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Chapter 4
Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, building
on our preliminary discussion of stochastic modeling in Section 2.1. We begin by
reviewing the various methods for modeling stochastic processes, including the
chemical master equation (CME), the chemical Langevin equation (CLE) and the
Fokker-Planck equation (FPE). Given a stochastic description, we can then analyze
the behavior of the system using a variety of stochastic simulation and analysis
tools.

Prerequisites. This chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good working knowledge of
basic probability and some exposure to simple stochastic processes (e.g., Brownian
motion), at the level of the material presented in Appendix B (drawn from [70]).

4.1 Stochastic Modeling of Biochemical Systems

Biomolecular systems are inherently noisy due to the random nature of molecular
reactions. When the concentrations of molecules are high, the deterministic models
we have used in the previous chapters provide a good description of the dynamics
of the system. However, if the molecular counts are low then it is often necessary to
explictly account for the random nature of events. In this case, th chemical reactions
in the cell can be modeled as a collection of stochastic events corresponding to
chemical reactions between species, including binding and unbinding of molecules
(such as RNA polymerase and DNA), conversion of one set of species into another,
and enzymatically controlled covalent modifications such as phosphorylation. In
this section we will briefly survey some of the different representations that can be
used for stochastic models of biochemical systems, following the material in the
textbooks by Phillips et al. [76], Gillespie [33] and Van Kampen [52].

Statistical mechanics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.
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As described briefly already in Chapter 2, the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configuration of the
components (species) in the system relative to each other and we must enumerate
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the probabil-
ity that system is in a given microstate. This probability can be calculated based on
the energy levels of the different microstates. Consider a setting in which our sys-
tem is contained within a reservoir. Let Er represent the energy in the resevoir, Es
the energy in the system and Etot = Er+Es the total (conserved) energy. Given two
different energy levels E(1)

s and E(2)
s for the system of interest, let Wr(Etot − E(i)

s )
be the number of possible microstates of the reservoir with energy Er = Etot−E(i)

s ,
i = 1,2. The laws of statistical mechanics state that the ratio of probabilities of be-
ing at the energy levels E(1)

s and E(2)
s is given by the ratio of number of possible

states of the reservoir:
P(E(1)

s )
P(E(2)

s )
=
Wr(Etot−E(1)

s )
Wr(Etot−E(2)

s )
. (4.1)

Defining the entropy of the system as S = kB lnW, where kB is Boltmann’s constant,
we can rewrite equation (4.1) as

Wr(Etot−E(1)
s )

Wr(Etot−E(2)
s )
=
eS r(Etot−E(1)

s )/kB

eS r(Etot−E(2)
s )/kB

.

We now approximate S r(Etot−Es) in a Taylor series expansion around Etot, under
the assumption that Er # Es:

S r(Etot−Es) ≈ S r(Etot)−
∂S r
∂E

Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

∂S
∂E

∣
∣
∣
∣
∣V,N
=

1
T

and we obtain
P(E(1)

s )
P(E(2)

s )
=
e−E

(1)
s /kBT

e−E(2)
s /kBT

.

This implies that
P(E(q)

s ) ∝ e−E
(q)
s /(kBT )

and hence the probability of being in a microstate q is given by

P(q) =
1
Z
e−Eq/(kBT ), (4.2)
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where we have written Eq for the energy of the microstate and Z is a normalizing
factor, known as the partition function, defined by

Z =
∑

q∈Q
e−Eq/(kBT ).

By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached.

In order to determine the energy levels associated with different microstates,
we will often make use of the free energy of the system. Consider an elementary
reaction A+B −−−⇀↽−−− AB. Let E be the energy of the system, taken to be operating
at pressure P in a volume V . The enthalpy of the system is defined as H = E +PV
and the Gibbs free energy is defined as G = H−TS where T is the temperature of
the system and S is its entropy (defined above). The change in bond energy due to
the reaction is given by

∆H = ∆G+T∆S ,

where the ∆ represents the change in the respective quantity. −∆H represents the
amount of heat that is absorbed from the reservoir, which then affects the entropy
of the reservoir.

Derivation to be added later. Review
The resulting formula for the probability of being in a microstate q is given by

P(q) =
1
Z
e−∆G/kBT .

Example 4.1 (Transcription factor binding). Suppose that we have a transcription
factor R that binds to a specific target region on a DNA strand (such as the pro-
moter region upstream of a gene). We wish to find the probability Pbound that the
transcription factor will be bound to this location as a function of the number of
transcription factor molecules nR in the system. If the transcription factor is a re-
pressor, for example, knowing Pbound(nR) will allow us to calculate the likelihood
of transcription occurring.

To compute the probability of binding, we assume that the transcription factor
can bind non-specifically to other sections of the DNA (or other locations in the
cell) and we let Nns represent the number of such sites. We let Ebound represent the
free energy associated with R bound to its specified target region and Ens represent
the free energy for R in any other non-specific location, where we assume that
Ebound < Ens. The microstates of the system consist of all possible assignments of
the nR transcription factors to either a non-specific location or the target region of
the DNA. Since there is only one target site, there can be at most one transcription
factor attached there and hence we must count all of the ways in which either zero
or one molecule of R are attached to the target site.
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If none of the nR copies of R are bound to the target region then these must be
distributed between the Nns non-specific locations. Each bound protein has energy
Ens, so the total energy for any such configuration is nREns. The number of such
combinations is

(Nns
nR

)

and so the contribution to the partition function from these
microstates is

Zns =

(

Nns
nR

)

e−nREns/(kBT ) =
Nns!

nR!(Nns−nR)!
e−nREns/(kBT )

For the microstates in which one molecule of R is bound at a target site and the
other nR −1 molecules are at the non-specific locations, we have a total energy of
Ebound+ (nR−1)Ens and

( Nns
(nR−1)

)

possible such states. The resulting contribution to
the partition function is

Zbound =
Nns!

(nR−1)!(Nns−nR+1)!
e−(Ebound−(nR−1)Ens)/(kBT ).

The probability that the target site is occupied is now computed by looking at
the ratio of the Zbound to Z = Zns+Zbound. After some basic algebraic manipulations,
it can be shown that

Pbound(nR) =

( nR
Nns−nR+1

)

exp
[

−(Ebound+Ens)/(kBT )
]

1+
( nR
Nns−nR+1

)

exp
[

−(Ebound+Ens)/(kBT )
] .

