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Appendix B
Probability and Random Procesess

This appendix provides a summary of random processes in continuous time with
continuous and discrete states. Some of the material in this section is drawn from
the AM08 supplement on Optimization-Based Control [70].

B.1 Random Variables

Random variables and processes are defined in terms of an underlying probability
space that captures the nature of the stochastic system we wish to study. A proba-
bility space (Ω,F ,P) consists of:

• a sample space Ω that represents the set of all possible outcomes;

• a set of events F the captures combinations of elementary outcomes that are
of interest; and

• a probability measure P that describes the likelihood of a given event occur-
ring.

Ω can be any set, either with a finite, countable or infinite number of elements. The
event space F consists of subsets of Ω. There are some mathematical limits on the
properties of the sets in F , but these are not critical for our purposes here. The
probability measure P is a mapping from P : F → [0,1] that assigns a probability
to each event. It must satisfy the property that given any two disjoint sets A,B ∈ F ,
P(A∪B) = P(A)+P(B).

With these definitions, we can model many different stochastic phenomena.
Given a probability space, we can choose samples ω ∈Ω and identify each sample
with a collection of events chosen from F . These events should correspond to
phenomena of interest and the probability measure P should capture the likelihood
of that event occurring in the system that we are modeling. This definition of a
probability space is very general and allows us to consider a number of situations
as special cases.

A random variable X is a function X : Ω→ S that gives a value in S , called
the state space, for any sample ω ∈ Ω. Given a subset A ⊂ S , we can write the
probability that X ∈ A as

P(X ∈ A) = P({ω ∈Ω : X(ω) ∈ A}).
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We will often find it convenient to omit ω when working random variables and
hence we write X ∈ S rather than the more correct X(ω) ∈ S . The term probability
distribution is used to describe the set of possible values that X can take.

A discrete random variable X is a variable that can take on any value from
a discrete set S with some probability for each element of the set. We model a
discrete random variable by its probability mass function pX(s), which gives the
probability that the random variable X takes on the specific value s ∈ S :

pX(s) = probability that X takes on the value s ∈ S .

The sum of the probabilities over the entire set of states must be unity, and so we
have that

∑

s∈S
pX(s) = 1.

If A is a subset of S , then we can write P(X ∈ A) for the probability that X will take
on some value in the set A. It follows from our definition that

P(X ∈ A) =
∑

s∈A
pX(s).

Definition B.1 (Bernoulli distribution). The Bernoulli distribution is used to model
a random variable that takes the value 1 with probability p and 0 with probability
1− p:

P(X = 1) = p, P(X = 0) = 1− p.

Alternatively, it can be written in terms of its probability mass function

p(s) =







p s = 1
1− p s = 0
0 otherwise.

Bernoulli distributions are used to model independent experiments with binary out-
comes, such as flipping a coin.

Definition B.2 (Binomial distribution). The binomial distributionmodels the prob-
ability of successful trials in n experiments, given that a single experiment has prob-
ability of success p. If we let Xn be a random variable that indicates the number of
success in n trials, then the binomial distribution is given by

pXn(k) = P(Xn = k) =
(

n
k

)

pk(1− p)n−k

for k = 1, . . . ,n. The probability mass function is shown in Figure B.1a.
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(a) Binomial distribution (b) Poisson distribution

Figure B.1: Probability mass functions for common discrete distributions.

Definition B.3 (Poisson distribution). The Poisson distribution is used to describe
the probability that a given number of events will occur in a fixed interval of time
t. The Poisson distribution is defined as

pNt (k) = P(Nt = k) =
(λt)k

k!
e−λt, (B.1)

where Nt is the number of events that occur in a period t and λ is a real number
parameterizing the distribution. This distribution can be considered as a model for a
counting process, where we assume that the average rate of occurrences in a period
t is given by λt and λ represents the rate of the counting process. Figure B.1b shows
the form of the distribution for different values of k and λt.

A continuous (real-valued) random variable X is a variable that can take on any
value in the set of real numbers R. We can model the random variable X according
to its probability distribution function F : R→ [0,1]:

F(x) = P(X ≤ x) = probability that X takes on a value in the range (−∞, x].

