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Preface

This text serves as a supplement to Feedback Systems by Åström and Murray [1]
(refered to throughout the text as AM08) and is intended for researchers interested
in the application of feedback and control to biomolecular systems. The text has
been designed so that it can be used in parallel with Feedback Systems as part of a
course on biomolecular feedback and control systems, or as a standalone reference
for readers who have had a basic course in feedback and control theory. The full
text for AM08, along with additional supplemental material and a copy of these
notes, is available on a companion web site:

http://www.cds.caltech.edu/˜murray/amwiki/BFS

The material in this book is intended to be useful to three overlapping audi-
ences: graduate students in biology and bioengineering interested in understanding
the role of feedback in natural and engineered biomolecular systems; advanced un-
dergraduates and graduate students in engineering disciplines who are interested
the use of feedback in biological circuit design; and established researchers in the
the biological sciences who want to explore the potential application of principles
and tools from control theory to biomolecular systems. We have written the text
assuming some familiarity with basic concepts in feedback and control, but have
tried to provide insights and specific results as needed, so that the material can be
learned in parallel. We also assume some familiarity with cell biology, at the level
of a first course for non-majors. The individual chapters in the text indicate the
pre-requisites in more detail, most of which are covered either in AM08 or in the
supplemental information available from the companion web site.

Domitilla Del Vecchio Richard M. Murray
Cambridge, Massachusetts Pasadena, California

http://www.cds.caltech.edu/~murray/amwiki/BFS
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Notation

This is an internal chapter that is intended for use by the authors in fixing the nota- Review
tion that is used throughout the text. In the first pass of the book we are anticipating
several conflicts in notation and the notes here may be useful to early users of the
text.

Protein dynamics

For a gene ‘gent’, we write genX for the gene, mgenX for the mRNA and GenX for
the protein when they appear in text or chemical formulas. Superscripts are used
for covalent modifications, e.g., Xp for phosphorylation. We also use superscripts
to differentiate between isomers, so m∗genX might be used to refer to mature RNA

or GenX f to refer to the folded versions of a protein, if required. Mathematical
formulas use the italic version of the variable name, but roman font for the gene or
isomeric state. The concentration of mRNA is written in text or formulas as mgenX

(m∗genX for mature) and the concentration of protein as pgenX (pf
genX for folded). The

same naming conventions are used for common gene/protein combinations: the
mRNA concentration of tetR is mtetR, the concentration of the associated protein is
ptetR and parameters are αtetR, δtetR, etc.

For generic genes and proteins, use X to refer to a protein, mx to refer to the
mRNA associated with that protein and x to refer to the gene that encodes X. The
concentration of X can be written either as X, px or [X], with that order of pref-
erence. The concentration of mx can be written either as mx (preferred) or [mx].
Parameters that are specific to gene p are written with a subscripted p: αp, δp, etc.
Note that although the protein is capitalized, the subscripts are lower case (so in-
dexed by the gene, not the protein) and also in roman font (since they are not a
variable).

The dynamics of protein production are given by

dmp

dt
= αp,0 −μmp− γ̄pmp,︸������������︷︷������������︸

−γpmp

dP
dt
= βpmp −μP− δ̄pP,︸��������︷︷��������︸

−δpP

where αp,0 is the (basal) rate of production, γp parameterizes the rate of degradation
of the mRNA mp, βp is the kinetic rate of protein production, μ is the growth rate
that leads to dilution of concentrations and δp parameterizes the rate of degradation
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of the protein P. Since dilution and degradation enter in a similar fashion, we use
γ = γ̄+μ and δ = δ̄+μ to represent the aggregate degradation and dilution rate. If
we are looking at a single gene/protein, the various subscripts can be dropped.

When we ignore the mRNA concentration, we write the simplified protein dy-
namics as

dP
dt
= βp,0− δ̄pP.

Assuming that the mRNA dynamics are fast compared to protein production, then
the constant βp,0 is given by

βp,0 = βp
γ̄p

αp,0
.

For regulated production of proteins using Hill functions, we modify the con-
stitutive rate of production to be fp(Q) instead of αp,0 or βp,0 as appropriate. The
Hill function is written in the forms

Fp,q(Q) =
αp,q

1+ (Q/Kp,q)np,q
, Fp,q(Q) =

αp,q(Q/Kp,q)np,q

1+ (Q/Kp,q)np,q
.

The notation for F mirrors that of transfer functions: Fp,q represents the input/output
relationship between input Q and output P (rate). If the target gene is not particu-
larly relevant, the subscript can represent just the transcription factor: single letters:

Flac(Q) =
αlac

1+ (Q/Klaq)nlac
.

The subscripts can be dropped completely if there is only one Hill function in use.

Some common symbols:

Symbol LaTeX Comment
Xtot X_\tot Total concentration of a species
Kd \Kd Dissociation constant
Km \Km Michaelis-Menten constant

Chemical reactions

We write the symbol for a chemical species A using roman type. The number of
molecules of a species A is written as na. The concentration of the species is oc-
casionally written as [A], but we more often use the notation A, as in the case of
proteins, or xa. For a reaction A+B←−→ C, we use the notation

R1 : A+B
a1−−⇀↽−−
d1

C
dC
dt
= a1AB−d1C

This notation is primarily intended for situations where we have multiple reactions
and need to distinguish between many different constants. Enzymatic reactions
have the form

R2 : S+E
a2−−⇀↽−−
d2

C
k−→ P+E
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For a small number of reactions, the reaction number can be dropped.
It will often be the case that two species A and B will form a molecular bond, in

which case we write the resulting species as AB. If we need to distinguish between
covalent bonds and hydrogen bonds, we write the latter as A:B. Finally, in some
situations we will have labeled section of DNA that are connected together, which
we write as A−B, where here A represents the first portion of the DNA strand and B
represents the second portion. When describing (single) strands of DNA, we write
A′ to represent the Watson-Crick complement of the strand A. Thus A−B:B′−A′

would represent a double stranded length of DNA with domains A and B.
The choice of representing covalent molecules using the conventional chemical

notation AB can lead to some confusion when writing the reaction dynamics using
A and B to represent the concentrations of those species. Namely, the symbol AB
could represent either the concentration of A times the concentration of B or the
concentration of AB. To remove this ambiguity, when using this notation we write
[A][B] as A ·B.

When working with a system of chemical reactions, we write Si, i = 1, . . . ,n for
the species and R j, j = 1, . . . ,m for the reactions. We write ni to refer to the molecu-
lar count for species i and xi = [Si] to refer to the concentration of the species. The
individual equations for a given species are written

dxi

dt
=
∑
j=1

mki, jk x jxk.

The collection of reactions are written as

dx
dt
= Nv(x, θ),

dxi

d =
Ni jv j(x, θ),

where xi is the concentration of species Si, N ∈ Rn×m is the stochiometry matrix, v j

is the reaction flux vector for reaction j, and θ is the collection of parameters that
the define the reaction rates. Occasionally it will be useful to write the fluxes as
polynomials, in which case we use the notation

v j(x, θ) =
∑

k

E jk

∏
l

x
ε

jk
l

l

where E jk is the rate constant for the kth term of the jth reaction and ε jk
l is the

stochiometry coefficient for the species xl.
Generally speaking, coefficients for propensity functions and reaction rate con-

stants are written using lower case (cξ, ki, etc). Two exceptions are the dissociation
constant, which we write as Kd, and the Michaelis-Menten constant, which we
write as Km.
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Chapter 1
Introductory Concepts

This chapter provides a brief introduction to concepts from systems biology, tools
from differential equations and control theory, and approaches to modeling, anal-
ysis and design of biomolecular feedback systems. We begin with a discussion of
the role of modeling, analysis and feedback in biological systems, followed by an
overview of basic concepts from cell biology, focusing on the dynamics of protein
production and control. This is followed by a short review of key concepts and
tools from control and dynamical systems theory, intended to provide insight into
the main methodology described in the text. Finally, we give a brief introduction
to the field of synthetic biology, which is the primary topic of the latter portion of
the text. Readers who are familiar with one or more of these areas can skip the
corresponding sections without loss of continuity.

1.1 Systems Biology: Modeling, Analysis and Role of Feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abstract ap-
proaches to synthesis. Conversely, the accelerating pace of discovery in biological
science is suggesting new design principles that may have important practical ap-
plications in human-made systems. This synergy at the interface of biology and
engineering offers many opportunities to meet challenges in both areas. The guid-
ing principles of feedback and control are central to many of the key questions in
biological science and engineering and can play an enabling role in understanding
the complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study and understanding of biological systems, and
discuss some of the ways in which an understanding of feedback principles in
biology can help us better understand and design complex biomolecular circuits.

There are a wide variety of biological phenomena that provide a rich source of
examples for control, including gene regulation and signal transduction; hormonal,
immunological, and cardiovascular feedback mechanisms; muscular control and
locomotion; active sensing, vision, and proprioception; attention and conscious-
ness; and population dynamics and epidemics. Each of these (and many more)
provide opportunities to figure out what works, how it works and what can be done
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to affect it. Our focus here is at the molecular scale, but the principles and approach
that we describe can also be applied at larger time and length scales.

Modeling and analysis

Over the past several decades, there have been significant advances in modeling
capabilities for biological systems that have provided new insights into the com-
plex interactions of the molecular-scale processes that implement life. Reduced-
order modeling has become commonplace as a mechanism for describing and doc-
umenting experimental results and high-dimensional stochastic models can now
be simulated in reasonable periods of time to explore underlying stochastic effects.
Coupled with our ability to collect large amounts of data from flow cytometry,
micro-array analysis, single-cell microscopy and other modern experimental tech-
niques, our understanding of biomolecular processes is advancing at a rapid pace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining complex
biological phenomena. Although there are exceptions, the predominant use of mod-
els is to “document” experimental results: a hypothesis is proposed and tested us-
ing careful experiments, and then a model is developed to match the experimental
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenomena
to those for which controlled experimental evidence of the desired phenomena can
be obtained.

This situation is much different than standard practice in the physical sciences
and engineering, as illustrated in Figure 1.1 (in the context of modeling, analysis
and control design for gas turbine aeroengines). In those disciplines, experiments
are routinely used to help build models for individual components at a variety of
levels of detail, and then these component-level models are interconnected to ob-
tain a system-level model. This system-level model, carefully built to capture the
appropriate level of detail for a given question or hypothesis, is used to explain,
predict and systematically analyze the behaviors of a system. Because of the ways
in which models are viewed, it becomes possible to prove (or invalidate) a hypoth-
esis through analysis of the model, and the fidelity of the models is such that deci-
sions can be made based on them. Indeed, in many areas of modern engineering—
including electronics, aeronautics, robotics and chemical processing, to name a
few—models play a primary role in the understanding of the underlying physics
and/or chemistry, and these models are used in predictive ways to explore design
tradeoffs and failure scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use of reduced-order models that capture the underlying dynamics
of the system without necessarily modeling every detail of the underlying mech-
anisms. These reduced order models are often coupled with schematics diagrams,
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Figure 1.1: Sample modeling, analysis and design framework for an engineering system.

such as those shown in Figure 1.2, to provide a high level view of a complex sys-
tem. The generation of these reduced-order models, either directly from data or
through analytical or computational methods, is critical in the effective applica-
tion of modeling since modeling of the detailed mechanisms produces high fidelity
models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced order models is fairly advanced is
in control theory, where input/output models, such as block diagrams and transfer
functions are used to capture structured representations of dynamics at the appro-
priate level of fidelity for the task at hand [1].

While developing predictive models and corresponding analysis tools for biol-
ogy is much more difficult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central element of under-
standing. Biological systems are by their nature extremely complex and can be-
have in counterintuitive ways. Only by capturing the many interacting aspects of
the system in a formal model can we ensure that we are reasoning properly about
its behavior, especially in the presence of uncertainty. To do this will require sub-
stantial effort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked) as well as building an analytical
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from experiments to
computation to theory, are enabling us to explore new approaches to modeling that
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Figure 1.2: Schematic diagrams representing models in different disciplines. Each diagram
is used to illustrate the dynamics of a feedback system: (a) electrical schematics for a power
system [56], (b) a biological circuit diagram for a synthetic clock circuit [5], (c) a process
diagram for a distillation column [85] and (d) a Petri net description of a communication
protocol.

attempt to address some of these challenges. In this text we focus on the use of rele-
vant classes of reduced-order models that can be used to capture many phenomena
of biological relevance.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the use of mod-
els in biology is to become more rigorous about the various behaviors that are im-
portant for biological systems. One of the key concepts that needs to be formalized
is the notion of “phenotype”. This term is often associated with the existence of an
equilibrium point in a reduced-order model for a system, but clearly more complex
(non-equilibrium) behaviors can occur and the “phenotypic response” of a system
to an input may not be well-modeled by a steady operating condition. Even more
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Figure 1.3: Conceptual modeling framework for biomolecular feedback systems. The dy-
namics consist of a set of linear dynamics, represented by the multi-input, multi-output
transfer function P(s), a static nonlinear map N and an interconnection matrix L. Uncer-
tainty is represented as unmodeled dynamics Δ, crosstalk Λ and system context θ. The
inputs and outputs to the system are denoted by u and y.

problematic is determining which regulatory structures are “active” in a given phe-
notype (versus those for which there is a regulatory pathway that is saturated and
hence not active).

Figure 1.3 shows a graphical representation of a class of systems that captures
many of the features we are interested in. The system is composed of M inter-
connected subsystems. The linear dynamics of the subsystems (possibly including
delay) are captured via their frequency responses, represented in the diagram by the
“transfer functions” Pi(s). The outputs of the linear subsystems are transformed via
a nonlinear map N( · ) and then interconnected back to the inputs of the subsystems
through the matrix L. The role of feedback is captured through the interconnec-
tion matrix L, which represents a weighted graph describing the interconnections
between subsystems.

In addition to the internal dynamics and nonlinear coupling, we separately keep
track of external inputs to the subsystems (u), measured outputs (y), stochastic dis-
turbances (w, not shown), and measurement noise (v, not shown). Three other fea-
tures are present in Fig. 1.3. The first is the uncertainty operator Δ, attached to the
linear dynamics block. This operator represents both parametric uncertainty in the
dynamics as well as unmodeled dynamics that have known (frequency-dependent)
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bounds. Tools for understanding this class of uncertainty are available for both lin-
ear and nonlinear control systems [1] and allow stability and performance analyses
in the presence of uncertainty. A similar term Λ is included in the interconnec-
tion matrix and represents (unmodeled) “crosstalk” between subsystems. Finally, θ
represents the context- and environment-dependent parameters of the system.

This particular structure is useful because it captures a large number of model-
ing frameworks in a single formalism. Mass action kinetics and chemical reaction
networks can be represented by equating the stoichiometry matrix with the inter-
connection matrix L and using the nonlinear terms to capture the fluxes, with θ rep-
resenting the rate constants. We can also represent typical reduced-order models for
transcriptional regulatory networks by letting the nonlinear functions N() represent
various types of Hill functions and including the effects of mRNA/protein produc-
tion, degradation and dilution through the linear dynamics. These two classes of
systems can also be combined, allowing a very expressive set of dynamics that is
capable of capturing many relevant phenomena of interest in molecular biology.

In the context of the modeling framework described in Figure 1.3, it is possible
to consider a working definition of phenotype in terms of the patterns of the dy-
namics that are present. In the simplest case, consisting of operation near a single
equilibrium point, we can look at the effective gain of the different nonlinearities as
a measure of which regulatory pathways are “active” in a given state. Consider, for
example, labeling each nonlinearity in a system as being either on, off or active. A
nonlinearity that is on or off represents one in which changes of the input produce
very small deviations in the output, such as those that occur at very high or low
concentrations in interactions modeled by a Hill function. An active nonlinearity
is one in which there is a proportional response to changes in the input, with the
slope of the nonlinearity giving the effective gain. In this setting, the phenotype of
the system would consist of both a description of the nominal concentrations of the
measurable species (y) as well as the state of each nonlinearity (on, off, active).

Another common situation is that a system may have multiple equilibrium
points and the “phenotype” of the system is represented by the particular equi-
librium point that the system converges to. In the simplest case, we can have bista-
bility, in which there are two equilibrium points x1e and x2e for a fixed set of pa-
rameters. Depending on the initial conditions and external inputs, a given system
may end up near one equilibrium point or the other, providing two distinct pheno-
types. A model with bistability (or multi-stability) provides one method of model-
ing memory in a system: the cell or organism remembers its history by virtue of
the equilibrium point to which it has converted.

For more complex phenotypes, where the subsystems are not at a steady op-
erating point, one can consider temporal patterns such as limit cycles (periodic
orbits) or non-equilibrium input/output responses. Analysis of these more compli-
cated behaviors requires more sophisticated tools, but again model-based analysis
of stability and input/output responses can be used to characterize the phenotypic
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behavior of a biological system under different conditions or contexts.
Additional types of analysis that can be applied to systems of this form include

sensitivity analysis (dependence of solution properties on selected parameters), un-
certainty analysis (impact of disturbances, unknown parameters and unmodeled dy-
namics), bifurcation analysis (changes in phenotype as a function of input levels,
context or parameters) and probabilistic analysis (distributions of states as a func-
tion of distributions of parameters, initial conditions or inputs). In each of these
cases, there is a need to extend existing tools to exploit the particular structure of
the problems we consider, as well as modify the techniques to provide relevance to
biological questions.

Stochastic behavior

Another important feature of many biological systems is stochasticity: biological
responses have an element of randomness so that even under carefully control con-
ditions, the response of a system to a given input may vary from experiment to
experiment. This randomness can have many possible sources, including external
perturbations that are modeled as stochastic processes and internal processes such
as molecular binding and unbinding, whose stochasticity stems from the underly-
ing thermodynamics of molecular reactions.

While for many engineered systems it is common to try to eliminate stochastic
behavior (yielding a “deterministic” response), for biological systems there appear
to be many situations in which stochasticity is important for the way in which or-
ganisms survive. In biology, nothing is 100% and so there is always some chance
that two identical organisms will respond differently. Thus viruses are never com-
pletely contagious and so some organisms will survive, and DNA replication is
never error free, and so mutations and evolution can occur. In studying circuits
where these types of effects are present, it thus becomes important to study the
distribution of responses of a given biomolecular circuit, and to collect data in a
manner that allows us to quantify these distributions.

One important indication of stochastic behavior is bimodality. We say that a cir-
cuit or system is bimodal if the response of the system to a given input or condition
has two or more distinguishable classes of behaviors. An example of bimodal-
ity is shown in Figure 1.4, which shows the response of the galactose metabolic
machinery in yeast. We see from the figure that even though genetically identical
organisms are exposed to the same external environment (a fixed galactose con-
centration), the amount of activity in individual cells can have a large amount of
variability. At some concentrations there are clearly two subpopulations of cells:
those in which the galactose metabolic pathway is turned on (higher reporter fluo-
rescence values on the y axis) and those for which it is off (lower reporter fluores-
cence).

Another characterization of stochasticity in cells is the separation of noisiness
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(a) Galactose control network (b) Pathway response

Figure 1.4: Galactose response in yeast [97]. (a) GAL signaling circuitry showing a num-
ber of different feedback pathways that are used to detect the presence of galactose and
switch on the metabolic pathway. (b) Pathway activity as a function of galactose concen-
tration. The points at each galactose concentration represent the activity level of the galac-
tose metabolic pathway in an individual cell. Black dots indicate the mean of a Gaussian
mixture model (GMM) classification [96]. Small random deviations were added to each
galactose concentration (horizontal axis) to better visualize the distributions.

in protein expression into two categories: “intrinsic” noise and “extrinsic” noise.
Roughly speaking, extrinsic noise represents variability in gene expression that
effects all proteins in the cell in a correlated way. Extrinsic noise can be due to
environmental changes that affect the entire cell (temperature, pH, oxygen level) or
global changes in internal factors such as energy or metabolite levels (perhaps due
to metabolic loading). Intrinsic noise, on the other hand, is the variability due to the
inherent randomness of molecular events inside the cell and represents a collection
of independent random processes. One way to attempt to measure the amount of
intrinsic and extrinsic noise is to take two identical copies of a biomolecular cir-
cuit and compare their responses [28, 92]. Correlated variations in the output of
the circuits corresponds (roughly) to extrinsic noise and uncorrelated variations to
intrinsic noise [44, 92].

The types of models that are used to capture stochastic behavior are very dif-
ferent than those used for deterministic responses. Instead of writing differential
equations that track average concentration levels, we must keep track of the indi-
vidual events that can occur with some probability per unit time (or “propensity”).
We will explore the methods for modeling and analysis of stochastic systems in
Chapter 4.

1.2 Dynamics and Control in the Cell

The molecular processes inside a cell determine its behavior and are responsible
for metabolizing nutrients, generating motion, enabling procreation and carrying
out the other functions of the organism. In multi-cellular organisms, different types
of cells work together to enable more complex functions. In this section we briefly
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describe the role of dynamics and control within a cell and discuss the basic pro-
cesses that govern its behavior and its interactions with its environment (including
other cells). We assume knowledge of the basics of cell biology at the level pro-
vided in Appendix A; a much more detailed introduction to the biology of the cell
and some of the processes described here can be found in standard textbooks on
cell biology such as Alberts et al. [2] or Phillips et al. [76]. (Readers who are fa-
miliar with the material at the level described in these latter references can skip this
section without any loss of continuity.)

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the response of a
cell to various conditions. DNA is organized into collections of genes, with each
gene encoding a corresponding protein that performs a set of functions in the cell.
The activation and repression of genes are determined through a series of complex
interactions that give rise to a remarkable set of circuits that perform the functions
required for life, ranging from basic metabolism to locomotion to procreation. Ge-
netic circuits that occur in nature are robust to external disturbances and can func-
tion in a variety of conditions. To understand how these processes occur (and some
of the dynamics that govern their behavior), it will be useful to present a relatively
detailed description of the underlying biochemistry involved in the production of
proteins.

DNA is double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone (see Figure 1.5).
The complementary strands of DNA are composed of a sequence of nucleotides
that consist of a sugar molecule (deoxyribose) bound to one of 4 bases: adenine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand (by convention
the top row of a DNA sequence when it is written in text form) is specified from the
5’ end of the DNA to the 3’ end of the DNA. (As described briefly in Appendix A,
5’ and 3’ refer to carbon locations on the deoxyribose backbone that are involved
in linking together the nucleotides that make up DNA.) The DNA that encodes
proteins consists of a promoter region, regulator regions (described in more detail
below), a coding region and a termination region (see Figure 1.6). We informally
refer to this entire sequence of DNA as a gene.

Expression of a gene begins with the transcription of DNA into mRNA by RNA
polymerase, as illustrated in Figure 1.7. RNA polymerase enzymes are present in
the nucleus (for eukaryotes) or cytoplasm (for prokaryotes) and must localize and
bind to the promoter region of the DNA template. Once bound, the RNA poly-
merase “opens” the double stranded DNA to expose the nucleotides that make up
the sequence. This reversible reaction, called isomerization, is said to transform
the RNA polymerase and DNA from a closed complex to an open complex. Af-
ter the open complex is formed, RNA polymerase begins to travel down the DNA
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(a) Base pairs (b) Double stranded

Figure 1.5: Molecular structure of DNA. (a) Individual bases (nucleotides) that make up
DNA: adenine (A), cytocine (C), guanine (G) and thymine (T). (b) Double stranded DNA
formed from individual nucleotides, with A binding to T and C binding to G. Each strand
contains a 5’ and 3’ end, determined by the locations of the carbons where the next nu-
cleotide binds. Figure from Phillips, Kondev and Theriot [76]; used with permission of
Garland Science.

strand and constructs an mRNA sequence that matches the 5’ to 3’ sequence of
the DNA to which it is bound. By convention, we number the first base pair that
is transcribed as ‘+1’ and the base pair prior to that (which is not transcribed) is
labeled as ‘-1’. The promoter region is often shown with the -10 and -35 regions
indicated, since these regions contain the nucleotide sequences to which the RNA
polymerase enzyme binds (the locations vary in different cell types, but these two
numbers are typically used).

The RNA strand that is produced by RNA polymerase is also a sequence of nu-
cleotides with a sugar backbone. The sugar for RNA is ribose instead of deoxyri-
bose and mRNA typically exists as a single stranded molecule. Another difference
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Figure 1.6: Geometric structure of DNA. The layout of the DNA is shown at the top. RNA
polymerase binds to the promoter region of the DNA and transcribes the DNA starting at
the +1 side and continuing to the termination site.
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Figure 1.7: Production of messenger RNA from DNA. RNA polymerase, along with other
accessory factors, binds to the promoter region of the DNA and then “opens” the DNA to
begin transcription (initiation). As RNA polymerase moves down the DNA, producing an
RNA transcript (elongation), which is later translated into a protein. The process ends when
the RNA polymerase reaches the terminator (termination). Reproduced from Courey [18];
permission pending.

is that the base thymine (T) is replaced by uracil (U) in RNA sequences. RNA
polymerase produces RNA one base pair at a time, as it moves from in the 5’ to 3’
direction along the DNA coding strand. RNA polymerase stops transcribing DNA
when it reaches a termination region (or terminator) on the DNA. This termination
region consists of a sequence that causes the RNA polymerase to unbind from the
DNA. The sequence is not conserved across species and in many cells the termi-
nation sequence is sometimes “leaky”, so that transcription will occasionally occur
across the terminator.

Once the mRNA is produced, it must be translated into a protein. This process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, there is a region
of the mRNA in which the ribosome (a molecular complex consisting of of both
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proteins and RNA) binds. This region, called the ribosome binding site (RBS), has
some variability between different cell species and between different genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the consensus sequence
for the RBS. (A consensus sequence is a pattern of nucleotides that implements
a given function across multiple organisms; it is not exactly conserved, so some
variations in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps before it is trans-
lated. The RNA sequence that has been created by RNA polymerase consists of
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only the exons, which contain the coding sequence for the
protein. The term pre-mRNA is often used to distinguish between the raw transcript
and the spliced mRNA sequence, which is called mature mRNA. In addition to
splicing, the mRNA is also modified to contain a poly(A) (polyadenine) tail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3’ end of the mRNA.
This processed sequence is then transported out of the nucleus into the cytoplasm,
where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well defined ribosome binding se-
quence and hence the process of the binding of the ribosome to the mRNA is more
complicated. The Kozak sequence A/GCCACCAUGG is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codon (described
below). However, mRNA lacking the Kozak sequence can also be translated.

Once the ribosome is bound to the mRNA, it begins the process of translation.
Proteins consist of a sequence of amino acids, with each amino acid specified by
a codon that is used by the ribosome in the process of translation. Each codon
consists of three base pairs and corresponds to one of the 20 amino acids or a “stop”
codon. The genetic code mapping between codons and amino acids is shown in
Table A.1. The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (which binds
to the tRNA) into the polypeptide chain, as shown in Figure 1.8. The start codon
(AUG) specifies the location at which translation begins, as well as coding for the
amino acid methionine (a modified form is used in prokaryotes). All subsequent
codons are translated by the ribosome into the corresponding amino acid until it
reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide chain
that folds on itself to form a protein. The process of folding is complicated and
involves a variety of chemical interactions that are not completely understood. Ad-
ditional post-translational processing of the protein can also occur at this stage,
until a folded and functional protein is produced. It is this molecule that is able to
bind to other species in the cell and perform the chemical reactions that underly
the behavior of the organism. The maturation time of a protein is the time required
for the polypeptide chain to fold into a functional protein.

Each of the processes involved in transcription, translation and folding of the
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Figure 1.8: Translation is the process of translating the sequence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic
code describes the relationship between the sequence of base pairs in a gene and the cor-
responding amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemble the protein. Figure and
caption courtesy the National Human Genome Research Institute.

protein takes time and affects the dynamics of the cell. Table 1.1 shows the rates of
some of the key processes involved in the production of proteins. It is important to
note that each of these steps is highly stochastic, with molecules binding together
based on some propensity that depends on the binding energy but also the other
molecules present in the cell. In addition, although we have described everything

Table 1.1: Rates of core processes involved in the creation of proteins from DNA in E. coli.

Process Characteristic rate Source
mRNA transcription rate 24-29 bp/sec BioNumbers [12]
Protein translation rate 12–21 aa/sec BioNumbers [12]
Maturation time (fluorescent proteins) 6–60 min BioNumbers [12]
mRNA half life ∼ 100 sec YM03 [103]
E. coli cell division time 20–40 min BioNumbers [12]
Yeast cell division time 70–140 min BioNumbers [12]
Protein half life ∼ 5×104 sec YM03 [103]
Protein diffusion along DNA up to 104 bp/sec PKT [76]
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Figure 1.9: Regulation of proteins. Figure from Phillips, Kondev and Theriot [76]; used
with permission of Garland Science.

as a sequential process, each of the steps of transcription, translation and folding
are happening simultaneously. In fact, there can be multiple RNA polymerases that
are bound to the DNA, each producing a transcript. In prokaryotes, as soon as
the ribosome binding site has been transcribed, the ribosome can bind and begin
translation. It is also possible to have multiple ribosomes bound to a single piece of
mRNA. Hence the overall process can be extremely stochastic and asynchronous.

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the production of proteins.
These regulatory mechanisms can occur at various points in the overall process that
produces the protein. Figure 1.9 shows some of the common points of regulation in
the protein production process. We focus first on transcriptional regulation, which
refers to regulatory mechanisms that control whether or not a gene is transcribed.

The simplest forms of transcriptional regulation are repression and activation,
which are controlled through transcription factors. In the case of repression, the
presence of a transcription factor (often a protein that binds near the promoter)
turns off the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the case of activation (or positive reg-
ulation), transcription is enhanced when an activator protein binds to the promoter
site (facilitating binding of the RNA polymerase).
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(a) Repression of gene expression (b) Examples of repressors

Figure 1.10: Repression of gene expression. Figure from Phillips, Kondev and Theriot [76];
used with permission of Garland Science.

Represession. A common mechanism for repression is that a protein binds to a re-
gion of DNA near the promoter and blocks RNA polymerase from binding. The
region of DNA to which the repressor protein binds is called an operator region
(see Figure 1.10a). If the operator region overlaps the promoter, then the presence
of a protein at the promoter can “block” the DNA at that location and transcrip-
tion cannot initiate, as illustrated in Figure 1.10a. Repressor proteins often bind to
DNA as dimers or pairs of dimers (effectively tetramers). Figure 1.10b shows some
examples of repressors bound to DNA.

A related mechanism for repression is DNA looping. In this setting, two repres-
sor complexes (often dimers) bind in different locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly-
merase to bind to the promoter, thus inhibiting transcription. Figure 1.11 shows an
example of this type of repression, in the lac operon. (An operon is a set of genes
that is under control of a single promoter.)

Activation. The process of activation of a gene requires that an activator protein be
present in order for transcription to occur. In this case, the protein must work to
either recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the promoter
sequence bind RNA polymerase. Figure 1.12 illustrates the basic concept. Like
repressors, many activators have inducers, which can act in either a positive or
negative fashion (see Figure 1.14b). For example, cyclic AMP (cAMP) acts as a
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(a) DNA looping (b) lac repressor

Figure 1.11: Repression via DNA looping. Figure from Phillips, Kondev and Theriot [76];
used with permission of Garland Science.

positive inducer for CAP.
Another mechanism for activation of transcription, specific to prokaryotes, is

the use of sigma factors. Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs transcrip-
tion. Different sigma factors enable RNA polymerase to bind to different promot-
ers, so the sigma factor acts as a type of activating signal for transcription. Table 1.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, such as when the
cell undergoes heat shock. Another use is to control the timing of the expression of
certain genes, as illustrated in Figure 1.13.

Inducers. A feature that is present in some types of transcription factors is the ex-
istence of an inducer molecule that combines with the protein to either activate or
inactivate its function. A positive inducer is a molecule that must be present in order
for repression or activation to occur. A negative inducer is one in which the pres-
ence of the inducer molecule blocks repression or activation, either by changing the
shape of the transcription factor protein or by blocking active sites on the protein
that would normally bind to the DNA. Figure 1.14a summarizes the various possi-
bilities. Common examples of repressor-inducer pairs include lacI and lactose (or
IPTG), tetR and aTc, and tryptophan repressor and tryptophan. Lactose/IPTG and
aTc are both negative inducers, so their presence causes the otherwise repressed

Table 1.2: Sigma factors in E. coli [2].

Sigma factor Promoters recognized
σ70 most genes
σ32 genes associated with heat shock
σ28 genes involved in stationary phase and stress response
σ28 genes involved in motility and chemotaxis
σ24 genes dealing with misfolded proteins in the periplasm



1.2. DYNAMICS AND CONTROL IN THE CELL 17

(a) Activation mechanism (b) Examples of activators

Figure 1.12: Activation of gene expression. (a) Conceptual operation of an activator. The
activator binds to DNA upstream of the gene and attracts RNA polymerase to the DNA
strand. (b) Examples of activiators: catablite activator protein (CAP), p53 tumor supressor,
zinc finger DNA binding domain and leucine zipper DAN binding domain. Figure from
Phillips, Kondev and Theriot [76]; used with permission of Garland Science.

gene to be expressed, while tryptophan is a positive inducer.

Combinatorial promoters. In addition to repressors and activators, many genetic
circuits also make use of combinatorial promoters that can act as either repressors
or activators for genes. This allows genes to be switched on and off based on more
complex conditions, represented by the concentrations of two or more activators or
repressors.

Figure 1.15 shows one of the classic examples, a promoter for the lac system.
In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induced by
cAMP, acts as an activator and LacI (also called “lac repressor”), which is neg-

Figure 1.13: Use of sigma factors to controlling the timing of expression. Reproduced from
Alberts et al. [2]; permission pending.
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Figure 1.14: Effects of inducers. Reproduced from Alberts et al. [2]; permission pending.

atively induced by lactose, acts as a repressor. In addition, the inducer cAMP is
expressed only when glucose levels are low. The resulting behavior is that the pro-
teins for metabolizing lactose are expressed only in conditions where there is no
glucose (so CAP is active) and lactose is present.

More complicated combinatorial promoters can also be used to control tran-
scription in two different directions, an example that is found in some viruses.

Antitermination. A final method of activation in prokaryotes is the use of antiter-
mination. The basic mechanism involves a protein that binds to DNA and deacti-
vates a site that would normally serve as a termination site for RNA polymerase.
Additional genes are located downstream from the termination site, but without a
promoter region. Thus, in the presence of the anti-terminator protein, these genes
are not expressed (or expressed with low probability). However, when the antiter-
mination protein is present, the RNA polymerase maintains (or regains) its contact
with the DNA and expression of the downstream genes is enhanced. In this way,
antitermination allows downstream genes to be regulated by repressing “prema-
ture” termination. An example of an antitermination protein is the protein N in
phage λ, which binds to a region of DNA labeled Nut (for N utilization), as shown
in Figure 1.16 [39].
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Figure 1.15: Combinatorial logic for the lac operator. Figure from Phillips, Kondev and
Theriot [76]; used with permission of Garland Science.

Post-transcriptional regulation of protein production

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is produced.
These include control of splicing and transport from the nucleus (in eukaryotes),
the use of various secondary structure patterns in mRNA that can interfere with
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada-
tion of mRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape and activity

Figure 1.16: Antitermination. Reproduced from [39]; permission pending.



20 CHAPTER 1. INTRODUCTORY CONCEPTS

Figure 1.17: Phosphorylation of a protein via a kinase. Reproduced from Madhani [61];
permission pending.

level. We briefly describe some of the major mechanisms here.

Material to be written: sRNA, riboswitches.Review

One of the most common types of post-transcriptional regulation is through the
phosphorylation of proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation of the protein
changes, usually from an inactive configuration to an active one. The enzyme that
adds the phosphate group is called a kinase (or sometimes a phosphotransferase)
and it operates by transferring a phosphate group from a bound ATP molecule to the
protein, leaving behind ADP and the phosphorylated protein. Dephosphorylation
is a complementary enzymatic process that can remove a phosphate group from
a protein. The enzyme that performs dephosphorylation is called a phosphatase.
Figure 1.17 shows the process of phosphorylation in more detail.

Phosphorylation is often used as a regulatory mechanism, with the phosphory-
lated version of the protein being the active conformation. Since phosphorylation
and dephosphorylation can occur much more quickly than protein production and
degradation, it is used in biological circuits in which a rapid response is required.
One common pattern is that a signaling protein will bind to a ligand and the result-
ing allosteric change allows the signaling protein to serve as a kinase. The newly
active kinase then phosphorylates a second protein, which modulates other func-
tions in the cell. Phosphorylation cascades can also be used to amplify the effect of
the original signal; we will describe this in more detail in Section 2.5.

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphatases, on the other hand, are much
less specific, and a given phosphatase species may desphosphorylate many different
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types of proteins. The combined action of kinases and phosphatases is important in
signaling since the only way to deactivate a phosphorylated protein is by removing
the phosphate group. Thus phosphatases are constantly “turning off” proteins, and
the protein is activated only when sufficient kinase activity is present.

Phosphorylation of a protein occurs by the addition of a charged phosphate
(PO4) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amino acids. Sim-
ilar covalent modifications can occur by the attachment of other chemical groups
to select amino acids. Methylation occurs when a methyl group (CH3) is added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structures. Acetylation occurs when an acetyl
group (COCH3) is added to lysine and is also used to modify histones. Ubiquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

1.3 Control and Dynamical Systems Tools [AM08]

To study the complex dynamics and feedback present in biological systems, we
will make use of mathematical models combined with analytical and computational
tools. In this section we present a brief introduction to some of the key concepts
from control and dynamical systems that are relevant for the study of biomolecular
systems considered in later chapters. More details on the application of specific
concepts listed here to biomolecular systems is provided in the main body of the
text. Readers who are familiar with introductory concepts in dynamical systems
and control, at the level described in Åström and Murray [1] for example, can skip
this section.

Dynamics, feedback and control

A dynamical system is a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The term feedback refers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult because the first system in-
fluences the second and the second system influences the first, leading to a circular
argument. This makes reasoning based on cause and effect tricky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that the behavior
of feedback systems is often counterintuitive, and it is therefore necessary to resort
to formal methods to understand them.

Figure 1.18 illustrates in block diagram form the idea of feedback. We often
use the terms open loop and closed loop when referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
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Figure 1.18: Open and closed loop systems. (a) The output of system 1 is used as the input
of system 2, and the output of system 2 becomes the input of system 1, creating a closed
loop system. (b) The interconnection between system 2 and system 1 is removed, and the
system is said to be open loop.

shown in Figure 1.18a. If we break the interconnection, we refer to the configura-
tion as an open loop system, as shown in Figure 1.18b.

Biological systems make use of feedback in an extraordinary number of ways,
on scales ranging from molecules to cells to organisms to ecosystems. One ex-
ample is the regulation of glucose in the bloodstream through the production of
insulin and glucagon by the pancreas. The body attempts to maintain a constant
concentration of glucose, which is used by the body’s cells to produce energy.
When glucose levels rise (after eating a meal, for example), the hormone insulin
is released and causes the body to store excess glucose in the liver. When glucose
levels are low, the pancreas secretes the hormone glucagon, which has the opposite
effect. Referring to Figure 1.18, we can view the liver as system 1 and the pancreas
as system 2. The output from the liver is the glucose concentration in the blood,
and the output from the pancreas is the amount of insulin or glucagon produced.
The interplay between insulin and glucagon secretions throughout the day helps
to keep the blood-glucose concentration constant, at about 90 mg per 100 mL of
blood.

Feedback has many interesting properties that can be exploited in designing sys-
tems. As in the case of glucose regulation, feedback can make a system resilient
toward external influences. It can also be used to create linear behavior out of non-
linear components, a common approach in electronics. More generally, feedback
allows a system to be insensitive both to external disturbances and to variations in
its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabilities
in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

The mathematical study of the behavior of feedback systems is an area known
as control theory. The term control has many meanings and often varies between
communities. In engineering applications, we typical define control to be the use
of algorithms and feedback in engineered systems. Thus, control includes such ex-
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amples as feedback loops in electronic amplifiers, setpoint controllers in chemical
and materials processing, “fly-by-wire” systems on aircraft and even router proto-
cols that control traffic flow on the Internet. Emerging applications include high-
confidence software systems, autonomous vehicles and robots, real-time resource
management systems and biologically engineered systems. At its core, control is an
information science and includes the use of information in both analog and digital
representations.

Feedback properties

Feedback is a powerful idea that is used extensively in natural and technological
systems. The principle of feedback is simple: implement correcting actions based
on the difference between desired and actual performance. In engineering, feed-
back has been rediscovered and patented many times in many different contexts.
The use of feedback has often resulted in vast improvements in system capability,
and these improvements have sometimes been revolutionary, as discussed above.
The reason for this is that feedback has some truly remarkable properties, which
we discuss briefly here.

Robustness to Uncertainty. One of the key uses of feedback is to provide robust-
ness to uncertainty. By measuring the difference between the sensed value of a
regulated signal and its desired value, we can supply a corrective action. If the sys-
tem undergoes some change that affects the regulated signal, then we sense this
change and try to force the system back to the desired operating point. This is pre-
cisely the effect that Watt exploited in his use of the centrifugal governor on steam
engines.

As an example of this principle, consider the simple feedback system shown in
Figure 1.19. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simple proportional-integral (PI) feedback
is used to make the amount of gas depend on both the error between the current
and the desired speed and the integral of that error. The plot on the right shows
the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from having a different number of
passengers or towing a trailer. Notice that independent of the mass (which varies by
a factor of 3!), the steady-state speed of the vehicle always approaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustness is the neg-
ative feedback amplifier. When telephone communications were developed, ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuum tube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-



24 CHAPTER 1. INTRODUCTORY CONCEPTS

Compute

Actuate
Throttle

Sense
Speed

0 5 10

25

30

Sp
ee

d
[m
/s

]

Time [s]

m

Figure 1.19: A feedback system for controlling the speed of a vehicle. In the block diagram
on the left, the speed of the vehicle is measured and compared to the desired speed within
the “Compute” block. Based on the difference in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehicle by the engine, drivetrain and
wheels. The figure on the right shows the response of the control system to a commanded
change in speed from 25 m/s to 30 m/s. The three different curves correspond to differing
masses of the vehicle, between 1000 and 3000 kg, demonstrating the robustness of the
closed loop system to a very large change in the vehicle characteristics.

jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black used negative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Feedback is also pervasive in biological systems, where transcriptional, trans-
lational and allosteric mechanisms are used to regulate internal concentrations of
various species, and much more complex feedbacks are used to regulate proper-
ties at the organism level (such as body temperature, blood pressure and circadian
rhythm). One difference in biological systems is that the separation of sensing, ac-
tuation and computation, a common approach in most engineering control systems,
is less evident. Instead, the dynamics of the molecules that sense the environmen-
tal condition and make changes to the operation of internal components may be
integrated together in ways that make it difficult to untangle the operation of the
system. Similarly, the “reference value” to which we wish to regulate a system may
not be an explicit signal, but rather a consequence of many different changes in the
dynamics that are coupled back to the regulatory elements. Hence we do not see
a clear “setpoint” for the desired ATP concentration, blood oxygen level or body
temperature, for example. These difficulties complicate our analysis of biological
systems, though many important insights can still be obtained.

Design of Dynamics. Another use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meet the needs of
an application: systems that are unstable can be stabilized, systems that are slug-
gish can be made responsive and systems that have drifting operating points can
be held constant. Control theory provides a rich collection of techniques to analyze
the stability and dynamic response of complex systems and to place bounds on the
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behavior of such systems by analyzing the gains of linear and nonlinear operators
that describe their components.

An example of the use of control in the design of dynamics comes from the area
of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [66], illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the age
of flying will have arrived, for all other difficulties are of minor impor-
tance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By using their
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of feedback in aero-
nautical engineering, and Sperry won a prize in a competition for the safest airplane
in Paris in 1914. Figure 1.20 shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilize an unsta-
ble system and hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By using feedback to
create a system whose response matches a desired profile, we can hide the com-
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the responses
of a large number of interacting components. This was one of the advantages of
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Figure 1.20: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [46].

Black’s use of negative feedback in vacuum tube amplifiers: the resulting device
had a well-defined linear input/output response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of Feedback. While feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesirable effects of feedback
when the amplification on a microphone is turned up too high in a room. This
is an example of feedback instability, something that we obviously want to avoid.
This is tricky because we must design the system not only to be stable under nom-
inal conditions but also to remain stable under all possible perturbations of the
dynamics.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects measurement
noise into the system. Measurements must be carefully filtered so that the actuation
and process dynamics do not respond to them, while at the same time ensuring that
the measurement signal from the sensor is properly coupled into the closed loop
dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding a control
system in a product. While the cost of sensing, computation and actuation has de-
creased dramatically in the past few decades, the fact remains that control systems
are often complicated, and hence one must carefully balance the costs and benefits.
An early engineering example of this is the use of microprocessor-based feedback
systems in automobiles.The use of microprocessors in automotive applications be-
gan in the early 1970s and was driven by increasingly strict emissions standards,
which could be met only through electronic controls. Early systems were expensive
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and failed more often than desired, leading to frequent customer dissatisfaction. It
was only through aggressive improvements in technology that the performance,
reliability and cost of these systems allowed them to be used in a transparent fash-
ion. Even today, the complexity of these systems is such that it is difficult for an
individual car owner to fix problems.

Feedforward. Feedback is reactive: there must be an error before corrective actions
are taken. However, in some circumstances it is possible to measure a disturbance
before it enters the system, and this information can then be used to take corrective
action before the disturbance has influenced the system. The effect of the distur-
bance is thus reduced by measuring it and generating a control signal that coun-
teracts it. This way of controlling a system is called feedforward. Feedforward is
particularly useful in shaping the response to command signals because command
signals are always available. Since feedforward attempts to match two signals, it
requires good process models; otherwise the corrections may have the wrong size
or may be badly timed.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties.

Positive Feedback. In most of control theory, the emphasis is on the role of negative
feedback, in which we attempt to regulate the system by reacting to disturbances in
a way that decreases the effect of those disturbances. In some systems, particularly
biological systems, positive feedback can play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a situation in
which that quantity is further increased through its dynamics. This has a destabi-
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior is used in bio-
logical (and engineering) systems to obtain a very fast response to a condition or
signal.

One example of the use of positive feedback is to create switching behavior,
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do not cause the
system to jitter. This type of behavior is called bistability and is often associated
with memory devices.
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Figure 1.21: Input/output characteristics of on-off controllers. Each plot shows the input on
the horizontal axis and the corresponding output on the vertical axis. Ideal on-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (c). Note that for on-off
control with hysteresis, the output depends on the value of past inputs.

Simple forms of feedback

The idea of feedback to make corrective actions based on the difference between
the desired and the actual values of a quantity can be implemented in many different
ways. The benefits of feedback can be obtained by very simple feedback laws such
as on-off control, proportional control and proportional-integral-derivative control.
In this section we provide a brief preview of some of these topics to provide a basis
of understanding for their use in the chapters that follows.

On-Off Control. A simple feedback mechanism can be described as follows:

u =

⎧⎪⎪⎨⎪⎪⎩umax if e > 0

umin if e < 0,
(1.1)

where the control error e = r− y is the difference between the reference signal (or
command signal) r and the output of the system y and u is the actuation command.
Figure 1.21a shows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equation (1.1) is called on-off control. One of its chief advan-
tages is that it is simple and there are no parameters to choose. On-off control often
succeeds in keeping the process variable close to the reference, such as the use of
a simple thermostat to maintain the temperature of a room. It typically results in
a system where the controlled variables oscillate, which is often acceptable if the
oscillation is sufficiently small.

Notice that in equation (1.1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figure 1.21b and 1.21c).

PID Control. The reason why on-off control often gives rise to oscillations is that
the system overreacts since a small change in the error makes the actuated variable
change over the full range. This effect is avoided in proportional control, where the
characteristic of the controller is proportional to the control error for small errors.
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This can be achieved with the control law

u =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
umax if e ≥ emax

kpe if emin < e < emax

umin if e ≤ emin,

(1.2)

where kp is the controller gain, emin = umin/kp and emax = umax/kp. The interval
(emin,emax) is called the proportional band because the behavior of the controller
is linear when the error is in this interval:

u = kp(r− y) = kpe if emin ≤ e ≤ emax. (1.3)

While a vast improvement over on-off control, proportional control has the
drawback that the process variable often deviates from its reference value. In partic-
ular, if some level of control signal is required for the system to maintain a desired
value, then we must have e � 0 in order to generate the requisite input.

This can be avoided by making the control action proportional to the integral of
the error:

u(t) = ki

∫ t

0
e(τ)dτ. (1.4)

This control form is called integral control, and ki is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error. The catch is that there may not always be a steady state because
the system may be oscillating.

An additional refinement is to provide the controller with an anticipative abil-
ity by using a prediction of the error. A simple prediction is given by the linear
extrapolation

e(t+Td) ≈ e(t)+Td
de(t)

dt
,

which predicts the error Td time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be expressed mathematically as

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ+ kd

de(t)
dt
. (1.5)

The control action is thus a sum of three terms: the past as represented by the
integral of the error, the present as represented by the proportional term and the
future as represented by a linear extrapolation of the error (the derivative term).
This form of feedback is called a proportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.22.

A PID controller is very useful and is capable of solving a wide range of con-
trol problems. More than 95% of all industrial control problems are solved by PID
control, although many of these controllers are actually proportional-integral (PI)
controllers because derivative action is often not included [23]. There are also more
advanced controllers, which differ from PID controllers by using more sophisti-
cated methods for prediction.
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Figure 1.22: Action of a PID controller. At time t, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedback is based on the integral
of the error up to time t (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of change of the error. Td

represents the approximate amount of time in which the error is projected forward (see
text).

1.4 Input/Output Modeling [AM08]

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior of systems, and we will
often work in “state space” form. In the remainder of this section we provide an
overview of some of the key concepts in input/output modeling. The mathematical
details introduced here are explored more fully in Chapter 3.

The heritage of electrical engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic amplifiers led to a focus
on input/output behavior. A system was considered a device that transforms inputs
to outputs, as illustrated in Figure 1.23. Conceptually an input/output model can be
viewed as a giant table of inputs and outputs. Given an input signal u(t) over some
interval of time, the model should produce the resulting output y(t).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio or
a television and break it down into manageable pieces such as the receiver, demod-
ulator, amplifier and speakers. Each of these pieces has a set of inputs and outputs
and, through proper design, these components can be interconnected to form the
entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully below, but roughly
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Figure 1.23: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one on the right is its
representation as a block diagram.

speaking a system is linear if the superposition (addition) of two inputs yields an
output that is the sum of the outputs that would correspond to individual inputs be-
ing applied separately. A system is time-invariant if the output response for a given
input does not depend on when that input is applied. While most biomolecular sys-
tems are neither linear nor time-invariant, they can often be approximated by such
models, often by looking at perturbations of the system from its nominal behavior,
in a fixed context.

One of the reasons that linear time-invariant systems are so prevalent in model-
ing of input/output systems is that a large number of tools have been developed to
analyze them. One such tool is the step response, which describes the relationship
between an input that changes from zero to a constant value abruptly (a step input)
and the corresponding output. The step response is very useful in characterizing
the performance of a dynamical system, and it is often used to specify the desired
dynamics. A sample step response is shown in Figure 1.24a.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged
for systems that can be described by their frequency response. The results are based
on the theory of complex variables and Laplace transforms. The basic idea behind
frequency response is that we can completely characterize the behavior of a system
by its steady-state response to sinusoidal inputs. Roughly speaking, this is done
by decomposing any arbitrary signal into a linear combination of sinusoids (e.g.,
by using the Fourier transform) and then using linearity to compute the output by
combining the response to the individual frequencies. A sample frequency response
is shown in Figure 1.24b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
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Figure 1.24: Input/output response of a linear system. The step response (a) shows the
output of the system due to an input that changes from 0 to 1 at time t = 5 s. The fre-
quency response (b) shows the amplitude gain and phase change due to a sinusoidal input
at different frequencies.

particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The control view

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, models often take the form

dx
dt
= f (x,u), y = h(x,u), (1.6)

where x is a vector of state variables, u is a vector of control signals and y is a
vector of measurements. The term dx/dt (sometimes also written as ẋ) represents
the derivative of x with respect to time, now considered a vector, and f and h
are (possibly nonlinear) mappings of their arguments to vectors of the appropriate
dimension.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
are addressed in greater detail in AM08.
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A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe a nominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description).

An interesting observation in the design of control systems is that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical system the state
is composed of the variables required to account for the current context of the cell,
including the concentrations of the various species and complexes that are present.
It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. The
state variables are gathered in a vector x ∈ Rn called the state vector. The control
variables are represented by another vector u ∈ Rp, and the measured signal by the
vector y ∈ Rq. A system can then be represented by the differential equation

dx
dt
= f (x,u), y = h(x,u), (1.7)

where f : Rn ×Rp → Rn and h : Rn ×Rp → Rq are smooth mappings. We call a
model of this form a state space model.

The dimension of the state vector is called the order of the system. The sys-
tem (1.7) is called time-invariant because the functions f and h do not depend
explicitly on time t; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the function f gives
the rate of change of the state vector as a function of state x and control u, and the
function h gives the measured values as functions of state x and control u.
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A system is called a linear state space system if the functions f and h are linear
in x and u. A linear state space system can thus be represented by

dx
dt
= Ax+Bu, y =Cx+Du, (1.8)

where A, B, C and D are constant matrices. Such a system is said to be linear and
time-invariant, or LTI for short. The matrix A is called the dynamics matrix, the
matrix B is called the control matrix, the matrix C is called the sensor matrix and
the matrix D is called the direct term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

Input/output formalisms for biomolecular modeling

A key challenge in developing models for any class of problems is the selection of
an appropriate mathematical framework for the models. Among the features that
we believe are important for a wide variety of biological systems are capturing
the temporal response of a biomolecular system to various inputs and understand-
ing how the underlying dynamic behavior leads to a given phenotype. The models
should reflect the subsystem structure of the underlying dynamical system to al-
low prediction of results, but need not necessarily be mechanistically accurate at
a detailed biochemical level. We are particularly interested in those problems that
include a number of molecular “subsystems” that interact with each other, and so
our models should support a level of modularity (with the additional advantage of
allowing multiple groups to develop detailed models for each module that can be
combined to form more complex models of the interacting components). Since we
are likely to be building models based on high-throughput experiments, it is also
key that the models capture the measurable outputs of the systems.

For many of the systems that we are interested in, a good starting point is to
use reduced-order models consisting of nonlinear differential equations, possibly
with some time delay. Using the basic structure shown in Figure 1.3, a model for a
multi-component system might be descibed using a set of input/output differential
equations of the form

dxi

dt
= Axi+N(xi,Ly∗, θ)+Bui+Fwi,

yi =Cxi+Hvi y∗i (t) = yi(t−τi).
(1.9)

The internal state of the ith component (subsystem) is captured by the state xi ∈Rni ,
which might represent the concentrations of various species and complexes as well
as other internal variables required to describe the dynamics. The “outputs” of the
system, which describe those species (or other quantities) that interact with other
subsystems in the cell is captured by the variable yi ∈ Rpi . The internal dynamics
consist of a set of linear dynamics (Ax) as well as nonlinear terms that depend



1.4. INPUT/OUTPUT MODELING [AM08] 35

both on the internal state and the outputs of other subsystems (N( · )), where Ly∗

represents interconnections with other subsystems and θ is a set of parameters that
represent the context of the system (described in more detail below). We also allow
for the possibility of time delays (due to folding, transport or other processes) and
write y∗i for the “functional” output seen by other subsystems.

The coupling between subsystems is captured using a weighted graph, whose
elements are represented by the coefficients of the interconnection matrix L. In the
simplest version of the model, we simply combine different outputs from other
modules in some linear combination to obtain the “input” Ly∗. More general inter-
connections are possible, including allowing multiple outputs from different sub-
systems to interact in nonlinear ways (such as one often sees on combinatorial
promoters in gene regulatory networks).

Finally, in addition to the internal dynamics and nonlinear coupling, we sepa-
rately keep track of external inputs to the subsystem (Bu), stochastic disturbances
(Fw) and measurement noise (Hv). We treat the external inputs u as deterministic
variables (representing inducer concentrations, nutrient levels, temperature, etc)
and the disturbances and noise w and v as (vector) random processes. If desired,
the mappings from the various inputs to the states an outputs, represented by the
matrices B, F and H can also depend on the system state x (resulting in additional
nonlinearities).

This particular structure is useful because it captures a large number of mod-
eling frameworks in a single formalism. In particular, mass action kinetics and
chemical reaction networks can be represented by equating the stoichiometry ma-
trix with the interconnection matrix L and using the nonlinear terms to capture
the fluxes, with θ representing the rate constants. We can also represent typical
reduced-order models for transcriptional regulatory networks by letting the nonlin-
ear functions N represent various types of Hill functions and including the effects
of mRNA/protein production, degradation and dilution through the linear dynam-
ics. These two classes of systems can also be combined, allowing a very expressive
set of dynamics that is capable of capturing many relevant phenomena of interest
in molecular biology.

Despite being a well-studied class of systems, there are still many open ques-
tions with this framework, especially in the context of biomolecular systems. For
example, a rigorous theory of the effects of crosstalk, the role of context on the
nonlinear elements, and combining the effects of interconnection, uncertainty and
nonlinearity is just emerging. Adding stochastic effects, either through the distur-
bance and noise terms, initial conditions or in a more fundamental way, is also
largely unexplored. And the critical need for methods for performing model re-
duction in a way that respects of the structure of the subsystems has only recently
begun to be explored. Nonetheless, many of these research directions are being
pursued and we attempt to provide some insights in this text into the underlying
techniques that are available.
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Figure 1.25: Milestones in the history of synthetic biology.

1.5 From Systems to Synthetic Biology

The rapidly growing field of synthetic biology seeks to use biological principles
and processes to build useful engineering devices and systems. Applications of
synthetic biology range from materials production (drugs, biofuels) to biological
sensing and diagnostics (chemical detection, medical diagnostics) to biological ma-
chines (bioremediation, nanoscale robotics). Like many other fields at the time of
their infancy (electronics, software, networks), it is not yet clear where synthetic
biology will have its greatest impact. However, recent advances such as the abil-
ity to “boot up” a chemically synthesized genome [32] demonstrate the ability to
synthesize systems that offer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to design systems
of this complexity are much more primitive, and de novo synthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms [78].

Several scientific and technological developments over the past four decades
have set the stage for the design and fabrication of early synthetic biomolecular
circuits (see Figure 1.25). An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. In
their 1961 paper, Jacob and Monod introduced for the first time the idea of gene
expression regulation through transcriptional feedback [49]. Only a few years later
(1969), restriction enzymes that cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workers [4]. These enzymes were a major
enabler of recombinant DNA technology, in which genes from one organism are
extracted and spliced into the chromosome of another. One of the most celebrated
products of this technology was the large scale production of insulin by employing
E. coli bacteria as a cell factory [98].
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Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification of small
amounts of DNA and can be used to obtain sufficient quantities for use in a variety
of molecular biology laboratory protocols where higher concentrations of DNA are
required. Using PCR, it is possible to “copy” genes and other DNA sequences out
of their host organisms.

The developments of recombinant DNA technology, PCR and artificial synthe-
sis of DNA provided the ability to “cut and paste” natural or synthetic promoters
and genes in almost any fashion. This cut and paste procedure is called cloning and
consists of four primary steps: fragmentation, ligation, transfection and screening.
The DNA of interest is first isolated using restriction enzymes and/or PCR amplifi-
cation. Then, a ligation procedure is employed in which the amplified fragment is
inserted into a vector. The vector is often a piece of circular DNA, called a plasmid,
that has been linearized by means of restriction enzymes that cleave it at appropri-
ate restriction sites. The vector is then incubated with the fragment of interest with
an enzyme called DNA ligase, producing a single piece of DNA with the target
DNA inserted. The next step is to transfect (or transform) the DNA into living
cells, where the natural replication mechanisms of the cell will duplicate the DNA
when the cell divides. This process does not transfect all cells, and so a selection
procedure if required to isolate those cells that have the desired DNA inserted in
them. This is typically done by using a plasmid that gives the cell resistance to a
specific antibiotic; cells grown in the presence of that antibiotic will only live if
they contain the plasmid. Further selection can be done to insure that the inserted
DNA is also present.

Once a circuit has been constructed, its performance must be verified and, if
necessary, debugged. This is often done with the help of fluorescent reporters. The
most famous of these is GFP, which was isolated from the jellyfish Aequorea vic-
toria in 1978 by Shimomura [88]. Further work by Chalfie and others in the 1990s
enabled the use of GFP in E. coli as a fluorescent reporter by inserting it into an ap-
propriate point in an artificial circuit [17]. By using spectrofluorometry, fluorescent
microscopy or flow cytometry, it is possible to measure the amount of fluorescence
in individual cells or collections of cells and characterize the performance of a
circuit in the presence of inducers or other factors.

Two early examples of the application of these technologies were the repressi-
lator [27] and a synthetic genetic switch [31].

The repressilator is a synthetic circuit in which three proteins each repress an-
other in a cycle. This is shown schematically in Figure 1.26a, where the three pro-
teins are TetR, λ cI and LacI. The basic idea of the repressilator is that if TetR is
present, then it represses the production of λ cI. If λ cI is absent, then LacI is pro-
duced (at the unregulated transcription rate), which in turn represses TetR. Once
TetR is repressed, then λ cI is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrations will oscillate,
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Figure 1.26: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well
as the circuit diagram (center). The flat headed arrow between the protein names represents
repression. (b) A simulation of a simple model for the repressilator, showing the oscillation
of the individual protein concentrations. (Figure courtesy M. Elowitz.)

as shown in Figure 1.26b.
The repressilator can be constructed using the techniques described above. First,

we can make copies of the individual promoters and genes that form our circuit by
using PCR to amplify the selected sequences out of the original organisms in which
they were found. TetR is the tetracycline resistance repressor protein that is found
in gram-negative bacteria (such as E. coli) and is part of the circuitry that provides
resistance to tetracycline. LacI is the gene that produces lac repressor, responsible
for turning off the lac operon in the lactose metabolic pathway in E. coli (see Sec-
tion 5.1). And λ cI comes from λ phage, where it is part of the regulatory circuitry
that regulates lysis and lysogeny.

By using restriction enzymes and related techniques, we can separate the nat-
ural promoters from their associated genes, and then ligate (reassemble) them in
a new order and insert them into a “backbone” vector (the rest of the plasmid, in-
cluding the origin of replication and appropriate antibiotic resistance). This DNA
is then transformed into cells that are grown in the presence of an antibiotic, so that
only those cells that contain the represillator can replicate. Finally, we can take
individual cells containing our circuit and let them grow under a microscope to
image fluorescent reporters coupled to the oscillator.

Another early circuit in the synthetic biology toolkit is a genetic switch built
by Gardner et al. [31]. The genetic switch consists of two repressors connected
together in a cycle, as shown in Figure 1.27a. The intuition behind this circuit is
that if the gene A is being expressed, it will repress production of B and maintain
its expression level (since the protein corresponding to B will not be present to re-
press A). Similarly, if B is being expressed, it will repress the production of A and
maintain its expression level. This circuit thus implements a type of bistability that
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Figure 1.27: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputs u1 and u2 interfere with this
repression, allowing the circuit dynamics to be modified. The simulation in (b) shows the
time response of the system starting from two different initial conditions. The initial portion
of the curve corresponds to protein B having higher concentration than A, and converges to
an equilibrium where A is off and B is on. At time t = 10, the concentrations are perturbed,
moving the concentrations into a region of the state space where solutions converge to the
equilibrium point with the A on and B off.

can be used as a simple form of memory. Figure 1.27b shows the time traces for
a system, illustrating the bistable nature of the circuit. When the initial condition
starts with a concentration of protein B greater than that of A, the solution con-
verges to the equilibrium point where B is on and A is off. If A is greater than B,
then the opposite situation results.

These seemingly simple circuits took years to get to work, but showed that it
was possible to synthesize a biological circuit that performed a desired function
that was not originally present in a natural system. Today, commercial synthesis
of DNA sequences and genes has become cheaper and faster, with a price often
below $0.30 per base pair.1 The combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for imaging and
measurement has vastly simplified the process of producing a sequence of DNA
that encodes a given set of genes, operator sites, promoters and other functions,
and these techniques are a routine part of undergraduate courses in molecular and
synthetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make use of tran-
scriptional or post-transcriptional processing, resulting in very slow timescales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is needed, such as

1As of this writing; divide by a factor of two for every two years after the publication date.
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(a) (b)

Figure 1.28: Expression of a protein using an inducible promoter [16]. (a) The circuit
diagram indicates the DNA sequences that are used to construct the part (chosen from the
BioBrick library). (b) The measured response of the system to a step change in the inducer
level (HSL).

rapid detection of a chemical signal or fast response to changes in the internal envi-
ronment of the cell. In addition, existing methods for biological circuit design have
limited modularity (reuse of circuit elements requires substantial redesign or tun-
ing) and typically operate in very narrow operating regimes (e.g., a single species
grown in a single type of media under carefully controlled conditions). Further-
more, engineered circuits inserted into cells can interact with the host organism
and have other unintended interactions.

As an illustration of the dynamics of synthetic devices in use today, Figure 1.28
shows a typical response of a genetic element to an inducer molecule [16]. In this
circuit, an external signal of homoserine lactone (HSL) is applied at time zero and
the system reaches 10% of the steady state value in approximately 15 minutes. This
response is limited in part by the time required to synthesize the output protein
(GFP), including delays due to transcription, translation and folding. Since this
is the response time for the underlying “actuator”, circuits that are composed of
feedback interconnections of such genetic elements will typically operate at 5–10
times slower speeds. While these speeds are appropriate in many applications (e.g.,
regulation of steady state enzyme levels for materials production), in the context
of biochemical sensors or systems that must maintain a steady operating point in
more rapidly changing thermal or chemical environments, this response time is too
slow to be used as an effective engineering approach.

By comparison, the input/output response for the signaling component in E. coli
chemotaxis is shown in Figure 1.29 [87]. Here the response of the kinase CheA is
plotted in response to an exponential ramp in the ligand concentration. The re-
sponse is extremely rapid, with the timescale measured in seconds. This rapid re-
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes.
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(a) (b)

Figure 1.29: Responses of E. coli signaling network to exponential ramps in ligand con-
centration. (a) A simplified circuit diagram for chemotaxis, showing the biomolecular pro-
cesses involved in regulating flagellar motion. (b) Time responses of the “sensing” subsys-
tem (from Shimizu, Tu and Berg; Molecular Systems Biology, 2010), showing the response
to exponential inputs.

The field of synthetic biology has the opportunity to provide new approaches
to solving engineering and scientific problems. Sample engineering applications
include the development of synthetic circuits for producing biofuels, ultrasensitive
chemical sensors, or production of materials with specific properties that are tuned
to commercial needs. In addition to the potential impact on new biologically engi-
neered devices, there is also the potential for impact in improved understanding of
biological processes. For example, many diseases such as cancer and Parkinson’s
disease are closely tied to kinase dysfunction. Our analysis of robust systems of
kinases and the ability to synthesize systems that support or invalidate biological
hypotheses may lead to a better systems understanding of failure modes that lead
to such diseases.

1.6 Further Reading

There are numerous survey articles and textbooks that provide more detailed intro-
ductions to the topics introduced in this chapter. In the field of systems biology, the
textbook by Alon [3] provides a broad view of some of the key elements of mod-
ern systems biology. A more comprehensive set of topics is covered in the recent
textbook by Klipp [55], while a more engineering-oriented treatment of modeling
of biological circuits can be found in the text by Myers [71]. Two other books that
are particularly noteworthy are Ptashne’s book on the phage λ [77] and Madhani’s
book on yeast [61], both of which use well-studied model systems to describe a
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general set of mechanisms and principles that are present in many different types
of organisms.

Several textbooks and research monographs provide excellent resources for
modeling and analysis of biomolecular dynamics and regulation. J. D. Murray’s
two-volume text [69] on biological modeling is an excellent reference with many
examples of biomolecular dynamics. The textbook by Phillips, Kondev and The-
riot [76] provides a quantitative approach to understanding biological systems, in-
cluding many of the concepts discussed in this chapter. Courey [18] gives a detailed
description of mechanisms transcriptional regulation.

The topics in dynamical systems and control theory that are briefly introduced
here are covered in more detail in AM08 [1], to which this text is a supplement.
Other books that introduce tools for modeling and analysis of dynamical systems
with applications in biology include J. D. Murray’s text [69] and the recent text by
and Ellner and Guckenheimer [26].

Synthetic biology is a rapidly evolving field that includes many different sub-
areas of research, but few textbooks are currently available. In the specific area of
biological circuit design that we focus on here, there are a number of good survey
and review articles. The article by Baker et al. [7] provides a high level description
of the basic approach and opportunities. Recent survey and review papers include
Voigt [99] and Khalil and Collins [53].



Chapter 2
Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way that
can be represented by simple dynamical models. We begin the chapter with a dis-
cussion of the basic modeling formalisms that we will utilize to model biomolecu-
lar feedback systems. We then proceed to study a number of core processes within
the cell, providing different model-based descriptions of the dynamics that will
be used in later chapters to analyze and design biomolecular systems. The focus
in this chapter and the next is on deterministic models using ordinary differential
equations; Chapter 4 describes how to model the stochastic nature of biomolecular
systems.

Prerequisites. Readers should have some basic familiarity with cell biology, at the
level of the description in Section 1.2 (see also Appendix A), and a basic under-
standing of ordinary differential equations, at the level of Chapter 2 of AM08.

2.1 Modeling Techniques

In order to develop models for some of the core processes of the cell, we will need
to build up a basic description of the biochemical reactions that take place, includ-
ing production and degradation of proteins, regulation of transcription and transla-
tion, intracellular sensing, action and computation, and intercellular signaling. As
in other disciplines, biomolecular systems can be modeled in a variety of different
ways, at many different levels of resolution, as illustrated in Figure 2.1. The choice
of which model to use depends on the questions that we want to answer, and good
modeling takes practice, experience, and iteration. We must properly capture the
aspects of the system that are important, reason about the appropriate temporal
and spatial scales to be included, and take into account the types of simulation
and analysis tools be be applied. Models that are to be used for analyzing existing
systems should make testable predictions and provide insight into the underlying
dynamics. Design models must additionally capture enough of the important be-
havior to allow decisions to be made regarding how to interconnect subsystems,
choose parameters and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions of the
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. In this chapter
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Figure 2.1: Different methods of modeling biomolecular systems.

our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. We touch only
briefly on modeling in the case where stochastic behavior dominates and defer a
more detailed treatment until Chapter 4.

Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in Figure 2.1, we can attempt to
model the molecular dynamics of the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecular-scale forces
and motions. At this scale, the individual interactions between protein domains,
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.

For our purposes in this text, we will not require the use of such a detailed scale.
Instead, we will start with the abstraction of molecules that interact with each other
through stochastic events that are guided by the laws of thermodynamics. We begin
with an equilibrium point of view, commonly referred to as statistical mechanics,
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefly here,
primarily as a stepping stone to deterministic models, and present a more detailed
description in Chapter 4.

The underlying representation for both statistical mechanics and chemical ki-
netics is to identify the appropriate microstates of the system. A microstate cor-
responds to a given configuration of the components (species) in the system rela-
tive to each other and we must enumerate all possible configurations between the
molecules that are being modeled. As an example, consider the distribution of RNA
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Figure 2.2: Microstates for RNA polymerase. Each microstate of the system corresponds
to the RNA polymerase being located at some position in the cell. If we discretize the
possible locations on the DNA and in the cell, the microstates corresponds to all possi-
ble non-overlapping locations of the RNA polymerases. Figure from Phillips, Kondev and
Theriot [76]; used with permission of Garland Science.

polymerase in the cell. It is known that most RNA polymerases are bound to the
DNA in a cell, either as they produce RNA or as they diffuse along the DNA in
search of a promoter site. Hence we can model the microstates of the RNA poly-
merase system as all possible locations of the RNA polymerase in the cell, with the
vast majority of these corresponding to the RNA polymerase at some location on
the DNA. This is illustrated in Figure 2.2.

In statistical mechanics, we model the configuration of the cell by the probabil-
ity that the system is in a given microstate. This probability can be calculated based
on the energy levels of the different microstates. The laws of statistical mechanics
state that if we have a set of microstates Q, then the steady state probability that
the system is in a particular microstate q is given by

P(q) =
1
Z

e−Eq/(kBT ), (2.1)

where Eq is the energy associated with the microstate q ∈ Q, kB is the Boltzmann
constant, T is the temperature in degrees Kelvin, and Z is a normalizing factor,
known as the partition function,

Z =
∑
q∈Q

e−Eq/(kBT ).

(These formulas are described in more detail in Chapter 4.)
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By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of states S ⊂ Q that correspond to a
given macrostate, then the probability of being in the set S is given by

P(S ) =
1
Z

∑
q∈S

e−Eq/(kBT ) =

∑
q∈S e−Eq/(kBT )∑
q∈Q e−Eq/(kBT )

. (2.2)

This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many independent samples,
and from this we can reason about the rate of expression of the corresponding
gene. More details and several examples will be illustrated in Chapter 4.

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider the chemical kinetics of the system and model the probability that
we transition from one microstate to another in a given period of time. Let q rep-
resent the microstate of the system, which we shall take as a vector of integers that
represents the number of molecules of a specific types in given configurations or
locations. Assume we have a set of M reactions R j, j = 1, . . . ,M, with ξ j represent-
ing the change in state q associated with reaction R j. We describe the kinetics of
the system by making use of the propensity function a j(q, t) associated with reac-
tion R j, which captures the instantaneous probability that at time t a system will
transition between state q and state q+ ξ j.

More specifically, the propensity function is defined such that

a j(q, t)dt = Probability that reaction R j will occur between time t
and time t+dt given that the microstate is q.

We will give more detail in Chapter 4 regarding the validity of this functional form,
but for now we simply assume that such a function can be defined for our system.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the current
state. Specifically, given P(q, t), the probability of being in state q at time t, we can
compute the time derivative dP(q, t)/dt as

dP
dt

(q, t) =
M∑
j=1

(
a j(q− ξ j)P(q− ξ j, t)−a j(q)P(q, t)

)
. (2.3)

This equation (and its many variants) is called the chemical master equation (CME).
The first sum on the right hand side represents the transitions into the state q from
some other state q− ξ j and the second sum represents that transitions out of the
state q. The variable ξ j in the sum ranges over all possible reactions.
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Clearly the dynamics of the distribution P(q, t) depend on the form of the propen-
sity functions a j(q). Consider a simple reaction of the form

A+B −−−⇀↽−−− AB ≡
R f : A+B −−→ AB

R r : AB −−→ A+B.
(2.4)

We assume that the reaction takes place in a well-stirred volume Ω and let the
configurations q be represented by the number of each species that is present. The
forward reaction R f is a bimolecular reaction and we will see in Chapter 4 that it
has a propensity function

a f(q) =
k f

Ω
nAnB,

where k f is a parameter that depends on the forward reaction, and nA and nB are
the number of molecules of each species. The reverse reaction R r is a unimolecular
reaction and we will see that it has a propensity function

a r(q) = k r nAB,

where k r is a parameter that depends on the reverse reaction and nAB is the number
of molecules of AB that are present.

If we now let q = (nA,nB,nAB) represent the microstate of the system, then we
can write the chemical master equation as

dP
dt

(nA,nB,nAB) = k rnABP(nA−1,nB−1,nAB+1)− k fnAnBP(nA,nB,nAB).

The first term on the right hand side represents the transitions into the microstate
q = (nA,nB,nAB) and the second term represents the transitions out of that state.

The number of differential equations depends on the number of molecules of
A, B and AB that are present. For example, if we start with 1 molecules of A, 1
molecule of B, and 3 molecules of AB, then the possible states and dynamics are

q0 = (1,0,4) dP0/dt = 3k rP1

q1 = (2,1,3) dP1/dt = 4k rP0−2(k f/Ω)P1

q2 = (3,2,2) dP2/dt = 3k rP1−6(k f/Ω)P2

q3 = (4,3,1) dP3/dt = 2k rP2−12(k f/Ω)P3

q4 = (5,4,0) dP4/dt = 1k rP3−20(k f/Ω)P4,

where Pi = P(qi, t). Note that the states of the chemical master equation are the
probabilities that we are in a specific microstate, and the chemical master equation
is a linear differential equation (we see from equation (2.3) that this is true in
general).

The primary difference between the statistical mechanics description given by equa-
tion (2.1) and the chemical kinetics description in equation (2.3) is that the master
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equation formulation describes how the probability of being in a given microstate
evolves over time. Of course, if the propensity functions and energy levels are mod-
eled properly, the steady state, average probabilities of being in a given microstate
should be the same for both formulations.

Reaction rate equations

Although very general in form, the chemical master equation suffers from being a
very high dimensional representation of the dynamics of the system. We shall see
in Chapter 4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particular,
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reacting system
by keeping track of the concentration of each species as a real number. This is
of course an approximation, but if the number of molecules is sufficiently large,
then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynam-
ics, we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentration nA/Ω, where nA is the
number of molecules of A in a given volume Ω. We also treat this concentration
as a real number, ignoring the fact that the real concentration is quantized. Finally,
we assume that our reactions take place in a well-stirred volume, so that the rate of
interactions between two species is solely determined by the concentrations of the
species.

Before proceeding, we should recall that in many (and perhaps most) situations
inside of cells, these assumptions are not particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but well mixed.
Hence, we should not expect that models based on these assumptions should per-
form well at all. However, experience indicates that in many cases the basic form
of the equations provides a good model for the underlying dynamics and hence we
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now proceed to write the dynamics
of a system consisting of a set of species Si, i = 1, . . . ,n undergoing a set of reac-
tions R j, j = 1, . . . ,m. We write xi = [Si] = nSi/Ω for the concentration of species i
(viewed as a real number). Because we are interested in the case where the number
of molecules is large, we no longer attempt to keep track of every possible con-
figuration, but rather simply assume that the state of the system at any given time
is given by the concentrations xi. Hence the state space for our system is given by
x ∈ Rn and we seek to write our dynamics in the form of a differential equation

dx
dt
= f (x, θ),
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where f : Rn→ Rn describes the rate of change of the concentrations as a function
of the instantaneous concentrations and θ represents the parameters that govern the
dynamic behavior.

