

Lecture 3: Examples

Richard M. Murray Caltech CDS/BE

Goals:

- Describe some principles of biological circuits via specific examples
- Provide enough detail to be able to read through reference articles
- Describe modeling techniques, tools and challenges

Examples to be covered

- *Chemotaxis*: what are the sensing, actuation and feedback mechanisms that control movement of bacteria in the presence of nutrient gradients
- *Heat shock*: how does the cell protect itself against environmental disturbances
- Yeast mating response: how do yeast respond to pheromones and mate?

Example 1: Chemotaxis

Basic mechanism

- When ligand (nutrient) is present, CheY protein is inactive and motor turns counter clockwise (run)
- When ligand is not present, CheY activated, binds to motor protein to give clockwise motion (tumble)
- Result: move toward nutrients (on average)
- Circuitry adapts to baseline stimulation level

References

- Barkai and Leibler, Nature, 1997
- Rao, Kirby and Arkin, *PLoS Biology*, 2004 http://www.genomics.princeton.edu/ryulab

Control Systems operation

Actuation

 Phosphorylated CheY (Yp) binds to motor (M) and increases the likelihood of tumbles (vs runs)

Sensing

- Ligand (L) binds to receptor complex (MCP:W:A)
 - MCP is membrane bound receptor
 - ChW (W) and CheA (A) form complex w/ MCP

Computation

- CheA phosphorylates (Ap) and transfers phosphate group to CheY ("kinase")
 - CheA activity depends on methylation of receptor complex: more methylation => more activity
- CheR (R) methylates receptor complex
- CheBp (Bp) demethylates receptor complex
 - Amount of CheBp is affected by amount of active CheA (Ap) - negative feedback loop
- Additional effects: CheZ, motor binding (M:Yp), ...

Dynamics: Forward Information Processing

Motor dynamics controlled by receptor complex *T*

• Complex can be active or inactive, depending on both methylation and whether ligand is bound

$$T^{A} = \sum_{i=0}^{4} lpha_{i}(L)T_{i}, \ lpha_{i}(L) = rac{a_{i}L}{K_{L}+L} + rac{a_{i}^{0}K_{L}}{K_{L}+L} \ T^{I} = \sum_{i=0}^{4} (1-lpha_{i}(L))T_{i}.$$

- *T_i* = concentration of receptor complex with *i* methylation sites occupied (*i* ∈ {0, 1, 2, 3, 4}
- $\alpha_i(L)$ = probability that receptor complex with *i* methylation sites occupied is active; *L* = ligand concentration

Receptor complex drives CheY and CheB via Ap

• Use standard mass action to keep track of species:

$$\frac{dA_p}{dt} = 50T^A A - 100A_p Y - 30A_p B, \qquad \qquad \frac{d[MY_p]}{dt} = 5MY_p - 19[MY_p], \qquad \text{[MYp]} = \text{M:Yp}$$
$$\frac{dY_p}{dt} = 100A_p Y - 0.1Y_p - 5MY_p + 19[MY_p] - 30Y_p, \qquad \frac{dB_p}{dt} = 30A_p B - B_p.$$

Adaptation via Methylation

Keep track of occupied receptors w/ different numbers of methylated sites

- E_i^u = i methylated sites, no ligand
- E_i° = i methylated sites, w/ ligand
- Transitions follow standard mass action kinetics
- Notational switch: $T_i = E_i^{u+} E_i^{o}$
- Use *α_i*(*L*) to capture aggregate effect of ligand binding

$$lpha_i(L)=rac{a_iL}{K_L+L}+rac{a_i^0K_L}{K_L+L}$$

 $\frac{dT_0}{dt} = -r_R(1-\alpha_0(L))T_0 + r_B\alpha_1(L)T_1,$

• Additionally assume Michaelis-Menten kinetics for CheR, CheB actions

$$rac{dT_1}{dt} = -r_R(1-lpha_1(L))T_1 + r_Blpha_2(L)T_2 + r_R(1-lpha_0(L))T_0 - r_Blpha_1(L)T_1,$$
 r_B

$$rac{dT_2}{dt} = - r_R (1 - lpha_2(L)) T_2 + r_B lpha_3(L) T_3 + r_R (1 - lpha_1(L)) T_1 - r_B lpha_2(L) T_2,$$

$$r_B = rac{k_b B_p}{K_B + T^A}$$

$$r_R = \frac{k_r R}{K_R + T^I}$$

ASCC, Aug 09

Richard M. Murray, Caltech CDS

Simulations and Analysis

Model-based analysis to study robustness properties A

- Deterministic ODE; 9 states, 19 parameters
- Simulations (below) show adaptive response
 - Pulse ligand concentration up and down
 - CheYp maintains constant value after transient
 - Average number of methylated receptors serves as integrator to keep track of disturbance level
- Parametric studies show the effects of CheR/CheB
 - Adaptation is relatively robust, but adaptation time can vary significantly

