?) —¢+¢o—acosp —vaz—1=0. (4.26)
Use simulation to show that the stability region is the iiteof the area en-
closed by this solution. Investigate what happens if théesyss in equilib-

rium with a value ofathat is slightly larger than 1 areisuddenly decreases,
corresponding to the reactance of the line suddenly inorgas

4.7 Show that Lyapunov equation (4.14) always has a solution dfahe eigen-
values ofA are in the left half plane. (Hint: use the fact that the Lyapuequation
is linear inP and start with the case whefehas distinct eigenvalues.)

4.8 (Congestion control) Consider the congestion control l@mbdescribed in
Section 3.4. Confirm that the equilibrium point for the systengiven by equa-
tion (3.21) and compute the stability of this equilibriumimtousing a linear ap-
proximation.

4.9 (Swinging up a pendulum) Consider the inverted penduluntudsed in Ex-
ample 4.4, which is described by

6 = sinf +ucosé,

wheref is the angle between the pendulum and the vertical and theotsignal
uis the acceleration of the pivot. Using the energy function

V(6,0) =cosh — 1+ %62,
show that the state feedback
u=k(Vo—V)6cosh (4.27)
causes the pendulum to “swing up” to upright position.
4.10(Root locus plot) Consider the linear system
a3 1) (2):
dt 0 -3 4
y= (1 0) X

with the feedbacki = —ky. Plot the location of the eigenvalues as a function the
parametek.

4.11 An op amp circuit for an oscillator was shown in Exercise 3.5 @&cillatory
solution for that linear circuit was stable but not asymiptity stable. A schematic
of a modified circuit that has nonlinear elements is shownerfidiure below.
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The modification is obtained by making a feedback around eaeratipnal am-
plifier which has capacitors using multipliers. The sigaak v2 + V3 — V3 is the
amplitude error. Show that the system is modeled by

dV1 . R4 1
dt R1R3ClvzjL R11C1V1(V% V-V

dV2 1 1
at T RGUMT RZZCZVZ(V‘Z)_V%_V%)‘

Show that the circuit gives and oscillation with a stable fiayicle with amplitude
Vp. (Hint: Use the results of Example 4.8.)

4.12 (Self activating genetic circuit) Consider the dynamics ajemetic circuit
that implementself activation the protein produced by the gene is an activator
for the protein, thus stimulating its own production. Usthg models presented
in Example 2.12, the dynamics for the system can be written as

dm_ _ap?
dt  1+kp?

for p,m> 0. Find the equilibrium points for the system and analyze tuwall
stability of each using Lyapunov analysis.

d
tao-ym o =pm-3p (4.28)

4.13 Let A € R™" be a matrix with real eigenvaluds, . .., A, and corresponding
eigenvectorsy, ..., V.

(a) Show that if the eigenvalues are distingt£ A; for i # j) thenv; # v; for
i # .

(b) Show that the eigenvectors form a basisidrso that any vectox can be
written asx = 5 ajv; for aj € R.

(c) LetT= [vi v» ... vy| and show thaT AT !is a diagonal matrix of
the form (4.8) on page 105.
(d) Show that if some of tha&; are complex numbers, théncan be written as
N1 0
. o ([0 w
A=1|o - where AN=AecR or A= [—w a]'
0 AV
in an appropriate set of coordinates.

This form of the dynamics of a linear system is often referceddmodal form
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4.14(Pitchfork bifurcation) Consider the scalar dynamical syst
X = UX— px°.

Show that the equilibrium values gfhave the form shown below, with solid lines
representing stable equilibria and dashed lines repriegamstable equilibria:

X" X"
—--
a8 \
& u ! u
- '
(a) supercritical pitchfork (b) subcritical pitchfork

Label each branch according to the signgiadind p that correspond to the equi-
librium point.

4.15(Steering dynamics of a tanker) The normalized steering dicsaof a large
tanker can be described by the equations

dv
gr = aavhaer + av|v| +bi6

dr
i agv+aur +bpd

wherev is the normalized sway velocity, i.e. the component of tHeaity vector
that is orthogonal to the long ship directianthe turning rate an@ the rudder
angle. (The normalization is made by using the ship lehgth length unit, the
time to travel one ship length as the time unit and the massrinalized byp!3/2,
wherep is the density of water.)

Consider the following parameteag = —0.6,a, = —0.3,a3 = —5,a, = —2,
o =—2,b; =0.1 amdb, = —0.8. Determine all steady state solutions that are
obtained when the rudder is fixed in the mid ship positidn=0). For each
equilibrium point, linearize the system about the equilibr point, determine the
stability of the equilibrium point and describe how the sWii behave near this
equilibrium point.



Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For examplesthéon between
force on a spring and displacement of the spring is always nonlinear t@ stagree. The
relation between current through a resistor and voltage drop acrosksd deviates from a
straight-line relation. However, if in each case the relatioméasonablyinear, then it will
be found that the system behavior will be very close to that obtained bynaggan ideal,
linear physical element, and the analytical simplification is so enormousitbahake linear
assumptions wherever we can possibly do so in good conscience.

R. CannonpPynamics of Physical Systeni967 [47].

In Chapters 2—4 we considered the construction and anaty<sigferential
equation models for dynamical systems. In this chapter weiafize our results
to the case of linear, time-invariant, input/output systerwo central concepts
are the matrix exponential and the convolution equatiorguth which we can
completely characterize the behavior of a linear system.alde describe some
properties of the input/output response and show how tooxppate a nonlinear
system by a linear one.

5.1 BASIC DEFINITIONS

We have seen several instances of linear differential @nsin the examples of
the previous chapters, including the spring-mass systamgeéd oscillator) and
the operational amplifier in the presence of small (non-a#ing) input signals.
More generally, many dynamical systems can be modeled aetyby linear dif-
ferential equations. Electrical circuits are one example lofoad class of systems
for which linear models can be used effectively. Linear msagk also broadly
applicable in mechanical engineering, for example as nsoofesmall deviations
from equilibria in solid and fluid mechanics. Signal procegsystems, including
digital filters of the sort used in CD and MP3 players, are anatbarce of good
examples, although often these are best modeled in didoret€as described in
more detail in the exercises).

In many cases, wereatesystems with linear input/output response through
the use of feedback. Indeed, it was the desire for lineanbehthat led Harold S.
Black to the invention of the negative feedback amplifier. 8$trall modern single
processing systems, whether analog or digital, use fe&dbgeroduce linear or
near-linear input/output characteristics. For theseesyst it is often useful to
represent the input/output characteristics as linealrigg the internal details
required to get that linear response.
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For other systems nonlinearities cannot be ignored, eslbedi one cares
about the global behavior of the system. The predator-prelyl@m is one exam-
ple of this: to capture the oscillatory behavior of the idegendent populations
we must include the nonlinear coupling terms. Other examplelude switch-
ing behavior and generating periodic motion for locomatiBlowever, if we care
about what happens near an equilibrium point, it often sidficeapproximate
the nonlinear dynamics by their lodalearization as we already explored briefly
in Section 4.3. The linearization is essentially an approXionaof the nonlinear
dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systemseriormally. Con-
sider a state space system of the form

dx = f(x,u), y = h(x,u), (5.1)
dt

wherex € R", u € RP andy € RY. As in the previous chapters, we will usually

restrict ourselves to the single input, single output castakingp=q= 1. We

also assume that all functions are smooth and that for amaagoclass of inputs

(e.g., piecewise continuous functions of time) that theitsohs of equation (5.1)

exist for all time.

It will be convenient to assume that the origin= 0, u= 0 is an equilibrium
point for this systemx = 0) and thath(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose {ixatue) # (0,0) is an equilibrium point
of the system with outpute = h(xe,Ue). Then we can define a new set of states,
inputs and outputs

X=X—% UO=uU-Us V=Yy-VYe
and rewrite the equations of motion in terms of these vagibl

—X
dt N
¥=h(X+X%e,0+Ue) —Ye =:h(

Xt
=t

)
).

In the new set of variables, the origin is an equilibrium pauith output 0, and
hence we can carry out our analysis in this set of variablese@e have obtained
our answers in this new set of variables, we simply “traesl#tem back to the
original coordinates using= Xe+ X, U= Ug+ G andy = ye+V.

Returning to the original equations (5.1), now assumindneuit loss of gen-
erality that the origin is the equilibrium point of intereste write the outpuy(t)
corresponding to initial conditior(0) = xo and inputu(t) asy(t;xo,u). Using
this notation, a system is said to béireear input/output systentf the following

= f(R+Xe, U+ Ue) —: f(

)

Xt
o=}
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conditions are satisfied:

() y(t;axi+ Bxz,0) = ay(t; x1,0) + By(t; %2, 0)
(i) y(t; axo,0u) = ay(t; %o, 0) + Oy(t; 0, u) (5.2)
(iii)  y(t;0,0u1+ yup) = SY(t; 0,uz) + yy(t; 0, u2).

Thus, we define a system to be linear if the outputs are jointlsal in the initial
condition response and the forced response. Property (iigisisual decomposi-
tion of a system response into the homogeneous resporse)(and the particular
responsexp = 0). Property (iii) is the formal definition of therinciple of super-
position

The general form of a linear state space system is

(;(—Ax—i— Bu, y =Cx+Du, (5.3)
whereA € R™" B e R™P, C e R™", D € R¥P. In the special case of a single-
input, single-output system® is a column vectorC is a row vector and is
scalar. Equation (5.3) is a system of linear, first order, diffidal equations with
inputu, statex and outpuy. It is easy to show that given solutiorgt) andxx(t)
for this set of equations, that they satisfy the linearitgditions.

We define the solutiom,(t) with zero input as th@omogeneousolution and
the solutiorxp(t) with zero initial condition as thparticular solution. Figure 5.1
illustrates how the homogeneous and particular solutiansbe superimposed to
form the complete solution.

It is also possible to show that if a finite dimensional dynahgystem is in-
put/output linear in the sense we have described, that ititveays be represented
by a state space equation of the form (5.3) through apptepciacice of state
variables. In Section 5.2 we will give an explicit solutionezfuation (5.3) but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first order differential equation

— =ax+u, y=X

with x(0) = Xo. Letu; = Asinwit andu; = Bcoswyt. The homogeneous solution
is Xn(t) = €¥'xg, and the two particular solutions are

—w €+ wy coswt + asinowgt
a2+ w7
ae! — acoswpt + wp Sinwpt
as+ w5

Suppose that we now choog€)) = axp andu = u; + Up. Then the resulting
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Input (u) State (x, x,) Output (y)
2 2 2
3
31 1 1
[}
c
% 0 0 0
=]
5
£ -1 -1 -1
-2 -2 -2
0 20 40 60 0 20 40 60 0 20 40 60
2 2 2
1 1 1
<
g o 0 0
g
-1 -1 -1
-2 -2 -2
0 20 40 60 0 20 40 60 0 20 40 60
2 2 2
o 1 1 1
o
[=5
£ 0 0 0
3]
-1 -1 -1
-2 -2 -2
0 20 40 60 0 20 40 60 0 20 40 60
time (sec) time (sec) time (sec)

Figure 5.1: Superposition of homogeneous and particular solutions. The first mowss
the input, state and output corresponding to the initial condition respoitesé&cond row
shows the same variables corresponding to zero initial condition, baen@input. The
third row is the complete solution, which is the sum of the two individual solutions

solution is
A Ba
x(t):eat<orxo+ 5 w12+ 5 2)
a“+w a+w
_AwlcosahtJrasinwlt B—acoswzt+cozsinw2t

5.4
a2+ w? a2+ w3 >4)

To see this, substitute equation (5.4) into the differéeigation. Thus, the prop-
erties of a linear system are satisfied. O

Time Invariance

Time invarianceas an important concept that is used to describe a systemewvhos
properties do not change with time. More precisely, for aetimvariant system
if the input u(t) gives outputy(t), then if we shift the time at which the input
is applied by a constant amouat u(t + a) gives the outpuy(t +a). Systems
that are linear and time-invariant, often calledl systemshave the interesting
property that their response to an arbitrary input is coteplecharacterized by
their response to step inputs or their response to shortuiiseg”.

To explore the consequences of time-invariance, we first cberibe response
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1 —--z-zZc=<: 12
_I__L _____ )
os8r | _ ____|____"_
0.8
Z o6 ut) | u) ue) 2 06
H =
£o04 T " ----—- - - 5 04
0.2
0.2 ulty)
— 0
0 v v -0.2
0 2 4 6 8 10 0 2 4 6 8 10
Time (sec) Time (sec)

@) (b)

Figure 5.2: Response to piecewise constant inputs. A piecewise constant signekcan
represented as a sum of step signals (a) and the resulting output is ttoé theindividual
outputs (b).

to a piecewise constant input. Assume that the system ialipiait rest and con-
sider the piecewise constant input shown in Figure 5.2a. Tjmat inas jumps at
timesty and its values after the jumps anéy). The input can be viewed as a
combination of steps: the first step at titgehas amplitude(tp), the second step
at timet; has amplitudei(t;) — u(tp), etc.

Assuming that the system is initially at an equilibrium gdigo that the initial
condition response is zero), the response to the input cabtiaged by superim-
posing the responses to a combination of step inputsHI(Btbe the response to
a unit step applied at time 0. The response to the first steprsHlie— to)u(to),
the response to the second stepig — t1) (u(t1) — u(to)), and we find that the
complete response is given by

y(t):H(t—to)u(to)+H(t—t1)(u( 1) —U(to)) + -
(H(t) H(t_tl) ( (t—t1)— t—tz))u(t1)+...

00

_ ;(H(t—tn) (t—tn+1)) (tn)

© H(t—ty) —H(t—t
= tn+1—tn

An example of this computation is shown in Figure 5.2.
The response to a continuous input signal is obtained by datkia limit as
th. 1 —ty — 0, which gives

. /OOOH’(t—T)u(T)dT, (5.5)

whereH’ is the derivative of the step response, also calledripilse response
The response of a linear time-invariant system to any inputicas be computed
from the step response. Notice that the output only depemdseoinput since we
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assumed the system was initially at re$0) = 0. We will derive equation (5.5) in
a slightly different way in the next section.

5.2 THE MATRIX EXPONENTIAL

Equation (5.5) shows that the output of a linear system carritewas an integral
over the inputsi(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial condition&e begin by exploring

the initial condition response using the matrix exponéntia

Initial Condition Response

Although we have shown that the solution of a linear set ded#htial equations
defines a linear input/output system, we have not fully corgbtihe solution of
the system. We begin by considering the homogeneous respongsponding to
the system
dx
dt
For thescalardifferential equation

= AX (5.6)

X = ax xeR, aeR
the solution is given by the exponential

X(t) = €*'x(0).

We wish to generalize this to the vector case, whiebecomes a matrix. We define
thematrix exponentiahs the infinite series

_ 1 2 3
e = |+x+2x+ x %k' , (5.7)

whereX € R™"is a square matrix andis then x nidentity matrix. We make use
of the notation
X0=1 X?=XX X"=x"1X,

which defines what we mean by the “power” of a matrix. Equatiai)(& easy
to remember since it is just the Taylor series for the scalpoeential, applied to
the matrixX. It can be shown that the series in equation (5.7) conveiwesany
matrix X € R™" in the same way that the normal exponential is defined for any
scalara € R.

ReplacingX in equation (5.7) byAt wheret € R we find that

1 1 © 1
=1 A SA AN = 5 DA
2 3l Lok
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and differentiating this expression with respect gives
d 1 > 1
— M= AL A+ AN =AY AR = A 5.8
dt TATEGAT =AY 8

Multiplying by x(0) from the right we find thax(t) = €*x(0) is the solution to the
differential equation (5.6) with initial conditiox(0). We summarize this important
result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6)is given by
x(t) = éMx(0).

Notice that the form of the solution is exactly the same asfatar equations,
but we must put the vectox0) on the right of the matrix™!.

