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Chapter 7
Design Tradeoffs

In this chapter we describe some of the design tradeoffs arising from the interac-
tion between synthetic circuits and the host organism. We specifically focus on two
issues. The first issue is concerned with the effects of competition for shared cellu-
lar resources on circuits’ behavior. In particular, circuits (endogenous and exoge-
nous) share a number of cellular resources, such as RNA polymerase, ribosomes,
ATP, enzymes, and nucleotides. The insertion or induction of synthetic circuits in
the cellular environment changes the for these resources, with possibly undesired
repercussions on the functioning of the circuits. Independent circuits may become
coupled when they share common resources that are not in overabundance. This
fact leads to constraints among the concentrations of proteins in synthetic circuits,
which should be accounted for in the design phase. The second issue we consider is
the effect of biological noise on the design of devices requiring high gains. Specif-
ically, we illustrate possible design tradeoffs between retroactivity attenuation and
noise amplification that emerge due to the intrinsic noise of biomolecular reactions.

7.1 Competition for shared cellular resources

Exogenous circuits, just like endogenous ones, use cellular resources—such as ri-
bosomes, RNA polymerase (RNAP), enzymes and ATP—that are shared among
all the circuitry of the cell. From a signals and systems point of view, these in-
teractions can be depicted as in Figure 7.1. The cell’s endogenous circuitry pro-
duces resources as output and exogenous synthetic circuits take these resources
as inputs. As a consequence, as seen in Chapter 6, there is retroactivity from the
exogenous circuits to the cellular resources. This retroactivity creates indirect cou-
pling between the exogenous circuits and can lead to undesired crosstalk. In this
chapter, we study the effect of the retroactivity from the synthetic circuits to shared
resources in the cellular environment by focusing on the effect on availability of
RNA polymerase and ribosomes, for simplicity. We then study the consequence
of this retroactivity, illustrating how the behavior of individual circuits becomes
coupled. These effects are significant for any resource whose availability is not in
substantial excess compared to the demand by exogenous circuits.

In order to illustrate the problem, we consider the simple system shown in Fig-
ure 7.2, in which two modules, a constitutively expressed gene (Module 1) and a
gene activated by a transcriptional activator A (Module 2), are present in the cel-
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Figure 7.1: The cellular environment provides resources to synthetic circuits, such as RNA
polymerase, ribosomes, ATP, nucleotides, proteases, etc. These resources can be viewed
as an “output” of the cell’s endogenous circuitry and an input to the exogenous circuits.
Circuit i takes these resources as input and, as a consequence, it causes a retroactivity
ri to its input. Hence, the endogenous circuitry has a retroactivity to the output s that
encompasses all the retroactivities applied by the exogenous circuits.

lular environment. In theory, Module 2 should respond to changes in the activator
A concentration, while Module 1, having a constitutively active promoter, should
display a constant expression level that is independent of the activator A concen-
tration. Experimental results, however, indicate that this is not the case: Module
1’s output protein concentration P1 also responds to changes in the activator A
concentration. In particular, as the activator A concentration is increased, the con-
centration of protein P1 can substantially decrease. This fact can be qualitatively
explained by the following reasoning. When A is added, RNA polymerase can bind
to DNA promoter D2 and start transcription, so that the free available RNA poly-
merase decreases as some is bound to the promoter D2. Transcription of Module
2 generates mRNA and hence ribosomes will have more ribosome binding sites
to which they can bind, so that less ribosomes will be free and available for other
reactions. It follows that the addition of activator A leads to an overall decrease of
the free RNA polymerase and ribosomes that can take part in the transcription and
translation reactions of Module 1. The net effect is that less of P1 protein will be
produced.

The extent of this effect will depend on the overall availability of the shared
resources, on the biochemical parameters, and on whether the resources are regu-
lated. For example, it is known that ribosomes are internally regulated by a com-
bination of feedback interactions [61]. This, of course, may help compensate for
changes in the demand of these resources, though experiments demonstrate that the
coupling effects are indeed noticeable [98].