To illustrate the general form of the dynamics, we consider again the case of a
basic bimolecular reaction

A+B −−−⇀↽−−− AB.

Each time the forward reaction occurs, we decrease the number of molecules of
A and B by 1 and increase the number of molecules of AB (a separate species)
by 1. Similarly, each time the reverse reaction occurs, we decrease the number of
molecules of AB by one and increase the number of molecules of A and B.

Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given interval dt is given by a f(q)dt =
(k f/Ω)nAnBdt and the reverse reaction has likelihood a r(q) = k rnAB. It follows that
the concentration of the complex AB satisfies

[AB](t+dt)− [AB](t) = E(nAB(t+dt)/Ω−nAB(t)/Ω)

=
(
a f(q− ξ f, t)−a r(q)

)
/Ω ·dt

=
(
k fnAnB/Ω

2− k rnAB/Ω
)
dt

=
(
k f[A][B]− k r[AB]

)
dt,

in which E(x) denotes the expected value of x. Taking the limit as dt approaches
zero (but remains large enough that we can still average across multiple reactions,
as described in more detail in Chapter 4), we obtain

d
dt

[AB] = k f[A][B]− k r[AB].

In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

d
dt

[A] = k r[AB]− k f[A][B]

d
dt

[B] = k r[AB]− k f[A][B]

d
dt

[AB] = k f[A][B]− k r[AB]

or

dA
dt
= k rC− k fA ·B

dB
dt
= k rC− k fA ·B

dC
dt
= k fA ·B− k rC,

where C = [AB], A = [A], and B = [B]. These equations are known as the mass
action kinetics or the reaction rate equations for the system. The parameters k f and
k r are called the rate constants and they match the parameters that were used in the
underlying propensity functions.

Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
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adopt the standard notation for chemical reactions with specified rates and write
the individual reactions as

A+B
k f−→ AB, AB

k r−→ A+B,

where k f and k r are the reaction rates. For bidirectional reactions we can also write

A+B
k f−−⇀↽−−
k r

AB.

It is easy to generalize these dynamics to more complex reactions. For example,
if we have a reversible reaction of the form

A+2B
k f−−⇀↽−−
k r

2C+D,

where A, B, C and D are appropriate species and complexes, then the dynamics for
the species concentrations can be written as

d
dt

A = k rC
2 ·D− k fA ·B2,

d
dt

C = 2k fA ·B2−2k rC
2 ·D,

d
dt

B = 2k rC
2 ·D−2k fA ·B2,

d
dt

D = k fA ·B2− k rC
2 ·D.

(2.5)

Rearranging this equation, we can write the dynamics as

d
dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A
B
C
D

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1 1
−2 2
2 −2
1 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩k fA ·B2

k rC2 ·D

⎫⎪⎪⎪⎪⎪⎭ . (2.6)

We see that in this decomposition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term is a
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of species Si,
i = 1, . . . ,n and a set of reactions R j, j = 1, . . . ,m, we can write the mass action
kinetics in the form

dx
dt
= Nv(x),

where N ∈ Rn×m is the stoichiometry matrix for the system and v(x) ∈ Rm is the
reaction flux vector. Each row of v(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrix corre-
sponds to the changes in concentration of the relevant species. As we shall see in
the next chapter, the structured form of this equation will allow us to explore some
of the properties of the dynamics of chemically reacting systems.
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Sometimes, the following notation will be used to denote birth and death of
species

∅
k f−→ A, A

k r−→ ∅.
We attach to the first reaction the differential equation

dA
dt
= k f,

and to the second reaction we attach the differential equation

dA
dt
= −k r,A.

From a physical point of view, these reactions simplify the representation of more
complex processes, such as production of proteins or degradation of proteins due
to proteases.

Example 2.1 (Covalent modification of a protein). Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in Figure 1.17.
Let S represent the substrate, K represent the kinase and S * represent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in Figure 1.17 are

R1 : K+ATP −−→ K:ATP

R2 : K:ATP −−→ K+ATP

R3 : S+K:ATP −−→ S:K:ATP

R4 : S:K:ATP −−→ S+K:ATP

R5 : S:K:ATP −−→ S∗:K:ADP

R6 : S∗:K:ADP −−→ S∗+K:ADP

R7 : K:ADP −−→ K+ADP

R8 : K+ADP −−→ K:ADP.

We now write the kinetics for each reaction:

v1 = k1 [K][ATP],

v2 = k2 [K:ATP],

v3 = k3 [S][K:ATP],

v4 = k4 [S:K:ATP],

v5 = k5 [S:K:ATP],

v6 = k6 [S∗:K:ADP],

v7 = k7 [K:ADP],

v8 = k8 [K][ADP].

We treat [ATP] as a constant (regulated by the cell) and hence do not directly
track its concentration. (If desired, we could similarly ignore the concentration of
ADP since we have chosen not to include the many additional reactions in which
it participates.)

The kinetics for each species are thus given by

d
dt

[K] = −v1+ v2+ v7− v8
d
dt

[K:ATP] = v1− v2− v3+ v4

d
dt

[S] = −v3+ v4
d
dt

[S:K:ATP] = v3− v4− v5

d
dt

[S∗] = v6
d
dt

[S∗:K:ADP] = v5− v6

d
dt

[ADP] = v7− v8
d
dt

[K:ADP] = v6− v7+ v8.
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Collecting these equations together and writing the state as a vector, we obtain

d
dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[K]
[K:ATP]

[S]
[S:K:ATP]

[S∗]
[S∗:K:ADP]

[ADP]
[K:ADP]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸�������������︷︷�������������︸
x

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 1 0 0 0 0 1 −1
1 −1 1 −1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 1 −1 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 1 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸�������������������������������������������������︷︷�������������������������������������������������︸
N

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1

v2

v3

v4

v5

v6

v7

v8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

︸︷︷︸
v(x)

which is in standard stoichiometric form. ∇

Reduced order mechanisms

In this section, we look at the dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates of reactions
and concentrations of species, it is possible to derive reduced order expressions for
the dynamics of the system. We focus here on an informal derivation of the relevant
results, but return to these examples in the next chapter to illustrate that the same
results can be derived using a more formal and rigorous approach.

Simple binding reaction. Consider the reaction in which two species A and B bind
reversibly to form a complex C=AB:

A+B
a−⇀↽−
d

C, (2.7)

where a is the association rate constant and b is the dissociation rate constant.
Assume that B is a species that is controlled by other reactions in the cell and that
the total concentration of A is conserved, so that A+C = [A]+ [AB] = Atot. If the
dynamics of this reaction are fast compared to other reactions in the cell, then the
amount of A and C present can be computed as a (steady state) function of B.

To compute how A and C depend on the concentration of B at the steady state,
we must solve for the equilibrium concentrations of A and C. The rate equation for
C is given by

dC
dt
= aB · (Atot−C)−dC.

By setting dC/dt = 0 and letting Kd := d/a, we obtain the expressions

C =
(B/Kd)Atot

(B/Kd)+1
, A =

Atot

(B/Kd)+1
.

The constant Kd is called the dissociation constant of the reaction. Its inverse mea-
sures the affinity of A binding to B. The steady state value of C increases with B
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while the steady state value of A decreases with B as more of A is found in the
complex C.

Note that when B ≈ Kd, A and C have roughly equal concentration. Thus the
higher the value of Kd, the more B is required for A to form the complex C. Kd

has the units of concentration and it can be interpreted as the concentration of B at
which half of the total number of molecules of A are associated with B. Therefore
a high Kd represents a weak affinity between A and B, while a low Kd represents a
strong affinity.

Cooperative binding reaction. Assume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have that reac-
tions (2.7) become

B+B
k1−−⇀↽−−
k2

B2, B2+A
a−⇀↽−
d

C, A+C = Atot,

in which B2 denotes the dimer of B. The corresponding ODE model is given by

dB2

dt
= 2k1B2−2k2B2−aB2 · (Atot−C)+dC,

dC
dt
= aB2 · (Atot−C)−dC.

By setting dB2/dt = 0, dC/dt = 0, and by defining Km := k2/k1, we we obtain that

B2 = B2/Km, C =
(B2/Kd)Atot

(B2/Kd)+1
, A =

Atot

(B2/Kd)+1
,

so that

C =
AtotB2/(KmKd)
B2/(KmKd)+1

, A =
Atot

B2/(KmKd)+1
.

As an exercise, the reader can verify that if B binds to A only as a complex of n
copies of B, that is,

B+B+ · · ·+B
k1−−⇀↽−−
k2

Bn, Bn+A
a−⇀↽−
d

C, A+C = Atot,

then we have that

C =
AtotBn/(KmKd)
Bn/(KmKd)+1

, A =
Atot

Bn/(KmKd)+1
.

In this case, one says that the binding of B to A is cooperative with cooperativity n.
Figure 2.3 shows the above functions, which are often referred to as Hill functions.

Another type of cooperative binding is when a species R can bind A only after
another species B as bound. In this case, the reactions are given by

B+A
a−⇀↽−
d

C, R+C
a′−−⇀↽−−
d′

C′, A+C+C′ = Atot.
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Figure 2.3: Steady state concentrations of the complex C and of A as functions of the
concentration of B.

Proceeding as above by writing the ODE model and equating the time derivatives
to zero to obtain the equilibrium, one obtains

C =
1

Kd
B(Atot−C−C′), C′ =

1
K′dKd

R(Atot−C−C′).

By solving this system of two equations for the unknowns C′ and C, one obtains

C′ =
(RB)/(KdK′d)Atot

(B/Kd)(R/K′d+1)+1
, C =

(B/Kd)Atot

(B/Kd)(R/K′d+1)+1
.

In the case in which B would first bind cooperatively with other copies of B with
cooperativity n, the above expressions would modify to

C′ =
(RBn)/(KdK′dkm)Atot

(Bn/Kdkm)(R/K′d+1)+1
, C =

(Bn/Kdkm)Atot

(Bn/Kdkm)(R/K′d+1)+1
.

Competitive binding reaction. Finally, consider the case in which two species Ba
and Br both bind to A competitively, that is, they cannot be bound to A at the same
time. Let Ca be the complex formed between Ba and A and let Cr be the complex
formed between Br and A. Then, we have the following reactions

Ba+A
a−⇀↽−
d

Ca, Br+A
a′−−⇀↽−−
d′

Cr, A+Ca+Cr = Atot,

for which we can write the dynamics as

dCa

dt
= aBa · (Atot−Ca−Cr)−dCa,

dCr

dt
= a′Br · (Atot−Ca−Cr)−d′Cr.

By setting the derivatives to zero, we obtain that

Ca(aBa+d) = aBa(Atot−Cr), Cr(a
′Br +d′) = a′Br(Atot−Ca),
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so that

Cr =
Br(Atot−Ca)

Br +K′d
, Ca

(
Ba+Kd−

BaBr

Br +K′d

)
= Ba

(
K′d

Br +K′d

)
Atot,

from which we finally obtain that

Ca =
(Ba/Kd)Atot

(Ba/Kd)+ (Br/K′d)+1
, Cr =

(Br/K′d)Atot

(Br/K′d)+ (Ba/Kd)+1
.

In this derivation, we have assumed that both Ba and Br bind A as monomers. If
they were binding as dimers, the reader should verify as an exercise (see Exercises)
that they would appear in the final expressions with a power of two.

Note also that in this derivation we have assumed that the binding is competi-
tive, that is, Ba and Br cannot simultaneously bind to A. If they were binding simul-
taneously to A, we would have included another complex comprising Ba, Br and
A. Denoting this new complex by C′, we would have added also the two additional
reactions

Ca+Br
ā−⇀↽−̄
d

C
′
, Cr+Ba

ā′−−⇀↽−−
d̄′

C
′

and we would have modified the conservation law for A to Atot = A+Ca+Cr +C′.
The reader can verify as an exercise (see Exercises) that in this case a mixed term
BrBa would appear in the equilibrium expressions.

Enzymatic reaction. A general enzymatic reaction can be written as

E+S
a−⇀↽−
d

C
k−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form
the complex C, and P is the product resulting from the modification of the sub-
strate S due to the binding with the enzyme E. The parameter a is referred to as
association rate constant, d as dissociation rate constant, and k as the catalytic rate
constant. Enzymatic reactions are very common and we will see specific instances
of them in the sequel, e.g., phosphorylation and dephosphorylation reactions. The
corresponding ODE system is given by

dS
dt
= −aE ·S +dC,

dC
dt
= aE ·S − (d+ k)C,

dE
dt
= −aE ·S +dC+ kC,

dP
dt
= kC.

The total enzyme concentration is usually constant and denoted by Etot, so that
E+C = Etot. Substituting in the above equations E = Etot−C, we obtain

dE
dt
= −a(Etot−C) ·S +dC+ kC,

dC
dt
= a(Etot−C) ·S − (d+ k)C,

dS
dt
= −a(Etot−C) ·S +dC,

dP
dt
= kC.
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This system cannot be solved analytically, therefore assumptions have been used
in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C and vice versa is much faster than the decomposition
of C into E and P. This approximation is called the quasi-steady state assumption.
This assumption can be translated into the condition

a,d� k

on the rate constants.
Under this assumption and assuming that S � E (at least at time 0; see Exam-

ple 3.15), C immediately reaches its steady state value (while P is still changing).
The steady state value of C is given by solving a(Etot −C)S − (d+ k)C = 0 for C,
which gives

C =
EtotS

S +Km
, with Km =

d+ k
a
,

in which the constant Km is called the Michaelis-Menten constant. Letting Vmax =

kEtot, the resulting kinetics

dP
dt
= k

EtotS
S +Km

= Vmax
S

S +Km

is called Michaelis-Menten kinetics.
The constant Vmax is called the maximal velocity (or maximal flux) of modifi-

cation and it represents the maximal rate that can be obtained when the enzyme is
completely saturated by the substrate. The value of Km corresponds to the value of
S that leads to a half-maximal value of the P production rate. When the enzyme
complex can be neglected with respect to the total substrate amount S tot, we have
that S tot ≈ S +P, so that the above equation can be also re-written as

dP
dt
=

Vmax(S tot −P)
(S tot −P)+Km

.

When Km � S tot and the substrate has not yet been all converted to product,
that is, S tot−P� Km, we have that the rate of product formation becomes approx-
imately dP/dt ≈ Vmax, which is the maximal speed of reaction. Since this rate is
constant and does not depend on the reactant concentrations, it is usually referred
to zero-order kinetics. When S tot − P� Km, the system is said to operate in the
zero-order regime (see Figure 2.4).

2.2 Transcription and Translation

In this section we consider the processes of transcription and translation, using the
modeling techniques described in the previous section to capture the fundamental
dynamic behavior. Models of transcription and translation can be done at a variety
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Figure 2.4: Enzymatic reactions. (a) Transfer curve showing the production rate for P as a
function of substrate concentration. (b) Time plots of product P(t) for different values of
the Km. In the plots S tot = 1 and Vmax = 1. The black plot shows the behavior for a value
of Km much smaller that the total substrate amount S tot. This corresponds to a constant
product formation rate (at least before the substrate is almost all converted to product, that
is, S tot−P ≈ Km), which is referred to zero-order kinetics.

of levels of detail and which model to use depends on the questions that one wants
to consider. We present several levels of modeling here, starting with a fairly de-
tailed set of reactions and ending with highly simplified models that can be used
when we are only interested in average production rate of proteins at relatively long
time scales.

The basic reactions that underly transcription include the diffusion of RNA
polymerase from one part of the cell to the promoter region, binding of an RNA
polymerase to the promoter, isomerization from the closed complex to the open
complex, and finally the production of mRNA, one base pair at a time. To capture
this set of reactions, we keep track of the various forms of RNA polymerase accord-
ing to its location and state: RNAP c represents RNA polymerase in the cytoplasm
and RNAP d is non-specific binding of RNA polymerase to the DNA. We must sim-
ilarly keep track of the state of the DNA, to insure that multiple RNA polymerases
do not bind to the same section of DNA. Thus we can write DNA p for the promoter
region, DNA g,i for the ith section of a gene g (whose length can depend on the de-
sired resolution) and DNA t for the termination sequence. We write RNAP:DNA to
represent RNA polymerase bound to DNA (assumed closed) and RNAP:DNA o to
indicate the open complex. Finally, we must keep track of the mRNA that is pro-
duced by transcription: we write mRNA i to represent an mRNA strand of length i
and assume that the length of the gene of interest is N.

Using these various states of the RNA polymerase and locations on the DNA,
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we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAPc −−−⇀↽−−− RNAPd

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

Binding to promoter: RNAPp+DNAp −−−⇀↽−−− RNAP:DNAp

Isomerization: RNAP:DNAp −−−⇀↽−−− RNAP:DNAo

Start of transcription: RNAP:DNAo −−→ RNAP:DNAg,1+DNAp

mRNA creation: RNAP:DNAg,1 −−→ RNAP:DNAg,2+mRNA1
k

Elongation: RNAP:DNAg,i+1+mRNAi
k

−−→ RNAP:DNAg,i+2+mRNAi+1
k

Binding to terminator: RNAP:DNAg,N+mRNAN−1
k

−−→ RNAP:DNAt+mRNAN
k

Termination: RNAP:DNAt −−→ RNAPc

Degradation: mRNAN
k −−→ ∅.

(2.8)
This reaction has been written for prokaryotes, but a similar set of reactions could
be written for eukaryotes: the main differences would be that the RNA polymerase
remains in the nucleus and the mRNA must be spliced and transported to the cy-
tosol. Note that at the start of transcription we “release” the promoter region of the
DNA, thus allowing a second RNA polymerase to bind to the promoter while the
first RNA polymerase is still transcribing the gene.

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain, and folding of the polypeptide
chain into a functional protein. Let Ribo:mRNA RBS indicate the ribosome bound
to the ribosome binding site, Ribo:mRNA AAi the ribosome bound to the ith codon,
Ribo:mRNA start and Ribo:mRNA stop for the start and stop codons, and PPC i for a
polypeptide chain consisting of i amino acids. The reactions describing translation
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can then be written as

Binding to RBS: Ribo+mRNARBS
k
−−−⇀↽−−− Ribo:mRNARBS

k

Start of translation: Ribo:mRNARBS
k −−→ Ribo:mRNAstart

k +mRNARBS
k

Polypeptide chain creation: Ribo:mRNAstart
k −−→ Ribo:mRNAAA2

k +PPC1

Elongation, i = 1, . . . ,M: Ribo:mRNAAA(i+1)
k +PPCi

−−→ Ribo:mRNAAA(i+2)
k +PPCi+1

Stop codon: Ribo:mRNAM
k +PPCM−1

−−→ Ribo:mRNAstop
k +ppcM

Release of mRNA: Ribo:mRNAstop
k −−→ Ribo

Folding: PPCM −−→ protein

Degradation: protein −−→ ∅.

As in the case of transcription, we see that these reactions allow multiple ribosomes
to translate the same piece of mRNA by freeing up the ribosome binding site (RBS)
when translation begins.

As complex as these reactions are, they are still missing many important ef-
fects. For example, we have not accounted for the existence and effects of the 5’
and 3’ untranslated regions (UTRs) of a gene and we have also left out various error
correction mechanisms in which ribosomes can step back and release an incorrect
amino acid that has been incorporated into the polypeptide chain. We have also left
out the many chemical species that must be present in order for a variety of the
reactions to happen (NTPs for mRNA production, amino acids for protein produc-
tion, etc). Incorporation of these effects requires additional reactions that track the
many possible states of the molecular machinery that underlies transcription and
translation.

Given a set of reactions, the various stochastic processes that underly detailed
models of transcription and translation can be specified using the stochastic model-
ing framework described briefly in the previous section. In particular, using either
models of binding energy or measured rates, we can construct propensity functions
for each of the many reactions that lead to production of proteins, including the
motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are covered in some
detail in Chapter 4.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using differential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measured experimen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers, which may not be accurate since some species exist at
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low molecular counts in the cell. Despite all of these approximations, in many sit-
uations the reaction rate equations are perfectly sufficient, particularly if we are
interested in the average behavior of a large number of cells.

In some situations, an even simpler model of the transcription, translation and
folding processes can be utilized. Let the “active” mRNA be the mRNA that is
available for translation by the ribosome. We model its concentration through a
simple time delay of length τm that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleus in eukary-
otes. If we assume that RNA polymerase binds to DNA at some average rate (which
includes both the binding and isomerization reactions) and that transcription takes
some fixed time (depending on the length of the gene), then the process of tran-
scription can be described using the delay differential equation

dm
dt
= αp,0−μm− γ̄m, m∗(t) = e−μτ

m
m(t−τm), (2.9)

where m is the concentration of mRNA for protein P, m∗ is the concentration of
active mRNA, αp,0 is the rate of production of the mRNA for protein P, μ is the
growth rate of the cell (which results in dilution of the concentration) and γ̄ is the
rate of degradation of the mRNA. Since the dilution and degradation terms are of
the same form, we will often combine these terms in the mRNA dynamics and
use a single coefficient γ. The exponential factor accounts for dilution due to the
change in volume of the cell, where μ is the cell growth rate. The constants αp,0 and
γ capture the average rates of production and degradation, which in turn depend on
the more detailed biochemical reactions that underlie transcription.

Once the active mRNA is produced, the process of translation can be described
via a similar ordinary differential equation that describes the production of a func-
tional protein:

dP
dt
= βp,0m∗ −δP, P f (t) = e−μτ

f
P(t−τ f ). (2.10)

Here P represents the concentration of the polypeptide chain for the protein, P f

represents the concentration of functional protein (after folding). The parameters
that govern the dynamics are βp,0, the rate of translation of mRNA; δ, the rate
of degradation and dilution of P; and τ f , the time delay associated with folding
and other processes required to make the protein functional. The exponential term
again accounts for dilution due to cell growth. The degradation and dilution term,
parameterized by δ, captures both rate at which the polypeptide chain is degraded
and the rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla-
tion in terms of the functional mRNA and functional protein. Differentiating the
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expression for m∗, we see that

dm∗(t)
dt

= e−μτ
m
ṁ(t−τm)

= e−μτ
m(
αp,0−γm(t−τm)

)
= ᾱp,0−γm∗(t),

(2.11)

where ᾱp,0 = e−μτ
m
αp,0. A similar expansion for the active protein dynamics yields

dP f (t)
dt

= β̄p,0m∗(t−τ f )−δP f (t), (2.12)

where β̄p,0 = e−μτ
f
βp,0. We shall typically use equations (2.11) and (2.12) as our

(reduced) description of protein folding, dropping the superscript f and overbars
when there is no risk of confusion.

In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the system). In such
cases, we can simplify our model of the dynamics of protein production even fur-
ther and write

dm
dt
= αp,0−γm,

dP
dt

= βp,0m−δP. (2.13)

Note that we here have dropped the superscripts ∗ and f since we are assuming
that all mRNA is active and proteins are functional and dropped the overbar on α
and β since we are assuming the time delays are negligible.

Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the first differential equation in equation (2.13) with its
equilibrium value. This is often a good assumption as mRNA degration is usually
about 100–1000 times faster than protein degradation (see Table 1.1). Thus we
obtain

dP
dt
= β−δP, β := βp,0

αp,0

γ
.

This model represents a simple first order, linear differential equation for the rate of
production of a protein. In many cases this will be a sufficiently good approximate
model, although we will see that in many cases it is too simple to capture the
observed behavior of a biological circuit.

2.3 Transcriptional Regulation

The operation of a cell is governed in part by the selective expression of genes in
the DNA of the organism, which control the various functions the cell is able to
perform at any given time. Regulation of protein activity is a major component of
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the molecular activities in a cell. By turning genes on and off, and modulating their
activity in more fine-grained ways, the cell controls the many metabolic pathways,
responds to external stimuli, differentiates into different cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplished through
a variety of molecular mechanisms, as discussed in Section 1.2 and illustrated in
Figure 1.9. At each stage of the processing from a gene to a protein, there are po-
tential mechanisms for regulating the production processes. The remainder of this
section will focus on transcriptional control and the next section on selected post-
transcriptional control mechanisms. We will focus on prokaryotic mechanisms.

Transcriptional regulation refers to the selective expression of genes by activat-
ing or repressing the transcription of DNA into mRNA. The simplest such regu-
lation occurs in prokaryotes, where proteins can bind to “operator regions” in the
vicinity of the promoter region of a gene and affect the binding of RNA polymerase
and the subsequent initiation of transcription. A protein is called a repressor if it
blocks the transcription of a given gene, most commonly by binding to the DNA
and blocking the access of RNA polymerase to the promoter. An activator oper-
ates in the opposite fashion: it recruits RNA polymerase to the promoter region and
hence transcription only occurs when the activator (protein) is present.

We can capture this set of molecular interactions by modifying the RNA poly-
merase binding reactions in equation (2.8). For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promoter:

Repressor binding: DNAp+Rep −−−⇀↽−−− DNA:Rep

This reaction acts to “sequester” the DNA promoter site so that it is no longer
available for binding by RNA polymerase (which requires DNA p). The strength
of the repressor is reflected in the reaction rate constants for the repressor binding
reaction. Sometimes, the RNA polymerase can bind to the promoter even when the
repressor is bound, usually with lower forward rate. In this case, the repressor still
allows some transcription even when bound to the promoter and the repressor is
said to be “leaky”.

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activator before RNA
polymerase can bind. One possible mechanism is

Activator binding: DNAp+Act −−−⇀↽−−− DNA:Act

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

RNAP binding w/ activator: RNAPp+DNA:Act −−−⇀↽−−− RNAP:DNAo

+DNA:Act

RNAP binding w/out activator: RNAPp+DNAp −−−⇀↽−−− RNAP:DNAp.
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Here we model both the enhanced binding of the RNA polymerase to the promoter
in the presence of the activator, as well as the possibility of binding without an
activator. The relative reaction rates determine how strong the activator is and the
“leakiness” of transcription in the absence of the activator.

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are in steady state config-
urations. In this case, we can make use of the reduced order models described in
Section 2.1. We can consider the competitive binding case to model that a strong
repressor prevents RNAP to bind to the DNA. In the sequel, we remove the su-
perscripts “p” from the DNA and RNAP for simplifying notation. The steady state
amount of the complex of DNA bound to the repressor will have the expression

[DNA:Rep] =
([Rep]/Kd)[DNA]

1+ [Rep]/Kd+ [RNAP]/K′d

and the steady state amount of free DNA (not bound to the repressor) will be given
by

C = [DNA]− [DNA:Rep] =
([RNAP]/K′d)[DNA]

1+ [RNAP]/K′d+ [Rep]/Kd
,

in which K′d is the dissociation constant of RNAP from the promoter while Kd is
the dissociation constant of Rep from the promoter. The complex C, having RNAP
bound, will allow transcription, while the complex [DNA:Rep] will not allow tran-
scription as it is not bound to RNAP.

The transcription rate will be proportional to C, so that the rate of change of
mRNA is described by

d[mRNA]
dt

= α0
([RNAP]/K′d)[DNA]

1+ [RNAP]/K′d+ [Rep]/Kd
−γ[mRNA],

in which the production rate is given by

f ([Rep]) = α0
([RNAP]/K′d) [DNA]

1+ [RNAP]/K′d+ [Rep]/Kd
.

If the repressor binds to the promoter with cooperativity n, the above expression
becomes (see Section 2.1)

f ([Rep]) = α0
([RNAP]/K′d)[DNA]

1+ [RNAP]/K′d+ [Rep]n/(Kdkm)
,

in which km is the dissociation constant of the reaction of n molecules of Rep
binding together. The function f is usually denoted by the standard Hill function
form

f ([Rep]) =
α

1+ ([Rep]/K)n ,
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in which α and K are implicitly defined. In practice we can assume that [RNAP]/K′d�
1 since there is plenty of RNAP in the cell. As a consequence, we obtain the ex-
pressions α = α0[DNA] and K = (Kdkm[RNAP]/K′d)1/n.

Finally, if the repressor allows RNAP to still bind to the promoter at a small rate
(leaky repressor), the above expression modifies to the new form (see Section 2.1)

f ([Rep]) =
α

1+ ([Rep]/K)n + ᾱ, (2.14)

in which ᾱ is the basal expression level when the promoter is fully repressed, usu-
ally referred to as “leakiness”.

To model the production rate of mRNA in the case in which an activator Act
binds to the promoter with cooperativity n, we can consider first the case in which
RNAP binds only when the activator is already bound to the promoter. This can
be well modeled by a cooperative binding scenario as illustrated in Section 2.1.
According to this scenario, the concentration of the complex [RNAP:DNA o] is
given by

[RNAP:DNAo] =C′ =
([RNAP][Act]n)/(KdK′dkm)[DNA]

1+ ([Act]n/Kdkm)(1+ [RNAP]/K′d)
,

in which K′d is the dissociation constant of RNAP with the complex of DNA bound
to Act and Kd is the dissociation constant of Act with DNA. Since the production
rate of mRNA is proportional to [RNAP:DNA o], we have that

d [mRNA]
dt

= f ([Act])−γ[mRNA]

with

f ([Act]) = α0
([RNAP][Act]n)/(KdK′dkm)[DNA]

1+ ([Act]n/Kdkm)(1+ [RNAP]/K′d)
=:
α([Act]/K)n

1+ ([Act]/K)n ,

in which α and K are implicitly defined. Since in practice [RNAP]/K′d � 1, we
have that α = α0[DNA] and K = (KdK′dkm/[RNAP])1/n.

The right-hand side expression is in the standard Hill function form. Figure 2.5
shows the shape of these Hill functions both for an activator and a repressor. If we
assume that RNAP can still bind to DNA even when the activator is not bound, we
have an additional basal expression rate ᾱ so that the new form of the production
rate is given by

f ([Act]) =
α([Act]/K)n

1+ ([Act]/K)n + ᾱ.

Example 2.2 (Repressilator). As an example of how these models can be used, we
consider the model of a “repressilator,” originally due to Elowitz and Leibler [27]
and briefly described in Section 1.5. The repressilator is a synthetic circuit in which
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Figure 2.5: Hill function for an activator (left) and a repressor (right).

three proteins each repress another in a cycle. This is shown schematically in Fig-
ure 2.6a, where the three proteins are TetR, λ cI and LacI.

We can model this system using three copies of the repression function (2.14),
with Rep replaced by the appropriate combination of TetR, cI and LacI. The state
of the system is then given by x = (mTetR, pTetR,mcI, pcI,mLacI, pLacI). The full dy-
namics become

d
dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mTetR

pTetR

mcI

pcI

mLacI

pLacI

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αLacI

1+ (pLacI/KLacI)n + ᾱTetR−γmTetR

βTetR mTetR−δ pTetR

αTetR

1+ (pTetR/KTetR)n + ᾱcI−γmcI

βcI mcI−δ pcI

αcI

1+ (pcI/KcI)n + ᾱLacI−γmLacI

βLacI mLacI−δ pLacI

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.15)

Figure 2.6b shows the traces of the three protein concentrations for (symmetric)
parameters n = 2, α = 0.5, K = 6.25×10−4, α0 = 5×10−4, γ = 5.8×10−3, β = 0.12
and δ = 1.2×10−3 with initial conditions x(0) = (1,200,0,0,0,0) (following [27]).

∇

As indicated earlier, many activators and repressors operate in the presence of
inducers. To incorporate these dynamics in our description, we simply have to add
the reactions that correspond to the interaction of the inducer with the relevant
protein. For a negative inducer, we can simply add a reaction in which the inducer
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Figure 2.6: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, show-
ing the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

binds the regulator protein and effectively sequesters it so that it cannot interact
with the DNA. For example, a negative inducer operating on a repressor could be
modeled by adding the reaction

Rep+ Ind −−−⇀↽−−− Rep:Ind.

Since the above reactions are very fast compared to transcription, they can be as-
sumed at the quasi-steady state. Hence, the free amount of repressor that can still
bind to the promoter can be calculated by writing the ODE model corresponding
to the above reactions and by setting the time derivatives to zero. This yields to

[Rep] =
[Rep]tot

1+ [Ind]/K̄d
,

in which [Rep]tot = [Rep]+ [Rep:Ind] is the total amount of repressor (bound and
not bound to the inducer) and K̄d is the dissociation constant of Ind binding to
Rep. This expression of the repressor concentration needs to be substituted in the
expression of the production rate f ([Rep]).

Positive inducers can be handled similarly, except now we have to modify the
binding reactions to only work in the presence of a regulatory protein bound to an
inducer. For example, a positive inducer on an activator would have the modified
reactions

Inducer binding: Act+ Ind −−−⇀↽−−− Act:Ind

Activator binding: DNAp+Act:Ind −−−⇀↽−−− DNA:Act:Ind

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

RNAP binding w/ activator: RNAPp+DNA:Act:Ind

−−−⇀↽−−− RNAP:DNAo+DNA:Act:Ind.
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Figure 2.7: Autoregulation of gene expression. The three circuits control the expression of
gene regulation using (a) unregulated, (b) negative autoregulation and (c) positive autoreg-
ulation.

Hence, in the expression of the production rate f ([Act]), we should substitute in
place of [Act] the concentration [Act:Ind]. This concentration, in turn, can be sim-
ply computed at the quasi-steady state by writing the ODE model for the inducer
binding reaction and equating the time derivatives to zero. This yields

[Act:Ind] =
[Act]tot[Ind]/K̄d

1+ [Ind]/K̄d
,

in which [Act]tot = [Act]+ [Act:Ind] and K̄d is the dissociation constant of the bind-
ing of Ind with Act.

Example 2.3 (Autoregulation of gene expression). Consider the three circuits shown
in Figure 2.7, representing a unregulated gene, a negatively autoregulated gene and
a positively autoregulated gene. We want to model the dynamics of the protein A
starting from zero initial conditions for the three different cases to understand how
the three different circuit topologies affect dynamics.

The dynamics of the three circuits can be written in a common form,

dmA

dt
= f (A)−γmA,

dA
dt

= βmA−δA, (2.16)

where f (A) has the form

funreg(A)=αB, frepress(A)=
αB

1+ (A/K)n +α0, factivate(A)=
αA(A/K)n

1+ (A/K)n +αB

We choose the parameters to be

αA = 1/3, αB = 1/2, α0 = 5×10−4,

β = 20log(2)/120, γ = log(2)/120, δ = log(2)/600,

K = 104, n = 2,



68 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

Time min

A
c
o
u
n
t

(a)

Time min

series

neg reg

pos reg

(b)

Figure 2.8: Simulations for autoregulated gene expression. (a) Non-normalized expression
levels. (b) Normalized expression.

corresponding to biologically plausible values. Note that the parameters are chosen
so that f (0) ≈ αB for each circuit.

Figure 2.8a shows the results of the simulation. We see that initial increase
in protein concentration is identical for each circuit, consistent with our choice
of Hill functions and parameters. As the expression level increases, the effects of
positive and negative are seen, leading to different steady state expression levels.
In particular, the negative feedback circuit reaches a lower steady state expression
level while the positive feedback circuit settles to a higher value.

In some situations, it makes sense to ask whether different circuit topologies
have different properties that might lead us to choose one over another. In the case
where the circuit is going to be used as part of a more complex pathway, it may
make the most sense to compare circuits that produce the same steady state concen-
tration of the protein A. To do this, we must modify the parameters of the individual
circuits, which can be done in a number of different ways: we can modify the pro-
moter strengths, degradation rates, or other molecular mechanisms reflected in the
parameters.

The steady state expression level for the negative autoregulation case can be
adjusted by using a stronger promoter (modeled by αB) or ribosome binding site
(modeled by β). The equilibrium point for the negative autoregulation case is given
by the solution of the equations

mA,e =
αKn

γ(Kn+An
e)
, Ae =

β

δ
mA,e.

These coupled equations can be solved for mA,e and Ae, but in this case we simply
need to find values α′B and β′ that give the same values as the unregulated case. For
example, if we equate the mRNA levels of the unregulated system with that of the
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negatively autoregulated system, we have

αB

γ
=

1
γ

(
α′BKn

Kn+An
e
+α0

)
=⇒ α′B = (αB−α0)

Kn+An
e

Kn , Ae =
αBβ

γδ
,

where Ae is the desired equilibrium value (which we choose using the unregulated
case as a guide).

A similar calculation can be done for the case of positive autoregulation, in
this case decreasing the promoter parameters αA and αB so that the steady state
values match. A simple way to do this is to leave αA unchanged and decrease αB

to account for the positive feedback. Solving for α′B to give the same mRNA levels
as the unregulated case yields

α′B = αB−αA
An

e

Kn+An
e
.

Figure 2.8b shows simulations of the expression levels over time for the modi-
fied circuits. We see now that the expression levels all reach the same steady state
value. The negative autoregulated circuit has the property that it reaches the steady
state more quickly, due to the increased rate of protein expression when A is small
(α′B > αB). Conversely, the positive autoregulated circuit has a slower rate of ex-
pression than the constitutive case, since we have lowered the rate of protein ex-
pression when A is small. The initial higher and lower expression rates are com-
pensated for via the autoregulation, resulting in the same expression level in steady
state. ∇

We have described how the Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulated by multiple
transcription factors, some of which may be activators and some may be repres-
sors. In this case, the promoter controlling the expression of the gene is called a
combinatorial promoter. The mRNA production rate can thus take several forms
depending on the roles (activators versus repressors) of the various transcription
factors [3]. In general, the production rate resulting from a promoter that takes as
input transcription factors pi for i ∈ {1, ...,N} will be denoted f (p1, ..., pn).

Thus, the dynamics of a transcriptional module is often well captured by the
ordinary differential equations

dmy

dt
= f (p1, ..., pn)−γymy,

dpy

dt
= βymy−δy py, (2.17)

where my denotes the concentration of mRNA translated by gene y, the constants
γy and δy incorporate the dilution and degradation processes, and βy is a constant
that establishes the rate at which the mRNA is translated.

For a combinatorial promoter with two input proteins, an activator pa and a
repressor pr, in which the activator cannot bind if the repressor is bound to the
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promoter, the function f (pa, pr) can be obtained by employing the competitive
binding in the reduced order models of Section 2.1. In this case, assuming the
activator has cooperativity n and the repressor has cooperativity m, we obtain the
expression

f (pa, pr) = α
(pa/Ka)n

1+ (pa/Ka)n+ (pr/Kr)m .

Here, we have that Ka = (Km,aKd,a)(1/n), Kr = (Km,rKd,r)(1/m), in which Kd,a and
Kd,r are the dissociation constants of the activator and repressor, respectively, from
the DNA promoter site, while Km,a and Km,r are the dissociation constants for the
cooperative binding reactions for the activator and repressor, respectively. In the
case in which the activator is “leaky”, that is, some transcription still occurs even
when there is no activator, the above expression will be modified to

f (pa, pr) = α
(pa/Ka)n

1+ (pa/Ka)n+ (pr/Kr)m + ᾱ,

in which ᾱ is the basal transcription rate when no activator is present. If such a
basal rate can still be repressed by the repressor, the above expression modifies to
the form

f (pa, pr) =
α(pa/Ka)n+ ᾱ

1+ (pa/Ka)n+ (pr/Kr)m .

Example 2.4 (Activator-repressor clock). As an example of where combinatorial
promoters are used, we illustrate in this example an activator-repressor clock that
was fabricated in E. coli and is shown in Figure 2.9(a) [5].

The activator A is self activated and is also repressed by the repressor R. Hence,
the promoter controlling the expression of A is a combinatorial promoter. The
model describing this system, assuming the mRNA dynamics have reached its
quasi-steady state, is given by

dA
dt
=

αA(A/Ka)n+ ᾱA

(A/Ka)n+ (R/Kr)m+1
−δAA,

dR
dt

=
αR(A/Ka)n+ ᾱR

(A/Ka)n+1
−δRR.

Figure 2.9 (b) shows the behavior of the activator and the repressor concentrations.
We will come back to this design in Chapter 6, in which we will use the tools
introduced in Chapter 3 to establish parameter conditions under which the system
admits a periodic solution. ∇

Finally, a simple regulation mechanism is based on altering the half life of a pro-
tein. Specifically, the degradation rate of a protein is determined by the amounts of
proteases present, which bind to recognition sites (degradation tags) and then de-
grade the protein. Degradation of a protein X by a protease Y can then be modeled
by the following two-step reaction

X+Y
a−⇀↽−
d

C
k−→ Y,
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Figure 2.9: The activator-repressor clock network. (a) A schematic diagram of the circuit.
(b) A simulation of a simple model for the clock, showing the oscillation of the individual
protein concentrations. In the simulation, we have chosen Ka = Kr = 1, αA = αR = 100,
ᾱA = 0.4, ᾱR = 0.004, δA = 1, δR = 0.5, n = 2, and m = 4.

in which C is the complex of the protease bound to the protein. By the end of the
reaction, protein X has been degraded to nothing, so that sometimes this reaction
is simplified to X −−→ ∅.

2.4 Post-Transcriptional Regulation

In addition to regulation of expression through modifications of the process of tran-
scription, cells can also regulate the production and activity of proteins via a col-
lection of other post-transcriptional modifications. These include methods of mod-
ulating the translation of proteins, as well as affecting the activity of a protein via
changes in its conformation, as shown in Figure 1.9.

Allosteric modifications to proteins

In allosteric regulation, a regulatory molecule, called allosteric effector, binds to a
site separate from the catalytic site (active site) of an enzyme. This binding causes
a change in the three dimension conformation of the protein, turning off (or turning
on) the catalytic site (Figure 2.10).

An allosteric effector can either be an activator or an inhibitor, just like inducers
work for activation or inhibition of transcription factors. Inhibition can either be
competitive or not competitive. In the case of competitive inhibition, the inhibitor
competes with the substrate for binding the enzyme; that is, the substrate can bind
to the enzyme only if the inhibitor is not bound. In the case of non-competitive
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Figure 2.10: In allosteric regulation, a regulatory molecule binds to a site separate from the
catalytic site (active site) of an enzyme. This binding causes a change in the three dimen-
sion conformation of the protein, turning off (or turning on) the catalytic site. Permission
pending.

inhibition, the substrate can be bound to the enzyme even if the latter is bound to
the inhibitor. In this case, however, the product may not be able to form or may
form at a lower rate, in which case, we have partial inhibition.

Activation can be absolute or not. Specifically, an activator is absolute when the
enzyme can bind to the substrate only when bound to the activator. Otherwise, the
activator is not absolute. In this section, we derive the expressions for the produc-
tion rate of the active protein in an enzymatic reaction in the two most common
cases: when we have a (non-competitive) inhibitor I or an (absolute) activator A of
the enzyme.

Allosteric inhibition

Consider the standard enzymatic reaction

E+S
a−⇀↽−
d

C
k−→ S∗+E

in which enzyme E activates protein S and transforms it to the active form S∗. Let
I be a (non-competitive) inhibitor of enzyme E so that when E is bound to I, the
complex EI can still bind to inactive protein S, however, the complex EIS is non-
productive, that is, it does not produce the active protein S∗. Then, we have the
following additional reactions:

E+ I
k+−−⇀↽−−
k−

EI C+ I
k+−−⇀↽−−
k−

EIS EI+S
a−⇀↽−
d

EIS,

with the conservation laws (assuming S tot is in much greater amounts than Etot)

Etot = E+C+EI+EIS , S tot = S +S ∗+C+EIS ≈ S +S ∗.
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Hence, the production rate of S ∗ is given by dS ∗/dt = kC. Since we have that
k+,k−,a,b� k, we can assume all the complexes to be at the quasi steady state.
This gives

EIS =
a
d

EI ·S , EI =
k+
k−

E · I, C =
1

Km
S ·E,

in which Km = (d+k)/a is the Michaelis-Menten constant. Using these expressions,
the conservation law for the enzyme, and the fact that a/d ≈ 1/Km, we obtain

E =
Etot

(I/Kd+1)(1+S/Km)
, with Kd = k−/k+,

so that

C =
S

S +Km

Etot

1+ I/Kd

and, as a consequence,

dS ∗

dt
= k1Etot

(
1

1+ I/Kd

)(
S

S +Km

)
.

Using the conservation law for S , this is also equivalent to

dS ∗

dt
= k1Etot

(
1

1+ I/Kd

)(
(S tot−S ∗)

(S tot−S ∗)+Km

)
.

In our earlier derivations of the Michaelis-Menten kinetics Vmax = k1Etot was called
the maximal speed of modification, which occurs when the enzyme is completely
saturated by the substrate (Section 2.1). Hence, the effect of a non-competitive
inhibitor is to decrease the maximal speed of modification by a factor 1/(1+ I/Kd).

Another type of inhibition occurs when the inhibitor is competitive, that is, when I
is bound to E, the complex EI cannot bind to protein S. Since E can either bind to
I or S (not both), I competes against S for binding to E. See Exercise 2.11.

Allosteric activation

In this case, the enzyme E can transform S to its active form only when it is bound
to A. Also, we assume that E cannot bind S unless E is bound to A (from here, the
name absolute activator). The reactions are therefore modified to be

E+A
k+−−⇀↽−−
k−

EA

and
EA+S

a−⇀↽−
d

EAS
k−→ S∗+EA,
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with conservation laws

Etot = E+EA+EAS , S tot ≈ S +S ∗.

The production rate of S∗ is given by dS ∗/dt = k EAS . Assuming as above that the
complexes are at the quasi-steady state, we have that

EA =
E ·A
Kd
, EAS =

S ·EA
Km
,

which, using the conservation law for E, leads to

E =
Etot

(1+S/Km)(1+A/Kd)
and EAS =

(
A

A+Kd

)(
S

S +Km

)
Etot.

Hence, we have that

dS ∗

dt
= kEtot

(
A

A+Kd

)(
S

S +Km

)
.

Using the conservation law for S, this is also equivalent to

dS ∗

dt
= kEtot

(
A

A+Kd

)(
(S tot−S ∗)

(S tot−S ∗)+Km

)
.

The effect of an absolute activator is to modulate the maximal speed of modification
by a factor A/(A+Kd).

Figure 2.11 shows the behavior of the enzyme activity as a function of the
allosteric effector. As the dissociation constant decreases, that is, the affinity of the
effector increases, a very small amount of effector will cause the enzyme activity
to be completely “on” in the case of the activator and completely “off” in the case
of the inhibitor.

Another type of activation occurs when the activator is not absolute, that is, when
E can bind to S directly, but cannot activate S unless the complex ES first binds A
(see Exercise 2.12).

Covalent modifications to proteins

Covalent modification is a post-translational protein modification that affects the
activity of the protein. It plays an important role both in the control of metabolism
and in signal transduction. Here, we focus on reversible cycles of modification, in
which a protein is interconverted between two forms that differ in activity either
because of effects on the kinetics relative to substrates or for altered sensitivity to
effectors.

At a high level, a covalent modification cycle involves a target protein X, an
enzyme Z for modifying it, and a second enzyme Y for reversing the modifica-
tion (see Figure 2.12). We call X∗ the activated protein. There are often allosteric
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Figure 2.11: Enzyme activity in the presence of allosteric effectors (activators or in-
hibitors). The red plots show the enzyme activity in the presence of an inhibitor as a
function of the inhibitor concentration. The green plots show the enzyme activity in the
presence of an activator as a function of the activator concentration. The different plots
show the effect of the dissociation constant.

effectors or further covalent modification systems that regulate the activity of the
modifying enzymes, but we do not consider this added level of complexity here.
There are several types of covalent modification, depending on the type of acti-
vation of the protein. Phosphorylation is a covalent modification that takes place
mainly in eukaryotes and involves activation of the inactive protein X by addition
of a phosphate group, PO4. In this case, the enzyme Z is called a kinase while the
enzyme Y is called phosphatase. Another type of covalent modification, which is
very common in both procaryotes and eukaryotes, is methylation. Here, the inactive
protein is activated by the addition of a methyl group, CH3.

The reactions describing this system are given by the following two enzymatic
reactions, also called a two step reaction model,

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+Y.

The corresponding ODE model is given by

dZ
dt
= −a1Z ·X+ (k1+d1)C1,

dX∗

dt
= k1C1−a2Y ·X∗+d2C2,

dX
dt
= −a1Z ·X+d1C1+ k2C2,

dC2

dt
= a2Y ·X∗ − (d2+ k2)C2,

dC1

dt
= a1Z ·X− (d1+ k1)C1,

dY
dt
= −a2Y ·X∗+ (d2+ k2)C2.

Furthermore, we have that the total amounts of enzymes Z and Y are conserved.
Denote the total concentrations of Z and Y by Ztot, Ytot, respectively. Then, we
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Figure 2.12: (Left) General diagram representing a covalent modification cycle. (Right)
Detailed view of a phoshorylation cycle including ATP, ADP, and the exchange og the
phosphate group “p”.

have also the conservation laws Z+C1 = Ztot and Y +C2 = Ytot. We can thus reduce
the above system of ODE to the following one, in which we have substituted Z =
Ztot−C1 and Y = Ytot−C2:

dC1

dt
= a1(Ztot−C1) ·X− (d1+ k1)C1,

dX∗

dt
= k1C1−a2(Ytot−C2) ·X∗+d2C2,

dC2

dt
= a2(Ytot−C2) ·X∗ − (d2+ k2)C2.

As for the case of the enzymatic reaction, this system cannot be analytically
integrated. To simplify it, we can perform a similar approximation as done for the
enzymatic reaction. In particular, the complexes C1 and C2 are often assumed to
reach their steady state values very quickly because a1,d1,a2,d2 � k1,k2. There-
fore, we can approximate the above system by substituting for C1 and C2 their
steady state values, given by the solutions to

a1(Ztot−C1) ·X− (d1+ k1)C1 = 0

and
a2(Ytot−C2) ·X∗ − (d2+ k2)C2 = 0.

By solving these equations, we obtain that

C2 =
YtotX∗

X∗+Km,2
, with Km,2 =

d2+ k2

a2

and

C1 =
ZtotX

X+Km,1
, with Km,1 =

d1+ k1

a1
.
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As a consequence, the ODE model of the phosphorylation system can be well
approximated by

dX∗

dt
= k1

ZtotX
X+Km,1

−a2
YtotKm,2

X∗+Km,2
·X∗+d2

YtotX∗

X∗+Km,2
,

which, considering that a2Km,2−d2 = k2, leads finally to

dX∗

dt
= k1

ZtotX
X+Km,1

− k2
YtotX∗

X∗+Km,2
. (2.18)

We will come back to the modeling of this system after we have introduced sin-
gular perturbation theory, through which we will be able to perform a formal anal-
ysis and mathematically characterize the assumptions needed for approximating
the original system by the first order ODE model (2.18). In the model of equation
(2.18), we have that X = Xtot −X∗ −C1 −C2 by the conservation laws. A standard
assumption is that the amounts of enzymes are small compared to the amount of
substrate, so that X ≈ Xtot−X∗ [37].

Ultrasensitivity

One relevant aspect of the response of the covalent modification cycle to its input is
the sensitivity of the steady state characteristic curve. Specifically, what parameters
affect the shape of the steady state response is a crucial question. To determine the
steady state characteristics, which shows how the steady state of X∗ changes when
the input stimulus Ztot is changed, we set dX∗/dt = 0 in equation (2.18). Using the
approximation X ≈ Xtot − X∗, denoting V1 := k1Ztot, V2 := k2Ytot, K̄1 := Km,1/Xtot,
and K̄2 := Km,2/Xtot, we obtain

y :=
V1

V2
=

X∗/Xtot

(
K̄1+ (1−X∗/Xtot)

)
(K̄2+X∗/Xtot) (1−X∗/Xtot)

. (2.19)

We are interested in the shape of the steady state curve of X∗ as function of y.
This shape is usually characterized by two key parameters: the response coefficient,
denoted R, and the point of half maximal induction, denoted y50. Let yα denote the
value of y corresponding to having X∗ equal α% of the maximum value of X∗

obtained for y =∞, which is equal to Xtot. Then, the response coefficient is defined
as

R :=
y90

y10
,

and measures how switch-like the response is (Figure 2.13). When R→ 1 the re-
sponse becomes switch-like. In the case in which the steady state characteristic is
a Hill function, we have that X∗ = yn/(K + yn), so that yα = (α/(100−α))(1/n) and
as a consequence

R = (81)(1/n), or equivalently n =
log(81)
log(R)

.
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Figure 2.13: Steady state characteristic curve showing the relevance of the response coef-
ficient for ultrasensitivity. As R→ 1, the points y10 and y90 tend to each other.

Hence, when n = 1, that is, the characteristic is of the Michaelis-Menten type, we
have that R = 81, while when n increases, R decreases. Usually, when n > 1 the
response is referred to as ultrasensitive. The formula n = log(81)/log(R) is often
employed to estimate the apparent Hill coefficient of a dose response curve (the in-
put/output steady state characteristic curve obtained from experimental data) since
R can be calculated for any response curve directly from the data points.

In the case of the current system, from equation (2.19), we have that

y90 =
(K̄1+0.1) 0.9

(K̄2+0.9) 0.1
and y10 =

(K̄1+0.9) 0.1

(K̄2+0.1) 0.9
,

so that

R = 81
(K̄1+0.1)(K̄2+0.1)

(K̄2+0.9)(K̄1+0.9)
.

As a consequence, when K̄1, K̄2� 1, we have that R→ 81, which gives a Michaelis-
Menten type of response. If instead K̄1, K̄2 � 0.1, we have that R→ 1, which cor-
responds to a theoretic Hill coefficient n� 1, that is, a switch-like response (Figure
2.14). In particular, if we have, for example, K̄1 = K̄2 = 10−2, we obtain an appar-
ent Hill coefficient grater than 13. This type of ultrasensitivity is usually referred
to as zero-order ultrasensitivity. The reason of this name is due to the fact that
when Km,1 is much smaller than the amount of protein substrate X, we have that
ZtotX/(Km,1+X) ≈ Ztot. Hence, the forward modification rate is “zero order” in the
substrate concentration (no free enzyme is left, all is bound to the substrate).

One can study the behavior also of the point of half maximal induction

y50 =
K̄1+0.5

K̄2+0.5
,

to find that as K̄2 increases, it decreases and that as K̄1 increases, it increases.
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Figure 2.14: Steady state characteristics of a covalent modification cycle as a function of
the Michaelis-Menten constants K1 and K2.

Phosphotransfer systems

Phosphotransfer systems are also a common motif in cellular signal transduction.
These structures are composed of proteins that can phosphorylate each other. In
contrast to kinase-mediated phosphorylation, where the phosphate donor is usually
ATP, in phosphotransfer the phosphate group comes from the donor protein itself
(Figure 2.15). Each protein carrying a phosphate group can donate it to the next
protein in the system through a reversible reaction. In this section, we describe a
module extracted from the phosphotransferase system [91].

Let X be a transcription factor in its inactive form and let X∗ be the same tran-
scription factor once it has been activated by the addition of a phosphate group.
Let Z∗ be a phosphate donor, that is, a protein that can transfer its phosphate group
to the acceptor X. The standard phosphotransfer reactions [82] can be modeled
according to the two-step reaction model

Z∗+X
k1−−⇀↽−−
k2

C1

k3−−⇀↽−−
k4

X∗+Z,

in which C1 is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and protein X∗ dephosphorylated by
other phosphotransfer interactions. These reactions are modeled as one step reac-
tions depending only on the concentrations of Z and X∗, that is,

Z
π1−−→ Z∗, X∗

π2−−→ X.

Protein X is assumed to be conserved in the system, that is, Xtot = X+C1+X∗.
We assume that protein Z is produced with time-varying production rate k(t) and
decays with rate δ. The ODE model corresponding to this system is thus given by
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Figure 2.15: (a) Diagram of a phosphotransfer system. (b) Proteins X and Z are transferring
the phosphate group p to each other.

the equations

dZ
dt
= k(t)−δZ+ k3C1− k4X∗Z−π1Z

dC1

dt
= k1Xtot

(
1− X∗

Xtot
− C1

Xtot

)
Z∗ − k3C1− k2C1+ k4X∗Z

dZ∗

dt
= π1Z+ k2C1− k1Xtot

(
1− X∗

Xtot
− C1

Xtot

)
Z∗

dX∗

dt
= k3C1− k4X∗Z−π2X∗.

(2.20)

Sample simulation results when the input is a time-varying (periodic) stimulus are
shown in Figure 2.16. The output X∗ well “tracks” the input stimulus by virtue of
the fast phosphotransfer reactions.

This model will be considered again in Chapter 7 when the phosphotransfer sys-
tem is proposed as a possible realization of an insulation device to buffer systems
from retroactivity effects.

2.5 Cellular subsystems

In the previous section we have studied how to model a variety of core processes
that occure in cells. In this section we consider a few common “subsystems” in
which these processes are combined for specific purposes.

Intercellular signaling: MAPK cascades

The Mitogen Activated Protein Kinase (MAPK) cascade is a recurrent structural
motif in several signal transduction pathways (Figure 2.17). The cascade consists
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Figure 2.16: Output response of the phosphotransfer system with a step signal k(t) = 1+
0.5sin(ωt). The parameters are given by δ = 0.01, Xtot = 5000, k1 = k2 = k3 = k4 = π1 = π2 =

0.01.

of a MAPK kinase kinase (MAPKKK), denoted X0, a MAPK kinase (MAPKK),
denoted X1, and a MAPK, denoted X2. MAPKKKs activate MAPKKs by phospho-
rylation at two conserved sites and MAPKKs activate MAPKs by also phosphory-
lation at conserved sites. The cascade relays signals from the plasma membrane
to targets in the cytoplasm and nucleus. It has been extensively studied and mod-
eled. Here, we provide two different models. First, we build a modular model by
viewing the system as the composition of single phosphorylation cycle modules
(whose ODE model was derived earlier) and double phosphorylation cycle mod-
ules, whose ODE model we derive here. Then, we provide the full list of reactions
describing the cascade and construct a mechanistic ODE model from scratch. We
will then highlight the difference between the two derived models.

Double phosphorylation model. Consider the double phosphorylation motif in Fig-
ure 2.18. The reactions describing the system are given by

E1+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+E1, E2+X

a2−−⇀↽−−
d2

C2
k2−→ X∗+E2,

X∗+E1

a∗1−−⇀↽−−
d∗1

C3

k∗1−→ X∗∗+E1, E2+X∗∗
a∗2−−⇀↽−−
d∗2

C4

k∗2−→ X∗+E2

With conservation laws

E1+C1+C3 = E1,tot, E2+C2+C4 = E2,tot,

Xtot = X+X∗+X∗∗+C1+C2+C3+C4 ≈ X+X∗+X∗∗,

in which we have assumed the the total amounts of enzymes are small compared
to the total amount of substrate as we have explained earlier. Since ai,di � ki and
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Figure 2.17: Schematic representing the MAPK cascade. It has three levels: the first one
has a single phosphorylation, while the second and the third ones have a double phospho-
rylation.

a∗i ,d
∗
i � k∗i , we can assume that the complexes are at the quasi-steady state (i.e.,

Ċi ≈ 0), which gives the Michaelis-Menten form for the amount of formed com-
plexes:

C1 = E1,tot
K∗1 X

K∗1X+K1X∗+K1K∗1
, C3 = E1,tot

K1 X∗

K∗1X+K1X∗+K1K∗1
,

C2 = E2,tot
K∗2 X∗

K∗2X∗+K2X∗∗+K2K∗2
, C4 = E2,tot

K2 X∗∗

K∗2X∗+K2X∗∗+K2K∗2
,

in which Ki = (di+ki)/ai and K∗i = (d∗i +k∗i )/a∗i are the Michaelis-Menten constants
for the enzymatic reactions. Since the complexes are at the quasi steady state, it
follows that

d
dt

X∗ = k1C1− k2C2− k∗1C3+ k∗2C4,

d
dt

X∗∗ = k∗1C3− k∗2C4,
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Figure 2.18: Schematic representing a double phosphorylation cycle. E1 is the input and
X∗∗ is the output.

from which, substituting the expressions of the complexes, we obtain that

d
dt

X∗ = E1,tot
k1XK∗1 − k∗1X∗K1

K∗1X+K1X∗+K∗1K1
+E2,tot

k∗2X∗∗K2− k2X∗K∗2
K∗2X∗+K2X∗∗+K2K∗2

d
dt

X∗∗ = k∗1E1,tot
K1X∗

K∗1X+K1X∗+K1K∗1
− k∗2E2,tot

K2 X∗∗

K∗2X∗+K2X∗∗+K2K∗2
,

in which X = Xtot−X∗ −X∗∗.

Modular model of MAPK cascades

In this section, to simplify notation, we denote “MAPK” by X2. In a modular com-
position framework, the output of one stage becomes an input to the next stage
downstream of it. Hence, X *

0 becomes the input enzyme that activates the phos-
phorylation of X1, and X **

1 becomes the input enzyme that activates the phospho-
rylation of X2. Let (a1,i,d1,i,k1,i) and (a2,i,d2,i,k2,i) be the association, dissociation,
and catalytic rates for the forward and backward enzymatic reactions, respectively,
for the first cycle at stage i ∈ {0,1,2}. Similarly, let (a∗1,i,d

∗
1,i,k

∗
1,i) and (a∗2,i,d

∗
2,i,k

∗
2,i)

be the association, dissociation, and catalytic rates for the forward and backward
enzymatic reactions, respectively, for the second cycle at stage i ∈ {1,2}. Also, de-
note by K1,i and K2,i for i ∈ {0,1,2} the Michaelis-Menten constants of the forward
and backward enzymatic reactions, respectively, of the first cycle at stage i. Sim-
ilarly, denote K∗1,i and K∗2,i for i ∈ {1,2} be the Michaelis-Menten constants of the
forward and backward enzymatic reactions, respectively, of the second cycle at
stage i. Let P1,tot and P2,tot be the total amounts of the X1 and X2 phosphatases,
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respectively. Then, the modular ODE model of the MAPK cascade is given by

d
dt

X∗0 = k1,0E1,tot
X0

X0+K1,0
− k2,0P0,tot

X∗0
X∗0+K2,0

d
dt

X∗1 = X∗0
k1,1 X0 K∗1,1−k∗1,1 X∗1 K1,1

K∗1,1 X1+K1,1 X∗1+K1,1K∗1,1
+P1,tot

k∗2,1 K2,1 X∗∗1 −k2,1 X∗1 K∗2,1
K∗2,1 X∗1+K2,1 X∗∗1 +K2,1K∗2,1

d
dt

X∗∗1 = k∗1,1 X∗0
X∗1 K1,1

K∗1,1 X1+K1,1 X∗1+K1,1K∗1,1
− k∗2,1 P1,tot

X∗∗1 K2,1

K∗2,1 X∗1+K2,1 X∗∗1 +K2,1K∗2,1

d
dt

X∗2 = X∗∗1
k1,2X2 K∗1,2−k∗1,2 X∗2 K1,2

K∗1,2 X2+K1,2 X∗2+K∗1,2 K1,2
+P2,tot

k∗2,2 K2,2 X∗∗2 −k2,2 X∗2 K∗2,2
K∗2,2 X∗2+K2,2 X∗∗2 +K2,2 K∗2,2

d
dt

X∗∗2 = k∗1,2 X∗∗1
X∗2 K1,2

K∗1,2 X2+K1,2 X∗2+K∗1,2 K1,2
− k∗2,2 P2,tot

X∗∗2 K2,2

K∗2,2 X∗2+K2,2 X∗∗2 +K2,2 K∗2,2

(2.21)

in which, letting X0,tot,X1,tot and X2,tot represent the total amounts of each stage
protein, we have X0 = X0,tot−X∗0, X1 = X1,tot−X∗1 −X∗∗1 and X2 = X2,tot−X∗2 −X∗∗2 .

Mechanistic model of the MAPK cascade

We now give the entire set of reactions for the MAPK cascade of Figure 2.17 as
they are found in standard references (Huang-Ferrell model [45]):

E1+X0

a1,0−−−⇀↽−−−
d1,0

C1

k1,0−−→ X∗0E1 P0+X∗0
a2,0−−−⇀↽−−−
d2,0

C2

k2,0−−→ X∗0 +P0

X∗0 +X1

a1,1−−−⇀↽−−−
d1,1

C3

k1,1−−→ X∗1 +X∗0 X∗1 +P1

a2,1−−−⇀↽−−−
d2,1

C4

k2,1−−→ X1+P1

X∗0 +X∗1
a∗1,1−−−⇀↽−−−
d∗1,1

C5

k∗1,1−−→ X∗∗1 +X∗0 X∗1 +P1

a∗2,1−−−⇀↽−−−
d∗2,1

C6

k∗2,1−−→ X∗1 +P1

X∗∗1 +X2

a1,2−−−⇀↽−−−
d1,2

C7

k1,2−−→ X∗2 +X∗∗1 X∗2 +P2

a2,2−−−⇀↽−−−
d2,2

C8

k2,2−−→ X2+P2

X∗∗1 +X∗2
a∗1,2−−−⇀↽−−−
d∗1,2

C9

k∗1,2−−→ X∗∗2 +X∗1 X∗∗2 +P2

a∗2,2−−−⇀↽−−−
d∗2,2

C10

k∗2,2−−→ X∗2 +P2,

with conservation laws

X0,tot = X0+X∗0 +C1+C2+C3+C5

X1,tot = X1+X∗1 +C3+X∗∗1 +C4+C5+C6+C7+C9

X2,tot = X2+X∗2 +X∗∗2 +C7+C8+C9+C10

E1,tot = E1+C1, P0,tot = P0+C2

P1,tot = P1+C4+C6

P2,tot = P2+C8+C10.
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The corresponding ODE model is given by

d
dt

C1 = a1,0E1 X0− (d1,0+ k1,0) C1

d
dt

X∗0 = k1,0 C1+d2,0 C2−a2,0 P0 X∗0 + (d1,1+ k1,1) C3−a1,1 X1 X∗0

+ (d∗1,1+ k∗1,1) C5−a∗1,1 X∗0 X∗1
d
dt

C2 = a2,0 P0 X∗0 − (d2,0+ k2,0) C2

d
dt

C3 = a1,1 X1 X∗0 − (d1,1+ k1,1) C3

d
dt

X∗1 = k1,1 C3+d2,1 C4−a2,1 X∗1 P1+d∗1,1C5−a∗1,1 X∗1 X∗0 + k∗2,1 C6

d
dt

C4 = a2,1 X∗1 P1− (d2,1+ k2,1) C4

d
dt

C5 = a∗1,1 X∗0 X∗1 − (d∗1,1+ k∗1,1) C5

d
dt

X∗∗1 = k∗1,1 C5−a∗2,1 X∗1 P1+d∗2,1 C6−a1,2 X∗∗1 X2

+ (d1,2+ k1,2) C7−a∗1,2 X∗∗1 X∗2 + (d∗1,2+ k∗1,2) C9

d
dt

C6 = a∗2,1 X∗∗1 P1− (d∗2,1+ k∗2,1) C6

d
dt

C7 = a∗1,2 X∗1 X2− (d∗1,2+ k∗1,2) C7

d
dt

X∗2 = −a2,2 X∗2 P2+d2,2 C8−a∗1,2 X∗2 X∗∗2 +d∗1,2 C9+C10 K10

d
dt

C8 = a∗2,2 X∗2 P2− (d2,2+ k2,2) C8

d
dt

X∗∗2 = k∗1,2 C9−a∗2,2 X∗∗2 P2+d∗2,2 C10

d
dt

C9 = a∗1,2 X∗∗1 X∗2 − (d∗1,2+ k∗1,2) C9

d
dt

C10 = a∗2,2 X∗∗2 P2− (d∗2,2+ k∗2,2) C10.

Assuming as before that the total amounts of enzymes are much smaller than
the total amounts of substrates (E1,tot,P0,tot,P1,tot,P2,tot � X0,tot,X1,tot,X2,tot), we
can approximate the conservation laws as

X0,tot ≈ X0+X∗0 +C3+C5,

X1,tot ≈ X1+X∗1 +C3+X∗∗1 +C5+C7+C9,

X2,tot ≈ X2+X∗2 +X∗∗2 +C7+C9.
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Using these and assuming that the complexes are at the quasi-steady state, we ob-
tain the following functional dependencies:

C1 = f1(X∗0,X
∗
1,X

∗∗
1 ,X

∗
2,X

∗∗
2 ), C2 = f2(X∗0),

C3 = f3(X∗0,X
∗
1,X

∗∗
1 ,X

∗
2,X

∗∗
2 ), C5 = f5(X∗0,X

∗
1),

C7 = f7(X∗1,X
∗∗
1 ,X

∗
2,X

∗∗
2 ), C9 = f9(X∗∗1 ,X

∗
2).

The fact that C7 depends on X∗2 and X∗∗2 illustrates that the dynamics of the second
stage are influenced by those of the third stage. Similarly, the fact that C3 depends
on X∗1,X

∗∗
1 ,X

∗
2,X

∗∗
2 indicates that the dynamics of the first stage are influenced by

those of the second stage and by that of the third stage. The phenomenon by which
the behavior of a “module” is influenced by that of its downstream clients is called
retroactivity, which is a phenomenon similar to impedance in electrical systems
and to back-effect in mechanical systems. It will be studied at length in Chapter 7.

This fact is in clear contrast with the ODE model obtained by modular compo-
sition, in which each stage dynamics depended upon the variables of the upstream
stages and not upon those of the downstream stages. That is, from equations (2.21),
it is apparent that the dynamics of X∗0 (first stage) do not depend on the variables of
the second stage (X1,X∗1,X

∗∗
1 ). In turn, the dynamics of X∗1 and X∗∗1 (second stage)

do not depend on the variables of the third stage (X∗2 and X∗∗2 ). Indeed modular com-
position does not consider the fact that the proteins of each stage are “used-up” in
the process of transmitting information to the downstream stages. This backward
effect has been theoretically shown to lead to sustained oscillations in the MAPK
cascade [80]. By contrast, the modular ODE model of MAPK cascades does not
give rise to sustained oscillations.

Properties of the MAPK Cascade

The stimulus-response curve obtained with the mechanistic model predicts that the
response of the MAPKKK to the stimulus E1,tot is of the Michaelis-Menten type.
By contrast, the stimulus-response curve obtained for the MAPKK and MAPK
are sigmoidal and show high Hill coefficients, which increases from the MAPKK
response to the MAPK response. That is, an increase ultrasensitivity is observed
moving down in the cascade (Figure 2.19). These model observations persist when
key parameters, such as the Michaelis-Menten constants are changed [45]. Fur-
thermore, zero-order ultrasensitivity effects can be observed. Specifically, if the
amounts of MAPKK were increased, one would observe a higher apparent Hill
coefficient for the response of MAPK. Similarly, if the values of the Km for the re-
actions in which the MAPKK takes place were decreased, one would also observe
a higher apparent Hill coefficient for the response of MAPK. Double phosphory-
lation is also key to obtain a high apparent Hill coefficient. In fact, a cascade in
which the double phosphorylation was assumed to occur through a one-step model
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Figure 2.19: Dose response of the MAPK cascade for every stage. Simulations from the
model of [80].

(similar to single phosphorylation) predicted substantially lower apparent Hill co-
efficients.

Additional topics to be added later: Review

1. Transport across the membrane

2. Membrane receptors, ligand binding, G-proteins

Exercises

2.1 (BE 150, Winter 2011) Consider a cascade of three activators X→Y→ Z. Pro-
tein X is initially present in the cell in its inactive form. The input signal of X, S x,
appears at time t=0. As a result, X rapidly becomes active and binds the promoter
of gene Y, so that protein Y starts to be produced at rate β. When Y levels exceed
a threshold K, gene Z begins to be transcribed and translated at rate γ. All proteins
have the same degradation/dilution rate α.

(a) What are the concentrations of proteins Y and Z as a function of time?

(b) What is the minimum duration of the pulse S x such that Z will be produced?

(c) What is response time of protein Z with respect to the time of addition of S x?
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2.2 (Hill function for a cooperative repressor) Consider a repressor that binds to an
operator site as a dimer:

R1: R+R −−−⇀↽−−− R2

R2: R2+DNAp −−−⇀↽−−− R2:DNA

R3: RNAP+DNAp −−−⇀↽−−− RNAP:DNAp

Assume that the reactions are at equilibrium and that the RNA polymerase con-
centration is large (so that [RNAP] is roughly constant). Show that the ratio of the
concentration of RNA:DNA p to the total amount of DNA, Dtot, can be written as a
Hill function

f (R) =
[RNAP:DNA]

Dtot
=

α

K +R2

and give expressions for α and K.

2.3 (Switch-like behavior in cooperative binding) For a cooperative binding reac-
tion

B+B
k1−−⇀↽−−
k2

Bd, Bd+A
k f
−−⇀↽−−

kr

C, and A+C = Atot,

the steady state values of C and A are

C =
kMAtotB2

kM B2+Kd
, and A =

AtotKd

kM B2+Kd
.

Derive the expressions of C and A at the steady state when you modify these reac-
tions to

B+B+ ...+B
k1−−⇀↽−−
k2

Bn, Bn+A
k f
−−⇀↽−−

kr

C, and A+C = Atot.

Make MATLAB plots of the expressions that you obtain and verify that as n in-
creases the functions become more switch-like.

2.4 Consider the following modification of the competitive binding reactions:

Ba+A
k f
−−⇀↽−−

kr

C, Br+A
k̄ f
−−⇀↽−−

k̄r

C̄,

and

C+Br

k′f
−−⇀↽−−

k′r
C
′
, and C̄+Ba

k̄′f
−−⇀↽−−

k̄′r

C
′

with Atot = A+C + C̄ +C′. What are the steady state expressions for A and C?
What information do you deduce from these expressions if A is a promoter, Ba
is an activator protein, and C is the activator/DNA complex that makes the gene
transcriptionally active?
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2.5 Consider the case of a competitive binding of an activator A and a repressor
R with D and assume that before they can bind D they have to cooperatively bind
according to the following reactions:

A+A+ ...+A
k1−−⇀↽−−
k2

An, R+R+ ...+R
k̄1−−⇀↽−−
k̄2

Rm,

in which the complex An contains n molecules of A and the complex Rm contains
m molecules of R. The competitive binding reactions with A are given by

An+D
a−⇀↽−
d

C, Rm+D
a′−−⇀↽−−
d′

C′,

and Dtot = D+C+C′.What are the steady state expressions for C and D?

2.6 Assume that we have an activator Ba and a repressor protein Br. We want to
obtain an input function such that when a lot of Ba is present, the gene is tran-
scriptionally active only if there is no Br, when low amounts of Ba are present, the
gene is transcriptionally inactive (with or without Br). Write down the reactions
among Ba, Br, and complexes with the DNA (A) that lead to such an input func-
tion. Demonstrate that indeed the set of reactions you picked leads to the desired
input function.

2.7 (BE 150, Winter 2011) Consider a positive transcriptional feedback loop com-
posed of two negative interactions X � Y and Y � X.

(a) Write the ODEs for the system above. Assume that the two transcrption/repression
mechanisms have the same dynamics and both genes are degraded at the same rate
0.2. Let the basal transcription rate be 1, K = 2, n = 2.

(b) To solve for the steady states, plot the nullclines by solving dX
dt = 0 and dY

dt = 0
(i.e. solve for Y = g1(X) where dX

dt = 0 and Y = g2(X) where dY
dt = 0 and plot both

solutions). The steady states are given by the intersections of the two nullclines.

(c) Plot the time response of X and Y using the following two initial conditions:

(X(0),Y(0)) = (1,4) and (4,1).

Next, plot the phase plane of the system using pplane in MATLAB. How do the
responses change with initial conditions? Describe a situation where this type of
interaction would be useful.

2.8 Consider the phosphorylation reactions described in Section 2.4, but suppose
that the kinase concentration Z is not constant, but is produced and decays accord-

ing to the reaction Z
δ−−−⇀↽−−−

k(t)
∅. How should the system in equation (2.18) be modified?
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Use a MATLAB simulation to apply a periodic input stimulus k(t) using parame-
ter values: kcat = k′cat = 1, k f = k′f = kr = k′r = 10, δ = 0.01. Is the cycle capable of
“tracking” the input stimulus? If yes, to what extent? What are the tracking prop-
erties depending on?

2.9 Another model for the phosphorylation reactions, referred to as one step re-
action model, is given by Z+X −−−⇀↽−−− X∗+Z and Y+X∗ −−−⇀↽−−− X+Y, in which the
complex formations are neglected. Write down the ODE model and comparing the
differential equation of X∗ to that of equation (2.18), list the assumptions under
which the one step reaction model is a good approximation of the two step reaction
model.

2.10 (Transcriptional regulation with delay) Consider a repressor or activator B∗

modeled by a Hill function F(B). Show that in the presence of transcriptional delay
τm, the dynamics of the active mRNA can be written as

dm∗(t)
dt

= e−τ
m

F(B(t−τm))− γ̄m∗.

2.11 (Competitive Inhibition) Derive the expression of the production rate of W∗

in the presence of a competitive inhibitor I.

2.12 (Non-absolute activator) Derive the expression of the production rate of W∗

in the presence of a non-absolute activator A.

2.13 (BE 150, Winter 2011) Consider the following network X→ Y and X→ X.

(a) Write the ODEs for the system above. Use basal expression βX = βY = 2 and
activation coefficients KX = 1, KY = 2, n1 = n2 = 2. The degradation coefficients for
X and Y are both 0.5.

(b) Plot the vector field using pplane. How many steady states do you observe?

(c) Solve for the steady states of the system using the derived ODEs, linearize the
system and do a stability analysis.



Chapter 3
Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems and feed-
back control theory that will be used in the rest of the text to analyze and design
biological circuits, building on tools already described in AM08. We focus here on
deterministic models and the associated analyses; stochastic methods are given in
Chapter 4.

