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Preface

This text serves as a supplemenfaedback Systently Astrom and Murray 2]
(refered to throughout the text as AM08) and is intended for reseesdhterested

in the application of feedback and control to biomolecular systems. The @sxt h
been designed so that it can be used in parallel Rédback Systenas part of a
course on biomolecular feedback and control systems, or as a stamdeflerence
for readers who have had a basic course in feedback and contooy.tfigne full
text for AM08, along with additional supplemental material and a copy ofethes
notes, is available on a companion web site:

http://www.cds.caltech.edu/~murray/amwiki/BFS

The material in this book is intended to be useful to three overlapping audi-
ences: graduate students in biology and bioengineering interested irstamding
the role of feedback in natural and engineered biomolecular systenas)@st/un-
dergraduates and graduate students in engineering disciplines whdesestied
the use of feedback in biological circuit design; and established &@s&arin the
the biological sciences who want to explore the potential application ofiphasc
and tools from control theory to biomolecular systems. We have written the text
assuming some familiarity with basic concepts in feedback and control, bat hav
tried to provide insights and specific results as needed, so that the maaeriaé c
learned in parallel. We also assume some familiarity with cell biology, at the level
of a first course for non-majors. The individual chapters in the textaid the
pre-requisites in more detail, most of which are covered either in AM08 orein th
supplemental information available from the companion web site.

Domitilla Del Vecchio Richard M. Murray
Cambridge, Massachusetts Pasadena, California


http://www.cds.caltech.edu/~murray/amwiki/BFS
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Notation

This is an internal chapter that is intended for use by the authors in fixingptiae Review
tion that is used throughout the text. In the first pass of the book we tcgparting

several conflicts in notation and the notes here may be useful to eark/afdbe

text.

Protein dynamics

For a gene ‘gent’, we writgenXfor the gene, ), for the mRNA and GenX for
the protein when they appear in text or chemical formulas. Superscrptssad
for covalent modifications, e.g.,»for phosphorylation. We also use superscripts
to differentiate between isomers, sgem( might be used to refer to mature RNA

or GenX to refer to the folded versions of a protein, if required. Mathematical
formulas use the italic version of the variable name, but roman font for the ge
isomeric state. The concentration of mRNA is written in text or formulasg@sx
(mgenxfor mature) and the concentration of proteirpgsnx (pgenxfor folded). The
same naming conventions are used for common /geoiein combinations: the
mMRNA concentration ofetRis m,.., the concentration of the associated protein is
Pretr @Nd parameters argetr, dietr, €tC.

For generic genes and proteins, use X to refer to a protejripmefer to the
MRNA associated with that protein ardo refer to the gene that encodes X. The
concentration of X can be written either Xs px or [X], with that order of pref-
erence. The concentration of,man be written either asy (preferred) or [m].
Parameters that are specific to ggrare written with a subscripted py, 6p, etc.
Note that although the protein is capitalized, the subscripts are lower ase (s
dexed by the gene, not the protein) and also in roman font (since theyotee

variable).
The dynamics of protein production are given by
dm, _ dpP =
gt = @po ZHTh—yplMh, priatel —uP—-6,P,

—YpMp -0pP

whereay is the (basal) rate of productiop, parameterizes the rate of degradation
of the mRNA m, B, is the kinetic rate of protein productiop,is the growth rate
that leads to dilution of concentrations afbarameterizes the rate of degradation
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of the protein P. Since dilution and degradation enter in a similar fashion, eve us
v =vy+uands = 6+ u to represent the aggregate degradation and dilution rate. If
we are looking at a single gefpeotein, the various subscripts can be dropped.
When we ignore the mRNA concentration, we write the simplified protein dy-
namics as
dP

gt = Pro—0pP.

Assuming that the mRNA dynamics are fast compared to protein production, the
the constang, o is given by

¥p
ﬂp,O Z,Bp_-
a’p’o

For regulated production of proteins using Hill functions, we modify the-con
stitutive rate of production to b&(Q) instead ofapo or B0 as appropriate. The
Hill function is written in the forms

- pg _ @pg(Q/Kpg)™e
PaQ= gk Q= T gk, g

The notation folF mirrors that of transfer function&;, 4 represents the inplatutput
relationship between inp@ and outputP (rate). If the target gene is not particu-
larly relevant, the subscript can represent just the transcription faatgie letters:

_ Qlac
Fiac(Q) = 15 (0 K)o Kiag)e

The subscripts can be dropped completely if there is only one Hill functiosen u
Some common symbols:

Symbol | LaTeX | Comment

Xiot X_\tot | Total concentration of a species
Ky \Kd Dissociation constant

Km \Km Michaelis-Menten constant

Chemical reactions

We write the symbol for a chemical species A using roman type. The number of
molecules of a species A is written ag The concentration of the species is oc-
casionally written as [A], but we more often use the nota#gras in the case of
proteins, orxy. For a reaction A B «— C, we use the notation

R1: A+B;C d—C:alAB—dlc
d; dt

This notation is primarily intended for situations where we have multiple reactions
and need to distinguish between mangtaetient constants. Enzymatic reactions
have the form o

R2: S+E=C->P+E

dz
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For a small number of reactions, the reaction number can be dropped.

It will often be the case that two species A and B will form a molecular bond, in
which case we write the resulting species as AB. If we need to distinguiskebrtw
covalent bonds and hydrogen bonds, we write the latter as A:B. Finallpnires
situations we will have labeled section of DNA that are connected togethahw
we write as A-B, where here A represents the first portion of the DNA strand and B
represents the second portion. When describing (single) strandsAf\dwrite
A’ to represent the Watson-Crick complement of the strand A. ThtB:B/—A’
would represent a double stranded length of DNA with domains A and B.

The choice of representing covalent molecules using the conventiceraical
notation AB can lead to some confusion when writing the reaction dynamics using
A andB to represent the concentrations of those species. Namely, the syBbol
could represent either the concentration of A times the concentration ofttigor
concentration of AB. To remove this ambiguity, when using this notation we write
[A]l[B] as A-B.

When working with a system of chemical reactions, we wrijteé S 1,...,nfor
the species andjRj = 1,...,mfor the reactions. We write; to refer to the molecu-
lar count for speciesandx; = [Si] to refer to the concentration of the species. The
individual equations for a given species are written

The collection of reactions are written as

dx dx

wherex; is the concentration of species 8 € R™™ is the stochiometry matrix;;

is the reaction flux vector for reactign andé is the collection of parameters that
the define the reaction rates. Occasionally it will be useful to write the flages
polynomials, in which case we use the notation

vj(x,6) = Z Ejk l_[ Xf'jk
K |

whereEj is the rate constant for thigh term of thejth reaction ancklJk is the
stochiometry coféicient for the species;.

Generally speaking, cfiecients for propensity functions and reaction rate con-
stants are written using lower case, i, etc). Two exceptions are the dissociation
constant, which we write aky, and the Michaelis-Menten constant, which we
write asKp,.



viii CONTENTS

Figures

In the public version of the text, certain copyrighted figures are missing fild
names for these figures are listed and many of the figures can be lookedhap
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Chapter 1
Introductory Concepts

This chapter provides a brief introduction to concepts from systems bidiogjg
from differential equations and control theory, and approaches to modelifg, ana
ysis and design of biomolecular feedback systems. We begin with a discugsio
the role of modeling, analysis and feedback in biological systems, followeshb
overview of basic concepts from cell biology, focusing on the dynanfipsaiein
production and control. This is followed by a short review of key corxend
tools from control and dynamical systems theory, intended to provide inisigh

the main methodology described in the text. Finally, we give a brief introduction
to the field of synthetic biology, which is the primary topic of the latter portion of
the text. Readers who are familiar with one or more of these areas can skip the
corresponding sections without loss of continuity.

1.1 Systems Biology: Modeling, Analysis and Role of Feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abptract
proaches to synthesis. Conversely, the accelerating pace of digéoveological
science is suggesting new design principles that may have important praptica
plications in human-made systems. This synergy at the interface of biolafjy an
engineering fiers many opportunities to meet challenges in both areas. The guid-
ing principles of feedback and control are central to many of the kegtouns in
biological science and engineering and can play an enabling role instadding

the complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study and understanding of biological sgstend
discuss some of the ways in which an understanding of feedback prindiple
biology can help us better understand and design complex biomoleculatscircu

There are a wide variety of biological phenomena that provide a rictteair
examples for control, including gene regulation and signal transductiomdnal,
immunological, and cardiovascular feedback mechanisms; muscular canttol
locomotion; active sensing, vision, and proprioception; attention andcirss
ness; and population dynamics and epidemics. Each of these (and marly more
provide opportunities to figure out what works, how it works and whatlze done
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to afect it. Our focus here is at the molecular scale, but the principles andagpr
that we describe can also be applied at larger time and length scales.

Modeling and analysis

Over the past several decades, there have been significant asvanoodeling
capabilities for biological systems that have provided new insights into the com-
plex interactions of the molecular-scale processes that implement life. &kduc
order modeling has become commonplace as a mechanism for describingcand d
umenting experimental results and high-dimensional stochastic models can now
be simulated in reasonable periods of time to explore underlying stochfistitse
Coupled with our ability to collect large amounts of data from flow cytometry,
micro-array analysis, single-cell microscopy and other modern expetafrtech-
niques, our understanding of biomolecular processes is advancing@taace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining derp
biological phenomena. Although there are exceptions, the predomireaot oed-
els is to “document” experimental results: a hypothesis is proposed and tsste
ing careful experiments, and then a model is developed to match the expeiimen
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenmmen
to those for which controlled experimental evidence of the desired pharsooas
be obtained.

This situation is much dlierent than standard practice in the physical sciences
and engineering, as illustrated in Figurd (in the context of modeling, analysis
and control design for gas turbine aeroengines). In those discipérpsriments
are routinely used to help build models for individual components at a variety o
levels of detail, and then these component-level models are interconneated to
tain a system-level model. This system-level model, carefully built to capture the
appropriate level of detail for a given question or hypothesis, is usedftain,
predict and systematically analyze the behaviors of a system. Becausavedyh
in which models are viewed, it becomes possible to prove (or invalidate)ahyp
esis through analysis of the model, and the fidelity of the models is such that dec
sions can be made based on them. Indeed, in many areas of modern Bngiree
including electronics, aeronautics, robotics and chemical processinm@nie a
few—models play a primary role in the understanding of the underlying physic
andor chemistry, and these models are used in predictive ways to exploredesig
tradedts and failure scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use ofeduced-order modelthat capture the underlying dynamics
of the system without necessarily modeling every detail of the underlyindpmec
anisms. These reduced order models are often coupled with schematiesriag
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Figure 1.1: Sample modeling, analysis and design frameWaor&n engineering system.

such as those shown in Figute?, to provide a high level view of a complex sys-
tem. The generation of these reduced-order models, either directly fatenod
through analytical or computational methods, is critical in tieative applica-

tion of modeling since modeling of the detailed mechanisms produces high fidelity
models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced order models is fairly eedas

in control theory, where inpfdutput models, such as block diagrams and transfer
functions are used to capture structured representations of dynantesagipro-
priate level of fidelity for the task at hand][

While developing predictive models and corresponding analysis toolsdbr b
ogy is much more diicult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central elefhenter-
standing. Biological systems are by their nature extremely complex and ean be
have in counterintuitive ways. Only by capturing the many interacting aspécts
the system in a formal model can we ensure that we are reasoning Igrapeut
its behavior, especially in the presence of uncertainty. To do this will recuuib-
stantial éfort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked) as well as building aticahaly
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from expasrte
computation to theory, are enabling us to explore new approaches to matheling
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Figure 1.2: Schematic diagrams representing modeldtierdnt disciplines. Each diagram
is used toillustrate the dynamics of a feedback systemidajrecal schematics for a power
system 54], (b) a biological circuit diagram for a synthetic clockaiit [6], () a process
diagram for a distillation column8@] and (d) a Petri net description of a communication
protocol.

attempt to address some of these challenges. In this text we focus on tifeeise
vant classes of reduced-order models that can be used to captur@hsmomena
of biological relevance.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the usd-of mo
els in biology is to become more rigorous about the various behaviors thahar
portant for biological systems. One of the key concepts that needs torhalized

is the notion of “phenotype”. This term is often associated with the existerare o
equilibrium point in a reduced-order model for a system, but clearly murgptex
(non-equilibrium) behaviors can occur and the “phenotypic resparfsg’system

to an input may not be well-modeled by a steady operating condition. Even more
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System Dynamics

External inputs Observed outputs
u — Pl(s) O y
0 Pm(s)
A
Unmodeled Dynamics N(-) f~— 20
Crosstalk )
Nonlinear
A Couping
(2 L
\Z/

Interconnection Matrix

Figure 1.3: Conceptual modeling framework for biomolectiégedback systems. The dy-
namics consist of a set of linear dynamics, represented dynthiti-input, multi-output
transfer functionP(s), a static nonlinear map and an interconnection matrlx Uncer-
tainty is represented as unmodeled dynamticgrosstalkA and system contexd. The
inputs and outputs to the system are denoted agdy.

problematic is determining which regulatory structures are “active” in angives-
notype (versus those for which there is a regulatory pathway that isaseduaind
hence not active).

Figurel.3shows a graphical representation of a class of systems that captures
many of the features we are interested in. The system is compodsedimter-
connected subsystems. The linear dynamics of the subsystems (posdildynioc
delay) are captured via their frequency responses, representediiagiam by the
“transfer functions’P;(s). The outputs of the linear subsystems are transformed via
a nonlinear ma(-) and then interconnected back to the inputs of the subsystems
through the matrid.. The role of feedback is captured through the interconnec-
tion matrix L, which represents a weighted graph describing the interconnections
between subsystems.

In addition to the internal dynamics and nonlinear coupling, we separatefy ke
track of external inputs to the subsystem) (neasured outputg), stochastic dis-
turbancesw, not shown), and measurement noigent shown). Three other fea-
tures are present in Fig.3 The first is the uncertainty operatar attached to the
linear dynamics block. This operator represents both parametric un¢gitathe
dynamics as well as unmodeled dynamics that have known (frequepeydent)



1-6 CHAPTER 1. INTRODUCTORY CONCEPTS

bounds. Tools for understanding this class of uncertainty are avaitateth lin-
ear and nonlinear control systen2$ nd allow stability and performance analyses
in the presence of uncertainty. A similar termis included in the interconnec-
tion matrix and represents (unmodeled) “crosstalk” between subsystarakly fo
represents the context- and environment-dependent parameters ydgtdma.s

This particular structure is useful because it captures a large numbrerdsi-
ing frameworks in a single formalism. Mass action kinetics and chemical reaction
networks can be represented by equating the stoichiometry matrix with the inter-
connection matribk and using the nonlinear terms to capture the fluxes, @viép-
resenting the rate constants. We can also represent typical redutsrdrmdels for
transcriptional regulatory networks by letting the nonlinear functi()gepresent
various types of Hill functions and including th&ects of mMRNAprotein produc-
tion, degradation and dilution through the linear dynamics. These two claéses
systems can also be combined, allowing a very expressive set of dyniduaii¢s
capable of capturing many relevant phenomena of interest in moleculagiolo

In the context of the modeling framework described in Figli® it is possible
to consider a working definition of phenotype in terms of the patterns of the dy
namics that are present. In the simplest case, consisting of operatioa siegte
equilibrium point, we can look at thefective gain of the dferent nonlinearities as
a measure of which regulatory pathways are “active” in a given statesi@er, for
example, labeling each nonlinearity in a system as being esthef or active A
nonlinearity that is on orfd represents one in which changes of the input produce
very small deviations in the output, such as those that occur at very hilglwor
concentrations in interactions modeled by a Hill function. An active nonlityear
is one in which there is a proportional response to changes in the input, with th
slope of the nonlinearity giving thefective gain. In this setting, the phenotype of
the system would consist of both a description of the nominal concentratidims
measurable specieg) (@s well as the state of each nonlinearity (offi, active).

Another common situation is that a system may have multiple equilibrium
points and the “phenotype” of the system is represented by the partiauar e
librium point that the system converges to. In the simplest case, we cambista-
bility, in which there are two equilibrium pointge and Xy for a fixed set of pa-
rameters. Depending on the initial conditions and external inputs, a gystens
may end up near one equilibrium point or the other, providing two distinatghe
types. A model with bistability (or multi-stability) provides one method of model-
ing memory in a system: the cell or organism remembers its history by virtue of
the equilibrium point to which it has converted.

For more complex phenotypes, where the subsystems are not at a speady o
erating point, one can consider temporal patterns such as limit cyclesdjgerio
orbits) or non-equilibrium inpubutput responses. Analysis of these more compli-
cated behaviors requires more sophisticated tools, but again model-adgsisa
of stability and inpybutput responses can be used to characterize the phenotypic
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behavior of a biological system undefférent conditions or contexts.

Additional types of analysis that can be applied to systems of this form include
sensitivity analysis (dependence of solution properties on selectaeti@@ms), un-
certainty analysis (impact of disturbances, unknown parameters andlefedaly-
namics), bifurcation analysis (changes in phenotype as a function dof leyals,
context or parameters) and probabilistic analysis (distributions of statefuas-
tion of distributions of parameters, initial conditions or inputs). In each asehe
cases, there is a need to extend existing tools to exploit the particular stroftur
the problems we consider, as well as modify the techniques to providemetet@
biological questions.

Stochastic behavior

Another important feature of many biological systems is stochasticity: biolbgica
responses have an element of randomness so that even undelhceosiiol con-
ditions, the response of a system to a given input may vary from expdritmen
experiment. This randomness can have many possible sources, inclutinupé
perturbations that are modeled as stochastic processes and inteogss@®such
as molecular binding and unbinding, whose stochasticity stems from thelymder
ing thermodynamics of molecular reactions.

While for many engineered systems it is common to try to eliminate stochastic
behavior (yielding a “deterministic” response), for biological systemsthppear
to be many situations in which stochasticity is important for the way in which or-
ganisms survive. In biology, nothing is 100% and so there is always sharee
that two identical organisms will respondi@irently. Thus viruses are never com-
pletely contagious and so some organisms will survive, and DNA replication is
never error free, and so mutations and evolution can occur. In studyiogits
where these types offfects are present, it thus becomes important to study the
distribution of responses of a given biomolecular circuit, and to collect idaga
manner that allows us to quantify these distributions.

One important indication of stochastic behavidbimodality We say that a cir-
cuit or system is bimodal if the response of the system to a given inpunhditam
has two or more distinguishable classes of behaviors. An example of bimodal-
ity is shown in Figurel.4, which shows the response of the galactose metabolic
machinery in yeast. We see from the figure that even though geneticallycalen
organisms are exposed to the same external environment (a fixed galactes
centration), the amount of activity in individual cells can have a large at@iun
variability. At some concentrations there are clearly two subpopulationslisf ce
those in which the galactose metabolic pathway is turned on (higher repader fl
rescence values on tlyeaxis) and those for which it istb(lower reporter fluores-
cence).

Another characterization of stochasticity in cells is the separation of nogsines
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Figure 1.4: Galactose response in ye88}.[(a) GAL signaling circuitry showing a num-
ber of diferent feedback pathways that are used to detect the preskgeéactose and
switch on the metabolic pathway. (b) Pathway activity asrecfion of galactose concen-
tration. The points at each galactose concentration reptéise activity level of the galac-
tose metabolic pathway in an individual cell. Black dotsigatle the mean of a Gaussian
mixture model (GMM) classification9@]. Small random deviations were added to each
galactose concentration (horizontal axis) to better Vizedhe distributions.

in protein expression into two categories: “intrinsic” noise and “extrinsmse.
Roughly speaking, extrinsic noise represents variability in gene expnetsat
effects all proteins in the cell in a correlated way. Extrinsic noise can be due to
environmental changes thdtect the entire cell (temperature, pH, oxygen level) or
global changes in internal factors such as energy or metabolite levetsafjsedue

to metabolic loading). Intrinsic noise, on the other hand, is the variability dueto th
inherent randomness of molecular events inside the cell and represetitciion

of independent random processes. One way to attempt to measure thet afnou
intrinsic and extrinsic noise is to take two identical copies of a biomolecular cir-
cuit and compare their respons@9,[89]. Correlated variations in the output of
the circuits corresponds (roughly) to extrinsic noise and uncorrelaeations to
intrinsic noise #3, 89.

The types of models that are used to capture stochastic behavior ardifvery
ferent than those used for deterministic responses. Instead of writiiegeditial
equations that track average concentration levels, we must keep tréwk iofdi-
vidual events that can occur with some probability per unit time (or “prdpghs
We will explore the methods for modeling and analysis of stochastic systems in
Chapterd.

1.2 Dynamics and Control in the Cell

The molecular processes inside a cell determine its behavior and aresgdpo
for metabolizing nutrients, generating motion, enabling procreation anglirogrr
out the other functions of the organism. In multi-cellular organisntie@int types
of cells work together to enable more complex functions. In this section wiybrie
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describe the role of dynamics and control within a cell and discuss the frasic
cesses that govern its behavior and its interactions with its environmentdjimglu
other cells). We assume knowledge of the basics of cell biology at thepevel
vided in AppendixA; a much more detailed introduction to the biology of the cell
and some of the processes described here can be found in standboiexon
cell biology such as Albertst al. [3] or Phillips et al.[73]. (Readers who are fa-
miliar with the material at the level described in these latter references cathikip
section without any loss of continuity.)

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the respbase
cell to various conditions. DNA is organized into collections of genes, with ea
gene encoding a corresponding protein that performs a set of fuadtidhe cell.
The activation and repression of genes are determined through acfergaaplex
interactions that give rise to a remarkable set of circuits that perform tietidins
required for life, ranging from basic metabolism to locomotion to procreaGen.
netic circuits that occur in nature are robust to external disturbanckesaanfunc-
tion in a variety of conditions. To understand how these processes @rlisome
of the dynamics that govern their behavior), it will be useful to presealtzively
detailed description of the underlying biochemistry involved in the production o
proteins.

DNA is double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone (see Eigu
The complementary strands of DNA are composed of a sequence of tideteo
that consist of a sugar molecule (deoxyribose) bound to one of 4:badesine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand @wention
the top row of a DNA sequence when it is written in text form) is specified fitwen
5" end of the DNA to the 3’ end of the DNA. (As described briefly in Appiri,

5" and 3’ refer to carbon locations on the deoxyribose backbone thaheolved

in linking together the nucleotides that make up DNA.) The DNA that encodes
proteins consists of a promoter region, regulator regions (described & dptail
below), a coding region and a termination region (see Figue We informally
refer to this entire sequence of DNA as a gene.

Expression of a gene begins with thanscriptionof DNA into mMRNA by RNA
polymerase, as illustrated in FiguteZ. RNA polymerase enzymes are present in
the nucleus (for eukaryotes) or cytoplasm (for prokaryotes) and localize and
bind to the promoter region of the DNA template. Once bound, the RNA poly-
merase “opens” the double stranded DNA to expose the nucleotides thatupak
the sequence. This reversible reaction, caiteinerization is said to transform
the RNA polymerase and DNA from @osed complexo anopen complexAf-
ter the open complex is formed, RNA polymerase begins to travel down the DNA
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Figure 1.5: Molecular structure of DNA. (a) Individual bag@ucleotides) that make up
DNA: adenine (A), cytocine (C), guanine (G) and thymine ((B). Double stranded DNA

formed from individual nucleotides, with A binding to T ando@hding to G. Each strand
contains a 5" and 3’ end, determined by the locations of thbares where the next nu-
cleotide binds. Figure from Phillips, Kondev and Therid8]f used with permission of

Garland Science.

strand and constructs an mRNA sequence that matches the 5’ to 3’ sequfenc
the DNA to which it is bound. By convention, we number the first base pair tha
is transcribed as+1’ and the base pair prior to that (which is not transcribed) is
labeled as ‘-1'. The promoter region is often shown with the -10 and -gioms
indicated, since these regions contain the nucleotide sequences to whiRiNAhe
polymerase enzyme binds (the locations vary fifiedént cell types, but these two
numbers are typically used).

The RNA strand that is produced by RNA polymerase is also a sequence of
cleotides with a sugar backbone. The sugar for RNA is ribose insteagloadyd-
bose and mRNA typically exists as a single stranded molecule. Anotffieretice

. RNA
5 RBS AUG UAA 3
RNA polymerase Start Stop
codon codon
Transcription
-35 -10 +1
5 3
T TA AGGAGGT ATG TAA
A AT TCCTCCA TAC ATT
3 5
promoter DNA Terminator

Figure 1.6: Geometric structure of DNA. The layout of the DNAhown at the top. RNA
polymerase binds to the promoter region of the DNA and tndipss the DNA starting at
the+1 side and continuing to the termination site.
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Figure 1.7: Production of messenger RNA from DNA. RNA polyass, along with other
accessory factors, binds to the promoter region of the DNd\than “opens” the DNA to
begin transcription (initiation). As RNA polymerase movksvn the DNA, producing an
RNA transcript (elongation), which is later translateaiatprotein. The process ends when
the RNA polymerase reaches the terminator (terminatioajpr&duced from Coureyif];
permission pending.

is that the base thymine (T) is replaced by uracil (U) in RNA sequences RN
polymerase produces RNA one base pair at a time, as it moves from in th8'5’ to
direction along the DNA coding strand. RNA polymerase stops transcribiddy D
when it reaches germination region(or terminatoi) on the DNA. This termination
region consists of a sequence that causes the RNA polymerase to umdomthé
DNA. The sequence is not conserved across species and in many edisrth-
nation sequence is sometimes “leaky”, so that transcription will occasioraly o
across the terminator.

Once the mRNA is produced, it must be translated into a protein. This process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, there isanreg
of the mRNA in which the ribosome (a molecular complex consisting of of both
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proteins and RNA) binds. This region, called titeosome binding site (RB)as
some variability between fierent cell species and betweelffelient genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the conseesjuEnce
for the RBS. (A consensus sequence is a pattern of nucleotides that inmpéeme
a given function across multiple organisms; it is not exactly conservegose
variations in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps hefeteans-
lated. The RNA sequence that has been created by RNA polymerasstemis
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only thexons which contain the coding sequence for the
protein. The ternpre-mRNASs often used to distinguish between the raw transcript
and the spliced mRNA sequence, which is caliedture mRNAIn addition to
splicing, the mRNA is also modified to contairpaly(A) (polyadenine}ail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3’ end of tiMAMR
This processed sequence is then transported out of the nucleus injadpkesm,
where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well defined ribosondéigise-
guence and hence the process of the binding of the ribosome to the mRNAes mor
complicated. Th&kozak sequencd/GCCACCAUGEG is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codorrifgedc
below). However, mRNA lacking the Kozak sequence can also be traghslate

Once the ribosome is bound to the mRNA, it begins the procesamglation
Proteins consist of a sequence of amino acids, with each amino acid spégifie
a codon that is used by the ribosome in the process of translation. Each cod
consists of three base pairs and corresponds to one of the 20 aminorazigsop”
codon. The genetic code mapping between codons and amino acids is ishown
TableA.1. The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (whichsbind
to the tRNA) into the polypeptide chain, as shown in Figlit& The start codon
(AUG) specifies the location at which translation begins, as well as codimpé
amino acid methionine (a modified form is used in prokaryotes). All subsgque
codons are translated by the ribosome into the corresponding amino acid until
reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide cha
that folds on itself to form a protein. The process of folding is complicatet an
involves a variety of chemical interactions that are not completely underséab
ditional post-translational processing of the protein can also occur asttje,
until a folded and functional protein is produced. It is this molecule thatles tab
bind to other species in the cell and perform the chemical reactions thatlynd
the behavior of the organism. Theaturation timeof a protein is the time required
for the polypeptide chain to fold into a functional protein.

Each of the processes involved in transcription, translation and folditigeof
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Cell

Figure 1.8: Translation is the process of translating trgusece of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protgimhesis. The genetic

code describes the relationship between the sequence@phas in a gene and the cor-
responding amino acid sequence that it encodes. In theyteplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assehgbfmdtein. Figure and

caption courtesy the National Human Genome Researchutestit

protein takes time andi&cts the dynamics of the cell. Taldlel shows the rates of
some of the key processes involved in the production of proteins. It is tarpdo

note that each of these steps is highly stochastic, with molecules binding togethe
based on some propensity that depends on the binding energy but alsthéne
molecules present in the cell. In addition, although we have describegtlener

Table 1.1: Rates of core processes involved in the creafiproteins from DNA inE. coli.

Process Characteristic rate Source

MRNA transcription rate 24-29 bpsec BioNumbers 1]
Protein translation rate 12-21 agsec BioNumbers ]
Maturation time (fluorescent proteing)6—60 min BioNumbers 1]
MRNA half life ~ 100 sec YMO3 [99]

E. colicell division time 20-40 min BioNumbers ]
Yeastcell division time 70-140 min BioNumbers 1]
Protein half life ~5x10* sec YMO03 [99]
Protein difusion along DNA up to 1¢ bp'sec | PKT [73]
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Figure 1.9: Regulation of proteins. Figure from Phillipgridev and Theriot73]; used
with permission of Garland Science.

as a sequential process, each of the steps of transcription, transladidol&ng

are happening simultaneously. In fact, there can be multiple RNA polymerades
are bound to the DNA, each producing a transcript. In prokaryotespas as

the ribosome binding site has been transcribed, the ribosome can bindgind be
translation. Itis also possible to have multiple ribosomes bound to a single piece o
MRNA. Hence the overall process can be extremely stochastic and asyouahb.

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the productiontefrso
These regulatory mechanisms can occur at various points in the ovexcglgsrthat
produces the protein. Figuied shows some of the common points of regulation in
the protein production process. We focus firsti@mscriptional regulationwhich
refers to regulatory mechanisms that control whether or not a gene sstitzed.

The simplest forms of transcriptional regulation are repression and tatiya
which are controlled througtranscription factors In the case ofepressionthe
presence of a transcription factor (often a protein that binds near tmeqgper)
turns df the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the caseofivation(or positive reg-
ulation), transcription is enhanced when an activator protein binds to theopeo
site (facilitating binding of the RNA polymerase).
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(a) Repression of gene expression (b) Examples of repressors

Figure 1.10: Repression of gene expression. Figure froffig2hiKkondev and Theriot{3];
used with permission of Garland Science.

RepresessiorA common mechanism for repression is that a protein binds to a re-
gion of DNA near the promoter and blocks RNA polymerase from binding Th
region of DNA to which the repressor protein binds is callecoperator region
(see Figurel.103. If the operator region overlaps the promoter, then the presence
of a protein at the promoter can “block” the DNA at that location and transcrip
tion cannot initiate, as illustrated in FiguielOa Repressor proteins often bind to
DNA as dimers or pairs of dimersffectively tetramers). Figure.10bshows some
examples of repressors bound to DNA.

A related mechanism for repressior8IA looping In this setting, two repres-
sor complexes (often dimers) bind irfidirent locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly
merase to bind to the promoter, thus inhibiting transcription. Figut&shows an
example of this type of repression, in tla& operon. (Anoperonis a set of genes
that is under control of a single promoter.)

Activation.The process of activation of a gene requires that an activator praein b
present in order for transcription to occur. In this case, the protein modt to
either recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the promoter
sequence bind RNA polymerase. Figurd 2 illustrates the basic concept. Like
repressors, many activators have inducers, which can act in eithesitav@ or
negative fashion (see Figulel4). For example, cyclic AMP (cCAMP) acts as a
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(a) DNA looping

Figure 1.11: Repression via DNA looping. Figure from PpaliKondev and Therio7[3];
used with permission of Garland Science.

positive inducer for CAP.

Another mechanism for activation of transcription, specific to prokasydse
the use ofsigma factors Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs tigascr
tion. Different sigma factors enable RNA polymerase to bind fi@dint promot-
ers, so the sigma factor acts as a type of activating signal for transcripéiblel.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, sushesthe
cell undergoebeat shockAnother use is to control the timing of the expression of
certain genes, as illustrated in Figurd.3

Inducers.A feature that is present in some types of transcription factors is the ex-
istence of annducer moleculehat combines with the protein to either activate or
inactivate its function. Aoositive inducers a molecule that must be present in order
for repression or activation to occur.egative inducers one in which the pres-
ence of the inducer molecule blocks repression or activation, eitherdmgaty the
shape of the transcription factor protein or by blocking active sites onrtiteip

that would normally bind to the DNA. Figurke 14a summarizes the various possi-
bilities. Common examples of repressor-inducer pairs incladeand lactose (or
IPTG), tetRand aTc, and tryptophan repressor and tryptophan. Lat®dse and

aTc are both negative inducers, so their presence causes the otherprisssed

Table 1.2: Sigma factors iB. coli[3].

Sigma factor Promoters recognized
a0 most genes
o2 genes associated with heat shock
o8 genes involved in stationary phase and stress response
o8 genes involved in motility and chemotaxis
o4 genes dealing with misfolded proteins in the periplasm
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Figure 1.12: Activation of gene expression. (a) Conceptpa&lration of an activator. The
activator binds to DNA upstream of the gene and attracts Rhlimperase to the DNA
strand. (b) Examples of activiators: catablite activatotgin (CAP), p53 tumor supressor,
zinc finger DNA binding domain and leucine zipper DAN bindidgmain. Figure from
Phillips, Kondev and Theriof7[3]; used with permission of Garland Science.

gene to be expressed, while tryptophan is a positive inducer.

Combinatorial promotersin addition to repressors and activators, many genetic
circuits also make use @bmbinatorial promotershat can act as either repressors
or activators for genes. This allows genes to be switched on fitid®ed on more
complex conditions, represented by the concentrations of two or moratacs\or
repressors.

Figurel.15shows one of the classic examples, a promoter fotdbsystem.
In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induicg
cAMP, acts as an activator and Lacl (also called “lac repressor’ichwis neg-

RNA polymerase with RNA polymerase with
bacterial sigma factor viral sigmalike factor
& . & . &
S, [— 28 h [RE— 34 % [—
&-ff_ p@jmm ﬁ@ e mmm wew VIRAL
l l DNA
e So
L 28 ] L 34 ] L |
early genes middle genes late genes

Figure 7-43 Molecular Biology of the Cell 5/ (© Garland Science 2008)

Figure 1.13: Use of sigma factors to controlling the timifigxpression. Reproduced from
Alberts et al. B]; permission pending.
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Figure 1.14: Hects of inducers. Reproduced from Alberts et 3], permission pending.

atively induced by lactose, acts as a repressor. In addition, the indAd&P is
expressed only when glucose levels are low. The resulting behaviot théharo-
teins for metabolizing lactose are expressed only in conditions where theoe is
glucose (so CAP is activendlactose is present.

More complicated combinatorial promoters can also be used to control tran-
scription in two diferent directions, an example that is found in some viruses.

Antitermination.A final method of activation in prokaryotes is the useaotiter-
mination The basic mechanism involves a protein that binds to DNA and deacti-
vates a site that would normally serve as a termination site for RNA polymerase.
Additional genes are located downstream from the termination site, but wighou
promoter region. Thus, in the presence of the anti-terminator protein, geess

are not expressed (or expressed with low probability). Howevernwine antiter-
mination protein is present, the RNA polymerase maintains (or regains) its tontac
with the DNA and expression of the downstream genes is enhanced. Wakis
antitermination allows downstream genes to be regulated by repressingdypre
ture” termination. An example of an antitermination protein is the protein N in
phaget, which binds to a region of DNA labeled Nut (for N utilization), as shown
in Figure1.16[38].
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Figure 1.15: Combinatorial logic for tHac operator. Figure from Phillips, Kondev and
Theriot [73]; used with permission of Garland Science.

Post-transcriptional regulation of protein production

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is peatuc
These include control of splicing and transport from the nucleus (iargokes),

the use of various secondary structure patterns in mRNA that can irtevidr
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada
tion of MRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape andtyactiv
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Figure 1.16: Antitermination. Reproduced froB8][; permission pending.
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Figure 1.17: Phosphorylation of a protein via a kinase. Béypced from Madhanigg];
permission pending.

level. We briefly describe some of the major mechanisms here.

Review Material to be written: sSRNA, riboswitches.

One of the most common types of post-transcriptional regulation is through the
phosphorylatiorof proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation abtieép
changes, usually from an inactive configuration to an active one. ithgree that
adds the phosphate group is callekimase(or sometimes @hosphotransferage
and it operates by transferring a phosphate group from a bound Alédeuteto the
protein, leaving behind ADP and the phosphorylated pro@aphosphorylation
is a complementary enzymatic process that can remove a phosphate gnoup fr
a protein. The enzyme that performs dephosphorylation is calfgibaphatase
Figurel.17shows the process of phosphorylation in more detail.

Phosphorylation is often used as a regulatory mechanism, with the phgsphor
lated version of the protein being the active conformation. Since phogpkion
and dephosphorylation can occur much more quickly than protein produartic
degradation, it is used in biological circuits in which a rapid response isrez
One common pattern is that a signaling protein will bind to a ligand and the result-
ing allosteric change allows the signaling protein to serve as a kinase. Whe ne
active kinase then phosphorylates a second protein, which modulateduwsibe
tions in the cell. Phosphorylation cascades can also be used to amplifjettiecd
the original signal; we will describe this in more detail in Sectkh

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphatases, on the otherahamdyuch
less specific, and a given phosphatase species may desphosphoayigtdiferent
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types of proteins. The combined action of kinases and phosphatases itaintjro
signaling since the only way to deactivate a phosphorylated protein is byigno
the phosphate group. Thus phosphatases are constantly “tuiffiipyaieins, and
the protein is activated only whenfigient kinase activity is present.
Phosphorylation of a protein occurs by the addition of a charged phtsph
(PG,) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amincsa8am-
ilar covalent modifications can occur by the attachment of other chemicapgro
to select amino aciddviethylationoccurs when a methyl group (GHis added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structukestylationoccurs when an acetyl
group (COCH) is added to lysine and is also used to modify histohdsquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

1.3 Control and Dynamical Systems Tools [AMO08]

To study the complex dynamics and feedback present in biological sysiems,
will make use of mathematical models combined with analytical and computational
tools. In this section we present a brief introduction to some of the key ptsce
from control and dynamical systems that are relevant for the study ofddécular
systems considered in later chapters. More details on the application dficspec
concepts listed here to biomolecular systems is provided in the main body of the
text. Readers who are familiar with introductory concepts in dynamical systems
and control, at the level described in Astm and Murray 2] for example, can skip

this section.

Dynamics, feedback and control

A dynamical systens a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The teeadbackrefers to a situation
in which two (or more) dynamical systems are connected together such that ea
system influences the other and their dynamics are thus strongly couptaale S
causal reasoning about a feedback systemfitdit because the first system in-
fluences the second and the second system influences the first, leadicigcidar
argument. This makes reasoning based on causeftga &icky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that tnaédveh
of feedback systems is often counterintuitive, and it is therefore negessresort
to formal methods to understand them.

Figure 1.18illustrates in block diagram form the idea of feedback. We often
use the termspen loopandclosed loopwvhen referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a sycle, a



1-22 CHAPTER 1. INTRODUCTORY CONCEPTS

u y r u y
System 2 - —{ System 11— System Z2—

System 1

Y
Y

(a) Closed loop (b) Open loop

Figure 1.18: Open and closed loop systems. (a) The outpystérs 1 is used as the input
of system 2, and the output of system 2 becomes the input térays, creating a closed
loop system. (b) The interconnection between system 2 astérayl is removed, and the
system is said to be open loop.

shown in Figurel.18a If we break the interconnection, we refer to the configura-
tion as an open loop system, as shown in Fidufesh

Biological systems make use of feedback in an extraordinary numberysf, wa
on scales ranging from molecules to cells to organisms to ecosystems. One ex-
ample is the regulation of glucose in the bloodstream through the production of
insulin and glucagon by the pancreas. The body attempts to maintain a constant
concentration of glucose, which is used by the body’s cells to produesygn
When glucose levels rise (after eating a meal, for example), the hormordm insu
is released and causes the body to store excess glucose in the livergibese
levels are low, the pancreas secretes the hormone glucagon, whicle lnggptsite
effect. Referring to Figur&.18 we can view the liver as system 1 and the pancreas
as system 2. The output from the liver is the glucose concentration in thd,blo
and the output from the pancreas is the amount of insulin or glucagomgedd
The interplay between insulin and glucagon secretions throughout theedlasy h
to keep the blood-glucose concentration constant, at about 90 mg penL160
blood.

Feedback has many interesting properties that can be exploited in desigsing
tems. As in the case of glucose regulation, feedback can make a systkemtres
toward external influences. It can also be used to create linear bebatiof non-
linear components, a common approach in electronics. More generathdele
allows a system to be insensitive both to external disturbances and to vasiatio
its individual elements.

Feedback has potential disadvantages as well. It can create dynantditiesa
in a system, causing oscillations or even runaway behavior. Anotherdcky
especially in engineering systems, is that feedback can introduce umhgansor
noise into the system, requiring careful filtering of signals. It is for thessans
that a substantial portion of the study of feedback systems is devoteddlopieg
an understanding of dynamics and a mastery of techniques in dynamiteahsys

The mathematical study of the behavior of feedback systems is an area know
ascontrol theory The term control has many meanings and often varies between
communities. In engineering applications, we typical define control to beshe u
of algorithms and feedback in engineered systems. Thus, control isciudé ex-
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amples as feedback loops in electronic amplifiers, setpoint controllers imicie
and materials processing, “fly-by-wire” systems on aircraft and eveter proto-
cols that control triiic flow on the Internet. Emerging applications include high-
confidence software systems, autonomous vehicles and robots, reattimgae
management systems and biologically engineered systems. At its core) oaitro
informationscience and includes the use of information in both analog and digital
representations.

Feedback properties

Feedback is a powerful idea that is used extensively in natural anddiedical
systems. The principle of feedback is simple: implement correcting actioes bas
on the diference between desired and actual performance. In engineerul, fe
back has been rediscovered and patented many times in m@@redt contexts.
The use of feedback has often resulted in vast improvements in systeubilisp
and these improvements have sometimes been revolutionary, as discuseed ab
The reason for this is that feedback has some truly remarkable propertiesh

we discuss briefly here.

Robustness to Uncertaintfone of the key uses of feedback is to provide robust-
ness to uncertainty. By measuring théfelience between the sensed value of a
regulated signal and its desired value, we can supply a corrective dttiom sys-

tem undergoes some change thieets the regulated signal, then we sense this
change and try to force the system back to the desired operating points pnés
cisely the &ect that Watt exploited in his use of the centrifugal governor on steam
engines.

As an example of this principle, consider the simple feedback system shown in
Figure1.19 In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simglmportional-integral(P1) feedback
is used to make the amount of gas depend on both the error between et curr
and the desired speed and the integral of that error. The plot on theshigtvs
the results of this feedback for a step change in the desired speed aridtg of
different masses for the car, which might result from havingtem@int number of
passengers or towing a trailer. Notice that independent of the mass (velnieb by
a factor of 3!), the steady-state speed of the vehicle always apmo#uh desired
speed and achieves that speed within approximately 5 s. Thus the peréeraia
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustnessneghe
ative feedback amplifier. When telephone communications were devekopet;
fiers were used to compensate for signal attenuation in long lines. A vaitunenm
was a component that could be used to build amplifiers. Distortion causea by th
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
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Figure 1.19: A feedback system for controlling the speedwatacle. In the block diagram

on the left, the speed of the vehicle is measured and compaibd desired speed within
the “Compute” block. Based on theffiirence in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehigléhe engine, drivetrain and
wheels. The figure on the right shows the response of theal@ystem to a commanded
change in speed from 25/mto 30 nis. The three dierent curves correspond tofiiiring
masses of the vehicle, between 1000 and 3000 kg, demongttag robustness of the
closed loop system to a very large change in the vehicle cterstics.

jor breakthrough was the invention of the feedback amplifier in 1927 byplH&.
Black, an electrical engineer at Bell Telephone Laboratories. Blagk negative
feedbackwhich reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier
Feedback is also pervasive in biological systems, where transcripticanas;
lational and allosteric mechanisms are used to regulate internal concerstraftion
various species, and much more complex feedbacks are used to regofade p
ties at the organism level (such as body temperature, blood presslic#@adian
rhythm). One diference in biological systems is that the separation of sensing, ac-
tuation and computation, a common approach in most engineering controhsyste
is less evident. Instead, the dynamics of the molecules that sense the Brarnron
tal condition and make changes to the operation of internal components may be
integrated together in ways that make iffidult to untangle the operation of the
system. Similarly, the “reference value” to which we wish to regulate a systgm ma
not be an explicit signal, but rather a consequence of mafsrent changes in the
dynamics that are coupled back to the regulatory elements. Hence we deenot
a clear “setpoint” for the desired ATP concentration, blood oxygen levbbdy
temperature, for example. Thesdhdiulties complicate our analysis of biological
systems, though many important insights can still be obtained.

Design of DynamicsAnother use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meetettie ofe

an application: systems that are unstable can be stabilized, systems tHagare s
gish can be made responsive and systems that have drifting operatirtg qain

be held constant. Control theory provides a rich collection of techniqueesaiyze

the stability and dynamic response of complex systems and to place bounds on th
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behavior of such systems by analyzing the gains of linear and nonlineeaitops
that describe their components.

An example of the use of control in the design of dynamics comes from the are
of flight control. The following quote, from a lecture presented by Wilbuight
to the Western Society of Engineers in 19638 illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at $licient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of suficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the age
of flying will have arrived, for all other diiculties are of minor impor-
tance.