The form of the solution immediately allows us to see that theton is linear
in the initial condition. In particular, iky (t) is the solution to equation (5.6) with
initial condition x(0) = Xp1 andxnz2(t) with initial condition x(0) = xg2, then the
solution with initial conditionx(0) = axo1+ BXoz IS given by

X(t) = M (axo1+ Bxoz) = (A€ %o1+ BEMX02) = aXp(t) + BXna(t).
Similarly, we see that the corresponding output is given by

y(t) = Cx(t) = ayn(t) + Byn2(t),

whereyp (t) andyno(t) are the outputs correspondingXq (t) andxn(t).
We illustrate computation of the matrix exponential by twamples.

Example 5.2 Double integrator
A very simple linear system that is useful for understandiagic concepts is the
second order system given by

G=u
y=a

This system system is calleddauble integratobecause the inputis integrated
twice to determine the outpyt
In state space form, we write= (qg,q) and

dx_ (0 1) . (0],
dt— (0 O 1)~

The dynamics matrix of a double integrator is

01
A—[oo

and we find by direct calculation thAZ = 0 and hence

“n (s
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Thus the homogeneous solutian= 0) for the double integrator is given by

- (3 3) (28] - (5
y(t) = x1(0) +1tx2(0).

Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring-mastesysvith zero damp-
ing, is

G+ wfg=u.
Putting the system into state space form, the dynamics nfatrihis system can
be written as

A 0 w and At _ co_swot sinapt '
—wy O —Sinapt  cosant

This expression foe™ can be verified by differentiation:

Ee/“— —wpSinapt  wp Cosupt
dt = = | —apcoswpt  —wpSinupt

_ 0 w co_swot sinaypt — AX(1),
—wpy O —sSinapt  cosunt

The solution is then given by

cosupt  Sinupt x1(0
x(t) = e'x(0) = [_sinwot coswot] [X;(Og]'

If { # 0 then the solution is more complicated, but the matrix exptial can
be shown to be

Zei“’dt—Ze_iwdt eiwdt_|_e—iaht eiwdt_e—iaht
_|_
plt 2¢/(%2-1 2 2¢/(%2—-1
€ e—ioodt _eioodt Ze—iwdt_zeiwdt eiu)dt+e—ia)dt

2¢/(2—1 2¢/(2—-1 * 2

wherewy = an+/{? — 1. Note thatwy and/{? — 1 can either be real or complex,
but the combinations of terms will always yield a real valoethe entries in the

matrix exponential. O

An important class of linear systems are those that can beecied into diag-
onal form. Suppose that we are given a system

dx
a_Ax

such that all of the eigenvalues Afare distinct. It can be shown (Exercise 4.13)
that we can find an invertible matrik such thaff AT is diagonal. If we choose
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a set of coordinatez= T x, then in the new coordinates the dynamics become

92_ 19X Tax=TAT 12
dt dt
By construction ofT, this system will be diagonal.
Now consider a diagonal matri& and the correspondinkth power ofAt,

which is also diagonal:

A1 0) Atk 0
e mr= | M ,
0 ' An 0 | pING
It follows from the series expansion that the matrix expaia¢is given by
eht 0
e |
0 ot

A similar expansion can be done in the case that the eigegwalte complex,
using a block diagonal matrix, similar to what was done in Bect.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transforsmdihgional form.
They can however be transformed to a closely related frorgattieJordan form
in which the dynamics matrix has the eigenvalues along theattial. When there
are equal eigenvalues there may be 1s appearing in the siagendl indicating
that there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it tenwritten
as

50 0 o a1 o
0 X 0 '
J= where J = | : oo e (5.9)
8 ;) 0O 0 ... A 1
K 0 0 ... 0 A

Each matrixJ; is called aJordan blockand A; for that block corresponds to an
eigenvalue ofl. A first order Jordan block can be represented as a systenstonsi
ing of an integrator with the feedbadk Jordan of higher order can be represented
as series connections of such systems, as illustrated imeFg8.

Theorem 5.2(Jordan decompositionAny matrix Ac R™" can be transformed
into Jordan form with the eigenvalues of A determiningn the Jordan form.
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X1 X1 X2 X1 X2 X2

A A A A A A

Figure 5.3: Representation of linear system where the dynamics matrix is a Jordda bloc
A first order Jordan block can be represented as an integrator withdekA , as shown on
the left. Second and third order Jordan blocks can be representedess cnnections of
integrators with feedback, as shown on the right.

Proof. See any standard text on linear algebra, such as Strang [178]spHtial
case where the eigenvalues are distinct is examined in Exe4cl3. O

Converting a matrix into Jordan form can be complicatedhcalgh MATLAB
can do this conversion for numerical matrices usingjtbe dan function. The
structure of the resulting Jordan form is particularly ieting since there is no
requirement that the individudl’s be unique, and hence for a given eigenvalue
we can have one or more Jordan blocks of different size.

Once a matrix is in Jordan form, the exponential of the maaix be computed
in terms of the Jordan blocks:

er 0 ... O

; 0 e* 0

e = (5.10)
o ... 0
o ... ek,

This follows from the block diagonal form af. The exponentials of the Jordan
blocks can in turn be written as

Mt teht LM . el
0 et et . oM
et At : : (5.11)
. te/\it
0 elit

When there are multiple eigenvalues, the invariant sulespassociated with
each eigenvalue correspond to the Jordan blocks of thexm@atriNote thatA
may be complex, in which case the transformafiothat converts a matrix into
Jordan form will also be complex. Whenhas a nonzero imaginary component,
the solutions will have oscillatory components since

et — g% (coswt +isinwt).

We can now use these results to prove Theorem 4.1, which shatethe equilib-
rium pointxe = 0 of a linear system is asymptotically stable if and only iARe O.
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Proof of Theorem 4.1Let T € C™" be an invertible matrix that transformsnto
Jordan form,) = TAT—. Using coordinatez= T x, we can write the solution(t)
as
z(t) = e%'2(0).

Since any solutiom(t) can be written in terms of a solutia) with z(0) = T x(0),
it follows that it is sufficient to prove the theorem in the sérmed coordinates.

The solutiorg(t) can be written as a combination of the elements of the matrix
exponential and from equation (5.11) these elements adlydeczero for arbitrary
z(0) if and only if ReA; < 0. Furthermore, if any; has positive real part, then
there exists an initial conditior(0) such that the corresponding solution increases
without bound. Since we can scale this initial condition tcablgitrarily small, it
follows that the equilibrium point is unstable if any eigahiwe has positive real
part. O

The existence of a canonical form allows us to prove many pti@seof linear
systems by changing to a set of coordinates in whichAhmatrix is in Jordan
form. This will be used in Chapters 6 and 7 to design contralléie illustrate
this in the following proposition, which follows along tharse lines as the proof
of Theorem 4.1.

Proposition 5.3. Suppose that the system
X = AX

has no eigenvalues with strictly positive real part and omenmre eigenvalues
with zero real part. Then the system is stable if and only if dbelan blocks
corresponding to each eigenvalue with zero real part ardasdd x 1) blocks.

Proof. See Exercise 5.7. O
The following example illustrates the use of Jordan form.

Example 5.4 Linear model of a thrust vectored aircraft.

Consider the dynamics of a thrust vectored aircraft suchatsiescribed in Exam-
ple 2.9. Suppose that we choage= up = 0, so that the dynamics of the system
become

éa
és
dé &
dt —gsinés— =& |’ (®.12)
—g(coséz—1)— =&
L 0 J

whereé = (x,y,6,X,Y, é). The equilibrium points for the system are given by
setting the velocitiege, Ye and 6, to zero and choosing the remaining variables to
satisfy

—~gsingze=0

—6.=0.
—g(costze—1)=0 I §3e=6e
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This corresponds to the upright orientation for the aircréfpte thatxe andye
are not specified. This is because we can translate the systemew (upright)
position and we still obtain an equilibrium point.

To compute the stability of the equilibrium point, we comgtite linearization
using equation (4.11):

00 O 1 0 0

00 O 0 1 0

A—d—F |0 0 © 0 0o 1
9¢& |, 00 -g -c¢m 0 0]

0 0 O 0 -c¢/m O

00 O 0 0 0

The eigenvalues of the system can be computed as
A(A) ={0,0,0,0,—c/m,—c/m}.

We see that the linearized system is not asymptoticallyiestgibce not all of the
eigenvalues have strictly negative real part.

To determine with the system is stable in the sense of Lyapuv®must make
use of the Jordan form. It can be shown that the Jordan forni®fjiven by

0/0 0 0/ O 0
0/0 1 0/ O 0
3—0001 0 0
~10(/0 0O O 0
0/0 0 O|—c¢/m| O
(0[O0 0 Of O |—-c/m

Since the second Jordan block has eigenvalue 0 and is not e®igpnvalue, the
linearization is unstable. O

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a pescrdf the types of
behavior the system can exhibit. For oscillatory systeims térmmodeis often
used to describe the vibration patterns that can occur. &igdrillustrates modes
for a system consisting of two masses connected by springs.p@ttern is when
both masses oscillate left and right in unison, another isnthe masses moves
towards and from each other.

The initial condition response of a linear system can be @mrith terms of a
matrix exponential involving the dynamics matAx The properties of the matrix
A therefore determine the resulting behavior of the systeimerGa matrixA
R™" recall thatv is an eigenvector oA with eigenvaluel if

Av=Av.

In generald andv may be complex valued, althoughAfis real-valued then for
any eigenvalud , its complex conjugata * will also be an eigenvalue (withi* as
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Figure 5.4: Modes of vibration for a system consisting of two masses connectedingsp
In (a) the masses move left and right in synchronization in (b) they rrawards or against
each other.

the corresponding eigenvector).

Suppose first that andv are a real-valued eigenvalue/eigenvector pair&or
If we look at the solution of the differential equation g0) = v, it follows from
the definition of the matrix exponential that

t 1202 A% t
Mv= (I +AL+ A +---)v:v+)\tv+7v+---:e’\ V.

The solution thus lies in the subspace spanned by the eigenvébe eigenvalue
A describes how the solution varies in time and this solusarften called anode
of the system. (In the literature, the term mode is also ofiteed to refer to the
eigenvalue, rather than the solution.)

If we look at the individual elements of the vectorandy, it follows that

Xi(t) - e/“vi

xj(t) ety
and hence the ratios of the components of the staige constants for a (real)
mode. The eigenvector thus gives the “shape” of the solutimhig also called
a mode shapef the system. Figure 5.5 illustrates the modes for a secodet or
system consisting of a fast mode and a slow mode. Notice lieattate variables
have the same sign for the slow mode different signs for teienfede.

The situation is more complicated when the eigenvalues afe complex.

SinceA has real elements, the eigenvalues and the eigenvectorsrapex con-
jugatesA = g +iw andv = u=+iw, which implies that

Vv W vV—V*
2 2
Making use of the matrix exponential, we have

= &M (u+iw) = € ((ucoswt — wsinwt) +i(usinawt +wcoswt)),

which implies
eMu= % (e'“‘v+ eAt\f*) = ue’ coswt — wet sinwt
eMw = % (eAtv— eA‘\f*> = ue”' sincwt + we’t coswt.
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Figure 5.5: lllustration of the notion of modes for a second order system with reahedde
ues. The left figure (a) shows the phase plane and the modes @dssjo solutions that
start on the eigenvectors (bold lines). The corresponding time funaienshown in (b).

A solution with initial conditions in the subspace spanngadhe real paru and
imaginary partv of the eigenvector will thus remain in that subspace. Thetisoiu
will be a logarithmic spiral characterized lmyandw. We again call the solution
corresponding tad a mode of the system andhe mode shape.

If a matrix A has an distinct eigenvalueds, ..., A, then the initial condition
response can be written as a linear combination of the mddesee this, suppose
for simplicity that we have all real eigenvalues with cop@sding unit eigenvec-
torsvy,...,vh. From linear algebra, these eigenvectors are linearly iewiégnt
and we can write the initial conditiox(0) as

X(O) = Q1V1+ Vo + - -« + OpVp.
Using linearity, the initial condition response can be teritas
X(t) = ale)\ltV]_ + azeAthZ 4.4 anéntvn.

Thus, the response is a linear combination the modes of thersywith the am-
plitude of the individual modes growing or decayinged$. The case for distinct
complex eigenvalues follows similarly (the case for nostdct eigenvalues is
more subtle and requires making use of the Jordan form diedus the previous
section).

Example 5.5 Coupled spring-mass system
Consider the spring-mass system shown in Figure 5.4. Theiegudtmotion of
the system are

myGs = —2Kay — cdy +Kop
mplp = kap — 2kop — cipp

In state-space form, we define the state tabe(qi, g, d1,¢2) and we can rewrite
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the equations as

0 0 1 0
0 0 0 1
dx 2k Kk C o |x
d | m m m '
L -
m m m

We now define a transformatian= T x that puts this system into a simpler form.
Letzy = 3(th + ), 22 = 21, z3 = 3(Ch — ) @ndzs = 3, so that

1 1 0 O
110 0 1 1

Z=Tx=3511 21 0 o0
O 0 1 1
In the new coordinates, the dynamics become
(0 1 0 0
k
-—— —— 0 0
dz_ | m .
dt 0 0 0 1
0 3k c
m m

and we see that the system is in block diagonahfoda) form.

In the z coordinates, the states and z, parameterize one mode with eigen-
valuesA ~ c¢/(2vkm)+i,/k/m, and the statez andz; another mode witiA ~
c¢/(2v/3km) +i,/3k/m. From the form of the transformatioh we see that these
modes correspond exactly to the modes in Figure 5.4, in wdni@mdg, move ei-
ther toward or against each other. The real and imaginarg pathe eigenvalues
give the decay rates and frequencies for each mode. O

5.3 INPUT/OUTPUT RESPONSE

In the previous section we saw how to compute the initial @mmresponse using
the matrix exponential. In this section we derive doavolution equatioypwhich
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (Eeeated here:

dx
at - /xFBu (5.13)

y = Cx+Du.
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Using the matrix exponential, the solution to equation 3p.dan be written as
follows.

Theorem 5.4. The solution to the linear differential equati@b.13)is given by
t
X(t) = x(0) + / At-TBy(T)dr. (5.14)
0

Proof. To prove this, we differentiate both sides and use the ptp§8r8) of the
matrix exponential. This gives

d t
= Ax(0) + / A-DBU(T)dT + Bu(t) = Ax+ B,
0
which proves the result. Notice that the calculation is esaky the same as for
proving the result for a first order equation. O

It follows from equations (5.13) and (5.14) that the inputfmut relation for a
linear system is given by

y(t) = Ce"x(0) + /Ot ceNt-DBu(T)dT 4 Du(t). (5.15)

It is easy to see from this equation that the output is joititigar in both the
initial conditions and the state, which follows from thedarity of matrix/vector
multiplication and integration.

Equation (5.15) is called theonvolution equatiomand it represents the general
form of the solution of a system of coupled linear differahgquations. We see
immediately that the dynamics of the system, as charaetbtiy the matrixA,
play a critical role in both the stability and performancetiod system. Indeed,
the matrix exponential describésth what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can vemgusing the concept
of theimpulse responsef a system. Consider the application of an input signal
u(t) given by the following equation:

0 t<0
ut) =pe(t) =< 1/e 0<t<e (5.16)
0 t>e¢.

This signal is a “pulse” of duratiom and amplitude Le, as illustrated in Fig-
ure 5.6a. We define ampulse &(t), to be the limit of this signal as — O:

o(t) = l@o Pe(t). (5.17)

This signal, sometimes calleddelta function,is not physically achievable but
provides a convenient abstraction for understanding sgorese of a system. Note
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Figure 5.6: Pulse response and impulse response. The figure on the left shizses pti
width 5, 2 and 1, each with total area equal to 1. The corresponding pdpenses for a
linear system with eigenvalugs= {—0.08 —0.62} are shown on the right as solid lines.
The dashed line is the true impulse response, which is well-approximatedpoyse of
duration 1.

that the integral of an impulse is one:

t
/6(r)dr— lim pg(t r—hm/ Pe (t
0 0 -0

= lim 1/£dr:1 t>0.
e—0.Jo0

In particular, the integral of an impulse over an arbitgashort period of time is
identically 1.

