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Chapter 4
Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, building
on our preliminary discussion of stochastic modeling in Section 2.1. We begin by
reviewing the various methods for modeling stochastic processes, including the
chemical master equation (CME), the chemical Langevin equation (CLE) and the
Fokker-Planck equation (FPE). Given a stochastic description, we can then ana-
lyze the behavior of the system using a variety of stochastic simulation and analy-
sis tools. In many cases, we must simplify the dynamics of the system in order to
obtain a tractable model, and we describe several methods for doing so, including
finite state projection, linearization and Markov chain representations. We also in-
vestigate how to use data to identify some the structure and parameters of stochastic
models.

Prerequisites. This chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good working knowledge of
basic probability and some exposure to simple stochastic processes (e.g., Brownian
motion), at the level of the material presented in Appendix C (drawn from [53]).

4.1 Stochastic Modeling of Biochemical Systems

Chemical reactions in the cell can be modeled as a collection of stochastic events
corresponding to chemical reactions between species, including binding and un-
binding of molecules (such as RNA polymerase and DNA), conversion of one set
of species into another, and enzymatically controlled covalent modifications such
as phosphorylation. In this section we will briefly survey some of the different
representations that can be used for stochastic models of biochemical systems, fol-
lowing the material in the textbooks by Phillips et al. [56], Gillespie [28] and Van
Kampen [43].

Statistical physics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.
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As described briefly already in Chapter 2, the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configuration of the
components (species) in the system relative to each other and we must enumerate
all possible configurations between the molecules that are being modeled.
In statistical mechanics, we model the configuration of the cell by the proba-

bility that system is in a given microstate. This probability can be calculated based
on the energy levels of the different microstates. Consider a setting in which our
system is contained within a reservoir. The total (conserved) energy is given by
Etot and we let Er represent the energy in the reservoir. Let E(1)s and E(2)s represent
two different energy levels for the system of interest and let Wr(Er) be the num-
ber of possible microstates of the reservoir with energy Er. The laws of statistical
mechanics state that the ratio of probabilities of being at the energy levels E(1)s and
E(2)s is given by the ratio of number of possible states of the reservoir:

P(E(1)s )
P(E(2)s )

=
Wr(Etot−E(1)s )
Wr(Etot−E(2)s )

. (4.1)

Defining the entropy of the system as S = kB lnW, we can rewrite equation (4.1) as

Wr(Etot−E(1)s )
Wr(Etot−E(2)s )

=
eS r(Etot−E

(1)
s )/kB

eS r(Etot−E(2)s )/kB
.

We now approximate S r(Etot−Es) in a Taylor series expansion around Etot, under
the assumption that Er # Es:

S r(Etot−Es) ≈ S r(Etot)−
∂S r
∂E

Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

∂S
∂E

∣
∣
∣
∣
∣V,N
=
1
T

and we obtain
P(E(1)s )
P(E(2)s )

=
e−E

(1)
s /kBT

e−E(2)s /kBT
.

This implies that
P(E(q)s ) ∝ e−E

(q)
s /(kBT )

and hence the probability of being in a microstate q is given by

P(q) =
1
Z
e−Eq/(kBT ), (4.2)



4.1. STOCHASTIC MODELING OF BIOCHEMICAL SYSTEMS 4-3

where we have written Eq for the energy of the microstate and Z is a normalizing
factor, known as the partition function, defined by

Z =
∑

q∈Q
e−Eq/(kBT ).

By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached.
In order to determine the energy levels associated with different microstates,

we will often make use of the free energy of the system. Consider an elementary
reaction A+B −−−⇀↽−−− AB. Let E be the energy of the system, taken to be operating
at pressure P in a volume V . The enthalpy of the system is defined as H = E +PV
and the Gibbs free energy is defined as G = H−TS where T is the temperature of
the system and S is its entropy (defined above). The change in bond energy due to
the reaction is given by

∆H = ∆G+T∆S ,
where the ∆ represents the change in the respective quantity. −∆H represents the
amount of heat that is absorbed from the reservoir, which then affects the entropy
of the reservoir.
The resulting formula for the probability of being in a microstate q is given by

P(q) =
1
Z
e−∆G/kBT .