If we assume that Nns# nR then Nns−nR+1 ≈ Nns, and we can write

Pbound(nR) ≈
knR

1+ knR
, where k =

1
Nns

exp
[

−(Ebound−Ens)/(kBT )
]

.

As we would expect, this says that for very small numbers of repressors, Pbound
is close to zero, while for large numbers of repressors, Pbound → 1. The point at
which we get a binding probability of 0.5 is when nR = 1/k, which depends on the
relative binding energies and the number of non-specific binding sites. ∇

Example 4.2 (Combinatorial promoter). A combinatorial promoter is a region of
DNA in which multiple transcription factors can bind and influence the subsequent
binding of RNA polymerase. Combinatorial promoters appear in a number of nat-
ural and engineered circuits and represent a mechanism for creating switch-like
behavior, for example by having a gene that controls expression of its own tran-
scription factors.

One method to model a combinatorial promoter is to use the binding energies
of the different combinations of proteins to the operator region, and then compute
the probability of being in a given promoter state given the concentration of each of
the transcription factors. Table 4.1 shows the possible states of a notional promoter
that has two operator regions—one that binds a repressor protein R and another
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Table 4.1: Configurations for a combinatorial promoter with an activator and a repres-
sor. Each row corresponds to a specific macrostate of the promoter in which the listed
molecules are bound to the target region. The relative energy of state compared with the
ground state provides a measure of the likelihood of that state occurring, with more nega-
tive numbers corresponding to more energetically favorable configurations.

State OR1 OR2 Prom Eq (∆G) Comment

S 1 – – – 0 No binding (ground state)
S 2 – – RNAP −5 RNA polymerase bound
S 3 R – – −10 Repressor bound
S 4 – A – −12 Activator bound
S 5 – A RNAP −15 Activator and RNA polymerase

that binds an activator protein A. As indicated in the table, the promoter has three
(possibly overlapping) regions of DNA: OR1 and OR2 are binding sites for the
repressor and activator proteins, and Prom is the location where RNA polymerase
binds. (The individual labels are primarily for bookkeeping purposes and may not
correspond to physically separate regions of DNA.)

To determine the probabilities of being in a given macrostate, we must compute
the individual microstates that occur at a given concentrations of repressor, ac-
tivator and RNA polymerase. Each microstate corresponds to an individual set of
molecules binding in a specific configuration. So if we have nR repressor molecules,
then there is one microstate corresponding to each different repressor molecule that
is bound, resulting in nR individual microstates. In the case of configuration S 5,
where two different molecules are bound, the number of combinations is given by
the product of the numbers of individual molecules, nA ·nRNAP, reflecting the pos-
sible combinations of molecules that can occupy the promoter sites. The overall
partition function is given by summing up the contributions from each microstate:

Z = e−E0/(kBT )+nRNAP e−ERNAP/(kBT )+nR e−ER/(kBT )

+nA e−EA/(kBT )+nAnRNAP e−EA:RNAP/(kBT ). (4.3)

The probability of a given macrostate is determined using equation (2.2). For
example, if we define the promoter to be “active” if RNA polymerase is bound
to the DNA, then the probability of being in this macrostate as a function of the
various molecular counts is given by

Pactive(nR,nA,nRNAP) =
1
Z

(

nRNAP e−ERNAP/(kBT )+nA nRNAPe−EA:RNAP/(kBT )
)

=
kA:RNAP nA+ kRNAP

1+ kRNAP+ kR nR+ (kA+ kA:RNAP)nA
,
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where
kX = e−(EX−E0)/(kBT ).

From this expression we see that if nR# nA then Pactive tends to 0 while if nA# nR
then Pactive tends to 1, as expected. ∇

Chemical master equation (CME)

The statistical physics model we have just considered gives a description of the
steady state properties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about the behavior of
the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or the dynamics of a
system that does not have an equilibrium configuration. In these instances, we must
extend our formulation to keep track of how quickly the system transitions from
one microstate to another, known as the chemical kinetics of the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. Let P(q, t) represent the probability that the system is in
microstate q at a given time t. Here q can be any of the very large number of
possible microstates for the system, which for chemical reaction systems we can
represent in terms of a vector consisting of the number of molecules of each species
that is present. We wish to write an explicit expression for how P(q, t) varies as a
function of time, from which we can study the stochastic dynamics of the system.

We begin by assuming we have a set of M reactions Rj, j = 1, . . . ,M, with ξ j
representing the change in state associated with reaction Rj. Specifically, ξ j is given
by the jth column of the stoichiometry matrix N. The propensity function defines
the probability that a given reaction occurs in a sufficiently small time step dt:

a j(q, t)dt = Probability that reaction Rj will occur between time t
and time t+dt given that the microstate is q.

The linear dependence on dt relies on the fact that dt is chosen sufficiently small.
We will typically assume that a j does not depend on the time t and write a j(q)dt
for the probability that reaction j occurs in state q.

Using the propensity function, we can compute the distribution of states at time
t+dt given the distribution at time t:

P(q, t+dt) = P(q, t)
(

1−
M∑

j=1
a j(q)dt

)

+

M∑

j=1
P(q− ξ j)a j(q− ξ j)dt

= P(q, t)+
M∑

j=1

(

a j(q− ξ j)P(q− ξ j, t)−a j(q)P(q, t)
)

dt.

(4.4)
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Since dt is small, we can take the limit as dt→ 0 and we obtain the chemical master
equation (CME):

∂P
∂t

(q, t) =
M∑

j=1

(

a j(q− ξ j)P(q− ξ j, t)−a j(q)P(q, t)
)

(4.5)

This equation is also referred to as the forward Kolmogorov equation for a discrete
state, continuous time random process.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as our basic repre-
sentation of the underlying dynamics. As we shall see, starting from this equation
we can then derive a variety of alternative approximations that allow us to answer
specific equations of interest.

The key element of the master equation is the propensity function aξ(q, t), which
governs the rate of transition between microstates. Although the detailed value of
the propensity function can be quite complex, its functional form is often relatively
simple. In particular, for a unimolecular reaction of the form A→ B, the propensity
function is proportional to the number of molecules of A that are present:

ai(q, t) = kinA. (4.6)

This follows from the fact that each reaction is independent and hence the likeli-
hood of a reaction happening depends directly on the number of copies of A that
are present.

Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules of each type
that are present (since this is the number of independent reactions that can occur)
and inversely proportional to the volume Ω. Hence, for a reaction of the form A+
B −−→ C we have

ai(q, t) =
ki
Ω
nAnB. (4.7)

The rigorous verification of this functional form is beyond the scope of this text, but
roughly we keep track of the likelihood of a single reaction occurring between A
and B and then multiply by the total number of combinations of the two molecules
that can react (nA ·nB).

A special case of a bimolecular reaction occurs when A=B, so that our reaction
is given by 2A→ B. In this case we must take into account that a molecule cannot
react with itself, and so the propensity function is of the form

ai(q, t) =
ki
Ω
nA(nA−1). (4.8)

The term nA(nA−1) reprents the number of ways that two molecules can be chosen
from a collection of nA identical molecules.
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Table 4.2: Examples of propensity functions for some common cases [35]. Here we take ra
and rb to be the effective radii of the molecules, m∗ =mamb/(ma+mb) is the reduced mass
of the two molecules, Ω is the volume over which the reaction occurs, T is temperature, kB
is Boltzmann’s constant and nA, nB are the numbers of molecules of A and B present.

Reaction type Propensity function coefficient, ki
Reaction occurs if molecules “touch”

( 8kBT
πm∗

)1/2
π(ra + rb)2

Reaction occurs if molecules collide with energy ε
( 8kBT
πm∗

)1/2
π(ra + rb)2 ·e−ε/kBT

Steady state transcription factor PboundkocnRNAP

Note that the use of the parameter ki in the propensity functions above is inten-
tional: it corresponds to the reaction rate parameter that is present in the reaction
rate equation model. The factor of Ω for biomolecular reactions models the fact
that the propensity of a biomolecular reaction occuring depends explicitly on the
volume in which the reaction takes place.

Although it is tempting to extend the formula for a biomolecular reaction to the
case of more than two species being involved in a reaction, usually such reactions
actually involve combinations of bimolecular reactions, e.g.:

A+B+C −−→ D =⇒ A+B −−→ AB AB+C −−→ D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.

The propensity functions for these cases and some others are given in Table 4.2.

Example 4.3 (Repression of gene expression). We consider a simple model of
repression in which we have a promoter that contains binding sites for RNA poly-
merase and a repressor protein R. RNA polymerase only binds when the repressor
is absent, after which it can undergo an isomerization reaction to form an open
complex and initiate transcription. Once the RNA polymerase begins to create
mRNA, we assume the promoter region is uncovered, allowing another repressor
or RNA polymerase to bind.

The following reactions describe this process:

R1 : R+DNA −−−⇀↽−−− R:DNA
R2 : RNAP+DNA −−−⇀↽−−− RNAP:DNAc

R3 : RNAP:DNAc −−→ RNAP:DNAo

R4 : RNAP:DNAo −−→ RNAP+DNA (+mRNA),

where RNAP:DNA c represents the closed complex and RNAP:DNA o represents
the open complex. The states for the system depend on the number of molecules
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of each species and complex that are present. If we assume that we start with nR
repressors and nRNAP RNA polymerases, then the possible states for our system are
given by

State DNA R RNAP R:DNA RNAP:DNA c RNAP:DNA o

q1 1 nR nRNAP 0 0 0
q2 0 nR−1 nRNAP 1 0 0
q3 0 nR nRNAP−1 0 1 0
q4 0 nR nRNAP−1 0 0 1

Note that we do not keep track of each individual repressor or RNA polymerase
molecule that binds to the DNA, but simply keep track of whether they are bound
or not.

We can now rewrite the chemical reactions as a set of transitions between the
possible microstates of the system. Assuming that all reactions take place in a vol-
umeΩ, we use the propensity functions for unimolecular and bimolecular reactions
to obtain:

ξ
f
1 : q1 −−→ q2; a(ξ f1 ) = (k f1/Ω)nR ξr1 : q2 −−→ q1; a(ξr1) = kr1
ξ
f
2 : q1 −−→ q3; a(ξ f2 ) = (k f2/Ω)nRNAP ξr2 : q3 −−→ q1; a(ξr2) = kr2
ξ3 : q3 −−→ q4; a(ξ3) = k3 ξ4 : q4 −−→ q1; a(ξr4) = k4

The chemical master equation can now be written down using the propensity func-
tions for each reaction:

d
dt





P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)





=





−(k f1/Ω)nR− (k f2/Ω)nRNAP kr1 kr2 k4
(k f1/Ω)nR −kr1 0 0

(k f2/Ω)nRNAP 0 −kr2− k3 0
0 0 k3 −k4









P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)





.

The initial condition for the system can be taken as P(q,0)= (1,0,0,0), correspond-
ing to the state q1. A simulation showing the evolution of the probabilities is shown
in Figure 4.1.

The equilibrium solution for the probabilities can be solved by setting Ṗ = 0,
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Figure 4.1: Numerical solution of chemical master equation for simple repression model.

which yields:

Pe(q1) =
kr1k4Ω(kr2+ k3)

k f1k4nR(kr2+ k3)+ kr1k
f
2nRNAP(k3+ k4)+ kr1k4Ω(kr2+ k3)

Pe(q2) =
k f1k4nR(kr2+ k3)

k f1k4nR(kr2+ k3)+ kr1k
f
2nRNAP(k3+ k4)+ kr1k4Ω(kr2+ k3)

Pe(q3) =
kr1k

f
2k4nRNAP

k f1k4nR(kr2+ k3)+ kr1k
f
2nRNAP(k3+ k4)+ kr1k4Ω(kr2+ k3)

Pe(q4) =
kr1k

f
2k3nRNAP

k f1k4nR(kr2+ k3)+ kr1k
f
2nRNAP(k3+ k4)+ kr1k4Ω(kr2+ k3)

We see that the functional dependencies are similar to the case of the combinatorial
promoter of Example 4.2, but with the binding energies replaced by kinetic rate
constants. ∇

Example 4.4 (Transcription of mRNA). Consider the production of mRNA from
a single copy of DNA. We have two basic reactions that can occur: mRNA can
be produced by RNA polymerase transcribing the DNA and producing an mRNA
strand, or mRNA can be degraded. We represent the microstate q of the system in
terms of the number of mRNA’s that are present, which we write as n for ease of
notation. The reactions can now be represented as ξ1 = +1, corresponding to tran-
scription and ξ2 = −1, corresponding to degradation. We choose as our propensity
functions

a1(n, t) = α, a2(n, t) = γn,

by which we mean that the probability of that a gene is transcribed in time dt is
αdt and the probability that a transcript is created in time dt is γndt (proportional
to the number of mRNA’s).
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We can now write down the master equation as described above. Equation (4.4)
becomes

P(n, t+dt) = P(n, t)
(

1−
∑

i=1,2
ai(n, t)dt

)

+
∑

i=1,2
P(n− ξi, t)ai(q− ξi)dt

= P(n, t)−a1(n, t)P(n, t)−a2(n, t)P(n, t)
+a1(n−1, t)P(n−1, t)+a2(n+1, t)P(n+1)

= P(n, t)+αP(n−1, t)dt− (α−γn)P(n, t)dt+γ(n+1)P(n+1, t)dt.