Prerequisites. Readers should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary differential equations, at the level of Chapter 4 of
AM08. We will also make use of linearized input/output models in state space,
based on the techniques described in Chapter 5 of AM08 and the frequency do-
main techniques described in Chapters 8–10.

3.1 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great deal of insight
into the behavior of a biological system can be obtained by analyzing the dynamics
of the system subject to small perturbations around a known solution. We begin by
considering the dynamics of the system near an equilibrium point, which is one of
the simplest cases and provides a rich set of methods and tools.

In this section we will model the dynamics of our system using the input/output
modeling formalism described in Chapter 1:

ẋ = f (x, θ,u), y = h(x, θ), (3.1)

where x ∈ Rn is the system state, θ ∈ Rp are the system parameters and u ∈ Rq is
a set of external inputs (including disturbances and noise). The system state x is a
vector whose components will represent concentration of species, such as proteins,
kinases, DNA promoter sites, inducers, allosteric effectors, etc. The system param-
eters θ is also a vector, whose components will represent biochemical parameters
such as association and dissociation rates, production rates, decay rates, dissoci-
ation constants, etc. The input u is a vector whose components will represent a
number of possible physical entities, including the concentration of transcription
factors, DNA concentration, kinases concentration, etc. The output y ∈ Rm of the
system represents quantities that can be measured or that are used to interconnect
subsystem models to form larger models.
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Example 3.1 (Transcriptional component). Consider a promoter controlling a gene
g that can be regulated by a transcription factor Z. Let mG and G represent the
mRNA and protein expressed by gene g. This system can be viewed as a system,
in which u = Z is the concentration of transcription factor regulating the promoter,
the state x = (x1, x2) is such that x1 =mG is the concentration of mRNA and x2 =G
is the concentration of protein, and y = G = x2 is the concentration of protein G.
Assuming that the transcription factor regulating the promoter is a repressor, the
system dynamics can be described by the following system

dx1

dt
=

α

1+ (u/K)n −γx1,
dx2

dt
= βx1−δx2, y = x2 (3.2)

in which θ = (α,K,γ,β,δ,n) is the vector of system parameters. In this case, we
have that

f (x, θ,u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
α

1+ (u/K)n −γx1

βx1−δx2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , h(x, θ) = x2.

∇

Note that we have chosen to explicitly model the system parameters θ, which
can be thought of as an additional set of (mainly constant) inputs to the system.

Equilibrium points and stability [AM08]

We begin by considering the case where the input u and parameters θ in equa-
tion (3.1) are fixed and hence we can write the dynamics of the system as

dx
dt
= F(x). (3.3)

An equilibrium point of a dynamical system represents a stationary condition for
the dynamics. We say that a state xe is an equilibrium point for a dynamical system
if F(xe) = 0. If a dynamical system has an initial condition x(0) = xe, then it will
stay at the equilibrium point: x(t) = xe for all t ≥ 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.

The stability of an equilibrium point determines whether or not solutions nearby
the equilibrium point remain close, get closer or move further away. An equilibrium
point xe is stable if solutions that start near xe stay close to xe. Formally, we say
that the equilibrium point xe is stable if for all ε > 0, there exists a δ > 0 such that

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ε for all t > 0,

where x(t) represents the solution the the differential equation (3.3) with initial
condition x(0). Note that this definition does not imply that x(t) approaches xe as
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Figure 3.1: Phase portrait (trajectories in the state space) on the left and time domain sim-
ulation on the right for a system with a single stable equilibrium point. The equilibrium
point xe at the origin is stable since all trajectories that start near xe stay near xe.

time increases but just that it stays nearby. Furthermore, the value of δmay depend
on ε, so that if we wish to stay very close to the solution, we may have to start
very, very close (δ� ε). This type of stability, which is illustrated in Figure 3.1,
is also called stability in the sense of Lyapunov. If an equilibrium point is stable in
this sense and the trajectories do not converge, we say that the equilibrium point is
neutrally stable.

An example of a neutrally stable equilibrium point is shown in Figure 3.1. From
the phase portrait, we see that if we start near the equilibrium point, then we stay
near the equilibrium point. Indeed, for this example, given any ε that defines the
range of possible initial conditions, we can simply choose δ = ε to satisfy the defi-
nition of stability since the trajectories are perfect circles.

An equilibrium point xe is asymptotically stable if it is stable in the sense of
Lyapunov and also x(t)→ xe as t→∞ for x(0) sufficiently close to xe. This corre-
sponds to the case where all nearby trajectories converge to the stable solution for
large time. Figure 3.2 shows an example of an asymptotically stable equilibrium
point.

Note from the phase portraits that not only do all trajectories stay near the equi-
librium point at the origin, but that they also all approach the origin as t gets large
(the directions of the arrows on the phase portrait show the direction in which the
trajectories move).

An equilibrium point xe is unstable if it is not stable. More specifically, we say
that an equilibrium point xe is unstable if given some ε > 0, there does not exist a
δ > 0 such that if ‖x(0)− xe‖ < δ, then ‖x(t)− xe‖ < ε for all t. An example of an
unstable equilibrium point is shown in Figure 3.3.

The definitions above are given without careful description of their domain of
applicability. More formally, we define an equilibrium point to be locally stable
(or locally asymptotically stable) if it is stable for all initial conditions x ∈ Br(a),
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Figure 3.2: Phase portrait and time domain simulation for a system with a single asymp-
totically stable equilibrium point. The equilibrium point xe at the origin is asymptotically
stable since the trajectories converge to this point as t→∞.

where
Br(a) = {x : ‖x−a‖ < r}

is a ball of radius r around a and r > 0. A system is globally stable if it is stable for
all r > 0. Systems whose equilibrium points are only locally stable can have inter-
esting behavior away from equilibrium points, as we explore in the next section.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibria
that are attracting. This gives partial information about the behavior of the system.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure 3.3). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Figure 3.1) is called
a center.

Example 3.2 (Bistable gene circuit). Consider a system composed of two genes
that express transcription factors that repress each other as shown in Figure 3.4.
Denoting the concentration of protein A by x1 and that of protein B by x2 and
neglecting the mRNA dynamics, the system can be modeled by the following dif-
ferential equations:

dx1

dt
=

α1

(xn
2/K2)+1

−δx1,
dx2

dt
=

α2

(xn
1/K1)+1

−δx2.
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Figure 3.3: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point xe at the origin is unstable since not all trajectories
that start near xe stay near xe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

Figure 3.4(b) shows the phase portrait of the system. This system is bi-stable be-
cause there are two (asymptotically) stable equilibria. Specifically, the trajectories
converge to either of two possible equilibria: one where x1 is high and x2 is low
and the other where x1 is low and x2 is high. A trajectory will approach the first
one if the initial condition is below the dashed line, called the separatrix, while it
will approach the second one if the initial condition is above the separatrix. Hence,
the region of attraction of the first equilibrium is the region of the plane below the
separatrix and the region of attraction of the second one is the portion of the plane
above the separatrix. ∇

Nullcline Analysis

Nullcline analysis is a simple and intuitive way to determine the stability of an
equilibrium point for systems in R2. Consider the system with x = (x1, x2) ∈ R2

described by the differential equations

dx1

dt
= F1(x1, x2),

dx2

dt
= F2(x1, x2).

The nullclines of this system are given by the two curves in the x1, x2 plane in
which F1(x1, x2) = 0 and F2(x1, x2) = 0. The nullclines intersect at the equilibria of
the system xe. Figure 3.5 shows an example in which there is a unique equilibrium.

The stability of the equilibrium is deduced by inspecting the direction of the
trajectory of the system starting at initial conditions x close to the equilibrium xe.
The direction of the trajectory can be obtained by determining the signs of F1 and
F2 in each of the regions in which the nullclines partition the plane around the
equilibrium xe. If F1 < 0 (F1 > 0), we have that x1 is going to decrease (increase)
and similarly if F2 < 0 (F2 > 0), we have that x2 is going to decrease (increase). In
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Figure 3.4: (a) Diagram of a bistable gene circuit composed of two genes. (b) Phase plot
showing the trajectories converging to either one of the two possible stable equilibria de-
pending on the initial condition. The parameters are α1 = α2 = 1, K1 = K2 = 0.1, and δ = 1.

Figure 3.5, we show a case in which F1 < 0 on the right-hand side of the nullcline
F1 = 0 and F1 > 0 on the left-hand side of the same nullcline. Similarly, we have
chosen a case in which F2 < 0 above the nullcline F2 = 0 and F2 > 0 below the
same nullcline. Given these signs, it is clear (see the figure) that starting from any
point x close to xe the vector field will always point toward the equilibrium xe and
hence the trajectory will tend toward such equilibrium. In this case, it then follows
that the equilibrium xe is asymptotically stable.

Example 3.3 (Negative autoregulation). As an example, consider expression of
a gene with negative feedback. Let x1 represent the mRNA concentration and x2

represent the protein concentration. Then, a simple model (in which for simplicity
we have assumed all parameters to be 1) is given by

dx1

dt
=

1
1+ x2

− x1,
dx2

dt
= x1− x2,

so that F1(x1, x2) = 1/(1+ x2)− x1 and F2(x1, x2) = x1 − x2. Figure 3.5(a) exactly
represents the situation for this example. In fact, we have that

F1(x1, x2) < 0 ⇐⇒ x1 >
1

1+ x2
, F2(x1, x2) < 0 ⇐⇒ x2 > x1,

which provides the direction of the vector field as shown in Figure 3.5. As a con-
sequence, the equilibrium point is stable. The phase plot of Figure 3.5(b) confirms
this fact since the trajectories all converge to the unique equilibrium point. ∇

Stability analysis via linearization

For systems with more than two states, the graphical technique of nullcline analysis
cannot be used. Hence, we must resort to other techniques to determine stability.
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Figure 3.5: (a) Example of nullclines for a system with a single equilibrium point xe. To
understand the stability of the equilibrium point xe, one traces the direction of the vec-
tor field ( f1, f2) in each of the four regions in which the nullcline partition the plane. If
in each region the vector field points toward the equilibrium point, then such a point is
asymptotically stable. (b) Phase plot diagram for the negative autoregulation example.

Consider a linear dynamical system of the form

dx
dt
= Ax, x(0) = x0, (3.4)

where A ∈ Rn×n. For a linear system, the stability of the equilibrium at the origin
can be determined from the eigenvalues of the matrix A:

λ(A) = {s ∈ C : det(sI−A) = 0}.

The polynomial det(sI − A) is the characteristic polynomial and the eigenvalues
are its roots. We use the notation λ j for the jth eigenvalue of A and λ(A) for the
set of all eigenvalues of A, so that λ j ∈ λ(A). For each eigenvalue λ j there is a
corresponding eigenvector v j ∈ Rn, which satisfies the equation Av j = λ jv j.

In general λ can be complex-valued, although if A is real-valued, then for any
eigenvalue λ, its complex conjugate λ∗ will also be an eigenvalue. The origin is al-
ways an equilibrium point for a linear system. Since the stability of a linear system
depends only on the matrix A, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
are in diagonal form. In this case, the dynamics have the form

dx
dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1 0
λ2
. . .

0 λn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x. (3.5)
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It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of n individual systems ẋ j = λ jx j.
Each of these scalar solutions is of the form

x j(t) = eλ jt x j(0).

We see that the equilibrium point xe = 0 is stable if λ j ≤ 0 and asymptotically stable
if λ j < 0.

Another simple case is when the dynamics are in the block diagonal form

dx
dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 ω1 0 0
−ω1 σ1 0 0

0 0
. . .

...
...

0 0 σm ωm

0 0 −ωm σm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x.

In this case, the eigenvalues can be shown to be λ j = σ j ± iω j. We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2 j−1(t) = eσ jt(x2 j−1(0)cosω jt+ x2 j(0)sinω jt
)
,

x2 j(t) = eσ jt(−x2 j−1(0)sinω jt+ x2 j(0)cosω jt
)
,

where j = 1,2, . . . ,m. We see that this system is asymptotically stable if and only
if σ j = Reλ j < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems can
be transformed into these forms via coordinate transformations. One such class
of systems is those for which the dynamics matrix has distinct (non-repeating)
eigenvalues. In this case there is a matrix T ∈ Rn×n such that the matrix T AT−1 is
in (block) diagonal form, with the block diagonal elements corresponding to the
eigenvalues of the original matrix A. If we choose new coordinates z = T x, then

dz
dt
= T ẋ = T Ax = T AT−1z

and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as the original system since
if v is an eigenvector of A, then w = Tv can be shown to be an eigenvector of
T AT−1. We can reason about the stability of the original system by noting that
x(t) = T−1z(t), and so if the transformed system is stable (or asymptotically stable),
then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stabil-
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:
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Theorem 3.1 (Stability of a linear system). The system

dx
dt
= Ax

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative
real part and is unstable if any eigenvalue of A has a strictly positive real part.

In the case in which the system state is two-dimensional, that is, x ∈R2, we have
a simple way of determining the eigenvalues of a matrix A. Specifically, denote by
tr(A) the trace of A, that is, the sum of the diagonal terms, and let det(A) be the
determinant of A. Then, we have that the two eigenvalues are given by

λ1,2 =
1
2

(
tr(A)±

√
tr(A)2−4det(A)

)
.

Both eigenvalues have negative real parts when (1) tr(A) < 0 and (2) det(A) > 0. By
contrast, if condition (2) is satisfied but tr(A) > 0, the eigenvalues have positive real
parts.

An important feature of differential equations is that it is often possible to de-
termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx
dt
= F(x)

that has an equilibrium point at xe. Computing the Taylor series expansion of the
vector field, we can write

dx
dt
= F(xe)+

∂F
∂x

∣∣∣∣∣
xe

(x− xe)+higher-order terms in (x− xe).

Since F(xe) = 0, we can approximate the system by choosing a new state variable
z = x− xe and writing

dz
dt
= Az, where A =

∂F
∂x

∣∣∣∣∣
xe

. (3.6)

We call the system (3.6) the linear approximation of the original nonlinear system
or the linearization at xe. We also refer to matrix A as the Jacobian matrix of the
original nonlinear system.

The fact that a linear model can be used to study the behavior of a nonlinear
system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equilib-
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.
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Example 3.4 (Negative autoregulation). Consider again the negatively autoregu-
lated gene modeled by the equations

dx1

dt
=

1
1+ x2

− x1,
dx2

dt
= x1− x2.

In this case,

F(x) =

( 1
1+x2
− x1

x1− x2

)
,

so that, letting xe = (x1,e, x2,e), the Jacobian matrix is given by

A =
∂F
∂x

∣∣∣∣∣
xe

=

⎛⎜⎜⎜⎜⎝ −1 − 1
(1+x2,e)2

1 −1

⎞⎟⎟⎟⎟⎠ .
In this case, we have that tr(A) = −2 < 0 and that det(A) = 1+ 1

(1+x2,e)2 > 0. Hence,
independently of the value of the equilibrium point, the eigenvalues have both neg-
ative real parts, which implies that the equilibrium point xe is asymptotically sta-
ble. ∇

Frequency domain analysis

Frequency domain analysis is a way to understand how well a system can respond
to rapidly changing input stimuli. As a general rule, most physical systems display
an increased difficulty in responding to input stimuli as the frequency of variation
increases: when the input stimulus changes faster than the natural time scales of the
system, the system becomes incapable of responding. If instead the input stimulus
is changing much slower than the natural time scales of the system, the system
will respond very accurately. That is, the system behaves like a “low-pass filter”.
The cut-off frequency at which the system does not display a significant response
is called the bandwidth and quantifies the dominant time scale. To identify this
dominant time scale, we can perform input/output experiments in which the system
is excited with periodic input at various frequencies.

Example 3.5 (Phosphorylation cycle). To illustrate the basic ideas, we consider
the frequency response of a phosphorylation cycle, in which enzymatic reactions
are modeled by a first order reaction. Referring to Figure 3.6a, we have that the one
step reactions involved are given by

Z+X
k1−→ Z+X∗, Y+X∗

k2−→ Y+X,

with conservation law X +X∗ = Xtot. Let Ytot be the total amount of phosphatase.
We assume that the kinase Z has a time-varying concentration, which we view as
the input to the system, while X∗ is the output of the system.
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Figure 3.6: (a) Diagram of a phosphorylation cycle, in which Z is the kinase, X is the
substrate, and Y is the phosphatase. (b) Bode plot showing the magnitude and phase lag
for the frequency response of a one step reaction model of the phosphorylation system
on the left. The magnitude is plotted in decibels (dB), in which M|dB = 20log10(M). The
parameters are β = δ = 1.

The differential equation model is given by

dX∗

dt
= k1Z(t)(Xtot−X∗)− k2YtotX

∗,

If we assume that the cycle is weakly activated (X∗ � Xtot), the above equation is
well approximated by

dX∗

dt
= βZ(t)−δX∗, (3.7)

where β = k1Xtot and δ = k2Ytot. To determine the frequency response, we set the
input Z(t) to a periodic function. It is customary to take sinusoidal functions as the
input signal as they lead to an easy way to calculate the frequency response. Let
then Z(t) = A0sin(ωt).

Since equation (3.7) is linear in the state X∗ and input Z, it can be directly
integrated to lead to

X∗(t) =
A0β√
ω2+δ2

sin(ωt− tan−1(ω/δ))− A0βω

(ω2+δ2)
e−δt.

The second term dies out for t large enough. Hence, the steady state response is
given by the first term. The amplitude of response is thus given by A0 β/

√
ω2+δ2,

in which the gain β/
√
ω2+δ2 depends on the system parameters and on the fre-

quency of the input stimulation.
As this frequency increases, the amplitude decreases and approaches zero for

infinite frequencies. Also, the argument of the sine function shows a negative phase
shift of tan−1(ω/δ), which indicates that there is an increased delay in responding
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to the input as the frequency increases. Hence, the key quantities in the frequency
response are the magnitude gain M(ω) and phase lag φ(ω) given by

M(ω) =
β

√
ω2+δ2

, φ(ω) = tan−1
(
ω

δ

)
.

These are plotted in Figure 3.6b, a type of figure known as a Bode plot.
The bandwidth of the system, denoted ωB is the frequency at which the mag-

nitude gain drops below M(0)/
√

2. In this case, the bandwidth is given by ωB =

δ = k2Ytot, which implies that the bandwidth of the system can be made larger
by increasing the amount of phosphatase. However, note that since M(0) = β/δ =
k1Xtot/(k2Ytot), increased phosphatase will also result in decreased amplitude of re-
sponse. Hence, if one wants to increase the bandwidth of the system while keeping
the value of M(0) (also called the zero frequency gain) unchanged, one should in-
crease the total amounts of substrate and phosphatase in comparable proportions.
Fixing the value of the zero frequency gain, the bandwidth of the system increases
with increased amounts of phosphatase and kinase. ∇

More generally, the frequency response of a linear system with one input and
one output

ẋ = Ax+Bu, y =Cx+Du

is the response of the system to a sinusoidal input u = asinωt with input amplitude
a and frequency ω. The transfer function for a linear system is given by

Gyu(s) =C(sI−A)−1B+D

and represents the response of a system to an exponential signal of the form u(t) =
est where s ∈ C. In particular, the response to a sinusoid u = asinωt is given by
y = Masin(ωt+φ) where the gain M and phase shift φ can be determined from the
transfer function evaluated at s = iω:

Gyu(iω) = Meiφ,

M = |Gyu(iω)| =
√

Im(Gyu(iω))2+Re(Gyu(iω))2

φ = tan−1
(
Im(Gyu(iω))

Re(Gyu(iω))

)
,

where Re( · ) and Im( · ) represent the real and imaginary parts of a complex number.
For finite dimensional linear (or linearized) systems, the transfer function be

written as a ratio of polynomials in s:

G(s) =
b(s)
a(s)
.

The values of s at which the numerator vanishes are called the zeros of the transfer
function and the values of s at which the denominator vanishes are called the poles.
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The transfer function representation of an input/output linear system is essen-
tially equivalent to the state space description, but we reason about the dynamics
by looking at the transfer function instead of the state space matrices. For example,
it can be shown that the poles of a transfer function correspond to the eigenval-
ues of the matrix A, and hence the poles determine the stability of the system.
In addition, interconnections between subsystems often have simple representa-
tions in terms of transfer functions. For example, two systems G1 and G2 in series
(with the output of the first connected to the input of the second) have a combined
transfer function Gseries(s) = G1(s)G2(s) and two systems in parallel (a single in-
put goes to both systems and the outputs are summed) has the transfer function
Gparallel(s) =G1(s)+G2(s).

Transfer functions are useful representations of linear systems because the prop-
erties of the transfer function can be related to the properties of the dynamics. In
particular, the shape of the frequency response describes how the system response
to inputs and disturbances, as well as allows us to reason about the stability of
interconnected systems. The Bode plot of a transfer function gives the magnitude
and phase of the frequency response as a function of frequency and the Nyquist
plot can be used to reason about stability of a closed loop system from the open
loop frequency response (AM08, Section 9.2).

Returning to our analysis of biomolecular systems, suppose we have a systems
whose dynamics can be written as

ẋ = f (x, θ,u)

and we wish to understand how the solutions of the system depend on the param-
eters θ and input disturbances u. We focus on the case of an equilibrium solution
x(t; x0, θ0) = xe. Let z = x− xe, ũ = u− u0 and θ̃ = θ− θ0 represent the deviation of
the state, input and parameters from their nominal values. Linearization can be per-
formed in a way similar to the way it was performed for a system with no inputs.
Specifically, we can write the dynamics of the perturbed system using its lineariza-
tion as

dz
dt
=

(
∂ f
∂x

)
(xe,θ0,u0)

·z +

(
∂ f
∂θ

)
(xe,θ0,u0)

· θ̃ +

(
∂ f
∂w

)
(xe,θ0,u0)

· ũ.

This linear system describes small deviations from xe(θ0,w0) but allows θ̃ and w̃ to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Let y = Cx be a set of values of interest. The transfer functions
between θ̃, w̃ and y are given by

Hyθ̃(s) =C(sI−A)−1Bθ, Hyw̃(s) =C(sI−A)−1Bw,

where

A =
∂ f
∂x

∣∣∣∣∣
(xe,θ0,w0)

, Bθ =
∂ f
∂θ

∣∣∣∣∣
(xe,θ0,w0)

, Bw =
∂ f
∂w

∣∣∣∣∣
(xe,θ0,w0)

.
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Note that if we let s = 0, we get the response to small, constant changes in
parameters. For example, the change in the outputs y as a function of constant
changes in the parameters is given by

Hyθ̃(0) =CA−1Bθ =CS x,θ.

Example 3.6 (Transcriptional regulation). Consider a genetic circuit consisting of
a single gene. The dynamics of the system are given by

dm
dt
= F(P)−γm, dP

dt
= βm−δP,

where m is the mRNA concentration and P is the protein concentration. Suppose
that the mRNA degradation rate γ can change as a function of time and that we
wish to understand the sensitivity with respect to this (time-varying) parameter.
Linearizing the dynamics around an equilibrium point

A =

⎧⎪⎪⎪⎪⎪⎩−γ F′(pe)
β −δ

⎫⎪⎪⎪⎪⎪⎭ , Bγ =

⎧⎪⎪⎪⎪⎪⎩−me

0

⎫⎪⎪⎪⎪⎪⎭ .
For the case of no feedback we have F(P) = α0, and the system has an equilib-
rium point at me = α0/γ, Pe = βα0/(δγ). The transfer function from γ to p, after
linearization about the steady state, is given by

Gol
Pγ(s) =

−βme

(s+γ)(s+δ)
,

where γ0 represents the nominal value of γ around which we are linearizing. For
the case of negative regulation, we have

F(P) =
α

1+ (P/K)n +α0,

and the resulting transfer function is given by

Gcl
Pγ(s) =

βme

(s+γ0)(s+δ)+βσ
, σ = −F′(Pe) =

nαPn−1
e /K

n

(1+Pn
e/Kn)2

.

Figure 3.7 shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). ∇

3.2 Robustness

The term “robustness” refers to the general ability of a system to continue to func-
tion in the presence of uncertainty. In the context of this text, we will want to be
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Figure 3.7: Noise attenuation in a genetic circuit.

more precise. We say that a given function (of the circuit) is robust with respect
to a set of specified perturbations if the sensitivity of that function to perturba-
tions is small. Thus, to study robustness, we must specify both the function we are
interested in and the set of perturbations that we wish to consider.

In this section we study the robustness of the system

ẋ = f (x, θ,u), y = h(x, θ)

to various perturbations in the parameters θ and disturbance inputs u. The function
we are interested in is modeled by the outputs y and hence we seek to understand
how y changes if the parameters θ are changed by a small amount or if external
disturbances u are present. We say that a system is robust with respect to these
perturbations if y undergoes little changes as these perturbations are introduced.

Parametric uncertainty

In addition to studying the input/output transfer curve and the stability of a given
equilibrium point, we can also study how these features change with respect to
changes in the system parameters θ. Let ye(θ0,u0) represent the output correspond-
ing to an equilibrium point xe with fixed parameters θ0 and external input u0, so
that f (xe, θ0,u0) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibrium point
and the dynamics near the equilibrium point vary as a function of changes in the
parameters θ and external inputs w.

We start by assuming that u = 0 and investigating how xe and ye depend on θ.
The simplest approach is to analytically solve the equation f (xe, θ0) = 0 for xe and
then set ye = h(xe, θ0). However, this is often difficult to do in closed form and so
as an alternative we instead look at the linearized response given by

S x,θ :=
dxe

dθ

∣∣∣∣∣
θ0

, S y,θ :=
dye

dθ0

∣∣∣∣∣
θ0

,
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which is the (infinitesimal) change in the equilibrium state and the output due to
a change in the parameter. To determine S x,θ we begin by differentiating the rela-
tionship f (xe(θ), θ) = 0 with respect to θ:

d f
dθ
=
∂ f
∂x

dxe

dθ
+
∂ f
∂θ
= 0 =⇒ S x,θ =

dxe

dθ
= −
(
∂ f
∂x

)−1
∂ f
∂θ

∣∣∣∣∣
(xe,θ0)

. (3.8)

Similarly, we can compute the change in the output sensitivity as

S y,θ =
dye

dθ
=
∂h
∂x

dxe

dθ
+
∂h
∂θ
= −

⎛⎜⎜⎜⎜⎜⎝∂h∂x

(
∂ f
∂x

)−1
∂ f
∂θ
+
∂h
∂θ

⎞⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣
(xe,θ0)

.

These quantities can be computed numerically and hence we can evaluate the effect
of small (but constant) changes in the parameters θ on the equilibrium state xe and
corresponding output value ye.

A similar analysis can be performed to determine the effects of small (but con-
stant) changes in the external input u. Suppose that xe depends on both θ and u,
with f (xe, θ0,u0) = 0 and θ0 and u0 representing the nominal values. Then

dxe

dθ
= −
(
∂ f
∂x

)−1
∂ f
∂θ

∣∣∣∣∣
(xe,θ0,u0)

,
dxe

du
= −
(
∂ f
∂x

)−1
∂ f
∂u

∣∣∣∣∣
(xe,θ0,u0)

.

The sensitivity matrix can be normalized by dividing the parameters by their
nominal values and rescaling the outputs (or states) by their equilibrium values. If
we define the scaling matrices

Dxe = diag{xe}, Dye = diag{ye}, Dθ = diag{θ},

Then the scaled sensitivity matrices can be written as

S̄ x,θ = (Dxe)−1S xθD
θ, S̄ y,θ = (Dye)−1S yθD

θ. (3.9)

The entries in this matrix describe how a fractional change in a parameter gives
a fractional change in the output, relative to the nominal values of the parameters
and outputs.

Example 3.7 (Transcriptional regulation). Consider again the case of transcrip-
tional regulation described in Example 3.6. We wish to study the response of
the protein concentration to fluctuations in its parameters in two cases: a consti-
tutive promoter (no regulation) and self-repression (negative feedback), illustrated
in Figure 3.8. For the case of no feedback we have F(p) = α0, and the system
has an equilibrium point at me = α0/γ, Pe = βα0/(δγ). The parameter vector can
be taken as θ = (α0,γ,β,δ). Since we have a simple expression for the equilibrium
concentrations, we can compute the sensitivity to the parameters directly:

∂xe

∂θ
=

⎧⎪⎪⎪⎪⎪⎪⎩
1
γ −α0

γ2 0 0
β
δγ −βα0

δγ2
α0
δγ −βα0

γδ2

⎫⎪⎪⎪⎪⎪⎪⎭ ,
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Figure 3.8: Parameter sensitivity in a genetic circuit. The open loop system (a) consists
of a constitutive promoter, while the closed loop circuit (b) is self-regulated with negative
feedback (repressor).

where the parameters are evaluated at their nominal values, but we leave off the
subscript 0 on the individual parameters for simplicity. If we choose the parame-
ters as θ0 = (0.00138,0.00578,0.115,0.00116), then the resulting sensitivity matrix
evaluates to

S open
xe,θ
≈
⎧⎪⎪⎪⎪⎪⎩ 170 −41 0 0

17000 −4100 210 −21000

⎫⎪⎪⎪⎪⎪⎭ . (3.10)

If we look instead at the scaled sensitivity matrix, then the open loop nature of the
system yields a particularly simple form:

S̄ open
xe,θ
=

⎧⎪⎪⎪⎪⎪⎩1 −1 0 0
1 −1 1 −1

⎫⎪⎪⎪⎪⎪⎭ . (3.11)

In other words, a 10% change in any of the parameters will lead to a comparable
positive or negative change in the equilibrium values.

For the case of negative regulation, we have

F(P) =
α

1+Pn/K
+α0,

and the equilibrium points satisfy

me =
δ

β
Pe,

α

1+Pn
e/K
+α0 = γme =

γδ

β
Pe. (3.12)

In order to make a proper comparison with the previous case, we need to be careful
to choose the parameters so that the equilibrium concentration Pe matches that of
the open loop system. We can do this by modifying the promoter strength α or
the RBS strength β so that the second formula in equation (3.12) is satisfied or,
equivalently, choose the parameters for the open loop case so that they match the
closed loop steady state protein concentration (see Example 2.3).

Rather than attempt to solve for the equilibrium point in closed form, we instead
investigate the sensitivity using the computations in equation (3.12). The state,
dynamics and parameters are given by

x =
⎧⎩m P

⎫⎭ , f (x, θ) =

⎧⎪⎪⎪⎪⎪⎩F(P)−γm
βm−δP

⎫⎪⎪⎪⎪⎪⎭ , θ =
⎧⎩α0 γ β δ α n K

⎫⎭ .
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Note that the parameters are ordered such that the first four parameters match the
open loop system. The linearizations are given by

∂ f
∂x
=

⎧⎪⎪⎪⎪⎪⎩−γ F′(Pe)
β −δ

⎫⎪⎪⎪⎪⎪⎭ , ∂ f
∂θ
=

⎧⎪⎪⎪⎪⎪⎪⎩1 −m 0 0 1
1+Pn/K

KαPn log(P)
(K+Pn)2

α
(1+Pn/K)2

0 0 m −P 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎭ ,
where again the parameters are taken to be their nominal values. From this we can
compute the sensitivity matrix as

S x,θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− δ
δγ−βF′

δm
δγ−βF′ −

mF′
δγ−βF′

PF′
δγ−βF′ −

δ ∂F∂α1
δγ−βF′ −

δ ∂F∂n
δγ−βF′ −

δ ∂F∂K
δγ−βF′

− β
δγ−βF′

βm
δγ−βF′ −

γm
δγ−βF′

γP
δγ−βF′ −

β ∂F∂α1
δγ−βF′ −

β ∂F∂n
δγ−βF′ −

β ∂F∂K
δγ−βF′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,
where F′ = ∂F/∂P and all other derivatives of F are evaluated at the nominal pa-
rameter values.

We can now evaluate the sensitivity at the same protein concentration as we use
in the open loop case. The equilibrium point is given by

xe =

⎧⎪⎪⎪⎪⎪⎩me

Pe

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎩
α0
γ
α0β
δγ

⎫⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩0.239

23.9

⎫⎪⎪⎪⎪⎪⎭
and the sensitivity matrix is

S closed
xe,θ

≈
⎧⎪⎪⎪⎪⎪⎩ 76.1 −18.2 −1.16 116. 0.134 −0.212 −0.000117

7610. −1820. 90.8 −9080. 13.4 −21.2 −0.0117

⎫⎪⎪⎪⎪⎪⎭ .
The scaled sensitivity matrix becomes

S̄ closed
xe,θ

≈
⎧⎪⎪⎪⎪⎪⎩0.16 −0.44 −0.56 0.56 0.28 −1.78 −3.08×10-7

0.16 −0.44 0.44 −0.44 0.28 −1.78 −3.08×10-7

⎫⎪⎪⎪⎪⎪⎭ . (3.13)

Comparing this equation with equation (3.11), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become less sensitive
to those parameters that are not part of the feedback (columns 2–4), but there is
higher sensitivity with respect to some of the parameters that are part of the feed-
back mechanisms (particularly n). ∇

More generally, we may wish to evaluate the sensitivity of a (non-constant) so-
lution to parameter changes. This can be done by computing the function dx(t)/dθ,
which describes how the state changes at each instant in time as a function of
(small) changes in the parameters θ. We assume u = 0 for simplicity of exposition.

Let x(t; x0, θ0) be a solution of the dynamics with initial condition x0 and pa-
rameters θ0. To compute dx/dθ, we write down a differential equation for how it
evolves in time:

d
dt

(
dx
dθ

)
=

d
dθ

(
dx
dt

)
=

d
dθ

( f (x, θ,u))

=
∂ f
∂x

dx
dθ
+
∂ f
∂θ
.
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This is a differential equation with n×m states S i j = dxi/dθ j and with initial condi-
tion S i j(0) = 0 (since changes to the parameters to not affect the initial conditions).

To solve these equations, we must simultaneously solve for the state x and the
sensitivity S (whose dynamics depend on x). Thus, we must solve the set of n +
nm coupled differential equations

dx
dt
= f (x, θ,u),

dS xθ

dt
=
∂ f
∂x

(x, θ,u)S xθ +
∂ f
∂θ

(x, θ,u). (3.14)

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that in the spe-
cial case that we are at an equilibrium point and the dynamics for S x,θ are stable,
the steady state solution of equation (3.14) is identical to that obtained in equa-
tion (3.8). However, equation (3.14) is much more general, allowing us to deter-
mine the change in the state of the system at a fixed time T , for example. This
equation also does not require that our solution stay near an equilibrium point, it
only requires that our perturbations in the parameters are sufficiently small.

Example 3.8 (Repressilator). Consider the example of the repressilator, which was
described in Example 2.2. The dynamics of this system can be written as

dm1

dt
= Frep(P3)−γm1

dP1

dt
= βm1−δP1

dm2

dt
= Frep(P1)−γm2

dP2

dt
= βm2−δP2

dm3

dt
= Frep(P2)−γm2

dP3

dt
= βm3−δP2,

where the repressor is modeled using a Hill function

Frep(P) =
α

1+ (P/K)n +α0.

The dynamics of this system lead to a limit cycle in the protein concentrations, as
shown in Figure 3.9a.

We can analyze the sensitivity of the protein concentrations to changes in the
parameters using the sensitivity differential equation. Since our solution is periodic,
the sensitivity dynamics will satisfy an equation of the form

dS x,θ

dt
= A(t)S x,θ +B(t),

where A(t) and B(t) are both periodic in time. Letting x = (m1,P1,m2,P2,m3,P3)
and θ = (α0,γ,β,δ,α,K), we can compute S x,θ along the limit cycle. If the dynamics
for S x,θ are stable then the resulting solutions will be periodic, showing how the
dynamics around the limit cycle depend on the parameter values. The results are
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Figure 3.9: Repressilator sensitivity plots

shown in Figure 3.9b, where we plot the steady state sensitivity of P1 as a function
of time. We see, for example, that the limit cycle depends strongly on the protein
degradation and dilution rate γ, indicating that changes in this value can lead to
(relatively) large variations in the magnitude of the limit cycle.

∇

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPASI.

Adaptation and disturbance rejection

A system is said to adapt to the input u when the steady state value of its output y
is independent of the actual (constant) value of the input (Figure 3.10). Basically,
after the input changes to a constant value, the output returns to its original value
after a transient perturbation. Adaptation corresponds to the concept of disturbance
rejection in control theory. The full notion of disturbance rejection is more general
and depends on the specific disturbance input and it is studied using the internal
model principle [89].

For example, for adaptation to constant signals, the internal model principle re-
quires integral feedback. The internal model principle is a powerful way to uncover
biochemical structures in natural networks that are known to have the adaptation
property. An example of this is the bacterial chemotaxis described in more detail
in Chapter 5.

We illustrate two main mechanisms to attain adaptation: integral feedback and
incoherent feedforward loops (IFFLs). We next study these two mechanisms from a
mathematical standpoint to illustrate how they achieve adaptation. Possible biomolec-
ular implementations are presented in later chapters.

Integral feedback

In integral feedback systems, a “memory” variable z keeps track of the accumulated
difference between y(t) and its nominal steady state value y0. A comparison is



3.2. ROBUSTNESS 111

u y

Adaptation 

Not adaptation 

Figure 3.10: Adaptation property. The system is said to have the adaptation property if the
steady state value of the output does not depend on the steady state value of the input.
Hence, after a constant input perturbation, the output returns to its original value.

performed between this memory variable and the current input u, providing an
error term that is used to drive the feedback mechanism that brings the system
output back to the desired value y0 (Figure 3.11).

In this system, the output y(t), after any constant input perturbation u, tends to
y0 for t→∞ independently of the (constant) value of u. The equations representing
the system are given by:

dz
dt
= y1, y1 = y− y0, y = k(u− z),

so that the equilibrium is obtained by setting ż = 0, from which we obtain y = y0.
That is, the steady state of y does not depend on u. The additional question to
answer is whether, after a perturbation u occurs, y1(t) tends to zero for t → ∞.
This is the case if and only if ż→ 0 as t→∞, which is satisfied if the equilibrium

+ + - 

 

- 
u y1

z

y0

k
y

Figure 3.11: Basic block diagram representing a system with integral action.
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u x1 x2

Figure 3.12: Incoherent feedforward loop. The input u affects the output through two chan-
nels. It indirectly represses it through an intermediate variable x1 and it activates it directly.

of the system ż = −kz+ ku− y0 is asymptotically stable. This, in turn, is satisfied
whenever k > 0 and u is a constant. Hence, after a constant perturbation u is applied,
the system output y approaches back its original steady state value y0, that is, y is
robust to constant perturbations.

More generally, a system with integral action can take the form

dx
dt
= f (x,u,k), y = h(x),

dz
dt
= y− y0, k = k(x,z),

in which the steady state value of y, being the solution to y−y0 = 0, does not depend
on u. In turn, y tends to this steady state value for t→∞ if and only if ż→ 0 as
t→∞. This, in turn, is the case if z tends to a constant value for t→∞, which is
satisfied if u is a constant and the steady state of the above system is asymptotically
stable.

Integral feedback is recognized as a key mechanism of perfectly adapting bio-
logical systems, both at the physiological level and at the cellular level, such as in
blood calcium homeostasis [25], in the regulation of tryptophan in E. coli [94], in
neuronal control of the prefrontal cortex [67], and in E. coli chemotaxis [102].

Incoherent feedforward loops

Feedforward motifs (Figure 3.12) are common in transcriptional networks and it
has been shown they are over-represented in E. coli gene transcription networks,
compared to other motifs composed of three nodes [3]. These are systems in which
the input u directly helps promote the production of the output x2 and also acts as a
delayed inhibitor of the output through an intermediate variable x1. This incoherent
counterbalance between positive and negative effects gives rise, under appropriate
conditions, to adaptation. A large number of incoherent feedforward loops partici-
pate in important biological processes such as the EGF to ERK activation [72], the
glucose to insulin release [75], ATP to intracellular calcium release [64], micro-
RNA regulation [93], and many others.

Several variants of incoherent feedforward loops exist for perfect adaptation.
The “sniffer”, for example, is one in which the intermediate variable promotes
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degradation:
dx1

dt
= αu−δx1,

dx2

dt
= βu−γx1x2. (3.15)

In this system, the steady state value of the output x2 is obtained by setting the
time derivatives to zero. Specifically, we have that ẋ1 = 0 given x1 = αu/δ and ẋ2 =

0 gives x2 = βu/(γx1), which combined together result in x2 = (βδ)/(γα), which
is a constant independent of the input u. The linearization of the system at the
equilibrium is given by

A =

⎧⎪⎪⎪⎪⎪⎩ −δ 0
−γ(βδ)/(γα) −γ(αu/δ)

⎫⎪⎪⎪⎪⎪⎭ ,
which has eigenvalues −δ and −γ(αu/δ). Since these are both negative, the equi-
librium point is asymptotically stable. The sniffer appears in models of neutrophil
motion and Dictyostelium chemotaxis [101].

Another form for a feedforward loop is one in which the intermediate variable
x1 inhibits production of the output x2, such as in the system:

dx1

dt
= αu−δx1,

dx2

dt
= β

u
x1
−γx2. (3.16)

The equilibrium point of this system is given by setting the time derivatives to zero.
From ẋ1 = 0, one obtains x1 = αu/δ and from ẋ2 = 0 one obtains that x2 = βu/(γx1),
which combined together result in x2 = (βδ)/(γα), which is a constant independent
of the input u.

By calculating the linearization at the equilibrium, one obtains

A =

⎧⎪⎪⎪⎪⎪⎪⎩ −δ 0
− u

x2
1
−γ

⎫⎪⎪⎪⎪⎪⎪⎭ ,
whose eigenvalues are given by −δ and −γ. Hence, the equilibrium point is asymp-
totically stable. Further, one can show that the equilibrium point is globally asymp-
totically stable because the x1 subsystem is linear, stable, and x1 approaches a con-
stant value (for constant u) and the x2 subsystem, in which βu/x1 is viewed as an
external input is also linear and exponentially stable.

Scale Invariance and fold-change detection

Scale invariance is the property by which the output x2(t) of the system does not
depend on the amplitude of the input u(t) (Figure 3.13). Specifically, consider an
adapting system and assume that it pre-adapted to a constant background value a,
then apply input a+ b and let x2(t) be the resulting output. Now consider a new
background value p a for the input and let the system pre-adapt to it. Then apply
the input p(a+ b) and let x̄2(t) be the resulting output. The system has the scale
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Figure 3.13: Fold-change detection. The output response does not depend on the absolute
magnitude of the input but only on the fold change of the input.

invariance property if x2(t) = x̄2(t). This also means that the output responds in the
same way to inputs changing by the same multiplicative factor (fold), hence this
property is also called fold-change detection. Looking at Figure 3.13, the output
would present different pulses for different fold changes b/a.

Incoherent feedforward loops can implement the fold-change detection prop-
erty [36]. As an example, consider the feedforward motif represented by the sniffer
and consider two inputs: u1(t) = a+b1(t− t0) and u2(t) = pa+ pb1(t− t0). Assume
also, as said above, that at time t0 the system is at the steady state, that is, it pre-
adapted. Hence, we have that the two steady states from which the system starts
at t = t0 are given by x1,1 = aα/δ and x1,2 = paα/δ for the x1 variable and by
x2,1 = x2,2 = (βδ)/(γα) for the x2 variable. Integrating system (3.16) starting from
these initial conditions, we obtain for t ≥ t0

x1,1(t) = a
α

δ
e−δ(t−t0)+ (a+b)(1− e−δ(t−t0)) and

x1,2(t) = pa
α

δ
e−δ(t−t0)+ p(a+b)(1− e−δ(t−t0)).

Using these in the expression of ẋ2 in equation (3.16) gives the differential
equations to which x2,1(t) and x2,2(t) obey for t ≥ t0 as

dx2,1

dt
=

β(a+b)
aαδ e−δ(t−t0)+ (a+b)(1− e−δ(t−t0))

−γx2,1, x2,1(t0) = (βδ)/(γα)

and
dx2,2

dt
=

pβ(a+b)
paαδ e−δ(t−t0)+ p(a+b)(1− e−δ(t−t0))

−γx2,2, x2,2(t0) = (βδ)/(γα),

which give x2,1(t) = x2,2(t) for all t ≥ t0. Hence, the system responds exactly the
same way after changes in the input of the same fold. The output response is not
dependent on the scale of the input but only on its shape.



3.2. ROBUSTNESS 115

u y

G
  G 
increases 

(a)

+ + - 

- 

u

y0
G

y

(b)

Figure 3.14: (a) Disturbance attenuation. A system is said to have the disturbance attenua-
tion property if there is an internal system parameter G such that the system output response
becomes arbitrarily close to a nominal output (independent of the input u) by increasing the
value of G. (b) High gain feedback. A possible mechanism to attain disturbance attenuation
is to feedback the error between the nominal output y0 and the actual output y through a
large gain G.

Disturbance attenuation

A system has the property of disturbance attenuation if there is a system parameter
G such that the output response y(t) to the input u(t) can be made arbitrarily small as
G is increased (Figure 3.14a). A possible mechanism for disturbance attenuation is
high gain feedback (Figure 3.14b). In a high gain feedback configuration, the error
between the output y, perturbed by some exogenous disturbance u, and a desired
nominal output y0 is fed back with a negative sign to produce the output y itself. If
y0 > y, this will result in an increase of y, otherwise it will result in a decrease of y.
Mathematically, one obtains from the block diagram that

y =
u

1+G
+ y0

G
1+G

,

so that as G increases the (relative) contribution of u on the output of the system
can be arbitrarily reduced.

High gain feedback can take a much more general form. Consider a system
with x ∈ Rn in the form ẋ = F(x, t). We say that this system is contracting if any
two trajectories starting from different initial conditions tend to each other as time
increase to infinity. A sufficient condition for the system to be contracting is that in
some set of coordinates, with matrix transformation denoted Θ, the symmetric part
of the linearization matrix (Jacobian) is negative definite. That is, that the largest
eigenvalue of

1
2

(
∂F
∂x
+
∂F
∂x

T )
,

is negative. We denote this eigenvalue by −λ for λ > 0 and call it the contraction
rate of the system.
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Now, consider the nominal system ẋ =G f (x, t) for G > 0 and its perturbed ver-
sion ẋp =G f (xp, t)+u(t). Assume that the input u(t) is bounded everywhere in norm
by a constant C > 0. If the system is contracting, we have the following robustness
result:

‖x(t)− xp(t)‖ ≤ χ‖x(0)− xp(0)‖e−Gλt +
χC
λG
,

in which χ is an upper bound on the condition number (ratio between the largest
and the smallest eigenvalue of ΘTΘ) of the transformation matrix Θ [60]. Hence,
if the perturbed and the nominal systems start from the same initial conditions, the
difference between their states can be made arbitrarily small by increasing the gain
G. Hence, the system has the disturbance attenuation property.

3.3 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for general dynamical sys-
tems with small perturbations. In this section, we specialize to the case where the
dynamics have the form of a reaction rate equation:

ds
dt
= Nv(x, θ), (3.17)

where x is the vector of species concentrations, θ is the vector of reaction parame-
ters, N is the stoichiometry matrix and v(x, θ) is the reaction rate (or flux) vector.

Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that there are conserved
quantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the total mass
of that species will be constant. This type of constraint will then give a conserved
quantity of the form ci = Hix where Hi represents that combinations of species in
which the given element appears. Since ci is constant, it follows that dci/dt = 0
and, aggregating the set of all conserved species, we have

0 =
dc
dt
= H

ds
dt
= HNv(x, θ) for all x.

If we assume that the vector of fluxes spans Rm (the range of v : Rn ×Rp → Rm),
then this implies that the conserved quantities correspond to the left null space of
the stoichiometry matrix N.

It is often useful to remove the conserved quantities from the description of the
dynamics and write the dynamics for a set of independent species. To do this, we
transform the state of the system into two sets of variables:⎧⎪⎪⎪⎪⎪⎩ xi

xd

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩P

H

⎫⎪⎪⎪⎪⎪⎭ x. (3.18)
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The vector xi = Px is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the rows P consists of all
zeros and a single 1 in the column corresponding to the selected species). The
matrix H should span the left null space of N, so that xd represents the set of
dependent concentrations. These dependent species do not necessarily correspond
to individual species, but instead are often combinations of species (for example,
the total concentration of a given element that appears in a number of molecules
that participate in the reaction).

Given the decomposition (3.18), we can rewrite the dynamics of the system in
terms of the independent variables xi. We start by noting that given xi and xd, we
can reconstruct the full set of species x:

x =

⎧⎪⎪⎪⎪⎪⎩P
H

⎫⎪⎪⎪⎪⎪⎭−1⎧⎪⎪⎪⎪⎪⎩ xi

xd

⎫⎪⎪⎪⎪⎪⎭ = Lxi+ c0, L =

⎧⎪⎪⎪⎪⎪⎩P
H

⎫⎪⎪⎪⎪⎪⎭−1⎧⎪⎪⎪⎪⎪⎩I
0

⎫⎪⎪⎪⎪⎪⎭ , c0 =

⎧⎪⎪⎪⎪⎪⎩P
H

⎫⎪⎪⎪⎪⎪⎭−1⎧⎪⎪⎪⎪⎪⎩0
c

⎫⎪⎪⎪⎪⎪⎭
where c0 represents the conserved quantities. We now write the dynamics for xi as

dxi

dt
= P

dx
dt
= PNv(Lxi+ c0, θ) = Nrvr(xi,c0, θ), (3.19)

where Nr is the reduced stoichiometry matrix and vr is the rate vector with the
conserved quantities separated out as constant parameters.

The reduced order dynamics in equation (3.19) represent the evolution of the
independent species in the reaction. Given xi, we can reconstruct the full set of
species from the dynamics of the independent species by writing x = Lxi+ c0. The
vector c0 represents the values of the conserved quantities, which must be specified
in order to compute the values of the full set of species. In addition, since x =
Lxi+ c0, we have that

dx
dt
= L

dxi

dt
= LNrvr(xi,c0, p) = LNrv(x, θ),

which implies that
N = LNr.

Thus, L also reconstruct the reduced stoichiometry matrix from the reduced space
to the full space.

Example 3.9 (Enzyme kinetics). Consider an enzymatic reaction

E+S
a−⇀↽−
d

C
k−→ E+P,

whose full dynamics can be written as

d
dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
S
E
C
P

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1 1 0
−1 1 1
1 −1 −1
0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aE ·S
dC
kC

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .
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The conserved quantities are given by

H =

⎧⎪⎪⎪⎪⎪⎩0 1 1 0
1 −1 0 1

⎫⎪⎪⎪⎪⎪⎭ .
The first of these is the total enzyme concentration Etot = E +C, while the second
asserts that the concentration of product P is equal to the free enzyme concentration
E minus the substrate concentration S . If we assume that we start with substrate
concentration S 0, enzyme concentration Etot and no product or bound enzyme, then
the conserved quantities are given by

c =

⎧⎪⎪⎪⎪⎪⎩ E+C
S −E+P

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩ Etot

S 0−Etot

⎫⎪⎪⎪⎪⎪⎭ .
There are many possible choices for the set of independent species xi = Px, but

since we are interested in the substrate and the product, we choose P as

P =

⎧⎪⎪⎪⎪⎪⎩1 0 0 0
0 0 0 1

⎫⎪⎪⎪⎪⎪⎭ .
Once P is chosen then we can compute

L =

⎧⎪⎪⎪⎪⎪⎩P
H

⎫⎪⎪⎪⎪⎪⎭−1⎧⎪⎪⎪⎪⎪⎩I
0

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0
1 1
−1 −1
0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , c0 =

⎧⎪⎪⎪⎪⎪⎩P
H

⎫⎪⎪⎪⎪⎪⎭−1⎧⎪⎪⎪⎪⎪⎩0
c

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
Etot−S 0

S 0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,
The resulting reduced order dynamics can be computed to be

d
dt

⎧⎪⎪⎪⎪⎪⎩S
P

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩−1 1 0

0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(P+S +Etot−S 0)S
d(−P−S +S 0)
k(−P−S +S 0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎩−a(P+S +Etot−S 0)S −d(P+S −S 0)
k(S 0−S −P)

⎫⎪⎪⎪⎪⎪⎭ .
A simulation of the dynamics is shown in Figure 3.15. We see that the dynamics
are very well approximated as being a constant rate of production until we exhaust
the substrate (consistent with the Michaelis-Menten approximation).

∇

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivity of steady
state concentrations and fluxes to changes in various system parameters. The basic
concepts are equivalent to the sensitivity analysis tools described in Section 3.1,
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Figure 3.15: Enzyme dynamics. The simulations were carried out a = d = 10, k = 1, S 0 =

500 and Etot = 5,1020. The top plot shows the concentration of substrate S and product
P, with the fastest case corresponding to Etot = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initial time and the figures on the lower
right at one of the transition times.

specialized to the case of reaction rate equations. In this section we provide a brief
introduction to the key ideas, emphasizing the mapping between the general con-
cepts and MCA terminology (as originally done by [47]).

Consider the reduced set of chemical reactions

dxi

dt
= Nrvr(xi, θ) = Nrv(Lxi+ c0, θ).

We wish to compute the sensitivity of the equilibrium concentrations xe and equi-
librium fluxes ve to the parameters θ. We start by linearizing the dynamics around
an equilibrium point xe. Defining z = x− xe, u = θ−θ0 and f (z,u) = Nrv(xe+ z, θ0+
u), we can write the linearized dynamics as

dx
dt
= Ax+Bu, A =

(
Nr
∂v
∂s

L

)
, B =

(
Nr
∂v
∂p

)
, (3.20)

which has the form of a linear differential equation with state z and input u.
In metabolic control analysis, the following terms are defined:

ε̄θ =
dv
dθ

∣∣∣∣∣
xe,θo

ε̄θ = flux control coefficients

R̄x
θ =
∂xe

∂θ
= C̄xε̄θ

R̄x
θ =

C̄x = concentration control coefficients

R̄v
θ =
∂ve

∂θ
= C̄vε̄θ

R̄v
θ =

C̄v = rate control coefficients

These relationships describe how the equilibrium concentration and equilibrium
rates change as a function of the perturbations in the parameters. The two control
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matrices provide a mapping between the variation in the flux vector evaluated at
equilibrium, (

∂v
∂θ

)
xe,θ0

,

and the corresponding differential changes in the equilibrium point, ∂xe/∂θ and
∂ve/∂θ. Note that

∂ve

∂θ
�
(
∂v
∂θ

)
xe,θ0

.

The left side is the relative change in the equilibrium rates, while the right side is
the change in the rate function v(x, θ) evaluated at an equilibrium point.

To derive the coefficient matrices C̄x and C̄v, we simply take the linear equa-
tion (3.20) and choose outputs corresponding to s and v:

yx = Ix, yv =
∂v
∂x

Lx+
∂v
∂θ

u.

Using these relationships, we can compute the transfer functions

Hx(s) = (sI−A)−1B =
[(

sI−Nr
∂v
∂x

L
)−1Nr

]∂v
∂θ
,

Hv(s) =
∂v
∂s

L(sI−A)−1B+
∂v
∂p
=
[∂v
∂x

L
(
sI−Nr

∂v
∂x

L
)−1Nr + I

]∂v
∂θ
.

Classical metabolic control analysis considers only the equilibrium concentrations,
and so these transfer functions would be evaluated at x= 0 to obtain the equilibrium
equations.

These equations are often normalized by the equilibrium concentrations and
parameter values, so that all quantities are expressed as fractional quantities. If we
define

Dx = diag{xe}, Dv = diag{v(xe, θ0)}, Dθ = diag{θ0},

then the normalized coefficient matrices (without the overbar) are given by

Cx = (Dx)−1C̄xDv, Cv = (Dv)−1C̄vDv,

Rx
θ = (Dx)−1R̄x

θD
θ, Rv

θ = (Dv)−1R̄v
θD
θ.

Flux balance analysis

Flux balance analysis is a technique for studying the relative rate of different reac-
tions in a complex reaction system. We are most interested in the case where there
may be multiple pathways in a system, so that the number of reactions m is greater
than the number of species n. The dynamics

dx
dt
= Nv(x, θ)
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Figure 3.16: Flux balance analysis.

thus have the property that the matrix N has more columns that rows and hence
there are multiple reactions that can produce a given set of species. Flux balance is
often applied to pathway analysis in metabolic systems to understand the limiting
pathways for a given species and the the effects of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separating the reactions of
the pathway into internal fluxes vi versus exchanges flux ve, as illustrated in Fig-
ure 3.16. The dynamics of the resulting system now be written as

dx
dt
= Nv(x, θ) = N

⎧⎪⎪⎪⎪⎪⎩vi

ve

⎫⎪⎪⎪⎪⎪⎭ = Nvi(x, θ)−be,

where be = −Nve represents the effects of external fluxes on the species dynamics.
Since the matrix N has more columns that rows, it has a right null space and hence
there are many different internal fluxes that can produce a given change in species.

In particular, we are interested studying the steady state properties of the sys-
tem. In this case, we have that dx/dt = 0 and we are left with an algebraic system

Nvi = be.

Material to be completed. Review

3.4 Oscillatory Behavior

In addition to equilibrium behavior, a variety of cellular procesess involve oscilla-
tory behavior in which the system state is constantly changing, but in a repeating
pattern. Two examples of biological oscillations are the cell cycle and circadian
rhythm. Both of these dynamic behaviors involve repeating changes in the con-
centrations of various proteins, complexes and other molecular species in the cell,
though they are very different in their operation. In this section we discuss some of
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the underlying ideas for how to model this type of oscillatory behavior, focusing
on those types of oscillations that are most common in biomolecular systems.

Biomolecular oscillators

Biological systems have a number of natural oscillatory processes that govern the
behavior of subsystems and whole organisms. These range from internal oscilla-
tions within cells to the oscillatory nature of the beating heart to various tremors
and other undesirable oscillations in the neuro-muscular system. At the biomolec-
ular level, two of the most studied classes of oscillations are the cell cycle and
circadian rhythm.

The cell cycle consists of a set “phases” that govern the duplication and division
of cells into two new cells:

• G1 phase - gap phase, terminated by “G1 checkpoint”

• S phase - synthesis phase (DNA replication)

• G2 phase - gap phase, terminated by “G2 checkpoint”

• M - mitosis (cell division)

The cell goes through these stages in a cyclical fashion, with the different enzymes
and pathways active in different phases. The cell cycle is regulated by many dif-
ferent proteins, often divided into two major classes. Cyclinscyclins are a class of
proteins that sense environmental conditions internal and external to the cell and
are also used to implement various logical operations that control transition out of
the G1 and G2 phases. Cyclin dependent kinases (CDKs)are proteins that serve as
“actuators” by turning on various pathways during different cell cycles.

An example of the control circuitry of the cell cycle for the bacterium Caulobac-
ter crescentus (henceforth Caulobacter) is shown in Figure 3.17 [57]. This or-
ganism uses a variety of different biomolecular mechanisms, including transcrip-
tional activation and represssion, positive autoregulation (CtrA), phosphotransfer
and methlylation of DNA.

The cell cycle is an example of an oscillator that does not have a fixed pe-
riod. Instead, the length of the individual phases and the transitioning of the differ-
ent phases are determined by the environmental conditions. As one example, the
cell division time for E. coli can vary between 20 minutes and 90 minutes due to
changes in nutrient concentrations, temperature or other external factors.

A different type of oscillation is the highly regular pattern encoding in circa-
dian rhythm, which repeats with a period of roughly 24 hours. The observation
of circadian rhythms dates as far back as 400 BCE, when Androsthenes described
observations of daily leaf movements of the tamirind tree [65]. There are three
defining characteristics associated with circadian rhythm: (1) the time to complete
one cycle is approximately 24 hours, (2) the rhythm is endogenously generated and
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(a) Overview of cell cycle (b) Molecular mechanisms

Figure 3.17: The Caulobacter crescentus cell cycle. (a) Caulobacter cells divide asym-
metrically into a stalked cell, which is attached to a surface, and a swarmmer cell, that is
motile. The swarmer cells can become stalked cells in a new location and begin the cell
cycle anew. The transcriptional regulators CtrA, DnaA and GcrA are the primary factors
that control the various phases of the cell cycle. (b) The genetic circuitry controlling the
cell cycle consists of a large variety of regulatory mechanisms, described in more detail in
the text. Figure obtained from [57] (permission TBD).

self-sustaning and (3) the period remains relatively constant under changes in am-
bient temperature. Oscillations that have these properties appaer in many different
organisms, including micro-organisms, plants, insects and mammals. Some com-
mon features of the circuitry implementing circadian rhythms in these organisms is
the combination of postive and negative feedback loops, often with the positive ele-
ments activating the expression of clock genes and the negative elements repressing
the positive elements [11]. Figure 3.18 shows some of the different organisms in
which circadian oscillations can be found and the primary genes responsible for
different postive and negative factors.

Clocks, oscillators and limit cycles

To begin our study of oscillators, we consider a nonlinear model of the system
described by the differential equation

dx
dt
= f (x,u, θ), y = h(x, θ)

where x ∈ Rn represents the state of the system (typically concentrations of various
proteins and other species and complexes), u ∈Rq represents the external inputs, y ∈
R

p represents the (measured) outputs and θ ∈ RK represents the model parameters.
We say that a solution (x(t),u(t)) is oscillatory with period T if y(t+T ) = y(t). For
simplicity, we will often assume that p = q = 1, so that we have a single input
and single output, but most of the results can be generalized to the multi-input,
multi-output case.

There are multiple ways in which a solution can be oscillatory. One of the sim-
plest is that the input u(t) is oscillatory, in which case we say that we have a forced
oscillation. In the case of a linear system, an input of the form u(t) = Asinωt then
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Figure 3.18: (a) Most circadian systems use a clock mechanism involving oscillators that
are composed of positive and negative elements, which form feedback loops. In these
loops, the positive elements activate the expression of the clock genes. The clock genes,
as well as driving rhythmic biological outputs, encode negative elements that inhibit the
activities of the positive elements. Phosphorylation of the negative elements leads to their
eventual degradation, allowing the positive elements to restart the cycle. Clock genes can
sometimes also function positively to increase the expression of the positive elements
(not shown). (b–f) Although the same basic mechanism is present, the components vary
in different organisms. The core oscillator components are indicated for the model or-
ganisms discussed in this review (positive elements (indicated by ’+’ symbols): KaiA,
WHITE COLLAR-1 (WC-1), WHITE COLLAR-2 (WC-2), CLOCK (CLK in Drosophila
melanogaster), CYCLE (CYC), and brain and muscle Arnt-like protein 1 (BMAL1, also
known as MOP3 and ARNT1); negative elements (indicated by ’-’ symbols): KaiC, FRE-
QUENCY (FRQ), period (PER), timeless (TIM), cryptochrome (CRY)). Examples of cir-
cadian activities that are commonly experimentally assayed in these organisms are also
shown. These oscillators receive environmental input and, either alone or coupled to other
oscillators, send signals through an unknown mechanism to the rest of the organism to
control rhythmic behaviours. In cyanobacteria (b), rhythmic output is measured by fusing
the promoters of rhythmic genes to a luciferase reporter gene to monitor the resulting bio-
luminescence. In Neurospora crassa (c), rhythmicity in the development of asexual conid-
iospores is monitored. In flies (d), mammals (e) and birds (f), rhythms in locomotor activity
can be monitored using automated equipment. Another rhythmic event in flies is eclosion
(d), which is the emergence of adult flies from their pupal case. For mammals (e), activity
(dark lines) is shown as a vertical stack (in chronological order, with each horizontal row
representing activity for one day) and double plotted for clarity. In addition, rhythms in
gene expression and biochemical activities, such as those shown for melatonin levels in
birds (f), provide further measures of rhythmicity. Figure and caption from [11].
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we now already the output will be of the form y(t) = M ·Asin(ωt + φ) where M
and φ represent the gain and phase of the system (at frequency ω). In the case of a
nonlinear system, if the output is periodic then we can write it in terms of a set of
harmonics,

y(t) = B0+B1 sin(ωt+φ1)+B2 sin(2ωt+φ2)+ · · ·

The term B0 represents the average value of the output (also called the bias), the
terms Bi are the magnitudes of the ith harmonic and φi are the phases of the har-
monics (relative to the input). The oscillation frequency ω is given by ω = 2π/T
where T is the oscillation period.

A different situation occurs when we have no input (or a constant input) and still
obtain an oscillatory output. In this case we say that the system has a self-sustained
oscillation. This type of behavior is what is required for oscillations such as the
cell cycle and circadian rhythm, where there is either no obvious forcing function
or the forcing function is removed by the oscillation persists. If we assume that the
input is constant, u(t) = A0, then we are particularly interested in how the period T
(or equivalently frequency ω), amplitudes Bi and phases φi depend on the input A0

and system parameters θ.
To simplify our notation slightly, we consider a system of the form

dx
dt
= F(x, θ), y = h(x, θ) (3.21)

where F(x, θ) = f (x,u, θ) reflects the fact that the input is ignored (or taken to be
one of the constant parameters) in the analysis that follows. We have focused on
the oscillatory nature of the output y(t) thus far, but we note that if the states x(t)
are periodic then the output is as well, as this is the most common case. Hence we
will often talk about the system being oscillatory, by which we mean that there is a
solution for the dynamics in which the state satisfies x(t+T ) = x(t).

More formally, we say that a closed curve Γ ∈ Rn is an orbit if trajectories that
start on Γ remain on Γ for all time and if Γ is not an equilibrium point of the system.
As in the case of equilibrium points, we say that the orbit is stable if trajectories
that start near Γ stay near Γ, asymptotically stable if in addition nearby trajectories
approach Γ as t→∞ and unstable if it is not stable. The orbit Γ is periodic with
period T if for any x(t) ∈ Γ, x(t+T ) = x(t).

There are many different types of periodic orbits that can occur in a system
whose dynamics are modeled as in equation (3.21). A harmonic oscillator refer-
ences to a system that oscillates around an equilibrium point, but does not (usually)
get near the equilibrium point. The classical harmonic oscillator is a linear system
of the form

d
dt

⎧⎪⎪⎪⎪⎪⎩ 0 ω

−ω 0

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩x1

x2

⎫⎪⎪⎪⎪⎪⎭ ,
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(b) Nonlinear harmonic oscillator

Figure 3.19: Examples of harmonic oscillators.
.

whose solutions are given by⎧⎪⎪⎪⎪⎪⎩x1(t)
x2(t)

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩ cosωt sinωt
−sinωt cosωt

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩x1(0)

x2(0)

⎫⎪⎪⎪⎪⎪⎭ .
The frequency of this oscillation is fixed, but the amplitude depends on the values
of the initial conditions, as shown in Figure 3.19. Note that this system has a single
equilibrium point at x = (0,0) and the eigenvalues of the equilibrium point have
zero real part, so trajectories neither expand nor contract, but simply oscillate.

An example of a nonlinear harmonic oscillator is given by the equation

dx1

dt
= x2+ x1(1− x2

1− x2
2),

dx2

dt
= −x1+ x2(1− x2

1− x2
2). (3.22)

This system has an equilibrium point at x = (0,0), but the linearization of this equi-
librium point is unstable. The phase portrait in Figure 3.19b shows that the solu-
tions in the phase plane converge to a circular trajectory. In the time domain this
corresponds to an oscillatory solution. Mathematically the circle is called a limit
cycle. Note that in this case, the solution for any initial condition approaches the
limit cycle and the amplitude and frequency of oscillation “in steady state” (once
we have reached the limit cycle) are independent of the initial condition.

A different type of oscillation can occur in nonlinear systems in which the
equlibrium points are saddle points, having both stable and unstable eigenvalues.
Of particular interest is the case where the stable and unstable orbits of one or more
equilibrium points join together. Two such sitautions are shown in Figure 3.20. The
figure on the left is an example of a homoclinic orbit. In this system, trajectories
that start near the equilibrium point quickly diverge away (in the directions cor-
responding to the unstable eigenvalues) and then slowly return to the equilibrium
point along the stable directions. If the initial conditions are chosen to be precisely
on the homoclinic orbit Γ then the system slowly converges to the equilibrium
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Figure 3.20: Homoclinic and heteroclinic orbits.

point, but in practice there are often disturbances present that will perturb the sys-
tem off of the orbit and trigger a “burst” in which the system rapidly escapes from
the equilibrium point and then slowly converges again.

A somewhat similar type of orbit is a heteroclinic orbit, in which the orbit
connects two different equilibrium points, as shown in Figure 3.20b.

An example of a system with a homoclinic orbit is given by the system

dx1

dt
= x2,

dx2

dt
= x1− x3

1. (3.23)

The phase portrait and time domain solutions are shown in Figure 3.21. In this
system, there are periodic orbits both inside and outside the two homoclinic cy-
cles (left and right). Note that the trajectory we have chosen to plot in the time
domain has the property that it rapidly moves away from the equilibrium point
and then slowly re-converges to the equilibrium point, before begin carried away

.
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Figure 3.21: Example of a homoclinic orbit.
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Figure 3.22: (a) The Glycolisis pathway. “S” is a substrate, which is converted into product
“P”. This, in turn, is activating its own production by enhancing the rate v2. (b) Oscillations
in the glycolisis pathway. Parameters are v0 = 1, k1 = 1, and k2 = 1.00001.

again. This type of oscillation, in which one slowly returns to an equilibrium point
before rapidly diverging is often called a relaxation oscillation. Note that for this
system, there are also oscillations that look more like the harmonic oscillator case
described above, in which we oscillate around the unstable equilibirum points at
x = (±1,0).

Example 3.10 (Glycolytic oscillations). Glycolysis is one of the principal metabolic
networks involved in energy production. It is a sequence of enzyme-catalyzed reac-
tions that coverts sugar into pyruvate, which is then further degraded to alcohol (in
yeast fermentation) and lactic acid (in muscles) in anaerobic conditions, and ATP
(the cell’s major energy supply) is produced as a result. Both damped and sustained
oscillations have been observed. Damped oscillations were first reported by [24]
while sustained oscillations in yeast cell free extracts were observed when glucose-
6-phosphate (G6P), fructose-6-phosphate (F6P) [43] or trehalose [79] were used as
substrates.

Here, we introduce the fundamental motif which is known to be at the core of
these oscillatory phenomenon. This is depicted in Figure 3.22 (a). A simple model
for the system is given by the two differential equations

dS
dt
= v0− v1,

dP
dt
= v1− v2,

in which

v1 = S f (P), f (P) =
αP2

K +P2
, v2 = k2P,

where f (P) is the Hill function. Under the assumption that K� P2, we have f (P)≈
k1P2, in which we have defined k1 :=α/K. This second order system admits a stable
limit cycle under suitable parameter conditions (Figure 3.22(b)). ∇
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The example above illustrates some of the types of questions we would like to
answer for oscillatory systems. For example, Under what parameter conditions do
oscillations occur in the glycolitic system? How much can the parameter change
before the limit cycle disappears? To analyze these sorts of questions, we need
to introduce tools that allow to infer the existence and robustness of limit cycle
behavior from a differential equation model. The objective of this section is to
address these questions.

Consider the system ẋ = F(x) and let x(t, x0) denote its solution starting at x0

at time t = 0, that is, ẋ(t, x0) = F(x(t, x0)) and x(0, x0) = x0. We say that x(t, x0) is a
periodic solution if there is T > 0 such that x(t, x0) = x(t+T, x0) for all t ∈ R. Here,
we seek to answer two questions: (a) when does a system ẋ = F(x) admit periodic
solutions? (b) When are these periodic solutions stable or asymptotically stable?

In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a point p, denoted ω(p). Basi-
cally, the omega-limit set ω(p) denotes the set of all points to which the trajectory
of the system starting from p tends as time approaches infinity. This is formally
defined in the following definition.

Definition 3.1. A point x̄ ∈ Rn is called an omega-limit point of p ∈ Rn if there is a
sequence of times {ti} with ti→∞ for i→∞ such that x(ti, p)→ x̄ as i→∞. The
omega limit set of p, denoted ω(p), is the set of all omega-limit points of p.

The omega-limit set of a system has several relevant properties, among which
the fact that it cannot be empty and that it must be a connected set.

Limit cycles in the plane

Before studying periodic behavior of systems in Rn, we study the behavior of sys-
tems in R2 as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady state approxi-
mations. For systems in R2, we will see that there are easy-to-check conditions that
guarantee the existence of a limit cycle.

The first result that we next give provides a simple check to rule out periodic
solutions for system in R2. Specifically, let x ∈ R2 and consider

ẋ1 = F1(x1, x2) ẋ2 = F2(x1, x2), (3.24)

in which the functions F : R2→ R2 is smooth. Then, we have the following result:

Theorem 3.2 (Bendixson’s criterion). If on a simply connected region D⊂R2 (i.e.,
there are no holes in it) the expression

∂F1

∂x1
+
∂F2

∂x2

is not identically zero and does not change sign, then system (3.24) has no closed
orbits that lie entirely in D.
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Example 3.11. Consider the system

ẋ1 = −x3
2+δx

3
1, ẋ2 = x3

1,

with δ ≥ 0. We can compute ∂F1
∂x1
+ ∂F2
∂x2
= 3δx2

1, which is positive in all R2 if δ � 0. If
δ � 0, we can thus conclude from Bendixson’s criterion that there are no periodic
solutions. Investigate as an exercise what happens when δ = 0. ∇

The following theorem, completely characterizes the omega limit set of any
point for a system in R2.

Theorem 3.3 (Poincarè-Bendixson). Let M be a bounded and closed positively
invariant region for the system ẋ = F(x) with x ∈ (i.e., any trajectory that starts in
M stays in M for all t ≥ 0). Let p ∈ M, then one of the following possibilities holds
for ω(p):

(i) ω(p) is a steady state;

(ii) ω(p) is a closed orbit;

(iii) ω(p) consists of a finite number of steady states and orbits, each starting (for
t = 0) and ending (for t→∞) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have steady states in M, since ω(p) is not empty, it
must be a periodic solution;

2. If there is only one steady state in M and it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), then
ω(p) is a periodic solution.

Example 3.12 (Glycolytic oscillations). Consider again the glycolysis example.
Let x1 = S and x2 = P and rewrite the system (3.10) as

dx1

dt
= v0− k1x1x2

2 =: F1(x1, x2),
dx2

dt
= k1x1x2

2− k2x2 =: F2(x1, x2).

As a first step, we need to determine the number of steady states. From ẋ = 0, we
obtain

x =
v0

k1y2
,

while from ẏ = 0, we obtain

x =
k2

k1y
.

The intersection between these two curves (the nullclines) in the (x1, x2) plane gives
rise to one steady state only (Figure 3.23a). The reader can determine a positively
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Figure 3.23: (a) The nullclines and the equilibrium of the system. (b) Parameter space
leading to oscillatory behavior.

invariant region that is compact. Then, it is enough to verify that the steady state
(x1,e, x2,e) is unstable and not a saddle to guarantee the existence of a stable limit
cycle. Thus,

J =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
∣∣∣∣∣∣∣
(x1,e,x2,e)

=

⎧⎪⎪⎪⎪⎪⎪⎩−k1x2
2,e −2k1x1,ex2,e

k1x2
2,e −k2+2k1x1,ex2,e

⎫⎪⎪⎪⎪⎪⎪⎭ ,
in which x1,e = k2

2/(k1v0) and x2,e = v0/k2. The eigenvalues are such that

λ1,2 =
tr(J)±

√
tr(J)2−4det(J)

2
,

in which

tr(J) = k2− k1

(
v0

k2

)2
and det(J) = k1

(
v0

k2

)2
.

Since det(J) > 0, in order to have an unstable equilibrium that is not a saddle, it is
necessary and sufficient to have tr(J) > 0, which leads to

k1 < k3
2/v

2
0.

This region is depicted in Figure 3.23b. Hence, if k2 is large enough (i.e., the outflux
is large enough compared to the strength of the self activation) a stable limit cycle
arises. ∇

Limit cycles in Rn

The results above holds only for systems in two dimensions. However, there have
been recent extensions of this theorem to systems with special structure in Rn. In
particular, we have the following result due to Hastings et al. (1977).
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Theorem 3.4 (Hastings et al. 1977). Consider a system ẋ = F(x), which is of the
form

ẋ1 = F1(xn, x1)

ẋ j = F j(x j−1, x j), 2 ≤ j ≤ n

on the set M defined by xi ≥ 0 for all i with the following inequalities holding in
M:

(i) ∂Fi
∂xi
< 0 and ∂Fi

∂xi−1
> 0, for 2 ≤ i ≤ n, and ∂F1

∂xn
< 0;

(ii) Fi(0,0) ≥ 0 and F1(xn,0) > 0 for all xn ≥ 0;

(iii) The system has a unique steady state x∗ = (x∗1, ..., x
∗
n) in M such that F1(xn, x1)<

0 if xn > x∗n and x1 > x∗1, while F1(xn, x1) > 0 if xn < x∗n and x1 < x∗1;

(iv) ∂F1
∂x1

is bounded above in M.

Then, if the Jacobian of f at x∗ has no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solution in M.

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some technical
assumption) is equivalent to the existence of a periodic solution. This theorem,
however, does not provide information about whether the orbit is attractive or not,
that is, of whether it is an omega-limit set of any point in M. This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), for which
we provide a simplified statement as follows.

Theorem 3.5 (Mallet-Paret and Smith, 1990). Consider the system ẋ = F(x) with
the following cyclic feedback structure

ẋ1 = F1(xn, x1)

ẋ j = F j(x j−1, x j), 2 ≤ j ≤ n

on a set M defined by xi ≥ 0 for all i with all trajectories starting in M bounded for
t ≥ 0. Then, the ω-limit set ω(p) of any point p ∈ M can be one of the following:

(a) A steady state;

(b) A non-constant periodic orbit;

(c) A set of steady states connected by homoclinic or heteroclinic orbits.

As a consequence of the theorem, we have that for a system with cyclic feed-
back structure that admits one steady state only and at which the linearization has
all eigenvalues with positive real part, the omega limit set must be a periodic orbit.
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Let for some δi ∈ {1,−1} be δi
∂Fi(x,xi−1)
∂xi−1

> 0 for all 0 ≤ i ≤ n and define Δ :=
δ1 · ... ·δn . One can show that the sign of Δ is related to whether the system has one
or multiple steady states.

