
Lecture 1: Biomolecular Modeling

Richard M. Murray
Caltech CDS/BE

Goals:
• Motivate the role of dynamics and feedback in the the cell 
• Provide mathematical tools for analyzing and predicting the dynamics of 

transcriptional regulation in the cell 
• Work through case study for the lac operon (model control system)

References
• Alberts et al, Essential Cell Biology, 3rd edition, 2009.
• R. Phillips, J. Kondev and J. Theriot, Physical Biology of the Cell, 2008.
• N. Yildirim, M. Santillan, D. Horiki and M. C. Mackey, “Dynamics and bistability 

in a reduced model of the lac operon”. Chaos, 14(2):279-292, 2004.
• D. Del Veccho and R. M. Murray, Biomolecular Feedback Systems, http://

www.cds.caltech.edu/~murray/amwiki/BFS (preprint)

2009 Asian Control Conference (ASCC), 26 August 2009



Richard M. Murray, Caltech CDSASCC, Aug 09

Architecture of the Cell

Prokaryote (bacterium)
• Simplest type of cell: cell wall, 

cytoplasm, flagella/pili
• DNA is circular, single copy
• Simple cell division (mitosis): DNA 

duplicated in each daughter cell
• Examples: E. coli, Bacillus subtilis

- E. coli: 1 µm long, 20 min cycle

Eukaryote: single and multi-cell
• Much more complicated structure
• DNA resides in nucleus; proteins are 

formed in the cytoplasm
- DNA organized in chromosomes

• Organelles implement cell functions
- Nucleus: contains DNA
- Mitochondria: energy production
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Central Dogma: DNA to Proteins
Transcription: DNA to mRNA
• Double stranded DNA contains 

nucleotide sequence (A, C, T, G) on a 
sugar (deoxyribose) backbone

• Watson-Crick pairing: A:T, C:G
• RNA polymerase transcribes DNA 

sequence to RNA sequence (A, C, U, 
G sequence on a ribose backbond)

Translation: mRNA to protein
• (Eukaryotes) pre-mRNA is spliced 

and processed to form mature mRNA
• mRNA is translated by ribosomes into 

a chain of amino acids using the 
genetic code (3 bp code for 1 aa)

• Amino acid chain (polypeptide chain) 
folds into a protein

Regulation: control gene expression
• Proteins bind to DNA, RNA and 

proteins to modulate expression
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Model Control System: The Lac Operon

How does it work? 
• Proteins for digesting lactose are controlled by 

binding of repressor and activator 

• CAP (activator): recruits RNA polymerase when 
bound to cAMP, whose concentration is controlled 
by absence of glucose (+glucose ⇒ no cAMP)

• Repressor: blocks transcription by causing DNA 
looping unless it is bound to allolactose, a 
byproduct of lactose metabolism 

• Feedback: if lactose present, then create proteins 
required to turn on lac operon, which creates the 
proteins required to matabolise lactose
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Key idea (Jacob & Monod, 1950s): produce proteins 
when you need them 

• Bacterial growth dependent on nutrient environment 
• Lactose only consumed if glucose is not present 
• Q: How does E. coli decide when to produce proteins? 
• A: Lac “operon” (≈ control system) 
• KPT07: “Lac operon is the hydrogen atom of regulation”

Mahaffy and Savev,  QAM 1999
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E. Coli Genome
DNA facts
• Typical gene is 

about 1000 bp (300 
aa) long

• E. coli genome is 
4.6 Mb, with ~4000 
genes 

• Human genome is 
about 4 Gb, with 
~25,000 genes

Lac control circuitry
• Main circuitry is 

about 6000 bp 
(genes plus 
regulatory regions)

• Can see structure 
of the promotor in 
DNA sequence
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Phillips, Kondev, Theriot (2008)
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Operon Layout and Molecular Census
The regulatory landscape 
• Repressor binds in a region 

that blocks the binding of 
RNAP 

• If CAP is present (activated 
by cAMP, which is present 
in the absence of glucose), 
it recruits RNAP 

• Can assign energies to 
each of these events and 
work out statistical 
mechanics (see PKT)
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Repressor and DNA looping
Repressor acts through DNA looping 
• Looking can occur between binary binding site (O1) 

and secondary sites on DNA (O2, O3)

• Modeling via statistical mechanics: compute pbound 
of RNA binding to DNA for different situations

• Experiments: relocate 
secondary binding sites 
and see what happens 

• Still get some repression 
even if there is only one 
operator site present (no 
looping?)
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http://www.ks.uiuc.edu/Research/vmd/

Phillips, Kondev, Theriot (2008)

Repression =
pbound(R = 0)

pbound(R)
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Rates of Transcriptional Regulation
Primary timescales: 
• mRNA production:        10-30 bp/sec 
• Protein production:       10-30 aa/sec 
• Protein folding:               (depends)