It follows from the definition that if X is a random variable in the range [L,U] then
P(L ≤ X ≤ U) = 1. Similarly, if y ∈ [L,U] then P(L ≤ X < y) = 1−P(y ≤ X ≤ U).

We characterize a random variable in terms of the probability density function
(pdf) p(x). The density function is defined so that its integral over an interval gives
the probability that the random variable takes its value in that interval:

P(xl ≤ X ≤ xu) =
∫ xu

xl
p(x)dx. (B.2)

It is also possible to compute p(x) given the distribution P as long as the distribution
function is suitably smooth:

p(x) =
∂F
∂x

(x).

We will sometimes write pX(x) when we wish to make explicit that the pdf is
associated with the random variable X. Note that we use capital letters to refer to a
random variable and lower case letters to refer to a specific value.
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p(x)

L U
(a) Uniform distribution

µ

p(x)

σ

(b) Gaussian distribution (c) Exponentialdistribution

Figure B.2: Probability density function (pdf) for uniform, Gaussian and exponential dis-
tributions.

Definition B.4 (Uniform distribution). The uniform distribution on an interval
[L,U] assigns equal probability to any number in the interval. Its pdf is given by

p(x) =
1

U −L
. (B.3)

The uniform distribution is illustrated in Figure B.2a.

Definition B.5 (Gaussian distribution). The Gaussian distribution (also called a
normal distribution) has a pdf of the form

p(x) =
1

√
2πσ2

e−
1
2
( x−µ
σ

)2

. (B.4)

The parameter µ is called the mean of the distribution and σ is called the stan-
dard deviation of the distribution. Figure B.2b shows a graphical representation a
Gaussian pdf.

Definition B.6 (Exponential distribution). The exponential distribution is defined
for positive numbers and has a pdf of the form

p(x) = λe−λx, x > 0

where λ is a parameter defining the distribution. A plot of the pdf for an exponential
distribution is shown in Figure B.2c.

We now define a number of properties of collections of random variables. We
focus on the continuous random variable case, but unless noted otherwise these
concepts can all be defined similarly for discrete random variables (using the prob-
ability mass function in place of the probability density function).

If two random variables are related, we can talk about their joint probability dis-
tribution: PX,Y (A,B) is the probability that both event A occurs for X and B occurs
for Y . This is sometimes written as P(A∩ B), where we abuse notation by implic-
itly assuming that A is associated with X and B with Y . For continuous random
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variables, the joint probability distribution can be characterized in terms of a joint
probability density function

FX,Y (x,y) = P(X ≤ x, Y ≤ y) =
∫ y

−∞

∫ x

∞
p(u,v)dudv. (B.5)

The joint pdf thus describes the relationship between X and Y , and for sufficiently
smooth distributions we have

p(x,y) =
∂2F
∂x∂y

.

We say that X and Y are independent if p(x,y) = p(x) p(y), which implies that
FX,Y (x,y) = FX(x)FY (y) for all x,y. Equivalently, P(A∩ B) = P(A)P(B) if A and B
are independent events.

The conditional probability for an event A given that an event B has occurred,
written as P(A | B), is given by

P(A | B) =
P(A∩B)
P(B)

. (B.6)

If the events A and B are independent, then P(A | B)= P(A). Note that the individual,
joint and conditional probability distributions are all different, so if we are talking
about random variables we can write PX,Y (A,B), PX|Y (A | B) and PY (B), where A
and B are appropriate subsets of R.

If X is dependent on Y then Y is also dependent on X. Bayes’ theorem relates
the conditional and individual probabilities:

P(A | B) =
P(B | A)P(A)
P(B)

, P(B) ! 0. (B.7)

Bayes’ theorem gives the conditional probability of event A on event B given the
inverse relationship (B given A). It can be used in situations in which we wish to
evaluate a hypothesis H given data D when we have some model for how likely the
data is given the hypothesis, along with the unconditioned probabilities for both
the hypothesis and the data.

The analog of the probability density function for conditional probability is the
conditional probability density function p(x | y)

p(x | y) =







p(x,y)
p(y)

0 < p(y) <∞

0 otherwise.
(B.8)

It follows that
p(x,y) = p(x | y)p(y) (B.9)
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and
P(X ≤ x | y) := P(X ≤ x | Y = y)

=

∫ x

−∞
p(u | y)du =

∫ x
−∞ p(u,y)du

p(y)
.

