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Chapter 4
Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, building
on our preliminary discussion of stochastic modeling in Section 2.1. We begin
by reviewing methods for modeling stochastic processes, including the chemical
master equation (CME), the chemical Langevin equation (CLE) and the Fokker-
Planck equation (FPE). Given a stochastic description, we can then analyze the
behavior of the system using a collection of stochastic simulation and analysis
tools. This chapter makes use of a variety of topics in stochastic processes; readers
should have a good working knowledge of basic probability and some exposure to
simple stochastic processes.

4.1 Stochastic modeling of biochemical systems

Biomolecular systems are inherently noisy due to the random nature of molec-
ular reactions. When the concentrations of molecules are high, the deterministic
models we have used in the previous chapters provide a good description of the
dynamics of the system. However, if the molecular counts are low then it is often
necessary to explicitly account for the random nature of events. In this case, the
chemical reactions in the cell can be modeled as a collection of stochastic events
corresponding to chemical reactions between species. These include binding and
unbinding of molecules (such as RNA polymerase and DNA), conversion of one
set of species into another, and enzymatically controlled covalent modifications
such as phosphorylation. In this section we will briefly survey some of the differ-
ent representations that can be used for stochastic models of biochemical systems,
following the material in the textbooks by Phillips et al. [78], Gillespie [32] and
Van Kampen [53].

Statistical mechanics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.

As described briefly already in Chapter 2, the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
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Figure 4.1: System in contact with a reservoir. While there is exchange of energy between
the system and the reservoir, there is no exchange of energy between them and the rest of
the world. Figure adapted from [78].

crostates of the system. A microstate corresponds to a given configuration of the
components (species) in the system relative to each other and we must enumerate
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the probabil-
ity that the system is in a given microstate. This probability can be calculated based
on the energy levels of the different microstates. Consider a setting in which our
system is in contact with a reservoir (Figure 4.1). Let Er represent the energy in
the reservoir, Es the energy in the system and Etot = Er +Es the total (conserved)
energy. Given two different energy levels Eq1 and Eq2 for the system of interest,
let Wr(Etot − Eqi) be the number of possible microstates of the reservoir with en-
ergy Er = Etot−Eqi , i = 1,2. The laws of statistical mechanics state that the ratio of
probabilities of being in microstates q1 and q2 is given by the ratio of the number
of possible states of the reservoir:

P(Eq1)
P(Eq2)

=
Wr(Etot−Eq1 )
Wr(Etot−Eq2 )

. (4.1)

Defining the entropy of the reservoir as S r = kB lnWr, where kB is Boltzmann’s
constant, we can rewrite equation (4.1) as

Wr(Etot−Eq1 )
Wr(Etot−Eq2 )

=
eS r(Etot−Eq1 )/kB

eS r(Etot−Eq2 )/kB
.

We now approximate S r(Etot−Es) in a Taylor series expansion around Etot, under
the assumption that Er ≫ Eqi :

S r(Etot−Es) ≈ S r(Etot)−
∂S r

∂E
Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

∂S

∂E

∣
∣
∣
∣
∣
V,N
=

1
T
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and we obtain
P(Eq1)
P(Eq2)

=
e−Eq1/kBT

e−Eq2/kBT
.

This implies that
PEq ∝ e−Eq/(kBT )

and hence the probability of being in a microstate q is given by

P(q) =
1
Z

e−Eq/(kBT ), (4.2)

where we have written Eq for the energy of the microstate and Z is a normalizing
factor, known as the partition function, defined by

Z =
∑

q∈Q

e−Eq/(kBT ).

In many situations we do not care about the specific microstate that a system
is in, but rather whether the system is in any one of a number of microstates that
all correspond to the same overall behavior of the system. For example, we will
often not care whether a specific RNA polymerase is bound to a promoter, but
rather whether any RNA polymerase is bound to that promoter. We call the col-
lection of microstates that is of interest a macrostate (or sometimes system state).
A macrostate is defined as a set of states S ⊂ Q that correspond to a given condi-
tion that we wish to monitor. Given a macrostate S , the probability of being in that
macrostate is

P(S ) =
1
Z

∑

q∈S

e−Eq/(kBT ) =

∑

q∈S e−Eq/(kBT )

∑

q∈Q e−Eq/(kBT ) . (4.3)

It is this probability that allows us, for example, to determine whether any RNA
polymerase molecule is bound to a given promoter, averaged over many indepen-
dent samples. We can then use this probability to determine the rate of expression
of the corresponding gene.

Example 4.1 (Transcription factor binding). Suppose that we have a transcription
factor R that binds to a specific target region on a DNA strand (such as the pro-
moter region upstream of a gene). We wish to find the probability Pbound that the
transcription factor will be bound to this location as a function of the number of
transcription factor molecules nR in the system. If the transcription factor is a re-
pressor, for example, knowing Pbound(nR) will allow us to calculate the likelihood
of transcription occurring.

To compute the probability of binding, we assume that the transcription factor
can bind non-specifically to other sections of the DNA (or other locations in the
cell) and we let Nns represent the number of such sites. We let Ebound represent the
free energy associated with R bound to its specified target region and Ens represent
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the free energy for R in any other non-specific location, where we assume that
Ebound < Ens. The microstates of the system consist of all possible assignments of
the nR transcription factors to either a non-specific location or the target region of
the DNA. Since there is only one target site, there can be at most one transcription
factor attached there and hence we must count all of the ways in which either zero
or one molecule of R are attached to the target site.

If none of the nR copies of R are bound to the target region then these must be
distributed between the Nns non-specific locations. Each bound protein has energy
Ens, so the total energy for any such configuration is nREns. The number of such
combinations is

(
Nns
nR

)

, assuming the R’s are indistinguishable, and so the contribu-
tion to the partition function from these microstates is

Zns =

(

Nns

nR

)

e−nREns/(kBT ) =
Nns!

nR!(Nns−nR)!
e−nREns/(kBT ).

For the microstates in which one molecule of R is bound at a target site and the
other nR −1 molecules are at the non-specific locations, we have a total energy of
Ebound+ (nR−1)Ens and

(
Nns

(nR−1)

)

possible such states. The resulting contribution to
the partition function is

Zbound =
Nns!

(nR−1)!(Nns−nR+1)!
e−(Ebound−(nR−1)Ens)/(kBT ).

The probability that the target site is occupied is now computed by looking at
the ratio of the Zbound to Z = Zns+Zbound. After some basic algebraic manipulations,
it can be shown that

Pbound(nR) =

(
nR

Nns−nR+1

)

exp
[

−(Ebound+Ens)/(kBT )
]

1+
(

nR
Nns−nR+1

)

exp
[

−(Ebound+Ens)/(kBT )
] .