In Chapter 6, we will apply these results to determine the parameter space that
makes the repressilator (see Example 2.2) oscillate.

3.5 Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context of
models by exploring how the location of equilibrium points, their stability, their re-
gions of attraction and other dynamic phenomena, such as limit cycles, vary based
on the values of the parameters in the model.

Parametric stability

Consider a differential equation of the form

dx
dt
= F(x, θ), x ∈ Rn, θ ∈ Rk, (3.25)

where x is the state and θ is a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

F(x, θ) = 0,

and as θ is varied, the corresponding solutions xe(θ) can also vary. We say that
the system (3.25) has a bifurcation at θ = θ∗ if the behavior of the system changes
qualitatively at θ∗. This can occur either because of a change in stability type or a
change in the number of solutions at a given value of θ.

As an example of a bifurcation, consider the linear system

dx1

dt
= x2,

dx2

dt
= −kx1−μx2,

where k > 0 is fixed and θ is our bifurcation parameter. Figure 3.24 shows the
phase portraits for different values of θ. We see that at θ = 0 the system transitions
from a single stable equilibrium point at the original to having an unstable equilib-
rium. Hence, as θ goes from negative to positive values, the behavior of the system
changes in a significant way, indicating a bifurcation.

A common way to visualize a bifurcation is through the use of a bifurcation
diagram. To create a bifurcation diagram, we choose a function y = h(x) such that
the value of y at an equilibrium point has some useful meaning for the question
we are studying. We then plot the value of ye = h(xe(θ)) as a function of θ for all
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Figure 3.24: Phase portraits for a simple bifurcation.

equilibria that exist for a given parameter value θ. By convention, we use dashed
lines if the corresponding equilibrium point is unstable and solid lines otherwise.
Figure 3.25 shows examples of some common bifurcation diagrams. Note that for
some types of bifucations, such as the pitchfork bifurcation, there exist values of
θ where there is more than one equilibrium point. A system that exhibits this type
of behavior is said to be multistable. A common case is that there are two stable
equilibria, in which case the system is said to be bistable.

Another type of diagram that is useful in understanding parametric dependence
is a parametric stability diagram, an example of which was shown in Figure 3.23.
In this type of diagram, we pick one or two (or sometimes three) parameters in the
system and then analyze the stability type for the system over all possible combina-
tions of those parameters. The resulting diagram shows those regions in parameter
space where the system exhibits qualitatively different behaviors; an example is
shown in Figure 3.26a.

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
changes as the parameters are varied. In such a case it is revealing to plot the eigen-
values of the system as a function of the parameters. Such plots are called root locus
diagrams because they give the locus of the eigenvalues when parameters change.
An example is shown in Figure 3.26b. Bifurcations occur when parameter values
are such that there are eigenvalues with zero real part. Computing environments
such LabVIEW, MATLAB and Mathematica have tools for plotting root loci.

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters
of the system to eliminate extra parameters when possible. Computer programs
such as AUTO, LOCBIF and XPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.
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Figure 3.25: Bifurcation diagrams for some common bifurcations

Hopf bifurcation

The bifurcations discussed above involved bifurcation of equilibrium points. An-
other type of bifurcation that can occur is that a system with an equilibrium point
admits a limit cycle as a parameter is changed through a critical value. The Hopf
bifurcation theorem provides a technique that is often used to understand whether
a system admits a periodic orbit when some parameter is varied. Usually, such an
orbit is a small amplitude periodic orbit that is present in the close vicinity of an
unstable steady state.

Consider the system dependent on a parameter α:

dx
dt
= g(x,α), x ∈ Rn, α ∈ R,

and assume that at the steady state x̄ corresponding to α = ᾱ (i.e., g(x̄, ᾱ) = 0),
the linearization ∂g/∂x(x̄, ᾱ) has a pair of (non zero) imaginary eigenvalues with
the remaining eigenvalues having negative real parts. Define the new parameter
θ := α− ᾱ and re-define the system as

dx
dt
= f (x, θ) =: g(x, θ+ ᾱ),

so that the linearization ∂ f /∂x(x̄,0) has a pair of (non zero) imaginary eigenvalues
with the remaining eigenvalues having negative real parts. Denote by λ(θ) = β(θ)+
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Figure 3.26: Stability plots a nonlinear system. The plot in (a) shows the real part of the
system eigenvalues as a function of the parameter θ. The system is stable when all eigenval-
ues have negative real part (shaded region). The plot in (b) shows the locus of eigenvalues
on the complex plane as the parameter θ is varied and gives a different view of the stability
of the system. This type of plot is called a root locus diagram.

iω(θ) the eigenvalue such that β(0) = 0. Then, if ∂β/ ∂θ(0) � 0 the system admits a
small amplitude almost sinusoidal periodic orbit for θ small enough and the system
is said to go through a Hopf bifurcation at θ = 0. If the small amplitude periodic
orbit is stable, the Hopf bifurcation is said supercritical, while if it is unstable it is
said subcritical. Figure 3.27 shows diagrams corresponding to these bifurcations.

In order to determine whether a Hopf bifurcation is supercritical or subcritical,
it is necessary to calculate a “curvature” coefficient, for which there are formu-
las (Marsden and McCrocken, 1976) and available bifurcation software, such as
AUTO. In practice, it is often enough to calculate the value ᾱ of the parameter at
which Hopf bifurcation occurs and simulate the system for values of the parameter
α close to ᾱ. If a small amplitude limit cycle appears, then the bifurcation must be
supercritical.

Example 3.13 (Glycolytic oscillations). Recalling the model (3.10) for the gly-
colytic oscillator, we ask whether such an oscillator goes through a Hopf bifur-
cation. In order to answer this question, we consider again the expression of the
eigenvalues

λ1,2 =
tr(J)±

√
tr(J)2−4det(J)

2
,

in which

tr(J) = k2− k1

(
v0

k2

)2
and det(J) = k1

(
v0

k2

)2
.

The eigenvalues are imaginary if tr(J) = 0, that is, if k1 = k3
2/v

2
0. Furthermore, the

frequency of oscillations is given byω=
√

4det(J)= 4k1(v0/k2)2. When k1 ≈ k3
2/v

2
0,
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Figure 3.27: Hopf Bifurcation. On the left hand, as θ increases a stable limit cycle appears.
On the right hand side, as θ increases a limit cycle appears but it is unstable.

an approximately sinusoidal oscillation appears. When k1 is large, the Hopf bifur-
cation theorem does not imply the existence of a periodic solution. This is because
the Hopf theorem provides only local results. For obtaining global results, one has
to apply other tools, such as the Poincarè-Bendixson theorem. ∇

The Hopf bifurcation theorem is based on center manifold theory for nonlinear
dynamical systems. For a rigorous treatment of Hopf bifurcation is thus necessary
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to standard text in dynamical systems [100, 41].

3.6 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied to a wide
variety of dynamical systems. However, many of the methods require significant
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section, we review methods for
doing such a reduction in the complexity of the models. Most of the techniques
are based on the common idea that if we are interested in the slower time scale
dynamics of a system, the fast time scale dynamics can be approximated by their
equilibrium solutions. This idea was introduced in Chapter 2 in the context of re-
duced order mechanisms; we present a more mathematical analysis of such systems
here.

Singular perturbation analysis

Singular perturbation techniques apply to systems that have processes that evolve
on both fast and slow time scales and that can be written in a standard form, which
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we now introduce. Let (x,y) ∈ D := Dx×Dy ⊂Rn×Rm and consider the vector field

dx
dt
= f (x,y, ε), x(0) = x0

ε
dy
dt
= g(x,y, ε), y(0) = y0

in which 0 < ε � 1 is a small parameter and both f (x,y,0) and g(x,y,0) are well
defined. Since ε � 1, the absolute value of the time derivative of y can be much
larger than the time derivative of x, resulting in y dynamics that are much faster
than the x dynamics. That is, this system has a slow time scale evolution (in x) and
a fast time-scale evolution (in y).

If we are interested only in the slower time scale, then the above system can be
approximated (under suitable conditions) by the reduced system

dx̄
dt
= f (x̄, ȳ,0), x̄(0) = x0,

0 = g(x̄, ȳ,0).

Let y= γ(x) denote slow manifold given by the locally unique solution of g(x,y,0)=
0. The implicit function theorem [63] shows that this solution exists whenever
∂g/∂y is non singular. Furthermore, the theorem also shows that

dγ
dx
= −∂g
∂y

−1 ∂g
∂x
.

We can now approximate the dynamics in x (i.e., on the slow manifold) as

dx̄
dt
= f (x̄,γ(x̄),0), x(0) = x0.

We seek to determine under what conditions the solution x(t) is “close” to the
solution x̄(t) of the reduced system. This problem can be addressed by analyzing
the fast dynamics. Letting τ = t/ε be the fast time scale, we have that

dx
dτ
= ε f (x,y, ε),

dy
dτ
= g(x,y, ε), (x(0),y(0)) = (x0,y0),

so that when ε� 1, x(τ) does not appreciably change. Therefore, the above system
in the τ time scale can be approximated by

dy
dτ
= g(x0,y,0), y(0) = y0,

in which x is “frozen” at the initial condition. This system is usually referred to as
the boundary layer system. If for all x0, we have that y(τ) converges to γ(x0), then
for t > 0 we will have that the solution x(t) is well approximated by the solution
x̄(t) to the reduced system. This qualitative explanation is more precisely captured
by the following theorem [54].
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Theorem 3.6. Assume that

Real

⎛⎜⎜⎜⎜⎝λ( ∂
∂y

g(x,y)
∣∣∣∣∣
y=γ(x)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠ < 0

uniformly for x ∈ Dx. Let the solution of the reduced system be uniquely defined for
t ∈ [0, t f ]. Then, for all tb ∈ (0, t f ] there is a constant ε∗ > 0 and set Ω ⊆ D such that

x(t)− x̄(t) = O(ε) uniformly for t ∈ [0, t f ],

y(t)−γ(x̄(t)) = O(ε) uniformly for t ∈ [tb, t f ],

provided ε < ε∗ and (x0,y0) ∈Ω.

Example 3.14 (Hill function). In Section 2.1, we obtained the expression of the
Hill function by making a quasi-steady state approximation on the dynamics of
binding. Here, we illustrate how Hill function expressions can be derived by a for-
mal application of singular perturbation. Specifically, consider the simple binding
scenario of a transcription factor X with DNA promoter sites p. Assume that such
a transcription factor is acting as an activator of the promoter and let Y be the pro-
tein expressed under promoter p. Assume further that X dimerizes before binding
to promoter p. The reaction equations describing this system are given by

X+X
k1−−⇀↽−−
k2

X2, X2+p
a−⇀↽−
d

C, C
α−→mY+C,

mY

β
−→mY+Y, mY

γ
−→ ∅, Y

δ−→ ∅, p+C = ptot.

The corresponding differential equation model is given by

dX2

dt
= k1X2− k2X2−aX2(ptot−C)+dC

dC
dt
= aX2(ptot−C)−dC

dmY

dt
= αC−γmY

dY
dt
= βmY −δY.

Since all the binding reactions are much faster than mRNA and protein production
and decay, we have that k1,k2,a,d� α,β,γ,δ. Let km := k2/k1, Kd := d/a, c := k2/d,
and ε := δ/d. Then, we can re-write the above system by using the substitutions

d =
δ

ε
, a =

δ

Kdε
, k2 = c

δ

ε
, k1 = c

δ

kmε
,
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so that we obtain

ε
dX2

dt
= c
δ

km
X2− cδX2−

δ

Kd
X2(ptot−C)+δC

ε
dC
dt
=
δ

Kd
X2(ptot−C)−δC

dmY

dt
= αC−γmY

dY
dt
= βmY −δY.

This system is in the standard singular perturbation form (3.6). As an exercise,
the reader can verify that the slow manifold is locally asympotically stable (see
Exercises). The slow manifold is obtained by setting ε = 0 and determines X2 and
C as functions of X. These functions are given by

X2 =
X2

km
, C =

ptotX2/(kmKd)
1+X2/(kmKd)

.

As a consequence, the reduced system becomes

dmY

dt
= α

ptotX2/(kmKd)
1+X2/(kmKd)

−γmY

dY
dt
= βmY −δY,

which is the familiar expression for the dynamics of gene expression with an acti-
vator as derived in Section 2.1. ∇

Example 3.15 (Enzymatic reaction). Let’s go back to the enzymatic reaction

E+S
a−⇀↽−
d

C
k−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The corresponding system of differential
equations is given by

dE
dt
= −aE ·S +dC+ kC,

dC
dt
= aE ·S − (d+ k)C, (3.26)

dS
dt
= −aE ·S +dC,

dP
dt
= kC. (3.27)

By assuming that a,d� k, we obtained before that approximately dC/dt = 0 and
thus that C = EtotS /(S +Km), with km = (d+ k)/a and dP/dt =VmaxS /(S + km) with
Vmax = kEtot. From this, it also follows that

dE
dt
≈ 0 and

dS
dt
≈ −dP

dt
. (3.28)
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How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, define Kd := d/a and
take the system to standard singular perturbation form by defining the small pa-
rameter ε := k/d, so that d = k/ε, a = k/(Kdε), and the system becomes

ε
dE
dt
= − k

Kd
E ·S + kC+ εkC, ε

dC
dt
=

k
Kd

E ·S − kC− εkC,

ε
dS
dt
= − k

Kd
E ·S + kC,

dP
dt
= kC.

One cannot directly apply singular perturbation theory on this system because
one can verify from the linearization of the first three equations that the boundary
layer dynamics are not locally exponentially stable since there are two zero eigen-
values. This is because the three variables E,S ,C are not independent. Specifically,
E = Etot−C and S +C+P= S (0)= S tot, assuming that initially we have S in amount
S (0) and no amount of P and C in the system. Given these conservation laws, the
system can be re-written as

ε
dC
dt
=

k
Kd

(Etot−C) · (S tot−C−P)− kC− εkC,
dP
dt
= kC.

Under the assumption made in the analysis of the enzymatic reaction that S tot �
Etot, we have that C� S tot so that the equations finally become

ε
dC
dt
=

k
Kd

(Etot−C) · (S tot−P)− kC− εkC,
dP
dt
= kC.

One can verify (see Exercises) that in this system, the boundary layer dynamics
is locally exponentially stable, so that setting ε = 0 one obtains

C̄ =
Etot(S tot− P̄)

(S tot− P̄)+ km
=: γ(P̄)

and thus that the reduced system is given by

dP̄
dt
= Vmax

(S tot− P̄)

(S tot− P̄)+ km
.

This system is the same as that obtained in Chapter 2. However, dC(t)/dt and
dE(t)/dt are not close to zero as obtained earlier. In fact, from the conservation law
S̄ +C̄+ P̄= S (0)= S tot, we obtain that dS̄

dt =−
dP̄
dt −

dC̄
dt , in which now dC̄

dt =
∂γ
∂P (P̄) · dP

dt .
Therefore

dS̄
dt
= −dP̄

dt
(1+
∂γ

∂P
(P̄)), S̄ (0) = S tot−γ(P̄(0))− P̄(0) (3.29)

and
dĒ
dt
= −dC̄

dt
= − ∂γ
∂P

(P̄)
dP̄
dt
, E(0) = Etot−γ(P̄(0)), (3.30)
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Figure 3.28: Simulation results for the enzymatic reaction comparing the approximations
from singular perturbation and from the quasi-steady state approximation (QSSA). Here,
we have S tot = 100, Etot = 1, a = d = 10, and k = 0.1. The full model is the one in equa-
tions (3.27).

which are different from expressions (3.28).
These expressions are close to those in equation (3.28) only when ∂γ/∂P(P̄) is

small enough. In the plots of Figure 3.28, we show the time trajectories of the orig-
inal system, of the Michaelis-Menten quasi-steady state approximation (QSSA),
and of the singular perturbation approximation. In the full model (solid line in Fig-
ure 3.28), E(t) starts from a unit concentration and immediately collapses to zero
as the enzyme is all consumed to form the complex C by the substrate, which is
in excess. Similarly, C(t) starts from zero and immediately reaches the maximum
possible value of one.

In the QSSA, both E(t) and C(t) are assumed to stabilize immediately to their
(quasi) steady state and then stay constant. This is depicted by the dotted plots in
Figure 3.28, in which E(t) stays at zero for the whole time and C(t) stays at one
for the whole time. This approximation is fairly good as long as there is an excess
of substrate. When the substrate concentration goes to zero as it is all converted
to product, also the complex concentration C goes to zero (see solid line of Fig-
ure 3.28). At this time, the concentrations of complex and enzyme substantially
change with time and the QSSA is unsatisfactory. By contrast, the reduced dynam-
ics obtained from the singular perturbation approach well represent the dynamics
of the full system even during this transient behavior. Hence, while the QSSA is a
good approximation only as long as there is excess of substrate in the system, the
reduced dynamics obtained by singular perturbation is a good approximation even
when the substrate concentration goes to zero.
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Figure 3.29: The slow manifold of the system C = γ(P) is shown in red. In black, we show
the trajectories of the the full system. These trajectories collapse into an ε-neighbor of the
slow manifold. Here, we have S tot = 100, Etot = 1, a = d = 10, and k = 0.1.

In Figure 3.29, we show the curve C = γ(P) (in red) and the trajectories of the
full system in black. All of the trajectories of the system immediately collapse into
an ε-neighbor of the curve C = γ(P). From this plot, it is clear that ∂γ/∂P is small
as long as the product concentration P is small enough, which corresponds to a
substrate concentration S large enough. This confirms that the QSSA is good only
as long as there is excess of substrate S . ∇

Exercises

3.1 (Frequency response of a phosphorylation cycle) Consider the model of a co-
valent modification cycle as illustrated in Chapter 2 in which the kinase Z is not

constant, but it is produced and decays according to the reaction Z
δ−−−⇀↽−−−

u(t)
. Let u(t)

be the input stimulus of the cycle and let X∗ be the output. Determine the fre-
quency response of X∗ to u, determine its bandwidth, and make plots of it. What
parameters can be used to tune the bandwidth?

3.2 (Design for robustness) Consider a one-step reaction model for a phosphoryla-
tion cycle as seen in Homework 1, in which the input stimulus is the time-varying
concentration of kinase Z(t). When found in the cellular environment, this cycle is
subject to possible interactions with other cellular components, such as the non-
specific or specific binding of X* to target sites, to noise due to stochasticity of
the cellular environment, and to other cross-talk phenomena. We will come back to
these “disturbances” later during the course. For now, we can think of these distur-
bances as acting like an aggregate rate of change on the output protein X*, which



144 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

we call d(t). Hence, we can model the “perturbed” cycle by

Ẋ∗ = Z(t)k1Xtot

(
1− X∗

Xtot

)
− k2YtotX

∗+d(t),

which is the same as you found in Homework 1, except for the presence of the
disturbance d(t). Assume that you can tune all the parameters in this system (we
will see later that this is actually possible to large extent by suitably fabricating
genetic circuits). Can you tune these parameters so that the response of X∗(t) to
d(t) is arbitrarily attenuated while the response of X∗(t) to Z(t) remains arbitrarily
large? If yes, explain how these parameters should be tuned to reach this design
objective and justify your answer through a careful mathematical reasoning using
the tools introduced in class.

3.3 (Adaptation) Show that the equation of the sniffer 3.15 can be taken into the
standard integral feedback form through a suitable change of coordinates.

3.4 (Design limitations) This problem is meant to have you think about possible
trade-offs and limitations that are involved in any realistic design question (we will
come back to this when we start design). Here, we examine this through the open
loop and negative feedback transcriptional component seen in class (see Figure 3-8
in the Lecture Notes). Specifically, we want to compare the robustness of these two
topologies to cellular noise, crosstalk, and other cellular interactions. As performed
in Problem 1, we model these phenomena as a time-varying disturbance affecting
the production rate of mRNA m and protein P. To slightly simplify the problem,
we focus only on disturbances affecting the production of protein. The open loop
model becomes

ṁ = α0−γm Ṗ = βm−δP+d(t)

and the negative feedback system becomes

ṁ = α0+
α

K +Pn −γm Ṗ = βm−δP+d(t).

Answer the following questions:

(a) After performing linearization about the equilibrium point, determine ana-
lytically the frequency response of P to d for both systems.

(b) Sketch the magnitude plot of this response by hand for both systems, com-
pare them, and determine what happens as β and α increase (note: if your
calculations are correct, you should find that what really matters for the neg-
ative feedback system is the product αβ, which we can view as the feedback
gain). So, is increasing the feedback gain to arbitrarily large values the best
strategy to decrease the sensitivity of the system to the disturbance? Com-
ment.
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Figure 3.30: Circuit topologies with two components (proteins): A and B.

(c) Pick parameter values and use Matlab to draw Bode plots as the feedback
gain increases and validate your predictions of (b). (Suggested parameters:
γ = 1, δ = 1, K = 1, n = 1, αβ = {1,10,100,1000, ...}). Note: in Matlab, once
you have determined the matrices A, B, C, and D for the linearization, you
can just do: SYS=ss(A,B,C,D); bode(SYS) and the Bode plot will pop
up.

(d) Investigate the answer to (c) when you have γ = 20, that is, the timescale of
the mRNA dynamics becomes faster than that of the protein dynamics. What
does change with respect to what you found in (c)? Note: when γ increases
you are reducing the (phase) lag within the negative feedback loop...

(e) When γ is at least 10 times larger than δ, you can approximate the m dy-
namics to the quasi-steady state. So, the two above systems can be reduced
to one differential equation each for the protein concentration P. For these
two reduced systems, determine analytically the frequency response to d and
use it to find out whether arbitrarily increasing the feedback gain is a good
strategy to decrease the sensitivity of response to the disturbance.

3.5 (Bendixson criterion) Consider the possible circuit topologies of Figure 3.30, in
which A and B are transcriptional components. Model each transcriptional compo-
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nent by a first order system, in which you have approximated the mRNA dynamics
at the quasi-steady state. Hence, each topology will be represented by a dynamical
system in the plane R2. Use Bendixson criterion to rule out topologies that cannot
give rise to closed orbits.

3.6 (Two gene oscillator) Consider the feedback system composed of two genes
expressing proteins A (activator) and R (repressor), in which we denote by A, R,
mA, and mR, the concentrations of the activator protein, the repressor protein, the
mRNA for the activator protein, and the mRNA for the repressor protein, respec-
tively. The ODE model corresponding to this system is given by

dmA

dt
=
α0

K1+Rn −γmA

dA
dt
= βmA−δA

dmR

dt
=
αAm

K2+Am −γmR

dR
dt
= βmR−δR.

Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your finding through simulation.

3.7 (Goodwin oscillator) Consider the simple set of reactions

X1
k−→ X2

k−→ X3....
k−→ Xn.

Assume further that Xn is a transcription factor that represses the production of pro-
tein X1 through transcriptional regulation (assume simple binding of X1 to DNA).
Neglecting the mRNA dynamics of X1, write down the ODE model of this sys-
tem and determine conditions on the length n of the cascade for which the system
admits a stable limit cycle. Validate your finding through simulation.

3.8 (Activator-repressor clock) A well known oscillating motif is given by the
activator-repressor clock by Atkinson et al. [5] in which an activator protein A
activates its own production and the one of a repressor protein R, which in turn
acts as a repressor for A. The ODE model corresponding to this clock is given by

dmA

dt
=
αAm+α0

K1+Rn+Am −γmA

dA
dt
= μ(βmA−δA)

dmR

dt
=
αAm

K2+Am −γmR

dR
dt
= βmR−δR,

in which μ > 0 models the difference of speeds between the dynamics of the activa-
tor and that of the repressor. Indeed a key requirement for this system to oscillate
is that the dynamics of the activator are sufficiently faster than that of the repressor.
Demonstrate that this system goes through a Hopf Bifurcation with bifurcation pa-
rameter μ. Validate your findings with simulation by showing the small amplitude
periodic orbit.
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3.9 (Phosphorylation via singular perturbation) Consider again the model of a co-
valent modification cycle as illustrated in Chapter 2 in which the kinase Z is not

constant, but it is produced and decays according to the reaction Z
δ−−−⇀↽−−−

u(t)
∅.

(a) Consider that k f ,kr � kcat, δ,u(t) and employ singular perturbation with small
parameter, for example, ε = δ/kr to obtain the approximated dynamics of Z(t) and
X∗(t). How is this different from the result obtained in Exercise 2.9? Explain.

(b) Simulate these approximated dynamics when u(t) is a periodic signal with fre-
quency ω and compare the responses of Z of this approximated dynamics to those
obtained in Exercise 2.9 as you change ω. What do you observe? Explain.

3.10 (Hill function via singular perturbation) Show that the slow manifold of the
following system is asymptotically stable:

ε
dX2

dt
= c
δ

km
X2− cδX2−

δ

Kd
X2(ptot−C)+δC,

dmY

dt
= αC−γmY ,

ε
dC
dt
=
δ

Kd
X2(ptot−C)−δC, dY

dt
= βmY −δY.

3.11 (Enzyme dynamics via singular perturbation) Show that the slow manifold of
the following system is asymptotically stable:

ε
dC
dt
=

k
Kd

(Etot−C) · (S tot−P)− kC− εkC,
dP
dt
= kC.

3.12 (BE 150, Winter 2011; Based on Alon 4.6—Shaping the pulse) Consider a sit-
uation where X in an I1-FFL begins to be produced at time t=0, so that the level of
protein X gradually increases. The input signal S x and S y are present throughout.

(a) How does the pulse shape generated by the I1-FFL depend on the thresholds
Kxz, Kxy, and Kyz, and on β, the production rate of protein X? (i.e. How does in-
creasing or decreasing these parameters change the height or position of the pulse
peak, the slope of the rise of the pulse, etc?)

(b) Analyze a set of genes Z1,Z2, ...,Zn, all regulated by the same X and Y in I1-
FFLs. Design thresholds such that the genes are turned ON in the rising phase of
the pulse in a certain temporal order and turned OFF in the declining phase of the
pulse with the same order.

(c) Design thresholds such that the turn-OFF order is opposite the turn-ON order.
Plot the resulting dynamics.
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3.13 (BE 150, Winter 2011; Based on Alon 5.6—Bi-fan dynamics) Consider a bi-
fan in which activators X1 and X2 regulate genes Z1 and Z2. The input signal of
X1,S X2, appears at time t=0 and vanishes at time t=D. The input signal of X2,S X2,
appears at time t=D/2 and vanishes at t=2D. Plot the dynamics of the promoter
activity of Z1 and Z2 given that the input functions of Z1 and Z2 are AND and OR
logic, respectively.

3.14 (BE 150, Winter 2011; Based on Alon 6.1—Memory in the regulated-feed-
back network motif) Transcription factor X activates transcription factor Y1 and Y2.
Y1 and Y2 mutually activate each other. The input function at the Y1 and Y2 pro-
moters is an OR gate (Y2 is activated when either X or Y1 binds the promoter). At
time t=0, X begins to be produced from an initial concentration of X=0. Initially
Y1 = Y2 = 0. All production rates are β = 1 and degradation rates are α = 1. All of
the activation thresholds are K=0.5. At time t=3, production of X stops.

(a) Plot the dynamics of X,Y1,Y2. What happens to Y1 and Y2 after X decays away?

(b) Consider the same problem, but now Y1 and Y2 repress each other and X ac-
tivates Y1 and represses Y2. At time t=0, X begins to be produced and the initial
levels are X = 0,Y1 = 0,Y2 = 1. At time t=3, X production stops. Plot the dynamics
of the system. What happens after X decays away?

3.15 (BE 150, Winter 2011; Repressilator) Simulate the following simplified ver-
sion of the repressilator:

dm1

dt
=

kp

1+ ( p3
KM

)n
− kmdegm1

dp1

dt
= ktransm1− kpdeg p1

dm2

dt
=

kp

1+ ( p1
KM

)n
− kmdegm2

dp2

dt
= ktransm2− kpdeg p2

dm3

dt
=

kp

1+ ( p2
KM

)n
− kmdegm3

dp3

dt
= ktransm3− kpdeg p3
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(a) Simulate the system using the following parameters: kp = 0.5,n = 2,KM =

40,kmdeg = 0.0058,kpdeg = 0.0012,ktrans = 0.116.

(b) Suppose the protein half-life suddenly decreases by half. Which parameter(s)
will change and how? Simulate what happens. What if the protein half-life is dou-
bled? How do these two changes affect the oscillatory behavior?

(c) Now assume that there is leakiness in the transcription process. How does the
system’s ODE change? Simulate the system with a small leakiness (say, 5e-3) and
comment on how it affects the oscillatory behavior.

3.16 (BE 150, Winter 2011; Glycolytic oscillations) In almost all living cells, glu-
cose is broken down into the cell’s energy currency, ATP, via the glycolysis path-
way. Glycolysis is autocatalytic in the sense that ATP must first be consumed in the
early steps before being produced later and oscillations in glycolytic metabolites
have been observed experimentally. We will look at a minimal model of glycolysis:

dX
dt
=

2Vya

1+ yh
− kx

dY
dt
= (q+1)kx−q

2Vya

1+ yh
−1

Note that this system has been normalized such that Yss = 1.

(a) While a system may have the potential to oscillate, the behavior still depends
on the parameter values. The glycolysis system undergoes multiple bifurcations
as the parameters are varied. Using linear stability analysis, find the parameter
conditions where the system is stable vs. unstable. Next, find the conditions where
the system has eigenvalues with nonzero imaginary parts.

(b) Let q=k=V=1. Find the relationship between h and a where the system is stable
or not. Draw the stability diagram and mark the regions where the system is stable
vs. unstable. In the same plot, mark the regions where the system has eigenvalues
with nonzero imaginary parts.

(c) Let q=k=V=1. Choose h and a such that the eigenvalues are unstable and have
nonzero imaginary parts. Use these parameter values and simulate the nonlinear
system in MATLAB. Sketch the time response of the system starting with initial
condition X(0) =1.2, Y(0) = 0.5 (you may use MATLAB or sketch by hand). Com-
ment on what you see compared to what linear stability analysis told you about the
system.

3.17 (BE 150, Winter 2011) Finding limit cycles for nonlinear systems and under-
standing how changes in parameters affect the amplitude and period of the oscil-
lation is difficult to do in analytical form. A graphical technique that gives some
insight into this problem is the use of describing functions, which is described in
Feedback Systems, Section 9.5. In this problem we will use describing functions for
a simple feedback system to approximate the amplitude and frequency of a limit
cycle in analytical form.
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Consider the system with the block diagram shown below. The block R is a relay
with hysteresis whose input/output response is shown on the right and the process
transfer function is P(s) = e−sτ/s. Use describing function analysis to determine
frequency and amplitude of possible limit cycles. Simulate the system and compare
with the results of the describing function analysis.

3.18 (BE 150, Winter 2011) In this problem we will compare the model with single
methylation site vs. double methylation sites. The model with a single methylation
site is given by:

d(X+X∗)
dt

= VRR− VBBX∗
K +X∗

where the activity is given by A = X∗. The model with two methylation sites is
given by

d(X2+X2∗)
dt

=
RVRX1

X1+X0
−BVBX2∗

d(X1+X1∗)
dt

= BVBX2 ∗+
RVRX0

X1+X0
− RVRX1

X1+X0
−BVBX1∗

dX0

dt
= − RVRX0

X0+X1
+BVBX1∗

and the activity is given by A = X1 ∗+X2∗. Let K = 10,VRR = 1,VBB = 2. Derive
the parameter sensitivities of the activities ( dA

dpi
) for both the single and double

methylation models. Comment on which parameter each model is most robust and
most sensitive to.

3.19 (BE 150, Winter 2011) Consider a toy model of protein production:

dm
dt
= f (p)−γm dp

dt
= g(p)−δp

(a) Assume that there is transcriptional self-regulation ( f (p) = α
K+pn ). We now

know that the mRNA transcription process and thus we want to understand the
sensitivity with respect to the mRNA transcription rate α0. Compute the trans-
fer function from α to p. Plot this transfer function for α = 0.002,β0 = 0.1,γ =
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0.005, δ = 0.001,K = 0.002. Compare it with the transfer function from α0 to p
without regulation ( f (p) = α0 = 0.001). (Note: As a reminder on how to compute
these transfer functions, see BFS chapter 3 page 3-11).

(b) Now assume that there is no transcriptional regulation ( f (p) = α0) but there is
translational self-regulation such that g(p) = βm

K+pn . Computer the transfer function
from α0 to p when β = 0.2. Compare again with the case with no regulation.

3.20 (BE 150, Winter 2011) Consider a simple model of chemotaxis:

dXm

dt
= kRR+ k f (L)X∗m− krXm

dX∗m
dt
= −kBBp X∗m

KX∗m +X∗m
− k f (L)X∗m+ krXm

where Xm is the concentration of methylated receptor complex, and X∗m is the con-
centration of activated, methylated receptor complex. Ligand concentration enters
into the equation through the rate k f (L). In this model, CheR (R) and CheBP (BP)
concentrations are constant. (BFS, Section 5)

(a) Pick parameter values such that kBBp > kRR and plot the dynamics, doubling
the ligand concentration at time t=20. Compare to figure 5.12 in BFS.

(b) Now assume that CheR no longer acts in saturation. Rederive the dynamics
and plot. Comment on how this assumption affects adaptation.
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Chapter 4
Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, building
on our preliminary discussion of stochastic modeling in Section 2.1. We begin by
reviewing the various methods for modeling stochastic processes, including the
chemical master equation (CME), the chemical Langevin equation (CLE) and the
Fokker-Planck equation (FPE). Given a stochastic description, we can then analyze
the behavior of the system using a variety of stochastic simulation and analysis
tools.

Prerequisites. This chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good working knowledge of
basic probability and some exposure to simple stochastic processes (e.g., Brownian
motion), at the level of the material presented in Appendix B (drawn from [70]).

4.1 Stochastic Modeling of Biochemical Systems

Biomolecular systems are inherently noisy due to the random nature of molecular
reactions. When the concentrations of molecules are high, the deterministic models
we have used in the previous chapters provide a good description of the dynamics
of the system. However, if the molecular counts are low then it is often necessary to
explictly account for the random nature of events. In this case, th chemical reactions
in the cell can be modeled as a collection of stochastic events corresponding to
chemical reactions between species, including binding and unbinding of molecules
(such as RNA polymerase and DNA), conversion of one set of species into another,
and enzymatically controlled covalent modifications such as phosphorylation. In
this section we will briefly survey some of the different representations that can be
used for stochastic models of biochemical systems, following the material in the
textbooks by Phillips et al. [76], Gillespie [33] and Van Kampen [52].

Statistical mechanics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.
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As described briefly already in Chapter 2, the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configuration of the
components (species) in the system relative to each other and we must enumerate
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the probabil-
ity that system is in a given microstate. This probability can be calculated based on
the energy levels of the different microstates. Consider a setting in which our sys-
tem is contained within a reservoir. Let Er represent the energy in the resevoir, Es

the energy in the system and Etot = Er+Es the total (conserved) energy. Given two
different energy levels E(1)

s and E(2)
s for the system of interest, let Wr(Etot − E(i)

s )
be the number of possible microstates of the reservoir with energy Er = Etot−E(i)

s ,
i = 1,2. The laws of statistical mechanics state that the ratio of probabilities of be-
ing at the energy levels E(1)

s and E(2)
s is given by the ratio of number of possible

states of the reservoir:
P(E(1)

s )

P(E(2)
s )
=

Wr(Etot−E(1)
s )

Wr(Etot−E(2)
s )
. (4.1)

Defining the entropy of the system as S = kB lnW, where kB is Boltmann’s constant,
we can rewrite equation (4.1) as

Wr(Etot−E(1)
s )

Wr(Etot−E(2)
s )
=

eS r(Etot−E(1)
s )/kB

eS r(Etot−E(2)
s )/kB

.

We now approximate S r(Etot−Es) in a Taylor series expansion around Etot, under
the assumption that Er � Es:

S r(Etot−Es) ≈ S r(Etot)−
∂S r

∂E
Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

∂S
∂E

∣∣∣∣∣
V,N
=

1
T

and we obtain
P(E(1)

s )

P(E(2)
s )
=

e−E(1)
s /kBT

e−E(2)
s /kBT

.

This implies that

P(E(q)
s ) ∝ e−E(q)

s /(kBT )

and hence the probability of being in a microstate q is given by

P(q) =
1
Z

e−Eq/(kBT ), (4.2)
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where we have written Eq for the energy of the microstate and Z is a normalizing
factor, known as the partition function, defined by

Z =
∑
q∈Q

e−Eq/(kBT ).

By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached.

In order to determine the energy levels associated with different microstates,
we will often make use of the free energy of the system. Consider an elementary
reaction A+B −−−⇀↽−−− AB. Let E be the energy of the system, taken to be operating
at pressure P in a volume V . The enthalpy of the system is defined as H = E +PV
and the Gibbs free energy is defined as G = H−TS where T is the temperature of
the system and S is its entropy (defined above). The change in bond energy due to
the reaction is given by

ΔH = ΔG+TΔS ,

where the Δ represents the change in the respective quantity. −ΔH represents the
amount of heat that is absorbed from the reservoir, which then affects the entropy
of the reservoir.

Derivation to be added later. Review
The resulting formula for the probability of being in a microstate q is given by

P(q) =
1
Z

e−ΔG/kBT .

Example 4.1 (Transcription factor binding). Suppose that we have a transcription
factor R that binds to a specific target region on a DNA strand (such as the pro-
moter region upstream of a gene). We wish to find the probability Pbound that the
transcription factor will be bound to this location as a function of the number of
transcription factor molecules nR in the system. If the transcription factor is a re-
pressor, for example, knowing Pbound(nR) will allow us to calculate the likelihood
of transcription occurring.

To compute the probability of binding, we assume that the transcription factor
can bind non-specifically to other sections of the DNA (or other locations in the
cell) and we let Nns represent the number of such sites. We let Ebound represent the
free energy associated with R bound to its specified target region and Ens represent
the free energy for R in any other non-specific location, where we assume that
Ebound < Ens. The microstates of the system consist of all possible assignments of
the nR transcription factors to either a non-specific location or the target region of
the DNA. Since there is only one target site, there can be at most one transcription
factor attached there and hence we must count all of the ways in which either zero
or one molecule of R are attached to the target site.
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If none of the nR copies of R are bound to the target region then these must be
distributed between the Nns non-specific locations. Each bound protein has energy
Ens, so the total energy for any such configuration is nREns. The number of such
combinations is

(
Nns
nR

)
and so the contribution to the partition function from these

microstates is

Zns =

(
Nns

nR

)
e−nREns/(kBT ) =

Nns!
nR!(Nns−nR)!

e−nREns/(kBT )

For the microstates in which one molecule of R is bound at a target site and the
other nR −1 molecules are at the non-specific locations, we have a total energy of
Ebound+ (nR−1)Ens and

(
Nns

(nR−1)

)
possible such states. The resulting contribution to

the partition function is

Zbound =
Nns!

(nR−1)!(Nns−nR+1)!
e−(Ebound−(nR−1)Ens)/(kBT ).

The probability that the target site is occupied is now computed by looking at
the ratio of the Zbound to Z = Zns+Zbound. After some basic algebraic manipulations,
it can be shown that

Pbound(nR) =

(
nR

Nns−nR+1

)
exp
[−(Ebound+Ens)/(kBT )

]
1+
(

nR
Nns−nR+1

)
exp
[−(Ebound+Ens)/(kBT )

] .
If we assume that Nns� nR then Nns−nR+1 ≈ Nns, and we can write

Pbound(nR) ≈ knR

1+ knR
, where k =

1
Nns

exp
[−(Ebound−Ens)/(kBT )

]
.

As we would expect, this says that for very small numbers of repressors, Pbound

is close to zero, while for large numbers of repressors, Pbound → 1. The point at
which we get a binding probability of 0.5 is when nR = 1/k, which depends on the
relative binding energies and the number of non-specific binding sites. ∇

Example 4.2 (Combinatorial promoter). A combinatorial promoter is a region of
DNA in which multiple transcription factors can bind and influence the subsequent
binding of RNA polymerase. Combinatorial promoters appear in a number of nat-
ural and engineered circuits and represent a mechanism for creating switch-like
behavior, for example by having a gene that controls expression of its own tran-
scription factors.

One method to model a combinatorial promoter is to use the binding energies
of the different combinations of proteins to the operator region, and then compute
the probability of being in a given promoter state given the concentration of each of
the transcription factors. Table 4.1 shows the possible states of a notional promoter
that has two operator regions—one that binds a repressor protein R and another
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Table 4.1: Configurations for a combinatorial promoter with an activator and a repres-
sor. Each row corresponds to a specific macrostate of the promoter in which the listed
molecules are bound to the target region. The relative energy of state compared with the
ground state provides a measure of the likelihood of that state occurring, with more nega-
tive numbers corresponding to more energetically favorable configurations.

State OR1 OR2 Prom Eq (ΔG) Comment

S 1 – – – 0 No binding (ground state)
S 2 – – RNAP −5 RNA polymerase bound
S 3 R – – −10 Repressor bound
S 4 – A – −12 Activator bound
S 5 – A RNAP −15 Activator and RNA polymerase

that binds an activator protein A. As indicated in the table, the promoter has three
(possibly overlapping) regions of DNA: OR1 and OR2 are binding sites for the
repressor and activator proteins, and Prom is the location where RNA polymerase
binds. (The individual labels are primarily for bookkeeping purposes and may not
correspond to physically separate regions of DNA.)

To determine the probabilities of being in a given macrostate, we must compute
the individual microstates that occur at a given concentrations of repressor, ac-
tivator and RNA polymerase. Each microstate corresponds to an individual set of
molecules binding in a specific configuration. So if we have nR repressor molecules,
then there is one microstate corresponding to each different repressor molecule that
is bound, resulting in nR individual microstates. In the case of configuration S 5,
where two different molecules are bound, the number of combinations is given by
the product of the numbers of individual molecules, nA ·nRNAP, reflecting the pos-
sible combinations of molecules that can occupy the promoter sites. The overall
partition function is given by summing up the contributions from each microstate:

Z = e−E0/(kBT )+nRNAP e−ERNAP/(kBT )+nR e−ER/(kBT )

+nA e−EA/(kBT )+nAnRNAP e−EA:RNAP/(kBT ). (4.3)

The probability of a given macrostate is determined using equation (2.2). For
example, if we define the promoter to be “active” if RNA polymerase is bound
to the DNA, then the probability of being in this macrostate as a function of the
various molecular counts is given by

Pactive(nR,nA,nRNAP) =
1
Z

(
nRNAP e−ERNAP/(kBT )+nA nRNAPe−EA:RNAP/(kBT )

)
=

kA:RNAP nA+ kRNAP

1+ kRNAP+ kR nR+ (kA+ kA:RNAP)nA
,
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where

kX = e−(EX−E0)/(kBT ).

From this expression we see that if nR� nA then Pactive tends to 0 while if nA� nR

then Pactive tends to 1, as expected. ∇

Chemical master equation (CME)

The statistical physics model we have just considered gives a description of the
steady state properties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about the behavior of
the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or the dynamics of a
system that does not have an equilibrium configuration. In these instances, we must
extend our formulation to keep track of how quickly the system transitions from
one microstate to another, known as the chemical kinetics of the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. Let P(q, t) represent the probability that the system is in
microstate q at a given time t. Here q can be any of the very large number of
possible microstates for the system, which for chemical reaction systems we can
represent in terms of a vector consisting of the number of molecules of each species
that is present. We wish to write an explicit expression for how P(q, t) varies as a
function of time, from which we can study the stochastic dynamics of the system.

We begin by assuming we have a set of M reactions Rj, j = 1, . . . ,M, with ξ j

representing the change in state associated with reaction Rj. Specifically, ξ j is given
by the jth column of the stoichiometry matrix N. The propensity function defines
the probability that a given reaction occurs in a sufficiently small time step dt:

a j(q, t)dt = Probability that reaction R j will occur between time t
and time t+dt given that the microstate is q.

The linear dependence on dt relies on the fact that dt is chosen sufficiently small.
We will typically assume that a j does not depend on the time t and write a j(q)dt
for the probability that reaction j occurs in state q.

Using the propensity function, we can compute the distribution of states at time
t+dt given the distribution at time t:

P(q, t+dt) = P(q, t)
(
1−

M∑
j=1

a j(q)dt
)
+

M∑
j=1

P(q− ξ j)a j(q− ξ j)dt

= P(q, t)+
M∑
j=1

(
a j(q− ξ j)P(q− ξ j, t)−a j(q)P(q, t)

)
dt.

(4.4)
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Since dt is small, we can take the limit as dt→ 0 and we obtain the chemical master
equation (CME):

∂P
∂t

(q, t) =
M∑
j=1

(
a j(q− ξ j)P(q− ξ j, t)−a j(q)P(q, t)

)
(4.5)

This equation is also referred to as the forward Kolmogorov equation for a discrete
state, continuous time random process.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as our basic repre-
sentation of the underlying dynamics. As we shall see, starting from this equation
we can then derive a variety of alternative approximations that allow us to answer
specific equations of interest.

The key element of the master equation is the propensity function aξ(q, t), which
governs the rate of transition between microstates. Although the detailed value of
the propensity function can be quite complex, its functional form is often relatively
simple. In particular, for a unimolecular reaction of the form A→ B, the propensity
function is proportional to the number of molecules of A that are present:

ai(q, t) = kinA. (4.6)

This follows from the fact that each reaction is independent and hence the likeli-
hood of a reaction happening depends directly on the number of copies of A that
are present.

Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules of each type
that are present (since this is the number of independent reactions that can occur)
and inversely proportional to the volume Ω. Hence, for a reaction of the form A+
B −−→ C we have

ai(q, t) =
ki

Ω
nAnB. (4.7)

The rigorous verification of this functional form is beyond the scope of this text, but
roughly we keep track of the likelihood of a single reaction occurring between A
and B and then multiply by the total number of combinations of the two molecules
that can react (nA ·nB).

A special case of a bimolecular reaction occurs when A=B, so that our reaction
is given by 2A→ B. In this case we must take into account that a molecule cannot
react with itself, and so the propensity function is of the form

ai(q, t) =
ki

Ω
nA(nA−1). (4.8)

The term nA(nA−1) reprents the number of ways that two molecules can be chosen
from a collection of nA identical molecules.
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Table 4.2: Examples of propensity functions for some common cases [35]. Here we take ra

and rb to be the effective radii of the molecules, m∗ =mamb/(ma+mb) is the reduced mass
of the two molecules, Ω is the volume over which the reaction occurs, T is temperature, kB

is Boltzmann’s constant and nA, nB are the numbers of molecules of A and B present.

Reaction type Propensity function coefficient, ki

Reaction occurs if molecules “touch”
(

8kBT
πm∗
)1/2
π(ra + rb)2

Reaction occurs if molecules collide with energy ε
(

8kBT
πm∗
)1/2
π(ra + rb)2 ·e−ε/kBT

Steady state transcription factor PboundkocnRNAP

Note that the use of the parameter ki in the propensity functions above is inten-
tional: it corresponds to the reaction rate parameter that is present in the reaction
rate equation model. The factor of Ω for biomolecular reactions models the fact
that the propensity of a biomolecular reaction occuring depends explicitly on the
volume in which the reaction takes place.

Although it is tempting to extend the formula for a biomolecular reaction to the
case of more than two species being involved in a reaction, usually such reactions
actually involve combinations of bimolecular reactions, e.g.:

A+B+C −−→ D =⇒ A+B −−→ AB AB+C −−→ D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.

The propensity functions for these cases and some others are given in Table 4.2.

Example 4.3 (Repression of gene expression). We consider a simple model of
repression in which we have a promoter that contains binding sites for RNA poly-
merase and a repressor protein R. RNA polymerase only binds when the repressor
is absent, after which it can undergo an isomerization reaction to form an open
complex and initiate transcription. Once the RNA polymerase begins to create
mRNA, we assume the promoter region is uncovered, allowing another repressor
or RNA polymerase to bind.

The following reactions describe this process:

R1 : R+DNA −−−⇀↽−−− R:DNA

R2 : RNAP+DNA −−−⇀↽−−− RNAP:DNAc

R3 : RNAP:DNAc −−→ RNAP:DNAo

R4 : RNAP:DNAo −−→ RNAP+DNA (+mRNA),

where RNAP:DNA c represents the closed complex and RNAP:DNA o represents
the open complex. The states for the system depend on the number of molecules
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of each species and complex that are present. If we assume that we start with nR

repressors and nRNAP RNA polymerases, then the possible states for our system are
given by

State DNA R RNAP R:DNA RNAP:DNA c RNAP:DNA o

q1 1 nR nRNAP 0 0 0
q2 0 nR−1 nRNAP 1 0 0
q3 0 nR nRNAP−1 0 1 0
q4 0 nR nRNAP−1 0 0 1

Note that we do not keep track of each individual repressor or RNA polymerase
molecule that binds to the DNA, but simply keep track of whether they are bound
or not.

We can now rewrite the chemical reactions as a set of transitions between the
possible microstates of the system. Assuming that all reactions take place in a vol-
umeΩ, we use the propensity functions for unimolecular and bimolecular reactions
to obtain:

ξ
f
1 : q1 −−→ q2; a(ξ f

1 ) = (k f
1/Ω)nR ξr1 : q2 −−→ q1; a(ξr1) = kr

1

ξ
f
2 : q1 −−→ q3; a(ξ f

2 ) = (k f
2/Ω)nRNAP ξr2 : q3 −−→ q1; a(ξr2) = kr

2

ξ3 : q3 −−→ q4; a(ξ3) = k3 ξ4 : q4 −−→ q1; a(ξr4) = k4

The chemical master equation can now be written down using the propensity func-
tions for each reaction:

d
dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
−(k f

1/Ω)nR− (k f
2/Ω)nRNAP kr

1 kr
2 k4

(k f
1/Ω)nR −kr

1 0 0
(k f

2/Ω)nRNAP 0 −kr
2− k3 0

0 0 k3 −k4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .

The initial condition for the system can be taken as P(q,0)= (1,0,0,0), correspond-
ing to the state q1. A simulation showing the evolution of the probabilities is shown
in Figure 4.1.

The equilibrium solution for the probabilities can be solved by setting Ṗ = 0,
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Figure 4.1: Numerical solution of chemical master equation for simple repression model.

which yields:

Pe(q1) =
kr

1k4Ω(kr
2+ k3)

k f
1 k4nR(kr

2+ k3)+ kr
1k f

2 nRNAP(k3+ k4)+ kr
1k4Ω(kr

2+ k3)

Pe(q2) =
k f

1 k4nR(kr
2+ k3)

k f
1 k4nR(kr

2+ k3)+ kr
1k f

2 nRNAP(k3+ k4)+ kr
1k4Ω(kr

2+ k3)

Pe(q3) =
kr

1k f
2 k4nRNAP

k f
1 k4nR(kr

2+ k3)+ kr
1k f

2 nRNAP(k3+ k4)+ kr
1k4Ω(kr

2+ k3)

Pe(q4) =
kr

1k f
2 k3nRNAP

k f
1 k4nR(kr

2+ k3)+ kr
1k f

2 nRNAP(k3+ k4)+ kr
1k4Ω(kr

2+ k3)

We see that the functional dependencies are similar to the case of the combinatorial
promoter of Example 4.2, but with the binding energies replaced by kinetic rate
constants. ∇

Example 4.4 (Transcription of mRNA). Consider the production of mRNA from
a single copy of DNA. We have two basic reactions that can occur: mRNA can
be produced by RNA polymerase transcribing the DNA and producing an mRNA
strand, or mRNA can be degraded. We represent the microstate q of the system in
terms of the number of mRNA’s that are present, which we write as n for ease of
notation. The reactions can now be represented as ξ1 = +1, corresponding to tran-
scription and ξ2 = −1, corresponding to degradation. We choose as our propensity
functions

a1(n, t) = α, a2(n, t) = γn,

by which we mean that the probability of that a gene is transcribed in time dt is
αdt and the probability that a transcript is created in time dt is γndt (proportional
to the number of mRNA’s).
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We can now write down the master equation as described above. Equation (4.4)
becomes

P(n, t+dt) = P(n, t)
(
1−
∑
i=1,2

ai(n, t)dt
)
+
∑
i=1,2

P(n− ξi, t)ai(q− ξi)dt

= P(n, t)−a1(n, t)P(n, t)−a2(n, t)P(n, t)

+a1(n−1, t)P(n−1, t)+a2(n+1, t)P(n+1)

= P(n, t)+αP(n−1, t)dt− (α−γn)P(n, t)dt+γ(n+1)P(n+1, t)dt.

This formula holds for n > 0, with the n = 0 case satisfying

P(0, t+dt) = P(0, t)−αP(0, t)dt+γP(1, t)dt.

Notice that we have an infinite number of equations, since n can be any positive
integer.

We can write the differential equation version of the master equation by sub-
tracting the first term on the right hand side and dividing by dt:

d
dt

P(n, t) = αP(n−1, t)− (α+γn)P(n, t)+γ(n+1)P(n+1, t), n > 0

d
dt

P(0, t) = −αP(0, t)dt+γP(1, t).

Again, this is an infinite number of differential equations, although we could take
some limit N and simply declare that P(N, t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we set Ṗ(n, t) = 0 and look for a constant solution P(n, t) = pe(n). This yields
an algebraic set of relations

0 = −αpe(0)+γpe(1) =⇒ αpe(0) = γpe(1)

0 = αpe(0)− (α+γ)pe(1)+2γpe(2) αpe(1) = 2γpe(2)

0 = αpe(1)− (α+2γ)pe(2)+3γpe(3) αpe(1) = 3γpe(3)
...

...

αp(n−1) = nγp(n).

It follows that the distribution of steady state probabilities is given by the Poisson
distribution

p(n) = eα/γ
(α/γ)n

n!
,

and the mean, variance and coefficient of variation are thus

μ =
α

γ
, σ2 =

α

γ
, CV =

μ

σ
=

1
√
μ
=

√
γ

α
.

Note taht the coefficient of variation increases if μ decreases. ∇
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Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolution of the
distribution of a system, but it can often be quite cumbersome to work with directly.
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shall consider is
known as the chemical Langevin equation (CLE).

To derive the chemical Langevin equation, we start by assuming that the number
of molecules in the system is large and that we can therefore represent the system
using a vector of real numbers X, with Xi representing the (real-valued) number
of molecules in Si. (Often Xi will be divided by the volume to give a real-valued
concentration of species Si.) In addition, we assume that we are interested in the
dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.

Let X(t) be the state vector for the system, where we assume now that the ele-
ments of X are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a number of reactions over
a time τ to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

Xi(t+τ) = Xi(t)+
M∑
j=1

ξi ja j(X(t))τ+
M∑
j=1

ξi ja
1/2
j (X(t))N j(0,

√
τ),

where a j are the propensity functions for the individual reactions, ξi j are the corre-
sponding changes in the system states Xi andN j are a set of independent Gaussian
random variables with zero mean and variance τ.

If we assume that τ is small enough that we can use the derivative to approxi-
mate the previous equation (but still large enough that we can average over multiple
reactions), then we can write

dXi(t)
dt
=

M∑
j=1

ξ jia j(X(t))+
M∑
j=1

ξ jia
1/2
j (X(t))Γ j(t) =: Ai(X(t))+

M∑
j=1

Bi j(X(t))Γ j(t),

(4.9)
where Γ j are white noise processes (see Appendix B.2). This equation is called the
chemical Langevin equation (CLE).

Example 4.5 (Protein production). Consider a simplified model of protein produc-
tion in which mRNAs are produced by transcription and proteins by translation.
We also include degradation of both mRNAs and proteins, but we do not model the
detailed processes of elongation of the mRNA and polypeptide chains.

We can capture the state of the system by keeping track of the number of copies
of mRNA and proteins. We further approximate this by assuming that the number
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of each of these is sufficiently large that we can keep track of its concentration,
and hence X = (xm, xp) where xm ∈ R is the amount of mRNA and xp ∈ R is the
concentration of protein. Letting Ω represent the volume, the reactions that govern
the dynamics of the system are given by:

R1 : φ
α−→mRNA ξ1 = (1,0) a1(X) = α

R2 : mRNA
γ
−→ φ ξ2 = (−1,0) a2(X) = γ xm

R3 : mRNA
β
−→mRNA+protein ξ3 = (0,1) a3(X) = β xm

R4 : protein
δ−→ φ ξ4 = (0,−1) a4(X) = δ xp.

Substituting these expressions into equation (4.9), we obtain a stochastic differen-
tial equation of the form

d
dt

⎧⎪⎪⎪⎪⎪⎩xm

xp

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩−γ 0
β −δ

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩xm

xp

⎫⎪⎪⎪⎪⎪⎭+
⎧⎪⎪⎪⎪⎪⎩α0
⎫⎪⎪⎪⎪⎪⎭+ √Ω

⎧⎪⎪⎪⎪⎪⎪⎪⎩
(√
α+γxm

)
Γm( √

βxm+δxp

)
Γp

⎫⎪⎪⎪⎪⎪⎪⎪⎭ ,
where Γm and Γp are independent white noise processes with unit variance. (Note

that in deriving this equation we have used the fact that the sum of two independent
Gaussian processes is a Gaussian process.) ∇

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordinary differential equa-
tion that describes the evolution of the system state. A slightly different (but com-
pletely equivalent) representation of the dynamics is to model how the probabil-
ity distribution P(x, t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density function p(x, t). This formula is known
as the Fokker-Planck equations (FPE) and is essentially an approximation on the
chemical master equation.

Consider first the case of a random process in one dimension. We assume that
the random process is in the same form as the previous section:

dX(t)
dt
= A(X(t))+B(X(t))Γ(t). (4.10)

The function A(X) is called the drift term and B(X) is the diffusion term. It can
be shown that the probability density function for X, p(x, t), satisfies the partial
differential equation

∂p
∂t

(x, t) = − ∂
∂x
(
A(x, t)p(x, t)

)
+

1
2
∂2

∂x2

(
B2(x, t)p(x, t)

)
(4.11)
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Note that here we have shifted to the probability density function since we are
considering X to be a continuous state random process.

In the multivariate case, a bit more care is required. Using the chemical Langevin
equation (4.9), we define

Di(x, t) =
M∑
j=1

B2
i j(x, t), Ci j(x, t) =

M∑
k=1

Bik(x, t)Bjk(x, t), i < j = 1, . . . ,M.

The Fokker-Planck equation now becomes

∂p
∂t

(x, t) = −
M∑

i=1

∂

∂xi

(
Ai(x, t)p(x, t)

)
+

1
2

M∑
i=1

∂

∂xi

∂2

∂x2

(
Di(x, t)p(x, t)

)

+

M∑
i, j = 1
i < j

∂2

∂xi∂x j

(
Ci j(x, t)p(x, t)

)
. (4.12)

Note that the Fokker-Planck equation is very similar to the chemical master
equation: both provide a description of how the probability distribution varies as a
function of time. In the case of the Fokker-Planck equation, we regard the state as
a continuous set of variables and we write a partial differential equation for how
the probability density function evolves in time. In the case of the chemical master
equation, we have a discrete state (microstates) and we write an ordinary differ-
ential equation for how the probability distribution (formally the probability mass
function) evolves in time. Both formulations contain the same basic information,
just using slightly different representations of the system and the probability of
being in a given state.

Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation provide approx-
imations to the chemical master equation. A slightly different approximation can
be obtained by expanding the density function in terms of a size parameter Ω. This
approximation is know as the linear noise approximation (LNA) or the Ω expan-
sion [52].

We begin with the master equation for a continuous random variable X. For-
mally deriving this requires a considerable effort since we have to extend our pre-
vious discussions to the case where the random variable has a continuous set of
values. To do this, we rewrite the propensity function ai(q, t) as aξ(q, t;Ω), where
q ∈ Rn is a vector of continuous states and ξ ∈ Rn is a vector of continuous “incre-
ments” (the analog of reactions). We also explicitly keep track of the dependence
of the propensity function on a parameter Ω (the volume in our case).
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Using this notation, we can write the master equation for the random variable
X as

∂P
∂t

(x, t) =
∫ (

aξ(x− ξ, t;Ω)P(x− ξ, t)−aξ(x, t;Ω)P(x, t)
)
dξ.

Since we are working with continuous variables, we now have an integral in place
of our previous sum. In addition, if we take the derivative of P(x, t) with respect to
the continuous variable x, we can obtain the pdf of the distribution p(x, t) and this
satisfies the equation

∂p
∂t

(x, t) =
∫ (

aξ(x− ξ, t;Ω)p(x− ξ, t)−aξ(x, t;Ω)p(x, t)
)
dξ.

Although we are skipping important theoretical details, the basic idea of this for-
mulation is the same as the discrete chemical master equation: we keep track of
how the probability density changes by “summing” (integrating) over all (incre-
mental) reactions going into and out of that particular state.

We now assume that the mean of X can be written as Ωφ(t) where φ(t) is a
continuous function of time that represents the evolution of the mean of X/Ω. To
understand the fluctuations of the system about this mean, we write

X = Ωφ+Ω
1
2 Z,

where Z is a new variable representing the perturbations of the system about its
mean. We can write the distribution for Z as

pZ(z, t) = pX(Ωφ(t)+Ω
1
2 z, t)

and it follows that the derivatives of pZ can be written as

∂νpZ

zν
= Ω

1
2 ν
∂νpX

xν

∂pZ

∂t
=
∂pX

∂t
+Ω

dφ
dt
∂pX

∂x
=
∂pX

∂t
+Ω

1
2

dφ
dt
∂pZ

∂z
.

We further assume that the Ω dependence of the propensity function is such that

aξ(Ωφ, t;Ω) = f (Ω)ãξ(φ),

where ã is not dependent on the parameter Ω or the time t. From these relations,
we can now derive the master equation for pZ in terms of powers of Ω (derivation
omitted).

The Ω1/2 term in the expansion turns out to yield

dφ
dt
=

∫
ξaξ(Ωφ)dξ, φ(0) =

X(0)
Ω
,
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which is precisely the equation for the mean of the concentration. It can further be
shown that the terms in Ω0 are given by

∂pZ(z, τ)
∂τ

= −α′1(φ)
∂

∂z
(zpZ(z, t))+

1
2
α2(φ)

∂2 pZ(z, t)
∂z2

, (4.13)

where

αv(x) =
∫
ξvãξ(x)dξ, τ = Ω−1 f (Ω)t.

Notice that in the case that φ(t)= φ0 (a constant), this equation becomes the Fokker-
Planck equation derived previously.

Higher order approximations to this equation can also be carried out by keeping
track of the expansion terms in higher order powers of Ω. In the case where Ω
represents the volume of the system, the next term in the expansion is Ω−1 and this
represents fluctuations that are on the order of a single molecule, which can usually
be ignored.

Reaction rate equations (RRE)

As we already saw in Chapter 2, the reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large number of
molecules whose state can be approximated using just the concentrations of the
molecules. We re-derive the results from Section 2.1 here, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equations (4.9), from which we can write
the dynamics for the average quantity of the each species at each point in time:

d〈Xi(t)〉
dt

=

M∑
j=1

ξ ji〈a j(X(t))〉, (4.14)

where the second order term drops out under the assumption that the Γ j’s are inde-
pendent processes with zero mean. We see that the reaction rate equations follow
by defining xi = 〈Xi〉/Ω and assuming that 〈a j(X(t))〉 = a j(〈X(t)〉). This relation-
ship is true when a j is linear (e.g., in the case of a unimolecular reaction), but is an
approximation otherwise.

4.2 Simulation of Stochastic Systems

Suppose that we want to generate a collection of sample trajectories for a stochastic
system whose evolution is described by the chemical master equation (4.5):

d
dt

P(q, t) =
∑

i

ai(q− ξi)P(q− ξi, t)−
∑

i

ai(q)P(q, t),
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where P(q, t) is the probability of being in a microstate q at time t (starting from
q0 at time t0) and ai(q) is the propensity function for a reaction i starting at a
microstate q and ending at microstate q+ ξi. Instead of simulating the distribution
function P(q, t), we wish to simulate a specific instance q(t) starting from some
initial condition q0(t0). If we simulate many such instances of q(t), their distribution
at time t should match P(q, t).

To illustrate the basic ideas that we will use, consider first a simple birth process
in which the microstate is given by an integer q ∈ {0,1,2, . . . } and we assume that
the propensity function is given by

a(q)dt = λdt, ξ = +1.

Thus the probability of transition increases linearly with the time increment dt (so
birth events occur at rate λ, on average). If we assume that the birth events are
independent of each other, then it can be shown (see Appendix B) that this process
has Poisson distribution with parameter λτ:

P(q(t+τ)−q(t) = �) =
(λτ)�

�!
e−λτ,

where τ is the difference in time and � is the difference in count q. In fact, this
distribution is a joint distribution in time τ and count �, and by setting � = 1 it can
be seen that the time to the next reaction T follows an exponential distribution and
has density function

pT (τ) = λe−λτ.

The exponential distribution has expectation 1/λ and so we see that the average
time between events is inversely proportional to the reaction rate λ.

Consider next a more general case in which we have a countable number of mi-
crostates q ∈ {0,1,2, . . . } and we let k ji represent the transition probability between
a microstate i and microstate j. The birth process is a special case given by ki+1,i = λ

and all other k ji = 0. The chemical master equation describes the joint probability
that we are in state q = i at a particular time t. We would like to know the probabil-
ity that we transition to a new state q = j at time t+ dt. Given this probability, we
can attempt to generate an instance of the variable q(t) by first determining which
reaction occurs and then when the reaction occurs.

Let P( j, τ) := P( j, t+ τ+dτ | i, t+ τ) represent the probability that we transition
from the state i to the state j in the time interval [t+τ, t+τ+dτ]. For simplicity and
ease of notation, we will take t = 0. Let T := T j,i be the time at which the reaction
first occurs. We can write the probability that we transition to state j in the interval
[τ,τ+dτ] as

P( j, τ) = P(T > τ) k ji dτ, (4.15)

where P(T > τ) is the probability that no reaction occurs in the time interval [0, τ]
and k jidτ is the probability that the reaction taking state i to state j occurs in the
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next dτ seconds (assumed to be independent events, giving the product of these
probabilities).

To compute P(T > τ), define

k̄i =
∑

j

k ji

so that (1− k̄i)dτ is the probability that no transition occurs from state i in the next
dτ seconds. Then, the probability that no reaction occurs in the interval [τ,τ+dτ]
can be written as

P(T > τ+dτ) = P(T > τ) (1− k̄i) dτ. (4.16)

It follows that

d
dτ

P(T > τ) = lim
dτ→0

P(T > τ+dτ)−P(T > τ)
dτ

= −P(T > τ) k̄i.

Solving this differential equation, we obtain

P(T > τ) = e−k̄iτ, (4.17)

so that the probability that no reaction occurs in time τ decreases exponentially with
the amount of time that we wait, with rate given by the sum of all the reactions that
can occur from state i.

We can now combine equation (4.17) with equation (4.15) to obtain

P( j, τ) = P( j, τ+dτ | i,0) = k ji e−k̄iτ dτ.

We see that this has the form of a density function in time and hence the probability
that the next reaction is reaction j, independent of the time in which it occurs, is

P ji =

∫ ∞

0
k jie

−k̄iτ dτ =
k ji

k̄i
. (4.18)

Thus, to choose the next reaction to occur from a state i, we choose between N
possible reactions, with the probability of each reaction weighted by k ji/k̄i.

To determine the time that the next reaction occurs, we sum over all possible
reactions j to get the density function for the reaction time:

pT (τ) =
∑

j

k jie
−k̄iτ = k̄ie

−k̄iτ.

This is the density function associated with a Poisson distribution. To compute a
time of reaction Δt that draws from this distribution, we note that the cumulative
distribution function for T is given by∫ Δt

0
fT (τ)dτ =

∫ Δt

0
k̄ie
−k̄iτ dτ = 1− e−k̄iΔt.
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The cumulative distribution function is always in the range [0,1] and hence we can
compute Δt by choosing a (uniformly distributed) random number r in [0,1] and
then computing

Δt =
1

k̄i
ln

1
1− r
. (4.19)

(This equation can be simplified somewhat by replacing 1− r with r′ and noting
that r′ can also be drawn from a uniform distribution on [0,1].)

Note that in the case of a birth process, this computation agrees with our ear-
lier analysis. Namely, k̄i = λ and hence the (only) reaction occurs according to an
exponential distribution with parameter λ.

This set of calculations gives the following algorithm for computing an instance
of the chemical master equation:

1. Choose an initial condition q at time t = 0.

2. Calculate the propensity functions aξ(q) for each possible reaction q.

3. Choose the time for the reaction according to equation (4.19), where r ∈ [0,1]
is chosen from a uniform distribution.

4. Use a weighted random number generator to identify which reaction will
take place next, using the weights in equation (4.18).

5. Update q by implementing the reaction ξ and update the time t by δt

6. If T < Tstop, goto step 2.

This method is sometimes called “Gillespie’s direct method” [33, 34], but we shall
refer to it here as the “stochastic simulation algorithm” (SSA). We note that the re-
action number in step 4 can be computed by calculating a uniform random number
on [0,1], scaling this by the total propensity

∑
i a(ξi,q), and then finding the first

reaction i such that
∑i

0 a(ξi,q) is larger than this scaled random number.

Example 4.6 (Transcription). To be completed. ∇ Review

4.3 Input/Output Linear Stochastic Systems

In many situations, we wish to noise how noise propogates through a biomolecular
system. For example, we may wish to understand how stochastic variations in RNA
polymerase concentraton affect gene expression. In order to analyze these cases, we
specialize to the case of a biomolecular system operating around a fixed operating
point.

We now consider the problem of how to compute the response of a linear system
to a random process. We assume we have a linear system described in state space
as

Ẋ = AX+FW, Y =CX (4.20)



172 CHAPTER 4. STOCHASTIC MODELING AND ANALYSIS

Given an “input” W, which is itself a random process with mean μ(t), variance
σ2(t) and correlation r(t, t+τ), what is the description of the random process Y?

Let W be a white noise process, with zero mean and noise intensity Q:

r(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y(t) =
∫ t

0
h(t−τ)W(τ)dτ,

where h(t−τ) is the impulse response for the system

h(t−τ) =CeA(t−τ)B+Dδ(t−τ).

We now compute the statistics of the output, starting with the mean:

E(Y(t)) = E(
∫ t

0
h(t−η)W(η)dη )

=

∫ t

0
h(t−η)E(W(η))dη = 0.

Note here that we have relied on the linearity of the convolution integral to pull the
expectation inside the integral.

We can compute the covariance of the output by computing the correlation rY (τ)
and setting σ2

Y = rY (0). The correlation function for y is

rY (t, s) = E(Y(t)Y(s)) = E(
∫ t

0
h(t−η)W(η)dη ·

∫ s

0
h(s− ξ)W(ξ)dξ )

= E(
∫ t

0

∫ s

0
h(t−η)W(η)W(ξ)h(s− ξ)dηdξ )

Once again linearity allows us to exchange expectation and integration

rY (t, s) =
∫ t

0

∫ s

0
h(t−η)E(W(η)W(ξ))h(s− ξ)dηdξ

=

∫ t

0

∫ s

0
h(t−η)Qδ(η− ξ)h(s− ξ)dηdξ

=

∫ t

0
h(t−η)Qh(s−η)dη

Now let τ = s− t and write

rY (τ) = rY (t, t+τ) =
∫ t

0
h(t−η)Qh(t+τ−η)dη

=

∫ t

0
h(ξ)Qh(ξ+τ)dξ (setting ξ = t−η)
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Finally, we let t→∞ (steady state)

lim
t→∞

rY (t, t+τ) = r̄Y (τ) =
∫ ∞

0
h(ξ)Qh(ξ+τ)dξ (4.21)

If this integral exists, then we can compute the second order statistics for the output
Y .

We can provide a more explicit formula for the correlation function r in terms of
the matrices A, F and C by expanding equation (4.21). We will consider the general
case where W ∈ Rp and Y ∈ Rq and use the correlation matrix R(t, s) instead of the
correlation function r(t, s). Define the state transition matrix Φ(t, t0) = eA(t−t0) so
that the solution of system (4.20) is given by

x(t) = Φ(t, t0)x(t0)+
∫ t

t0
Φ(t,λ)Fw(λ)dλ

Proposition 4.1 (Stochastic response to white noise). Let E(X(t0)XT (t0)) = P(t0)
and W be white noise with E(W(λ)WT (ξ)) = RWδ(λ− ξ). Then the correlation ma-
trix for X is given by

RX(t, s) = P(t)ΦT (s, t)

where P(t) satisfies the linear matrix differential equation

Ṗ(t) = AP+PAT +FRW F, P(0) = P0.

Proof. Using the definition of the correlation matrix, we have

E(X(t)XT (s)) = E
(
Φ(t,0)X(0)XT (0)ΦT (t,0)+ cross terms

+

∫ t

0
Φ(t, ξ)FW(ξ)dξ

∫ s

0
Wt(λ)FTΦ(s,λ)dλ

)
= Φ(t,0)E(X(0)XT (0))Φ(s,0)

+

∫ t

0

∫ s

0
Φ(t, ξ)FE(W(ξ)WT (λ))FTΦ(s,λ)dξdλ

= Φ(t,0)P(0)φT (s,0)+
∫ t

0
Φ(t,λ)FRW(λ)FTΦ(s,λ)dλ.

Now use the fact that Φ(s,0) = Φ(s, t)Φ(t,0) (and similar relations) to obtain

RX(t, s) = P(t)ΦT (s, t)

where

P(t) = Φ(t,0)P(0)ΦT (t,0)+
∫ T

0
Φ(t,λ)FRW FT (λ)ΦT (t,λ)dλ

Finally, differentiate to obtain

Ṗ(t) = AP+PAT +FRW F, P(0) = P0

(see Friedland [30] for details).
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The correlation matrix for the output Y can be computed using the fact that
Y = CX and hence RY = CT RXC. We will often be interested in the steady state
properties of the output, which are given by the following proposition.

Proposition 4.2 (Steady state response to white noise). For a time-invariant linear
system driven by white noise, the correlation matrices for the state and output
converge in steady state to

RX(τ) = RX(t, t+τ) = PeAT τ, RY (τ) =CRX(τ)CT

where P satisfies the algebraic equation

AP+PAT +FRW FT = 0 P > 0. (4.22)

Equation (4.22) is called the Lyapunov equation and can be solved in MATLAB
using the function lyap.

Example 4.7 (First-order system). Consider a scalar linear process

Ẋ = −aX+W, Y = cX,

where W is a white, Gaussian random process with noise intensity σ2. Using the
results of Proposition 4.1, the correlation function for X is given by

RX(t, t+τ) = p(t)e−aτ

where p(t) > 0 satisfies
p(t) = −2ap+σ2.

We can solve explicitly for p(t) since it is a (non-homogeneous) linear differential
equation:

p(t) = e−2at p(0)+ (1− e−2at)
σ2

2a
.

Finally, making use of the fact that Y = cX we have

r(t, t+τ) = c2(e−2at p(0)+ (1− e−2at)
σ2

2a
)e−aτ.

In steady state, the correlation function for the output becomes

r(τ) =
c2σ2

2a
e−aτ.

Note correlation function has the same form as the Ornstein-Uhlenbeck process in
Example B.7 (with Q = c2σ2). ∇
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As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain ap-
proach provides a very rich set of tools for modeling and analysis of interconnected
systems, relying on the frequency response and transfer functions to represent the
flow of signals around the system.

Given a random process X(t), we can look at the frequency content of the prop-
erties of the response. In particular, if we let ρ(τ) be the correlation function for a
(scalar) random process, then we define the power spectral density function as the
Fourier transform of ρ:

S (ω) =
∫ ∞

−∞
ρ(τ)e− jωτ dτ, ρ(τ) =

1
2π

∫ ∞

−∞
S (ω)e jωτ dτ.

The power spectral density provides an indication of how quickly the values of
a random process can change through the frequency content: if there is high fre-
quency content in the power spectral density, the values of the random variable can
change quickly in time.

Example 4.8 (Ornstein-Uhlenbeck process). To illustrate the use of these mea-
sures, consider a first-order Markov process where the correlation function is

ρ(τ) =
Q

2ω0
e−ω0(τ).

This correspnds to Example 4.7 (also called an Ornstein-Uhlenbeck process). The
power spectral density becomes

S (ω) =
∫ ∞
−∞

Q
2ω0

e−ω|τ|e− jωτ dτ

=

∫ 0

−∞

Q
2ω0

e(ω− jω)τ dτ+
∫ ∞

0

Q
2ω0

e(−ω− jω)τ dτ =
Q

ω2+ω2
0

.

We see that the power spectral density is similar to a transfer function and we
can plot S (ω) as a function of ω in a manner similar to a Bode plot, as shown in
Figure 4.2. Note that although S (ω) has a form similar to a transfer function, it is a
real-valued function and is not defined for complex s. ∇

Using the power spectral density, we can more formally define “white noise”:
a white noise process is a zero-mean, random process with power spectral density
S (ω) = W = constant for all ω. If X(t) ∈ Rn (a random vector), then W ∈ Rn×n.
We see that a random process is white if all frequencies are equally represented in
its power spectral density; this spectral property is the reason for the terminology
“white”.

Given a linear system

Ẋ = AX+FW, Y =CX,
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logω

logS (ω)

ω0

Figure 4.2: Spectral power density for a first-order Markov process.
.

with W given by white noise, we can compute the spectral density function cor-
responding to the output Y . We start by computing the Fourier transform of the
steady state correlation function (4.21):

S Y (ω) =
∫ ∞

−∞

[∫ ∞

0
h(ξ)Qh(ξ+τ)dξ

]
e− jωτ dτ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

−∞
h(ξ+τ)e− jωτ dτ

]
dξ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

0
h(λ)e− jω(λ−ξ) dλ

]
dξ

=

∫ ∞

0
h(ξ)e jωξ dξ ·QH( jω) = H(− jω)QH( jω).