Reduced-Order Modeling (Barkai and Leibler)

Construct reduced order model to explore adaptation mechanism

- Model entire receptor complex as a single complex (E) that can be modified (Em) by enzymes R and B
- Can model the resulting amount of receptor methylation using a single ODE:

$$\frac{dm}{dt} = \frac{k_R R T^I}{K_R + T^I} - \frac{k_B B_p T^A}{K_B + T^A}$$

 Inactive complex increase rate of methylation, active complexes decrease rate of methylation => get balance based on activity level

Richard M. Murray, Caltech CDS

Example #2: Heat Shock Response

El-Samad et al, 2005

Heat Shock (HS) Response

- Heat causes proteins to become unfolded and lose function
- Cell responds in two ways
 - Creates "chaperone" proteins that refold denatured proteins
 - Creates "proteases" that degrade non-functional proteins
- Circuitry (right) contains a number of additional feedback loops that appear to play some role

References

• H. El-Samad, Kurata, Doyle, Gross, Khammash, "Surviving heat shock: Control strategies for robustness and performance". PNAS, 2005.

Heat Shock Response Components

El-Samad et al, 2005

Sigma factors

- In bacteria, RNAP requires "sigma factors" to bind to DNA
- σ^{70} is sigma factor for standard proteins
- σ^{32} is sigma factor for HS proteins

Post-translational regulation

- σ³² mRNA is always present in cell, but folds so that ribosome can't translate
- Heat unfolds σ^{32} & activates translation

Heat shock proteins

- DnaK = chaperone protein + sequesters σ³² (providing negative feedback)
- FtsH = degrades bound σ 32, providing finer control
- Lon = protease (degrades unfolded proteins)

Heat Shock Modeling

El-Samad et al, 2005

Algebraic binding equations

 Model remaining reactions assuming they reach steady state quickly

 $[\sigma^{32}:\text{DnaK}] = k_1[\sigma_f^{32}] \cdot [\text{DnaK}_f]$ $[\sigma^{32}:\text{DnaK}:\text{FtsH}] = k_2[\sigma^{32}:\text{DnaK}] \cdot [\text{FtsH}]$

$$d[\mathrm{mDnaK}]/dt = k_{\mathrm{tr1}}[\sigma^{32} : \mathrm{RNAP}] - \alpha_m[\mathrm{mDnaK}]$$

$$d[\mathrm{DnaK_t}]/dt = k_{\mathrm{tl}}[\mathrm{mDnaK}] - \alpha_p[\mathrm{DnaK_t}]$$

$$d[\mathrm{mFtsH}]/dt = k_{\mathrm{tr2}}[\sigma^{32} : \mathrm{RNAP}] - \alpha_m[\mathrm{mFtsH}]$$

$$d[\mathrm{FtsH_t}]/dt = k_{\mathrm{tl}}[\mathrm{mFtsH}] - \alpha_p[\mathrm{FtsH_t}]$$

$$d[\mathrm{mLon}]/dt = k_{\mathrm{tr3}}[\sigma^{32} : \mathrm{RNAP}] - \alpha_m[\mathrm{mLon}]$$

$$d[\mathrm{Lon_t}]/dt = k_{\mathrm{tl}}[\mathrm{mLon}] - \alpha_p[\mathrm{Lon_t}]$$

$$d[\mathrm{m\sigma}^{32}]/dt = k_{\mathrm{tr4}}[\sigma^{32} : \mathrm{RNAP}] - \alpha_m[\mathrm{m\sigma}^{32}]$$

$$d[\sigma_t^{32}]/dt = k_{\mathrm{tl}}\eta(T)[\mathrm{m\sigma}^{32}] - \alpha_p[\mathrm{m\sigma}_f^{32}]$$

$$- \alpha_{\mathrm{FtsH}}[\sigma^{32}:\mathrm{DnaK}:\mathrm{FtsH}]$$

$$- \alpha_{\mathrm{Lon}}(T)[\sigma^{32}:\mathrm{DnaK}:\mathrm{FtsH}]$$

$$d[\mathrm{P}_{\mathrm{fold}}] = k_{\mathrm{fold}}[\mathrm{P}_{\mathrm{unfold}}:\mathrm{DnaK}] - K(T)[\mathrm{P}_{\mathrm{fold}}]$$