If we assume that Nns≫ nR then Nns−nR+1 ≈ Nns, and we can write

Pbound(nR) ≈
knR

1+ knR
, where k =

1
Nns

exp
[

−(Ebound−Ens)/(kBT )
]

. (4.4)

As we would expect, this says that for very small numbers of repressors, Pbound

is close to zero, while for large numbers of repressors, Pbound → 1. The point at
which we get a binding probability of 0.5 is when nR = 1/k, which depends on the
relative binding energies and the number of non-specific binding sites. ∇

Example 4.2 (Combinatorial promoter). As mentioned in Section 2.3, a combina-
torial promoter is a region of DNA in which multiple transcription factors can bind
and influence the subsequent binding of RNA polymerase (RNAP). Combinatorial
promoters appear in a number of natural and engineered circuits and represent a
mechanism for creating switch-like behavior.
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Figure 4.2: Two possible configurations of a combinatorial promoter where both an activa-
tor and a repressor can bind to specific operator sites. We show configurations S 3 and S 5
referring to Table 4.1.

One method to model a combinatorial promoter is to use the binding energies
of the different combinations of proteins to the operator region, and then compute
the probability of being in a given promoter state given the concentration of each of
the transcription factors. Table 4.1 shows the possible states of a notional promoter
that has two operator regions—one that binds a repressor protein R and another
that binds an activator protein A.

As indicated in the table, the promoter has three (possibly overlapping) regions
of DNA: OR1 and OR2 are binding sites for the repressor and activator proteins,
respectively, and Prom is the location where RNA polymerase binds. (The indi-
vidual labels are primarily for bookkeeping purposes and may not correspond to
physically separate regions of DNA.)

To determine the probabilities of being in a given macrostate, we must com-
pute the individual microstates that occur at given concentrations of repressor, ac-
tivator and RNA polymerase. Each microstate corresponds to an individual set of
molecules binding in a specific configuration. So if we have nR repressor molecules,

Table 4.1: Configurations for a combinatorial promoter with an activator and a repres-
sor. Each row corresponds to a specific macrostate of the promoter in which the listed
molecules are bound to the target region. The relative energy of a state compared with
the ground state provides a measure of the likelihood of that state occurring, with more
negative numbers corresponding to more energetically favorable configurations.

State S q OR1 OR2 Prom Eq (∆G) Comment

S 1 – – – 0 No binding (ground state)
S 2 – – RNAP −5 RNA polymerase bound
S 3 R – – −10 Repressor bound
S 4 – A – −12 Activator bound
S 5 – A RNAP −15 Activator and RNA polymerase
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then there is one microstate corresponding to each different repressor molecule that
is bound, resulting in nR individual microstates. In the case of configuration S 5,
where two different molecules are bound, the number of combinations is given by
the product of the numbers of individual molecules, nA ·nRNAP, reflecting the pos-
sible combinations of molecules that can occupy the promoter sites. The overall
partition function is given by summing up the contributions from each microstate:

Z = e−E1/(kBT )+nRNAP e−E2/(kBT )+nR e−E3/(kBT )

+nA e−E4/(kBT )+nAnRNAP e−E5/(kBT ). (4.5)

The probability of a given macrostate is determined using equation (4.3). For
example, if we define the promoter to be “active” if RNA polymerase is bound
to the DNA, then the probability of being in this macrostate as a function of the
various molecular counts is given by

Pactive(nR,nA,nRNAP) =
1
Z

(

nRNAP e−E2/(kBT )+nA nRNAPe−E5/(kBT )
)

=
k5 nA+ k2

1+ k2+ k3 nR+ (k4+ k5)nA
,

where
kq = e−(Eq−E1)/(kBT ).

From this expression we see that if nR≫ nA then Pactive tends to 0 while if nA≫ nR

then Pactive tends to 1, as expected.
∇

Chemical master equation (CME)

The statistical physics model we have just considered gives a description of the
steady state properties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about the behavior of the
system just by modeling the energy of the system. In other situations, however, we
care about the transient behavior of a system or the dynamics of a system that does
not have an equilibrium configuration. In these instances, we must extend our for-
mulation to keep track of how quickly the system transitions from one microstate
to another, known as the chemical kinetics of the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. Let P(q, t) represent the probability that the system is in
microstate q at a given time t. Here q can be any of the very large number of
possible microstates for the system, which for chemical reaction systems we can
represent in terms of a vector consisting of the number of molecules of each species
that is present. We wish to write an explicit expression for how P(q, t) varies as a
function of time, from which we can study the stochastic dynamics of the system.
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We begin by assuming we have a set of M reactions Rj, j = 1, . . . ,M, with ξ j

representing the change in state associated with reaction Rj. Specifically, ξ j is given
by the jth column of the stoichiometry matrix N (Section 2.1). The propensity

function defines the probability that a given reaction occurs in a sufficiently small
time step dt:

a j(q, t)dt = Probability that reaction Rj will occur between time t

and time t+dt given that the microstate is q.

The linear dependence on dt relies on the fact that dt is chosen sufficiently small.
We will typically assume that a j does not depend on the time t and write a j(q)dt

for the probability that reaction j occurs in state q.
Using the propensity function, we can compute the distribution of states at time

t+dt given the distribution at time t:

P(q, t+dt) = P(q, t)
M∏

j=1

(

1−a j(q)dt
)

+

M∑

j=1

P(q− ξ j)a j(q− ξ j)dt

= P(q, t)+
M∑

j=1

(

a j(q− ξ j)P(q− ξ j, t)−a j(q)P(q, t)
)

dt+O(dt2),

(4.6)

where O(dt2) represents higher order terms in dt. Since dt is small, we can take the
limit as dt→ 0 and we obtain the chemical master equation (CME):

∂P

∂t
(q, t) =

M∑

j=1

(

a j(q− ξ j)P(q− ξ j, t)−a j(q)P(q, t)
)

. (4.7)

This equation is also referred to as the forward Kolmogorov equation for a discrete
state, continuous time random process.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as our basic repre-
sentation of the underlying dynamics. As we shall see, starting from this equation
we can then derive a variety of alternative approximations that allow us to answer
specific questions of interest.

The key element of the master equation is the propensity function a j(q), which
governs the rate of transition between microstates. Although the detailed value of
the propensity function can be quite complex, its functional form is often relatively
simple. In particular, for a unimolecular reaction of the form A→ B, the propensity
function is proportional to the number of molecules of A that are present:

a j(q) = k jnA. (4.8)

This follows from the fact that the reaction associated with each molecule is inde-
pendent and hence the likelihood of a reaction happening depends directly on the
number of copies of A that are present.
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Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules of each type
that are present (since this is the number of independent reactions that can occur)
and inversely proportional to the volume Ω. Hence, for a reaction of the form A+
B −−→ C we have

a j(q) =
k j

Ω
nAnB. (4.9)

The rigorous verification of this functional form is beyond the scope of this text, but
roughly we keep track of the likelihood of a single reaction occurring between A
and B and then multiply by the total number of combinations of the two molecules
that can react (nA ·nB).

A special case of a bimolecular reaction occurs when A=B, so that our reaction
is given by A+A → B. In this case we must take into account that a molecule
cannot react with itself and that the molecules are indistinguishable, and so the
propensity function is of the form

a j(q) =
k j

Ω
·
nA(nA−1)

2
. (4.10)

Here, nA(nA−1)/2 represents the number of ways that two molecules can be chosen
from a collection of nA identical molecules.