(B.10)

If X and Y are independent than p(x | y) = p(x) and p(y | x) = p(y). Note that p(x,y)
and p(x | y) are different density functions, though they are related through equa-
tion (B.9). If X and Y are related with joint probability density function p(x,y) and
conditional probability density function p(x | y) then

p(x) =
∫ ∞

−∞
p(x,y)dy =

∫ ∞

−∞
p(x | y)p(y)dy.

Example B.1 (Conditional probability for sum). Consider three random variables
X, Y and Z related by the expression

Z = X+Y.

In other words, the value of the random variable Z is given by choosing values
from two random variables X and Y and adding them. We assume that X and Y
are independent Gaussian random variables with mean µ1 and µ2 and standard
deviation σ = 1 (the same for both variables).

Clearly the random variable Z is not independent of X (or Y) since if we know
the values of X then it provides information about the likely value of Z. To see this,
we compute the joint probability between Z and X. Let

A = {xl ≤ x ≤ xu}, B = {zl ≤ z ≤ zu}.

The joint probability of both events A and B occurring is given by

PX,Z(A∩B) = P(xl ≤ x ≤ xu, zl ≤ x+ y ≤ zu)
= P(xl ≤ x ≤ xu, zl− x ≤ y ≤ zu− x).

We can compute this probability by using the probability density functions for X
and Y:

P(A∩B) =
∫ xu

xl

(
∫ zu−x

zl−x
pY (y)dy

)

pX(x)dx

=

∫ xu

xl

∫ zu

zl
pY (z− x)pX(x)dzdx =:

∫ zu

zl

∫ xu

xl
pZ,X(z, x)dxdz.

Using Gaussians for X and Y we have

pZ,X(z, x) =
1
√

2π
e−

1
2 (z− x−µY )2

·
1
√

2π
e−

1
2 (x−µX)2

=
1

2π
e−

1
2
(

(z− x−µY )2+ (x−µX)2)
.

A similar expression holds for pZ,Y . ∇
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Given a random variable X, we can define various standard measures of the
distribution. The expectation or mean of a random variable is defined as

E(X) = 〈X〉 =
∫ ∞

−∞
x p(x)dx,

and the mean square of a random variable is

E(X2) = 〈X2〉 =
∫ ∞

−∞
x2 p(x)dx.

If we let µ represent the expectation (or mean) of X then we define the variance of
X as

E((X−µ)2) = 〈(X−〈X〉)2〉 =
∫ ∞

−∞
(x−µ)2 p(x)dx.

We will often write the variance as σ2. As the notation indicates, if we have a
Gaussian random variable with mean µ and (stationary) standard deviation σ, then
the expectation and variance as computed above return µ and σ2.

Example B.2 (Exponential distribution). The exponential distribution has mean
and variance given by

µ =
1
λ
, σ2 =

1
λ2 .

∇

Several useful properties follow from the definitions.

Proposition B.1 (Properties of random variables).

1. If X is a random variable with mean µ and variance σ2, then αX is random
variable with mean αX and variance α2σ2.

2. If X and Y are two random variables, then E(αX+βY) = αE(X)+βE(Y).

3. If X and Y are Gaussian random variables with means µX, µY and variances
σ2
X, σ

2
Y ,

p(x) =
1

√

2πσ2
X

e−
1
2

(
x−µX
σX

)2

, p(y) =
1

√

2πσ2
Y

e−
1
2

(
y−µY
σY

)2

,

then X+Y is a Gaussian random variable with mean µZ = µX +µY and vari-
ance σ2

Z = σ
2
X +σ

2
Y ,

p(x+ y) =
1

√

2πσ2
Z

e−
1
2

(
x+y−µZ
σZ

)2

.
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Proof. The first property follows from the definition of mean and variance:

E(αX) =
∫ ∞

−∞
αx p(x)dx = α

∫ ∞

−∞
αx p(x)dx = αE(X)

E((αX)2) =
∫ ∞

−∞
(αx)2 p(x)dx = α2

∫ ∞

−∞
x2 p(x)dx = α2

E(X2).