This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in the fre-

quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer function H1(s) followed by transfer function H2(s),
the resulting power spectral density of the output is given by

S Y (ω) = H1(− jω)H2(− jω)QuH2( jω)H1( jω).

As stated earlier, white noise is an idealized signal that is not seen in practice.
One of the ways to produced more realistic models of noise and disturbances is
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covariance W and filter H(s) such that we match
the statistics S (ω) of a measured noise or disturbance signal. In other words, given
S (ω), find W > 0 and H(s) such that S (ω) = H(− jω)WH( jω). This problem is
know as the spectral factorization problem.

Figure 4.3 summarizes the relationship between the time and frequency do-
mains.
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p(v) =
1

√
2πRV

e
− v2

2RV

S V (ω) = RV

V −→ H −→ Y
p(y) =

1
√

2πRY
e
− y2

2RY

S Y (ω) = H(− jω)RV H( jω)

ρV (τ) = RVδ(τ)
Ẋ = AX+FV

Y =CX

ρY (τ) = RY (τ) =CPe−A|τ|CT

AP+PAT +FRV FT = 0

Figure 4.3: Summary of steady state stochastic response.

Exercises

4.1 (BE 150, Winter 2011) For this problem, we return to our standard model of
transcription and transcription process with probabilistic creation and degradation
of discrete mRNA and protein molecules. The propensity functions for each reac-
tion are as follows:
Probability of transcribing 1 mRNA molecule: 0.2dt
Probability of degrading 1 mRNA molecule: 0.5dt and is proportional to the num-
ber of mRNA molecules.
Probability of translating 1 protein: 5dt and is proportional to the number of mRNA
molecules.
Probability of degrading 1 protein molecule: 0.5dt and is proportional to the num-
ber of protein molecules.
dt is the time step chosen for your simulation. Here we choose dt = 0.05.

(a) Simulate the stochastic system above until time T = 100. Plot the resulting
number of mRNA and protein over time.

(b) Now assume that the proteins are degraded much more slowly than mRNA and
the propensity function of protein degradation is now 0.05dt. To maintain similar
protein levels, the translation probability is now 0.5dt (and still proportional to the
number of mRNA molecules). Simulate this system as above. What difference do
you see in protein level? Comment on the effect of protein degradation rates on
noise.

4.2 (BE 150, Winter 2011) Compare a simple model of negative autoregulation
with one without autoregulation:

dX
dt
= β0−γX

and
dX
dt
=
β

1+ X
K

−γX

(a) Assume that the basal transcription rates β and β0 vary between cells, following
a Gaussian distribution with σ2

<X> = 0.1. Simulate time courses of both models for
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100 different ”cells” using the following parameters: β= 2,β0 = 1,γ = 1,K = 1. Plot
the nonregulated and autoregulated systems in two separate plots. Comment on the
variation you see in the time courses.

(b) Calculate the deterministic steady state for both models above. How does vari-
ation in the basal transcription rate β or β0 enter into the steady state and relate it
to what you see in part (a).

4.3 Consider gene expression: φ
k−→m, m

β
−→m+P, m

γ
−→ φ, and P

δ−→ φ. Answer the
following questions:

(a) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare with the determin-
istic ODE solution. Explore how the realizations become close to or apart from the
ODE solution when the volume is changed. Determine the stationary probability
distribution for the protein (you can do this numerically, but note that this process is
linear, so you can compute the probability distribution analytically in closed form).

(b) Now consider the additional binding reaction of protein P with downstream

DNA binding sites D: P+D
kon−−−⇀↽−−−
ko f f

C. Note that the system no longer linear due to

the presence of a bi-molecular reaction. Use the SSA algorithm to obtain sample
realizations and numerically compute the probability distribution of the protein and
compare it to what you obtained in part (a). Explore how this probability distribu-
tion and the one of C change as the rates kon and ko f f become larger and larger
with respect to δ,k,β,γ. Do you think we can use a QSS approximation similar to
what we have done for ODE models?

(c) Determine the Langevin equation for the system in part (b) and obtain sample
realizations. Explore numerically how good this approximation is when the volume
decreases/increases.

4.4 Consider the bi-molecular reaction A+B
k1−−⇀↽−−
k2

C, in which A and B are in total

amounts AT and BT , respectively. Compare the steady state value of C obtained
from the deterministic model to the mean value of C obtained from the stochastic
model as the volume is changed in the stochastic model. What do you observe?
You can perform this investigation through numerical simulation.

4.5 Consider the simple birth and death process: Z
k2G−−−⇀↽−−−
k1G
∅, in which G is a “gain”.

Assume that the reactions are catalyzed by enzymes and that the gain G can be
tuned by changing the amounts of these enzymes. A deterministic ODE model for
this system incorporating noise and disturbances due to the stochasticity of the
cellular environment is given by

Ż = k1G− k2GZ+d(t),
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in which d(t) incorporates noise, as seen in the previous homework. Determine the
Langevin equation for this birth and death process and compare its form to the
deterministic one. Also, determine the frequency response of Z to noise for both
the deterministic model and for the Langevin model. Does increasing the gain G
has the same effect in both models? Explain.

4.6 Consider a second order system with dynamics⎧⎪⎪⎪⎪⎪⎩Ẋ1

Ẋ2

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩−a 0

0 −b

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩X1

X2

⎫⎪⎪⎪⎪⎪⎭+
⎧⎪⎪⎪⎪⎪⎩1

1

⎫⎪⎪⎪⎪⎪⎭v, Y =
⎧⎩1 1

⎫⎭⎧⎪⎪⎪⎪⎪⎩X1

X2

⎫⎪⎪⎪⎪⎪⎭
that is forced by Gaussian white noise with zero mean and variance σ2. Assume
a,b > 0.

(a) Compute the correlation function ρ(τ) for the output of the system. Your an-
swer should be an explicit formula in terms of a, b and σ.

(b) Assuming that the input transients have died out, compute the mean and vari-
ance of the output.
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Chapter 5
Feedback Examples

In this chapter we present a collection of examples that illustrate some of the mod-
eling and analysis tools covered in the preceding chapters. Each of these examples
represents a more complicated system than we have considered previous and to-
gether they are intended to demonstrate both the role of feedback in biological
systems and how tools from control and dynamical systems can be applied to pro-
vide insight and understanding. Each of the sections below is indepedent of the
others and they can be read in any order (or skipped entirely).

Pagination in this chapter is broken down by section to faciliate author editing. Review
Some extraneous blank pages may be included due to LaTeX processing.
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5.1 The lac Operon

The lac operon is one of the most studied regulatory networks in molecular bi-
ology. Its function is to determine when the cell should produce the proteins and
enzymes necessary to import and metabolize lactose from its external environment.
Since glucose is a more efficient source of carbon, the lactose machinery is not pro-
duced unless lactose is present and glucose is not present. The lac control system
implements this computation.

In this section we construct a model for the lac operon and use that model to
understand how changes of behavior can occur for large changes in parameters
(e.g., lactose/glucose concentrations) and also the sensitivity of the phenotypic re-
sponse to changes in individual parameter values in the model. The basic model
and much of the analysis in this section is drawn from the work of Yildirim and
Mackey [103].

Modeling

In constructing a model for the lac system, we need to decide what questions we
wish to answer. Here we will attempt to develop a model that allows us to under-
stand what levels of lactose are required for the lac system to become active in the
absence of glucose. We will focus on the so-called “bistability” of the lac operon:
there are two steady operating conditions—at low lactose levels the machinery
is off and at high lactose levels the machinery is on. The system has hysteresis,
so once the operon is actived, it remains active even if the lactose concentration
descreases. We will construct a differential equation model of the system, with
various simplifying assumptions along the way.

A schematic diagram of the lac control system is shown in Figure 5.1. Starting
at the bottom of the figure, lactose permease is an integral membrane protein that
helps transport lactose into the cell. Once in the cell, lactose is converted to allolac-
tose, and allolactose is then broken down into glucose and galactose, both with the
assistance of the enzyme β-galactosidase (β-gal for short). From here, the glucose
is processed using the usual glucose metabolic pathway and the galactose.

The control circuitry is implemented via the reactions and transcriptional reg-
ulation shown in the top portion of the diagram. The lac operon, consisting of the
genes lacZ (coding for β-gal), lacY (coding for lactose permease) and lacA (coding
for a transacetylase), has a combinatorial promoter. Normally, lac repressor (lacI)
is present and the operon is off. The activator for the operon is CAP, which has
a positive inducer cAMP. The concentration of cAMP is controlled by glucose:
when glucose is present, there is very little cAMP available in the cell (and hence
CAP is not active).

The bistable switching behavior in the lac control system is implemented with a
feedback circuit involving the lac repressor. Allolactose binds lac repressor and so
when lactose is being metabolized, then the repressor is sequestered by allolactose
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Figure 5.1: Schematic diagram for the lac system [103]. Permission pending.

and the lac operon is no longer repressed.
To model this circuit, we need to write down the dynamics of all of the reactions

and protein production. We will denote the concentration of the β-gal mRNA and
protein as mb and B. We assume that the internal concentration of lactose is given
by L, ignoring the dynamics of lactose permease and transport of lactose into the
cell. Similarly, we assume that the concentration of repressor protein, denoted R, is
constant.

We start by keeping track of the concentration of free allolactose A. The relevant
reactions are given by the transport of lactose into the cell, the conversion of lactose
into allolactose and then into glucose and lactose and finally the sequestration of
repressor R by allolactose:

Transport : Le+P −−−⇀↽−−− LeP −−→ L+P

Conversion : L+B −−−⇀↽−−− LB −−→ A+B

Conversion : A+B −−−⇀↽−−− AB −−→ Glu+Gal+B

Sequestration : A+R −−−⇀↽−−− AR

We see that the dynamics involve a number of enzymatic reactions and hence we
can use Michaelis-Menten kinetics to model the response at a slightly reduced level
of detail.

Given these reactions, we can write the reaction rate equations to describe the
time evolution of the various species concentrations. Let αX and KX represent the
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parameters of the Michaelis-Menten functions and δX represent the dilution and
degradation rate for a given species X. The differential equation for the internal
lactose concentration L becomes

dL
dt
= αLLe P

Le

KLe +Le −αALB
L

KAL+L
−δLL, (5.1)

where the first term arises from the transport of lactose into the cell, the second
term is the conversion of lactose to allolactose, and the final term is due to degra-
dation and dilution. Similarly, the dynamics for the allolactose concentration can
be modeled as

dA
dt
= αALB

L
KAL+L

−αABB
A

KA+A
+ k r

AR[AR]− k f
AR[A][R]−δAA.

The dynamics of the production of β-gal and lactose permease are given by
the transcription and translational dynamics of protein production. These genes
are both part of the same operon (along with lacA) and hence the use a single
mRNA strand for translation. To determine the production rate of mRNA, we need
to determine the amount of repression that is present as a function of the amount of
repressor, which in turn depends on the amount of allolactose that is present. We
make the simplifying assumption that the sequestration reaction is fast, so that it is
in equilibrium and hence

[AR] = kAR[A][R], kAR = k f
AR/k

r
AR.

We also assume that the total repressor concentration is constant (production matches
degradation and dilution). Letting Rtot = [R]+ [AR] represent the total repressor
concentration, we can write

[R] = Rtot− kAR[A][R] =⇒ [R] =
Rtot

1+ kAR[A]
. (5.2)

The simplification that the sequestration reaction is in equilibrium also simplifies
the reaction dynamics for allolactose, which becomes

dA
dt
= αALB

L
KAL+L

−αAB
A

KA+A
−δAA. (5.3)

We next need to compute the effect of the repressor on the production of β-gal
and lactose permease. It will be useful to express the promoter state in terms of
the allolactose concentration A rather than R, using equation (5.2). We model this
using a Hill function of the form

FBA(A) =
αR

KR+Rn =
αR(1+KARA)n

KR(1+KARA)n+Rn
tot
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Table 5.1: Parameter values for lac dynamics (from [103]).

Parameter Value Description
μ̄ 3.03×10−2 min−1 dilution rate
αM 997 nMmin−1 production rate of β-gal mRNA
βB 1.66×10−2 min−1 production rate of β-galactosidase
βP ??? min−1 production rate of lactose permease
αA 1.76×104 min−1 production rate of allolactose
γ̄M 0.411 min−1 degradation and dilution of β-gal mRNA
δ̄B 8.33×10−4 min−1 degradation and dilution of β-gal
δ̄P ?? min−1 degradation and dilution of lactose permease
δ̄A 1.35×10−2 min−1 degradation and dilution of allolactose
n 2 Hill coefficient for repressor
K 7200
k1 2.52×10−2 (µM)−2

KL 0.97 µM
KA 1.95 µM
βA 2.15×104 min−1

τM 0.10 min
τB 2.00 min
τP ??? min

Letting M represent the concentration of the (common) mRNA, the resulting form
of the protein production dynamics becomes

dM
dt
= e−μτM FBA(A(t−τm))− γ̄M M,

dB
dt
= βBe−μτB M(t−τB)− δ̄BB,

dP
dt
= βPe−μ(τM+τP)M(t−τM −τP)− δ̄PP.

(5.4)

This model includes the degradation and dilution of mRNA (γ̄M), the transcrip-
tional delays β-gal mRNA (τM), the degradation and dilution of the proteins (δ̄B,
δ̄P) and the delays in the translation and folding of the final proteins (τB, τP).

To study the dynamics of the circuit, we consider a slightly simplified situa-
tion in which we study the response to the internal lactose concentration L. In this
case, we can take L(t) as a constant and ignore the dynamics of the permease P.
Figure 5.2a shows the time response of the system for an internal lactose concen-
tration of 100 μM. As a test of the effect of time delays, we consider in Figure 5.2b
the case when we set the delays τM and τB to both be zero. We see that the re-
sponse has very little difference, consistent with our intuition that the delays are
short compared to the dynamics of the underlying processes.
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Figure 5.2: Time response of the Lac system.

Bifurcation analysis

To further explore the different types of dynamics that can be exhibited by the
Lac system, we make use of bifurcation analysis. If we vary the amount of lactose
present in the environent, we expect that the lac circuitry will turn on at some point.
Figure 5.3a shows the concentration of allolactose A as a function of the internal
lactose concentration L. We see that the behavior of the lac system depends on
the amount of lactose that is present in the cell. At low concentrations of lactose,
the lac operon is turned off and the proteins required to metabolize lactose are not
expressed. At high concentrations of lactose, the lac operon is turned on and the
metabolic machinery is activated. In our model, these two operating conditions are
measured by the concentration of β-galactosidase B and allolactose A. At interme-
diate concentrations of lactose, the system has multiple equilibrium points, with
two stable equilibrium points corresponding to high and low concentrations of A
(and B, as can be verified separately).

The parametric stability plot in Figure 5.3b shows the different types of behav-
ior that can result based on the dilution rate μ and the lactose concentration L. We
see that we get bistability only in a certain range of these parameters. Otherwise,
we get that the circuitry is either uninduced or induced.

Sensitivity analysis

We now explore how the equilibrium conditions vary if the parameters in our model
are changed.

For the gene lacZ (which encodes the protein β-galactosidase), we let B repre-
sent the protein concentration and M represent the mRNA concentration. We also
consider the concentration of the lactose L inside the cell, which we will treat as an
external input, and the concentration of allolactose, A. Assuming that the time de-
lays considered previously can be ignored, the dynamics in terms of these variables
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(a) Bifurcation diagram (b) Stability diagram

Figure 5.3: Bifurcation and stability diagram for the lac system. Figures from [104].

are

dM
dt
= FBA(A, θ)−γbM, FBA(A, θ) = αAB

1+ k1An

K + k1An ,

dB
dt
= βBM−δBB, FAL(L, θ) = αA

L
kL+L

,

dA
ddt
= BFAL(L, θ)−BFAA(A, θ)−γAA, FAA(A, θ) = βA

A
kA+A

.

(5.5)

Here the state is x = (M,B,A) ∈ R3, the input is w = L ∈ R and the parameters are
θ= (αB,βB,αA,γB, δB,γA,n,k,k1,kL,kA,βA) ∈R12. The values for the parameters are
listed in Table 5.1.

We investigate the dynamics around one of the equilibrium points, correspond-
ing to an intermediate input of L = 40 µM. There are three equilibrium points at
this value of the input:

x1,e = (0.000393,0.000210,3.17), x2,e = (0.00328,0.00174,19.4), x3,e = (0.0142,0.00758,42.1).

We choose the third equilibrium point, corresponding to the lactose metabolic ma-
chinery being activitated and study the sensitivity of the steady state concentrations
of allolactose (A) and β-galactosidase (B) to changes in the parameter values.

The dynamics of the system can be represented in the form dx/dt = f (x, θ,L)
with

f (x, θ,L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
FBA(A, θ)−γBM−μM
βBM−δBB−μB

FAL(L, θ)B−FAA(A, θ)B−δAA−μA

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .
To compute the sensitivity with respect to the parameters, we compute the deriva-
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tives of f with respect to the state x,

∂ f
∂x
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
−γB−μ 0 ∂FBA

∂A

βB −δB−μ 0
0 FAL−FAA −B∂FAA

∂A

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and the parameters θ,

∂ f
∂θ
=
⎧⎩FBA 0 0 −M 0 0 ∂FBA

∂n
∂FBA
∂k

∂FBA
∂k1

0 0 0
⎫⎭ .

Carrying out the relevant computations and evaluating the resulting expression nu-
merically, we obtain

∂

∂θ

⎧⎪⎪⎪⎪⎩Be

Ae

⎫⎪⎪⎪⎪⎭ = ⎧⎪⎪⎪⎪⎩ −1.21 0.0243 −3.35×10-6 0.935 1.46 . . . 0.00115
−2720. 47.7 −0.00656 1830. 2860. . . . 3.27

⎫⎪⎪⎪⎪⎭ .
We can also normalize the sensitivity computation, as described in equation (3.9):

S̄ xeθ =
∂xe/xe

∂θ/θ0
= (Dx)−1S xeθD

θ,

where Dx = diag{xe} and Dθ = diag{θ0}, which yields

S̄ yeθ =

⎧⎪⎪⎪⎪⎩−4.85 3.2 −3.18 3.11 3.2 6.3 −6.05 −4.1 4.02 6.05
−1.96 1.13 −1.12 1.1 1.13 3.24 −3.11 −2.11 2.07 3.11

⎫⎪⎪⎪⎪⎭
where

θ =
⎧⎩μ αM K K1 βB αA KL βA KA L

⎫⎭ .
We see from this computation that increasing the growth rate decreases the equilib-
rium concentation of B and A, while increasing the lactose concentration by 2-fold
increases the equilibrium β-gal concentration 12-fold (6X) and the allolactose con-
centration by 6-fold (3X).

5.2 Bacterial Chemotaxis

Chemotaxis refers to the process by which micro-organisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is called positive chemotaxis if the motion is in the direction of the stimulus
and negative chemotaxis if the motion is away from the stimulant, as shown in Fig-
ure 5.4. Many chemotaxis mechanisms are stochastic in nature, with biased random
motions causing the average behavior to be either positive, negative or neutral (in
the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, which E. coli use
to move in the direction of increasing nutrients. The material in this section is based
primarily on the work of Barkai and Leibler [8] and Rao, Kirby and Arkin [81].
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Figure 5.4: Examples of chemotaxis. Figure from Phillips, Kondev and Theriot [76]; used
with permission of Garland Science.

Control system overview

The chemotaxis system in E. coli consists of a sensing system that detects the
presence of nutrients, and actuation system that propels the organism in its envi-
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system.

The actuation system in the E. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown
in Figure 5.5a. When the flagella all spin in the counter clockwise direction, the
individual flagella form a bundle and cause the organism to move roughly in a
straight line. This behavior is called a “run” motion. Alternatively, if the flagella
spin in the clockwise direction, the individual flagella do not form a bundle and the
organism “tumbles”, causing it to rotate (Figure 5.5b). The selection of the motor
direction is controlled by the protein CheY: if phosphorylated CheY binds to the
motor complex, the motor spins clockwise (tumble), otherwise it spins counter-
clockwise (run).

Because of the size of the organism, it is not possible for a bacterium to sense
gradients across its length. Hence, a more sophisticated strategy is used, in which
the organism undergoes a combination of run and tumble motions. The basic idea
is illustrated in Figure 5.5c: when high concentration of ligand (nutrient) is present,
the CheY protein is left unphosphorylated and does not bind to the actuation com-
plex, resulting in a counter-clockwise rotation of the flagellar motor (run). Con-
versely, if the ligand is not present then the molecular machinery of the cell causes
CheY to be phosphorylated and this modifies the flagellar motor dynamics so that a
clockwise rotation occurs (tumble). The net effect of this combination of behaviors
is that when the organism is traveling through regions of higher nutrient concen-
tration, it continues to move in a straight line for a longer period before tumbling,
causing it to move in directions of increasing nutrient concentration.

A simple model for the molecular control system that regulates chemotaxis is
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(a) (b) (c)

Figure 5.5: Bacterial chemotaxis. Figures from Phillips, Kondev and Theriot [76]; used
with permission of Garland Science.

shown in Figure 5.6. We start with the basic sensing and and actuation mechanisms.
A membrane bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transducing element
from the cell exterior to the cytoplasm. Two other proteins, CheW and CheA, form
a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phosphotransferase
for two additional proteins, CheB and CheY. The phosphorylated form of CheY
then binds to the motor complex, causing clockwise rotation of the motor.

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or absence of up
to 4 methyl groups on the MCP protein. The specific dependence on each of these
factors is somewhat complicated. Roughly speaking, when the ligand L is bound
to the receptor then the complex is less likely to be active. Furthermore, as more
methyl groups are present, the ligand binding probability increases, allowing the
gain of the sensor to be adjusted through methylation. Finally, even in the absence
of ligand the receptor complex can be active, with the probability of it being active
increasing with increased methylation. Figure 5.7 summarizes the possible states,
their free energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. The most
important of these are implemented by the proteins CheR and CheB, both of which
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the four different methylation sites. Con-
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Figure 5.6: Control system for chemotaxis. Figure from Rao et al. [81] (Figure 1A).

versely, the phosphorylated form of CheB demethylates the receptor complex. As
described above, the methylation patterns of the receptor complex affect its activ-
ity, which affects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is active, then CheA
phosphorylates CheB, which in turn demethylates the receptor complex, making it
less active. As we shall see when we investigate the detailed dynamics below, this
feedback loop corresponds to a type of integral feedback law. This integral action
allows the cell to adjust to different levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute nutrient levels.

Modeling

The detailed reactions that implement chemotaxis are illustrated in Figure 5.8.
Letting T represent the receptor complex and T A represent an active form, the
basic reactions can be written as

TA+A −−−⇀↽−−− TA:A −−→ Ap+TA

Ap+B −−−⇀↽−−− Ap:B −−→ A+Bp Bp+P −−−⇀↽−−− Bp:P −−→ B+P

Ap+Y −−−⇀↽−−− Ap:Y −−→ A+Yp Yp+Z −−−⇀↽−−− Yp:Z −−→ Y+Z

(5.6)

where CheA, CheB, CheY and CheZ are written simply as A, B, Y and Z for
simplicity and P is a non-specific phosphatase. We see that these are basically
three linked sets of phosphorylation and dephosphorylation reactions, with CheA
serving as a phosphotransferase and P and CheZ serving as phosphatases.

The description of the methylation of the receptor complex is a bit more com-
plicated. Each receptor complex can have multiple methyl groups attached and the
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Figure 5.7: Receptor complex states. The probability of a given state being in an active
configuration is given by p. Figure obtained from [68].

activity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site. Furthermore, the binding proba-
bilities for the receptor also depend on the methylation pattern. To capture this, we
use the set of reactions that are illustrated in Figures 5.6 and 5.8. In this diagram,
T s

i represents a receptor that has i methylation sites filled and ligand state s (which
can be either u if unoccupied or o if occupied). We let M represent the maximum
number of methylation sites (M = 4 for E. coli).

Using this notation, the transitions between the states correspond to the reac-
tions shown in Figure 5.9:

Tx
i +Bp −−−⇀↽−−− Tx

i :Bp −−→ Tx
i−1+Bp i > 0, x ∈ {u,0}

Tx
i +R −−−⇀↽−−− Tx

i :R −−→ Tx
i+1+R i < M, x ∈ {u,0}

Tu
i +L −−−⇀↽−−− To

i

We now must write reactions for each of the receptor complexes with CheA. Each
form of the receptor complex has a different activity level and so the most complete
description is to write a separate reaction for each T o

i and T u
i species:

Tx
i +A

k f ,o
i−−−⇀↽−−−

kr,o
i

Tx
i :A

kc,o
i−−→ Ap+Tx

i ,

where x ∈ {o,u} and i = 0, . . . ,M. This set of reactions replaces the placeholder
reaction T A+A −−−⇀↽−−− T A:A −−→ A p+T A used earlier.

Approximate model

The detailed model described above is sufficiently complicated that it can be dif-
ficult to analyze. In this section we develop a slightly simpler model that can be
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Figure 5.8: Circuit diagram for chemotaxis.

used to explore the adaptation properties of the circuit, which happen on a slower
time-scale.

We begin by simplifying the representation of the receptor complex and its
methylation pattern. Let L(t) represent the ligand concentration and Ti represent
the concentration of the receptor complex with i sides methylated. If we assume
that the binding reaction of the ligand L to the complex is fast, we can write the
probability that a receptor complex with i sites methylated is in its active state as a
static function αi(L), which we take to be of the form

αi(L) =
αo

i L

KL+L
+
αiKL

KL+L
.

The coefficients αo
i and αi capture the effect of presence or absence of the ligand on

the activity level of the complex. Note that αi has the form of a Michaelis-Menten
function, reflecting our assumption that ligand binding is fast compared to the rest

Figure 5.9: Methylation model for chemotaxis. Figure from Barkai and Leibler [8] (Box
1). Note: the figure uses the notation E s

i for the receptor complex instead of T s
i .
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Figure 5.10: Probability of activity.

of the dynamics in the model. Following [81], we take the coefficients to be

a0 = 0, a1 = 0.1, a2 = 0.5, a3 = 0.75, a4 = 1,

ao
0 = 0, ao

1 = 0, ao
2 = 0.1, ao

3 = 0.5, ao
4 = 1.

and choose KL = 10 µM. Figure 5.10 shows how each αi varies with L.
The total concentration of active receptors can now be written in terms of the

receptor complex concentrations Ti and the activity probabilities αi(L). We write
the concentration of activated complex T A and inactivated complex T I as

T A =

4∑
i=0

αi(L)Ti, T I =

4∑
i=0

(1−αi(L))Ti.

These formulas can now be used in our dynamics as an effective concentration of
active or inactive receptors, justifying the notation that we used in equation (5.6).

We next model the transition between the methylation patterns on the receptor.
We assume that the rate of methylation depends on the activity of the receptor
complex, with active receptors less likely to be demethylated and inactive receptors
less likely to be methylated [81, 68]. Let

rB = kB
Bp

KB+T A
, rR = kR

R

KR+T I
,

represent rates of the methylation and demethylation reactions. We choose the co-
efficients as

kB = 0.5, KB = 5.5, kR = 0.255, KR = 0.251,

We can now write the methylation dynamics as

d
dt

Ti = rR
(
1−αi+1(L)

)
Ti−1 + rBαi+1(L)Ti+1 − rR

(
1−αi(L)

)
Ti − rBαi(L)Ti,
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Figure 5.11: Simulation and analysis of reduced-order chemotaxis model.

where the first and second terms represent transitions into this state via methyla-
tion or demethylation of neighboring states (see Figure 5.9) and the last two terms
represent transitions out of the current state by methylation and demethylation, re-
spectively. Note that the equations for T0 and T4 are slightly different since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the dynamics of the phosphorylation and dephosphorylation
reactions, and the binding of CheY p to the motor complex. Under the assumption
that the concentrations of the phosphorylated proteins are small relative to the total
protein concentrations, we can approximate the reaction dynamics as

d
dt

Ap = 50T AA−100ApY −30ApB,

d
dt

Y p = 100ApY −0.1Y p−5[M]Y p+19[M:Yp]−30Y p,

d
dt

Bp = 30ApB−Bp,

d
dt

[M:Yp] = 5[M]Y p−19[M:Yp].

The total concentrations of the species are given by

A+Ap = 5 nM, B+Bp = 2 nM, Y +Y p+ [M:Yp] = 17.9 nM,

[M]+ [M:Yp] = 5.8 nM, R = 0.2 nM,
∑4

i=0 Ti = 5 nM.

The reaction coefficients and concentrations are taken from Rao et al. [81].
Figure 5.11a shows a the concentration of the phosphorylated proteins based on

a simulation of the model. Initially, all species are started in their unphosphorylated
and demethylated states. At time T = 500 s the ligand concentration is increased to
L= 10 µM and at time T = 1000 it is returned to zero. We see that immediately after
the ligand is added, the CheY p concentration drops, allowing longer runs between
tumble motions. After a short period, however, the CheY p concentration adapts to
the higher concentration and the nominal run versus tumble behavior is restored.
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Figure 5.12: Reduced order model of receptor activity. Obtained from [3], Figure 7.9.

Similarly, after the ligand concentration is decreased the concentration of CheY p

increases, causing a larger fraction of tumbles (and subsequent changes in direc-
tion). Again, adaptation over a longer time scale returns that CheY concentration
to its nominal value.

Figure 5.11b helps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligand concen-
tration is high, which decreases the activity of CheA (and hence decreases the
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry has the same
function as the use of integral action in control system design: by including a feed-
back on the integral of the error, it is possible to provide exact cancellation to
constant disturbances. In this section we demonstrate that a simplified version of
the dynamics can indeed be regarded as integral action of an appropriate signal.
This interpretation was first pointed out by Yi et al [102].

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral action. Let X repre-
sent the receptor complex and assume that it is either methylated or not. We let Xm
represent the methylated state and we further assume that this methylated state can
be activated, which we write as X *

m. This simplified description replaces the multi-
ple states Ti and probabilities αi(L). We also ignore the additional phosphorylation
dynamics of CheY and simply take the activated receptor concentration X∗m as our
measure of overall activity.

Figure 5.12 shows the transitions between the various forms X. As before, CheR
methylates the receptor and CheB p demethylates it. We simplify the picture by only
allowing CheB p to act on the active state X *

m and CheR to act on the inactive state.
We take the ligand into account by assuming that the transition between the active
form X *

m and the inactive form Xm depends on the ligand concentration: higher
ligand concentration will increase the rate of transition to the inactive state.

This model is a considerable simplification from the ligand binding model that
is illustrated in Figures 5.7 and 5.9. In the previous models, there is some prob-
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ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylated/inactive and methylated/active. We also modify the way that that lig-
and binding is captured and instead of keeping track of all of the possibilities in
Figure 5.7, we assume that the ligand transitions us from an active state X *

m to an
inactive Xm. These states and transitions are roughly consistent with the different
energy levels and probabilities in Figure 5.7, but it is clearly a much coarser model.

Accepting these approximations, the model illustrated in Figure 5.12 results in
a set of chemical reactions of the form

R1 : X+R −−−⇀↽−−− X:R −−→ Xm+R methylation

R2 : X∗m+Bp −−−⇀↽−−− X∗m:Bp −−→ X+Bp demethylation

R3 : X∗m
k f (L)
−−−−⇀↽−−−−

kr
Xm activation/deactivation

For simplicity we take both R and B p to have constant concentration.
We can approximate the first and second reactions by their Michaelis-Menten

forms, which yield net methylation and demethylation rates (for those reactions)

v+ = kRR
X

KX +X
, v− = kBBp X∗m

KX∗m +X∗m
.

If we further assume that X � KX > 1, then the methylation rate can be further
simplified:

v+ = kRR
X

KX +X
≈ KRR.

Using these approximations, we can write the resulting dynamics for the overall
system as

d
dt

Xm = kRR+ k f (L)X∗m− krXm

d
dt

X∗m = −kBBp X∗m
KX∗m +X∗m

− k f (L)X∗m+ krXm.

We wish to use this model to understand how the steady state activity level X∗m
depends on the ligand concentration L (which enters through the deactivation rate
k f (L)).

It will be useful to rewrite the dynamics in terms of the activated complex con-
centration X∗m and the total methylated complex concentration Xt

m = Xm + X∗m. A
simple set of algebraic manipulations yields

dX∗m
dt
= kr(Xt

m−X∗m)− kBBp X∗m
KX∗m +X∗m

− k f (L)X∗m,

dXt
m

dt
= kRR− kBBp X∗m

KX∗m +X∗m
.
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From the second equation, we see that the the concentration of methylated complex
X t

m is a balance between the action of the methylation reaction (R1, characterized
by v+) and the demethylation reaction (R2, at rate v−). Since the action of a ligand
binding to the receptor complex increases the rate of deactivation of the complex
(R3), in the presence of a ligand we will increase the amount of methylated com-
plex (and, via reaction R1) eventually restore the amount of the activated complex.
This represents the adaptation mechanism in this simplified model.

To further explore the effect of adaptation, we compute the equilibrium points
for the system. Setting the time derivatives to zero, we obtain

X∗m,e =
KX∗mkRR

kBBp− kRR

Xt
m,e =

1
kr

(
krX∗m+ kBBp X∗m

KX∗m +X∗m
+ k f (L)X∗m

)
.

Note that the solution for the active complex X∗m,e in the first equation does not
depend on k f (L) (or kr) and hence the steady state solution is independent of the
ligand concentration. Thus, in steady state, the concentration of activated complex
adapts to the steady state value of the ligand that is present, making it insensitive
to the steady state value of this input.

The dynamics for Xt
m can be viewed as an integral action: when the concen-

tration of X∗m matches its reference value (with no ligand present), the quantity of
methylated complex Xt

m remains constant. But if Xt
m does not match this reference

value, then Xt
m increases at a rate proportional to the methylation “error” (measured

here by difference in the nominal reaction rates v+ and v−). It can be shown that
this type of integral action is necessary to achieve perfect adaptation in a robust
manner [102].
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Chapter 6
Biological Circuit Components

In this chapter, we describe some simple circuits components that have been con-
structed in E. coli cells using the technology of synthetic biology. We will analyze
their behavior employing mainly the tools from Chapter 3 and some of the tools
from Chapter 4. The basic knowledge of Chapter 2 will be assumed.

6.1 Introduction to Biological Circuit Design

In Chapter 2 we have introduced a number of core processes and their modeling.
These include gene expression, transcriptional regulation, post-translational regu-
lation such as covalent modification of proteins, allosteric regulation of enzymes,
activity regulation of transcription factors through inducers, etc. These core pro-
cesses provide a rich set of functional building blocks, which can be combined
together to create circuits with prescribed functionalities.

For example, if we want to create an inverter, a device that returns high output
when the input is low and vice versa, we can use a gene regulated by a transcrip-
tion repressor. If we want to create a signal amplifier, we can employ a cascade
of covalent modification cycles. Specifically, if we want the amplifier to be lin-
ear, we should tune the amounts of protein substrates to be in smaller values than
the Michaelis-Menten constants. If instead we are looking for an almost digital
response, we could employ a covalent modification cycle with high amounts of
substrates compared to the Michaelis-Menten constants. Furthermore, if we are
looking for a fast input/output response, phosphorylation cycles are better candi-
dates than transcriptional systems.

In this chapter and in the next one, we illustrate how one can build circuits with
prescribed functionality using some of the building blocks of Chapter 2 and the
design techniques illustrated in Chapter 3. We will focus on two types of circuits:
gene circuits and signal transduction circuits. In some cases, we will illustrate de-
signs that incorporate both.

A gene circuit is usually depicted by a set of nodes, each representing a gene,
connected by unidirectional edges, representing a transcriptional activation or a re-
pression. Inducers will often appear as additional nodes, which activate or inhibit
a specific edge. Early examples of such circuits include an activator-repressor sys-
tem that can display toggle switch or clock behavior [5], a loop oscillator called
the repressilator obtained by connecting three inverters in a ring topology [27], a
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c) Activator-repressor clock

A
A B

A B
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A C

a) Self repression b) Toggle switch

d) Repressilator

Figure 6.1: Early transcriptional circuits that have been fabricated in bacteria E. coli: the
negatively autoregulated gene [10], the toggle switch [31], the activator-repressor clock
[5], and the repressilator [27].

toggle switch obtained connecting two inverters in a ring fashion [31], and an au-
torepressed circuit [10] (Figure 6.1). Each node represents a gene and each arrow
from node Z to node X indicates that the transcription factor encoded in gene z,
denoted Z, regulates gene x [3]. If z represses the expression of x, the interaction is
represented by Z�X. If z activates the expression of x, the interaction is represented
by Z→X [3].

Basic synthetic biology technology

Simple synthetic gene circuits can be constituted from a set of (connected) tran-
scriptional components, which are made up by the DNA base-pair sequences that
compose the desired promoters, ribosome binding sites, gene coding region, and
terminators. We can choose these components from a library of basic interchange-
able parts, which are classified based on biochemical properties such as affinity
(of promoter, operator, or ribosome binding sites), strength (of a promoter), and
efficiency (of a terminator).

The desired sequence of parts is usually assembled on plasmids, which are cir-
cular pieces of DNA, separate from the host cell chromosome, with their own origin
of replication. These plasmids are then inserted, through a process called transfor-
mation in bacteria and transfection in yeast, in the host cell. Once in the host cell,
they express the proteins they code for by using the transcription and translation
machinery of the cell. There are three main types of plasmids: low copy number
(5-10 copies), medium copy number (15-20 copies), and high copy number (up to
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hundreds). The copy number reflects the average number of copies of the plasmid
inside the host cell. The higher the copy number, the more efficient the plasmid is
at replicating itself. The exact number of plasmids in each cell fluctuates stochas-
tically and cannot be exactly controlled.

In order to measure the amounts of proteins of interest, we make use of reporter
genes. A reporter gene codes for a protein that fluoresces in a specific color (red,
blue, green, yellow, etc.) when it is exposed to light of the correct wave-length. For
instance, green fluorescent protein (GFP) is a protein with the property that it fluo-
resces in green when exposed to UV light. It is produced by the jellyfish Aequoria
victoria, and its gene has been isolated so that it can be used as a reporter. Other
fluorescent proteins, such as yellow fluorescent protein (YFP) and red fluorescent
protein (RFP) are genetic variations of GFP.

A reporter gene is usually inserted downstream of the gene expressing the pro-
tein whose concentration we want to measure. In this case, both genes are under
the control of the same promoter and are transcribed into a single mRNA molecule.
The mRNA is then translated to protein and the two proteins will be fused together.
This technique sometimes affects the functionality of the protein of interest because
some of the regulatory sites may be occluded by the fluorescent protein. To prevent
this, another viable technique is to clone after the protein of interest the reporter
gene under the control of a copy of the same promoter that also controls the expres-
sion of the protein. This way the protein is not fused to the reporter protein, which
guarantees that the protein function is not affected. Also, the expression levels of
both proteins should be close to each other since they are controlled by (different
copies of) the same promoter.

Just as fluorescent proteins can be used as a read out of a circuit, inducers func-
tion as external inputs that can be used to probe the system. Inducers function
by either disabling repressor proteins (negative inducers) or by enabling activa-
tor proteins (positive inducers). Two commonly used negative inducers are IPTG
and aTc. Isopropyl-β-D-1-thiogalactopyranoside (IPTG) induces activity of beta-
galactosidase, which is an enzyme that promotes lactose utilization, through bind-
ing and inhibiting the lac repressor LacI. The anhydrotetracycline (aTc) binds the
wild-type repressor (TetR) and prevents it from binding the Tet operator. Two com-
mon positive inducers are arabinose and AHL. Arabinose activates the transcrip-
tional activator AraC, which activates the pBAD promoter. Similarly, AHL is a
signaling molecule that activates the LuxR transcription factor. which activates the
pLux promoter.

Protein dynamics can be usually altered by the addition of a degradation tag at
the end of the coding region. A degradation tag is a sequence of base pairs that adds
an amino acid sequence to the functional protein that is recognized by proteases.
Proteases then bind to the protein, degrading it into a non-functional molecule. As
a consequence, the half life of the protein decreases, resulting into an increased
decay rate. Degradation tags are often employed to obtain a faster response of the
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protein concentration to input stimulation and to prevent protein accumulation.

6.2 Negative Autoregulation

In this section, we analyze the negatively autoregulated gene of Figure 6.1 and
focus on analyzing how the presence of the negative feedback affects the dynamics
of the system and how the negative feedback affects the noise properties of the
system. This system was introduced in Example 3.6.

Let A denote the concentration of protein A and let A be a transcriptional re-
pressor for its own production. Assuming that the mRNA dynamics are at the quasi-
steady state, the ODE model describing the self repressed system is given by

dA
dt
=

β

1+ (A/K)n −δA.

We seek to compare the behavior of this autoregulated system to the behavior of
the unregulated one:

dA
dt
= β0−δA,

in which β0 is the unrepressed production rate.

Dynamic effects of negative autoregulation

As we showed via simulation in Example 2.3, negative autoregulation speeds up the
response to perturbations. Hence, the time the system takes to reach its steady state
decreases with negative feedback. In this section, we show this result analytically
by employing linearization about the steady state and by explicitly calculating the
time the system takes to reach it.

Let Ae = β0/δ be the steady state of the unregulated system and let z = A−Ae

denote the perturbation with respect to such a steady state. The dynamics of z are
given by

dz
dt
= −δz.

Given a small initial perturbation z0, the time response of z is given by the expo-
nential

z(t) = z0e−δt.

The “half-life” of the signal z(t) is the time it takes to reach half of z0. This is a
common measure for the speed of response of a system to an initial perturbation.
Simple mathematical calculation shows that thalf = ln(2)/δ.

Let now Ae be the steady state of the autoregulated system. Assuming that the
perturbation z with respect to such a steady state is small enough, we can employ
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linearization to describe the dynamics of z. These dynamics are given by

dz
dt
= −δ̄z,

in which

δ̄ = δ+
nAn−1

e /K
n

(1+ (Ae/K)n)2
.

In this case, we have that thalf = ln(2)/δ̄.
Since δ̄ > δ (independently of the steady state Ae), we have that the dynamic

response to a perturbation is faster in the system with negative autoregulation. This
confirms the simulation findings of Example 2.3.

Noise filtering

In this section, we investigate the effect of the negative feedback on the noise spec-
trum of the system. In order to do this, we employ the Langevin modeling frame-
work and determine the frequency response to the noise on the various reaction
channels. We perform two different studies. In the first one, we assume that the de-
cay rate of the protein is much smaller than that of the mRNA. As a consequence,
the mRNA is at its quasi-steady state and we focus on the dynamics of the protein
only. In the second study, we investigate the consequence of having the mRNA and
protein decay rates in the same range so that the quasi-steady state assumption can-
not be made. In either case, we study both the open loop system and the closed loop
system (the system with negative autoregulation) and compare the corresponding
frequency responses.

Assuming mRNA at the quasi-steady state

In this case, the reactions for the open loop system are given by

R1: p
β0−−→ A+p, R2: A

δ−→ ∅,

in which β0 is the constitutive production rate, p is the DNA promoter, and δ is
the decay rate of the protein. Since the concentration of DNA promoter p is not
changed by these reactions, it is a constant, which we call ptot.

Employing the Langevin equation (4.9) of Section 4.1 and letting nA denote
the real-valued number of molecules of A and by np the real-valued number of
molecules of p, we obtain

dnA

dt
= β0np−δnA+

√
β0npN1−

√
δnAN2,

in which N1 and N2 are the noises on the production reaction and on the decay reac-
tion, respectively. By denoting A= nA/Ω the concentration of A and p= np/Ω= ptot
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the concentration of p, we have that

dA
dt
= β0 ptot−δA+

1
√
Ω

(
√
β0 ptotN1−

√
δAN2).

This is a linear system and therefore we can calculate the frequency response to
any of the two inputs N1 and N2. The frequency response to input N1 is given by

GAN1 (ω) =

√
β0 ptot/Ω√
ω2+δ2

.

We now consider the autoregulated system. The reactions are given by

R1: p
β
−→ A+p, R2: A

δ−→ ∅,

R3: A+p
a−→ C, R4: C

d−→ A+p, ptot = p+C.

Employing the Langevin equation (4.9) of Section 4.1 and dividing both sides of
the equation to obtain concentrations, we obtain

dp
dt
= −aAp+d(ptot− p)+

1
√
Ω

(−
√

aApN3+√
d(ptot− p)N4)

dA
dt
= βp−δA−aAp+d(ptot− p)+

1
√
Ω

(
√
βpN1−

√
δAN2−

√
aApN3+√

d(ptot− p)N4),

in which N3 and N4 are the noises on the association and o the dissociation reac-
tions, respectively. Letting Kd = d/a, Γ1(t) = 1√

Ω
(−
√

aAp/KdN3+
√

d(ptot− p)N4),

and Γ2(t) = 1√
Ω

(
√
βpN1−

√
δAN2), we can rewrite the above system in the follow-

ing form:

dp
dt
= −aAp+d(ptot− p)+

√
dΓ1(t)

dA
dt
= βp−δA−aAp+d(ptot− p)+Γ2(t)+

√
dΓ1(t).

Since a,d � δ,βp, this system displays two time scales. Denoting ε := δ/d and
defining y := A− p, the system can be further rewritten in standard singular pertur-
bation form (3.6):

ε
dp
dt
= −δAp/Kd+δ(ptot− p)+

√
ε
√
δΓ1(t)

dy
dt
= βp−δ(y+ p)+Γ2(t).
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By setting ε = 0 and assuming that ptot/Kd is sufficiently small, we obtain the
reduced system describing the dynamics of A as

dA
dt
= β

ptot

A/Kd+1
−δA+ 1

√
Ω

(
√
βpN1−

√
δAN2) =: f (A,N1,N2).

The equilibrium point for this system corresponding to the mean values N1 = 0
and N2 = 0 of the inputs is given by

Ae =
1
2

(
√

K2
d +4βptotKd/δ−Kd).

The linearization of the system about this equilibrium point is given by

∂ f
∂A

∣∣∣∣∣
Ae,N1=0,N2=0

= −β ptot/Kd

(Ae/Kd+1)2+1
−δ =: −δ̄,

b1 =
∂ f
∂N1

∣∣∣∣∣
Ae,N1=0,N2=0

=
1
√
Ω

√
βptot

Ae/Kd+1
, b2 =

∂ f
∂N2

∣∣∣∣∣
Ae,N1=0,N2=0

= −
√
δAe.

Hence, the frequency response to N1 is given by

Gc
AN1(ω) =

b1√
ω2+ δ̄2

.

In order to make a fair comparison between this response and that of the open
loop system, we need to make sure that the steady states of both systems are the
same. In order to do so, we set

β0 =
β

Ae/Kd+1
.

This can be attained by properly adjusting the strength of the promoter and of the
ribosome binding site.

As a consequence, b1 =
√
β0 ptot/Ω. Since also δ̄ > δ, it is clear that Gc

AN1(ω) <
GAN1(ω) for all ω. This result implies that the negative feedback attenuates the
noise at all frequencies. The two frequency responses are plotted in Figure 6.2(a).

mRNA decay close to protein decay

In this case, we need to model the processes of transcription and translation sepa-
rately. Denoting mA the mRNA of A, the reactions describing the open loop system
modify to

R1: mA

β
−→mA+A, R2: A

δ−→ ∅, R5: p
α−→mA+p, R6: mA

γ
−→ ∅,

while those describing the closed loop system modify to

R1: mA

β
−→mA+A, R2: A

δ−→ ∅,
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Figure 6.2: (a) Frequency response to noise N1(t) for both open loop and closed loop
for the model in which mRNA is assumed at its quasi-steady state. The parameters are
ptot = 10, Kd = 10, β = 0.001, δ = 0.01, Ω = 1, and β0 = 0.00092. (b) Frequency response
to noise N6(t) for both open loop and closed loop for the model in which mRNA decay is
close to protein decay. The parameters are ptot = 10, Kd = 10, α = 0.001, β = 0.01, γ = 0.01,
δ = 0.01, and α0 = 0.0618.

R3: A+p
a−→ C, R4: C

d−→ A+p,

R5: p
α−→mA+p, R6: mA

γ
−→ ∅, ptot = p+C.

Employing the Langevin equation in terms of concentrations, and applying singular
perturbation as performed before, we obtain the dynamics of the system as

dmA

dt
= f (A)−γmA+

1
√
Ω

(
√

f (A)N5−
√
γmAN6)

dA
dt
= βmA−δA+

1
√
Ω

(
√
βmAN1−

√
δAN2),

in which N5 and N6 are the noise on the production reaction and decay reaction of
mRNA, respectively. For the open loop system f (A) = α0 ptot, while for the closed
loop system

f (A) =
αptot

A/Kd+1
.

The steady state for the open loop system is given by

mo
e =
α0

γ
, Ao

e =
α0β

γδ
.

Considering N6 to be the input of interest, the linearization of the system at this
equilibrium is given by

Ao =

(
−γ 0
β −δ

)
, Bo =

( √
γmo

e/Ω

0

)
.
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Letting K = β/(δKd), the steady state for the closed loop system is given by

Ac
e =
βme

δ
, mc

e =
1
2

(
−1/K +

√
(1/K)2+4αptot/(Kγ)

)
.

The linearization of the closed loop system at this equilibrium point is given by

Ac =

(
−γ −G
β −δ

)
, Bc =

( √
γmc

e/Ω

0

)
,

in which G = αptot/(Ac
e/Kd + 1)2 represents the contribution of the negative feed-

back. The larger the value of G the stronger the negative feedback.
In order to make a fair comparison between the two systems, we need to make

the steady states be the same. In order to do this, we can set α0 = α/(Ac
e/Kd + 1),

which can be done by suitably changing the strengths of the promoter and ribosome
binding sites.

The open loop and closed loop transfer functions are given by

Go
AN6

(s) =
β
√
γme/Ω

(s+γ)(s+δ)
,

and by

Gc
AN6

(s) =
β
√
γme/Ω

s2+ s(γ+δ)+γδ+G
,

respectively. By looking at these expressions, it is clear that the open loop transfer
function has two real poles, while the closed loop transfer function can have com-
plex conjugate poles when G is sufficiently large. As a consequence, noise N6 can
be amplified at sufficiently high frequencies. Figure 6.2(b) shows the correspond-
ing frequency responses for both the open loop and the closed loop system.

It is clear that the presence of the negative feedback attenuates noise with re-
spect to the open loop system at low frequency, but it amplifies it at higher fre-
quency. This is a very well known effect known as the “water bed effect”, according
to which negative feedback decreases the effect of disturbances at low frequency,
but it can amplify it at higher frequency. This effect is not found in first order mod-
els, as demonstrated by the derivations when mRNA is at the quasi-steady state.
This illustrates the spectral shift of the frequency response to intrinsic noise toward
the high frequency, as also experimentally demonstrated [6].

6.3 The Toggle Switch

The toggle switch is composed of two genes that mutually repress each other, as
shown in the diagram of Figure 6.3 [31]. We start by describing a simple model
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Figure 6.3: Nullclines for the toggle switch. By analyzing the direction of the vector field
in the proximity of the equilibria, one can deduce their stability as described in Section 3.1.

with no inducers. By assuming that the mRNA dynamics are at the quasi-steady
state, we obtain a two dimensional differential equation model given by

dA
dt
=

β

1+ (B/K)n −δA,
dB
dt

=
β

1+ (A/K)n −δB,

in which we have assumed for simplicity that the parameters of the repression
functions are the same for A and B.

The number and stability of equilibria can be analyzed by performing nullcline
analysis since the system is two-dimensional. Specifically, by setting dA/dt = 0 and
dB/dt = 0, we obtain the nullclines shown in Figure 6.3. In the case in which the
parameters are the same for both A and B, the nullclines intersect at three points,
which determine the steady states of this system.

The nullclines partition the plane into six regions. By determining the sign of
dA/dt and dB/dt in each of these six regions, one determines the direction in which
the vector field is pointing in each of these regions. From these directions, one
immediately deduces that the steady state for which A = B is unstable while the
other two are stable. This is thus a bistable system.

The system converges to one steady state or the other depending on the initial
condition. If the initial condition is in the region of attraction of one steady state,
it converges to that steady state. The 45 degree line divides the plane into the two
regions of attraction of the stable steady states. Once the system has converged
to one of the two steady states, it cannot switch to the other unless an external
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Figure 6.4: time traces for A(t) and B(t) when inducer concentrations u1 and u2 are changed.
In the simulation, we have n = 2, Kd,1 = Kd,2 = 1, K2 = 0.1, β = 1, and δ = 1. The inducers
are such that u1 = 10 for t < 100 and u1 = 0 for t ≥ 100, while u2 = 0 for t < 100 and u2 = 10
for t ≥ 100.

stimulation is applied that moves the initial condition to the region of attraction of
the other steady state.

In the toggle switch by [31], external stimulations were added in form of neg-
ative inducers for A and B. Let u1 be the negative inducer for A and u2 be the
negative inducer for B. Then, as we have seen in Section 2.3, the expressions of
the Hill functions need to be modified to replace A by A(1/(1+u1/Kd,1)) and B by
B(1/(1+u2/Kd,2)), in which Kd,1 and Kd,2 are the dissociation constants of u1 with
A and of u2 with B, respectively. We show in Figure 6.4 time traces for A(t) and
B(t) when the inducer concentrations are changed. Specifically, initially u1 is high
until time 100 while u2 is low until this time. As a consequence, A does not repress
B while B represses A. Accordingly, the concentration of A stays low until time
100 and the concentration of B stays high. After time 100, u2 is high and u1 is low.
As a consequence B does not repress A while A represses B. In this situation, A
switches to its high value and B switches to its low value.

6.4 The Repressilator

Elowitz and Leibler [27] constructed the first operational oscillatory genetic circuit
consisting of three repressors arranged in ring fashion, and coined it the “repres-
silator” (Figure 6.1d). The repressilator exhibits sinusoidal, limit cycle oscillations
in periods of hours, slower than the cell-division life cycle. Therefore, the state of
the oscillator is transmitted between generations from mother to daughter cells.

The dynamical model of the repressilator can be obtained by composing three
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transcriptional modules in a loop fashion. The dynamics can be written as

dmA

dt
= −δmA+ f1(C)

dA
dt
= mA−δA

dmB

dt
= −δmB+ f2(A)

dB
dt
= mB−δB

dmC

dt
= −δmC + f3(B)

dC
dt
= mC −δC,

where we take

f1(p) = f2(p) = f3(p) =
α2

1+ pn .

This structure belongs to the class of cyclic feedback systems that we have studied
in Section 3.4. In particular, the Mallet-Paret and Smith theorem and Hastings the-
orem (see Section 3.4 for the details) can be applied to infer that if the system has
a unique equilibrium point and this is unstable, then it admits a periodic solution.
Therefore, we first determine the number of equilibria and their stability.

The equilibria of the system can be found by setting the time derivatives to zero.
We thus obtain that

A =
f1(C)
δ2
, B =

f2(A)
δ2
, C =

f3(B)
δ2
,

which combined together yield to

A =
1
δ2

f1

(
1
δ2

f3

(
1
δ2

f2(A)

))
=: g(A).

The solution to this equation determines the set of steady states of the system. The
number of steady states is given by the number of crossings of the two functions
h1(A) = g(A) and h2(A) = A. Since h2 is strictly monotonically increasing, we ob-
tain a unique steady state if h1 is monotonically decreasing. This is the case when
g′(A) = dg(A)

dA < 0. Otherwise, there could be multiple steady states. Since we have
that

sign(g′(A)) = Π3
i=1sign( f ′i (P)),

then ifΠ3
i=1sign( f ′i (P))< 0 the system has a unique steady state. We call the product

Π3
i=1sign( f ′i (P)) the loop gain.

Thus, any cyclic feedback system with negative loop gain will have a unique
steady state. It can be shown that a cyclic feedback system with positive loop gain
belongs to the class of monotone systems and hence cannot have periodic orbits
[62]. In the present case, system (6.4) is such that f ′i < 0, so that the loop gain is
negative and there is a unique steady state. We next study the stability of this steady
state by studying the linearization of the system.
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Figure 6.5: (a) Space of parameters that give rise to oscillations for the repressilator in
equation (6.4). (b) Period as a function of δ and α.

Letting P denote the steady state value of the protein concentrations for A, B,
and C, the linearization of the system is given by

J =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δ 0 0 0 0 f ′1(P)
1 −δ 0 0 0 0
0 f ′2(P) −δ 0 0 0
0 0 1 −δ 0 0
0 0 0 f ′3(P) −δ 0
0 0 0 0 1 −δ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

whose characteristic polynomial is given by

det(λI− J) = (λ+δ)6−Π3
i=1 f ′i (P). (6.1)

In the case in which fi(P) = α2/(1+ pn) for i ∈ {1,2,3}, this characteristic polyno-
mial has a root with positive real part if the ratio α/δ satisfies the relation

α2/δ2 >
n

√
4/3

n−4/3

(
1+

4/3
n−4/3

)
.

For the proof of this statement, the reader is referred to [21]. This relationship
is plotted in Figure 6.5 (b).

When n increases, the existence of an unstable equilibrium point is guaranteed
for larger ranges of the other parameter values. Of course, this “behavioral” robust-
ness does not guarantee that other important features of the oscillator, such as the
period are not changed when parameters vary. Numerical studies indicate that the
period T approximatively follows T ∝ 1/δ, and varies little with respect to α (Fig-
ure 6.5b). From the figure, we see that as the value of δ increases, the sensitivity of
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the period to the variation of δ itself decreases. However, increasing δ would ne-
cessitate the increase of the cooperativity n, therefore indicating a possible tradeoff
that should be taken into account in the design process in order to balance the sys-
tem complexity and robustness of the oscillations. From a practical point of view,
n can be changed by selecting repressors that bind cooperatively to the promoter.
In practice, it is usually hard to obtain values of n greater than two.

A similar result for the existence of a periodic solution can be obtained for
the non-symmetric case in which the input functions of the three transcriptional
modules are modified to

f1(p) =
α2

3

1+ pn , f2(p) =
α2 pn

1+ pn , f3(p) =
α2 pn

1+ pn .

That is, two interactions are activations and one only is a repression. Since the
loop gain is still negative, there is only one equilibrium point only. We can thus
obtain the condition for oscillations again by establishing conditions on the param-
eters that guarantee that at least one root of the characteristic polynomial (6.1) has
positive real part, that is,

(0.86)2n 3

√
pn

3

(1+ pn
3)(1+ pn

2)(1+ pn
1)
> 1. (6.2)

We rewrite p1 and p3 as functions of p2 by using two of the equilibrium rela-
tions:

p1 =
n

√
p2

α2/δ2− p2
, p3 =

α2/δ2 pn
2

1+ pn
2

.

Using these expressions in (6.2), we can find all possible values of p2 that satisfy
(6.2) for a fixed pair (α2/δ2,n). These values of p2 correspond to the possible values
of α2

3/δ
2 by means of the third equilibrium condition

α2
3/δ

2 = p1(1+ pn
3).

For each pair (α2/δ2,n), we finally obtain all possible values of α2
3/δ

2 that satisfy
the equilibrium conditions and inequality (6.2). These conditions are reported in
Figure 6.6 (see [21] for the detailed derivations).

One can conclude that it is possible to “over design” the circuit to be in the
region of parameter space that gives rise to oscillations. In practice, values of n be-
tween one and two can be obtained by employing repressors that have coopearivity
higher than or equal to two. There are plenty of such repressors, including those
originally used in the repressilator design [27]. However, values of n greater than
two may be hard to reach in practice. It is also possible to show that increasing the
number of elements in the loop, the value of n sufficient for oscillatory behavior
decreases (see Exercises).
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Figure 6.6: Space of parameters that give rise to oscillations for the repressilator (non-
symmetric case). As the value of n is increased, the ranges of the other parameters for
which sustained oscillations exist become larger.

6.5 Activator-repressor clock

Consider the activator-repressor clock diagram shown in Figure 6.1(c). The tran-
scriptional module A has an input function that takes two inputs: an activator A and
a repressor B. The transcriptional module B has an input function that takes only
an activator A as its input. Let mA and mB represent the concentration of mRNA
of the activator and of the repressor, respectively. Let A and B denote the protein
concentration of the activator and of the repressor, respectively. Then, we consider
the following four-dimensional model describing the rate of change of the species
concentrations:

dmA

dt
= −δ1mA+F1(A,B),

dA
dt
= −δAA+β1mA,

dmB

dt
= −δ2rB+F2(A),

dB
dt
= −δBB+β2mB,
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A

BB
f(A,B) = 0

g(A,B) = 0

(a) n = 1

A

BB

f(A,B) = 0
g(A,B) = 0

(b) n = 2

Figure 6.7: Nullclines for the two-dimensional system of equation (6.5). (a) shows the only
possible configuration of the nullclines when n = 1. (b) shows a possible configuration of
the nullclines when n = 2. In this configuration, there is a unique equilibrium, which can
be unstable.

in which the functions F1 and F2 are Hill functions and given by

F1(A,B) =
K1An+KA0

1+ (A/k1)n+ (B/k2)m , F2(A) =
K2An+KB0

1+ (A/k1)n .

The Hill function F1 can be obtained through a combinatorial promoter, where
there are sites both for an activator and for a repressor (see Section 2.3).

Two-dimensional analysis

We first assume the mRNA dynamics to be at the quasi-steady state so that we can
perform two dimensional analysis and invoke the Poincarè-Bendixson theorem.
Then, we analyze the four dimensional system and perform a bifurcation study.

We let f1(A,B) := (β1/δ1)F1(A,B) and f2(A) := (β2/δ2)F2(A). For simplicity,
we also denote f (A,B) := −δAA+ f1(A,B) and g(A,B) := −δBB+ f2(A) so that the
two-dimensional system is given by

dA
dt
= f (A,B),

dB
dt

= g(A,B).

For simplicity, we assume m = 1 and ki = 1 for all i.
We first study whether the system admits a periodic solution for n = 1. To do

so, we analyze the nullclines to determine the number and location of steady states.
Denote K̄1 = K1(β1/δ1), K̄2 = K2(β2/δ2), K̄A0 = KA0(β1/δ1), and K̄B0 = KB0(β1/δ1).
Then, g(A,B) = 0 leads to

B =
K̄2A+ K̄B0

(1+A)δA
,



6.5. ACTIVATOR-REPRESSOR CLOCK 217

which is an increasing function of A. Setting f (A,B) = 0, we obtain that

B =
K̄1A+ K̄A0−δAA(1+A)

δAA
,

which is a monotonically decreasing function of A. These nullclines are displayed
in Figure 6.7(a).

We see that we have one equilibrium only. To determine the stability of such
an equilibrium, we calculate the linearization of the system at such an equilibrium.
This is given by

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂ f
∂A

∂ f
∂B

∂g
∂A

∂g
∂B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In order for the equilibrium to be unstable and not a saddle, it is necessary and
sufficient that tr(J) > 0 and det(J) > 0.

Graphical inspection of the nullclines at the equilibrium (see 6.7(a)), shows that

dB
dA

∣∣∣∣∣
f (A,B)=0

< 0.

By the implicit function theorem (Section 3.6), we further have that

dB
dA

∣∣∣∣∣
f (A,B)=0

= −∂ f /∂A
∂ f /∂B

,

so that ∂ f /∂A < 0 because ∂ f /∂B < 0. As a consequence, we have that tr(J) < 0
and hence the equilibrium point is either stable or a saddle.

To determine the sign of det(J), we further inspect the nullclines and find that

dB
dA

∣∣∣∣∣
g(A,B)=0

>
dB
dA

∣∣∣∣∣
f (A,B)=0

.

Again using the implicit function theorem we have that

dB
dA

∣∣∣∣∣
g(A,B)=0

= −∂g/∂A
∂g/∂B

,

so that det(J) > 0. Hence, the ω-limit set (Section 3.4) of any point in the plane
is not necessarily a periodic orbit. Hence, to guarantee that any initial condition
converges to a periodic orbit, we need to require that n > 1.

We now study the case n = 2. In this case, the nullcline f (A,B) = 0 changes and
can have the shape shown in Figure 6.7 (b). In the case in which, as in the figure,
there is an equilibrium point only and the nullclines intersect both with positive
slope (equivalent to det(J) > 0), the equilibrium is unstable and not a saddle if
tr(J) > 0, which is satisfied if

δB

∂ f1/∂A−δA
< 1.
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Figure 6.8: Effect of the trace of the Jacobian on the stability of the equilibrium. The
above plots illustrate the trajectories of system (6.5) for both Functional (tr(J) > 0) and
a Non-Functional (tr(J) < 0) Clocks. The parameters in the simulation are δ1 = δ2 = 1,
K1 = K2 = 100, KA0 = .04, KB0 = .004, δA = 1, β1 = β2 = 1, and k1 = k2 = 1. In the Functional
Clock, δB = 0.5 whereas in the Non-Functional Clock, δB = 1.5. Parameters K1 and K2

were chosen to give about 500-2000 copies of protein per cell for activated promoters.
Parameters KA0 and KB0 were chosen to give about 1-10 copies per cell for non-activated
promoters.

This condition reveals the crucial design requirement for the functioning of the
clock. Specifically the repressor B time scale must be sufficiently slower than the
activator A time scale. This point is illustrated in the simulations of Figure 6.8, in
which we see that if δB is too large, the trace becomes negative and oscillations
disappear.

Four-dimensional analysis

In order to specifically study time scale separation between activator and repressor
as a crucial design requirement for the clock, we perform a time scale analysis
employing bifurcation the tools described in Section 3.5. To this end, we consider
the following four-dimensional model describing the rate of change of the species
concentrations:

dmA

dt
= −δ1/ε mA+F1(A,B),

dA
dt
= ν(−δAA+β1/ε mA),

dmB

dt
= −δ2/ε mB+F2(A),

dB
dt
= −δBB+β2/ε mB.

This system is the same as system (6.5) where we have explicitly introduced two
parameters, ν and ε, which model time scale differences as follows. The parameter
ν regulates the difference of time scale between the repressor and the activator
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dynamics while ε regulates the difference of time scale between the mRNA and
the protein dynamics. The parameter ε determines how close model (6.5) is to the
two-dimensional model (6.5), in which the mRNA dynamics are considered at the
quasi-steady state. Thus, ε is a singular perturbation parameter (equations (6.5)
can be taken to standard singular perturbation form by considering the change of
variables mA = mA/ε and mB = mB/ε). The details on singular perturbation can be
found in Section 3.6.

The values of ε and of ν do not affect the number of equilibria of the system. We
then perform bifurcation analysis with ε and ν the two bifurcation parameters. The
bifurcation analysis results are summarized by Figure 6.9. The reader is referred to
[20] for the details of the numerical analysis. In terms of the ε and ν parameters, it is
thus possible to “over design” the system: if the activator dynamics are sufficiently
sped up with respect to the repressor dynamics, the system undergoes a Hopf bi-
furcation (Hopf bifurcation was introduced in Section 3.4) and stable oscillations
will arise.

From a fabrication point of view, the activator dynamics can be sped up by
adding suitable degradation tags to the activator protein. Similarly, the repressor
dynamics can be slowed down by adding repressor DNA binding sites (see Chapter
7 and the effects of retroactivity on dynamic behavior).

6.6 An Incoherent Feedforward Loop (IFFL)

Several genetic implementations of incoherent feedforward loops are possible [3].
Here, we describe an implementation proposed for making the steady state levels
of protein expression adapt to DNA plasmid copy number [13]. In this implemen-
tation, the input u is the amount of DNA plasmid coding for both the intermediate
regulator LacI (L) with concentration L and the output RFP (R) with concentration
R. The intermediate regulator LacI represses through transcriptional repression the
expression of the output protein RFP (Figure 6.10). The expectation is that the
steady state value of the RFP expression is independent of the concentration u of
the plasmid. That is, the concentration of RFP should adapt to the copy number of
its own plasmid.

In order to analyze whether the adaptation property holds, we write the differ-
ential equation model describing the system, assuming the mRNA dynamics are at
the quasi-steady state. This model is given by

dL
dt
= k0u−δL, dR

dt
=

k1u
1+ (L/Kd)

−δR, (6.3)

in which k0 is the constitutive rate at which LacI is expressed and Kd is the dissoci-
ation constant of LacI from the operator sites on the lac promoter. This implemen-
tation has been called the sniffer in Section 3.2. The steady state of the system is
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Figure 6.9: Design chart for the relaxation oscillator. We obtain sustained oscillations past
the Hopf bifurcation point, for values of ν sufficiently large independently of the difference
of time scales between the protein and the mRNA dynamics. We also notice that there are
values of ν for which a stable equilibrium point and a stable orbit coexist and values of
ν for which two stable orbits coexist. The interval of ν values for which two stable orbits
coexist is too small to be able to numerically set ν in such an interval. Thus, this interval is
not practically relevant. The values of ν for which a stable equilibrium and a stable periodic
orbit coexist is instead relevant. This situation corresponds to the hard excitation condition
[58] and occurs for realistic values of the separation of time-scales between protein and
m-RNA dynamics. Therefore, this simple oscillator motif described by a four-dimensional
model can capture the features that lead to the long term suppression of the rhythm by
external inputs.

obtained by setting the time derivatives to zero and gives

L =
k0

δ
u, R =

k1u
δ+ k0u/Kd

.

From this expression, one can easily note that as Kd decreases, the denominator
of the right-side expression tends to k0u/Kd resulting into the steady state value
R = k1Kd/k0, which does not depend on the input u. Hence, in this case, adaptation
would be reached. This is the case if the affinity of LacI to its operator sites is
extremely high, resulting also in a strong repression and hence a lower value of
R. In practice, however, the value of Kd is non-zero, hence the adaptation is not
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u L R

LacI RFP 

u

Figure 6.10: (Left) The incoherent feedforward motif. (Right) A possible implementation
of the incoherent feedforward motif. Here, LacI (L) is under the control of a constitutive
promoter in amounts u, while RFP (R) is under the control of the lac promoter, also in
amounts u. Hence RFP is also activated by u as the RFP gene is found in amounts u just
like the LacI gene.

perfect. We show in Figure 6.11 the behavior of the steady state of R as a function
of the input u for different values of Kd. Ideally, for perfect adaptation, this should
be a horizontal line.

In this study, we have modeled protein L as binding with its promoter with no
cooperativity. If L is LacI, the cooperativity of binding is n = 4. We leave as an
exercise to show that the adaptation behavior persist in this case (see Exercises).

For engineering a system with prescribed behavior, one has to be able to change
the physical features so as to change the values of the parameters of the model.
This is often possible. For example, the binding affinity (1/Kd in the Hill function
model) of a transcription factor to its site on the promoter can be affected by sin-
gle or multiple base pairs substitutions. The protein decay rate can be increased by
adding degradation tags at the end of the gene expressing protein Y. Promoters that
can accept multiple input transcription factors (combinatorial promoters) to imple-
ment regulation functions that take multiple inputs can be realized by combining
the operator sites of several simple promoters [19].

Exercises

6.1 Consider the toggle switch:

Ȧ =
β

1+ (B/K1)n −α1A, Ḃ =
γ

1+ (A/K2)m −α2B.

Here, we are going to explore the parameter space that makes the system work as
a toggle. To do so, answer the following questions:

(a) Consider m = n = 1. Determine the number and stability of the equilibria.

(b) Consider m = 1 and n > 1 and determine the number and stability of the equi-
libria (as other parameters change).
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Figure 6.11: Behavior of the steady state value of y as a function of the input u.

(c) Consider m = n = 2. Determine parameter conditions on β,γ,α1,α2 for which
the system is bistable, i.e., there are two stable steady states.

6.2 Consider the “generalized” model of the repressilator in which we have m
repressors (with m an odd number) in the ring. Explore via simulation the fact that
when m is increased, the system oscillates for smaller values of the Hill coefficient
n.

6.3 Consider the oscillator design of Stricker et al. [90]. Build a four dimensional
model including mRNA concentration and protein concentration. Then reduce this
fourth order model to a second order model using the QSS approximation for the
mRNA dynamics. Then, investigate the following points:

(a) Use the Poincaré-Bendixson theorem to determine under what conditions the
system in 2D admits a periodic orbit.

(b) Simulate the four dimensional system and the two dimensional system for pa-
rameter values that give oscillations and study how close the trajectories of the 2D
approximation are to those of the 4D system.

(c) Determine whether the four dimensional system has a Hopf bifurcation (either
analytically or numerically).

6.4 Consider the feedforward circuit shown in Figure 6.11. Assume now to model
the fact that the cooperativity of binding of LacI to its promoter is 4. The model
then modifies to

dL
dt
= k0u−δL, dR

dt
=

k1u

1+ (L/Kd)4
−δR. (6.4)

Show that the adaptation property still holds under suitable parameter conditions.



Chapter 7
Interconnecting Components

In Chapter 2 and Chapter 6, we studied the behavior of simple biomolecular mod-
ules, such as oscillators, toggles, self repressing circuits, signal transduction and
amplification systems, based on reduced order models. One natural step forward is
to create larger and more complex systems by composing these modules together.
In this chapter, we illustrate problems that need to be overcome when interconnect-
ing components and propose a number of engineering solutions based on the feed-
back principles introduced in Chapter 3. Specifically, we explain how impedance-
like effects arise at the interconnection between modules, which change the ex-
pected circuit behavior. These impedance problems appear in several other engi-
neering domains, including electrical, mechanical, and hydraulic systems, and have
been largely addressed by the respective engineering communities. In this chapter,
we explain how similar engineering solutions can be employed in biomolecular
systems to defeat impedance effects and guarantee “modular” interconnection of
circuits. In Chapter 8, we further study loading of the cellular environment by syn-
thetic circuits employing the same framework developed in this chapter.

7.1 Input/Output Modeling and the Modularity Assumption

The input/output modeling introduced in Chapter 1 and further developed in Chap-
ter 3 has been employed so far to describe the behavior of various modules and
subsystems. Such an input/output description of a system allows to connect sys-
tems together by setting the input u2 of a downstream system equal to the output

u1 u2 = y1 y2

u1 y1 y2u2

Figure 7.1: In the input/output modeling framework, systems are interconnected by stati-
cally assigning to the input of the downstream system the value of the output of the up-
stream system.
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y1 of the upstream system (Figure 7.1). This interconnection framework has been
used extensively in the previous chapters.

Specifically, each node of a gene circuit has been modeled as an input/output
module taking as input the concentrations of transcription factors that regulate a
gene y and giving as output the concentration of protein Y expressed by gene y.
This is of course not the only possible choice for delimiting a module. We could
in fact let the mRNA or the RNA polymerase flowing along the DNA, called PoPS
(polymerase per second) [29], play the role of input and output signals. Similarly,
each node of a signal transduction network is usually a protein covalent modifi-
cation module, which takes as input a modifying enzyme (a kinase in the case of
phosphorylation) and gives as an output the modified protein.

For example, one of the models of the MAPK cascade considered in Section
2.5 was obtained by setting the value of the kinase concentration of a downstream
cycle equal to the value of the concentration of the modified protein of the upstream
cycle. A similar technique was employed for designing all the circuits of Chapter 6.
For example, the repressilator model was obtained by setting the concentration of
the input transcription factor of each gene equal to the concentration of the output
transcription factor of the upstream gene.

This input/output modeling framework is extremely useful because it allows
us to predict the behavior of an interconnected system based on the behavior of
the isolated modules. For example, the location and number of steady states in
the toggle switch of Section 6.3 were predicted by intersecting the steady state
input/output characteristics of the isolated modules A and B. Similarly, the number
of steady states in the repressilator was predicted by modularly composing the
input/output steady state characteristics of the three modules composing the circuit.

For this input/output interconnection framework to reliably predict the behavior
of connected modules, however, one must have that the input/output (dynamic)
behavior of a system does not change upon interconnection to another system. We
refer to the property by which a system input/output behavior does not change upon
interconnection as modularity. Of course, all the designs and modeling described
in the previous chapter assume that the modularity property holds. In this chapter,
we question this assumption and investigate when modularity holds in gene and in
signal transduction circuits.

7.2 Introduction to Retroactivity

The modularity assumption implies that when two modules are connected together,
their behavior does not change because of the interconnection. However, a funda-
mental systems-engineering issue that arises when interconnecting subsystems is
how the process of transmitting a signal to a “downstream” component affects the
dynamic state of the sending component. This issue, the effect of “loads” on the
output of a system, is well-understood in many engineering fields such as electrical
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Figure 7.2: The clock behavior can be destroyed by a load. As the number of downstream
binding sites for A, ptot, is increased in the load, the activator and repressor dynamics loose
their synchronization and ultimately the oscillations disappear.

engineering. It has often been pointed out that similar issues may arise for biolog-
ical systems. These questions are especially delicate in design problems, such as
those described in Chapter 6.

For example, consider a biomolecular clock, such as the activator-repressor
clock introduced in Section 6.5. Assume that the activator protein concentration
A(t) is now used as a means to synchronize or time some downstream systems.
From a systems/signals point of view, A(t) becomes an input to the second sys-
tem (Figure 7.2). The terms “upstream” and “downstream” reflect the direction in
which we think of signals as traveling, from the clock to the systems being syn-
chronized. However, this is only an idealization, because, as seen in Figure 7.2, the
binding and unbinding of A to promoter sites in a downstream system competes
with the biochemical interactions that constitute the upstream clock and may there-
fore disrupt the operation of the clock itself. We call this “back-effect” retroactivity
to extend the notion of impedance or loading to non-electrical systems and in par-
ticular to biomolecular systems. This phenomenon, while in principle may be used
in an advantageous way from natural systems, can be deleterious when designing
synthetic systems.

One possible approach to avoid disrupting the behavior of the clock is to in-
troduce a gene coding for a new protein X, placed under the control of the same
promoter as the gene for A, and using the concentration of X, which presumably
mirrors that of A, to drive the downstream system. This approach, however, still
has the problem that the behavior of the X concentration in time may be altered
and even disrupted by the addition of downstream systems that drain X, as we shall
see in the next section. The net result is that the downstream systems are not prop-
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Figure 7.3: A system S input and output signals. The r and s signals denote signals origi-
nating by retroactivity upon interconnection [22].

erly timed as X does not transmit the desired signal. Methods to model and prevent
retroactivity is the subject of this chapter.

