
Lecture 3: Examples

Richard M. Murray
Caltech CDS/BE

Goals:
• Describe some principles of biological circuits via specific examples
• Provide enough detail to be able to read through reference articles
• Describe modeling techniques, tools and challenges 

Examples to be covered
• Chemotaxis: what are the sensing, actuation and feedback mechanisms that 

control movement of bacteria in the presence of nutrient gradients
• Heat shock: how does the cell protect itself against environmental disturbances
• Yeast mating response: how do yeast respond to pheromones and mate?
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Example 1: Chemotaxis
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http://www.genomics.princeton.edu/ryulab

Basic mechanism
• When ligand (nutrient) is present, CheY protein is 

inactive and motor turns counter clockwise (run)
• When ligand is not present, CheY activated, binds to 

motor protein to give clockwise motion (tumble)
• Result: move toward nutrients (on average)
• Circuitry adapts to baseline stimulation level

References
• Barkai and Leibler, Nature, 1997
• Rao, Kirby and Arkin, PLoS Biology, 2004

Phillips, Kondev, Theriot (2008)
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Rao, Kirby and Arkin
PLoS Biology, 2004

Control Systems operation
Actuation
• Phosphorylated CheY (Yp) binds to motor (M) and 

increases the likelihood of tumbles (vs runs)

Sensing
• Ligand (L) binds to receptor complex (MCP:W:A)

- MCP is membrane bound receptor
- ChW (W) and CheA (A) form complex w/ MCP

Computation
• CheA phosphorylates (Ap) and transfers 

phosphate group to CheY (“kinase”)
- CheA activity depends on methylation of 

receptor complex: more methylation => more 
activity

• CheR (R) methylates receptor complex
• CheBp (Bp) demethylates receptor complex

- Amount of CheBp is affected by amount of 
active CheA (Ap) - negative feedback loop

• Additional effects: CheZ, motor binding (M:Yp), ...
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Dynamics: Forward Information Processing
Motor dynamics controlled by receptor complex T
• Complex can be active or inactive, depending on

both methylation and whether ligand is bound

• Ti = concentration of receptor complex with i methyl-
ation sites occupied (i ∈ {0, 1, 2, 3, 4}

• αi(L) = probability that receptor complex with i methyl-
ation sites occupied is active; L = ligand concentration

Receptor complex drives CheY and CheB via Ap
• Use standard mass action to keep track of species:
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Rao, Kirby and Arkin
PLoS Biology, 2004

[MYp] = M:Yp
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Adaptation via Methylation
Keep track of occupied receptors w/
different numbers of methylated sites
• Eiu = i methylated sites, no ligand
• Eio = i methylated sites, w/ ligand
• Transitions follow standard mass

action kinetics
• Notational switch: Ti = Eiu + Eio

• Use αi(L) to capture aggregate effect
of ligand binding

• Additionally assume Michaelis-Menten
kinetics for CheR, CheB actions
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Simulations and Analysis
Model-based analysis to study robustness properties
• Deterministic ODE; 9 states, 19 parameters
• Simulations (below) show adaptive response

- Pulse ligand concentration up and down
- CheYp maintains constant value after transient
- Average number of methylated receptors serves

as integrator to keep track of disturbance level
• Parametric studies show the effects of CheR/CheB

- Adaptation is relatively robust, but adaptation 
time can vary significantly

6
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Reduced-Order Modeling (Barkai and Leibler)
Construct reduced order model to explore adaptation mechanism
• Model entire receptor complex as a single

complex (E) that can be modified (Em) by
enzymes R and B

• Can model the resulting amount of receptor 
methylation using a single ODE:

• Inactive complex increase rate of methylation,
active complexes decrease rate of methylation
=> get balance based on activity level

7
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Example #2: Heat Shock Response
Heat Shock (HS) Response
• Heat causes proteins to become 

unfolded and lose function
• Cell responds in two ways

- Creates “chaperone” proteins that 
refold denatured proteins

- Creates “proteases” that degrade 
non-functional proteins

• Circuitry (right) contains a number of 
additional feedback loops that appear 
to play some role 

References
• H. El-Samad, Kurata, Doyle, Gross, 

Khammash, “Surviving heat shock: 
Control strategies for robustness and 
performance”. PNAS, 2005.