Example 4.1 (Ligand-receptor binding). To illustrate how these ideas can be ap-
plied in a cellular setting, consider the problem of determining the probability that
a ligand binds to a receptor protein, as illustrated in Figure 4.1. We model the sys-
tem by breaking up the cell into Ω different locations, each of the size of a ligand
molecule, and keeping track of the locations of the L ligand molecules. The mi-
crostates of the system consist of all possible locations of the ligand molecules,
including those in which one of the ligand molecules is bound to the receptor
molecule.
To compute the probability that the ligand is bound to the receptor, we must

compute the energy associated with each possible microstate and then compute the
weighted sum of the microstates corresponding to the ligand being bound, normal-
ized by the partition function. We let Esol represent the free energy associated with
a ligand in free solution and Ebound represent the free energy associated with the
ligand being bound to the receptor. Thus, the energy associated with microstates in
which the ligand is not bound to the receptor is given by

∆Gsol = LEsol

and the energy associated with microstates in which one ligand is bound to the
receptor is given by

∆Gbound = (L−1)Esol+Ebound.
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Figure 4.1: Statistical physics description of ligand-receptor binding. The cell is modeled
as a compartment with Ω sites, one of which contains a receptor protein. Ligand molecules
can occupy any of the sites (first column) and we can compute the Gibbs free energy
associated with each configuration (second column). The first row represents all possible
microstates in which the receptor protein is not bound, while the second represents all
configurations in which one of the ligands binds to the receptor. By accounting for the
multiplicity of each microstate (third column), we can compute the weight of the given
collection of microstates (fourth column). Figure from Phillips, Kondev and Theriot [56].

Next, we compute the number of possible ways in which each of these two
situations can occur. For the unbound ligand, we have L molecules that can be in
any one of Ω locations, and hence the total number of combinations is given by

Nsol =
(

Ω

L

)

=
Ω!

L!(Ω−L)!
≈
ΩL

L!
,

where the final approximation is valid in the case when L'Ω. Similarly, the num-
ber of microstates in which the ligand is bound to the receptor is

Nsol =
(

Ω

L−1

)

=
Ω!

(L−1)!(Ω−L+1)!
≈
ΩL−1

(L−1)!
.

Using these two counts, the partition function for the system is given by

Z ≈
ΩL

L!
e−

LEsol
kBT +

ΩL−1

(L−1)!
e−

(L−1)Esol+Ebound
kBT .

Finally, we can compute the steady state probability that the ligand is bound by
computing the ratio of the weights for the desired states divided by the partition
function

Pbound =
1
Z
·
ΩL−1

(L−1)!
e−

(L−1)Esol+Ebound
kBT .

∇
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While the previous example was carried out for the special case of a ligand
molecule binding to a receptor protein, in fact this same type of computation can
be used to compute the probability that a transcription factor is attached to a piece
of DNA or that two freely moving molecules bind to each other. Each of these cases
simply comes down to enumerating all possible microstates, computing the energy
associated with each, and then computing the ratio of the sum of the weights for
the desired states to the complete partition function.

Example 4.2 (Transcription factor binding). Suppose that we have a transcription
factor R that binds to a specific target region on a DNA strand (such as the pro-
moter region upstream of a gene). We wish to find the probability Pbound that the
transcription factor will be bound to this location as a function of the number of
transcription factor molecules nR in the system. If the transcription factor is a re-
pressor, for example, knowing Pbound(nR) will allow us to calculate the likelihood
of transcription occurring.
To compute the probability of binding, we assume that the transcription factor

can bind non-specifically to other sections of the DNA (or other locations in the
cell) and we let Nns represent the number of such sites. We let Ebound represent
the free energy associated with R bound to its specified target region and Ens rep-
resent the free energy for R in any other non-specific location, where we assume
that Etextbound < Ens. The microstates of the system consist of all possible as-
signments of the nR transcription factors to either a non-specific location or the
target region of the DNA. Since there is only one target site, there can be at most
one transcription factor attached there and hence we must count all of the ways in
which either zero or one molecule of R are attached to the target site.
If none of the nR copies of R are bound to the target region then these must be

distributed between the nNS non-specific locations. Each bound protein has energy
Ens, so the total energy for any such configuration is nREns. The number of such
combinations is

