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Chapter 4
Stochastic Behavior

In this chapter we explore stochastic behavior in biomolecular systems, building
on our preliminary discussion of stochastic modeling in Section 2.2. We begin by
reviewing the various methods for modeling stochastic processes, including the
chemical master equation (CME), the chemical Langevin equation (CLE) and the
Fokker-Planck equation (FPE). Given a stochastic description, we can then ana-
lyze the behavior of the system using a variety of stochastic simulation and analy-
sis tools. In many cases, we must simplify the dynamics of the system in order to
obtain a tractable model, and we describe several methods for doing so, including
finite state projection, linearization and Markov chain representations. We also in-
vestigate how to use data to identify some the structure and parameters of stochastic
models.

Prerequisites. This chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good working knowledge of
basic probability and some exposure to simple stochastic processes (e.g., Brownian
motion).

4.1 Stochastic Systems

We begin by briefly introducing the general notions of stochastic systems in contin-
uous time and with continuous states. Some of the material in this section is drawn
from the AM08 supplement on Optimization-Based Control Systems [30].

Review of random variables

Random variables and processes are defined in terms of an underlying probability
space that captures the nature of the stochastic system we wish to study. A proba-
bility space has three elements:

• a sample space Ω that represents the set of all possible outcomes;

• a set of events F the captures combinations of elementary outcomes that are
of interest; and

• a probability measure P that describes the likelihood of a given event occur-
ring.
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Ω can be any set, either with a finite, countable or infinite number of elements. The
event space F consists of subsets of Ω. There are some mathematical limits on the
properties of the sets in F , but these are not critical for our purposes here. The
probability measure P is a mapping from P : F → [0,1] that assigns a probability
to each event. It must satisfy the property that given any two disjoint sets A,B ⊂ F ,
P(A∪ B) = P(A) + P(B). The term probability distribution is also to describe a
probability measure.
With these definitions, we can model many different stochastic phenomena.

Given a probability space, we can choose samples ω ∈Ω and identify each sample
with a collection of events chosen from F . These events should correspond to
phenomena of interest and the probability measure P should capture the likelihood
of that even occurring in the system that we are modeling. This definition of a
probability space is very general and allows us to consider a number of situations
as special cases.
A random variable X is a function X : Ω→ S that gives a value in S , called

the state space, for any sample ω ∈ Ω. Given a subset A ⊂ S , we can write the
probability that X ∈ A as

P(X ∈ A) = P(ω ∈Ω : X(ω) ∈ A).

We will often find it convenient to omit ω when working random variables and
hence we write X ∈ S rather than the more correct X(ω) ∈ S .
A discrete random variable X is a variable that can take on any value from

a discrete set S with some probability for each element of the set. We model a
discrete random variable by its probability mass function pX(s), which gives the
probability that the random variable X takes on the specific value s ∈ S :

pX(s) = probability that X takes on the value s ∈ S .

The sum of the probabilities over the entire set of states must be unity, and so we
have that

∑

s∈S
pX(s) = 1.

If A is a subset of S , then we can write P(X ∈ A) for the probability that X will take
on some value in the set A. It follows from our definition that

P(X ∈ A) =
∑

s∈A
p(s).

Definition 4.1 (Bernoulli distribution). The Bernoulli distribution is used to model
a random variable that takes the value 1 with probability p and 0 with probability
1− p:

P(X = 1) = p, P(X = 0) = 1− p.
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(a) Binomial distribution (b) Poisson distribution

Figure 4.1: Probability mass functions for common discrete distributions.

Alternatively, it can be written in terms of its probability mass function

p(s) =



























p s = 1
1− p s = 0
0 otherwise.

Bernoulli distributions are used to model independent experiments with binary out-
comes, such as flipping a coin.

Definition 4.2 (Binomial distribution). The binomial distributionmodels the prob-
ability of successful trials in n experiments, given that a single experiment has prob-
ability of success p. If we let Kn be a random variable that indicates the number of
success in n trials, then the binomial distribution is given by

pKn(k) = P(Kn = k) =
(

n
k

)

pk(1− p)n−k

for k = 1, . . . ,n. The probability mass function is shown in Figure 4.1a.

Definition 4.3 (Poisson distribution). The Poisson distribution is used to describe
the probability that a given number of events will occur in a fixed interval of time
t. The Poisson distribution is defined as

pNt (k) = P(Nt = k) =
e−λt(λt)k

k!
, (4.1)

where Nt is the number of events that occur in a period t and λ is a real number
parameterizing the distribution. This distribution can be considered as a model for a
counting process, where we assume that the average rate of occurrences in a period
t is given by λt and λ represents the rate of the counting process. Figure 4.1b shows
the form of the distribution for different values of k and λt.
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A continuous (real-valued) random variable X is a variable that can take on any
value in the set of real numbers R. We can model the random variable X according
to its probability distribution P:

P(xl ≤ X ≤ xu) = probability that x takes on a value in the range xl, xu.

More generally, we write P(A) as the probability that an event A will occur (e.g.,
A = {xl ≤ X ≤ xu}). It follows from the definition that if X is a random variable in
the range [L,U] then P(L ≤ X ≤ U) = 1. Similarly, if Y ∈ [L,U] then P(L ≤ X ≤
Y) = 1−P(Y ≤ X ≤ U).
We characterize a random variable in terms of the probability density function

(pdf) p(x). The density function is defined so that its integral over an interval gives
the probability that the random variable takes its value in that interval:

P(xl ≤ X ≤ xu) =
∫ xu

xl
p(x)dx. (4.2)

It is also possible to compute p(x) given the distribution P as long as the distribution
is suitably smooth:

p(x) =
∂P(xl ≤ x ≤ xu)

∂xu

∣

∣

∣

∣

∣xl fixed,
xu = x,

x > xl.

We will sometimes write pX(x) when we wish to make explicit that the pdf is
associated with the random variable X. Note that we use capital letters to refer to a
random variable and lower case letters to refer to a specific value.

Definition 4.4 (Uniform distribution). The uniform distribution on an interval [L,U]
assigns equal probability to any number in the interval. Its pdf is given by

p(x) =
1

U −L
. (4.3)

The uniform distribution is illustrated in Figure 4.2a.

Definition 4.5 (Gaussian distribution). The Gaussian distribution (also called a
normal distribution) has a pdf of the form

p(x) =
1

√
2πσ2

e−
1
2
( x−µ
σ

)2

. (4.4)

The parameter µ is called the mean of the distribution and σ is called the stan-
dard deviation of the distribution. Figure 4.2b shows a graphical representation a
Gaussian pdf.
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p(x)

L U
(a) Uniform distribution

µ

p(x)

σ

(b) Gaussian distribution (c) Exponentialdistribution

Figure 4.2: Probability density function (pdf) for uniform, Gaussian and exponential dis-
tributions.

Definition 4.6 (Exponential distribution). The exponential distribution is defined
for positive numbers and has a pdf of the form

p(x) = λe−λx, x > 0

where λ is a parameter defining the distribution. A plot of the pdf for an exponential
distribution is shown in Figure 4.2c. The exponential distribution can be shown to
describe the amount of time between two events in a Poisson process.