We define thempulse responsef a systemh(t), to be the output correspond-
ing to having an impulse as its input:

- /0 tce“(t‘T)Bé(r)dr = Cé'B, (5.18)

where the second equality follows from the fact thét) is zero everywhere except
the origin and its integral is identically one. We can nowteithe convolution
equation in terms of the initial condition response, thevotution of the impulse
response and the input signal, and the direct term:

y(t) = Ce"x(0 +/ht—r (1)dT+Du(t). (5.19)

One interpretation of this equation, explored in Exercigg . that the response
of the linear system is the superposition of the response iofmite set of shifted

impulses whose magnitude is given by the inugt). This is essentially the ar-
gument used in analyzing Figure 5.2 and deriving equatids).(9\ote that the

second term in equation (5.19) is identical to equation)(&ril it can be shown
that the impulse response is formally equivalent to thevdévie of the step re-
sponse.
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The use of pulses as an approximation of the impulse respisseravides a
mechanism for identifying the dynamics of a system from daigure 5.6b shows
the pulse responses of a system for different pulse widtlaic®lthat the pulse
responses approaches the impulse response as the pulbegoédt to zero. As
a general rule, if the fastest eigenvalue of a stable systesrdal part-omax,
then a pulse of lengtl will provide a good estimate of the impulse response
E£0max < 1. Note that for Figure 5.6, a pulse width©& 1 s givescOmax = 0.62
and the pulse response is already close to the impulse respon

Coordinate Invariance

The components of the input vectarand the output vectoy are given by the
chosen inputs and outputs of a model, but the state varidelesnd on the coor-
dinate frame chosen to represent the state. This choice oficates affects the
values of the matrice8, B andC that are used in the model. (The direct tebm
is not affected since it maps inputs to outputs.) We now itiyate some of the
consequences of changing coordinate systems.
Introduce new coordinatesby the transformatioz = Tx, whereT is an in-
vertible matrix. It follows from equation (5.3) that
‘;'tz = T(Ax+Bu) = TAT 1z+ TBu=Az+Bu
y=Cx+DU =CT1z+Du =Cz+Du.

The transformed system has the same form as equation (5.8)eburatrice, B
andC are different:

A=TAT !t B=TB C=CT % (5.20)

There are often special choices of coordinate systems tbat as to see a partic-
ular property of the system, hence coordinate transfoonattan be used to gain
new insight into the dynamics.

We can also compare the solution of the system in transfoguedlinates to
that in the original state coordinates. We make use of aniitapbproperty of the

exponential map, .
eTST! _ 1571

which can be verified by substitution in the definition of the @xgntial map.
Using this property, it is easy to show that

X(t) =T 1z(t) = T 1ATx(0) + T2 /0t f-DBu(r)dr.

From this form of the equation, we see that if it is possibleram$formA into

a form A for which the matrix exponential is easy to compute, we canthat
computation to solve the general convolution equationteruntransformed state
x by simple matrix multiplications. This technique is illLestied in the following
examples.

if
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Figure 5.7: Coupled spring mass system. Each mass is connected to two springs with
stiffnessk and a viscous damper with damping coefficienThe mass on the right is drive
through a spring connected to a sinusoidally varying attachment.

Example 5.6 Coupled spring-mass system

Consider the coupled spring-mass system shown in FigureThé&.input to this
system is the sinusoidal motion of the end of rightmost gpaind the output is the
position of each massg; andg,. The equations of motion are given by

myG1 = —2Koy — cgy +Kop
Myt = kap — 2kop — ¢l + ku.

In state-space form, we define the state tabe(qi,qp, g1,¢2) and we can rewrite
the equations as

0 0 1 0 0

0 0 0 1 0
%: _%( E _E 0 X+101]u
dt m m m

kK &k, c k

m o m “m m

This is a coupled set of four differential equations and qoamplicated to solve

in analytical form.

The dynamics matrix is the same as in Example 5.5 and we caneiseahndi-
nate transformation defined there to put the system in modal: fo

(0 1 0 0 0
k
_x_c 0 0 L
dz m m 2m
@& lo o o 1|*] o |“
0 k¢ _k
m m 2m

Note that the resulting matrix equations are block diagamal hence decoupled.
We can thus solve for the solutions by computing the solstiohtwo sets of
second order systems represented by the staie®) and (z3,z). Indeed, the
functional form of each set of equations is identical to thfad single spring-mass
system.

Once we have solved the two sets of independent second aydatiens, we
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Figure 5.8: Transient versus steady state response. The left plot shows theargplihear
system and the right plot the corresponding output. The output signallinitizdergoes a
transient before settling into its steady state behavior.

can recover the dynamics in the original coordinates byrting the state trans-
formation and writingc = T 1z We can also determine the stability of the system
by looking at the stability of the independent second orgstesns. O

Steady State Response

Given a linear input/output system

:1( = Ax+Bu, y =Cx+Du, (5.21)

the general form of the solution to equation (5.21) is givgnthe convolution
equation:

y(t) = CeMx(0) + /O tCé“(t*T)Bu(r)errDu(t).

We see from the form of this equation that the solution cassisan initial condi-
tion response and an input response.

The input response, corresponding to the last two terms iedhation above,
itself consists of two components—thi&nsient responsend steady state re-
sponse The transient response occurs in the first period of time #fieinput
is applied and reflects the mismatch between the initial ¢mmdand the steady
state solution. The steady state response is the portiore@ftput response that
reflects the long term behavior of the system under the giveatén For inputs
that are periodic the steady state response will often hegierand for constant
inputs the response will often be constant. An example ofrdresient and steady
state response for a periodic input is shown in Figure 5.8.

A particularly common form of input is step inputwhich represents an abrupt
change in input from one value to another. uAit step(sometimes called the
Heaviside step function) is defined as

0 t=0
uzs(t):{l t>0

The step responsef the system (5.21) is defined as the outy} starting from
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and steady sta
value give the key performance properties of the signal.

zero initial condition (or the appropriate equilibrium pgiand given a step input.
We note that the step input is discontinuous and hence isnagtipally imple-
mentable. However, it is a convenient abstraction that delyiused in studying
input/output systems.

We can compute the step response to a linear system usingielgtion
equation. Settingk(0) = 0 and using the definition of the step input above, we
have

t t
y(t) = [ ceVBur)dr +Du(t) =C [ CetBdr+D
0 0
t —
:C/ ¢"°Bdo+D = C (A 1e*B) |7 +D
0 -
=CA'e"B—CA 'B+D.

If A has eigenvalues with negative real part (implying that thgim is a stable
equilibrium point in the absence of any input), then we cavrite the solution as

y(t)=CAe"B+D-CAB t>0. (5.22)
N~ —
transient steady state

The first term is the transient response and decays to zdre-as. The second
term is the steady state response and represents the vatue afitput for large
time.

A sample step response is shown in Figure 5.9. Several termsadewhen
referring to a step response. Téieady state valyg/ss, of a step response is the
final level of the output, assuming it converges. Tise time T, is the amount
of time required for the signal to go from 10% of its final valoe90% of its final
value. Itis possible to define other limits as well, but in ek we shall use these
percentages unless otherwise indicated. @vershootMy, is the percentage of
the final value by which the signal initially rises above thelfizdue. This usually
assumes that future values of the signal do not overshodirtalevalue by more
than this initial transient, otherwise the term can be annigs. Finally, theettling
time T, is the amount of time required for the signal to stay witHa 6f its final
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Figure 5.10: Response of a compartment model to a constant drug infusion. Tiheeste

sponse (b) shows the rate of concentration buildup in compartmen{(@). drpulse of initial
concentration is used to speed up the response.
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value for all future times. The settling time is also somesrdefined as reaching
1% or 2% of the final value (see Exercise 5.9). In general thederpeance
measures can depend on the amplitude of the input step, lindar systems it
can be shown that the last three quantities defined above @depandent of the
size of the step.

Example 5.7 Compartment Model

Consider the compartment model illustrated in Figure 5.X0d@scribed in more
detail in Section 3.6. Assume that a drug is administered Imgtemt infusion in
compartment; and that the drug has its effect in compartméntTo assess how
the quickly the concentration in the compartment reachesgiststate we compute
the step response which is shown in Figure 5.10b. The stepnesps quite
slow with a settling time of 39 minutes. It is possible to dbtthe steady state
concentration much faster by having a faster injection natelly, as is shown
in Figure 5.10c. The response of the system in this case canrbputed by
combining two step responses (Exerci&. O

Another common input signal to a linear system is a sinusmid@mbination
of sinusoids). Thérequency responsa an input/output system measures the way
in which the system responds to a sinusoidal excitation @xdits inputs. As we
have already seen for scalar systems, the particular solasisociated with a sinu-
soidal excitation is itself a sinusoid at the same frequeHeyce we can compare
the magnitude and phase of the output sinusoid to the inpotegenerally, if a
system has a sinusoidal output response at the same frgoagetie input forcing,
we can speak of the frequency response of the system.

To see this in more detail, we must evaluate the convolutipragon (5.15) for
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u = coswt. This turns out to be a very messy calculation, but we can mag&ef
the fact that the system is linear to simplify the derivatitm particular, we note
that

coswt = % (ei‘*" + ef“‘").

Since the system is linear, it suffices to compute the respdrtbe gystem to the
complex inputu(t) = €% and we can then reconstruct the input to a sinusoid by
averaging the responses correspondingi=a wt ands= —iwt.

Applying the convolution equation to the inpuit= e we have

1
y(t) = CeMx(0) + / Ct-TBETdr + D
0
t
— Cex(0) + CeM /0 Ces-ATRdr + De™.

If we assume that none of the eigenvaluesfdadire equal tes = +iw, then the
matrix sl — Ais invertible and we can write

y(t) = Ce'x(0) + Ce ((sl — A)’le(s"A)TB) ‘; +De*
— Ceix(0) + CeM(sl — A) (e<S'*A>t - |) B+ D&
= Ce'x(0) +C(sl —A)e"B-Ce¥(sI - A)B,
and we obtain

y(t) =Ce (x(0) — (s1— A) *B) + (C(sI —A) *B+D) ™.

transient stea?ﬂ state
Notice that once again the solution consists of both a tesmigiomponent and a
steady state component. The transient component decaygotif #ee system is
asymptotically stable and the steady state component pional to the (com-
plex) inputu = e,

We can simplify the form of the solution slightly further bgwriting the steady

state response as

ySS(t) — Meieest _ Me(St+i9)

where .
Mel® =C(sl—A)"B+D (5.23)

andM and 6 represent the magnitude and phase of the complex nu@\(sér
A)~1B+D. Whens=iw, we say thaM is thegainand@ is thephaseof the system
at a given forcing frequencyo. Using linearity and combining the solutions for
s= +iw ands= —iw, we can show that if we have an input= A;sin(wt + )
and outputy = Aysin(wt + ¢ ), then

gainfw) = ::‘Z =M phas¢w) =¢ — Y = 6.
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Figure 5.11: Frequency response, showing gain and phase. The gain is givee bt
of the output amplitude to the input amplitudd, = Ay/A,. The phase lag is given by
6 = —2n(ty —tp)/T; itis negative for the case shown because the output lags the input.

The steady state solution for a sinusaig- coswt is now given by
Yss(t) = Mcog wt + 0).

If the phased is positive, we say that the output “leads” the input, otlisenve
say it “lags” the input.

A sample frequency response is illustrated in Figure 5.11.sbhid line shows
the input sinusoid, which has amplitude 1. The output sirus®ishown as a
dashed line, and has a different amplitude plus a shiftedghd@he gain is the
ratio of the amplitudes of the sinusoids, which can be dat@thby measuring
the height of the peaks. The phase is determined by compdringatio of the
time between zero crossings of the input and output to theatiygeriod of the

sinusoid:
AT

T
Another way to view the frequency response is to plot how #ia gnd phase

in equation (5.23) depend an (throughs = iw). Figure 5.11 shows an example
of this type of representation.

0=—2m

Example 5.8 Active band pass filter

Consider the op amp circuit shown in Figure 5.12a. We can éelymamics of the
system by writing the “nodal equations”, which state that $hm of the currents
at any node must be zero. Assuming that= v, = 0, as we did in Section 3.3,
we have

Vi — Vo dv dv w3 dvs dvz w3 dv,

2
—C 0=C—2+2.4C 0=Cr—— 4+ 2 _C—2.
Ry Yar dt R, 2ol’ dt "R, it

Choosingv, andvs as our states and using the first and last equations, we obtain

0=

%_vl—vz %_ V3 Vi—Ww
dt RiC1 ’ dt R.Co RiCo -
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Figure 5.12: Active band pass filter. The circuit diagram shows an op amp withR@o
filters arranged to provide a band pass filter. The plot on the right stimngain and phase
of the filter as a function of frequency.

Gain

Rewriting these in linear state space form we obtain

1 0 1
g = -
ax_ | RiC Xt RiCi |,
dt 11 —1 (5.24)
R1C2 R2C2 I:21(:2

y= [O 1] X
wherex = (v2,Vv3), u= vy andy = vs.
The frequency response for the system can be computed usiaay(5.23):
_& R]_C]_S
Ry (l + Rlcls) (l + RzCzS)

The magnitude and phase are plotted in Figure 5.12BRfer 100Q, R, =5 kQ
andC; =C, = 100 pF. We see that the circuit passes through signals wih e
cies around 10 rad/s, but attenuates frequencies below$aad above 50 rad/s.
At 0.1 rad/s the input signal is attenuated by 20x (0.05). Typ& of circuit is
called aband pass filtesince it pass through signals in the band of frequencies
between 5 and 50 rad/s.

Mel® =C(sl—A)"'B+D = s=iw.

O

As in the case of the step response, a number of standardrpes@ee defined
for frequency responses. The gain of the systemw at O is called thezero fre-
quency gairand corresponds to the ratio between a constant input arstehdy

output:
Mo = —CA B+D.
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The zero frequency gain is only well definedhifs invertible (and, in particular, if

it does has not eigenvalues at 0). Itis also important to thatiethe zero frequency
gain is only a relevant quantity when a system is stable atheutorresponding
equilibrium point. So, if we apply a constant input= r then the corresponding
equilibrium pointxe = —A~1Br must be stable in order to talk about the zero fre-
quency gain. (In electrical engineering, the zero frequeain is often called the
“DC gain”. DC stands for “direct current” and reflects the coomseparation of
signals in electrical engineering into a direct currentdZeequency) term and an
alternating current (AC) term.)

The bandwidthaw, of a system is the frequency where the gain has decreased
by a factor of /2 from its zero frequency gain. This definition assumes that
we have nonzero, finite zero frequency gain. For systems tteatuate low fre-
quencies but pass through high frequencies, the referexicésgaken as the high
frequency gain. For a system such as the band-pass filter in &8, band-
width is defined as the range of frequencies where the gaingsrighan ¥+/2 of
the gain at the center of the band. (For Example 5.8 this woinkl aybandwidth
of approximately 50 rad/s.)

Another important property of the frequency response isrésenance peak
M, the largest value of the frequency response, angdéad frequencyo,, the
frequency where the maximum occurs. These two propertiesridesthe fre-
quency of the sinusoidal input that produces the largessiplesoutput and the
gain at the frequency.