(Nns
nR

)

and so the contribution to the partition function from these
microstates is

Zns =
(

Nns
nR

)

e−nREns/(kBT ) =
Nns!

nR!(Nns−nR)!
e−nREns/(kBT )

For the microstates in which one molecule of R is bound at a target site and the
other nR −1 molecules are at the non-specific locations, we have a total energy of
Ebound+ (nR−1)Ens and

( Nns
(nR−1)

)

possible such states. The resulting contribution to
the partition function is

Zbound =
Nns!

(nR−1)!(Nns−nR+1)!
e−(Ebound−(nR−1)Ens)/(kBT ).

The probability that the target site is occupied is now computed by looking at
the ratio of the Zbound to Z = Zns+Zbound. After some basic algebraic manipulations,
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it can be shown that

Pbound(nR) =

( nR
Nns−nR+1

)

exp
[

−(Ebound+Ens)/(kBT )
]

1+
( nR
Nns−nR+1

)

exp
[

−(Ebound+Ens)/(kBT )
] .

If we assume that Nns# nR, then we can write

Pbound(nR) ≈
knR
1+ knR

, where k =
1
Nns

exp
[

−(Ebound−Ens)/(kBT )
]

.

As we would expect, this says that for very small numbers of repressors, Pbound
is close to zero, while for large numbers of repressors, Pbound → 1. The point at
which we get a binding probability of 0.5 is when nR = 1/k, which depends on the
relative binding energies and the number of non-specific binding sites. ∇

Chemical Master Equation (CME)

The statistical physics model we have just considered gives a description of the
steady state properties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about the behavior of
the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or the dynamics of a
system that does not have an equilibrium configuration. In these instances, we must
extend our formulation to keep track of how quickly the system transitions from
one microstate to another, known as the chemical kinetics of the system.
To model these dynamics, we return to our enumeration of all possible mi-

crostates of the system. Let P(q, t) represent the probability that the system is in
microstate q at a given time t. Here q can be any of the very large number of pos-
sible microstates for the system. We wish to write an explicit expression for how
P(q, t) varies as a function of time, from which we can study the stochastic dynam-
ics of the system.
We begin by assuming we have a set of M reactions Rj, j = 1, . . . ,M, with

ξ j representing the change in state associated with reaction Rj. The propensity
function defines the probability that a given reaction occurs in a sufficiently small
time step dt:

a j(q, t)dt = Probability that reaction Rj will occur between time t
and time t+dt given that X(t) = q.

The linear dependence on dt relies on the fact that dt is chosen sufficiently small.
We will typically assume that a j does not depend on the time t and write a j(q)dt
for the probability that reaction j occurs in state x.
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Using the propensity function, we can compute the distribution of states at time
t+dt given the distribution at time t:

P(q, t+dt | q0, t0) = P(q, t | q0, t0)
(

1−
M∑

j=1
a j(q)dt

)

+

M∑

j=1
P(q− ξ j | q0, t0)a j(q− ξ j)dt

= P(q, t | q0, t0)+
M∑

j=1

(

a j(q− ξ j)P(q− ξ j, t | q0, t0)−a j(q)P(q, t | q0, t0)
)

dt.

(4.3)
Since dt is small, we can take the limit as dt→ 0 and we obtain the chemical master
equation (CME):

∂P
∂t
(q, t | q0, t0) =

M∑

j=1

(

a j(q− ξ j)P(q− ξ j, t | q0, t0)−a j(q)P(q, t | q0, t0)
)

(4.4)

This equation is also referred to as the forward Kolmogorov equation for a discrete
state, continuous time random process.
We will sometimes find it convenient to use a slightly different notation in which

we let ξ represent any transition in the system state (without enumerating the reac-
tions). In this case, we write the propensity function as a(ξ;q, t), which represents
the incremental probability that we will transition from state q to state q+ξ at time
t. When the propensities are not explicitly dependent on time, we simply write
a(ξ;q). In this notation, the chemical master equation becomes