DNA, protein from PKT08, mRNA production from Vogel & Jensen 

Other important rates 
• mRNA half life :                  ~100 sec 
• Protein half life:             ~5 x 104 sec 
• Protein diffusion 

(along DNA):        up to 104  bp/sec 
• Typically assume that activators and 

repressors reach equilibrium state 
much more quickly than other time 
scales 

Half life times from Yildirim and Mackey, 2003; Protein diffusion from 
Blainey et al, PNAS 2006. 
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Phillips, Kondev, Theriot (2008)
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From Numbers to Equations: Dynamical Modeling

Modeling philosophy: Ask questions first, build model later 
• Many different models possible for the same system; no such thing as “the model” 
• The model you use depends on the questions you want to answer 
• Never build a model without first posing the questions 

Analysis and design based on models 
• A model provides a prediction of how the system will behave 
• Feedback can give counter-intuitive behavior; models help sort out what is going on 
• Models don’t have to be exact to be useful; they just need to help explain (and 

predict) 

9



Richard M. Murray, Caltech CDSASCC, Aug 09

Dynamic Modeling Approaches
Possible approaches to modeling
• Molecular dynamics - keep track of

vibration of molecules and detailed
reaction dynamics

• Monte Carlo/Stochastic simulation -
extend ideas from statistical mechan-
ics to include time

• Continuum/partial differential equa-
tions - keep track of evolution in 
space and time

• Reduced order models - ordinary
differential equations that capture
bulk properties

Choice of model depends on the questions you want to answer
• Modeling takes practice, experience and iteration to decide what aspects of the 

system are important to model at different temporal and spatial scales
• Good analysis models make testable predictions and produce “surprising” results
• Good design models capture enough of the important behavior to give allow good 

design decisions
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Statistical Mechanics Viewpoint

Provides an equilibrium view of the world
• Computes the “steady state” probability that a situation occurs

• Based on energy arguments; allows study of complex situations
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Partition function
• Sum up the weights 

for desired states 
(bound) versus all 
possible states
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The Master Equation: Detailed Events and Rates
Key idea: transition rates between 
microstates
• Enumerate micro-states corresponding to 

the system of interest
• Define the system “state” in terms of the 

individual probabilities of each microstate 
at each instant in time

• Dynamics are given by rate of change of 
the probability of each individual state

Transition rates depend on detailed model 
of molecular dynamics
• Example:  lattice structure captured by 

Botzmann model

(ν = vibrational frequency, 1013)
• For DNA, RNA, protein interactions, can 

look at probability of collision + binding 
energy to reason about rates; also 
possible to identify via experiments
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kdes,i = ν exp
(
−Edes,0 + i∆E

kbT

)

d

dt
PH(t) =

∑

H′

kH′→HPH′(t)−
∑

H′

kH→H′
PH(t)
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Simulating the Master Equation for Chemical Reactions
Stochastic Simulation Algorithm (SSA)
• N states (X1, X2, ..., XN) where Xi is the number of copies of species Si in the system

• M reaction channels Ri that define changes in the state; vij(X) = change in Xi for Rj

• Propensity function: ai(X) dt = probability that a reaction Ri will occur in time interval dt

• SSA (“Gillespie algorithm”): determine how many reactions occur in a given time step and 
execute; then update propensity functions and repeat

• Choose time steps to be small enough that propensity functions are roughly constant

Example

• Propensity function: a1(X) = c1 X∞ Y1 to 
account for multiple copies of each species

Tools
• SBML - modeling language + many tools

• StochKit (Linda Petzold) - C++ libraries

• SimBiology (MATLAB) - includes SSA
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http://www.caam.rice.edu/~caam210/reac/lec.html

X∞ + Y1 −−→ 2 Y1 with propensity a1

Y1 + Y2 −−→ 2 Y2 with propensity a2

Y2 −−→ Z with propensity a3
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Chemical Kinetics: The Law of Mass Action
Alternative approach: keep track of concentrations 
• If number of molecules is large, we can keep track of concentration of each species 
• No longer track individual events; assume an average rate of events and use ODEs 

• Keep track of change due to each reaction

More complicated reactions:
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X∞ + Y1 −−→ 2 Y1 with rate k1

Y1 + Y2 −−→ 2 Y2 with rate k2

Y2 −−→ Z with rate k3

2 A + B
k1−−−⇀↽−−−

k−1

A2B

d[A]/dt = 2k−1[A2B]− 2k1[A]2 · [B]

d[B]/dt = k−1[A2B]− k1[A]2 · [B]

d[A2B]/dt = k1[A]2 · [B]− k−1[A2B]

dx

dt
= Sv(x)

Stochiometry
matrix

Reaction
rates

d[Y1]/dt = k1[X∞][Y1]− k2[Y1][Y2]
d[Y2]/dt = k2[Y1][Y2]− k3[Y2]