Properties of random variables

We now define a number of properties of collections of random variables. We focus
on the continuous random variable case, but unless noted otherwise these concepts
can all be defined similarly for discrete random variables (using the probability
mass function in place of the probability density function).
If two random variables are related, we can talk about their joint probability dis-

tribution: PX,Y (A,B) is the probability that both event A occurs for X and B occurs
for Y . This is sometimes written as P(A∩ B), where we abuse notation by implic-
itly assuming that A is associated with X and B with Y . For continuous random
variables, the joint probability distribution can be characterized in terms of a joint
probability density function

P(xl ≤ X ≤ xu, yl ≤ Y ≤ yu) =
∫ yu

yl

∫ xu

xl
p(x,y)dxdy. (4.5)

The joint pdf thus describes the relationship between X and Y , and for sufficiently
smooth distributions we have

p(x,y) =
∂2P(xl ≤ X ≤ xu, yl ≤ Y ≤ yu)

∂xu∂yu

∣

∣

∣

∣

∣

∣xl,yl fixed,
xu = x, yu = y,

x > xl,
y > yl.
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We say that X and Y are independent if p(x,y) = p(x)p(y), which implies that
PX,Y (A,B) = PX(A)PY (B) for events A associated with X and B associated with
Y . Equivalently, P(A∩B) = P(A)P(B) if A and B are independent.
The conditional probability for an event A given that an event B has occurred,

written as P(A | B), is given by

P(A | B) =
P(A∩B)
P(B)

. (4.6)

If the events A and B are independent, then P(A | B) = P(A). Note that the individ-
ual, joint and conditional probability distributions are all different, so we should
really write PX,Y (A∩B), PX|Y (A | B) and PY (B).
If X is dependent on Y then Y is also dependent on X. Bayes’ theorem relates

the conditional and individual probabilities:

P(A | B) =
P(B | A)P(A)

P(B)
, P(B) ! 0. (4.7)

Bayes’ theorem gives the conditional probability of event A on event B given the
inverse relationship (B given A). It can be used in situations in which we wish to
evaluate a hypothesis H given data D when we have some model for how likely the
data is given the hypothesis, along with the unconditioned probabilities for both
the hypothesis and the data.
The analog of the probability density function for conditional probability is the

conditional probability density function p(x | y)

p(x | y) =



















p(x,y)
p(y)

0 < p(y) <∞

0 otherwise.
(4.8)

It follows that
p(x,y) = p(x | y)p(y) (4.9)

and
P(xl ≤ X ≤ xu | y) := P(xl ≤ X ≤ xu | Y = y)

=

∫ xu

xl
p(x | y)dx =

∫ xu
xl
p(x,y)dx
p(y)

.
(4.10)

If X and Y are independent than p(x | y) = p(x) and p(y | x) = p(y). Note that p(x,y)
and p(x | y) are different density functions, though they are related through equa-
tion (4.9). If X and Y are related with joint probability density function p(x,y) and
conditional probability density function p(x | y) then

p(x) =
∫ ∞

−∞
p(x,y)dy =

∫ ∞

−∞
p(x | y)p(y)dy.
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Example 4.1 (Conditional probability for sum). Consider three random variables
X, Y and Z related by the expression

Z = X+Y.

In other words, the value of the random variable Z is given by choosing values
from two random variables X and Y and adding them. We assume that X and Y
are independent Gaussian random variables with mean µ1 and µ2 and standard
deviation σ = 1 (the same for both variables).
Clearly the random variable Z is not independent of X (or Y) since if we know

the values of X then it provides information about the likely value of Z. To see this,
we compute the joint probability between Z and X. Let

A = {xl ≤ x ≤ xu}, B = {zl ≤ z ≤ zu}.

The joint probability of both events A and B occurring is given by

PX,Z(A∩B) = P(xl ≤ x ≤ xu, zl ≤ x+ y ≤ zu)
= P(xl ≤ x ≤ xu, zl− x ≤ y ≤ zu− x).

We can compute this probability by using the probability density functions for X
and Y:

P(A∩B) =
∫ xu

xl

(

∫ zu−x

zl−x
pY (y)dy

)

pX(x)dx

=

∫ xu

xl

∫ zu

zl
pY (z− x)pX(x)dzdx =:

∫ zu

zl

∫ xu

xl
pZ,X(z, x)dxdz.

Using Gaussians for X and Y we have

pZ,X(z, x) =
1
√
2π
e−
1
2 (z− x−µY )

2
·
1
√
2π
e−
1
2 (x−µX)

2

=
1
2π
e−
1
2
(

(z− x−µY )2+ (x−µX)2
)

.

A similar expression holds for pZ,Y . ∇

Given a random variable X, we can define various standard measures of the
distribution. The expectation or mean of a random variable is defined as

E{X} = 〈X〉 =
∫ ∞

−∞
x p(x)dx,

and the mean square of a random variable is

E{X2} = 〈X2〉 =
∫ ∞

−∞
x2 p(x)dx.
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If we let µ represent the expectation (or mean) of X then we define the variance of
X as

E{(X−µ)2} = 〈(X−〈X〉)2〉 =
∫ ∞

−∞
(x−µ)2 p(x)dx.

We will often write the variance as σ2. As the notation indicates, if we have a
Gaussian random variable with mean µ and (stationary) standard deviation σ, then
the expectation and variance as computed above return µ and σ2.

Example 4.2 (Exponential distribution). The exponential distribution has mean
and variance given by

µ =
1
λ
, σ2 =

1
λ2
.

The exponential distribution can be shown to describe the amount of time between
two events in a Poisson process. ∇

Several useful properties follow from the definitions.

Proposition 4.1 (Properties of random variables).

1. If X is a random variable with mean µ and variance σ2, then αX is random
variable with mean αX and variance α2σ2.

2. If X and Y are two random variables, then E{αX+βY} = αE{X}+βE{Y}.

3. If X and Y are Gaussian random variables with means µX, µY and variances
σ2X, σ

2
Y ,

p(x) =
1

√

2πσ2X
e−

1
2

(

x−µX
σX

)2

, p(y) =
1

√

2πσ2Y
e−

1
2

(

y−µY
σY

)2

,

then X+Y is a Gaussian random variable with mean µZ = µX +µY and vari-
ance σ2Z = σ

2
X +σ

2
Y ,

p(x+ y) =
1

√

2πσ2Z
e−

1
2

(

x+y−µZ
σZ

)2

.

Proof. The first property follows from the definition of mean and variance:

E{αX} =
∫ ∞

−∞
αx p(x)dx = α

∫ ∞

−∞
αx p(x)dx = αE{X}

E{(αX)2} =
∫ ∞

−∞
(αx)2 p(x)dx = α2

∫ ∞

−∞
x2 p(x)dx = α2E{X2}.
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The second property follows similarly, remembering that we must take the expec-
tation using the joint distribution (since we are evaluating a function of two random
variables):

E{αX+βY} =
∫ ∞

−∞

∫ ∞

−∞
(αx+βy) pX,Y (x,y)dxdy

= α

∫ ∞

−∞

∫ ∞

−∞
x pX,Y (x,y)dxdy+β

∫ ∞

−∞

∫ ∞

−∞
y pX,Y (x,y)dxdy

= α

∫ ∞

−∞
x pX(x)dx+β

∫ ∞

−∞
y pY (y)dy = αE{X}+βE{Y}.

The third item is left as an exercise.

Introduction to random processes

A random process is a collection of time-indexed random variables. Formally, we
consider a random process X to be a joint mapping of sample and a time to a state:
X : Ω×T → S , where T is an appropriate time set. We view this mapping as a
generalized random variable: a sample corresponds to choosing an entire function
of time. Of course, we can always fix the time and interpret X(ω, t) as a regular
random variable, with X(ω, t′) representing a different random variable if t ! t′.
Our description of random processes will consist of describing how the random
variable at a time t relates to the value of the random variable at an earlier time s.
To build up some intuition about random processes, we will begin with the discrete
time case, where the calculations are a bit more straightforward, and then proceed
to the continuous time case.
A discrete-time random process is a stochastic system characterized by the evo-

lution of a sequence of random variables X[k], where k is an integer. As an example,
consider a discrete-time linear system with dynamics

X[k+1] = AX[k]+BU[k]+FW[k], Y[k] =CX[k]+V[k]. (4.11)

As in AM08, X ∈ Rn represents the state of the system, U ∈ Rp is the vector of
inputs and Y ∈ Rq is the vector of outputs. The (possibly vector-valued) signal
W represents disturbances to the process dynamics and V represents noise in the
measurements. To try to fix the basic ideas, we will take u = 0, n = 1 (single state)
and F = 1 for now.
We wish to describe the evolution of the dynamics when the disturbances and

noise are not given as deterministic signals, but rather are chosen from some proba-
bility distribution. Thus we will letW[k] be a collection of random variables where
the values at each instant k are chosen from a probability distribution with pdf
pW,k. As the notation indicates, the distributions might depend on the time instant
k, although the most common case is to have a stationary distribution in which the
distributions are independent of k (defined more formally below).
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In addition to stationarity, we will often also assume that distribution of values
of W at time k is independent of the values of W at time l if k ! l. In other words,
W[k] and W[l] are two separate random variables that are independent of each
other. We say that the corresponding random process is uncorrelated (also defined
more formally below). As a consequence of our independence assumption, we have
that

E{W[k]W[l]} = E{W2[k]}δ(k− l) =














E{W2[k]} k = l
0 k ! l.