In this chapter, we illustrate how this effect can be mathematically explained
by explicitly accounting for the usage of RNA polymerase and ribosomes in the
transcription and translation models of the circuits. To simplify the mathematical
analysis and to gather analytical understanding of the key parameters at the basis of
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Figure 7.2: Module 1 has a constitutively active promoter that controls the expression of
protein P1, while Module 2 has a promoter activated by activator A, which controls the
expression of protein P2. The two modules do not share any transcription factors, so they
are not “connected.” Both of them use RNA polymerase (X) and ribosomes (Y) for the
transcription and translation processes.

this phenomenon, we first focus on the usage of RNA polymerase, neglecting the
usage of ribosomes. We then provide a computational model that accounts for both
RNA polymerase and ribosome utilization and illustrate quantitative simulation
results.

Analytical study

To illustrate the essence of the problem, we assume that gene expression is a one-
step process, in which the RNA polymerase binds to the promoter region of a gene
resulting in a transcriptionally active complex that, in turn, produces the protein.
That is, we will be using the lumped reactions (2.12), in which on the right-hand
side of the reaction we have the protein instead of the mRNA.

By virtue of this simplification, we can write the reactions describing Module
1 as

X+D1
a1−−⇀↽−−
d1

X:D1
k1−→ P1+X+D1, P1

γ
−→ ∅.

The reactions describing Module 2 can be written similarly, recalling that in the
presence of an activator they should be modified according to equation (2.21). Tak-
ing this into account, the reactions of Module 2 are given by

D2+A
a0−−⇀↽−−
d0

D2:A, X+D2:A
a2−−⇀↽−−
d2

X:D2:A
k2−→ P2+X+D2:A, P2

γ
−→ ∅.

We let Dtot,1 and Dtot,2 denote the total concentration of DNA for Module 1 and
Module 2, respectively, and we let K0 = d0/a0, K1 = d1/a1, and K2 = d2/a2. By
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approximating the complexes’ concentrations by their quasi-steady state values,
we obtain the expressions

[X:D1] = Dtot,1
X/K1

1+X/K1
, [X:D2:A] = Dtot,2

(A/K0)(X/K2)
1+ (A/K0)(1+X/K2)

. (7.1)

As a consequence, the differential equation model for the system is given by

dP1

dt
= k1Dtot,1

X/K1

1+X/K1
−γP1,

dP2

dt
= k2Dtot,2

(A/K0)(X/K2)
1+ (A/K0)(1+X/K2)

−γP2,

so that the steady state values of P1 and P2 are given by

P1 =
k1Dtot,1

γ

X/K1

1+X/K1
, P2 =

k2Dtot,2

γ

(A/K0)(X/K2)
1+ (A/K0)(1+X/K2)

.

These values are indirectly coupled through the conservation law of RNA poly-
merase. Specifically, we let Xtot denote the total concentration of RNA polymerase.
This value is mainly determined by the cell growth rate and for a given growth rate
it is about constant [15]. Then, we have that Xtot = X + [X:D1]+ [X:D2:A], which,
considering the expressions of the quasi-steady state values of the complexes’ con-
centrations in equation (7.1), leads to

Xtot = X+Dtot,1
X/K1

1+X/K1
+Dtot,2

(A/K0)(X/K2)
1+ (A/K0)(1+X/K2)

. (7.2)

We next study how the steady state value of X is affected by the activator concen-
tration A and how this effect is reflected in a dependency of P1 on A. To perform
this study, it is useful to write α := (A/K0) and note that for α sufficiently small
(sufficiently small amounts of activator A), we have that

α(X/K2)
1+α(1+X/K2)

≈ α(X/K2).

Also, to simplify the derivations, we assume that the binding of X to D1 is suf-
ficiently weak, that is, X ≪ K1. In light of this, we can rewrite the conservation
law (7.2) as

Xtot = X+Dtot,1
X

K1
+Dtot,2α

X

K2
.