This formula holds for n > 0, with the n = 0 case satisfying

P(0, t+dt) = P(0, t)−αP(0, t)dt+γP(1, t)dt.

Notice that we have an infinite number of equations, since n can be any positive
integer.

We can write the differential equation version of the master equation by sub-
tracting the first term on the right hand side and dividing by dt:

d
dt
P(n, t) = αP(n−1, t)− (α+γn)P(n, t)+γ(n+1)P(n+1, t), n > 0

d
dt
P(0, t) = −αP(0, t)dt+γP(1, t).

Again, this is an infinite number of differential equations, although we could take
some limit N and simply declare that P(N, t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we set Ṗ(n, t) = 0 and look for a constant solution P(n, t) = pe(n). This yields
an algebraic set of relations

0 = −αpe(0)+γpe(1) =⇒ αpe(0) = γpe(1)
0 = αpe(0)− (α+γ)pe(1)+2γpe(2) αpe(1) = 2γpe(2)
0 = αpe(1)− (α+2γ)pe(2)+3γpe(3) αpe(1) = 3γpe(3)
...

...

αp(n−1) = nγp(n).

It follows that the distribution of steady state probabilities is given by the Poisson
distribution

p(n) = eα/γ
(α/γ)n

n!
,

and the mean, variance and coefficient of variation are thus

µ =
α

γ
, σ2 =

α

γ
, CV =

µ

σ
=

1
√
µ
=

√

γ

α
.

Note taht the coefficient of variation increases if µ decreases. ∇
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Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolution of the
distribution of a system, but it can often be quite cumbersome to work with directly.
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shall consider is
known as the chemical Langevin equation (CLE).

To derive the chemical Langevin equation, we start by assuming that the number
of molecules in the system is large and that we can therefore represent the system
using a vector of real numbers X, with Xi representing the (real-valued) number
of molecules in Si. (Often Xi will be divided by the volume to give a real-valued
concentration of species Si.) In addition, we assume that we are interested in the
dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.

Let X(t) be the state vector for the system, where we assume now that the ele-
ments of X are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a number of reactions over
a time τ to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

Xi(t+τ) = Xi(t)+
M∑

j=1
ξi ja j(X(t))τ+

M∑

j=1
ξi ja1/2

j (X(t))N j(0,
√
τ),

where a j are the propensity functions for the individual reactions, ξi j are the corre-
sponding changes in the system states Xi andN j are a set of independent Gaussian
random variables with zero mean and variance τ.

If we assume that τ is small enough that we can use the derivative to approxi-
mate the previous equation (but still large enough that we can average over multiple
reactions), then we can write

dXi(t)
dt
=

M∑

j=1
ξ jia j(X(t))+

M∑

j=1
ξ jia1/2

j (X(t))Γ j(t) =: Ai(X(t))+
M∑

j=1
Bi j(X(t))Γ j(t),

(4.9)
where Γ j are white noise processes (see Appendix B.2). This equation is called the
chemical Langevin equation (CLE).

Example 4.5 (Protein production). Consider a simplified model of protein produc-
tion in which mRNAs are produced by transcription and proteins by translation.
We also include degradation of both mRNAs and proteins, but we do not model the
detailed processes of elongation of the mRNA and polypeptide chains.

We can capture the state of the system by keeping track of the number of copies
of mRNA and proteins. We further approximate this by assuming that the number
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of each of these is sufficiently large that we can keep track of its concentration,
and hence X = (xm, xp) where xm ∈ R is the amount of mRNA and xp ∈ R is the
concentration of protein. Letting Ω represent the volume, the reactions that govern
the dynamics of the system are given by:

R1 : φ α−→mRNA ξ1 = (1,0) a1(X) = α

R2 : mRNA
γ
−→ φ ξ2 = (−1,0) a2(X) = γ xm

R3 : mRNA
β
−→mRNA+protein ξ3 = (0,1) a3(X) = β xm

R4 : protein δ−→ φ ξ4 = (0,−1) a4(X) = δ xp.

Substituting these expressions into equation (4.9), we obtain a stochastic differen-
tial equation of the form

d
dt





xm
xp




=





−γ 0
β −δ









xm
xp




+





α

0




+
√
Ω





(√
α+γxm

)

Γm
( √

βxm+δxp
)

Γp




,

where Γm and Γp are independent white noise processes with unit variance. (Note
that in deriving this equation we have used the fact that the sum of two independent
Gaussian processes is a Gaussian process.) ∇

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordinary differential equa-
tion that describes the evolution of the system state. A slightly different (but com-
pletely equivalent) representation of the dynamics is to model how the probabil-
ity distribution P(x, t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density function p(x, t). This formula is known
as the Fokker-Planck equations (FPE) and is essentially an approximation on the
chemical master equation.

Consider first the case of a random process in one dimension. We assume that
the random process is in the same form as the previous section:

dX(t)
dt
= A(X(t))+B(X(t))Γ(t). (4.10)

The function A(X) is called the drift term and B(X) is the diffusion term. It can
be shown that the probability density function for X, p(x, t), satisfies the partial
differential equation

∂p
∂t

(x, t) = −
∂

∂x
(

A(x, t)p(x, t)
)

+
1
2
∂2

∂x2
(

B2(x, t)p(x, t)
)

(4.11)
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Note that here we have shifted to the probability density function since we are
considering X to be a continuous state random process.

In the multivariate case, a bit more care is required. Using the chemical Langevin
equation (4.9), we define

Di(x, t) =
M∑

j=1
B2
i j(x, t), Ci j(x, t) =

M∑

k=1
Bik(x, t)Bjk(x, t), i < j = 1, . . . ,M.