Note that the use of the parameter k j in the propensity functions above is in-
tentional since it corresponds to the reaction rate parameter that is present in the
reaction rate equation models we used in Chapter 2. The factor of Ω for bimolecu-
lar reactions models the fact that the propensity of a bimolecular reaction occurring
depends explicitly on the volume in which the reaction takes place.

Although it is tempting to extend the formula for a bimolecular reaction to the
case of more than two species being involved in a reaction, usually such reactions
actually involve combinations of bimolecular reactions, e.g.:

A+B+C −−→ D =⇒ A+B −−→ AB, AB+C −−→ D.

This more detailed description reflects the fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant. The much
more likely possibility is that two molecules will initially react, followed by a sec-
ond reaction involving the third molecule.

Example 4.3 (Repression of gene expression). We consider a simple model of
repression in which we have a promoter that contains binding sites for RNA poly-
merase and a repressor protein R. RNA polymerase only binds when the repressor
is absent, after which it can undergo an isomerization reaction to form an open
complex and initiate transcription (see Section 2.2). Once the RNA polymerase
begins to create mRNA, we assume the promoter region is uncovered, allowing
another repressor or RNA polymerase to bind.



4.1. STOCHASTIC MODELING OF BIOCHEMICAL SYSTEMS 147

The following reactions describe this process:

R1 : R+DNA −−→ R:DNA,

R2 : R:DNA −−→ R+DNA,

R3 : RNAP+DNA −−→ RNAP:DNAc,

R4 : RNAP:DNAc −−→ RNAP+DNA,

R5 : RNAP:DNAc −−→ RNAP:DNAo,

R6 : RNAP:DNAo −−→ RNAP+DNA+mRNA,

where RNAP : DNAc represents the closed complex and RNAP : DNAo represents
the open complex, and reaction R6 lumps together start of transcription, elongation,
mRNA creation, and termination. The states for the system depend on the number
of molecules of each species that are present. If we assume that we start with nR

repressors and nRNAP RNA polymerases, then the possible states (S) for our system
are outlined below.

S DNA R RNAP R : DNA RNAP : DNAc RNAP : DNAo

q1 1 nR nRNAP 0 0 0
q2 0 nR−1 nRNAP 1 0 0
q3 0 nR nRNAP−1 0 1 0
q4 0 nR nRNAP−1 0 0 1

Note that we do not keep track of each individual repressor or RNA polymerase
molecule that binds to the DNA, but simply keep track of whether they are bound
or not.

We can now rewrite the chemical reactions as a set of transitions between the
possible microstates of the system. Assuming that all reactions take place in a vol-
umeΩ, we use the propensity functions for unimolecular and bimolecular reactions
to obtain:

R1 : q1 −−→ q2; a1(q1) = (k1/Ω)nR, R4 : q3 −−→ q1; a4(q3) = k4,

R2 : q2 −−→ q1; a2(q2) = k2, R5 : q3 −−→ q4; a5(q3) = k5,

R3 : q1 −−→ q3; a3(q1) = (k3/Ω)nRNAP, R6 : q4 −−→ q1; a6(q4) = k6.

The chemical master equation can now be written down using the propensity func-
tions for each reaction:

d

dt

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(k1/Ω)nR− (k3/Ω)nRNAP k2 k4 k6

(k1/Ω)nR −k2 0 0
(k3/Ω)nRNAP 0 −k4− k5 0

0 0 k5 −k6

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The initial condition for the system can be taken as P(q,0)= (1,0,0,0), correspond-
ing to the state q1. A simulation showing the evolution of the probabilities is shown
in Figure 4.3.
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Figure 4.3: Numerical solution of chemical master equation for simple repression model.

The equilibrium solution for the probabilities can be solved by setting Ṗ = 0,
which yields:

Pe(q1) =
k2k6Ω(k4+ k5)

k1k6nR(k4+ k5)+ k2k3nRNAP(k5+ k6)+ k2k6Ω(k4+ k5)
,

Pe(q2) =
k1k6nR(k4+ k5)

k1k6nR(k4+ k5)+ k2k3nRNAP(k5+ k6)+ k2k6Ω(k4+ k5)
,

Pe(q3) =
k2k3k6nRNAP

k1k6nR(k4+ k5)+ k2k3nRNAP(k5+ k6)+ k2k6Ω(k4+ k5)
,

Pe(q4) =
k2k3k5nRNAP

k1k6nR(k4+ k5)+ k2k3nRNAP(k5+ k6)+ k2k6Ω(k4+ k5)
.

We see that the equilibrium distributions depend on the relative strengths of differ-
ent combinations of the rate constants for the individual reactions in the system.
For example, the probability that a repressor molecule is bound to the promoter is
given by

Pbound(nR) = Pe(q2) =
k1k6nR(k4+ k5)

k1k6nR(k4+ k5)+ k2k3nRNAP(k5+ k6)+ k2k6Ω(k4+ k5)
,

which has a functional form similar to equation (4.4). Note that here the probability
depends on the volume Ω because we used a different model for the diffusion of
the repressor R (previously we assumed all repressors were non-specifically bound
to DNA).

∇

Example 4.4 (Transcription of mRNA). Consider the production of mRNA from
a single copy of DNA. We have two basic reactions that can occur: mRNA can
be produced by RNA polymerase transcribing the DNA and producing an mRNA
strand, or mRNA can be degraded. We represent the microstate q of the system in
terms of the number of mRNA’s that are present, which we write as n for ease of
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notation. The reactions can now be represented as ξ1 = +1, corresponding to tran-
scription, and ξ2 = −1, corresponding to degradation. We choose as our propensity
functions

a1(n) = α, a2(n) = δn,

by which we mean that the probability that a gene is transcribed in time dt is αdt

and the probability that a transcript is created in time dt is δndt (proportional to the
number of mRNA’s).

We can now write down the master equation as described above. Equation (4.6)
becomes

P(n, t+dt) = P(n, t)
(

1−
∑

i=1,2

ai(n)dt
)

+
∑

i=1,2

P(n− ξi, t)ai(q− ξi)dt

= P(n, t)−a1(n)P(n, t)−a2(n)P(n, t)

+a1(n−1)P(n−1, t)+a2(n+1)P(n+1, t)

= P(n, t)+αP(n−1, t)dt− (α+δn)P(n, t)dt+δ(n+1)P(n+1, t)dt.

This formula holds for n = 1,2, . . . , with the n = 0 case satisfying

P(0, t+dt) = P(0, t)−αP(0, t)dt+δP(1, t)dt.

Notice that we have an infinite number of equations, since n can be any positive
integer.

We can write the differential equation version of the master equation by sub-
tracting the first term on the right-hand side and dividing by dt:

d

dt
P(n, t) = αP(n−1, t)− (α+δn)P(n, t)+δ(n+1)P(n+1, t), n = 1,2, . . .

d

dt
P(0, t) = −αP(0, t)dt+δP(1, t).

Again, this is an infinite number of differential equations, although we could take
some limit N and simply declare that P(N, t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we set Ṗ(n, t) = 0 and look for a constant solution P(n, t) = pe(n). This yields
an algebraic set of relations

0 = −αpe(0)+δpe(1) αpe(0) = δpe(1)

0 = αpe(0)− (α+δ)pe(1)+2δpe(2) αpe(1) = 2δpe(2)

0 = αpe(1)− (α+2δ)pe(2)+3δpe(3) =⇒ αpe(2) = 3δpe(3)
...