In the case that W[k] is a Gaussian with mean zero and (stationary) standard devi-
ation σ, then E{W[k]W[l]} = σ2 δ(k− l).
We next wish to describe the evolution of the state x in equation (4.11) in the

case when W is a random variable. In order to do this, we describe the state x as a
sequence of random variables X[k], k = 1, · · · ,N. Looking back at equation (4.11),
we see that even if W[k] is an uncorrelated sequence of random variables, then the
states X[k] are not uncorrelated since

X[k+1] = AX[k]+FW[k],

and hence the probability distribution for X at time k + 1 depends on the value
of X at time k (as well as the value of W at time k), similar to the situation in
Example 4.1.
Since each X[k] is a random variable, we can define the mean and variance as

µ[k] and σ2[k] using the previous definitions at each time k:

µ[k] := E{X[k]} =
∫ ∞

−∞
x p(x,k)dx,

σ2[k] := E{(X[k]−µ[k])2} =
∫ ∞

−∞
(x−µ[k])2 p(x,k)dx.

To capture the relationship between the current state and the future state, we define
the correlation function for a random process as

ρ(k1,k2) := E{X[k1]X[k2]} =
∫ ∞

−∞
x1x2 p(x1, x2;k1,k2)dx1dx2

The function p(xi, x j;k1,k2) is the joint probability density function, which depends
on the times k1 and k2. A process is stationary if p(x,k + d) = p(x,d) for all k,
p(xi, x j;k1 + d,k2 + d) = p(xi, x j;k1,k2), etc. In this case we can write p(xi, x j;d)
for the joint probability distribution. We will almost always restrict to this case.
Similarly, we will write p(k1,k2) as p(d) = p(k,k+d).
We can compute the correlation function by explicitly computing the joint pdf

(see Example 4.1) or by directly computing the expectation. Suppose that we take
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a random process of the form (4.11) with x[0] = 0 and W having zero mean and
standard deviation σ. The correlation function is given by

E{X[k1]X[k2]} = E
{

(

k1−1
∑

i=0
Ak1−iBW[i]

)(

k2−1
∑

j=0
Ak2− jBW[ j]

)

}

= E
{

k1−1
∑

i=0

k2−1
∑

j=0
Ak1−iBW[i]W[ j]BAk2− j

}

.

We can now use the linearity of the expectation operator to pull this inside the
summations:

E{X[k1]X[k2]} =
k1−1
∑

i=0

k2−1
∑

j=0
Ak1−iBE{W[i]W[ j]}BAk2− j

=

k1−1
∑

i=0

k2−1
∑

j=0
Ak1−iBσ2δ(i− j)BAk2− j

=

k1−1
∑

i=0
Ak1−iBσ2BAk2−i.

Note that the correlation function depends on k1 and k2.
We can see the dependence of the correlation function on the time more clearly

by letting d = k2− k1 and writing

ρ(k,k+d) = E{X[k]X[k+d]} =
k1−1
∑

i=0
Ak−iBσ2BAd+k−i

=

k
∑

j=1
AjBσ2BAj+d =

(

k
∑

j=1
AjBσ2BAj

)

Ad.

In particular, if the discrete time system is stable then |A| < 1 and the correlation
function decays as we take points that are further departed in time (d large). Fur-
thermore, if we let k→∞ (i.e., look at the steady state solution) then the correlation
function only depends on d (assuming the sum converges) and hence the steady
state random process is stationary.
In our derivation so far, we have assumed that X[k + 1] only depends on the

value of the state at time k (this was implicit in our use of equation (4.11) and the
assumption thatW[k] is independent of X). This particular assumption is known as
the Markov property for a random process: a Markovian process is one in which
the distribution of possible values of the state at time k depends only on the values
of the state at the prior time and not earlier. Written more formally, we say that a
discrete random process is Markovian if

pX,k(x | X[k−1],X[k−2], . . . ,X[0]) = pX,k(x | X[k−1]).
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Markov processes are roughly equivalent to state space dynamical systems, where
the future evolution of the system can be completely characterized in terms of the
current value of the state (and not it history of values prior to that).

Continuous time random processes

We now consider the case where our time index is no longer discrete, but instead
varies continuously. A fully rigorous derivation requires careful use of measure
theory and is beyond the scope of this text, so we focus here on the concepts that
will be useful for modeling and analysis of important physical properties.
A continuous-time random process is a stochastic system characterized by the

evolution of a random variable X(t), t ∈ [0,T ]. We are interested in understanding
how the (random) state of the system is related at separate times. The process is
defined in terms of the “correlation” of X(t1) with X(t2). We assume, as above, that
the process is described by continuous random variables, but the discrete state case
(with time still modeled as a real variable) can be handled in a similar fashion.
We call X(t) ∈ Rn the state of the random process at time t. For the case n > 1,

we have a vector of random processes:

X(t) =



























X1(t)
...

Xn(t)



























We can characterize the state in terms of a (vector-valued) time-varying pdf,

P(xl ≤ Xi(t) ≤ xu) =
∫ xu

xl
pXi(x; t)dx.

Note that the state of a random process is not enough to determine the next state
(otherwise it would be a deterministic process). We typically omit indexing of the
individual states unless the meaning is not clear from context.
We can characterize the dynamics of a random process by its statistical charac-

teristics, written in terms of joint probability density functions:

P(x1l ≤ Xi(t1) ≤ x1u, x2l ≤ Xj(t2) ≤ x2u)

=

∫ x2u

x2l

∫ x1u

x1l
pXi,Yi(x1, x2; t1, t2)dx1dx2

The function p(xi, x j; t1, t2) is called a joint probability density function and depends
both on the individual states that are being compared and the time instants over
which they are compared. Note that if i = j, then pXi,Xi describes how Xi at time t1
is related to Xi at time t2.
In general, the distributions used to describe a random process depend on the

specific time or times that we evaluate the random variables. However, in some
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cases the relationship only depends on the difference in time and not the abso-
lute times (similar to the notion of time invariance in deterministic systems, as de-
scribed in AM08). A process is stationary if p(x, t+τ)= p(x, t) for all τ, p(xi, x j; t1+
τ, t2+τ) = p(xi, x j; t1, t2), etc. In this case we can write p(xi, x j;τ) for the joint prob-
ability distribution. Stationary distributions roughly correspond to the steady state
properties of a random process and we will often restrict our attention to this case.
In looking at biomolecular systems, we are going to be interested in random

processes in which the changes in the state occur when a random event occurs
(such as a molecular reaction or binding event). In this case, it is natural to describe
the state of the system in terms of a set of times t0 < t1 < t2 < · · · < tn and X(ti) is
the random variable that corresponds to the possible states of the system at time ti.
Note that time time instants do not have to be uniformly spaced and most often (for
biomolecular systems) they will not be. All of the definitions above carry through,
and the process can now be described by a probability distribution of the form

P
(

X(ti) ∈ [xi, xi+dxi], i = 1, . . . ,n
)

=
∫

. . .

∫

p(xn, xn−1, . . . , x0; tn, tn−1, . . . , t0)dxn dxn−1 dx1,

where dxi are taken as infinitesimal quantities.
An important class of stochastic systems is those for which the next state of the

system depends only on the current state of the system and not the history of the
process. Suppose that

P
(

X(tn) ∈ [xn, xn+dxn] | X(ti) ∈ [xi, xi+dxi], i = 1, . . . ,n−1
)

= P
(

X(tn) ∈ [xn, xn+dxn] | X(tn−1) ∈ [xn−1, xn−1+dxn−1]
)

. (4.12)

That is, the probability of being in a given state at time tn depends only on the state
that we were in at the previous time instant tn−1 and not the entire history of states
prior to tn−1. A stochastic process that satisfies this property is called a Markov
process.
In practice we do not usually specify random processes via the joint probabil-

ity distribution p(xi, x j; t1, t2) but instead describe them in terms of a propogater
function. Let X(t) be a Markov process and define the Markov propogater as

Ξ(dt; x, t) = X(t+dt)−X(t), given X(t) = x.

The propogater function describes how the random variable at time t is related
to the random variable at time t + dt. Since both X(t + dt) and X(t) are random
variables, Ξ(dt; x, t) is also a random variable and hence it can be described by its
density function, which we denote as Π(ξ, x;dt, t):

P
(

x ≤ X(t+dt) ≤ x+ ξ
)

=

∫ x+ξ

x
Π(dx, x;dt, t)dx.
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The previous definitions for mean, variance and correlation can be extended to
the continuous time, vector-valued case by indexing the individual states:

E{X(t)} =



























E{X1(t)}
...