The Wright brothers thus realized that control was a key issue to enggle fl
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. |yaeHad
a rudder in the front of the airplane, which made the plane very mandalgera
disadvantage was the necessity for the pilot to keep adjusting the ruddgettie fl
plane: if the pilot let go of the stick, the plane would crash. Other early agiato
tried to build stable airplanes. These would have been easier to fly, badeeof
their poor maneuverability they could not be brought up into the air. By ubigig
insight and skillful experiments the Wright brothers made the first suttddbght
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, in/ente
by Sperry, was based on the concept of feedback. Sperry usg-atgbilized
pendulum to provide an indication of the vertical. He then arranged a de&db
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of &sédb aero-
nautical engineering, and Sperry won a prize in a competition for thetsafelane
in Paris in 1914. Figur&.20shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilizesta u
ble system and hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By usind#esdo
create a system whose response matches a desired profile, we carehidenth
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the response
of a large number of interacting components. This was one of the advanthge
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Figure 1.20: Aircraft autopilot system. The Sperry autopfleft) contained a set of four
gyros coupled to a set of air valves that controlled the wurfpses. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aaftand was able to maintain level
flight as a mechanic walked on the wing (rightp[.

Black’s use of negative feedback in vacuum tube amplifiers: the resulévige
had a well-defined linear inpftautput response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of FeedbackVhile feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesiraldteats of feedback
when the amplification on a microphone is turned up too high in a room. This
is an example of feedback instability, something that we obviously want to.avoid
This is tricky because we must design the system not only to be stable wrder n
inal conditions but also to remain stable under all possible perturbationsof th
dynamics.

In addition to the potential for instability, feedback inherently coupl&gint
parts of a system. One common problem is that feedback often injects nteastire
noise into the system. Measurements must be carefully filtered so that thiaarctua
and process dynamics do not respond to them, while at the same time ensating th
the measurement signal from the sensor is properly coupled into the dtaged
dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding a abntr
system in a product. While the cost of sensing, computation and actuatiaehas
creased dramatically in the past few decades, the fact remains thatl aysteons
are often complicated, and hence one must carefully balance the costsreefis.

An early engineering example of this is the use of microprocessor-basdtdck
systems in automobiles.The use of microprocessors in automotive applicagions b
gan in the early 1970s and was driven by increasingly strict emissiongastis
which could be met only through electronic controls. Early systems weensiye
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and failed more often than desired, leading to frequent customer disstdisfdt
was only through aggressive improvements in technology that the perioena
reliability and cost of these systems allowed them to be used in a transpesknt f
ion. Even today, the complexity of these systems is such that itfisult for an
individual car owner to fix problems.

Feedforward Feedback is reactive: there must be an error before correctivasctio
are taken. However, in some circumstances it is possible to measure aatistirb
before it enters the system, and this information can then be used to tagetverr
action before the disturbance has influenced the system. fféwt of the distur-
bance is thus reduced by measuring it and generating a control sighabthra
teracts it. This way of controlling a system is calleg¢dforward Feedforward is
particularly useful in shaping the response to command signals becaussacal
signals are always available. Since feedforward attempts to match two signals
requires good process models; otherwise the corrections may havedhg size

or may be badly timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward are amadoip a market-
based economy versus a planned economy. In business, a feadf@trategy
corresponds to running a company based on extensive strategic jglawhiile a
feedback strategy corresponds to a reactive approach. In bidémgiforward has
been suggested as an essential element for motion control in humans tingtds tu
during training. Experience indicates that it is often advantageous to cerfdsd-
back and feedforward, and the correct balance requires insightirzrerstanding
of their respective properties.

Positive Feedbackn most of control theory, the emphasis is on the roleegative
feedbackin which we attempt to regulate the system by reacting to disturbances in
a way that decreases thiext of those disturbances. In some systems, particularly
biological systemspositive feedbackan play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a situratio
which that quantity is further increased through its dynamics. This hastabiles
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior isind#d-
logical (and engineering) systems to obtain a very fast response taddionror
signal.

One example of the use of positive feedback is to create switching behavior
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold dauss the
system to jitter. This type of behavior is callbitability and is often associated
with memory devices.
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Figure 1.21: Inpybutput characteristics of orffccontrollers. Each plot shows the input on
the horizontal axis and the corresponding output on thécatexis. Ideal on-fi control is
shown in (a), with modifications for a dead zone (b) or hystsré). Note that for on4®
control with hysteresis, the output depends on the valuasff ipputs.

Simple forms of feedback

The idea of feedback to make corrective actions based on ffezatice between
the desired and the actual values of a quantity can be implemented in nff@ngati
ways. The benefits of feedback can be obtained by very simple fdeitves such
as on-dt control, proportional control and proportional-integral-derivatigatcol.
In this section we provide a brief preview of some of these topics to providesia
of understanding for their use in the chapters that follows.

On-Qf Control. A simple feedback mechanism can be described as follows:
e Umax ?f e>0 (1.1)
Umin |f e< O,

where thecontrol error e=r -y is the diference between the reference signal (or
command signal) and the output of the systeyrandu is the actuation command.
Figurel.2lashows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equatiord (1) is calledon-gf control. One of its chief advan-
tages is that it is simple and there are no parameters to choosdt Gmtrol often
succeeds in keeping the process variable close to the referencgsstiehuse of
a simple thermostat to maintain the temperature of a room. It typically results in
a system where the controlled variables oscillate, which is often acceptdbé if
oscillation is stficiently small.

Notice that in equationl(1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figude21band1.21g.

PID Control. The reason why onfbcontrol often gives rise to oscillations is that
the system overreacts since a small change in the error makes the actuablbv
change over the full range. Thiffect is avoided iproportional contro] where the
characteristic of the controller is proportional to the control error forlseneors.
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This can be achieved with the control law

Unax If €> €max
U=1Kp€ if Emin < €< Emax (1.2)
Umin |f e< Q'T]irb

wherek, is the controller gaingmin = Umin/Kp and émax = Umax/Kp. The interval
(emin, €max) is called theproportional bandbecause the behavior of the controller
is linear when the error is in this interval:

u=Kp(r-y) =kpe if €mnin < €< enax (1.3)

While a vast improvement over orffocontrol, proportional control has the
drawback that the process variable often deviates from its referahge \n partic-
ular, if some level of control signal is required for the system to maintairsaeste
value, then we must hawez O in order to generate the requisite input.

This can be avoided by making the control action proportional to the intefyral
the error:

t
u(t) = ki fo e(r)dr. (1.4)

This control form is calledntegral contro| andk; is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error. The catch is that there may not always be a stetedyestause

the system may be oscillating.

An additional refinement is to provide the controller with an anticipative abil-
ity by using a prediction of the error. A simple prediction is given by the linear
extrapolation

oL+ To) = &) + Ty .
which predicts the errdFq time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be expressed mathaityatis

t

u(t) = kpe(t) + kifo e(r)dr+ m%.
The control action is thus a sum of three terms: the past as representbd by
integral of the error, the present as represented by the proportemmaland the
future as represented by a linear extrapolation of the error (the thegeitarm).
This form of feedback is called@oportional-integral-derivative (PID) controller
and its action is illustrated in Figude22

A PID controller is very useful and is capable of solving a wide rangeoof ¢
trol problems. More than 95% of all industrial control problems are sobyelID
control, although many of these controllers are actuaidbportional-integral(P1)
controllersbecause derivative action is often not includ24 | There are also more
advanced controllers, whichftér from PID controllers by using more sophisti-
cated methods for prediction.

(1.5)
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Figure 1.22: Action of a PID controller. At time the proportional term depends on the
instantaneous value of the error. The integral portioneféedback is based on the integral
of the error up to time (shaded portion). The derivative term provides an estirobtke
growth or decay of the error over time by looking at the ratelwnge of the erroiy
represents the approximate amount of time in which the ésrprojected forward (see
text).

1.4 Input/Output Modeling [AMOS8]

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictiorts abou
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the infowtput behavior of systems, and we will
often work in “state space” form. In the remainder of this section we proaide
overview of some of the key concepts in infmuttput modeling. The mathematical
details introduced here are explored more fully in Chapter

The heritage of electrical engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic amplifiers laddous
on inpufoutput behavior. A system was considered a device that transfornts inpu
to outputs, as illustrated in Figufe23 Conceptually an inpgautput model can be
viewed as a giant table of inputs and outputs. Given an input sigt)aver some
interval of time, the model should produce the resulting ouyftit

The inputoutput framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connectedthrou
their inputs and outputs. Thus, we can take a complicated system sucldas@rra
a television and break it down into manageable pieces such as the redeived-
ulator, amplifier and speakers. Each of these pieces has a set of indudstputs
and, through proper design, these components can be interconneébech tihe
entire system.

The inputoutput view is particularly useful for the special clasdiogar time-
invariant systemsThis term will be defined more carefully below, but roughly
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Figure 1.23: lllustration of the inpfgutput view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic dfigsl the one on the right is its
representation as a block diagram.

speaking a system is linear if the superposition (addition) of two inputs yields a
output that is the sum of the outputs that would correspond to individuatsriye-

ing applied separately. A system is time-invariant if the output responsegiwen
input does not depend on when that input is applied. While most biomolesydar
tems are neither linear nor time-invariant, they can often be approximateahby su
models, often by looking at perturbations of the system from its nominaMimha

in a fixed context.

One of the reasons that linear time-invariant systems are so prevalent &-mod
ing of inpufoutput systems is that a large number of tools have been developed to
analyze them. One such tool is thep responsevhich describes the relationship
between an input that changes from zero to a constant value abruptgp(anput)
and the corresponding output. The step response is very useful iactér@zing
the performance of a dynamical system, and it is often used to specify shredie
dynamics. A sample step response is shown in Figi2éa

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is calledftbguency responsend a
rich, powerful theory with many concepts and strong, useful resuiehserged
for systems that can be described by their frequency responseediitsrare based
on the theory of complex variables and Laplace transforms. The basibetad
frequency response is that we can completely characterize the bebbaisystem
by its steady-state response to sinusoidal inputs. Roughly speaking, tiiges
by decomposing any arbitrary signal into a linear combination of sinusoids (e
by using the Fourier transform) and then using linearity to compute the ouwput b
combining the response to the individual frequencies. A sample freguesiponse
is shown in Figurel.24h

The inputoutput view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording itssesfm
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Figure 1.24: Inpybutput response of a linear system. The step response (& ghe
output of the system due to an input that changes from 0 to imattt=5 s. The fre-
guency response (b) shows the amplitude gain and phaseecdargo a sinusoidal input
at different frequencies.

particular inputs, e.g., a step or a set of sinusoids over a range oéfreigs.

The control view

When control theory emerged as a discipline in the 1940s, the approagh to d
namics was strongly influenced by the electrical engineering (fopttut) view.

A second wave of developments in control, starting in the late 1950s, wageithsp

by mechanics, where the state space perspective was used. Thereraaiggpace
flight is a typical example, where precise control of the orbit of a spatfigs es-
sential. These two points of view gradually merged into what is today the state
space representation of inpotitput systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing morelgene
forms of equations. In control, models often take the form
%( = f(x,u), y =h(xu), (1.6)
wherex is a vector of state variables,is a vector of control signals andis a
vector of measurements. The tedwr/dt (sometimes also written ag represents
the derivative ofx with respect to time, now considered a vector, &nédnd h
are (possibly nonlinear) mappings of their arguments to vectors of the e
dimension.

Adding inputs and outputs has increased the richness of the classibldmpso
and led to many new concepts. For example, it is natural to ask if possible state
can be reached with the proper choicaudfeachability) and if the measuremegnt
contains enough information to reconstruct the state (observability) eTthpgcs
are addressed in greater detail in AMO08.
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A final development in building the control point of view was the emergeiice o
disturbances and model uncertainty as critical elements in the theory. Thie simp
way of modeling disturbances as deterministic signals like steps and sinuasids h
the drawback that such signals cannot be predicted precisely. A nmaligticeap-
proach is to model disturbances as random signals. This viewpoint givesiial
connection between prediction and control. The dual views of joptgut repre-
sentations and state space representations are particularly usefuhwhefing
uncertainty since state models are convenient to describe a nominal modal bu
certainties are easier to describe using ifguutput models (often via a frequency
response description).

An interesting observation in the design of control systems is that feedlyack
tems can often be analyzed and designed based on comparatively simple.mode
The reason for this is the inherent robustness of feedback systemesyveip other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precotheuiguts
that cause the system to respond in a certain way. Another area is syaitdar v
tion, where one wishes to verify that the detailed response of the systéonmps
as it was designed. Because of thedgedent uses of models, it is common to use
a hierarchy of models havingfterent complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical syiseestate

is composed of the variables required to account for the current daftthe cell,
including the concentrations of the various species and complexes thmtasnt.

It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. Th
state variables are gathered in a vectaR" called thestate vectorThe control
variables are represented by another veg®oRP, and the measured signal by the
vectory € RY. A system can then be represented by thiedéntial equation

D=txu. v =hocu, .7
wheref : R"xRP - R" andh : R"xRP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called trder of the system. The sys-
tem (L.7) is calledtime-invariantbecause the functions and h do not depend
explicitly on timet; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the funttives
the rate of change of the state vector as a function of statel controlu, and the
functionh gives the measured values as functions of stated controlu.
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A system is called énear state space system if the functiohandh are linear
in X andu. A linear state space system can thus be represented by

%( = Ax+ Bu, y =Cx+Du, (1.8)
whereA, B, C andD are constant matrices. Such a system is said {onbar and
time-invariant or LTI for short. The matrixA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

Input/output formalisms for biomolecular modeling

A key challenge in developing models for any class of problems is the sel@dtion
an appropriate mathematical framework for the models. Among the featutes tha
we believe are important for a wide variety of biological systems are capturin
the temporal response of a biomolecular system to various inputs andstarder

ing how the underlying dynamic behavior leads to a given phenotype. Thelmo
should reflect the subsystem structure of the underlying dynamicansystal-

low prediction of results, but need not necessarily be mechanisticallyatecat

a detailed biochemical level. We are patrticularly interested in those probleins tha
include a number of molecular “subsystems” that interact with each othetis@n
our models should support a level of modularity (with the additional advardfg
allowing multiple groups to develop detailed models for each module that can be
combined to form more complex models of the interacting components). Since we
are likely to be building models based on high-throughput experiments, itds als
key that the models capture the measurable outputs of the systems.

For many of the systems that we are interested in, a good starting point is to
use reduced-order models consisting of nonlinefiedintial equations, possibly
with some time delay. Using the basic structure shown in Figuea model for a
multi-component system might be descibed using a set of foypput diterential
eqguations of the form

X _ Ax +N(X, Ly, 60) + Bu + Fw,
gr = AX+N(xi, Ly".6) + Bu + Fwi, (1.9)
Yi=Cx+Hvi  y(t)=Vi(t-m).

The internal state of thiégh component (subsystem) is captured by the s¢at&R™,
which might represent the concentrations of various species and casasxvell
as other internal variables required to describe the dynamics. The tetigfuhe
system, which describe those species (or other quantities) that interacitigth
subsystems in the cell is captured by the varighbleRP. The internal dynamics
consist of a set of linear dynamic&X) as well as nonlinear terms that depend
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both on the internal state and the outputs of other subsyst&in})(whereLy*
represents interconnections with other subsystem® &nd set of parameters that
represent the context of the system (described in more detail belovglsd/allow
for the possibility of time delays (due to folding, transport or other pra®ssnd
write y;" for the “functional” output seen by other subsystems.

The coupling between subsystems is captured using a weighted grapse who
elements are represented by thefioents of the interconnection matrix In the
simplest version of the model, we simply combin&efient outputs from other
modules in some linear combination to obtain the “indug”. More general inter-
connections are possible, including allowing multiple outputs froffedént sub-
systems to interact in nonlinear ways (such as one often sees on comhinator
promoters in gene regulatory networks).

Finally, in addition to the internal dynamics and nonlinear coupling, we sepa-
rately keep track of external inputs to the subsyst&u),(stochastic disturbances
(Fw) and measurement noisey). We treat the external inputsas deterministic
variables (representing inducer concentrations, nutrient levels, tataper etc)
and the disturbances and noiseandv as (vector) random processes. If desired,
the mappings from the various inputs to the states an outputs, represerites by
matricesB, F andH can also depend on the system stafeesulting in additional
nonlinearities).

This particular structure is useful because it captures a large numipeodbf
eling frameworks in a single formalism. In particular, mass action kinetics and
chemical reaction networks can be represented by equating the stoiclyionzetr
trix with the interconnection matrix. and using the nonlinear terms to capture
the fluxes, withg representing the rate constants. We can also represent typical
reduced-order models for transcriptional regulatory networks by lett@gonlin-
ear functionsN represent various types of Hill functions and including teas
of mMRNA/protein production, degradation and dilution through the linear dynam-
ics. These two classes of systems can also be combined, allowing a vezgsExe
set of dynamics that is capable of capturing many relevant phenomenteiafsin
in molecular biology.

Despite being a well-studied class of systems, there are still many open ques-
tions with this framework, especially in the context of biomolecular systems. For
example, a rigorous theory of théfects of crosstalk, the role of context on the
nonlinear elements, and combining tHeeets of interconnection, uncertainty and
nonlinearity is just emerging. Adding stochastiteets, either through the distur-
bance and noise terms, initial conditions or in a more fundamental way, is also
largely unexplored. And the critical need for methods for performing moslel
duction in a way that respects of the structure of the subsystems has oahglye
begun to be explored. Nonetheless, many of these research direaigohsiag
pursued and we attempt to provide some insights in this text into the underlying
techniques that are available.
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Figure 1.25: Milestones in the history of synthetic biology

1.5 From Systems to Synthetic Biology

The rapidly growing field of synthetic biology seeks to use biological priesip
and processes to build useful engineering devices and systems. Aippkcaf
synthetic biology range from materials production (drugs, biofuels) to Qicéd
sensing and diagnostics (chemical detection, medical diagnostics) to ballogie
chines (bioremediation, nanoscale robotics). Like many other fields at thetime
their infancy (electronics, software, networks), it is not yet clearr@tsynthetic
biology will have its greatest impact. However, recent advances suttte abil-

ity to “boot up” a chemically synthesized genon82] demonstrate the ability to
synthesize systems thaffer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to desigmsyste
of this complexity are much more primitive, awnié@ novosynthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms{5).

Several scientific and technological developments over the past focadee
have set the stage for the design and fabrication of early synthetic biamarlec
circuits (see Figurd..25. An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. |
their 1961 paper, Jacob and Monod introduced for the first time the idgans
expression regulation through transcriptional feedbd&k Only a few years later
(1969), restriction enzymethat cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workdils These enzymes were a major
enabler of recombinant DNA technology, in which genes from one dsgaare
extracted and spliced into the chromosome of another. One of the mostatetebr
products of this technology was the large scale production of insulin by ginglo
E. colibacteria as a cell factor@4{.
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Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification ofl sma
amounts of DNA and can be used to obtaiffisient quantities for use in a variety
of molecular biology laboratory protocols where higher concentratiobs\Zf are
required. Using PCR, it is possible to “copy” genes and other DNA sempgeout
of their host organisms.

The developments of recombinant DNA technology, PCR and artificial synth
sis of DNA provided the ability to “cut and paste” natural or synthetic pronsote
and genes in almost any fashion. This cut and paste procedure isdathétyand
consists of four primary stepBagmentationligation, transfectiorandscreening
The DNA of interest is first isolated using restriction enzymeg@ndlCR amplifi-
cation. Then, a ligation procedure is employed in which the amplified fragment is
inserted into a vector. The vector is often a piece of circular DNA, callddsapd,
that has been linearized by means of restriction enzymes that cleave firapap
ate restriction sites. The vector is then incubated with the fragment of inteitbst
an enzyme calle@®NA ligase producing a single piece of DNA with the target
DNA inserted. The next step is to transfect (or transform) the DNA into divin
cells, where the natural replication mechanisms of the cell will duplicate the DNA
when the cell divides. This process does not transfect all cells, aadsslection
procedure if required to isolate those cells that have the desired DNAegdser
them. This is typically done by using a plasmid that gives the cell resistance to a
specific antibiotic; cells grown in the presence of that antibiotic will only live if
they contain the plasmid. Further selection can be done to insure that thedser
DNA is also present.

Once a circuit has been constructed, its performance must be verifiedf an
necessary, debugged. This is often done with the hefijofescent reportersThe
most famous of these is GFP, which was isolated from the jellyistuorea vic-
toria in 1978 by Shimomurag6]. Further work by Chalfie and others in the 1990s
enabled the use of GFP i colias a fluorescent reporter by inserting it into an ap-
propriate point in an artificial circuitl]7]. By using spectrofluorometry, fluorescent
microscopy or flow cytometry, it is possible to measure the amount of fluaresce
in individual cells or collections of cells and characterize the performafee
circuit in the presence of inducers or other factors.

Two early examples of the application of these technologies wenegressi-
lator [28] and a synthetic genetic switcB]].

The repressilator is a synthetic circuit in which three proteins each epres
other in a cycle. This is shown schematically in Figir26a where the three pro-
teins are TetRa cl and Lacl. The basic idea of the repressilator is that if TetR is
present, then it represses the production off. If Acl is absent, then Lacl is pro-
duced (at the unregulated transcription rate), which in turn represtBs Once
TetR is repressed, thercl is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrationesxillate,
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Figure 1.26: The repressilator genetic regulatory netw@kA schematic diagram of the
repressilator, showing the layout of the genes in the pldghat holds the circuit as well
as the circuit diagram (center). The flat headed arrow betwheeprotein names represents
repression. (b) A simulation of a simple model for the regitator, showing the oscillation
of the individual protein concentrations. (Figure cowytbt Elowitz.)

as shown in Figuré&.26h

The repressilator can be constructed using the techniques descrived Ripst,
we can make copies of the individual promoters and genes that fornirouit by
using PCR to amplify the selected sequences out of the original organisrhgcim w
they were found. TetR is the tetracycline resistance repressor proteis fband
in gram-negative bacteria (suchB&scoli) and is part of the circuitry that provides
resistance to tetracycline. Lacl is the gene that prodlam=spressor, responsible
for turning df thelac operon in the lactose metabolic pathwayEincoli (see Sec-
tion 5.1). And A cl comes from phage, where it is part of the regulatory circuitry
that regulates lysis and lysogeny.

By using restriction enzymes and related techniques, we can separatg-the n
ural promoters from their associated genes, and then ligate (reassé¢hnaniein
a new order and insert them into a “backbone” vector (the rest of tisenpda in-
cluding the origin of replication and appropriate antibiotic resistance). TNi& D
is then transformed into cells that are grown in the presence of an antib@tiats
only those cells that contain the represillator can replicate. Finally, we can tak
individual cells containing our circuit and let them grow under a microsdop
image fluorescent reporters coupled to the oscillator.

Another early circuit in the synthetic biology toolkit is a genetic switch built
by Gardneret al. [31]. The genetic switch consists of two repressors connected
together in a cycle, as shown in Figute27a The intuition behind this circuit is
that if the gene A is being expressed, it will repress production of B aridtaia
its expression level (since the protein corresponding to B will not beeptés re-
press A). Similarly, if B is being expressed, it will repress the productfoh and
maintain its expression level. This circuit thus implements a tygeastébility that
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Figure 1.27: Stability of a genetic switch. The circuit diaigp in () represents two proteins
that are each repressing the production of the other. Thesnp andu, interfere with this
repression, allowing the circuit dynamics to be modifiede Simulation in (b) shows the
time response of the system starting from twidetent initial conditions. The initial portion
of the curve corresponds to protein B having higher coneéintr than A, and converges to
an equilibrium where A isfd and B is on. At time = 10, the concentrations are perturbed,
moving the concentrations into a region of the state spaa¥evolutions converge to the
equilibrium point with the A on and Bf&,

can be used as a simple form of memory. FigliZ7bshows the time traces for

a system, illustrating the bistable nature of the circuit. When the initial condition
starts with a concentration of protein B greater than that of A, the solution con
verges to the equilibrium point where B is on and A {B & A is greater than B,
then the opposite situation results.

These seemingly simple circuits took years to get to work, but showed that it
was possible to synthesize a biological circuit that performed a desiredida
that was not originally present in a natural system. Today, commercigiesia
of DNA sequences and genes has become cheaper and faster, wiitke affgn
below $0.30 per base p&ilThe combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for ignagih
measurement has vastly simplified the process of producing a sequeDd&Aof
that encodes a given set of genes, operator sites, promoters anduoitiéons,
and these techniques are a routine part of undergraduate courseeauiaoand
synthetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make tra@-of
scriptional or post-transcriptional processing, resulting in very slow tales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is nsecleds

1As of this writing; divide by a factor of two for every two years after thélxation date.
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Figure 1.28: Expression of a protein using an inducible mi@m[16]. (a) The circuit
diagram indicates the DNA sequences that are used to congtaupart (chosen from the
BioBrick library). (b) The measured response of the systemgtep change in the inducer
level (HSL).

rapid detection of a chemical signal or fast response to changes in theairdgavi-
ronment of the cell. In addition, existing methods for biological circuit debiyre
limited modularity (reuse of circuit elements requires substantial redesigm-or tu
ing) and typically operate in very narrow operating regimes (e.g., a singtgesp
grown in a single type of media under carefully controlled conditions). Euth
more, engineered circuits inserted into cells can interact with the hostisngan
and have other unintended interactions.

As an illustration of the dynamics of synthetic devices in use today, Fiha&
shows a typical response of a genetic element to an inducer mold@llén this
circuit, an external signal of homoserine lactone (HSL) is applied at tineearedt
the system reaches 10% of the steady state value in approximately 15 mirniges. T
response is limited in part by the time required to synthesize the output protein
(GFP), including delays due to transcription, translation and folding. Simise
is the response time for the underlying “actuator”, circuits that are condpaise
feedback interconnections of such genetic elements will typically oper&telét
times slower speeds. While these speeds are appropriate in many appli@tions
regulation of steady state enzyme levels for materials production), in the tontex
of biochemical sensors or systems that must maintain a steady operatingnpoint
more rapidly changing thermal or chemical environments, this response tinee is to
slow to be used as arifective engineering approach.

By comparison, the inpfdgutput response for the signaling componeri.igoli
chemotaxis is shown in Figuke29[85]. Here the response of the kinase CheA is
plotted in response to an exponential ramp in the ligand concentration. The re
sponse is extremely rapid, with the timescale measured in seconds. Thisaapid r
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes
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Figure 1.29: Responses Bf coli signaling network to exponential ramps in ligand con-
centration. (a) A simplified circuit diagram for chemotaxdhowing the biomolecular pro-
cesses involved in regulating flagellar motion. (b) Timegoesses of the “sensing” subsys-
tem (from Shimizu, Tu and Berg; Molecular Systems Biolo@4 @), showing the response
to exponential inputs.

The field of synthetic biology has the opportunity to provide new appr@ache
to solving engineering and scientific problems. Sample engineering appligation
include the development of synthetic circuits for producing biofuels, @trsitive
chemical sensors, or production of materials with specific propertiesrénaurzed
to commercial needs. In addition to the potential impact on new biologically engi-
neered devices, there is also the potential for impact in improved unddirsjef
biological processes. For example, many diseases such as cand&ar&imson’s
disease are closely tied to kinase dysfunction. Our analysis of robsteinsy of
kinases and the ability to synthesize systems that support or invalidate balogic
hypotheses may lead to a better systems understanding of failure modesdhat le
to such diseases.

1.6 Further Reading

There are numerous survey articles and textbooks that provide more di@téite
ductions to the topics introduced in this chapter. In the field of systems bidlugy,
textbook by Alon ] provides a broad view of some of the key elements of mod-
ern systems biology. A more comprehensive set of topics is covered iedkatr
textbook by Klipp p3], while a more engineering-oriented treatment of modeling
of biological circuits can be found in the text by Mye68]. Two other books that
are particularly noteworthy are Ptashne’s book on the plid@d] and Madhani’s
book on yeast§§], both of which use well-studied model systems to describe a
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general set of mechanisms and principles that are present in méensedt types
of organisms.

Several textbooks and research monographs provide excellentreesdor
modeling and analysis of biomolecular dynamics and regulation. J. D. Msirray
two-volume text 6] on biological modeling is an excellent reference with many
examples of biomolecular dynamics. The textbook by Phillips, Kondev and The
riot [73] provides a quantitative approach to understanding biological systems, in
cluding many of the concepts discussed in this chapter. Coli8tygives a detailed
description of mechanisms transcriptional regulation.

The topics in dynamical systems and control theory that are briefly intesuc
here are covered in more detail in AMO2]|,[to which this text is a supplement.
Other books that introduce tools for modeling and analysis of dynamictdrags
with applications in biology include J. D. Murray'’s teX@q] and the recent text by
and Ellner and Guckenheime2{).

Synthetic biology is a rapidly evolving field that includes mantfedent sub-
areas of research, but few textbooks are currently available. Irptwfie area of
biological circuit design that we focus on here, there are a numberaaf garvey
and review articles. The article by Baketral.[8] provides a high level description
of the basic approach and opportunities. Recent survey and revjgviaclude
Voigt [95] and Khalil and Collins $1].



Chapter 2

Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way tha
can be represented by simple dynamical models. We begin the chapter with a dis
cussion of the basic modeling formalisms that we will utilize to model biomolecu-
lar feedback systems. We then proceed to study a number of core ggeaeithin

the cell, providing diferent model-based descriptions of the dynamics that will
be used in later chapters to analyze and design biomolecular systems.clike fo
in this chapter and the next is on deterministic models using ordinéireintial
eqguations; Chapterdescribes how to model the stochastic nature of biomolecular
systems.

PrerequisitesReaders should have some basic familiarity with cell biology, at the
level of the description in Sectioh.2 (see also Appendid), and a basic under-
standing of ordinary dierential equations, at the level of Chapter 2 of AM08.

2.1 Modeling Techniques

In order to develop models for some of the core processes of the cellilwead

to build up a basic description of the biochemical reactions that take platgdinc

ing production and degradation of proteins, regulation of transcriptidriransla-

tion, intracellular sensing, action and computation, and intercellular sign&sg.

in other disciplines, biomolecular systems can be modeled in a varietyfefetit
ways, at many dferent levels of resolution, as illustrated in Fig@r& The choice

of which model to use depends on the questions that we want to ansdepad
modeling takes practice, experience, and iteration. We must properlyredphtu
aspects of the system that are important, reason about the appropriat@aemp
and spatial scales to be included, and take into account the types of simulation
and analysis tools be be applied. Models that are to be used for analyistige
systems should make testable predictions and provide insight into the underlyin
dynamics. Design models must additionally capture enough of the important be-
havior to allow decisions to be made regarding how to interconnect subsgste
choose parameters and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions ef th
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. Irhiqiec
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Figure 2.1: Diferent methods of modeling biomolecular systems.

our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. \Weotdyic
briefly on modeling in the case where stochastic behavior dominates arrdadefe
more detailed treatment until Chapter

Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in FigRrg we can attempt to
model themolecular dynamicsf the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecularfeceds

and motions. At this scale, the individual interactions between protein domains
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.

For our purposes in this text, we will not require the use of such a detaitdel.s
Instead, we will start with the abstraction of molecules that interact with etehn o
through stochastic events that are guided by the laws of thermodynamicegdife b
with an equilibrium point of view, commonly referred to sististical mechanics
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefte,h
primarily as a stepping stone to deterministic models, and present a more detailed
description in Chaptet.

The underlying representation for both statistical mechanics and cheniical k
netics is to identify the appropriataicrostatesof the system. A microstate cor-
responds to a given configuration of the components (species) in ttersysla-
tive to each other and we must enumerate all possible configurations betvece
molecules that are being modeled. As an example, consider the distributidiof R
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Figure 6.9 Physical Biology of the Cell (6 Garland Science 2009)

Figure 2.2: Microstates for RNA polymerase. Each micrestdtthe system corresponds
to the RNA polymerase being located at some position in tiie IEeve discretize the
possible locations on the DNA and in the cell, the microstaigrresponds to all possi-
ble non-overlapping locations of the RNA polymerases. fégtom Phillips, Kondev and
Theriot [73]; used with permission of Garland Science.

polymerase in the cell. It is known that most RNA polymerases are bound to the
DNA in a cell, either as they produce RNA or as theffue along the DNA in
search of a promoter site. Hence we can model the microstates of the RNA poly
merase system as all possible locations of the RNA polymerase in the cell, with the
vast majority of these corresponding to the RNA polymerase at some location o
the DNA. This is illustrated in Figurg.2

In statistical mechanics, we model the configuration of the cell by the pilebab
ity that the system is in a given microstate. This probability can be calculated bas
on the energy levels of theftlerent microstates. The laws of statistical mechanics
state that if we have a set of microstat@sthen the steady state probability that
the system is in a particular microstatés given by

1
B(q) = S e m/teT), (2.1)

whereEg is the energy associated with the microsigteQ, kg is the Boltzmann
constant,T is the temperature in degrees Kelvin, afids a normalizing factor,
known as theartition function

7 = Z g Ea/(keT)
aeQ

(These formulas are described in more detail in Chap)er
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By keeping track of those microstates that correspond to a given sysdém s
(also called amacrostatg we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of sgte§) that correspond to a
given macrostate, then the probability of being in theSset given by

quS e Eq/(kBT)

Z Qe—Eq/(kBT) (22)

P(S) = Z g Ea/(keT) _

qu

This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many indepeadeples,
and from this we can reason about the rate of expression of the pondiag
gene. More details and several examples will be illustrated in Chdpter

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider thehemical kineticof the system and model the probability that
we transition from one microstate to another in a given period of timeqlcep-
resent the microstate of the system, which we shall take as a vector of mthger
represents the number of molecules of a specific types in given confangar
locations. Assume we have a set\freactionsR;, j = 1,..., M, with ¢; represent-
ing the change in staigassociated with reactioR;. We describe the kinetics of
the system by making use of tipgopensity function gq,t) associated with reac-
tion R;, which captures the instantaneous probability that at timesystem will
transition between statpand stateg + &;.

More specifically, the propensity function is defined such that

aj(g,t)dt = Probability that reactiof®; will occur between time
and timet + dt given that the microstate

We will give more detail in Chaptetregarding the validity of this functional form,
but for now we simply assume that such a function can be defined foystars.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the curre
state. Specifically, giveR(qg,t), the probability of being in statgat timet, we can
compute the time derivativeP(qg,t)/dt as

dpP M
@0 = J;(aj (a-£€)P@-¢j.1) - 3j(@P(a.1))- (2.3)

This equation (and its many variants) is callede¢hemical master equatidCME).

The first sum on the right hand side represents the transitions into the $tate
some other statg-¢; and the second sum represents that transitions out of the
stateq. The variable; in the sum ranges over all possible reactions.
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Clearly the dynamics of the distributid{q, t) depend on the form of the propen-
sity functionsa;(q). Consider a simple reaction of the form

Ri:A+B— AB
R, :AB — A +B.

A+B=—=AB

(2.4)

We assume that the reaction takes place in a well-stirred volaraad let the
configurationgy be represented by the number of each species that is present. The
forward reactiorRs is a bimolecular reaction and we will see in Chaptahat it

has a propensity function

k
ai(e) = 55 Nane.

wherek; is a parameter that depends on the forward reactionparahdng are
the number of molecules of each species. The reverse re&gtism unimolecular
reaction and we will see that it has a propensity function

ar(0) = Krnag,

wherek; is a parameter that depends on the reverse reactionsgnd the number
of molecules of AB that are present.

If we now letq = (na,Nng,Nag) represent the microstate of the system, then we
can write the chemical master equation as

dP
a(nA, Ng,Nag) = krNag P(Na — 1,ng — 1,nag + 1) — kinang P(Na, Ng, Nag)-

The first term on the right hand side represents the transitions into the tateros

g = (na,Ng,Nag) and the second term represents the transitions out of that state.
The number of dterential equations depends on the number of molecules of

A, B and AB that are present. For example, if we start with 1 molecules of A, 1

molecule of B, and 3 molecules of AB, then the possible states and dynamics are

0o =(1,0,4) dPp/dt = 3k;P1

a1 =(2,1,3) dPy/dt = 4k, Py — 2(ks/ Q)P

02=(3,2,2) dP,/dt = 3k;P1 — 6(ki/Q)P2

g3 =(4,3,1) dPs/dt = 2k, P, — 12(k;/Q)P3

s = (5,4,0) dP4/dt = 1k, P3 — 20(;/Q)P4,
whereP; = P(q;,t). Note that the states of the chemical master equation are the
probabilities that we are in a specific microstate, and the chemical master @quatio

is alinear differential equation (we see from equati¢h3 that this is true in
general).

The primary diference between the statistical mechanics description given by equa-
tion (2.1) and the chemical kinetics description in equati2r8)is that the master
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equation formulation describes how the probability of being in a given midesta
evolves over time. Of course, if the propensity functions and energislave mod-
eled properly, the steady state, average probabilities of being in a giveostaite
should be the same for both formulations.

Reaction rate equations

Although very general in form, the chemical master equatidfessifrom being a

very high dimensional representation of the dynamics of the system. Wesskall

in Chapter4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particula
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reactitegnsys
by keeping track of theoncentrationof each species as a real number. This is
of course an approximation, but if the number of molecules fEBcsently large,

then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynam-
ics, we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentraiipf?, whereny is the
number of molecules of A in a given volungg We also treat this concentration
as a real number, ignoring the fact that the real concentration is quaurftizelly,
we assume that our reactions take place in a well-stirred volume, so thatelod ra
interactions between two species is solely determined by the concentratithes of
species.

Before proceeding, we should recall that in many (and perhaps mostjiaits
inside of cells, these assumptions a@ particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but weld.mixe
Hence, we should not expect that models based on these assumptioluspsTe
form well at all. However, experience indicates that in many cases the foas
of the equations provides a good model for the underlying dynamics auoe: lnee
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now proceed to write theniyga
of a system consisting of a set of specigsiS 1,...,n undergoing a set of reac-
tionsR;, j=1,...,m. We write x; = [Sj] = ng /Q for the concentration of speciés
(viewed as a real number). Because we are interested in the casethdruenber
of molecules is large, we no longer attempt to keep track of every possible co
figuration, but rather simply assume that the state of the system at anytigneen
is given by the concentrationg. Hence the state space for our system is given by
x € R" and we seek to write our dynamics in the form of fietential equation

dx
Z_f
dt (x.6),
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wheref : R" - R" describes the rate of change of the concentrations as a function
of the instantaneous concentrations @mdpresents the parameters that govern the
dynamic behavior.
To illustrate the general form of the dynamics, we consider again the €ase o
basic bimolecular reaction
A+B—=AB.

Each time the forward reaction occurs, we decrease the number of mal@fule
A and B by 1 and increase the number of molecules of AB (a separate specie
by 1. Similarly, each time the reverse reaction occurs, we decrease thenafmb
molecules of AB by one and increase the number of molecules of A and B.

Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given intedtak given byas(q)dt =
(ks/Q)nangdt and the reverse reaction has likelihamdq) = k;nag. It follows that
the concentration of the complex AB satisfies

[AB](t+dt)—[AB](t) = E(nag (t +dt)/Q—nag(t)/€)
= (as(q—£r.t) - ar(Q))/Q-dt
= (Kinang/Q% — kiag /Q) dt
= (ki[Al[B] ~ ki[AB] )dt,

in which E(x) denotes the expected valueofTaking the limit asdt approaches
zero (but remains large enough that we can still average across multpteores,
as described in more detail in Chap#rwe obtain

d
giAB] = ki[Al[B] —ki[AB].

In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

d dA
G[Al = K[AB] - K[AI[B] Gt = KC-kiA-B
d dB
Bl =k[AB] ~K([AIB]  or  —==kC-kiAB
dgt[AB] = ke[A][B] — ki [AB] ‘jj—ct: = kA B—k.C,

whereC = [AB], A =[A], and B = [B]. These equations are known as tmass
action kineticor thereaction rate equationfor the system. The parametdgsand
k, are called theate constantsind they match the parameters that were used in the
underlying propensity functions.

Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
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adopt the standard notation for chemical reactions with specified ratesréed
the individual reactions as

K ,
A+BSAB.  AB S A+B,

whereks andk; are the reaction rates. For bidirectional reactions we can also write

Ky
A+B = AB.

ke
Itis easy to generalize these dynamics to more complex reactions. For example
if we have a reversible reaction of the form

k
A+2B=2C+D,
kr

where A, B, C and D are appropriate species and complexes, then tamigfor
the species concentrations can be written as

d%A: k/C2-D—k¢A-B?, dﬂtc = 2k¢A- B - 2k,C?- D,
q d (2.5)
—B=2kC?-D-2kA- B, —D =k¢A-B?—kC2.D.
dt dt
Rearranging this equation, we can write the dynamics as
A -1 1
d|B| |-2 2| (kiA-B?
dt|C| |2 -2 [erZ-D]' (26
D 1 -1

We see that in this decomposition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term is
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of sp&ies
i=1,...,nand a set of reactionR;, j = 1,...,m, we can write the mass action

kinetics in the form d
X
a - NV(X)’

whereN € R™M is the stoichiometry matriXor the system and(x) € R™ is the
reaction flux vectarEach row ofv(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrig-cor
sponds to the changes in concentration of the relevant species. Asalveeshin
the next chapter, the structured form of this equation will allow us to exsionge

of the properties of the dynamics of chemically reacting systems.
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Sometimes, the following notation will be used to denote birth and death of
species
ks ke
00— A A—0.
We attach to the first reaction theffdirential equation

dA
_k
TR

and to the second reaction we attach tHeedéntial equation

dA
2o kLA
dt rs

From a physical point of view, these reactions simplify the representatiome
complex processes, such as production of proteins or degradatigoteiirs due
to proteases.

Example 2.1(Covalent modification of a protein)Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in Fiydie
Let S represent the substrate, K represent the kinase arepBsent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in Flglirare

Ri: K+ATP— KIATP Rs: S:KIATP— S*:K:ADP
R: K:ATP — K +ATP Rs: S":KIADP — S*+K:ADP
Rs;: S+KATP — S:KIATP R;: K:ADP — K+ADP
Rs: S:KIATP— S+KATP Rs: K+ADP— K:ADP.
We now write the kinetics for each reaction:
vy = kg [K][ATP] , V5 = kg [SIKIATP],
Vo = ko [KIATP], Ve = ks [S™:K:ADP],
vz = k3 [S][K:ATP], v7 = k7[K:ADP],
Vs = ks [S:K:IATP], vg = kg [K][ADP] .

We treat [ATP] as a constant (regulated by the cell) and hence do reutlglir
track its concentration. (If desired, we could similarly ignore the conceortraf
ADP since we have chosen not to include the many additional reactions ih whic
it participates.)

The kinetics for each species are thus given by

%[K] =—Vi+Vo+V7—Vg %[K:ATP] =Vi—Vo—V3+Vy
d d

a[S] =—-V3+Vy4 a[S.K.ATP] =V3—V4—V5
d ST=wv E[S*'K'ADP] =V5— V|

de> e de> T

d d
a[ADP] =V7—V\g a[K:ADP] =Vg—V7+Vg.
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Collecting these equations together and writing the state as a vector, we obtain

K] -1 1 0 0 0 0 1 -1 (wn
[K:ATP] 1 -1 1 -2 0 0 0 O0f]|w
[S] 0O 0 -1 1 0 0 0 0w
d|[SKATP]| |0 0 1 -1 -1 0 0 Of]|va
dt [S*] 1o o o 0 O 1 o0 of]w|’
[S*:K:ADP] 0O 0 O O 1 -1 0 0w
[ADP] O 0 O O O O 1 -1|(|w
[K:ADP] O 0 0O O O 1 -1 1) \vg
~——
X N V(X)
which is in standard stoichiometric form. \Y

Reduced order mechanisms

In this section, we look at the dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates ofirgactio
and concentrations of species, it is possible to derive reduced oquiessions for

the dynamics of the system. We focus here on an informal derivation aéléneant
results, but return to these examples in the next chapter to illustrate thaitlee sa
results can be derived using a more formal and rigorous approach.

Simple binding reactionConsider the reaction in which two species A and B bind
reversibly to form a complex €AB:

A+B=C, (2.7)
d

wherea is the association rate constant amds the dissociation rate constant.
Assume that B is a species that is controlled by other reactions in the celland th
the total concentration of A is conserved, so tAatC = [A] + [AB] = A If the
dynamics of this reaction are fast compared to other reactions in the celthinen
amount of A and C present can be computed as a (steady state) fundBon of
To compute howA andC depend on the concentration of B at the steady state,

we must solve for the equilibrium concentrations of A and C. The rate equatio
C is given by

dC

i aB- (Aypt—C)—-dC.
By settingdC/dt = 0 and lettingKy := d/a, we obtain the expressions

_ (B/Ka)Awt Ao Pt
"~ (B/Kg)+1’ " (B/Kg)+1'

The constanKy is called thadissociation constartf the reaction. Its inverse mea-
sures the fiinity of A binding to B. The steady state value @fincreases wittB
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while the steady state value #fdecreases with8 as more of A is found in the
complex C.

Note that wherB ~ Ky, A and C have roughly equal concentration. Thus the
higher the value oKy, the moreB is required forA to form the complex CKq4
has the units of concentration and it can be interpreted as the concentfaBi@t
which half of the total number of molecules of A are associated with B. Toegef
a highKgy represents a weakfmity between A and B, while a lowq represents a
strong dinity.

Cooperative binding reactiolAssume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have tlzatre
tions 2.7) become

k

B+BB,  B,+A %c, A+C = A,
2

in which B, denotes the dimer of B. The corresponding ODE model is given by

dd—Btz = 2kyB? - 2k, Bz — aB; - (Aot — C) +dC, %—(t: =By (Aot—C)-dC.

By settingdB,/dt = 0, dC/dt = 0, and by definindl, := k»/k;, we we obtain that

B, = BZ/ Ko, C= (BZ/ Kd)Atot A Atot

" (Bo/Ka)+ 1 " (Bo/Kg)+ 1’
so that
B2/(KmKg) +1 B2/(KmKg) +1°

As an exercise, the reader can verify that if B binds to A only as a compjlex o
copies of B, that is,

k
B+B+---+B\—‘—15n, Bn+A;C, A+C = Ao,
ko d

then we have that

_ AtotBn/(KmKd) Atot

C= =——
B"/(KmKg) +1’ B"/(KmKg) +1

In this case, one says that the binding of B to Aa®perativevith cooperativityn.
Figure2.3shows the above functions, which are often referred tadikhéunctions

Another type of cooperative binding is when a species R can bind A otdy af
another species B as bound. In this case, the reactions are given by

B+A%C, R+C:=C’, A+C+C = Aop.
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Figure 2.3: Steady state concentrations of the complex Coénf as functions of the
concentration of B.