...

0 = αpe(n−1)− (α+δn)pe(n)+δ(n+1)pe(n+1) αp(n−1) = nδp(n).



150 CHAPTER 4. STOCHASTIC MODELING AND ANALYSIS

Using this recursive expression to obtain p(n) as a function of p(0), we obtain

p(n) =
(
α

δ

)n 1
n!

p(0).

Further, using that
∑∞

n=0 p(n) = 1, we have that

∞∑

n=0

(
α

δ

)n 1
n!

p(0) = 1,

from which, considering that
∑∞

n=0

(
α
δ

)n 1
n! = eα/δ, we obtain p(0) = e−α/δ, which

finally leads to the Poisson distribution

p(n) = eα/δ
(α/δ)n

n!
.

The mean, variance and coefficient of variation (CV), given by the ratio between
the standard deviation and the mean, are thus

µ =
α

δ
, σ2 =

α

δ
, CV =

σ

µ
=

1
√
µ
=

√

δ

α
.

The coefficient of variation is commonly used to quantify how noisy a process is
since it provides a measure of the deviation relative to the mean value. Note that
for fixed variance, the coefficient of variation increases if µ decreases. Thus as we
have a small number of mRNA molecules present, we see higher variability in the
(relative) mRNA concentration. ∇

Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolution of the
probability distribution of a system, but it can often be quite cumbersome to work
with directly. A number of approximations to the master equation are thus used
to provide more tractable formulations of the dynamics. The first of these that we
shall consider is known as the chemical Langevin equation (CLE).

To derive the chemical Langevin equation, we start by assuming that the number
of molecules in the system is large and that we can therefore represent the system
using a vector X ∈ Rn, with Xi representing the (real-valued) number of molecules
of species Si. (Often Xi will be divided by the volume to give a real-valued concen-
tration of species Si.) In addition, we assume that we are interested in the dynamics
on time scales in which individual reactions are not important and so we can look
at how the system state changes over time intervals in which many reactions occur
and hence the system state evolves in a smooth fashion.
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Let X(t) be the state vector for the system, where we assume now that the ele-
ments of X are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a number of reactions over
a time τ to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

Xi(t+τ) = Xi(t)+
M∑

j=1

ξi ja j(X(t))τ+
M∑

j=1

ξi ja
1/2
j (X(t))N j(0,τ),

where a j are the propensity functions for the individual reactions, ξi j are the corre-
sponding changes in the system states Xi andN j are a set of independent Gaussian
random variables with zero mean and variance τ.

If we assume that τ is small enough that we can use the derivative to approxi-
mate the previous equation (but still large enough that we can average over multiple
reactions), then we can write

dXi(t)
dt
=

M∑

j=1

ξ jia j(X(t))+
M∑

j=1

ξ jia
1/2
j (X(t))Γ j(t) =: Ai(X(t))+

M∑

j=1

Bi j(X(t))Γ j(t),

(4.11)
where Γ j are white noise processes (see Section 4.3). This equation is called the
chemical Langevin equation (CLE).

Example 4.5 (Protein production). Consider a simplified two-step model of pro-
tein production in which mRNA is produced by DNA and protein by mRNA. We
do not model the detailed processes of isomerization and elongation of the mRNA
and polypeptide chains. We can capture the state of the system by keeping track of
the number of copies of DNA, mRNA, and protein, which we denote by XD, Xm

and XP, respectively, so that X = (XD,Xm,XP).
The simplified reactions with the corresponding propensity functions are given

by

R1 : DNA
α
−→mRNA+DNA, ξ1 = (0,1,0), a1(X) = α XD,

R2 : mRNA
δ
−→ φ, ξ2 = (0,−1,0), a2(X) = δ Xm,

R3 : mRNA
κ
−→mRNA+protein, ξ3 = (0,0,1), a3(X) = κ Xm,

R4 : protein
γ
−→ φ, ξ4 = (0,0,−1), a4(X) = γ XP.

Using these, we can write the Langevin equation as

dXm

dt
= αXD−δXm+

√

αXDΓ1(t)−
√

δXmΓ2(t),

dXP

dt
= κXm−γXP+

√

κXmΓ3(t)−
√

γXpΓ4(t).
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We can keep track of the species concentration by dividing the number of molecules
by the volume Ω. Letting m = Xm/Ω, P = XP/Ω, and α0 = αXD/Ω, we obtain the
final expression

d

dt

⎧

⎪⎪⎪⎪⎪⎩

m

P

⎫

⎪⎪⎪⎪⎪⎭
=

⎧

⎪⎪⎪⎪⎪⎩

−δ 0
κ −γ

⎫

⎪⎪⎪⎪⎪⎭

⎧

⎪⎪⎪⎪⎪⎩

m

P

⎫

⎪⎪⎪⎪⎪⎭
+

⎧

⎪⎪⎪⎪⎪⎩

α0

0

⎫

⎪⎪⎪⎪⎪⎭
+

1
√
Ω

⎧

⎪⎪⎪⎪⎪⎪⎪⎩

(√
α0+δm

)

Γm
(√
κm+γP

)

ΓP

⎫

⎪⎪⎪⎪⎪⎪⎪⎭
,

where Γm and ΓP are independent Gaussian white noise processes (note that here
we have used that if Γ1 and Γ2 are independent identical Gaussian white noise
processes, then

√
aΓ1 +

√
bΓ2 =

√
a+bΓ with Γ a Gaussian white noise process

identical to Γi). ∇

The Langevin equation formulation is particularly useful as it allows us to study
the stochastic properties of the system by studying how the state responds to a
(stochastic) input. Hence, a few of the tools available for studying input/output
dynamic behavior can be employed (see Section 3.1, Section 3.2, and Section 4.3).

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordinary differential equa-
tion that describes the evolution of the system state. A slightly different (but com-
pletely equivalent) representation of the dynamics is to model how the probabil-
ity distribution P(x, t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a for-
mula for the evolution of the density function p(x, t). This formula is known as the
Fokker-Planck equation (FPE) and is essentially an approximation to the chemical
master equation.

Consider first the case of a random process in one dimension. We assume that
the random process is in the same form as in the previous section:

dX(t)
dt
= A(X(t))+B(X(t))Γ(t). (4.12)

The function A(X) is called the drift term and B(X) is the diffusion term. It can
be shown that the probability density function for X, p(x, t), satisfies the partial
differential equation

∂p

∂t
(x, t) = −

∂

∂x

(

A(x, t)p(x, t)
)

+
1
2
∂2

∂x2

(

B2(x, t)p(x, t)
)

. (4.13)

Note that here we have shifted to the probability density function since we are
considering X to be a continuous state random process.
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In the multivariate case, more care is required. Using the chemical Langevin
equation (4.11), we define

Di j(x, t) =
1
2

M∑

k=1

Bik(x, t)Bjk(x, t), i < j = 1, . . . ,M.