E{Xn(t)}



























=: µ(t)

E{(X(t)−µ(t))(X(t)−µ(t))T } =



























E{X1(t)X1(t)} . . . E{X1(t)Xn(t)}
. . .

...

E{Xn(t)Xn(t)}



























=: Σ(t)

E{X(t)XT (s)} =



























E{X1(t)X1(s)} . . . E{X1(t)Xn(s)}
. . .

...

E{Xn(t)Xn(s)}



























=: R(t, s)

Note that the random variables and their statistical properties are all indexed by the
time t (and s). The matrix R(t, s) is called the correlation matrix for X(t) ∈ Rn. If
t = s then R(t, t) describes how the elements of x are correlated at time t (with each
other) and in the case that the processes have zero mean, R(t, t)= Σ(t). The elements
on the diagonal of Σ(t) are the variances of the corresponding scalar variables. A
random process is uncorrelated if R(t, s) = 0 for all t ! s. This implies that X(t) and
X(s) are independent random events and is equivalent to pX,Y (x,y) = pX(x)pY (y).
If a random process is stationary, then it can be shown that R(t+τ, s+τ)= R(t, s)

and it follows that the correlation matrix depends only on t− s. In this case we will
often write R(t, s) = R(s− t) or simple R(τ) where τ is the correlation time. The
correlation matrix in this case is simply R(0).
In the case where X is also scalar random process, the correlation matrix is

also a scalar and we will write ρ(τ), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar random processes, the correla-
tion function depends only on the absolute value of the correlation function, so
ρ(τ) = ρ(−τ) = ρ(|τ|). This property also holds for the diagonal entries of the corre-
lation matrix since Rii(s, t) = Rii(t, s) from the definition.

Definition 4.7 (Ornstein-Uhlenbeck process). Consider a scalar random process
defined by a Gaussian pdf with µ = 0,

p(x, t) =
1

√
2πσ2

e−
1
2
x2
σ2 ,

and a correlation function given by

ρ(t1, t2) =
Q
2ω0

e−ω0 |t2−t1 |.

The correlation function is illustrated in Figure 4.3. This process is known as an
Ornstein-Uhlenbeck process and it is a stationary process.
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ρ(t1− t2)

τ = t1− t2

Figure 4.3: Correlation function for a first-order Markov process.

Note on terminology. The terminology and notation for covariance and correlation
varies between disciplines. The term covariance is often used to refer to both the re-
lationship between different variables X and Y and the relationship between a single
variable at different times, X(t) and X(s). The term “cross-covariance” is used to re-
fer to the covariance between two random vectors X and Y , to distinguish this from
the covariance of the elements of X with each other. The term “cross-correlation”
is sometimes also used. Finally, the term “correlation coefficient” refers to the nor-
malized correlation ρ̄(t, s) = E{X(t)X(s)}/E{X(t)X(t)}..
MATLAB has a number of functions to implement covariance and correlation,

which mostly match the terminology here:

• cov(X) - this returns the variance of the vector X that represents samples of a
given random variable or the covariance of the columns of a matrix X where
the rows represent observations.
• cov(X, Y) - equivalent to cov([X(:), Y(:)]). Computes the covariance
between the columns of X and Y , where the rows are observations.
• xcorr(X, Y) - the “cross-correlation” between two random sequences. If
these sequences came from a random process, this is correlation function
ρ(t).
• xcov(X, Y) - this returns the “cross-covariance”, which MATLAB defines as
the “mean-removed cross-correlation”.

The MATLAB help pages give the exact formulas used for each, so the main point
here is to be careful to make sure you know what you really want.
We will also make use of a special type of random process referred to as “white

noise”. A white noise process X(t) satisfies E{X(t)} = 0 and R(t, s) = Wδ(s− t),
where δ(τ) is the impulse function and W is called the noise intensity. White noise
is an idealized process, similar to the impulse function or Heaviside (step) function
in deterministic systems. In particular, we note that ρ(0) = E{X2(t)} = ∞, so the
covariance is infinite and we never see this signal in practice. However, like the
step function, it is very useful for characterizing the responds of a linear system,
as described in the following proposition. It can be shown that the integral of a
white noise process is a Wiener process, and so often white noise is described as
the derivative of a Wiener process.
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Discrete-state random processes

There are a number of specialized discrete random processes that are relevant for
biochemical systems. In this section we give a brief introduction to these processes.
A birth-death process is one in which the states of the process represent integer-

value counts of different species populations and the transitions between states are
restricted to either incrementing (birth) or decrementing (death) a given species.
This type of model is often used to represent chemical reactions such as the pro-
duction and degradation of proteins.

Example 4.3 (Protein production). ∇

Amore general type of discrete random process is aMarkov chain. In a Markov
chain, evolution of the discrete states occurs by execution of allowable transitions
between two states. Each transition has a specified probability, which is used to
determine whether a system will transition from its current state into a different
state (corresponding to an allowable transition). An important property, called the
Markov property, is that the transition probability only depends on the value of the
current state, not the previous values of the state.
We define a Markov chain by giving the set of transition probabilities

qi j(t,τ) = P(X(t+τ) = s j|X(t) = si),

where si, s j ∈ S , t is the current time and τ is the time interval over which we are
interested. If qi j(t,τ) ! 0 for some τ ! 0 then we say that the transition is allowable
at time t. If qi j is independent of t then we say that the process is stationary and we
omit the argument t. In the special case that we are only interested in a fixed τ (i.e.,
we are using a discrete-time model) then we omit this argument as well.
It is generally difficult to describe the probability of being in a particular state in

a Markov process at a given time. Instead, we often resort to describing the steady
state distributions, assuming that they exist. For a stationary Markov chain, we can
look at the equilibrium distributions, which are those distributions π that satisfy

πi = qi j(τ)π j, for all i, j.

Example 4.4 (Protein expression). ∇

4.2 Stochastic Modeling of Biochemical Systems

Chemical reactions in the cell can be modeled as a collection of stochastic events
corresponding to chemical reactions between species, including binding and un-
binding of molecules (such as RNA polymerase and DNA), conversion of one set
of species into another, and enzymatically controlled covalent modifications such
as phosphorylation. In this section we will briefly survey some of the different
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representations that can be used for stochastic models of biochemical systems, fol-
lowing the material in the textbooks by Phillips et al. [33], Gillespie [16] and Van
Kampen [25].

Statistical physics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.
As described briefly already in Chapter 2, the underlying representation for

both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configuration of the
components (species) in the system relative to each other and we must enumerate
all possible configurations between the molecules that are being modeled.
In statistical mechanics, we model the configuration of the cell by the proba-

bility that system is in a given microstate. This probability can be calculated based
on the energy levels of the different microstates. Consider a setting in which our
system is contained within a reservoir. The total (conserved) energy is given by
Etot and we let Er represent the energy in the reservoir. Let E(1)s and E(2)s represent
two different energy levels for the system of interest and let Wr(Er) be the num-
ber of possible microstates of the reservoir with energy Er. The laws of statistical
mechanics state that the ratio of probabilities of being at the energy levels E(1)s and
E(2)s is given by the ratio of number of possible states of the reservoir:

P(E(1)s )
P(E(2)s )

=
Wr(Etot−E(1)s )
Wr(Etot−E(2)s )

. (4.13)

Defining the entropy of the system as S = kB lnW, we can rewrite equation (4.13)
as

Wr(Etot−E(1)s )
Wr(Etot−E(2)s )

=
eS r(Etot−E

(1)
s )/kB

eS r(Etot−E(2)s )/kB
.

We now approximate S r(Etot−Es) in a Taylor series expansion around Etot, under
the assumption that Er 0 Es:

S r(Etot−Es) ≈ S r(Etot)−
∂S r
∂E

Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

∂S
∂E

∣

∣

∣

∣

∣V,N
=
1
T
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and we obtain
P(E(1)s )
P(E(2)s )

=
e−E

(1)
s /kBT

e−E(2)s /kBT
.

This implies that
P(E(q)s ) ∝ e−E

(q)
s /(kBT )

and hence the probability of being in a microstate q is given by

P(q) =
1
Z
e−Eq/(kBT ), (4.14)

where we have written Eq for the energy of the microstate and Z is a normalizing
factor, known as the partition function, defined by

Z =
∑

q∈Q
e−Eq/(kBT ).