• x = concentration vector
• S = stochiometry matrx
• v(x) = Rate vector
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Michaelis-Menten Kinetics
Enzymatically controlled reactions
• Enzyme E acts as a catalyst for reaction

• Dynamics follow from mass action kinetics

• If we assume enzyme dynamics are fast 
compared to other species, we can simplify
the resulting dynamics:
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E + S
k+−−⇀↽−−
k−

ES r−→ E + P

Michaelis-Menten
kinetics

Phillips, Kondev, Theriot (2008)

d[E]
dt

= k−[ES]− k+[E] · [S] + r[ES]

d[S]
dt

= k−[ES]− k+[E] · [S]

d[ES]
dt

= k+[E] · [S]− k−[ES]− r[ES]

d[P ]
dt

= r[ES]

[ES] = [E] · [S]/Km

Km =
k− + r

k+

d[P]
dt

= r[E]tot
[ES]

[E] + [ES]
= Vmax

[S]
Km + [S]
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Phosphorylation
Post-translational mod-
ification of proteins
• Addition of a phos-

phase(PO4) group
to a protein

• Modifies shape of
protein; affects 
binding to other 
proteins (Xp “active”)

Kinase
• Binds ATP and catalyzes a 

transfer of phosphate group 
to protein

• Enzymatic reaction (kinase 
is available again after 
reaction)

Phosphatase
• Removes phosphate group
• Non-specific enzyme

16

Consider adding 
hydrolysis more 
explicitly in 
dephosphorylation

Phosphorylation Dephosphorylation
E + ATP −−⇀↽−− E:ATP Xp + F −−⇀↽−− Xp:F
E:ATP + X −−⇀↽−− E:ATP:X Xp:F −−→ X + F
E:ATP:X −−→ E:ADP:Xp
E:ADP:Xp −−⇀↽−− E:ADP + X
E:ADP −−→ E + ADP
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Prokaryotic regulation occurs via binding 
of transcription factors (proteins) to DNA
• Activator: recruits RNA polymerase
• Repressor: blocks binding of RNAP
• Model dynamics by tracking binding events

Reduced order model: Hill functions
• Assume that binding dynamics are fast 

compared to transcription

Transcriptional Regulation
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o2 m PRNAP

activator

protein

o1

repressor

dmY

dt
= f(X)− γ !mY

dY

dt
= β !mY − δ !Y

mRNA

protein

degradation
Hill function

translation

Activation Repression
Buchler, Gerland and Hwa (PNAS, 2005) 



Richard M. Murray, Caltech CDSASCC, Aug 09 18Richard M. Murray, Caltech CDSAPh 161, 23 Jan 06

Questions:

• In the absence of glucose, what 

concentration of lactose is required for 

the lac operon to become “active”?

• Focuses on “bistability”: lac operon has 

two stable equlibrium points:

- low lactose: machinery off

- high lactose: machinery on

Model

• Ordinary differential equation for rates 

of transcription, translation and 

degradation of !-galactosidase (!-gal) 

and allolactose

• Assume levels of lactose outside the 

cell is constant and level of permease 

(from lacY) is constant to simplify the 

model

• Takes into account time delays in 

producing proteins (RBS transcription 

+ protein translation)

Yildirim-Mackey Model for the Lac Operon
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dA

dt
= αAB

L

KL + L
− βAB

a

KA + A
− γ̃AA

dM

dt
= αM

1 + K1(e−µτM A(t− τm))n

K + K1(e−µτM A(t− τm))n
− γ̄MM

dB

dt
= αBeµτBM(t− τB)− γ̃BB

Mahaffy & Savev, QAM 99
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Model Derivation: !-Gal Production

mRNA production

• Production rate related pbound via a 

modified Hill function, ala

• RNA degradation via exponential decay

• Account for time delay in translation of 

RBS via !M :

- Use allolactose concentration, A, at 

time t - !M

- Exponential factor to account for 

dilution due to cell division

Protein production

• Assume rate of production is 

proportional to amount of mRNA

• Include protein degradation via 

exponential decay

• Add time delay to account for time to 

produce functional protein, !B
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dM

dt
= αM

1 + K1(e−µτM A(t− τm))n

K + K1(e−µτM A(t− τm))n
− γ̄MM

M = lacZ mRNA concentration

B = !-gal concentration

A = allolactose concentration

dB

dt
= αBe−µτBM(t− τB)− γ̃BB dM

dt
= α

(
[1− pbound(A)] + ε

)
− γM

19
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Model Derivation: Allolactase Dynamics

Allolactose

1. Converted from lactose with Michaelis 

Menten-like kinetics (Huber et al)

2. Converted back to glucose and galactose

3. Degradation 

Lactose (internal)

1. Transported to interior of cell by permease

2. Loss back to external environment

3. Converted to allolactose by !-gal

4. Degradation

Permease

1. Produced by lacY gene (after delay)

2. Degradation
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dP

dt
= αP e−µτP M(t− τP )− γ̃P P

A = allolactose concentration

L = internal lactose concentration

P = permease concentration

B = !-gal concentration

dA

dt
= αAB

L

KL + L
− βAB

A

KA + A
− γ̃AA

!