This equation can be explicitly solved for X to yield

X =
Xtot

1+ (Dtot,1/K1)+α(Dtot,2/K2)
.
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This expression depends on α, and hence on the activator concentration A. Specifi-
cally, as the activator is increased, the value of the free X concentration monotoni-
cally decreases. As a consequence, the equilibrium value P1 will also depend on A

according to

P1 =
k1Dtot,1

γ

Xtot/K1

1+ (Dtot,1/K1)+α(Dtot,2/K2)
,

so that P1 monotonically decreases as A is increased. That is, Module 1 responds to
changes in the activator of Module 2. From these expressions, we can also deduce
that if Dtot,1/K1≫ αDtot,2/K2, that is, the demand for RNA polymerase in Module
1 is much larger than that of Module 2, then changes in the activator concentration
will lead to small changes in the free amount of RNA polymerase and in P1.

This analysis illustrates that forcing an increase in the expression of any protein
causes an overall decrease in available resources, which leads to a decrease in the
expression of other proteins. As a consequence, there is a tradeoff between the
amount of protein produced by one circuit and the amount of proteins produced
by different circuits. In addition to a design tradeoff, this analysis illustrates that
“unconnected” circuits can affect each other because they share common resources.
This can, in principle, lead to a dramatic departure of a circuit’s behavior from
its nominal one. As an exercise, the reader can verify that similar results hold in
the case in which Module 2 has a repressible promoter instead of one that can be
activated (see Exercise 7.2).

The model that we have presented here contains many simplifications. In addi-
tion to the mathematical approximations performed and to the fact that we did not
account for ribosomes, the model neglects the transcription of endogenous genes.
In fact, RNA polymerase is also used for transcription of chromosomal genes.
While the qualitative behavior of the coupling between Module 1 and Module 2
is not going to be affected by including endogenous transcription, the extent of this
coupling may be substantially impacted. In the next section, we illustrate how the
presence of endogenous genes may affect the extent to which the availability of
RNA polymerase decreases upon addition of exogenous genes.

Estimates of RNA polymerase perturbations by exogenous plasmids

In the previous section, we illustrated the mechanism by which the change in the
availability of a shared resource, due to the addition of synthetic circuits, can cause
crosstalk between unconnected circuits. The extent of this crosstalk depends on the
amount by which the shared resource changes. This amount, in turn, depends on
the specific values of the dissociation constants, the total resource amounts, and
the fraction of resource that is used already by natural circuits. Here, we consider
how the addition of an external plasmid affects the availability of RNA polymerase,
considering a simplified model of the interaction of RNA polymerase with the ex-
ogenous and natural DNA.
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In E. coli, the amount of RNA polymerase and its partitioning mainly depends
on the growth rate of the cell [15]: with 0.6 doublings/hour there are only 1500
molecules/cell, while with 2.5 doublings/hour this number is 11400. The fraction
of active RNA polymerase molecules also increases with the growth rate. For il-
lustration purposes, we assume here that the growth rate is the highest considered
in [15], so that 1 molecule/cell corresponds to approximately 1nM concentration.
In this case, a reasonable partitioning of the total pool of RNA polymerase of con-
centration Xtot = 12 µM is the following [57]:

(i) specifically DNA-bound (at promoter) Xs: 30% (4000 molecules/cell, that
is, Xs = 4 µM),

(ii) non-specifically DNA-bound Xn: 60% (7000 molecules/cell, that is, Xn =

7 µM),

(iii) free X: 10% (1000 molecules/cell, that is, X = 1 µM).

By [16], the number of initiations per promoter can be as high as 30/minute in
the case of constitutive promoters, and 1-3/minute for regulated promoters. Here,
we choose an effective value of 5 initiations/minute per promoter, so that on av-
erage, 5 molecules of RNA polymerase can be simultaneously transcribing each
gene, as transcribing a gene takes approximately a minute [4]. There are about
1000 genes expressed in exponential growth phase [47], hence we approximate
the number of promoter binding sites for X to 5000, or Dtot = 5 µM. The binding
reaction for specific binding is of the form