Example 5.9 AFM Dynamics

Consider the model for the vertical dynamics of the atomicdamicroscope in

contact mode, discussed in Section 3.5. The basic dynamiag\ane by equa-

tion (3.22). The piezo stack can be modeled by a second ordersywith un-

damped natural frequenays and relative dampings. The dynamics are then
described by the linear system

0 1 0 0 0
dx | —k/(m+m) —c/(m+m) 1/m; O 1ol
dt 0 0 0 1 0

0 0 —§  —2{3us w?

y— mp [ mk mc 1 0] X

Mm+m LMm+my M +np
where the input signal is the drive signal to the amplifier iddvthe piezo stack
and the output is the elongation of the piezo. The frequerspomse of the system
is shown in Figure 5.13. The zero frequency gain of the systéviyis 1. There
are two resonant poles with peds; = 2.12 atwm; =238 krad's andM;, = 4.29
at wmrp =746 krad's. The bandwidth of the system, defined as the lowest fre-
quency where the gain ig2 less than the zero frequency gaingis=292 krad's.
There is also a dip in the gaMy = 0.556 for wnq =268 krad's. This dip (some-
times called aranti-resonancgis associated with a dip in the phase and will limit
the performance when the system is controlled by simplercbets, as will see
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Figure 5.13: AFM frequency response. The plot on the right shows the gain ansedba
the piezo stack of an atomic force microscope. The response contaifretuency peaks at
resonances of the system, along with an antiresonanoe-a268 krad/s. The combination
of a resonant peak followed by an antiresonance is common for systémmultiple lightly

damped modes.

in Chapter 10. O

Sampling

It is often convenient to use both differential and diffevrerequations in modeling
and control. For linear systems it is straightforward tem&farm from one to the
other. Consider the general linear system described bytiegu&.13) and assume
that the control signal is constant over sampling interfatanstant lengtth. It
follows from equation (5.14) of Theorem 5.4 that

t+h
X(t +h) = e () + /t &M TBU(K) dT = DX(t) + Tu(t), (5.25)

where we have assumed that the discontinuous control siggeahtinuous from
the right. The behavior of the system at the sampling time&h is described by
the difference equation

x[k+1] = Ox[K +Tukl,  yk] = CxK| +Du[K. (5.26)

Notice that the difference equation (5.26) is an exact sepr&tion of the behavior
of the system at the sampling instants. Similar expressiansatso be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.25) to (5.26) is called samplilbe relations be-
tween the system matrices in the continuous and sampleesemiations is

® = e r:(/oheASds)B; A:%Iogdb, B:(/Ohe/“dt)_lr. (5.27)
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Notice that ifA is invertible we have
r=A"e"-1).

All continuous time systems have a discrete time versioritimre are discrete
time systems which do not have a continuous time equivaldm.precise condi-
tion is that the matrixb cannot have real eigenvalues on the negative real axis.

Example 5.10 Differential equation for IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotusesemere
obtained as the discrete time system

ylk+ 1] = ay{k] + bu[k]

wherea = 0.43, b = 0.47 and the sampling period I[s= 60s. A differential

equation model is needed if we would like to design contratems based on
continuous time theory. Such a model is obtained by applymggon (5.27),

hence

h -1
A='09%_ 0141 B= (/ eAtdt> b=0.0141
h 0

and we find that the difference equation can be interpretecsamaled version of
the ordinary differential equation
dx

X 0141+ 0.141
at +

5.4 LINEARIZATION

As described in the beginning of the chapter, a common safrirear system
models is through thapproximationof a nonlinear system by a linear one. These
approximations are aimed at studying the local behavior ®fstem, where the
nonlinear effects are expected to be small. In this sectierdiwcuss how to lo-
cally approximate a system by its linearization and what lsarsaid about the
approximation in terms of stability. We begin with an illtetion of the basic
concept using the cruise control example from Chapter 3.

Example 5.11 Cruise control
The dynamics for the cruise control system are derived in @2&il and have the
form

m(;;/ = anuT(an) —mgGsgr(v) — ;pC,AV —mgsing,  (5.28)

where the first term on the right hand side of the equation iddiee generated
by the engine and the remaining three terms are the rollingdn, aerodynamic
drag and gravitational disturbance force. There is an dayiuifin (e, Ue) when the
force applied by the engine balances the disturbance forces
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4. The full lines is the simulation based on a nonlinear model and the dasleed lin
shows the corresponding simulation using a linear model. The controltes geekp = 0.5
andk; = 0.1.

To explore the behavior of the system near the equilibriumvilldinearize the
system. A Taylor series expansion of equation (5.28) ard@@quilibrium gives

d(v—v,
(dte) — a(V—Ve) — by(6 — B) +b(U— Ue) (5.29)
where
2T/ _
o UeadT (an\r/ﬁ) PCyAVe by—gcosls  b— OmT(manVE)' (5.30)

Notice that the term corresponding to rolling friction gopaars ifv = 0. For a car
in fourth gear withve = 25 m/s,8, = 0 and the numerical values for the car from
Section 3.1, the equilibrium value for the throttlaeiis= 0.1687 and the parameters
area= —0.0101,b = 1.32 andc = 9.8. This linear model describes how small
perturbations in the velocity about the nominal speed evoitime.

Figure 5.14 shows a simulation of a cruise controller witkedinand nonlinear
models; the differences between the linear and nonlineatefacare small and
hence the linearized model provides a reasonable approgima O

Jacobian Linearization around an Equilibrium Point
To proceed more formally, consider a single input, singlgounonlinear system
dx _
dt
y = h(x,u) yeR

f(x,u) xeR“ueR (5.31)
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with an equilibrium point ak = Xe, U= Ue. Without loss of generality we can
assume thate = 0 andue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thdocal behavior of the system around the equilibrium padiat ue),
we suppose that— X, andu — ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with(tower order) lin-
ear terms. This is roughly the same type of argument that wken we do small
angle approximations, replacing $lwith 8 and co$ with 1 for 8 near zero.

As we did in Chapter 4, we define a new set of state variables well as
inputsv and outputsv:

Z=X—Xe V=U—Ug W=y —h(Xe,Ue).

These variables are all close to zero when we are near théemuni point, and so
in these variables the nonlinear terms can be thought ofeakitfner order terms
in a Taylor series expansion of the relevant vector fieldsuagsy for now that
these exist).

Formally, theJacobian linearizatiorof the nonlinear system (5.31) is

z=Az+Bv
5.32
w=Cz+ Dy, ( )
where
Aot g 2f c=on p N (5.33)
0x (Yo U) ou (Xe,le) ox (Yo U) Ju (Xe,e)

The system (5.32) approximates the original system (5.3Bnwhe are near the
equilibrium point about which the system was linearized.

It is important to note that we can only define the linearizatd a system
about an equilibrium point. To see this, consider a polyrasystem

X = ag+ aiX+ apx® +azx + u,

whereag # 0. There are a family of equilibrium points for this systemegivby
(Xe, Ug) = (Xe, —80 — A1Xe — A2X3 — agx2) and we can linearize around any of these.
Suppose that we try to linearize around the origin of the syske= 0, u= 0. If

we drop the higher order termsxnthen we get

X=ap+aiX+Uu,

which isnotthe Jacobian linearization & # 0. The constant term must be kept
and this is not present in (5.32). Furthermore, even if we Keptconstant term
in the approximate model, the system would quickly move aftam this point
(since it is “driven” by the constant terap) and hence the approximation could
soon fail to hold.

Software for modeling and simulation frequently has faetitfor performing
linearization symbolically or numerically. The MATLAB commen r i mfinds
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the equilibrium and i nnmod extracts linear state-space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering

Consider the vehicle steering system introduced in Exam@e Phe nonlinear
equations of motion for the system are given by equatior&3}2(2.25) and can
be written as

4 (> vcos(a(d)+0) ans
vl = v3|n\§a(6)+6) : 0(5):arctar(azn )7
tle Eotané

wherex, y and 8 are the position and orientation of the center of mass of the
vehicle,vy is the velocity of the rear whed,is the distance between the front and
rear wheels and is the angle of the front wheel. The functior{d) is the angle
between the velocity vector and the vehicle’s length axis.

We are interested in the motion of the vehicle about a sttéiighpath @ = 6)
with fixed velocityvg ## 0. To find the relevant equilibrium point, we first €& 0
and we see that we must hade= 0, corresponding to the steering wheel being
straight. This also yieldg = 0. Looking at the first two equations in the dynamics,
we see that the motion in the direction is by definitiomot at equilibrium since
&2+ N2 =2+ 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral aeviatthe vehicle
from a straight line. For simplicity, we lely = 0, which corresponds to driving
along thex axis. We can then focus on the equations of motion inytlaed 6
directions. With some abuse of notation we introduce theesta= (y,6) and
u= 9. The system is then in standard form with

vsin(a(u) +x2)
f(x,u) = [ i ] , a(u) :arctar(atanu), h(x,u) = Xx;.

Vo
“tanu b
b

The equilibrium point of interest is given by= (0,0) andu = 0. To compute the
linearization the model around this equilibrium point, waka use of the formu-
las (5.33). A straightforward calculation yields

a9t _ (0w g_ 9t _ [aw/b
 dx|x=0 (0 O ~ dulx=0 | Vo/b
u=0 u=0
oh Joh
= —_— = 1 = —_— =
c OX | x=0 [ O] D Ju|x=0
u=0 u=0
and the linearized system
X = Ax+ Bu, y=Cx+Du (5.34)

thus provides an approximation to the original nonlinearaiyics.
The linearized model can be simplified further by introduciogmalized vari-
ables, as discussed in Section 2.3. For this system, we clio@seheel basé
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as the length unit and the unit as the time required to traweheel base. The
normalized state is thus= (x1 /b, x2) and the new time variable is= vot /b. The
model (5.34) then becomes

dz_ (z+w) _ (0 1 y _

dr_[ y =1o ol 7zt [1|Ww y= (1 0) Z (5.35)
wherey=a/b. The normalized linear model for vehicle steering with nbppéng
wheels is thus a linear system with only one parameter. 0

Feedback Linearization

Another type of linearization is the use of feedback to contree dynamics of a
nonlinear system into a linear one. We illustrate the bakeea with an example.

Example 5.13 Cruise control
Consider again the cruise control system from Example 5. hbse dynamics are
given in equation (5.28):
d .
md—;/ = anuT(apv) —mgGsgnv) — %pCdsz —mgsinf.

If we chooseu as a feedback law of the form

1y 1
u= T (o) <u +mgG + 2pC\,A\/z (5.36)
then the resulting dynamics become
dv_
ma =u+d (5.37)

whered = mgsin@ is the disturbance force due the slope of the road. If we now
define a feedback law far (such as a proportional-integral-derivative [PID] con-
troller), we can use equation (5.36) to compute the final itipatt should be com-
manded.

Equation (5.37) is a linear differential equation. We haveeasially “inverted”
the nonlinearity through the use of the feedback law (5.3R)is requires that
we have an accurate measurement of the vehicle velecitywell as an accurate
model of the torque characteristics of the engine, geangatirag and friction
characteristics and mass of the car. While such a model igeratrally available
(remembering that the parameter values can change), if sigrda good feedback
law for U/, then we can achieve robustness to these uncertainties. O

More generally, we say that a system of the form
dx
a_f(xau)a y—h(X)
is feedback linearizablé we can find a control lawu = a(x,v) such that the

resulting closed loop system is input/output linear witputv and outputy, as
shown in Figure 5.15. To fully characterize such systems ysie the scope of
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Figure 5.15: Feedback linearization using feedback. A nonlinear feedback of time fo
u= a(x,v) is used to modify the dynamics of a nonlinear process so that the resfrons

the inputv to the outputy is linear. A linear controller can then be used to regulate the
system'’s dynamics.

this text, but we note that in addition to changes in the inihét general theory also
allows for (nonlinear) changes in the states that are use@goribe the system,
keeping only the input and output variables fixed. More detithis process can
be found in the textbooks by Isidori [100] and Khalil [116].

One case the comes up relatively frequently, and is hencthwpecial mention,@
is the set of mechanical systems of the form

M(a)d+C(a,q) = B(q)u.

Hereq € R" is the configuration of the mechanical systevh,g) € R™" is the
configuration-dependent inertia matr(q, q) € R" represents the Coriolis forces
and additional nonlinear forces (such as stiffness antidrix andB(q) € R"*P

is the input matrix. Ifp = n then we have the same number of inputs and con-
figuration variables and if we further have th&{) is an invertible matrix for all
configurationgy, then we can choose

u=B"*(a)(M(q)v—C(q,d)). (5.38)
The resulting dynamics become
M@d=M(Qv = 4=V,

which is a linear system. We can now use the tools of lineatesysheory to
analyze and design control laws for the linearized systemembering to apply
equation (5.38) to obtain the actual input that will be aggbtio the system.

This type of control is common in robotics, where it goes byrtame ofcom-
puted torqueand aircraft flight control, where it is call@ynamic inversionSome
modeling tools like Modelica can generate the code for therse model automat-
ically. One caution is that feedback linearization canmftancel out beneficial
terms in the natural dynamics, and hence it must be used aiith Extensions that
do not require complete cancellation of nonlinearitiestigseussed in Khalil [116]
and Krstt et al.[122].
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5.5 FURTHER READING

The idea to characterize dynamics by considering the resgdosstep inputs is
due to Heaviside. The unit step is therefore also calletHdeeviside step function
The majority of the material in this chapter is very classiadl can be found in
most books on dynamics and control theory, including eadyk& on control such
as James, Nichols and Phillips [103], and more recent tekbsoach as Franklin,
Powell and Emami-Naeini [76] and Ogata [153]. A delightfulgeetation of lin-
ear systems is given in the book by Brockett [43], a more cefmgnsive treatment
is given by Rugh [162] and an elegant mathematical treatnsegiven in Son-
tag [173]. The material on feedback linearization is fount@oks on nonlinear
control theory, such as Isidori [100] and Khalil [116].

EXERCISES

5.1 Show that ify(t) is the output of a linear system corresponding to ingt,
then the output corresponding to an inut) is given byy(t). (Hint: use the
definition of the derivativey(t) = lim_o(y(t+ &) — y(t)) /€.)

5.2 Show that a signal(t) can be decomposed in terms of the impulse function
o(t) as

u(t) = /Oté(t—r)u(r)dr

and use this decomposition plus the principle of superposib show that the
response of a linear system to an inp(if) (assuming zero initial condition) can
be written as

t
yO) = [ ht-nu(rr,
0
whereh(t) is the impulse response of the system.
5.3 Assume that < 1 and letwy = woy/1— 2. Show that

lay oy ] (— [ e{ @t coseuyt eZ‘*’Otsinwut]

exp[_wd {wo —ef@lsinagt et cosayt

5.4 Assume that < 1 and letay = an+y/1— 2. Show that the systems
ol ) g0 )
dt —wy —(wn ) dt —wp —2{w

are related through= T xwere

e
1 1 )
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5.5 Consider a linear system= Axwith ReA; < 0 for all eigenvalued; of the
matrix A. Show that the matrix

p— /OmeATTQe‘\Tdr

defines a Lyapunov function of the for(x) = x" Px.

5.6 Using the computation for the matrix exponential, show #waiation (5.11)
holds for the case of a:33 Jordan block. (Hint: decompose the matrix into the
form S+ N whereSis a diagonal matrix.)

5.7 Consider a linear system with a Jordan form that is non-diago
(&) Show that there exists a periodic input does not produegiadic output.
(b) Prove Proposition 5.3 by showing that if the system costaimeal eigen-@
valueA = 0 with nontrivial Jordan block, then there exists an inidahdi-

tion which has a solution that grows in time. Extend this argotrio the
case of complex eigenvalues with Re= 0 by using the block Jordan form

0 w 1 0
;_|-w o0 0 1
'"“lo 0 0 w

0 0 - 0

5.8 Using the convolution equation, write down the completesoh for a second
order linear system with sinusoidal input:

%+ 2¢ woX + wpx = Asinat.
Make sure to describe any cases in which the form of the solathanges.
5.9 Consider a first order system of the form
TX=—X+u
y=X
We say that the parameteis thetime constantor the system since the zero input
system approaches the origingds For a first order system of this form, show that

the rise time of the system is approximately, 2 5% settling time corresponds to
approximately 3 and a 2% settling time corresponds to approximately 4

5.10 Consider a linear discrete time system of the form
X[k+ 1] = AXK] 4+ BulK]
y[K] = Cx[k] 4+ DulK].

(a) Show that the general form of the output of a discrete timesal system is
given by the discrete time convolution equation:

y[k] = CAf% + kzi CA<1BU]i] 4 DulK|
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(b) Show that a discrete time linear system is asymptoticséipple if and only
if all eigenvalues ofA have magnitude strictly less than 1.