∂P
∂t
(q, t | q0, t0) =

∑

ξ

(

a(ξ;q− ξ j)P(q− ξ j, t | q0, t0)−a(ξ;q)P(q, t | q0, t0)
)

, (4.5)

where the sum is understood to be over all allowable transitions.
Under some additional assumptions, we can rewrite the master equation in dif-

ferential form as

d
dt
P(q, t) =

∑

ξ

a(ξ;q− ξ)P(q− ξ, t)−
∑

ξ

a(ξ;q)P(q, t), (4.6)

where we have dropped the dependence on the initial condition for notational con-
venience. We see that the master equation is a linear differential equation with state
P(q, t). However, it is important to note that the size of the state vector can be very
large: we must keep track of the probability of every possible microstate of the
system. For example, in the case of the ligand-receptor problem discussed earlier,
this has a factorial number of states based on the number of possible sites in the
model. Hence, even for very simple systems, the master equation cannot typically
be solved either analytically or in a numerically efficient fashion.
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Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as our basic repre-
sentation of the underlying dynamics. As we shall see, starting from this equation
we can then derive a variety of alternative approximations that allow us to answer
specific equations of interest.
The key element of the master equation is the propensity function a(ξ;q, t),

which governs the rate of transition between microstates. Although the detailed
value of the propensity function can be quite complex, its functional form is often
relatively simple. In particular, for a unimolecular reaction ξ of the form A→ B,
the propensity function is proportional to the number of molecules of A that are
present:

a(ξ;q, t) = cξnA. (4.7)

This follows from the fact that each reaction is independent and hence the likeli-
hood of a reaction happening depends directly on the number of copies of A that
are present.
Similarly, for a bimolecular reaction, we have that the likelihood of a reaction

occurring is proportional to the product of the number of molecules of each type
that are present (since this is the number of independent reactions that can occur).
Hence, for a reaction ξ of the form A+B −−→ C we have

a(ξ;q, t) = cξnAnB. (4.8)

The rigorous verification of this functional form is beyond the scope of this text, but
roughly we keep track of the likelihood of a single reaction occurring between A
and B and then multiply by the total number of combinations of the two molecules
that can react (nA ·nB).
A special case of a bimolecular reaction occurs when A=B, so that our reaction

is given by 2A→ B. In this case we must take into account that a molecule cannot
react with itself, and so the propensity function is of the form

a(ξ;q, t) = cξnA(nA−1). (4.9)

Although it is tempting to extend this formula to the case of more than two
species being involved in a reaction, usually such reactions actually involve com-
binations of bimolecular reactions, e.g.:

A+B+C −−→ D =⇒ A+B −−→ AB AB+C −−→ D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.
The propensity functions for these cases and some others are given in Table 4.1.
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Table 4.1: Examples of propensity functions for some common cases [29]. Here we take ra
and rb to be the effective radii of the molecules, m∗ =mamb/(ma+mb) is the reduced mass
of the two molecules, Ω is the volume over which the reaction occurs, T is temperature, kB
is Boltzmann’s constant and na, nb are the numbers of molecules of A and B present.

Reaction type Propensity function coefficient, cξ
Reaction occurs if molecules “touch” Ω−1

( 8kBT
πm∗
)1/2
π(ra+ rb)2

Reaction occurs if molecules collide with energy ε Ω−1
( 8kBT
πm∗
)1/2
π(ra+ rb)2 ·e−ε/kBT

Steady state transcription factor PboundkocnRNAP

Example 4.3 (Transcription of mRNA). Consider the production of mRNA from
a single copy of DNA. We have two basic reactions that can occur: mRNA can
be produced by RNA polymerase transcribing the DNA and producing an mRNA
strand, or mRNA can be degraded. We represent the microstate q of the system in
terms of the number of mRNA’s that are present, which we write as n for ease of
notation. The reactions can now be represented as ξ = +1, corresponding to tran-
scription and ξ = −1, corresponding to degradation. We choose as our propensity
functions

a(+1;n, t) = α, a(−1;n, t) = γn,
by which we mean that the probability of that a gene is transcribed in time dt is αdt
and the probability that a transcript in time dt is γndt (proportional to the number
of mRNA’s).
We can now write down the master equation as described above. Equation (4.3)

becomes

P(n, t+dt) = P(n, t)
(

1−
∑

ξ=+1,−1
a(ξ;n, t)dt

)