The Fokker-Planck equation now becomes

∂p
∂t

(x, t) = −
M∑

i=1

∂

∂xi
(

Ai(x, t)p(x, t)
)

+
1
2

M∑

i=1

∂

∂xi
∂2

∂x2
(

Di(x, t)p(x, t)
)

+

M∑

i, j = 1
i < j

∂2

∂xi∂x j
(

Ci j(x, t)p(x, t)
)

. (4.12)

Note that the Fokker-Planck equation is very similar to the chemical master
equation: both provide a description of how the probability distribution varies as a
function of time. In the case of the Fokker-Planck equation, we regard the state as
a continuous set of variables and we write a partial differential equation for how
the probability density function evolves in time. In the case of the chemical master
equation, we have a discrete state (microstates) and we write an ordinary differ-
ential equation for how the probability distribution (formally the probability mass
function) evolves in time. Both formulations contain the same basic information,
just using slightly different representations of the system and the probability of
being in a given state.

Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation provide approx-
imations to the chemical master equation. A slightly different approximation can
be obtained by expanding the density function in terms of a size parameter Ω. This
approximation is know as the linear noise approximation (LNA) or the Ω expan-
sion [52].

We begin with the master equation for a continuous random variable X. For-
mally deriving this requires a considerable effort since we have to extend our pre-
vious discussions to the case where the random variable has a continuous set of
values. To do this, we rewrite the propensity function ai(q, t) as aξ(q, t;Ω), where
q ∈ Rn is a vector of continuous states and ξ ∈ Rn is a vector of continuous “incre-
ments” (the analog of reactions). We also explicitly keep track of the dependence
of the propensity function on a parameter Ω (the volume in our case).
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Using this notation, we can write the master equation for the random variable
X as

∂P
∂t

(x, t) =
∫

(

aξ(x− ξ, t;Ω)P(x− ξ, t)−aξ(x, t;Ω)P(x, t)
)

dξ.

Since we are working with continuous variables, we now have an integral in place
of our previous sum. In addition, if we take the derivative of P(x, t) with respect to
the continuous variable x, we can obtain the pdf of the distribution p(x, t) and this
satisfies the equation

∂p
∂t

(x, t) =
∫

(

aξ(x− ξ, t;Ω)p(x− ξ, t)−aξ(x, t;Ω)p(x, t)
)

dξ.

Although we are skipping important theoretical details, the basic idea of this for-
mulation is the same as the discrete chemical master equation: we keep track of
how the probability density changes by “summing” (integrating) over all (incre-
mental) reactions going into and out of that particular state.

We now assume that the mean of X can be written as Ωφ(t) where φ(t) is a
continuous function of time that represents the evolution of the mean of X/Ω. To
understand the fluctuations of the system about this mean, we write

X =Ωφ+Ω
1
2Z,

where Z is a new variable representing the perturbations of the system about its
mean. We can write the distribution for Z as

pZ(z, t) = pX(Ωφ(t)+Ω
1
2 z, t)

and it follows that the derivatives of pZ can be written as

∂νpZ
zν
=Ω

1
2 ν
∂νpX
xν

∂pZ
∂t
=
∂pX
∂t
+Ω

dφ
dt
∂pX
∂x
=
∂pX
∂t
+Ω

1
2
dφ
dt
∂pZ
∂z
.

We further assume that the Ω dependence of the propensity function is such that

aξ(Ωφ, t;Ω) = f (Ω)ãξ(φ),

where ã is not dependent on the parameter Ω or the time t. From these relations,
we can now derive the master equation for pZ in terms of powers of Ω (derivation
omitted).

The Ω1/2 term in the expansion turns out to yield

dφ
dt
=

∫

ξaξ(Ωφ)dξ, φ(0) =
X(0)
Ω
,
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which is precisely the equation for the mean of the concentration. It can further be
shown that the terms in Ω0 are given by

∂pZ(z,τ)
∂τ

= −α′1(φ)
∂

∂z
(zpZ(z, t))+

1
2
α2(φ)

∂2pZ(z, t)
∂z2 , (4.13)

where
αv(x) =

∫

ξvãξ(x)dξ, τ =Ω−1 f (Ω)t.

Notice that in the case that φ(t)= φ0 (a constant), this equation becomes the Fokker-
Planck equation derived previously.

Higher order approximations to this equation can also be carried out by keeping
track of the expansion terms in higher order powers of Ω. In the case where Ω
represents the volume of the system, the next term in the expansion is Ω−1 and this
represents fluctuations that are on the order of a single molecule, which can usually
be ignored.

Reaction rate equations (RRE)

As we already saw in Chapter 2, the reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large number of
molecules whose state can be approximated using just the concentrations of the
molecules. We re-derive the results from Section 2.1 here, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equations (4.9), from which we can write
the dynamics for the average quantity of the each species at each point in time:

d〈Xi(t)〉
dt

=

M∑

j=1
ξ ji〈a j(X(t))〉, (4.14)

where the second order term drops out under the assumption that the Γ j’s are inde-
pendent processes with zero mean. We see that the reaction rate equations follow
by defining xi = 〈Xi〉/Ω and assuming that 〈a j(X(t))〉 = a j(〈X(t)〉). This relation-
ship is true when a j is linear (e.g., in the case of a unimolecular reaction), but is an
approximation otherwise.

4.2 Simulation of Stochastic Systems

Suppose that we want to generate a collection of sample trajectories for a stochastic
system whose evolution is described by the chemical master equation (4.5):

d
dt
P(q, t) =

∑

i
ai(q− ξi)P(q− ξi, t)−

∑

i
ai(q)P(q, t),
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where P(q, t) is the probability of being in a microstate q at time t (starting from
q0 at time t0) and ai(q) is the propensity function for a reaction i starting at a
microstate q and ending at microstate q+ ξi. Instead of simulating the distribution
function P(q, t), we wish to simulate a specific instance q(t) starting from some
initial condition q0(t0). If we simulate many such instances of q(t), their distribution
at time t should match P(q, t).

To illustrate the basic ideas that we will use, consider first a simple birth process
in which the microstate is given by an integer q ∈ {0,1,2, . . . } and we assume that
the propensity function is given by

a(q)dt = λdt, ξ = +1.

Thus the probability of transition increases linearly with the time increment dt (so
birth events occur at rate λ, on average). If we assume that the birth events are
independent of each other, then it can be shown (see Appendix B) that this process
has Poisson distribution with parameter λτ:

P(q(t+τ)−q(t) = 0) =
(λτ)0

0!
e−λτ,

where τ is the difference in time and 0 is the difference in count q. In fact, this
distribution is a joint distribution in time τ and count 0, and by setting 0 = 1 it can
be seen that the time to the next reaction T follows an exponential distribution and
has density function

pT (τ) = λe−λτ.