The Fokker-Planck equation now becomes

∂p

∂t
(x, t) = −

M∑

i=1

∂

∂xi

(

Ai(x, t)p(x, t)
)

+

M∑

i=1

M∑

j=1

∂2

∂xi∂x j

(

Di j(x, t)p(x, t)
)

. (4.14)

Note that the Fokker-Planck equation is very similar to the chemical master
equation: both provide a description of how the probability distribution varies as a
function of time. In the case of the Fokker-Planck equation, we regard the state as
a continuous set of variables and we write a partial differential equation for how
the probability density function evolves in time. In the case of the chemical master
equation, we have a discrete state (microstates) and we write an ordinary differ-
ential equation for how the probability distribution (formally the probability mass
function) evolves in time. Both formulations contain the same basic information,
just using slightly different representations of the system and the probability of
being in a given state.

Reaction rate equations (RRE)

As we already saw in Chapter 2, the reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large number of
molecules whose state can be approximated using just the concentrations of the
molecules. We re-derive the results from Section 2.1 here, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equation (4.11), which has the form

dXi(t)
dt
=

M∑

j=1

ξ jia j(X(t))+
M∑

j=1

ξ jia
1/2
j (X(t))Γ j(t).

While we have not derived this expression in detail, we note that the first term
simply says that the value of the random variable Xi fluctuates according to possible
reaction vectors ξ ji scaled by the probability that reaction j occurs in time dt.

We are now interested in how the mean of the concentration Xi evolves. Writing
⟨Xi⟩ for the mean (taken over many different samples of the random process), the
dynamics of the species at each point in time are given by

d⟨Xi(t)⟩
dt

=

M∑

j=1

ξ ji⟨a j(X(t))⟩, (4.15)
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where the second term in the Langevin equation drops out under the assumption
that the Γ j’s are independent processes with zero mean. We see that the reaction rate
equations follow by defining xi = ⟨Xi⟩/Ω and assuming that ⟨a j(X(t))⟩ = a j(⟨X(t)⟩).
This relationship is true when a j is linear (e.g., in the case of a unimolecular reac-
tion), but is an approximation otherwise.

The formal derivation of the reaction rate equations from the chemical master
equation and the chemical Langevin equation requires a number of careful assump-
tions (see the original work of Gillespie [34] for a full derivation). In particular,
it requires that the chemical system is well-stirred (no spatial structure), that the
molecular counts are sufficiently high that we can approximate concentrations with
real numbers, and that the time scales of interest are appropriately long so that mul-
tiple individual reactions can be appropriately averaged, and yet at the same time
sufficiently short so that we can approximate the derivative through a finite dif-
ferent approximation. As we have noted previously, most biological systems have
significant spatial structure (thus violating the well-stirred assumption), but models
based on that assumption are still very useful in many settings. The larger molec-
ular count assumption is more critical in using the reaction rate equation and one
must take care when molecular counts are in the single digits, for example.

4.2 Simulation of stochastic systems

Suppose that we want to generate a collection of sample trajectories for a stochastic
system whose evolution is described by the chemical master equation (4.7):

d

dt
P(q, t) =

∑

i

ai(q− ξi)P(q− ξi, t)−
∑

i

ai(q)P(q, t),

where P(q, t) is the probability of being in a microstate q at time t (starting from
q0 at time t0) and ai(q) is the propensity function for a reaction i starting at a
microstate q and ending at microstate q+ ξi. Instead of simulating the distribution
function P(q, t), we wish to simulate a specific instance q(t) starting from some
initial condition q0(t0). If we simulate many such instances of q(t), their distribution
at time t should match P(q, t).

The stochastic simulation algorithm

The stochastic simulation algorithm is a Monte Carlo procedure for numerically
generating time trajectories of the number of molecules of the various species
present in the system in accordance with the chemical master equation.

To illustrate the basic ideas that we will use, consider first a simple birth process
in which the microstate is given by an integer q ∈ {0,1,2, . . . } and we assume that
the propensity function is given by

a(q)dt = λdt, ξ = +1.
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Thus the probability of transition increases linearly with the time increment dt (so
birth events occur at rate λ, on average). If we assume that the birth events are
independent of each other, then it can be shown that the number of arrivals in time
τ is Poisson distributed with parameter λτ:

P
(

q(t+τ)−q(t) = ℓ
)

=
(λτ)ℓ

ℓ!
e−λτ,

where τ is the difference in time and ℓ is the difference in count q. In fact, this
distribution is a joint distribution in time τ and count ℓ. Setting ℓ = 1, it can be
shown that the time to the next reaction, T , follows an exponential distribution and
hence has density function

pT (τ) = λe−λτ.

The exponential distribution has expectation 1/λ and so we see that the average
time between events is inversely proportional to the reaction rate λ.

Consider next a more general case in which we have a countable number of mi-
crostates q ∈ {0,1,2, . . . } and we let k ji represent the transition probability between
a microstate i and microstate j. The birth process is a special case given by ki+1,i = λ

and all other k ji = 0. The chemical master equation describes the joint probability
that we are in state q = i at a particular time t. We would like to know the probabil-
ity that we transition to a new state q = j at time t+ dt. Given this probability, we
can attempt to generate an instance of the variable q(t) by first determining which
reaction occurs and then when the reaction occurs.

Let P( j,τ) := P( j, t+ τ+dτ | i, t+ τ) represent the probability that we transition
from the state i to the state j in the time interval [t+τ, t+τ+dτ]. For simplicity and
ease of notation, we will take t = 0. Let T := T j,i be the time at which the reaction
first occurs. We can write the probability that we transition to state j in the interval
[τ,τ+dτ] as

P( j,τ) = P(T > τ) k ji dτ, (4.16)

where P(T > τ) is the probability that no reaction occurs in the time interval [0,τ]
and k jidτ is the probability that the reaction taking state i to state j occurs in the
next dτ seconds (assumed to be independent events, giving the product of these
probabilities).

To compute P(T > τ), define

k̄i =
∑

j

k ji,

so that (1− k̄i)dτ is the probability that no transition occurs from state i in the next
dτ seconds. Then, the probability that no reaction occurs in the interval [τ,τ+dτ]
can be written as

P(T > τ+dτ) = P(T > τ) (1− k̄i) dτ. (4.17)
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It follows that
d

dτ
P(T > τ) = lim

dτ→0

P(T > τ+dτ)−P(T > τ)
dτ

= −P(T > τ) k̄i.

Solving this differential equation, we obtain

P(T > τ) = e−k̄iτ, (4.18)

so that the probability that no reaction occurs in time τ decreases exponentially with
the amount of time that we wait, with rate given by the sum of all the reactions that
can occur from state i.

We can now combine equation (4.18) with equation (4.16) to obtain

P( j,τ) = P( j,τ+dτ | i,0) = k ji e−k̄iτ dτ.

We see that this has the form of a density function in time and hence the probability
that the next reaction is reaction j, independent of the time in which it occurs, is

P ji =

∫ ∞

0
k jie
−k̄iτ dτ =

k ji

k̄i

. (4.19)

Thus, to choose the next reaction to occur from a state i, we choose between N

possible reactions, with the probability of each reaction weighted by k ji/k̄i.
To determine the time that the next reaction occurs, we sum over all possible

reactions j to get the density function for the reaction time:

pT (τ) =
∑

j

k jie
−k̄iτ = k̄ie

−k̄iτ.