+
∑

ξ=+1,−1
P(n− ξ, t)a(ξ;q− ξ)dt

= P(n, t)−a(+1;n, t)P(n, t)−a(−1;n, t)P(n, t)
+a(+1,n−1, t)P(n−1, t)+a(−1;n+1, t)P(n+1)

= P(n, t)+αP(n−1, t)dt− (α−γn)P(n, t)dt+γ(n+1)P(n+1, t)dt.

This formula holds for n > 0, with the n = 0 case satisfying

P(0, t+dt) = P(0, t)−αP(0, t)dt+γP(1, t)dt.

Notice that we have an infinite number of equations, since n can be any positive
integer.
We can write the differential equation version of the master equation by sub-

tracting the first term on the right hand side and dividing by dt:
d
dt
P(n, t) = αP(n−1, t)− (α+γn)P(n, t)+γ(n+1)P(n+1, t), n > 0

d
dt
P(0, t) = −αP(0, t)dt+γP(1, t).
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Again, this is an infinite number of differential equations, although we could take
some limit N and simply declare that P(N, t) = 0 to yield a finite number.
One simple type of analysis that can be done on this equation without truncating

it to a finite number is to look for a steady state solution to the equation. In this
case, we set Ṗ(n, t) = 0 and look for a constant solution P(n, t) = pe(n). This yields
an algebraic set of relations

0 = −αpe(0)+γpe(1) =⇒ αpe(0) = γpe(1)
0 = αpe(0)− (α+γ)pe(1)+2γpe(2) αpe(1) = 2γpe(2)
0 = αpe(1)− (α+2γ)pe(2)+3γpe(3) αpe(1) = 3γpe(3)
...

...

αp(n−1) = nγp(n).

It follows that the distribution of steady state probabilities is given by the Poisson
distribution

p(n) = eα/γ
(α/γ)n

n!
,

and the mean, variance and coefficient of variation are thus

µ =
α

γ
, σ2 =

α

γ
, CV =

µ

σ
=
1
√
µ
=

√

γ

α
.

∇

Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolution of the
distribution of a system, but it can often be quite cumbersome to work with directly.
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shall consider is
known as the chemical Langevin equation (CLE).
To derive the chemical Langevin equation, we start by assuming that the number

of species in the system is large and that we can therefore represent the system
using a vector of real numbers X, with Xi representing the (real-valued) number
of molecules in Si. (Often Xi will be divided by the volume to give a real-valued
concentration of species Si.) In addition, we assume that we are interested in the
dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.
Let X(t) be the state vector for the system, where we assume now that the ele-

ments of X are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a number of reactions over
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a time τ to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

Xi(t+τ) = X(t)+
M∑

j=1
ξi ja j(X(t))τ+

M∑

j=1
ξi ja1/2j (X(t))N j(0,

√
τ),

where a j are the propensity functions for the individual reactions, ξi j are the corre-
sponding changes in the system states Xi andN j are a set of independent Gaussian
random variables with zero mean and variance τ.
If we assume that τ is small enough that we can use the derivative to approxi-

mate the previous equation (but still large enough that we can average over multiple
reactions), then we can write

dXi(t)
dt
=

M∑

j=1
ξ jia j(X(t))+

M∑

j=1
ξ jia1/2j (X(t))Γ j(t) =: Ai(X(t))+

M∑

j=1
Bi j(X(t))Γ j(t),

(4.10)
where Γ j are white noise processes. This equation is called the chemical Langevin
equation (CLE).
Example 4.4 (Protein production). Consider a simplified model of protein produc-
tion in which mRNAs are produced by transcription and proteins by translation.
We also include degradation of both mRNAs and proteins, but we do not model the
detailed processes of elongation of the mRNA and polypeptide chains.
We can capture the state of the system by keeping track of the number of copies

of mRNA and proteins. We further approximate this by assuming that the number
of each of these is sufficiently large that we can keep track of its concentration,
and hence X = (nm,np) where nm ∈ R is the amount of mRNA and np ∈ R is the
concentration of protein. Letting Ω represent the volume, the reactions that govern
the dynamics of the system are given by:

R1 : φ
α
−→mRNA ξ1 = (1,0) a1(X) = α/Ω

R2 : mRNA
γ
−→ φ ξ2 = (−1,0) a2(X) = γ/Ω nm

R3 : mRNA
β
−→mRNA+protein ξ3 = (0,1) a3(X) = β/Ω nm

R4 : protein
δ
−→ φ ξ4 = (0,−1) a4(X) = δ/Ω np.

Substituting these expressions into equation (4.10), we obtain a stochastic differ-
ential equation of the form

d
dt





nm
np




=





−γ/Ω 0
β/Ω −δ/Ω









nm
np




+





α/Ω

0




+





(√
α/Ω+

√

γnm/Ω
)

Γm
( √

βnm/Ω+
√

δnp/Ω
)

Γp




,

where Γm and Γp are independent white noise processes with unit variance. (Note
that in deriving this equation we have used the fact that the sum of two independent
Gaussian processes is a Gaussian process.) ∇
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Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordinary differential equa-
tion that describes the evolution of the system state. A slightly different (but com-
pletely equivalent) representation of the dynamics is to model how the probabil-
ity distribution P(q, t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density function p(x, t). This formula is known
as the Fokker-Planck equations (FPE) and is essentially an approximation on the
chemical master equation.
Consider first the case of a random process in one dimension. We assume that

the random process is in the same form as the previous section:

dX(t)
dt
= A(X(t))+B(X(t))Γ(t). (4.11)

The function A(X) is called the drift term and B(X) is the diffusion term. It can be
shown that the probability density function for X, p(x, t | x0, t0), satisfies the partial
differential equation

∂p
∂t
(x, t | x0, t0) = −

∂

∂x
(

A(x, t)p(x, t | x0, t0)
)

+
1
2
∂2

∂x2
(

B2(x, t)p(x, t | x0, t0)
)

(4.12)

Note that here we have shifted to the probability density function since we are
considering X to be a continuous state random process.
In the multivariate case, a bit more care is required. Using the chemical Langevin

equation (4.10), we define

Di(x, t) =
M∑

j=1
B2i j(x, t), Ci j(x, t) =

M∑

k=1
Bik(x, t)Bjk(x, t), i < j = 1, . . . ,M.

The Fokker-Planck equation now becomes

∂p
∂t
(x, t | x0, t0) =−

M∑

i=1

∂

∂xi
(

Ai(x, t)p(x, t | x0, t0)
)

+
1
2

M∑

i=1

∂

∂xi
∂2

∂x2
(

Di(x, t)p(x, t | x0, t0)
)

+

M∑

i, j = 1
i < j

∂2

∂xi∂x j
(

Ci j(x, t)p(x, t | x0, t0)
)

.

(4.13)
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Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation provide approx-
imations to the chemical master equation. A slightly different approximation can
be obtained by expanding the density function in terms of a size parameter Ω. This
approximation is know as the linear noise approximation (LNA) or the Ω expan-
sion [43].
We begin with a master equation for a continuous random variable X, which we

take to be of the form

∂p
∂t
(x, t) =

∫

(

aΩ(ξ; x− ξ)p(x− ξ, t)−aΩ(ξ; x)p(x, t)
)

dξ,

where we have dropped the dependence on the initial condition for notational sim-
plicity. As before, the propensity function aΩ(ξ; x) represents the transition prob-
ability between a state x and a state x+ ξ and we assume that it is a function of
a parameter Ω that represents the size of the system (typically the volume). Since
we are working with continuous variables, we now have an integral in place of our
previous sum.
We assume that the mean of X can be written asΩφ(t) where φ(t) is a continuous

function of time that represents the evolution of the mean of X/Ω. To understand
the fluctuations of the system about this mean, we write