El-Samad et al, 2005
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Heat Shock Response Components
Sigma factors
• In bacteria, RNAP requires “sigma 

factors” to bind to DNA
• σ70 is sigma factor for standard proteins
• σ32 is sigma factor for HS proteins

Post-translational regulation
• σ32 mRNA is always present in cell, but 

folds so that ribosome can’t translate
• Heat unfolds σ32 & activates translation

Heat shock proteins
• DnaK = chaperone protein + sequesters 
σ32 (providing negative feedback)

• FtsH = degrades bound σ32, providing 
finer control

• Lon = protease (degrades unfolded 
proteins)

El-Samad et al, 2005
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Heat Shock Modeling

Algebraic binding equations
• Model remaining reactions assuming 

they reach steady state quickly

Mass balance equations
• Total protein concentration = sum of 

concentrations of all compounds 
containing that protein
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d[mDnaK]/dt = ktr1[σ32 : RNAP]− αm[mDnaK]
d[DnaKt]/dt = ktl[mDnaK]− αp[DnaKt]

d[mFtsH]/dt = ktr2[σ32 : RNAP]− αm[mFtsH]
d[FtsHt]/dt = ktl[mFtsH]− αp[FtsHt]

d[mLon]/dt = ktr3[σ32 : RNAP]− αm[mLon]
d[Lont]/dt = ktl[mLon]− αp[Lont]

d[mσ 32]/dt = ktr4[σ32 : RNAP]− αm[mσ 32]

d[σ32
t ]/dt = ktlη(T )[mσ 32]− αp[mσ 32

f ]

− αFtsH[σ32:DnaK:FtsH]

− αLon(T )[σ32:DnaK:FtsH]

d[Pfold] = kfold[Punfold:DnaK]−K(T )[Pfold]

[σ32:DnaK] = k1[σ32
f ] · [DnaKf ]

[σ32:DnaK:FtsH] = k2[σ32:DnaK] · [FtsH] [FtsHt] = [FtsHf ] + [σ32 : DnaK : FtsH]

El-Samad et al, 2005
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Role of Feedback
Question: what is
the role of the ad-
ditional feedback
in heat shock cir-
cuit?
• Option a: feed-

forward circuit, w/
tuned params

• Option b: neg fbk
via sequestration

• Option c: add’l
neg fbk via degredation

Simulations help explain roles
• Use step input of heat and examine how system responses
• σ32 able to act more quickly with neg fbk to tune response
• Chaperone concentrations have much faster rise time
• Net result: very fast disturbance rejection in folded proteins
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Additional Analyses
System robustness
• Feedback provides additional robustness

with respect to changes in parameters
• Figure: modification of transcription rate 

(global parameter) on level of chaperones
• With feedback, much less sensitivity

Noise response
• Stochastic simulation (SSA) of system
• Degradation by FtsH shows less noisy

response in chaperone count

12
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Example #3: Yeast Pheromone Mating Response
Yeast cells exist in four basic phenotypes:
• Haploid a: contains a single set of 

chromosomes with MATa locus
• Haploid α: contains a single set of 

chromosomes with MATα locus
• Diploid a/α: contains two copies of each 

chromosome
• Spore: under stress, diploid cell can form 

spores of types a and α; these become 
haploid cells when environment improves

• Haploid and diploid cells are both capable 
of cell division (cell type is preserved)

Yeast cells “mate” via “shmooing”
• Cells of type a detect pheromone 

secreted by α cells and extend shmoo
• Cells of type α do the same the converse
• Shmoos join and form diploid cell type
• Haploid cells that mate stop dividing (and 

die if shmooing doesn’t succeed)

13

References

• H. Madhani, From a to α.  CSHL Press, 2006

• Kofahl and Klipp, Yeast, 2004

• Bardwell, Peptides, 2005

http://www.youtube.com/watch?v=dcNEfUnEt_g

Madhani, 2006



Richard M. Murray, Caltech CDSASCC,  Aug 09

Yeast Phenotypes
Budding
• Primary mechanism for cell

replication (mitosis)
• Both haploid and diploid cells

can bud

Mating response
• Haploid cells detect pheromones

from complementary type and
send “schmoos” toward other cell

• Diploid cell results

Sporulation
• Diploid cells can form spores

under environmental stress
• Spores grow when environment stabilizes

14

Madhani, 2006
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Mating Response: Phenomenological Description
Sensor: G-protein
• Ste2/Ste3 protein binds in cell membrane
• Pheromone from opposite cell type causes 

conformational change
• G-protein is used to dock scaffold protein

Computation: MAP kinase + double repression

• Cdc42/Ste20 bound to membrane
• Sequence of phosphorylations occurs 

between proteins linked to scaffold
• Fus3 breaks free when active, causes 

activation (via double repression with Dig)