This is the density function associated with an exponential distribution. To compute
a time of reaction ∆t that draws from this distribution, we note that the cumulative
distribution function for T is given by

∫ ∆t

0
fT (τ)dτ =

∫ ∆t

0
k̄ie
−k̄iτ dτ = 1− e−k̄i∆t.

The cumulative distribution function is always in the range [0,1] and hence we can
compute ∆t by choosing a (uniformly distributed) random number r in [0,1] and
then computing

∆t =
1
k̄i

ln
1

1− r
. (4.20)

(This equation can be simplified somewhat by replacing 1− r with r′ and noting
that r′ can also be drawn from a uniform distribution on [0,1].)

Note that in the case of a birth process, this computation agrees with our ear-
lier analysis. Namely, k̄i = λ and hence the (only) reaction occurs according to an
exponential distribution with parameter λ.

This set of calculations gives the following algorithm for computing an instance
of the chemical master equation:
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1. Choose an initial condition q at time t = 0.

2. Calculate the propensity functions ai(q) for each possible reaction i.

3. Choose the time for the reaction according to equation (4.20), where r ∈ [0,1]
is chosen from a uniform distribution.

4. Use a weighted random number generator to identify which reaction will
take place next, using the weights in equation (4.19).

5. Update q by implementing the reaction ξ and update the time t by ∆t

6. If T < Tstop, go to step 2.

This method is sometimes called “Gillespie’s direct method” [32, 33], but we shall
refer to it here as the “stochastic simulation algorithm” (SSA). We note that the
reaction number in step 4 can be computed by calculating a uniform random num-
ber on [0,1], scaling this by the total propensity

∑

i ai(q), and then finding the first
reaction i such that

∑i
j=0 a j(q) is larger than this scaled random number.

4.3 Input/output linear stochastic systems

In many situations, we wish to know how noise propagates through a biomolecular
system. For example, we may wish to understand how stochastic variations in RNA
polymerase concentration affect gene expression. In order to analyze these cases,
it is useful to make use of tools from stochastic control theory that allow analysis
of noise propagation around a fixed operating point.

We begin with the chemical Langevin equation (4.11), which we can write as

dX(t)
dt
= A(X(t))+B(X(t))Γ(t).

The vector X(t) consists of the individual random variables Xi(t) representing the
concentration of species Si, the functions A(X(t)) and B(X(t)) are computed from
the reaction vectors and propensity functions for the system, and Γ is a set of “white
noise” processes. For the remainder of this chapter, we will assume that the func-
tion A(X) is linear in X and that B(X) is constant (by appropriately linearizing
around the mean state, if needed). We will also rewrite Γ as W, to be more consis-
tent with the literature of stochastic control systems.

Random processes

It will be useful in characterizing the properties of the vector X(t) to treat it as a
random process. We briefly review the basic definitions here, primarily to fix the
terminology we will use in the rest of the section.

A continuous-time random process is a stochastic system characterized by the
evolution of a random variable X(t), t ∈ [0,T ]. We are interested in understanding
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how the (random) state of the system is related at separate times, i.e., how the two
random variables X(t1) and X(t2) are related. We characterize the state of a random
process using a (joint) time-varying probability density function p:

P({xi,l ≤ Xi(t) ≤ xi,u}) =
∫ x1,u

x1,l

. . .

∫ xn,u

xn,l

pX1,...,Xn(x; t)dxn . . .dx1.

Note that the state of a random process is not enough to determine the exact next
state, but only the distribution of next states (otherwise it would be a deterministic
process). We typically omit indexing of the individual states unless the meaning is
not clear from context.

In general, the distributions used to describe a random process depend on the
specific time or times that we evaluate the random variables. However, in some
cases the relationship only depends on the difference in time and not the abso-
lute times (similar to the notion of time invariance in deterministic systems, as
described in Åström and Murray [1]). A process is stationary if the distribution is
not changing and joint density functions only depend on the differences in times.
More formally, p(x, t+ τ) = p(x, t) for all τ, p(xi, x j; t1 + τ, t2 + τ) = p(xi, x j; t1, t2),
etc. In this case we can write p(xi, x j;τ) for the joint probability distribution. Sta-
tionary distributions roughly correspond to the steady state properties of a random
process and we will often restrict our attention to this case.

Since each X(t) is a random variable, we can define the mean and variance as
µ(t) and σ2(t) at each time t:

µ(t) := E(X(t)) =
∫ ∞

−∞
x p(x, t)dx,

σ2(t) := E((X(t)−µ(t))2) =
∫ ∞

−∞
(x−µ(t))2 p(x, t)dx,

where E( · ) is the expected value. To capture the relationship between the current
state and the future state, we define the correlation function for a random process
as

ρ(t1, t2) := E(X[t1]X[t2]) =
∫ ∞

−∞
x1x2 p(x1, x2; t1, t2)dx1dx2.

These definitions can be extended to the vector case as well:

E(X(t)) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(X1(t))
...

E(Xn(t))

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=: µ(t),

E((X(t)−µ(t))(X(t)−µ(t))T ) =
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E((X1(t)−µ1(t))(X1(t)−µ1(t))) . . . E((X1(t)−µ1(t))(Xn(t)−µn(t)))
. . .

...

E((Xn(t)−µn(t))(Xn(t)−µn(t)))

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=: Σ(t),
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ρ(t1− t2)

τ = t1− t2

Figure 4.4: Correlation function for a first-order Markov process.

E(X(t)XT (s)) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(X1(t)X1(s)) . . . E(X1(t)Xn(s))
. . .

...

E(Xn(t)Xn(s))

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=: R(t, s).

Note that the random variables and their statistical properties are all indexed by the
time t (and s). The matrix R(t, s) is called the correlation matrix for X(t) ∈ Rn. If
t = s then R(t, t) describes how the elements of x are correlated at time t (with each
other) and in the case that the processes have zero mean, R(t, t)= Σ(t). The elements
on the diagonal of Σ(t) are the variances of the corresponding scalar variables. A
random process is uncorrelated if R(t, s) = 0 for all t ! s. This implies that X(t) and
X(s) are uncorrelated random events and is equivalent to pX,Y (x,y) = pX(x)pY (y).

If a random process is stationary, then it can be shown that R(t+τ, s+τ)= R(t, s)
and it follows that the correlation matrix depends only on t− s. In this case we will
often write R(t, s) = R(s− t) or simply R(τ) where τ is the correlation time. The
covariance matrix in this case is simply R(0).

In the case where X is a scalar random process, the correlation matrix is also
a scalar and we will write r(τ), which we refer to as the (scalar) correlation func-
tion. Furthermore, for stationary scalar random processes, the correlation function
depends only on the absolute value of the correlation time, so r(τ) = r(−τ) = r(|τ|).
This property also holds for the diagonal entries of the correlation matrix since
Rii(s, t) = Rii(t, s) from the definition.