To model a system with retroactivity, we add to the input/output modeling
framework used so far, an additional input, called s, to model any change that
may occur upon interconnection with a downstream system. That is, s models the
fact that whenever y is taken as an input to a downstream system the value of y
may change, because of the physics of the interconnection. This phenomenon is
also called in the physics literature “the observer effect”, implying that no phys-
ical quantity can be measured without being altered by the measurement device.
Similarly, we add a signal r as an additional output to model the fact that when a
system is connected downstream of another one, it will send a signal upstream that
will alter the dynamics of that system. More generally, we define a system S to
have internal state x, two types of inputs, and two types of outputs: an input “u”,
an output “y” (as before), a retroactivity to the input “r”, and a retroactivity to the
output “s” (Figure 7.3). We will thus represent a system S by the equations

dx
dt
= f (x,u, s), y = h(x,u, s), r = R(x,u, s), (7.1)

where f , g, and R are arbitrary functions and the signals x, u, s, r, and y may be
scalars or vectors. In such a formalism, we define the input/output model of the
isolated system as the one in equation (7.1) without r in which we have also set
s = 0.

Let S i be a system with inputs ui and si and with outputs yi and ri. Let S 1 and S 2

be two systems with disjoint sets of internal states. We define the interconnection
of an upstream system S 1 with a downstream system S 2 by simply setting y1 = u2

and s1 = r2. For interconnecting two systems, we require that the two systems do
not have internal states in common.

Inset. As a simple example, which may be more familiar to an engineering audi-
ence, consider the hydraulic system shown in Figure 7.4. We consider a constant
input flow f0 as input to the upstream tank and the pressure p as its output. The
corresponding output flow is given by k

√
p, in which k is a positive constant de-

pending on the geometry of the system. The pressure p is given by (neglecting the
atmospheric pressure for simplicity) p = ρh, in which h is the height of the water
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Figure 7.4: On the left, we represent a tank system that takes as input the constant flow f0
and gives as output the pressure p at the output pipe. On the right, we show a downstream
tank.

level in the tank and ρ is water density. Let A be the cross section of the tank, then
the tank system can be represented by the equation

A
dp
dt
= ρ f0−ρk

√
p. (7.2)

Hence, the steady state value of the pressure p is given by

peq = ( f0/k)2.

We now connect the output pipe of the same tank to the input pipe of a down-
stream tank shown on the right of Figure 7.4. Let p1 = ρh1 be the pressure generated
by the downstream tank at its input and output pipes. Then, the flow at the output
of the upstream tank will change and will now be given by g(p, p1) = k

√
|p− p1| if

p > p1 and by g(p, p1) = −k
√
|p− p1| if p ≤ p1. As a consequence, the time behav-

ior of the pressure p generated at the output pipe of the upstream tank will change
to

A
dp
dt
= ρ f0−ρg(p, p1),

A1
dp1

dt
= ρg(p, p1)−ρk1

√
p1,

(7.3)

in which A1 is the cross section of the downstream tank and k1 is a positive param-
eter depending on the geometry of the downstream tank. Thus, the input/output
response of the tank measured in isolation (equation (7.2)) does not stay the same
when the tank is connected through its output pipe to another tank (equation (7.3)).
The resulting equilibrium pressure is also different and given by

peq =

(
f0
k

)2 ⎛⎜⎜⎜⎜⎝1+ k2

k2
1

⎞⎟⎟⎟⎟⎠ .
♦
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Figure 7.5: The transcriptional component takes as input u protein concentration Z and
gives as output y protein concentration X. The downstream transcriptional component takes
protein concentration X as its input.

7.3 Retroactivity in Gene Circuits

In the previous section, we have defined retroactivity as a general concept modeling
the fact that when an upstream system is input/output connected to a downstream
one, its behavior can change. In this section, we focus on gene circuits and show
what form retroactivity takes and what its net effects are.

Consider the transcriptional system of Figure 7.5 in the dashed box. It is an
input/output system that takes as input the transcription factor concentration Z and
gives as output the transcription factor concentration X(t). The activity of the pro-
moter controlling gene x depends on the amount of Z bound to the promoter. If
Z = Z(t), such an activity changes with time. To simplify notation, we denote it by
k(t). We assume here that the mRNA dynamics are at their quasi-steady state. The
reader can verify that all the results hold unchanged when the mRNA dynamics are
included (see exercises). We write the dynamics of X as

dX
dt
= k(t)−δX, (7.4)

in which δ is the decay rate constant of the protein. We refer to equation (7.4) as
the isolated system dynamics.

Now, assume that X drives a downstream transcriptional module by binding to
a promoter p with concentration p (Figure 7.5). The reversible binding reaction of
X with p is given by

X+p
koff−−−⇀↽−−−
kon

C

in which C is the complex protein-promoter and kon and koff are the association and
dissociation rate constants of protein X to promoter site p. Since the promoter is
not subject to decay, its total concentration ptot is conserved so that we can write
p+C = ptot. Therefore, the new dynamics of X are governed by the equations

dX
dt
= k(t)−δX+ [koffC− kon(ptot−C)X], (7.5)

dC
dt
= −koffC+ kon(ptot−C)X, (7.6)
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Figure 7.6: The effect of interconnection. Simulation results for the system in equations
(7.6). The solid line represents X(t) originating by equations (7.4), while the dashed line
represents X(t) obtained by equation (7.6). Both transient and permanent behaviors are
different. Here, k(t) = 0.01(1+ sin(ωt)) with ω = 0.005 in the left side plots and ω = 0
in the right side plots, kon = 10, koff = 10, δ = 0.01, ptot = 100, X(0) = 5. The choice of
protein decay rate (in min−1) corresponds to a half life of about one hour. The frequency of
oscillations is chosen to have a period of about 12 times the protein half life in accordance
to what is experimentally observed in the synthetic clock of [5].

in which

s = koffC− kon(ptot−C)X.

We refer to this system as connected system. The terms in the brackets represent
the signal s, that is, the retroactivity to the output, while the second of equation
(7.6) describes the dynamics of the downstream system driven by X. Then, we can
interpret s as being a mass flow between the upstream and the downstream system.
When s = 0, the first of equations (7.6) reduces to the dynamics of the isolated
system given in equation (7.4).

How large is the effect of retroactivity s on the dynamics of X and what are the
biological parameters that affect it? We focus on the retroactivity to the output s.
We can analyze the effect of the retroactivity to the input r on the upstream system
by simply analyzing the dynamics of Z, here modeled by k(t), in the presence of its
binding sites p0 in Figure 7.5 in a way similar to how we analyze the dynamics of
X in the presence of the downstream binding sites p.

The effect of retroactivity s on the behavior of X can be very large (Figure 7.6).
By looking at Figure 7.6, we notice that the effect of retroactivity is to “slow down”
the dynamics of X(t) as the response time to a step input increases and the response
to a periodic signal appears attenuated and phase-shifted. We will come back to this
more precisely in the next section.

These effects are undesirable in a number of situations in which we would like
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an upstream system to “drive” a downstream one as is the case, for example, when
a biological oscillator has to time a number of downstream processes. If, due to
the retroactivity, the output signal of the upstream process becomes too low and/or
out of phase with the output signal of the isolated system (as in Figure 7.6), the
coordination between the oscillator and the downstream processes will be lost. We
next provide a procedure to obtain an operative quantification of the effect of the
retroactivity on the dynamics of the upstream system.

Quantification of the retroactivity to the output

In this section, we provide a general approach to quantify the retroactivity to the
output. To do so, we quantify the difference between the dynamics of X in the iso-
lated system (7.4) and the dynamics of X in the connected system (7.6) by estab-
lishing conditions on the biological parameters that make the two dynamics close
to each other. This is achieved by exploiting the difference of time scales between
the protein production and decay processes and its binding and unbinding process
to the promoter p. By virtue of this separation of time scales, we can approximate
system (7.6) by a one dimensional system describing the evolution of X on the slow
manifold (see Section 3.6).

Consider again the full system in equations (7.6), in which the binding and
unbinding dynamics are much faster than protein production and decay, that is,
koff,kon � k(t), δ and define Kd = koff/kon as before. Even if the second equation
goes to equilibrium very fast compared to the first one, the above system is not in
standard singular perturbation form. In fact, while C clearly is a fast variable, X
is neither fast nor slow since its differential equation displays both fast and slow
terms. To explicitly model the difference of time scales, we introduce a parameter ε,
which we define as ε = δ/koff. Since koff� δ, we also have that ε � 1. Substituting
koff = δ/ε, kon = δ/(εKd), and letting y = X+C (the total protein concentration), we
obtain the system in standard singular perturbation form

dy
dt
= k(t)−δ(y−C), ε

dC
dt
= −δC+ δ

Kd
(ptot−C)(y−C), (7.7)

in which y is the slow variable. The reader can check as an exercise that the slow
manifold of system (7.7) is locally exponentially stable (see Exercises).

We can obtain an approximation of the dynamics of X in the limit in which ε is
very small, by setting ε = 0. This leads to

−δC+ δ
Kd

(ptot−C)X = 0→C = γ(X) with γ(X) =
ptotX

X+Kd
.

Since dy/dt = dX/dt+ dC/dt, we have that dy/dt = dX/dt+ (dγ/dX)dX/dt. This
along with dy/dt = k(t)−δX lead to

dX
dt
= (k(t)−δX)

(
1

1+dγ/dX

)
. (7.8)
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The difference between the dynamics in equation (7.8) (the connected system
after a fast transient) and the dynamics in equation (7.4) (the isolated system) is
zero when the term dγ(X)

dX in equation (7.8) is zero. We thus consider the factor dγ(X)
dX

as a quantification of the retroactivity s after a fast transient in the approximation
in which ε ≈ 0. We can also interpret the factor dγ(X)

dX as a percentage variation of
the dynamics of the connected system with respect to the dynamics of the isolated
system at the quasi steady state. We next determine the physical meaning of such a
factor by calculating a more useful expression that is a function of key biochemical
parameters.

By using the implicit function theorem, one can compute the following expres-
sion for dγ(X)/dX:

dγ(X)
dX

=
ptot/Kd

(X/Kd+1)2
=: R(X). (7.9)

The retroactivity measure R is low basically whenever the ratio ptot/Kd, which can
be seen as an effective load, is low. This is the case if the affinity of the binding sites
p is small (Kd large) or if ptot is low. Also, the retroactivity measure is dependent
on X in a nonlinear fashion and it is such that it is maximal when X is the smallest.
The expression of R(X) provides an operative quantification of the retroactivity:
such an expression can in fact be evaluated once the dissociation constant of X to p
is known, the concentration of the binding sites ptot is known, and X is also known.

Summarizing, the modularity assumption introduced in Section 7.1 holds only
when the value of R(X) is small enough. As a consequence, the design of a simple
circuit can assume modularity if the interconnections among the composing mod-
ules can be designed so that the value of R(X) is low. From a design point of view,
low retroactivity can be obtained by either choosing low-affinity binding sites p or
making sure that the amounts of p is not too high. This can be guaranteed by plac-
ing the promoter sites p on low copy number plasmids or even on the chromosome
(with copy number equal to 1). High copy number plasmids are expected to lead to
non-negligible retroactivity effects on X.

However, in the presence of very low affinity and/or very low amount of pro-
moter sites, the amount of complex C will be very low. As a consequence, the
amplitude of the transmitted signal to downstream may be also very small. Hence,
there will be a design compromise between guaranteeing a sufficiently high signal
while minimizing retroactivity. A better approach is to design insulation devices
(as opposed to designing the interconnection for low retroactivity) to buffer sys-
tems from retroactivity as explained later in the chapter.

Characterizing the effects of retroactivity

How do we explain the amplitude attenuation and phase shift due to retroactiv-
ity observed in Figure 7.6? In order to answer this question, we can linearize
the system about its steady state and determine the effect of retroactivity on the
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frequency response. Let the input be k(t) = k̄ + A0 sin(ωt) and let X̄ = k̄/δ and
C̄ = ptotX̄/(X̄+Kd) be the equilibrium values corresponding to k̄. The isolated sys-
tem is already linear, so there is no need to perform linearization and the transfer
function from k to X is given by

GI
Zk(s) =

1
s+δ
.

For the connected system, denote the displacements with respect to the steady state
(k̄, X̄,C̄) by k̃ = k− k̄, x = X − X̄, and c = C − C̄. Then, the linearized dynamics are
given by

dx
dt
= k̃(t)−δx− δ

εKd
x(ptot− C̄)+

δ

ε
X̄c+

δ

ε
c

dc
dt
=
δ

εKd
x(ptot− C̄)− δ

ε
X̄c− δ

ε
c

Letting y := c+ x, these can be taken to standard singular perturbation form:

dy
dt
= k̃(t)−δ(y− c),

ε
dc
dt
=
δ

εKd
x(ptot− C̄)− δ

ε
X̄c− δ

ε
c .

Setting ε = 0, gives the expression of the slow manifold as c = x(ptot− C̄)/(X̄/Kd+

1) =: γ̄(x). Using the expression of C̄, the fact that dx/dt+dc/dt = dy/dt = k̃(t)−δx
and that dc/dt = (dγ̄/dx)dx/dt, we finally obtain the expression of the x dynamics
on the slow manifold as

dx
dt
= (k̃(t)−δx)

1

1+ (ptot/Kd)/(X̄/Kd+1)2
.

Denoting R̄ := (ptot/Kd)/(X̄/Kd+1)2, we obtain the transfer function from k̃ to x of
the approximated connected system linearization as

GC
Zk =

1

1+ R̄

1

s+δ/(1+ R̄)
.

Hence, we have the following result for the frequency response amplitude and
phase shift:

MI
Zk(ω) =

1
√
ω2+δ2

, φI
Zk(ω) = tan−1(−ω/δ),

MC
Zk(ω) =

1

1+ R̄

1√
ω2+δ2/(1+ R̄)2

, φC
Zk(ω) = tan−1(−ω(1+ R̄)/δ),

from which one obtains that MI
Zk(0) = MC

Zk(0) and, since R̄ > 0, the bandwidth of
the connected system is lower than that of the isolated system. Also, the phase shift
of the connected system will be larger than that of the isolated system.
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Figure 7.7: Covalent modification cycle (in the box) with its downstream system.

7.4 Retroactivity in Signaling Systems

Signaling systems are circuits that take external stimuli and through a sequence of
biolmolecular reactions transform them to useful signals that establish how cells
respond to their environment. These systems are usually composed of covalent
modification cycles (phosphorylation, methylation, urydylilation, etc.) connected
in cascade fashion, in which each cycle has multiple downstream targets (or sub-
strates). An example is that of the MAPK cascade, which we have analyzed in
Section 2.5. Since covalent modification cycles always have downstream targets,
such as DNA binding sites or other substrates, it is particularly important to un-
derstand whether and how retroactivity from these downstream systems affect the
response of the upstream cycles to input stimulation. In this section, we study this
question both for the steady state and dynamic response of a covalent modification
cycle to its input (refer to Figure 7.7).

Steady state effects of retroactivity

One important characteristic of signaling systems and, in particular, of covalent
modification cycles, is the steady state characteristics (also called dose response).
This describes the steady state output value in response to a constant input stimula-
tion. For a single covalent modification cycle, this has been extensively studied as
a function of important cycle parameters, such as the Michaelis-Menten constants
and the total amount of protein. In particular, it was found that when the Michaelis-
Menten constants are sufficiently small compared to the total protein amount, the
cycle characteristic becomes ultrasensitive, a condition called zero-order ultrasen-
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sitivity (Section 2.4).
However, when the cycle is interconnected to its downstream targets, this char-

acteristic may change shape. In order to understand how this may change, we
rewrite the reaction rates and corresponding differential equation model for the
covalent modification cycle incorporating the binding of X∗ to its downstream tar-
gets. Referring to Figure 7.7, we have the following reactions:

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, X∗+Y

a2−−⇀↽−−
d2

C2
k2−→ X+Y,

to which we add the binding reaction of X* with its substrates S:

X∗+S
kon−−−⇀↽−−−
koff

C,

in which C is the complex of X* with S. In addition to this, we have the conserva-
tion laws Xtot = X∗+X+C1+C2+C, Z+C1 = Ztot, and Y +C2 = Ytot.

The rate equations governing the system are given by

dC1

dt
= a1XZ− (d1+ k1)C1

dX∗

dt
= −a2X∗Y +d2C2+ k1C1− konS X∗+ koffC

dC2

dt
= a2X∗Y − (d2+ k2)C2

dC
dt
= konX∗S − koffC.

The input/output characteristics are found by solving this system for the equilib-
rium. In particular, by setting dC1/dt = 0, dC2/dt = 0, using that Z = Ztot−C1 and
that Y = Ytot−C2, we obtain the familiar expressions for the complexes:

C1 =
ZtotX

K1+X
, C2 =

YtotX∗

K2+X∗
, with K1 =

d1+ k1

a1
and K2 =

d2+ k2

a2
.

By setting dX∗/dt+dC2/dt+dC/dt = 0, we obtain k1C2 = k2C2, which leads to

V1
X

K1+X
= V2

X∗

K2+X∗
, V1 = k1Ztot and V2 = k2Ytot. (7.10)

By assuming that the substrate Xtot is in excess compared to the enzymes, we have
that C1,C2� Xtot so that X ≈ Xtot−X∗ −C, in which (from setting dC/dt = 0) C =
X∗S/Kd with Kd = koff/kon, leading to X ≈ Xtot −X∗(1+ S/Kd). Calling λ = S/Kd,
equation (7.10) finally leads to

y :=
V1

V2
=

X∗
(

K1
1+λ +

(
Xtot
1+λ −X∗

))
(K2+X∗)

(
Xtot
1+λ −X∗

) . (7.11)
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Figure 7.8: The addition of downstream target sites make the input/output characteristic
more linear-like, that is, retroactivity makes a switch-like response into a more graded
response.

Here, we can interpret λ as an effective load, which increases with the amount of
targets of X∗ but also with the affinity of these targets (1/Kd). The ratio V1/V2 = y
is a normalized input stimulation as it linearly increases with the input Ztot.

We are interested in how the shape of the steady state curve of X∗ as function
of y changes when the effective load λ is changed. As seen in Section 2.4, a way to
characterize the shape of the steady state characteristic is to calculate the response
coefficient

R =
y90

y10
.

In the case of the current system, we have that the maximal value of X∗ obtained
as y→∞ is given by Xtot/(1+λ). Hence, from equation (7.11), we have that

y90 =
(K̄1+0.1)0.9

(K̄2(1+λ)+0.9)0.1
, y10 =

(K̄1+0.9)0.1

(K̄2(1+λ)+0.1)0.9
,

K̄1 :=
K1

Xtot
, K2 =

K2

Xtot
,

so that

R = 81
(K̄1+0.1)(K̄2(1+λ)+0.1

(K̄2(1+λ)+0.9)(K̄1+0.9)
.

This expression clearly indicates that the net effect of the load is to increase the
Michaelis-Menten constant K2 of the backward enzymatic reaction.

One can check that R is a monotonically increasing function of λ. In particular,
as λ increases, the value of R tends to 81(K̄1+0.1)/(K̄2+0.9), which, in turn, tends
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to 81 for K̄1, K̄2→∞. When λ = 0, we recover the results of Section 2.4, according
to which R approaches 81 (Michaelis-Menten type of response) for K̄1, K̄2 large,
while R decreases for decreasing values of K̄1, K̄2, corresponding to an ultrasensi-
tive response. Independently of the values of K̄1 and K̄2, the addition of the load
makes any characteristic more linear-like (see Figure 7.8). This finding has been
experimentally confirmed employing signal transduction circuits reconstituted in
vitro [95].

We can also study the behavior of the point of half maximal induction

y50 =
K̄1+0.5

K̄2(1+λ)+0.5
,

to find that as λ increases, y50 decreases. That is, as more downstream load is
applied, a smaller stimulus is required to obtain a significant response of the output
(see exercises).

Dynamic effects of retroactivity

In order to understand the dynamic effects of retroactivity on the signaling module,
we seek a one dimensional approximation of the X∗ dynamics, which can be easily
analyzed. To do so, we exploit time scale separation and apply singular perturbation
analysis.

Specifically, we have that ai,di,kon,koff � k1,k2, so we can choose as a small
parameter ε = k1/koff and slow variable y = X∗+C+C2. By setting ε = 0, we obtain
that C1 = ZtotX/(K1 + X), C2 = YtotX∗/(K2 + X∗) =: γ(X∗), and C = λX∗, in which
Ztot is now a time-varying signal. Hence, the dynamics of the slow variable y on
the slow manifold is given by

dy
dt
= k1

Ztot(t)X
K1+X

− k2Ytot
X∗

X∗+K2
.

Using dy/dt= dX∗/dt+dC/dt+dC2/dt, dC/dt= λdX∗/dt, dC2/dt= ∂γ/∂X∗dX∗/dt,
and the conservation law X = Xtot −X∗(1+λ), we finally obtain the approximated
X∗ dynamics as

dX∗

dt
=

1
1+λ

(
k1

Ztot(t)(Xtot−X∗(1+λ))
K1+ (Xtot−X∗(1+λ))

− k2Ytot
X∗

X∗+K2

)
, (7.12)

where we have assumed that that Ytot/K2� S/Kd, so that the effect of the binding
dynamics of X* with Y (modeled by ∂γ/∂X∗) is negligible with respect to λ. The
reader can verify this derivation as an exercise (see exercises).

From this expression, one can understand immediately the effect of the load λ
on the rise time and decay time in response to extreme input stimuli. For the decay
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Figure 7.9: Behavior of the bandwidth as a function of the load for different values of the
Michaelis-Menten constants K1,K2. Here Xtot = 1.

time, one has to assume an initial condition X∗(0) � 0 and Ztot(t) = 0 for all t. In
this case, we have that

dX∗

dt
= −k2Ytot

X∗

X∗+K2

1
1+λ

,

from which, since λ > 0, it is apparent that the transient will be slower and hence
that the system will have an increased decay time due to retroactivity. For the rise
time, one can assume Ztot ≈∞ and X∗(0) = 0. Hence, we have that

(1+λ)
dX∗

dt
=

(
k1

Ztot(t)(Xtot−X∗(1+λ))
K1+ (Xtot−X∗(1+λ))

)
,

which is the same expression for the isolated system in which X∗ is scaled by
(1+λ). So, the rise time is not affected.

In order to understand how the bandwidth of the system is affected by retroac-
tivity, we consider Ztot(t) = Z̄ + A0 sin(ωt). Let X̄ be the equilibrium of X∗ cor-
responding to Z̄ and denote the displacements z = Ztot − Z̄ and x = X∗ − X̄. The
linearized dynamics are given by

dx
dt
= −a(λ)x+b(λ)z(t),

in which

a(λ) =
1

1+λ

(
k1Z̄

K1(1+λ)

(K1+ (Xtot− X̄(1+λ)))2
+ k2Ytot

K2

(K2+ X̄)2

)
and

b(λ) =
k1

1+λ

(
Xtot− X̄(1+λ)

K1+ (Xtot− X̄(1+λ))

)
,
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so that the bandwidth of the system is given by ωB = a(λ).
Figure 7.9 shows the behavior of the bandwidth as a function of the load. When

the isolated system static characteristics are linear-like (K1,K2 � Xtot), the band-
width monotonically decreases with the load. Hence applying any load decreases
system bandwidth. When the isolated system static characteristics are ultrasensi-
tive (K1,K2� Xtot), the bandwidth of the connected system can be larger than that
of the isolated system for sufficiently large amounts of loads. In these conditions,
one should expect that the response of the connected system becomes faster than
that of the isolated system.

7.5 Insulation Devices: Retroactivity Attenuation

As explained earlier, it is not always possible or advantageous to design the down-
stream system so that it applies low retroactivity. This is because the downstream
system may have already been designed and optimized for other purposes. A better
approach, in analogy to what is performed in electrical circuits, is to design a de-
vice to be placed between the upstream system (the oscillator, for example) and the
downstream load so that the device output is not changed by the load and the de-
vice does not affect the behavior of the upstream system. That is, the output of the
device should follow the prescribed behavior independently of any loading applied
by a downstream system.

Specifically, consider a system S such as the one shown in Figure 7.3 that takes
u as input and gives y as output. We would like to design such a system so that

(a) the retroactivity r to the input is very small;

(b) the effect of the retroactivity s to the output on the internal dynamics of the
system is very small independently of s itself.

Such a system is said to enjoy the insulation property and will be called an insu-
lation device. Indeed, such a system will not affect an upstream system because
r ≈ 0 and it will keep the same output signal y independently of any connected
downstream system.

Retroactivity to the input

Equation (7.9) quantifies the effect of retroactivity on the dynamics of X as a func-
tion of biochemical parameters that characterize the interconnection mechanism
with a downstream system. These parameters are the affinity of the binding site
1/Kd, the total concentration of such binding site ptot, and the level of the signal
X(t). Therefore, to reduce the retroactivity, we can choose parameters such that
(7.9) is small. A sufficient condition is to choose Kd large (low affinity) and ptot

small, for example. Having small value of ptot and/or low affinity implies that there
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Figure 7.10: Diagram (a) shows the basic feedback/amplification mechanism by which
amplifiers attenuate the effect of the retroactivity to the output s. Diagram (b) shows an
alternative representation of the same mechanism of diagram (a), which will be employed
to design biological insulation devices.

is a small “flow” of protein X toward its target sites. Thus, we can say that a low
retroactivity to the input is obtained when the “input flow” to the system is small.

Attenuation of retroactivity to the output: Principle 1

The basic mechanism for retroactivity attenuation is based on the concept of distur-
bance attenuation presented in Section 3.2. In its simplest form, it can be illustrated
by diagram (a) of Figure 7.10, in which the retroactivity to the output s plays the
same role as an additive disturbance. For large gains G, the effect of the retroac-
tivity s to the output is negligible as the following simple computation shows. The
output y is given by

y =G(u−Ky)+ s,

which leads to

y = u
G

1+KG
+

s
1+KG

.

As G grows, y tends to u/K, which is independent of the retroactivity s.
Therefore, a central enabler to attenuate the retroactivity effect at the output of

a component is to (1) amplify the input of the component through a large gain and
(2) apply a large negative output feedback. The inset illustrates this general idea in
the context of a simple hydraulic system.

Inset. Consider the academic hydraulic example consisting of two connected tanks
shown in Figure 7.11. The objective is to attenuate the effect of the pressure applied
from the downstream tank to the upstream tank, so that the output pressure of the
upstream system does not change when the downstream tank is connected. We let
the input flow f0 be amplified by a large factor G. Also, we consider a large pipe in
the upstream tank with output flow G′

√
p, with G′ � k and G′ � k1. Let p be the

pressure at the output pipe of the upstream tank and p1 the pressure at the bottom
of the downstream tank. One can verify that the only equilibrium value for the
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Figure 7.11: We amplify the input flow f0 through a large gain G and we apply a large
negative feedback by employing a large output pipe with output flow G′

√
p.

pressure p at the output pipe of the upstream tank is obtained for p > p1 and it is
given by

peq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ G f0

G′+ (kk1)/
√

k2
1 + k2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

.

If we let G′ be sufficiently larger than k1 and k and we let G′ = KG for some
positive K, then for G sufficiently large peq ≈ ( f0/K)2, which does not depend on
the presence of the downstream system. In fact, it is the same as the equilibrium
value of the isolated upstream system described by

A
dp
dt
= ρG f0−ρG′

√
p−ρk√p

for G sufficiently large and for G′ = KG.
♦

Going back to the transcriptional example, consider the approximated dynamics
of equation (7.8) for X. Let us thus assume that we can apply a gain G to the input
k(t) and a negative feedback gain G′ to X with G′ = KG. This leads to the new
differential equation for the connected system (7.8) given by

dX
dt
=
(
Gk(t)− (G′+δ)X

)
(1−d(t)), (7.13)

in which we have defined d(t) = (dγ/dX)/(1+dγ/dX). Since d(t) < 1, letting G′ =
KG, we can verify (see exercises) that as G grows X(t) tends to k(t)/K for both the
connected system in the form of equation (7.13) and the isolated system

dX
dt
=Gk(t)− (G′+δ)X. (7.14)

That is, the solutions X(t) of the connected and isolated system tend to each other
as G increases. As a consequence, the presence of the disturbance term d(t) will not
significantly affect the time behavior of X(t). Since d(t) is a measure of retroactivity,
its effect on the behavior of X(t) is attenuated by employing large gains G and G′.

The next questions we address is how we can implement such amplification and
feedback gains in a biomolecular system.
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Figure 7.12: In this design, the input Z is amplifed through a strong promoter p0. The
negative feedback on the output X is obtained by enhancing its degradation through the
protease Y.

Biomolecular realizations of Principle 1

In the previous section, we have proposed a general principle to attenuate the
retroactivity to the output. Such a principle consists of a large amplification of
the input and a large negative output feedback. In this section, we determine two
possible biomolecular implementations to obtain a large amplification gain to the
input Z of the insulation component and a large negative feedback on the output
X. Both mechanisms realize the negative feedback through enhanced degradation.
The first design realizes amplification through transcriptional activation, while the
second design through phosphorylation.

Design 1: Amplification through transcriptional activation

In this design, we obtain a large amplification of the input signal Z(t) by having
promoter p0 (to which Z binds) be a strong, non-leaky promoter. The negative
feedback mechanism on X relies on enhanced degradation of X. Since this must
be large, one possible way to obtain an enhanced degradation for X is to have a
protease, called Y, be expressed by a strong constitutive promoter. The protease Y
will cause a degradation rate for X, which is larger if Y is more abundant in the
system. This design is schematically shown in Figure 7.12.

In order to investigate whether such a design realizes a large amplification and
a large negative feedback on X as needed, we analyze the model for the system
of Figure 7.12. The reaction of the protease Y with protein X is modeled as the
two-step reaction

X+Y
η1−−⇀↽−−
η2

W
β
−→ Y,

which can be found in Section 2.3.
The input/output system model of the insulation component that takes Z as an
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input and gives X as an output is given by the following equations

dZ
dt

= k(t)−δZ+
[
k− Zp− k+ Z(p0,tot−Zp)

]
(7.15)

dZp

dt
= k+Z(p0,tot−Zp)− k−Zp (7.16)

dmX

dt
= GZp−δ1mX (7.17)

dW
dt

= η1XY −η2W −βW (7.18)

dY
dt

= −η1YX+βW +αG−γY +η2W (7.19)

dX
dt

= νmX −η1YX+η2W −δ2X+
[
koffC− konX(ptot−C)

]
(7.20)

dC
dt

= −koffC+ konX(ptot−C), (7.21)

in which we have assumed that the expression of gene z is controlled by a promoter
with activity k(t). In this system, we have denoted by k+ and k− the association and
dissociation rates of Z with its promoter site p0 in total concentration p0,tot is the
total concentration of the promoter p0. Also, Zp denotes the complex of Z with such
a promoter site. mX is the concentration of mRNA of X, C is the concentration of
X bound to the downstream binding sites with total concentration ptot, and γ is the
decay rate of the protease Y. The promoter controlling gene y has strength αG, for
some constant α, and it has the same order of magnitude strength as the promoter
controlling x.

The terms in the square brackets in equation (7.15) represent the retroactivity
r to the input of the insulation component in Figure 7.12. The terms in the square
brackets in equation (7.20) represent the retroactivity s to the output of the insula-
tion component of Figure 7.12. The dynamics of equations (7.15)–(7.21) without
s (the elements in the box in equation (7.20)) describe the dynamics of X with no
downstream system.

Equations (7.15) and (7.16) simply determine the signal Zp(t) that is the input to
equations (7.17)–(7.21). For the discussion regarding the attenuation of the effect
of s, it is not relevant what the specific form of signal Zp(t) is. Let then Zp(t) be any
bounded signal v(t). Since equation (7.17) takes v(t) as an input, we will have that
mX =Gv̄(t), for a suitable signal v̄(t). Let us assume for the sake of simplifying the
analysis that the protease reaction is a one step reaction, that is,

X+Y
β
−→ Y.

Therefore, equation (7.19) simplifies to

dY
dt
= αG−γY
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Figure 7.13: Design 1: results for different gains G. In all plots, k(t) = 0.01(1+ sin(ωt)),
ptot = 100, koff = kon = 10, δ = 0.01, and ω = 0.005. The parameter values are δ1 = 0.01,
p0,tot = 1, η1 = η2 = β = γ = 0.01, k− = 200, k+ = 10, α = 0.1, δ2 = 0.1, ν = 0.1, and G =
1000,100,10,1. The retroactivity to the output is not well attenuated for values of the gain
G = 1 and the attenuation capability begins to worsen for G = 10.

and equation (7.20) simplifies to

dX
dt
= νmX −βYX−δ2X+ koffC− konX(ptot−C).

If we consider the protease to be at its equilibrium, we have that Y(t) = αG/γ.
As a consequence, the X dynamics become

dX
dt
= νGv̄(t)− (βαG/γ+δ2)X+ koffC− konX(ptot−C),

with C determined by equation (7.21). By using the same singular perturbation
argument employed in the previous section, we obtain that the dynamics of X will
be (after a fast transient) approximatively given by

dX
dt
= (νGv̄(t)− (βαG/γ+δ2)X)(1−d(t)), (7.22)

in which 0 < d(t) < 1 is the retroactivity measure. Then, as G increases, X(t) be-
comes closer to the solution of the isolated system

dX
dt
= νGv̄(t)− (βαG/γ+δ2)X,

as explained in the previous section.
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We now turn to the question of minimizing the retroactivity to the input r be-
cause its effect can alter the input signal Z(t). In order to decrease r, we guar-
antee that the retroactivity measure given in equation (7.9) in which we substi-
tute Z in place of X and p0,tot in place of ptot, is small. This is seen to be true
if (K̄d + Z)2/(p0,totK̄d) is very large, in which 1/K̄d = k+/k− is the affinity of the
binding site p0 to Z. Since after a short transient, Zp = (p0,totZ)/(K̄d + Z), for Zp

not to be a distorted version of Z, it is enough to ask that K̄d � Z. This, combined
with the requirement that (K̄d + Z)2/(p0,totK̄d) is very large, leads to the require-
ment p0,tot/K̄d � 1. Summarizing, for not having distortion effects between Z and
Zp and small retroactivity r, we need that

K̄d� Z and p0,tot/K̄d� 1. (7.23)

Simulation results are presented for the insulation system of equations (7.15)–
(7.21) as the mathematical analysis of such a system is only valid under the ap-
proximation that the protease reaction is a one step reaction. In all simulations, we
consider protein decay rates to be 0.01min−1 to obtain a protein half life of about
one hour. We consider always a periodic forcing k(t) = 0.01(1+ sin(ωt)), in which
we assume that such a periodic signal has been generated by a synthetic biological
oscillator. Therefore, the oscillating signals are chosen to have a period that is about
12 times the protein half life in accordance to what is experimentally observed in
the synthetic clock of [5].

For large gains (G = 1000, G = 100), the performance considerably improves
compared to the case in which X was generated by a plain transcriptional com-
ponent accepting Z as an input (Figure 7.6). For lower gains (G = 10, G = 1), the
performance starts to degrade for G = 10 and becomes not acceptable for G = 1
(Figure 7.13). Since we can view G as the number of transcripts produced per
unit time (one minute) per complex of protein Z bound to promoter p0, values
G = 100,1000 may be difficult to realize in vivo, while the values G = 10,1 could
be more easily realized. The values of the parameters chosen in Figure 7.13 are
such that K̄d � Z and p0,tot � K̄d. This is enough to guarantee that there is small
retroactivity r to the input of the insulation device independently of the value of
the gain G, according to relations (7.23). The poorer performance of the device
for G = 1 is therefore entirely due to poor attenuation of the retroactivity s to the
output.

To obtain a large gain, we need to guarantee high expression of the protease.
This may be difficult to do because in general proteases are not specific and target
for degradations all proteins. Hence, global undesired effects on the cell behavior
may result. The next design avoids this problem by using dephosphorylation as the
mechanism for enhanced degradation.
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Figure 7.14: In this design, negative feedback occurs through a phosphatase Y that converts
the active form X* back to its inactive form X. Amplification occurs through Z activating
the phosphorylation of X.

Design 2: Amplification through phosphorylation

In this design, the amplification gain G of Z is obtained by having Z activate the
phosphorylation of a protein X, which is available in the system in abundance. That
is, Z is a kinase for a protein X. The negative feedback gain G′ on X∗ is obtained
by having a phosphatase Y activate the dephosphorylation of active protein X∗.
Protein Y is also available in abundance in the system. This mechanism is depicted
in Figure 7.14. A similar design has been proposed by [83, 84], in which a MAPK
cascade plus a negative feedback loop that spans the length of the MAPK cascade
is considered as a feedback amplifier. The design presented here is simpler as it
involves only one phosphorylation cycle and does not require any explicit feed-
back loop. In fact, a strong negative feedback can be realized by the action of the
phosphatase that converts the active protein form X∗ back to its inactive form X.

We consider a simplified model for the phosphorylation and dephosphorylation
processes, which will help in obtaining a conceptual understanding of what reac-
tions realize the desired gains G and G′. The one step model that we consider is the
same as considered in Chapter 2 (Exercise 2.6):

Z+X
k1−→ Z+X∗,

and

Y+X∗
k2−→ Y+X.

We assume that there is an abundance of protein X and of phosphatase Y in the
system and that these quantities are conserved. The conservation of X gives X +
X∗ +C = Xtot, in which X is the inactive protein, X∗ is the phosphorylated protein
that binds to the downstream sites p, and C is the complex of the phosphorylated
protein X∗ bound to the promoter p. The X∗ dynamics can be described by the first
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equation in the following model

dX∗

dt
= k1XtotZ(t)

(
1− X∗

Xtot
−
[

C
Xtot

])
− k2YX∗+ [koffC− konX∗(ptot−C)] (7.24)

dC
dt
= −koffC+ konX∗(ptot−C). (7.25)

The terms in the square brackets represent the retroactivity s to the output of the
insulation system of Figure 7.14. For a weakly activated pathway [42], X∗ � Xtot.
Also, if we assume that the concentration of total X is large compared to the con-
centration of the downstream binding sites, that is, Xtot � ptot, equation (7.24) is
approximatively equal to

dX∗

dt
= k1XtotZ(t)− k2YX∗+ koffC− konX∗(ptot−C).

Let G = k1Xtot and G′ = k2Y . Exploiting again the difference of time scales
between the X∗ dynamics and the C dynamics, after a fast initial transient the dy-
namics of X∗ can be well approximated by

dX∗

dt
= (GZ(t)−G′X∗)(1−d(t)), (7.26)

in which 0 < d(t) < 1 is the retroactivity contribution. Therefore, for G and G′ large
enough, X∗(t) tends to the solution X∗(t) of the isolated system dX∗

dt =GZ(t)−G′X∗,
as explained before. As a consequence, the effect of the retroactivity to the output
s is attenuated by increasing k1Xtot and k2Y enough. That is, to obtain large in-
put and feedback gains, one should have large phosphorylation/dephosphorylation
rates and/or a large amount of protein X and phosphatase Y in the system. This
reveals that the values of the phosphorylation/dephosphorylation rates cover an
important role toward the realization of the insulation property of the module of
Figure 7.14.

From a practical point of view, the effective rates can be increased by increas-
ing the total amounts of X and Y, which can be done by placing the corresponding
genes under the control of inducible promoters. Experiments performed on a cova-
lent modification cycle reconstituted in vitro, showed that increasing these protein
amounts is an effective means to attain insulation [51].

Attenuation of retroactivity to the output: Principle 2

In this section, we present a more general mechanism for insulation, that is not in-
spired by the design of electrical circuits and is naturally implemented by the struc-
ture of biomolecular systems. For this purpose, consider Figure 7.15. We illustrate
how the system can achieve insulation from s whenever its internal dynamics are
much faster compared to the dynamics of the input u. To this end, we consider the
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Figure 7.15: Interconnection of a device with input u and output x to a downstream system
with internal state y applying retroactivity s.

following simple structure in which (for simplicity) we assume that all variables
are scalar:

du
dt
= f0(u, t)+ r(u, x)

dx
dt
=G f1(x,u)+ Ḡs(x,u) (7.27)

dy
dt
= −Ḡs(x,y).

Here G� 1 models the fact that the internal dynamics of the device is much faster
than that of the input; similarly, Ḡ � 1 models the fact that the dynamics of the
interconnection with downstream systems is also fast (as it is usually the case,
being it due to binding mechanisms). The claim that we make about this system is
the following.

If G� 1 and the Jacobian of f1 has eigenvalues with negative real part,
then x(t) is not affected by retroactivity s after a short initial transient,
independently of the value of Ḡ.

This result states that independently of the characteristics of the downstream
system, the device can be tuned (by making G large enough) so to function as an
insulation device. To clarify why this would be the case, it is useful to rewrite the
above system in standard singular perturbation form by employing ε := 1/G as a
small parameter and x̃ := x+ y as the slow variable. Hence, it can be re-written as

du
dt
= f0(u, t)+ r(u, x)

ε
dx̃
dt
= f1(x̃− y,u) (7.28)

dy
dt
= −Ḡs(x̃− y,y).

Since ∂ f1/∂x̃ has eigenvalues with negative real part, one can apply standard singu-
lar perturbation to show that after a very fast transient, the trajectories are attracted
to the slow manifold given by f1(x̃− y,u) = 0. This is locally given by x = γ(u)
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solving f1(x,u) = 0. Hence, on the slow manifold we have that x(t) = γ(u(t)), which
is independent of the downstream system, that is, it is not affected by retroactivity.

The same result holds for a more general class of systems in which the variables
u, x,y are vectors:

du
dt
= f0(u, t)+ r(u, x)

dx
dt
=G f1(x,u)+ ḠAs(x,u) (7.29)

dy
dt
= −ḠBs(x,y)

as long as there are matrices T and M such that T A+MB= 0 and T is invertible. In
fact, one can take the system to new coordinates u, x̃,y with x̃ = T x+My, in which
the system will have the form (7.28).

Biomolecular realizations of Principle 2

We next consider possible biomolecular structures that realize Principle 2. Since
this principle is based on a fast time scale of the device dynamics when compared
to that of the device input, we focus on signaling systems, which are known to
evolve on faster time scales than those of protein production and decay.

Design 1: Implementation through phosphorylation

We consider a more complex model for the phosphorylation and dephosphorylation
reactions in a phosphorylation cycle and perform a parametric analysis to highlight
the roles of the various parameters for attaining the insulation properties. In partic-
ular, we consider a two-step reaction model as seen in Section 2.4. According to
this model, we have the following two reactions for phosphorylation and dephos-
phorylation:

X+Z
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+Y. (7.30)

Additionally, we have the conservation equations Ytot = Y +C2, Xtot = X + X∗ +
C1+C2+C, because proteins X and Y are not degraded. Therefore, the differential
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equations modeling the insulation system of Figure 7.14 become

dZ
dt
= k(t)−δZ

[
−a1ZXtot(1−

X∗

Xtot
− C1

Xtot
− C2

Xtot
−
[

C
Xtot

]
)+ (d1+ k1)C1

]
(7.31)

dC1

dt
= −(d1+ k1)C1+a1ZXtot(1−

X∗

Xtot
− C1

Xtot
− C2

Xtot
−
[

C
Xtot

]
) (7.32)

dC2

dt
= −(k2+d2)C2+a2YtotX

∗(1− C2

Ytot
) (7.33)

dX∗

dt
= k1C1+d2C2−a2YtotX

∗(1− C2

Ytot
)+
[
koffC− konX∗(ptot−C)

]
(7.34)

dC
dt
= −koffC+ konX∗(ptot−C), (7.35)

in which the expression of gene z is controlled by a promoter with activity k(t).
The terms in the large square bracket in equation (7.31) represent the retroactivity
r to the input, while the terms in the square brackets of equations (7.32) and (7.34)
represent the retroactivity s to the output.

We assume that Xtot� ptot so that in equations (7.31) and (7.32) we can neglect
the term C/Xtot because C < ptot. Also, phosphorylation and dephosphorylation
reactions in equations (7.30) can occur at a much faster rate than protein production
and decay processes (see Chapter 2). Choosing Xtot and Ytot sufficiently large, let
G = k1Xtot/δ and Ḡ = koff/δ, then we can re-write the system with kon = koff/Kd,
b1 = a1Xtot/(δG), a1 = a2Ytot/(δG), b2 = d1/(δG), a2 = d2/(δG), ci = ki/(δG), and
kon = Ḡδ/Kd. Letting z = Z+C1 we obtain the system in the form

dz
dt
= k(t)−δ(z−C1)

dC1

dt
=G

(
−δ(b2+ c1)C1+δb1(z−C1)

(
1− X∗

Xtot
− C1

Xtot
− C2

Xtot
)

))
dC2

dt
=G

(
−δ(c2+a2)C2+δa1X∗

(
1− C2

Ytot

))
(7.36)

dX∗

dt
=G

(
δc1C1+δa2C2−δa1X∗

(
1− C2

Ytot

))
+ Ḡ
(
δC−δ/Kd(ptot−C)X∗

)
dC
dt
= −Ḡ

(
δC−δ/Kd(ptot−C)X∗

)
,

which is in the form of system (7.29) with u = z, x = (C1,C2,X∗), and y = C, in
which one can choose T as the 3 by 3 identity matrix and M = (0 0 1)′. Hence,
this system, for G sufficiently larger than 1 attenuates the effect of the retroactiv-
ity to the output s. For G to be large, one has to require that k1Xtot is sufficiently
large and that a2Ytot is also comparatively large. These are the same design require-
ments obtained in the previous section based on the one-step reaction model of the
enzymatic reactions.
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In order to understand the effect of retroactivity to the input on the Z dynamics,
one can perform the following calculations. Letting Km = (d1 + k1)/a1 and K̄m =

(d2+k2)/a2 represent the Michaelis-Menten constants of the forward and backward
enzymatic reactions and setting ε = 0 in the third and fourth equations of (7.36) the
following relationships can be obtained:

C1 = F1(X∗) =

X∗Ytotk2
K̄mk1

1+X∗/K̄m
, C2 = F2(X∗) =

X∗Ytot
K̄m

1+X∗/K̄m
. (7.37)

Using expressions (7.37) in the second of equations (7.36) with ε = 0 leads to

F1(X∗)(b2+ c1+
b1Z
Xtot

) = b1Z(1− X∗

Xtot
− F2(X∗)

Xtot
). (7.38)

Assuming for simplicity that X∗ � K̄m, we obtain that F1(X∗) ≈ X∗Ytotk2/K̄mk1

and that F2(X∗) ≈ X∗/K̄mYtot. As a consequence of these simplifications, equation
(7.38) leads to

X∗ =
b1Z

b1Z
Xtot

(1+Ytot/K̄m+ (Ytotk2)/(K̄mk1))+ Ytotk2
K̄mk1

(b2+ c1)
:= m(Z).

In order not to have distortion from Z to X∗, we require that

Z�
Ytot

k2
k1

Km

K̄m

1+ Ytot
K̄m
+

Ytot
K̄m

k2
k1

, (7.39)

so that m(Z) ≈ ZXtotK̄mk1/YtotKmk2 and therefore we have a linear relationship be-
tween X∗ and Z with gain from Z to X∗ given by XtotK̄mk1/YtotKmk2. In order not
to have attenuation from Z to X∗ we require that the gain is greater than or equal to
one, that is,

input/output gain ≈ XtotK̄mk1

YtotKmk2
≥ 1. (7.40)

Requirements (7.39), (7.40) and X∗ � K̄m are enough to guarantee that we do
not have nonlinear distortion between Z and X∗ and that X∗ is not attenuated with
respect to Z. In order to guarantee that the retroactivity r to the input is sufficiently
small, we need to quantify the retroactivity effect on the Z dynamics due to the
binding of Z with X. To achieve this, we proceed as in Section 7.3 by computing
the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics of Z if ε ≈ 0. Such a dynamics are given by

dZ
dt
= (k(t)−δZ)

(
1− dF1

dX∗
dX∗

dz

)
,

in which dF1
dX∗

dX∗
dz measures the effect of the retroactivity r to the input on the Z

dynamics. Direct computation of dF1
dX∗ and of dX∗

dz along with X∗ � K̄m and with
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Figure 7.16: (a) Performance with fast time scales. Simulation results for system in equa-
tions (7.31–7.35). In all plots, ptot = 100, koff = kon = 10, δ = 0.01, k(t) = 0.01(1+ sin(ωt)),
and ω = 0.005. In subplots A and B, k1 = k2 = 50, a2 = a1 = 0.01, d1 = d2 = 10, and
Ytot = Xtot = 1500. In plot A, the isolated system is without downstream binding sites p
and the connected system is with binding sites p. The small error shows that the effect of
the retroactivity to the output s is attenuated very well. In subplot B, the isolated system
stands for the case in which Z does not have X to bind to, while the connected system
stands for the case in which Z binds to substrate X (Xtot = 1500). The small error confirms
a small retroactivity to the input r. (b) Performance with slow time scale. Phosphoryla-
tion and dephosphorylation rates are slower than the ones in (a), that is, k1 = k2 = 0.01,
while the other parameters are left the same, that is, d2 = d1 = 10, a2 = a1 = 0.01, and
Ytot = Xtot = 1500.

(7.39) leads to dF1
dX∗

dX∗

dz ≈ Xtot/Km, so that in order to have small retroactivity to the
input, we require that

Xtot

Km
� 1. (7.41)

Hence, a design trade-off appears: Xtot should be sufficiently large to provide a gain
G large enough to attenuate the retroactivity to the output. Yet, Xtot should be small
enough compared to Km so to apply minimal retroactivity to the input.

Concluding, for having attenuation of the effect of the retroactivity to the out-
put s, we require that the time scale of the phosphorylation/dephosphorylation re-
actions is much faster than the production and decay processes of Z (the input
to the insulation device) and that Xtot � ptot, that is, the total amount of protein
X is in abundance compared to the downstream binding sites p. To obtain also a
small effect of the retroactivity to the input, we require that Km � Xtot. This is
satisfied if, for example, kinase Z has low affinity to binding with X. To keep the
input/output gain between Z and X∗ close to one (from equation (7.40)), one can
choose Xtot = Ytot, and equal coefficients for the phosphorylation and dephospho-
rylation reactions, that is, Km = K̄m and k1 = k2.

System in equations (7.31–7.35) was simulated with and without the down-
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stream binding sites p, that is, with and without, respectively, the terms in the small
box of equation (7.31) and in the boxes in equations (7.34) and (7.32). This is
performed to highlight the effect of the retroactivity to the output s on the dynam-
ics of X∗. The simulations validate our theoretical study that indicates that when
Xtot � ptot and the time scales of phosphorylation/dephosphorylation are much
faster than the time scale of decay and production of the protein Z, the retroactiv-
ity to the output s is very well attenuated (Figure 7.16(a), plot A). Similarly, the
time behavior of Z was simulated with and without the terms in the large box in
equation (7.31), that is, with and without X to which Z binds, to verify whether the
insulation component exhibits retroactivity to the input r.

In particular, the accordance of the behaviors of Z(t) with and without its down-
stream binding sites on X (Figure 7.16(a), plot B), indicates that there is no sub-
stantial retroactivity to the input r generated by the insulation device. This is ob-
tained because Xtot � Km as indicated in equation (7.41), in which 1/Km can be
interpreted as the affinity of the binding of X to Z.

Our simulation study also indicates that a faster time scale of the phosphoryla-
tion/dephosphorylation reactions is necessary, even for high values of Xtot and Ytot,
to maintain perfect attenuation of the retroactivity to the output s and small retroac-
tivity to the output r. In fact, slowing down the time scale of phosphorylation and
dephosphorylation, the system looses its insulation property (Figure 7.16(b)). In
particular, the attenuation of the effect of the retroactivity to the output s is lost
because there is not enough separation of time scales between the Z dynamics and
the internal device dynamics. The device also displays a non negligible amount of
retroactivity to the input because the condition Km� Xtot is not satisfied anymore.

Design 2: Realization through phosphotransfer

Z Z*

X X*

Input

Insulation device

p

Figure 7.17: System S is a phosphotransfer system. The output X* activates transcription
through the reversible binding of X* to downstream DNA promoter sites p.

Let X be a transcription factor in its inactive form and let X∗ be the same tran-
scription factor once it has been activated by the addition of a phosphate group.
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Let Z∗ be a phosphate donor, that is, a protein that can transfer its phosphate group
to the acceptor X. The standard phosphotransfer reactions (see Chapter 2, Section
2.4) can be modeled according to the two-step reaction model

Z∗+X
k1−−⇀↽−−
k2

C1
k3−−⇀↽−−
k4

X∗+Z,

in which C1 is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and protein X∗ dephosphorylated by
other phosphotransfer interactions. These reactions are modeled as one step reac-

tions depending only on the concentrations of Z and X∗, that is, Z
π1−−→ Z∗, X∗

π2−−→ X.
Protein X is assumed to be conserved in the system, that is, Xtot = X+C1+X∗+C.
We assume that protein Z is produced with time-varying production rate k(t) and
decays with rate δ. The active transcription factor X∗ binds to downstream DNA
binding sites p with total concentration ptot to activate transcription through the

reversible reaction p+X∗
kon−−−⇀↽−−−
koff

C. Since the total amount of p is conserved, we also

have that C + p = ptot. The ODE model corresponding to this system is thus given
by the equations

dZ
dt
= k(t)−δZ+ k3C1− k4X∗Z−π1Z

dC1

dt
= k1Xtot

(
1− X∗

Xtot
− C1

Xtot
−
[

C
Xtot

])
Z∗ − k3C1− k2C1+ k4X∗Z

dZ∗

dt
= π1Z+ k2C1− k1Xtot

(
1− X∗

Xtot
− C1

Xtot
−
[

C
Xtot

])
Z∗

dX∗

dt
= k3C1− k4X∗Z+

[
koffC− konX∗(ptot−C)

]−π2X∗

dC
dt
= konX∗(ptot−C)− koffC.

(7.42)

Since phosphotransfer reaction are faster than protein production and decay,
define G1 := Xtotk1/δ so that k̄1 := Xtotk1/G1 = δ, k̄2 := k2/G1, k̄3 := k3/G1, k̄4 :=
k4/G1, π̄1 := π1/G1, π̄2 := π2/G1 are of the same order of k(t) and δ. Similarly,
the process of protein binding and unbinding to promoter sites is much faster than
protein production and decay. Let Ḡ := koff/δ and Kd := koff/kon. Assuming also
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Figure 7.18: Output response of the phosphotransfer system with a periodic signal k(t) =
δ(1+ 0.5sinωt). The parameters are given by δ = 0.01, Xtot = 5000, k1 = k2 = k3 = k4 =

π1 = π2 = 0.01G in which G = 1 (left-side panel), and G = 100 (right-side panel). The
downstream system parameters are given by Kd = 1 and koff = 0.01G2, in which Ḡ assumes
the values indicated on the legend. The isolated system (s= 0) corresponds to ptot = 0 while
the connected system (s � 0) corresponds to ptot = 100.

that ptot� Xtot, we have that C� Xtot so that system (7.42) can be rewritten as

dZ
dt
= k(t)−δZ+G

(
k̄3C1− k̄4ZX∗ − π̄1Z

)
dC1

dt
=G

(
k̄1

(
1− X∗

Xtot
− C1

Xtot

)
Z∗ − k̄3C1− k̄2C1+ k̄4X∗Z

)
dZ∗

dt
=G

(
π̄1Z+ k̄2C1− k̄1

(
1− X∗

Xtot
− C1

Xtot

)
Z∗
)

dX∗

dt
=G

(
k̄3C1− k̄4X∗Z− π̄2X∗

)
− Ḡ

(
δ

Kd
X∗(ptot−C)+δC

)
dC
dt
= Ḡ(

δ

Kd
X∗(ptot−C)−δC).

(7.43)

Taking T = I3×3, the 3 by 3 identity matrix, and M = (0,0,1)T , the coordinate trans-
formation x̃ = T x+My brings the system to the form of system (7.29) with u = Z,
x = (C1,Z∗,X∗), and y =C.

We illustrate the retroactivity to the output attenuation property of this system
using simulations for the cases in which G� Ḡ, G = Ḡ, and G� Ḡ. Figure 7.18
shows that, for a periodic input k(t), the system with low value for G suffers the
impact of retroactivity to the output. However, for a large value of G, the permanent
behavior of the connected system becomes similar to that of the isolated system,
whether G� Ḡ, G = Ḡ or G� Ḡ. Notice that, in the bottom panel of Figure 7.18,
when G� Ḡ, the impact of the retroactivity to the output is not as dramatic as it
is when G = Ḡ or G � Ḡ. This is due to the fact that s is scaled by Ḡ and it is
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not related to the retroactivity to the output attenuation property. This confirms the
theoretical result that, independently of the order of magnitude of Ḡ, the system
can arbitrarily attenuate retroactivity for large enough G.

Exercises

7.1 Include in the study of retroactivity in transcriptional systems the mRNA dy-
namics and demonstrate how/whether the results change. Specifically, consider the
following model of a connected transcriptional component

mX

dt
= k(t)−γmX

dX
dt

= βmX −δX+ [koffC− kon(pTOT −C)X],

dC
dt

= −koffC+ kon(pTOT −C)X,

7.2 Consider the system in standard singular perturbation form, in which ε � 1.
Demonstrate that the slow manifold is locally exponentially stable.

dy
dt
= k(t)−δ(y−C), ε

dC
dt
= −δC+ δ

kd
(pTOT −C)(y−C).

7.3 The characterization of retroactivity effects in a transcriptional module was
based on the following model of the interconnection:

dX
dt

= k(t)−δX+ [koffC− kon(ptot−C)X],

dC
dt

= −koffC+ kon(ptot−C)X,

in which it was implicitly assumed that the complex C does not dilute. This is
often a fair assumption. However, depending on the experimental conditions, a
more appropriate model may include dilution for the complex C. In this case, the
model modified to

dX
dt

= k(t)− (μ+ δ̄)X+ [koffC− kon(ptot−C)X],

dC
dt

= −koffC+ kon(ptot−C)X−μC,

in which μ represents decay due to dilution and δ̄ represents protein degradation.
Employ singular perturbation to determine the reduced X dynamics and the effects
of retroactivity in this case. Is the steady state characteristic of the transcriptional
module affected by retroactivity? How?
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7.4 We have illustrated that the expression of the point of half-maximal induction
in a covalent modification cycle is affected by the effective load λ as follows:

y50 =
K̄1+0.5

K̄2(1+λ)+0.5
.

Study the behavior of this quantity when the effective load λ is changed.

7.5 Show how equation (7.12) is derived in Section 7.4.

7.6 Demonstrate that in the following system

dX
dt
=G (k(t)−KX) (1−d(t)),

X(t)− k(t)/K becomes smaller as G is increased.

7.7 Consider the activator-repressor clock from Atkinson et al. (Cell 2003), de-
scribed in Section 6.5. Take the same simulation model derived for that exercise
and pick parameter values to obtain a stable limit cycle. Then, assume that the acti-
vator A connects to another transcriptional circuit through the reversible binding of

A with operator sites p to form activator-operator complex C: A+p
kon−−−⇀↽−−−
ko f f

C. This

occurs, for example, if you want to use this clock as a source generator for some
downstream system. Answer the following questions:

• Simulate the system with this new binding phenomenon and vary the total
amount of p, that is, pT . Explore how this affects the behavior of the clock.

• Give a mathematical explanation of the phenomenon you saw in (i). To do
so, use singular perturbation to approximate the dynamics of the clock with
downstream binding on the slow manifold (here, kon,koff� δA, δB). You can
follow the process we used in class when we studied retroactivity for the
transcriptional component with downstream binding.



Chapter 8
Design Tradeoffs

In this chapter, we describe a number of design tradeoffs due to the fact that the
synthetic circuits interact with the host organism. We specifically focus on two is-
sues: effects of retroactivity from synthetic circuits on the host organism and effects
of biological noise on the design of insulation devices. In particular, circuits use a
number of cellular resources that are shared among all circuits in the cell. Hence,
they increase the loading on these resources, with possibly undesired repercussions
on the functioning of the circuits themselves. Specifically, independent circuits are
actually coupled through sharing common resources. We analyze the effects of this
general phenomenon by illustrating it on the RNA polymerase usage. The same
reasoning can be applied to any shared resource that is not in substantial excess
with respect to the amounts of circuit copies placed in the cell. We also illustrate
possible mechanisms to avoid this problem by employing several of the robustness
tools of Chapter 3. Further, we illustrate the possible tradeoffs between retroactivity
attenuation and noise amplification, due to noisy cellular environments.

8.1 Metabolic Burden

All biomolecular circuits use cellular resources, such as ribosomes, RNA poly-
merase, and ATP, that are shared among all the circuitry of the cell, whether this
circuitry is synthetic or natural. As a consequence, the introduction of synthetic
circuits in the cell environment is potentially perturbing the availability of these re-
sources, leading to undesired and often unpredictable side effects on cell metabolism.
In this chapter, we study the effect of the retroactivity or “back-action” from the
synthetic circuits to shared resources in the cellular environment by focusing on the
demand for RNA polymerase, for simplicity. The effects that we highlight are sig-
nificant for any resource whose availability is not in substantial excess compared to
the added demand by synthetic circuits. We will then study possible mechanisms
that can be engineered to attenuate the side effects of retroactivity on shared re-
sources, focusing on RNA polymerase as an example and employing some of the
adaptation techniques outlined in Chapter 3 and Chapter 6.

In order to illustrate the problem, we consider the example system shown in
Figure 8.2, in which two modules, an inducible promoter (module A) and a consti-
tutive promoter (module B), are both present in the cellular environment. In theory,
module A should respond to changes in the inducer concentration while module B,
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Circuit 1 Circuit 2 Circuit n

Shared resources

ATP, Ribosomes, RNAP,...

r1 r2 rn

s

Figure 8.1: The cellular environment provides resources to synthetic circuits, such as RNA
polymerase, ribosomes, ATP, proteases, etc. Circuit i uses these resources and as a conse-
quence, it has a retroactivity to the input ri. The system generating shared resources has
thus a retroactivity to the output s that encompasses all the retroactivities applied by the
circuits.

featuring a constitutive promoter, should display a constant expression level that
is independent of the inducer amount. Experimental results, however, indicate that
this is not the case since module B also responds to changes in inducer concen-
tration. We illustrate how this effect can be justified mathematically by accounting
for competition of shared resources needed in gene expression. To simplify the
analysis, we focus on one such shared resource, the RNA polymerase.

Experimental observations indicate that increased amounts of inducer lead to
decreased expression of the constitutive promoter in module B. In the case of a
positive inducer, this can be qualitatively explained as follows. When the inducer
amount is increased, an increased amount of active activator will be present lead-
ing to increased levels of transcription in module A. These increased levels of tran-
scription will increase the demand for RNA polymerase and, as a consequence,
smaller amounts of RNA polymerase will be free to promote transcription in mod-

I Module A Module B 

R R* 
A B 

Figure 8.2: Module A has an inducible promoter that can be activated (or repressed) by
transcription factor R. Such a transcription factor, when an activator, is activated by inducer
I. When R is a repressor, it is repressed by the inducer I. The output of Module A is protein
A. Module B has a constitutive promoter producing protein B.
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ule B. Hence, module B will experience a decreased transcription rate. Similarly,
the presence of larger amounts of transcript in module A will apply a larger loading
on the concentration of ribosomes for the translation process. As a result, smaller
amounts of ribosomes will be free to promote translation in module B. The net
result is that lower expression will be observed in module B when the inducer of
module A is increased. A similar reasoning can be performed in the case of a neg-
ative inducer.

The extent of this effect will depend on the availability of resources and whether
they are regulated. It is known that RNA polymerase and ribosomes are regulated
by the cell through negative feedback [50, 59]. This may help compensating for
changes in the demand of such resources.

To mathematically demonstrate this phenomenon, we first perform a simple an-
alytical study assuming that gene expression is a one-step process. We then perform
a numerical study employing a mechanistic two-step model for gene expression.

Analytical study using a simple model with a positive inducer

To illustrate the essence of the problem under study, we assume that gene expres-
sion is a one-step process, in which the RNA polymerase binds to the promoter
region of a gene resulting in a transcriptionally active complex, which, in turn,
produces the corresponding protein at some constant rate. We first analyze module
A, assuming module B is not present, and module B, assuming module A is not
present. Then, we consider the case in which both of them are present and compare
the levels of output proteins to the cases in which only one module is present.

Only module A is present

Let X denote the RNA polymerase, R the inactive activator, I the inducer, R* the
active activator, that is, R bound to the activator I, p the amount of unbound pro-
moter of module A, and A the output protein of module A. The reactions describing
the system are given by (see Section 2.3):

R+ I
k+−−⇀↽−−
k−

R∗, R∗+p
k̄+−−⇀↽−−
k̄−

C, C+X
k′+−−⇀↽−−
k′−

C∗, C∗
k−→ A+C+X, A

δ−→ ∅,

(8.1)
in which C is the complex promoter-activator and C* is the transcriptionally active
complex promoter:activator:RNA polymerase. In addition, we assume that the total
amount of X is conserved and denote such a total amount by Xtot. Further, we
assume that the total amount of promoter p is conserved and denote such a total
amount by ptot. Let Rtot := R+R∗ denote the total amount of transcription factor.
We are interested in determining the steady state levels of X and of A as a function



260 CHAPTER 8. DESIGN TRADEOFFS

of the inducer amounts I. The steady state values satisfy

R∗ =
RtotI

Kd+ I
with Kd = k−/k+, (8.2)

C =
R∗p

K̄d
with K̄d = k̄−/k̄+, (8.3)

C∗ =
CX
K′d

with K′d = k′−/k
′
+. (8.4)

Combining these along with the conservation law C+C∗+ p = ptot leads to

p =
ptot

R∗/K̄d+R∗X/(K′dK̄d)+1
,

in which, to simplify the derivations, we assume that

R∗

K̄d

(
1+

X
K′d

)
� 1,

which, in turn, is satisfied if the amount of activator I is sufficiently small or if the
total amount of protein R is small. As a consequence, we assume in the remainder
of this section that p ≈ ptot. Employing the conservation law for X, that is, Xtot =

X+C∗, we finally obtain that

X =
Xtot

1+ ptotR∗

K′dK̄d

=
Xtot

1+ ptotRtotI/(K′dK̄d(Kd+ I))
,

as a consequence, as the positive inducer concentration I is increased, the amount
of free RNA polymerase (X) decreases (see Figure 8.3). Also, since Y = (k/δ)C∗,
we have that

A =
k
δ

⎛⎜⎜⎜⎜⎜⎜⎝
ptotXtotRtotI

Kd+I

K′d+ K̄d+ ptot
RtotXtotI

Kd+I

⎞⎟⎟⎟⎟⎟⎟⎠ ,
which increases with I as expected.

Only module B is present

When only module B is present, since its promoter is constitutive, it will display
a constant expression level for any fixed Xtot. Denoting q the amounts of unbound
promoter in Module B, we have the reactions

q+X
k̄′+−−⇀↽−−
k̄′−

C̄, C̄
k−→ B+ C̄, B

δ−→ ∅, (8.5)
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Figure 8.3: Plots showing that when the inducer level I is changed, the amount of free
RNA polymerase X is also changed. The larger the amounts of promoter p, the larger the
effect of the inducer on the free available RNA polymerase. For the simulation, we chose
all the dissociation constants equal to one, Rtot = 0.1, Xtot = 1, and k = 0.01nMmin−1, and
δ = 0.01min−1. All the concentrations are in nM.

with conservation law for X given by Xtot = X+ C̄. The steady state values satisfy

C̄ =
Xq

K̄d
′ , K̄d

′
= k̄′−/k̄

′
+, B =

kC̄
δ
.

These relations along with the conservation law for X lead to

X =
Xtot

1+ q
K̄d
′

and B =
k
δ

(
Xtotq

K̄d
′
+q

)
,

which increases with Xtot and q as expected. Note that here, for simplifying the
derivations, we have not used the conservation law qtot = q+ C̄. The reader can
verify that the same result would hold accounting for the conservation law (see
Exercises).

Both modules A and B are present

When both modules are present, the set of reactions describing the system is just
the union of the set of reactions describing the two modules, that is, equations (8.1)
and equations (8.5). The steady state values also still satisfy the same relations as
before. The only difference is the conservation law for X, which is now given by

X+C∗+ C̄ = Xtot.

Employing this conservation law along with the steady state relations gives

X =
Xtot

1+ (R∗ptot)/(K′dK̄d)+q/K̄d
′ ,
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Figure 8.4: (Left) Effect on the expression of A when module B is added to the system: the
expression level of A changes, but it maintains its response to the inducer. (Right) Effect
on the expression of B when Module A is added to the system. When Module A is absent,
the expression of B does not respond to inducer changes. By contrast, when Module A
is present, the expression of B responds to inducer changes. For the simulation, we chose
all the dissociation constants equal to one, Rtot = 0.1, Xtot = 1, and k = 0.01nMmin−1, and
δ = 0.01min−1. All the concentrations are in nM.

A =
k
δ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ptotXtotRtotI

Kd+I

K′d+ K̄d+ ptot
RtotXtotA

Kd+I +K′dK̄d
q

K̄d
′

⎞⎟⎟⎟⎟⎟⎟⎟⎠ and B =
k
δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Xtotq

K̄d
′
(
1+ ptot

K′dK̄d

RtotI
Kd+I

)
+q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
From this expression, it is clear that

(1) due to the presence of module B, the amounts of output protein Y of module
A is lower for any given value of the inducer I;

(2) module B also responds to the inducer of module A. Specifically, the amounts
of output protein Z decreases when the amounts of inducer I is increased.

These conclusions are summarized in Figure 8.4, which shows the steady state
values of B and A when the inducer amount I is changed as compared to the case
in which the modules were not both present in the system.

As an exercise, the reader can verify that a similar result would hold for the
case of a negative inducer (see Exercises).

Estimate of the effects of adding external plasmids on the availability of
RNAP

In the previous section, we illustrated qualitatively the mechanism by which the
change in the availability of a shared resouce, due to the addition of synthetic cir-
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cuits, can cause unexpected crosstalk between unconnected circuits. The extent of
this crosstalk depends on the amount by which the shared resource changes. This
amount, in turn, depends on the specific values of the dissociation constants, the
total resource amonts, and the fraction of resource that is used already by natural
circuits. In fact, as we will see in the following sections, if the resource has a very
large number of clients already, i.e., a very large fan-out, its changes due to the
addition of more clients will be smaller. Hence, it is important to account for these
in the calculation as follows.

In E. coli, the amount of RNA polymerase and its partitioning mainly depends
on the growth rate of the cell [14]: with 0.6 doublings/hour there are only 1500
molecules/ cell, but with 2.5 doublings/hour this number is 11400. The fraction of
active RNA polymerase molecules also increases with the growth rate. For illus-
tration purposes, we assume here that the growth rate is the lowest considered in
[14]. Therefore, a reasonable estimate is that the total number of RNA polymerase
is about 1000. Since the fraction of immature core enzyme at low growth rate is
only a few percent [15], we assume that the total number of functional RNA poly-
merase is 1000 per cell, that is, Xtot = 1000nM. Based on the data presented in [15],
a reasonable partitioning of RNA polymerase is the following:

active core enzyme: 15% (150 molecules/cell or Xa = 150nM),

promoter-bound holoenzyme: 15% (150 molecules/cell or Xp = 150nM),

free holoenzyme: 5% (50 molecules/cell or Xf = 50nM),

inactive DNA-bound core: 65% (650 molecules/cell Xi = 650nM).

There are about 1000 genes expressed in exponential growth phase [48], hence
the number of binding sites for X is about 1000, or ptot = 1000nM, and we assume
that all the 150 promoter-bound holoenzymes are bound to these promoters. The
binding reaction is of the form

p+Xf

a−⇀↽−
d

C1

where p is the RNA polymerase-free promoter and C1 is the RNA polymerase:promoter
complex. Consequently, we have ptot = p+C1. Since only one RNA polymerase
can bind to any given promoter, at the equilibrium we have C1 = Xp = 150nM and
p = ptot −C1 = ptot −Xp = 850nM. With dissociation constant Kd =

d
a the equilib-

rium is given by 0 = Xf p−KdC1, hence we have that

Kd =
p

C1
Xf ≈ 300nM,

which is interpreted as an “effective” dissociation constant. This is in the range
1− 1000nM suggested by [40] for specific binding of RNA polymerase to DNA.
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Therefore, we are going to model the binding of RNA polymerase to the promoters
of the chromosome of E. coli in exponential phase as one promoter with concen-
tration ptot and effective dissociation constant Kd.

Furthermore, we have to take into account the rather significant amount of RNA
polymerase bound to the DNA other than at the promoter region (Xa+Xi = 800nM).
To do so, we assume that the fraction m = Xa+Xi+Xp/Xp is approximately con-
stant at the equilibrium.

Now, we can consider the addition of synthetic plasmids. Specifically, we con-
sider the plasmid pSB1AK3 (copy number 100− 300) with one copy of a gene
under the control of a constitutive promoter. The binding of RNA polymerase to
the constitutive promoter is modeled by

q+Xf

a′−−⇀↽−−
d′

C2

where q is the RNA polymerase-free promoter and C2 is the RNA polymerase:
promoter complex. Consequently, we have qtot = q+C2. The dissociation constant
is given by K′d =

d′
a′ . The total concentration of promoters qtot can be determined by

considering the copy number of the plasmid, which is 100−300 plasmids/cell, so
that we set qtot ≈ 200nM. At the equilibrium, we have

C2 = qtot
Xf

K′d+Xf
.

We also have

C1 = ptot
Xf

Kd+Xf
.

The conservation law for RNA polymerase must be now considered in order to
determine the equilibrium concentrations:

Xf+m C1+C2 = Xtot. (8.6)

Here, we did not account for RNA polymerase molecules paused, queuing and
actively transcribing on the plasmid, moreover, we also neglected the resistance
genes on the pSB1AK3 plasmid. Hence, we are underestimating the effect of load
presented by the plasmid.

Solving equation (8.6) for the free RNA polymerase amount Xf gives the fol-
lowing results. These results depend on the ratio between the effective dissociation
constant Kd and the dissociation constant K′d of RNA polymerase from the plasmid
promoter:

K′d = 0.1Kd (RNA polymerase binds better to the plasmid promoter) results
in Xf = 21nM, C1 = 69nM and C2 = 85nM. Hence, the concentration of free
RNA polymerase decreases by about 60%;
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K′d = Kd (binding is the same) results in Xf = 41nM, C1 = 126nM and C2 =

25nM. Hence, the concentration of free RNA polymerase decreases by about
20%;

K′d = 10Kd (RNA polymerase binds better to the chromosome) results in
Xf = 49nM, C1 = 147nM and CB

1 = 3nM. Hence, the concentration of free
RNA polymerase decreases by about 2%.

We conclude that if the promoter on the synthetic plasmids has a dissocia-
tion constant for RNA polymerase that is smaller than the effective one calculated
above, the perturbation on the available free RNA polymerase can be significant.

Numerical study using a mechanistic model with a positive inducer

In this section, we introduce a mechanistic model of the system in Figure 8.2, in
which we consider both the RNA polymerase and the ribosome usage, no approx-
imating assumption are made, and biochemical parameters are chosen from the
literature. Specifically, for inducer I we consider AHL, transcription factor R is
LuxR, the output of module A is RFP, and the output of module B is GFP. We
denote the concentration or RNA polymerase by Xrnap and the concentration of ri-
bosomes by Xrb. We denote by mA and A the concentrations of the mRNA of RFP
and of RFP protein, respectively, while we denote by mB and B the concentrations
of the mRNA of GFP and of GFP protein, respectively. Denoting by R∗ the concen-
tration of the complex of LuxR with AHL (equal to LuxRtotI/(Kd+ I) with LuxRtot

the total amount of LuxR), we have (see Section 2.3) the following reactions for
module A transcription

R∗+p1

kx1−−⇀↽−−
kx2

C1, C1+Xrnap

kx3−−⇀↽−−
kx4

TC1, TC1
k1−→mA+Xrnap+C1, mA

δ1−→ ∅

and for module A translation

mA+Xrb

kr1−−⇀↽−−
kr2

RC1, RC1
kr3−−→ A+Xrb+mA, A

δ2−→ ∅,

in which C1 is the complex of active transcription factor with the promoter con-
trolling A, TC1 is the complex of C1 with Xrnap, δ1 is the decay rate of mRNA, δ2
is the decay rate of protein, RC1 is the complex of Xrb with the mRNA ribosome
binding site, k1 is the rate of transcription, and kr3 is the rate of translation. The
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resulting system of differential equations is given by

d C1

dt
= kx1 R∗ p1− kx2 C1− kx3 Xrnap C1+ (kx4+ k1)TC1

d TC1

dt
= kx3 Xrnap C1− (kx4+ k1) TC1

d mA

dt
= k1 TC1− kr1 Xrb mA+ kr2 RC1−δ1 mA+ kr3 RC1 (8.7)

d RC1

dt
= kr1 Xrb mA− (kr2+ kr3) RC1

d A
dt
= kr3 RC1−δ2 A,

in which, we have that p1 = p1,tot −C1 −TC1 by the conservation law of DNA in
module A.