(c) Letulk] = Asin(wk) represent an oscillatory input with frequerwy 71 (to
avoid “aliasing”). Show that the steady state component®fésponse has
gainM and phas® where

Mel® =C(é®l —A)"1B+D.

(d) Show that if we have a nonlinear discrete time system
x[k] = f(x[k],u[k]) xkl e R"ue R
y[K] = h(xk], u[k) yeR

then we can linearize the system around an equilibrium poinue) by
defining the matriced, B, C andD as in equation (5.33).

5.11 Consider the following simple Keynesian macro-economidehin the form
of a linear discrete time system discussed in Exercise 5.10

[(':[[ttill]}] N [aba—a aab] [(I:[[';[]]] + [;b] Glt]
Y[t] = C[t] +1]t] + G[t]

Determine the eigenvalues of the dynamics matrix. Whentaartagnitudes of
the eigenvalues less than 1? Assume that the system is iibeigua with constant
values capital spending, investment and government expenditu@ Explore

what happens when government expenditure increases by 13%.the values
a=0.25andb=0.5.

5.12 Consider a scalar system,
Xx=1-x3+u.

Compute the equilibrium points for the unforced systers-(0) and use a Taylor
series expansion around the equilibrium point to compugditiearization. Verify
that this agrees with the linearization in equation (5.32).

5.13 Consider the dynamics of a genetic circuit that implemset&repression
the protein produced by the gene is a repressor for the pratais restricting its
own production. Using the models presented in Example 2hE2dynamics for
the system can be written as

am__a
dt 1tk oo ym (5.39)
dp

E—Bm—(Sp

for p,m> 0. Find the equilibrium points for the system and use the figed
dynamics around each equilibrium point to determine thalletability of the
system.



Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage oramean accu-
mulation of past causes. We must, of course, demand that the setrofirgtates> be
sufficiently rich to carry all information about the past history2ofo predict the effect of the
past upon the future. We do not insist, however, that the state igdisésuch information
although this is often a convenient assumption.

R. E. Kalman, P. L. Falb and M. A. Arbib, 1969 [110].

This chapter describes how feedback of a system’s state casdaeto shape
the local behavior of a system. The concept of reachabilitytieduced and used
to investigate how to “design” the dynamics of a system tgloassignment of
its eigenvalues. In particular, it will be shown that undertain conditions it is
possible to assign the system eigenvalues arbitrarily ipycgpiate feedback of
the system state.

6.1 REACHABILITY

One of the fundamental properties of a control system is whtbf points in the
state space can be reached through the choice of a contul ithpurns out that
the property of “reachability” is also fundamental in urstanding the extent to
which feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of thersyaihd focusing on
the evolution of the state, given by

dx
4t = Ax+Bu (6.1)

wherex € R", u € R, Ais ann x n matrix andB a column vector. A fundamental
guestion is whether it is possible to find control signals sb&my point in the state
space can be reached through some choice of input. To stigjywh define the
reachable se¥(xo, < T) as the set of all pointss such that there exists an input
u(t), 0<t <T that steers the system frax(0) = Xo to X(T) = X¢, as illustrated in
Figure 6.1a.

Definition 6.1 (Reachability) A linear system iseachableif for any xg,x; € R"
there exists & > 0 andu: [0, T] — R such that the corresponding solution satisfies
X(0) = xp andx(T) = Xs.



168 CHAPTER 6. STATE FEEDBACK

AR
DT

4
'

I

4
'

=g

4
1

A
v
A
v

(a) Reachable set (b) Reachability through control

Figure 6.1: The reachable set for a control system. TheZéty, < T) shown on the left is

the set of points reachable froxg in time less thaM. The phase portrait on the right shows
the dynamics for a double integrator, with the the natural dynamics drawro@zontal
arrows and the control inputs drawn as vertical arrows. The sethiéwble equilibrium
points is thex axis. By setting the control inputs as a function of the state, it is possible to
steer the system to the origin, as shown on the sample path.

The definition of reachability addresses whether it is possthteach all points
in the state space inteansientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibriwmntp of the system
(since we can remain at those points once we get there). Tha aitpossible
equilibria for constant controls is given by

& = {Xe : A%+ bue = 0 for someue € R}.

This means that possible equilibria lie in a one (or possiliyér) dimensional
subspace. If the matri& is invertible this subspace is spanned4oy B.
The following example provides some insight into the poditids.

Example 6.1 Double integrator
Consider a linear system consisting of a double integratbnse dynamics are
given by

5(1 = X2

X2 = U.

Figure 6.1b shows a phase portrait of the system. The open lowndcs (1= 0)
are shown as horizontal arrows pointed to the rightdor- O and to the left for
x2 < 0. The control input is represented by a double-headed amdiaei vertical
direction, corresponding to our ability to set the value:fThe set of equilibrium
points& corresponds to the, axis, withug = 0.

Suppose first that we wish to reach the origin from an initialditon (a, 0).
We can directly move the state up and down in the phase plah&dmust rely
on the natural dynamics to control the motion to the left agldtr If a > 0, we can
move the origin by first setting < 0, which will casex, to become negative. Once
X2 < 0, the value of; will begin to decrease and we will move to the left. After
a while, we can sait, to be positive, moving, back toward zero and slowing the
motion in thex; direction. If we bringx, > 0, we can move the system state in the
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opposite direction.

Figure 6.1b shows a sample trajectory bringing the systeme@tigin. Note
that if we steer the system to an equilibrium point, it is plolesto remain there
indefinitely (sincex; = 0 whenx, = 0), but if we go to any other point in the state
space, we can only pass through the point in a transientafashi O

To find general conditions under which a linear system is ralsleh we will
first give a heuristic argument based on formal calculatiatismwpulse functions.
We note that if we can reach all points in the state space gifreaome choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the state totatep in the input is
given by

X(t) = /Ot f-TBdr = A 1M - 1)B (6.2)

(see equation (5.22)). The derivative of a unit step fundsdahe impulse function,
o(t), defined in Section 5.3. Since derivatives are linear opemtibrfollows
(see Exercise 5.1) that the response of the system to an ienfuristion is the
derivative of equation (6.2):

dx t
a_&a
Similarly we find that the response to the derivative of a impfisction is
d?x
— = Ad'B.
dt?

Continuing this process and using the linearity of the systée input
u(t) = a18(t) + od(t) + ad(t) + - + and™ D (t)

gives the state

X(t) = a1eMB+ aASB + azA’NB+ - + AT LeMB,
Taking the limit ad goes to zero through positive values we get

X(04+) = a1B+ a2AB+ a3A’B + - -- 4+ a, A" 1B,
The right hand is a linear combination of the columns of therat
W= (B AB - A™B]. (6.3)

To reach an arbitrary point in the state space we thus rethatehere are linear
independent columns of the mati. The matrixW; is called thereachability
matrix.

An input consisting of a sum of impulse functions and themasives is a very
violent signal. To see that an arbitrary point can be reaglhiftdsmoother signals
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we can make use of the convolution equation. Assuming tkeainitial condition
is zero, the state of a linear system is given by

- /t f-UBY(T)dT = /t ATBu(t — 1)dT
0 0

It follows from the theory of matrix functions, specificallig Cayley-Hamilton
theorem (see Exercise 6.10) that

T = lao(T) +Aay(T) +---+ A" Lay_4(1),

whereq; (1) are scalar functions, and we find that

B/ ao(T)u(t—1) dr+AB/ ai(T)u(t —1)dTr+
+ A 1B/ an_1(T)u(t — 1) dT.

Again we observe that the right hand side is a linear comioinaif the columns
of the reachability matri¥\; given by equation (6.3). This basic approach leads to
the following theorem.

Theorem 6.1. A linear system is reachable if and only the reachability nimat/;
is invertible.

The formal proof of this theorem is beyond the scope of thig text follows
along the lines of the sketch above and can be found in modtsboo linear
control theory, such as [46, 128]. We illustrate the conoépeachability with the
following example.

Example 6.2 Reachability of balance systems
Consider the balance system introduced in Example 2.1 awinsimoFigure 6.2.
Recall that this system is a model for a class of examples ichwihe center of
mass is balanced above a pivot point. One example is the Segavesportation
system shown in the left portion of the figure, for which a nalwuestion to
ask is whether we can move from one stationary point to an@ih@ppropriate
application of forces through the wheels.

The nonlinear equations of motion for the system are givergiragon (2.9)
and repeated here:

(M+m)p—mlcosd § = —cp—mlsind 62 +F 6.4
(J+ml?)8 —mlcosh = —yB +mglsing, '

For simplicity, we takec = y = 0. Linearizing around the equilibrium poirg =
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Figure 6.2: Balance system. The Segway human transportation system shown oft ibe le
an example of a balance system which uses torque applied to the wheeéptthkerider
upright. A simplified diagram for a balance system is shown on the right. syhtem
consists of a mags on a rod of length connected by a pivot to a cart with mads

(p,0,0,0), the dynamics matrix and the control matrix are

0 0
0 0
Mg J; —mél 2

Mimgl|
0 Mg —m212

1
0

0

0

whereM; = M +mandJ; = J+ml?. The reachability matrix is

(0

%
Mg —nP12

Im
\ MtJ[—mZIZ

This matrix has determinant

detW) =

point.

J
Mt J —mP12

Im
0 Mt J —m212

0 0
1 0
B= J
0 Medk—m2i2 |’
|
0 MtJthmz|2
gl3md
S (7
0 ST
M J —mél
o (Mt ) (6.5)
Mk —nPI12)2 0
Q12m2(m+M) 0
(M —mm212)2
G214t

(M —meiz)e 7 0

and we can conclude that the system is reachable. This inthiésve can move
the system from any initial state to any final state and, inigaer, that we can
always find an input to bring the system from an initial statemoequilibrium

O

It is useful of have an intuitive understanding of the medérais that make a
system unreachable. An example of such a system is given urd=§3. The
system consists of two identical systems with the same ir(@letarly, we can not
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p

Figure 6.3: A unreachable system. The cart-pendulum system shown on the lefsivagle
input that affects two pendula of equal length and mass. Since thesfaffeeting the two
pendula are the same and their dynamics are identical, it is not arbitraniiyotthe state of
the system. The figure on the right gives a block diagram representdtibis situation.

separately cause the first and second system to do sometffergli since they
have the same input. Hence we cannot reach arbitrary stadesoathe system is
not reachable (Exercise 6.3).

More subtle mechanisms for non-reachability can also odeor example, if
there is a linear combination of states that always remainstant, then the system
is not reachable. To see this, suppose that there exists eemarH such that

0= ;Hx: H(Ax+Bu) forall u.

ThenH is in the left null space of botA andB and it follows that
HW = H [B AB ... A“—ls] =0,

Hence the reachability matrix is not full rank. In this cadeye have an initial
conditionXy and we wish to reach a staxe for which Hxg # Hx¢, then since
Hx(t) is constant, no input can move fromxg to X;.

Reachable Canonical Form

As we have already seen in previous chapters, it is oftenesvent to change
coordinates and write the dynamics of the system in the fitamgd coordinates
z=Tx One application of a change of coordinates is to converistegyinto a
canonical form in which it is easy to perform certain typesodlysis.

A linear state space system isregachable canonical fornf its dynamics are
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d bl b2 bnfl bn
u < Z\ f P4 f 2 . f Zn—1 f Zn
-1 a a an—1 an

Figure 6.4: Block diagram for a system in reachable canonical form. The indiVistates
of the system are represented by a chain of integrators whose inpridiepn the weighted
values of the states. The output is given by an appropriate combinattbe sf/stem input
and other states.

given by
—a; —a —az ... —ay 1
1 0 o ... O 0
z_ 1o 1 0o .. 0]z ]|0]y
dt ; TP : (6.6)
0 1 0 0
y= (bl b, by ... bn] z+du.

A block diagram for a system in reachable canonical form gsshin Figure 6.4.
We see that the coefficients that appear inAhendB matrices show up directly
in the block diagram. Furthermore, the output of the systei $émple linear
combination of the outputs of the integration blocks.
The characteristic polynomial for a system in reachable w@abform is given
by
As)="+as" 1+ +a,_15+an. (6.7)

The reachability matrix also has a relatively simple strrectu

*

1 —a a2—a
0 1 —ay ..
W= (B AB .. ATIB) = |: : - ]
00 0 1 «
00 0 1

wherex indicates a possibly nonzero term. This matrix is full ramicsino column
can be written as a linear combination of the others due tdridaggular structure
of the matrix.

*

We now consider the problem of changing coordinates sudltttbalynamics of a



174 CHAPTER 6. STATE FEEDBACK

system can be written in reachable canonical form A, 8represent the dynamics

of a given system and, B be the dynamics in reachable canonical form. Suppose
that we wish to transform the original system into reachahlgonical form using

a coordinate transformatian= Tx. As shown in the last chapter, the dynamics
matrix and the control matrix for the transformed system are

A=TAT!, B =TB.
The reachability matrix for the transformed system then bexo
W= (B AB ... A1)
Transforming each element individually, we have
AB=TAT 1TB=TAB
A’B = (TAT 12TB=TAT ITAT 1TB=TA’B

A'B = TA"B.
and hence the reachability matrix for the transformed sys$se
W =T (B AB - A™IB) =TW. (6.8)
SinceW; is invertible, we can thus solve for the transformatibithat takes the
system into reachable canonical form:
T=Ww 1.
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two dimensional system of the form

i (9, @) x (9w

We wish to find the transformation that converts the systemrigchable canon-

ical form: 1
[ —a 5

The coefficientsa; anda, can be determined from the characteristic equation for
the original system:

a; = —2a

A(s) =detsl—A) = —2as+ (a’ + w?) = .
=0 "+ w".

The reachability matrix for each system is

([0 w ~  [1 —a
W“_[l or] Wf—[o 1]'
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The transformatio becomes

a;+a a
- 1 —d=5- 1 w 1

w w

and hence the coordinates
a
[zl] _Tx— 6X1+X2
Vi) Xo

put the system in reachable canonical form. O

We summarize the results of this section in the followingtieen.

Theorem 6.2. Let A and B be the dynamics and control matrices for a reachable
system. Then there exists a transformatieax such that in the transformed co-
ordinates the dynamics and control matrices are in reachaainonical forn{6.6)

and the characteristic polynomial for A is given by

detsl—A) ="+ ays" 1+ ... +an_15+an.

One important implication of this theorem is that for anyaeable system,
we can always assume without loss of generality that thedioates are chosen
such that the system is in reachable canonical form. Thisrigepkarly useful for
proofs, as we shall see later in this chapter. However, fgin brder systems, small
changes in the coefficiendés can give large changes of the eigenvalues. Hence, the
reachable canonical form is not always well conditioned amcst be used with
some care.

6.2 STABILIZATION BY STATE FEEDBACK

The state of a dynamical system is a collection of variablasghrmits prediction
of the future development of a system. We now explore the idekesigning the
dynamics a system through feedback of the state. We willnasghat the system
to be controlled is described by a linear state model and teasghe input (for

simplicity). The feedback control will be developed step Bpsusing one single
idea: the positioning of closed loop eigenvalues in dededtions.

State Space Controller Structure

Figure 6.5 shows a diagram of a typical control system usiaig $eedback. The
full system consists of the process dynamics, which we taketlinear, the con-
troller elementsK andk;, the reference input, and processes disturbancds,
The goal of the feedback controller is to regulate the outpth@systemy, such
that it tracks the reference input in the presence of disturbs and also uncer-
tainty in the process dynamics.
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Controller Process

X=Ax+Bu
y=Cx+Du

r —» k

,,,,,,,,,,,,,,,,,

Figure 6.5: A feedback control system with state feedback. The controller useystens
statex and the reference inputto command the process through its inputWe model
disturbances via the additive inpait

An important element of the control design is the perforneasiecification.
The simplest performance specification is that of stabilitythie absence of any
disturbances, we would like the equilibrium point of theteys to be asymptoti-
cally stable. More sophisticated performance specificattgpically involve giv-
ing desired properties of the step or frequency responskeoystem, such as
specifying the desired rise time, overshoot and settlimg tof the step response.
Finally, we are often concerned with the disturbance rejegtroperties of the sys-
tem: to what extent can we tolerate disturbance ingwtad still hold the outpug
near the desired value?