By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached.
In order to determine the energy levels associated with different microstates,

we will often make use of the free energy of the system. Consider an elementary
reaction A+B −−−⇀↽−−− AB. Let E be the energy of the system, taken to be operating
at pressure P in a volume V . The enthalpy of the system is defined as H = E +PV
and the Gibbs free energy is defined as G = H−TS where T is the temperature of
the system and S is its entropy (defined above). The change in bond energy due to
the reaction is given by

∆H = ∆G+T∆S ,

where the ∆ represents the change in the respective quantity. −∆H represents the
amount of heat that is absorbed from the reservoir, which then affects the entropy
of the reservoir.
The resulting formula for the probability of being in a microstate q is given by

P(q) =
1
Z
e−∆G/kBT .

Example 4.5 (Ligand-receptor binding). To illustrate how these ideas can be ap-
plied in a cellular setting, consider the problem of determining the probability that
a ligand binds to a receptor protein, as illustrated in Figure 4.4. We model the sys-
tem by breaking up the cell into Ω different locations, each of the size of a ligand
molecule, and keeping track of the locations of the L ligand molecules. The mi-
crostates of the system consist of all possible locations of the ligand molecules,
including those in which one of the ligand molecules is bound to the receptor
molecule.
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Figure 4.4: Statistical physics description of ligand-receptor binding. The cell is modeled
as a compartment with Ω sites, one of which contains a receptor protein. Ligand molecules
can occupy any of the sites (first column) and we can compute the Gibbs free energy
associated with each configuration (second column). The first row represents all possible
microstates in which the receptor protein is not bound, while the second represents all
configurations in which one of the ligands binds to the receptor. By accounting for the
multiplicity of each microstate (third column), we can compute the weight of the given
collection of microstates (fourth column). Figure from Phillips, Kondev and Theriot [33].

To compute the probability that the ligand is bound to the receptor, we must
compute the energy associated with each possible microstate and then compute the
weighted sum of the microstates corresponding to the ligand being bound, normal-
ized by the partition function. We let Esol represent the free energy associated with
a ligand in free solution and Ebound represent the free energy associated with the
ligand being bound to the receptor. Thus, the energy associated with microstates in
which the ligand is not bound to the receptor is given by

∆Gsol = LEsol

and the energy associated with microstates in which one ligand is bound to the
receptor is given by

∆Gbound = (L−1)Esol+Ebound.
Next, we compute the number of possible ways in which each of these two

situations can occur. For the unbound ligand, we have L molecules that can be in
any one of Ω locations, and hence the total number of combinations is given by

Nsol =
(

Ω

L

)

=
Ω!

L!(Ω−L)!
≈
ΩL

L!
,

where the final approximation is valid in the case when L3Ω. Similarly, the num-
ber of microstates in which the ligand is bound to the receptor is

Nsol =
(

Ω

L−1

)

=
Ω!

(L−1)!(Ω−L+1)!
≈
ΩL−1

(L−1)!
.
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Using these two counts, the partition function for the system is given by

Z ≈
ΩL

L!
e−

LEsol
kBT +

ΩL−1

(L−1)!
e−

(L−1)Esol+Ebound
kBT .

Finally, we can compute the steady state probability that the ligand is bound by
computing the ratio of the weights for the desired states divided by the partition
function

Pbound =
1
Z
·
ΩL−1

(L−1)!
e−

(L−1)Esol+Ebound
kBT .

∇

While the previous example was carried out for the special case of a ligand
molecule binding to a receptor protein, in fact this same type of computation can
be used to compute the probability that a transcription factor is attached to a piece
of DNA or that two freely moving molecules bind to each other. Each of these cases
simply comes down to enumerating all possible microstates, computing the energy
associated with each, and then computing the ratio of the sum of the weights for
the desired states to the complete partition function.

Chemical Master Equation (CME)

The statistical physics model we have just considered gives a description of the
steady state properties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about the behavior of
the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or the dynamics of a
system that does not have an equilibrium configuration. In these instances, we must
extend our formulation to keep track of how quickly the system transitions from
one microstate to another, known as the chemical kinetics of the system.
To model these dynamics, we return to our enumeration of all possible mi-

crostates of the system. Let P(q, t) represent the probability that the system is in
microstate q at a given time t. Here q can be any of the very large number of pos-
sible microstates for the system. We wish to write an explicit expression for how
P(q, t) varies as a function of time, from which we can study the stochastic dynam-
ics of the system.
We begin by assuming we have a set of M reactions Rj, j = 1, . . . ,M, with ξ j

representing the change in state associated with reaction Rj. The propensity func-
tion defines the probability that a given reaction occurs in a sufficiently small time
step dt:

a j(q, t)dt = Probability that reaction Rj will occur between time t
and time t+dt given that X(t) = q.
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The linear dependence on dt relies on the fact that dt is chosen sufficiently small.
We will typically assume that a j does not depend on the time t and write a j(q)dt
for the probability that reaction j occurs in state x.
Using the propensity function, we can compute the distribution of states at time

t+dt given the distribution at time t:

P(q, t+dt | q0, t0) = P(q, t | q0, t0)
(

1−
M
∑

j=1
a j(q)dt

)

+

M
∑

j=1
P(q− ξ j | q0, t0)a j(q− ξ j)dt

= P(q, t | q0, t0)+
M
∑

j=1

(

a j(q− ξ j)P(q− ξ j, t | q0, t0)−a j(q)P(q, t | q0, t0)
)

dt.

(4.15)
Since dt is small, we can take the limit as dt→ 0 and we obtain the chemical master
equation (CME):

∂P
∂t
(q, t | q0, t0) =

M
∑

j=1

(

a j(q− ξ j)P(q− ξ j, t | q0, t0)−a j(q)P(q, t | q0, t0)
)

(4.16)

This equation is also referred to as the forward Kolmogorov equation for a discrete
state, continuous time random process.
We will sometimes find it convenient to use a slightly different notation in which

we let ξ represent any transition in the system state (without enumerating the reac-
tions). In this case, we write the propensity function as a(ξ;q, t), which represents
the incremental probability that we will transition from state q to state q+ξ at time
t. When the propensities are not explicitly dependent on time, we simply write
a(ξ;q). In this notation, the chemical master equation becomes

∂P
∂t
(q, t | q0, t0) =

∑

ξ

(

a(ξ;q− ξ j)P(q− ξ j, t | q0, t0)−a(ξ;q)P(q, t | q0, t0)
)

, (4.17)

where the sum is understood to be over all allowable transitions.
Under some additional assumptions, we can rewrite the master equation in dif-

ferential form as

d
dt
P(q, t) =

∑

ξ

a(ξ;q− ξ)P(q− ξ, t)−
∑

ξ

a(ξ;q)P(q, t), (4.18)

where we have dropped the dependence on the initial condition for notational con-
venience. We see that the master equation is a linear differential equation with state
P(q, t). However, it is important to note that the size of the state vector can be very
large: we must keep track of the probability of every possible microstate of the
system. For example, in the case of the ligand-receptor problem discussed earlier,
this has a factorial number of states based on the number of possible sites in the
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model. Hence, even for very simple systems, the master equation cannot typically
be solved either analytically or in a numerically efficient fashion.
Despite its complexity, the master equation does capture many of the important

details of the chemical physics of the system and we shall use it as our basic repre-
sentation of the underlying dynamics. As we shall see, starting from this equation
we can then derive a variety of alternative approximations that allow us to answer
specific equations of interest.
The key element of the master equation is the propensity function a(ξ;q, t),

which governs the rate of transition between microstates. Although the detailed
value of the propensity function can be quite complex, its functional form is often
relatively simple. In particular, for a unimolecular reaction ξ of the form A→ B,
the propensity function is proportional to the number of molecules of A that are
present:

a(ξ;q, t) = cξnA. (4.19)

This follows from the fact that each reaction is independent and hence the likeli-
hood of a reaction happening depends directly on the number of copies of A that
are present.
Similarly, for a bimolecular reaction, we have that the likelihood of a reaction

occurring is proportional to the product of the number of molecules of each type
that are present (since this is the number of independent reactions that can occur).
Hence, for a reaction ξ of the form A+B −−→ C we have

a(ξ;q, t) = cξnAnB. (4.20)

The rigorous verification of this functional form is beyond the scope of this text, but
roughly we keep track of the likelihood of a single reaction occurring between A
and B and then multiply by the total number of combinations of the two molecules
that can react (nA ·nB).
A special case of a bimolecular reaction occurs when A=B, so that our reaction

is given by 2A→ B. In this case we must take into account that a molecule cannot
react with itself, and so the propensity function is of the form

a(ξ;q, t) = cξnA(nA−1). (4.21)

Although it is tempting to extend this formula to the case of more than two
species being involved in a reaction, usually such reactions actually involve com-
binations of bimolecular reactions, e.g.:

A+B+C −−→ D =⇒ A+B −−→ AB AB+C −−→ D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.
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Table 4.1: Examples of propensity functions for some common cases [17]. Here we take ra
and rb to be the effective radii of the molecules, m∗ =mamb/(ma+mb) is the reduced mass
of the two molecules, Ω is the volume over which the reaction occurs, T is temperature, kB
is Boltzmann’s constant and na, nb are the numbers of molecules of A and B present.