The second property follows similarly, remembering that we must take the expec-
tation using the joint distribution (since we are evaluating a function of two random
variables):

E(αX+βY) =
∫ ∞

−∞

∫ ∞

−∞
(αx+βy) pX,Y (x,y)dxdy

= α

∫ ∞

−∞

∫ ∞

−∞
x pX,Y (x,y)dxdy+β

∫ ∞

−∞

∫ ∞

−∞
y pX,Y (x,y)dxdy

= α

∫ ∞

−∞
x pX(x)dx+β

∫ ∞

−∞
y pY (y)dy = αE(X)+βE(Y).

The third item is left as an exercise.

B.2 Continuous-State Random Processes

A random process is a collection of time-indexed random variables. Formally, we
consider a random process X to be a joint mapping of sample and a time to a state:
X : Ω×T → S , where T is an appropriate time set. We view this mapping as a
generalized random variable: a sample corresponds to choosing an entire function
of time. Of course, we can always fix the time and interpret X(ω, t) as a regular
random variable, with X(ω, t′) representing a different random variable if t ! t′.
Our description of random processes will consist of describing how the random
variable at a time t relates to the value of the random variable at an earlier time s.
To build up some intuition about random processes, we will begin with the discrete
time case, where the calculations are a bit more straightforward, and then proceed
to the continuous time case.

A discrete-time random process is a stochastic system characterized by the evo-
lution of a sequence of random variables X[k], where k is an integer. As an example,
consider a discrete-time linear system with dynamics

X[k+1] = AX[k]+BU[k]+FW[k], Y[k] =CX[k]+V[k]. (B.11)

As in AM08, X ∈ Rn represents the state of the system, U ∈ Rp is the vector of
inputs and Y ∈ Rq is the vector of outputs. The (possibly vector-valued) signal
W represents disturbances to the process dynamics and V represents noise in the
measurements. To try to fix the basic ideas, we will take u = 0, n = 1 (single state)
and F = 1 for now.
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We wish to describe the evolution of the dynamics when the disturbances and
noise are not given as deterministic signals, but rather are chosen from some proba-
bility distribution. Thus we will let W[k] be a collection of random variables where
the values at each instant k are chosen from a probability distribution with pdf
pW,k(x). As the notation indicates, the distributions might depend on the time in-
stant k, although the most common case is to have a stationary distribution in which
the distributions are independent of k (defined more formally below).

In addition to stationarity, we will often also assume that distribution of values
of W at time k is independent of the values of W at time l if k ! l. In other words,
W[k] and W[l] are two separate random variables that are independent of each
other. We say that the corresponding random process is uncorrelated (also defined
more formally below). As a consequence of our independence assumption, we have
that

E(W[k]W[l]) = E(W2[k])δ(k− l) =






E(W2[k]) k = l
0 k ! l.

In the case that W[k] is a Gaussian with mean zero and (stationary) standard devi-
ation σ, then E(W[k]W[l]) = σ2 δ(k− l).

We next wish to describe the evolution of the state x in equation (B.11) in the
case when W is a random variable. In order to do this, we describe the state x as a
sequence of random variables X[k], k = 1, · · · ,N. Looking back at equation (B.11),
we see that even if W[k] is an uncorrelated sequence of random variables, then the
states X[k] are not uncorrelated since

X[k+1] = AX[k]+FW[k],

and hence the probability distribution for X at time k + 1 depends on the value
of X at time k (as well as the value of W at time k), similar to the situation in
Example B.1.

Since each X[k] is a random variable, we can define the mean and variance as
µ[k] and σ2[k] using the previous definitions at each time k:

µ[k] := E(X[k]) =
∫ ∞

−∞
x p(x,k)dx,

σ2[k] := E((X[k]−µ[k])2) =
∫ ∞

−∞
(x−µ[k])2 p(x,k)dx.

To capture the relationship between the current state and the future state, we define
the correlation function for a random process as

ρ(k1,k2) := E(X[k1]X[k2]) =
∫ ∞

−∞
x1x2 p(x1, x2;k1,k2)dx1dx2

The function p(xi, x j;k1,k2) is the joint probability density function, which depends
on the times k1 and k2. A process is stationary if p(x,k + d) = p(x,d) for all k,
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p(xi, x j;k1 + d,k2 + d) = p(xi, x j;k1,k2), etc. In this case we can write p(xi, x j;d)
for the joint probability distribution. We will almost always restrict to this case.
Similarly, we will write p(k1,k2) as p(d) = p(k,k+d).