For module B, we have the following reactions for transcription

Xrnap+p2

kx6−−⇀↽−−
kx7

TC2, TC2
k2−→mB+Xrnap+p2, mB

δ1−→ ∅

and the following reactions for translation

mB+Xrb

kr4−−⇀↽−−
kr5

RC2, RC2
kr6−−→ B+Xrb+mB, B

δ2−→ ∅,

in which TC2 is the transcriptionally active complex of promoter with RNA poly-
merase, k2 is the transcription rate, RC2 is the complex of ribosome binding site
with the ribosome, and kr6 is the translation rate. The resulting system of differen-
tial equations is given by

d TC2

dt
= kx6 Xrnap p2− (kx7+ k2) TC2

d mB

dt
= k2 TC2− kr4 Xrb mB+ kr5 RC2−δ1 mB+ kr6 RC2 (8.8)

d RC2

dt
= kr4 Xrb mB− (kr5+ kr6) RC2

d B
dt
= kr6 RC2−δ2 B,

in which p2 = p2,tot −TC2 from the conservation law of DNA in module B.
We consider two cases: (case 1) either Module A or Module B is present in the

cellular environment and (case 2) Module A and Module B are both present in the
cellular environment. In either case, the differential equations for the two modules
are the same. The difference between the two cases is in the conservation law for
the shared resources Xrnap and Xrb. Specifically, in case 1 we have that

Module A: Xrnap,tot = Xrnap+TC1, Xrb,tot = Xrb+RC1
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Figure 8.5: (Up: Module B) Effect on the mRNA and protein steady state response to the
stimulus R∗ in the presence of module A (p1,tot � 0). In the presence of module A also
module B responds to the stimulus of module A. (Down: Module A) Effect on the mRNA
and protein steady state response to the stimulus R∗ in the presence of module B (p2,tot � 0).
In the presence of module B, there is an increase of the apparent Km of the steady state
characteristic (right-side plot). The values of the parameters for the numerical simulation
of the mechanistic model are given by kx1 = 1 ([9]), kx2 = 1 ([9]), kx3 = 100, kx4 = 1, k1 = 1
([9]), kx6 = 2000, kx7 = 1, k2 = 1, kr1 = 100, kr2 = 1, kr3 = 9, kr4 = 100, kr5 = 1, kr6 = 9,
δ1 = 0.04 ([9]), δ2 = 0.05. RNA polymerase and ribosomes total concentrations have been
assumed to be equal to one. Concentration units are in nM.

and

Module B: Xrnap,tot = Xrnap+TC2, Xrb,tot = Xrb+RC2,
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Figure 8.6: Effectively, binding sites q introduce a reservoir for X, so that more X is freed
up from sites q when the demand increases.

in case 2, we have that

Xrnap,tot = Xrnap+TC1+TC2, Xrb,tot = Xrb+RC1+RC2,

which leads to a coupling between the model of Module A and that of Module B.

The results are shown in Figure 8.5. The presence of module A, causes module
B to also respond to the inducer of module A. The presence of module B also affects
the response of module A to its inducer by decreasing the steady state values of the
output and by increasing the value of half maximal induction.

Engineering adaptation to changing demands of cellular resources

We have seen that competition for shared resources leads unwanted crosstalk be-
tween unconnected circuits. In order to prevent this, there are two main techniques
that can be employed. The first approach is to make the amount of free X robust
to changes in the circuits that use it. That is, one would like to maintain a roughly
constant X when circuits are added or removed from the cell environment. The sec-
ond approach is to allow potentially large excursions of X when circuits are added
or removed from the cell environment, but engineer circuits so that their function
is unaltered by changes in X, that is, its function adapts to changes in X.
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Engineering X robustness to changing demands by large fan-out

In wild type E. coli cells, only 2% of the total amount of functional RNA poly-
merase is unbound (free) and only about 20% of the total amount of ribosomes
is unbound [86, 14]. This suggests that in a natural system the RNA polymerases
and ribosomes have a large number of sites, also called fan-out, to which they bind
so that only a small fraction is free to be employed in synthetic circuits. Here,
we illustrate that such a large number of sites contribute to the robustness of the
concentration of these resources to changes in the demand.

Assume the sites to which X binds are denoted q and assume that we add some
more sites, denoted p, belonging, for example to synthetic circuits. The introduc-
tion of sites p will increase the demand of X and will tend to decrease the amount
of free X. However, such a decrease can be compensated by having the X bound
to sites q unbind and increase the amount of free X. In this sense, sites q can be
thought of a reservoir of X, from which X is released when needed. If this reser-
voir is much larger than the perturbation p, we should expect that X will stay about
constant after the addition of sites p.

To mathematically justify this reasoning, assume that X is in total amount Xtot

and let p � q (Figure 8.6). Let C0 denote the concentration of the complex of
X with sites q and C1 the concentration of the complex of X with sites p. The
quasi-steady state approximation of these binding reactions gives C0 = (q/Kd)X
and C1 = (p/Kd)X, in which Kd is the dissociation constant of X with the sites. The
conservation law for X gives the free amount of X as

X =
Xtot

1+ (p/Kd)+ (q/Kd)
,

due to the addition of binding sites p. The resulting perturbation is given by

ΔX = Xtot
p/Kd

(1+ (q/Kd))(1+ (p/Kd)+ (q/Kd))
,

from which, it is clear that as q increases, the perturbation ΔX goes to zero. Since X
also goes to zero as q increases, it is more meaningful to determine the percentage
variation of X, which is given by

ΔX
X
=

p/Kd

(1+ (q/Kd)+ (p/Kd))
,

which can be made arbitrarily small by increasing q. Hence, sufficiently large val-
ues of q lead to low sensitivity of the change in X when additional circuits are
added or removed from the cell. As a consequence, the induced perturbation on the
circuits in the cell can be reduced by increasing q.
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Figure 8.7: The output protein expression Y does not sensibly depend on the amounts of
available RNA polymerase (X) for sufficiently high values of p0.

Engineering adaptation in circuits to changes of X

We have seen in Section 3.2 that incoherent feedforward loops can engineer adapta-
tion to changes in their input. Here, we show how this mechanism can be employed
in order to make the expression level of a protein in a synthetic circuit independent
of the availability of X (RNA polymerase).

Let Y be a protein that is constitutively expressed by a promoter p in total
amounts ptot. Its expression level is going to be proportional to X(ptot/Kd), so that
if there is a perturbation in the free amount of X, there is going to be a proportional
perturbation in the amount of Y. In order to make the expression level of Y inde-
pendent of changes in X, we add to the circuit expressing Y an auxiliary circuit
that constitutively expresses a repressor protein R, which competes with X for the
promoter sites p, causing an effective repression of Y (Figure 8.7(a)).

The idea of this design is as follows. When the availability of X decreases, the
steady state value of Y should also decrease. At the same time, the amounts of R
also decreases, resulting in a consequent decrease of the repression of Y, so that the
steady state value of Y should increase. If these two effects are well balanced, one
should expect that no substantial change of Y is observed. This is mathematically
studied by considering the reactions involved in the system and their associated
ODE.

Specifically, let p0 denote the amounts of promoter expressing protein R, let C′

be the concentration of the complex of protein R with promoter p, and let C be
the concentration of the complex of X with promoter p. Since X and R bind to p
competitively, we have that ptot = p+C+C′. As a consequence, at the steady state,
we have that

C =
ptot(X/Kd)

(X/Kd)+ (R/K′d)+1
,

in which R = K p0(X/Kd) with K proportional to the strength of promoter p0 and
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K′d the dissociation constant of R with p. Since the steady state value of Y is pro-
portional to the amount of complex C, we have that

Y ∝ ptot(X/Kd)
X(1/Kd+ (K p0)/(K′dKd))+1

.

As p0 becomes larger, we have that approximately Y ∝ (ptotK′d)/(K p0), which is
not dependent on X and, as a consequence, is not affected by changes in X. That is,
the circuit’s output Y adapts to changes in its input X. This is also shown in Figure
8.7 (b), in which the steady state value of Y becomes more and more insensitive
to changes in X as p0 is increased. Of course, increasing p0 decreases also the
steady state value of Y , so the amounts of promoters p and p0 should be chosen
comparably large in such a way that a desired value of Y is not too low.

8.2 Stochastic Effects: Design Tradeoffs between Retroactivity
and Noise

1As we have seen in Chapter 7, a biomolecular system can be rendered insensitive
to retroactivity by implementing a large input amplification gain in a negative feed-
back loop. However, relying on a large negative feedback, this type of design may
have undesired effects as seen in a different context in Section 6.2. Also, it is not
clear so far what the effect of retroactivity is on the noise content of the upstream
system. Here, we employ the Langevin equation seen in Chapter 4 to answer these
questions.

Consider a transcriptional system that takes a transcription factor U as an input
and produces a transcription factor Z as output. The transcription rate of the gene
z, which expresses the protein Z, is given by a time varying function Gk(t) that
depends on the transcription factor U. This dependency is not modeled, since it is
not central to our discussion. The parameter G models the input amplification gain.
The degradation rate of protein Z is also assumed to be tunable and thus identified
by Gδ. The variable gain parameter G will be adjusted to improve the insulation
properties.

The transcription factor Z is also an input to the downstream load through the
reversible binding of Z to promoter sites p. Neglecting the Z messenger RNA dy-
namics, the system can be modeled by the chemical equations

0
Gδ−−−−⇀↽−−−−

G k(t)
Z, Z+p

kon−−−⇀↽−−−
koff

C.

We assume that k(t) and δ are of the same order and denote Kd = koff/kon. We
also assume that the production and decay processes are slower than binding and

1This section is extracted from Jayanthi and Del Vecchio CDC 2009.



272 CHAPTER 8. DESIGN TRADEOFFS

unbinding reactions, that is, koff�Gδ, kon�Gδ as performed before. Let the total
concentration of promoter be ptot. The deterministic ordinary differential equation
model is given by

dZ
dt

= Gk(t)−GδZ+ koffZ− kon(ptot−C)Z,

dC
dt

= −koffC+ kon(ptot−C)Z. (8.9)

To identify by what amounts G should be increased to compensate the retroac-
tivity effect, we perform a linearized analysis of (8.9) about k(t) = k̄, and the corre-
sponding equilibrium Z̄ = k̄/δ and C̄ = Z̄ ptot/(Z̄+Kd). By performing the linearized
analysis as in Section 7.3, letting z = Z− Z̄ and k̃ = k− k̄, we obtain

dz
dt
=

G
1+Rl

(k̃(t)−δz), Rl =
Kd ptot

(k̄/δ+Kd)2
. (8.10)

Thus, we should choose G ≈ 1+Rl to compensate for retroactivity from the load.
In real systems, however, there are practical limitations on how much the gain can
be increased so that retroactivity may not be completely rejected.

Dynamic effects of retroactivity

We have shown that increasing the gain G is beneficial for rejecting retroactivity to
the upstream component. However, as shown in Figure 8.8, increasing the gain G
impacts the frequency content of the noise in a single realization. For low values of
G, the error signal between a realization and the mean is of lower frequency when
compared to a higher gain.
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Figure 8.8: Increasing the value of G produces a disturbance signal of higher frequency.
Two realizations are shown with different values for G without load. The parameters used
in the simulations are δ= 0.01nM−1s−1, Kd = 20nM, koff = 50nM−1s−1, ω= 0.005rad/s and
Ω = 10nM−1. The input signal used is k(t) = δ(1+ 0.8sin(ωt))s−1. The mean of the signal
is given as reference.
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To study this problem, we employ the Langevin equation

dXi

dt
=

M∑
j=1

ξi ja j(X(t))+
M∑
j=1

ξi ja
1/2
j (X(t))N j(t),

in which N j(t) are independent Gaussian white noise processes. For our system,
we obtain

dZ
dt
=Gk(t)−GδZ− kon(ptot−C)Z+ koffC+

√
Gk(t) N1(t)−

√
GδZ N2(t) (8.11)

−
√

kon(ptot−C)Z N3(t)+
√

koffC N4(t),

dC
dt
= kon(ptot−C)Z− koffC+

√
kon(ptot−C)Z N3(t)−

√
koffC N4(t).

The above system can be viewed as a non-linear system with five inputs, k(t)
and Ni(t) for i = 1,2,3,4. Let k(t) = k̄, N1(t) = N2(t) = N3(t) = N4(t) = 0 be constant
inputs and let Z̄ and C̄ be the corresponding equilibrium points. Then for small
amplitude signals k̃(t) the linearization of the system (8.11) leads, with abuse of
notation, to

dZ
dt
=Gk̃(t)−GδZ− kon(ptot− C̄)Z+ konZ̄C+ koffC

+
√

Gk̄ N1(t)−
√
δZ̄ N2(t)−

√
koffC̄ N3(t)+

√
kon(ptot− C̄)Z̄ N4(t)

dC
dt
= kon(ptot− C̄)Z− konZ̄C− koffC+

√
koffC̄ N3(t)−

√
kon(ptot− C̄)Z̄ N4(t).

(8.12)

We can further simplify the above expressions by noting that δZ̄ =Gk̄ and kon(ptot−
C̄)Z̄ = koffC̄. Also, since N j are independent identical Gaussian white noises, we
can write N1(t)−N2(t) =

√
2Γ1(t) and N3(t)−N4(t) =

√
2Γ2(t), in which Γ1(t) and

Γ2(t) are independent Gaussian white noises identical to N j(t). This simplification
leads to the system

dZ
dt
=Gk̃(t)−GδZ− kon(ptot− C̄)Z+ konZ̄C+ koffC+

√
2Gk̄Γ1(t)−

√
2koffC̄Γ2(t),

dC
dt
= kon(ptot− C̄)Z− konZ̄C− koffC+

√
2koffC̄Γ2(t). (8.13)

This is a system with three inputs: the deterministic input k̃(t) and two inde-
pendent white noise sources Γ1(t) and Γ2(t). One can interpret Γ1 as the source of
the fluctuations caused by the production and degradation reactions while Γ2 is the
source of fluctuations caused by binding and unbinding reactions. Since the system
is linear, we can analyze the different contributions of each noise source separately
and independent from the signal k̃(t).
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The transfer function from Γ1 to Z is (after setting δ/koff = ε = 0)

HZΓ1 (s) =

√
2Gk̄

s(1+Rl)+Gδ
. (8.14)

The zero frequency gain of this transfer function is equal to HZΓ1 (0)=
√

2k̄/
√

Gδ.
Thus, as G increases, the zero frequency gain decreases. But for large enough fre-
quencies ω, jω(1+Rl)+Gδ ≈ jω(1+Rl), and the amplitude |HZΓ1 ( jω)| ≈

√
2k̄G/

ω(1+Rl) becomes a monotone function of G. This effect is illustrated in the upper
plot of Figure 8.9. The frequency at which the amplitude of |HZΓ1 ( jω)| computed
with G = 1 intersects the amplitude |HZΓ1 ( jω)| computed with G > 1 is given by the
expression

ωe =
δ
√

G
(1+Rl)

.
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Figure 8.9: Magnitude of the transfer functions HZΓ1 (s) and HZΓ2 (s). The parameters used
in this plot are δ = 0.01nM−1s−1, Kd = 1nM, koff = 50nM−1s−1, ω = 0.005rad/s, ptot =

100nM. When G increases from 1 to 1+Rl = 25, contribution from Γ1 decreases but it now
spreads to a higher range of the spectrum. Note that there was an increase on the noise
at the frequency of interest ω. Increasing G reduces the contribution from Γ2 in the low
frequency range, leaving the high frequency range unaffected. Note also that the amplitude
of HZΓ2 is significantly smaller than that of HZΓ1 .

Thus, when increasing the gain from 1 to G > 1, we reduce the noise at frequen-
cies lower than ωe but we increase it at frequencies larger than ωe.

The transfer function from the second white noise source Γ2 to Z is given by

HZΓ1 (s) =
[√
ε
√

2δC̄s
]
/
[
εs2+ (εGδ+δ(ptot− C̄)+δZ̄+δKd)s+Gδ(δZ̄+δKd)

]
.
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This transfer function has one zero at s = 0 and two poles at

s± =
δ

2ε

[
− εG− (ptot− C̄)− Z̄+Kd

±
√

(εG+ (ptot− C̄)+ Z̄+Kd)2−4εG(Z̄+Kd)
]
. (8.15)

When ε → 0, s− → −∞ and s+→−Gδ/(1+Rl). Thus, the contribution of Γ2(t) to
Z is relevant only on the high frequency range due to the high-pass nature of the
transfer function. Furthermore, increasing the gain G increases the cutoff frequency
given by the pole s+. It is also important to note that HZΓ2 (s) is scaled by

√
ε, mak-

ing the noise on the low-frequency caused by HZΓ2 (t) negligible when compared to
that caused by HZΓ1 (t). The Bode plot of the transfer function HZΓ2 (s) is shown in
the lower plot of Figure 8.9.

While retroactivity contributes to filtering noise in the upstream system as it
decreases the bandwidth of the noise transfer function, high gains contribute to in-
creasing noise at frequencies higher thanωe. In particular, when increasing the gain
from 1 to G we reduce the noise in the frequency ranges below ωe = δ

√
G/(Rl+1),

but the noise at frequencies above ωe increases. If we were able to indefinitely
increase G, we could send G to infinity attenuating the deterministic effects of
retroactivity while amplifying noise only at very high. hence not relevant, frequen-
cies.

In practice, however, the value of G is limited. For example, in the insulation
device based on phosphorylation, G is limited by the amounts of substrate and
phosphatase thar we can have in the system. Hence, a design tradeoff needs to
be considered when designing insulation devices: placing the largest possible G
attenuates retroactivity but it increases noise in a possibly relevant frequency range.

Exercises

8.1 Consider the reactions in equation (8.5). Consider the conservation law for the
sites q, that is, qtot = q+C̄. Determine how the final expression for X would modify
in this case.

8.2 In the case of a negative inducer, a similar derivation can be carried if R were a
repressor and R* was the inactive form of the repressor when bound to the negative
inducer, denoted I. The reactions in this case are given by

R+ I
k+−−⇀↽−−
k−

R∗, R+p
k̄+−−⇀↽−−
k̄−

C, p+X
k′+−−⇀↽−−
k′−

C∗, C∗
k−→ A+C∗, A

δ−→ φ, (8.16)

in which now C is the complex of the promoter bound to the repressor, to which the
RNA polymerase X cannot bind to start transcription, while C∗ is the complex of X
with the free promoter, which is transcriptionally active. Determine the expressions
for the steady state values of X, A, and B.
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8.3 Consider a transcriptional component expressing protein X and assume that we
connect this transcriptional component to a downstream transcriptional component
by having X bind to promoter sites p in the downstream system. Neglecting the
mRNA dynamics gives the system of equations

Ẋ = k−δX− konX(pT −C)+ koffC

Ċ = konX(pT −C)− koffC,

as we have seen in class, in which pT is the total amount of downstream system
promoter binding sites and k is the constant production rate. We want to show here
that the steady state response of X adapts to the introduction of binding sites p.
To do so, we would like to show that there is a “hidden” integral feedback in this
system. Address this by the following two steps:

(a) Let u := pT and find a good choice of x and y such that the above system
takes the standard form for integral feedback seen in class:

ẋ = f (y)

ẏ = g(x,y,u),

and show that the steady state value of X does not depend on pT .

(b) Show that (ẋ, ẏ)→ 0 as t→∞, so that you know that upon a constant change
in u, y returns to its original value after a transient.



Appendix A
Cell Biology Primer

This appendix proves a brief overview of some of the key elements of cell biology.
It is not intended to be read sequentially, but rather to be used as a reference for
terms concepts that may not be familiar to some readers.

Note: The text and figures in this appendix are based on A Science Primer by
the National Center for Biotechnology Information (NCBI) of the National Library
of Medicine (NLM) at the National Institutes of Health (NIH) [73]. The text in this
chapter is not subject to copyright and may be used freely for any purpose, as
described by the NLM:

Information that is created by or for the US government on this site is
within the public domain. Public domain information on the National
Library of Medicine (NLM) Web pages may be freely distributed and
copied. However, it is requested that in any subsequent use of this
work, NLM be given appropriate acknowledgment.

Some minor modifications have been made, including insertion of additional fig-
ures (from the NHGRI Talking Glossary [74]), deletion of some of the text not
needed here, and minor editorial changes to maintain consistency with the main
text.

The original material included here can be retrieved from the following web
sites:

• http://www.ncbi.nlm.nih.gov/About/primer/genetics.html

• http://www.genome.gov/glossary

We gratefully acknowledge the National Library of Medicine for this material.

http://www.ncbi.nlm.nih.gov/About/primer/genetics.html
http://www.genome.gov/glossary
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(a) Cell types (b) Timeline

Figure A.1: Eukaryotes and prokaryotes. (a) This figure illustrates a typical human cell
(eukaryote) and a typical bacterium (prokaryote). The drawing on the left highlights the
internal structures of eukaryotic cells, including the nucleus (light blue), the nucleolus
(intermediate blue), mitochondria (orange), and ribosomes (dark blue). The drawing on the
right demonstrates how bacterial DNA is housed in a structure called the nucleoid (very
light blue), as well as other structures normally found in a prokaryotic cell, including the
cell membrane (black), the cell wall (intermediate blue), the capsule (orange), ribosomes
(dark blue), and a flagellum (also black). (b) History of life on earth. Figures courtesy the
National Library of Medicine.

A.1 What is a Cell

Cells are the structural and functional units of all living organisms. Some or-
ganisms, such as bacteria, are unicellular, consisting of a single cell. Other or-
ganisms, such as humans, are multicellular, or have many cells—an estimated
100,000,000,000,000 cells! Each cell is an amazing world unto itself: it can take in
nutrients, convert these nutrients into energy, carry out specialized functions, and
reproduce as necessary. Even more amazing is that each cell stores its own set of
instructions for carrying out each of these activities.

Cell Organization

Before we can discuss the various components of a cell, it is important to know
what organism the cell comes from. There are two general categories of cells:
prokaryotes and eukaryotes (see Figure A.1a).

Prokaryotic Organisms

It appears that life arose on earth about 4 billion years ago (see Figure A.1b. The
simplest of cells, and the first types of cells to evolve, were prokaryotic cells—
organisms that lack a nuclear membrane, the membrane that surrounds the nucleus
of a cell. Bacteria are the best known and most studied form of prokaryotic or-
ganisms, although the recent discovery of a second group of prokaryotes, called
archaea, has provided evidence of a third cellular domain of life and new insights
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into the origin of life itself.

Prokaryotes are unicellular organisms that do not develop or differentiate into
multicellular forms. Some bacteria grow in filaments, or masses of cells, but each
cell in the colony is identical and capable of independent existence. The cells
may be adjacent to one another because they did not separate after cell division
or because they remained enclosed in a common sheath or slime secreted by the
cells. Typically though, there is no continuity or communication between the cells.
Prokaryotes are capable of inhabiting almost every place on the earth, from the
deep ocean, to the edges of hot springs, to just about every surface of our bodies.

Prokaryotes are distinguished from eukaryotes on the basis of nuclear organi-
zation, specifically their lack of a nuclear membrane. Prokaryotes also lack any of
the intracellular organelles and structures that are characteristic of eukaryotic cells.
Most of the functions of organelles, such as mitochondria, chloroplasts, and the
Golgi apparatus, are taken over by the prokaryotic plasma membrane. Prokaryotic
cells have three architectural regions: appendages called flagella and pili—proteins
attached to the cell surface; a cell envelope consisting of a capsule, a cell wall, and
a plasma membrane; and a cytoplasmic region that contains the cell genome (DNA)
and ribosomes and various sorts of inclusions.

Eukaryotic Organisms

Eukaryotes include fungi, animals, and plants as well as some unicellular organ-
isms. Eukaryotic cells are about 10 times the size of a prokaryote and can be
as much as 1000 times greater in volume. The major and extremely significant
difference between prokaryotes and eukaryotes is that eukaryotic cells contain
membrane-bound compartments in which specific metabolic activities take place.
Most important among these is the presence of a nucleus, a membrane-delineated
compartment that houses the eukaryotic cell’s DNA. It is this nucleus that gives the
eukaryote—literally, true nucleus—its name.

Eukaryotic organisms also have other specialized structures, called organelles,
which are small structures within cells that perform dedicated functions. As the
name implies, you can think of organelles as small organs. There are a dozen dif-
ferent types of organelles commonly found in eukaryotic cells. In this primer, we
will focus our attention on only a handful of organelles and will examine these
organelles with an eye to their role at a molecular level in the cell.

The origin of the eukaryotic cell was a milestone in the evolution of life. Al-
though eukaryotes use the same genetic code and metabolic processes as prokary-
otes, their higher level of organizational complexity has permitted the develop-
ment of truly multicellular organisms. Without eukaryotes, the world would lack
mammals, birds, fish, invertebrates, mushrooms, plants, and complex single-celled
organisms.
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Figure A.2: An organelle is a subcellular structure that has one or more specific jobs to
perform in the cell, much like an organ does in the body. Among the more important cell
organelles are the nuclei, which store genetic information; mitochondria, which produce
chemical energy; and ribosomes, which assemble proteins.

Cell Structures: The Basics

The Plasma Membrane—A Cell’s Protective Coat

The outer lining of a eukaryotic cell is called the plasma membrane. This mem-
brane serves to separate and protect a cell from its surrounding environment and
is made mostly from a double layer of proteins and lipids, fat-like molecules. Em-
bedded within this membrane are a variety of other molecules that act as channels
and pumps, moving different molecules into and out of the cell. A form of plasma
membrane is also found in prokaryotes, but in this organism it is usually referred
to as the cell membrane.

The Cytoskeleton—A Cell’s Scaffold

The cytoskeleton is an important, complex, and dynamic cell component. It acts to
organize and maintain the cell’s shape; anchors organelles in place; helps during
endocytosis, the uptake of external materials by a cell; and moves parts of the cell
in processes of growth and motility. There are a great number of proteins associated
with the cytoskeleton, each controlling a cell’s structure by directing, bundling, and
aligning filaments.
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Figure A.3: The cell membrane, also called the plasma membrane, is found in all cells
and separates the interior of the cell from the outside environment. The cell membrane
consists of a lipid bilayer that is semipermeable. The cell membrane regulates the transport
of materials entering and exiting the cell.

The Cytoplasm—A Cell’s Inner Space

Inside the cell there is a large fluid-filled space called the cytoplasm, sometimes
called the cytosol. In prokaryotes, this space is relatively free of compartments. In
eukaryotes, the cytosol is the “soup” within which all of the cell’s organelles reside.
It is also the home of the cytoskeleton. The cytosol contains dissolved nutrients,
helps break down waste products, and moves material around the cell through a
process called cytoplasmic streaming. The nucleus often flows with the cytoplasm
changing its shape as it moves. The cytoplasm also contains many salts and is an
excellent conductor of electricity, creating the perfect environment for the mechan-
ics of the cell. The function of the cytoplasm, and the organelles which reside in it,
are critical for a cell’s survival.

Genetic Material

Two different kinds of genetic material exist: deoxyribonucleic acid (DNA) and ri-
bonucleic acid (RNA). Most organisms are made of DNA, but a few viruses have
RNA as their genetic material. The biological information contained in an organism
is encoded in its DNA or RNA sequence. Prokaryotic genetic material is organized
in a simple circular structure that rests in the cytoplasm. Eukaryotic genetic mate-
rial is more complex and is divided into discrete units called genes. Human genetic
material is made up of two distinct components: the nuclear genome and the mito-
chondrial genome. The nuclear genome is divided into 24 linear DNA molecules,
each contained in a different chromosome. The mitochondrial genome is a circu-
lar DNA molecule separate from the nuclear DNA. Although the mitochondrial
genome is very small, it codes for some very important proteins.
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Figure A.4: A nuclear membrane is a double membrane that encloses the cell nucleus.
It serves to separate the chromosomes from the rest of the cell. The nuclear membrane
includes an array of small holes or pores that permit the passage of certain materials, such
as nucleic acids and proteins, between the nucleus and cytoplasm.

Organelles

The human body contains many different organs, such as the heart, lung, and kid-
ney, with each organ performing a different function. Cells also have a set of “little
organs”, called organelles, that are adapted and/or specialized for carrying out one
or more vital functions. Organelles are found only in eukaryotes and are always
surrounded by a protective membrane. It is important to know some basic facts
about the following organelles.

The Nucleus—A Cell’s Center. The nucleus is the most conspicuous organelle
found in a eukaryotic cell. It houses the cell’s chromosomes and is the place where
almost all DNA replication and RNA synthesis occur. The nucleus is spheroid
in shape and separated from the cytoplasm by a membrane called the nuclear
envelope. The nuclear envelope isolates and protects a cell’s DNA from various
molecules that could accidentally damage its structure or interfere with its process-
ing. During processing, DNA is transcribed, or synthesized, into a special RNA,
called mRNA. This mRNA is then transported out of the nucleus, where it is trans-
lated into a specific protein molecule. In prokaryotes, DNA processing takes place
in the cytoplasm.

The Ribosome—The Protein Production Machine. Ribosomes are found in both
prokaryotes and eukaryotes. The ribosome is a large complex composed of many
molecules, including RNAs and proteins, and is responsible for processing the ge-
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Figure A.5: Mitochondria are membrane-bound cell organelles (mitochondrion, singular)
that generate most of the chemical energy needed to power the cell’s biochemical reactions.
Chemical energy produced by the mitochondria is stored in a small molecule called adeno-
sine triphosphate (ATP). Mitochondria contain their own small chromosomes. Generally,
mitochondria, and therefore mitochondrial DNA, are inherited only from the mother.

netic instructions carried by an mRNA. The process of converting an mRNA’s
genetic code into the exact sequence of amino acids that make up a protein is
called translation. Protein synthesis is extremely important to all cells, and there-
fore a large number of ribosomes—sometimes hundreds or even thousands—can
be found throughout a cell.

Ribosomes float freely in the cytoplasm or sometimes bind to another organelle
called the endoplasmic reticulum. Ribosomes are composed of one large and one
small subunit, each having a different function during protein synthesis.

Mitochondria and Chloroplasts—The Power Generators. Mitochondria are self-
replicating organelles that occur in various numbers, shapes, and sizes in the cyto-
plasm of all eukaryotic cells. As mentioned earlier, mitochondria contain their own
genome that is separate and distinct from the nuclear genome of a cell. Mitochon-
dria have two functionally distinct membrane systems separated by a space: the
outer membrane, which surrounds the whole organelle; and the inner membrane,
which is thrown into folds or shelves that project inward. These inward folds are
called cristae. The number and shape of cristae in mitochondria differ, depend-
ing on the tissue and organism in which they are found, and serve to increase the
surface area of the membrane.

Mitochondria play a critical role in generating energy in the eukaryotic cell,
and this process involves a number of complex pathways. Let’s break down each
of these steps so that you can better understand how food and nutrients are turned
into energy packets and water. Some of the best energy-supplying foods that we
eat contain complex sugars. These complex sugars can be broken down into a
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(a) Glycolysis (b) Kreb’s cycle

Figure A.6: Cell energy production. Reproduced from Alberts et al. [2]; permission pend-
ing.

less chemically complex sugar molecule called glucose. Glucose can then enter
the cell through special molecules found in the membrane, called glucose trans-
porters. Once inside the cell, glucose is broken down to make adenosine triphos-
phate (ATP), a form of energy, via two different pathways.

The first pathway, glycolysis, requires no oxygen and is referred to as anaerobic
metabolism. Glycolysis occurs in the cytoplasm outside the mitochondria. During
glycolysis, glucose is broken down into a molecule called pyruvate. Each reaction
is designed to produce some hydrogen ions that can then be used to make energy
packets (ATP). However, only four ATP molecules can be made from one molecule
of glucose in this pathway. In prokaryotes, glycolysis is the only method used for
converting energy.

The second pathway, called the Kreb’s cycle, or the citric acid cycle, occurs
inside the mitochondria and is capable of generating enough ATP to run all the cell
functions. Once again, the cycle begins with a glucose molecule, which during the
process of glycolysis is stripped of some of its hydrogen atoms, transforming the
glucose into two molecules of pyruvic acid. Next, pyruvic acid is altered by the
removal of a carbon and two oxygens, which go on to form carbon dioxide. When
the carbon dioxide is removed, energy is given off, and a molecule called NAD+



A.1. WHAT IS A CELL 285

is converted into the higher energy form, NADH. Another molecule, coenzyme A
(CoA), then attaches to the remaining acetyl unit, forming acetyl CoA.

Acetyl CoA enters the Kreb’s cycle by joining to a four-carbon molecule called
oxaloacetate. Once the two molecules are joined, they make a six-carbon molecule
called citric acid. Citric acid is then broken down and modified in a stepwise fash-
ion. As this happens, hydrogen ions and carbon molecules are released. The carbon
molecules are used to make more carbon dioxide. The hydrogen ions are picked up
by NAD and another molecule called flavin-adenine dinucleotide (FAD). Eventu-
ally, the process produces the four-carbon oxaloacetate again, ending up where it
started off. All in all, the Kreb’s cycle is capable of generating from 24 to 28 ATP
molecules from one molecule of glucose converted to pyruvate. Therefore, it is
easy to see how much more energy we can get from a molecule of glucose if our
mitochondria are working properly and if we have oxygen.

Chloroplasts are similar to mitochondria but are found only in plants. Both
organelles are surrounded by a double membrane with an intermembrane space;
both have their own DNA and are involved in energy metabolism; and both have
reticulations, or many foldings, filling their inner spaces. Chloroplasts convert light
energy from the sun into ATP through a process called photosynthesis.

The Endoplasmic Reticulum and the Golgi Apparatus—Macromolecule Managers.
The endoplasmic reticulum (ER) is the transport network for molecules targeted for
certain modifications and specific destinations, as compared to molecules that will
float freely in the cytoplasm. The ER has two forms: the rough ER and the smooth
ER. The rough ER is labeled as such because it has ribosomes adhering to its outer
surface, whereas the smooth ER does not. Translation of the mRNA for those pro-
teins that will either stay in the ER or be exported (moved out of the cell) occurs at
the ribosomes attached to the rough ER. The smooth ER serves as the recipient for
those proteins synthesized in the rough ER. Proteins to be exported are passed to
the Golgi apparatus, sometimes called a Golgi body or Golgi complex, for further
processing, packaging, and transport to a variety of other cellular locations.

Lysosomes and Peroxisomes—The Cellular Digestive System. Lysosomes and per-
oxisomes are often referred to as the garbage disposal system of a cell. Both or-
ganelles are somewhat spherical, bound by a single membrane, and rich in diges-
tive enzymes, naturally occurring proteins that speed up biochemical processes.
For example, lysosomes can contain more than three dozen enzymes for degrading
proteins, nucleic acids, and certain sugars called polysaccharides. All of these en-
zymes work best at a low pH, reducing the risk that these enzymes will digest their
own cell should they somehow escape from the lysosome. Here we can see the
importance behind compartmentalization of the eukaryotic cell. The cell could not
house such destructive enzymes if they were not contained in a membrane-bound
system.

One function of a lysosome is to digest foreign bacteria that invade a cell. Other
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Figure A.7: Endoplasmic reticulum is a network of membranes inside a cell through which
proteins and other molecules move. Proteins are assembled at organelles called ribosomes.
(a) When proteins are destined to be part of the cell membrane or exported from the cell,
the ribosomes assembling them attach to the endoplasmic reticulum, giving it a rough
appearance. (b) Smooth endoplasmic reticulum lacks ribosomes and helps synthesize and
concentrate various substances needed by the cell.

functions include helping to recycle receptor proteins and other membrane compo-
nents and degrading worn out organelles such as mitochondria. Lysosomes can
even help repair damage to the plasma membrane by serving as a membrane patch,
sealing the wound.

Peroxisomes function to rid the body of toxic substances, such as hydrogen
peroxide, or other metabolites and contain enzymes concerned with oxygen utiliza-
tion. High numbers of peroxisomes can be found in the liver, where toxic byprod-
ucts are known to accumulate. All of the enzymes found in a peroxisome are im-
ported from the cytosol. Each enzyme transferred to a peroxisime has a special
sequence at one end of the protein, called a PTS or peroxisomal targeting signal,
that allows the protein to be taken into that organelle, where they then function to
rid the cell of toxic substances.

Peroxisomes often resemble a lysosome. However, peroxisomes are self repli-
cating, whereas lysosomes are formed in the Golgi complex. Peroxisomes also
have membrane proteins that are critical for various functions, such as for import-
ing proteins into their interiors and to proliferate and segregate into daughter cells.

Where Do Viruses Fit?

Viruses are not classified as cells and therefore are neither unicellular nor multi-
cellular organisms. Most people do not even classify viruses as “living” because
they lack a metabolic system and are dependent on the host cells that they infect to
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Figure A.8: A Golgi body, also known as a Golgi apparatus, is a cell organelle that helps
process and package proteins and lipid molecules, especially proteins destined to be ex-
ported from the cell. Named after its discoverer, Camillo Golgi, the Golgi body appears as
a series of stacked membranes.

reproduce. Viruses have genomes that consist of either DNA or RNA, and there are
examples of viruses that are either double-stranded or single-stranded. Importantly,
their genomes code not only for the proteins needed to package its genetic material
but for those proteins needed by the virus to reproduce during its infective cycle.

Making New Cells and Cell Types

For most unicellular organisms, reproduction is a simple matter of cell duplication,
also known as replication. But for multicellular organisms, cell replication and
reproduction are two separate processes. Multicellular organisms replace damaged
or worn out cells through a replication process called mitosis, the division of a
eukaryotic cell nucleus to produce two identical daughter nuclei. To reproduce,
eukaryotes must first create special cells called gametes—eggs and sperm—that
then fuse to form the beginning of a new organism. Gametes are but one of the
many unique cell types that multicellular organisms need to function as a complete
organism.

Making New Cells

Most unicellular organisms create their next generation by replicating all of their
parts and then splitting into two cells, a type of asexual reproduction called binary
fission. This process spawns not just two new cells, but also two new organisms.
Multicellullar organisms replicate new cells in much the same way. For example,
we produce new skin cells and liver cells by replicating the DNA found in that cell
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Figure A.9: Mitosis is a cellular process that replicates chromosomes and produces two
identical nuclei in preparation for cell division. Generally, mitosis is immediately followed
by the equal division of the cell nuclei and other cell contents into two daughter cells.

through mitosis. Yet, producing a whole new organism requires sexual reproduc-
tion, at least for most multicellular organisms. In the first step, specialized cells
called gametes—eggs and sperm—are created through a process called meiosis.
Meiosis serves to reduce the chromosome number for that particular organism by
half. In the second step, the sperm and egg join to make a single cell, which restores
the chromosome number. This joined cell then divides and differentiates into dif-
ferent cell types that eventually form an entire functioning organism.

Mitosis. Every time a cell divides, it must ensure that its DNA is shared between
the two daughter cells. Mitosis is the process of “divvying up” the genome between
the daughter cells. To easier describe this process, let’s imagine a cell with only
one chromosome. Before a cell enters mitosis, we say the cell is in interphase, the
state of a eukaryotic cell when not undergoing division. Every time a cell divides, it
must first replicate all of its DNA. Because chromosomes are simply DNA wrapped
around protein, the cell replicates its chromosomes also. These two chromosomes,
positioned side by side, are called sister chromatids and are identical copies of one
another. Before this cell can divide, it must separate these sister chromatids from
one another. To do this, the chromosomes have to condense. This stage of mitosis
is called prophase. Next, the nuclear envelope breaks down, and a large protein
network, called the spindle, attaches to each sister chromatid. The chromosomes
are now aligned perpendicular to the spindle in a process called metaphase. Next,
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Figure A.10: Meiosis is the formation of egg and sperm cells. In sexually reproducing
organisms, body cells are diploid, meaning they contain two sets of chromosomes (one set
from each parent). To maintain this state, the egg and sperm that unite during fertilization
must be haploid, meaning they each contain a single set of chromosomes. During meiosis,
diploid cells undergo DNA replication, followed by two rounds of cell division, producing
four haploid sex cells.

“molecular motors” pull the chromosomes away from the metaphase plate to the
spindle poles of the cell. This is called anaphase. Once this process is completed,
the cells divide, the nuclear envelope reforms, and the chromosomes relax and
decondense during telophase. The cell can now replicate its DNA again during
interphase and go through mitosis once more.

Meiosis. Meiosis is a specialized type of cell division that occurs during the forma-
tion of gametes. Although meiosis may seem much more complicated than mitosis,
it is really just two cell divisions in sequence. Each of these sequences maintains
strong similarities to mitosis.

Meiosis I refers to the first of the two divisions and is often called the reduction
division. This is because it is here that the chromosome complement is reduced
from diploid (two copies) to haploid (one copy). Interphase in meiosis is identical
to interphase in mitosis. At this stage, there is no way to determine what type of
division the cell will undergo when it divides. Meiotic division will only occur in
cells associated with male or female sex organs. Prophase I is virtually identical
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to prophase in mitosis, involving the appearance of the chromosomes, the devel-
opment of the spindle apparatus, and the breakdown of the nuclear membrane.
Metaphase I is where the critical difference occurs between meiosis and mitosis.
In mitosis, all of the chromosomes line up on the metaphase plate in no particu-
lar order. In Metaphase I, the chromosome pairs are aligned on either side of the
metaphase plate. It is during this alignment that the chromatid arms may overlap
and temporarily fuse, resulting in what is called crossovers. During Anaphase I,
the spindle fibers contract, pulling the homologous pairs away from each other and
toward each pole of the cell. In Telophase I, a cleavage furrow typically forms,
followed by cytokinesis, the changes that occur in the cytoplasm of a cell during
nuclear division; but the nuclear membrane is usually not reformed, and the chro-
mosomes do not disappear. At the end of Telophase I, each daughter cell has a
single set of chromosomes, half the total number in the original cell, that is, while
the original cell was diploid; the daughter cells are now haploid.

Meiosis II is quite simply a mitotic division of each of the haploid cells pro-
duced in Meiosis I. There is no Interphase between Meiosis I and Meiosis II,
and the latter begins with Prophase II. At this stage, a new set of spindle fibers
forms and the chromosomes begin to move toward the equator of the cell. During
Metaphase II, all of the chromosomes in the two cells align with the metaphase
plate. In Anaphase II, the centromeres split, and the spindle fibers shorten, drawing
the chromosomes toward each pole of the cell. In Telophase II, a cleavage furrow
develops, followed by cytokinesis and the formation of the nuclear membrane. The
chromosomes begin to fade and are replaced by the granular chromatin, a char-
acteristic of interphase. When Meiosis II is complete, there will be a total of four
daughter cells, each with half the total number of chromosomes as the original
cell. In the case of male structures, all four cells will eventually develop into sperm
cells. In the case of the female life cycles in higher organisms, three of the cells
will typically abort, leaving a single cell to develop into an egg cell, which is much
larger than a sperm cell.

Recombination—The Physical Exchange of DNA. All organisms suffer a certain
number of small mutations, or random changes in a DNA sequence, during the
process of DNA replication. These are called spontaneous mutations and occur
at a rate characteristic for that organism. Genetic recombination refers more to a
large-scale rearrangement of a DNA molecule. This process involves pairing be-
tween complementary strands of two parental duplex, or double-stranded DNAs,
and results from a physical exchange of chromosome material.

The position at which a gene is located on a chromosome is called a locus. In a
given individual, one might find two different versions of this gene at a particular
locus. These alternate gene forms are called alleles. During Meiosis I, when the
chromosomes line up along the metaphase plate, the two strands of a chromosome
pair may physically cross over one another. This may cause the strands to break
apart at the crossover point and reconnect to the other chromosome, resulting in
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the exchange of part of the chromosome.
Recombination results in a new arrangement of maternal and paternal alleles

on the same chromosome. Although the same genes appear in the same order, the
alleles are different. This process explains why offspring from the same parents can
look so different. In this way, it is theoretically possible to have any combination
of parental alleles in an offspring, and the fact that two alleles appear together in
one offspring does not have any influence on the statistical probability that another
offspring will have the same combination. This theory of “independent assortment”
of alleles is fundamental to genetic inheritance. However, having said that, there is
an exception that requires further discussion.

The frequency of recombination is actually not the same for all gene combi-
nations. This is because recombination is greatly influenced by the proximity of
one gene to another. If two genes are located close together on a chromosome, the
likelihood that a recombination event will separate these two genes is less than if
they were farther apart. Linkage describes the tendency of genes to be inherited
together as a result of their location on the same chromosome. Linkage disequilib-
rium describes a situation in which some combinations of genes or genetic markers
occur more or less frequently in a population than would be expected from their
distances apart. Scientists apply this concept when searching for a gene that may
cause a particular disease. They do this by comparing the occurrence of a specific
DNA sequence with the appearance of a disease. When they find a high correlation
between the two, they know they are getting closer to finding the appropriate gene
sequence.

Binary Fission—How Bacteria Reproduce. Bacteria reproduce through a fairly
simple process called binary fission, or the reproduction of a living cell by division
into two equal, or near equal, parts. As just noted, this type of asexual reproduction
theoretically results in two identical cells. However, bacterial DNA has a relatively
high mutation rate. This rapid rate of genetic change is what makes bacteria capa-
ble of developing resistance to antibiotics and helps them exploit invasion into a
wide range of environments.

Similar to more complex organisms, bacteria also have mechanisms for ex-
changing genetic material. Although not equivalent to sexual reproduction, the
end result is that a bacterium contains a combination of traits from two different
parental cells. Three different modes of exchange have thus far been identified in
bacteria.

Conjunction involves the direct joining of two bacteria, which allows their cir-
cular DNAs to undergo recombination. Bacteria can also undergo transformation
by absorbing remnants of DNA from dead bacteria and integrating these fragments
into their own DNA. Lastly, bacteria can exchange genetic material through a pro-
cess called transduction, in which genes are transported into and out of the cell
by bacterial viruses, called bacteriophages, or by plasmids, an autonomous self-
replicating extrachromosomal circular DNA.
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Figure A.11: Types of viruses. This illustration depicts three types of viruses: a bacterial
virus, otherwise called a bacteriophage (left center); an animal virus (top right); and a
retrovirus (bottom right). Viruses depend on the host cell that they infect to reproduce.
When found outside of a host cell, viruses, in their simplest forms, consist only of genomic
nucleic acid, either DNA or RNA (depicted as blue), surrounded by a protein coat, or
capsid.

Viral Reproduction. Because viruses are acellular and do not use ATP, they must
utilize the machinery and metabolism of a host cell to reproduce. For this reason,
viruses are called obligate intracellular parasites. Before a virus has entered a host
cell, it is called a virion—a package of viral genetic material. Virions—infectious
viral particles—can be passed from host to host either through direct contact or
through a vector, or carrier. Inside the organism, the virus can enter a cell in var-
ious ways. Bacteriophages—bacterial viruses—attach to the cell wall surface in
specific places. Once attached, enzymes make a small hole in the cell wall, and
the virus injects its DNA into the cell. Other viruses (such as HIV) enter the host
via endocytosis, the process whereby cells take in material from the external envi-
ronment. After entering the cell, the virus’s genetic material begins the destructive
process of taking over the cell and forcing it to produce new viruses.

There are three different ways genetic information contained in a viral genome
can be reproduced. The form of genetic material contained in the viral capsid, the
protein coat that surrounds the nucleic acid, determines the exact replication pro-
cess. Some viruses have DNA, which once inside the host cell is replicated by the
host along with its own DNA. Then, there are two different replication processes
for viruses containing RNA. In the first process, the viral RNA is directly copied
using an enzyme called RNA replicase. This enzyme then uses that RNA copy as
a template to make hundreds of duplicates of the original RNA. A second group
of RNA-containing viruses, called the retroviruses, uses the enzyme reverse tran-
scriptase to synthesize a complementary strand of DNA so that the virus’s genetic
information is contained in a molecule of DNA rather than RNA. The viral DNA
can then be further replicated using the host cell machinery.

Steps Associated with Viral Reproduction.
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1. Attachment, sometimes called absorption: The virus attaches to receptors on
the host cell wall.

2. Penetration: The nucleic acid of the virus moves through the plasma mem-
brane and into the cytoplasm of the host cell. The capsid of a phage, a bacte-
rial virus, remains on the outside. In contrast, many viruses that infect animal
cells enter the host cell intact.

3. Replication: The viral genome contains all the information necessary to pro-
duce new viruses. Once inside the host cell, the virus induces the host cell to
synthesize the necessary components for its replication.

4. Assembly: The newly synthesized viral components are assembled into new
viruses.

5. Release: Assembled viruses are released from the cell and can now infect
other cells, and the process begins again.

When the virus has taken over the cell, it immediately directs the host to begin
manufacturing the proteins necessary for virus reproduction. The host produces
three kinds of proteins: early proteins, enzymes used in nucleic acid replication;
late proteins, proteins used to construct the virus coat; and lytic proteins, enzymes
used to break open the cell for viral exit. The final viral product is assembled spon-
taneously, that is, the parts are made separately by the host and are joined together
by chance. This self-assembly is often aided by molecular chaperones, or proteins
made by the host that help the capsid parts come together.

The new viruses then leave the cell either by exocytosis or by lysis. Envelope-
bound animal viruses instruct the host’s endoplasmic reticulum to make certain
proteins, called glycoproteins, which then collect in clumps along the cell mem-
brane. The virus is then discharged from the cell at these exit sites, referred to as
exocytosis. On the other hand, bacteriophages must break open, or lyse, the cell to
exit. To do this, the phages have a gene that codes for an enzyme called lysozyme.
This enzyme breaks down the cell wall, causing the cell to swell and burst. The
new viruses are released into the environment, killing the host cell in the process.

One family of animal viruses, called the retroviruses, contains RNA genomes
in their virus particles but synthesize a DNA copy of their genome in infected
cells. Retroviruses provide an excellent example of how viruses can play an impor-
tant role as models for biological research. Studies of these viruses are what first
demonstrated the synthesis of DNA from RNA templates, a fundamental mode for
transferring genetic material that occurs in both eukaryotes and prokaryotes.

Why Study Viruses?. Viruses are important to the study of molecular and cellu-
lar biology because they provide simple systems that can be used to manipulate
and investigate the functions of many cell types. We have just discussed how viral
replication depends on the metabolism of the infected cell. Therefore, the study
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of viruses can provide fundamental information about aspects of cell biology and
metabolism. The rapid growth and small genome size of bacteria make them excel-
lent tools for experiments in biology. Bacterial viruses have also further simplified
the study of bacterial genetics and have deepened our understanding of the basic
mechanisms of molecular genetics. Because of the complexity of an animal cell
genome, viruses have been even more important in studies of animal cells than
in studies of bacteria. Numerous studies have demonstrated the utility of animal
viruses as probes for investigating different activities of eukaryotic cells. Other
examples in which animal viruses have provided important models for biological
research of their host cells include studies of DNA replication, transcription, RNA
processing, and protein transport.

Deriving New Cell Types

Look closely at the human body, and it is clear that not all cells are alike. For
example, cells that make up our skin are certainly different from cells that make
up our inner organs. Yet, all of the different cell types in our body are all derived,
or arise, from a single, fertilized egg cell through differentiation. Differentiation
is the process by which an unspecialized cell becomes specialized into one of the
many cells that make up the body, such as a heart, liver, or muscle cell. During
differentiation, certain genes are turned on, or become activated, while other genes
are switched off, or inactivated. This process is intricately regulated. As a result, a
differentiated cell will develop specific structures and perform certain functions.

Mammalian Cell Types. Three basic categories of cells make up the mammalian
body: germ cells, somatic cells, and stem cells. Each of the approximately 100
trillion cells in an adult human has its own copy, or copies, of the genome, with the
only exception being certain cell types that lack nuclei in their fully differentiated
state, such as red blood cells. The majority of these cells are diploid, or have two
copies of each chromosome. These cells are called somatic cells. This category of
cells includes most of the cells that make up our body, such as skin and muscle
cells. Germ line cells are any line of cells that give rise to gametes—eggs and
sperm—and are continuous through the generations. Stem cells, on the other hand,
have the ability to divide for indefinite periods and to give rise to specialized cells.
They are best described in the context of normal human development.

Human development begins when a sperm fertilizes an egg and creates a sin-
gle cell that has the potential to form an entire organism. In the first hours after
fertilization, this cell divides into identical cells. Approximately 4 days after fer-
tilization and after several cycles of cell division, these cells begin to specialize,
forming a hollow sphere of cells, called a blastocyst. The blastocyst has an outer
layer of cells, and inside this hollow sphere, there is a cluster of cells called the
inner cell mass. The cells of the inner cell mass will go on to form virtually all
of the tissues of the human body. Although the cells of the inner cell mass can
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Figure A.12: Differentiation of human tissues. Human development begins when a sperm
fertilizes an egg and creates a single cell that has the potential to form an entire organism,
called the zygote (top panel, mauve). In the first hours after fertilization, this cell divides
into identical cells. These cells then begin to specialize, forming a hollow sphere of cells,
called a blastocyst (second panel, purple). The blastocyst has an outer layer of cells (yel-
low), and inside this hollow sphere, there is a cluster of cells called the inner cell mass
(light blue). The inner cell mass can give rise to the germ cells—eggs and sperm—as well
as cells derived from all three germ layers (ectoderm, light blue; mesoderm, light green;
and endoderm, light yellow), depicted in the bottom panel, including nerve cells, muscle
cells, skin cells, blood cells, bone cells, and cartilage. Reproduced with permission from
the Office of Science Policy, the National Institutes of Health.

form virtually every type of cell found in the human body, they cannot form an
organism. Therefore, these cells are referred to as pluripotent, that is, they can give
rise to many types of cells but not a whole organism. Pluripotent stem cells un-
dergo further specialization into stem cells that are committed to give rise to cells
that have a particular function. Examples include blood stem cells that give rise
to red blood cells, white blood cells, and platelets, and skin stem cells that give
rise to the various types of skin cells. These more specialized stem cells are called
multipotent—capable of giving rise to several kinds of cells, tissues, or structures.

The Working Cell: DNA, RNA, and Protein Synthesis

DNA Replication

DNA replication, or the process of duplicating a cell’s genome, is required every
time a cell divides. Replication, like all cellular activities, requires specialized pro-
teins for carrying out the job. In the first step of replication, a special protein, called
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Figure A.13: An overview of DNA replication. Before a cell can divide, it must first du-
plicate its DNA. This figure provides an overview of the DNA replication process. In the
first step, a portion of the double helix (blue) is unwound by a helicase. Next, a molecule
of DNA polymerase (green) binds to one strand of the DNA. It moves along the strand,
using it as a template for assembling a leading strand (red) of nucleotides and reforming a
double helix. Because DNA synthesis can only occur 5’ to 3’, a second DNA polymerase
molecule (also green) is used to bind to the other template strand as the double helix opens.
This molecule must synthesize discontinuous segments of polynucleotides (called Okazaki
Fragments). Another enzyme, DNA Ligase (yellow), then stitches these together into the
lagging strand.

a helicase, unwinds a portion of the parental DNA double helix. Next, a molecule
of DNA polymerase—a common name for two categories of enzymes that influ-
ence the synthesis of DNA— binds to one strand of the DNA. DNA polymerase
begins to move along the DNA strand in the 3’ to 5’ direction, using the single-
stranded DNA as a template. This newly synthesized strand is called the leading
strand and is necessary for forming new nucleotides and reforming a double helix.
Because DNA synthesis can only occur in the 5’ to 3’ direction, a second DNA
polymerase molecule is used to bind to the other template strand as the double he-
lix opens. This molecule synthesizes discontinuous segments of polynucleotides,
called Okazaki fragments. Another enzyme, called DNA ligase, is responsible for
stitching these fragments together into what is called the lagging strand.

The average human chromosome contains an enormous number of nucleotide
pairs that are copied at about 50 base pairs per second. Yet, the entire replication
process takes only about an hour. This is because there are many replication ori-
gin sites on a eukaryotic chromosome. Therefore, replication can begin at some
origins earlier than at others. As replication nears completion, “bubbles” of newly
replicated DNA meet and fuse, forming two new molecules.

With multiple replication origin sites, one might ask, how does the cell know
which DNA has already been replicated and which still awaits replication? To date,
two replication control mechanisms have been identified: one positive and one neg-
ative. For DNA to be replicated, each replication origin site must be bound by a
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Figure A.14: Transcription is the process of making an RNA copy of a gene sequence. This
copy, called a messenger RNA (mRNA) molecule, leaves the cell nucleus and enters the
cytoplasm, where it directs the synthesis of the protein, which it encodes.

set of proteins called the Origin Recognition Complex. These remain attached to
the DNA throughout the replication process. Specific accessory proteins, called li-
censing factors, must also be present for initiation of replication. Destruction of
these proteins after initiation of replication prevents further replication cycles from
occurring. This is because licensing factors are only produced when the nuclear
membrane of a cell breaks down during mitosis.

DNA Transcription—Making mRNA

DNA transcription refers to the synthesis of RNA from a DNA template. This pro-
cess is very similar to DNA replication. Of course, there are different proteins that
direct transcription. The most important enzyme is RNA polymerase, an enzyme
that influences the synthesis of RNA from a DNA template. For transcription to
be initiated, RNA polymerase must be able to recognize the beginning sequence
of a gene so that it knows where to start synthesizing an mRNA. It is directed to
this initiation site by the ability of one of its subunits to recognize a specific DNA
sequence found at the beginning of a gene, called the promoter sequence. The pro-
moter sequence is a unidirectional sequence found on one strand of the DNA that
instructs the RNA polymerase in both where to start synthesis and in which di-
rection synthesis should continue. The RNA polymerase then unwinds the double
helix at that point and begins synthesis of a RNA strand complementary to one of
the strands of DNA. This strand is called the antisense or template strand, whereas
the other strand is referred to as the sense or coding strand. Synthesis can then
proceed in a unidirectional manner.
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Although much is known about transcript processing, the signals and events that
instruct RNA polymerase to stop transcribing and drop off the DNA template re-
main unclear. Experiments over the years have indicated that processed eukaryotic
messages contain a poly(A) addition signal (AAUAAA) at their 3’ end, followed by
a string of adenines. This poly(A) addition, also called the poly(A) site, contributes
not only to the addition of the poly(A) tail but also to transcription termination and
the release of RNA polymerase from the DNA template. Yet, transcription does
not stop here. Rather, it continues for another 200 to 2000 bases beyond this site
before it is aborted. It is either before or during this termination process that the
nascent transcript is cleaved, or cut, at the poly(A) site, leading to the creation of
two RNA molecules. The upstream portion of the newly formed, or nascent, RNA
then undergoes further modifications, called post-transcriptional modification, and
becomes mRNA. The downstream RNA becomes unstable and is rapidly degraded.

Although the importance of the poly(A) addition signal has been established,
the contribution of sequences further downstream remains uncertain. A recent study
suggests that a defined region, called the termination region, is required for proper
transcription termination. This study also illustrated that transcription termination
takes place in two distinct steps. In the first step, the nascent RNA is cleaved at
specific subsections of the termination region, possibly leading to its release from
RNA polymerase. In a subsequent step, RNA polymerase disengages from the
DNA. Hence, RNA polymerase continues to transcribe the DNA, at least for a
short distance.

Protein Translation—How Do Messenger RNAs Direct Protein Synthesis?

The cellular machinery responsible for synthesizing proteins is the ribosome. The
ribosome consists of structural RNA and about 80 different proteins. In its inactive
state, it exists as two subunits: a large subunit and a small subunit. When the small
subunit encounters an mRNA, the process of translating an mRNA to a protein
begins. In the large subunit, there are two sites for amino acids to bind and thus
be close enough to each other to form a bond. The “A site” accepts a new transfer
RNA, or tRNA—the adaptor molecule that acts as a translator between mRNA and
protein—bearing an amino acid. The “P site”P site binds the tRNA that becomes
attached to the growing chain.

As we just discussed, the adaptor molecule that acts as a translator between
mRNA and protein is a specific RNA molecule, the tRNA. Each tRNA has a spe-
cific acceptor site that binds a particular triplet of nucleotides, called a codon,
and an anti-codon site that binds a sequence of three unpaired nucleotides, the
anti-codon, which can then bind to the the codon. Each tRNA also has a specific
charger protein, called an aminoacyl tRNA synthetase. This protein can only bind
to that particular tRNA and attach the correct amino acid to the acceptor site.

The start signal for translation is the codon ATG, which codes for methionine.
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Figure A.15: Translation is the process of translating the sequence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic
code describes the relationship between the sequence of base pairs in a gene and the cor-
responding amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemble the protein.

Not every protein necessarily starts with methionine, however. Oftentimes this first
amino acid will be removed in later processing of the protein. A tRNA charged
with methionine binds to the translation start signal. The large subunit binds to
the mRNA and the small subunit, and so begins elongation, the formation of the
polypeptide chain. After the first charged tRNA appears in the A site, the ribosome
shifts so that the tRNA is now in the P site. New charged tRNAs, corresponding
the codons of the mRNA, enter the A site, and a bond is formed between the two
amino acids. The first tRNA is now released, and the ribosome shifts again so that
a tRNA carrying two amino acids is now in the P site. A new charged tRNA then
binds to the A site. This process of elongation continues until the ribosome reaches
what is called a stop codon, a triplet of nucleotides that signals the termination of
translation. When the ribosome reaches a stop codon, no aminoacyl tRNA binds
to the empty A site. This is the ribosome signal to break apart into its large and
small subunits, releasing the new protein and the mRNA. Yet, this isn’t always the
end of the story. A protein will often undergo further modification, called post-
translational modification. For example, it might be cleaved by a protein-cutting
enzyme, called a protease, at a specific place or have a few of its amino acids
altered.
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Figure A.16: Transfer RNA (tRNA) is a small RNA molecule that participates in protein
synthesis. Each tRNA molecule has two important areas: a trinucleotide region called the
anticodon and a region for attaching a specific amino acid. During translation, each time
an amino acid is added to the growing chain, a tRNA molecule forms base pairs with
its complementary sequence on the messenger RNA (mRNA) molecule, ensuring that the
appropriate amino acid is inserted into the protein.

DNA Repair Mechanisms

Maintenance of the accuracy of the DNA genetic code is critical for both the long-
and short-term survival of cells and species. Sometimes, normal cellular activities,
such as duplicating DNA and making new gametes, introduce changes or muta-
tions in our DNA. Other changes are caused by exposure of DNA to chemicals,
radiation, or other adverse environmental conditions. No matter the source, genetic
mutations have the potential for both positive and negative effects on an individ-
ual as well as its species. A positive change results in a slightly different version
of a gene that might eventually prove beneficial in the face of a new disease or
changing environmental conditions. Such beneficial changes are the cornerstone
of evolution. Other mutations are considered deleterious, or result in damage to a
cell or an individual. For example, errors within a particular DNA sequence may
end up either preventing a vital protein from being made or encoding a defective
protein. It is often these types of errors that lead to various disease states.

The potential for DNA damage is counteracted by a vigorous surveillance and
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Figure A.17: A stop codon is a trinucleotide sequence within a messenger RNA (mRNA)
molecule that signals a halt to protein synthesis. The genetic code describes the relationship
between the sequence of DNA bases (A, C, G, and T) in a gene and the corresponding
protein sequence that it encodes. The cell reads the sequence of the gene in groups of three
bases. Of the 64 possible combinations of three bases, 61 specify an amino acid, while the
remaining three combinations are stop codons.

repair system. Within this system, there are a number of enzymes capable of re-
pairing damage to DNA. Some of these enzymes are specific for a particular type
of damage, whereas others can handle a range of mutation types. These systems
also differ in the degree to which they are able to restore the normal, or wild-type,
sequence.

Categories of DNA Repair Systems.

• Photoreactivation is the process whereby genetic damage caused by ultra-
violet radiation is reversed by subsequent illumination with visible or near-
ultraviolet light.

• Nucleotide excision repair is used to fix DNA lesions, such as single-stranded
breaks or damaged bases, and occurs in stages. The first stage involves recog-
nition of the damaged region. In the second stage, two enzymatic reactions
serve to remove, or excise, the damaged sequence. The third stage involves
synthesis by DNA polymerase of the excised nucleotides using the second
intact strand of DNA as a template. Lastly, DNA ligase joins the newly syn-
thesized segment to the existing ends of the originally damaged DNA strand.

• Recombination repair, or post-replication repair, fixes DNA damage by a
strand exchange from the other daughter chromosome. Because it involves
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Figure A.18: A peptide is one or more amino acids linked by chemical bonds. The term also
refers to the type of chemical bond that joins the amino acids together. A series of linked
amino acids is a polypeptide. The cell’s proteins are made from one or more polypeptides.

homologous recombination, it is largely error free.

• Base excision repair allows for the identification and removal of wrong
bases, typically attributable to deamination—the removal of an amino group
(NH2)—of normal bases as well as from chemical modification.

• Mismatch repair is a multi-enzyme system that recognizes inappropriately
matched bases in DNA and replaces one of the two bases with one that
“matches” the other. The major problem here is recognizing which of the
mismatched bases is incorrect and therefore should be removed and replaced.

• Adaptive/inducible repair describes several protein activities that recognize
very specific modified bases. They then transfer this modifying group from
the DNA to themselves, and, in doing so, destroy their own function. These
proteins are referred to as inducible because they tend to regulate their own
synthesis. For example, exposure to modifying agents induces, or turns on,
more synthesis and therefore adaptation.

• SOS repair or inducible error-prone repair is a repair process that occurs
in bacteria and is induced, or switched on, in the presence of potentially
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Figure A.19: Proteins are an important class of molecules found in all living cells. A protein
is composed of one or more long chains of amino acids, the sequence of which corresponds
to the DNA sequence of the gene that encodes it. Proteins play a variety of roles in the cell,
including structural (cytoskeleton), mechanical (muscle), biochemical (enzymes), and cell
signaling (hormones). Proteins are also an essential part of diet.

lethal stresses, such as UV irradiation or the inactivation of genes essential
for replication. Some responses to this type of stress include mutagenesis—
the production of mutations—or cell elongation without cell division. In this
type of repair process, replication of the DNA template is extremely inac-
curate. Obviously, such a repair system must be a desperate recourse for the
cell, allowing replication past a region where the wild-type sequence has
been lost.

From Cells to Genomes

Understanding what makes up a cell and how that cell works is fundamental to
all of the biological sciences. Appreciating the similarities and differences between
cell types is particularly important to the fields of cell and molecular biology. These
fundamental similarities and differences provide a unifying theme, allowing the
principles learned from studying one cell type to be extrapolated and generalized
to other cell types.
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Perhaps the most fundamental property of all living things is their ability to re-
produce. All cells arise from pre-existing cells, that is, their genetic material must
be replicated and passed from parent cell to progeny. Likewise, all multicellular
organisms inherit their genetic information specifying structure and function from
their parents. The next section of the genetics primer, What is a Genome, details
how genetic information is replicated and transmitted from cell to cell and organ-
ism to organism.
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Figure A.20: The four DNA bases. Each DNA base is made up of the sugar 2’-deoxyribose
linked to a phosphate group and one of the four bases depicted above: adenine (top left),
cytosine (top right), guanine (bottom left), and thymine (bottom right).

A.2 What is a Genome

Life is specified by genomes. Every organism, including humans, has a genome
that contains all of the biological information needed to build and maintain a liv-
ing example of that organism. The biological information contained in a genome
is encoded in its deoxyribonucleic acid (DNA) and is divided into discrete units
called genes. Genes code for proteins that attach to the genome at the appropriate
positions and switch on a series of reactions called gene expression.

The Physical Structure of the Human Genome

Nuclear DNA

Inside each of our cells lies a nucleus, a membrane-bounded region that provides
a sanctuary for genetic information. The nucleus contains long strands of DNA
that encode this genetic information. A DNA chain is made up of four chemical
bases: adenine (A) and guanine (G), which are called purines, and cytosine (C) and
thymine (T), referred to as pyrimidines. Each base has a slightly different composi-
tion, or combination of oxygen, carbon, nitrogen, and hydrogen. In a DNA chain,
every base is attached to a sugar molecule (deoxyribose) and a phosphate molecule,
resulting in a nucleic acid or nucleotide. Individual nucleotides are linked through
the phosphate group, and it is the precise order, or sequence, of nucleotides that
determines the product made from that gene.

A DNA chain, also called a strand, has a sense of direction, in which one end
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Figure A.21: A nucleotide is the basic building block of nucleic acids. RNA and DNA are
polymers made of long chains of nucleotides. A nucleotide consists of a sugar molecule (ei-
ther ribose in RNA or deoxyribose in DNA) attached to a phosphate group and a nitrogen-
containing base. The bases used in DNA are adenine (A), cytosine (C), guanine (G), and
thymine (T). In RNA, the base uracil (U) takes the place of thymine.

is chemically different than the other. The so-called 5’ end terminates in a 5’ phos-
phate group (-PO4); the 3’ end terminates in a 3’ hydroxyl group (-OH). This is
important because DNA strands are always synthesized in the 5’ to 3’ direction.

The DNA that constitutes a gene is a double-stranded molecule consisting of
two chains running in opposite directions. The chemical nature of the bases in
double-stranded DNA creates a slight twisting force that gives DNA its character-
istic gently coiled structure, known as the double helix. The two strands are con-
nected to each other by chemical pairing of each base on one strand to a specific
partner on the other strand. Adenine (A) pairs with thymine (T), and guanine (G)
pairs with cytosine (C). Thus, A-T and G-C base pairs are said to be complemen-
tary. This complementary base pairing is what makes DNA a suitable molecule
for carrying our genetic information—one strand of DNA can act as a template to
direct the synthesis of a complementary strand. In this way, the information in a
DNA sequence is readily copied and passed on to the next generation of cells.

Organelle DNA

Not all genetic information is found in nuclear DNA. Both plants and animals have
an organelle—a “little organ” within the cell— called the mitochondrion. Each
mitochondrion has its own set of genes. Plants also have a second organelle, the
chloroplast, which also has its own DNA. Cells often have multiple mitochon-
dria, particularly cells requiring lots of energy, such as active muscle cells. This is
because mitochondria are responsible for converting the energy stored in macro-
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Figure A.22: A base pair is two chemical bases bonded to one another forming a ”rung of
the DNA ladder.” The DNA molecule consists of two strands that wind around each other
like a twisted ladder. Each strand has a backbone made of alternating sugar (deoxyribose)
and phosphate groups. Attached to each sugar is one of four bases–adenine (A), cytosine
(C), guanine (G), or thymine (T). The two strands are held together by hydrogen bonds
between the bases, with adenine forming a base pair with thymine, and cytosine forming a
base pair with guanine.

molecules into a form usable by the cell, namely, the adenosine triphosphate (ATP)
molecule. Thus, they are often referred to as the power generators of the cell.

Unlike nuclear DNA (the DNA found within the nucleus of a cell), half of which
comes from our mother and half from our father, mitochondrial DNA is only inher-
ited from our mother. This is because mitochondria are only found in the female
gametes or “eggs” of sexually reproducing animals, not in the male gamete, or
sperm. Mitochondrial DNA also does not recombine; there is no shuffling of genes
from one generation to the other, as there is with nuclear genes.

Large numbers of mitochondria are found in the tail of sperm, providing them
with an engine that generates the energy needed for swimming toward the egg.
However, when the sperm enters the egg during fertilization, the tail falls off, taking
away the father’s mitochondria.
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Figure A.23: Mitochondrial DNA is the small circular chromosome found inside mitochon-
dria. The mitochondria are organelles found in cells that are the sites of energy production.
The mitochondria, and thus mitochondrial DNA, are passed from mother to offspring.

Why Is There a Separate Mitochondrial Genome?

The energy-conversion process that takes place in the mitochondria takes place aer-
obically, in the presence of oxygen. Other energy conversion processes in the cell
take place anaerobically, or without oxygen. The independent aerobic function of
these organelles is thought to have evolved from bacteria that lived inside of other
simple organisms in a mutually beneficial, or symbiotic, relationship, providing
them with aerobic capacity. Through the process of evolution, these tiny organisms
became incorporated into the cell, and their genetic systems and cellular functions
became integrated to form a single functioning cellular unit. Because mitochondria
have their own DNA, RNA, and ribosomes, this scenario is quite possible. This the-
ory is also supported by the existence of a eukaryotic organism, called the amoeba,
which lacks mitochondria. Therefore, amoeba must always have a symbiotic rela-
tionship with an aerobic bacterium.

Why Study Mitochondria?

There are many diseases caused by mutations in mitochondrial DNA (mtDNA).
Because the mitochondria produce energy in cells, symptoms of mitochondrial
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diseases often involve degeneration or functional failure of tissue. For example,
mtDNA mutations have been identified in some forms of diabetes, deafness, and
certain inherited heart diseases. In addition, mutations in mtDNA are able to ac-
cumulate throughout an individual’s lifetime. This is different from mutations in
nuclear DNA, which has sophisticated repair mechanisms to limit the accumula-
tion of mutations. Mitochondrial DNA mutations can also concentrate in the mi-
tochondria of specific tissues. A variety of deadly diseases are attributable to a
large number of accumulated mutations in mitochondria. There is even a theory,
the Mitochondrial Theory of Aging, that suggests that accumulation of mutations
in mitochondria contributes to, or drives, the aging process. These defects are asso-
ciated with Parkinson’s and Alzheimer’s disease, although it is not known whether
the defects actually cause or are a direct result of the diseases. However, evidence
suggests that the mutations contribute to the progression of both diseases.

In addition to the critical cellular energy-related functions, mitochondrial genes
are useful to evolutionary biologists because of their maternal inheritance and high
rate of mutation. By studying patterns of mutations, scientists are able to recon-
struct patterns of migration and evolution within and between species. For example,
mtDNA analysis has been used to trace the migration of people from Asia across
the Bering Strait to North and South America. It has also been used to identify an
ancient maternal lineage from which modern man evolved.

Ribonucleic Acids

Just like DNA, ribonucleic acid (RNA) is a chain, or polymer, of nucleotides with
the same 5’ to 3’ direction of its strands. However, the ribose sugar component
of RNA is slightly different chemically than that of DNA. RNA has a 2’ oxygen
atom that is not present in DNA. Other fundamental structural differences exist.
For example, uracil takes the place of the thymine nucleotide found in DNA, and
RNA is, for the most part, a single-stranded molecule. DNA directs the synthesis
of a variety of RNA molecules, each with a unique role in cellular function. For
example, all genes that code for proteins are first made into an RNA strand in
the nucleus called a messenger RNA (mRNA). The mRNA carries the information
encoded in DNA out of the nucleus to the protein assembly machinery, called the
ribosome, in the cytoplasm. The ribosome complex uses mRNA as a template to
synthesize the exact protein coded for by the gene.

In addition to mRNA, DNA codes for other forms of RNA, including riboso-
mal RNAs (rRNAs), transfer RNAs (tRNAs), and small nuclear RNAs (snRNAs).
rRNAs and tRNAs participate in protein assembly whereas snRNAs aid in a pro-
cess called splicing —the process of editing of mRNA before it can be used as a
template for protein synthesis.
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Figure A.24: Messenger RNA (mRNA) is a single-stranded RNA molecule that is comple-
mentary to one of the DNA strands of a gene. The mRNA is an RNA version of the gene
that leaves the cell nucleus and moves to the cytoplasm where proteins are made. During
protein synthesis, an organelle called a ribosome moves along the mRNA, reads its base
sequence, and uses the genetic code to translate each three-base triplet, or codon, into its
corresponding amino acid.

Proteins

Although DNA is the carrier of genetic information in a cell, proteins do the bulk
of the work. Proteins are long chains containing as many as 20 different kinds
of amino acids. Each cell contains thousands of different proteins: enzymes that
make new molecules and catalyze nearly all chemical processes in cells; struc-
tural components that give cells their shape and help them move; hormones that
transmit signals throughout the body; antibodies that recognize foreign molecules;
and transport molecules that carry oxygen. The genetic code carried by DNA is
what specifies the order and number of amino acids and, therefore, the shape and
function of the protein.

The “Central Dogma”—a fundamental principle of molecular biology—states
that genetic information flows from DNA to RNA to protein. Ultimately, however,
the genetic code resides in DNA because only DNA is passed from generation to
generation. Yet, in the process of making a protein, the encoded information must
be faithfully transmitted first to RNA then to protein. Transferring the code from
DNA to RNA is a fairly straightforward process called transcription. Deciphering
the code in the resulting mRNA is a little more complex. It first requires that the
mRNA leave the nucleus and associate with a large complex of specialized RNAs
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Figure A.25: Amino acids are a set of 20 different molecules used to build proteins. Proteins
consist of one or more chains of amino acids called polypeptides. The sequence of the
amino acid chain causes the polypeptide to fold into a shape that is biologically active. The
amino acid sequences of proteins are encoded in the genes.

and proteins that, collectively, are called the ribosome. Here the mRNA is trans-
lated into protein by decoding the mRNA sequence in blocks of three RNA bases,
called codons, where each codon specifies a particular amino acid. In this way, the
ribosomal complex builds a protein one amino acid at a time, with the order of
amino acids determined precisely by the order of the codons in the mRNA.

A given amino acid can have more than one codon. These redundant codons
usually differ at the third position. For example, the amino acid serine is encoded
by UCU, UCC, UCA, and/or UCG. This redundancy is key to accommodating
mutations that occur naturally as DNA is replicated and new cells are produced.
By allowing some of the random changes in DNA to have no effect on the ultimate
protein sequence, a sort of genetic safety net is created. Some codons do not code
for an amino acid at all but instruct the ribosome when to stop adding new amino
acids.

The Core Gene Sequence: Introns and Exons

Genes make up about 1 percent of the total DNA in our genome. In the human
genome, the coding portions of a gene, called exons, are interrupted by intervening
sequences, called introns. In addition, a eukaryotic gene does not code for a protein
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Figure A.26: A codon is a trinucleotide sequence of DNA or RNA that corresponds to
a specific amino acid. The genetic code describes the relationship between the sequence
of DNA bases (A, C, G, and T) in a gene and the corresponding protein sequence that
it encodes. The cell reads the sequence of the gene in groups of three bases. There are 64
different codons: 61 specify amino acids while the remaining three are used as stop signals.

in one continuous stretch of DNA. Both exons and introns are “transcribed” into
mRNA, but before it is transported to the ribosome, the primary mRNA transcript is
edited. This editing process removes the introns, joins the exons together, and adds
unique features to each end of the transcript to make a “mature” mRNA. One might
then ask what the purpose of an intron is if it is spliced out after it is transcribed?
It is still unclear what all the functions of introns are, but scientists believe that
some serve as the site for recombination, the process by which progeny derive a
combination of genes different from that of either parent, resulting in novel genes
with new combinations of exons, the key to evolution.