Reaction type Propensity function coefficient, cξ
Reaction occurs if molecules “touch” Ω−1

( 8kBT
πm∗
)1/2
π(ra+ rb)2

Reaction occurs if molecules collide with energy ε Ω−1
( 8kBT
πm∗
)1/2
π(ra+ rb)2 ·e−ε/kBT

Steady state transcription factor PboundkocnRNAP

The propensity functions for these cases and some others are given in Table 4.1.

Example 4.6 (Transcription of mRNA). Consider the production of mRNA from
a single copy of DNA. We have two basic reactions that can occur: mRNA can
be produced by RNA polymerase transcribing the DNA and producing an mRNA
strand, or mRNA can be degraded. We represent the microstate q of the system in
terms of the number of mRNA’s that are present, which we write as n for ease of
notation. The reactions can now be represented as ξ = +1, corresponding to tran-
scription and ξ = −1, corresponding to degradation. We choose as our propensity
functions

a(+1;n, t) = α, a(−1;n, t) = γn,

by which we mean that the probability of that a gene is transcribed in time dt is αdt
and the probability that a transcript in time dt is γndt (proportional to the number
of mRNA’s).
We can nowwrite down the master equation as described above. Equation (4.15)

becomes

P(n, t+dt) = P(n, t)
(

1−
∑

ξ=+1,−1
a(ξ;n, t)dt

)

+
∑

ξ=+1,−1
P(n− ξ, t)a(ξ;q− ξ)dt

= P(n, t)−a(+1;n, t)P(n, t)−a(−1;n, t)P(n, t)
+a(+1,n−1, t)P(n−1, t)+a(−1;n+1, t)P(n+1)

= P(n, t)+αP(n−1, t)dt− (α−γn)P(n, t)dt+γ(n+1)P(n+1, t)dt.

This formula holds for n > 0, with the n = 0 case satisfying

P(0, t+dt) = P(0, t)−αP(0, t)dt+γP(1, t)dt.

Notice that we have an infinite number of equations, since n can be any positive
integer.
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We can write the differential equation version of the master equation by sub-
tracting the first term on the right hand side and dividing by dt:

d
dt
P(n, t) = αP(n−1, t)− (α+γn)P(n, t)+γ(n+1)P(n+1, t), n > 0

d
dt
P(0, t) = −αP(0, t)dt+γP(1, t).

Again, this is an infinite number of differential equations, although we could take
some limit N and simply declare that P(N, t) = 0 to yield a finite number.
One simple type of analysis that can be done on this equation without truncating

it to a finite number is to look for a steady state solution to the equation. In this
case, we set Ṗ(n, t) = 0 and look for a constant solution P(n, t) = pe(n). This yields
an algebraic set of relations

0 = −αpe(0)+γpe(1) =⇒ αpe(0) = γpe(1)
0 = αpe(0)− (α+γ)pe(1)+2γpe(2) αpe(1) = 2γpe(2)
0 = αpe(1)− (α+2γ)pe(2)+3γpe(3) αpe(1) = 3γpe(3)
...

...

αp(n−1) = nγp(n).

It follows that the distribution of steady state probabilities is given by the Poisson
distribution

p(n) = eα/γ
(α/γ)n

n!
,

and the mean, variance and coefficient of variation are thus

µ =
α

γ
, σ2 =

α

γ
, CV =

µ

σ
=
1
√
µ
=

√

γ

α
.

∇

Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolution of the
distribution of a system, but it can often be quite cumbersome to work with directly.
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shall consider is
known as the chemical Langevin equation (CLE).
To derive the chemical Langevin equation, we start by assuming that the number

of species in the system is large and that we can therefore represent the system
using a vector of real numbers X, with Xi representing the (real-valued) number
of molecules in Si. (Often Xi will be divided by the volume to give a real-valued
concentration of species Si.) In addition, we assume that we are interested in the
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dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.
Let X(t) be the state vector for the system, where we assume now that the ele-

ments of X are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a number of reactions over
a time τ to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

Xi(t+τ) = X(t)+
M
∑

j=1
ξi ja j(X(t))τ+

M
∑

j=1
ξi ja1/2j (X(t))N j(0,

√
τ),

where a j are the propensity functions for the individual reactions, ξi j are the corre-
sponding changes in the system states Xi andN j are a set of independent Gaussian
random variables with zero mean and variance τ.
If we assume that τ is small enough that we can use the derivative to approxi-

mate the previous equation (but still large enough that we can average over multiple
reactions), then we can write

dXi(t)
dt
=

M
∑

j=1
ξ jia j(X(t))+

M
∑

j=1
ξ jia1/2j (X(t))Γ j(t) =: Ai(X(t))+

M
∑

j=1
Bi j(X(t))Γ j(t),

(4.22)
where Γ j are white noise processes. This equation is called the chemical Langevin
equation (CLE).

Example 4.7 (Protein production). Consider a simplified model of protein produc-
tion in which mRNAs are produced by transcription and proteins by translation.
We also include degradation of both mRNAs and proteins, but we do not model the
detailed processes of elongation of the mRNA and polypeptide chains.
We can capture the state of the system by keeping track of the number of copies

of mRNA and proteins. We further approximate this by assuming that the number
of each of these is sufficiently large that we can keep track of its concentration,
and hence X = (nm,np) where nm ∈ R is the amount of mRNA and np ∈ R is the
concentration of protein. Letting Ω represent the volume, the reactions that govern
the dynamics of the system are given by:

R1 : φ
α
−→mRNA ξ1 = (1,0) a1(X) = α/Ω

R2 : mRNA
γ
−→ φ ξ2 = (−1,0) a2(X) = γ/Ω nm

R3 : mRNA
β
−→mRNA+protein ξ3 = (0,1) a3(X) = β/Ω nm

R4 : protein
δ
−→ φ ξ4 = (0,−1) a4(X) = δ/Ω np.
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Substituting these expressions into equation (4.22), we obtain a stochastic differ-
ential equation of the form

d
dt
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np
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β/Ω −δ/Ω
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√

δnp/Ω
)

Γp



















,

where Γm and Γp are independent white noise processes with unit variance. (Note
that in deriving this equation we have used the fact that the sum of two independent
Gaussian processes is a Gaussian process.) ∇

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordinary differential equa-
tion that describes the evolution of the system state. A slightly different (but com-
pletely equivalent) representation of the dynamics is to model how the probabil-
ity distribution P(q, t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density function p(x, t). This formula is known
as the Fokker-Planck equations (FPE) and is essentially an approximation on the
chemical master equation.
Consider first the case of a random process in one dimension. We assume that

the random process is in the same form as the previous section:

dX(t)
dt
= A(X(t))+B(X(t))Γ(t). (4.23)

The function A(X) is called the drift term and B(X) is the diffusion term. It can be
shown that the probability density function for X, p(x, t | x0, t0), satisfies the partial
differential equation

∂p
∂t
(x, t | x0, t0) = −

∂

∂x
(

A(x, t)p(x, t | x0, t0)
)

+
1
2
∂2

∂x2
(

B2(x, t)p(x, t | x0, t0)
)

(4.24)

Note that here we have shifted to the probability density function since we are
considering X to be a continuous state random process.
In the multivariate case, a bit more care is required. Using the chemical Langevin

equation (4.22), we define

Di(x, t) =
M
∑

j=1
B2i j(x, t), Ci j(x, t) =

M
∑

k=1
Bik(x, t)Bjk(x, t), i < j = 1, . . . ,M.
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The Fokker-Planck equation now becomes

∂p
∂t
(x, t | x0, t0) =−

M
∑

i=1

∂

∂xi
(

Ai(x, t)p(x, t | x0, t0)
)

+
1
2

M
∑

i=1

∂

∂xi
∂2

∂x2
(

Di(x, t)p(x, t | x0, t0)
)

+

M
∑

i, j = 1
i < j

∂2

∂xi∂x j
(

Ci j(x, t)p(x, t | x0, t0)
)

.