D+X
a
−⇀↽−
d

D:X,

in which D represents DNA promoter binding sites DNAp in total concentration
Dtot. Consequently, we have Dtot =D+ [D:X]. At the equilibrium, we have [D:X]=
Xs = 4 µM and D = Dtot − [D:X] = Dtot − Xs = 1 µM. With dissociation constant
Kd = d/a the equilibrium is given by 0 = DX − Kd[D:X], hence we have that
Kd = DX/[D:X] = 0.25 µM, which can be interpreted as an “effective” dissociation
constant. This is in the range 1 nM−1 µM suggested by [38] for specific binding of
RNA polymerase to DNA. Therefore, we are going to model the specific binding
of RNA polymerase to the chromosome of E. coli in exponential growth phase as
one site with concentration Dtot and effective dissociation constant Kd.

Furthermore, we have to take into account the rather significant amount of RNA
polymerase bound to the DNA other than at the promoter region (Xn = 7 µM). To
do so, we follow a similar path as in the case of specific binding. In particular, we
model the non-specific binding of RNA polymerase to DNA as

D̄+X
ā
−⇀↽−̄
d

D̄:X,
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in which D̄ represents DNA binding sites with concentration D̄tot and effective
dissociation constant K̄d = d̄/ā. At the equilibrium, we have that the concentration
of RNA polymerase non-specifically bound to DNA is given by

Xn = [D̄:X] =
D̄totX

X+ K̄d

.

As the dissociation constant K̄d of non-specific binding of RNA polymerase to
DNA is in the range 1− 1000 µM [38], we have X ≪ K̄d, yielding Xn = [D̄:X] ≈
XD̄tot/K̄d. Consequently, we obtain D̄tot/K̄d = Xn/X = 7. Here, we did not model
the reaction in which the non-specifically bound RNA polymerase Xn slides to the
promoter binding sites D. This would not substantially affect the results of our cal-
culations because the RNA polymerase non-specifically bound on the chromosome
cannot bind the plasmid promoter sites without first unbinding and becoming free.

Now, we can consider the addition of synthetic plasmids. Specifically, we con-
sider high-copy number plasmids (copy number 100− 300) with one copy of a
gene under the control of a constitutive promoter. We abstract it by a binding site
for RNA polymerase D′ to which X can bind according to the following reaction:

D′+X
a′

−−⇀↽−−
d′

D′:X,

where D′ is the RNA polymerase-free binding site and D′ : X is the site bound to
RNA polymerase. Consequently, we have D′tot = D′ + [D′:X], where D′tot = 1 µM,
considering 200 copies of plasmid per cell and 5 RNA polymerase molecules per
gene. The dissociation constant corresponding to the above reaction is given by
K′ = d′/a′. At the steady state we have

[D′:X] = D′tot
X

K′
d
+X
,

together with the conservation law for RNA polymerase given by

X+ [D:X]+ [D̄:X]+ [D′:X] = Xtot. (7.3)

In this model, we did not account for RNA polymerase molecules paused or queu-
ing on the chromosome; moreover, we also neglected the resistance genes on the
plasmid and all additional sites (specific or not) to which RNA polymerase can also
bind. Hence, we are underestimating the effect of load presented by the plasmid.

Solving equation (7.3) for the free RNA polymerase amount X gives the fol-
lowing results. These results depend on the ratio between the effective dissociation
constant Kd of RNA polymerase binding with the natural DNA promoters and the
dissociation constant K′

d
of binding with the plasmid promoter:

(i) K′
d
= 0.1Kd (RNA polymerase binds stronger to the plasmid promoter) re-

sults in X = 0.89 µM, that is, the concentration of free RNA polymerase
decreases by about 11%;



250 CHAPTER 7. DESIGN TRADEOFFS

(ii) K′
d
= Kd (binding is the same) results in X = 0.91 µM, consequently, the

concentration of free RNA polymerase decreases by about 9%;

(iii) K′
d
= 10Kd (RNA polymerase binds stronger to the chromosome) results in

X = 0.97 µM, which means that the concentration of free RNA polymerase
decreases by about 3%.