Gene Prediction Using Computers

When the complete mRNA sequence for a gene is known, computer programs are
used to align the mRNA sequence with the appropriate region of the genomic DNA
sequence. This provides a reliable indication of the beginning and end of the coding
region for that gene. In the absence of a complete mRNA sequence, the boundaries
can be estimated by ever-improving, but still inexact, gene prediction software. The
problem is the lack of a single sequence pattern that indicates the beginning or end
of a eukaryotic gene. Fortunately, the middle of a gene, referred to as the core gene
sequence–has enough consistent features to allow more reliable predictions.

From Genes to Proteins: Start to Finish

We just discussed that the journey from DNA to mRNA to protein requires that
a cell identify where a gene begins and ends. This must be done both during the
transcription and the translation process.
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Table A.1: RNA triplet codons and their corresponding amino acids.
U C A G

U UUU Phenylalanine UCU Serine UAU Tyrosine UGU Cysteine
UUC Phenylalanine UCC Serine UAC Tyrosine UGC Cysteine
UUA Leucine UCA Serine UAA Stop UGA Stop
UUG Leucine UCG Serine UAG Stop UGG Tryptophan

C CUU Leucine CCU Proline CAU Histidine CGU Arginine
CUC Leucine CCC Proline CAC Histidine CGC Arginine
CUA Leucine CCA Proline CAA Glutamine CGA Arginine
CUG Leucine CCG Proline CAG Glutamine CGG Arginine

A AUU Isoleucine ACU Threonine AAU Asparagine AGU Serine
AUC Isoleucine ACC Threonine AAC Asparagine AGC Serine
AUA Isoleucine ACA Threonine AAA Lysine AGA Arginine
AUG Methionine ACG Threonine AAG Lysine AGG Arginine

G GUU Valine GCU Alanine GAU Aspartate GGU Glycine
GUC Valine GCC Alanine GAC Aspartate GGC Glycine
GUA Valine GCA Alanine GAA Glutamate GGA Glycine
GUG Valine GCG Alanine GAG Glutamate GGG Glycine

Transcription

Transcription, the synthesis of an RNA copy from a sequence of DNA, is carried
out by an enzyme called RNA polymerase. This molecule has the job of recogniz-
ing the DNA sequence where transcription is initiated, called the promoter site. In
general, there are two “promoter” sequences upstream from the beginning of every
gene. The location and base sequence of each promoter site vary for prokaryotes
(bacteria) and eukaryotes (higher organisms), but they are both recognized by RNA
polymerase, which can then grab hold of the sequence and drive the production of
an mRNA.

Eukaryotic cells have three different RNA polymerases, each recognizing three
classes of genes. RNA polymerase II is responsible for synthesis of mRNAs from
protein-coding genes. This polymerase requires a sequence resembling TATAA,
commonly referred to as the TATA box, which is found 25-30 nucleotides upstream
of the beginning of the gene, referred to as the initiator sequence.

Transcription terminates when the polymerase stumbles upon a termination,
or stop signal. In eukaryotes, this process is not fully understood. Prokaryotes,
however, tend to have a short region composed of G’s and C’s that is able to fold
in on itself and form complementary base pairs, creating a stem in the new mRNA.
This stem then causes the polymerase to trip and release the nascent, or newly
formed, mRNA.

Translation

The beginning of translation, the process in which the genetic code carried by
mRNA directs the synthesis of proteins from amino acids, differs slightly for prokary-
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Figure A.27: An exon is the portion of a gene that codes for amino acids. In the cells of
plants and animals, most gene sequences are broken up by one or more DNA sequences
called introns. The parts of the gene sequence that are expressed in the protein are called ex-
ons, because they are expressed, while the parts of the gene sequence that are not expressed
in the protein are called introns, because they come in between–or interfere with–the ex-
ons. In the cells of plants and animals, most gene sequences are broken up by one or more
introns.

otes and eukaryotes, although both processes always initiate at a codon for me-
thionine. For prokaryotes, the ribosome recognizes and attaches at the sequence
AGGAGGU on the mRNA, called the Shine-Delgarno sequence, that appears just
upstream from the methionine (AUG) codon. Curiously, eukaryotes lack this recog-
nition sequence and simply initiate translation at the amino acid methionine, usu-
ally coded for by the bases AUG, but sometimes GUG. Translation is terminated
for both prokaryotes and eukaryotes when the ribosome reaches one of the three
stop codons.

Structural Genes, Junk DNA, and Regulatory Sequences

Over 98 percent of the genome is of unknown function. Although often referred to
as “junk” DNA, scientists are beginning to uncover the function of many of these
intergenic sequences—the DNA found between genes.
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Figure A.28: Recombination. Recombination involves pairing between complementary
strands of two parental duplex DNAs (top and middle panel). This process creates a stretch
of hybrid DNA (bottom panel) in which the single strand of one duplex is paired with its
complement from the other duplex.

Structural Genes. Sequences that code for proteins are called structural genes. Al-
though it is true that proteins are the major components of structural elements in a
cell, proteins are also the real workhorses of the cell. They perform such functions
as transporting nutrients into the cell; synthesizing new DNA, RNA, and protein
molecules; and transmitting chemical signals from outside to inside the cell, as
well as throughout the cell—both critical to the process of making proteins.

Regulatory Sequences. A class of sequences called regulatory sequences makes up
a numerically insignificant fraction of the genome but provides critical functions.
For example, certain sequences indicate the beginning and end of genes, sites for
initiating replication and recombination, or provide landing sites for proteins that
turn genes on and off. Like structural genes, regulatory sequences are inherited;
however, they are not commonly referred to as genes.

Other DNA Regions. Forty to forty-five percent of our genome is made up of short
sequences that are repeated, sometimes hundreds of times. There are numerous
forms of this “repetitive DNA”, and a few have known functions, such as stabiliz-
ing the chromosome structure or inactivating one of the two X chromosomes in
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Figure A.29: An overview of transcription and translation. This drawing provides a graphic
overview of the many steps involved in transcription and translation. Within the nucleus of
the cell (light blue), genes (DNA, dark blue) are transcribed into RNA. This RNA molecule
is then subject to post-transcriptional modification and control, resulting in a mature mRNA
molecule (red) that is then transported out of the nucleus and into the cytoplasm (peach),
where it undergoes translation into a protein. mRNA molecules are translated by ribosomes
(purple) that match the three-base codons of the mRNA molecule to the three-base anti-
codons of the appropriate tRNA molecules. These newly synthesized proteins (black) are
often further modified, such as by binding to an effector molecule (orange), to become
fully active.

developing females, a process called X-inactivation. The most highly repeated se-
quences found so far in mammals are called “satellite DNA” because their unusual
composition allows them to be easily separated from other DNA. These sequences
are associated with chromosome structure and are found at the centromeres (or
centers) and telomeres (ends) of chromosomes. Although they do not play a role
in the coding of proteins, they do play a significant role in chromosome structure,
duplication, and cell division. The highly variable nature of these sequences makes
them an excellent “marker” by which individuals can be identified based on their
unique pattern of their satellite DNA.

Another class of non-coding DNA is the “pseudogene”, so named because it is
believed to be a remnant of a real gene that has suffered mutations and is no longer
functional. Pseudogenes may have arisen through the duplication of a functional
gene, followed by inactivation of one of the copies. Comparing the presence or
absence of pseudogenes is one method used by evolutionary geneticists to group
species and to determine relatedness. Thus, these sequences are thought to carry a
record of our evolutionary history.
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Figure A.30: A chromosome. A chromosome is composed of a very long molecule of DNA
and associated proteins that carry hereditary information. The centromere, shown at the
center of this chromosome, is a specialized structure that appears during cell division and
ensures the correct distribution of duplicated chromosomes to daughter cells. Telomeres
are the structures that seal the end of a chromosome. Telomeres play a critical role in chro-
mosome replication and maintenance by counteracting the tendency of the chromosome to
otherwise shorten with each round of replication.

How Many Genes Do Humans Have?

In February 2001, two largely independent draft versions of the human genome
were published. Both studies estimated that there are 30,000 to 40,000 genes in the
human genome, roughly one-third the number of previous estimates. More recently
scientists estimated that there are less than 30,000 human genes. However, we still
have to make guesses at the actual number of genes, because not all of the human
genome sequence is annotated and not all of the known sequence has been assigned
a particular position in the genome.

So, how do scientists estimate the number of genes in a genome? For the most
part, they look for tell-tale signs of genes in a DNA sequence. These include: open
reading frames, stretches of DNA, usually greater than 100 bases, that are not in-
terrupted by a stop codon such as TAA, TAG or TGA; start codons such as ATG;
specific sequences found at splice junctions, a location in the DNA sequence where
RNA removes the non-coding areas to form a continuous gene transcript for trans-
lation into a protein; and gene regulatory sequences. This process is dependent on
computer programs that search for these patterns in various sequence databases and
then make predictions about the existence of a gene.

From One Gene—One Protein to a More Global Perspective

Only a small percentage of the 3 billion bases in the human genome becomes an
expressed gene product. However, of the approximately 1 percent of our genome
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that is expressed, 40 percent is alternatively spliced to produce multiple proteins
from a single gene. Alternative splicing refers to the cutting and pasting of the
primary mRNA transcript into various combinations of mature mRNA. Therefore
the one gene—one protein theory, originally framed as “one gene—one enzyme”,
does not precisely hold.

With so much DNA in the genome, why restrict transcription to a tiny portion,
and why make that tiny portion work overtime to produce many alternate tran-
scripts? This process may have evolved as a way to limit the deleterious effects of
mutations. Genetic mutations occur randomly, and the effect of a small number of
mutations on a single gene may be minimal. However, an individual having many
genes each with small changes could weaken the individual, and thus the species.
On the other hand, if a single mutation affects several alternate transcripts at once,
it is more likely that the effect will be devastating—the individual may not survive
to contribute to the next generation. Thus, alternate transcripts from a single gene
could reduce the chances that a mutated gene is transmitted.

Gene Switching: Turning Genes On and Off

The estimated number of genes for humans, less than 30,000, is not so different
from the 25,300 known genes of Arabidopsis thaliana, commonly called mustard
grass. Yet, we appear, at least at first glance, to be a far more complex organism.
A person may wonder how this increased complexity is achieved. One answer lies
in the regulatory system that turns genes on and off. This system also precisely
controls the amount of a gene product that is produced and can further modify
the product after it is made. This exquisite control requires multiple regulatory in-
put points. One very efficient point occurs at transcription, such that an mRNA is
produced only when a gene product is needed. Cells also regulate gene expres-
sion by post-transcriptional modification; by allowing only a subset of the mRNAs
to go on to translation; or by restricting translation of specific mRNAs to only
when the product is needed. At other levels, cells regulate gene expression through
DNA folding, chemical modification of the nucleotide bases, and intricate “feed-
back mechanisms” in which some of the gene’s own protein product directs the cell
to cease further protein production.

Controlling Transcription

Promoters and Regulatory Sequences. Transcription is the process whereby RNA
is made from DNA. It is initiated when an enzyme, RNA polymerase, binds to
a site on the DNA called a promoter sequence. In most cases, the polymerase is
aided by a group of proteins called “transcription factors” that perform specialized
functions, such as DNA sequence recognition and regulation of the polymerase’s
enzyme activity. Other regulatory sequences include activators, repressors, and
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enhancers. These sequences can be cis-acting (affecting genes that are adjacent to
the sequence) or trans-acting (affecting expression of the gene from a distant site),
even on another chromosome.

The Globin Genes: An Example of Transcriptional Regulation. An example of
transcriptional control occurs in the family of genes responsible for the produc-
tion of globin. Globin is the protein that complexes with the iron-containing heme
molecule to make hemoglobin. Hemoglobin transports oxygen to our tissues via
red blood cells. In the adult, red blood cells do not contain DNA for making new
globin; they are ready-made with all of the hemoglobin they will need.

During the first few weeks of life, embryonic globin is expressed in the yolk
sac of the egg. By week five of gestation, globin is expressed in early liver cells.
By birth, red blood cells are being produced, and globin is expressed in the bone
marrow. Yet, the globin found in the yolk is not produced from the same gene as
is the globin found in the liver or bone marrow stem cells. In fact, at each stage
of development, different globin genes are turned on and off through a process of
transcriptional regulation called “switching”.

To further complicate matters, globin is made from two different protein chains:
an alpha-like chain coded for on chromosome 16; and a beta-like chain coded for
on chromosome 11. Each chromosome has the embryonic, fetal, and adult form
lined up on the chromosome in a sequential order for developmental expression.
The developmentally regulated transcription of globin is controlled by a number of
cis-acting DNA sequences, and although there remains a lot to be learned about the
interaction of these sequences, one known control sequence is an enhancer called
the Locus Control Region (LCR). The LCR sits far upstream on the sequence and
controls the alpha genes on chromosome 16. It may also interact with other factors
to determine which alpha gene is turned on.

Thalassemias are a group of diseases characterized by the absence or decreased
production of normal globin, and thus hemoglobin, leading to decreased oxygen in
the system. There are alpha and beta thalassemias, defined by the defective gene,
and there are variations of each of these, depending on whether the embryonic, fe-
tal, or adult forms are affected and/or expressed. Although there is no known cure
for the thalassemias, there are medical treatments that have been developed based
on our current understanding of both gene regulation and cell differentiation. Treat-
ments include blood transfusions, iron chelators, and bone marrow transplants.
With continuing research in the areas of gene regulation and cell differentiation,
new and more effective treatments may soon be on the horizon, such as the advent
of gene transfer therapies.

The Influence of DNA Structure and Binding Domains. Sequences that are im-
portant in regulating transcription do not necessarily code for transcription fac-
tors or other proteins. Transcription can also be regulated by subtle variations in
DNA structure and by chemical changes in the bases to which transcription factors
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bind. As stated previously, the chemical properties of the four DNA bases differ
slightly, providing each base with unique opportunities to chemically react with
other molecules. One chemical modification of DNA, called methylation, involves
the addition of a methyl group (-CH3). Methylation frequently occurs at cytosine
residues that are preceded by guanine bases, oftentimes in the vicinity of promoter
sequences. The methylation status of DNA often correlates with its functional ac-
tivity, where inactive genes tend to be more heavily methylated. This is because the
methyl group serves to inhibit transcription by attracting a protein that binds specif-
ically to methylated DNA, thereby interfering with polymerase binding. Methyla-
tion also plays an important role in genomic imprinting, which occurs when both
maternal and paternal alleles are present but only one allele is expressed while the
other remains inactive. Another way to think of genomic imprinting is as “parent
of origin differences” in the expression of inherited traits. Considerable intrigue
surrounds the effects of DNA methylation, and many researchers are working to
unlock the mystery behind this concept.

Controlling Translation

Translation is the process whereby the genetic code carried by an mRNA directs
the synthesis of proteins. Translational regulation occurs through the binding of
specific molecules, called repressor proteins, to a sequence found on an RNA
molecule. Repressor proteins prevent a gene from being expressed. As we have
just discussed, the default state for a gene is that of being expressed via the recog-
nition of its promoter by RNA polymerase. Close to the promoter region is another
cis-acting site called the operator, the target for the repressor protein. When the re-
pressor protein binds to the operator, RNA polymerase is prevented from initiating
transcription, and gene expression is turned off.

Translational control plays a significant role in the process of embryonic devel-
opment and cell differentiation. Upon fertilization, an egg cell begins to multiply
to produce a ball of cells that are all the same. At some point, however, these cells
begin to differentiate, or change into specific cell types. Some will become blood
cells or kidney cells, whereas others may become nerve or brain cells. When all
of the cells formed are alike, the same genes are turned on. However, once differ-
entiation begins, various genes in different cells must become active to meet the
needs of that cell type. In some organisms, the egg houses store immature mRNAs
that become translationally active only after fertilization. Fertilization then serves
to trigger mechanisms that initiate the efficient translation of mRNA into proteins.
Similar mechanisms serve to activate mRNAs at other stages of development and
differentiation, such as when specific protein products are needed.



A.2. WHAT IS A GENOME 321

Molecular Genetics: The Study of Heredity, Genes, and DNA

As we have just learned, DNA provides a blueprint that directs all cellular activi-
ties and specifies the developmental plan of multicellular organisms. Therefore, an
understanding of DNA, gene structure, and function is fundamental for an appre-
ciation of the molecular biology of the cell. Yet, it is important to recognize that
progress in any scientific field depends on the availability of experimental tools
that allow researchers to make new scientific observations and conduct novel ex-
periments. The last section of the genetic primer concludes with a discussion of
some of the laboratory tools and technologies that allow researchers to study cells
and their DNA.
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A.3 Molecular Genetics: Piecing It Together

Molecular genetics is the study of the agents that pass information from genera-
tion to generation. These molecules, our genes, are long polymers of deoxyribonu-
cleic acid, or DNA. Just four chemical building blocks—guanine (G), adenine (A),
thymine (T), and cytosine (C)—are placed in a unique order to code for all of the
genes in all living organisms.

Genes determine hereditary traits, such as the color of our hair or our eyes.
They do this by providing instructions for how every activity in every cell of our
body should be carried out. For example, a gene may tell a liver cell to remove
excess cholesterol from our bloodstream. How does a gene do this? It will instruct
the cell to make a particular protein. It is this protein that then carries out the
actual work. In the case of excess blood cholesterol, it is the receptor proteins on
the outside of a liver cell that bind to and remove cholesterol from the blood. The
cholesterol molecules can then be transported into the cell, where they are further
processed by other proteins.

Many diseases are caused by mutations, or changes in the DNA sequence of
a gene. When the information coded for by a gene changes, the resulting protein
may not function properly or may not even be made at all. In either case, the cells
containing that genetic change may no longer perform as expected. We now know
that mutations in genes code for the cholesterol receptor protein associated with a
disease called familial hypercholesterolemia. The cells of an individual with this
disease end up having reduced receptor function and cannot remove a sufficient
amount of low density lipoprotein (LDL), or bad cholesterol, from their blood-
stream. A person may then develop dangerously high levels of cholesterol, putting
them at increased risk for both heart attack and stroke.

How do scientists study and find these genetic mutations? They have available
to them a variety of tools and technologies to compare a DNA sequence isolated
from a healthy person to the same DNA sequence extracted from an afflicted per-
son. Advanced computer technologies, combined with the explosion of genetic
data generated from the various whole genome sequencing projects, enable scien-
tists to use these molecular genetic tools to diagnose disease and to design new
drugs and therapies. Below is a review of some common laboratory methods that
geneticists— scientists who study the inheritance pattern of specific traits—can use
to obtain and work with DNA, followed by a discussion of some applications.

Laboratory Tools and Techniques

The methods used by molecular geneticists to obtain and study DNA have been
developed through keen observation and adaptation of the chemical reactions and
biological processes that occur naturally in all cells. Many of the enzymes that
copy DNA, make RNA from DNA, and synthesize proteins from an RNA tem-
plate were first characterized in bacteria. These basic research results have become
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Figure A.31: Polymerase chain reaction (PCR) is a laboratory technique used to amplify
DNA sequences. The method involves using short DNA sequences called primers to select
the portion of the genome to be amplified. The temperature of the sample is repeatedly
raised and lowered to help a DNA replication enzyme copy the target DNA sequence. The
technique can produce a billion copies of the target sequence in just a few hours.

fundamental to our understanding of the function of human cells and have led to
immense practical applications for studying a gene and its corresponding protein.
For example, large-scale protein production now provides an inexpensive way to
generate abundant quantities of certain therapeutic agents, such as insulin for the
treatment of diabetes. As science advances, so do the number of tools available that
are applicable to the study of molecular genetics.

Obtaining DNA for Laboratory Analysis

Isolating DNA from just a single cell provides a complete set of all a person’s
genes, that is, two copies of each gene. However, many laboratory techniques re-
quire that a researcher have access to hundreds of thousands of copies of a par-
ticular gene. One way to obtain this many copies is to isolate DNA from millions
of cells grown artificially in the laboratory. Another method, called cloning, uses
DNA manipulation procedures to produce multiple copies of a single gene or seg-
ment of DNA. The polymerase chain reaction (PCR) is a third method whereby
a specific sequence within a double-stranded DNA is copied, or amplified. PCR
amplification has become an indispensable tool in a great variety of applications.
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Methods for Amplifying DNA

Cloning DNA in Bacteria. The word “cloning” can be used in many ways. In this
document, it refers to making multiple, exact copies of a particular sequence of
DNA. To make a clone, a target DNA sequence is inserted into what is called
a cloning vector. A cloning vector is a DNA molecule originating from a virus,
plasmid, or the cell of a higher organism into which another DNA fragment of ap-
propriate size can be integrated without interfering with the vector’s capacity for
self-replication. The target and vector DNA fragments are then ligated, or joined
together, to create what is called a recombinant DNA molecule. Recombinant DNA
molecules are usually introduced into Escherichia coli, or E. coli—a common lab-
oratory strain of a bacterium— by transformation, the natural DNA uptake mech-
anism possessed by bacteria. Within the bacterium, the vector directs the multipli-
cation of the recombinant DNA molecule, producing a number of identical copies.
The vector replication process is such that only one recombinant DNA molecule
can propagate within a single bacterium; therefore, each resulting clone contains
multiple copies of just one DNA insert. The DNA can then be isolated using the
techniques described earlier.

A restriction enzyme is a protein that binds to a DNA molecule at a specific
sequence and makes a double-stranded cut at, or near, that sequence. Restriction
enzymes have specialized applications in various scientific techniques, such as ma-
nipulating DNA molecules during cloning. These enzymes can cut DNA in two
different ways. Many make a simple double-stranded cut, giving a sequence what
are called blunt or flush ends. Others cut the two DNA strands at different posi-
tions, usually just a few nucleotides apart, such that the resulting DNA fragments
have short single-stranded overhangs, called sticky or cohesive ends. By carefully
choosing the appropriate restriction enzymes, a researcher can cut out a target DNA
sequence, open up a cloning vector, and join the two DNA fragments to form a re-
combinant DNA molecule.

More on Cloning Vectors. In general, a bacterial genome consists of a single, cir-
cular chromosome. They can also contain much smaller extrachromosomal genetic
elements, called plasmids, that are distinct from the normal bacterial genome and
are nonessential for cell survival under normal conditions. Plasmids are capable of
copying themselves independently of the chromosome and can easily move from
one bacterium to another. In addition, some plasmids are capable of integrating
into a host genome. This makes them an excellent vehicle, or vector, for shuttling
target DNA into a bacterial host. By cutting both the target and plasmid DNA with
the same restriction enzyme, complementary base pairs are formed on each DNA
fragment. These fragments may then be joined together, creating a new circular
plasmid that contains the target DNA. This recombinant plasmid is then coaxed
into a bacterial host where it is copied, or replicated, as though it were a normal
plasmid.
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Bacterial plasmids were the first vectors used to transfer genetic information
and are still used extensively. However, their use is sometimes limited by the
amount of target DNA they can accept, approximately 15,000 bases, or 15 Kb. With
DNA sequences beyond this size, the efficiency of the vector decreases because it
now has trouble entering the cell and replicating itself. However, other vectors have
been discovered or created that can accept larger target DNA including: bacterio-
phages, bacterial viruses that accept inserts up to 20 Kb; cosmids, recombinant
plasmids with bacteriophage components that accept inserts up to 45 Kb; bacterial
artificial chromosomes (BACs) that accept inserts up to 150 Kb; and yeast arti-
ficial chromosomes (YACs) that accept inserts up to 1000 kb. Many viruses have
also been modified for use as cloning vectors.

Polymerase Chain Reaction (PCR). The polymerase chain reaction (PCR) is an
amazingly simple technique that results in the exponential amplification of almost
any region of a selected DNA molecule. It works in a way that is similar to DNA
replication in nature. The primary materials, or reagents, used in PCR are:

• DNA nucleotides, the building blocks for the new DNA

• Template DNA, the DNA sequence that you want to amplify

• Primers, single-stranded DNAs between 20 and 50 nucleotides long that are
complementary to a short region on either side of the template DNA

• Taq polymerase, a heat stable enzyme that drives, or catalyzes, the synthesis
of new DNA

Taq polymerase was first isolated from a bacterium that lives in the hot springs in
Yellowstone National Park. The Taq polymerase enzyme has evolved to withstand
the extreme temperatures in which the bacteria live and can therefore remain intact
during the high temperatures used in PCR.

The PCR reaction is carried out by mixing together in a small test tube the
template DNA, DNA nucleotides, primers, and Taq polymerase. The primers must
anneal, or pair to, the template DNA on either side of the region that is to be am-
plified, or copied. This means that the DNA sequences of these borders must be
known so that the appropriate primers can be made. These oligonucleotides serve
to initiate the synthesis of the new complementary strand of DNA. Because Taq
polymerase, a form of DNA polymerase that catalyzes the synthesis of new DNA,
is incredibly heat stable (thermostable), the reaction mixture can be heated to ap-
proximately 90 degrees centigrade without destroying the molecules’ enzymatic
activity. At this temperature, the newly created DNA strands detach from the tem-
plate DNA.

The reaction mixture is then cooled again, allowing more primers to anneal to
the template DNA and also to the newly created DNA. The Taq polymerase can
now carry out a second cycle of DNA synthesis. This cycle of heating, cooling,
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and heating is repeated over and over. Because each cycle doubles the amount of
template DNA in the previous cycle, one template DNA molecule rapidly becomes
hundreds of thousands of molecules in just a couple of hours.

PCR has many applications in biology. It is used in DNA mapping, DNA se-
quencing, and molecular phylogenetics. A modified version of PCR can also be
used to amplify DNA copies of specific RNA molecules. Because PCR requires
very little starting material, or template DNA, it is frequently used in forensic sci-
ence and clinical diagnosis.

Preparing DNA for Experimental Analysis

Gel Electrophoresis: Separating DNA Molecules of Different Lengths. Gels are
usually made from agarose—a chain of sugar molecules extracted from seaweed—
or some other synthetic molecule. Purified agarose is generally purchased in a
powdered form and is dissolved in boiling water. While the solution is still hot,
it is poured into a special gel casting apparatus that contains three basic parts: a
tray, a support, and a comb. The tray serves as the mold that will provide the shape
and size for the gel. The support prevents the liquid agarose from leaking out of
the mold during the solidification process. As the liquid agarose starts to cool, it
undergoes what is known as polymerization. Rather than staying dissolved in the
water, the sugar polymers crosslink with each other, causing the solution to gel into
a semi-solid matrix much like Jello, only more firm. The support also allows the
polymerized gel to be removed from the mold without breaking. The job of the
comb is to generate small wells into which a DNA sample will be loaded.

Once a gel has polymerized, it is lifted from the casting tray, placed into a
running tank, and submerged in a special aqueous buffer, called a running buffer.
The gel apparatus is then connected to a power supply via two plugs, or electrodes.
Each plug leads to a thin wire at opposite ends of the tank. Because one electrode
is positive and the other is negative, a strong electric current will flow through the
tank when the power supply is turned on.

Next, DNA samples of interest are dissolved in a tiny volume of liquid contain-
ing a small amount of glycerol. Because glycerol has a density greater than water,
it serves to weight down the sample and stops it from floating away once the sam-
ple has been loaded into a well. Also, because it is helpful to be able to monitor a
DNA sample as it migrates across a gel, charged molecules, called dyes, are also
added to the sample buffer. These dyes are usually of two different colors and two
different molecular weights, or sizes. One of the dyes is usually smaller than most,
if not all, of the sample DNA fragments and will migrate faster than the smallest
DNA sample. The other dye is usually large and will migrate with the larger DNA
samples. It is assumed that most of the DNA fragments of interest will migrate
somewhere in between these two dyes. Therefore, when the small dye reaches the
end of the gel, electrophoresis is usually stopped.



A.3. MOLECULAR GENETICS: PIECING IT TOGETHER 327

Once the gel has been prepared and loaded, the power supply is turned on.
The electric current flowing through the gel causes the DNA fragments to migrate
toward the bottom, or positively charged end, of the gel. This is because DNA has
an overall negative charge because of the combination of molecules in its structure.
Smaller fragments of DNA are less impeded by the crosslinks formed within the
polymerized gel than are larger molecules. This means that smaller DNA fragments
tend to move faster and farther in a given amount of time. The result is a streak, or
gradient, of larger to smaller DNA pieces. In those instances where multiple copies
of DNA all have the same length, a concentration of DNA occurs at that position
in the gel, called a band. Bands can result from a restriction enzyme digest of a
sample containing thousands of copies of plasmid DNA, or PCR amplification of
a DNA sequence. The banded DNA is then detected by soaking the gel briefly in a
solution containing a dye called ethidium bromide (EtBr). EtBr is an intercalating
agent, which means that it is capable of wedging itself into the grooves of DNA,
where it remains. The more base pairs present within a DNA fragment, the greater
the number of grooves available for EtBr to insert itself. EtBr also fluoresces under
ultraviolet (UV) light. Therefore, if a gel soaked in a solution containing EtBr is
placed under a UV source, a researcher can actually detect DNA by visualizing
where the EtBr fluoresces. Because a scientist always loads and runs a “control”
sample that contains multiple fragments of DNA with known sizes, the sizes of
the sample DNA fragments can be estimated by comparing the control and sample
bands.

DNA Blotting. The porous and thin nature of a gel is ideal for separating DNA
fragments using electrophoresis, but as we mentioned earlier, these gels are del-
icate and rarely usable for other techniques. For this reason, DNA that has been
separated by electrophoresis is transferred from a gel to an easy-to-handle inert
membrane, a process called blotting. The term “blotting” describes the overlaying
of the membrane on the gel and the application of a pad to ensure even contact,
without disturbing the positions of the DNA fragments. In the first step, the DNA
trapped in the gel is denatured—the double-stranded DNA is broken into single
strands by soaking the gel in an alkaline solution. This readies the DNA for hy-
bridization with a probe, a piece of DNA that is complementary to the sequence
under investigation. A membrane, usually made of a compound called nitrocellu-
lose, is then placed on top of the gel and compressed with a heavy weight. The
DNA is transferred from the gel to the membrane by simple capillary action. This
procedure reproduces the exact pattern of DNA captured in the gel on the mem-
brane. The membrane can then be probed with a DNA marker to verify the presence
of a target sequence.

Southern blotting is the name of the procedure for transferring denatured DNA
from an agarose gel to a solid support membrane. This procedure takes advantage
of a special property of nitrocellulose, its ability to bind very strongly to single-
stranded DNA but not double-stranded DNA. On the other hand, Northern blotting
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Figure A.32: Chain termination DNA sequencing. Chain termination sequencing involves
the synthesis of new strands of DNA complementary to a single-stranded template (step I).
The template DNA is supplied with a mixture of all four deoxynucleotides, four dideoxynu-
cleotides (each labeled with a different colored fluorescent tag), and DNA polymerase (step
II). Because all four deoxynucleotides are present, chain elongation proceeds until, by
chance, DNA polymerase inserts a dideoxynucleotide. The result is a new set of DNA
chains, all of different lengths (step III). The fragments are then separated by size using gel
electrophoresis (step IV). As each labeled DNA fragment passes a detector at the bottom
of the gel, the color is recorded. The DNA sequence is then reconstructed from the pattern
of colors representing each nucleotide sequence (step V).

refers to any blotting procedure in which electrophoresis is performed using RNA.

Methods for Analyzing DNA

Once DNA has been isolated and purified, it can be further analyzed in a variety of
ways, such as to identify the presence or absence of specific sequences or to locate
nucleotide changes, called mutations, within a specific sequence.

DNA Sequencing. The process of determining the order of the nucleotide bases
along a DNA strand is called sequencing. In 1977, 24 years after the discovery
of the structure of DNA, two separate methods for sequencing DNA were devel-
oped: the chain termination method and the chemical degradation method. Both
methods were equally popular to begin with, but, for many reasons, the chain ter-
mination method is the method more commonly used today. This method is based
on the principle that single-stranded DNA molecules that differ in length by just
a single nucleotide can be separated from one another using polyacrylamide gel
electrophoresis, described earlier.

The DNA to be sequenced, called the template DNA, is first prepared as a single-
stranded DNA. Next, a short oligonucleotide is annealed, or joined, to the same
position on each template strand. The oligonucleotide acts as a primer for the syn-
thesis of a new DNA strand that will be complementary to the template DNA. This
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Figure A.33: DNA sequencing is a laboratory technique used to determine the exact se-
quence of bases (A, C, G, and T) in a DNA molecule. The DNA base sequence carries the
information a cell needs to assemble protein and RNA molecules. DNA sequence informa-
tion is important to scientists investigating the functions of genes. The technology of DNA
sequencing was made faster and less expensive as a part of the Human Genome Project.

technique requires that four nucleotide-specific reactions—one each for G, A, C,
and T—be performed on four identical samples of DNA. The four sequencing re-
actions require the addition of all the components necessary to synthesize and label
new DNA, including:

• A DNA template

• A primer tagged with a mildly radioactive molecule or a light-emitting chem-
ical

• DNA polymerase, an enzyme that drives the synthesis of DNA

• Four deoxynucleotides (G, A, C, and T)

• One dideoxynucleotide, either ddG, ddA, ddC, or ddT

After the first deoxynucleotide is added to the growing complementary sequence,
DNA polymerase moves along the template and continues to add base after base.
The strand synthesis reaction continues until a dideoxynucleotide is added, block-
ing further elongation. This is because dideoxynucleotides are missing a special
group of molecules, called a 3’-hydroxyl group, needed to form a connection with
the next nucleotide. Only a small amount of a dideoxynucleotide is added to each
reaction, allowing different reactions to proceed for various lengths of time until
by chance, DNA polymerase inserts a dideoxynucleotide, terminating the reaction.
Therefore, the result is a set of new chains, all of different lengths.

To read the newly generated sequence, the four reactions are run side-by-side
on a polyacrylamide sequencing gel. The family of molecules generated in the
presence of ddATP is loaded into one lane of the gel, and the other three families,
generated with ddCTP, ddGTP, and ddTTP, are loaded into three adjacent lanes.
After electrophoresis, the DNA sequence can be read directly from the positions of
the bands in the gel.
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Variations of this method have been developed for automated sequencing ma-
chines. In one method, called cycle sequencing, the dideoxynucleotides, not the
primers, are tagged with different colored fluorescent dyes; thus, all four reac-
tions occur in the same tube and are separated in the same lane on the gel. As
each labeled DNA fragment passes a detector at the bottom of the gel, the color is
recorded, and the sequence is reconstructed from the pattern of colors representing
each nucleotide in the sequence.

Impact of Molecular Genetics

Most sequencing and analysis technologies were developed from studies of non-
human genomes, notably those of the bacterium Escherichia coli, the yeast Saccha-
romyces cerevisiae, the fruit fly Drosophila melanogaster, the roundworm Caenorhab-
ditis elegans, and the laboratory mouse Mus musculus. These simpler systems pro-
vide excellent models for developing and testing the procedures needed for study-
ing the much more complex human genome.

A large amount of genetic information has already been derived from these
organisms, providing valuable data for the analysis of normal human gene regula-
tion, genetic diseases, and evolutionary processes. For example, researchers have
already identified single genes associated with a number of diseases, such as cystic
fibrosis. As research progresses, investigators will also uncover the mechanisms for
diseases caused by several genes or by single genes interacting with environmental
factors. Genetic susceptibilities have been implicated in many major disabling and
fatal diseases including heart disease, stroke, diabetes, and several kinds of cancer.
The identification of these genes and their proteins will pave the way to more ef-
fective therapies and preventive measures. Investigators determining the underlying
biology of genome organization and gene regulation will also begin to understand
how humans develop, why this process sometimes goes awry, and what changes
take place as people age.



Appendix B
Probability and Random Procesess

This appendix provides a summary of random processes in continuous time with
continuous and discrete states. Some of the material in this section is drawn from
the AM08 supplement on Optimization-Based Control [70].

B.1 Random Variables

Random variables and processes are defined in terms of an underlying probability
space that captures the nature of the stochastic system we wish to study. A proba-
bility space (Ω,F ,P) consists of:

• a sample space Ω that represents the set of all possible outcomes;

• a set of events F the captures combinations of elementary outcomes that are
of interest; and

• a probability measure P that describes the likelihood of a given event occur-
ring.

Ω can be any set, either with a finite, countable or infinite number of elements. The
event space F consists of subsets of Ω. There are some mathematical limits on the
properties of the sets in F , but these are not critical for our purposes here. The
probability measure P is a mapping from P : F → [0,1] that assigns a probability
to each event. It must satisfy the property that given any two disjoint sets A,B ∈ F ,
P(A∪B) = P(A)+P(B).

With these definitions, we can model many different stochastic phenomena.
Given a probability space, we can choose samples ω ∈Ω and identify each sample
with a collection of events chosen from F . These events should correspond to
phenomena of interest and the probability measure P should capture the likelihood
of that event occurring in the system that we are modeling. This definition of a
probability space is very general and allows us to consider a number of situations
as special cases.

A random variable X is a function X : Ω→ S that gives a value in S , called
the state space, for any sample ω ∈ Ω. Given a subset A ⊂ S , we can write the
probability that X ∈ A as

P(X ∈ A) = P({ω ∈Ω : X(ω) ∈ A}).
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We will often find it convenient to omit ω when working random variables and
hence we write X ∈ S rather than the more correct X(ω) ∈ S . The term probability
distribution is used to describe the set of possible values that X can take.

A discrete random variable X is a variable that can take on any value from
a discrete set S with some probability for each element of the set. We model a
discrete random variable by its probability mass function pX(s), which gives the
probability that the random variable X takes on the specific value s ∈ S :

pX(s) = probability that X takes on the value s ∈ S .

The sum of the probabilities over the entire set of states must be unity, and so we
have that ∑

s∈S
pX(s) = 1.

If A is a subset of S , then we can write P(X ∈ A) for the probability that X will take
on some value in the set A. It follows from our definition that

P(X ∈ A) =
∑
s∈A

pX(s).

Definition B.1 (Bernoulli distribution). The Bernoulli distribution is used to model
a random variable that takes the value 1 with probability p and 0 with probability
1− p:

P(X = 1) = p, P(X = 0) = 1− p.

Alternatively, it can be written in terms of its probability mass function

p(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p s = 1

1− p s = 0

0 otherwise.

Bernoulli distributions are used to model independent experiments with binary out-
comes, such as flipping a coin.

Definition B.2 (Binomial distribution). The binomial distribution models the prob-
ability of successful trials in n experiments, given that a single experiment has prob-
ability of success p. If we let Xn be a random variable that indicates the number of
success in n trials, then the binomial distribution is given by

pXn(k) = P(Xn = k) =

(
n
k

)
pk(1− p)n−k

for k = 1, . . . ,n. The probability mass function is shown in Figure B.1a.
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(a) Binomial distribution (b) Poisson distribution

Figure B.1: Probability mass functions for common discrete distributions.

Definition B.3 (Poisson distribution). The Poisson distribution is used to describe
the probability that a given number of events will occur in a fixed interval of time
t. The Poisson distribution is defined as

pNt (k) = P(Nt = k) =
(λt)k

k!
e−λt, (B.1)

where Nt is the number of events that occur in a period t and λ is a real number
parameterizing the distribution. This distribution can be considered as a model for a
counting process, where we assume that the average rate of occurrences in a period
t is given by λt and λ represents the rate of the counting process. Figure B.1b shows
the form of the distribution for different values of k and λt.

A continuous (real-valued) random variable X is a variable that can take on any
value in the set of real numbers R. We can model the random variable X according
to its probability distribution function F : R→ [0,1]:

F(x) = P(X ≤ x) = probability that X takes on a value in the range (−∞, x].

It follows from the definition that if X is a random variable in the range [L,U] then
P(L ≤ X ≤ U) = 1. Similarly, if y ∈ [L,U] then P(L ≤ X < y) = 1−P(y ≤ X ≤ U).

We characterize a random variable in terms of the probability density function
(pdf) p(x). The density function is defined so that its integral over an interval gives
the probability that the random variable takes its value in that interval:

P(xl ≤ X ≤ xu) =
∫ xu

xl

p(x)dx. (B.2)

It is also possible to compute p(x) given the distribution P as long as the distribution
function is suitably smooth:

p(x) =
∂F
∂x

(x).

We will sometimes write pX(x) when we wish to make explicit that the pdf is
associated with the random variable X. Note that we use capital letters to refer to a
random variable and lower case letters to refer to a specific value.



334 APPENDIX B. PROBABILITY AND RANDOM PROCESESS

p(x)

L U

(a) Uniform distribution

μ

p(x)

σ

(b) Gaussian distribution (c) Exponentialdistribution

Figure B.2: Probability density function (pdf) for uniform, Gaussian and exponential dis-
tributions.

Definition B.4 (Uniform distribution). The uniform distribution on an interval
[L,U] assigns equal probability to any number in the interval. Its pdf is given by

p(x) =
1

U −L
. (B.3)

The uniform distribution is illustrated in Figure B.2a.

Definition B.5 (Gaussian distribution). The Gaussian distribution (also called a
normal distribution) has a pdf of the form

p(x) =
1

√
2πσ2

e
−1

2

( x−μ
σ

)2
. (B.4)

The parameter μ is called the mean of the distribution and σ is called the stan-
dard deviation of the distribution. Figure B.2b shows a graphical representation a
Gaussian pdf.

Definition B.6 (Exponential distribution). The exponential distribution is defined
for positive numbers and has a pdf of the form

p(x) = λe−λx, x > 0

where λ is a parameter defining the distribution. A plot of the pdf for an exponential
distribution is shown in Figure B.2c.

We now define a number of properties of collections of random variables. We
focus on the continuous random variable case, but unless noted otherwise these
concepts can all be defined similarly for discrete random variables (using the prob-
ability mass function in place of the probability density function).

If two random variables are related, we can talk about their joint probability dis-
tribution: PX,Y (A,B) is the probability that both event A occurs for X and B occurs
for Y . This is sometimes written as P(A∩ B), where we abuse notation by implic-
itly assuming that A is associated with X and B with Y . For continuous random
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variables, the joint probability distribution can be characterized in terms of a joint
probability density function

FX,Y (x,y) = P(X ≤ x, Y ≤ y) =
∫ y

−∞

∫ x

∞
p(u,v)dudv. (B.5)

The joint pdf thus describes the relationship between X and Y , and for sufficiently
smooth distributions we have

p(x,y) =
∂2F
∂x∂y

.

We say that X and Y are independent if p(x,y) = p(x) p(y), which implies that
FX,Y (x,y) = FX(x) FY (y) for all x,y. Equivalently, P(A∩ B) = P(A)P(B) if A and B
are independent events.

The conditional probability for an event A given that an event B has occurred,
written as P(A | B), is given by

P(A | B) =
P(A∩B)

P(B)
. (B.6)

If the events A and B are independent, then P(A | B)= P(A). Note that the individual,
joint and conditional probability distributions are all different, so if we are talking
about random variables we can write PX,Y (A,B), PX|Y (A | B) and PY (B), where A
and B are appropriate subsets of R.

If X is dependent on Y then Y is also dependent on X. Bayes’ theorem relates
the conditional and individual probabilities:

P(A | B) =
P(B | A)P(A)
P(B)

, P(B) � 0. (B.7)

Bayes’ theorem gives the conditional probability of event A on event B given the
inverse relationship (B given A). It can be used in situations in which we wish to
evaluate a hypothesis H given data D when we have some model for how likely the
data is given the hypothesis, along with the unconditioned probabilities for both
the hypothesis and the data.

The analog of the probability density function for conditional probability is the
conditional probability density function p(x | y)

p(x | y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(x,y)
p(y)

0 < p(y) <∞

0 otherwise.
(B.8)

It follows that
p(x,y) = p(x | y)p(y) (B.9)
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and
P(X ≤ x | y) := P(X ≤ x | Y = y)

=

∫ x

−∞
p(u | y)du =

∫ x

−∞ p(u,y)du

p(y)
.

(B.10)

If X and Y are independent than p(x | y) = p(x) and p(y | x) = p(y). Note that p(x,y)
and p(x | y) are different density functions, though they are related through equa-
tion (B.9). If X and Y are related with joint probability density function p(x,y) and
conditional probability density function p(x | y) then

p(x) =
∫ ∞

−∞
p(x,y)dy =

∫ ∞

−∞
p(x | y)p(y)dy.

Example B.1 (Conditional probability for sum). Consider three random variables
X, Y and Z related by the expression

Z = X+Y.

In other words, the value of the random variable Z is given by choosing values
from two random variables X and Y and adding them. We assume that X and Y
are independent Gaussian random variables with mean μ1 and μ2 and standard
deviation σ = 1 (the same for both variables).

Clearly the random variable Z is not independent of X (or Y) since if we know
the values of X then it provides information about the likely value of Z. To see this,
we compute the joint probability between Z and X. Let

A = {xl ≤ x ≤ xu}, B = {zl ≤ z ≤ zu}.

The joint probability of both events A and B occurring is given by

PX,Z(A∩B) = P(xl ≤ x ≤ xu, zl ≤ x+ y ≤ zu)

= P(xl ≤ x ≤ xu, zl− x ≤ y ≤ zu− x).

We can compute this probability by using the probability density functions for X
and Y:

P(A∩B) =
∫ xu

xl

(∫ zu−x

zl−x
pY (y)dy

)
pX(x)dx

=

∫ xu

xl

∫ zu

zl

pY (z− x)pX(x)dzdx =:
∫ zu

zl

∫ xu

xl

pZ,X(z, x)dxdz.

Using Gaussians for X and Y we have

pZ,X(z, x) =
1
√

2π
e−

1
2 (z− x−μY )2

· 1
√

2π
e−

1
2 (x−μX)2

=
1

2π
e−

1
2

(
(z− x−μY )2+ (x−μX)2)

.

A similar expression holds for pZ,Y . ∇
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Given a random variable X, we can define various standard measures of the
distribution. The expectation or mean of a random variable is defined as

E(X) = 〈X〉 =
∫ ∞

−∞
x p(x)dx,

and the mean square of a random variable is

E(X2) = 〈X2〉 =
∫ ∞

−∞
x2 p(x)dx.

If we let μ represent the expectation (or mean) of X then we define the variance of
X as

E((X−μ)2) = 〈(X−〈X〉)2〉 =
∫ ∞

−∞
(x−μ)2 p(x)dx.

We will often write the variance as σ2. As the notation indicates, if we have a
Gaussian random variable with mean μ and (stationary) standard deviation σ, then
the expectation and variance as computed above return μ and σ2.

Example B.2 (Exponential distribution). The exponential distribution has mean
and variance given by

μ =
1
λ
, σ2 =

1
λ2
.

∇

Several useful properties follow from the definitions.

Proposition B.1 (Properties of random variables).

1. If X is a random variable with mean μ and variance σ2, then αX is random
variable with mean αX and variance α2σ2.

2. If X and Y are two random variables, then E(αX+βY) = αE(X)+βE(Y).

3. If X and Y are Gaussian random variables with means μX, μY and variances
σ2

X, σ2
Y ,

p(x) =
1√

2πσ2
X

e
− 1

2

(
x−μX
σX

)2
, p(y) =

1√
2πσ2

Y

e
− 1

2

(
y−μY
σY

)2
,

then X+Y is a Gaussian random variable with mean μZ = μX +μY and vari-
ance σ2

Z = σ
2
X +σ

2
Y ,

p(x+ y) =
1√

2πσ2
Z

e
− 1

2

(
x+y−μZ
σZ

)2
.
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Proof. The first property follows from the definition of mean and variance:

E(αX) =
∫ ∞

−∞
αx p(x)dx = α

∫ ∞

−∞
αx p(x)dx = αE(X)

E((αX)2) =
∫ ∞

−∞
(αx)2 p(x)dx = α2

∫ ∞

−∞
x2 p(x)dx = α2

E(X2).

The second property follows similarly, remembering that we must take the expec-
tation using the joint distribution (since we are evaluating a function of two random
variables):

E(αX+βY) =
∫ ∞

−∞

∫ ∞

−∞
(αx+βy) pX,Y (x,y)dxdy

= α

∫ ∞

−∞

∫ ∞

−∞
x pX,Y (x,y)dxdy+β

∫ ∞
−∞

∫ ∞

−∞
y pX,Y (x,y)dxdy

= α

∫ ∞

−∞
x pX(x)dx+β

∫ ∞
−∞

y pY (y)dy = αE(X)+βE(Y).

The third item is left as an exercise.

B.2 Continuous-State Random Processes

A random process is a collection of time-indexed random variables. Formally, we
consider a random process X to be a joint mapping of sample and a time to a state:
X : Ω×T → S , where T is an appropriate time set. We view this mapping as a
generalized random variable: a sample corresponds to choosing an entire function
of time. Of course, we can always fix the time and interpret X(ω, t) as a regular
random variable, with X(ω, t′) representing a different random variable if t � t′.
Our description of random processes will consist of describing how the random
variable at a time t relates to the value of the random variable at an earlier time s.
To build up some intuition about random processes, we will begin with the discrete
time case, where the calculations are a bit more straightforward, and then proceed
to the continuous time case.

A discrete-time random process is a stochastic system characterized by the evo-
lution of a sequence of random variables X[k], where k is an integer. As an example,
consider a discrete-time linear system with dynamics

X[k+1] = AX[k]+BU[k]+FW[k], Y[k] =CX[k]+V[k]. (B.11)

As in AM08, X ∈ Rn represents the state of the system, U ∈ Rp is the vector of
inputs and Y ∈ Rq is the vector of outputs. The (possibly vector-valued) signal
W represents disturbances to the process dynamics and V represents noise in the
measurements. To try to fix the basic ideas, we will take u = 0, n = 1 (single state)
and F = 1 for now.
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We wish to describe the evolution of the dynamics when the disturbances and
noise are not given as deterministic signals, but rather are chosen from some proba-
bility distribution. Thus we will let W[k] be a collection of random variables where
the values at each instant k are chosen from a probability distribution with pdf
pW,k(x). As the notation indicates, the distributions might depend on the time in-
stant k, although the most common case is to have a stationary distribution in which
the distributions are independent of k (defined more formally below).

In addition to stationarity, we will often also assume that distribution of values
of W at time k is independent of the values of W at time l if k � l. In other words,
W[k] and W[l] are two separate random variables that are independent of each
other. We say that the corresponding random process is uncorrelated (also defined
more formally below). As a consequence of our independence assumption, we have
that

E(W[k]W[l]) = E(W2[k])δ(k− l) =

⎧⎪⎪⎨⎪⎪⎩E(W2[k]) k = l

0 k � l.

In the case that W[k] is a Gaussian with mean zero and (stationary) standard devi-
ation σ, then E(W[k]W[l]) = σ2 δ(k− l).

We next wish to describe the evolution of the state x in equation (B.11) in the
case when W is a random variable. In order to do this, we describe the state x as a
sequence of random variables X[k], k = 1, · · · ,N. Looking back at equation (B.11),
we see that even if W[k] is an uncorrelated sequence of random variables, then the
states X[k] are not uncorrelated since

X[k+1] = AX[k]+FW[k],

and hence the probability distribution for X at time k + 1 depends on the value
of X at time k (as well as the value of W at time k), similar to the situation in
Example B.1.

Since each X[k] is a random variable, we can define the mean and variance as
μ[k] and σ2[k] using the previous definitions at each time k:

μ[k] := E(X[k]) =
∫ ∞

−∞
x p(x,k)dx,

σ2[k] := E((X[k]−μ[k])2) =
∫ ∞

−∞
(x−μ[k])2 p(x,k)dx.

To capture the relationship between the current state and the future state, we define
the correlation function for a random process as

ρ(k1,k2) := E(X[k1]X[k2]) =
∫ ∞

−∞
x1x2 p(x1, x2;k1,k2)dx1dx2

The function p(xi, x j;k1,k2) is the joint probability density function, which depends
on the times k1 and k2. A process is stationary if p(x,k + d) = p(x,d) for all k,
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p(xi, x j;k1 + d,k2 + d) = p(xi, x j;k1,k2), etc. In this case we can write p(xi, x j;d)
for the joint probability distribution. We will almost always restrict to this case.
Similarly, we will write p(k1,k2) as p(d) = p(k,k+d).

We can compute the correlation function by explicitly computing the joint pdf
(see Example B.1) or by directly computing the expectation. Suppose that we take
a random process of the form (B.11) with X[0] = 0 and W having zero mean and
standard deviation σ. The correlation function is given by

E(X[k1]X[k2]) = E
{(k1−1∑

i=0

Ak1−iBW[i]
)(k2−1∑

j=0

Ak2− jBW[ j]
)}

= E
{k1−1∑

i=0

k2−1∑
j=0

Ak1−iBW[i]W[ j]BAk2− j
}
.

We can now use the linearity of the expectation operator to pull this inside the
summations:

E(X[k1]X[k2]) =
k1−1∑
i=0

k2−1∑
j=0

Ak1−iBE(W[i]W[ j])BAk2− j

=

k1−1∑
i=0

k2−1∑
j=0

Ak1−iBσ2δ(i− j)BAk2− j

=

k1−1∑
i=0

Ak1−iBσ2BAk2−i.

Note that the correlation function depends on k1 and k2.
We can see the dependence of the correlation function on the time more clearly

by letting d = k2− k1 and writing

ρ(k,k+d) = E(X[k]X[k+d]) =
k1−1∑
i=0

Ak−iBσ2BAd+k−i

=

k∑
j=1

A jBσ2BA j+d =
( k∑

j=1

A jBσ2BA j
)
Ad.

In particular, if the discrete time system is stable then |A| < 1 and the correlation
function decays as we take points that are further departed in time (d large). Fur-
thermore, if we let k→∞ (i.e., look at the steady state solution) then the correlation
function only depends on d (assuming the sum converges) and hence the steady
state random process is stationary.

In our derivation so far, we have assumed that X[k + 1] only depends on the
value of the state at time k (this was implicit in our use of equation (B.11) and the
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assumption that W[k] is independent of X). This particular assumption is known as
the Markov property for a random process: a Markovian process is one in which
the distribution of possible values of the state at time k depends only on the values
of the state at the prior time and not earlier. Written more formally, we say that a
discrete random process is Markovian if

pX,k(x | X[k−1],X[k−2], . . . ,X[0]) = pX,k(x | X[k−1]).

Markov processes are roughly equivalent to state space dynamical systems, where
the future evolution of the system can be completely characterized in terms of the
current value of the state (and not its history of values prior to that).

We now consider the case where our time index is no longer discrete, but instead
varies continuously. A fully rigorous derivation requires careful use of measure
theory and is beyond the scope of this text, so we focus here on the concepts that
will be useful for modeling and analysis of important physical properties.

A continuous-time random process is a stochastic system characterized by the
evolution of a random variable X(t), t ∈ [0,T ]. We are interested in understanding
how the (random) state of the system is related at separate times. The process is
defined in terms of the “correlation” of X(t1) with X(t2). We assume, as above, that
the process is described by continuous random variables, but the discrete state case
(with time still modeled as a real variable) can be handled in a similar fashion.

We call X(t) ∈ Rn the state of the random process at time t. For the case n > 1,
we have a vector of random processes:

X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
X1(t)
...

Xn(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We can characterize the state in terms of a (joint) time-varying pdf,

P({xi,l ≤ Xi(t) ≤ xi,u}) =
∫ x1,u

x1,l

. . .

∫ xn,u

xn,l

pX1,...,Xn(x; t)dxn . . .dx1.

Note that the state of a random process is not enough to determine the extact next
state, but only the distribution of next states (otherwise it would be a deterministic
process). We typically omit indexing of the individual states unless the meaning is
not clear from context.

We can characterize the dynamics of a random process by its statistical charac-
teristics, written in terms of joint probability density functions:

P(x1l ≤ Xi(t1) ≤ x1u, x2l ≤ X j(t2) ≤ x2u)

=

∫ x2u

x2l

∫ x1u

x1l

pXi,Yi(x1, x2; t1, t2)dx1dx2
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The function p(xi, x j; t1, t2) is called a joint probability density function and depends
both on the individual states that are being compared and the time instants over
which they are compared. Note that if i = j, then pXi,Xi describes how Xi at time t1
is related to Xi at time t2.

In general, the distributions used to describe a random process depend on the
specific time or times that we evaluate the random variables. However, in some
cases the relationship only depends on the difference in time and not the abso-
lute times (similar to the notion of time invariance in deterministic systems, as de-
scribed in AM08). A process is stationary if p(x, t+τ)= p(x, t) for all τ, p(xi, x j; t1+
τ, t2+τ) = p(xi, x j; t1, t2), etc. In this case we can write p(xi, x j;τ) for the joint prob-
ability distribution. Stationary distributions roughly correspond to the steady state
properties of a random process and we will often restrict our attention to this case.

We are often interested in random processes in which changes in the state oc-
cur when a random event occurs (such as a molecular reaction or binding event).
In this case, it is natural to describe the state of the system in terms of a set of
times t0 < t1 < t2 < · · · < tn and X(ti) is the random variable that corresponds to the
possible states of the system at time ti. Note that time time instants do not have
to be uniformly spaced and most often (for physical systems) they will not be. All
of the definitions above carry through, and the process can now be described by a
probability distribution of the form

P

(
X(ti) ∈ [xi, xi+dxi], i = 1, . . . ,n

)
=

p(xn, xn−1, . . . , x0; tn, tn−1, . . . , t0)dxn dxn−1 dx1,

where dxi are taken as infinitesimal quantities.
Just as in the case of discrete time processes, we define a continuous time ran-

dom process to be a Markov process if the probability of being in a given state at
time tn depends only on the state that we were in at the previous time instant tn−1

and not the entire history of states prior to tn−1:

P

(
X(tn) ∈ [xn, xn+dxn] | X(ti) ∈ [xi, xi+dxi], i = 1, . . . ,n−1

)
= P
(
X(tn) ∈ [xn, xn+dxn] | X(tn−1) ∈ [xn−1, xn−1+dxn−1]

)
. (B.12)

In practice we do not usually specify random processes via the joint probabil-
ity distribution p(xi, x j; t1, t2) but instead describe them in terms of a propogater
function. Let X(t) be a Markov process and define the Markov propogater as

Ξ(dt; x, t) = X(t+dt)−X(t), given X(t) = x.

The propogater function describes how the random variable at time t is related
to the random variable at time t + dt. Since both X(t + dt) and X(t) are random
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variables, Ξ(dt; x, t) is also a random variable and hence it can be described by its
density function, which we denote as Π(ξ, x;dt, t):

P
(
x ≤ X(t+dt) ≤ x+ ξ

)
=

∫ x+ξ

x
Π(dx, x;dt, t)dx.

The previous definitions for mean, variance and correlation can be extended to
the continuous time, vector-valued case by indexing the individual states:

E{X(t)} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
E{X1(t)}
...

E{Xn(t)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =: μ(t)

E{(X(t)−μ(t))(X(t)−μ(t))T } =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
E{X1(t)X1(t)} . . . E{X1(t)Xn(t)}

. . .
...

E{Xn(t)Xn(t)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =: Σ(t)

E{X(t)XT (s)} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
E{X1(t)X1(s)} . . . E{X1(t)Xn(s)}

. . .
...

E{Xn(t)Xn(s)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =: R(t, s)

Note that the random variables and their statistical properties are all indexed by the
time t (and s). The matrix R(t, s) is called the correlation matrix for X(t) ∈ Rn. If
t = s then R(t, t) describes how the elements of x are correlated at time t (with each
other) and in the case that the processes have zero mean, R(t, t)=Σ(t). The elements
on the diagonal of Σ(t) are the variances of the corresponding scalar variables. A
random process is uncorrelated if R(t, s) = 0 for all t � s. This implies that X(t) and
X(s) are independent random events and is equivalent to pX,Y (x,y) = pX(x)pY (y).

If a random process is stationary, then it can be shown that R(t+τ, s+τ)= R(t, s)
and it follows that the correlation matrix depends only on t− s. In this case we will
often write R(t, s) = R(s− t) or simply R(τ) where τ is the correlation time. The
covariance matrix in this case is simply R(0).

In the case where X is also scalar random process, the correlation matrix is
also a scalar and we will write r(τ), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar random processes, the correla-
tion function depends only on the absolute value of the correlation function, so
r(τ) = r(−τ) = r(|τ|). This property also holds for the diagonal entries of the corre-
lation matrix since Rii(s, t) = Rii(t, s) from the definition.

Definition B.7 (Ornstein-Uhlenbeck process). Consider a scalar random process
defined by a Gaussian pdf with μ = 0,

p(x, t) =
1

√
2πσ2

e−
1
2

x2

σ2 ,
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ρ(t1− t2)

τ = t1− t2

Figure B.3: Correlation function for a first-order Markov process.

and a correlation function given by

r(t1, t2) =
Q

2ω0
e−ω0 |t2−t1 |.

The correlation function is illustrated in Figure B.3. This process is known as an
Ornstein-Uhlenbeck process and it is a stationary process.

Note on terminology. The terminology and notation for covariance and correlation
varies between disciplines. The term covariance is often used to refer to both the re-
lationship between different variables X and Y and the relationship between a single
variable at different times, X(t) and X(s). The term “cross-covariance” is used to re-
fer to the covariance between two random vectors X and Y , to distinguish this from
the covariance of the elements of X with each other. The term “cross-correlation”
is sometimes also used. Finally, the term “correlation coefficient” refers to the nor-
malized correlation r̄(t, s) = E(X(t)X(s))/E(X(t)X(t))..
MATLAB has a number of functions to implement covariance and correlation,

which mostly match the terminology here:

• cov(X) - this returns the variance of the vector X that represents samples of a
given random variable or the covariance of the columns of a matrix X where
the rows represent observations.

• cov(X, Y) - equivalent to cov([X(:), Y(:)]). Computes the covariance
between the columns of X and Y , where the rows are observations.

• xcorr(X, Y) - the “cross-correlation” between two random sequences. If
these sequences came from a random process, this is correlation function
r(t).

• xcov(X, Y) - this returns the “cross-covariance”, which MATLAB defines as
the “mean-removed cross-correlation”.

The MATLAB help pages give the exact formulas used for each, so the main point
here is to be careful to make sure you know what you really want.

We will also make use of a special type of random process referred to as “white
noise”. A white noise process X(t) satisfies E{X(t)} = 0 and R(t, s) = Wδ(s− t),
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where δ(τ) is the impulse function and W is called the noise intensity. White noise
is an idealized process, similar to the impulse function or Heaviside (step) function
in deterministic systems. In particular, we note that r(0) = E{X2(t)} = ∞, so the
covariance is infinite and we never see this signal in practice. However, like the
step and impulse functions, it is very useful for characterizing the response of a
linear system, as described in the following proposition. It can be shown that the
integral of a white noise process is a Wiener process, and so often white noise is
described as the derivative of a Wiener process.

B.3 Discrete-State Random Processes

There are a number of specialized discrete random processes that are relevant for
biochemical systems. In this section we give a brief introduction to these processes.

A birth-death process is one in which the states of the process represent integer-
value counts of different species populations and the transitions between states are
restricted to either incrementing (birth) or decrementing (death) a given species.
This type of model is often used to represent chemical reactions such as the pro-
duction and degradation of proteins.

Example B.3 (Protein production). ∇
A more general type of discrete random process is a Markov chain. In a Markov

chain, evolution of the discrete states occurs by execution of allowable transitions
between two states. Each transition has a specified probability, which is used to
determine whether a system will transition from its current state into a different
state (corresponding to an allowable transition). An important property, called the
Markov property, is that the transition probability only depends on the value of the
current state, not the previous values of the state.

We define a Markov chain by giving the set of transition probabilities

qi j(t, τ) = P(X(t+τ) = s j|X(t) = si),

where si, s j ∈ S , t is the current time and τ is the time interval over which we are
interested. If qi j(t, τ) � 0 for some τ � 0 then we say that the transition is allowable
at time t. If qi j is independent of t then we say that the process is stationary and we
omit the argument t. In the special case that we are only interested in a fixed τ (i.e.,
we are using a discrete-time model) then we omit this argument as well.

It is generally difficult to describe the probability of being in a particular state in
a Markov process at a given time. Instead, we often resort to describing the steady
state distributions, assuming that they exist. For a stationary Markov chain, we can
look at the equilibrium distributions, which are those distributions π that satisfy

πi = qi j(τ)π j, for all i, j.

Example B.4 (Protein expression). ∇
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adaptive/inducible repair, 302
adenine, 305
adenosine triphosphate (ATP), 284, 307
aerobically, 308
aerospace systems, 25
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alternative splicing, 318
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amplification, see also polymerase chain re-

action
amplification, of DNA, 324, 325
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anaerobically, 308
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Anaphase I, 290
Anaphase II, 290
annealed, 328
anti-codon, 298
anti-codon site, 298
antibodies, 310
anticipation, in controllers, 29
antisense strand, 297
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assembly, of a virus, 293
asymptotic stability, 93, 94, 98, 99
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automotive control systems, 26
autopilot, 25, 26
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bacterial artificial chromosomes (BACs), 325
bacterial plasmids, 325
bacteriaphases, 292
bacteriophages, 291, 325
base excision repair, 302
base pairs, 306
Bell Labs, 24
bifurcation, 133
bifurcation diagram, 133
bifurcations, 133–134
bimodality, 7
binary fission, 287, 291
binomial distribution, 332
biological circuits, 4

repressilator, 37–38, 64–65
birth-death, 345
bistability, 6, 38, 39
bistable, 134
Black, H. S., 24, 26
blastocyst, 294
block diagonal systems, 98
blotting, 327
blunt ends, 324
Bode plot, 102

capsid, see vral capsid292, 293
carbon dioxide, 284
CDKs, see cclin dependent kinases122
cell

organization, 278–279
cell duplication, 287
cell envelope, 279
cell genome, 279
cell mass, 294
cell membrane, 280
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cell types, 287, 294
cell wall, 279
center (equilibrium point), 94
Central Dogma, 310
centromeres, 290, 316
chain termination method, 328
chaperones, 293
characteristic polynomial, 97
charger protein, 298
chemical degradation method, 328
chemical kinetics, 46–47
chemical Langevin equation, 164
chemotaxis, 189
chloroplast, 306
chloroplasts, 285
cholesterol receptor protein, 322
chromatid arms, 290
chromosome, 281, 288, 289
chromosomes, 289, 290
cis-acting, 319, 320
citric acid cycle, 284
cleaved, 298
cloning, 323, 324
cloning vector, 324
closed complex, 9
closed loop, 22

versus open loop, 22
seecoenzyme A, 285
coding strand, 297
codon, 298
codons, 311
coenzyme A, 285
cohesive ends, 324
combinatorial promoters, 17
complementary, 306
complexity, of control systems, 26
conjunction, 291
contracting, 115
control

early examples, 23, 26
control matrix, 34
control signal, 32
cooperative, 53
coordinate transformations, 98
core gene sequence, 312
cosmids, 325
cristae, 283
crossovers, 290

cruise control, 23
robustness, 23

Curtiss seaplane, 26
cycle sequencing, 330
cyclin dependent kinases, 122
cyclins, 122
cytokinesis, 290
cytoplasm, 281
cytoplasmic region, 279
cytoplasmic streaming, 281
cytosine, 305
cytoskeleton, 280, 281
cytosol, 281

daughter nuclei, 287
dead zone, 28
deamination, 302
deleterious mutation, 300
denatured, 327
deoxynucleotides, 329
deoxyribonucleic acid, 322
deoxyribonucleic acid (DNA), 281, 305
derivative action, 29, 30
derived cells, 294
design of dynamics, 24–26, 99
diagonal systems, 97

transforming to, 98
dideoxynucleotide, 329
differentiation, 294, 320
diffusion term, 165
diploid, 289, 290, 294
direct term, 34
dissociation constant, 52
disturbance attenuation

in biological systems, 104
disturbances, 33
DNA, 305
DNA ligase, 296, 301
DNA looping, 15
DNA nucleotides, 325
DNA polymerase, 296, 301, 329
DNA repair systems, 301
DNA replication, 294, 295
DNA template, 329
drift term, 165
dyes, 326
dynamical systems, 21

linear, 97
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early proteins, 293
economic systems, 27
egg, 294
egg cell, 290
eigenvalues, 97, 134

invariance under coordinate transforma-
tion, 98

eigenvectors, 98
electrical circuits, 4
electrodes, 326
elongation, 299
Elowitz, M. B., 64
endocytosis, 280, 292
endoplasmic reticulum, 283
endoplasmic reticulum (ER), 285
energy production, in a cell, 283–285
enhancers, 319
enthalpy, 155
enzymes, 310
equilibrium points, 92, 97

bifurcations of, 133
for planar systems, 94
region of attraction, 94

ethidium bromide, 327
eukaryotes, 278–279, 313
events, 331
exocytosis, 293
exons, 311
expectation, 337
exported proteins, 285

familial hypercholesterolemia, 322
feedback

as technology enabler, 25
drawbacks of, 22, 26
properties, 27
robustness through, 23
versus feedforward, 27

feedback mechanisms, 318
feedforward, 27
female life cycles, 290
filters

for measurement signals, 26
flagella, 279
flavin-adenine dinucleotide (FAD), 285
flight control, 25

fluorescent reporters, 37
flush ends, 324
Fokker-Planck equations, 165
forward Kolmogorov equation, 159
fragmentation, 37
free energy, 155
frequency response, 31, 102

gametes, 287, 288, 294
Gaussian distribution, 334
gel, 326
gels, 326
gene, 9
gene prediction, 312
gene regulation, 318–320
gene regulatory sequences, 317
genes, 281, 305, 322
genetic marker, 316
genetic material, 281
genetic recombination, 290
genetic switch, 39
genomes, 305
genomic imprinting, 320
germ cells, 294
germ line cells, 294
Gibbs free energy, 155
global behavior, 94
glucose, 284, 285
glucose transporters, 284
glycolysis, 284
glycoproteins, 293
Golgi apparatus, 285
gradient, 327
granular chromatin, 290
guanine, 305

haploid, 289, 290
heat shock, 16
helicase, 296
hemoglobin, 319
hereditary traits, 322
Hill functions, 53
homologous recombination, 302
Hopf bifurcation theorem, 135
human development, 294
human genome, 317
hysteresis, 28

implicit function theorem, 138
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inactivated genes, 294
independent assortment, 291
inducer, 16
inducible error-prone repair, 302
initiator sequence, 313
inner mebrane, of mitochondria, 283
input/output models, 30, 32
input/output models relationship to state space

models, 32
inputs, 32
integral action, 29, 30
intercalating agent, 327
interphase, 288, 289
introns, 311
isomerization, 9

Jacobian matrix, 99
junk DNA, 314

kinase, 20, 75
Kozak sequence, 12
Kreb’s cycle, 284, 285

lagging strand, 296
large subunit, 298
late proteins, 293
leading strand, 296
licensing factors, 297
ligation, 37, 324
limit cycle, 126
linear noise approximation, 166
linear systems, 31, 34, 96
linear time-invariant systems, 31, 34
linearization, 99
linkage, 291
linkage disequilibrium, 291
local behavior, 93, 99
locally asymptotically stable, 93
locus, 290
Locus Control Region (LCR), 319
lysis, 293
lysosomes, 285
lysozyme, 293
lytic proteins, 293

male structures, 290
Markov chain, 345
Markov property, 345

maturation time, 12
mature mRNA, 12, 312
mean, 334, 337
measured signals, 32, 33
mechanics, 32
meiosis, 288–290
Meiosis I, 289, 290
Meiosis II, 290
memory, 6
messenger RNA (mRNA), 309
Metaphase, 290
metaphase, 288
Metaphase II, 290
metaphase plate, 290
methionine, 298
methyl group (-CH3), 320
methylation, 21, 320
Michaelis-Menten constant, 56
Michaelis-Menten kinetics, 56
mismatch repair, 302
mitochondria, 283–285
mitochondrial DNA (mtDNA), 308
mitochondrial genome, 281
Mitochondrial Theory of Aging, 309
mitochondrion, 306
mitosis, 287–289
modeling simplified models, use of, 33
modularity, 224
molecular and cellular biology, 293
molecular dynamics, 44
molecular genetics, 322
molecular weights, 326
multipotent, 295
multistable, 134
mutagenesis, 303
mutations, 290, 300, 322

NAD+, 284
NADH, 285
nascent RNA, 298, 313
negative chemotaxis, 189
negative inducer, 16
networking, 4
neutral stability, 93, 94
nitrocellulose, 327
noise intensity, 345
nonlinear systems, 32, 99

linear approximation, 99
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normal distribution, 334
northern blotting, 327
nuclear DNA, 307
nuclear envelope, 282, 288, 289
nuclear genome, 281
nuclear membrane, 290
nucleic acid, 305
nucleotide, 305
Nucleotide excision repair, 301
nucleus, 282, 305
Nyquist plot, 103

obligate intracellular parasites, 292
observability, 32
Okazaki fragments, 296
omega limit set, 129
omega-limit point, 129
on-off control, 28
open complex, 9
open loop, 22
open reading frames, 317
operator, 320
operator region, 15
operon, 15
order, of a system, 33
organelles, 279, 282
Origin Recognition Complex, 297
Ornstein-Uhlenbeck process, 175, 344
outer membrane, of mitochondria, 283
oxaloacetate, 285

P site, 298
parametric stability diagram, 134
parent of origin differences, 320
parental, 291
partition function, 45, 155
penetration, of a virus, 293
peroxisomal targeting signal (PTS), 286
peroxisomes, 285, 286
phosphatase, 75
phosphotransferase, 20
photoreactivation, 301
photosynthesis, 285
PI control, 23, 29
PID control, 28–29
pili, 279
planar dynamical systems, 94
plasma membrane, 279, 280

plasmids, 291, 324
platelets, 295
pluripotent, 295
Poisson distribution, 333
poles, 102
poly(A) tail, 298
polymerase chain reaction, 323
polymerase chain reaction (PCR), 325
polymerization, 326
polypeptide chain, 299
positive chemotaxis, 189
positive feedback, 27
positive inducer, 16
positively charged, 327
post-replication repair, 301
post-transcriptional modification, 298, 318
post-translational modification, 299
pre-mRNA, 12
prediction, in controllers, 29
primer, 329
primers, 325
probability mass function, 332
probability measure, 331
probability space, 331
probe, 327
process control, 4
prokaryotes, 278–279, 313
promoter sequence, 297, 318
promoter site, 313
propensity function, 158
prophase, 288
Prophase I, 289
Prophase II, 290
protease, 299
protein transport, 294
proteins, 310–311
pseudogene, 316
purines, 305
pyrimidines, 305
pyruvate, 284, 285
pyruvic acid, 284

quasi-steady state assumption, 56

random process, 338
random variable, 331
reachability, 32
recombinant DNA molecule, 324
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recombinant plasmid, 324
recombination, 290–291, 312
recombination repair, 301
red blood cells, 294, 295
reduced stoichiometry matrix, 117
reduction division, 289
reference signal, 28
regulatory sequences, 315
release, of a virus, 293
repetitive DNA, 315
replication, 287, 295, 324
replication control mechanisms, 296
replication origin sites, 296
replication, of a virus, 293
reporter genes, 203
repressilator, 37–38, 64–65
repression, 14
repressor, 38, 107
repressor proteins, 320
repressors, 318
restriction enzyme, 324
restriction enzymes, 36
retroviruses, 292
reverse transcriptase, 292
ribonucleic acid (RNA), 281, 309
ribosomal complex, 311
ribosome, 298, 309, 311

large and small subunits, 283
ribosome binding site (RBS), 12
ribosomes, 282
RNA polymerase, 297, 298, 313, 318
RNA polymerase II, 313
RNA processing, 294
RNA replicase, 292
robustness, 23–24
root locus diagram, 134, 136
rough ER, 285
running buffer, 326

saddle (equilibrium point), 94
sample space, 331
satellite DNA, 316
scale invariance, 113
screening, 37
self-repression, 106
sense strand, 297
sensor matrix, 34
sequencing, 328

sexual reproduction, 288
Shine-Delgarno, 12
Shine-Delgarno sequence, 314
sigma factors, 16
sink (equilibrium point), 94
sister chromatids, 288
slow manifold, 138
small subunit, 298
smooth ER, 285
somatic cells, 294
SOS repair, 302
source (equilibrium point), 94
Southern blotting, 327
sperm, 294
sperm cells, 290
spindle, 288, 290
splice junctions, 317
spontaneous mutations, 290
stability, 24, 92

asymptotic stability, 93, 99
in the sense of Lyapunov, 93
local versus global, 93
neutrally stable, 93, 94
of a system, 97
of equilibrium points, 94
of linear systems, 96–99
of solutions, 93
unstable solutions, 93
using linear approximation, 99

standard deviation, 334
start codon, 12, 298, 317
state, of a dynamical system, 32, 33
state space, 33
state vector, 33
stationary, 345
statistical mechanics, 44–46
steam engines, 23
stem cells, 294
step input, 31
step response, 31, 32
sticky ends, 324
stop codon, 12, 299
structural components, 310
structural genes, 315
superposition, 31
switching (transcriptional regulation, 319
switching behavior, 27
symbiotic, 308
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Taq polymerase, 325
TATA box, 313
telomeres, 316
telophase, 289
Telophase I, 290
Telophase II, 290
template DNA, 325, 328
template strand, 297, 306
termination region, 11, 298
terminator, 11
thalassemias, 319
thymine, 305
time-invariant systems, 33
trans-acting, 319
transcription, 9, 282, 294, 297, 310, 312, 313,

318–320
transcription factors, 318
transcriptional regulation, 14
transduction, 291
transfection, 37
transfer function, 102
transfer RNA (tRNA), 298
transformation, 291, 324
translation, 12, 283, 298, 313, 320
translational regulation, 320
transport molecules, 310

ubiquitination, 21
uncertainty, 23–24, 33

disturbances and noise, 33
uniform distribution, 334
unstable solution, for a dynamical system,

93, 94, 99

vector, 324
viral capsid, 292
virion, 292
virions, 292
viruses, 286, 291, 293

reproduction, 292–293

Watt steam engine, 23
wells, 326
white blood cells, 295
wild-type, 301
Wright, W., 25

X-inactivation, 316

yeast artificial chromosomes (YACs), 325

zero frequency gain, 102
zero-order kinetics, 57
zeros, 102
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