X =Ωφ+Ω
1
2Z,

where Z is a new variable representing the perturbations of the system about its
mean. We can write the distribution for Z as

pZ(z, t) = pX(Ωφ(t)+Ω
1
2 z, t)

and it follows that the derivatives of pZ can be written as

∂νpZ
zν
=Ω

1
2 ν
∂νpX
xν

∂pZ
∂t
=
∂pX
∂t
+Ω

dφ
dt
∂pX
∂x
=
∂pX
∂t
+Ω

1
2
dφ
dt
∂pZ
∂z
.

We further assume that the Ω dependence of the propensity function is such that

aΩ(ξ,Ωφ) = f (Ω)ã(ξ;φ),

where ã is not dependent on Ω. From these relations, we can now derive the master
equation for pZ in terms of powers of Ω (derivation omitted).
The Ω1/2 term in the expansion turns out to yield

dφ
dt
=

∫

ξa(ξ,Ωφ)dξ, φ(0) =
X(0)
Ω
,
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which is precisely the equation for the mean of the concentration. It can further be
shown that the terms in Ω0 are given by

∂pZ(z,τ)
∂τ

= −α′1(φ)
∂

∂z
(zpZ(z, t))+

1
2
α2(φ)

∂2pZ(z, t)
∂z2

, (4.14)

where

αv(x) =
∫

ξvã(ξ; x)dξ, τ =Ω−1 f (Ω)t.

Notice that in the case that φ(t) = φ0, this equation becomes the Fokker-Planck
equation derived previously.
Higher order approximations to this equation can also be carried out by keeping

track of the expansion terms in higher order powers of Ω. In the case where Ω
represents the volume of the system, the next term in the expansion is Ω−1 and this
represents fluctuations that are on the order of a single molecule, which can usually
be ignored.

Rate reaction equations (RRE)

As we already saw in Chapter 2, the reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large number of
molecules whose state can be approximated using just the concentrations of the
molecules. We re-derive the results from Section 2.1 here, being more careful to
point out what approximations are being made.
We start with the chemical Langevin equations (4.10), from which we can write

the dynamics for the average quantity of the each species at each point in time:

d〈Xi(t)〉
dt

=

M∑

j=1
ξ ji〈a j(X(t))〉,

where the second order term drops out under the assumption that the Γ j’s are in-
dependent processes. We see that the reaction rate equations follow by defining
xi = 〈Xi〉/Ω and assuming that 〈a j(X(t))〉= a j(〈X(t)〉). This relationship is true when
a j is linear (e.g., in the case of a unimolecular reaction), but is an approximation
otherwise.
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4.2 Simulation of Stochastic sections

4.3 Analysis of Stochastic Systems

4.4 Linearized Modeling and Analysis

4.5 Markov chain modeling and analysis

4.6 System identification techniques

4.7 Model Reduction

Exercises

4.1 Consider gene expression: φ k
−→m, m

β
−→m+P, m

γ
−→ φ, and P δ−→ φ. Answer the

following questions:

(a) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare with the determin-
istic ODE solution. Explore how the realizations become close to or apart from the
ODE solution when the volume is changed. Determine the stationary probability
distribution for the protein (you can do this numerically, but note that this process is
linear, so you can compute the probability distribution analytically in closed form).
(b) Now consider the additional binding reaction of protein P with downstream

DNA binding sites D: P+D
kon−−−⇀↽−−−
ko f f

C. Note that the system no longer linear due to

the presence of a bi-molecular reaction. Use the SSA algorithm to obtain sample
realizations and numerically compute the probability distribution of the protein and
compare it to what you obtained in part (a). Explore how this probability distribu-
tion and the one of C change as the rates kon and ko f f become larger and larger
with respect to δ,k,β,γ. Do you think we can use a QSS approximation similar to
what we have done for ODE models?
(c) Determine the Langevin equation for the system in part (b) and obtain sample
realizations. Explore numerically how good this approximation is when the volume
decreases/increases.
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