Note that the decrease in the concentration of free RNA polymerase is greatly re-
duced by the significant amount of RNA polymerase being non-specifically bound
to the DNA. For instance, in the second case when K′

d
= Kd, the RNA polymerase

molecules sequestered by the synthetic plasmid can be partitioned as follows: about
10% is taken from the pool of free RNA polymerase molecules X, another 10%
comes from the RNA polymerase molecules specifically bound, and the over-
whelming majority (80%) decreases the concentration of RNA polymerase non-
specifically bound to DNA. That is, this weak binding of RNA polymerase to DNA
acts as a buffer against changes in the concentration of free RNA polymerase.

We conclude that if the promoter on the synthetic plasmid has a dissociation
constant for RNA polymerase that is in the range of the dissociation constant of
specific binding, the perturbation on the available free RNA polymerase is about
9%. This perturbation, even if fairly small, may in practice result in large effects on
the protein concentration. This is because it may cause a large perturbation in the
concentration of free ribosomes. In fact, one added copy of an exogenous plasmid
will lead to transcription of several mRNA molecules, which will demand ribo-
somes for translation. Hence, a small increase in the demand for RNA polymerase
may be associated with a dramatically larger increase in the demand for ribosomes.
This is illustrated in the next section through a computational model including ri-
bosome sharing.

Computational model and numerical study

In this section, we introduce a model of the system in Figure 7.2, in which we con-
sider both the RNA polymerase and the ribosome usage. We let the concentration
of RNA polymerase be denoted by X and the concentration of ribosomes be de-
noted by Y . We let m1 and P1 denote the concentrations of the mRNA and protein
in Module 1 and let m2 and P2 denote the concentrations of the mRNA and protein
in Module 2. The reactions of the transcription process in Module 1 are given by
(see Section 2.2)

X+D1
a1−−⇀↽−−
d1

X:D1
k1−→m1+X+D1, m1

δ
−→ ∅,

while the translation reactions are given by

Y+m1

a′1−−⇀↽−−
d′1

Y:m1

k′1−→ P1+m1+Y, Y:m1
δ
−→ Y, P1

γ
−→ ∅.
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The resulting system of differential equations is given by

d

dt
[X:D1] = a1 X D1− (d1+ k1) [X:D1],

dm1

dt
= k1 [X:D1]−a′1 Y m1+d′1 [Y:m1]−δ m1+ k′1 [Y:m1], (7.4)

d

dt
[Y:m1] = a′1 Y m1− (d′1+ k1; ) [Y:m1],

dP1

dt
= k′1 [Y:m1]−γ P1,

in which D1 = Dtot,1− [X:D1] from the conservation law of DNA in Module 1.
The reactions of the transcription process in Module 2 are given by (see Sec-

tion 2.3)

D2+A
a0−−⇀↽−−
d0

D2:A, X+D2:A
a2−−⇀↽−−
d2

X:D2:A
k2−→m2+X+D2:A, m2

δ
−→ ∅,

while the translation reactions are given by

Y+m2

a′2−−⇀↽−−
d′2

Y:m2

k′2−→ P2+m2+Y, Y:m2
δ
−→ Y, P2

γ
−→ ∅.

The resulting system of differential equations is given by

d

dt
[D2:A] = a0 D2 A−d0 [D2:A]−a2 X [D2:A]+ (d2+ k2)[X:D2:A],

d

dt
[X:D2:A] = a2 X [D2:A]− (d2+ k2) [X:D2:A],

dm2

dt
= k2 [X:D2:A]−a′2 Y m2+d′2 [Y:m2]−δ m2+ k′2 [Y:m2], (7.5)

d

dt
[Y:m2] = a′2 Y m2− (d′2+ k′2) [Y:m2]−δ[Y:m2],

dP2

dt
= k′2 [Y:m2]−γ P2,

in which we have that D2 = Dtot,2 − [D2:A]− [X:D2:A] by the conservation law of
DNA in Module 2.