Consider a system described by the linear differential tgua

dx

T Ax+ Bu, y =Cx+Du, (6.9)

where we have ignored the disturbance sigh&dr now. Our goal is to drive the
outputy to a given reference value,and hold it there.

We begin by assuming that all components of the state vectomaasured.
Since the state at timecontains all information necessary to predict the future
behavior of the system, the most general time invariantroblatw is a function of
the state and the reference input:

u=a(xr).
If the feedback is restricted to be a linear, it can be wrigen
u=—Kx+Kkr, (6.10)

wherer is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figuse Bhe nega-
tive sign is a convention to indicate that negative feedlimtie normal situation.
The closed loop system obtained when the feedback (6.10pigeddo the sys-
tem (6.9) is given by g

X

o = (A= BK)x+Bkr. (6.11)

We attempt to determine the feedback giliiso that the closed loop system has
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the characteristic polynomial
p(s) ="+ P18 4+ + P15+ P (6.12)

This control problem is called the eigenvalue assignmertilpro or “pole place-
ment” problem (we will define “poles” more formally in a latenapter).
Note that the&k, does not affect the stability of the system (which is detasdi
by the eigenvalues ¢k — BK), but does affect the steady state solution. In partic-
ular, the equilibrium point and steady state output for tosed loop system are
given by
Xe=—(A—BK) 1Bkr  ye=Cx+Due,

hencek; should be chosen such that=r (the desired output value). Sinkeis a
scalar, we can easily solve to show thaDi& 0 (the most common case).
k- =—1/(C(A-BK)'B). (6.13)

Notice thatk, is exactly the inverse of the zero frequency gain of the cldsep
system. Th solution fob # 0 is left as an exercise.

Using the gainK andk;, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to corstauch a state feedback
control law, we begin with a few examples that provide somsdiatuition and
insights.

Example 6.4 Vehicle steering
In Example 5.12 we derived a normalized linear model for Vehsteering. The
dynamics describing the lateral deviation where given by

(Yl
C= [1 0) D=0.

The reachability matrix for the system is thus

w- (o )~ 1 3)

The system is reachable since\det= —1 # 0.

We now want to design a controller that stabilizes the dycanaind tracks
a given reference value of the lateral position of the vehicle. To do this we
introduce the feedback

U= —KX+kr = —kgxg — koXo + ki,

and the closed loop system becomes

((jj;(:(A—BK)X—i—Bkrr: [__kall 1:l¥2k2] X+ [‘ﬂj] r

y=Cx+Du= [l 0) X.

(6.14)
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Figure 6.6: State feedback control of a steering system. Step responses obtainedny
trollers designed witl{c = 0.7 andw, = 0.5, 0, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasidut that largew.: also give large initial control

actions. Step responses obtained with controller designedwithl and{. = 0.5, 0.7 and
1 are shown in (b).

The closed loop system has the characteristic polynomial

_ S+yki yke—1) _
det(sI—A+BK)_det[ K S+k2]_sz+(yk1+k2)s+k1.

Suppose that we would like to use feedback to design the dysashihe system
to have the characteristic polynomial

p(S) = S> 4 2{c xS+ W

Comparing this polynomial with the characteristic polynahof the closed loop
system we see that the feedback gains should be chosen as

ki=wf ko= 20— ya?.

Equation (6.13) givek: = ky = w?, and the control law can be written as
U= kg (r —x1) — kaXo = @ (r —x1) — (2{cx — ya?)Xo.

The step responses for the closed loop system for differéumesa@f the design
parameters are shown in Figure 6.6. The effectugfis shown in Figure 6.6a,
which shows that the response speed increases with inegaasi The responses
for wx, = 0.5 and 1 have reasonable overshoot. The settling time is alBocirl
lengths fora. = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths foraw, = 1. The control signad is large initially and goes to zero as time
increases because the controller has an integrator. Tied watue of the control
signal isk; = w?r and thus the achievable response time is limited by theahiail
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actuator signal. Notice in particular the dramatic incesimscontrol signal when
w; changes from 1 to 2. The effect gf is shown in Figure 6.6b. The response
speed and the overshoot increase with decreasing dampsangg these plots, we
conclude that reasonable values of the design parameet® dravew, in the
range of 0.5to 1 ang. ~ 0.7. O

The example of the vehicle steering system illustrates hate seedback can
be used to set the eigenvalues of the closed loop systemitaaylvalues.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the paeasnef the system
are the coefficients of the characteristic equation. It isgfoee natural to consider
systems in this form when solving the eigenvalue assignmpreitiem.

Consider a system in reachable canonical form, i.e,

—a; —a —az ... —ay 1
d 1 0 o ... O 0
—Z:Az+l§u: 0 1 0 ... 0 [|z+ lu
dt ; SRR 0 (6.15)
0 1 0 0
y=Ca= (o1 b - tn)z

It follows from(6.7) that the open loop system has the charéatic polynomial
detsl—A) ="+ a;s" 1+ ... +a,_15+an.

Before making a formal analysis we can gain some insight bstigating the
block diagram of the system shown in Figure 6.4 on page 173. acteristic
polynomial is given by the parametexsin the figure. Notice that the parameggr
can be changed by feedback from stat¢o the inputu. It is thus straightforward
to change the coefficients of the characteristic polynonyaithte feedback.

Returning to equations, introducing the control law

U= —Kz+kr =—kzi —kozo — - - - — knzn + ki, (6.16)
the closed loop system becomes
—ap—ki —ap—ky —ag—ks ... —a,—kn Ky
1 0 0 0 0
az_ | o 1 0 .. 0 |z]of;
dt : : : (6.17)
0 1 0 0
y— (bn by bl]z.

The feedback changes the elements of the first row oAtheatrix, which corre-
sponds to the parameters of the characteristic equation.cloked loop system
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thus has the characteristic polynomial
'+ (& + k)" 1 4 (ap+ k)" 2 4 -+ (an_1+ kn_1)S+an + kn.
Requiring this polynomial to be equal to the desired closeg [polynomial
p(s) ="+ p1S" T+ + Pr_1S+ Pn
we find that the controller gains should be chosen as

ki=pi—a, k=p-a - k=p—an
This feedback simply replaces the parametgiis the system (6.17) by;. The
feedback gain for a system in reachable canonical form is thu

Kz[pl—al p2—az - pn—an]. (6.18)

To have zero frequency gain equal to unity, the paranietshould be chosen
as -
an+Kn  pn
= =—. 6.19
Kr br by (6.19)
Notice that it is essential to know the precise values of patarsa, andb, in
order to obtain the correct zero frequency gain. The zerai&egy gain is thus
obtained by precise calibration. This is very different frobtaining the correct

steady state value by integral action, which we shall seater kections.

Eigenvalue Placement

We have seen through the examples how feedback can be usedign the dy-

namics of a system through assignment of its eigenvaluesolVe the problem in
the general case, we simply change coordinates so that skensys in reachable
canonical form. Consider the system

dx
a—AerBu (6.20)
y =Cx+Du.

We can change the coordinates by a linear transformatioii x so that the trans-
formed system is in reachable canonical form (6.15). Fohsaucystem the
feedback is given by equation (6.16), where the coefficierdsgaven by equa-
tion (6.18). Transforming back to the original coordinagess the feedback

u=—Kz+kr =—KTx+ktr.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedbadRpnsider the system
given by equatioli6.20) with one input and one output. L&ts) =" +a; "1 +
.-+ 4 ap_1S+ a, be the characteristic polynomial of A. If the system is reatda

then there exists a feedback
U= —Kx+kr
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that gives a closed loop system with the characteristicnntyial
p(s) ="+ pas" T+ -+ Pn_1S+ Pn

and unity zero frequency gain between r and y. The feedbaokiggiven by
K=KT= (pl—al po—ax --- pn—an]v\wlrv\/r_l kr :%7 (6.21)

where a are the coefficients of the characteristic polynomial of tietrix A and
the matrices WandW; are given by

-1

1 a3 & an-1
0 1 & -+ apo
VVr:(B AB ... An—ls], W= | : T
o o0 - 1 a1
o o0 o - 1

For simple problems, the eigenvalue assignment problenbeaolved by in-
troducing the elementg of K as unknown variables. We then compute the char-
acteristic polynomial

A(s) =det(sl — A+ BK)

and equate coefficients of equal powers i the coefficients of the desired char-
acteristic polynomial

p(s) ="+ PS4+ pro1+ pn.

This gives a system of linear equations to deternkindhe equations can always
be solved if the system is reachable, exactly as we did in Elag.

Equation (6.21), which is called Ackermann’s formula [3, @dn be used for
numeric computations. It is implemented in the MATLAB functiacker . The
MATLAB function pl ace is preferable for systems of high order because it is
better conditioned numerically.

Example 6.5 Predator-prey

Consider the problem of regulating the population of an gst@$n by modulating
the food supply. We use the predator-prey model introduceskiction 3.7. The
dynamics for the system are given by

H H aHL

_— = _ B — >
gt — ntuH <1 K) 1+aHT, 20
dL L

dt r"‘<1 kH> L=0

We choose the following nominal parameters for the systelmciwcorrespond to
the values used in previous simulations:

r=0.02 K=500 a=0.03
r =0.01 k=0.2 Th=5.
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We take the parametey, corresponding to the growth rate for hares, as the input
to the system, which we might modulate by controlling a foodrse for the hares.
This is reflected in our model by the ter(m, + u) in the first equation.

To control this system, we first linearize the system arourdetuilibrium
point of the system(He, Le), which can be determined numerically to bex
(6.5,1.3). This yields a linear dynamical system

d [21] _ [0.001 —0.01] [21] N [6.4] v

dt |z) 10.002 —-0.01 Y 0
wherez; =L —Le, 2z =H —Heg andv=u. Itis easy to check that the system
is reachable around the equilibriufm v) = (0,0) and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system regjlialancing the
ability to modulate the input against the natural dynamidhe system. This can
be done by the process of trial and error or by using some ahibre systematic
techniques discussed in the remainder of the text. For nevgimiply choose the

desired closed loop poles to betat= {—0.01,—0.02}. We can then solve for the
feedback gains using the techniques described earliechwhsults in

K — [0.005 —0.15) .

Finally, we solve for the reference gaik, using equation (6.13) to obtakp =
0.003.
Putting these steps together, our control law becomes

v=—Kz+Kkr.

In order to implement the control law, we must rewrite it wsthe original coor-
dinates for the system, yielding

U=Us—K(X—Xe) + ke (r —ve)
H-6.5

= (0005 -0015) [L—1.3

] +0.003(r —6.5).

This rule tells us how much we should modulageas a function of the current
number of lynxes and hares in the ecosystem. Figure 6.7a shemsulation of

the resulting closed loop system using the parameters defbwme: and starting an
initial population of 15 hares and 5 lynxes. Note that theéeysquickly stabilizes
the population of lynxes at the reference valtie=€ 20). A phase portrait of the
system is given in Figure 6.7b, showing how other initial adads converge to
the stabilized equilibrium population. Notice that the dymcs are very different
than the natural dynamics (shown in Figure 3.20 on page 91). O

The results of this section show that we can use state feedbaiisign the
dynamics of a system, under the strong assumption that wemeasure all of the
states. We shall address the availability of the statesam#éxt chapter, when we
consider output feedback and state estimation. In addifibeorem 6.3 states that
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Figure 6.7: Simulation results for the controlled predator-prey system. The population
lynxes and hares as a function of time is shown in (a) and a phase pfmtréié controlled
system is shown in (b). Feedback is used to make the population stdfe-amnissingand
Le = missing

the eigenvalues can be assigned to arbitrary locationsdstadjhly idealized and
assumes that the dynamics of the process are known to higisipre The robust-
ness of state feedback combined with state estimators @daned in Chapter 12,
after we have developed the requisite tools.

6.3 STATE FEEDBACK DESIGN

The location of the eigenvalues determines the behaviomredtitised loop dynam-
ics and hence where we place the eigenvalues is the mainndésaggsion to be
made. As with all other feedback design problems, thereradebdffs between the
magnitude of the control inputs, the robustness of the sysbteperturbations and
the closed loop performance of the system. In this sectiomexeenine some of
these tradeoffs, starting with the special case of secatel @ystems.

Second Order Systems

One class of systems that occurs frequently in the analpsisiasign of feedback
systems is second order, linear differential equationscaBse of their ubiqui-
tous nature, it is useful to apply the concepts of this chrapt¢hat specific class
of systems and build more intuition about the relationsrepMeen stability and
performance.

The canonical second order system is a differential equafitime form

G+ 2Z and + wha = ku
y=q.

(6.22)



184 CHAPTER 6. STATE FEEDBACK

In state space form, this system can be represented as

) Eliz] )+ (i) 629
y= X.

The eigenvalues of this system are given by

A=—Janxy\/wh({2-1)

and we see that the origin is a stable equilibrium poirtjf> 0 and{ > 0. Note
that the eigenvalues are complex{if< 1 and real otherwise. Equations (6.22)
and (6.23) can be used to describe many second order systeingdjng damped
oscillators, active filters and flexible structures, as showthé examples below.

The form of the solution depends on the valu€ pfvhich is referred to as the
damping factoffor the system. I > 1, we say that the systemaserdampeénd
the natural response & 0) of the system is given by

_ BxiotXe0 ot G%10+ %20 _pi

y(t) - B —a B —a
whereda = wp({ ++/{%2—1) andB = wn({ — /{2 — 1). We see that the response

consists of the sum of two exponentially decaying sign#lé.=+ 1 then the system
is critically dampedand solution becomes

y(t) = & ™ (x10+ (X20+ { woXao)t).-

Note that this is still asymptotically stable as longeas> 0, although the second
term in the solution is increasing with time (but more slovtan the decaying
exponential that is multiplying it).

Finally, if 0 < { < 1, then the solution is oscillatory and equation (6.22) id sa
to beunderdamped The parameteny is referred to as the natural frequency of
the system, stemming from the fact that for snqalthe eigenvalues of the system
are approximatelp = —{ + jap. The natural response of the system is given by

_ o—Cont (42 1 '
y(t)=e <xlocoswdt+ ( o X10+ wdxzo) S|nwdt> ,

wherewy = wp/1— {2 is called thedamped frequencyFor{ < 1, ay ~ ap de-
fines the oscillation frequency of the solution ahdives the damping rate relative
to wy.

Because of the simple form of a second order system, it isillest® solve
for the step and frequency responses in analytical form. ©haisn for the step
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Figure 6.8: Step response for a second order system. Normalized step respdns¢he
system (6.23) fof = 0 (dashed), 0.1, 0.2, 0.5, 0.707 (dash dotted), 1, 2, 5 and ielo
As the damping ratio is increased, the rise time of the system gets longéhebeatis less
overshoot. The horizontal axis is in scaled umiit; higher values oty results in faster
response (rise time and settling time).

response depends on the magnitudé:of

k _ 4 _ ,
y(t) 5 < e *“'cosmwyt + \/1—752(% “o smwdt> (<
y(t) = —kz (1—e ' (1+ wpt)) (=1 (6.24)
L R S an(lzz)t>
y(t) = :12 <1 e 2(1+Z)e ¢>1

where we have takex(0) = 0. Note that for the lightly damped cas¢ € 1) we
have an oscillatory solution at frequenay.

Step responses of systems with- w§ and different values of are shown in
Figure 6.8. The shape of the response is determined agd the speed of the
response is determined loy (included in the time axis scaling): the response is
faster ifwy is larger.