Proceeding as above by writing the ODE model and equating the time dezivativ
to zero to obtain the equilibrium, one obtains

1
K/Kq

1
C= K—dB(Atot—C—C’), (04 R(Awi—C-C').

By solving this system of two equations for the unknov@sandC, one obtains

_ (RB/(KdK{)Awt 3 (B/Ka)Asot
" (B/Ka)(R/Kj+ 1)+ 1’ ~ (B/Kg)(R/Kj+ 1)+ 1

’

In the case in which B would first bind cooperatively with other copies ofitd w
cooperativity n, the above expressions would modify to

_ (RBY)/(KaK{km) Aot co (B"/Kgkm)Asot
" (B"/Kakm)(R/K,+ 1)+ 1’ " (B"/Kakm)(R/K,+ 1)+ 1

’

Competitive binding reactiorfFinally, consider the case in which two species B
and B both bind to A competitively, that is, they cannot be bound to A at the same
time. Let C, be the complex formed between Bnd A and let Cbe the complex
formed between Band A. Then, we have the following reactions

’

Bi+A=C, B+A=C, A+Cat+C =Ag,
d a

for which we can write the dynamics as

dC d
d_'[a =aBa- (Awt—Ca—Cr)—dCq, d_(ir =aBr- (Aot —Ca—Cr) -d'Cr.

By setting the derivatives to zero, we obtain that

Ca(aBa +d) = aBa(Awt - Cr), Cr(@Br +d) = & B (Awt - Ca),
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so that
_ Br(Awi—Ca) BaBr \ K&
C = Br+Ka s Ca(Ba‘f'Kd Br+Ké)_Ba(Br+Ké Ao,
from which we finally obtain that
_ (Ba/ Kd)Atot _ (Br/Ké)Atot
®7 (Ba/Ka)+ (B /K +1° " (B/KY) + (Ba/Ka) + 17

In this derivation, we have assumed that botfaBd B bind A as monomers. If
they were binding as dimers, the reader should verify as an exercesEXsecises)
that they would appear in the final expressions with a power of two.

Note also that in this derivation we have assumed that the binding is competi-
tive, that is, B and B cannot simultaneously bind to A. If they were binding simul-
taneously to A, we would have included another complex comprisipdgpBand
A. Denoting this new complex by’Cwe would have added also the two additional
reactions

=

a _, a ’
ca+8r?c, Cr+Ba?C

and we would have modified the conservation law for Alg = A+ C,+C, +C’.
The reader can verify as an exercise (see Exercises) that in thia caiged term
B B, would appear in the equilibrium expressions.

Enzymatic reactionA general enzymatic reaction can be written as

a _k
E+ S? C—>E+P,
in which E is an enzyme, S is the substrate to which the enzyme binds to form
the complex C, and P is the product resulting from the modification of the sub-
strate S due to the binding with the enzyme E. The paranazei®referred to as
association rate constantas dissociation rate constant, dnds the catalytic rate
constant. Enzymatic reactions are very common and we will see specificdastan
of them in the sequel, e.g., phosphorylation and dephosphorylation meacTioe
corresponding ODE system is given by

ds dC

o = —aE-S+dC gr - aEs-(d+kC,
9 sE-s+dcikC P _ic

dt dt

The total enzyme concentration is usually constant and denotég,fgo that
E + C = Eior. Substituting in the above equatioBs= E;o;— C, we obtain

dd—f = —a(Etot—C)-S+dC+ kC, C(lj_? = a(Etot—C)~S—(d+k)C,

d—S = —a(Etot—C)-S+dC, C;—I? =

kC.
dt c
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This system cannot be solved analytically, therefore assumptions hemeubed

in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C andce versais much faster than the decomposition

of C into E and P. This approximation is called tpgasi-steady state assumption
This assumption can be translated into the condition

a,d>k

on the rate constants.

Under this assumption and assuming tBat E (at least at time 0; see Exam-
ple 3.195, C immediately reaches its steady state value (WRils still changing).
The steady state value 6fis given by solvinga(Eiot — C)S — (d + K)C = 0 for C,
which gives

Etots . d+k
= , with Kp=—,
S+Knm w m a

in which the constanky, is called theMichaelis-Menten constantetting Vimax =
kEo, the resulting kinetics

dP_, EwS S

dt ~ S+Ky TS iKy,

is calledMichaelis-Menten kinetics

The constan¥/ax is called the maximal velocity (or maximal flux) of modifi-
cation and it represents the maximal rate that can be obtained when the eéazyme
completely saturated by the substrate. The valu€p€orresponds to the value of
S that leads to a half-maximal value of tieproduction rate. When the enzyme
complex can be neglected with respect to the total substrate arSgunte have
thatSi; ~ S+ P, so that the above equation can be also re-written as
dP  VmaxStot— P)

dt ~ (Stot—P)+Km’

When K, < Siot and the substrate has not yet been all converted to product,
that is, Syt — P > K, we have that the rate of product formation becomes approx-
imately dP/dt ~ Vinax Which is the maximal speed of reaction. Since this rate is
constant and does not depend on the reactant concentrations, iaiky usterred
to zero-order kineticsWhenSy,; — P > K, the system is said to operate in the
zero-order regime (see Figu?ed).

2.2 Transcription and Translation

In this section we consider the processes of transcription and translatiog,the
modeling techniques described in the previous section to capture the fumddme
dynamic behavior. Models of transcription and translation can be donesaitedy
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Figure 2.4: Enzymatic reactions. (a) Transfer curve shgulire production rate foP as a
function of substrate concentration. (b) Time plots of pdP(t) for different values of
the Km. In the plotsS;o; = 1 andVmax= 1. The black plot shows the behavior for a value
of Km much smaller that the total substrate amo8gt. This corresponds to a constant
product formation rate (at least before the substrate isstiall converted to product, that
is, Stot — P = Kpy)), which is referred taero-order kinetics

of levels of detail and which model to use depends on the questions thataote w

to consider. We present several levels of modeling here, starting witihyade-
tailed set of reactions and ending with highly simplified models that can be used
when we are only interested in average production rate of proteins tategtdong

time scales.

The basic reactions that underly transcription include theusion of RNA
polymerase from one part of the cell to the promoter region, binding offéA R
polymerase to the promoter, isomerization from the closed complex to the open
complex, and finally the production of mMRNA, one base pair at a time. To @ptur
this set of reactions, we keep track of the various forms of RNA polyreezesord-
ing to its location and state: RNARepresents RNA polymerase in the cytoplasm
and RNAP! is non-specific binding of RNA polymerase to the DNA. We must sim-
ilarly keep track of the state of the DNA, to insure that multiple RNA polymerases
do not bind to the same section of DNA. Thus we can write 'Ni#x the promoter
region, DNA?' for theith section of a geng (whose length can depend on the de-
sired resolution) and DNAfor the termination sequence. We write RNAP:DNA to
represent RNA polymerase bound to DNA (assumed closed) and RNA®’ BN
indicate the open complex. Finally, we must keep track of the mRNA that is pro-
duced by transcription: we write mRNAo represent an mRNA strand of length
and assume that the length of the gene of intereNt is

Using these various states of the RNA polymerase and locations on the DNA,
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we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAF® — RNAPY
Diffusion along DNA: RNAP = RNAPP
Binding to promoter: RNAP+DNAP — RNAP:DNAP
Isomerization: RNAP:DNAR —= RNAP:DNA°
Start of transcription: RNAP:DNA— RNAP:DNA%! + DNAP
mRNA creation: RNAP:DNA! — RNAP:DNA%? + mRNA}
Elongation: RNAP:DNA™!+mRNA]

— RNAP:DNA%*2 1 mRNA"
Binding to terminator: RNAP:DNAN + mRNAN !

— RNAP:DNA'+ mRNA!
Termination: RNAP:DNA — RNAP®

Degradation: mRNA — 0.

(2.8)
This reaction has been written for prokaryotes, but a similar set of reaatauld
be written for eukaryotes: the mainfidirences would be that the RNA polymerase
remains in the nucleus and the mRNA must be spliced and transported to the cy-
tosol. Note that at the start of transcription we “release” the promotermeyjitne
DNA, thus allowing a second RNA polymerase to bind to the promoter while the
first RNA polymerase is still transcribing the gene.

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain, and folding of the polypeptide
chain into a functional protein. Let Ribo:mRN&S indicate the ribosome bound
to the ribosome binding site, Ribo:mRMA' the ribosome bound to ttith codon,
Ribo:mRNAS®"and Ribo:mRNA™P for the start and stop codons, and PR@ a
polypeptide chain consisting omino acids. The reactions describing translation
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can then be written as

Binding to RBS:  Riba- MRNAT®S = Ribo:mRNAR®®
Start of translation:  Ribo:mRNAPS — Ribo:mRNAT"+ mRNATBS
Polypeptide chain creation: Ribo:mRNA"— Ribo:mRNAM? + PPC!
Elongationj = 1,...,M: Ribo:mRNAM(*Y  ppC
— Ribo:mRNAM(2) 4 ppci+
Stop codon:  Ribo:mRNH + PPC"~1
— Ribo:mRNA™ P+ ppc
Release of mRNA:  Ribo:mRNE® — Ribo
Folding: PPC' — protein
Degradation: proteir— 0.

As in the case of transcription, we see that these reactions allow multiple ribesome
to translate the same piece of MRNA by freeing up the ribosome binding site (RBS)
when translation begins.

As complex as these reactions are, they are still missing many important ef-
fects. For example, we have not accounted for the existencefteudseof the 5’
and 3’ untranslated regions (UTRs) of a gene and we have also lefadats error
correction mechanisms in which ribosomes can step back and release madhco
amino acid that has been incorporated into the polypeptide chain. We haveftls
out the many chemical species that must be present in order for a vafittg o
reactions to happen (NTPs for mRNA production, amino acids for proteityzr
tion, etc). Incorporation of thesdtects requires additional reactions that track the
many possible states of the molecular machinery that underlies transcription an
translation.

Given a set of reactions, the various stochastic processes thatyudetiled
models of transcription and translation can be specified using the stochadgtmo
ing framework described briefly in the previous section. In particulangusither
models of binding energy or measured rates, we can construct pitydfenstions
for each of the many reactions that lead to production of proteins, inclutimg
motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are civsoede
detail in Chapted.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using diferential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measyvedraen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers, which may not be accurate since some sp&ties e
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low molecular counts in the cell. Despite all of these approximations, in many sit-
uations the reaction rate equations are perfectlficent, particularly if we are
interested in the average behavior of a large number of cells.

In some situations, an even simpler model of the transcription, translation and
folding processes can be utilized. Let the “active” mMRNA be the mRNA that is
available for translation by the ribosome. We model its concentration through a
simple time delay of length™ that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleuskargu
otes. If we assume that RNA polymerase binds to DNA at some average/radé (
includes both the binding and isomerization reactions) and that transcripkies ta
some fixed time (depending on the length of the gene), then the process-of tra
scription can be described using the delayadential equation

(L_T =apo-um-ym  m(t)=e*" mt-7"), (2.9)

wherem is the concentration of mRNA for protein Ry is the concentration of
active mRNA,ap is the rate of production of the mRNA for protein f#js the
growth rate of the cell (which results in dilution of the concentration) aigithe
rate of degradation of the mRNA. Since the dilution and degradation termg are o
the same form, we will often combine these terms in the mRNA dynamics and
use a single cdicienty. The exponential factor accounts for dilution due to the
change in volume of the cell, wheges the cell growth rate. The constantgo and
v capture the average rates of production and degradation, which ingpemd on
the more detailed biochemical reactions that underlie transcription.

Once the active mRNA is produced, the process of translation can bebdeksc
via a similar ordinary dterential equation that describes the production of a func-
tional protein:

C:TT = Bpom’ —6P,  P(t) =¥ P(t—1"). (2.10)

Here P represents the concentration of the polypeptide chain for the préé&in,
represents the concentration of functional protein (after folding). gdrameters
that govern the dynamics apg o, the rate of translation of mRNA4, the rate

of degradation and dilution of P; and, the time delay associated with folding
and other processes required to make the protein functional. The ext@bnerm
again accounts for dilution due to cell growth. The degradation and dilutiom te
parameterized by, captures both rate at which the polypeptide chain is degraded
and the rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla
tion in terms of the functional MRNA and functional proteinfidrentiating the
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expression fom*, we see that

dr(®)  no o,
T (2.11)

= & (@po—ym(t—1™) = @po—ym'(t),

whereapg = e‘/”map,o. A similar expansion for the active protein dynamics yields

f
dzt(t) — Bpom'(t—7")— 6P 1), (2.12)
where,B_p,o = e‘/”fﬁp,o. We shall typically use equation&.(1) and .12 as our
(reduced) description of protein folding, dropping the supersdrighd overbars
when there is no risk of confusion.

In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the systsomhl
cases, we can simplify our model of the dynamics of protein productionfeven

ther and write
dm dP

[ —ym, P
dr ~ 4poTY dt

Note that we here have dropped the superscrifad f since we are assuming
that all mRNA is active and proteins are functional and dropped the averix
andp since we are assuming the time delays are negligible.

Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the firstfidirential equation in equatiog.0.3 with its
equilibrium value. This is often a good assumption as mRNA degration is usually
about 100-1000 times faster than protein degradation (see TableThus we
obtain

= Bpom-JP. (2.13)

— =B-6P, =Bpo—.

This model represents a simple first order, lineéfiedéntial equation for the rate of
production of a protein. In many cases this will be &isiently good approximate
model, although we will see that in many cases it is too simple to capture the

observed behavior of a biological circuit.

2.3 Transcriptional Regulation

The operation of a cell is governed in part by the selective expressigenas in
the DNA of the organism, which control the various functions the cell is able to
perform at any given time. Regulation of protein activity is a major compookent
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the molecular activities in a cell. By turning genes on afidand modulating their
activity in more fine-grained ways, the cell controls the many metabolic patyway
responds to external stimuli,ftgrentiates into dierent cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplisheagtnro
a variety of molecular mechanisms, as discussed in Settland illustrated in
Figurel.9. At each stage of the processing from a gene to a protein, there are po-
tential mechanisms for regulating the production processes. The remafrtties
section will focus on transcriptional control and the next section on t&elqmst-
transcriptional control mechanisms. We will focus on prokaryotic mechamis

Transcriptional regulation refers to the selective expression of dgnastivat-
ing or repressing the transcription of DNA into mRNA. The simplest such-regu
lation occurs in prokaryotes, where proteins can bind to “operatormegia the
vicinity of the promoter region of a gene anfilect the binding of RNA polymerase
and the subsequent initiation of transcription. A protein is callegpaessorif it
blocks the transcription of a given gene, most commonly by binding to the DNA
and blocking the access of RNA polymerase to the promoterdivator oper-
ates in the opposite fashion: it recruits RNA polymerase to the promoter ragtbn
hence transcription only occurs when the activator (protein) is present.

We can capture this set of molecular interactions by modifying the RNA poly-
merase binding reactions in equati@n§j. For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promoter:

Repressor binding: DNA+ Rep= DNA:Rep

This reaction acts to “sequester” the DNA promoter site so that it is no longer
available for binding by RNA polymerase (which requires DNAThe strength
of the repressor is reflected in the reaction rate constants for the septesding
reaction. Sometimes, the RNA polymerase can bind to the promoter even when the
repressor is bound, usually with lower forward rate. In this case, firessor still
allows some transcription even when bound to the promoter and the rapiesso
said to be “leaky”.

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activatorebefdhA
polymerase can bind. One possible mechanism is

Activator binding: DNAP + Act = DNA:Act
Diffusion along DNA: RNAP = RNAPP
RNAP binding w activator: RNAP + DNA:Act = RNAP:DNA°
+DNA:Act
RNAP binding wout activator: RNAP + DNAP = RNAP:DNAP.
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Here we model both the enhanced binding of the RNA polymerase to the promote
in the presence of the activator, as well as the possibility of binding without a
activator. The relative reaction rates determine how strong the activatadithe
“leakiness” of transcription in the absence of the activator.

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are in steady stategsonfi
urations. In this case, we can make use of the reduced order modelbeésar
Section2.1 We can consider the competitive binding case to model that a strong
repressor prevents RNAP to bind to the DNA. In the sequel, we removeuthe s
perscripts “p” from the DNA and RNAP for simplifying notation. The steathtes
amount of the complex of DNA bound to the repressor will have the exjpress

([Rep)/Ka)[DNA]

[DNA:Rep] = 1+[Rep]/Kq+[RNAP]/K},

and the steady state amount of free DNA (not bound to the repressobevgien

by
([RNAP]/K/)[DNA]

~ 1+[RNAP]/K) +[Rep)/Kq’

in which K, is the dissociation constant of RNAP from the promoter whilgis
the dissociation constant of Rep from the promoter. The complex C, haWAdPR
bound, will allow transcription, while the complex [DNA:Rep] will not allow tran-
scription as it is not bound to RNAP.

The transcription rate will be proportional @, so that the rate of change of
MRNA is described by

d[mRNA] (IRNAP]/K{)[DNA]

C = [DNA] — [DNA:Rep]

dt  “OT+[RNAP]/K;+[Rep)/Kq ~YImRNAJ,
in which the production rate is given by
([RNAP]/K/) [DNA]

f([Repl)= a0 [RNAP]/K/, + [Repl/Kq’

If the repressor binds to the promoter with cooperatiritthe above expression
becomes (see Secti@nl)
(IRNAP]/K)[DNA]

f(IRep])= a0y [RNAP]/K/, + [Repl'/ (Kakm)’

in which kq, is the dissociation constant of the reaction of n molecules of Rep
binding together. The functiof is usually denoted by the standard Hill function
form

a
f([Rep])= W,
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in whicha andK are implicitly defined. In practice we can assume that [RNAR>
1 since there is plenty of RNAP in the cell. As a consequence, we obtain the ex
pressionsr = ao[DNA] and K = (Kgkm[RNAP]/K/)*",

Finally, if the repressor allows RNAP to still bind to the promoter at a small rate
(leaky repressor), the above expression modifies to the new fornSéstion2.1)

@,

a
HIREPD= 12 Repyy *
in which « is the basal expression level when the promoter is fully repressed, usu-
ally referred to as “leakiness”.

To model the production rate of mMRNA in the case in which an activator Act
binds to the promoter with cooperativity n, we can consider first the cashiochw
RNAP binds only when the activator is already bound to the promoter. This ca
be well modeled by a cooperative binding scenario as illustrated in Seztlon
According to this scenario, the concentration of the complex [RNAP:BINA
given by

([RNAP][Act]")/ (KK jkm) [DNA]

[RNAP-DNA® = € = 1 Ac™ Kakn) (1 + [RNAPT/K7)"

in which K} is the dissociation constant of RNAP with the complex of DNA bound
to Act andKy is the dissociation constant of Act with DNA. Since the production
rate of mMRNA is proportional to [RNAP:DN#, we have that
d [MRNA
% = f([Act]) —y[MRNA]
with

([RNAP][Act]")/(KgKikm)[DNA] - o([Act] /K)"

HUAC) = oo TACT K k) L+ [RNAPTK) ~ 1+ (ACH /K™

in which @ andK are implicitly defined. Since in practice [RNAR/ > 1, we
have thatr = ag[DNA] and K = (KK kn/[RNAP])Y/".

The right-hand side expression is in the standard Hill function form. Figire
shows the shape of these Hill functions both for an activator and assprelf we
assume that RNAP can still bind to DNA even when the activator is not bound,
have an additional basal expression ratgo that the new form of the production
rate is given by

a([Act]/K)" _
—— ta.
1+ ([Act] /K)"
Example 2.2(Repressilator) As an example of how these models can be used, we

consider the model of a “repressilator,” originally due to Elowitz and Lei[2&f
and briefly described in Sectidn5. The repressilator is a synthetic circuit in which

f([Act]) =
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Figure 2.5: Hill function for an activator (left) and a repser (right).

three proteins each repress another in a cycle. This is shown schemaitidatiy

ure2.6a where the three proteins are TetR;l and Lacl.
We can model this system using three copies of equatid), (with A and B
replaced by the appropriate combination of TetR, cl and Lacl. The statteeof

system is then given by = (Mretr, Pretr, Mel, Pei, MLacl, Praci). The full dynamics

become

dLacl i —ymy
Mretr 1+ (Pract/Kiac)" TetR~ Y MretR
Pretr BTetRMretR— 0 PTetr
aTetR —
+ Qe —yMe
d T 1+ (Pretr/ KTetR)" oy (2.14)
dt Pel Bei Mgl — 6 Pel
Y ac—yML
M ac 1+ (par/Ka)" Lacl =Y MLacl
PLacl Braci MLaci — 0 Pracl

Figure 2.6b shows the traces of the three protein concentrations for (symmetric)

parametersi= 2, = 0.5, K =6.25x 104, ag=5x10%, y=58x1073,8=0.12
ands = 1.2x 102 with initial conditionsx(0) = (1,200Q.0,0,0,0) (following [28]).

\%

As indicated earlier, many activators and repressors operate in thenpeesf
inducers. To incorporate these dynamics in our description, we simplytbagkl

the reactions that correspond to the interaction of the inducer with the méleva
protein. For a negative inducer, we can simply add a reaction in which theend
binds the regulator protein andfectively sequesters it so that it cannot interact
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Figure 2.6: The repressilator genetic regulatory netw@kA schematic diagram of the
repressilator, showing the layout of the genes in the pldshait holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simpledabfor the repressilator, show-
ing the oscillation of the individual protein concentraiso (Figure courtesy M. Elowitz.)

with the DNA. For example, a negative inducer operating on a repreestd be
modeled by adding the reaction

Rep+ Ind = Rep:Ind

Since the above reactions are very fast compared to transcription,ahdyecas-
sumed at the quasi-steady state. Hence, the free amount of repregszartistill

bind to the promoter can be calculated by writing the ODE model corresponding
to the above reactions and by setting the time derivatives to zero. This yields to

_ [Repjot
[Rep]= 1+[Ind]/Kqy’

in which [Rep]o = [Rep]+ [Rep:Ind] is the total amount of repressor (bound and
not bound to the inducer) anky is the dissociation constant of Ind binding to
Rep. This expression of the repressor concentration needs to hgwaldsn the
expression of the production rat{Rep]).

Positive inducers can be handled similarly, except now we have to modify the
binding reactions to only work in the presence of a regulatory proteindtuan
inducer. For example, a positive inducer on an activator would have tligieth
reactions

Inducer binding: Act Ind = Act:Ind
Activator binding: DNAP + Act:Ind == DNA:Act:Ind
Diffusion along DNA: RNAF = RNAPP
RNAP binding w activator: RNAP + DNA:Act:Ind
= RNAP:DNA° + DNA:Act:Ind.
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Figure 2.7: Autoregulation of gene expression. The thremiits control the expression of
gene regulation using (a) unregulated, (b) negative agdaton and (c) positive autoreg-
ulation.

Hence, in the expression of the production r&gAct]), we should substitute in
place of [Act] the concentration [Act:Ind]. This concentration, in turm ba sim-

ply computed at the quasi-steady state by writing the ODE model for the inducer
binding reaction and equating the time derivatives to zero. This yields

[Act] [Ind]/Kg

[Act:Ind] = L+ Ind]/Kq

in which [Actlior = [Act] +[Act:Ind] and K is the dissociation constant of the bind-
ing of Ind with Act.

Example 2.3(Autoregulation of gene expressiorgonsider the three circuits shown
in Figure2.7, representing a unregulated gene, a negatively autoregulated gene an
a positively autoregulated gene. We want to model the dynamics of the pfotein
starting from zero initial conditions for the thredtf@érent cases to understand how
the three dterent circuit topologiesfeect dynamics.

The dynamics of the three circuits can be written in a common form,

dma dA
T - - = - 2.15
g = [(A)—yMa, G =Pma-oA (2.15)
wheref (A) has the form
A/K)"
funred A) = as, frepres€A) = 1 (C,:\B/K)n +ao, factivatd A) = ]C_yi((A// K))n @B

We choose the parameters to be

ap=1/3 ag=1/2, o =5x10"%,
B =20log(2y120, v =1log(2)/120, 6 =log(2)/600q,
K =10, n=2,
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Figure 2.8: Simulations for autoregulated gene expresériNon-normalized expression
levels. (b) Normalized expression.

corresponding to biologically plausible values. Note that the parameteth@sen
so thatf(0) ~ ag for each circuit.

Figure 2.8a shows the results of the simulation. We see that initial increase
in protein concentration is identical for each circuit, consistent with ouiceho
of Hill functions and parameters. As the expression level increasesftéws of
positive and negative are seen, leading tedént steady state expression levels.
In particular, the negative feedback circuit reaches a lower steaidyestaression
level while the positive feedback circuit settles to a higher value.

In some situations, it makes sense to ask whethé&erdnt circuit topologies
have diferent properties that might lead us to choose one over another. Inse ca
where the circuit is going to be used as part of a more complex pathway, it may
make the most sense to compare circuits that produce the same steady state con
tration of the protein A. To do this, we must modify the parameters of the individu
circuits, which can be done in a number offdient ways: we can modify the pro-
moter strengths, degradation rates, or other molecular mechanisms reifhetbied
parameters.

The steady state expression level for the negative autoregulation @admec
adjusted by using a stronger promoter (modeledpyor ribosome binding site
(modeled byg). The equilibrium point for the negative autoregulation case is given
by the solution of the equations

aK" B
m = —, = =Mpe.
he TSR P

These coupled equations can be solvediige andAe, but in this case we simply
need to find valuesy andg’ that give the same values as the unregulated case. For
example, if we equate the mRNA levels of the unregulated system with that of the
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negatively autoregulated system, we have

K"+ Al a
s .
vo

ag _ 1( CI%K”

by K”+A2+a/o) = apg=(ag—o)

whereAg is the desired equilibrium value (which we choose using the unregulated
case as a guide).

A similar calculation can be done for the case of positive autoregulation, in
this case decreasing the promoter parametgrand ag so that the steady state
values match. A simple way to do this is to leayg unchanged and decreasg
to account for the positive feedback. Solving &gy to give the same mRNA levels
as the unregulated case yields

n

KN+ AL

’
ag=ap—aa

Figure2.8 shows simulations of the expression levels over time for the modi-
fied circuits. We see now that the expression levels all reach the samg stat
value. The negative autoregulated circuit has the property that itesdleh steady
state more quickly, due to the increased rate of protein expressionAvisesmall
(ag > a). Conversely, the positive autoregulated circuit has a slower rate-of ex
pression than the constitutive case, since we have lowered the rateteinhpr-
pression wherd is small. The initial higher and lower expression rates are com-
pensated for via the autoregulation, resulting in the same expression |etehdy
state. v

We have described how the Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulatedltiple
transcription factors, some of which may be activators and some may lesyepr
sors. In this case, the promoter controlling the expression of the gented aa
combinatorial promoter. The mRNA production rate can thus take severatfo
depending on the roles (activators versus repressors) of the saramscription
factors H]. In general, the production rate resulting from a promoter that takes as
input transcription factors;for i € {1,...,N} will be denotedf (py, ..., pn).

Thus, the dynamics of a transcriptional module is often well captured by the
ordinary dtferential equations

d d
d—? = f(Pr,.... Pn) —yymy, d—? = Bymy — by Py, (2.16)
wherem, denotes the concentration of mMRNA translated by gerke constants
vy andéy incorporate the dilution and degradation processespgamsla constant
that establishes the rate at which the mRNA is translated.

For a combinatorial promoter with two input proteins, an activatpapd a
repressor p in which the activator cannot bind if the repressor is bound to the
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promoter, the functionf (pa, pr) can be obtained by employing the competitive
binding in the reduced order models of Sectd. In this case, assuming the
activator has cooperativity n and the repressor has cooperativity raptaé the
expression

(Pa/Ka)"
1+ (pa/Ka)" + (pr/Ke)™

Here, we have thaKa = (KmaKa Y™, K = (KmrKg)®™, in which Kq 4 and
Kg,r are the dissociation constants of the activator and repressor, respedtom
the DNA promoter site, whil&,a andKy,, are the dissociation constants for the
cooperative binding reactions for the activator and repressorectgely. In the
case in which the activator is “leaky”, that is, some transcription still oceuen
when there is no activator, the above expression will be modified to

(Pa/Ka)" i
1+ (pa/Ka)"+ (pr/Ke)™
in which «a is the basal transcription rate when no activator is present. If such a

basal rate can still be repressed by the repressor, the abovesapnemdifies to
the form

f(Pa, pr) = @

f(Pa. pr) =

a(pa/Ka)"+a
1+ (pa/Ka)" + (pr /Kp)™

Example 2.4(Activator-repressor clock)As an example of where combinatorial
promoters are used, we illustrate in this example an activator-represshiticétc
was fabricated if. coliand is shown in Figurg2.9(a) [6].

The activator A is self activated and is also repressed by the repiRss@nce,
the promoter controlling the expression of A is a combinatorial promoter. The
model describing this system, assuming the mRNA dynamics have reached its
guasi-steady state, is given by

dA _ (XA(A/ Ka)n + C?A _
dt ~ (A/K) "+ (R/K)M+1

f(Pa. pr) =

dR _ QR(A/ Ka)n + C7R

oA G T (A/K)"+1

-J0rR

Figure2.9(b) shows the behavior of the activator and the repressor concengatio
We will come back to this design in Chaptrin which we will use the tools
introduced in ChapteB to establish parameter conditions under which the system
admits a periodic solution. \%

Finally, a simple regulation mechanism is based on altering the half life of a pro-
tein. Specifically, the degradation rate of a protein is determined by the anwunts
proteases present, which bind to recognition sites (degradation tag#)eande-
grade the protein. Degradation of a protein X by a protease Y can thendeledo
by the following two-step reaction

a _ k
X+Y?C—>Y,
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Figure 2.9: The activator-repressor clock network. (a) Aesoatic diagram of the circuit.
(b) A simulation of a simple model for the clock, showing treeitiation of the individual
protein concentrations. In the simulation, we have chdsgr K, = 1, ap = ar = 100,
ap=04,ar=0.004,6p=1,6r=0.5,n=2, andm=4.

in which C is the complex of the protease bound to the protein. By the end of the
reaction, protein X has been degraded to nothing, so that sometimes thisrreac
is simplified to X— 0.

2.4 Post-Transcriptional Regulation

In addition to regulation of expression through modifications of the praufasan-
scription, cells can also regulate the production and activity of proteins etda
lection of other post-transcriptional modifications. These include methauedf
ulating the translation of proteins, as well deating the activity of a protein via
changes in its conformation, as shown in Figlre

Allosteric modifications to proteins

In allosteric regulation, a regulatory molecule, called allosteffiector, binds to a
site separate from the catalytic site (active site) of an enzyme. This bindiisgsa
a change in the three dimension conformation of the protein, turrir{grdurning
on) the catalytic site (Figur2.10.

An allosteric €fector can either be an activator or an inhibitor, just like inducers
work for activation or inhibition of transcription factors. Inhibition can eithe
competitive or not competitive. In the case of competitive inhibition, the inhibitor
competes with the substrate for binding the enzyme; that is, the substratmdan b
to the enzyme only if the inhibitor is not bound. In the case of non-competitive
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Figure 2.10: In allosteric regulation, a regulatory moledinds to a site separate from the
catalytic site (active site) of an enzyme. This binding esus change in the three dimen-
sion conformation of the protein, turningfdor turning on) the catalytic site. Permission
pending.

inhibition, the substrate can be bound to the enzyme even if the latter is bound to
the inhibitor. In this case, however, the product may not be able to formayr
form at a lower rate, in which case, we have partial inhibition.

Activation can be absolute or not. Specifically, an activator is absoluta tilee
enzyme can bind to the substrate only when bound to the activator. Othgettveise
activator is not absolute. In this section, we derive the expressiotisdqroduc-
tion rate of the active protein in an enzymatic reaction in the two most common
cases: when we have a (non-competitive) inhibitor | or an (absolutepsmtiA of
the enzyme.

Allosteric inhibition

Consider the standard enzymatic reaction
a _k
E+S=C->S"+E
d

in which enzyme E activates protein S and transforms it to the active forines

| be a (non-competitive) inhibitor of enzyme E so that when E is bound to I, the
complex EIl can still bind to inactive protein S, however, the complex EIS is non
productive, that is, it does not produce the active protéinTBen, we have the
following additional reactions:

k.
Et|—E| Cil=-EIS ElLS=EIS
ko ko d

with the conservation laws (assumiSgy is in much greater amounts th&g,)
Ewt=E+C+EI+EIS, Sipt=S+S"+C+EIS~S+S".
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Hence, the production rate & is given bydS*/dt = kC. Since we have that
ki,k_,a,b> k, we can assume all the complexes to be at the quasi steady state.
This gives
a K, 1
EIS=-EI- El=—E-I =—S-E
S g S, i El C KmS ,

in whichKn, = (d+K)/ais the Michaelis-Menten constant. Using these expressions,
the conservation law for the enzyme, and the fact éiidt~ 1/K,, we obtain

E_ Etot
(1/Kg+1)(1+S/Km)’

with Kg=k_/k,,

so that
S Etot

C:S+Km1+I/Kd

and, as a consequence,

ds’ 1 S
dt klEt°‘(1+ I/Kd)(S+ Km)'

Using the conservation law f@, this is also equivalent to

das* CWE 1 (Stot—S%)
dt T 1/Kg \ (Swer=S7) + K/

In our earlier derivations of the Michaelis-Menten kinetGs.x= ki Eiot Was called

the maximal speed of modification, which occurs when the enzyme is completely
saturated by the substrate (Sectdd). Hence, the fect of a non-competitive
inhibitor is to decrease the maximal speed of modification by a fag{a1l /Kg).

Another type of inhibition occurs when the inhibitor is competitive, that is, when
is bound to E, the complex EI cannot bind to protein S. Since E can either bind to
| or S (not both), | competes against S for binding to E. See Exelcise

Allosteric activation

In this case, the enzyme E can transform S to its active form only when itiischo
to A. Also, we assume that E cannot bind S unless E is bound to A (from there
name absolute activator). The reactions are therefore modified to be

E+A == EA
k-

and . )
EA+S? EAS— S*+EA,
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with conservation laws
Etot =E+EA+EAS Stot ~S+S".

The production rate of’Ss given bydS*/dt = KEAS Assuming as above that the
complexes are at the quasi-steady state, we have that

E-A S-EA
EA= — EAS=
Kd ’ Km ’
which, using the conservation law for E, leads to
Etot A S
AS/Kn(sA/Ky 2Md EAS (A+ Kd)(S+Km) tot

Hence, we have that

ds* A S
dt kE““(A+ Kd)(S+ Km)‘

Using the conservation law for S, this is also equivalent to

ﬁ _KE, A (Stot—S7)
dt M A+Kg)\(Swi-S) +Km)

The dtect of an absolute activator is to modulate the maximal speed of modification
by a factorA/(A+ Kqy).

Figure 2.11 shows the behavior of the enzyme activity as a function of the
allosteric dfector. As the dissociation constant decreases, that isfiihéyaof the
effector increases, a very small amount @ieetor will cause the enzyme activity
to be completely “on” in the case of the activator and completefiy ‘ia the case
of the inhibitor.

Another type of activation occurs when the activator is not absoluteighahen
E can bind to S directly, but cannot activate S unless the complex ES fidst Ain
(see Exercis@.12).

Covalent modifications to proteins

Covalent modification is a post-translational protein modification ttatts the
activity of the protein. It plays an important role both in the control of metabolis
and in signal transduction. Here, we focusrewersiblecycles of modification, in
which a protein is interconverted between two forms thé&edin activity either
because offéects on the kinetics relative to substrates or for altered sensitivity to
effectors.

At a high level, a covalent modification cycle involves a target protein X, an
enzyme Z for modifying it, and a second enzyme Y for reversing the modifica-
tion (see Figur.12. We call X* the activated protein. There are often allosteric
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Figure 2.11: Enzyme activity in the presence of allostefieaors (activators or in-
hibitors). The red plots show the enzyme activity in the pnee of an inhibitor as a
function of the inhibitor concentration. The green plotswthe enzyme activity in the
presence of an activator as a function of the activator aunagon. The dierent plots

show the &ect of the dissociation constant.

effectors or further covalent modification systems that regulate the activityeof th
modifying enzymes, but we do not consider this added level of complexity. he
There are several types of covalent modification, depending on theotygpeti-
vation of the proteinPhosphorylatioris a covalent modification that takes place
mainly in eukaryotes and involves activation of the inactive protein X by adfditio
of a phosphate group, RQn this case, the enzyme Z is calle¢tiaasewhile the
enzyme Y is callegphosphataseAnother type of covalent modification, which is
very common in both procaryotes and eukaryotesi@thylation Here, the inactive
protein is activated by the addition of a methyl group,,CH

The reactions describing this system are given by the following two enzymatic
reactions, also called a two step reaction model,

a k a k:
Z+X =C, 5 X"+Z, Y+X* = C, 5 X+Y.
d1 d2

The corresponding ODE model is given by

z X
O(!It = —Z- X+ (kg +d1)C, OIdt =kiC1—aY- X" +dC,
X
dd_t — —a12 X+ dlcl + k2C2, d(;z = azY' X — (dZ + k2)C2’
Y
_d(il =aZ-X—(dy+kp)Cy, ?j_t = —aY- X" +(d2 + k2)Ca.

Furthermore, we have that the total amounts of enzymes Z and Y are wedser
Denote the total concentrations of Z and Y By, Yiot, respectively. Then, we
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Figure 2.12: (Left) General diagram representing a covaterdification cycle. (Right)
Detailed view of a phoshorylation cycle including ATP, AD#hd the exchange og the
phosphate group “p”.

phosphatase

have also the conservation ladis- C1 = Ziot andY + C, = Yior. We can thus reduce
the above system of ODE to the following one, in which we have substiited
Ztot — C]_ andyY = Ytot — CzZ

dC
i = 21(Zot=C1) X~ (d1 +k1)Cy.
dx: .

g = KaC1—aa(Yiot—C2)- X"+ dCo,
dC
5 = 82(Yor=C2) X' = (d +k)Ca.

As for the case of the enzymatic reaction, this system cannot be analytically
integrated. To simplify it, we can perform a similar approximation as done for the
enzymatic reaction. In particular, the complexgsa@d C, are often assumed to
reach their steady state values very quickly becayst,ay, do> > ki, k. There-
fore, we can approximate the above system by substitutingCfaand C, their
steady state values, given by the solutions to

a1(Ztot—C1)- X~ (d1 +k1)C1 =0

and
a(Yiot—C2) - X* = (d2 + k2)C2 = 0.

By solving these equations, we obtain that

YtotX* . d2+k2
Co=———, with Kpo=
2T X + Kz’ m2
and ZiotX dy +k
Cy= 2o with Ky = 270
! X+ Km,l’ m1 a
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As a consequence, the ODE model of the phosphorylation system camrlbe w
approximated by

dx ZintX YiotKm2 YiotX*
=k —a X+dpy———,
0t X Kt X 1 Kmz X+ Koo
which, considering thad,Km 2 — dz = ko, leads finally to
dx: ZiotX YiotX™
— = -k ) 2.17
dt " X+Kmi  2X +Kmo @17)

We will come back to the modeling of this system after we have introduced sin-
gular perturbation theory, through which we will be able to perform a fbamnal-
ysis and mathematically characterize the assumptions needed for approximating
the original system by the first order ODE mod2l1(7). In the model of equation
(2.17), we have thaX = X, — X* — C1 — C, by the conservation laws. A standard
assumption is that the amounts of enzymes are small compared to the amount of
substrate, so thaf ~ X;o; — X* [36].

Ultrasensitivity

One relevant aspect of the response of the covalent modification cytdertput is
the sensitivity of the steady state characteristic curve. Specifically, ahaiteters
affect the shape of the steady state response is a crucial question. Toidettre
steady state characteristics, which shows how the steady stdtecbhinges when
the input stimulugZ;ot is changed, we setX*/dt = 0 in equation 2.17). Using the
approximationX ~ Xt — X*, denotingVy := KiZiot, V2 1= kaYiot, K1 1= Km1/Xeots
andKj := Km2/Xiot, We obtain

oV X* /Yot Ky + (1= X/ Xeor))
C Va2 (Kot X/ Xio) (1= X/ Xeot)

We are interested in the shape of the steady state cun¥é a$ function ofy.
This shape is usually characterized by two key parameters: the resjmEissent,
denotedr, and the point of half maximal induction, denotggd. Lety, denote the
value ofy corresponding to having* equala% of the maximum value oK*
obtained foty = oo, which is equal t0%o. Then, the response daeient is defined
as

(2.18)

R:= Yoo
Y10
and measures how switch-like the response is (Figut8. WhenR — 1 the re-
sponse becomes switch-like. In the case in which the steady state chiatiadter
a Hill function, we have thax* = y"/(K +y"), so thaty, = (¢/(100— )™ and
as a consequence

>

log(81)

- (1/n) i -
R=(81)""", or equivalentlyn 0@ °




2-36 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

X*/Xtot
1
[INc)) e ——— m—
05 R = un
Yio
0.1}

<
o
S}
&
=}
<
S
<

Figure 2.13: Steady state characteristic curve showingetlesance of the response coef-
ficient for ultrasensitivity. A®R — 1, the points/ o andygg tend to each other.

Hence, whem = 1, that is, the characteristic is of the Michaelis-Menten type, we
have thatR = 81, while whenn increasesR decreases. Usually, when> 1 the
response is referred to a#trasensitive The formulan = log(81)/log(R) is often
employed to estimate tragparent Hill cogficientof a dose response curve (the in-
putoutput steady state characteristic curve obtained from experimentakdata)
R can be calculated for any response curve directly from the data points.

In the case of the current system, from equat@i®, we have that

(K1+0.1) 0.9 (K1+0.9)01
90=————— and yjo= —T—"—,
(K2+0.9) 01 (K2+O.1) 0.9

so that _ _
(Kl + 0.1)(K2 + O.l)

R=81 .
(K2 + 0.9)(K1 + 09)

As a consequence, Wh(§1, IZZ > 1, we have thaR — 81, which gives a Michaelis-
Menten type of response. If instel(d, K, < 0.1, we have thaR — 1, which cor-
responds to a theoretic Hill ciigientn > 1, that is, a switch-like response (Figure
2.14). In particular, if we have, for exampl&; = K, = 1072, we obtain an appar-
ent Hill codficient grater than 13. This type of ultrasensitivity is usually referred
to aszero-order ultrasensitivityThe reason of this name is due to the fact that
whenKp1 is much smaller than the amount of protein substigteve have that
Ziot X/ (Kma + X) = Zior. Hence, the forward modification rate is “zero order” in the
substrate concentration (no free enzyme is left, all is bound to the substrate
One can study the behavior also of the point of half maximal induction

to find that ask, increases, it decreases and thakasncreases, it increases.
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Figure 2.14: Steady state characteristics of a covalenification cycle as a function of
the Michaelis-Menten constarks andKo.

Phosphotransfer systems

Phosphotransfer systems are also a common motif in cellular signal transductio
These structures are composed of proteins that can phosphorylateteac In
contrast to kinase-mediated phosphorylation, where the phosphateisiasoally
ATP, in phosphotransfer the phosphate group comes from the dookeirpitself
(Figure2.15. Each protein carrying a phosphate group can donate it to the next
protein in the system through a reversible reaction. In this section, weiltkesc
module extracted from the phosphotransferase syst€m [

Let X be a transcription factor in its inactive form and let be the same tran-
scription factor once it has been activated by the addition of a phospraip.g
Let Z* be a phosphate donor, that is, a protein that can transfer its phospbape g
to the acceptor X. The standard phosphotransfer reactié8jscdn be modeled
according to the two-step reaction model

Z"+X \L‘—l C; ixuz,
ko kg
in which G, is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and proteindéphosphorylated by
other phosphotransfer interactions. These reactions are modeled ateprreac-
tions depending only on the concentrations of Z aridtKat is,

z% 7, x*Bx

Protein X is assumed to be conserved in the system, thédjiss X+ Cy + X*.
We assume that protein Z is produced with time-varying productionk{ftend
decays with raté. The ODE model corresponding to this system is thus given by
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Figure 2.15: (a) Diagram of a phosphotransfer system. (@teirs X and Z are transferring
the phosphate group p to each other.

the equations

Z
% = K(t) — 6Z + kaCp — Ky X*Z — 112
dC X C
- = klxtot(l— - —l)Z* - k3C1 - kzc]_ + k4X*Z
dt Xiot  Xtot
dz* X+ C (2.19)
= m1Z +koCp — Ky Xeot [ 1— ——1)2*
dt ! e tOt( Xiot  Xtot
ax* .
dt = k3C1—k4X*Z—ﬂ2X*.

Sample simulation results when the input is a time-varying (periodic) stimulus are
shown in Figure2.16 The outputX* well “tracks” the input stimulus by virtue of
the fast phosphotransfer reactions.

This model will be considered again in Chapter 7 when the phosphotraysfe
tem is proposed as a possible realization of an insulation deviceffier lsystems
from retroactivity éfects.

2.5 Cellular subsystems

In the previous section we have studied how to model a variety of coregses
that occure in cells. In this section we consider a few common “subsystems” in
which these processes are combined for specific purposes.