(4.25)

Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation provide approx-
imations to the chemical master equation. A slightly different approximation can
be obtained by expanding the density function in terms of a size parameter Ω. This
approximation is know as the linear noise approximation (LNA) or the Ω expan-
sion [25].
We begin with a master equation for a continuous random variable X, which we

take to be of the form
∂p
∂t
(x, t) =

∫

(

aΩ(ξ; x− ξ)p(x− ξ, t)−aΩ(ξ; x)p(x, t)
)

dξ,

where we have dropped the dependence on the initial condition for notational sim-
plicity. As before, the propensity function aΩ(ξ; x) represents the transition prob-
ability between a state x and a state x+ ξ and we assume that it is a function of
a parameter Ω that represents the size of the system (typically the volume). Since
we are working with continuous variables, we now have an integral in place of our
previous sum.
We assume that the mean of X can be written asΩφ(t) where φ(t) is a continuous

function of time that represents the evolution of the mean of X/Ω. To understand
the fluctuations of the system about this mean, we write

X =Ωφ+Ω
1
2Z,

where Z is a new variable representing the perturbations of the system about its
mean. We can write the distribution for Z as

pZ(z, t) = pX(Ωφ(t)+Ω
1
2 z, t)

and it follows that the derivatives of pZ can be written as
∂νpZ
zν
=Ω

1
2 ν
∂νpX
xν

∂pZ
∂t
=
∂pX
∂t
+Ω

dφ
dt
∂pX
∂x
=
∂pX
∂t
+Ω

1
2
dφ
dt
∂pZ
∂z
.
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We further assume that the Ω dependence of the propensity function is such that

aΩ(ξ,Ωφ) = f (Ω)ã(ξ;φ),

where ã is not dependent on Ω. From these relations, we can now derive the master
equation for pZ in terms of powers of Ω (derivation omitted).
The Ω1/2 term in the expansion turns out to yield

dφ
dt
=

∫

ξa(ξ,Ωφ)dξ, φ(0) =
X(0)
Ω
,

which is precisely the equation for the mean of the concentration. It can further be
shown that the terms in Ω0 are given by

∂pZ(z,τ)
∂τ

= −α′1(φ)
∂

∂z
(zpZ(z, t))+

1
2
α2(φ)

∂2pZ(z, t)
∂z2

, (4.26)

where
αv(x) =

∫

ξvã(ξ; x)dξ, τ =Ω−1 f (Ω)t.

Notice that in the case that φ(t) = φ0, this equation becomes the Fokker-Planck
equation derived previously.
Higher order approximations to this equation can also be carried out by keeping

track of the expansion terms in higher order powers of Ω. In the case where Ω
represents the volume of the system, the next term in the expansion is Ω−1 and this
represents fluctuations that are on the order of a single molecule, which can usually
be ignored.

Rate reaction equations (RRE)

As we already saw in Chapter 2, the reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large number of
molecules whose state can be approximated using just the concentrations of the
molecules. We re-derive the results from Section 2.2 here, being more careful to
point out what approximations are being made.
We start with the chemical Langevin equations (4.22), from which we can write

the dynamics for the average quantity of the each species at each point in time:

d〈Xi(t)〉
dt

=

M
∑

j=1
ξ ji〈a j(X(t))〉,

where the second order term drops out under the assumption that the Γ j’s are in-
dependent processes. We see that the reaction rate equations follow by defining
xi = 〈Xi〉/Ω and assuming that 〈a j(X(t))〉= a j(〈X(t)〉). This relationship is true when
a j is linear (e.g., in the case of a unimolecular reaction), but is an approximation
otherwise.
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4.3 Simulation of Stochastic sections

4.4 Analysis of Stochastic Systems

4.5 Linearized Modeling and Analysis

In this section we consider the special case of linear stochastic systems that are
driven by random processes.

Linear input/output response

We now consider the problem of how to compute the response of a linear system
to a random process. We assume we have a linear system described in state space
as

Ẋ = AX+FW, Y =CX (4.27)

Given an “input” W, which is itself a random process with mean µ(t), variance
σ2(t) and correlation ρ(t, t+τ), what is the description of the random process Y?
LetW be a white noise process, with zero mean and noise intensity Q:

ρ(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y(t) =
∫ t

0
h(t−τ)W(τ)dτ,

where h(t−τ) is the impulse response for the system

h(t−τ) =CeA(t−τ)B+Dδ(t−τ).

We now compute the statistics of the output, starting with the mean:

E{Y(t)} = E{
∫ t

0
h(t−η)W(η)dη}

=

∫ t

0
h(t−η)E{W(η)}dη = 0.

Note here that we have relied on the linearity of the convolution integral to pull the
expectation inside the integral.
We can compute the covariance of the output by computing the correlation ρ(τ)

and setting σ2 = ρ(0). The correlation function for y is

ρY (t, s) = E{Y(t)Y(s)} = E{
∫ t

0
h(t−η)W(η)dη ·

∫ s

0
h(s− ξ)W(ξ)dξ}

= E{
∫ t

0

∫ s

0
h(t−η)W(η)W(ξ)h(s− ξ)dηdξ}
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Once again linearity allows us to exchange expectation and integration

ρY (t, s) =
∫ t

0

∫ s

0
h(t−η)E{W(η)W(ξ)}h(s− ξ)dηdξ

=

∫ t

0

∫ s

0
h(t−η)Qδ(η− ξ)h(s− ξ)dηdξ

=

∫ t

0
h(t−η)Qh(s−η)dη

Now let τ = s− t and write

ρY (τ) = ρY (t, t+τ) =
∫ t

0
h(t−η)Qh(t+τ−η)dη

=

∫ t

0
h(ξ)Qh(ξ+τ)dξ (setting ξ = t−η)

Finally, we let t→∞ (steady state)

lim
t→∞
ρY (t, t+τ) = ρ̄Y (τ) =

∫ ∞

0
h(ξ)Qh(ξ+τ)dξ (4.28)

If this integral exists, then we can compute the second order statistics for the output
Y .
We can provide a more explicit formula for the correlation function ρ in terms of

the matrices A, F andC by expanding equation (4.28). We will consider the general
case where W ∈ Rp and Y ∈ Rq and use the correlation matrix R(t, s) instead of the
correlation function ρ(t, s). Define the state transition matrix Φ(t, t0) = eA(t−t0) so
that the solution of system (4.27) is given by

x(t) = Φ(t, t0)x(t0)+
∫ t

t0
Φ(t,λ)Fw(λ)dλ

Proposition 4.2 (Stochastic response to white noise). Let E{X(t0)XT (t0)} = P(t0)
and W be white noise with E{W(λ)WT (ξ)} = RWδ(λ− ξ). Then the correlation ma-
trix for X is given by

RX(t, s) = P(t)ΦT (s, t)

where P(t) satisfies the linear matrix differential equation

Ṗ(t) = AP+PAT +FRWF, P(0) = P0.
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Proof. Using the definition of the correlation matrix, we have

E{X(t)XT (s)} = E
{

Φ(t,0)X(0)XT (0)ΦT (t,0)+ cross terms

+

∫ t

0
Φ(t,ξ)FW(ξ)dξ

∫ s

0
Wt(λ)FTΦ(s,λ)dλ

}

= Φ(t,0)E{X(0)XT (0)}Φ(s,0)

+

∫ t

0

∫ s

0
Φ(t,ξ)FE{W(ξ)WT (λ)}FTΦ(s,λ)dξdλ

= Φ(t,0)P(0)φT (s,0)+
∫ t

0
Φ(t,λ)FRW(λ)FTΦ(s,λ)dλ.

Now use the fact that Φ(s,0) = Φ(s, t)Φ(t,0) (and similar relations) to obtain

RX(t, s) = P(t)ΦT (s, t)

where
P(t) = Φ(t,0)P(0)ΦT (t,0)+

∫ T

0
Φ(t,λ)FRWFT (λ)ΦT (t,λ)dλ

Finally, differentiate to obtain

Ṗ(t) = AP+PAT +FRWF, P(0) = P0

(see Friedland for details).