Mass balance equations

 Total protein concentration = sum of concentrations of all compounds containing that protein
 [FtsH_t] = [FtsH_f] + [σ³² : DnaK : FtsH]

.2E+06

300000

20

40

Time (minutes)

60

80

11

#

cuit?

 Option c: add'l neg fbk via degredation

Simulations help explain roles

- Use step input of heat and examine how system responses
- σ^{32} able to act more quickly with neg fbk to tune response
- Chaperone concentrations have much faster rise time
- Net result: very fast disturbance rejection in folded proteins

Additional Analyses

System robustness

- Feedback provides additional robustness with respect to changes in parameters
- Figure: modification of transcription rate (global parameter) on level of chaperones
- With feedback, much less sensitivity

Noise response

- Stochastic simulation (SSA) of system
- Degradation by FtsH shows less noisy response in chaperone count

Richard M. Murray, Caltech CDS

Example #3: Yeast Pheromone Mating Response

Yeast cells exist in four basic phenotypes:

- Haploid a: contains a single set of chromosomes with MATa locus
- Haploid α: contains a single set of chromosomes with MATα locus
- Diploid a/α: contains two copies of each chromosome
- Spore: under stress, diploid cell can form spores of types a and α; these become haploid cells when environment improves
- Haploid and diploid cells are both capable of cell division (cell type is preserved)

Yeast cells "mate" via "shmooing"

- Cells of type a detect pheromone secreted by α cells and extend shmoo
- Cells of type α do the same the converse
- Shmoos join and form diploid cell type
- Haploid cells that mate stop dividing (and die if shmooing doesn't succeed)

Mating Response: Phenomenological Description

Sensor: G-protein

- Ste2/Ste3 protein binds in cell membrane
- Pheromone from opposite cell type causes conformational change
- G-protein is used to dock scaffold protein

Computation: MAP kinase + double repression

- Cdc42/Ste20 bound to membrane
- Sequence of phosphorylations occurs between proteins linked to scaffold
- Fus3 breaks free when active, causes activation (via double repression with Dig)

Actuation: transcriptional regulation

- Ste12 binds to DNA as transcriptional cofactor; Dig1/Dig2 bind to Ste12 and repress gene expression
- Downstream genes encode for proteins required to arrest cell cycle and form shmoo

G-protein signal transduction

Common mechanism for signal transduction in eukaryotes

- Membrane-linked protein with seven membrane crossings
- Protein complex with α, β and γ units (specific proteins change)
- $\bullet \ \alpha$ unit binds to GDP

Signal triggers release of subunits

- Pheromone binds to receptor & causes conformational change
- Active receptor protein causes exchange of GTP for GDP on α unit
- GTP causes conformational change G_{βγ} separate from G_α
- Individual subunits now available to interact with other proteins

MAP kinase cascade

Common mechanism for signal propogation

- Found in many eukaryotes including yeast
- Proteins vary, but function is preserved
- MAP = mitogen activated protein (from originally discovered function - external signal that causes mitosis)

Sequence of phosphorylation reactions

- Ste20 is activated by binding to membrane protein
- Activated Ste20 phosphorylates Ste 11, causing Ste 11 to become active
- Activated Ste 11 phosphorylates Ste 7
- Activated Ste 7 phosphorylates Fus3
- Activated Fus3 undocks and activates proteins