The two modules are coupled by the conservation laws for RNA polymerase
and ribosomes given by

Xtot = X+ [X:D1]+ [X:D2:A], Ytot = Y + [Y:m1]+ [Y:m2],

which we employ in systems (7.4)–(7.5) by writing

X = Xtot− [X:D1]− [X:D2:A], Y = Ytot− [Y:m1]− [Y:m2].
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Figure 7.3: Simulation results for the ordinary differential equation model (7.4)–(7.5).
When A is increased, X slightly decreases (a) while Y decreases substantially (b). So, as
P2 increases (c), we have that P1 decreases substantially (d). For this model, the parameter
values were taken from http://bionumbers.hms.harvard.edu as follows. For the concentra-
tions, we have set Xtot = 1 µM, Ytot = 10 µM, and Dtot,1 = Dtot,2 = 0.2 µM. The values
of the association and dissociation rate constants were chosen such that the correspond-
ing dissociation constants were in the range of dissociation constants for specific binding.
Specifically, we have a0 = 10 µM−1min−1, d0 = 1 min−1, a2 = 10 µM−1min−1, d2 = 1 min−1,
a′2 = 100 µM−1min−1, d′2 = 1 min−1, a1 = 10 µM−1min−1, d1 = 1 min−1, a′1 = 10 µM−1min−1,
and d′1 = 1 min−1. The transcription and translation rate constants were chosen to give a
few thousands of protein copies per cell and calculated considering the elongation speeds,
the average length of a gene, and the average number of RNA polymerase per gene and of
ribosomes per transcript. The resulting values chosen are given by k1 = k2 = 40 min−1 and
k′1 = k′2 = 0.006 min−1. Finally, the decay rates are given by γ = 0.01 min−1 corresponding
to a protein half life of about 70 minutes and δ = 0.1 min−1 corresponding to an mRNA
half life of about 7 minutes.

Simulation results are shown in Figure 7.3a–7.3d, in which we consider cells
growing at high rate. In the simulations, we have chosen Xtot = 1 µM to account for
the fact that the total amount of RNA polymerase in wild type cells at fast division
rate is given by about 10 µM of which only 1 µM is free, while the rest is bound
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to the endogenous DNA. Since in the simulations we did not account for endoge-
nous DNA, we assumed that only 1 µM is available in total to the two exogenous
modules. A similar reasoning was employed to set Ytot = 10 µM. Specifically, in
exponential growth, we have about 34 µM of total ribosomes’ concentration, but
only about 30% of this is free, resulting in about 10 µM concentration of ribosomes
available to the exogenous modules (http://bionumbers.hms.harvard.edu).

Figure 7.3a illustrates that as the activator concentration A increases, there is
no substantial perturbation on the free amount of RNA polymerase. However, be-
cause the resulting perturbation on the free amount of ribosomes (Figure 7.3b) is
significant, the resulting decrease of P1 is substantial (Figure 7.3d).

7.2 Stochastic effects: Design tradeoffs in systems with large

gains

As we have seen in Chapter 6, a biomolecular system can be rendered insensitive
to retroactivity by implementing a large input amplification gain in a negative feed-
back loop. However, relying on high gains, this type of design may have undesired
effects in the presence of noise, as seen in a different context in Section 5.2. Here,
we employ the Langevin equation introduced in Chapter 4 to analyze this problem.
Here, we treat the Langevin equation as a regular ordinary differential equation
with inputs, allowing us to apply the tools described in Chapter 3.

Consider a system, such as the transcriptional component of Figure 6.4, in
which a protein X is produced, degraded, and is an input to a downstream system,
such as a transcriptional component. Here, we assume that both the production and
the degradation of protein X can be tuned through a gain G, something that can be
realized through the designs illustrated in Chapter 6. Hence, the production rate of
X is given by a time-varying function Gk(t) while the degradation rate is given by
Gγ.

The system can be simply modeled by the chemical reactions

0
G k(t)
−−−−⇀↽−−−−

Gγ
X, X+p

kon−−−⇀↽−−−
koff

C,

in which we assume that the binding sites p are in total constant amount denoted
ptot, so that p+C = ptot.