The exponential distribution has expectation 1/λ and so we see that the average
time between events is inversely proportional to the reaction rate λ.

Consider next a more general case in which we have a countable number of mi-
crostates q ∈ {0,1,2, . . . } and we let k ji represent the transition probability between
a microstate i and microstate j. The birth process is a special case given by ki+1,i = λ

and all other k ji = 0. The chemical master equation describes the joint probability
that we are in state q = i at a particular time t. We would like to know the probabil-
ity that we transition to a new state q = j at time t+ dt. Given this probability, we
can attempt to generate an instance of the variable q(t) by first determining which
reaction occurs and then when the reaction occurs.

Let P( j,τ) := P( j, t+ τ+dτ | i, t+ τ) represent the probability that we transition
from the state i to the state j in the time interval [t+τ, t+τ+dτ]. For simplicity and
ease of notation, we will take t = 0. Let T := T j,i be the time at which the reaction
first occurs. We can write the probability that we transition to state j in the interval
[τ,τ+dτ] as

P( j,τ) = P(T > τ) k ji dτ, (4.15)

where P(T > τ) is the probability that no reaction occurs in the time interval [0,τ]
and k jidτ is the probability that the reaction taking state i to state j occurs in the
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next dτ seconds (assumed to be independent events, giving the product of these
probabilities).

To compute P(T > τ), define

 ki =
∑

j
k ji

so that (1−  ki)dτ is the probability that no transition occurs from state i in the next
dτ seconds. Then, the probability that no reaction occurs in the interval [τ,τ+dτ]
can be written as

P(T > τ+dτ) = P(T > τ) (1−  ki) dτ. (4.16)

It follows that
d
dτ
P(T > τ) = lim

dτ→0

P(T > τ+dτ)−P(T > τ)
dτ

= −P(T > τ)  ki.

Solving this differential equation, we obtain

P(T > τ) = e− kiτ, (4.17)

so that the probability that no reaction occurs in time τ decreases exponentially with
the amount of time that we wait, with rate given by the sum of all the reactions that
can occur from state i.

We can now combine equation (4.17) with equation (4.15) to obtain

P( j,τ) = P( j,τ+dτ | i,0) = k ji e−
 kiτ dτ.

We see that this has the form of a density function in time and hence the probability
that the next reaction is reaction j, independent of the time in which it occurs, is

Pji =

∫ ∞

0
k jie−

 kiτ dτ =
k ji
 ki
. (4.18)

Thus, to choose the next reaction to occur from a state i, we choose between N
possible reactions, with the probability of each reaction weighted by k ji/ ki.

To determine the time that the next reaction occurs, we sum over all possible
reactions j to get the density function for the reaction time:

pT (τ) =
∑

j
k jie−

 kiτ =  kie−
 kiτ.

This is the density function associated with a Poisson distribution. To compute a
time of reaction ∆t that draws from this distribution, we note that the cumulative
distribution function for T is given by

∫ ∆t

0
fT (τ)dτ =

∫ ∆t

0
 kie−

 kiτ dτ = 1− e− ki∆t.
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The cumulative distribution function is always in the range [0,1] and hence we can
compute ∆t by choosing a (uniformly distributed) random number r in [0,1] and
then computing

∆t =
1
 ki

ln
1

1− r
. (4.19)

(This equation can be simplified somewhat by replacing 1− r with r′ and noting
that r′ can also be drawn from a uniform distribution on [0,1].)

Note that in the case of a birth process, this computation agrees with our ear-
lier analysis. Namely,  ki = λ and hence the (only) reaction occurs according to an
exponential distribution with parameter λ.

This set of calculations gives the following algorithm for computing an instance
of the chemical master equation:

1. Choose an initial condition q at time t = 0.
2. Calculate the propensity functions aξ(q) for each possible reaction q.
3. Choose the time for the reaction according to equation (4.19), where r ∈ [0,1]

is chosen from a uniform distribution.
4. Use a weighted random number generator to identify which reaction will

take place next, using the weights in equation (4.18).
5. Update q by implementing the reaction ξ and update the time t by δt
6. If T < Tstop, goto step 2.

This method is sometimes called “Gillespie’s direct method” [33, 34], but we shall
refer to it here as the “stochastic simulation algorithm” (SSA). We note that the re-
action number in step 4 can be computed by calculating a uniform random number
on [0,1], scaling this by the total propensity

∑

i a(ξi,q), and then finding the first
reaction i such that

∑i
0 a(ξi,q) is larger than this scaled random number.

Example 4.6 (Transcription). To be completed. ∇ Review

4.3 Input/Output Linear Stochastic Systems

In many situations, we wish to noise how noise propogates through a biomolecular
system. For example, we may wish to understand how stochastic variations in RNA
polymerase concentraton affect gene expression. In order to analyze these cases, we
specialize to the case of a biomolecular system operating around a fixed operating
point.

We now consider the problem of how to compute the response of a linear system
to a random process. We assume we have a linear system described in state space
as

Ẋ = AX+FW, Y =CX (4.20)
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Given an “input” W, which is itself a random process with mean µ(t), variance
σ2(t) and correlation r(t, t+τ), what is the description of the random process Y?

Let W be a white noise process, with zero mean and noise intensity Q:

r(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y(t) =
∫ t

0
h(t−τ)W(τ)dτ,

where h(t−τ) is the impulse response for the system

h(t−τ) =CeA(t−τ)B+Dδ(t−τ).

We now compute the statistics of the output, starting with the mean:

E(Y(t)) = E(
∫ t

0
h(t−η)W(η)dη )

=

∫ t

0
h(t−η)E(W(η))dη = 0.

Note here that we have relied on the linearity of the convolution integral to pull the
expectation inside the integral.