We can compute the correlation function by explicitly computing the joint pdf
(see Example B.1) or by directly computing the expectation. Suppose that we take
a random process of the form (B.11) with X[0] = 0 and W having zero mean and
standard deviation σ. The correlation function is given by

E(X[k1]X[k2]) = E
{
(
k1−1∑

i=0
Ak1−iBW[i]

)(
k2−1∑

j=0
Ak2− jBW[ j]

)
}

= E
{
k1−1∑

i=0

k2−1∑

j=0
Ak1−iBW[i]W[ j]BAk2− j

}

.

We can now use the linearity of the expectation operator to pull this inside the
summations:

E(X[k1]X[k2]) =
k1−1∑

i=0

k2−1∑

j=0
Ak1−iBE(W[i]W[ j])BAk2− j

=

k1−1∑

i=0

k2−1∑

j=0
Ak1−iBσ2δ(i− j)BAk2− j

=

k1−1∑

i=0
Ak1−iBσ2BAk2−i.

Note that the correlation function depends on k1 and k2.
We can see the dependence of the correlation function on the time more clearly

by letting d = k2− k1 and writing

ρ(k,k+d) = E(X[k]X[k+d]) =
k1−1∑

i=0
Ak−iBσ2BAd+k−i

=

k∑

j=1
AjBσ2BAj+d =

(
k∑

j=1
AjBσ2BAj

)

Ad.

In particular, if the discrete time system is stable then |A| < 1 and the correlation
function decays as we take points that are further departed in time (d large). Fur-
thermore, if we let k→∞ (i.e., look at the steady state solution) then the correlation
function only depends on d (assuming the sum converges) and hence the steady
state random process is stationary.

In our derivation so far, we have assumed that X[k + 1] only depends on the
value of the state at time k (this was implicit in our use of equation (B.11) and the
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assumption that W[k] is independent of X). This particular assumption is known as
the Markov property for a random process: a Markovian process is one in which
the distribution of possible values of the state at time k depends only on the values
of the state at the prior time and not earlier. Written more formally, we say that a
discrete random process is Markovian if

pX,k(x | X[k−1],X[k−2], . . . ,X[0]) = pX,k(x | X[k−1]).

Markov processes are roughly equivalent to state space dynamical systems, where
the future evolution of the system can be completely characterized in terms of the
current value of the state (and not its history of values prior to that).

We now consider the case where our time index is no longer discrete, but instead
varies continuously. A fully rigorous derivation requires careful use of measure
theory and is beyond the scope of this text, so we focus here on the concepts that
will be useful for modeling and analysis of important physical properties.

A continuous-time random process is a stochastic system characterized by the
evolution of a random variable X(t), t ∈ [0,T ]. We are interested in understanding
how the (random) state of the system is related at separate times. The process is
defined in terms of the “correlation” of X(t1) with X(t2). We assume, as above, that
the process is described by continuous random variables, but the discrete state case
(with time still modeled as a real variable) can be handled in a similar fashion.

We call X(t) ∈ Rn the state of the random process at time t. For the case n > 1,
we have a vector of random processes:

X(t) =





X1(t)
...

Xn(t)





We can characterize the state in terms of a (joint) time-varying pdf,

P({xi,l ≤ Xi(t) ≤ xi,u}) =
∫ x1,u

x1,l

. . .

∫ xn,u

xn,l
pX1,...,Xn(x; t)dxn . . .dx1.

Note that the state of a random process is not enough to determine the extact next
state, but only the distribution of next states (otherwise it would be a deterministic
process). We typically omit indexing of the individual states unless the meaning is
not clear from context.

We can characterize the dynamics of a random process by its statistical charac-
teristics, written in terms of joint probability density functions:

P(x1l ≤ Xi(t1) ≤ x1u, x2l ≤ Xj(t2) ≤ x2u)

=

∫ x2u

x2l

∫ x1u

x1l

pXi,Yi(x1, x2; t1, t2)dx1dx2
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The function p(xi, x j; t1, t2) is called a joint probability density function and depends
both on the individual states that are being compared and the time instants over
which they are compared. Note that if i = j, then pXi,Xi describes how Xi at time t1
is related to Xi at time t2.