Intercellular signaling: MAPK cascades

The Mitogen Activated Protein Kinase (MAPK) cascade is a recurreattstral
motif in several signal transduction pathways (FigRr&7). The cascade consists
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time

Figure 2.16: Output response of the phosphotransfer sysitma step signak(t) = 1+
0.5sin(t). The parameters are given 8y 0.01, Xiot =5000,k; = ko =kz=kg=m1 =72 =
0.01.

of a MAPK kinase kinase (MAPKKK), denotedXa MAPK kinase (MAPKK),
denoted X, and a MAPK, denoted X MAPKKKSs activate MAPKKSs by phospho-
rylation at two conserved sites and MAPKKs activate MAPKSs by also piargp
lation at conserved sites. The cascade relays signals from the plasmaanembr
to targets in the cytoplasm and nucleus. It has been extensively studiedaat
eled. Here, we provide two flierent models. First, we build a modular model by
viewing the system as the composition of single phosphorylation cycle modules
(whose ODE model was derived earlier) and double phosphorylaticle ayod-
ules, whose ODE model we derive here. Then, we provide the full listaxftions
describing the cascade and construct a mechanistic ODE model frotohsahée

will then highlight the diference between the two derived models.

Double phosphorylation modeTonsider the double phosphorylation motif in Fig-
ure2.18 The reactions describing the system are given by

a1 ky " az ko «
E,+X=C, —» X" +E, E,+X=C, — X" +E,,
dl dZ
X*+E, = C;—= X" +E,, E,+ X" =C, > X"+E,
d: d;

With conservation laws
E1+C1+C3=Eyor, Eo+Co+Cs=Eptor,
Xiot = X+ X"+ X +C1+Co+C3+Cyq = X+ X" + X,

in which we have assumed the the total amounts of enzymes are small compared
to the total amount of substrate as we have explained earlier. §ige> k; and
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Figure 2.17: Schematic representing the MAPK cascade slthrae levels: the first one
has a single phosphorylation, while the second and the timed have a double phospho-
rylation.

a’,d’ > k', we can assume that the complexes are at the quasi-steady state (i.e.,
Ci = 0), which gives the Michaelis-Menten form for the amount of formed com-
plexes:

Ci=E " X Cs=E fa X
1= E1ltot KIX+ KX + KlKi’ 3 = Eiltot KiX+ Ky X* + KlKI’
Kj X Ka X
C,=E 2 - CGa=E ’
2 2, tot K;X* + KX + KZK; 4 2,tot sz* + KoX* + Ksz

inwhichK; = (di + kj)/a; andK;" = (d’ +k)/a;" are the Michaelis-Menten constants
for the enzymatic reactions. Since the complexes are at the quasi stefgytsta
follows that

d .
a X = k1C1 - szz - k?;_c?, + kEC4,

d *% * *
d_t X = k1C3 - k2C4,
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Figure 2.18: Schematic representing a double phosphamwlaycle.E; is the input and
X** is the output.

from which, substituting the expressions of the complexes, we obtain that

d_. kXK — K XKq ks XK — ko XK
— X' = El,tot - E2,tot N o *

dt KiX+ KX+ KKy KEX* + KXo + KoK

d KiX* Kp X**
— X" =KE ~KE

dt TEHONGX + KX + KK 2 2 KX+ KX + KoK

in which X = Xior — X* — X**,

Modular model of MAPK cascades

In this section, to simplify notation, we denote “MAPK” by, XIn a modular com-
position framework, the output of one stage becomes an input to the nget sta
downstream of it. Hence, (}(becomes the input enzyme that activates the phos-
phorylation of X, and )(l becomes the input enzyme that activates the phospho-
rylation of X,. Let (ay,dy,Kyi) and @z, d2;, ko) be the association, dissociation,
and catalytic rates for the forward and backward enzymatic reactispectvely,

for the first cycle at stage< {0,1,2}. Similarly, let @7 ;,d};.k};) and @;,d;. K ;)

be the association, dissociation, and catalytic rates for the forward ahovaal
enzymatic reactions, respectively, for the second cycle at staffe 2}. Also, de-
note byKi; andKy; fori € {0, 1,2} the Michaelis-Menten constants of the forward
and backward enzymatic reactions, respectively, of the first cyclageis Sim-
ilarly, denoteK;; and K* for i € {1,2} be the Michaelis-Menten constants of the
forward and backward enzymatlc reactions, respectively, of thendecycle at
stagei. Let Pyt and P yo be the total amounts of the,Xand X, phosphatases,
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respectively. Then, the modular ODE model of the MAPK cascade is giyen b

d X, X5

— Xt = —=0__ _ _0

dt XO kl,O El,tot Xo+K1o k2,OP0,t0tX6+K20

d kit Xo Kiy Ky Xi Kia g Ky Kas Xi'kes X K3
dt 1 XOK 1 XK1 X +KiKT + 1t0tK* X;+Ka1 X" +K21K3 |

d X: K X;* K
sk |k * 1 "™NL1 e 1 2,1
dt prRal] 11 %o K7, Xa+Ky1 X;+K11K7 | ka1 Pl,tOtK* X[ +Ko1 X7 +K21K5 | (2.20)

Ay e 2Kk, G Kaa G, Kz X ke X5 K
dt 2 = M1 KL, %Kiy XK, Kip © 1 2RGS0 K, , X6 +Ka K22
d X5 Kyz X5 Kaz

dt 2 =k X Ki, XotKiz X5+K7, Kiz —ka2 P2t0tK* X2+K22 X5 +K22 K3,
in which, letting Xo.tot, X1.tot @Nd Xz 10t represent the total amounts of each stage
protein, we haveXp = Xo ot — X3, X1 = Xy ot — Xj = X7" andXz = Xp ot — X5 = X57.

Mechanistic model of the MAPK cascade

We now give the entire set of reactions for the MAPK cascade of Figuréas
they are found in standard references (Huang-Ferrell mddgt [

k1.0

al,l k]_ 1

3k RN 3k
di1
ail k;.,l
Xo+X] = C; — X"+ X,
d*
11

kl 2

d

koo
Py+ Xy = Tzo C,— Xy +PR,

k;
x1+|=>lzc4i>xl+|31
%1 Ky

X]+P \——C — X +P;
2,1

« a2 k22
X5+P, - Cg— X, +P,

2,2

ok * a;"z kiz EE S * EE S a; k22
X7+ X5 = Cy — X5"+X] X5 +P—C10—>X +P,,
djT.Z d22

with conservation laws

Xotot = Xo+Xg+C1+C2+C3+Cs

Xitot= X1+ X[ +C3+ X" +C4+Cs5+Cg+C7+Cy
Xotot = Xo+ X5+ X5" +C7+Cg+Co+Cyp

Eitot = E1+C1, Potor = Po+C2

P1tot = P1+Cs4+Ce

P2tot = P2+ Cg + Cio.
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The corresponding ODE model is given by

d
a C1=a10E1 Xo—(d,0+ki0) C1

a Xo =k1,0C1+d20 Co—apo Po Xy + (dp1+ky1) Ca—agg X1 X
+(d, +Kp 1) Cs—ag; X X|

d
—Co=ap0 Po Xj—(d20+k2p) C2

dt

%Cg—a]_]_XlXO (dpg+ku1) Cs

C(Ijtxi—k11C3+d21C4 a1 Xy P1+dy;Cs—ay ) Xy Xg+k; 4 Co
%(_‘,4 =ap1 X] P1—(d21+ka1) Ca

;it Cs=a1; Xo X1~ (di; +ki1) Cs

Stxi*_kilc5 81 X Prtdy; Co—ane X" X2

+ (d1’2 + k172) C7 - a1’2 X;_* X; + (d:T.Z + kl,2) Cg
d k%

d .

d k% *
dtxz— a22X2P2+d22C3 alZXZXZ +d12Cg+C10K10

d
—Cs=ay, X5 P2—(d22+kz2) Cs

dt
d TS * *
d ok *
at —Co=a] , X" X5 —(di, +Kkj,) Co
d k%
@t —Cio=a;, X3" P2—(d3,+k5,) Cio.

Assuming as before that the total amounts of enzymes are much smaller than
the total amounts of substrateS; ot, Po.tot, P1.tots P2.tot < Xo.tots X1.tot, X2.tot), WE
can approximate the conservation laws as

Xotot & Xo+ X5 +Cz +Cs,
xl,totz X1+XI+C3+XI*+C5+C7+C9,

XZ,tot ~ Xo + X; + X;* +C7+ Cg.
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Using these and assuming that the complexes are at the quasi-steadyesiaite, w
tain the following functional dependencies:

Cy = f10X5, X3, X717, X5, X57), Co = f2(Xp),
Cs = f3(Xp, X1, X1, X5, X57), Cs = f5(Xp, X7),
C7 = (XL, X5, X5, X55), Co = fo(X1", X5).

The fact thatC7 depends oiX; and X" illustrates that the dynamics of the second

stage are influenced by those of the third stage. Similarly, the facCthdepends

on X7, X7*, X5, X5 indicates that the dynamics of the first stage are influenced by

those of the second stage and by that of the third stage. The phenonyerbith

the behavior of a “module” is influenced by that of its downstream clientdliscta

retroactivity, which is a phenomenon similar to impedance in electrical systems

and to back-fect in mechanical systems. It will be studied at length in Chapter 7.
This fact is in clear contrast with the ODE model obtained by modular compo-

sition, in which each stage dynamics depended upon the variables of theamps

stages and not upon those of the downstream stages. That is, frativege.20),

itis apparent that the dynamics ¥j (first stage) do not depend on the variables of

the second stagex{, X}, X;*). In turn, the dynamics ok} andX;* (second stage)

do not depend on the variables of the third stageendX"). Indeed modular com-

position does not consider the fact that the proteins of each stagesae-ty” in

the process of transmitting information to the downstream stages. This backwa

effect has been theoretically shown to lead to sustained oscillations in the MAPK

cascade{7]. By contrast, the modular ODE model of MAPK cascades does not

give rise to sustained oscillations.

Properties of the MAPK Cascade

The stimulus-response curve obtained with the mechanistic model predidisehat
response of the MAPKKK to the stimulls; to: is of the Michaelis-Menten type.
By contrast, the stimulus-response curve obtained for the MAPKK and KMAP
are sigmoidal and show high Hill cigients, which increases from the MAPKK
response to the MAPK response. That is, an increase ultrasensitivibgésved
moving down in the cascade (Figu2el9. These model observations persist when
key parameters, such as the Michaelis-Menten constants are chaijjedur-
thermore, zero-order ultrasensitivityfects can be observed. Specifically, if the
amounts of MAPKK were increased, one would observe a higher appdiin
codficient for the response of MAPK. Similarly, if the values of #g for the re-
actions in which the MAPKK takes place were decreased, one would atsovab

a higher apparent Hill cdggcient for the response of MAPK. Double phosphory-
lation is also key to obtain a high apparent Hill fibi@ent. In fact, a cascade in
which the double phosphorylation was assumed to occur through a gnestie|
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Figure 2.19: Dose response of the MAPK cascade for evergsgigulations from the
model of [77].

(similar to single phosphorylation) predicted substantially lower apparentétill
efficients.

Additional topics to be added later: Review

1. Transport across the membrane

2. Membrane receptors, ligand binding, G-proteins

Exercises

2.1(BE 150, Winter 2011) Consider a cascade of three activatesy %> Z. Pro-

tein X is initially present in the cell in its inactive form. The input signal ofs,
appears at time=0. As a result, X rapidly becomes active and binds the promoter
of gene Y, so that protein Y starts to be produced atga®&hen Y levels exceed

a thresholK, gene Z begins to be transcribed and translated ayra# proteins

have the same degradatiditution ratea.
(&) What are the concentrations of proteins Y and Z as a function of time?
(b) What is the minimum duration of the pulSg such that Z will be produced?

(c) What is response time of protein Z with respect to the time of additi3)@f
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2.2 (Hill function for a cooperative repressor) Consider a repressaibiinds to an
operator site as a dimer:

Rl: R+tR=—=R,
R2: R,+DNAP==R,:DNA
R3: RNAP+DNAP = RNAP:DNAP

Assume that the reactions are at equilibrium and that the RNA polymerase con
centration is large (so that [RNAP] is roughly constant). Show that the otioe
concentration of RNA:DNR to the total amount of DNADt, can be written as a

Hill function
[RNAP.DNA]  «

f(R) = =
( ) Dtot K+R2

and give expressions farandK.

2.3 (Switch-like behavior in cooperative binding) For a cooperative bindaag-
tion
k1 kf
B+B =B, By+tA=0C, and A+C=Aq,
ko K

the steady state values GfandA are

o kuAxB?
kM B2+ Kd ’

AvotKqg

and A= ————.
kMBz+Kd

Derive the expressions @f andA at the steady state when you modify these reac-
tions to

k Ky
B+B+..+B=B, B,+A=0C, and A+C=Aq:
ko ke
Make MATLAB plots of the expressions that you obtain and verify thah &s
creases the functions become more switch-like.

2.4 Consider the following modification of the competitive binding reactions:

K¢ k¢
B,+A=2C, B,+A=C,
ke ke

and _
ki _ ki
C+B,=C,andC+B,=C

kt k

with At = A+C +C +C’. What are the steady state expressionsAandC?
What information do you deduce from these expressions if A is a pronidéer,
is an activator protein, and C is the activaliXA complex that makes the gene
transcriptionally active?
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2.5 Consider the case of a competitive binding of an activator A and a repress
R with D and assume that before they can bind D they have to cooperatinely b
according to the following reactions:

kl k1
A+A+. . +tA=A,, R+R+..+R=R

m»
k2 k2

in which the complex A contains n molecules of A and the compley Bontains
m molecules of R. The competitive binding reactions with A are given by

a a
A,+D=C R,+D=C,
d d

andDy; = D+ C+C’. What are the steady state expression<fandD?

2.6 Assume that we have an activatof &1d a repressor protein. BMe want to
obtain an input function such that when a lot of B present, the gene is tran-
scriptionally active only if there is no Bwhen low amounts of Bare present, the
gene is transcriptionally inactive (with or without)BWrite down the reactions
among B, B,, and complexes with the DNA (A) that lead to such an input func-
tion. Demonstrate that indeed the set of reactions you picked leads to theddes
input function.

2.7 (BE 150, Winter 2011) Consider a positive transcriptional feedbagk ¢oon-
posed of two negative interactiosd Y andY 4 X.

(a) Write the ODEs for the system above. Assume that the two transgrpfioession
mechanisms have the same dynamics and both genes are degraded at tfadesame
0.2. Let the basal transcription rate beKl= 2, n = 2.

(b) To solve for the steady states, plot thdiclinesby solving‘(’j—’f =0 and‘fj—\{ =0
(i.e. solve forY = g;(X) where %X = 0 andY = go(X) where3¥ = 0 and plot both
solutions). The steady states are given by the intersections of the two raglclin

(c) Plot the time response of X and Y using the following two initial conditions:
(X(0).Y(0))=(1,4) and (41).

Next, plot the phase plane of the system ugipianein MATLAB. How do the
responses change with initial conditions? Describe a situation where thisftype
interaction would be useful.

2.8 Consider the phosphorylation reactions described in Se2ti§rbut suppose
that the kinase concentrati@nis not constant, but is produced and decays accord-

ing to the reaction Z?—f;_ 0. How should the system in equatidh 17) be modified?
t
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Use a MATLAB simulation to apply a periodic input stimulk&) using parame-

ter valueskear = kip = 1, kf = ki =k = ki = 10,0 = 0.01. Is the cycle capable of
“tracking” the input stimulus? If yes, to what extent? What are the tracking-p

erties depending on?

2.9 Another model for the phosphorylation reactions, referred to as opaate
action model, is given by ZX = X*+Z and Y+ X* = X +Y, in which the
complex formations are neglected. Write down the ODE model and comparing the
differential equation oK* to that of equation4.17), list the assumptions under
which the one step reaction model is a good approximation of the two step reactio
model.

2.10(Transcriptional regulation with delay) Consider a repressor or dotigt
modeled by a Hill functior-(B). Show that in the presence of transcriptional delay
7™M, the dynamics of the active mRNA can be written as

dn (1) _

_rm My
at e F(Bt-7")—ym".

2.11 (Competitive Inhibition) Derive the expression of the production ratév/of
in the presence of a competitive inhibitor I.

2.12 (Non-absolute activator) Derive the expression of the productionofaié
in the presence of a non-absolute activator A.

2.13(BE 150, Winter 2011) Consider the following netwokk— Y andX — X.

(a) Write the ODEs for the system above. Use basal expregsiensy = 2 and
activation cofficientsKx = 1, Ky = 2,n; = np = 2. The degradation cfiicients for
Xand Y are both 0.5.

(b) Plot the vector field using pplane. How many steady states do youvel¥ser

(c) Solve for the steady states of the system using the derived ODESsjdméze
system and do a stability analysis.



Chapter 3

Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems edd fe
back control theory that will be used in the rest of the text to analyze asidjd
biological circuits, building on tools already described in AM08. We foceigion
deterministic models and the associated analyses; stochastic methods aia given
Chapterd.

PrerequisitesReaders should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary dterential equations, at the level of Chapter 4 of
AMO08. We will also make use of linearized inpotitput models in state space,
based on the techniques described in Chapter 5 of AM08 and the frggden
main techniques described in Chapters 8-10.

3.1 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great diesibbt
into the behavior of a biological system can be obtained by analyzing tlradgs
of the system subject to small perturbations around a known solution. il g
considering the dynamics of the system near an equilibrium point, which isfone
the simplest cases and provides a rich set of methods and tools.

In this section we will model the dynamics of our system using the joptgut
modeling formalism described in Chapter

x = f(x,0,u), y = h(x,6), (3.1)

wherex € R" is the system stat#,e RP are the system parameters and RY is

a set of external inputs (including disturbances and noise). The sysétex is a
vector whose components will represent concentration of specidsasymroteins,
kinases, DNA promoter sites, inducers, allosteffe@ors, etc. The system param-
etersf is also a vector, whose components will represent biochemical parameters
such as association and dissociation rates, production rates, decgydrs$eci-
ation constants, etc. The inputis a vector whose components will represent a
number of possible physical entities, including the concentration of trigtiscr
factors, DNA concentration, kinases concentration, etc. The oytp®™ of the
system represents quantities that can be measured or that are usedcctmimget
subsystem models to form larger models.
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Example 3.1(Transcriptional componentConsider a promoter controlling a gene
g that can be regulated by a transcription factor Z. Letamd G represent the
MRNA and protein expressed by gene g. This system can be viewed atemgsy
in whichu = Z is the concentration of transcription factor regulating the promoter,
the statex = (X1, X2) is such thak; = mg is the concentration of MRNA ang = G

is the concentration of protein, aiyd= G = X, is the concentration of protein G.
Assuming that the transcription factor regulating the promoter is a repreksor
system dynamics can be described by the following system

dx _ o«
dt 1+ (u/K)"

in which 6 = (a,K,v,8,6,n) is the vector of system parameters. In this case, we
have that

dx
VX1, ot = [BX1 — 0Xo, y=X

(07
— o X
ﬂxawz[LWWKW N hxe)=x
,8X1—5X2

\%

Note that we have chosen to explicitly model the system paramgtersich
can be thought of as an additional set of (mainly constant) inputs to thersyste

Equilibrium points and stability [AMO8]

We begin by considering the case where the inpaind parameterg in equa-
tion (3.1) are fixed and hence we can write the dynamics of the system as

dx

i F(x). (3.2)
An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a statds an equilibrium point for a dynamical system
if F(xe) = 0. If a dynamical system has an initial conditig®) = Xe, then it will
stay at the equilibrium poin(t) = %, for all t > 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operatiritjiortnd\
dynamical system can have zero, one or more equilibrium points.

Thestability of an equilibrium point determines whether or not solutions nearby
the equilibrium point remain close, get closer or move further away. Aitiequm
point X is stableif solutions that start neax, stay close tak. Formally, we say
that the equilibrium poinke is stable if for alle > 0, there exists & > 0 such that

IX(0)—Xell <6 = |IX(t)—Xel|<e forallt>0,

where x(t) represents the solution the thefdrential equation3.2) with initial
conditionx(0). Note that this definition does not imply thgt) approaches. as
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Figure 3.1: Phase portrait (trajectories in the state gpatehe left and time domain sim-
ulation on the right for a system with a single stable eqtillim point. The equilibrium
point X at the origin is stable since all trajectories that start xeatay nearxe.

time increases but just that it stays nearby. Furthermore, the vatumay depend

on ¢, so that if we wish to stay very close to the solution, we may have to start
very, very closed < €). This type of stability, which is illustrated in Figu&1,

is also calledstability in the sense of Lyapund¥an equilibrium point is stable in
this sense and the trajectories do not converge, we say that the equilfwintis
neutrally stable

An example of a neutrally stable equilibrium point is shown in Figgide From
the phase portrait, we see that if we start near the equilibrium point, theraywe s
near the equilibrium point. Indeed, for this example, given ailyat defines the
range of possible initial conditions, we can simply chodsee to satisfy the defi-
nition of stability since the trajectories are perfect circles.

An equilibrium pointxe is asymptotically stabléf it is stable in the sense of
Lyapunov and alsa(t) — Xe ast — oo for x(0) suficiently close taxe. This corre-
sponds to the case where all nearby trajectories converge to the stiaibiensfor
large time. Figure3.2 shows an example of an asymptotically stable equilibrium
point.

Note from the phase portraits that not only do all trajectories stay neagtlie e
librium point at the origin, but that they also all approach the origihgets large
(the directions of the arrows on the phase portrait show the direction irhwiihéc
trajectories move).

An equilibrium pointxe is unstableif it is not stable. More specifically, we say
that an equilibrium poinke is unstable if given some> 0, there doesiot exist a
6 > 0 such that ifijx(0) — Xg|| < &, then||X(t) — X¢|| < € for all t. An example of an
unstable equilibrium point is shown in FiguBe3.

The definitions above are given without careful description of their dlowia
applicability. More formally, we define an equilibrium point to lmeally stable
(or locally asymptotically stab)eif it is stable for all initial conditionsx € B;(a),
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Figure 3.2: Phase portrait and time domain simulation foysdesn with a single asymp-
totically stable equilibrium point. The equilibrium poirg at the origin is asymptotically
stable since the trajectories converge to this poirt-asx.

where
Br(a) = {x:|[x—all <r}

is a ball of radiug arounda andr > 0. A system igylobally stableif it is stable for
all r > 0. Systems whose equilibrium points are only locally stable can have inter-
esting behavior away from equilibrium points, as we explore in the nekibsec

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called theegion of attractionfor the equilibrium point. In general,
computing regions of attraction isfilcult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable gguilib
that are attracting. This gives partial information about the behavior cfytbem.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes amttractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, csaddle if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure.3). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Fjlires called
acenter

Example 3.2(Bistable gene circuit) Consider a system composed of two genes
that express transcription factors that repress each other as shdviguie 3.4.
Denoting the concentration of protein A by and that of protein B by, and
neglecting the mRNA dynamics, the system can be modeled by the following dif-
ferential equations:

dX]_ a1 dX2 (0%]

ot gK) el o dK)e1
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Figure 3.3: Phase portrait and time domain simulation forséesn with a single unstable
equilibrium point. The equilibrium points at the origin is unstable since not all trajectories
that start neaxe stay neae. The sample trajectory on the right shows that the trajezgor
very quickly depart from zero.

Figure 3.4(b) shows the phase portrait of the system. This system is bi-stable be-
cause there are two (asymptotically) stable equilibria. Specifically, the tregscto
converge to either of two possible equilibria: one whetes high andx; is low

and the other wherg; is low andx; is high. A trajectory will approach the first
one if the initial condition is below the dashed line, called the separatrix, while it
will approach the second one if the initial condition is above the separateixcéd

the region of attraction of the first equilibrium is the region of the plane belew th
separatrix and the region of attraction of the second one is the portion plaihe
above the separatrix. \%

Nullcline Analysis

Nullcline analysis is a simple and intuitive way to determine the stability of an
equilibrium point for systems iiR?. Consider the system witk = (X1, X2) € R?
described by the élierential equations

dx
e F1(X1, %2),

at = Fa(x1, X2).

dx
dt
The nuliclines of this system are given by the two curves inxhe, plane in
which F1(x1, X2) = 0 andF»(Xx1, X2) = 0. The nullclines intersect at the equilibria of
the systemxe. Figure3.5shows an example in which there is a unique equilibrium.
The stability of the equilibrium is deduced by inspecting the direction of the
trajectory of the system starting at initial conditioxslose to the equilibriunxe.
The direction of the trajectory can be obtained by determining the sighs ahd
F, in each of the regions in which the nullclines partition the plane around the
equilibriumxe. If F1 <0 (F1 > 0), we have thak; is going to decrease (increase)
and similarly ifF, < 0 (F2 > 0), we have thax; is going to decrease (increase). In
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Figure 3.4: (a) Diagram of a bistable gene circuit compodedo genes. (b) Phase plot
showing the trajectories converging to either one of the passible stable equilibria de-
pending on the initial condition. The parameters@ie- o, =1, K1 = Ky =0.1, ands = 1.

Figure3.5 we show a case in whidh; < 0 on the right-hand side of the nulicline
F1 =0 andF; > 0 on the left-hand side of the same nullcline. Similarly, we have
chosen a case in whidh, < 0 above the nullclind=, = 0 andF, > 0 below the
same nullcline. Given these signs, it is clear (see the figure) that staimgeiny
point x close tox the vector field will always point toward the equilibriuxg and
hence the trajectory will tend toward such equilibrium. In this case, it thenasllo
that the equilibriunxe is asymptotically stable.

Example 3.3(Negative autoregulation)As an example, consider expression of
a gene with negative feedback. batrepresent the mRNA concentration axg
represent the protein concentration. Then, a simple model (in which fotisityp
we have assumed all parameters to be 1) is given by

dxq 1 Xo

— = - X1, — =X — X,

dt  1+x ! dt 1=
so thatF1(x1, X2) = 1/(1+ X2) — X3 and Fa(xq, X2) = X1 — Xo. Figure3.5a) exactly
represents the situation for this example. In fact, we have that

1
Fi(x;, %) <0 = x> , Fo(x1, %) <0 = X>X,
1+ X%

which provides the direction of the vector field as shown in FiiBe As a con-
sequence, the equilibrium point is stable. The phase plot of FR)&fk) confirms
this fact since the trajectories all converge to the unique equilibrium point. V

Stability analysis via linearization

For systems with more than two states, the graphical technique of nullclinesenaly
cannot be used. Hence, we must resort to other techniques to detetatiitieys
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Figure 3.5: (a) Example of nullclines for a system with a gneguilibrium pointxe. To
understand the stability of the equilibrium poixg, one traces the direction of the vec-
tor field (fy, f2) in each of the four regions in which the nullcline partititre plane. If
in each region the vector field points toward the equilibripaint, then such a point is
asymptotically stable. (b) Phase plot diagram for the negaiutoregulation example.

Consider a linear dynamical system of the form

dx

whereA € R™™. For a linear system, the stability of the equilibrium at the origin
can be determined from the eigenvalues of the matrix

A(A) = {se C: detsl-A) =0}.

The polynomial detl — A) is the characteristic polynomiabnd the eigenvalues
are its roots. We use the notatian for the jth eigenvalue oA andA(A) for the
set of all eigenvalues o, so thatd; € A(A). For each eigenvalug; there is a
corresponding eigenvectey € R", which satisfies the equatidhvj = ;v;.

In generall can be complex-valued, althoughAfis real-valued, then for any
eigenvaluel, its complex conjugata* will also be an eigenvalue. The origin is al-
ways an equilibrium point for a linear system. Since the stability of a linearrsyste
depends only on the matrik we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system ra#mer th
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose systerasmatric
are in diagonal form. In this case, the dynamics have the form

A1 0
dx A2

a = X. (34)
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It is easy to see that the state trajectories for this system are indepeifdaacho
other, so that we can write the solution in termsiafidividual systems;j = 2x;.
Each of these scalar solutions is of the form

Xj(t) = e/lthj (0).

We see that the equilibrium poirg = 0 is stable if1; < 0 and asymptotically stable
if i < 0.
Another simple case is when the dynamics are in the block diagonal form

o1 w1 0 0
—-w1 O 0 0
% B 1 1 )
0 0 Om wWm
0 0 —Wm Om

In this case, the eigenvalues can be shown tajbeo; +iwj. We once again can
separate the state trajectories into independent solutions for each pabesf and
the solutions are of the form

Xoj_1(t) = eo-jt(ij_l(O) coswjt+ X2j(0) sinwjt),
Xoj(t) = ea-jt(—ij_l(O)Sina)jt +X2j(0) coswit),

wherej = 1,2,...,m. We see that this system is asymptotically stable if and only
if oj = Red; < 0. Itis also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some sysh@ms
be transformed into these forms via coordinate transformations. One kRssh ¢
of systems is those for which the dynamics matrix has distinct (non-repeating)
eigenvalues. In this case there is a malrigk R™" such that the matrif AT is
in (block) diagonal form, with the block diagonal elements correspondirieo
eigenvalues of the original matri. If we choose new coordinates= T x, then

9 y=TAx=TAT

dt
and the linear system has a (block) diagonal dynamics matrix. Furtherthere,
eigenvalues of the transformed system are the same as the original syjstem s
if v is an eigenvector oA, thenw = Tv can be shown to be an eigenvector of
TAT-1. We can reason about the stability of the original system by noting that
x(t) = T~1(t), and so if the transformed system is stable (or asymptotically stable),
then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, thk stab
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we makktlise o
following theorem, proved in the next chapter:
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Theorem 3.1(Stability of a linear system)The system

dx
i AX
is asymptotically stable if and only if all eigenvalues of A all have a strictly trega

real part and is unstable if any eigenvalue of A has a strictly positive redl p

In the case in which the system state is two-dimensional, thatig?, we have
a simple way of determining the eigenvalues of a makispecifically, denote by
tr(A) the trace ofA, that is, the sum of the diagonal terms, and let Aet{e the
determinant ofA. Then, we have that the two eigenvalues are given by

Ao = %(tr(A) + Vir(A)2 - 4det)).

Both eigenvalues have negative real parts when (&) &(0 and (2) detd) > 0. By
contrast, if condition (2) is satisfied but&)> 0, the eigenvalues have positive real
parts.

An important feature of dierential equations is that it is often possible to de-
termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx

— = F(X

ity
that has an equilibrium point a&. Computing the Taylor series expansion of the
vector field, we can write

d oF . :

o F(X) + —| (X—Xe)+ higher-order terms inq— Xe).

dt OX I

SinceF(xe) = 0, we can approximate the system by choosing a new state variable
Z= X— Xe and writing

dz oF

i Az where A= I " (3.5)
We call the system3.5) thelinear approximatiorof the original nonlinear system
or thelinearizationat x.. We also refer to matriA as theJacobian matrixof the
original nonlinear system.

The fact that a linear model can be used to study the behavior of a nanlinea
system near an equilibrium point is a powerful one. Indeed, we carthékeven
further and use a local linear approximation of a nonlinear system to de $&gul-
back law that keeps the system near its equilibrium point (design of dynamics
Thus, feedback can be used to make sure that solutions remain closedaithe e
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.
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Example 3.4(Negative autoregulation)Consider again the negatively autoregu-
lated gene modeled by the equations

dX]_ _ 1
dt a 1+ X%

%
X1, E = X1 — Xo.

In this case,

F(x):( rlxz_xl )

X1—X2

so that, lettingxe = (X1,¢, X2,¢), the Jacobian matrix is given by

1
A= E‘ = -1 T (lexee? |
OX Ixe 1 -1

In this case, we have that &)= -2 < 0 and that de#) = 1+ m > 0. Hence,
independently of the value of the equilibrium point, the eigenvalues havenbgth
ative real parts, which implies that the equilibrium poxatis asymptotically sta-
ble. v

Frequency domain analysis

Frequency domain analysis is a way to understand how well a systemsgamde

to rapidly changing input stimuli. As a general rule, most physical systerpkaglis

an increased dliculty in responding to input stimuli as the frequency of variation
increases: when the input stimulus changes faster than the natural tireecfchke
system, the system becomes incapable of responding. If instead thetinputis

is changing much slower than the natural time scales of the system, the system
will respond very accurately. That is, the system behaves like a “Iss-pler”.

The cut-df frequency at which the system does not display a significant response
is called thebandwidthand quantifies the dominant time scale. To identify this
dominant time scale, we can perform infowitput experiments in which the system

is excited with periodic input at various frequencies.

Example 3.5(Phosphorylation cycle)To illustrate the basic ideas, we consider
the frequency response of a phosphorylation cycle, in which enzynestations
are modeled by a first order reaction. Referring to Figuéa we have that the one
step reactions involved are given by

Z+X 570X YaX B v ax,

with conservation lawX + X* = Xior. Let Yior be the total amount of phosphatase.
We assume that the kinase Z has a time-varying concentration, which we siew a
theinputto the system, whil&X* is theoutputof the system.
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Bode Diagram
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Figure 3.6: (a) Diagram of a phosphorylation cycle, in whiglis the kinase, X is the
substrate, and Y is the phosphatase. (b) Bode plot showasmgtdgnitude and phase lag
for the frequency response of a one step reaction model opltbephorylation system
on the left. The magnitude is plotted in decibels (dB), inathiM|gg = 20l0g,;o(M). The
parameters arg=¢6 = 1.

The diferential equation model is given by

dx*
dt

= klz(t)(xtot - X*) - kZYtotX*,

If we assume that the cycle is weakly activated & Xo1), the above equation is
well approximated by

dx*

ot =BZ(t) - 6X", (3.6)
where = ki Xior andéd = ko Yior. To determine the frequency response, we set the
inputZ(t) to a periodic function. It is customary to take sinusoidal functions as the
input signal as they lead to an easy way to calculate the frequency resp@ns
thenZ(t) = Agsin(wt).

Since equationd.6) is linear in the stateX* and inputZ, it can be directly

integrated to lead to

AoB . | _ AgBw st
—msm(wt tan “(w/9)) —(w2+62)e :

The second term dies out fodarge enough. Hence, the steady state response is
given by the first term. The amplitude of response is thus giveAdsy Vw? + 62,
in which the gaing/ Vw? + 62 depends on the system parameters and on the fre-
guency of the input stimulation.

As this frequency increases, the amplitude decreases and appraachédsr
infinite frequencies. Also, the argument of the sine function shows dineghase
shift of tarr*(w/6), which indicates that there is an increased delay in responding

X*(t) =
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to the input as the frequency increases. Hence, the key quantities iretjufrcy
response are the magnitude gMiw) and phase lag(w) given by

B _1(w
M@= dlo)=tan (5).

These are plotted in Figu®6k a type of figure known asBode plot

The bandwidth of the system, denoted is the frequency at which the mag-
nitude gain drops below!(0)/ V2. In this case, the bandwidth is given by =
6 = koYior, Which implies that the bandwidth of the system can be made larger
by increasing the amount of phosphatase. However, note that Ei(@e= 3/6 =
k1 X0t/ (K2 Yiot), increased phosphatase will also result in decreased amplitude of re-
sponse. Hence, if one wants to increase the bandwidth of the system edyimg
the value ofM(0) (also called theero frequency gajrunchanged, one should in-
crease the total amounts of substrate and phosphatase in comparablgigmep
Fixing the value of the zero frequency gain, the bandwidth of the systenecses
with increased amounts of phosphatase and kinase. \%

More generally, thdrequency responsaf a linear system with one input and
one output
X = Ax+ Bu, y =Cx+Du

is the response of the system to a sinusoidal inptiasinwt with input amplitude
a and frequencw. Thetransfer functiorfor a linear system is given by

Gyu(s) =C(sl-A)*B+D

and represents the response of a system to an exponential signafahthgt) =
e wheres e C. In particular, the response to a sinusaie asinwt is given by
y = Masin(wt + ¢) where the gairM and phase shift can be determined from the
transfer function evaluated at iw:

M =[Gy(iw)] = IM(Gy(iw))? + ReGyu(iw))?
Gyu(iw) = Mé?, bt _l(lm(Gyu(iw)))
ReGyu(iw)) '
where Re() and Im(-) represent the real and imaginary parts of a complex number.

For finite dimensional linear (or linearized) systems, the transfer functon b
written as a ratio of polynomials is

_ b

G(9) = "ol

The values ot at which the numerator vanishes are calledzbesof the transfer
function and the values afat which the denominator vanishes are calledatbles
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The transfer function representation of an irjputput linear system is essen-
tially equivalent to the state space description, but we reason about rilaendys
by looking at the transfer function instead of the state space matricesx&opée,
it can be shown that the poles of a transfer function correspond to tbevaig
ues of the matrixA, and hence the poles determine the stability of the system.
In addition, interconnections between subsystems often have simpleearfares
tions in terms of transfer functions. For example, two syst&mnandG; in series
(with the output of the first connected to the input of the second) havenaioced
transfer functiorGseriedS) = G1(5)G2(s) and two systems in parallel (a single in-
put goes to both systems and the outputs are summed) has the transfemfunctio
Gparalle(s) = Gy(8) +G2(9).

Transfer functions are useful representations of linear systemedeettee prop-
erties of the transfer function can be related to the properties of the dymamic
particular, the shape of the frequency response describes howstieensyesponse
to inputs and disturbances, as well as allows us to reason about the stdability o
interconnected systems. The Bode plot of a transfer function gives thritude
and phase of the frequency response as a function of frequedcthaiyquist
plot can be used to reason about stability of a closed loop system from the open
loop frequency response (AMO08, Section 9.2).

Returning to our analysis of biomolecular systems, suppose we have msyste
whose dynamics can be written as

x= f(x6,u)

and we wish to understand how the solutions of the system depend on éme-par
etersg and input disturbancas We focus on the case of an equilibrium solution
X(t; X0,00) = Xe. Letz= X—Xe, li=U—Ug andd =0-6o represent the deviation of
the state, input and parameters from their nominal values. Linearizatidreqaer-
formed in a way similar to the way it was performed for a system with no inputs.
Specifically, we can write the dynamics of the perturbed system using itsiiaear
tion as

dZ_(af) - (6f) 7 (éf) i
dt  \ 0%/ (x, 00.00) 9 (4. 0,u0) OW ) (. 60.0)

This linear system describes small deviations foquo, wo) but allowsd andw to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Let = Cx be a set of values of interest. The transfer functions
betweerd, W andy are given by

Hy(S) = C(sl— A) By, Hyw(S) = C(sl- A) 1By,

where
f f f
A= a_ s 89 = a_ 5 B\N = 6_ .
OX | (xe,00,0) 96 | (xe,00,w0) OW | (xe,00,w0)
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Note that if we lets= 0, we get the response to small, constant changes in
parameters. For example, the change in the outpws a function of constant
changes in the parameters is given by

Hy5(0) = CA™'By = CSy.

Example 3.6(Transcriptional regulation)Consider a genetic circuit consisting of
a single gene. The dynamics of the system are given by

dm dP

— =F(P)-ym,  — =pm-6P,
gt = F(P) -y il
wherem is the mRNA concentration arfd is the protein concentration. Suppose
that the mRNA degradation ratecan change as a function of time and that we
wish to understand the sensitivity with respect to this (time-varying) parameter
Linearizing the dynamics around an equilibrium point

_ =7 F'(pe) _ e
ST R B ]
For the case of no feedback we havéP) = ag, and the system has an equilib-

rium point atme = ag/y, Pe = Bao/(6y). The transfer function frony to p, after
linearization about the steady state, is given by

—BMe

B e

whereyg represents the nominal value pfaround which we are linearizing. For
the case of negative regulation, we have

a
TR
and the resulting transfer function is given by
naP-1/Kn
G2 () = Bme = F/(Pe)= e [
= e g T P Pk

Figure 3.7 shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbaiticdevwy
frequency content but slightly amplifies disturbances at high frequexxcydared
to the open loop system). \%

3.2 Robustness

The term “robustness” refers to the general ability of a system to continfuec-
tion in the presence of uncertainty. In the context of this text, we will waneto b
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Figure 3.7: Noise attenuation in a genetic circuit.

more precise. We say that a given function (of the circuit) is robust wipheaet
to a set of specified perturbations if the sensitivity of that function to peatur
tions is small. Thus, to study robustness, we must specify both the functianewe
interested in and the set of perturbations that we wish to consider.

In this section we study the robustness of the system

x = f(x,0,u), y = h(x,6)

to various perturbations in the paramet@end disturbance inputs The function

we are interested in is modeled by the outpugnd hence we seek to understand
how y changes if the parametefisare changed by a small amount or if external
disturbancess are present. We say that a system is robust with respect to these
perturbations ify undergoes little changes as these perturbations are introduced.

Parametric uncertainty

In addition to studying the inpfdutput transfer curve and the stability of a given
equilibrium point, we can also study how these features change with tespec
changes in the system parameterket ye(6p, Ug) represent the output correspond-
ing to an equilibrium pointe with fixed parametergy and external inputiy, SO
that f (X, 8o, Ug) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibriumb po
and the dynamics near the equilibrium point vary as a function of changés in
parameters and external inputs..

We start by assuming that= 0 and investigating howe andye depend ord.
The simplest approach is to analytically solve the equatiog, ) = O for xe and
then setye = h(Xe, 6p). However, this is often dlicult to do in closed form and so
as an alternative we instead look at the linearized response given by

de 90, yo - déo 90’

SX,@ .—
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which is the (infinitesimal) change in the equilibrium state and the output due to
a change in the parameter. To deternt8yg we begin by diferentiating the rela-
tionship f(xe(6),6) = 0 with respect t@:

df ofdxe  of

0 — Sy= == =
7 de ox| o0
Similarly, we can compute the change in the output sensitivity as

_dye  Ohdx ah__(ah(af)—laf ah]

_dx __(af)‘laf

(xedo)

Y= dg “axdo "o \ax\ax) 90" o0

(xebo)
These quantities can be computed numerically and hence we can evaludiedbe e
of small (but constant) changes in the parametens the equilibrium statge and
corresponding output valug.

A similar analysis can be performed to determine tfieas of small (but con-
stant) changes in the external inputSuppose thaxe depends on both andu,
with f(Xe, 80, Ug) = 0 andfg andug representing the nominal values. Then

dxe __(9f\ " af dxe __(ot\" ot
do  \dx) 06 lxesouo)’ du \dx/ du

The sensitivity matrix can be normalized by dividing the parameters by their
nominal values and rescaling the outputs (or states) by their equilibriumsvadfue
we define the scaling matrices

(x&60,Uo)

D* =diagxs), D% =diagye), D’=diags),
Then the scaled sensitivity matrices can be written as
S_X,O = (Dxe)_lsxeDe’ S_y,e = (Dye)_lsyeDe-

The entries in this matrix describe how a fractional change in a paramegs giv
a fractional change in the output, relative to the nominal values of the ptaeme
and outputs.

Example 3.7 (Transcriptional regulation)Consider again the case of transcrip-
tional regulation described in ExampB6. We wish to study the response of
the protein concentration to fluctuations in its parameters in two casEmsii-
tutive promoter(no regulation) and self-repression (negative feedback), illustrated
in Figure3.8 For the case of no feedback we havép) = ag, and the system
has an equilibrium point ate = ag/y, Pe = Bag/(dy). The parameter vector can
be taken a# = (ao,y,8,5). Since we have a simple expression for the equilibrium
concentrations, we can compute the sensitivity to the parameters directly:

o [y -% 0 0
50 = | B _fg ool
oy 5y2 oy y62
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Figure 3.8: Parameter sensitivity in a genetic circuit. Dpen loop system (a) consists
of a constitutive promoter, while the closed loop circuit i€self-regulated with negative
feedback (repressor).

where the parameters are evaluated at their nominal values, but we Edlie o
subscript 0 on the individual parameters for simplicity. If we choose thampe-
ters ag)p = (0.001380.005780.1150.00116), then the resulting sensitivity matrix

evaluates to
170 -41 0 0
open__

SXef’ - [17000 -4100 210 —21004' (3:8)

If we look instead at the scaled sensitivity matrix, then the open loop nattine of
system yields a particularly simple form:

= 1 -1 0 O
open _
SH _[1 11 _1]. (3.9)

In other words, a 10% change in any of the parameters will lead to a cobipara
positive or negative change in the equilibrium values.
For the case of negative regulation, we have

(04
F(P)= ———
P =T pk * oo
and the equilibrium points satisfy
0 a vo
= —P,, - = =P 3.10
Me B e 1+P2/K+a0 yMe B e ( )

In order to make a proper comparison with the previous case, we needaodiel
to choose the parameters so that the equilibrium concentr@tiomatches that of
the open loop system. We can do this by modifying the promoter strength
the RBS strengtls so that the second formula in equatidhlQ is satisfied or,
equivalently, choose the parameters for the open loop case so that thetythe
closed loop steady state protein concentration (see Exatrif)le

Rather than attempt to solve for the equilibrium pointin closed form, we instead
investigate the sensitivity using the computations in equatBhd(. The state,
dynamics and parameters are given by

x:(m P), f(x,@):[Fﬁ(r?__;I;m], 0=(a0 y B 6 a n K).
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Note that the parameters are ordered such that the first four parametiets the
open loop system. The linearizations are given by

’ KaP"log(P @
of _ [~y F'(Pe) af (1 -m 0 0 Ay TP o
ox | B -5 |’ M (0 0 m -P 0 0 0 ’

where again the parameters are taken to be their nominal values. From ttasiwe
compute the sensitivity matrix as

oF 5
5 sm_ _ _mF P 9@y 0% 6%
5BF  5yBF 5y BF 5y BF 5y BF 5y BF T oypF

Sxo = oF oF oF
B pm ym ¥P Py B Bk

S oy-pF Gy-BF Gy-BF Sy-pF  Sy-BF  Sy-BF  Sy—pF
whereF’ = 9F /0P and all other derivatives df are evaluated at the nominal pa-
rameter values.
We can now evaluate the sensitivity at the same protein concentration ag we us
in the open loop case. The equilibrium point is given by

[o16)
_(me) (5] _(0.239
Xe‘[%]‘[%]‘[zag

and the sensitivity matrix is

761 -182 -116 116 0.134 -0.212 —0.000111

Sclosedz
Xe.0 7610 -182Q 908 -9080 134 -212 -0.0117

The scaled sensitivity matrix becomes

016 -044 -056 056 028 -178 -308x107) ...,
016 -044 044 -044 028 -1.78 -308x107| ™

Comparing this equation with equatioB.9), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become lesitise
to those parameters that are not part of the feedback (columns 2+4hebe is
higher sensitivity with respect to some of the parameters that are part ffettie
back mechanisms (particulanhy. \%

closed
Sxeﬁ ~ [

More generally, we may wish to evaluate the sensitivity of a (non-constant) s
lution to parameter changes. This can be done by computing the fule{ihndo,
which describes how the state changes at each instant in time as a function of
(small) changes in the parametérdVe assume = 0 for simplicity of exposition.