Example 4.6 (Ornstein-Uhlenbeck process). Consider a scalar random process de-
fined by a Gaussian probability density function with µ = 0,

p(x, t) =
1

√
2πσ2

e
− 1

2
x2

σ2 ,

and a correlation function given by

r(t1, t2) =
Q

2ω0
e−ω0 |t2−t1 |.

The correlation function is illustrated in Figure 4.4. This process is known as an
Ornstein-Uhlenbeck process and it is a stationary process. ∇
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Note on terminology. The terminology and notation for covariance and correlation
varies between disciplines. The term covariance is often used to refer to both the re-
lationship between different variables X and Y and the relationship between a single
variable at different times, X(t) and X(s). The term “cross-covariance” is used to re-
fer to the covariance between two random vectors X and Y , to distinguish this from
the covariance of the elements of X with each other. The term “cross-correlation”
is sometimes also used. Finally, the term “correlation coefficient” refers to the nor-
malized correlation r̄(t, s) = E(X(t)X(s))/E(X(t)X(t)).

We will also make use of a special type of random process referred to as “white
noise.” A white noise process X(t) satisfies E(X(t)) = 0 and R(t, s) = Wδ(s − t),
where δ(τ) is the impulse function and W is called the noise intensity. White noise
is an idealized process, similar to the impulse function or Heaviside (step) function
in deterministic systems. In particular, we note that r(0) = E(X2(t)) = ∞, so the
covariance is infinite and we never see this signal in practice. However, like the
step and impulse functions, it is very useful for characterizing the response of a
linear system, as described in the following proposition.

Linear stochastic systems with Gaussian noise

We now consider the problem of how to compute the response of a linear system
to a random process. We assume we have a linear system described in state space
as

dX

dt
= AX+FW, Y =CX. (4.21)

For simplicity, we take W and Y to be scalar random variables. Given an “input”
W, which is itself a random process with mean µ(t), variance σ2(t) and correlation
r(t, t+τ), what is the description of the random process Y?

Let W be a white noise process, with zero mean and noise intensity Q:

r(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y(t) =
∫ t

0
h(t−τ)W(τ)dτ,

where h(t−τ) is the impulse response for the system

h(t−τ) =CeA(t−τ)F.

We now compute the statistics of the output, starting with the mean:

E(Y(t)) = E(
∫ t

0
h(t−η)W(η)dη )

=

∫ t

0
h(t−η)E(W(η))dη = 0.
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Note here that we have relied on the linearity of the convolution integral to pull the
expectation inside the integral.

We can compute the covariance of the output by computing the correlation rY (τ)
and setting σ2

Y = rY (0). The correlation function for y is

rY (t, s) = E(Y(t)Y(s)) = E(
∫ t

0
h(t−η)W(η)dη ·

∫ s

0
h(s− ξ)W(ξ)dξ )

= E(
∫ t

0

∫ s

0
h(t−η)W(η)W(ξ)h(s− ξ)dηdξ ),

where we assume W is a scalar (otherwise W(ξ) and h(s− ξ) must be transposed).
Once again linearity allows us to exchange expectation with the integral and

rY (t, s) =
∫ t

0

∫ s

0
h(t−η)E(W(η)W(ξ))h(s− ξ)dηdξ

=

∫ t

0

∫ s

0
h(t−η)Qδ(η− ξ)h(s− ξ)dηdξ

=

∫ t

0
h(t−η)Qh(s−η)dη.

Now let τ = s− t and write

rY (τ) = rY (t, t+τ) =
∫ t

0
h(t−η)Qh(t+τ−η)dη

=

∫ t

0
h(ξ)Qh(ξ+τ)dξ (setting ξ = t−η).

Finally, we let t→∞ (steady state)

lim
t→∞

rY (t, t+τ) = r̄Y (τ) =
∫ ∞

0
h(ξ)Qh(ξ+τ)dξ. (4.22)

If this integral exists, then we can compute the second-order statistics for the output
Y .

We can provide a more explicit formula for the correlation function r in terms of
the matrices A, F and C by expanding equation (4.22). We will consider the general
case where W ∈ Rp and Y ∈ Rq and use the correlation matrix R(t, s) instead of the
correlation function r(t, s). Define the state transition matrix Φ(t, t0) = eA(t−t0) so
that the solution of system (4.21) is given by

x(t) = Φ(t, t0)x(t0)+
∫ t

t0

Φ(t,λ)FW(λ)dλ.

Proposition 4.1 (Stochastic response to white noise). Let E(X(t0)XT (t0)) = P(t0)
and W be white noise with E(W(λ)WT (ξ)) = RWδ(λ− ξ). Then the correlation ma-

trix for X is given by

RX(t, s) = P(t)ΦT (s, t)
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where P(t) satisfies the linear matrix differential equation

Ṗ(t) = AP+PAT +FRW F, P(0) = P0.

The correlation matrix for the output Y can be computed using the fact that
Y = CX and hence RY = CRXCT . We will often be interested in the steady state
properties of the output, which are given by the following proposition.

Proposition 4.2 (Steady state response to white noise). For a time-invariant linear

system driven by white noise, the correlation matrices for the state and output

converge in steady state to

RX(τ) = RX(t, t+τ) = PeAT τ, RY (τ) =CRX(τ)CT

where P satisfies the algebraic equation

AP+PAT +FRW FT = 0 P > 0. (4.23)

Equation (4.23) is called the Lyapunov equation and can be solved in MATLAB
using the function lyap.

Example 4.7 (First-order system). Consider a scalar linear process

Ẋ = −aX+W, Y = cX,

where W is a white, Gaussian random process with noise intensity σ2. Using the
results of Proposition 4.1, the correlation function for X is given by

RX(t, t+τ) = p(t)e−aτ

where p(t) > 0 satisfies
dp(t)

dt
= −2ap(t)+σ2.

We can solve explicitly for p(t) since it is a (non-homogeneous) linear differential
equation:

p(t) = e−2at p(0)+ (1− e−2at)
σ2

2a
.

Finally, making use of the fact that Y = cX we have

r(t, t+τ) = c2(e−2at p(0)+ (1− e−2at)
σ2

2a
)e−aτ.

In steady state, the correlation function for the output becomes

r(τ) =
c2σ2

2a
e−aτ.

Note that the correlation function has the same form as the Ornstein-Uhlenbeck
process in Example 4.6 (with Q = c2σ2). ∇
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Random processes in the frequency domain

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain ap-
proach provides a very rich set of tools for modeling and analysis of interconnected
systems, relying on the frequency response and transfer functions to represent the
flow of signals around the system.

Given a random process X(t), we can look at the frequency content of the prop-
erties of the response. In particular, if we let ρ(τ) be the correlation function for a
(scalar) random process, then we define the power spectral density function as the
Fourier transform of ρ:

S (ω) =
∫ ∞

−∞
ρ(τ)e− jωτ dτ, ρ(τ) =

1
2π

∫ ∞

−∞
S (ω)e jωτ dτ.

The power spectral density provides an indication of how quickly the values of
a random process can change through the frequency content: if there is high fre-
quency content in the power spectral density, the values of the random variable can
change quickly in time.