We have shown in Section 6.5 that increasing the gain G is beneficial for at-
tenuating the effects of retroactivity on the upstream component applied by the
connected downstream system. However, as shown in Figure 7.4, increasing the
gain G impacts the frequency content of the noise in a single realization. In partic-
ular, as G increases, the realization shows perturbations (with respect to the mean
value) with higher frequency content.

To study this problem, we employ the Langevin equation (Section 4.1). For
our system, we obtain (assuming unit volume for simplifying the mathematical
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Figure 7.4: Stochastic simulations illustrating that increasing the value of G produces per-
turbations of higher frequency. Two realizations are shown with different values of G with-
out load. The parameters used in the simulations are γ = 0.01 min−1 and the frequency of
the input is ω = 0.005 rad/min with input signal given by k(t) = γ(1+0.8sin(ωt)) nM/min.
The mean of the signal is given as reference. Figure adapted from [49].

derivations):

dX

dt
=Gk(t)−GγX− kon(ptot−C)X+ koffC+

√

Gk(t) Γ1(t)−
√

GγX Γ2(t)

−
√

kon(ptot−C)X Γ3(t)+
√

koffC Γ4(t),
dC

dt
= kon(ptot−C)X− koffC+

√

kon(ptot−C)X Γ3(t)−
√

koffC Γ4(t).

(7.6)

The above system can be viewed as a nonlinear system with five inputs, k(t) and
Γi(t) for i = 1,2,3,4. Let k(t) = k̄, and Γ1(t) = Γ2(t) = Γ3(t) = Γ4(t) = 0 be constant
inputs and let X̄ and C̄ be the corresponding equilibrium points. Then for small
amplitude signals k̃(t) = k(t)− k̄ the linearization of the system (7.6) leads, with
abuse of notation, to

dX

dt
=Gk̃(t)−GγX− kon(ptot− C̄)X+ konX̄C+ koffC

+
√

Gk̄ Γ1(t)−
√

GγX̄ Γ2(t)+
√

koffC̄ Γ4(t)−
√

kon(ptot− C̄)X̄ Γ3(t),

dC

dt
= kon(ptot− C̄)X− konX̄C− koffC−

√

koffC̄ Γ4(t)+
√

kon(ptot− C̄)X̄ Γ3(t).

We can further simplify the above expressions by noting that γX̄ = k̄ and kon(ptot−
C̄)X̄ = koffC̄. Also, since Γ j are independent identical Gaussian white noise pro-
cesses, we can write Γ1(t)−Γ2(t) =

√
2N1(t) and Γ3(t)−Γ4(t) =

√
2N2(t), in which

N1(t) and N2(t) are independent Gaussian white noise processes identical to Γ j(t).
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This simplification leads to the system

dX

dt
=Gk̃(t)−GγX− kon(ptot− C̄)X+ konX̄C+ koffC+

√

2Gk̄N1(t)−
√

2koffC̄N2(t),

dC

dt
= kon(ptot− C̄)X− konX̄C− koffC+

√

2koffC̄N2(t). (7.7)

This is a system with three inputs: the deterministic input k̃(t) and two inde-
pendent white noise sources N1(t) and N2(t). One can interpret N1 as the source of
the fluctuations caused by the production and degradation reactions while N2 is the
source of fluctuations caused by binding and unbinding reactions. Since the system
is linear, we can analyze the different contributions of each noise source separately
and independent from the signal k̃(t).

We can simplify this system by taking advantage once more of the separation
of time scales between protein production and degradation and the reversible bind-
ing reactions, defining a small parameter ϵ = γ/koff and letting Kd = koff/kon. By
applying singular perturbation theory, we can set ϵ = 0 and obtain the reduced sys-
tem on the slow time scale as performed in Section 6.3. In this system, the transfer
function from N1 to X is given by

HXN1 (s) =

√
2Gk̄

s(1+ R̄)+Gγ
, R̄ =

ptot/Kd

((k̄/γ)/Kd+1)2
. (7.8)

The zero frequency gain of this transfer function is equal to

HXN1 (0) =

√
2k̄
√

Gγ
.