Let x(t; Xg,080) be a solution of the dynamics with initial conditiog and pa-
rametersly. To computedx/dd, we write down a dierential equation for how it
evolves in time:

d (dx d (dx d
d_t(@)zﬁ(a)ZE(f(xﬁ,u))
_afdx_of

= oxdo o0’
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This is a differential equation withx m statesS;; = dx /d@; and with initial condi-
tion Sjj(0) = O (since changes to the parameters to fi@tch the initial conditions).

To solve these equations, we must simultaneously solve for thexsteie the
sensitivity S (whose dynamics depend o Thus, we must solve the set nf+
nmcoupled diferential equations

dx dSy of of
i f(x,0,u), Tl ax(x,el,u)SX9+ ae(x,e,u). (3.12)

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that ispte
cial case that we are at an equilibrium point and the dynamicSfgrare stable,
the steady state solution of equatid1(? is identical to that obtained in equa-
tion (3.7). However, equation3(12 is much more general, allowing us to deter-
mine the change in the state of the system at a fixed fimnfr example. This
eqguation also does not require that our solution stay near an equilibriumy o
only requires that our perturbations in the parameters dheismtly small.

Example 3.8(Repressilator)Consider the example of the repressilator, which was
described in Exampl2.2 The dynamics of this system can be written as

d dP

d—n,:l = Frep(P3) —ymu d_tl =pm - 6Py
dmp dpP;

at = Frep(P1) —ymy ot =pmp— 6P
dmg

dPs
at = Frep(P2) —ymy ot =pMmg—0P>,

where the repressor is modeled using a Hill function

a

Frep(P) = m + .

The dynamics of this system lead to a limit cycle in the protein concentrations, as
shown in Figure3.9a

We can analyze the sensitivity of the protein concentrations to changes in the
parameters using the sensitivityférential equation. Since our solution is periodic,
the sensitivity dynamics will satisfy an equation of the form

dSX’Q
dt

whereA(t) and B(t) are both periodic in time. Letting = (my, P1,mp, P2, mg, P3)
andd = («o,v,8,9, @, K), we can comput8y ¢ along the limit cycle. If the dynamics

for Sy are stable then the resulting solutions will be periodic, showing how the
dynamics around the limit cycle depend on the parameter values. The results a

= A(t)Sxg + B(t),
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Figure 3.9: Repressilator sensitivity plots

L L L I
0 500C 1000¢ 1500C 2000(

shown in Figure3.9h where we plot the steady state sensitivityPgfas a function
of time. We see, for example, that the limit cycle depends strongly on the protein
degradation and dilution ratg indicating that changes in this value can lead to
(relatively) large variations in the magnitude of the limit cycle.

\Y

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPAST.

Adaptation and disturbance rejection

A system is said to adapt to the inputvhen the steady state value of its output

is independent of the actual (constant) value of the input (Figui@. Basically,
after the input changes to a constant value, the output returns to its dxiglna
after a transient perturbation. Adaptation corresponds to the confodigtarbance
rejectionin control theory. The full notion of disturbance rejection is more general
and depends on the specific disturbance input and it is studied using thrainte
model principle 87].

For example, for adaptation to constant signals, the internal model primeiple
quires integral feedback. The internal model principle is a powerfultavaycover
biochemical structures in natural networks that are known to have theedica
property. An example of this is the bacterial chemotaxis described in moré deta
in Chapters.

We illustrate two main mechanisms to attain adaptation: integral feedback and
incoherent feedforward loops (IFFLs). We next study these two arésims from a
mathematical standpoint to illustrate how they achieve adaptation. Possible ldemole
ular implementations are presented in later chapters.

Integral feedback

Inintegral feedback systems, a “memory” variabkeeps track of the accumulated
difference betweeg(t) and its nominal steady state valyg A comparison is
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Figure 3.10: Adaptation property. The system is said to hiawedaptation property if the
steady state value of the output does not depend on the sstateyvalue of the input.
Hence, after a constant input perturbation, the outputmstto its original value.

performed between this memory variable and the current iopptroviding an
error term that is used to drive the feedback mechanism that brings stensy
output back to the desired valyg (Figure3.11).

In this system, the outpw(t), after any constant input perturbatiantends to
Yo for t — oo independently of the (constant) valuewnfThe equations representing
the system are given by:

dz
— =V, y1=Y-Yo, y =k(u-2),

dt
so that the equilibrium is obtained by setting 0, from which we obtairy = yp.
That is, the steady state gfdoes not depend on. The additional question to
answer is whether, after a perturbatioroccurs,y; (t) tends to zero fot — oo.
This is the case if and only #— 0 ast — oo, which is satisfied if the equilibrium

Figure 3.11: Basic block diagram representing a systeminiéiyral action.



3-22 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR
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Figure 3.12: Incoherent feedforward loop. The inpaffects the output through two chan-
nels. It indirectly represses it through an intermediatéatéde x; and it activates it directly.

of the systenz = —kz+ ku—Yyjp is asymptotically stable. This, in turn, is satisfied
whenevek > 0 andu is a constant. Hence, after a constant perturbatisrapplied,
the system output approaches back its original steady state vghje¢hat is,y is
robust to constant perturbations.

More generally, a system with integral action can take the form

%(z f(x,u,k), y=h(x), 3—? =y-Yo, k=Kk(x2),
in which the steady state valueyfeing the solution tg—yy = 0, does not depend
onu. In turn,y tends to this steady state value for o if and only if z— 0 as
t — co. This, in turn, is the case #tends to a constant value for» oo, which is
satisfied ifu is a constant and the steady state of the above system is asymptotically
stable.

Integral feedback is recognized as a key mechanism of perfectlyiagdyio-
logical systems, both at the physiological level and at the cellular level, as1in
blood calcium homeostasigf, in the regulation of tryptophan i&. coli [91], in
neuronal control of the prefrontal corted4], and inE. coli chemotaxis $8].

Incoherent feedforward loops

Feedforward motifs (Figur8.12 are common in transcriptional networks and it
has been shown they are over-representesl. icoli gene transcription networks,
compared to other motifs composed of three nodgsThese are systems in which
the inputu directly helps promote the production of the outgaind also acts as a
delayed inhibitor of the output through an intermediate variabl@ his incoherent
counterbalance between positive and negatiteces gives rise, under appropriate
conditions, to adaptation. A large number of incoherent feedforwaimslpartici-
pate in important biological processes such as the EGF to ERK activa8hritje
glucose to insulin releas@?], ATP to intracellular calcium releas&], micro-
RNA regulation P0], and many others.

Several variants of incoherent feedforward loops exist for peddaptation.
The “snifer”, for example, is one in which the intermediate variable promotes
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degradation:

dx: d
d_tl = aU—0Xq, d—)iz = BU—yX1Xo. (3.13)

In this system, the steady state value of the outpuis obtained by setting the
time derivatives to zero. Specifically, we have that 0 givenx; = au/§ andx, =

0 givesx, = Bu/(yx1), which combined together result ik = (85)/(ya), which

is a constant independent of the inputThe linearization of the system at the
equilibrium is given by

~ ) 0
(=B /(ya) —y(au/s))’

which has eigenvaluess and—y(au/6). Since these are both negative, the equi-
librium point is asymptotically stable. The $i@r appears in models of neutrophil
motion andDictyosteliumchemotaxis 97].

Another form for a feedforward loop is one in which the intermediate viiab
X1 inhibits production of the outpu, such as in the system:

A

% = aU—F5Xy, dd—)iz =,8X£1—yx2. (3.14)
The equilibrium point of this system is given by setting the time derivativesrtm ze
Fromx; =0, one obtaing; = au/§ and fromx, = 0 one obtains that, = Bu/(yx1),
which combined together result ¥a = (86)/(ya), which is a constant independent
of the inputu.
By calculating the linearization at the equilibrium, one obtains

A -0 0
= _% —")/’

1

whose eigenvalues are given by and—y. Hence, the equilibrium point is asymp-
totically stable. Further, one can show that the equilibrium point is globalipwpsy
totically stable because the subsystem is linear, stable, argdapproaches a con-
stant value (for constanf) and thex, subsystem, in whicjgu/x; is viewed as an
external input is also linear and exponentially stable.

Scale Invariance and fold-change detection

Scale invariance is the property by which the outgi(t) of the system does not
depend on the amplitude of the inpu(t) (Figure3.13. Specifically, consider an
adapting system and assume that it pre-adapted to a constant backgatueg,
then apply inpua+b and letx,(t) be the resulting output. Now consider a new
background valug a for the input and let the system pre-adapt to it. Then apply
the inputp(a+ b) and letxy(t) be the resulting output. The system has the scale
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Figure 3.13: Fold-change detection. The output response dot depend on the absolute
magnitude of the input but only on the fold change of the input

invariance property ikx(t) = X(t). This also means that the output responds in the
same way to inputs changing by the same multiplicative factor (fold), hence this
property is also called fold-change detection. Looking at Fidil& the output
would present dferent pulses for dierent fold changels/a.

Incoherent feedforward loops can implement the fold-change detgutap:
erty [35]. As an example, consider the feedforward motif represented by ttfersni
and consider two inputs (t) = a+ b1 (t—tg) andux(t) = pa+ pby(t —tg). Assume
also, as said above, that at tifpethe system is at the steady state, that is, it pre-
adapted. Hence, we have that the two steady states from which the syat&sn s
att =t are given byx;1 = aa/é and x;2 = paa/d for the x; variable and by
X21 = X222 = (Bd)/(ya) for the xp variable. Integrating systen3.(14) starting from
these initial conditions, we obtain foe tg

x1a(t) = a%e“s(t‘t") +(a+b)(1-e°t0) and
X12(t) = paSe = + pla+ b)(1- e W),

Using these in the expression ®f in equation 8.14) gives the diferential
equations to whiclxy 1(t) andxz 2(t) obey fort >ty as

dx1 p(a+h)
dt  aZedlt-b) 1 (a+b)(1-edlt-)

—¥X21, X2,1(to) = (B6)/(ya)

and

dx2 _ pB(a+b)
dt  pa%ed(t-) 4+ p(a+b)(1-et-)

which give xp1(t) = xg2(t) for all t > to. Hence, the system responds exactly the
same way after changes in the input of the same fold. The output resisamse
dependent on the scale of the input but only on its shape.

—¥X22, X2,2(to) = (BS)/ (ya),
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Figure 3.14: (a) Disturbance attenuation. A system is saithte the disturbance attenua-
tion property if there is an internal system param@&tsuch that the system output response
becomes arbitrarily close to a nominal output (independégtiite inputu) by increasing the
value ofG. (b) High gain feedback. A possible mechanism to attairudistince attenuation
is to feedback the error between the nominal outgleind the actual outpuytthrough a
large gainG.

Disturbance attenuation

A system has the property of disturbance attenuation if there is a systamegiar

G such that the output respong#) to the inputu(t) can be made arbitrarily small as
Gisincreased (Figurd.14a). A possible mechanism for disturbance attenuation is
high gain feedback (Figur@ 14b). In a high gain feedback configuration, the error
between the output, perturbed by some exogenous disturbamcend a desired
nominal outputy is fed back with a negative sign to produce the outpitgelf. If

Yo >V, this will result in an increase of otherwise it will result in a decrease nf
Mathematically, one obtains from the block diagram that

G
tYor =~

y 11 G’

T 1+G
so that as5 increases the (relative) contribution wbn the output of the system
can be arbitrarily reduced.

High gain feedback can take a much more general form. Consider a system
with x € R" in the formx = F(x,t). We say that this system @ontractingif any
two trajectories starting from fierent initial conditions tend to each other as time
increase to infinity. A sflicient condition for the system to be contracting is that in
some set of coordinates, with matrix transformation den@®tetie symmetric part
of the linearization matrix (Jacobian) is negative definite. That is, that tigedar
eigenvalue of

2

1aF+aFT
ox  ox |’

is negative. We denote this eigenvalue-byfor A > 0 and call it the contraction
rate of the system.
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Now, consider the nominal systexn="G f(x,t) for G > 0 and its perturbed ver-
sionxp = G f(xp,t) +u(t). Assume that the inpuit) is bounded everywhere in norm
by a constan€ > 0. If the system is contracting, we have the following robustness
result:

[1X(t) — Xp(t)l] < xIX(0) — Xp(0)lle”C + %

in which y is an upper bound on the condition number (ratio between the largest
and the smallest eigenvalue ®f ®) of the transformation matri® [57]. Hence,

if the perturbed and the nominal systems start from the same initial conditiens, th
difference between their states can be made arbitrarily small by increasingrthe ga
G. Hence, the system has the disturbance attenuation property.

3.3 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for generainityal sys-
tems with small perturbations. In this section, we specialize to the case where the
dynamics have the form of a reaction rate equation:

ds
5t = v(x6). (3.15)

wherex is the vector of species concentratiofiss the vector of reaction parame-
ters,N is the stoichiometry matrix ane(x, 6) is the reaction rate (or flux) vector.

Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that therersereed
guantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the tetal ma
of that species will be constant. This type of constraint will then give semed
guantity of the formc; = Hjx whereH; represents that combinations of species in
which the given element appears. Sirgges constant, it follows thatig/dt =0

and, aggregating the set of all conserved species, we have

dc ds
0= i Ha =HNWXx,60) forall x.

If we assume that the vector of fluxes sp@s(the range of/: R" xRP — R™M),
then this implies that the conserved quantities correspond to the left nué spac
the stoichiometry matrii.

It is often useful to remove the conserved quantities from the descriptitie o
dynamics and write the dynamics for a set of independent species. Tasdwéh
transform the state of the system into two sets of variables:

J-10)
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The vectorx; = Px is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the Pwensists of all
zeros and a single 1 in the column corresponding to the selected spedies). T
matrix H should span the left null space bf, so thatxy represents the set of
dependent concentrations. These dependent species do naardgesrrespond
to individual species, but instead are often combinations of speciesx&nple,
the total concentration of a given element that appears in a number of rnesecu
that participate in the reaction).
Given the decompositior8(16), we can rewrite the dynamics of the system in

terms of the independent variabbgs We start by noting that giver andxqy, we
can reconstruct the full set of species

_(P) (0

[ 19

i e )

wherecy represents the conserved quantities. We now write the dynamigsder

% = P% = PNVLX; + Co, ) = Nrvi (X, Co, 6), (3.17)

where N; is thereduced stoichiometry matriandv; is the rate vector with the
conserved gquantities separated out as constant parameters.

The reduced order dynamics in equati@il({) represent the evolution of the
independent species in the reaction. Giwgnwe can reconstruct the full set of
species from the dynamics of the independent species by wrtingx; + co. The
vectorcy represents the values of the conserved quantities, which must be specifie
in order to compute the values of the full set of species. In addition, siree
LX; + co, we have that

=L = LN (5,0 P) = LNk ),
which implies that
N =LN;.
Thus,L also reconstruct the reduced stoichiometry matrix from the reduced space
to the full space.

Example 3.9(Enzyme kinetics) Consider an enzymatic reaction

a _k
E+S? C—oE+P,

whose full dynamics can be written as

S) (-1 1 o0
dlE|_|-1 1 1 5(':5
dtjcl |1 -1 -1f| &
P 0 0 1
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The conserved quantities are given by

01 10
H‘[1 —101}‘

The first of these is the total enzyme concentrafign= E + C, while the second
asserts that the concentration of prode i equal to the free enzyme concentration
E minus the substrate concentrati8nlf we assume that we start with substrate
concentratiorsy, enzyme concentratidf; and no product or bound enzyme, then
the conserved quantities are given by

c= E+C | _ | Euwt
- S-E+P - SO_EtOt ’

There are many possible choices for the set of independent speei®s, but
since we are interested in the substrate and the product, we cR@sse

1000
F"[0001]'

OnceP is chosen then we can compute
. 1 0 . 0
Lo Pl (1) |1 1 _(P) (0] _ |Ett—So
“H) o) T]-1 -1lr ®T{H] l¢]T| s |
0 1 0

The resulting reduced order dynamics can be computed to be

d (s 11 0 a(P+S+Et0t—So)S
atlp] = lo o 1| 4P-S+S0
K(~P—S+So)
_ (-a(P+S+Ei—So)S—d(P+S—S)
- k(So-S—-P) '

A simulation of the dynamics is shown in FiguBela We see that the dynamics
are very well approximated as being a constant rate of production unékieust
the substrate (consistent with the Michaelis-Menten approximation).

\%

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivisteddy
state concentrations and fluxes to changes in various system parafietsbsisic
concepts are equivalent to the sensitivity analysis tools described in 158ctjo
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Figure 3.15: Enzyme dynamics. The simulations were caoig@d =d = 10,k=1,Sp =
500 andEy; = 5,1020. The top plot shows the concentration of substeaéad product
P, with the fastest case correspondinggg; = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initi@ &nd the figures on the lower
right at one of the transition times.

specialized to the case of reaction rate equations. In this section we peolvicks
introduction to the key ideas, emphasizing the mapping between the general co
cepts and MCA terminology (as originally done [6]).
Consider the reduced set of chemical reactions

dx

i NrVr (%, 0) = Nev(LX; + Co, 0).
We wish to compute the sensitivity of the equilibrium concentratixend equi-
librium fluxesve to the parameter& We start by linearizing the dynamics around
an equilibrium pointe. Definingz= x—Xe, U=0—0g and f (z,u) = Ny V(Xe + Z 0 +
u), we can write the linearized dynamics as

dx _

5 = Ax+Bu A:(Nra—vL), B:(Nr@), (3.18)

Js ap

which has the form of a linear fierential equation with stateand inputu.
In metabolic control analysis, the following terms are defined:

dv

€ = "7 € = flux control codficients
Xe,0o
R _ o R
00 C* = concentration control cdécients
R= e _ i, Ry =
09 C' = rate control cofficients

These relationships describe how the equilibrium concentration and emuriibr
rates change as a function of the perturbations in the parameters. Therntwol
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matrices provide a mapping between the variation in the flux vector evaluated at

equilibrium,
(GV)
00 90

and the corresponding ftiérential changes in the equilibrium poitdtx./d00 and

0Ve/06. Note that
ave (av)
90 "\ o6 Yol

The left side is the relative change in the equilibrium rates, while the rightiside
the change in the rate functim(x, 8) evaluated at an equilibrium point.

To derive the coficient matriceC* andCY, we simply take the linear equa-
tion (3.18 and choose outputs correspondingtndyv:

yx = IX, y\,:a—VLx+—u.

Using these relationships, we can compute the transfer functions

ov
00’

HU(S) = JeL(s1 - A) B+ 6“—[—L( =N LN 1]

Hy(s) = (sl-A) B = [(s|— L) IN =

Classical metabolic control analysis considers only the equilibrium coratemts,
and so these transfer functions would be evaluated-dl to obtain the equilibrium
equations.

These equations are often normalized by the equilibrium concentrations and
parameter values, so that all quantities are expressed as fractionétigealf we
define

= diagXe}, DY = diag{V(Xe, 60)}, DY = diag(6o},
then the normalized cdigécient matrices (without the overbar) are given by
CX = (DX)_léxDV, cV= (DV)_lC_VDV,
Ré( — (DX)—lﬁgD(), R\é — (DV)—1§\9/D9

Flux balance analysis

Flux balance analysis is a technique for studying the relative ratefefeint reac-
tions in a complex reaction system. We are most interested in the case where ther
may be multiple pathways in a system, so that the number of reacticmgreater

than the number of speciesThe dynamics

dX_Nv( %.6)
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Figure 3.16: Flux balance analysis.

thus have the property that the mathikhas more columns that rows and hence
there are multiple reactions that can produce a given set of speciehdtaince is
often applied to pathway analysis in metabolic systems to understand the limiting
pathways for a given species and the tiffie@s of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separating the reactfons
the pathway into internal fluxeg versus exchanges flug, as illustrated in Fig-
ure3.16 The dynamics of the resulting system now be written as

dx_ NV(x,6) = N [Vi] =Nv(x,60)—b

dt - ] - Ve - | 9 e
wherebe = —NV, represents thefiects of external fluxes on the species dynamics.
Since the matriXN has more columns that rows, it hagght null space and hence
there are many éerent internal fluxes that can produce a given change in species.

In particular, we are interested studying the steady state properties gfsthe s
tem. In this case, we have thdit/dt = 0 and we are left with an algebraic system

NV| = be.

Material to be completed. Review

3.4 Oscillatory Behavior

In addition to equilibrium behavior, a variety of cellular procesess invobgilla-

tory behavior in which the system state is constantly changing, but in atimegpea
pattern. Two examples of biological oscillations are the cell cycle and ¢acad
rhythm. Both of these dynamic behaviors involve repeating changes in the co
centrations of various proteins, complexes and other molecular speciesdalth
though they are very dierent in their operation. In this section we discuss some of
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the underlying ideas for how to model this type of oscillatory behavior, Simgu
on those types of oscillations that are most common in biomolecular systems.

Biomolecular oscillators

Biological systems have a number of natural oscillatory processes thatrgiine
behavior of subsystems and whole organisms. These range from Irdsoiléa-
tions within cells to the oscillatory nature of the beating heart to various tremors
and other undesirable oscillations in the neuro-muscular system. At the bimmole
ular level, two of the most studied classes of oscillations are the cell cycle and
circadian rhythm.

The cell cycle consists of a set “phases” that govern the duplicatiodigisibn
of cells into two new cells:

G1 phase - gap phase, terminated by “G1 checkpoint”

S phase - synthesis phase (DNA replication)

G2 phase - gap phase, terminated by “G2 checkpoint”

M - mitosis (cell division)

The cell goes through these stages in a cyclical fashion, with ffereit enzymes
and pathways active in filerent phases. The cell cycle is regulated by many dif-
ferent proteins, often divided into two major classégclinscyclinsare a class of
proteins that sense environmental conditions internal and external teltrend
are also used to implement various logical operations that control transiti@f o
the G1 and G2 phaseSyclin dependent kinasé€DKs)are proteins that serve as
“actuators” by turning on various pathways duringfelient cell cycles.

An example of the control circuitry of the cell cycle for the bacteriaulobac-
ter crescentughenceforthCaulobactey is shown in Figure3.17 [55]. This or-
ganism uses a variety offtéierent biomolecular mechanisms, including transcrip-
tional activation and represssion, positive autoregulation (CtrA), giftmisansfer
and methlylation of DNA.

The cell cycle is an example of an oscillator that does not have a fixed pe-
riod. Instead, the length of the individual phases and the transitioning diftiee-
ent phases are determined by the environmental conditions. As one exdémeple
cell division time forE. coli can vary between 20 minutes and 90 minutes due to
changes in nutrient concentrations, temperature or other externaifacto

A different type of oscillation is the highly regular pattern encoding in circa-
dian rhythm, which repeats with a period of roughly 24 hours. The observ
of circadian rhythms dates as far back as 400 BCE, when Androstdesesbed
observations of daily leaf movements of the tamirind tré8.[There are three
defining characteristics associated with circadian rhythm: (1) the time to complete
one cycle is approximately 24 hours, (2) the rhythm is endogenouslyajedeand



3.4. OSCILLATORY BEHAVIOR 3-33

« Controls ~40 genes
« Initiates replication

CtrA DnaA GerA CcrM y DnaA :: GChpT  ChpT~P

CpdR CpdR~P

E gera [
susggion ‘{A o
—| — R — —_— > 1 (P2 i e
RS W gmal Proteolysis
sw-to-st » CorM
e « Controls ~95 genes. —
transition < Inhibits initiation of replication ) |  ==Se-mm ... 8

!
Swarmer | Stalked 1 Pre-divisional * Methylaton si

(a) Overview of cell cycle (b) Molecular mechanisms

Figure 3.17: TheCaulobacter crescentusell cycle. (a)Caulobactercells divide asym-
metrically into a stalked cell, which is attached to a swefeand a swarmmer cell, that is
motile. The swarmer cells can become stalked cells in a neatitm and begin the cell
cycle anew. The transcriptional regulators CtrA, DnaA ami/AGare the primary factors
that control the various phases of the cell cycle. (b) Thesiertircuitry controlling the
cell cycle consists of a large variety of regulatory mechians, described in more detail in
the text. Figure obtained frond$] (permission TBD).

self-sustaning and (3) the period remains relatively constant undegeban am-

bient temperature. Oscillations that have these properties appaer in ni@ngrdi
organisms, including micro-organisms, plants, insects and mammals. Some com-
mon features of the circuitry implementing circadian rhythms in these organisms is
the combination of postive and negative feedback loops, often with thitvpade-

ments activating the expression of clock genes and the negative elenmeatsieg

the positive elementslP]. Figure 3.18 shows some of the fiierent organisms in
which circadian oscillations can be found and the primary genes respmifmib
different postive and negative factors.

Clocks, oscillators and limit cycles

To begin our study of oscillators, we consider a nonlinear model of thersyste
described by the flierential equation

dx_
dt

wherex € R" represents the state of the system (typically concentrations of various
proteins and other species and complexes)R represents the external inpuis
RP represents the (measured) outputs @adkX represents the model parameters.
We say that a solutiorx(t), u(t)) is oscillatory with period Tif y(t+T) = y(t). For
simplicity, we will often assume thgt = q = 1, so that we have a single input
and single output, but most of the results can be generalized to the multi-input,
multi-output case.

There are multiple ways in which a solution can be oscillatory. One of the sim-
plest is that the input(t) is oscillatory, in which case we say that we haveraed
oscillation In the case of a linear system, an input of the faii) = Asinwt then

f(x,u,6), y = h(x,6)
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Figure 3.18: (a) Most circadian systems use a clock mecimainiglving oscillators that
are composed of positive and negative elements, which feedidack loops. In these
loops, the positive elements activate the expression oflthek genes. The clock genes,
as well as driving rhythmic biological outputs, encode risgaelements that inhibit the
activities of the positive elements. Phosphorylation ef tiegative elements leads to their
eventual degradation, allowing the positive elements $taréthe cycle. Clock genes can
sometimes also function positively to increase the exprassf the positive elements
(not shown). (b—f) Although the same basic mechanism isgpteshe components vary
in different organisms. The core oscillator components are itedicior the model or-
ganisms discussed in this review (positive elements (atdit by +' symbols): KaiA,
WHITE COLLAR-1 (WC-1), WHITE COLLAR-2 (WC-2), CLOCK (CLK in Drosphila
melanogaster), CYCLE (CYC), and brain and muscle Arnt-pketein 1 (BMAL1, also
known as MOP3 and ARNT1); negative elements (indicated gymbols): KaiC, FRE-
QUENCY (FRQ), period (PER), timeless (TIM), cryptochron@R(Y)). Examples of cir-
cadian activities that are commonly experimentally assagethese organisms are also
shown. These oscillators receive environmental input aitkder alone or coupled to other
oscillators, send signals through an unknown mechanisrhaadst of the organism to
control rhythmic behaviours. In cyanobacteria (b), rhyithoutput is measured by fusing
the promoters of rhythmic genes to a luciferase reportee g@monitor the resulting bio-
luminescence. In Neurospora crassa (c), rhythmicity irdéaelopment of asexual conid-
iospores is monitored. In flies (d), mammals (e) and birdstifjthms in locomotor activity
can be monitored using automated equipment. Another rhgtewent in flies is eclosion
(d), which is the emergence of adult flies from their pupakc&or mammals (e), activity
(dark lines) is shown as a vertical stack (in chronologicdeo, with each horizontal row
representing activity for one day) and double plotted farit}. In addition, rhythms in
gene expression and biochemical activities, such as tHusensfor melatonin levels in
birds (f), provide further measures of rhythmicity. Figared caption from12].
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we now already the output will be of the forgft) = M- Asin(wt + ¢) whereM
andg represent the gain and phase of the system (at frequendg the case of a
nonlinear system, if the output is periodic then we can write it in terms of a set of
harmonics,

y(t) = Bp + By Sin(wt + ¢1) + Basin(2wt + ¢2) + - -«

The termBg represents the average value of the output (also called the bias), the
termsB; are the magnitudes of théh harmonic and; are the phases of the har-
monics (relative to the input). Thascillation frequencyw is given byw = 27/T
whereT is the oscillation period.

A different situation occurs when we have no input (or a constant input}ifind s
obtain an oscillatory output. In this case we say that the systemdeltsustained
oscillation This type of behavior is what is required for oscillations such as the
cell cycle and circadian rhythm, where there is either no obvious forcingtion
or the forcing function is removed by the oscillation persists. If we assuni¢hina
input is constanti(t) = Ao, then we are particularly interested in how the pefiod
(or equivalently frequency), amplitudesB; and phaseg; depend on the inpug
and system parametets

To simplify our notation slightly, we consider a system of the form

% =F(x0), y=h(x06) (3.19)

whereF(x,0) = f(x,u,0) reflects the fact that the input is ignored (or taken to be
one of the constant parameters) in the analysis that follows. We haveefaun

the oscillatory nature of the outpuft) thus far, but we note that if the state@)

are periodic then the output is as well, as this is the most common case. Hence we
will often talk about thesystenbeing oscillatory, by which we mean that there is a
solution for the dynamics in which the state satiskéis- T) = x(t).

More formally, we say that a closed curles R" is anorbit if trajectories that
start onl’ remain o for all time and ifl" is not an equilibrium point of the system.
As in the case of equilibrium points, we say that the orb#tableif trajectories
that start near stay neai’, asymptotically stabld in addition nearby trajectories
approacH” ast — co andunstableif it is not stable. The orbif" is periodic with
periodT if for any x(t) e T', x(t+ T) = X(t).

There are many ¢lierent types of periodic orbits that can occur in a system
whose dynamics are modeled as in equat®id9. A harmonic oscillatorrefer-
ences to a system that oscillates around an equilibrium point, but doassoatly)
get near the equilibrium point. The classical harmonic oscillator is a lineggrays

of the form
E 0 w X1
dt {—w O] X ’
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Figure 3.19: Examples of harmonic oscillators.

whose solutions are given by
X1(t)] [ coswt sinwt)| [x1(0)
{xz(t)] B [— sinwt co&ut} [xz(O)] '
The frequency of this oscillation is fixed, but the amplitude depends on thesva
of the initial conditions, as shown in FiguBel9 Note that this system has a single
equilibrium point atx = (0,0) and the eigenvalues of the equilibrium point have
zero real part, so trajectories neither expand nor contract, but simpliatesc

An example of a nonlinear harmonic oscillator is given by the equation

da _ X2 + Xq(1— %5 — X3), dx _ —Xg +Xo(1- X2 - X). (3.20)
dt dt
This system has an equilibrium pointat (0,0), but the linearization of this equi-
librium point is unstable. The phase portrait in Fig@r&9bshows that the solu-
tions in the phase plane converge to a circular trajectory. In the time domain this
corresponds to an oscillatory solution. Mathematically the circle is call@dit
cycle Note that in this case, the solution for any initial condition approaches the
limit cycle and the amplitude and frequency of oscillation “in steady state” (once
we have reached the limit cycle) are independent of the initial condition.

A different type of oscillation can occur in nonlinear systems in which the
equlibrium points are saddle points, having both stable and unstable digesiva
Of particular interest is the case where the stable and unstable orbits of woee
equilibrium points join together. Two such sitautions are shown in FigL2@ The
figure on the left is an example offreomoclinic orbit In this system, trajectories
that start near the equilibrium point quickly diverge away (in the directomrs
responding to the unstable eigenvalues) and then slowly return to the eguilibr
point along the stable directions. If the initial conditions are chosen to loispig
on the homoclinic orbif” then the system slowly converges to the equilibrium
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(a) Homoclinic orbit (b) Heteroclinic orbit

Figure 3.20: Homoclinic and heteroclinic orbits.

point, but in practice there are often disturbances present that willrpefte sys-
tem df of the orbit and trigger a “burst” in which the system rapidly escapes from
the equilibrium point and then slowly converges again.

A somewhat similar type of orbit is heteroclinic orbit in which the orbit
connects two dferent equilibrium points, as shown in Figu8£20h

An example of a system with a homoclinic orbit is given by the system

% = Xy, % =X - X (3.21)
The phase portrait and time domain solutions are shown in Fig2® In this
system, there are periodic orbits both inside and outside the two homaoclinic cy-
cles (left and right). Note that the trajectory we have chosen to plot in the time
domain has the property that it rapidly moves away from the equilibrium point
and then slowly re-converges to the equilibrium point, before begin daameay

¥| 1t |
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“‘@J ;K {_'f.'jj: - . v v ¥
%“’ﬁ”’ . '-':.ii-“-'-/ ) | Mok
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Figure 3.21: Example of a homoclinic orbit.
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Figure 3.22: (a) The Glycolisis pathway. “S” is a substratieich is converted into product
“P”. This, in turn, is activating its own production by enltamg the rates,. (b) Oscillations
in the glycolisis pathway. Parameters age= 1, k; = 1, andk, = 1.00001.

again. This type of oscillation, in which one slowly returns to an equilibriumtpoin
before rapidly diverging is often calledralaxation oscillation Note that for this
system, there are also oscillations that look more like the harmonic oscillator case
described above, in which we oscillate around the unstable equilibirum gdints
x=(x1,0).

Example 3.10(Glycolytic oscillations) Glycolysis is one of the principal metabolic
networks involved in energy production. It is a sequence of enzyriadyead reac-
tions that coverts sugar into pyruvate, which is then further degraddddioa (in
yeast fermentation) and lactic acid (in muscles) in anaerobic conditiong\T&hd
(the cell’s major energy supply) is produced as a result. Both dampediatadreed
oscillations have been observed. Damped oscillations were first regmyrtgb
while sustained oscillations in yeast cell free extracts were observeaugiheose-
6-phosphate (G6P), fructose-6-phosphate (F88)dr trehalose 76] were used as
substrates.

Here, we introduce the fundamental motif which is known to be at the core of
these oscillatory phenomenon. This is depicted in Fi@22(a). A simple model
for the system is given by the twoftkrential equations

in which
vi=SfP), f(P)= L Vo = koP
1= ’ - K+P29 2 = Rl

wheref (P) is the Hill function. Under the assumption théts> P2, we havef (P) ~
kiP2, in which we have defineki := «/K. This second order system admits a stable
limit cycle under suitable parameter conditions (Figrz2b)). \%
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The example above illustrates some of the types of questions we would like to
answer for oscillatory systems. For example, Under what parameteitioosdio
oscillations occur in the glycolitic system? How much can the parameter change
before the limit cycle disappears? To analyze these sorts of questionsede
to introduce tools that allow to infer the existence and robustness of limit cycle
behavior from a dferential equation model. The objective of this section is to
address these questions.

Consider the system = F(x) and letx(t, Xp) denote its solution starting ab
at timet = 0, that is,x{t, Xg) = F(X(t, Xg)) andx(0, Xp) = Xg. We say thak(t, xo) is a
periodic solutionif there isT > 0 such thai(t, Xp) = x(t+ T, Xg) for all t € R. Here,
we seek to answer two questions: (a) when does a systel(x) admit periodic
solutions? (b) When are these periodic solutions stable or asymptoticallystable

In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a ppjrtenotedu(p). Basi-
cally, the omega-limit seb(p) denotes the set of all points to which the trajectory
of the system starting frorp tends as time approaches infinity. This is formally
defined in the following definition.

Definition 3.1. A point x e R" is called aromega-limit poinbf p e R" if there is a
sequence of timef#;} with tj — oo for i — oo such thatx(tj, p) — X asi — . The
omega limit sebf p, denoteduv(p), is the set of all omega-limit points qf.

The omega-limit set of a system has several relevant properties, antocly w
the fact that it cannot be empty and that it must be a connected set.

Limit cycles in the plane

Before studying periodic behavior of systemit we study the behavior of sys-
tems inR? as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady statxiappro
mations. For systems ik?, we will see that there are easy-to-check conditions that
guarantee the existence of a limit cycle.

The first result that we next give provides a simple check to rule oubgtier
solutions for system iiR?. Specifically, letx € R? and consider

x1=F1(x, %) X =Fa(xg,X), (3.22)
in which the functions= : R?2 — R? is smooth. Then, we have the following result:

Theorem 3.2(Bendixson’s criterion) If on a simply connected region ®R? (i.e.,
there are no holes in it) the expression

OF1 , OF2

0Xy 0%
is not identically zero and does not change sign, then sy&e2d has no closed
orbits that lie entirely in D.
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Example 3.11. Consider the system
X=X +0K, X =X,

with 6 > 0. We can computét + 572 = 35x2, which is positive in allR? if 6 0. If
6 # 0, we can thus conclude from Bendixson'’s criterion that there are nodie

solutions. Investigate as an exercise what happens wkeh \%

The following theorem, completely characterizes the omega limit set of any
point for a system iR

Theorem 3.3 (Poincae-Bendixson) Let M be a bounded and closed positively
invariant region for the system= F(x) with x € (i.e., any trajectory that starts in
M stays in M for all t> 0). Let pe M, then one of the following possibilities holds

for w(p):
() w(p)is a steady state;
(i) w(p)is a closed orbit;

(iii) w(p) consists of a finite number of steady states and orbits, each starting (for
t = 0) and ending (for t> ) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have steady statelljrsincew(p) is not empty, it
must be a periodic solution;

2. If there is only one steady statefhand it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), the
w(p) is a periodic solution.

Example 3.12(Glycolytic oscillations) Consider again the glycolysis example.
Let x; = S andxp = P and rewrite the systen3(10 as

dx dx

o = Vo ko =T Filax). - = kaxad —koxe =t Fa(xy, %),
As a first step, we need to determine the number of steady states.x=tdmwe
obtain

_ Vo
X= kay?’

while fromy = 0, we obtain
ey

The intersection between these two curves (the nullclines) irkihgy] plane gives
rise to one steady state only (FiglB&233. The reader can determine a positively
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(a) Nullclines (b) Stability diagram

Figure 3.23: (a) The nuliclines and the equilibrium of thetsyn. (b) Parameter space
leading to oscillatory behavior.

invariant region that is compact. Then, it is enough to verify that the stetzdy
(X1e. X2,¢) is unstable and not a saddle to guarantee the existence of a stable limit
cycle. Thus,

9F1 Oy
J= X1 0%
TR 9R
0X1 0X2

_ —klxie —2k1X1’eX2,e
k]_X%’e —k2+2k1X1’eX2,e ’

(X1,e,X2.e)
in which xqe = kg/(klvo) andxze = Vo/ko. The eigenvalues are such that

FRICE: Jir(3)2—4detQ)

2 [l

in which
Vo 2 Vo 2
tr(J) = ko —kg| — and detd) =ki| —| .
k2 k2
Since det) > 0, in order to have an unstable equilibrium that is not a saddle, it is
necessary and fiicient to have trJ) > 0, which leads to

ke < K3/V3.

This region is depicted in Figu®23h Hence, itk; is large enough (i.e., the outflux
is large enough compared to the strength of the self activation) a stable lir@t cyc
arises. \%

Limit cyclesin R"

The results above holds only for systems in two dimensions. However, liheee
been recent extensions of this theorem to systems with special struciifelm
particular, we have the following result due to Hastings et al. (1977).
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Theorem 3.4(Hastings et al. 1977)Consider a systerr = F(x), which is of the
form

X1 = F1(Xn, X1)

Xj = Fj(Xj_l,Xj), 2<j<n
on the set M defined by x O for all i with the following inequalities holding in
M:

N OF OF; : 9F1 )
0] a—x;<0andm>o, for2<i<n, anda—xn<0,

(i) Fi(0,0) = 0and F(xy,0)> Oforall x, > 0;

(iii) The system has a unique steady stéte k. ..., X;) in M such that k(x,, x1) <
0if Xn > X and x > X7, while F1(X,, X1) > 0if X, < X and x < Xj;

(iv) 52 is bounded above in M.

Then, if the Jacobian of f atshas no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solatidn

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some tathnic
assumption) is equivalent to the existence of a periodic solution. This theore
however, does not provide information about whether the orbit is atteagtinot,
that is, of whether it is an omega-limit set of any pointMn This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), fohwh
we provide a simplified statement as follows.

Theorem 3.5(Mallet-Paret and Smith, 1990onsider the system= F(x) with
the following cyclic feedback structure

X1 = F1(Xn, X1)
Xj =Fj(Xj-1.Xj), 2<j<n

on a set M defined by % O for all i with all trajectories starting in M bounded for
t > 0. Then, thew-limit setw(p) of any point ps M can be one of the following:

(a) A steady state;
(b) A non-constant periodic orbit;
(c) A set of steady states connected by homaoclinic or heteroclinic orbits.

As a consequence of the theorem, we have that for a system with cydic fee
back structure that admits one steady state only and at which the linearizaton h
all eigenvalues with positive real part, the omega limit set must be a peridutc or
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Let for somes; € {1,-1} be 6i%ﬂ*l’ >0 for all 0<i < n and defineA :=
61-...-0n . One can show that the sig'ﬁmﬁs related to whether the system has one
or multiple steady states.

In Chapter6, we will apply these results to determine the parameter space that
makes the repressilator (see Exanth® oscillate.

3.5 Bifurcations

Another important property of nonlinear systems is how their behaviorgdsaas
the parameters governing the dynamics change. We can study this in thet adnte
models by exploring how the location of equilibrium points, their stability, their re-
gions of attraction and other dynamic phenomena, such as limit cycles, aseg b
on the values of the parameters in the model.

Parametric stability
Consider a dterential equation of the form

%: F(x,6), xeR" 0eRK (3.23)
wherexis the state andis a set of parameters that describe the family of equations.

The equilibrium solutions satisfy
F(x,60) =0,

and asf is varied, the corresponding solutiorgd) can also vary. We say that
the system3.23 has abifurcationatd = 6* if the behavior of the system changes
qualitatively at9*. This can occur either because of a change in stability type or a
change in the number of solutions at a given valué. of

As an example of a bifurcation, consider the linear system

dX]_ dX2
— =X, — = —KkXqg — pxz,
dt 2 1 — HX2

dt
wherek > 0 is fixed andd is our bifurcation parameter. Figu®24 shows the
phase portraits for tlierent values of. We see that & = 0 the system transitions
from a single stable equilibrium point at the original to having an unstabliitequ
rium. Hence, ag goes from negative to positive values, the behavior of the system
changes in a significant way, indicating a bifurcation.

A common way to visualize a bifurcation is through the use tifarcation
diagram To create a bifurcation diagram, we choose a funcfierh(x) such that
the value ofy at an equilibrium point has some useful meaning for the question
we are studying. We then plot the valueyaf= h(xe(6)) as a function of) for all
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Figure 3.24: Phase portraits for a simple bifurcation.

equilibria that exist for a given parameter valueBy convention, we use dashed
lines if the corresponding equilibrium point is unstable and solid lines otherwis
Figure3.25shows examples of some common bifurcation diagrams. Note that for
some types of bifucations, such as the pitchfork bifurcation, there exiigés of

0 where there is more than one equilibrium point. A system that exhibits this type
of behavior is said to benultistable A common case is that there are two stable
equilibria, in which case the system is said todistable

Another type of diagram that is useful in understanding parametric depen
is aparametric stability diagraman example of which was shown in Figl8&23
In this type of diagram, we pick one or two (or sometimes three) parameters in the
system and then analyze the stability type for the system over all possiblénamb
tions of those parameters. The resulting diagram shows those regionatngiar
space where the system exhibits qualitativelffestent behaviors; an example is
shown in Figure8.26a

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
changes as the parameters are varied. In such a case it is revealinghe gigen-
values of the system as a function of the parameters. Such plots arerocatlbxtus
diagramsbecause they give the locus of the eigenvalues when parameters change
An example is shown in Figurg.26h Bifurcations occur when parameter values
are such that there are eigenvalues with zero real part. Computing remants
such LabVIEW, MATLAB and Mathematica have tools for plotting root loci.

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessaryefollbar
choose the parameters that one plots, including combining the natural parame
of the system to eliminate extra parameters when possible. Computer programs
such asAUTO, LOCBIF andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.
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Figure 3.25: Bifurcation diagrams for some common bifuiozat

Hopf bifurcation

The bifurcations discussed above involved bifurcation of equilibriumtpoiin-
other type of bifurcation that can occur is that a system with an equilibriunt po
admits a limit cycle as a parameter is changed through a critical value. The Hopf
bifurcation theorem provides a technique that is often used to undenstestter
a system admits a periodic orbit when some parameter is varied. Usuallyaisuch
orbit is a small amplitude periodic orbit that is present in the close vicinity of an
unstable steady state.

Consider the system dependent on a parameter

dx

p =g(x,a),XxeR", ¥ €R,

and assume that at the steady statsorresponding tar = « (i.e., g(x,@) = 0),
the linearizatiomg/ox(x, @) has a pair of (non zero) imaginary eigenvalues with
the remaining eigenvalues having negative real parts. Define the neamear
0 := a — a and re-define the system as

dx

i f(x,0) =: g(x,0+a),

so that the linearizatiof /9x(x,0) has a pair of (non zero) imaginary eigenvalues
with the remaining eigenvalues having negative real parts. Denot&@by: 5(6) +
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Figure 3.26: Stability plots a nonlinear system. The plotajpshows the real part of the
system eigenvalues as a function of the parangefEne system is stable when all eigenval-
ues have negative real part (shaded region). The plot irhs the locus of eigenvalues
on the complex plane as the parameéter varied and gives a fierent view of the stability
of the system. This type of plot is called@ot locus diagram

iw(0) the eigenvalue such thaf{0) = 0. Then, ifa—/ﬁE)H(O) # 0 the system admits a
small amplitude almost sinusoidal periodic orbit fsmall enough and the system
is said to go through a Hopf bifurcation @t= 0. If the small amplitude periodic
orbit is stable, the Hopf bifurcation is sasdipercritical while if it is unstable it is
saidsubcritical Figure3.27shows diagrams corresponding to these bifurcations.
In order to determine whether a Hopf bifurcation is supercritical or stitel;
it is necessary to calculate a “curvature” fioent, for which there are formu-
las (Marsden and McCrocken, 1976) and available bifurcation saftvearch as
AUTO. In practice, it is often enough to calculate the vatuef the parameter at
which Hopf bifurcation occurs and simulate the system for values of trenpeter
a close toa. If a small amplitude limit cycle appears, then the bifurcation must be
supercritical.