We can compute the covariance of the output by computing the correlation rY (τ)
and setting σ2

Y = rY (0). The correlation function for y is

rY (t, s) = E(Y(t)Y(s)) = E(
∫ t

0
h(t−η)W(η)dη ·

∫ s

0
h(s− ξ)W(ξ)dξ )

= E(
∫ t

0

∫ s

0
h(t−η)W(η)W(ξ)h(s− ξ)dηdξ )

Once again linearity allows us to exchange expectation and integration

rY (t, s) =
∫ t

0

∫ s

0
h(t−η)E(W(η)W(ξ))h(s− ξ)dηdξ

=

∫ t

0

∫ s

0
h(t−η)Qδ(η− ξ)h(s− ξ)dηdξ

=

∫ t

0
h(t−η)Qh(s−η)dη

Now let τ = s− t and write

rY (τ) = rY (t, t+τ) =
∫ t

0
h(t−η)Qh(t+τ−η)dη

=

∫ t

0
h(ξ)Qh(ξ+τ)dξ (setting ξ = t−η)
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Finally, we let t→∞ (steady state)

lim
t→∞

rY (t, t+τ) =  rY (τ) =
∫ ∞

0
h(ξ)Qh(ξ+τ)dξ (4.21)

If this integral exists, then we can compute the second order statistics for the output
Y .

We can provide a more explicit formula for the correlation function r in terms of
the matrices A, F andC by expanding equation (4.21). We will consider the general
case where W ∈ Rp and Y ∈ Rq and use the correlation matrix R(t, s) instead of the
correlation function r(t, s). Define the state transition matrix Φ(t, t0) = eA(t−t0) so
that the solution of system (4.20) is given by

x(t) = Φ(t, t0)x(t0)+
∫ t

t0
Φ(t,λ)Fw(λ)dλ

Proposition 4.1 (Stochastic response to white noise). Let E(X(t0)XT (t0)) = P(t0)
and W be white noise with E(W(λ)WT (ξ)) = RWδ(λ− ξ). Then the correlation ma-
trix for X is given by

RX(t, s) = P(t)ΦT (s, t)
where P(t) satisfies the linear matrix differential equation

Ṗ(t) = AP+PAT +FRWF, P(0) = P0.

Proof. Using the definition of the correlation matrix, we have

E(X(t)XT (s)) = E
(

Φ(t,0)X(0)XT (0)ΦT (t,0)+ cross terms

+

∫ t

0
Φ(t,ξ)FW(ξ)dξ

∫ s

0
Wt(λ)FTΦ(s,λ)dλ

)

= Φ(t,0)E(X(0)XT (0))Φ(s,0)

+

∫ t

0

∫ s

0
Φ(t,ξ)FE(W(ξ)WT (λ))FTΦ(s,λ)dξdλ

= Φ(t,0)P(0)φT (s,0)+
∫ t

0
Φ(t,λ)FRW(λ)FTΦ(s,λ)dλ.

Now use the fact that Φ(s,0) = Φ(s, t)Φ(t,0) (and similar relations) to obtain

RX(t, s) = P(t)ΦT (s, t)

where
P(t) = Φ(t,0)P(0)ΦT (t,0)+

∫ T

0
Φ(t,λ)FRWFT (λ)ΦT (t,λ)dλ

Finally, differentiate to obtain

Ṗ(t) = AP+PAT +FRWF, P(0) = P0

(see Friedland [30] for details).
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The correlation matrix for the output Y can be computed using the fact that
Y = CX and hence RY = CTRXC. We will often be interested in the steady state
properties of the output, which are given by the following proposition.

Proposition 4.2 (Steady state response to white noise). For a time-invariant linear
system driven by white noise, the correlation matrices for the state and output
converge in steady state to

RX(τ) = RX(t, t+τ) = PeA
T τ, RY (τ) =CRX(τ)CT

where P satisfies the algebraic equation

AP+PAT +FRWFT = 0 P > 0. (4.22)

Equation (4.22) is called the Lyapunov equation and can be solved in MATLAB
using the function lyap.

Example 4.7 (First-order system). Consider a scalar linear process

Ẋ = −aX+W, Y = cX,

where W is a white, Gaussian random process with noise intensity σ2. Using the
results of Proposition 4.1, the correlation function for X is given by

RX(t, t+τ) = p(t)e−aτ

where p(t) > 0 satisfies
p(t) = −2ap+σ2.

We can solve explicitly for p(t) since it is a (non-homogeneous) linear differential
equation:

p(t) = e−2at p(0)+ (1− e−2at)
σ2

2a
.

Finally, making use of the fact that Y = cX we have

r(t, t+τ) = c2(e−2at p(0)+ (1− e−2at)
σ2

2a
)e−aτ.

In steady state, the correlation function for the output becomes

r(τ) =
c2σ2

2a
e−aτ.

Note correlation function has the same form as the Ornstein-Uhlenbeck process in
Example B.7 (with Q = c2σ2). ∇
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As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain ap-
proach provides a very rich set of tools for modeling and analysis of interconnected
systems, relying on the frequency response and transfer functions to represent the
flow of signals around the system.

Given a random process X(t), we can look at the frequency content of the prop-
erties of the response. In particular, if we let ρ(τ) be the correlation function for a
(scalar) random process, then we define the power spectral density function as the
Fourier transform of ρ:

S (ω) =
∫ ∞

−∞
ρ(τ)e− jωτ dτ, ρ(τ) =

1
2π

∫ ∞

−∞
S (ω)e jωτ dτ.

The power spectral density provides an indication of how quickly the values of
a random process can change through the frequency content: if there is high fre-
quency content in the power spectral density, the values of the random variable can
change quickly in time.

Example 4.8 (Ornstein-Uhlenbeck process). To illustrate the use of these mea-
sures, consider a first-order Markov process where the correlation function is

ρ(τ) =
Q

2ω0
e−ω0(τ).

This correspnds to Example 4.7 (also called an Ornstein-Uhlenbeck process). The
power spectral density becomes

S (ω) =
∫ ∞

−∞

Q
2ω0

e−ω|τ|e− jωτ dτ

=

∫ 0

−∞

Q
2ω0

e(ω− jω)τ dτ+
∫ ∞

0

Q
2ω0

e(−ω− jω)τ dτ =
Q

ω2+ω2
0
.

We see that the power spectral density is similar to a transfer function and we
can plot S (ω) as a function of ω in a manner similar to a Bode plot, as shown in
Figure 4.2. Note that although S (ω) has a form similar to a transfer function, it is a
real-valued function and is not defined for complex s. ∇

Using the power spectral density, we can more formally define “white noise”:
a white noise process is a zero-mean, random process with power spectral density
S (ω) = W = constant for all ω. If X(t) ∈ Rn (a random vector), then W ∈ Rn×n.
We see that a random process is white if all frequencies are equally represented in
its power spectral density; this spectral property is the reason for the terminology
“white”.