Why a cascade: not completely known

 In some sytems (eg, w/out scaffold) there may be an amplification factor

Modeling the Pheromone Response

Each component can be modeled using basic mechanisms described earlier

 B. Kofahl and E. Klipp, Modelling the dynamics of the yeast pheromone pathway. *Yeast*, 21(10):831-850, 2004 Table I. Equations governing the dynamics of th pheromone pathway (mathematical model)

rdinary differential equations
$\frac{d\alpha}{d\alpha} = -v_1$
$\frac{dt}{dte2} = -\nu_2 + \nu_3 - \nu_5$
$\frac{dSte_2}{dSte_2} = v_2 + v_3 - v_5$
$\frac{dSsZ_{clibs}}{dt} = v_2 - v_3 - v_4$
UGUDY
dGaGTP
45769
$\frac{dG\beta\gamma}{dt} = v_7 + v_9 - v_9$ $\frac{dG\beta\gamma}{dt} = v_6 - v_9 - v_{10} + v_{11} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32}$
$\frac{dt}{dt} = v_6 - v_9 - v_{10} + v_{11} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} + v_{43}$
$\frac{dSte5}{dSte5} = -y_{12} + y_{13} + y_{17} + y_{11} + y_{12} + y_{25} + y_{27} + y_{27}$
$dStell = -y_{12} \pm y_{12} \pm y_{13} \pm y_{24} \pm y_{24} \pm y_{25} \pm y_{25} \pm y_{25} \pm y_{25}$
dSte7
$\frac{-1}{Ct} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} + \nu_{32}$ $\frac{dFus3}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29}$
$ \frac{dt}{dt} = -\frac{v_{14}}{v_{13}} + \frac{v_{15}}{v_{17}} + \frac{v_{21}}{v_{23}} + \frac{v_{25}}{v_{25}} + \frac{v_{27}}{v_{27}} - \frac{v_{29}}{v_{29}} $
$\frac{d\text{Ste2O}}{dt} = -\nu_{18} + \nu_{19} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} + \nu_{32}$
δB
$\frac{dC}{dC} = -y_1(x + y_1) + y_1(x - y_1)$
$\frac{dL}{dL} = v_{10} - v_{11} - v_{18} + v_{19}$
$\frac{dt}{dt} = v_{18} - v_{19} - v_{20} - v_{21}$ $\frac{dt}{dt} = v_{20} - v_{22} - v_{23}$
$\frac{d\xi}{ds} = v_{20} - v_{22} - v_{23}$
d
gr
$ = v_{20} - v_{23} + v_{30} - v_{32} $
dt
dt - v28 - v33 - v34 + v35
dia 12 million
dB are
$\frac{dDdr}{dt} = -v_{36} + v_{37}$
$\frac{dBarl}{dt} = -\nu_{36} + \nu_{37}$ $\frac{dBarl}{dt} = \nu_{36} - \nu_{37} - \nu_{38}$ $\frac{dFarl}{dt} = -\nu_{39} + \nu_{40} - \nu_{41}$
$\frac{dt}{dt} = -\nu_{19} + \nu_{40} - \nu_{41}$ $\frac{dt_{G1}PP}{dt} = \nu_{39} - \nu_{40} - \nu_{42} + \nu_{43} + \nu_{44} - \nu_{45}$ $\frac{dM}{dt} = \nu_{42} - \nu_{43}$
$\frac{1}{2} = v_{42} - v_{43}$
$\frac{dFarI_{Ubiquitin}}{dt} = v_{41}$
$\frac{dt}{dt} = v_{41}$ $\frac{dCdc28}{dt} = v_{44} - v_{45}$