In general, the distributions used to describe a random process depend on the
specific time or times that we evaluate the random variables. However, in some
cases the relationship only depends on the difference in time and not the abso-
lute times (similar to the notion of time invariance in deterministic systems, as de-
scribed in AM08). A process is stationary if p(x, t+τ)= p(x, t) for all τ, p(xi, x j; t1+
τ, t2+τ) = p(xi, x j; t1, t2), etc. In this case we can write p(xi, x j;τ) for the joint prob-
ability distribution. Stationary distributions roughly correspond to the steady state
properties of a random process and we will often restrict our attention to this case.

We are often interested in random processes in which changes in the state oc-
cur when a random event occurs (such as a molecular reaction or binding event).
In this case, it is natural to describe the state of the system in terms of a set of
times t0 < t1 < t2 < · · · < tn and X(ti) is the random variable that corresponds to the
possible states of the system at time ti. Note that time time instants do not have
to be uniformly spaced and most often (for physical systems) they will not be. All
of the definitions above carry through, and the process can now be described by a
probability distribution of the form

P
(

X(ti) ∈ [xi, xi+dxi], i = 1, . . . ,n
)

=

p(xn, xn−1, . . . , x0; tn, tn−1, . . . , t0)dxn dxn−1 dx1,

where dxi are taken as infinitesimal quantities.
Just as in the case of discrete time processes, we define a continuous time ran-

dom process to be a Markov process if the probability of being in a given state at
time tn depends only on the state that we were in at the previous time instant tn−1
and not the entire history of states prior to tn−1:

P
(

X(tn) ∈ [xn, xn+dxn] | X(ti) ∈ [xi, xi+dxi], i = 1, . . . ,n−1
)

= P
(

X(tn) ∈ [xn, xn+dxn] | X(tn−1) ∈ [xn−1, xn−1+dxn−1]
)

. (B.12)

In practice we do not usually specify random processes via the joint probabil-
ity distribution p(xi, x j; t1, t2) but instead describe them in terms of a propogater
function. Let X(t) be a Markov process and define the Markov propogater as

Ξ(dt; x, t) = X(t+dt)−X(t), given X(t) = x.

The propogater function describes how the random variable at time t is related
to the random variable at time t + dt. Since both X(t + dt) and X(t) are random
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variables, Ξ(dt; x, t) is also a random variable and hence it can be described by its
density function, which we denote as Π(ξ, x;dt, t):

P
(

x ≤ X(t+dt) ≤ x+ ξ
)

=

∫ x+ξ

x
Π(dx, x;dt, t)dx.

The previous definitions for mean, variance and correlation can be extended to
the continuous time, vector-valued case by indexing the individual states:

E{X(t)} =





E{X1(t)}
...

E{Xn(t)}





=: µ(t)

E{(X(t)−µ(t))(X(t)−µ(t))T } =





E{X1(t)X1(t)} . . . E{X1(t)Xn(t)}
. . .

...

E{Xn(t)Xn(t)}





=: Σ(t)

E{X(t)XT (s)} =





E{X1(t)X1(s)} . . . E{X1(t)Xn(s)}
. . .

...

E{Xn(t)Xn(s)}





=: R(t, s)

Note that the random variables and their statistical properties are all indexed by the
time t (and s). The matrix R(t, s) is called the correlation matrix for X(t) ∈ Rn. If
t = s then R(t, t) describes how the elements of x are correlated at time t (with each
other) and in the case that the processes have zero mean, R(t, t)= Σ(t). The elements
on the diagonal of Σ(t) are the variances of the corresponding scalar variables. A
random process is uncorrelated if R(t, s) = 0 for all t ! s. This implies that X(t) and
X(s) are independent random events and is equivalent to pX,Y (x,y) = pX(x)pY (y).

If a random process is stationary, then it can be shown that R(t+τ, s+τ)= R(t, s)
and it follows that the correlation matrix depends only on t− s. In this case we will
often write R(t, s) = R(s− t) or simply R(τ) where τ is the correlation time. The
covariance matrix in this case is simply R(0).

In the case where X is also scalar random process, the correlation matrix is
also a scalar and we will write r(τ), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar random processes, the correla-
tion function depends only on the absolute value of the correlation function, so
r(τ) = r(−τ) = r(|τ|). This property also holds for the diagonal entries of the corre-
lation matrix since Rii(s, t) = Rii(t, s) from the definition.