"

"

"

#

#

#

$

$

dL

dt
= αLP

Le

KLe + Le
− βL1P

L

KL1 + L

− βL2B
L

KL2 + L
− γ̃LL
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Determining the Constants

Yildirim, Santillan, Horike and Mackey:

• µ - dilution rate, based on 20 minute cell division time

• !x - production rate, based on steady state values

• "x - decay rate, based on half life experiments

• #M - time delay to produce RBS, based on RNA 

elongation rates

• #B - time delay to translate protein, based on protein 

length and translation speed

• n - Hill coefficient (no justification!)

• K - based on basal rate of production (Yagil & Yagil)

• K1 - based on dissociation constant (Yagil & Yagil)

• Kx - measured by Wong, Gladney and Keasling (97)

• $A - loss of allolactase, through conversion to glucose 

and galactose.  Measured by Hubert et al (75)

Note: repressor binding model is pretty ad hoc...
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dM

dt
= αM

1 + K1(e−µτM A(t− τm))n

K + K1(e−µτM A(t− τm))n
− γ̄MM

dA

dt
= αAB

L

KL + L
− βAB

a

KA + A
− γ̃AA
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Some Predictions

Bistable behavior (saddle node bifurcations)

• Can have single or multiple equilibrium points 

depending on parameters

• Bifurcation plot: change in stability versus params

- Note: ossible hysteresis from saddle node

• Parametric stability plot: stability regions

• Simulations: nearby initial conditions can lead to 

different steady state solutions

• Use to predict behavior (for future experiments)
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Comparison to Experiment

!-gal activity for Le = 8 x 10-2 mM

• Experimental data from Knorre (1968) for 

E. coli ML30 (!) and Pestka et al. (1984) 

for E. coli 294 (")

• Model simulation using constants from 

Table 1 (slide 16) with µ = 2.26 x 10-2 

min-1 and !x (= ??) fit to data

Oscillation in #-gal w/ phosphate feeding

• Periodic phosphate feeding from Goodwin 

(1969)

• Simulation used µ = 2.26 x 10-2 min-1 and 

!x (= ??).  Other parameters unchanged.

• Q: how should we assess these data?
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Modeling Noise in Chemical Reactions
Fundamental assumption (Gillespie, 1992)
• Treat species concentrations as a random variable X(t)

Chemical Master equation (exact)
• Describes the evolution of the probability distribution for the microstate X(t)

Chemical Langevin equation (CLE)
• Assume that time steps are small enough but not too small

- (i) Time increment dt small enough that propensity functions are approx constant
- (ii) Time increment dt large enough that number of events is much larger than 1

• Under these assumptions, can derive stochastic ODE (Gillespie, 2000):

Remarks
• Mass action kinetics are deterministic version of mean of the CLE
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aj(x) dt  =  the probability, given X(t) = x, that one Rj reaction will 
     occur in the next infinitesimal time interval [t, t + dt)

Xi(t + dt) = Xi(t) +
M∑

j=1

vjiaj(X(t))dt +
M∑

j=1

vjia
1/2
j

(
X(t)

)
Nj(t)(dt)1/2

White noise w/
unit variance
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Noise in cells
• Experiments by Elowitz, Levine, Siggia, 

Swain.  Science 2002
• Put RFP and GFP under identical

promoters; should get yellow
• Results: get range of colors

Extrinsic Noise: 
• global to a single cell, but varies from 

one cell to the next (e.g. cell volume, 
plasmid copy number)

Intrinsic Noise: 
• inherent stochasticity in gene expression

 (e.g. what order reactions occur in)

Coefficient of variation:

• Normalized measure of noise, commonly used in biology

Cell Noise (Elowitz et al, 2002)
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+    =

ẋi = E(t) · fi(xi, Ii(t))

CV(X) =
std(X)

mean(X)
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Core processes in biological circuits
• Transcription, translation, binding
• Activation and repression
• Enzymatic reactions, (phosphorylation)

Quantitative modeling approaches
• Statistical thermodynamics
• Chemical master equation, SSA
• Chemical Langevin equation
• Mass action, Michaelis-Menten,

Hill functions and ODEs

Lac operon
• Model system for transcriptional regulation
• Activation via CAP:cAMP
• Repression via Lac Repressor (DNA folding)

Next
• Control analysis techniques
• More complex biological circuits

Modeling Summary
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http://www.ks.uiuc.edu/