In addition to the explicit form of the solution, we can alsmpute the proper-
ties of the step response that were defined in Section 5.3. Borg, to compute
the maximum overshoot for an underdamped system, we retlvdateutput as

k 1 _ .
y(t) = s (1— 17e et sin( eyt +¢)> (6.25)

where¢ = arccog/. The maximum overshoot will occur at the first time in which
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Table 6.1: Properties of the response to reference values of a second ostiemdpr|{| < 1.
The parametep = arccog.

Property Value (=05 ¢=1/v2 (=1
Steady state value k/ @ k/w@ k/w@ k/w@
Rise time T =1/ -e?/@%  18/ay 22/ap 2.7/wp
Overshoot Mp=e™/VI- 160 4% 0%
Settling time (2%) Ts~4/lwy 80/wy  59/ap  5.8/ap

the derivative ofy is zero, and hence we look for the tireat which
= Lz Z7(*)0e‘z‘*’f’tsin(wdt 1) - M e latoogayt+¢) | .
W\ /1-22 V1-22
Eliminating the common factors, we are left with
V1-12?
v

Since¢ = arccog, it follows that we must havext, = 7 (for the first non-trivial
extremum) and hendg = 71/ wy. Substituting this back into equation (6.25), sub-
tracting off the steady state value and normalizing, we have

Mp — e_nZ/\/ 1_52'

(6.26)

tan(ayty +¢) =

Similar computations can be done for the other charactesisfia step response.
Table 6.1 summarizes the calculations.

The frequency response for a second order system can alsoriputed ex-
plicitly and is given by

k k

Melf = — .
(iw)2+20wp(iw)+wg  wf— w?+ 2 wpw

A graphical illustration of the frequency response is giveRigure 6.9. Notice the
resonance peak that increases with decreaginbhe peak is often characterized
by is Q-value defined a®) = 1/2¢. The properties of the frequency response for
a second order system are summarized in Table 6.2.

Example 6.6 Drug administration
To illustrate the usage of these formulas, consider thedwopartment model for
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Figure 6.9: Frequency response of a second order system (6.23). The cppershows
the gain ratioM, and the lower curve shows the phase slfiftThe parameters is Bode plot
of the system withi{ = 0 (dashed), 0.1, 0.2, 0.5, 0.7 and 1.0 (dashed-dot).

drug administration, described in Section 3.6. The dynanfitdseosystem are

de (—ko—ki ki bo
dt_[ ka —kz] C+[0 !
y= (0 1) X,

wherec; andc, are the concentrations of the drug in each compartnignit=
0,...,2 andb are parameters of the systemjs the flow rate of the drug into
compartment 1 anglis the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in eacphartmment and we
would like to design a feedback law to maintain the output given reference
valuer.

We choose& = 0.9 to minimize the overshoot and choose the rise time to be
T, = 10 min. Using the formulas in Table 6.1 this gives a valuedpr= 0.22
We can now compute the gain to place the eigenvalues at ttédgidm. Setting
u= —Kx+Kkr, the closed loop eigenvalues for the system satisfy

A(s) = —0.198+0.0959

Table 6.2: Properties of the frequency response for a second order systerf{ywtHL.

Property Value ¢=0.1 (=05 (=1/V2
Zero frequency gain Mo k/w@ k/wf k/w@
Bandwidth Wy 1.540x 1.27wy wo

Resonantpeak gain M,  154k/wf 127k/w¢  k/wf
Resonant frequency  wmr Wy 0.7070n 0
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Figure 6.10: Open loop versus closed loop drug administration. Comparison betwegn d
administration using a sequence of doses versus continuously monttegiogncentrations
and adjusting the dosage continuously. In each case, the concentrai@mpieximately)
maintained at the desired level, but the closed loop system has substansissat@bility

in the drug concentration.

Choosek; = —0.2027 andkp = 0.2005 gives the desired closed loop behavior.
Equation 6.13 gives the reference ghir= 0.0645. The response of the controller
is shown in Figure 6.10 and compared with an “open loop” Sysaiavolving
administering periodic doses of the drug. O

Higher Order Systems

Our emphasis so far has only considered second order syskamgigher order
systems, eigenvalue assignment is considerably more diiffiespecially when
trying to account for the many tradeoffs that are presentf@edback design.

One of the other reasons why second order systems play suithpantant
role in feedback systems is that even for more complicatstigys the response is
often characterized by the “dominant eigenvalues”. To defiese more precisely,
consider a system with eigenvalugsi = 1,...,n. We define the damping factor
for a complex eigenvalug to be

—ReA
{=—
A

We say that a complex conjugate pair of eigenvalugd™ is adominant pairif it
has the lowest damping factor compared with all other eigler@s of the system.
Assuming that a system is stable, the dominant pair of emjaes tends to be
the most important element of the response. To see thismastat we have a
system in Jordan form with a simple Jordan block correspunth the dominant
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pair of eigenvalues:
A

5 N7 z+Bu

J
y=Cz

(Note that the state may be complex due to the Jordan transformation.) The re-
sponse of the system will be a linear combination of the neses from each of
the individual Jordan subsystems. As we see from Figure 6t&, & 1 the sub-
system with the slowest response is precisely the one wéttsithallest damping
factor. Hence when we add the responses from each of thedodivsubsystems,
it is the dominant pair of eigenvalues that will be the priynactor after the initial
transients due to the other terms in the solution die out. |&\this simple anal-
ysis does not always hold (for example, if some non-domiterms have larger
coefficients due to the particular form of the system), it igofthe case that the
dominant eigenvalues determine the (step) response ofstens.

The only formal requirement for eigenvalue placement is thatsystem is
reachable. In practice there are many other constraintsuisecthe selection of
eigenvalues has strong effect on the magnitude and rateaoigehof the control
signal. Large eigenvalues will in general require large rgignals as well as
fast changes of the signals. The capability of the actuatdrsherefore impose
constraints on the possible location of closed loop eigega These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance sys$esn example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whgeamics were given
in Example 6.2. The dynamics are given by

0 0 1 0 0

0 0 0 1 0
Mk —m212 Mek—mPl2 Mg —m?Pl2 Mg J; —m2| 2

0 Mtmgl —clm —ydt _Im_
Mk—m2 M —mR2 Mg —mRi2 M Jy—mPl2

whereMy = M +m, % = J+ ml? and we have left and y non-zero. We use
the following parameters for the system (correspondinginbuto a human being
balanced on a stabilizing cart):

M =10kg m= 80 kg c=0.1Ns/m
J = 100 kg nt/s? l=1m y=0.01Nms
The eigenvalues of the open loop dynamics are giveh y0,4.7,—1.9+2.7.

g=9.8m/¢
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Figure 6.11: State feedback control of a balance system. The step responserfealleo
designed to give fast performance is shown in (a). Although the nsgpoharacteristics
(top left) look very good, the input magnitude (bottom left) is very large. #slaggressive
controller is shown in (b). Here the response time is slowed down, but plé magnitude
is much more reasonable. Both step responses are applied to the lidenizanics.

We have verified already in Example 6.2 that the system is rééelaad hence
we can use state feedback to stabilize the system and pravigsired level of
performance.

To decide where to place the closed loop eigenvalues, wethaté¢he closed
loop dynamics will roughly consist of two components: a sefast dynamics
that stabilize the pendulum in the inverted position andta&slower dynamics
that will control the position of the cart. For the fast dyriesn we look to the
natural period of the pendulum (in the hanging down posjtievhich is given
by wy = /mgl/(J+ml2) ~ 2.1rad/s. To provide a fast response we choose a
damping ratio of{ = 0.5 and try to place the first pair of polest, ~ —{wp +
wp ~ —1+ 2i, where we have used the approximation théat — {2 ~ 1. For the
slow dynamics, we choose the damping ratio to ket provide small overshoot
and choose the natural frequency to be @ give a rise time of approximately 5
seconds. This gives eigenvalues, = —0.35+0.35.

The controller consists of a feedback on the state and a feealfd gain for
the reference input. The feedback gain is given by

K — [—18.8 4500 597 —876] ,

which can be computed using Theorem 6.3 or using the MATIpABICe com-

mand. The feedforward gain ¢ = —1/(C(A—BK)~!B) = —155. The step
response for the resulting controller (applied to the liree=a system) is given in
Figure 6.11a. While the step response gives the desiredatbastics, the input
required (bottom left) is excessively large, almost thises the force of gravity
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at its peak.

To provide a more realistic response, we can redesign thiatien to have
slower dynamics. We see that the peak of the input force scatthe fast time
scale and hence we choose to slow this down by a factor of\Angthe damping
ratio unchanged. We also slow down second set of eigenvadisthe intuition
that we should move the position of the cart more slowly tharstabilize the pen-
dulum dynamics. Leaving the damping ratio for the slow dyreminchanged at
0.7 and changing the frequency to 1 (corresponding to a risegirapproximately
10 seconds), the desired eigenvalues become

A ={-0.33+0.66/, —0.175+0.18 }
The performance of the resulting controller is shown in Figutelb. O

As we see from this example, it can be difficult to reason abdgre/to place
the eigenvalues using state feedback. This is one of theipliérionitations of this
approach, especially for systems of higher dimension.rfgtcontrol techniques,
such as the linear quadratic regular problem discussed arexbne approach that
is available. One can also focus on the frequency respomsgefforming the
design, which is the subject of Chapters 8—12.

Linear Quadratic Regulators @

In addition to selecting the closed loop eigenvalue locetito accomplish a certain
objective, another way that the gains for a state feedbackalter can be chosen
is by attempting to optimize a cost function. This can be paldrly useful in
helping balance the performance of the system with the madmiof the inputs
required to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problenone of the
most common optimal control problems. Given a multi-inpagér system

X = Ax+Bu xe R" ueRP,

we attempt to minimize the quadratic cost function
J= / (X" Qux+u'Quu) dt
0

whereQx > 0 andQy > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimension. This cost function representadeoff between the
distance of the state from the origin and the cost of the obimtput. By choosing
the matricegQx andQy, we can balance the rate of convergence of the solutions
with the cost of the control.

The solution to the LQR problem is given by a linear control |dwhe form

u=-Q,'B"Px
whereP € R™" is a positive definite, symmetric matrix that satisfies the éqoa
PA+ATP—PBQ;'B"P+Q,=0. (6.27)
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Equation (6.27) is called thalgebraic Riccati equatioand can be solved numer-
ically (for example, using theqr command in MATLAB).

One of the key questions in LQR design is how to choose the wse@hand
Qu. To guarantee that a solution exists, we must h@ye> 0 andQ, > 0. In
addition, there are certain “observability” conditions Qg that limit its choice.
We assume her@y > 0 to ensure that solutions to the algebraic Riccati equation
always exist.

To choose specific values for the cost function weightandQ,, we must use
our knowledge of the system we are trying to control. A paittidy simple choice
is to use diagonal weights

a1 0 rq 0

Qx= Qu=p ..
0 On 0 M

For this choice o) andQy, the individual diagonal elements describe how much
each state and input (squared) should contribute to thelbeest. Hence, we can
take states that should remain small and attach higher weadyes to them. Sim-
ilarly, we can penalize an input versus the states and otipeits through choice
of the corresponding input weigpt

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the system (2.26), writtestate space form as

éa ) 0
és 8
dé ¢6 .
dt | —gsine—cé& | T L cosOF, - LsinF,
m?>
—gcosh — £ & LsinGF;+ LcosOF,
0 Y, r
ik /

The system parameters are= 4 kg,J = 0.0475 kg, r = 0.25 m,g= 9.8 m/%,
¢ = 0.05 N s/m, which corresponds to a scaled model of the sysiém equilib-
rium point for the system is given By = 0, F, = mgandée = (Xe,Ye,0,0,0,0). To
derive the linearized model near an equilibrium point, wepate the lineariza-
tion according to equation (5.33):

0 0 O 1 0 0 0 0
0 0 O 0 1 0 0 0
A_|00 0 0 0o 1 s_| 0 o
100 -g -¢/m 0 O ~|1/m O
00 O 0 -c¢/m O 0 1/m
00 0 O ) (/3 0
(1 0 0 00O (0 0
C—010000] D—oo]
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Lettingz= & — &c andv = u— Ug, the linearized system is given by

z=Az+Bv
y=Cx
It can be verified that the system is reachable.

To compute a linear quadratic regulator for the systemgwthie cost function
as

J= /m(zTsz+ pvI Qv)dt
0

wherez= & — & andv = u— Ue represent the local coordinates around the desired
equilibrium point(&e, ue). We begin with diagonal matrices for the state and input
costs:

10000 0

010000

001000 10
“=1000100 Q":[O 1] p=1

000010

000001

\

This gives a control law of the form= —Kz, which can then be used to derive the
control law in terms of the original variables:

U=V+Ue=—K(E —&e) +Ue.

As computed in Example 5.4, the equilibrium points haye- (0,mg) and & =
(Xe,Ye,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure 6.12a. The response can be tunedljbgted the
weights in the LQR cost. Figure 6.12b shows the response ir thieection for
different choices of the weiglg. O

Linear quadratic regulators can also be designed for destiree systems, as |l
lustrated by the following example.
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Figure 6.13: Feedback control of a web server. The controller sets the values ofdhe
server parameters based on the difference between the nominalgtera (determined by
kr-r) and the current loagkpy. The disturbance represents the load due to other processes
running on the server. Note that the measurement is taken after thebdister so that we
measure the total load on the server.

Example 6.9 Web server control

Consider the web server example given in Section 3.4, wheiszeete time model
for the system was given. We wish to design a control law thtd the server
parameters so that average processor load of the serveiriaimad at a desired
level. Since other processes may be running on the servewdheserver must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 6.18e focus
on the special case where we wish to control only the procésad using both
theKeepAl i ve andMaxCl i ent s parameters. We also include a “disturbance
on the measured load that represents the usage of the pracegsles by other
processes running on the server. The system has the samestoasiare as the
generic control system in Figure 6.5, with the variation thatdisturbance enters
after the process dynamics.

The dynamics of the system are given by a set of differencetiemseaof the
form

X[k+ 1] = AXK] + Bulk], Yepu[K] = Cepux[K] + depulK],

wherex = (Xepu; Xmem), U = (Uka, Umc), cpu is the processing load from other pro-
cesses on the computer aygy is the total processor load.
We choose our controller to be a state feedback controlldreoform

u=-K [X):;Z:q] +KeTepus
wherercpy is the desired processor load. Note that we have used theunedas
processor loagkp, instead of the state to ensure that we adjust the systemtmpera
based on the measured load. (This modification is necessaayseof the non-
standard way in which the disturbance enters the processigs.)

The feedback gain matrix can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, @ash function given by

(50 (15 0
QX[o 1]’ Q“[ 0 1/10002]'
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Figure 6.14: Web server with LQR control. The plot on the left shows the state of the
system under a change in external load applietd=atl0 s. The corresponding web server
parameters (system inputs) are shown on the right. The controller is allduce the effect

of the disturbance by approximately 40%.

The cost function for the stai®y is chosen so that we place more emphasis on
the processor load versus the memory usage. The cost furiatitime inputsQ,

is chosen so as to normalize the two inputs, witkesepAl i ve timeout of 50
seconds having the same weight agx Cl i ent s value of 1000. These values
are squared since the cost associated with the inputs is bive” Q,u. Using the
dynamics in Section 3.4, the resulting gains become

«_ (—223 101
~ 3827 777}

As in the case of a continuous time control system, the reterg@aink; is
chosen to yield the desired equilibrium point for the systeettingx[k+ 1] =
X[K] = e, the steady state equilibrium point and output for a givéeremce input
r is given by

Xe = (A—BK)Xe+Bkr,  Ye=C.