Definition B.7 (Ornstein-Uhlenbeck process). Consider a scalar random process
defined by a Gaussian pdf with µ = 0,

p(x, t) =
1

√
2πσ2

e−
1
2
x2
σ2 ,
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ρ(t1− t2)

τ = t1− t2

Figure B.3: Correlation function for a first-order Markov process.

and a correlation function given by

r(t1, t2) =
Q

2ω0
e−ω0 |t2−t1 |.

The correlation function is illustrated in Figure B.3. This process is known as an
Ornstein-Uhlenbeck process and it is a stationary process.

Note on terminology. The terminology and notation for covariance and correlation
varies between disciplines. The term covariance is often used to refer to both the re-
lationship between different variables X and Y and the relationship between a single
variable at different times, X(t) and X(s). The term “cross-covariance” is used to re-
fer to the covariance between two random vectors X and Y , to distinguish this from
the covariance of the elements of X with each other. The term “cross-correlation”
is sometimes also used. Finally, the term “correlation coefficient” refers to the nor-
malized correlation  r(t, s) = E(X(t)X(s))/E(X(t)X(t))..
MATLAB has a number of functions to implement covariance and correlation,

which mostly match the terminology here:

• cov(X) - this returns the variance of the vector X that represents samples of a
given random variable or the covariance of the columns of a matrix X where
the rows represent observations.
• cov(X, Y) - equivalent to cov([X(:), Y(:)]). Computes the covariance

between the columns of X and Y , where the rows are observations.
• xcorr(X, Y) - the “cross-correlation” between two random sequences. If

these sequences came from a random process, this is correlation function
r(t).
• xcov(X, Y) - this returns the “cross-covariance”, which MATLAB defines as

the “mean-removed cross-correlation”.

The MATLAB help pages give the exact formulas used for each, so the main point
here is to be careful to make sure you know what you really want.

We will also make use of a special type of random process referred to as “white
noise”. A white noise process X(t) satisfies E{X(t)} = 0 and R(t, s) = Wδ(s− t),
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where δ(τ) is the impulse function and W is called the noise intensity. White noise
is an idealized process, similar to the impulse function or Heaviside (step) function
in deterministic systems. In particular, we note that r(0) = E{X2(t)} = ∞, so the
covariance is infinite and we never see this signal in practice. However, like the
step and impulse functions, it is very useful for characterizing the response of a
linear system, as described in the following proposition. It can be shown that the
integral of a white noise process is a Wiener process, and so often white noise is
described as the derivative of a Wiener process.

B.3 Discrete-State Random Processes

There are a number of specialized discrete random processes that are relevant for
biochemical systems. In this section we give a brief introduction to these processes.

A birth-death process is one in which the states of the process represent integer-
value counts of different species populations and the transitions between states are
restricted to either incrementing (birth) or decrementing (death) a given species.
This type of model is often used to represent chemical reactions such as the pro-
duction and degradation of proteins.
Example B.3 (Protein production). ∇

A more general type of discrete random process is aMarkov chain. In a Markov
chain, evolution of the discrete states occurs by execution of allowable transitions
between two states. Each transition has a specified probability, which is used to
determine whether a system will transition from its current state into a different
state (corresponding to an allowable transition). An important property, called the
Markov property, is that the transition probability only depends on the value of the
current state, not the previous values of the state.

We define a Markov chain by giving the set of transition probabilities

qi j(t,τ) = P(X(t+τ) = s j|X(t) = si),

where si, s j ∈ S , t is the current time and τ is the time interval over which we are
interested. If qi j(t,τ) ! 0 for some τ ! 0 then we say that the transition is allowable
at time t. If qi j is independent of t then we say that the process is stationary and we
omit the argument t. In the special case that we are only interested in a fixed τ (i.e.,
we are using a discrete-time model) then we omit this argument as well.

It is generally difficult to describe the probability of being in a particular state in
a Markov process at a given time. Instead, we often resort to describing the steady
state distributions, assuming that they exist. For a stationary Markov chain, we can
look at the equilibrium distributions, which are those distributions π that satisfy

πi = qi j(τ)π j, for all i, j.

Example B.4 (Protein expression). ∇
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