Example 4.8 (Ornstein-Uhlenbeck process). To illustrate the use of these mea-
sures, consider the Ornstein-Uhlenbeck process whose correlation function we
computed in Example 4.7:

ρ(τ) =
Q

2ω0
e−ω0(τ).

The power spectral density becomes

S (ω) =
∫ ∞

−∞

Q

2ω0
e−ω|τ|e− jωτ dτ

=

∫ 0

−∞

Q

2ω0
e(ω− jω)τ dτ+

∫ ∞

0

Q

2ω0
e(−ω− jω)τ dτ =

Q

ω2+ω2
0

.

We see that the power spectral density is similar to a transfer function and we
can plot S (ω) as a function of ω in a manner similar to a Bode plot, as shown in
Figure 4.5. Note that although S (ω) has a form similar to a transfer function, it is a
real-valued function and is not defined for complex ω. ∇

Using the power spectral density, we can give a more intuitive definition of
“white noise” as a zero-mean, random process with power spectral density S (ω) =
constant for all ω. If X(t) ∈ Rn (a random vector), then S (ω) ∈ Rn×n. We see that
a random process is white if all frequencies are equally represented in its power
spectral density; this spectral property is the reason for the terminology “white.”

Given a linear system

Ẋ = AX+FW, Y =CX,
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Figure 4.5: Spectral power density for a first-order Markov process.
.

with W given by white noise, we can compute the spectral density function corre-
sponding to the output Y . Let H(s) =C(sI−A)−1B be the transfer function from W

to Y . We start by computing the Fourier transform of the steady state correlation
function (4.22):

S Y (ω) =
∫ ∞

−∞

[∫ ∞

0
h(ξ)Qh(ξ+τ)dξ

]

e− jωτ dτ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

−∞
h(ξ+τ)e− jωτ dτ

]

dξ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

0
h(λ)e− jω(λ−ξ) dλ

]

dξ

=

∫ ∞

0
h(ξ)e jωξ dξ ·QH( jω) = H(− jω)QH( jω).

This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in the fre-

quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer function H1(s) followed by transfer function H2(s),
the resulting power spectral density of the output is given by

S Y (ω) = H1(− jω)H2(− jω)QuH2( jω)H1( jω).

Exercises

4.1 Consider a standard model of transcription and translation with probabilistic
creation and degradation of discrete mRNA and protein molecules. The propensity

functions for each reaction are as follows:

• Probability of transcribing 1 mRNA molecule: 0.2dt

• Probability of degrading 1 mRNA molecule: 0.5dt and is proportional to the
number of mRNA molecules.



EXERCISES 165

• Probability of translating 1 protein: 5dt and is proportional to the number of
mRNA molecules.

• Probability of degrading 1 protein molecule: 0.5dt and is proportional to the
number of protein molecules.

In each case, dt will be the time step chosen for your simulation, which we take as
dt = 0.05 sec.

(i) Simulate the stochastic system above until time T = 100. Plot the resulting
number of mRNA and protein over time.

(ii) Now assume that the proteins are degraded much more slowly than mRNA
and the propensity function of protein degradation is now 0.05dt. To main-
tain similar protein levels, the translation probability is now 0.5dt (and still
proportional to the number of mRNA molecules). Simulate this system as
above. What difference do you see in protein level? Comment on the effect
of protein degradation rates on noise.

4.2 Compare a simple model of negative autoregulation to one without autoregu-
lation:

dX

dt
= β0−γX

and
dX

dt
=

β

1+X/K
−γX.

(i) Assume that the basal transcription rates β and β0 vary between cells, fol-
lowing a Gaussian distribution with σ/µ = 0.1. Simulate time courses of
both models for 100 different “cells” using the following parameters: β =
2,β0 = 1,γ = 1,K = 1. Plot the nonregulated and autoregulated systems in
two separate plots. Comment on the variation you see in the time courses.

(ii) Calculate the deterministic steady state for both models above. How does
variation in the basal transcription rate β or β0 enter into the steady state?
Relate it to what you see in part (i).

4.3 Consider a simple model for gene expression with reactions

φ
α
−→m, m

κ
−→m+P, m

δ
−→ φ, P

γ
−→ ∅.

Let α = 1/2, κ = 20log(2)/120, δ = log(2)/120 and γ = log(2)/600, and answer the
following questions:
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(i) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare with the de-
terministic ODE solution. Explore how the realizations become close to or
apart from the ODE solution when the volume is changed. Determine the
stationary probability distribution for the protein (you can do this numeri-
cally).

(ii) Now consider the additional binding reaction of protein P with downstream
DNA binding sites D:

P+D
a
−⇀↽−

d
C.

Note that the system is no longer linear due to the presence of a bimolecular
reaction. Use the SSA algorithm to obtain sample realizations and numeri-
cally compute the probability distribution of the protein. Compare it to what
you obtained in part (i). Explore how this probability distribution and the
one of C change as the rate constants a and d become larger with respect to
γ,α,κ,δ. Do you think we can use a QSS approximation similar to what we
have done for ODE models?

(iii) Determine the Langevin equation for the system in part (ii) and obtain sam-
ple realizations. Explore numerically how good this approximation is when
the volume decreases/increases.

4.4 Consider the bimolecular reaction

A+B
a
−⇀↽−
d

C,

in which A and B are in total amounts Atot and Btot, respectively. Compare the
steady state value of C obtained from the deterministic model to the mean value of
C obtained from the stochastic model as the volume is changed in the stochastic
model. What do you observe? You can perform this investigation through numeri-
cal simulation.

4.5 Consider the simple birth and death process:

Z
k2G
−−−⇀↽−−−

k1G
∅,

in which G is a “gain.” Assume that the reactions are catalyzed by enzymes and that
the gain G can be tuned by changing the amounts of these enzymes. A determin-
istic ODE model for this system incorporating disturbances due to environmental
perturbations is given by

dZ

dt
= k1G− k2GZ+d(t).
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Determine the Langevin equation for this birth and death process and compare its
form to the deterministic one. Also, determine the frequency response of Z to noise
for both the deterministic model and for the Langevin model. Does increasing the
gain G have the same effect in both models? Explain.

4.6 Consider a second-order system with dynamics

d

dt

⎧

⎪⎪⎪⎪⎪⎩

X1

X2

⎫

⎪⎪⎪⎪⎪⎭
=

⎧

⎪⎪⎪⎪⎪⎩

−a 0
0 −b

⎫

⎪⎪⎪⎪⎪⎭

⎧

⎪⎪⎪⎪⎪⎩

X1

X2

⎫

⎪⎪⎪⎪⎪⎭
+

⎧

⎪⎪⎪⎪⎪⎩

1
1

⎫

⎪⎪⎪⎪⎪⎭
w, Y =

⎧

⎩1 1
⎫

⎭

⎧

⎪⎪⎪⎪⎪⎩

X1

X2

⎫

⎪⎪⎪⎪⎪⎭

that is forced by Gaussian white noise w with zero mean and variance σ2. Assume
a,b > 0.

(i) Compute the correlation function ρ(τ) for the output of the system. Your
answer should be an explicit formula in terms of a, b and σ.

(ii) Assuming that the input transients have died out, compute the mean and
variance of the output.
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