This is a matrix differential equation in whidh is a column vector that sets the
two inputs values based on the desired reference. If we tekddsired output to
be of the formye = (r,0), then we must solve

[é] =C(A—BK—1)"1Bk

Solving this equation fok,, we obtain

k = ((C(A—BK—I)_lB)yl [(1)] - [;3993;3] '

The dynamics of the closed loop system are illustrated in Eigur4. We apply
a change in load df.p, = 0.3 at timet = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desirad bt 057. Note that
both theKeepAl i ve andMaxC i ent s parameters are adjusted. Although the
load is decreased, it remains approximately 0.2 above thegedesteady state.
(Better results can be obtained using the techniques ofekiesection.) O
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6.4 INTEGRAL ACTION

Controllers based on state feedback achieve the correadysttate response to
reference signals by careful calibration of the dainHowever, one of the primary
uses of feedback is to allow good performance in the presefnzecertainty, and
hence requiring that we have axactmodel of the process is undesirable. An
alternative to calibration is to make use of integral feetthan which the controller
uses an integrator to provide zero steady state error. The d@scept of integral
feedback was already given in Section 1.5 and in Section 3r&;we provide a
more complete description and analysis.

The basic approach in integral feedback is to create a stetigwhe controller
that computes the integral of the error signal, which is theed as a feedback
term. We do this by augmenting the description of the systémawmew state:

d (x] _ (Ax+Bu)] _ (Ax+Bu

dt |z) | y-r | Cx—r )~
The statez is seen to be the integral of the error between the desirgibuaind
the actual outpuy. Note that if we find a compensator that stabilizes the system
then we will necessarily have= 0 in steady state and henge- r in steady state.

Given the augmented system, we design a state space centrothe usual
fashion, with a control law of the form

u=—Kx—kz+kr,

whereK is the usual state feedback terknjs the integral term ang; is used to
set the nominal input for the desired steady state. The negutjuilibrium point
for the system is given as

Xe = —(A—BK) 'B(kr —kize)

Note that the value df; is not specified, but rather will automatically settle to the
value that makeg =y —r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of teeifp values ofA,
B andK, as long as the system is stable (which can be done througb@aie
choice ofK andk;).

The final compensator is given by

u=—Kx—kz+kr

z=y—r,
where we have now included the dynamics of the integratora&sop the specifi-
cation of the controller. This type of compensator is knowa dgnamic compen-

satorsince it has its own internal dynamics. The following examnililistrates the
basic approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in SectibraBd considered fur-
ther in Example 5.11. The linearized dynamics of the processnar an equilib-
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rium pointve, Ue are given by
X = ax—bg6 + bw
Y =V=X+Vg,

wherex =v— Vg, W= U— U, Mis the mass of the car artlis the angle of the road.
The constana depends on the throttle characteristic and is given in Examll.
If we augment the system with an integrator, the processrdigsabecome

X = ax— bg6 + bw
Z=Y—Vy =Ve+X—V,

or, in state space form,

2 (-39 e (Ber ()

Note that when the system is at equilibrium we have #ha0O, which implies that
the vehicle speed; = ve + X, should be equal to the desired reference spaed,
Our controller will be of the form

Z=Y—V;
U= —kpx—kiz+kevy

and the gaing,, ki andk; will be chosen to stabilize the system and provide the
correct input for the reference speed.
Assume that we wish to design the closed loop system to haaacteristic
polynomial
A(s) = +as+a.

Setting the disturbanc@ = 0, the characteristic polynomial of the closed loop
system is given by

det(sl — (A—BK)) = s*+ (bkp — a)s+ bk

and hence we set

aj+a a ao

=" k=% k=%
The resulting controller stabilizes the system and henecgybd=y — v, to zero,
resulting in perfect tracking. Notice that even if we havenzal error in the
values of the parameters defining the system, as long as thedcloop poles are
still stable then the tracking error will approach zero. Thues exact calibration
required in our previous approach (usikg is not needed here. Indeed, we can
even choos& = 0 and let the feedback controller do all of the work.

Integral feedback can also be used to compensate for corssamrbances.
Figure 6.15 shows the results of a simulation in which the caoenters a hill
with anglef = 4° att = 8 s. The stability of the system is not affected by this
external disturbance and so we once again see that the edosity converges
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Figure 6.15: Velocity and throttle for car with cruise control based on proportionasiidd)
and PI control (full). The PI controller is able to adjust the throttle to coraptnfor the
effect of the hill and maintain the speed at the reference valug-6f25 m/s.

to the reference speed. This ability to handle constanthiafices is a general
property of controllers with integral feedback (see Exerdid). O

6.5 FURTHER READING

The importance of state models and state feedback was distirsthe seminal
paper by Kalman [106], where the state feedback gain wasnautdy solving

an optimization problem that minimized a quadratic losscfiom. The notions
of reachability and observability (next chapter) are alge tb Kalman [108] (see
also [79, 111]). Kalman defines controllability and reachbas the ability to

reach the origin and an arbitrary state, respectively [110¢ note that in most
textbooks the term “controllability” is used instead of dahability”, but we pre-
fer the latter term because it is more descriptive of the &umental property of
being able to reach arbitrary states. Most undergradugtieceks on control will

contain material on state space systems, including, fanpie Franklin, Powell

and Emami-Naeini [76] and Ogata [153]. Friedland’s textbo®H covers the ma-
terial in the previous, current and next chapter in considlerdetail, including the
topic of optimal control.

EXERCISES

6.1 Consider the double integrator. Find a piece-wise constamiral strategy

which drives the system from the origin to the state [1] .

6.2 Extend the argument in Section 6.1 to show that if a system @hedde from
an initial state of zero, it is reachable from a nonzeroah#tate.

6.3 Consider the system shown in Figure 6.3. Write the dynamidheftwo

systems as d d
X z
i Ax+ Bu, i Az+ Bu.

Observe that ik andz have the same initial condition, they will always have the
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same state, regardless of the input that is applied. Showthisaviolates the
definition of reachability and further show that the reacligbmatrix W is not
full rank.

6.4 Show that integral feedback can be used to compensate forséacomlistur-
bance by giving zero steady state error even wihen0.

6.5 (Rear steered bicycle) A simple model for a bicycle was gilegn(3.5) in
Section 3.2. A model for a bicycle with rear-wheel steeringbitained simply by
reversing the sign of the velocity in the model. Determine ¢bnditions under
which this systems is reachable and explain any situatiom#ich the system is
not reachable.

6.6 Show that the characteristic polynomial for a system in raebhcanonical
form is given by equation (6.7) and that
ank dn—lZk de dn—ku
a: ce i — = .
6.7 Consider a system in reachable canonical form. Show thahtleese of the
reachability matrix is given by

1 ap ay - an
” 0 1 & -+ ana
1= : (6.28)
O 0o o .- 1

6.8 Equation (6.13) gives the gain required to maintain a givéereace value for
a system with no direct term. Compute the reference gaireiicéise wher® £ 0.

6.9 (An unreachable system) Consider the system
dx (0 1 ot 1 y
dt (0 O 0
y= [1 0] X

with the control law
U= —kix1 —koxo + k.

Show that eigenvalues of the system cannot be assigned taayhialues.
6.10 Prove the Cayley-Hamilton theorem

6.11 Consider the normalized model of the motor drive in Exercid® 2 Verify
that the eigenvalues of the open loop system af2-00.05+i. Design a state
feedback that gives a closed loop system with eigenvalue® il and—1+1.
This choice implies that the oscillatory eigenvalues willvibell damped and that
the eigenvalues at the origin are replaced by eigenvaluéiseomegative real axis.
Simulate the responses of the closed loop system to stepehanthe command
signal and a step change in a distrubance torque on the seatondTry to write
your design and simulation programs in such a way that thegeaneric.
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6.12(The Whipple bicycle model) Consider the Whipple bicycle mlogiven by
equation (3.7) in Section 3.2. The model is unstable at thecitglo = 5 m/s and
the open loop eigenvalues are -1.84, -14.29 ald®+ 4.60i. Find the gains of
a controller that stabilizes the bicycle and give closeglemenvalues at -2, -10
and—1+i. Simulate the response of the system when the for a step meteo#
0.01 rad's in the steering command.

6.13 Consider the model of an AFM in contact mode

0 1 0 0 0
ax [ —k/(m+m) —c/(m+m) 1/mp 0 w | 01
dt 0 0 0 W3 0

0 0 —w3  —2{3ws ws

y— my [ mp k mic 1 0] X

M +nm LM+ M +nNp
given in Example 5.9. Pick up the prograahm at a from the web to generate
the system matrices.

(a) Compute the controllability matrix of the system andedeiine its rank.
Scale the model by using ms instead of s as time units. Repeaatbula-
tion of the controllability matrix and its rank.

(b) Find a state feedback that increases the gives a clospdystem where the
complex poles have damping 0.707. Use the scaled modeldaraimputa-
tions.

(c) Compute state feedback gains using linear quadraticadheory. Exper-
iment by using different weights. Compute the gainsdpe= g2 = 0,03 =
gs=1R=1andp = 0.1 and explain the result. Chooge= g, =03 =
gs = r1 = 1 and explore what happens to the feedback gains and closed lo
eigenvalues when you changeUse the scaled system for this computation.



Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages: wtatign of the
“best approximation”X(t;) of the state from knowledge aftyfort <t; and computation of
u(ty) givenx(ty).

From R. E. Kalman “Contributions to the theory of optimal control” [106]

In this chapter we show how to use output feedback to moddydgmamics of
the system, through the us of observers. We introduce theepbdof observability
and show that if a system is observable, it is possible tovescthe state from
measurements of the inputs and outputs to the system. leisshown how to
design a controller with feedback from the observer stateirdportant concept is
the separation principle quoted above, which is also proVédm structure of the
controllers derived in this chapter is quite general andbisioed by many other
design methods.

7.1 OBSERVABILITY

In Section 6.2 of the previous chapter it was shown that it issjiide to find a

feedback that gives desired closed loop eigenvalues mrduidat the system is
reachable and that all states are measured. For many aitsiaitiis highly unreal-

istic to assume that all states are measured. In this seggdnvestigate how the
state can be estimated by using a mathematical model andradasurements. It
will be shown that the computation of the states can be chaig by a dynamical

system called anbserver

Definition of Observability

Consider a system described by a set of differential equstio

dx _
dt

wherex € R" is the stateu € RP the input, and/ € RY the measured output. We
wish to estimate the state of the system from its inputs amplubs, as illustrated

in Figure 7.1. In some situations we will assume that theranig one measured
signal, i.e. that the signalis a scalar and thal is a (row) vector. This signal
may be corrupted by noiss, although we shall start by considering the noise-free
case. We writex for the state estimate given by the observer.

Ax+ Bu, y =Cx+Du, (7.1)



202 CHAPTER 7. OUTPUT FEEDBACK

n

Process
u X=Ax+Bu | Y X
- Observer —

y=Cx+Du

A

Figure 7.1: Block diagram for an observer. The observer uses the processireezenty
(possibly corrupted by nois®) and the inputi to estimate the current state of the process,
denotedk”

Definition 7.1 (Observability) A linear system i®bservableaf forany T > 0 it is
possible to determine the state of the sysi€im) through measurements wft)
andu(t) on the intervalO, T].

The definition above holds for nonlinear systems as well, aaddbults dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many importaptieations, even
outside of feedback systems. If a system is observable,ttiese are no “hid-
den” dynamics inside it; we can understand everything thawing on through
observation (over time) of the inputs and outputs. As wel stes, the problem of
observability is of significant practical interest becauseili determine if a set of
sensors is sufficient for controlling a system. Sensors coadbivith a mathemat-
ical model can also be viewed as a “virtual sensor” that gimésmation about
variables that are not measured directly. The process ohodot signals from
many sensors with mathematical models is also caldatsor fusion

Testing for Observability

When discussing reachability in the last chapter we neggetiie output and fo-
cused on the state. Similarly, it is convenient here to iltiaeglect the input and
focus on the autonomous system

dx
dt
We wish to understand when it is possible to determine the Btam observations
of the output.
The output itself gives the projection of the state on vediwasare rows of the
matrixC. The observability problem can immediately be solved if trerim C is

invertible. If the matrix is not invertible we can take detives of the output to
obtain

AX, y=Cx (7.2)

dy dx
— =_C— = A
gt~ Car - O

From the derivative of the output we thus get the projectiotihefstate on vectors
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that are rows of the matri€A. Proceeding in this way we get

y C
y CA
y | =| C¥ |x (7.3)
Y11 cA-1
We thus find that the state can be determined if the matrix
C
CA
W, = | CA? (7.4)
CA.nfl

hasn independent rows. It turns out that we need not consider anyalives
higher thann — 1 (this is an application of the Cayley-Hamilton theorem (Exe
cise 6.10).

The calculation can easily be extended to systems with inpiis state is then
given by a linear combination of inputs and outputs and thigjher derivatives.
The observability criterion is unchanged. We leave this essan exercise for the
reader.

In practice, differentiation of the output can give largeoes when there is
measurement noise and therefore the method sketched abowee particularly
practical. We will address this issue in more detail in thetisection, but for now
we have the following basic result:

Theorem 7.1. A linear system of the forr{v.1) is observable if and only if the
observability matrix Wis full rank.

Proof. The sufficiency of the observability rank condition followsiin the analy-@
sis above. To prove necessity, suppose that the systemasvabge bui/, is not
full rank. Letv € R", v# 0 be a vector in the null space 8, so that,v = 0. If
we letx(0) = v be the initial condition for the system and choase 0, then the
output is given byy(t) = CeMv. Sincee™ can be written as a power seriesAn
and sinceA" and higher powers can be rewritten in terms of lower powers (bfy
the Cayley-Hamilton theorem), it follows that the outputlwie identically zero
(the reader should fill in the missing steps if this is not dledowever, if both the
input and output of the system are 0, then a valid estimatee$tate ix = O for
all time, which is clearly incorrect sincg0) = v # 0. Hence by contradiction we
must have that\,, is full rank if the system is observable. Ol

Example 7.1 Compartment model
Consider the two compartment model in Figure 3.18a on pageiBadsume that
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1 2
Vi
V2
- S o —
V2
Vi
R R,
S 1 2

Figure 7.2: An unobservable system. Two identical subsystems have outputs thab-ad
gether to form the overall system output. The individual states of theystdms cannot be
determined since the contributions of each to the output are not distinblésfde circuit
diagram on the right is an example of such a system.

the the concentration in the first compartment can be measured system is
described by the linear system

dc —ko—ki ki bo (

— = c u, =11 0) X.

dt [ ko k) T |0 Y
The first compartment represents the concentration in thedhitesma and the
second compartment the drug concentration in the tissueenhé active. To
determine if it is possible to find the concentration in theucompartment from

measurement of blood plasma we investigate the obsenyabflthe system by
forming the observability matrix

c 10
Wo = [CA] = [—ko—kl kl] :

The rows are linearly independentkf # 0 and under this condition it is thus
possible to determine the concentration of the drug in thigeacompartment from
measurements of the drug concentration in the blood. O

It is useful to have an understanding of the mechanisms tla&kera system
unobservable. Such a system is shown in Figure 7.2. The systeamigosed
of two identical systems whose outputs are added. It seemmisively clear that
it is not possible to deduce the states from the output sineecannot deduce
the individual output contributions from the sum. This casoabe seen formally
(Exercise 7.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms Wéluseful in studying
observability. We define the observable canonical form tdbeltal of the reach-
able canonical form.
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Figure 7.3: Block diagram of a system on observable canonical form. The statéee of
system are represented by individual integrators whose inputs ar@ghtac combination
of the next integrator in the chain, the first state (rightmost integratorjrengystem input.
The output is a combination of the first state and the input.

Definition 7.2 (Observable canonical formA linear single input, single output
(SISO) state space system iinservable canonical forifits dynamics are given

by

—ag 1 0 - 0 by
—ap 0 1 0 by
CE = . Z+ . u
dt - . .
—a,.1 0 0 1 bn-1
—-a, 0 O 0 b

y=[(1 0 0+ 0)z+Du

The definition can be extended to systems with many inputs tlyeddference
is that the vector multiplyingi is replaced by a matrix.

Figure 7.3 shows a block diagram for a sy