Actuation: transcriptional regulation
• Ste12 binds to DNA as transcriptional co-

factor; Dig1/Dig2 bind to Ste12 and repress 
gene expression

• Downstream genes encode for proteins 
required to arrest cell cycle and form shmoo

15

Madhani, 2006



Richard M. Murray, Caltech CDSASCC,  Aug 09

G-protein signal transduction
Common mechanism for signal 
transduction in eukaryotes
• Membrane-linked protein with 

seven membrane crossings
• Protein complex with α, β and γ 

units (specific proteins change)
• α unit binds to GDP

Signal triggers release of 
subunits
• Pheromone binds to receptor & 

causes conformational change
• Active receptor protein causes 

exchange of GTP for GDP on 
α unit

• GTP causes conformational 
change Gβγ separate from Gα

• Individual subunits now 
available to interact with other 
proteins

16
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MAP kinase cascade
Common mechanism for signal propogation
• Found in many eukaryotes including yeast
• Proteins vary, but function is preserved
• MAP = mitogen activated protein (from 

originally discovered function - external 
signal that causes mitosis)

Sequence of phosphorylation reactions
• Ste20 is activated by binding to membrane 

protein
• Activated Ste20 phosphorylates Ste 11, 

causing Ste 11 to become active
• Activated Ste 11 phosphorylates Ste 7
• Activated Ste 7 phosphorylates Fus3
• Activated Fus3 undocks and activates 

proteins

Why a cascade: not completely known
• In some sytems (eg, w/out scaffold) there 

may be an amplification factor

17

Madhani, 2006

Add definitions of PAK, 
MEKK, MEK, MAPK
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Modeling the Pheromone Response
Each component can be modeled using basic mechanisms described earlier

• B. Kofahl and E. Klipp, Modelling the 
dynamics of the yeast pheromone path-
way.  Yeast, 21(10):831-850, 2004

18
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SBML = systems biology markup language
• XML-based description of biological modles
• Reaction-based description of chemical kinetics
• Open standard; supported by many existing tools

SBML tools available
• Simulators: stochastic and deterministic
• Editors: created networks of reactions
• Converters: convert to MATLAB, Mathematica and 

other compatible formats

Biomodels.net
• Database of SBML models from papers
• Many models are curated and kept up to date

Example: COPASI
• Download yeast mating response model
• Import into COPASI and modify, simulate, analyze

Building models
• Supports arbitrary rate 

expressions

• Allows multiple 
compartments (eg, 
cytoplasm, nucleus, ...)

Many standard reactions
• Has built in reactions for 

Michaelis-Menten, Hill 
functions, etc

Analysis capabilities
• Simulate either 

deterministically or 
stochastically (SSA)

• Also supports sensitivity 
analysis, parameter 
estimation, etc

Output
• Interactive selection

Interlude: SBML and Associated Software

19
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Sample Simulation Results
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MAPK activity
• D+E = unphos-

phorylated complex

• F+G+H = partially 
phosphorylated

• I+J+K = active 
complex

Free/bound Fus3
• Fus3 + B + C = free 

Fus3

• Fus3PP = activated 
Fus3 (binds to Dig)

Parametric changes
• Effect of increasing 

scaffold degradation 
on Fus3PP

Kofahl and Klipp, 2004

Madhani, 2006
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Some Open Questions
What’s different about biological systems
• Complexity - biological systems are much 

more complicated than engineered systems

• Communications - signal representations are 
very different (spikes, proteins, etc)

• Uncertainty - very large uncertainty in 
components; don’t match current tools

• Evolvability - mutation, selection, etc

Potential application areas for control tools
• System ID - what are the appropriate 

component abstractions and models?

• Analysis - what are key biological feedback 
mechanisms that lead to robust behavior?

• Design - how to we (re-)design biological 
systems to provided desired function?

• Fundamental limits - what are the limits of 
performance and robustness for a given 
biological network topology?
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Summary

Chemotaxis
• Regulate the rate of runs versus tumbles to move along increasing gradients
• Methylation provides adaptation (integral feedback) to constant biases

Heat shock
• Turn on refolding machinery when proteins begin to denature due to heat
• Feedback mechanisms: sequestration, degradation, post-transcriptional modifications

Yeast mating response
• Detect presence of opposite cell type and generate a shmoo for possible mating
• Molecular machinery: G-proteins, phosphorylation, MAP kinases
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