The correlation matrix for the output Y can be computing using the fact that
Y = CX and hence RY = CTRXC. We will often be interested in the steady state
properties of the output, which given by the following proposition.

Proposition 4.3 (Steady state response to white noise). For a time-invariant linear
system driven by white noise, the correlation matrices for the state and output
converge in steady state to

RX(τ) = RX(t, t+τ) = PeA
T τ, RY (τ) =CRX(τ)CT

where P satisfies the algebraic equation

AP+PAT +FRWFT = 0 P > 0. (4.29)

Equation (4.29) is called the Lyapunov equation and can be solved in MATLAB
using the function lyap.

Example 4.8 (First-order system). Consider a scalar linear process

Ẋ = −aX+W, Y = cX,
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where W is a white, Gaussian random process with noise intensity σ2. Using the
results of Proposition 4.2, the correlation function for X is given by

RX(t, t+τ) = p(t)e−aτ

where p(t) > 0 satisfies
p(t) = −2ap+σ2.

We can solve explicitly for p(t) since it is a (non-homogeneous) linear differential
equation:

p(t) = e−2at p(0)+ (1− e−2at)
σ2

2a
.

Finally, making use of the fact that Y = cX we have

ρ(t, t+τ) = c2(e−2at p(0)+ (1− e−2at)
σ2

2a
)e−aτ.

In steady state, the correlation function for the output becomes

ρ(τ) =
c2σ2

2a
e−aτ.

Note correlation function has the same form as the Ornstein-Uhlenbeck process in
Example 4.7 (with Q = c2σ2). ∇

Random Processes in the Frequency Domain

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain ap-
proach provides a very rich set of tools for modeling and analysis of interconnected
systems, relying on the frequency response and transfer functions to represent the
flow of signals around the system.
Given a random process X(t), we can look at the frequency content of the prop-

erties of the response. In particular, if we let ρ(τ) be the correlation function for a
(scalar) random process, then we define the power spectral density function as the
Fourier transform of ρ:

S (ω) =
∫ ∞

−∞
ρ(τ)e− jωτ dτ, ρ(τ) =

1
2π

∫ ∞

−∞
S (ω)e jωτ dτ.

The power spectral density provides an indication of how quickly the values of
a random process can change through the frequency content: if there is high fre-
quency content in the power spectral density, the values of the random variable can
change quickly in time.
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logω

logS (ω)

ω0

Figure 4.5: Spectral power density for a first-order Markov process.
.

Example 4.9 (First-order Markov process). To illustrate the use of these measures,
consider a first-order Markov process as defined in Example 4.7. The correlation
function is

ρ(τ) =
Q
2ω0

e−ω0(τ).

The power spectral density becomes

S (ω) =
∫ ∞

−∞

Q
2ω0

e−ω|τ|e− jωτ dτ

=

∫ 0

−∞

Q
2ω0

e(ω− jω)τ dτ+
∫ ∞

0

Q
2ω0

e(−ω− jω)τ dτ =
Q

ω2+ω20
.

We see that the power spectral density is similar to a transfer function and we
can plot S (ω) as a function of ω in a manner similar to a Bode plot, as shown in
Figure 4.5. Note that although S (ω) has a form similar to a transfer function, it is a
real-valued function and is not defined for complex s. ∇

Using the power spectral density, we can more formally define “white noise”:
a white noise process is a zero-mean, random process with power spectral density
S (ω) = W = constant for all ω. If X(t) ∈ Rn (a random vector), then W ∈ Rn×n.
We see that a random process is white if all frequencies are equally represented in
its power spectral density; this spectral property is the reason for the terminology
“white”. The following proposition verifies that this formal definition agrees with
our previous (time domain) definition.

Proposition 4.4. For a white noise process,

ρ(τ) =
1
2π

∫ ∞

−∞
S (ω)e jωτ dτ =Wδ(τ),

where δ(τ) is the unit impulse function.

Proof. If τ ! 0 then

ρ(τ) =
1
2π

∫ ∞

−∞
W(cos(ωτ)+ jsin(ωτ)dτ = 0
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If τ = 0 then ρ(τ) =∞. Can show that

ρ(0) = lim
ε→0

∫ ε

−ε

∫ ∞

−∞
(· · · )dωdτ =Wδ(0)

Given a linear system

Ẋ = AX+FW, Y =CX,

with W given by white noise, we can compute the spectral density function cor-
responding to the output Y . We start by computing the Fourier transform of the
steady state correlation function (4.28):

S Y (ω) =
∫ ∞

−∞

[
∫ ∞

0
h(ξ)Qh(ξ+τ)dξ

]

e− jωτ dτ

=

∫ ∞

0
h(ξ)Q

[
∫ ∞

−∞
h(ξ+τ)e− jωτ dτ

]

dξ

=

∫ ∞

0
h(ξ)Q

[
∫ ∞

0
h(λ)e− jω(λ−ξ) dλ

]

dξ

=

∫ ∞

0
h(ξ)e jωξ dξ ·QH( jω) = H(− jω)QuH( jω)

This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in the fre-

quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer function H1(s) followed by transfer function H2(s),
the resulting power spectral density of the output is given by

S Y (ω) = H1(− jω)H2(− jω)QuH2( jω)H1( jω).

As stated earlier, white noise is an idealized signal that is not seen in practice.
One of the ways to produced more realistic models of noise and disturbances it
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covariance W and filter H(s) such that we match
the statistics S (ω) of a measured noise or disturbance signal. In other words, given
S (ω), find W > 0 and H(s) such that S (ω) = H(− jω)WH( jω). This problem is
know as the spectral factorization problem.
Figure 4.6 summarizes the relationship between the time and frequency do-

mains.



4.6. MARKOV CHAIN MODELING AND ANALYSIS 4-35

p(v) =
1

√
2πRV

e−
v2
2RV

S V (ω) = RV
V −→ H −→ Y p(y) =

1
√
2πRY

e−
y2
2RY

S Y (ω) = H(− jω)RVH( jω)

ρV (τ) = RVδ(τ)
Ẋ = AX+FV
Y =CX

ρY (τ) = RY (τ) =CPe−A|τ|CT

AP+PAT +FRVFT = 0

Figure 4.6: Summary of steady state stochastic response.

Application to Biomolecular Systems

4.6 Markov chain modeling and analysis

4.7 System identification techniques

4.8 Model Reduction



4-36 CHAPTER 4. STOCHASTIC BEHAVIOR


	Contents
	Preface
	Notation
	1 Cell Biology Primer
	1.1 What is a Cell
	1.2 What is a Genome
	1.3 Molecular Genetics: Piecing It Together

	I Modeling and Analysis
	2 Core Processes
	2.1 Dynamics and Control in the Cell
	2.2 Modeling Techniques
	2.3 Modeling Transcription and Translation
	2.4 Transcriptional Regulation
	2.5 Post-Transcriptional and Post-Translational Regulation
	2.6 Cellular subsystems

	3 Dynamic Behavior
	3.1 Analysis Near Equilibria
	3.2 Analysis of Reaction Rate Equations
	3.3 Limit Cycle Behavior
	3.4 Analysis Using Describing Functions
	3.5 Bifurcations
	3.6 Model Reduction Techniques

	4 Stochastic Behavior
	4.1 Stochastic Systems
	4.2 Stochastic Modeling of Biochemical Systems
	4.3 Simulation of Stochastic sections
	4.4 Analysis of Stochastic Systems
	4.5 Linearized Modeling and Analysis
	4.6 Markov chain modeling and analysis
	4.7 System identification techniques
	4.8 Model Reduction

	5 Feedback Examples
	5.1 The lac Operon
	5.2 Heat Shock Response in Bacteria
	5.3 Bacteriophage 
	5.4 Bacterial Chemotaxis
	5.5 Yeast mating response


	II Design and Synthesis
	6 Biological Circuit Components
	6.1 Biology Circuit Design

	7 Interconnecting Components
	7.1 Input/Output Modeling and the Modularity Assumption
	7.2 Beyond the Modularity Assumption: Retroactivity
	7.3 Insulation Devices to Enforce Modularity
	7.4 Design of genetic circuits under the modularity assumption
	7.5 Biological realizations of an insulation component

	8 Design Tradeoffs
	9 Design Examples
	Bibliography
	Index