Example 3.13(Glycolytic oscillations) Recalling the model3.10 for the gly-
colytic oscillator, we ask whether such an oscillator goes through a Hopi- bif
cation. In order to answer this question, we consider again the exprasfsibe

eigenvalues
tr(J) + \/tr(J)2 - 4det(Q)
A12= ,
2
in which

V, 2 V, 2
tr(J) =ko—ki|—=| and detd)=ke[—] .
ko ko

The eigenvalues are imaginary if3)(= 0, that is, ifk; = k3/v3. Furthermore, the
frequency of oscillations is given iy = vA4det{) = 4ky(Vo/k2)*. Whenk; ~ k3 /3,
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Supercritical Hopf Bifurcation Subcritical Hopf Bifurcation

L.

Figure 3.27: Hopf Bifurcation. On the left hand,@mcreases a stable limit cycle appears.
On the right hand side, @increases a limit cycle appears but it is unstable.

an approximately sinusoidal oscillation appears. Wkgeis large, the Hopf bifur-
cation theorem does not imply the existence of a periodic solution. This isibeca
the Hopf theorem provides only local results. For obtaining global resuteshas
to apply other tools, such as the Poires@endixson theorem. \%

The Hopf bifurcation theorem is based on center manifold theory for rneanlin
dynamical systems. For a rigorous treatment of Hopf bifurcation is thusssacy
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to standard text in dynamical sys@8n4(.

3.6 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied te a wid
variety of dynamical systems. However, many of the methods require sagrtific
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section, we review methods for
doing such a reduction in the complexity of the models. Most of the techniques
are based on the common idea that if we are interested in the slower time scale
dynamics of a system, the fast time scale dynamics can be approximated by their
equilibrium solutions. This idea was introduced in Chaj2t@r the context of re-
duced order mechanisms; we present a more mathematical analysis ofstechss

here.

Singular perturbation analysis

Singular perturbation techniques apply to systems that have processegdiva
on both fast and slow time scales and that can be written in a standard foich, wh
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we now introduce. Let(y) € D := Dyx Dy c R"xR™ and consider the vector field

dx

at = f(xy,e), X(0) = Xo

d
Ed_)t/ =g(X.Y,€), ¥(0)=Yo

in which O< € <« 1 is a small parameter and boflix,y,0) andg(x,y,0) are well
defined. Since <« 1, the absolute value of the time derivativeyofan be much
larger than the time derivative of resulting iny dynamics that are much faster
than thex dynamics. That is, this system has a slow time scale evolutiax) @nd
a fast time-scale evolution (iy).

If we are interested only in the slower time scale, then the above system can be
approximated (under suitable conditions) by théuced system

dx

a = f(ny, 0)7 )?(0) = X07

0=g(x.y.0).
Lety =y(x) denoteslow manifoldyiven by the locally unique solution gfx,y,0)=

0. Theimplicit function theoren{60] shows that this solution exists whenever
0g/dy is non singular. Furthermore, the theorem also shows that

dy __dg™dg
dx gy ox
We can now approximate the dynamics«ifi.e., on the slow manifold) as
dx _
a = f(X,’y()—(),O), X(O) = Xo.

We seek to determine under what conditions the solut{onis “close” to the
solution x(t) of the reduced system. This problem can be addressed by analyzing
the fast dynamics. Letting= t/e be the fast time scale, we have that

dx d
Loy, L =gxkya (X(O).Y(0) = (Yo,

b

so that where < 1, x(r) does not appreciably change. Therefore, the above system
in ther time scale can be approximated by
dy

i d(Xo.y.0), y(0) = yo,
-

in which x is “frozen” at the initial condition. This system is usually referred to as
theboundary layesystem. If for allxg, we have thay(r) converges tg/(xo), then

for t > 0 we will have that the solutior(t) is well approximated by the solution
X(t) to the reduced system. This qualitative explanation is more precisely cdpture
by the following theorem32].
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D <0
y=y(X)

uniformly for xe Dy. Let the solution of the reduced system be uniquely defined for
te[0,t¢]. Then, for all t, € (O,t;] there is a constart® > 0 and setQ C D such that

Theorem 3.6. Assume that

Rea(ﬂ(%g(x, y)

X(t) — X(t) = O(e) uniformly for te [0, t¢],
y(t) — y(X(t)) = O(¢) uniformly for te [ty, t¢],

providede < €* and (Xg, Yo) € Q.

Example 3.14(Hill function). In Section2.1, we obtained the expression of the
Hill function by making a quasi-steady state approximation on the dynamics of
binding. Here, we illustrate how Hill function expressions can be detbyeal for-

mal application of singular perturbation. Specifically, consider the simplerignd
scenario of a transcription factor X with DNA promoter sites p. Assume thedt su

a transcription factor is acting as an activator of the promoter and let Y @ dhe
tein expressed under promoter p. Assume further that X dimerizes hmfalieg

to promoter p. The reaction equations describing this system are given by

k1 a 03
X+X=X,, X,+p=_C, C—-m,+C,
ko d
B Y s
my-my+Y, my—-0  Y—>0  p+C=por

The corresponding tferential equation model is given by

% = kg X? — ko Xo — aXo(prot — C) + dC
dc
at aXo(pot—C)-dC
dmy
o - ey
dy
- = -oY.
at Bmy -6

Since all the binding reactions are much faster than mRNA and protein gioduc
and decay, we have thiat, ky,a,d > «@,8,v,6. Letky, ;= ko /kq, Kq:=d/a, c:=ky/d,
ande := §/d. Then, we can re-write the above system by using the substitutions

0

1) 0 1)
d=-,a=—/ ,ky=c—, kg =c—,
€ 2= et Kme

Kge
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so that we obtain

e% = C%XZ—C(SXZ— Kﬁdxz(ptot—c:) +6C
T = e Xalpoi~O)—oC

%—nt}f =aC—ymy

% =pmy —oY.

This system is in the standard singular perturbation foBB)( As an exercise,

the reader can verify that the slow manifold is locally asympotically stable (see
Exercises). The slow manifold is obtained by setting0 and determineX, and

C as functions oX. These functions are given by

v - X _ PorX?/(knKa)
2" k' 1+ X2/ (kmKa)”

As a consequence, the reduced system becomes

dmy ProtX?/ (kmKq)

at T X (knKy) T

dy

i -sY.
which is the familiar expression for the dynamics of gene expression witbtan a
vator as derived in Sectidh 1 v

Example 3.15(Enzymatic reaction)Let’s go back to the enzymatic reaction
a _k
E+S=C->E+P,
d

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The corresponding systentfefetitial
equations is given by

cé_ltE =-aE-S+dC+kC, dd—? =aE-S—-(d+K)C, (3.24)
ds dP
i —aE-S+dC, rri kC. (3.25)

By assuming tha&, d > k, we obtained before that approximatel¢/dt = 0 and
thus thatC = E;:S/(S + Km), with ky, = (d+ K)/aanddP/dt = VinaxS/(S + km) with
Vmax= KEwot. From this, it also follows that

dE ds dP

a ~0 anda x —a. (326)



3.6. MODEL REDUCTION TECHNIQUES 3-51

How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, defige= d/a and
take the system to standard singular perturbation form by defining the sasall p
rametere ;= k/d, so thatd = k/¢, a = k/(Kge), and the system becomes

dE k dC k
ds k dP

— =——E-S+kC, =kC.
“dt T Kq ot

One cannot directly apply singular perturbation theory on this systenubeca
one can verify from the linearization of the first three equations that thadsry
layer dynamics are not locally exponentially stable since there are two geEm-e
values. This is because the three variaBlgS, C are not independent. Specifically,
E = Eioi— C andS+C+ P = S(0) = Sio, assuming that initially we have S in amount
S(0) and no amount of P and C in the system. Given these conservatiorthaws,
system can be re-written as

dC k dpP
Ea = K—d(Etot—C)'(Stot—C—P)—kC—EkC, a =kC.
Under the assumption made in the analysis of the enzymatic reactio8ghat
Eiot, We have tha€ <« Syt SO that the equations finally become
dC k dp
—— = —(Ett—C)- —P)-kC-ek — =kC.
€ dt Kd( tot C) (StOt ) C € C’ dt C

One can verify (see Exercises) that in this system, the boundary layantgs

is locally exponentially stable, so that setting O one obtains

co Etot(Stot — P)
(Stot — P) + km

and thus that the reduced system is given by

= (P)

d 5 (Stot - I5)

dt  "(Sir—P) + ki

This system is the same as that obtained in Chahtétowever,dC(t)/dt and
dE(t)/dtare not close to zero as obtained earlier. In fact, from the conser\lramn

S+C+P=S(0)= Stot,weobtalntha% %Ft’ ‘(’j(t:,lnwhlchnow (P)
Therefore &S " 5
__dJr oY By S(0) — A (BIOV _ P
i dt(1+aP(P))’ S(0) = St —y(P(0))- P(0) (3.27)
and _
dE dC

atCTdt (P) P E0)= Em—1(FO) (3.28)
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Figure 3.28: Simulation results for the enzymatic reactiomparing the approximations
from singular perturbation and from the quasi-steady sipfgroximation (QSSA). Here,
we haveSio = 100, Eyot = 1, a=d = 10, andk = 0.1. The full model is the one in equa-

tions 3.25.

which are diferent from expression8 26).

These expressions are close to those in equaBi@)(only whendy/dP(P) is
small enough. In the plots of FiguB28 we show the time trajectories of the orig-
inal system, of the Michaelis-Menten quasi-steady state approximation (QSSA
and of the singular perturbation approximation. In the full model (solid linggn F
ure 3.28), E(t) starts from a unit concentration and immediately collapses to zero
as the enzyme is all consumed to form the complex C by the substrate, which is
in excess. SimilarlyC(t) starts from zero and immediately reaches the maximum
possible value of one.

In the QSSA, bottE(t) andC(t) are assumed to stabilize immediately to their
(quasi) steady state and then stay constant. This is depicted by the dotteid plots
Figure 3.28 in which E(t) stays at zero for the whole time a@{t) stays at one
for the whole time. This approximation is fairly good as long as there is an gxces
of substrate. When the substrate concentration goes to zero as it is\afteah
to product, also the complex concentratidrgoes to zero (see solid line of Fig-
ure 3.28. At this time, the concentrations of complex and enzyme substantially
change with time and the QSSA is unsatisfactory. By contrast, the redunachdy
ics obtained from the singular perturbation approach well represeiatytigemics
of the full system even during this transient behavior. Hence, while tH&/AQSa
good approximation only as long as there is excess of substrate in the sirstem,
reduced dynamics obtained by singular perturbation is a good approxineston
when the substrate concentration goes to zero.
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Figure 3.29: The slow manifold of the syst&m= y(P) is shown in red. In black, we show
the trajectories of the the full system. These trajecta@kmpse into ar-neighbor of the
slow manifold. Here, we havBiot = 100,Et=1,a=d =10, andk = 0.1.

In Figure3.29 we show the curv€ = y(P) (in red) and the trajectories of the
full system in black. All of the trajectories of the system immediately collapse into
ane-neighbor of the curv€ = y(P). From this plot, it is clear thaty/oP is small
as long as the product concentratiBris small enough, which corresponds to a
substrate concentratiéhlarge enough. This confirms that the QSSA is good only
as long as there is excess of substfate \%

Exercises

3.1 (Frequency response of a phosphorylation cycle) Consider the robdedo-
valent modification cycle as illustrated in Chapgein which the kinase Z is not

s
constant, but it is produced and decays according to the reactisg:Z Let u(t)
u(t)

be the input stimulus of the cycle and ¥t be the output. Determine the fre-
quency response " to u, determine its bandwidth, and make plots of it. What

parameters can be used to tune the bandwidth?

3.2 (Design for robustness) Consider a one-step reaction model forsppbiyla-

tion cycle as seen in Homework 1, in which the input stimulus is the time-varying
concentration of kinasg(t). When found in the cellular environment, this cycle is
subject to possible interactions with other cellular components, such asthe no
specific or specific binding of X* to target sites, to noise due to stochastitity o
the cellular environment, and to other cross-talk phenomena. We will corkddac
these “disturbances” later during the course. For now, we can think e tfistur-
bances as acting like an aggregate rate of change on the output proteirtnixh
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we calld(t). Hence, we can model the “perturbed” cycle by

*

: X
X* = Z(t)klxtot(l— -

tot

) ~KoYioX* + (),

which is the same as you found in Homework 1, except for the presenite of
disturbancel(t). Assume that you can tune all the parameters in this system (we
will see later that this is actually possible to large extent by suitably fabricating
genetic circuits). Can you tune these parameters so that the respoXsg)db

d(t) is arbitrarily attenuated while the responseXsft) to Z(t) remains arbitrarily
large? If yes, explain how these parameters should be tuned to reaclesigs d
objective and justify your answer through a careful mathematical rgagoising

the tools introduced in class.

3.3 (Adaptation) Show that the equation of thefB#i 3.13 can be taken into the
standard integral feedback form through a suitable change of cabedin

3.4 (Design limitations) This problem is meant to have you think about possible
trade-df's and limitations that are involved in any realistic design question (we will
come back to this when we start design). Here, we examine this throughehe op
loop and negative feedback transcriptional component seen in atesBifgire 3-8

in the Lecture Notes). Specifically, we want to compare the robustnesssa tivo
topologies to cellular noise, crosstalk, and other cellular interactions. & ped

in Problem 1, we model these phenomena as a time-varying disturbfiactng

the production rate of mMRNA m and protein P. To slightly simplify the problem,
we focus only on disturbance#fecting the production of protein. The open loop
model becomes

= ao—ym P = fm- 6P +d(t)

and the negative feedback system becomes

M=o+ ym P = Bm-6P+d(t).

(07
K +Pn
Answer the following questions:

(a) After performing linearization about the equilibrium point, determine ana-
lytically the frequency response Bfto d for both systems.

(b) Sketch the magnitude plot of this response by hand for both systems, co
pare them, and determine what happeng asd« increase (note: if your
calculations are correct, you should find that what really matters for e ne
ative feedback system is the produg, which we can view as thieedback
gain). So, is increasing the feedback gain to arbitrarily large values the best
strategy to decrease the sensitivity of the system to the disturbance? Com-
ment.
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Figure 3.30: Circuit topologies with two components (piasg A and B.

Pick parameter values and use Matlab to draw Bode plots as the f&kedbac
gain increases and validate your predictions of (b). (Suggested parame
vy=1,6=1,K=1,n=1,08={1,10,1001000Q...}). Note: in Matlab, once

you have determined the matricAsB, C, andD for the linearization, you

can just do:SYS=ss(A,B,C,D); bode(SYS) and the Bode plot will pop

up.

Investigate the answer to (c) when you have 20, that is, the timescale of

the mMRNA dynamics becomes faster than that of the protein dynamics. What
does change with respect to what you found in (c)? Note: whi@icreases

you are reducing the (phase) lag within the negative feedback loop...

Wheny is at least 10 times larger thaih you can approximate the dy-

namics to the quasi-steady state. So, the two above systems can be reduced
to one diterential equation each for the protein concentraioffror these

two reduced systems, determine analytically the frequency respodsatb

use it to find out whether arbitrarily increasing the feedback gain is a good
strategy to decrease the sensitivity of response to the disturbance.

3.5(Bendixson criterion) Consider the possible circuit topologies of FigL3g in
which A and B are transcriptional components. Model each transcriptiongpo-
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nent by a first order system, in which you have approximated the mRNAnigsa

at the quasi-steady state. Hence, each topology will be representeti/bgmical
system in the plan&2. Use Bendixson criterion to rule out topologies that cannot
give rise to closed orbits.

3.6 (Two gene oscillator) Consider the feedback system composed of tvas gen
expressing proteins A (activator) and R (repressor), in which wetddoy A, R,

ma, andmg, the concentrations of the activator protein, the repressor protein, the
MRNA for the activator protein, and the mRNA for the repressor protegpee
tively. The ODE model corresponding to this system is given by

dmy  ao dmg A"
at O Kger ™ o TR an TR
dA dR
_ = —5A —_— = - R
T pLma at BMR—0

Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your finding through simulation.

3.7 (Goodwin oscillator) Consider the simple set of reactions
k k k
Xi—= Xo—= Xz.... = X,

Assume further that Xis a transcription factor that represses the production of pro-
tein X3 through transcriptional regulation (assume simple binding 0foXDNA).
Neglecting the mRNA dynamics of p{write down the ODE model of this sys-
tem and determine conditions on the length n of the cascade for which thensyste
admits a stable limit cycle. Validate your finding through simulation.

3.8 (Activator-repressor clock) A well known oscillating motif is given by the
activator-repressor clock by Atkinson et aP] in which an activator protein A
activates its own production and the one of a repressor protein R, whichrin
acts as a repressor for A. The ODE model corresponding to this clodkeis by

dmy A" +ao om d_l'T’R_ aAM om
dt K +R+Am VA dt ~ Kp+Am 'R
dA dR

g —SA kN _

gp = HBma—oA) gr ~PmR—dR

in whichu > 0 models the dference of speeds between the dynamics of the activa-
tor and that of the repressor. Indeed a key requirement for this systestillate

is that the dynamics of the activator ardfaiently faster than that of the repressor.
Demonstrate that this system goes through a Hopf Bifurcation with bifurcption
rameteru. Validate your findings with simulation by showing the small amplitude
periodic orbit.
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3.9 (Phosphorylation via singular perturbation) Consider again the modetof a
valent modification cycle as illustrated in Chapgein which the kinase Z is not
o
constant, but it is produced and decays according to the reac&??im.
u(t
(a) Consider thaks,k > keas 0, u(t) and employ singular perturbation with small
parameter, for example,= 6/k; to obtain the approximated dynamicsit) and
X*(t). How is this diterent from the result obtained in ExercB&? Explain.

(b) Simulate these approximated dynamics wh@is a periodic signal with fre-
guencyw and compare the responses of Z of this approximated dynamics to those
obtained in Exercis2.9as you change. What do you observe? Explain.

3.10(Hill function via singular perturbation) Show that the slow manifold of the
following system is asymptotically stable:

dX ¢, 5 dmy

== = c—X?—c5Xo — — Xo(Prot — —L =aC-

“a - Ci. CoX2 K 2(Prot — C) +6C, g = C-rmy,
dc ¢ dy

gt " K—dxz(ptot—c)—(SC, at = Bmy —6Y.

3.11(Enzyme dynamics via singular perturbation) Show that the slow manifold of
the following system is asymptotically stable:

dC k
gt - K—d(Etot—C) “(Stot— P) —kC—€kC,

dP

— =kC.
dt C

3.12(BE 150, Winter 2011; Based on Alon 4.6—Shaping the pulse) Consider a s
uation where X in an 11-FFL begins to be produced at tigf@ 0 that the level of
protein X gradually increases. The input sigBalandS, are present throughout.

(&) How does the pulse shape generated by the 11-FFL depend onedkbdhus
Kxz, Kxy, @andKy,, and ong, the production rate of protein X? (i.e. How does in-
creasing or decreasing these parameters change the height or pdsitierpolse
peak, the slope of the rise of the pulse, etc?)

(b) Analyze a set of genes, 2, ..., Z,, all regulated by the same X and Y in I1-
FFLs. Design thresholds such that the genes are turned ON in the risisg ph
the pulse in a certain temporal order and turned OFF in the declining ph#se of
pulse with the same order.

(c) Design thresholds such that the turn-OFF order is opposite the NNrorder.
Plot the resulting dynamics.
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3.13(BE 150, Winter 2011; Based on Alon 5.6—Bi-fan dynamics) Consider a bi-
fan in which activatorsX; and X, regulate geneZ; andZ,. The input signal of
X1,Sx2, appears at time=D and vanishes at timeD. The input signal oK, Sx2,
appears at time=D/2 and vanishes at2D. Plot the dynamics of the promoter
activity of Z; andZ, given that the input functions af; andZ, are AND and OR
logic, respectively.

3.14(BE 150, Winter 2011; Based on Alon 6.1—Memory in the regulated-feed-
back network motif) Transcription factor X activates transcription fa¥iandY-.

Y1 and Y, mutually activate each other. The input function at ¥ieand Y, pro-
moters is an OR gatéY{ is activated when either X of; binds the promoter). At
time =0, X begins to be produced from an initial concentration ef0XInitially

Y1 = Yo = 0. All production rates arg = 1 and degradation rates are= 1. All of

the activation thresholds are<.5. At time &3, production of X stops.

|

Y1 Y2

(a) Plotthe dynamics of, Y1, Y>. What happens t¥; andY; after X decays away?

(b) Consider the same problem, but n8andY- repress each other and X ac-
tivatesY; and represse¥,. At time t=0, X begins to be produced and the initial
levels areX =0,Y; =0,Y, = 1. Attime &3, X production stops. Plot the dynamics
of the system. What happens after X decays away?

3.15(BE 150, Winter 2011; Repressilator) Simulate the following simplified ver-
sion of the repressilator:

dmy Kp dp
dt ~ Le(E)n Kmded gt = Kirans™ ~ KpdegP1
d " Ty eed gy = ReendToKpaed
dmy  kp dps

—Kmded™s at = Kirans™s — KpdegP3

dt 1+ d



EXERCISES 3-59

(a) Simulate the system using the following parametkgs= 0.5,n = 2,Ky =

(b) Suppose the protein half-life suddenly decreases by half. Whichmzder(s)
will change and how? Simulate what happens. What if the protein half-lifeus d
bled? How do these two changed®eat the oscillatory behavior?

(c) Now assume that there is leakiness in the transcription process. Hestlu®
system’s ODE change? Simulate the system with a small leakiness (say, be-3) a
comment on how it fiects the oscillatory behavior.

3.16(BE 150, Winter 2011; Glycolytic oscillations) In almost all living cells, glu-

cose is broken down into the cell's energy currency, ATP, via the glgt®lyath-

way. Glycolysis is autocatalytic in the sense that ATP must first be consuntieel in

early steps before being produced later and oscillations in glycolytic metabolite

have been observed experimentally. We will look at a minimal model of glycolysis
dX _ vy dy 2VyR

a—m— X a:(q'Fl)kX—qW—l

Note that this system has been normalized such\that 1.

(&) While a system may have the potential to oscillate, the behavior still depends
on the parameter values. The glycolysis system undergoes muitfpkeations

as the parameters are varied. Using linear stability analysis, find the parameter
conditions where the system is stable vs. unstable. Next, find the conditieare w

the system has eigenvalues with nonzero imaginary parts.

(b) Letg=k=V=L1. Find the relationship betwedranda where the system is stable
or not. Draw the stability diagram and mark the regions where the systemlis stab
vs. unstable. In the same plot, mark the regions where the system hasagigsnv
with nonzero imaginary parts.

(c) Letg=k=V=1. Choosen anda such that the eigenvalues are unstable and have
nonzero imaginary parts. Use these parameter values and simulate the aronline
system in MATLAB. Sketch the time response of the system starting with initial
condition X(0)=1.2, Y(0)= 0.5 (you may use MATLAB or sketch by hand). Com-
ment on what you see compared to what linear stability analysis told you tid@out
system.

3.17(BE 150, Winter 2011) Finding limit cycles for nonlinear systems and under-
standing how changes in parameteffeet the amplitude and period of the oscil-
lation is dificult to do in analytical form. A graphical technique that gives some
insight into this problem is the use déscribing functionswhich is described in
Feedback SysterSection 9.5. In this problem we will use describing functions for

a simple feedback system to approximate the amplitude and frequency of a limit
cycle in analytical form.
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Vi
P = B u by | B
—{ ¥ —= R(-) = P(s) -

Consider the system with the block diagram shown below. The litasla relay
with hysteresis whose inpautput response is shown on the right and the process
transfer function isP(s) = € 5/s. Use describing function analysis to determine
frequency and amplitude of possible limit cycles. Simulate the system and cempar
with the results of the describing function analysis.

3.18(BE 150, Winter 2011) In this problem we will compare the model with single
methylation site vs. double methylation sites. The model with a single methylation
site is given by:

d(X+X#) _ ViR— VB X

dt K + Xx
where theactivity is given by A = X«. The model with two methylation sites is
given by

d(Xz + Xz*) _ RVRX]_

= —BVsX
dt XptXo B2
d(Xl + Xl*) RVRXO RVRX1
————~ =BVWgX - - BVgX
dt B S+ X0 Xp+Xo B
dXo RVRXo
— == BV X
dt Xo+ X1 T EVBALE

and the activity is given byA = Xp x« +Xo*. Let K = 10,VRR = 1,VgB = 2. Derive

the parameter sensitivities of the activities>] for both the single and double
methylation models. Comment on which parameter each model is most robust and
most sensitive to.

3.19(BE 150, Winter 2011) Consider a toy model of protein production:

dm dp B
a—f(p)—ym a—g(p) op

(a) Assume that there is transcriptional self-regulatib(p) = Kfpn). We now
know that the mRNA transcription process and thus we want to understand th
sensitivity with respect to the mRNA transcription ratg Compute the trans-

fer function froma to p. Plot this transfer function fow = 0.0028y = 0.1,y =
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0.0056 = 0.00L K = 0.002 Compare it with the transfer function fromy to p
without regulation {(p) = ag = 0.001). (Note: As a reminder on how to compute
these transfer functions, see BFS chapter 3 page 3-11).

(b) Now assume that there is no transcriptional regulatigp)(= aq) but there is
translational self-regulation such thg{p) = %. Computer the transfer function
from a to p wheng = 0.2. Compare again with the case with no regulation.

3.20(BE 150, Winter 2011) Consider a simple model of chemotaxis:

dd—xtm = keR+ K" (L)X, — K Xm

dXxi, X!

= —kgBP—"  _ k(L)X +K'X

dt B Kxz, + Xsm (L)X + m

whereX, is the concentration of methylated receptor complex,§has the con-
centration of activated, methylated receptor complex. Ligand concenteatiens
into the equation through the rat&(L). In this modelCheR(R) andCheB’ (BP)
concentrations are constant. (BFS, Section 5)

(a) Pick parameter values such thgBP > kgrR and plot the dynamics, doubling
the ligand concentration at time20. Compare to figure 5.12 in BFS.

(b) Now assume that CheR no longer acts in saturation. Rederive thenadygma
and plot. Comment on how this assumptidfeats adaptation.
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Chapter 4

Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, louildin
on our preliminary discussion of stochastic modeling in SecidnWe begin by
reviewing the various methods for modeling stochastic processes, incltiging
chemical master equation (CME), the chemical Langevin equation (CLE)}&nd
Fokker-Planck equation (FPE). Given a stochastic description, wehesmana-

lyze the behavior of the system using a variety of stochastic simulation and analy
sis tools. In many cases, we must simplify the dynamics of the system in order to
obtain a tractable model, and we describe several methods for doing Isalimgc
finite state projection, linearization and Markov chain representations|dtéra
vestigate how to use data to identify some the structure and parameters aksioch
models.

PrerequisitesThis chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good workioglkdge of
basic probability and some exposure to simple stochastic processes (@wnidr
motion), at the level of the material presented in Apperiixrawn from B7]).

TAKEN FROM CHAPTER 2:

Example 4.1(Combinatorial promoter)A combinatorial promoter is a region of
DNA in which multiple transcription factors can bind and influence the sulesgqu
binding of RNA polymerase. Combinatorial promoters appear in a numbeatof n
ural and engineered circuits and represent a mechanism for creatfitofp-tike
behavior, for example by having a gene that controls expression of istran-
scription factors.

One method to model a combinatorial promoter is to use the binding energies
of the diferent combinations of proteins to the operator region, and then compute
the probability of being in a given promoter state given the concentratiogobf ef
the transcription factors. Tabdel shows the possible states of a notional promoter
that has two operator regions—one that binds a repressor protein Bnatiaer
that binds an activator protein A. As indicated in the table, the promoter hees thr
(possibly overlapping) regions of DNA: OR1 and OR2 are binding siteshfer
repressor and activator proteins, and Prom is the location where RNApmse
binds. (The individual labels are primarily for bookkeeping purposesraay not
correspond to physically separate regions of DNA.)

To determine the probabilities of being in a given macrostate, we must compute
the individual microstates that occur at a given concentrations of gepreac-
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Table 4.1: Configurations for a combinatorial promoter wvath activator and a repres-
sor. Each row corresponds to a specific macrostate of theqteornim which the listed
molecules are bound to the target region. The relative gnafrgtate compared with the
ground state provides a measure of the likelihood of tha¢ stecurring, with more nega-
tive numbers corresponding to more energetically faverabhfigurations.

State  OR1 OR2 Prom Eq4(AG) Comment

S - - - 0 No binding (ground state)

S, - - RNAP -5 RNA polymerase bound

S3 R - - -10 Repressor bound

S4 — A - -12 Activator bound

Ss - A RNAP -15 Activator and RNA polymerase

tivator and RNA polymerase. Each microstate corresponds to an indiaduaf
molecules binding in a specific configuration. So if we hayeepressor molecules,
then there is one microstate correspondingaohdifferent repressor molecule that

is bound, resulting img individual microstates. In the case of configurati®s
where two dfferent molecules are bound, the number of combinations is given by
the product of the numbers of individual moleculeg; nrnap, reflecting the pos-
sible combinations of molecules that can occupy the promoter sites. Thdlovera
partition function is given by summing up the contributions from each microstate:

Z = g Eo/(keT) NRNAP g Ernap/(keT) N] g Er/(keT)
+Na g Ea/keT) NANRNAP g Earnap/(keT) (4.1)

The probability of a given macrostate is determined using equa®@ or
example, if we define the promoter to be “active” if RNA polymerase is bound
to the DNA, then the probability of being in this macrostate as a function of the
various molecular counts is given by

1
E keT —En: keT
Pactive(NR, NA, NRNAP) = 7 (nRNAPe ruap/(keT) 4y nrape Eare/ (ke ))

3 Ka:RnAP NA + KrnAP
1+ krnap + KR MR + (Ka + Ka:rnapP)NA

where
Ky = e (Ex—Eo)/(keT)_

From this expression we see thatif > na thenPggve tends to 0 while ifha > ng
thenPgcivetends to 1, as expected. \%

Example 4.2 (Repression of gene expressioWye consider a simple model of
repression in which we have a promoter that contains binding sites for RINA p
merase and a repressor protein R. RNA polymerase only binds wherptiesser
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is absent, after which it can undergo an isomerization reaction to form em op
complex and initiate transcription. Once the RNA polymerase begins to create
MRNA, we assume the promoter region is uncovered, allowing anotheissepre
or RNA polymerase to bind.

The following reactions describe this process:

R1: R+DNA = R:DNA

R2: RNAP+DNA — RNAP:DNA®

R3: RNAP:DNA®— RNAP:DNA°

R4: RNAP:DNA° — RNAP+DNA (+mRNA),

where RNAP:DNA' represents the closed complex and RNAP:DNapresents

the open complex. The states for the system depend on the number of n®lecule
of each species and complex that are present. If we assume that weittark
repressors ancknap RNA polymerases, then the possible states for our system are
given by

State DNA R RNAP R:DNA RNAP:DNA RNAP:DNA°
a1 1 NR NRNAP 0 0 0
(o) 0 nr-1 nRrnapP 1 0 0
03 0 NR Nrnap— 1 0 1 0
04 0 R NrRnap—1 0 0 1

Note that we do not keep track of each individual repressor or RNpnperase
molecule that binds to the DNA, but simply keep track of whether they arecbhoun
or not.

We can now rewrite the chemical reactions as a set of transitions between the
possible microstates of the system. Assuming that all reactions take placelin a vo
umeQ, we use the propensity functions for unimolecular and bimolecular reactions
to obtain:

&0 g —ay aE])=(k/Qnmn & g—a; aE) =K
& g —ay aE) =K /e & gg—ay aE) =k
&1 Qg— 0y alé)=ks & q,— 0 alE) =k

The chemical master equation can now be written down using the propensity fu
tions for each reaction:

P(qy,t) —(ki /Q)NR — (ké /QNrnap K] K, Ka ) (P(Qy,1)
d [P t)| _ (ki /Q)ng -« 0  0||P@Y
dt P(Q3,t) (k;/Q)nRNAp 0 —k;—kg 0 P(Q3,t) '

P(0a, 1) 0 0 ks —kg) (P(ds,1)
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Figure 4.1: Numerical solution of chemical master equatitorsimple repression model.

The initial condition for the system can be takerPég, 0) = (1,0,0,0), correspond-
ing to the state);. A simulation showing the evolution of the probabilities is shown
in Figure4.1

The equilibrium solution for the probabilities can be solved by setiing 0,
which yields:

Pe(1) = — I(r1f|<49(k5 o

Ky Kanr(K; + k3) + K Ky nrnap(Ks + Ka) + KT KaQ(K, + k3)
Pe(02) = — k{:<4 o

ky kanr(K; + k3) + K K, Nrnap(Ks + Kg) + K kg Q(KS, + ka)
Pu(d) = — ko

Ky Kanr(K;, + k3) + K Ky Nrnap(Ks + Ka) + K KaQ(K;, + k3)
Pe(0a) = gl

k! Kanr (K, + ka) + K. kS nrnap(ks + Ka) + K. kaQ(KS + ks)

We see that the functional dependencies are similar to the case of the ctoriaina
promoter of Exampléet.1, but with the binding energies replaced by kinetic rate
constants. v

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are in steady stategzonfi
urations. In this case, we can make use of the steady state statistical mechanic
techniques described in Secti@rl and relate the expression of the gene to the
probability that the activator or repressor is bound to the DRy (ng. This can
be done at the level of the reaction rate equation by replacing ffezeatitial equa-
tions for activator or repressor binding with their steady state valueg iHstead
we demonstrate how to account for this rapid binding in the simplifiéerdintial
eqguation models presented at the end of Se&ién
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Recall that given the relative energies of thetient microstates of the system,
we can compute the probability of a given configuration using equa2idi (

Z

Consider the regulation of a geaawith a protein concentration given ljy, and
a corresponding mRNA concentratiom,. Let b be a second gene with protein
concentratiorpy, that represses the production of protein A through transcriptional
regulation. If we legpoungrepresent the microstate corresponding to the appropri-
ate activator or repressor bound to the DNA, then we can conj{gtgung as a
function of the concentratiopy,, which we write a$pound Pp)- FOr a repressor, the
resulting mMRNA dynamics can be written as

dmy

at = (1~ Ppound Pb))@a0 — YaMa. (4.2)
We see that theffect of the repression is modeled by a modification of the rate of
transcription depending on the probability that the repressor is bound NAe

In the case of an activator, we proceed similarly. The modified mMRNA dynamics
are given by

dmy

T Pbound Po)@a0 — YaMa, (4.3)
where now we see that B must be bound to the DNA in order for transcrifiion
occur.

As we shall see in Chapter (see also Exercis®.2), the functional form of
PuoungCan be nicely approximated by a monotonic rational function in the form of
a Hill function [20, 66]. For a repressor, the Hill function is given by

f;(pb) = 1~ Ppound Pb) =

Qab
Kab+ Py
where the subscripts correspond to a protein B repressing produétioprotein
A, and the parametertgy, kap andny, describe how B represses A. The maximum
transcription rate occurs whep, = 0 and is given bywap/Kap + @ao. The mini-
mum rate of transcription occurs wheg — oo, giving aao, which describes the
“leakiness” of the promoter. The parametgy, is called theHill coefficient and
determines how close the Hill function is to a step function. The Hillficcient
is often called thedegree of cooperativitpf the reaction, as it often arises from
molecular reactions that involve multiple (“cooperating”) copies of the protein
as seen in Sectio2. 1

+ a0,

4.1 Stochastic Modeling of Biochemical Systems

Chemical reactions in the cell can be modeled as a collection of stochastts even
corresponding to chemical reactions between species, including bindéhgra
binding of molecules (such as RNA polymerase and DNA), conversiomeket
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of species into another, and enzymatically controlled covalent modificatiats s
as phosphorylation. In this section we will briefly survey some of theint
representations that can be used for stochastic models of biochemieahsy#®l-
lowing the material in the textbooks by Philligs al.[73], Gillespie [33] and Van
Kampen pQ].

Statistical physics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.

As described briefly already in Chapt2y the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configucéhtioa
components (species) in the system relative to each other and we mustrateume
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the proba-
bility that system is in a given microstate. This probability can be calculatedlbase
on the energy levels of the fegrent microstates. Consider a setting in which our
system is contained within a reservoir. The total (conserved) energydn Qy
Eiot and we letE; represent the energy in the reservoir. Eé]t) and Egz) represent
two different energy levels for the system of interest andNgtE,) be the num-
ber of possible microstates of the reservoir with endtgyThe laws of statistical
mechanics state that the ratio of probabilities of being at the energy E\géhmd
E(SZ) is given by the ratio of number of possible states of the reservoir:

P(EY) _ Wi (Eior— EL)
P(EY)  Wi(Ew-EY)

Defining the entropy of the system &s= kgInW, we can rewrite equatiod(4) as

(4.4)

Wi (Erot - Egl)) B S (Eor-EY) /ka
Wr (Etot - E(Sz)) esr(Etot—E(sz)) /Ke

We now approximat&, (Eqt — Es) in a Taylor series expansion aroubgy, under
the assumption tha, > Eg:

0S
Sr(Etot - Es) ~ S‘r(Etot) - 8_Er Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

0S 1

9ElN T
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and we obtain
P(Egl)) e—E(sl)/kBT
PED) " et

This implies that
P(ED) o ¢ E /)

and hence the probability of being in a microstais given by
B(a) = e S/t (@5)

where we have writtek for the energy of the microstate adds a normalizing
factor, known as theartition function defined by

7= Z g Ea/(keT)
geQ

By keeping track of those microstates that correspond to a given sy&ém s
(also called a macrostate), we can compute the overall probability that a give
macrostate is reached.

In order to determine the energy levels associated witlerdint microstates,
we will often make use of th&ree energyof the system. Consider an elementary
reaction A+ B = AB. Let E be the energy of the system, taken to be operating
at pressuré in a volumeV. Theenthalpyof the system is defined &= E + PV
and theGibbs free energis defined a$&s = H — T S whereT is the temperature of
the system an@ is its entropy (defined above). The change in bond energy due to
the reaction is given by

AH = AG+TAS,

where theA represents the change in the respective quanrtityd represents the
amount of heat that is absorbed from the reservoir, which tlffeta the entropy
of the reservoir.

The resulting formula for the probability of being in a microstais given by

1_
P(q) — Ze AG/kBT.

Example 4.3(Ligand-receptor binding)To illustrate how these ideas can be ap-
plied in a cellular setting, consider the problem of determining the probability that
a ligand binds to a receptor protein, as illustrated in FigueWe model the sys-
tem by breaking up the cell intQ different locations, each of the size of a ligand
molecule, and keeping track of the locations of thégand molecules. The mi-
crostates of the system consist of all possible locations of the ligand mdaecule
including those in which one of the ligand molecules is bound to the receptor
molecule.
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Figure 4.2: Statistical physics description of ligandeggtor binding. The cell is modeled
as a compartment witf sites, one of which contains a receptor protein. Ligand moés
can occupy any of the sites (first column) and we can compuweGibbs free energy
associated with each configuration (second column). Thierfive represents all possible
microstates in which the receptor protein is not bound, evttile second represents all
configurations in which one of the ligands binds to the reme@y accounting for the
multiplicity of each microstate (third column), we can camg the weight of the given
collection of microstates (fourth column). Figure from IRps, Kondev and Theriot{3].

To compute the probability that the ligand is bound to the receptor, we must
compute the energy associated with each possible microstate and then compute th
weighted sum of the microstates corresponding to the ligand being boumnagliro
ized by the partition function. We |&is, represent the free energy associated with
a ligand in free solution aneyoung represent the free energy associated with the
ligand being bound to the receptor. Thus, the energy associated with tateom
which the ligand is not bound to the receptor is given by

AGsoI = I—Esol

and the energy associated with microstates in which one ligand is bound to the
receptor is given by
AGpound= (L — 1)Esol + Ebound

Next, we compute the number of possible ways in which each of these two
situations can occur. For the unbound ligand, we Hawolecules that can be in
any one ofQ2 locations, and hence the total number of combinations is given by
Qo ob
L) TLQ-L)! L
where the final approximation is valid in the case whes Q. Similarly, the num-
ber of microstates in which the ligand is bound to the receptor is

Q Ol QL—l
NsoI:(L_l): (L-D(Q-L+1)! ~ (L-1)r

I\lsol = (
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Using these two counts, the partition function for the system is given by

QL LEsol QL_l _ (L’l)Eiolflr_Ebound

Z~—e feT + e B

L! (L-1)!
Finally, we can compute the steady state probability that the ligand is bound by
computing the ratio of the weights for the desired states divided by the partition
function

1 QL_]‘ _ (L-DEso+Epound
Poound= 5 - 77—+ € 8l .
Z (L=

\%

While the previous example was carried out for the special case of a ligand
molecule binding to a receptor protein, in fact this same type of computation can
be used to compute the probability that a transcription factor is attached toea piec
of DNA or that two freely moving molecules bind to each other. Each of thesesc
simply comes down to enumerating all possible microstates, computing the energy
associated with each, and then computing the ratio of the sum of the weights for
the desired states to the complete partition function.

Example 4.4(Transcription factor binding)Suppose that we have a transcription
factor R that binds to a specific target region on a DNA strand (such garthe
moter region upstream of a gene). We wish to find the probalilitynq that the
transcription factor will be bound to this location as a function of the number of
transcription factor moleculas in the system. If the transcription factor is a re-
pressor, for example, knowirg,oundNR) Will allow us to calculate the likelihood

of transcription occurring.

To compute the probability of binding, we assume that the transcription factor
can bind non-specifically to other sections of the DNA (or other locationsen th
cell) and we letN,s represent the number of such sites. WeHg§unq represent
the free energy associated with R bound to its specified target regioBanelp-
resent the free energy f&t in any other non-specific location, where we assume
that E;extbound< Ens. The microstates of the system consist of all possible as-
signments of theng transcription factors to either a non-specific location or the
target region of the DNA. Since there is only one target site, there cahrhest
one transcription factor attached there and hence we must count all wagfsein
which either zero or one molecule of R are attached to the target site.

If none of theng copies of R are bound to the target region then these must be
distributed between thays non-specific locations. Each bound protein has energy
Ens, SO the total energy for any such configuratiomggEns. The number of such
combinations is(ﬂ;S) and so the contribution to the partition function from these
microstates is

7 Nns e "REns/(keT) _ Nis! e NREns/(kaT)
ns NR!(Nhs—NR)!
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For the microstates in which one molecule of R is bound at a target site and the
otherng — 1 molecules are at the non-specific locations, we have a total energy of
Epound+ (NR — 1)Ens and((n':”_sl)) possible such states. The resulting contribution to

the partition function is

Nns! o (Esounc-(R-1Eng)/ (kaT)

Zbound:

The probability that the target site is occupied is now computed by looking at
the ratio of theZyoungto Z = Zns+ Zpoung After some basic algebraic manipulations,
it can be shown that

(ﬁﬁp&l) exXp[—(Ebound+ Ens)/(ksT)]
+ (ﬁﬁwl) expl—(Epound+ Ens)/(KsT)] ‘

If we assume thall,s > ng, then we can write

PboundNR) =

kng
1+kng ’

1
PooundNR) ~ where k= N exp[—(Ebound— Ens)/(ksT)].
ns
As we would expect, this says that for very small numbers of repreBgisd
is close to zero, while for large numbers of repressBgsung— 1. The point at
which we get a binding probability of 0.5 is wher = 1/k, which depends on the
relative binding energies and the number of non-specific binding sites. V

Chemical master equation (CME)

The statistical physics model we have just considered gives a descrgiftibe
steady statgroperties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about dveobeh

the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or thentyaf a
system that does not have an equilibrium configuration. In these instameenust
extend our formulation to keep track of how quickly the system transitioms fro
one microstate to another, known as themical kineticef the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. LE(q,t) represent the probability that the system is in
microstateq at a given time. Hereq can be any of the very large number of pos-
sible microstates for the system. We wish to write an explicit expression for how
P(g,t) varies as a function of time, from which we can study the stochastic dynam-
ics of the system.

We begin by assuming we have a set\freactions R j =1,..., M, with ¢;
representing the change in state associated with reaqtjﬂpacificallygj is given
by the jth column of the stoichiometry matriX. The propensity functiordefines
the probability that a given reaction occurs in &hgiently small time stejlt:
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aj(q,t)dt = Probability that reactionJRNiII occur between time
and timet + dt given thatX(t) = q.

The linear dependence att relies on the fact thadt is chosen sfliciently small.
We will typically assume thaa; does not depend on the timh@nd writea;(q)dt
for the probability that reactiopoccurs in state.
Using the propensity function, we can compute the distribution of states at time
t+ dt given the distribution at time

M M
P(d,t+dt| do,to) = P(at | do, t)(1— Y aj(a)dlt) + D P(a—¢; | do, to)aj(q—&;)dt
=1 j=1

M
= P(,t | do.to) + . (a(d—£))P(a—£j,t] Go,to) — & (A)P(c ] Gl to))dlt.
i=1

(4.6)
Sincedtis small, we can take the limit @& — 0 and we obtain thehemical master
equation(CME):

M

Z—T(q,t | do, to) = Z(aj (@-£)P(@—£j.t| do.to) - aj(@)P(aLt | do,to))  (4.7)
=1

This equation is also referred to as foeward Kolmogorov equatiofor a discrete
state, continuous time random process.