Thus, as G increases, the zero frequency gain decreases. But for large enough fre-
quencies ω, jω(1+ R̄)+Gγ ≈ jω(1+ R̄), and the amplitude is approximately given
by

|HXN1 ( jω)| ≈

√
2k̄G

ω(1+ R̄)
,

which is a monotonically increasing function of G. This effect is illustrated in Fig-
ure 7.5. The frequency at which the amplitude of |HXN1 ( jω)| computed with G = 1
intersects the amplitude |HXN1 ( jω)| computed with G > 1 is given by the expression

ωe =
γ
√

G

(1+ R̄)
.

Thus, when increasing the gain from 1 to G > 1, we reduce the noise at frequencies
lower than ωe but we increase it at frequencies larger than ωe.

While retroactivity contributes to filtering noise in the upstream system as it de-
creases the bandwidth of the noise transfer function (expression (7.8)), high gains
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Figure 7.5: Magnitude of the transfer function HXN1 (s) as a function of the input frequency
ω. The parameters used in this plot are γ = 0.01 min−1, Kd = 1 nM, koff = 50 min−1, ω =
0.005 rad/min, ptot = 100 nM. When G increases, the contribution from N1 decreases at
low frequency but it spreads to a higher range of the frequency.

contribute to increasing noise at frequencies higher than ωe. In particular, when
increasing the gain from 1 to G > 1 we reduce the noise in the frequency ranges
below ωe, but the noise at frequencies above ωe increases. If we were able to indef-
initely increase G, we could send G to infinity attenuating the deterministic effects
of retroactivity while amplifying noise only at very high, hence not relevant, fre-
quencies.

In practice, however, the value of G is limited. For example, in the insulation
device based on phosphorylation, G is limited by the amounts of substrate and
phosphatase that we can have in the system. Hence, a design tradeoff needs to be
considered when designing insulation devices: placing the largest possible G atten-
uates retroactivity but it may increase noise in a possibly relevant frequency range.

In this chapter, we have presented some of the tradeoffs that need to be ac-
counted for when designing biomolecular circuits in living cells and focused on the
problem of competition for shared resources and on noise. Problems of resource
sharing, noise, and retroactivity are encompassed in a more general problem faced
when engineering biological circuits, which is referred to as “context-dependence.”
That is, the functionality of a module depends on its context. Context-dependence
is due to a number of different factors. These include unknown regulatory inter-
actions between the module and its surrounding systems; various effects that the
module has on the cell network, such as metabolic burden [12] and effects on cell
growth [85]; and the dependence of the module’s parameters on the specific bio-
physical properties of the cell and its environment, including temperature and the
presence of nutrients. Future biological circuit design techniques will have to ad-
dress all these additional problems in order to ensure that circuits perform robustly
once interacting in the cellular environment.
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Exercises

7.1 Assume that both Module 1 and Module 2 considered in Section 7.1 can be
activated. Extend the analytical derivations of the text to this case.

7.2 A similar derivation to what was performed in Section 7.1 can be carried if R
were a repressor of Module 2. Using a one-step reaction model for gene expres-
sion, write down the reaction equations for this case and the ordinary differential
equations describing the rate of change of P1 and P2. Then, determine how the
free concentration of RNA polymerase is affected by changes in R and how P1 is
affected by changes in R.

7.3 Consider again the case of a repressor as considered in the previous exercise.
Now, consider a two-step reaction model for transcription and build a simulation
model with parameter values as indicated in the text and determine the extent of
coupling between Module 1 and Module 2 when the repressor is increased.

7.4 Consider the system (7.7) and calculate the transfer function from the noise
source N2 to X.

7.5 Consider the insulation device based on phosphorylation illustrated in Sec-
tion 6.5. Perform stochastic simulations to investigate the tradeoff between retroac-
tivity attenuation and noise amplification when key parameters are changed. In
particular, you can perform one study in which the time scale of the cycle changes
and a different study in which the total amounts of substrate and phosphatase are
changed.
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