Rate equations $v_{\parallel} = \alpha[t] \cdot Barl_{active}[t] \cdot k_{\parallel}$ $v_2 = \text{Ste2}[t] \cdot \alpha[t] \cdot k_2$ $v_3 = \text{Ste2}_{active}[t] \cdot k_3$ $v_4 = \text{Ste2}_{active}[t] \cdot k_4$ $v_5 = \text{Ste2}[t] \cdot k_5$ $v_6 = \text{Ste2}_{active}[t] \cdot G\alpha\beta\gamma[t] \cdot k_6$ $v_7 = G\alpha GTP[t] \cdot k_7$ $v_8 = G\alpha GTP[t] \cdot Sst2_{active}[t] \cdot k_8$ $v_9 = G\alpha GDP[t] \cdot G\beta \gamma[t] \cdot k_9$ $v_{10} = G\beta\gamma[t] \cdot C[t] \cdot k_{10}$ $v_{11} = D[t] \cdot k_{11}$ $v_{12} = \text{Ste5}[t] \cdot \text{Stell}[t] \cdot k_{12}$ $v_{13} = A[t] \cdot k_{13}$ $v_{14} = Ste7[t] \cdot Fus3[t] \cdot k_{14}$ $v_{15} = B[t] \cdot k_{15}$ $v_{16} = A[t] \cdot B[t] \cdot k_{16}$ $v_{17} = C[t] \cdot k_{17}$ $v_{18} = D[t] \cdot \text{Ste20}[t] \cdot k_{18}$ $v_{19} = E[t] \cdot k_{19}$ $v_{20} = E[t] \cdot k_{20}$ $v_{21} = E[t] \cdot k_{21}$ $v_{22} = F[t] \cdot k_{22}$ $v_{23} = F[t] \cdot k_{23}$ $v_{24} = G[t] \cdot k_{24}$ $v_{25} = G[t] \cdot k_{25}$ $v_{26} = H[t] \cdot k_{26}$ $v_{27} = H[t] \cdot k_{27}$ $v_{28} = I[t] \cdot k_{28}$ $v_{29} = L[t] \cdot Fus3[t] \cdot k_{29}$ $v_{30} = K[t] \cdot k_{30}$ $v_{31} = K[t] \cdot k_{31}$ $v_{32} = L[t] \cdot k_{32}$ $v_{33} = Fus3PP[t] \cdot k_{33}$ $v_{34} = \text{Stell}[t] \cdot \text{Fus3PP}[t] \cdot k_{34}$ $v_{35} = \text{Stell}_{active}[t] \cdot k_{35}$ $v_{36} = \text{Ste} | 2_{\text{octive}}[t] \cdot \text{Bar} | [t] \cdot k_{36}$ $v_{37} = Barl_{active}[t] \cdot k_{37}$ $v_{38} = Barl_{active}[t] \cdot k_{38}$ $v_{39} = Far[[t] \cdot \frac{Fus3PP[t]^2}{2} \cdot k_{39}$

Interlude: SBML and Associated Software

Building models

- Supports arbitrary rate expressions
- Allows multiple compartments (eq. cytoplasm, nucleus, ...)

Many standard reactions

 Has built in reactions for Michaelis-Menten, Hill functions, etc

Analysis capabilities

- Simulate either deterministically or stochastically (SSA)
- Also supports sensitivity analysis, parameter estimation, etc

Output

Interactive selection

Sample Simulation Results mating pathway 0.2 **MAPK** activity Ste2 or Ste3 Concentration / µM Cdc42 • D+E = unphos-GTP + K + L phorylated complex 0.1 • F+G+H = partially Ste11 D + E + G + H phosphorylated Ste5 Ste7 0 • I+J+K = active0 2 3 Time / min Fus3 complex Free/bound Fus3 Fus3 + B + C • Fus3 + B + C =free Fus3 Dig1 Dig2 Ste12_{active} Fus3PP • Fus3PP = activated Η+ Fus3 (binds to Dig) 0 0 10 20 30 Time / min Ste12 Ste12 **Parametric changes** Madhani, 2006 0.3 Concentration / µM Effect of increasing 0.01 mating genes 0.1 (h-sgs shown here) scaffold degradation 0.2 on Fus3PP 5 - 10 - 100 0.1 1000 Kofahl and Klipp, 2004 0 0 10 20 30 Time / min

Richard M. Murray, Caltech CDS

ASCC, Aug 09

20

Some Open Questions

What's different about biological systems

- *Complexity* biological systems are *much* more complicated than engineered systems
- Communications signal representations are very different (spikes, proteins, etc)
- Uncertainty very large uncertainty in components; don't match current tools
- Evolvability mutation, selection, etc

Potential application areas for control tools

- System ID what are the appropriate component abstractions and models?
- *Analysis* what are key biological feedback mechanisms that lead to robust behavior?
- *Design* how to we (re-)design biological systems to provided desired function?
- Fundamental limits what are the limits of performance and robustness for a given biological network topology?

Chemotaxis

- Regulate the rate of runs versus tumbles to move along increasing gradients
- Methylation provides adaptation (integral feedback) to constant biases

Heat shock

- Turn on refolding machinery when proteins begin to denature due to heat
- Feedback mechanisms: sequestration, degradation, post-transcriptional modifications

Yeast mating response

- Detect presence of opposite cell type and generate a shmoo for possible mating
- Molecular machinery: G-proteins, phosphorylation, MAP kinases