We will sometimes find it convenient to use a slightlffdient notation in which
we leté represent any transition in the system state (without enumerating the reac-
tions). In this case, we write the propensity functiora@s g, t), which represents
the incremental probability that we will transition from sttt stateq+ £ at time
t. When the propensities are not explicitly dependent on time, we simply write
a(¢;g). In this notation, the chemical master equation becomes

%(q,t | o, to) = Z(a@; q-¢£j)P(a—-¢j,t]qo.to) —a(¢; q)P(a.t| QOJO))v (4.8)
3

where the sum is understood to be over all allowable transitions.
Under some additional assumptions, we can rewrite the master equation in dif-
ferential form as

RLCRE Ddeia-0Pa-60-YaEaran. (49

where we have dropped the dependence on the initial condition for nabtiomn-
venience. We see that the master equatiodirear differential equation with state
P(g,t). However, it is important to note that the size of the state vector can be very
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large: we must keep track of the probability of every possible microstateeof th
system. For example, in the case of the ligand-receptor problem discemdied,

this has a factorial number of states based on the number of possible sites in th
model. Hence, even for very simple systems, the master equation cannatlyypic
be solved either analytically or in a numericalljieient fashion.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as ouréjpisae
sentation of the underlying dynamics. As we shall see, starting from thatiequ
we can then derive a variety of alternative approximations that allow usstwean
specific equations of interest.

The key element of the master equation is the propensity funeiigm,t),
which governs the rate of transition between microstates. Although the detailed
value of the propensity function can be quite complex, its functional fornftemo
relatively simple. In particular, for a unimolecular reactiof the form A— B,
the propensity function is proportional to the number of molecules of A tleat ar
present:

a(é;q.t) = cena. (4.10)

This follows from the fact that each reaction is independent and herdikéhi-
hood of a reaction happening depends directly on the number of copfeshaft
are present.

Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules df égme
that are present (since this is the number of independent reactionsthatcur)
and inversely proportional to the voluni® Hence, for a reactio#i of the form
A+B — C we have c

a;q,t) = énAnB. (4.11)

The rigorous verification of this functional form is beyond the scopeisftéxt, but
roughly we keep track of the likelihood of a single reaction occurring betwe
and B and then multiply by the total number of combinations of the two molecules
that can reactra - ng).

A special case of a bimolecular reaction occurs whenB\ so that our reaction
is given by 2 A— B. In this case we must take into account that a molecule cannot
react with itself, and so the propensity function is of the form

Ce
al¢q,t) = ﬁnA(nA -1). (4.12)

Although it is tempting to extend this formula to the case of more than two
species being involved in a reaction, usually such reactions actually invoive
binations of bimolecular reactions, e.g.:

A+B+C—D = A+B—AB AB+C—D
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Table 4.2: Examples of propensity functions for some comoases 34]. Here we take
andrp to be the &ective radii of the moleculesy® = mymy/(my + my) is the reduced mass
of the two molecules is the volume over which the reaction occurds temperaturesg

is Boltzmann’s constant ang, n, are the numbers of molecules AfandB present.

Reaction type Propensity function cagcient, ¢,
. - 172
Reaction occurs if molecules “touch” (ikg;r) m(ra+rp)?

. . o 12
Reaction occurs if molecules collide with enexgy (ik—%T) / A(ra+rp)2-e</keT
Steady state transcription factor PpoundocNRNAP

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.

The propensity functions for these cases and some others are givenied L.

Example 4.5(Transcription of mMRNA) Consider the production of mMRNA from
a single copy of DNA. We have two basic reactions that can occur: mRMA ca
be produced by RNA polymerase transcribing the DNA and producing adAnR
strand, or mRNA can be degraded. We represent the micraptdtdhe system in
terms of the number of mMRNA's that are present, which we writa fig ease of
notation. The reactions can now be representegl-as-1, corresponding to tran-
scription and¢ = -1, corresponding to degradation. We choose as our propensity
functions

a(+1;n,t) =a, a(-1;n,t) = yn,

by which we mean that the probability of that a gene is transcribed indinsexdt
and the probability that a transcript in tindéis yndt (proportional to the number
of MRNA'S).

We can now write down the master equation as described above. Equaépn (
becomes

P(t+d)=PM(1- > aEnd)+ > Ph-£vaEq-£dt
&=+1,-1 &=+1-1
= P(n,t)—a(+1;n,t)P(n,t) —a(-1;n,t)P(n,t)
+a(+L,n-1t)P(n-1t)+a(-1;n+ 1, t)P(n+1)
= P(n,t) + aP(n—1,t)dt— (e —yn)P(n,t)dt +y(n+ 1)P(n+ 1, t)dt.
This formula holds fon > 0, with then = 0 case satisfying
P(0,t+dt) = P(0,t) — aP(0,t)dt + yP(1, t)dt.

Notice that we have an infinite number of equations, simcan be any positive
integer.
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We can write the dferential equation version of the master equation by sub-
tracting the first term on the right hand side and dividingdlly

dEtP(n, t) = aP(n—1,t) — (@ +yn)P(n,t) + y(n+ 1)P(n+ 1,t), n>0

dgtP(O, t) = —aP(0,t)dt+yP(1,1).

Again, this is an infinite number of fierential equations, although we could take
some limitN and simply declare th&(N,t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we se®(n,t) = 0 and look for a constant solutid®(n,t) = pe(n). This yields
an algebraic set of relations

0= —ape(0)+ype(1) == a@Pe(0) = ype(1)
0= ape(0) - (a+7¥)pe(1) + 2y pe(2) ape(1) = 2ype(2)

0= ape(1) - (a+ 2y)pe(2) + 3y pe(3) ape(1) = 3ype(3)

ap(n-1)=nyp(n).

It follows that the distribution of steady state probabilities is given by the Boiss
distribution @/y)"
— ey Y
p(n) = &7,

and the mean, variance and fiogent of variation are thus

/l:

Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolutioa of th
distribution of a system, but it can often be quite cumbersome to work with directly
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shalidars
known as theehemical Langevin equatiqi©CLE).

To derive the chemical Langevin equation, we start by assuming that theenumb
of molecules in the system is large and that we can therefore represaysteen
using a vector of real numbeb§, with X; representing the (real-valued) number
of molecules in § (Often X; will be divided by the volume to give a real-valued
concentration of species.pIn addition, we assume that we are interested in the
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dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.

Let X(t) be the state vector for the system, where we assume now that the ele-
ments ofX are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a numbeactions over
a timer to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

M M
Xi(t+7) = X0+ > &iai(XO)r+ > &ja2(XOIN (0, v7),
j=1 j=1

wherea; are the propensity functions for the individual reactiafisare the corre-
sponding changes in the system stafeand \V; are a set of independent Gaussian
random variables with zero mean and variance

If we assume that is small enough that we can use the derivative to approxi-
mate the previous equation (but still large enough that we can averagmoliple
reactions), then we can write

dX(t) < SPRY 3

—qr = 2 aaXO)+ ) g X)) = AXO)+ ) Bi(XO)().

j=1 j=1 j=1

J J J (4.13)
wherel’; are white noise processes (see AppefBIB. This equation is called the

chemical Langevin equatiaiCLE).

Example 4.6(Protein production)Consider a simplified model of protein produc-
tion in which mRNAs are produced by transcription and proteins by translation
We also include degradation of both mRNAs and proteins, but we do notlitihede
detailed processes of elongation of the mRNA and polypeptide chains.

We can capture the state of the system by keeping track of the numberie$ cop
of mMRNA and proteins. We further approximate this by assuming that the number
of each of these is sficiently large that we can keep track of its concentration,
and henceX = (nm,np) whereny, € R is the amount of mMRNA and, € R is the
concentration of protein. Lettin@ represent the volume, the reactions that govern
the dynamics of the system are given by:

Ri: ¢ — mRNA & =(1,0) a(X) =a
Ro: MRNA S ¢ &=(-10)  &(X)=yny
Rs: mRNAi mRNA+protein  &3=(0,1) az(X) =B nm

Ry: proteini é &, =(0,-1) ay(X) = d np.
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Substituting these expressions into equatibrid, we obtain a stochastic fier-

ential equation of the form
dt (np B —6)\np) O (\/,Bnm+6np)l“p
wherel'r, andI'p are independent white noise processes with unit variance. (Note

that in deriving this equation we have used the fact that the sum of twoendept
Gaussian processes is a Gaussian process.) \%

>

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordindigrential equa-
tion that describes the evolution of the system state. A slightferint (but com-
pletely equivalent) representation of the dynamics is to model how the probab
ity distribution P(g,t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density functigoa(x,t). This formula is known
as theFokker-Planck equation~PE) and is essentially an approximation on the
chemical master equation.

Consider first the case of a random process in one dimension. We astme
the random process is in the same form as the previous section:

X
% = A(X(t)) + B(X(1))I'(t). (4.14)
The functionA(X) is called thedrift term and B(X) is thediffusion term It can be
shown that the probability density function f&r p(x,t | Xo, to), satisfies the partial
differential equation

a—p(xtl t)——ﬁ(A(xt) (x.t] t))+3‘9—2(|32(x t)p(x.t| Xo,t0)) (4.15)
(9t ] X0$ 0 - 8X 9 p 9 X0$ 0 Zaxz 9 p 9 XO’ O .

Note that here we have shifted to the probability density function since we are
consideringX to be a continuous state random process.

In the multivariate case, a bit more care is required. Using the chemicaizaing
equation 4.13, we define

M M
DIt = > B, Cij(xt) = > Br(x DBk, i<j=1... M.
j=1 k=1
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The Fokker-Planck equation now becomes

ap RN
o Ot %00 =0 5 (A OROC X0.0)

+1i 6 & (Di(x,t)p(x,t | Xo,t0))

> . av2 i 4 9 » 0

26 %o (4.16)
M 2
2 %0, (Cij (%Yt X0, o).

L.
—

A
=

Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation prapjgtex-
imations to the chemical master equation. A slightlffetient approximation can
be obtained by expanding the density function in terms of a size parafheiiis
approximation is know as théear noise approximatiofLNA) or the Q expan-
sion[50].

We begin with a master equation for a continuous random varkbiénich we
take to be of the form

k0= [ (@a(Ex-p(x-£0 - an(EXPx D) e

where we have dropped the dependence on the initial condition for nabsiom
plicity. As before, the propensity functiam,(¢; X) represents the transition prob-
ability between a stat& and a statex+ ¢ and we assume that it is a function of
a parametef2 that represents the size of the system (typically the volume). Since
we are working with continuous variables, we now have an integral in jpifacer
previous sum.

We now assume that the mean Xfcan be written a£2¢(t) whereg(t) is a
continuous function of time that represents the evolution of the meaii@f To
understand the fluctuations of the system about this mean, we write

X =Qp+Q27,

whereZ is a new variable representing the perturbations of the system about its
mean. We can write the distribution fdras

pz(z.1) = px(Qa() + QP2 1)
and it follows that the derivatives qfz can be written as
9"pz _ Q%Vf)vpx

z N

opz 0px ~dpdpx 0Jpx 1dpdpz
ot ot +th ox ot +det 0z’
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We further assume that tie dependence of the propensity function is such that

an(¢.Q9) = F(Q)a(¢; ¢),

whered’is not dependent of2. From these relations, we can now derive the master
equation forpz in terms of powers of2 (derivation omitted).
The QY2 term in the expansion turns out to yield
de X(0)
— = | £a(¢, Q) dé, 0)=—,
L L OR
which is precisely the equation for the mean of the concentration. It ctirefuve
shown that the terms i2° are given by

opz(z7) _ 82pz(z.1)

L20) - (¢) 2@ )+ ) ), @)

where
av(X) = f EVA(E; X) dé, =0 Q).

Notice that in the case thatt) = ¢ (a constant), this equation becomes the Fokker-
Planck equation derived previously.

Higher order approximations to this equation can also be carried out binkee
track of the expansion terms in higher order powergofn the case wher€
represents the volume of the system, the next term in the expangion &nd this
represents fluctuations that are on the order of a single molecule, winictsaally
be ignored.

Rate reaction equations (RRE)

As we already saw in Chapt@rthe reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large raimber
molecules whose state can be approximated using just the concentratioes of th
molecules. We re-derive the results from Sectohhere, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equatioAsl@®, from which we can write
the dynamics for the average quantity of the each species at each point:in time

dOG() _
o =;fji<aj(><(t))>,

where the second order term drops out under the assumption thiatstee in-
dependent processes. We see that the reaction rate equations follbsviting

X = (X)/Q andassuminghat(a;(X(t))) = a;((X(t))). This relationship is true when

a; is linear (e.g., in the case of a unimolecular reaction), but is an approximation
otherwise.
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4.2 Simulation of stochastic systems

Suppose that we want to generate a collection of sample trajectories fehastic
system whose evolution is described by the chemical master equétiyn (

%Hq0=%ﬁﬁﬂ—aﬂmfﬂ—%ﬁ@mwmﬁ,

whereP(q,t) is the probability of being in a microstatgat timet (starting from
(o at timetg) anda(&;q) is the propensity function for a reactighstarting at a
microstateq and ending at microstatg+ &. Instead of simulating the distribution
function P(qg,t), we wish to simulate a specific instangg) starting from some
initial conditiongp(to). If we simulate many such instancesyftf), their distribution
at timet should matchP(qg,t).

To illustrate the basic ideas that we will use, consider first a simple birth ggoce
in which the microstate is given by an integgee {0,1,2,...} and we assume that
the propensity function is given by

a(¢;qydt= adt, E=+1

Thus the probability of transition increases linearly with the time increrde(go
birth events occur at rate, on average). If we assume that the birth events are
independent of each other, then it can be shown (see App8jdirat this process
has Poisson distribution with parameiet

(/lT)[ e—/lT

P((t+7)~q() = ) = e,

wherer is the diference in time and is the diference in count. In fact, this
distribution is a joint distribution in time and count, and by setting = 1 it can
be seen that the time to the next reacfiofollows an exponential distribution and
has density function

pr(t) =1e .

The exponential distribution has expectatiofl and so we see that the average
time between events is inversely proportional to the reactiontrate

Consider next a more general case in which we have a countable nubniier o
crostates) € {0,1,2,...} and we lek;; represent the transition probability between
a microstaté and microstatg. The birth process is a special case givefkiby; = A
and all othek;; = 0. The chemical master equation describes the joint probability
that we are in statq =i at a particular timé. We would like to know the probabil-
ity that we transition to a new statg= j at timet + dt. Given this probability, we
can attempt to generate an instance of the varigfh)eby first determining which
reaction occurs and then when the reaction occurs.
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Let P(j,7) := P(j,t++dr|i,t+7) represent the probability that we transition
from the state to the statg in the time interval {+ 7,t + 7 + dr]. For simplicity and
ease of notation, we will take= 0. LetT :=Tj; be the time at which the reaction
first occurs. We can write the probability that we transition to sjaethe interval
[r,7+dr] as

P(j,7) = P(T > 7) k;j dr, (4.18)

whereP(T > 7) is the probability that no reaction occurs in the time intervat]O
andk;idr is the probability that the reaction taking stat® statej occurs in the
nextdr seconds (assumed to be independent events, giving the productef the
probabilities).

To computeP(T > 7), define

Ei:zkji
]

so that (- E)dr is the probability that no transition occurs from staile the next
dr seconds. Then, the probability that no reaction occurs in the interyat 7]
can be written as

P(T > r+d7) = P(T > 7) (1 -k dr. (4.19)
It follows that
EP(T >7) = lim PO>7+dn)-PT>7) -P(T > 1) k.
dr dr—0 dr

Solving this diferential equation, we obtain
P(T > 1) =™, (4.20)

so that the probability that no reaction occurs in tinteecreases exponentially with
the amount of time that we wait, with rate given by the sum of all the reactions that
can occur from state

We can now combine equatioA.R0 with equation 4.18) to obtain

P(j.7) = P(j.7 +dr |i,0) = kj €57 dr.

We see that this has the form of a density function in time and hence the pitgbab
that the next reaction is reactignindependent of the time in which it occurs, is

ok g Ki
Pji = kjie dr=—. (4.21)
0 Ki

Thus, to choose the next reaction to occur from a dtatee choose betweeN
possible reactions, with the probability of each reaction weightekj; bl .
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To determine the time that the next reaction occurs, we sum over all possible
reactionsj to get the density function for the reaction time:

pr() = > kjie K™ = k™7,
i

This is the density function associated with a Poisson distribution. To compute a
time of reactionAt that draws from this distribution, we note that the cumulative
distribution function forT is given by

At At _
fr(f)dr= | ke N dr=1-e"A
0 0
The cumulative distribution function is always in the range J@nd hence we can
computeAt by choosing a (uniformly distributed) random numioen [0,1] and

then computing
1

At = 1 In—. (4.22)
ki 1-r
(This equation can be simplified somewhat by replacirg With r” and noting
thatr’ can also be drawn from a uniform distribution on1f)

Note that in the case of a birth process, this computation agrees with our ear-
lier analysis. Namelyk; = A and hence the (only) reaction occurs according to an
exponential distribution with parameter

This set of calculations gives the following algorithm for computing an ingtanc
of the chemical master equation:

=

. Choose an initial conditiog at timet = O.

N

. Calculate the propensity functioagq) for each possible reactiap

w

. Choose the time for the reaction according to equatid®|, wherer € [0, 1]
is chosen from a uniform distribution.

4. Use a weighted random number generator to identify which reaction will
take place next, using the weights in equatidr2().

(621

. Updateg by implementing the reactiahand update the timeby 6t

This method is sometimes called “Gillespie’s direct meth@8, [?], but we shall
refer to it here as the “stochastic simulation algorithm” (SSA). We note thaethe r
action number in step can be computed by calculating a uniform random number
on [0,1], scaling this by the total propensidy; a(&i,q), and then finding the first
reactioni such thatzioa(gi,q) is larger than this scaled random number.

Example 4.7. \%
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4.3 Input/Output Linear Stochastic Systems

In many situations, we wish to noise how noise propogates through a biortaslecu
system. For example, we may wish to understand how stochastic variationsin RN
polymerase concentratoffect gene expression. In order to analyze these cases, we
specialize to the case of a biomolecular system operating around a fixedioge
point.

We now consider the problem of how to compute the response of a lingansys
to a random process. We assume we have a linear system described gpatate
as

X=AX+FW Y =CX (4.23)

Given an “input”W, which is itself a random process with meaft), variance
o?(t) and correlation (t,t + 7), what is the description of the random proc¥8s
Let W be a white noise process, with zero mean and noise inteQsity

r(r) = Qo(7).

We can write the output of the system in terms of the convolution integral

t

Y(t) = f h(t—)W(r)dr,
0
whereh(t - 7) is the impulse response for the system
h(t-7) = CIB+ Ds(t — 7).

We now compute the statistics of the output, starting with the mean:

t

ECV0) = E( | ht=n)Wer) o)
t
- | ha-nEwe)dn =o

Note here that we have relied on the linearity of the convolution integral tdatpeill
expectation inside the integral.

We can compute the covariance of the output by computing the correfétipn
and settingr? = r(0). The correlation function foy is

t S
re(t.§) = E(Y()Y(9) = E( fo h(t— m)W(n) diy- fo h(s— &W(£) dé)
t S
~ fo fo h(t — m)W()W(E)h(s— &) dndé)
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Once again linearity allows us to exchange expectation and integration

t S
ry(t.9) = fo fo h(t— mEW()W(E))h(s— &) dndé
t S
- f f h(t — ) Q8(7 — )h(s— &) dndle
Ot 0
- fo h(t— m)Qh(s—n) d

Now lett = s—t and write

t
rv(t) =ry(t,t+7) = j; h(t—n)Qh(t+7—n)dn

t
- [ hoQnesde  (setinge = t-1)

Finally, we lett — oo (steady state)

lim ry(t,t+7) =ry(r) = fm h(£)Qh(& + 7)dé (4.24)
{0 0

If this integral exists, then we can compute the second order statistics foutinet
Y.

We can provide a more explicit formula for the correlation functiamterms of
the matrice®\, F andC by expanding equatiod(24). We will consider the general
case wher&V € RP andY € R% and use the correlation matri(t, s) instead of the
correlation functiorr(t, s). Define thestate transition matrixd(t,tg) = €t so
that the solution of systen (23 is given by

X(t) = D(t, to)x(to) + f t(D(t,/l)FW(/l)d/l

to

Proposition 4.1 (Stochastic response to white noisept E(X(to) X" (to)) = P(to)
and W be white noise witA(W(1)WT (£)) = Rwd(1 - &). Then the correlation ma-
trix for X is given by

Rx(t,s) = PO)®T (s 1)

where Rt) satisfies the linear matrix glerential equation

P(t)= AP+PAT + FRyF,  P(0) = Pq.
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Proof. Using the definition of the correlation matrix, we have
E(X()XT(9) = E(CD(t, 0)X(0)X" (0)D' (t,0)+ cross terms
+ f th(t,g)FW(g) dé f SWt(A)FTd)(&A) d/l)
= q)(t,O)E(X(g)XT (0)2(s,0) O
+ j; t fo s(D(t,g)FE(W(f)WT(/l))FTCD(S, A)deda
= O(t,0)P(0)p" (s,0)+ fo t @(t, )FRy()FTd(s ) dA.

Now use the fact thab(s, 0) = O(s,t)d(t,0) (and similar relations) to obtain
Rx(t.9) = P()®'(s.t)
where -
P(t) = O(t, 0P (1,0)+ fo (. )FRYFT ()07 (t, )
Finally, differentiate to obtain
P(t) = AP+PAT +FRyF,  P(0) =Pg
(see Friedland for details). O

The correlation matrix for the outpit can be computed using the fact that
Y = CX and henceRy = CTRxC. We will often be interested in the steady state
properties of the output, which are given by the following proposition.

Proposition 4.2(Steady state response to white naide)r a time-invariant linear
system driven by white noise, the correlation matrices for the state and output
converge in steady state to

Rx(r) = Rx(t,t+7) = PN ™, Ry(r) = CRx(r)CT
where P satisfies the algebraic equation
AP+PAT +FRyFT=0  P>0. (4.25)

Equation 4.25 is called the_yapunov equatioand can be solved in MATLAB
using the functiorlyap.

Example 4.8(First-order system)Consider a scalar linear process

X = —aX+W Y =cX
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whereW is a white, Gaussian random process with noise intensityJsing the
results of Propositiod.1, the correlation function foX is given by

Rx(t,t+7) = p(t)e™

wherep(t) > 0 satisfies
p(t) = —2ap+ 2.

We can solve explicitly fop(t) since it is a (non-homogeneous) lineatteiential
equation:

2
_ o-2at _ 2at 9
p() = & 'p(0) + (1- &) 7.

Finally, making use of the fact that= cX we have

2
r(t,t+7) = (e 2p(0) + (1— e-Zat)‘ZT—a)e—af.

In steady state, the correlation function for the output becomes

2
0 _ar
rr)=——e™.
M ==
Note correlation function has the same form as the Ornstein-Uhlenbecg&gsrn
ExampleB.7 (with Q = c?c2). \Y

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequenaindap-
proach provides a very rich set of tools for modeling and analysis otioterected
systems, relying on the frequency response and transfer functioepresent the

flow of signals around the system.

Given a random proces{t), we can look at the frequency content of the prop-
erties of the response. In particular, if we ¢ét) be the correlation function for a
(scalar) random process, then we definegtbeer spectral density functicas the
Fourier transform op:

00

S(w) = f o(r)e 17 d, o(r) = %f S(w)el“ dr.
The power spectral density provides an indication of how quickly the sadfie
a random process can change through the frequency content: ifisheigh fre-
guency content in the power spectral density, the values of the ranaigaile can
change quickly in time.

Example 4.9(First-order Markov process)o illustrate the use of these measures,
consider a first-order Markov process as defined in ExafBpleThe correlation
function is

Q _

p(7) = 5—e 0.
2wo
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} logs(w)

wo logw

Figure 4.3: Spectral power density for a first-order Markovgess.

The power spectral density becomes
S@)= [ pereirdr
oo 200

0 00
_ [ Qo gy f Q romoprgr - _Q
oo 20 o 2wo

w2+w(2)'

We see that the power spectral density is similar to a transfer function and we
can plotS(w) as a function otv in a manner similar to a Bode plot, as shown in
Figure4.3. Note that althougl$(w) has a form similar to a transfer function, it is a
real-valued function and is not defined for compgex \%

Using the power spectral density, we can more formally define “white noise”:
awhite noise procesis a zero-mean, random process with power spectral density
S(w) = W = constant for allw. If X(t) € R" (a random vector), thelV € R™",

We see that a random process is white if all frequencies are equalsezyed in
its power spectral density; this spectral property is the reason for tmént@ogy
“white”. The following proposition verifies that this formal definition agreathw
our previous (time domain) definition.

Proposition 4.3. For a white noise process,

(1) = % [ S(w)el“" dr = W5(7),

(%9

wheres(7) is the unit impulse function.

Proof. If = # 0 then

o(r) = % Im W(cosrt) + jsin(wt)dr =0

If =0 thenp(r) = 0. Can show that

€

p(O):IEi_%IE () dodr = We(0)
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Given a linear system
X=AX+FW  Y=CX

with W given by white noise, we can compute the spectral density function cor-
responding to the output. We start by computing the Fourier transform of the
steady state correlation functiof.24):

Sy(w) = f [ fo h(f)Qh(fw)df]ei“dr

_ fo ) h(g)Q[ [ : h(§+r)e‘j“”dr] de
_ f ) h(g)Q[ f " h(yer et d/l] dé
0 0

=j; h(£)e"* dé - QH(jw) = H(- jw)QH(jw)

This is then the (steady state) response of a linear system to white noise.

As with transfer functions, one of the advantages of computations in the fre
quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass whise no
through a system with transfer functieéh (s) followed by transfer functiofd,(s),
the resulting power spectral density of the output is given by

Sy(w) = Hi(-jw)Hz(-jw)QuHz(jw)Hi(jw).

As stated earlier, white noise is an idealized signal that is not seen in practice
One of the ways to produced more realistic models of noise and disturb&snces
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covarian@éand filterH(s) such that we match
the statisticsS(w) of a measured noise or disturbance signal. In other words, given
S(w), find W > 0 andH(s) such thatS(w) = H(- jw)WH(jw). This problem is
know as thespectral factorization problem

Figure 4.4 summarizes the relationship between the time and frequency do-
mains.

Exercises

4.1 (BE 150, Winter 2011) For this problem, we return to our standard model of
transcription and transcription process with probabilistic creation anchdation

of discrete mMRNA and protein molecules. T@pensity function$or each reac-
tion are as follows:

Probability of transcribing 1 mRNA molecule:Zait
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1 e 1 X
V=™ v u |y pY) = o8
Sv(w) =Ry Sy(w) = H(=jw)RvH(jw)
X =AX+FV py(7) =Ry(r) =CPeATCT
=Rvé
pv(r) = Rvo(r) Y=CX AP+PAT +FR/FT =0

Figure 4.4: Summary of steady state stochastic response.

Probability of degrading 1 mRNA molecule:5dt and is proportional to the num-
ber of MRNA molecules.

Probability of translating 1 proteindband is proportional to the number of mMRNA
molecules.

Probability of degrading 1 protein molecule5@t and is proportional to the num-
ber of protein molecules.

dtis the time step chosen for your simulation. Here we chalbse0.05.

(a) Simulate the stochastic system above until time 100. Plot the resulting
number of MRNA and protein over time.

(b) Now assume that the proteins are degraded much more slowly than mRINA an
the propensity function of protein degradation is na@3dt. To maintain similar
protein levels, the translation probability is novb@t (and still proportional to the
number of MRNA molecules). Simulate this system as above. WHatalce do

you see in protein level? Comment on théeet of protein degradation rates on
noise.

4.2 (BE 150, Winter 2011) Compare a simple model of negative autoregulation
with one without autoregulation:

dX
2 Br—yX
at Bo—y
and dX P
a=1+%_yx

(a) Assume that the basal transcription r@t@sdgsg vary between cells, following

a Gaussian distribution WitE% = 0.1. Simulate time courses of both models for
100 diferent "cells” using the following parametes= 2,80 =1,y = 1,K = 1. Plot

the nonregulated and autoregulated systems in two separate plots. Comrient on
variation you see in the time courses.

(b) Calculate the deterministic steady state for both models above. How does va
ation in the basal transcription rggeor 8o enter into the steady state and relate it
to what you see in part (a).
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. .k
4.3 Consider gene expressiaf— m, mi m+ P, m> ¢, and S ¢. Answer the
following questions:

(a) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare withieneice

istic ODE solution. Explore how the realizations become close to or aparttfrem
ODE solution when the volume is changed. Determine the stationary probability
distribution for the protein (you can do this numerically, but note that thisga®is
linear, so you can compute the probability distribution analytically in closed form)

(b) Now consider the additional binding reaction of protein P with downstrea

S . Kon .
DNA binding sites D: R-D T C. Note that the system no longer linear due to
ff

the presence of a bi-molecular reaction. Use the SSA algorithm to obtain sample
realizations and numerically compute the probability distribution of the protein and
compare it to what you obtained in part (a). Explore how this probabilityidistr

tion and the one of C change as the rdtgsandk,ss become larger and larger
with respect tas, k,3,y. Do you think we can use a QSS approximation similar to
what we have done for ODE models?

(c) Determine the Langevin equation for the system in part (b) and obtaiplea
realizations. Explore numerically how good this approximation is when the volume
decreasegBicreases.

k
4.4 Consider the bi-molecular reaction+A8 k:l C, in whichA andB are in total

amountsAt and Br, respectively. Compare t2he steady state valu€ abtained

from the deterministic model to the mean valueCobbtained from the stochastic
model as the volume is changed in the stochastic model. What do you observe?
You can perform this investigation through numerical simulation.

kG
4.5 Consider the simple birth and death proces:% 0, in whichG is a “gain”.

Assume that the reactions are catalyzed by enzlymes and that th& gaim be
tuned by changing the amounts of these enzymes. A deterministic ODE model for
this system incorporating noise and disturbances due to the stochasticity of th
cellular environment is given by

Z =kiG-koGZ+d(t),

in whichd(t) incorporates noise, as seen in the previous homework. Determine the
Langevin equation for this birth and death process and compare its forne to th
deterministic one. Also, determine the frequency respongetofnoise for both

the deterministic model and for the Langevin model. Does increasing thezgain
has the samefkect in both models? Explain.
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4.6 Consider a second order system with dynamics

Xi) (-a 0) (X)) (1 ~ Xy

ol = (& STl v =t )
that is forced by Gaussian white noise with zero mean and variaficAssume
ab>0.

(a) Compute the correlation functigrfr) for the output of the system. Your an-
swer should be an explicit formula in termsayfb ando.

(b) Assuming that the input transients have died out, compute the mean &nd var
ance of the output.



Chapter 5
Feedback Examples

In this chapter we present a collection of examples that illustrate some of the mod
eling and analysis tools covered in the preceding chapters. Each okttesples
represents a more complicated system than we have considered previotos a
gether they are intended to demonstrate both the role of feedback in bidlogica
systems and how tools from control and dynamical systems can be applies to p
vide insight and understanding. Each of the sections below is indepetidms
others and they can be read in any order (or skipped entirely).

Pagination in this chapter is broken down by section to faciliate author editegiew
Some extraneous blank pages may be included due to LaTeX processing.
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5.1 The lac Operon

The lac operon is one of the most studied regulatory networks in molecular bi-
ology. Its function is to determine when the cell should produce the proteihs a
enzymes necessary to import and metabolize lactose from its externalreneina
Since glucose is a mordfient source of carbon, the lactose machinery is not pro-
duced unless lactose is present and glucose is not preseracltantrol system
implements this computation.

In this section we construct a model for the lac operon and use that madel to
derstand how changes of behavior can occur for large changesaimeters (e.g.,
lactose¢glucose concentrations) and also the sensitivity of the phenotypic respon
to changes in individual parameter values in the model. The basic model artd mu
of the analysis in this section is drawn from the work of Yildirim and Maclag].[

Modeling

In constructing a model for thiac system, we need to decide what questions we
wish to answer. Here we will attempt to develop a model that allows us to under-
stand what levels of lactose are required forldesystem to become active in the
absence of glucose. We will focus on the so-called “bistability” ofl&weoperon:

there are two steady operating conditions—at low lactose levels the machinery
is off and at high lactose levels the machinery is on. The system has hysteresis,
so once the operon is actived, it remains active even if the lactose ¢oatt@n
descreases. We will construct afdrential equation model of the system, with
various simplifying assumptions along the way.

A schematic diagram of theac control system is shown in Figutel Starting
at the bottom of the figure, lactose permease is an integral membrane protein tha
helps transport lactose into the cell. Once in the cell, lactose is convertedi&zallo
tose, and allolactose is then broken down into glucose and galactose,itfothev
assistance of the enzyrgegalactosidases¢gal for short). From here, the glucose
is processed using the usual glucose metabolic pathway and the galactose.

The control circuitry is implemented via the reactions and transcriptional reg-
ulation shown in the top portion of the diagram. Tihe operon, consisting of the
genedacZ(coding forg-gal),lacY (coding for lactose permease) dadA (coding
for a transacetylase), has a combinatorial promoter. Normally, lac sepréscl)
is present and the operon if.0The activator for the operon is CAP, which has
a positive inducer cAMP. The concentration of CAMP is controlled by glaco
when glucose is present, there is very little cAMP available in the cell (ancehen
CAP is not active).

The bistable switching behavior in thee control system is implemented with a
feedback circuit involving théac repressor. Allolactose bindac repressor and so
when lactose is being metabolized, then the repressor is sequestereddnyadio
and thelac operon is no longer repressed.
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Figure 5.1: Schematic diagram for tlae system §9]. Permission pending.

To model this circuit, we need to write down the dynamics of all of the reac-
tions and protein production for the circuitry shown in Fig@fe We will denote
the concentration of th8-gal mMRNA and protein agy, and B. We assume that
the internal concentration of lactose is givenlhyignoring the dynamics of lac-
tose permease and transport of lactose into the cell. Similarly, we assumeethat th
concentration of repressor protein, dend®ds constant.

We start by keeping track of the concentration of free allolacfkoSéne relevant
reactions are given by the transport of lactose into the cell, the conmerdiactose
into allolactose and then into glucose and lactose and finally the sequestiation o
repressoR by allolactose:

Transport: L¢+P=L*P— L+P
Conversion: L+B=—LB —A+B
Conversion: A+B=—AB — Glu+Gal+B
Sequestration: A+R=—=AR
We see that the dynamics involve a number of enzymatic reactions and hence w
can use Michaelis-Menten kinetics to model the response at a slightly reldweéd
of detail.
Given these reactions, we can write the reaction rate equations to deseribe th

time evolution of the various species concentrations.dxeandKy represent the
parameters of the Michaelis-Menten functions ardrepresent the dilution and
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degradation rate for a given species X. Thfatential equation for the internal
lactose concentratiolh becomes

dL L® L
=, P - B -oLL 5.1
dt L KLe +L® AL KAL +L L= ( )

where the first term arises from the transport of lactose into the cell, tomnde
term is the conversion of lactose to allolactose, and the final term is due ft@-deg
dation and dilution. Similarly, the dynamics for the allolactose concentration can
be modeled as

dA L

A
— = B—M— B—— +Kk'.JAR] =Kk L[AIR] = 0AA.
gr = ¥AL K 7L @AB KA+A+ ARIAR] = Kag[A][R] —6a

The dynamics of the production gfgal and lactose permease are given by
the transcription and translational dynamics of protein production. Thesesg
are both part of the same operon (along wahA) and hence the use a single
MRNA strand for translation. To determine the production rate of mMRNA, we nee
to determine the amount of repression that is present as a function of theeoho
repressor, which in turn depends on the amount of allolactose that snprége
make the simplifying assumption that the sequestration reaction is fast, so that it is
in equilibrium and hence

[AR] = kar[AI[R],  kar = Khg/Khg-

We also assume that the total repressor concentration is constantdfiwaduoatches
degradation and dilution). LettinByo; = [R] + [AR] represent the total repressor
concentration, we can write

[R] = Rot—kar[AIR] = [R]:ulzﬁ-

The simplification that the sequestration reaction is in equilibrium also simplifies
the reaction dynamics for allolactose, which becomes

(5.2)

dA L A
22 auB —anB _SAA. 5,
at - B T T aABR A oA (5.3)

We next need to compute thé&ect of the repressor on the productionsedal
and lactose permease. It will be useful to express the promoter state inderms
the allolactose concentratighrather tharR, using equationd.2). We model this
using a Hill function of the form

R ar(1+ KarA)"

a
Fea(A) = -
Ba(A) Kr+R"  Kgr(1+KarA)"+RY,
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Table 5.1: Parameter values tac dynamics (from ).

Parameter Value Description
n 3.03x102min"t dilution rate
awm 997 nMmirr® production rate oB-gal mMRNA
Bs 1.66x102min~t  production rate oB-galactosidase
Bp 2?22 mint production rate of lactose permease
an 1.76x 10 min~t production rate of allolactose
™ 0.411 mir? degradation and dilution gi-gal mMRNA
s 8.33x 104 min~t  degradation and dilution ¢f-gal
op 2?2 mirt degradation and dilution of lactose permease
SA 1.35x10?min!  degradation and dilution of allolactose
n 2 Hill coefficient for repressor
K 7200
Ky 2.52x 1072 (uM)~?
KL 0.97uM
Ka 1.95uM
Ba 2.15x 10* min?!
™ 0.10 min
B 2.00 min
TP ??? min

Letting M represent the concentration of the (common) mRNA, the resulting form
of the protein production dynamics becomes

aM _
E = e ™MFga(A(t—1m)) —YMM,

dB —

i =pe€ " M(t-18) -8B, (5.4
dP _

rm = Bpe MM TPIM(t— Ty — 7p) — 6pP,

This model includes the degradation and dilution of mRN#y); the transcrip-
tional delayss-gal mRNA (ry), the degradation and dilution of the proteiag,(
6p) and the delays in the translation and folding of the final proteigsp).

To study the dynamics of the circuit, we consider a slightly simplified situa-
tion in which we study the response to the internal lactose concentitatiorthis
case, we can take(t) as a constant and ignore the dynamics of the permase
Figure5.2a shows the time response of the system for an internal lactose concen-
tration of 100uM. As a test of the fect of time delays, we consider in Figuse?h
the case when we set the delayg and g to both be zero. We see that the re-
sponse has very little flerence, consistent with our intuition that the delays are
short compared to the dynamics of the underlying processes.
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Lac operon simulation (YSHMO04) Lac operon simulation (no time delays)
0.25 0.25

M M

02 B N 02 —sB |
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time (min) time (min)

Figure 5.2: Time response of the Lac system.

Bifurcation analysis

To further explore the dierent types of dynamics that can be exhibited by the
Lac system, we make use of bifurcation analysis. If we vary the amounttosia
present in the environent, we expect that the lac circuitry will turn onraegaoint.
Figure5.3ashows the concentration of allolacto8eas a function of the internal
lactose concentratioh. We see that the behavior of thec system depends on
the amount of lactose that is present in the cell. At low concentrations okkcto
thelac operon is turned fd and the proteins required to metabolize lactose are not
expressed. At high concentrations of lactose,ltteoperon is turned on and the
metabolic machinery is activated. In our model, these two operating conditiens a
measured by the concentration®falactosidas® and allolactosé\. At interme-
diate concentrations of lactose, the system has multiple equilibrium points, with
two stable equilibrium points corresponding to high and low concentratiods of
(andB, as can be verified separately).

The parametric stability plot in Figufe 3bshows the dferent types of behav-
ior that can result based on the dilution ratand the lactose concentratibn\We
see that we get bistability only in a certain range of these parameters. Giberw
we get that the circuitry is either uninduced or induced.

Sensitivity analysis

We now explore how the equilibrium conditions vary if the parameters in oueiod
are changed.

For the gendacZ (which encodes the protefitgalactosidase), we |& repre-
sent the protein concentration ahtdrepresent the mRNA concentration. We also
consider the concentration of the lactdsiaside the cell, which we will treat as an
external input, and the concentration of allolactesejssuming that the time de-
lays considered previously can be ignored, the dynamics in terms of theables
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Figure 5.3: Bifurcation and stability diagram for the las®m. Figures from7).

are
dM 1+Kk A"
v Fea(A 0) —ypM, Fga(A,0) = @ABY T AT
dB L
a —BBM —-0BB, FAL(L,Q) = aAm, (5-5)
A BEA(L6) - BFanA D) —yaA  Faa(A6) = a2
gqt - BFaLL, AA(A,0) —ya A(A0) = Baj 4

Here the state is = (M, B, A) € RS, the input isw = L € R and the parameters are
0= (aB,BB, @A, ¥B. 08, YA, N, K, K1, KL, ka, Ba) € R12. The values for the parameters are
listed in Table5.1

We investigate the dynamics around one of the equilibrium points, corrdspon
ing to an intermediate input df = 40uM. There are three equilibrium points at
this value of the input:

X1e=(0.0003930.0002103.17),  Xpe=(0.003280.0017419.4),  Xge=(0.01420.0075842.1).

We choose the third equilibrium point, corresponding to the lactose metabolic ma-
chinery being activitated and study the sensitivity of the steady state doaibemns
of allolactose Q) andg-galactosidaseR) to changes in the parameter values.

The dynamics of the system can be represented in the dogiait = f(x,6,L)
with

Fea(A.0) —ygM —uM
f(x,0,L) = LM —-o6gB—uB .
FaL(L,0)B—Faa(A 0)B—5aA—uA

To compute the sensitivity with respect to the parameters, we compute tha-deriv
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tives of f with respect to the state

oF
ar |TYBTH 0 A
ax | Ps —0B—H 0
0 Fa—Fan —BZa

and the parametets

of
o5 =(Fea 0 0 -M 0 0 T Tpr Tor 0 0 0).

Carrying out the relevant computations and evaluating the resulting siqmesu-
merically, we obtain

0 (Be) _ (—-121 00243 -3.35x10% 0935 146 ... 0.0011
90 \Ae) ~ (2720 477 —-0.00656 1830 2860 ... 327 )°

We can also normalize the sensitivity computation, as described in equa®on (

o aXe/Xe xy—1 0
=——=(D DY,
= Gage = O Sk

whereD* = diag{Xe} andD? = diag{fo}, which yields

S .- -485 32 -318 311 32 63 -605 -41 402 605
Y = 1-1.96 113 -112 11 113 324 -311 -211 207 311

where
6=(u av K Ki Bs aa KL Ba Ka L).

We see from this computation that increasing the growth rate decreaseglilite e
rium concentation oB andA, while increasing the lactose concentration by 2-fold
increases the equilibriugrgal concentration 12-fold (6X) and the allolactose con-
centration by 6-fold (3X).
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Figure 4.16d Physical Biology of the Cell (© Garland Science 2009)

Figure 5.4: Examples of chemotaxis. Figure from Phillipendev and Theriotq3]; used
with permission of Garland Science.

5.2 Bacterial Chemotaxis

Chemotaxigefers to the process by which micro-organisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is calledpositive chemotaxig the motion is in the direction of the stimulus
andnegative chemotaxigthe motion is away from the stimulant, as shown in Fig-
ure5.4. Many chemotaxis mechanisms are stochastic in nature, with biased random
motions causing the average behavior to be either positive, negativeitoaln@n
the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, whiatoli use
to move in the direction of increasing nutrients. The material in this section islbase
primarily on the work of Barkai and Leible®] and Rao, Kirby and ArkinT§].

Control system overview

The chemotaxis system iB. coli consists of a sensing system that detects the
presence of nutrients, and actuation system that propels the organisnemviits
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system.

The actuation system in th& coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown
in Figure5.5a When the flagella all spin in the counter clockwise direction, the
individual flagella form a bundle and cause the organism to move roughdy in
straight line. This behavior is called a “run” motion. Alternatively, if the flésye
spin in the clockwise direction, the individual flagella do not form a bundtkthe
organism “tumbles”, causing it to rotate (Figusébh). The selection of the motor
direction is controlled by the protein CheY: if phosphorylated CheY bindséo th
motor complex, the motor spins clockwise (tumble), otherwise it spins counter-
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Figure 5.5: Bacterial chemotaxis. Figures from Phillipgnidev and Theriotq3]; used
with permission of Garland Science.

Figure 4.16c Physical Biology of the Cell (© Garland Science 2009)

clockwise (run).

Because of the size of the organism, it is not possible for a bacterium ¢e sen
gradients across its length. Hence, a more sophisticated strategy is uaithn
the organism undergoes a combination of run and tumble motions. The basic ide
is illustrated in Figuré.5¢ when high concentration of ligand (nutrient) is present,
the CheY protein is left unphosphorylated and does not bind to the actueation
plex, resulting in a counter-clockwise rotation of the flagellar motor (ruon-C
versely, if the ligand is not present then the molecular machinery of theazedes
CheY to be phosphorylated and this modifies the flagellar motor dynamics so that
clockwise rotation occurs (tumble). The néfieet of this combination of behaviors
is that when the organism is traveling through regions of higher nutrietdere
tration, it continues to move in a straight line for a longer period before tumbling
causing it to move in directions of increasing nutrient concentration.

A simple model for the molecular control system that regulates chemotaxis is
shown in Figuré.6. We start with the basic sensing and and actuation mechanisms.
A membrane bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transdueimgre
from the cell exterior to the cytoplasm. Two other proteins, CheW and Cloer,

a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phaspfesaise

for two additional proteins, CheB and CheY. The phosphorylated fdr@heY

then binds to the motor complex, causing clockwise rotation of the motor.
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Figure 5.6: Control system for chemotaxis. Figure from Real.[78] (Figure 1A).