Given a linear system

Ẋ = AX+FW, Y =CX,
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logω

logS (ω)

ω0

Figure 4.2: Spectral power density for a first-order Markov process.
.

with W given by white noise, we can compute the spectral density function cor-
responding to the output Y . We start by computing the Fourier transform of the
steady state correlation function (4.21):

S Y (ω) =
∫ ∞

−∞

[∫ ∞

0
h(ξ)Qh(ξ+τ)dξ

]

e− jωτ dτ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

−∞
h(ξ+τ)e− jωτ dτ

]

dξ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

0
h(λ)e− jω(λ−ξ) dλ

]

dξ

=

∫ ∞

0
h(ξ)e jωξ dξ ·QH( jω) = H(− jω)QH( jω).

This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in the fre-

quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer function H1(s) followed by transfer function H2(s),
the resulting power spectral density of the output is given by

S Y (ω) = H1(− jω)H2(− jω)QuH2( jω)H1( jω).

As stated earlier, white noise is an idealized signal that is not seen in practice.
One of the ways to produced more realistic models of noise and disturbances is
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covariance W and filter H(s) such that we match
the statistics S (ω) of a measured noise or disturbance signal. In other words, given
S (ω), find W > 0 and H(s) such that S (ω) = H(− jω)WH( jω). This problem is
know as the spectral factorization problem.

Figure 4.3 summarizes the relationship between the time and frequency do-
mains.
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p(v) =
1

√
2πRV

e−
v2

2RV

S V (ω) = RV
V −→ H −→ Y

p(y) =
1

√
2πRY

e−
y2

2RY

S Y (ω) = H(− jω)RVH( jω)

ρV (τ) = RVδ(τ)
Ẋ = AX+FV
Y =CX

ρY (τ) = RY (τ) =CPe−A|τ|CT

AP+PAT +FRVFT = 0

Figure 4.3: Summary of steady state stochastic response.

Exercises

4.1 (BE 150, Winter 2011) For this problem, we return to our standard model of
transcription and transcription process with probabilistic creation and degradation
of discrete mRNA and protein molecules. The propensity functions for each reac-
tion are as follows:
Probability of transcribing 1 mRNA molecule: 0.2dt
Probability of degrading 1 mRNA molecule: 0.5dt and is proportional to the num-
ber of mRNA molecules.
Probability of translating 1 protein: 5dt and is proportional to the number of mRNA
molecules.
Probability of degrading 1 protein molecule: 0.5dt and is proportional to the num-
ber of protein molecules.
dt is the time step chosen for your simulation. Here we choose dt = 0.05.

(a) Simulate the stochastic system above until time T = 100. Plot the resulting
number of mRNA and protein over time.
(b) Now assume that the proteins are degraded much more slowly than mRNA and
the propensity function of protein degradation is now 0.05dt. To maintain similar
protein levels, the translation probability is now 0.5dt (and still proportional to the
number of mRNA molecules). Simulate this system as above. What difference do
you see in protein level? Comment on the effect of protein degradation rates on
noise.

4.2 (BE 150, Winter 2011) Compare a simple model of negative autoregulation
with one without autoregulation:

dX
dt
= β0−γX

and
dX
dt
=
β

1+ X
K
−γX

(a) Assume that the basal transcription rates β and β0 vary between cells, following
a Gaussian distribution with σ2

<X> = 0.1. Simulate time courses of both models for
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100 different ”cells” using the following parameters: β= 2,β0 = 1,γ = 1,K = 1. Plot
the nonregulated and autoregulated systems in two separate plots. Comment on the
variation you see in the time courses.
(b) Calculate the deterministic steady state for both models above. How does vari-
ation in the basal transcription rate β or β0 enter into the steady state and relate it
to what you see in part (a).

4.3 Consider gene expression: φ k
−→m, m

β
−→m+P, m

γ
−→ φ, and P δ

−→ φ. Answer the
following questions:

(a) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare with the determin-
istic ODE solution. Explore how the realizations become close to or apart from the
ODE solution when the volume is changed. Determine the stationary probability
distribution for the protein (you can do this numerically, but note that this process is
linear, so you can compute the probability distribution analytically in closed form).
(b) Now consider the additional binding reaction of protein P with downstream

DNA binding sites D: P+D
kon−−−⇀↽−−−
ko f f

C. Note that the system no longer linear due to

the presence of a bi-molecular reaction. Use the SSA algorithm to obtain sample
realizations and numerically compute the probability distribution of the protein and
compare it to what you obtained in part (a). Explore how this probability distribu-
tion and the one of C change as the rates kon and ko f f become larger and larger
with respect to δ,k,β,γ. Do you think we can use a QSS approximation similar to
what we have done for ODE models?
(c) Determine the Langevin equation for the system in part (b) and obtain sample
realizations. Explore numerically how good this approximation is when the volume
decreases/increases.

4.4 Consider the bi-molecular reaction A+B
k1−−⇀↽−−
k2

C, in which A and B are in total

amounts AT and BT , respectively. Compare the steady state value of C obtained
from the deterministic model to the mean value of C obtained from the stochastic
model as the volume is changed in the stochastic model. What do you observe?
You can perform this investigation through numerical simulation.

4.5 Consider the simple birth and death process: Z
k2G−−−⇀↽−−−
k1G
∅, in which G is a “gain”.

Assume that the reactions are catalyzed by enzymes and that the gain G can be
tuned by changing the amounts of these enzymes. A deterministic ODE model for
this system incorporating noise and disturbances due to the stochasticity of the
cellular environment is given by

Ż = k1G− k2GZ+d(t),
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in which d(t) incorporates noise, as seen in the previous homework. Determine the
Langevin equation for this birth and death process and compare its form to the
deterministic one. Also, determine the frequency response of Z to noise for both
the deterministic model and for the Langevin model. Does increasing the gain G
has the same effect in both models? Explain.

4.6 Consider a second order system with dynamics




Ẋ1
Ẋ2




=





−a 0
0 −b









X1
X2




+





1
1




v, Y =



1 1








X1
X2





that is forced by Gaussian white noise with zero mean and variance σ2. Assume
a,b > 0.

(a) Compute the correlation function ρ(τ) for the output of the system. Your an-
swer should be an explicit formula in terms of a, b and σ.
(b) Assuming that the input transients have died out, compute the mean and vari-
ance of the output.
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