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or abskmge o
to 4 methyl groups on the MCP protein. The specific dependence on Etdse
factors is somewhat complicated. Roughly speaking, when the ligaadound
to the receptor then the complex is less likely to be active. Furthermore, as more
methyl groups are present, the ligand binding probability increases, afjawen
gain of the sensor to be adjusted through methylation. Finally, even in thecgbse
of ligand the receptor complex can be active, with the probability of it beitigeac
increasing with increased methylation. Fig&r& summarizes the possible states,
their free energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. ®te mo
important of these are implemented by the proteins CheR and CheB, both &f whic
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the foffedént methylation sites. Con-
versely, the phosphorylated form of CheB demethylates the receptor camgle
described above, the methylation patterns of the receptor comfiéet #s activ-
ity, which afects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is atttme CheA
phosphorylates CheB, which in turn demethylates the receptor complex,gnikin
less active. As we shall see when we investigate the detailed dynamics thétow,
feedback loop corresponds to a type of integral feedback law. Thigraitaction
allows the cell to adjust to ffierent levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute nutrient levels.
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Non-ligand bound Ligand bound

P AG (kealimol)

P AG (kealimol)

0.017 237 0.003 355

0.125 118 0.017 237

0.500 0.00 e 0.125 1.18

wagidy

0.874 -1.18 0.500 0.00

0.997 -3.55 0.980 -2.37

Figure 5.7: Receptor complex states. The probability ofv@ryistate being in an active
configuration is given by. Figure obtained from@g.

Modeling

The detailed reactions that implement chemotaxis are illustrated in Fig8re
Letting T represent the receptor complex anfi fepresent an active form, the
basic reactions can be written as

TA+A=TAA — AP+ TA
AP+B=—AP.B— A+BP BP+P=—BP.P— B+P (5.6)
AP+Y = APY — A+YP YP+Z=YPZ—>Y+Z

where CheA, CheB, CheY and CheZ are written simply as A, B, Y and Z for
simplicity and P is a non-specific phosphatase. We see that these are basically
three linked sets of phosphorylation and dephosphorylation reactidthsCive A
serving as a phosphotransferase and P and CheZ serving as giasssh

The description of the methylation of the receptor complex is a bit more com-
plicated. Each receptor complex can have multiple methyl groups attachéideand
activity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site. Furthermore, the bindibag-pro
bilities for the receptor also depend on the methylation pattern. To capturaéhis,
use the set of reactions that are illustrated in Figdrésnd5.8. In this diagram,
T represents a receptor that hiasethylation sites filled and ligand state s (which
can be either u if unoccupied or o if occupied). WeNetrepresent the maximum
number of methylation sited = 4 for E. coli).

Using this notation, the transitions between the states correspond to the reac-
tions shown in Figur®.9;

T'+BP=TXBP — T, +BP i >0, xe{u,0}
T'+R=TR—T*,+R i<M,xe{u,0}

TU4L =T
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Figure 5.8: Circuit diagram for chemotaxis.

We now must write reactions for each of the receptor complexes with Chezh E
form of the receptor complex has dférent activity level and so the most complete
description is to write a separate reaction for eaftaiid T" species:
X lﬂfﬁo X KC’O p X
KA,
where xe {o,u} and i=0,...,M. This set of reactions replaces the placeholder
reaction ' + A = TA:A — AP+ T4 used earlier.

Approximate model

The detailed model described above iffisiently complicated that it can be dif-
ficult to analyze. In this section we develop a slightly simpler model that can be
used to explore the adaptation properties of the circuit, which happenlowers
time-scale.

H{E"m — /IE R —_— -

E ~ & B)"' 1 -— {E:a}‘} U}
ae e

M(E:Fn ,,-iE‘:ﬁ} g

”"""""-{E"B]/ — En "

Figure 5.9: Methylation model for chemotaxis. Figure frorarBai and Leibler 9] (Box
1). Note: the figure uses the notatiofi #r the receptor complex instead of.T
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Figure 5.10: Probability of activity.

We begin by simplifying the representation of the receptor complex and its
methylation pattern. Lek(t) represent the ligand concentration ahdrepresent
the concentration of the receptor complex witsides methylated. If we assume
that the binding reaction of the ligand L to the complex is fast, we can write the
probability that a receptor complex wittsites methylated is in its active state as a
static function;(L), which we take to be of the form
Q’IOL a’iKL

+

(L) = .
aill) = T koL

The codficientse anda; capture the ffect of presence or absence of the ligand on
the activity level of the complex. Note that has the form of a Michaelis-Menten
function, reflecting our assumption that ligand binding is fast compared t@he
of the dynamics in the model. Followin@§|, we take the cofcients to be

ap =0, a; =01, a» =0.5, az =0.75, as=1,
aj=0, aj=0, ay=0.1, a3=0.5, ag=1
and choos&| = 10uM. Figure5.10shows how each; varies withL.
The total concentration of active receptors can now be written in terms of the
receptor complex concentratiofis and the activity probabilitieg;(L). We write
the concentration of activated complef &nd inactivated complex'Tas

4 4
=Y aT. T'= ) A-aU)T.
i=0 =0

These formulas can now be used in our dynamics agtant&e concentration of
active or inactive receptors, justifying the notation that we used in equiién

We next model the transition between the methylation patterns on the receptor.
We assume that the rate of methylation depends on the activity of the receptor
complex, with active receptors less likely to be demethylated and inactivetoese
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less likely to be methylatedB, 65]. Let

BP R

s R= T, =
Kg+TA R = KT

I’B=k|3

represent rates of the methylation and demethylation reactions. We chease th
efficients as

ke=0.5 Kg=55 kr=0.255 Kr=0.251

We can now write the methylation dynamics as

%Ti = rR(1-@is1(L))Ti—t + reaic1(L) Tiva — rr(1—ai(L)Ti - reai(L)T;,

where the first and second terms represent transitions into this state vidanethy
tion or demethylation of neighboring states (see Figu@eand the last two terms
represent transitions out of the current state by methylation and demethytatio
spectively. Note that the equations fog and T4 are slightly diferent since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the dynamics of the phosphorylation and dephosphorylation
reactions, and the binding of Ch&Yo the motor complex. Under the assumption
that the concentrations of the phosphorylated proteins are small relative timtal
protein concentrations, we can approximate the reaction dynamics as

d
A= 50TAA— 100APY — 30APB,

d

i7" = 100APY —0.1YP — 5[M] YP+ 19[M:Y *] - 30Y",

EBID = 30APB-BP,
dt
d
d—t[M:Y Pl = 5[M] YP - 19[M:Y P].
The total concentrations of the species are given by

A+AP=5nM, B+BP=2nM, Y+YP+[M:YP]=17.9nM
[M] +[M:Y P] =5.8 nM, R=0.2nM St oTi=5nM.

The reaction ca@cients and concentrations are taken from Rgal.[78].
Figure5.11lashows a the concentration of the phosphorylated proteins based on
a simulation of the model. Initially, all species are started in their unphosphedyla
and demethylated states. At tifie= 500 s the ligand concentration is increased to
L=10uM and at timeT = 1000 it is returned to zero. We see thatimmediately after
the ligand is added, the Ché\oncentration drops, allowing longer runs between
tumble motions. After a short period, however, the CR@¥ncentration adapts to
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Figure 5.11: Simulation and analysis of reduced-order dtaxis model.

the higher concentration and the nominal run versus tumble behavior isegsto
Similarly, after the ligand concentration is decreased the concentrationedfCh
increases, causing a larger fraction of tumbles (and subsequergeshiandirec-
tion). Again, adaptation over a longer time scale returns that CheY coatientr
to its nominal value.

Figure5.11bhelps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligandrcon
tration is high, which decreases the activity of CheA (and hence desrd¢hs
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry haartine
function as the use of integral action in control system design: by includfagd-
back on the integral of the error, it is possible to provide exact cancelladio
constant disturbances. In this section we demonstrate that a simplified vefsion
the dynamics can indeed be regarded as integral action of an apprigiadd:
This interpretation was first pointed out by &t al[98].

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral aetof répre-
sent the receptor complex and assume that it is either methylated or not. We let X
represent the methylated state and we further assume that this methylatedrstate c
be activated, which we write asX This simplified description replaces the multi-
ple stated; and probabilitiesy;(L). We also ignore the additional phosphorylation
dynamics of CheY and simply take the activated receptor concentidlj@s our
measure of overall activity.

Figure5.12shows the transitions between the various foknas before, CheR
methylates the receptor and Chedemethylates it. We simplify the picture by only
allowing CheP’ to act on the active statexand CheR to act on the inactive state.
We take the ligand into account by assuming that the transition between the activ
form X, and the inactive form X depends on the ligand concentration: higher
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Figure 5.12: Reduced order model of receptor activity. @lethfrom H4], Figure 7.9.

ligand concentration will increase the rate of transition to the inactive state.

This model is a considerable simplification from the ligand binding model that
is illustrated in Figure$.7 and5.9. In the previous models, there is some prob-
ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylatedinactive and methylatgdctive. We also modify the way that that lig-
and binding is captured and instead of keeping track of all of the possibilities
Figure5.7, we assume that the ligand transitions us from an active stat¥n
inactive X,,. These states and transitions are roughly consistent with ffezatit
energy levels and probabilities in Figuse7, but it is clearly a much coarser model.

Accepting these approximations, the model illustrated in Figut@results in
a set of chemical reactions of the form

Rl: X+R=XR—X,+R methylation
R2: Xp5+BP =X/ :BP— X+BP  demethylation

k(L) R N
R3: Xp=—=X activatiorideactivation

kr

For simplicity we take both R and™Bto have constant concentration.
We can approximate the first and second reactions by their Michaelis-Mente
forms, which yield net methylation and demethylation rates (for those reartions

X X
V. =kgBP— "M __
Ky + X’ B K + X

V+ = kRR

If we further assume thaX > Ky > 1, then the methylation rate can be further
simplified:
V+ = kRR

X
~ KrR.
Ke+X R

Using these approximations, we can write the resulting dynamics for thellovera

system as

dﬂtxm = keR+ k' (L)X, — K X

d X
— X5 = —kgBP—1 _ kF(L)XE + K X,
dt m B KX* +XF§1 ( ) mt m

m
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We wish to use this model to understand how the steady state activityXgvel
depends on the ligand concentratiofwhich enters through the deactivation rate
k' (L)).

It will be useful to rewrite the dynamics in terms of the activated complex con-
centrationX?, and thetotal methylated complex concentratiof}, = Xm + X5, A
simple set of algebraic manipulations yields

ax: X .
B (Xt - X2~ keBP 1 K (L)X,

dt Kxz, + Xm
dxt, X
=M _ ksR—kgBP—2M__

at -~ "R-ke K. + Xy

From the second equation, we see that the the concentration of methylatpléxo
X1 is a balance between the action of the methylation reaction (R1, characterized
by v,) and the demethylation reaction (R2, at rat¢ Since the action of a ligand
binding to the receptor complex increases the rate of deactivation of thdeomp
(R3), in the presence of a ligand we will increase the amount of methylatad co
plex (and, via reaction R1) eventually restore the amount of the activateglex.
This represents the adaptation mechanism in this simplified model.

To further explore theféect of adaptation, we compute the equilibrium points
for the system. Setting the time derivatives to zero, we obtain

. Kx: keR

Xme = 10BP —kaR

Xt = l(er* +kBBPi+kf(L)x*).
me = {7 om Ky + X m

Note that the solution for the active complf, . in the first equation does not
depend orkf(L) (or k') and hence the steady state solution is independent of the
ligand concentration. Thus, in steady state, the concentration of acta@tgulex
adapts to the steady state value of the ligand that is present, making it ingensitiv
to the steady state value of this input.

The dynamics foX!, can be viewed as an integral action: when the concen-
tration of X, matches its reference value (with no ligand present), the quantity of
methylated complex!, remains constant. But X!, does not match this reference
value, therX! increases at a rate proportional to the methylation “error” (measured
here by diference in the nominal reaction ratesandv_). It can be shown that
this type of integral action is necessary to achieve perfect adaptationoipuatr
manner 9§].



Chapter 6

Biological Circuit Components

In this chapter, we describe some simple circuits components that havedieen c
structed inE. colicells using the technology of synthetic biology. We will analyze
their behavior employing mainly the tools from Chap8eaind some of the tools
from Chapte#. The basic knowledge of Chapt2will be assumed.

6.1 Introduction to Biological Circuit Design

In Chapter2 we have introduced a number of core processes and their modeling.
These include gene expression, transcriptional regulation, postatiianal regu-
lation such as covalent modification of proteins, allosteric regulation ofreegy
activity regulation of transcription factors through inducers, etc. Tloese pro-
cesses provide a rich set of functional building blocks, which can bebowed
together to create circuits with prescribed functionalities.

For example, if we want to create an inverter, a device that returns hightou
when the input is low and vice versa, we can use a gene regulated byseripan
tion repressor. If we want to create a signal amplifier, we can employcadas
of covalent modification cycles. Specifically, if we want the amplifier to be linea
we should tune the Michaelis-Menten constants to be small enough compared to
the amounts of protein substrates. If instead we are looking for an almast dig
tal response, we could employ a covalent modification cycle with high amounts
of substrates compared to the Michaelis-Menten constants. Furthermeeesaie
looking for a fast inpybutput response, phosphorylation cycles are better candi-
dates than transcriptional systems.

In this chapter and in the next one, we illustrate how one can build circuits with
prescribed functionality using some of the building blocks of Chaptend the
design techniques illustrated in Chap8eiVe will focus on two types of circuits:
gene circuits and signal transduction circuits. In some cases, we will ilestea
signs that incorporate both.

A gene circuit is usually depicted by a set of nodes, each represengegea
connected by unidirectional edges, representing a transcriptionzd@mti or a re-
pression. Inducers will often appear as additional nodes, whichadetdr inhibit
a specific edge. Early examples of such circuits include an activatorssqr sys-
tem that can display toggle switch or clock behavig]; b loop oscillator called
the repressilator obtained by connecting three inverters in a ring topo2&ya]
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Figure 6.1: Early transcriptional circuits that have begoricated in bacteri&. coli: the
negatively autoregulated gengl], the toggle switch 31], the activator-repressor clock
[6], and the repressilatoR§].

toggle switch obtained connecting two inverters in a ring fash8ih pnd an au-
torepressed circuitll] (Figure6.1). Each node represents a gene and each arrow
from node Z to node X indicates that the transcription factor encoded ia gen
denoted Z, regulates gened{ [If z represses the expression of x, the interaction is
represented by #X. If z activates the expression of x, the interaction is represented
by Z—-X[4].

Basic synthetic biology technology

Simple synthetic gene circuits can be constituted by a set of (connectestripan
tional components, which are made up by the DNA base-pair sequentesitina
pose the desired promoters, ribosome binding sites, gene coding ragideyini-
nators. We can choose these components from a library of basic imegeziae
parts, which are classified based on biochemical properties suéréty of pro-
moter, operator, or ribosome binding sites), strength (of a promotergfacieéncy
(of a terminator). The desired sequence of parts is usually assembléaisonigs,
which are circular pieces of DNA, separate from the host cell chromeswith
their own origin of replication. These plasmids are then inserted, througitags
called transformation in bacteria and transfection in yeast, in the host cek i©n
the host cell, they express the proteins they code for by using the tigtiwtiand
translation machinery of the cell. There are three main types of plasmids: fopw co
number (5-10 copies), medium copy number (15-20 copies), and hfghragn-
ber (up to hundreds). The copy number reflects the average numbepies of
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the plasmid inside the host cell. The higher the copy nhumber, the rfitsiest the
plasmid is at replicating itself. The exact number of plasmids in each cell flestua
stochastically and cannot be exactly controlled.

In order to measure the amounts of proteins of interest, we make teygoofer
genesA reporter gene codes for a protein that fluoresces in a specific @elbr
blue, green, yellow, etc.) when it is exposed to light of the correct iewgth. For
instance, green fluorescent protein (GFP) is a protein with the propaittit fluo-
resces in green when exposed to UV light. It is produced by the jellpfEsiuoria
victoria, and its gene has been isolated so that it can be used as a reporter. Other
fluorescent proteins, such as yellow fluorescent protein (YFP)@hfluorescent
protein (RFP) are genetic variations of GFP.

A reporter gene is usually inserted downstream of the gene expressipgoth
tein whose concentration we want to measure. In this case, both genasdare
the control of the same promoter and are transcribed into a single mMRNA molecule
The mRNA is then translated to protein and the two proteins will be fused together
This technique sometimeffacts the functionality of the protein of interest because
some of the regulatory sites may be occluded by the fluorescent protgarevient
this, another viable technique is to clone after the protein of interest theteepo
gene under the control of a copy of the same promoter that also contrefsies-
sion of the protein. This way the protein is not fused to the reporter protiiich
guarantees that the protein function is nfieeted. Also, the expression levels of
both proteins should be close to each other since they are controlledffeyddt
copies of) the same promoter.

Just as fluorescent proteins can be used as a read out of a cirauigiadunc-
tion as external inputs that can be used to probe the system. Inducet®iriun
by either disabling repressor proteins (negative inducers) or byliegadctiva-
tor proteins (positive inducers). Two commonly used negative inducerfPa G
and aTc. Isopropyp-D-1-thiogalactopyranoside (IPTG) induces activity of beta-
galactosidase, which is an enzyme that promotes lactose utilization, throwth bin
ing and inhibiting thdac repressor Lacl. The anhydrotetracycline (aTc) binds the
wild-type repressor (TetR) and prevents it from binding the Tet opefBim com-
mon positive inducers are arabinose and AHL. Arabinose activatesahsctip-
tional activator AraC, which activates the pBAD promoter. Similarly, AHL is a
signaling molecule that activates the LuxR transcription factor. which aesvae
pLux promoter.

Protein dynamics can be usually altered by the addition of a degradation tag at
the end of the coding region. A degradation tag is a sequence of baséhaaiadds
an amino acid sequence to the functional protein that is recognized bygpeste
Proteases then bind to the protein, degrading it into a non-functional nheldéwsu
a consequence, the half life of the protein decreases, resulting into r@ased
decay rate. Degradation tags are often employed to obtain a faster sesgdhe
protein concentration to input stimulation and to prevent protein accumulation.
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6.2 Negative Autoregulation

In this section, we analyze the negatively autoregulated gene of Faylirend
focus on analyzing how the presence of the negative feedlfieitsithe dynamics
of the system80] and how the negative feedbacffects the noise properties of the
system L1, 7].This system was introduced in Exam 3.

Let X denote the concentration of protein X and let X be a transcriptional re-
pressor for its own production. Assuming that the mRNA dynamics are atidss-
steady state, the ODE model describing the self repressed system ibgiven

dX B

dt 1+ (X/K)n -oX

We seek to compare the behavior of this autoregulated system to the bedfavior

the unregulated one:

dX

in which Bg is the unrepressed production rate.

Dynamic effects of negative autoregulation

As we showed via simulation in Exam®e3, negative autoregulation speeds up the
response to perturbations. Hence, the time the system takes to reach iystitad
decreases with negative feedback. In this section, we show this raaljtieally
by employing linearization about the steady state and by explicitly calculating the
time the system takes to reach it.

Let Xe =B0/6 be the steady state of the unregulated system and deaote Xe
the perturbation with respect to such a steady state. The dynanzesefiven by

dz
— =-0zZ

dt
Given a small initial perturbatiom,, the time response afis given by the expo-
nential

2(t) = o€,

The “half-life” of the signalz(t) is the time it takes to reach half @§. This is a
common measure for the speed of response of a system to an initial pgoirba
Simple mathematical calculation shows thag = In(2)/6.

Let now X. be the steady state of the autoregulated system. Assuming that the
perturbatiorz with respect to such a steady state is small enough, we can employ
linearization to describe the dynamicsaoiThese dynamics are given by

dz —
at - 0%



6.2. NEGATIVE AUTOREGULATION 6-5

in which .
— nXg—/K"
0=0+——.
T (/K2

In this case, we have thag; = In(2)/<§

Sinces > § (independently of the steady statg), we have that the dynamic
response to a perturbation is faster in the system with negative autoreguldtie
confirms the simulation findings of Exam®e3.

Noise filtering

In this section, we investigate thé&ect of the negative feedback on the noise spec-
trum of the system. In order to do this, we employ the Langevin modeling frame-
work and determine the frequency response to the noise on the varamt®one
channels. We perform twofilerent studies. In the first one, we assume that the de-
cay rate of the protein is much smaller than that of the mRNA. As a consequence
the mRNA is at its quasi-steady state and we focus on the dynamics of the protein
only. In the second study, we investigate the consequence of having R isfi
protein decay rates in the same range so that the quasi-steady state assoanptio
not be made. In either case, we study both the open loop system and &etlolys
system (the system with negative autoregulation) and compare the cordasyp
frequency responses.

Assuming mRNA at the quasi-steady state

In this case, the reactions for the open loop system are given by

Rl:pﬁ—°>X+p, RZ:Xi(Z),

in which Bg is the constitutive production rate, p is the DNA promoter, ard
the decay rate of the protein. Since the concentration of DNA promoter ptis no
changed by these reactions, it is a constant, which wepgall

Employing the Langevin equatio®.(l3 of Section4.1 and denoting bynx
the real-valued number of molecules of X andiyythe real-valued number of
molecules of p, we obtain

dnx
gt = Bomp—onx+ VBonpN1 — vonxNz.

By denotingX = ny/Q the concentration of X angd=n,/Q = pyot the concentration
of p, we have that

dXx 1
ot = BoProt — X+ E(\/ﬁoptotl\ll— VX Np).
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This is a linear system and therefore we can calculate the frequencynsesfo
any of the two input®N; andN,. The frequency response to ingu is given by

VﬁO ptot/Q
VaZ 162 |

We now consider the autoregulated system. The reactions are given by

Gxny (w) =

Rl:piX+p, RZ:XiQ),

R3:X+piC, R4:Ci>X+p, Prot = p+C.

Employing the Langevin equatiod.ll3 of Sectiond.1and dividing both sides of
the equation to obtain concentrations, we obtain

d
df —aXp+d(Prot— P HT( vaXpNs + /d(prot— P)Na)

dx—ﬁp 6X —aXp+d(prot— P )+T(JT)N1—«/_N2—JaXpI\b+\/d(ptot— P)Na).

DenotingKy = d/a, T'1(t) = %(— VaXp/KgNz+ +/d(prot — p)Na), andlo(t) = %( BPN; -

V6XNy), we can rewrite the above system in the following form:

dp
dt

O = Bp— X~ aXp+ (P~ )+ Ta(0) + Vrs().

= —aXp+d(prot— p) + Vdra(t)

Sincea,d > 6,8p, this system displays two time scales. Denoting- §/d and
definingy := X — p, the system can be further rewritten in standard singular pertur-
bation form @.6):

ap
“dt

dy
T =BP—=0(y+P)+T2(0).

= —6Xp/Ka+(prot— P) + Ve VoTa(t)

By settinge = 0 and assuming thab;/Ky is suficiently small, we obtain the
reduced system describing the dynamicXafs

dX _ Prot

B

1 .
il o e +%(\/ﬁ_pN1— VEXNp) =: (X, N1, Ny).

The equilibrium point for this system corresponding to the mean valyesO
andN, = 0 of the inputs is given by

1
Xe = 5({/K§+4BProiKa/6 - Ko).
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The linearization of the system about this equilibrium point is given by

A= ﬂ’ _ g Po/Ka
OX XNy =0,N2=0 (Xe/Kg+1P+1
of 1 B Prot of
b= — = , b= — = — o Xe.
YT oN XeNi=0N=0 VO V Xe/Kg+1 27 N, Xe.N1=0,N=0
Hence, the frequency responseNpis given by
b1
Gy (W) = —.
T ez m

In order to make a fair comparison between this response and that oféhe op
loop system, we need to make sure that the steady states of both systems are the
same. In order to do so, we set

___ B
 Xe/Kg+1
This can be attained by adjusting the strength of the promoter and of themboso
binding site.

As a consequence; = +/Boprot/Q. Since alscA > ¢, it is clear thalG§, (w) <
Gxni(w) for all w. This result implies that the negative feedback attenuates the
noise at all frequencies. The two frequency responses are plottéglire6.2(a).

Bo

MRNA decay close to protein decay

In this case, we need to model the processes of transcription and tramskgpia-
rately. Denoting m the mRNA of X, the reactions describing the open loop system
modify to

Rim Sme+X,  RyX30, RepSme+p  Ramy 50,
while those describing the closed loop system modify to
B s
Ri:my = my +X, Ry: X — 0,
a d
Ry X+p—C, R;:C— X+p,

R5:p1>mx+p, Rg: mXL(Z), Prot = p+C.

Employing the Langevin equation in terms of concentrations, and applyinglamg
perturbation as performed before, we obtain the dynamics of the system as

d
d_thb( = f(X) —ymx + %(\/f(X)Ns— \/yMxNe)

dXx 1
a :Bmx —o0X+ %(\/Bmel_ \/6_)('\'2)’
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Figure 6.2: (a) Frequency response to ndigét) for both open loop and closed loop
for the model in which mRNA is assumed at its quasi-steadie stEhe parameters are
Pt = 10, Kg = 10,8 =0.001,5 = 0.01,Q = 1, andBp = 0.00092. (b) Frequency response
to noiseNg(t) for both open loop and closed loop for the model in which mRid&ay is
close to protein decay. The parametersgge= 10,K4 = 10,a = 0.001,3=0.01,y = 0.01,

6 =0.01, andap = 0.0618.

in which for the open loop syster(X) = aqprwot, While for the closed loop system

_ @Prot
0= X/Kg+1
The steady state for the open loop system is given by
0_ 00 yo_ @B
= Xe=oF

ConsideringNg to be the input of interest, the linearization of the system at this
equilibrium is given by

Ao:(—y 0 ) Bo:(\/m)'

g -6 0

Letting K = 8/(6Ky), the steady state for the closed loop system is given by

xg=L2 = (/K /K02 + dapoy (k)2
The linearization of the closed loop system at this equilibrium point is given by

(7))

in which G = apt/(XS/Kq + 1)? represents the contribution of the negative feed-
back. The larger the value & the stronger the negative feedback.
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In order to make a fair comparison between the two systems, we need to make
the steady states be the same. In order to do this, we can sai/(XS/Kqg + 1),
which can be done by suitable changing the promoter and ribosome binding site
strengths.

The open loop and closed loop transfer functions are given by

BAyme/Q

Cxe(9 = (52 y)isr o)
and by
GE () = BAyMe/Q
YT R4 oy +6)+y5+G’

respectively. By looking at these expressions, it is clear that the opertriansfer
function has two real poles, while the closed loop transfer function ces ¢@m-
plex conjugate poles whea is suficiently large. As a consequence, nolggcan
be amplified at sfliciently high frequencies. Figug2(b) shows the correspond-
ing frequency responses for both the open loop and the closed lognsys

It is clear that the presence of the negative feedback attenuates rtigew
spect to the open loop system at low frequency, but it amplifies it at higéer
guency. This is a very well knowrffect known as the “water bedfect”, according
to which negative feedback decreases tfiect of disturbances at low frequency,
but it can amplify it at higher frequency. Thiffect is not found in first order mod-
els, as demonstrated by the derivations when mRNA is at the quasi-stetaly sta
This illustrates the spectral shift of the intrinsic noise toward the high fregye
as also experimentally demonstrat@f |

6.3 The Toggle Switch

The toggle switch is composed of two genes that mutually repress eachasther,
shown in the diagram of Figur@.3 [31]. We start by describing a simple model
with no inducers. By assuming that the mRNA dynamics are at the quasi-steady
state, we obtain a two dimensionatfdrential equation model given by

dA__ B 9B __ B

dt = 1+ (/K at "~ ix@aky 0P

in which we have assumed for simplicity that the parameters of the repression
functions are the same for A and B.

The number and stability of equilibria can be analyzed by performing nulicline
analysis since the system is two-dimensional. Specifically, by seftiad and
B = 0, we obtain the nullclines shown in Figuée3. In the case in which the pa-
rameters are the same for both A and B, the nuliclines intersect at three, points
which determine the steady states of this system.
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Figure 6.3: Nullclines for the toggle switch. By analyzitgtdirection of the vector field
in the proximity of the equilibria, one can deduce their 8igtas described in Chapté:

The nullclines partition the plane into six regions. By determining the sigh of
andB in each of these six regions, one determines the direction in which the vector
field is pointing in each of these regions. From these directions, one immediately
deduces that the steady state for whitk B is unstable while the other two are
stable. This is thus a bistable system.

The system converges to one steady state or the other depending on the initia
condition. If the initial condition is in the region of attraction of one steady state,
it converges to that steady state. The 45 degree line divides the planedritecth
regions of attraction of the stable steady states. Once the system hasgednve
to one of the two steady states, it cannot switch to the other unless an éxterna
stimulation is applied that moves the initial condition to the region of attraction of
the other steady stat81).

In the toggle switch by31], external stimulations were added in form of neg-
ative inducers for A and B. Let,ube the negative inducer for A and, be the
negative inducer for B. Then, as we have seen in Se@i8nthe expressions of
the Hill functions need to be modified to replagdy A(1/(1+ u1/Kq1)) andB by
B(1/(1+uz/Kg2)), in whichKq 1 andKq 2 are the dissociation constants gfwith
A and of y, with B, respectively. We show in Figui&4 time traces forA(t) and
B(t) when the inducer concentrations are changed. Specifically, initigily high
until time 100 whileu; is low until this time. As a consequence, A does not repress
B while B represses A. Accordingly, the concentration of A stays low until time
100 and the concentration of B stays high. After time 100s high andu; is low.
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Figure 6.4: time traces fak(t) andB(t) when inducer concentrationg andu, are changed.
In the simulation, we have= 2, K41 = Kg2 =1, K2 = 0.1,8=1,andé = 1. The inducers
are such thati; = 10 fort < 100 andu;, = 0 fort > 100, whileu, = 0 fort < 100 andu, = 10
for t > 100.

As a consequence B does not repress A while A represses B. In traiituA
switches to its high value and B switches to its low value.

6.4 The Repressilator

Elowitz and Leibler 28] constructed the first operational oscillatory genetic circuit

consisting of three repressors arranged in ring fashion, and coittesl“tepressi-

lator” ( Figure6.1d). The repressilator exhibits sinusoidal, limit cycle oscillations

in periods of hours, slower than the cell-division life cycle. Thereftre,state of

the oscillator is transmitted between generations from mother to daughter cells.
The dynamical model of the repressilator can be obtained by composirgg thre

transcriptional modules in a loop fashion. The dynamics can be written as

dmy dmg dme
T = —5mA+ f]_(C) W = —6mB+ fz(A) T = —5% + f3(B)
dA dB dC
gr = Ma—dA Jr = Me— 0B 5p = Me—oC,
where we take
f f f o
1(p) = f2(p) = f3(p) = i

This structure belongs to the class of cyclic feedback systems that wetualed
in earlier chapters. In particular, the Mallet-Paret and Smith theorem astihiga
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theorem (see Sectio®.4 for the details) can be applied to infer that if the sys-
tem has a unique equilibrium point and this is unstable, then it admits a periodic
solution. Therefore, we first determine the number of equilibria and thdiiligta

The equilibria of the system can be found by setting the time derivativesdo zer
We thus obtain that
fl(C)’ B fz(A)’ co fs(B)’

62 62 52

which combined together yield to

A= 6—12f1(6—12 fg(éizfz(A))) = g(A).

The solution to this equation determines the set of steady states of the systeem. Th
number of steady states is given by the number of crossings of the twidiusc
h1(A) = g(A) andhy(A) = A. Sincehy is strictly monotonically increasing, we ob-
tain a unique steady statelif is monotonically decreasing. This is the case when
g(A) = % < 0. Otherwise, there could be multiple steady states. Since we have
that

A=

sign@ (A)) = I, sign(f/ (P)),

then ifozlsign(fi’(P)) < 0the system has a unique steady state. We call the product
I3 ;sign(f/ (P)) theloop gain

Thus, any cyclic feedback system with negative loop gain will have a eniqu
steady state. It can be shown that a cyclic feedback system with posiipeé&n
belongs to the class of monotone systems and hence cannot have periitdic o
[59]. In the present case, systef4) is such thatf’ < 0, so that the loop gain is
negative and there is a unique steady state. We next study the stability aétdy s
state by studying the linearization of the system.

Letting P denote the steady state value of the protein concentrations for A, B,
and C, the linearization of the system is given by

-6 0 0 0 0 f(P)
-6 0 0 0 0
fo(P) -6 0 0 0
0 1 -6 O 0|’
0 0 f4(P) -6 O
0 0 0 0 1 -6
whose characteristic polynomial is given by
det@l - J) = (1+6)° — T2, f/ (P). (6.1)

In the case in whicH;(P) = «?/(1+ p") for i € {1,2,3}, this characteristic polyno-
mial has a root with positive real part if the ratigé satisfies the relation

2 o o 43 4/3
/o> n—4/3(1+n—4/3)'

O OO
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Repressilator (symmetric case) Repressilator (symmetric case)

90~ 1 350
i larger o gives less sensitivity

70k REGION THAT GIVES RISE TO OSCILLATIONS

a2
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14 15 16 17 18 19 2 01 02 03 04 05 06 07 08 09 1

Figure 6.5: (a) Space of parameters that give rise to osoifia for the repressilator in
equation 6.4). (b) Period as a function éfanda.

For the proof of this statement, the reader is referre@#h [This relationship
is plotted in the left plot of Figuré.5.

Whenn increases, the existence of an unstable equilibrium point is guaranteed
for larger ranges of the other parameter values. Of course, thisvioeali robust-
ness does not guarantee that other important features of the oscillaioas the
period are not changed when parameters vary. Numerical studiestenthea the
periodT approximatively followsT « 1/6, and varies little with respect @ (Fig-
ure6.5b). From the figure, we see that as the valué imicreases, the sensitivity of
the period to the variation af itself decreases. However, increasing/ould ne-
cessitate the increase of the cooperatinittherefore indicating a possible tradieo
that should be taken into account in the design process in order to bafenegs-
tem complexity and robustness of the oscillations. From a practical poirewf v
n can be changed by selecting repressors that bind cooperatively tootheter.
In practice, it is usually hard to obtain valuesrofireater than two.

A similar result for the existence of a periodic solution can be obtained for
the non-symmetric case in which the input functions of the three transcriptiona
modules are modified to

azpn
1+p"

az pn

f1(p) = = rp”

f2(p) f3(p) =

_Y
1+p"

That is, two interactions are activations and one only is a repressiore 8iac
loop gain is still negative, there is only one equilibrium point only. We can thus
obtain the condition for oscillations again by establishing conditions on thepara
eters that guarantee that at least one root of the characteristic polyr{érijddas
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positive real part, that is,

2 P5
(0.86)2n\/ P+ AT ) > 1. (6.2)

We rewrite p; and p3 as functions ofp, by using two of the equilibrium rela-

tions: )
/6% p)
Pr={—.  Pe= o

/6% — P2 + P,

Using these expressions i6.9), we can find all possible values p$ that satisfy
(6.2) for afixed pair &¢2/62,n). These values gf, correspond to the possible values
of a3/52 by means of the third equilibrium condition

a5/6% = pa(1+ pY).

For each paird?/62,n), we finally obtain all possible values of/5? that satisfy
the equilibrium conditions and inequalit$.@). These conditions are reported in
Figure6.6 (see R2] for the detailed derivations).

One can conclude that it is possible to “over design” the circuit to be in the
region of parameter space that gives rise to oscillations. In practicesvafa be-
tween one and two can be obtained by employing repressors that haeacody
higher than or equal to two. There are plenty of such repressorsdinglthose
originally used in the repressilator desidt8]. However, values oh greater than
two may be hard to reach in practice. It is also possible to show that incgeagin
number of elements in the oscillatory loop, the valua sffficient for oscillatory
behavior decreases.

6.5 Activator-repressor clock

Consider the activator-repressor clock diagram shown in Figue). The tran-
scriptional module A has an input function that takes two inputs: an actitedod

a repressor B. The transcriptional module B has an input function thes @Ky
an activator A as its input. Leha andmg represent the concentration of mRNA
of the activator and of the repressor, respectively. Aeind B denote the protein
concentration of the activator and of the repressor, respectivedyn, Mre consider
the following four-dimensional model describing the rate of change offibeiss
concentrations:

d d

M _ -61ma+F1(A, B), e _ —5org+ F2(A),
dt dt
dA dB
— = —0pAA+ 1My, — = —0sB+p3>mg,

dt dt
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Figure 6.6: Space of parameters that give rise to oscitlatfor the repressilator (non-
symmetric case). As the value ofis increased, the ranges of the other parameters for
which sustained oscillations exist become larger.

in which the functiong-; andF, are the Hill functions and are given by

K]_An + KAO = (A) _ KZAn + KBO
T+ (A" +(Blk)™ 2777 T (Alky)"

F1(A,B) =

The Hill function F; can be obtained through a combinatorial promoter, where
there are sites both for an activator and for a repressor (see S2@jon

Two-dimensional analysis

We first assume the mRNA dynamics to be at the quasi-steady state so that we ca
perform two dimensional analysis and invoke the Poiadaendixson theorem.
Then, we analyze the four dimensional system and perform a bifurcsttidy.

We s denotefi(A,B) := (81/61)F1(A, B) and f2(A) 1= (B2/62)F2(A). For sim-
plicity, we also denotd (A, B) := —6aA+ f1(A, B) andg(A, B) := —6gB + f2(A) so



6-16 CHAPTER 6. BIOLOGICAL CIRCUIT COMPONENTS

B

(b)

Figure 6.7: Nullclines for the two-dimensional system afi@iipn 6.5). (a) shows the only
possible configuration of the nullclines whar= 1. (b) shows a possible configuration of
the nullclines whem = 2. In this configuration, there is a unique equilibrium, whan
be unstable.

that the two-dimensional system is given by

?j—'? = f(A,B), ((jj—? =g(A, B).

For simplicity, we assumm = 1 andk; = 1 for alli.

We first study whether the system admits a periodic solutiomferl. To do
so, we analyze the nuliclines to determine the number and location of steady state
DenoteK; = K1(81/61), K2 = K2(B2/62), Kao = Kao(B1/01), andKgo = Kgo(B1/91).
Then,g(A, B) = 0 leads to . _
_ K2A+ Kpg
a (1+A)5A ’
which is an increasing function &. Settingf (A, B) = 0, we obtain that

B

_ IZ1A+ K_AO - §AA(1+ A)
B SaA ’

B

which is a monotonically decreasing function of A. These nuliclines are gisgla
in Figure6.7(a).

We see that we have one equilibrium only. To determine the stability of such
an equilibrium, we calculate the linearization of the system at such an equilibrium.

This is given by
of
(% §)
0A 3B

In order for the equilibrium to be unstable and not a saddle, it is negeasdr
suficient that

|%%|%
Q| —+

tr(J) > 0 and detd) > 0.
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Graphical inspection of the nullclines at the equilibrium (8&#a)), shows that

LI
dAlf(aB)=0

By the implicit function theorem g0]), we further have that

d_B| 9 /oA
dA' TAB=0 = "5t 5B

so thatof /0A < 0 becauséf/dB < 0. As a consequence, we have thaf)r 0
and hence the equilibrium point is either stable or a saddle.
To determine which one of these two, we further inspect the nullclines asd fin

that
dB dB

—_— > —_—
dA’g(A,B):O dA

Again using the implicit function theorem we have that

f(AB)=0

dB __9g/oA
dAYAB=0 = T 50/0B”

so that det]) > 0. Hence, theu-limit set (Section3.4) of any point in the plane
is not necessarily a periodic orbit. Hence, to guarantee that any initidittom
converges to a periodic orbit, we need to require thatl.

We now study the cagse= 2. In this case, the nullcling(A, B) = 0 changes and
can have the shape shown in Figé:& (b). In the case in which, as in the figure,
there is an equilibrium point only and the nullclines intersect both with positive
slope (equivalent to delf > 0), the equilibrium is unstable and not a saddle if
tr(J) > 0, which is satisfied if

OB

% 1
ot /0A—op

This condition reveals the crucial design requirement for the functionirtheo
clock. Specifically the repressor B time scale must k&aeantly slower than the
activator A time scale. This point is illustrated in the simulations of Figu8zin
which we see that ifg is too large, the trace becomes negative and oscillations
disappear.

Four-dimensional analysis

In order to specifically study time scale separation between activator presser
as a crucial design requirement for the clock, we perform a time scalgsanam-
ploying bifurcation tools . To this end, we consider the following four-dinemes
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Figure 6.8: Effect of the trace of the Jacobian on the stability of the eltilim. The
above plots illustrate the trajectories of systefrb) for both Functional (trd) > 0) and
a Non-Functional (t{) < 0) Clocks. The parameters in the simulation &te= 6> = 1,
K1 =Ky =100,Kag =.04,Kpgp =.004,6p = 1,81 =82 =1, andk; =k, = 1. In the Functional
Clock, 6g = 0.5 whereas in the Non-Functional Cloalg = 1.5. Parameter&; and K,
were chosen to give about 500-2000 copies of protein perfaekctivated promoters.
Parameter& ag andKpgg were chosen to give about 1-10 copies per cell for non-aetiva
promoters.

model describing the rate of change of the species concentrations:

dd—”t“‘ — _61/ema+F1(AB) dd—”t'B — _5/e Mg+ Fa(A)
dA dB
a = V(—5AA+,31/6 mA) a = —(5BB+/32/6 Mg.

This system is the same as systéhb)(where we have explicitly introduced two
parameters; ande, which model time scale fferences as follows. The parameter
v regulates the dierence of time scale between the repressor and the activator
dynamics whilee regulates the diierence of time scale between the mRNA and
the protein dynamics. The parametatetermines how close modd.§) is to the
two-dimensional modelg.5), in which the mRNA dynamics are considered at the
guasi-steady state. Thus,is a singular perturbation parameter (equatioh$)(
can be taken to standard singular perturbation form by considering #megefof
variablesma = ma/e andmg = mg/¢). The details on singular perturbation can be
found in Sectior8.6.

The values ot and ofv do not dfect the number of equilibria of the system.

We then perform bifurcation analysis withandv the two bifurcation param-
eters. The bifurcation analysis results are summarized by Fy@rd he reader
is referred to 21] for the details of the numerical analysis. In terms of thend
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Hopf bifurcation and saddle node bifurcation (cyclic fold) of the periodic orbit
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Figure 6.9: Design chart for the relaxation oscillator. Viséain sustained oscillations past
the Hopf bifurcation, for values of suficiently large independently of theftkrence of
time scales between the protein and the mRNA dynamics. Vermiice that there are
values ofv for which a stable equilibrium point and a stable orbit ceesind values of
v for which two stable orbits coexist. The intervalofalues for which two stable orbits
coexist is too small to be able to numerically sét such an interval. Thus, this interval is
not practically relevant. The valueswfor which a stable equilibrium and a stable periodic
orbit coexist is instead relevant. This situation corresfsato thehard excitationcondition
[56] and occurs for realistic values of the separation of timales between protein and
m-RNA dynamics. Therefore, this simple oscillator motidebed by a four-dimensional
model can capture the features that lead to the long termresgipn of the rhythm by
external inputs.

v parameters, it is thus possible to “over design” the system: if the activator dy
namics are dticiently sped up with respect to the repressor dynamics, the system
undergoes a Hopf bifurcation (Hopf bifurcation was introduced in Se&id) and
stable oscillations will arise. From a fabrication point of view, the activaier d
namics can be sped up by adding suitable degradation tags to the actiwaédn.pr
Similarly, the repressor dynamics can be slowed down by adding repiebgo
binding sites (see Chapter 7 and tlfieets of retroactivity on dynamic behavior).
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Figure 6.10: (Left) The incoherent feedforward motif. (RigA possible implementation
of the incoherent feedforward motif. Here, Lacl (L) is undlee control of a constitutive
promoter in amountsl, while RFP (R) is under the control of the lac promoter, also i
amountsu. Hence RFP is also activated hyas the RFP gene is found in amountgist
like the Lacl gene.

6.6 An Incoherent Feedforward Loop (IFFL)

Several genetic implementations of incoherent feedforward loops asgb® f].
Here, we describe an implementation proposed for making the steady stadse leve
of protein expression adapt to DNA plasmid copy numi&.[In this implemen-
tation, the inpuu is the amount of DNA plasmid coding for both the intermediate
regulator Lacl (L) with concentratioh and the output RFP (R) with concentration
R. The intermediate regulator Lacl represses through transcriptiorralsspn the
expression of the output protein RFP (Figd 0. The expectation is that the
steady state value of the RFP expression is independent of the coticeniraf
the plasmid. That is, the concentration of RFP should adapt to the copy noimbe
its own plasmid.

In order to analyze whether the adaptation property holds, we write ffes-di
ential equation model describing the system, assuming the mRNA dynamics are at
the quasi-steady state. This model is given by

dL dR kiu

— =kou-96L, az—l_i_(L/Kd)_éR» (63)

dt
in whichkg is the constitutive rate at which Lacl is expressed pds the dissoci-
ation constant of Lacl from the operator sites on the lac promoter. This impleme
tation has been called the flier in Section3.2 The steady state of the system is
obtained by setting the time derivatives to zero and gives
kiu
L=, po_fau
s 6+ kou/Kg
From this expression, one can easily note tha¢adecreases, the denominator
of the right-side expression tendskgu/Kq resulting into the steady state value
R = k;Kq4/ko, which does not depend on the inpuiHence, in this case, adaptation
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Figure 6.11: Behavior of the steady state valug a$ a function of the inpui.

would be reached. This is the case if thératy of Lacl to its operator sites is
extremely high, resulting also in a strong repression and hence a lower oalu
R. In practice, however, the value &f; is hon-zero, hence the adaptation is not
perfect. We show in Figuré.11the behavior of the steady stateR#&s a function

of the inputu for different values oKy. Ideally, for perfect adaptation, this should
be a horizontal line.

In this study, we have modeled protein L as binding with its promoter with no
cooperativity. If L is Lacl, the cooperativity of binding i$= 4. We leave as an
exercise to show that the adaptation behavior persist in this case.

For engineering a system with prescribed behavior, one has to be ahkrtgec
the physical features so as to change the values of the parameters ofdbe mo
This is often possible. For example, the bindirtfyraty (1/Kq in the Hill function
model) of a transcription factor to its site on the promoter canflexid by sin-
gle or multiple base pairs substitutions. The protein decay rate can be iti®as
adding degradation tags a